forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunpickler.cpp
1230 lines (1188 loc) · 43.6 KB
/
unpickler.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <ATen/ATen.h>
#include <ATen/core/Dict.h>
#ifdef USE_RPC
#include <torch/csrc/distributed/rpc/rref_context.h>
#endif
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/mobile/type_parser.h>
#include <torch/csrc/jit/serialization/pickler.h>
#include <torch/csrc/jit/serialization/storage_context.h>
#include <torch/csrc/jit/serialization/unpickler.h>
#include <torch/csrc/utils/byte_order.h>
#include <string>
#include <utility>
namespace torch::jit {
using ::c10::IValue;
static void restoreAccurateTypeTagsIfPossible(const IValue& root) {
if (root.isObject()) {
restoreAccurateTypeTags(root, root.type());
}
}
// Pickled objects are stored in a form compatible with Python pickling.
// In torchscript List[T]/Dict[K, V] are statically typed and contain
// dynamic type tags that allow T, K, and V to be recovered. But this
// info is not stored in the Python pickling information. However, we
// can recover this information from the static type of the top-level
// object being unpickled, because we have a record of the type of the
// objects it contains as attributes.
// `IfPossible` - we can only do this recovery when we have an object as
// the top-level unpickled thing (which is guaranteed for Modules, but
// not for torch.load/torch.save). Otherwise we do not know the types
// of the contained objects and cannot restore the tags.
void restoreAccurateTypeTags(const IValue& root, const TypePtr& type_tag) {
struct Work {
TypePtr type;
IValue value;
};
std::vector<Work> to_process = {{type_tag, root}};
std::unordered_set<const void*> scanned;
while (!to_process.empty()) {
Work w = std::move(to_process.back());
to_process.pop_back();
// ensure we only scan each pointer value once, otherwise this
// can become exponential (and if we allow recursive data in the future,
// it would not terminiate).
if (w.value.isPtrType()) {
const void* key = w.value.internalToPointer();
auto it = scanned.find(key);
if (it != scanned.end()) {
continue;
}
scanned.emplace_hint(it, key);
}
auto kind = w.type->kind();
if (auto dyn = w.type->castRaw<c10::DynamicType>()) {
kind = dyn->dynamicKind();
}
switch (kind) {
case TensorType::Kind:
case StorageType::Kind:
case NumberType::Kind:
case FloatType::Kind:
case ComplexType::Kind:
case IntType::Kind:
case NoneType::Kind:
case GeneratorType::Kind:
case QuantizerType::Kind:
case BoolType::Kind:
case VarType::Kind:
case CapsuleType::Kind:
case PyObjectType::Kind:
case StringType::Kind:
case FunctionType::Kind:
case DeviceObjType::Kind:
case StreamObjType::Kind:
case QSchemeType::Kind:
case LayoutType::Kind:
case MemoryFormatType::Kind:
case ScalarTypeType::Kind:
case RRefType::Kind:
case AnyType::Kind:
case AnyListType::Kind:
case AnyTupleType::Kind:
case AnyClassType::Kind:
case AnyEnumType::Kind:
// no op, there is nothing to tag
break;
case c10::SymIntType::Kind:
// TODO: Can this really show up though? :think:
TORCH_CHECK(!w.value.toSymInt().is_heap_allocated());
// no op, there is nothing to tag
break;
case c10::SymFloatType::Kind:
TORCH_CHECK(!w.value.toSymFloat().is_symbolic());
// no op, there is nothing to tag
break;
case c10::SymBoolType::Kind:
TORCH_CHECK(!w.value.toSymBool().is_heap_allocated());
// no op, there is nothing to tag
break;
case DynamicType::Kind:
case UnionType::Kind:
case EnumType::Kind:
// TODO(gmagogsfm): Implement serialization/deserialization of Enum.
TORCH_INTERNAL_ASSERT(false);
case TupleType::Kind: {
auto t = w.value.toTuple();
for (size_t i = 0; i < w.type->containedTypeSize(); ++i) {
Work elem = {w.type->containedType(i), t->elements().at(i)};
to_process.emplace_back(std::move(elem));
}
} break;
case FutureType::Kind: {
auto f = w.value.toFuture();
if (f->completed()) {
Work elem = {w.type->containedType(0), f->value()};
to_process.emplace_back(std::move(elem));
}
} break;
case AwaitType::Kind: {
auto aw = w.value.toAwait();
if (aw->completed()) {
Work elem = {w.type->containedType(0), aw->wait()};
to_process.emplace_back(std::move(elem));
}
} break;
case OptionalType::Kind: {
if (!w.value.isNone()) {
Work elem = {w.type->containedType(0), w.value};
to_process.emplace_back(std::move(elem));
}
} break;
case ListType::Kind: {
// specialized lists do not need their type refined, so we can exit
// early here
if (!w.value.isList()) {
break;
}
auto elem_type = w.type->containedType(0);
auto lst = w.value.toList();
lst.unsafeSetElementType(elem_type);
for (const IValue& item : lst) {
Work elem = {elem_type, item};
to_process.emplace_back(std::move(elem));
}
} break;
case DictType::Kind: {
auto d = w.value.toGenericDict();
auto keyType = w.type->containedType(0);
auto valType = w.type->containedType(1);
d.unsafeSetKeyType(keyType);
d.unsafeSetValueType(valType);
for (const auto& item : d) {
Work kelem = {keyType, item.key()};
Work velem = {valType, item.value()};
to_process.emplace_back(std::move(kelem));
to_process.emplace_back(std::move(velem));
}
} break;
// in both cases the dynamic type is a class, and we are going to tag with
// the dynamic type
case InterfaceType::Kind:
case ClassType::Kind: {
auto obj = w.value.toObject();
auto typ = obj->type(); // note: intentionally using the dynamic type,
// the static type is potentially less accurate
for (size_t i = 0; i < typ->numAttributes(); ++i) {
Work elem = {typ->getAttribute(i), obj->getSlot(i)};
to_process.emplace_back(std::move(elem));
}
};
}
}
}
namespace {
template <typename T>
bool is(const Type& type) {
if (type.kind() == T::Kind) {
return true;
}
if (auto dyn = type.castRaw<c10::DynamicType>()) {
return dyn->tag() == c10::DynamicTypeTrait<T>::tagValue();
}
return false;
}
} // namespace
static void restoreContainerTypeTags(
const IValue& ivalue,
const TypePtr& type) {
if (is<DictType>(*type)) {
auto dict = ivalue.toGenericDict();
dict.unsafeSetKeyType(type->containedType(0));
dict.unsafeSetValueType(type->containedType(1));
} else if (is<ListType>(*type)) {
ivalue.toList().unsafeSetElementType(type->containedType(0));
} else {
TORCH_CHECK(
false, "Unknown type for tag restoration: " + type->annotation_str());
}
}
IValue Unpickler::parse_ivalue() {
run();
TORCH_CHECK(
stack_.size() == 1,
"Unpickler expected 1 element on the stack, but found ",
stack_.size());
if (version_ <= 2) {
// See [type tag serialization]
restoreAccurateTypeTagsIfPossible(stack_[0]);
}
return stack_[0];
}
double Unpickler::readFloat() {
AT_ASSERT(sizeof(double) == 8);
double big_endian = read<double>();
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
double little_endian = 0;
// Pickle floats are big endian, so reverse the bytes
auto big_endian_ptr = reinterpret_cast<const char*>(&big_endian);
std::reverse_copy(
big_endian_ptr,
big_endian_ptr + sizeof(big_endian),
reinterpret_cast<char*>(&little_endian));
return little_endian;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return big_endian;
#else
#error Unexpected or undefined __BYTE_ORDER__
#endif
}
void Unpickler::run() {
// Expect a PROTO opcode and protocol number at the start of blob
auto opcode = readOpCode();
TORCH_CHECK(
opcode == PickleOpCode::PROTO,
"Expected PROTO opcode at the start"
" of pickle archive, found ",
int(static_cast<uint8_t>(opcode)));
uint8_t protocol = read<uint8_t>();
TORCH_CHECK(
protocol == 2,
"Only Pickle protocol 2 is supported, found protocol = ",
protocol);
while (true) {
PickleOpCode opcode = readInstruction();
if (opcode == PickleOpCode::STOP) {
return;
}
}
}
void Unpickler::setInput(size_t memo_id) {
AT_ASSERT(!stack_.empty());
if (memo_id >= memo_table_.size()) {
memo_table_.insert(
memo_table_.end(), memo_id - memo_table_.size(), IValue());
memo_table_.push_back(stack_.back());
} else {
memo_table_[memo_id] = stack_.back();
}
}
// emplace_back on bool vectors does not exist on some systems
// avoid it by calling push_back for bool
template <typename T>
inline void append(std::vector<T>& a, T&& e) {
a.emplace_back(std::forward<T>(e));
}
template <>
// NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved)
inline void append<bool>(std::vector<bool>& a, bool&& e) {
a.push_back(e);
}
static std::vector<int64_t> tupleToIntList(const IValue& v) {
return fmap(v.toTupleRef().elements(), [](const IValue& v) -> int64_t {
return v.toInt();
});
}
// note we cannot use toIntList, toDoubleList because during unpickling the
// lists are not yet tagged
template <typename T>
static std::vector<T> convertList(const IValue& v) {
return fmap(v.toListRef(), [](const IValue& elem) { return elem.to<T>(); });
}
PickleOpCode Unpickler::readInstruction() {
auto opcode = readOpCode();
switch (opcode) {
case PickleOpCode::EMPTY_LIST: {
stack_.emplace_back(c10::impl::GenericList(AnyType::get()));
} break;
case PickleOpCode::EMPTY_TUPLE: {
if (empty_tuple_.isNone()) {
// we only need one object, since tuples are not mutable.
empty_tuple_ = c10::ivalue::Tuple::create(std::vector<IValue>());
}
stack_.emplace_back(empty_tuple_);
} break;
case PickleOpCode::BINPUT: {
size_t memo_id = read<uint8_t>();
setInput(memo_id);
} break;
case PickleOpCode::LONG_BINPUT: {
TORCH_CHECK(
std::numeric_limits<size_t>::max() >=
std::numeric_limits<uint32_t>::max(),
"Found a LONG_BINPUT opcode, but size_t on this system is "
"not big enough to decode it");
size_t memo_id = read<uint32_t>();
setInput(memo_id);
} break;
case PickleOpCode::MARK: {
// Mark location of the container ivalue in the stack
marks_.push_back(stack_.size());
} break;
case PickleOpCode::NEWTRUE: {
stack_.emplace_back(true);
} break;
case PickleOpCode::NEWFALSE: {
stack_.emplace_back(false);
} break;
case PickleOpCode::NONE: {
stack_.emplace_back();
} break;
case PickleOpCode::BININT1: {
uint8_t value = read<uint8_t>();
stack_.emplace_back(int64_t(value));
} break;
case PickleOpCode::BININT2: {
uint16_t value = from_le16(read<uint16_t>());
stack_.emplace_back(int64_t(value));
} break;
case PickleOpCode::BININT: {
int32_t value = from_le32(read<int32_t>());
stack_.emplace_back(int64_t(value));
} break;
case PickleOpCode::LONG1: {
// Only read LONG1s with 8 as the length
uint8_t length = read<uint8_t>();
TORCH_CHECK(length == 8, "Expected length to be 8, got ", int(length));
stack_.emplace_back(int64_t(from_le64(read<int64_t>())));
} break;
case PickleOpCode::BINUNICODE: {
uint32_t length = from_le32(read<uint32_t>());
stack_.emplace_back(readBytes(length));
} break;
case PickleOpCode::BINUNICODE8: {
int64_t length = from_le64(read<int64_t>());
stack_.emplace_back(readBytes(length));
} break;
case PickleOpCode::BINFLOAT:
stack_.emplace_back(readFloat());
break;
case PickleOpCode::TUPLE: {
TORCH_CHECK(!marks_.empty(), "Parsing error: marks_ is empty");
size_t start = marks_.back();
marks_.pop_back();
std::vector<IValue> elements;
TORCH_CHECK(
stack_.size() >= start,
"Parsing error: wrong start index ",
start,
" for stack_ of size ",
stack_.size());
const auto tupleSize = stack_.size() - start;
switch (tupleSize) {
case 3: {
auto e3 = pop(stack_);
auto e2 = pop(stack_);
auto e1 = pop(stack_);
stack_.emplace_back(c10::ivalue::Tuple::create(
std::move(e1), std::move(e2), std::move(e3)));
break;
}
case 2: {
auto e2 = pop(stack_);
auto e1 = pop(stack_);
stack_.emplace_back(
c10::ivalue::Tuple::create(std::move(e1), std::move(e2)));
break;
}
case 1:
stack_.emplace_back(c10::ivalue::Tuple::create(pop(stack_)));
break;
default: {
elements.reserve(stack_.size() - start);
auto start_it = stack_.begin() + static_cast<std::ptrdiff_t>(start);
for (auto it = start_it; it != stack_.end(); ++it) {
elements.emplace_back(std::move(*it));
}
stack_.erase(start_it, stack_.end());
stack_.emplace_back(c10::ivalue::Tuple::create(std::move(elements)));
break;
}
}
} break;
case PickleOpCode::TUPLE1: {
TORCH_CHECK(
!stack_.empty(),
"Parsing error: stack_ contains ",
stack_.size(),
" elements, at least 1 expected");
stack_.emplace_back(c10::ivalue::Tuple::create(pop(stack_)));
} break;
case PickleOpCode::TUPLE2: {
TORCH_CHECK(
stack_.size() > 1,
"Parsing error: stack_ contains ",
stack_.size(),
" elements, at least 2 expected");
auto e2 = pop(stack_);
auto e1 = pop(stack_);
stack_.emplace_back(
c10::ivalue::Tuple::create(std::move(e1), std::move(e2)));
} break;
case PickleOpCode::TUPLE3: {
TORCH_CHECK(
stack_.size() > 2,
"Parsing error: stack_ contains ",
stack_.size(),
" elements, at least 3 expected");
auto e3 = pop(stack_);
auto e2 = pop(stack_);
auto e1 = pop(stack_);
stack_.emplace_back(c10::ivalue::Tuple::create(
std::move(e1), std::move(e2), std::move(e3)));
} break;
case PickleOpCode::EMPTY_DICT:
stack_.emplace_back(
c10::impl::GenericDict(AnyType::get(), AnyType::get()));
break;
case PickleOpCode::APPENDS: {
TORCH_CHECK(!marks_.empty(), "Parsing error: marks_ is empty");
size_t start = marks_.back();
TORCH_CHECK(
start > 0 && start <= stack_.size(),
"Parsing error: wrong start index ",
start,
" for stack_ of size ",
stack_.size());
auto list_ivalue = stack_.at(start - 1);
readList(list_ivalue);
} break;
case PickleOpCode::APPEND: {
TORCH_CHECK(
stack_.size() >= 2, "Parsing error: missing elements in stack_.");
auto list_ivalue = stack_.at(stack_.size() - 2);
readListElements(list_ivalue, stack_.size() - 1);
} break;
case PickleOpCode::LIST: {
IValue list_ivalue = c10::impl::GenericList(AnyType::get());
readList(list_ivalue);
stack_.push_back(std::move(list_ivalue));
} break;
case PickleOpCode::DICT: {
TORCH_CHECK(!marks_.empty(), "Parsing error: marks_ is empty");
size_t start = marks_.back();
marks_.pop_back();
TORCH_CHECK(
stack_.size() > start,
"Parsing error: wrong start index ",
start,
" for stack_ which of size ",
stack_.size());
auto dict = c10::impl::GenericDict(AnyType::get(), AnyType::get());
TORCH_CHECK(
(stack_.size() - start) % 2 == 0,
"Parsing error: stack_ is of size ",
stack_.size(),
" and start index is ",
start,
", but stack_ is iterated by two elements at a time");
for (size_t i = start; i < stack_.size(); i += 2) {
dict.insert_or_assign(stack_[i], stack_[i + 1]);
}
stack_.erase(
stack_.begin() + static_cast<std::ptrdiff_t>(start), stack_.end());
stack_.emplace_back(std::move(dict));
} break;
case PickleOpCode::SETITEMS: {
TORCH_CHECK(!marks_.empty(), "Parsing error: marks_ is empty");
size_t start = marks_.back();
marks_.pop_back();
TORCH_CHECK(
start > 0 && start <= stack_.size(),
"Parsing error: wrong start index for stack_");
auto dict = stack_.at(start - 1).toGenericDict();
TORCH_CHECK(
(stack_.size() - start) % 2 == 0,
"Parsing error: stack_ is of size ",
stack_.size(),
" and start index is ",
start,
", but stack_ is iterated by two elemenst at a time");
for (size_t i = start; i < stack_.size(); i += 2) {
dict.insert_or_assign(stack_[i], stack_[i + 1]);
}
stack_.erase(
stack_.begin() + static_cast<std::ptrdiff_t>(start), stack_.end());
} break;
case PickleOpCode::BINGET: {
auto pos = read<uint8_t>();
TORCH_CHECK(
memo_table_.size() > pos,
"Parsing error: out of bounds access at ",
(size_t)pos,
" to memo_table_ which is of size ",
memo_table_.size());
stack_.push_back(memo_table_.at(pos));
} break;
case PickleOpCode::LONG_BINGET: {
auto pos = read<uint32_t>();
TORCH_CHECK(
memo_table_.size() > pos,
"Parsing error: out of bounds access at ",
(size_t)pos,
" to memo_table_ which is of size ",
memo_table_.size());
stack_.push_back(memo_table_.at(pos));
} break;
case PickleOpCode::STOP:
break;
case PickleOpCode::GLOBAL: {
// Module name, it's not needed for anything
auto module_name = readString();
auto class_name = readString();
readGlobal(module_name, class_name);
} break;
case PickleOpCode::NEWOBJ: {
TORCH_CHECK(!stack_.empty(), "Parsing error: stack_ is empty");
// pop empty tuple, the actual action is stored in the globals_stack_
stack_.pop_back();
} break;
// because we have NEWOBJ do nothing, BUILD and REDUCE end up doing
// the same thing
case PickleOpCode::BUILD:
case PickleOpCode::REDUCE: {
// stack is: <functor_idx> <functor_arg>
// extract <functor_idx> and remove from the stack:
TORCH_CHECK(
stack_.size() > 1,
"Parsing error: stack_ contains ",
stack_.size(),
" elements, at least 2 expected");
std::swap(*(stack_.end() - 2), *(stack_.end() - 1));
size_t idx = stack_.back().toInt();
stack_.pop_back();
// stack is: <functor_arg>
TORCH_CHECK(
idx < globals_.size(),
"Parsing error: out of bounds access to globals_");
globals_.at(idx)();
} break;
case PickleOpCode::BINPERSID: {
TORCH_CHECK(!stack_.empty(), "Parsing error: stack_ is empty");
auto tuple = pop(stack_).toTuple();
const auto& args = tuple->elements();
AT_ASSERT(
args.at(0).toStringRef() == "storage",
"unknown PERSID key ",
args.at(0).toStringRef());
at::ScalarType type = args.at(1).toScalarType();
const std::string& key = args.at(2).toStringRef();
at::Device device(args.at(3).toStringRef());
// remap device location if it's not meta
if (device_ && !device.is_meta()) {
device = *device_;
}
at::Storage storage;
if (storage_context_ != nullptr && storage_context_->hasStorage(key)) {
// for torch.package logic where storage may be loaded already
storage = storage_context_->getStorage(key);
} else {
int64_t numel = args.at(4).toInt();
auto dtype = scalarTypeToTypeMeta(type);
at::DataPtr storage_ptr;
if (numel > 0) {
// If there are no elements in the tensor, there's no point in
// reading a zero (0) byte file from the input stream and paying
// that cost.
storage_ptr = read_record_(key);
}
storage = at::Storage(
c10::Storage::use_byte_size_t(),
numel * dtype.itemsize(),
std::move(storage_ptr),
/*allocator=*/nullptr,
/*resizable=*/false); // NB: we didn't set any allocator for the
// tensor
if (storage_context_ != nullptr) {
storage_context_->addStorage(key, storage);
}
}
auto options = at::device(at::kCPU).dtype(type);
if (use_storage_device_) {
options = options.device(storage.device());
device = storage.device();
}
at::Tensor tensor;
if (options.backend() == c10::Backend::QuantizedCPU) {
tensor = at::_empty_affine_quantized({}, options, 0, 0)
.set_(storage, 0, {}, {});
} else {
tensor = at::empty({0}, options).set_(storage);
}
if (device.is_cuda() || device.is_xpu() || device.is_meta() ||
device.is_hpu() || device.is_mps() || device.is_privateuseone()) {
tensor = tensor.to(device, tensor.scalar_type());
} else if (device.type() != DeviceType::CPU) {
TORCH_CHECK(
false,
"supported devices include CPU, CUDA, HPU and ",
c10::get_privateuse1_backend(),
" however got ",
DeviceTypeName(device.type(), false));
}
stack_.emplace_back(std::move(tensor));
} break;
case PickleOpCode::SETITEM: {
// At this OpCode, stack looks like
// | Stack Bottom |
// | ...... |
// | Dict | -> (stack_size - 3)
// | Key | -> (stack_size - 2)
// | Value | -> (stack_size - 1)
TORCH_CHECK(
stack_.size() >= 3,
"Parsing error: stack doesn't have enough elements");
auto stack_size = stack_.size();
auto dict_pos = stack_size - 3;
auto key_pos = stack_size - 2;
auto val_pos = stack_size - 1;
TORCH_CHECK(
(dict_pos < stack_size) && (key_pos < stack_size) &&
(val_pos < stack_size),
"Parsing error: attempted out-of-bounds access while processing SETITEM opcode");
auto dict = stack_.at(dict_pos).toGenericDict();
dict.insert_or_assign(stack_.at(key_pos), stack_.at(val_pos));
stack_.erase(
stack_.begin() + static_cast<std::ptrdiff_t>(key_pos), stack_.end());
} break;
default: {
TORCH_CHECK(
false,
"Unknown opcode for unpickling at ",
// NOLINTNEXTLINE(performance-no-int-to-ptr)
reinterpret_cast<void*>(opcode),
": ",
int(static_cast<uint8_t>(opcode)));
} break;
}
return opcode;
}
void Unpickler::readGlobal(
const std::string& module_name,
const std::string& class_name) {
if (this->skip_next_read_global) {
// See [NOTE] skip_next_read_global
this->skip_next_read_global--;
if (this->skip_next_read_global == 1) {
// Pass through to the correct handler
} else if (this->skip_next_read_global == 0) {
// Corresponds to the type of `Tensor` being unpickled
if (module_name != "torch" || class_name != "Tensor") {
TORCH_WARN(
"Trying to load a Subclassed Tensor, it will be converted to at::Tensor in C++");
}
stack_.emplace_back(int64_t(globals_.size() - 1));
return;
} else {
TORCH_CHECK(false, "INVALID VALUES")
}
}
// TODO [unpickler refactor] __main__ isn't used by the pickler anymore, this
// is only here for bc-compatibility reasons
if (module_name == "__main__") {
if (class_name == "TensorID") {
globals_.emplace_back([this] {
auto setitem_data = stack_.back();
stack_.pop_back();
TORCH_INTERNAL_ASSERT(
!tensor_table_.empty(),
"Pickler tried to write a tensor but had no tensor table to write to");
stack_.emplace_back(tensor_table_.at(setitem_data.toInt()));
});
} else if (class_name == "IntList") {
globals_.emplace_back([this] {
stack_.back().toList().unsafeSetElementType(IntType::get());
});
} else {
TORCH_CHECK(false, "Unknown pickler class id", class_name);
}
} else if (module_name == "torch.jit._pickle") {
if (class_name == "build_tensor_from_id") {
globals_.emplace_back([this] {
// Pop reduce arg off the stack
auto data = stack_.back().toTupleRef().elements().at(0);
stack_.pop_back();
TORCH_CHECK(
!tensor_table_.empty(),
"Found a tensor table reference but Unpickler"
" has no tensor table\n");
stack_.emplace_back(tensor_table_.at(data.toInt()));
});
} else if (class_name == "restore_type_tag") {
globals_.emplace_back([this] {
auto tuple = stack_.back().toTuple();
const auto& data = tuple->elements();
auto type_str = data.at(1).toStringRef();
stack_.pop_back();
TypePtr type = nullptr;
auto entry = type_cache_.find(type_str);
if (entry != type_cache_.end()) {
type = entry->second;
} else {
if (type_resolver_ == nullptr) {
// If we haven't injected a custom way of retrieving types from
// names, use a barebones type parser.
type = type_parser_(type_str);
} else {
type = type_resolver_(type_str).type_;
}
type_cache_[type_str] = type;
}
// TODO: Use lookahead to avoid creating the tuple and immediately
// destroying it here
restoreContainerTypeTags(data.at(0), type);
stack_.emplace_back(data.at(0));
});
} else {
TypePtr elem_type = nullptr;
if (class_name == "build_intlist") {
elem_type = IntType::get();
} else if (class_name == "build_tensorlist") {
elem_type = TensorType::get();
} else if (class_name == "build_doublelist") {
elem_type = FloatType::get();
} else if (class_name == "build_boollist") {
elem_type = BoolType::get();
} else {
TORCH_CHECK(false, "Unknown pickler class id ", class_name);
}
// Unpickle a list specialization (e.g. List[Tensor], List[int], ...)
globals_.emplace_back([this, elem_type] {
// Pop reduce arg off the stack
auto data = stack_.back().toTupleRef().elements().at(0).toList();
stack_.pop_back();
data.unsafeSetElementType(elem_type);
stack_.emplace_back(std::move(data));
});
}
} else if (
module_name == "torch._utils" &&
(class_name == "_rebuild_tensor_v2" ||
class_name == "_rebuild_qtensor")) {
// Unpickle a tensor
bool quantized = class_name == "_rebuild_qtensor";
rebuildTensor(quantized);
} else if (
module_name == "torch._tensor" &&
(class_name == "_rebuild_from_type_v2")) {
// Unpickle a Tensor with Python attributes or
// a Subclassed Tensor.
rebuildTensorFromTypeV2();
} else if (
module_name == "torch._utils" && class_name == "_rebuild_sparse_tensor") {
rebuildSparseTensor();
} else if (module_name == "builtins" && class_name == "complex") {
globals_.emplace_back([this] {
auto tuple = pop(stack_).toTuple();
const auto& elems = tuple->elements();
AT_ASSERT(elems.size() == 2);
auto complex =
c10::complex<double>(elems.at(0).toDouble(), elems.at(1).toDouble());
stack_.emplace_back(complex);
});
} else if (module_name == "collections" && class_name == "OrderedDict") {
// collections.OrderedDict is used in tensor serialization for a tensor's
// backward hooks (but they are not actually saved with this Pickler)
globals_.emplace_back([this] {
// drop the Tuple that was argument to OrderedDict, and replace it
// with None OrderedDicts only appear in tensor deserialization and
// their value is never used
stack_.back() = IValue();
});
} else if (module_name == "torch" && class_name == "device") {
globals_.emplace_back([this] {
auto device_string = stack_.back().toTupleRef().elements().at(0);
stack_.pop_back();
stack_.emplace_back(c10::Device(device_string.toStringRef()));
});
stack_.emplace_back(int64_t(globals_.size() - 1));
return;
} else if (module_name == "torch.distributed.rpc" && class_name == "rref") {
#ifdef USE_RPC
return rebuildRRef();
#else
TORCH_INTERNAL_ASSERT(
false,
"RRef unpickling is only supported with the distributed package");
#endif
} else if (module_name == "torch") {
// Try to manually resolve several global enums
// NOTE: this does not put a global into the global table,
// like the other branches here because no REDUCE or BUILD will
// be called on this value. Instead, we just put it on the stack
// and return early
std::optional<c10::ScalarType> scalar_type;
#define CHECK_SCALAR(_, name) \
if (class_name == #name "Storage") { \
scalar_type = c10::k##name; \
}
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(CHECK_SCALAR)
#undef CHECK_SCALAR
if (scalar_type.has_value()) {
stack_.emplace_back(int64_t(*scalar_type));
return;
}
std::optional<at::QScheme> qscheme;
for (int i = 0; i < at::COMPILE_TIME_NUM_QSCHEMES; ++i) {
if (class_name == toString(static_cast<at::QScheme>(i))) {
qscheme = static_cast<at::QScheme>(i);
}
}
if (qscheme.has_value()) {
stack_.emplace_back(int64_t(*qscheme));
return;
}
TORCH_CHECK(
false,
"Unpickler found unknown torch global, 'torch.",
class_name,
"'");
} else {
TORCH_CHECK(
type_resolver_,
"Unpickler found unknown type ",
module_name,
".",
class_name);
at::StrongTypePtr type =
type_resolver_(c10::QualifiedName(module_name, class_name));
if (auto enum_type = type.type_->cast<c10::EnumType>()) {
globals_.emplace_back([this, enum_type] {
auto val = stack_.back();
stack_.pop_back();
for (const auto& p : enum_type->enumNamesValues()) {
if (p.second == val) {
auto enum_holder = c10::make_intrusive<at::ivalue::EnumHolder>(
enum_type, p.first, p.second);
stack_.emplace_back(std::move(enum_holder));
return;
}
}
});
} else {
// Otherwise, global is a class/object type.
globals_.emplace_back([this, type] {
auto val = stack_.back();
stack_.pop_back();
auto obj = obj_loader_(type, val);
stack_.emplace_back(std::move(obj));
});
}
}
stack_.emplace_back(int64_t(globals_.size() - 1));
}
void Unpickler::rebuildSparseTensor() {
globals_.emplace_back([this] {
auto tup = pop(stack_).toTuple();
const auto& elements = tup->elements();
size_t idx = 0;
auto layout = elements.at(idx++).toInt();
at::Tensor result;
switch (layout) {
case static_cast<int>(c10::Layout::Sparse): {
std::vector<int64_t> size = tupleToIntList(elements.at(idx++));
bool requires_grad = elements.at(idx++).toBool();
auto& indices_tensor = elements.at(idx++).toTensor();
auto& values_tensor = elements.at(idx++).toTensor();
auto options = values_tensor.options()
.layout(c10::Layout::Sparse)
.requires_grad(requires_grad);
result = at::_sparse_coo_tensor_unsafe(
indices_tensor, values_tensor, size, options);
result = autograd::make_variable(result, options.requires_grad());
break;
}
case static_cast<int>(c10::Layout::SparseCsr): {
std::vector<int64_t> size = tupleToIntList(elements.at(idx++));
bool requires_grad = elements.at(idx++).toBool();
auto& crow_indices = elements.at(idx++).toTensor();
auto& col_indices = elements.at(idx++).toTensor();
auto& values_tensor = elements.at(idx++).toTensor();
auto options = values_tensor.options()
.layout(c10::Layout::SparseCsr)
.requires_grad(requires_grad);
result = at::_sparse_csr_tensor_unsafe(
crow_indices, col_indices, values_tensor, size, options);
result =
autograd::make_variable(std::move(result), options.requires_grad());
break;
}
default:
TORCH_CHECK(
false,
"Unsupported sparse tensor layout type in serialization ",
static_cast<c10::Layout>(layout));
break;
}
stack_.emplace_back(std::move(result));
});
}
void Unpickler::rebuildTensor(bool quantized) {
globals_.emplace_back([this, quantized] {
auto tup = pop(stack_).toTuple();
const auto& elements = tup->elements();
size_t idx = 0;
auto& storage_tensor = elements.at(idx++).toTensor();
int64_t storage_offset = elements.at(idx++).toInt();
std::vector<int64_t> size = tupleToIntList(elements.at(idx++));
std::vector<int64_t> stride = tupleToIntList(elements.at(idx++));
at::Tensor result;
if (quantized) {
auto qparams_tuple = elements.at(idx++).toTuple();
const auto& qparams = qparams_tuple->elements();
auto qscheme = static_cast<at::QScheme>(qparams.at(0).toInt());
switch (qscheme) {
case at::kPerTensorAffine: {
double q_scale = qparams.at(1).toDouble();
int64_t q_zero_point = qparams.at(2).toInt();
result = at::_empty_affine_quantized(
{0}, storage_tensor.options(), q_scale, q_zero_point);
} break;
case at::kPerChannelAffineFloatQParams:
case at::kPerChannelAffine: {
const auto& scales = qparams.at(1).toTensor();
const auto& zero_points = qparams.at(2).toTensor();
int64_t axis = qparams.at(3).toInt();
result = at::_empty_per_channel_affine_quantized(
{0}, scales, zero_points, axis, storage_tensor.options());
} break;
default:
TORCH_CHECK(
false,
"Unsupported tensor quantization type in serialization ",
toString(qscheme));
break;
}
} else {
result = at::empty({0}, storage_tensor.options());
}
bool requires_grad = elements.at(idx++).toBool();
idx++; // backwards hooks is empty
at::TensorImpl* impl = result.unsafeGetTensorImpl();
impl->set_storage_keep_dtype(storage_tensor.storage());
impl->set_storage_offset(storage_offset);
impl->set_sizes_and_strides(size, stride);
result = autograd::make_variable(result, requires_grad);
// Handle if math_bits were pickled.
// See `args` of _reduce_ex_internal
// for a regular tensor (final else case).
// Tensors pickled before this patch didn't
// have this argument for storing MathBits,
// in that case, we do nothing.
// NOTE: `math_bits` is the 7th arg.
// NOTE: This is only meant for regular tensor and not quantized
// which also has 7 args serialized.
if (!quantized && elements.size() == 7) {
auto math_bits = elements.at(idx++).toGenericDict();
torch::jit::setTensorMetadata(result, math_bits);
}