

327831 -001

New Instructions

Supporting Large

Integer Arithmetic

on Intel®

Architecture

Processors
 August 2012

White Paper

Erdinc Ozturk

James Guilford

Vinodh Gopal

Wajdi Feghali

IA Architects

Intel Corporation

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

2

Executive Summary

New instructions mulx, adcx and adox are being introduced on Intel®

Architecture Processors. The adcx and adox instructions are being

introduced one generation later than mulx. These new instructions will

enable users to develop high-performance implementations of large

integer arithmetic on Intel® Architecture.

To maximize performance of code using these instructions, users can

program at the assembly level. However, intrinsic definitions of mulx,

adcx and adox will also be integrated into compilers. This is the first

example of an “add with carry” type instruction being implemented with

intrinsics. The intrinsic support will enable users to implement large

integer arithmetic using higher level programming languages such as

C/C++.

 New instructions are being introduced on Intel® Architecture

Processors to enable fast implementations of large integer arithmetic.

Large Integer Arithmetic is widely used in multi-precision libraries for

high-performance technical computing, as well as for public key

cryptography (e.g., RSA). In this paper, we describe the critical

operations required in large integer arithmetic and their efficient

implementations using the new instructions.

The Intel® Embedded Design Center provides qualified developers with

web-based access to technical resources. Access Intel Confidential design

materials, step-by step guidance, application reference solutions, training,

Intel’s tool loaner program, and connect with an e-help desk and the

embedded community. Design Fast. Design Smart. Get started today.

http://www.intel.com/p/en_US/embedded.

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

 3

Contents

Overview .. 4

Introduction to Large Integer Multiplication ... 4

New Instruction Definitions ... 8

MULX Instruction ... 8
ADCX/ADOX Instructions .. 8
Programming Support and Tools .. 9

Large Integer Multiplication ... 9

Conclusion .. 14

Acknowledgements .. 15

References .. 15

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

4

Overview

Large Integer Arithmetic refers to performing arithmetic operations on

integers (typically unsigned) that are larger than the native word size of the

processor. Typically, these integers are much larger than the maximum 64-

bit words supported by most general purpose processors. In many

applications, the large integers used may be 512-bit, 1024-bit, or larger.

One place that large integers are used is the RSA public key algorithm, which

needs to perform a modular exponentiation of at least 512-bit operands. For

example, an RSA private key operation using a 2048-bit key requires modular

exponentiation of 1024-bit integers, assuming the use of the Chinese

Remainder Algorithm.

Large integer arithmetic is also used for Elliptic Curve Cryptography (ECC)

and Diffie-Hellman (DH) Key Exchange. Beyond cryptography, there are

many use cases in complex research and high performance computing (HPC).

The demand for this functionality is high enough to warrant a number of

commonly used optimized libraries, such as the GNU Multi-Precision (GMP)

library. The optimized code in these libraries traditionally uses scalar

(integer) instructions that work on the General Purpose registers (preferably

64-bit).

Large integer multiplication is one of the most interesting arithmetic

operations to consider in this context. Many algorithms, such as modular

exponentiation and modular reduction, are based on multiplication, and the

cost of doing these multiplications becomes dominant for the entire

algorithm.

Introduction to Large Integer

Multiplication

The school book method is a common way of doing large integer

multiplication. Let the sizes of the two inputs be N and M words, where in this

context, “word” means the size of the largest words that can be multiplied by

the underlying hardware (depicted as green boxes in the diagrams below). In

the case of IA, one “word” would be 64-bits. All N*M pairs of words are

multiplied, generating two “words”-worth of bits (depicted in blue below) and

the results are summed with the appropriate weights. If the sizes of the

inputs are large enough (e.g. larger than 2048 bits), then an alternative

approach, the Karatsuba Algorithm [1], becomes feasible. This is a more

irregular method, which trades off fewer multiplications for more additions

and complexity. In this paper, we focus only on efficient implementations of

the school book method of multiplication.

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

 5

Efficiency of the school book method depends on choosing the order in which

the multiplications and subsequent additions are done.

Two common orderings for school book multiplication are column-wise and

row-wise (also called by-diagonals). In a column-wise approach, all of the

products that are associated with a particular result position are computed

and summed in a single pass. In general, this corresponds to computing one

“column” in a single pass, where the column consists of the products Ai × BN-i

for all appropriate i, as shown in Figure 1.

Figure 1. Column-wise ordering for multiplication

The main drawback to this approach is the number of add operations needed

per multiply. Each product is two-words wide and needs two word-size adds

(actually one add and one add-with-carry), with the high-order add

generating a carry that then needs to be added into an accumulator.

Ao × B7

A1 × B6

A2 × B5

A3 × B4

A4 × B3

A5 × B2

A7 × B0

A6 × B1

S9 S8 S7

+

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

6

Therefore, each multiplication requires one full word-size add (to S7), one

word-size add-with-carry (to S8), and one add-carry-to-0 (to S9).

The row-wise approach computes all of the products formed by one word of

one source and all of the words of the other source, i.e. Aj × Bi for all

appropriate j and some fixed i. This is illustrated in Figure 2.

Figure 2. Row-wise ordering for multiplication (diagonal).

Each product element of the “row” is two-words wide, so it overlaps the

adjacent elements by one word. To make it easier to visualize, we stagger

the elements of the row, turning them into a “diagonal”.

In general, each word in the product needs to be added to two different

words. The high-half of one product term needs to be added to the low-half

of the adjacent term producing the Sn result, and then this sum needs to be

added to a partial sum that accumulates the results from different diagonals.

Ao × Bi

A1 × Bi

A2 × Bi

A3 × Bi

A4 × Bi

A5 × Bi

A7 × Bi

A6 × Bi

S8 S7 S6 S5 S4 S3 S2 S1 S0

+

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

 7

The key point is that each addition can generate a carry to the next-higher

word.

In one approach, the product results are added in a first pass, following the

accumulation in a second pass. In this way, the high word result of A0xBi is

added to the low word result of A1xBi, which generates S1 and may also

generate a carry out. Then the high word result of A1xBi is added to the low

word result of A2xBi plus the carry in from the previous sum, which generates

S2 and may also generate a carry, and so on. Similarly, in the accumulation

pass, Sn is added to Accn (not shown) and a carry in, which generates Accn

and may generate a carry out. In the Intel® Architecture, transfer of the

carry information is done through the carry flag of the eFlags register.

Each addition reads the carry flag to use as the carry in, and sets the carry

flag for the carry out. Thus, in order to properly handle the carry scenario,

the next higher order addition must be executed immediately before any

other instruction modifies the carry flag. Simply put, the partial sum pass

must be more-or-less contiguous in the instruction sequence, as is also true

with the accumulation pass. An out-of-order machine can look ahead and

process the accumulation pass in parallel with the partial sum pass using a

renamed eFlags register. However, this look ahead is limited by the capacity

of the machine’s instruction scheduler. To start scheduling the accumulation

pass in parallel with the partial sum pass, the remainder of the contiguous

partial sum pass must be loaded into the scheduler, taking up valuable

entries.

Alternatively, the instruction set ISA can include a mechanism to manage

multiple independent carry indications. In this approach, the partial sum pass

and the accumulation pass can be co-mingled, with one carry indication being

used in the partial sum computations and one being used in the accumulation

computations.

Another optimization is based on the observation that (A × B + C + D),

where A, B, C, and D are one-word values, will never produce a result larger

than two words. This means that one can add two low-order words to a two-

word product (or one low-order word and a carry) without generating a carry-

out of the high-order word. This allows one to efficiently consume the carry

or in other words truncate the carry chain in some cases.

There are, of course, many variations on these themes. For example, the

multiplication of two words by two words using diagonals can be used as a

primitive. The above property is used internally to consume the carry at

various points, and then this primitive can be used in a column-wise manner

to form the full multiplication.

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

8

New Instruction Definitions

Three new integer instructions [2] are being introduced on Intel®

Architecture Processors to enable fast implementations of large integer

arithmetic.

MULX Instruction

The mulx instruction is an extension of the existing mul instruction, with the

difference being in the effect on flags:

mulx dest_hi, dest_lo, src1

The instruction also uses an implicit src2 register, edx or rdx depending on

whether the 32-bit or 64-bit version is being used.

The operation is:
 dest_hi:dest_lo = src1 * r/edx

The reg/mem source operand src1 is multiplied by rdx/edx, and the result is

stored in the two destination registers dest_hi:dest_lo. No flags are

modified.

This provides two key advantages over the existing mul instruction:

o Greater flexibility in register usage, as current mul destination

registers are implicitly defined. With mulx, the destination registers

may be distinct from the source operands, so that the source

operands are not over-written.

o Since no flags are modified, mulx instructions can be mixed with

add-carry instructions without corrupting the carry chain.

ADCX/ADOX Instructions

The adcx and adox instructions are extensions of the adc instruction,

designed to support two separate carry chains. They are defined as:

adcx dest/src1, src2

adox dest/src1, src2

Both instructions compute the sum of src1 and src2 plus a carry-in and

generate an output sum dest and a carry-out. The difference between these

two instructions is that adcx uses the CF flag for the carry in and carry out

(leaving the OF flag unchanged), whereas the adox instruction uses the OF

flag for the carry in and carry out (leaving the CF flag unchanged).

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

 9

The primary advantage of these instructions over adc is that they support two

independent carry chains. Note that the two carry chains can be initialized by

an instruction that clears both the CF and OF flags, for example “xor reg,reg”.

Programming Support and Tools

Compilers will have support for these instructions via intrinsics, allowing

programmers to code in C/C++.

As an example, the following intrinsics can be used to develop 64-bit code:

unsigned __int64 umul128(unsigned __int64 a, unsigned __int64 b,

unsigned __int64 * hi);

unsigned char _addcarryx_u64(unsigned char c_in, unsigned __int64

src1, unsigned __int64 src2, unsigned __int64 *sum_out);

The first intrinsic provides support for mulx and the second provides support

for the adcx and adox instructions.

Large Integer Multiplication

For many compute-intensive operations using large operands, the

multiplication implementation is a crucial problem to solve efficiently.

In this section, the row-wise approach will be examined, as it has proven to

be the most efficient method for many cryptographic and HPC applications.

The main building block of the row-wise approach is the diagonal, as

explained in Figure 2. As an example, we will show how to realize a 512x512-

bit multiplication using 8 512x64-bit diagonals. High level breakdown of this

approach is shown in Figure 3.

Algorithm: 512x512-bit multiplication

Input: A[7:0], B[7:0]

Output: C[15:0] = A * B

Step1: {R[7:0], C[0]} = A[7:0] * B[0]

for i from 1 to 7:

 Step2: {R’[7:0], C[i]} = A[7:0] * B[i] + R[7:0]

Step3: C[15:8] = R[7:0]

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

10

Here, R[7:0] are 64-bit registers and A, B, and C are memory locations (A

and B are 512-bit operands and C is the 1024-bit result). At the end of the

multiplication, the registers will be stored into the memory location C[15:8].

Note that R’[7:0] means the state of R[7:0] after an iteration of the loop.

Figure 3. High-level breakdown of a 512x512 multiplication

The first diagonal of the multiplication (Step 1) is shown in Figure 4.

A × B0

C

A

B7 B6 B5 B4 B3 B2 B1 B0

A × B1

A × B2

A × B3

A × B4

A × B5

A × B6

A × B7

X

+

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

 11

Figure 4. First diagonal of a 512x64 bit multiplication for the row-wise approach

Ao × B0

A1 × B0

A2 × B0

A3 × B0

A4 × B0

A5 × B0

A6 × B0

A7 × B0

[C0]R7 R6 R5 R4 R3 R2 R1 R0

B0

A7 A6 A5 A4 A3 A2 A1 A0

X

+

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

12

Table 1. Instruction sequence for Step 1

mul-based instruction sequence mulx-based instruction sequence

mov OP, [pB+8*0]

mov rax, [pA+8*0]

mul OP

mov [pDst+8*0], rax

mov R0, rdx

mov rax, [pA+8*1]

mul OP

add R0, rax

adc rdx, 0

mov R1, rdx

mov rax, [pA+8*2]

mul OP

add R1, rax

adc rdx, 0

mov R2, rdx

...

 mov rdx, [pB+8*0]

 mulx R0, rax, [pA+8*0]

 mov [pDst + 8*0], rax

 mulx R1, rax, [pA+8*1]

 add R0, rax

 mulx R2, rax, [pA+8*2]

 adc R1, rax

...

A comparison of the instruction sequences using the mul instruction and mulx

instructions is shown in Table 1. Since there is only one carry chain, use of

adcx/adox instructions is not necessary for this diagonal.

Figure 5 shows the diagonal structure of Step 2 of the multiplication

algorithm. As seen in the figure, the intermediate result stored in registers

R7:R0 is added to the current row of the multiplication A*Bi and the result

stays in registers R7:R0, with the exception of the bottom word being stored

into memory.

For step 2, a comparison of instruction sequences using the mul instruction,

mulx instruction and adcx/adox instructions is shown in Table 2. It should be

noted that Ri and R’i are the same registers, R’i shows the positions of the

registers after a 512x64 diagonal multiplication. As can be seen from the

figure, mulx instruction reduces the number of mov instructions required

without any change in the method of implementation of a 512x64 diagonal,

as a result of the structure of the instruction. Adcx/adox instructions further

reduce the number of instructions required for a diagonal, by enabling the

user to implement it with a more efficient code flow.

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

 13

Table 2. Instruction sequence for Step 2

mul-based instruction
sequence

mulx-based instruction
sequence

mulx/adcx/adox based
instruction sequence

mov OP, [pB+8*0]

mov rax, [pA+8*0]

mul OP

add R0, rax

adc rdx, 0

mov TMP, rdx

mov pDst, R0

mov rax, [pA+8*1]

mul OP

mov R0, rdx

add R1, rax

adc R0, 0

add R1, TMP

adc R0, 0

mov rax, [pA+8*2]

mul OP

mov TMP, rdx

add R2, rax

adc TMP, 0

add R2, R0

adc TMP, 0

...

mov OP, [pB+8*0]

mulx TMP1,rax, [pA+8*0]

add R0, rax

adc TMP1, 0

mov pDst, R0

mulx TMP2,R’0, [pA+8*1]

add R’0, R1

adc TMP2, 0

add R’0, TMP1

adc TMP2, 0

mulx TMP1,R’1, [pA+8*2]

add R’1, R2

adc TMP1, 0

add R’1, TMP2

adc TMP1, 0

...

xor rax, rax

mov rdx, [pB+8*0]

mulx T1, T2, [pA+8*0]

adox R0, T2

adcx R1, T1

mov pDst, R0

mulx T1, R’0, [pA+8*1]

adox R’0, R1

adcx R2, T1

mulx T1, R’1, [pA+8*2]

adox R’1, R2

adcx R3, T1

...

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

14

Figure 5. Diagonal structure for Step 2

Conclusion

New integer instructions are being introduced on Intel® Architecture

Processors to enable fast implementations of large integer arithmetic. This

paper presents a brief introduction to large integer multiplication and shows

how it can be efficiently implemented using the Intel® Architecture

instruction set. We also demonstrate how the use of the new mulx, adcx,

and adox instructions can result in an even more efficient solution. Complete

Ao × B1

A1 × B1

A2 × B1

A3 × B1

A4 × B1

A5 × B1

A7 × B1

A6 × B1

[C0]R7 R6 R5 R4 R3 R2 R1 R0

B1

A7 A6 A5 A4 A3 A2 A1 A0

X

+

[C1]R’7 R’6 R’5 R’4 R’3 R’2 R’1 R’0 [C0]

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

 15

source code for optimized implementations of modular exponentiation can be

found in [3].

Acknowledgements

We thank Gilbert Wolrich, Sean Gulley, Sean Mirkes and Matthew Merten for

their substantial contributions.

References

[1] http://en.wikipedia.org/wiki/Karatsuba_algorithm

[2] http://software.intel.com/file/45027

[3] RSAX Code -

http://www.intel.com/p/en_US/embedded/hwsw/software/crc-

license?id=6336

The Intel® Embedded Design Center provides qualified developers with web-

based access to technical resources. Access Intel Confidential design

materials, step-by step guidance, application reference solutions, training,

Intel’s tool loaner program, and connect with an e-help desk and the

embedded community. Design Fast. Design Smart. Get started today.

http://www.intel.com/p/en_US/embedded.

Authors

Erdinc Ozturk, James Guilford, Vinodh Gopal and Wajdi Feghali
are IA Architects with the IAG Group at Intel Corporation.

Acronyms

IA Intel® Architecture

http://en.wikipedia.org/wiki/Karatsuba_algorithm
http://software.intel.com/file/45027
http://www.intel.com/p/en_US/embedded/hwsw/software/crc-license?id=6336
http://www.intel.com/p/en_US/embedded/hwsw/software/crc-license?id=6336
http://www.intel.com/p/en_US/embedded

New Instructions Supporting Large Integer Arithmetic on Intel® Architecture

Processors

16

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE
OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S
PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD
INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS,
OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND
EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY,
ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT
OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR

WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR
ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information

here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request. Contact your local Intel sales office or your distributor to obtain the latest

specifications and before placing your product order. Copies of documents which have an order

number and are referenced in this document, or other Intel literature, may be obtained by calling 1-

800-548-4725, or go to: http://www.intel.com/design/literature.htm

Hyper-Threading Technology requires a computer system with a processor supporting HT Technology

and an HT Technology-enabled chipset, BIOS and operating system. Performance will vary depending

on the specific hardware and software you use. For more information including details on which

processors support HT Technology, see here.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS,

operating system, device drivers and applications enabled for Intel® 64 architecture. Performance

will vary depending on your hardware and software configurations. Consult with your system vendor

for more information.

Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology

capability. Intel Turbo Boost Technology performance varies depending on hardware, software and

overall system configuration. Check with your PC manufacturer on whether your system delivers Intel

Turbo Boost Technology. For more information, see http://www.intel.com/technology/turboboost.

Intel, Intel Turbo Boost Technology, Intel Hyper Threading Technology, Intel Xeon are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2012 Intel Corporation. All rights reserved.

§

http://www.intel.com/design/literature.htm
http://www.intel.com/technology/turboboost

