diff --git a/examples/metrics/application_efficiency.py b/examples/metrics/application_efficiency.py index 065eaac..94b973c 100755 --- a/examples/metrics/application_efficiency.py +++ b/examples/metrics/application_efficiency.py @@ -305,3 +305,22 @@ filtered = effs[(effs["application"]=="MyApp") & (effs["date"]==2024)] filtered.plot(kind="bar", x="platform", y="app eff", xlabel="Platform", ylabel="Application Efficiency", legend=False) plt.savefig("application_efficiency_bars_2024.png") + +# %% +# Further Analysis +# ---------------- +# +# Computing application efficiency is often simply the first step of a +# more detailed P3 analysis. +# +# The examples below show how we can use the visualization capabilities +# of the P3 Analysis Library to compare the efficiency of different +# applications running across the same platform set, or to gain insight +# into how an application's efficiency relates to the code it uses on each +# platform. +# +# .. minigallery:: +# :add-heading: Examples +# +# ../../examples/cascade/plot_simple_cascade.py +# ../../examples/navchart/plot_simple_navchart.py