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Executive Summary 

New instructions mulx, adcx and adox are being introduced on Intel® 

Architecture Processors. The adcx and adox instructions are being 

introduced one generation later than mulx. These new instructions will 

enable users to develop high-performance implementations of large 

integer arithmetic on Intel® Architecture.  

To maximize performance of code using these instructions, users can 

program at the assembly level. However, intrinsic definitions of mulx, 

adcx and adox will also be integrated into compilers. This is the first 

example of an “add with carry” type instruction being implemented with 

intrinsics. The intrinsic support will enable users to implement large 

integer arithmetic using higher level programming languages such as 

C/C++. 

 New instructions are being introduced on Intel® Architecture 

Processors to enable fast implementations of large integer arithmetic. 

Large Integer Arithmetic is widely used in multi-precision libraries for 

high-performance technical computing, as well as for public key 

cryptography (e.g., RSA). In this paper, we describe the critical 

operations required in large integer arithmetic and their efficient 

implementations using the new instructions. 

The Intel® Embedded Design Center provides qualified developers with 

web-based access to technical resources. Access Intel Confidential design 

materials, step-by step guidance, application reference solutions, training, 

Intel’s tool loaner program, and connect with an e-help desk and the 

embedded community. Design Fast. Design Smart. Get started today. 

http://www.intel.com/p/en_US/embedded.  
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Overview 

Large Integer Arithmetic refers to performing arithmetic operations on 

integers (typically unsigned) that are larger than the native word size of the 

processor. Typically, these integers are much larger than the maximum 64-

bit words supported by most general purpose processors. In many 

applications, the large integers used may be 512-bit, 1024-bit, or larger. 

One place that large integers are used is the RSA public key algorithm, which 

needs to perform a modular exponentiation of at least 512-bit operands. For 

example, an RSA private key operation using a 2048-bit key requires modular 

exponentiation of 1024-bit integers, assuming the use of the Chinese 

Remainder Algorithm. 

Large integer arithmetic is also used for Elliptic Curve Cryptography (ECC) 

and Diffie-Hellman (DH) Key Exchange. Beyond cryptography, there are 

many use cases in complex research and high performance computing (HPC).  

The demand for this functionality is high enough to warrant a number of 

commonly used optimized libraries, such as the GNU Multi-Precision (GMP) 

library. The optimized code in these libraries traditionally uses scalar 

(integer) instructions that work on the General Purpose registers (preferably 

64-bit). 

Large integer multiplication is one of the most interesting arithmetic 

operations to consider in this context. Many algorithms, such as modular 

exponentiation and modular reduction, are based on multiplication, and the 

cost of doing these multiplications becomes dominant for the entire 

algorithm. 

Introduction to Large Integer 

Multiplication 

The school book method is a common way of doing large integer 

multiplication. Let the sizes of the two inputs be N and M words, where in this 

context, “word” means the size of the largest words that can be multiplied by 

the underlying hardware (depicted as green boxes in the diagrams below). In 

the case of IA, one “word” would be 64-bits. All N*M pairs of words are 

multiplied, generating two “words”-worth of bits (depicted in blue below) and 

the results are summed with the appropriate weights. If the sizes of the 

inputs are large enough (e.g. larger than 2048 bits), then an alternative 

approach, the Karatsuba Algorithm [1], becomes feasible. This is a more 

irregular method, which trades off fewer multiplications for more additions 

and complexity. In this paper, we focus only on efficient implementations of 

the school book method of multiplication. 
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Efficiency of the school book method depends on choosing the order in which 

the multiplications and subsequent additions are done. 

Two common orderings for school book multiplication are column-wise and 

row-wise (also called by-diagonals). In a column-wise approach, all of the 

products that are associated with a particular result position are computed 

and summed in a single pass. In general, this corresponds to computing one 

“column” in a single pass, where the column consists of the products Ai × BN-i 

for all appropriate i, as shown in Figure 1. 

Figure 1. Column-wise ordering for multiplication 

 

 

 

The main drawback to this approach is the number of add operations needed 

per multiply. Each product is two-words wide and needs two word-size adds 

(actually one add and one add-with-carry), with the high-order add 

generating a carry that then needs to be added into an accumulator. 

Ao × B7

A1 × B6

A2 × B5

A3 × B4

A4 × B3

A5 × B2

A7 × B0

A6 × B1

S9 S8 S7

+
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Therefore, each multiplication requires one full word-size add (to S7), one 

word-size add-with-carry (to S8), and one add-carry-to-0 (to S9). 

The row-wise approach computes all of the products formed by one word of 

one source and all of the words of the other source, i.e. Aj × Bi for all 

appropriate j and some fixed i. This is illustrated in Figure 2. 

 

Figure 2. Row-wise ordering for multiplication (diagonal). 

 

 

 

Each product element of the “row” is two-words wide, so it overlaps the 

adjacent elements by one word. To make it easier to visualize, we stagger 

the elements of the row, turning them into a “diagonal”.  

In general, each word in the product needs to be added to two different 

words. The high-half of one product term needs to be added to the low-half 

of the adjacent term producing the Sn result, and then this sum needs to be 

added to a partial sum that accumulates the results from different diagonals. 

Ao × Bi

A1 × Bi

A2 × Bi

A3 × Bi

A4 × Bi

A5 × Bi

A7 × Bi

A6 × Bi

S8 S7 S6 S5 S4 S3 S2 S1 S0

+
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The key point is that each addition can generate a carry to the next-higher 

word. 

In one approach, the product results are added in a first pass, following the 

accumulation in a second pass. In this way, the high word result of A0xBi is 

added to the low word result of A1xBi, which generates S1 and may also 

generate a carry out. Then the high word result of A1xBi is added to the low 

word result of A2xBi plus the carry in from the previous sum, which generates 

S2 and may also generate a carry, and so on.  Similarly, in the accumulation 

pass, Sn is added to Accn (not shown) and a carry in, which generates Accn 

and may generate a carry out. In the Intel® Architecture, transfer of the 

carry information is done through the carry flag of the eFlags register. 

Each addition reads the carry flag to use as the carry in, and sets the carry 

flag for the carry out. Thus, in order to properly handle the carry scenario, 

the next higher order addition must be executed immediately before any 

other instruction modifies the carry flag. Simply put, the partial sum pass 

must be more-or-less contiguous in the instruction sequence, as is also true 

with the accumulation pass. An out-of-order machine can look ahead and 

process the accumulation pass in parallel with the partial sum pass using a 

renamed eFlags register.  However, this look ahead is limited by the capacity 

of the machine’s instruction scheduler. To start scheduling the accumulation 

pass in parallel with the partial sum pass, the remainder of the contiguous 

partial sum pass must be loaded into the scheduler, taking up valuable 

entries.  

Alternatively, the instruction set ISA can include a mechanism to manage 

multiple independent carry indications. In this approach, the partial sum pass 

and the accumulation pass can be co-mingled, with one carry indication being 

used in the partial sum computations and one being used in the accumulation 

computations. 

Another optimization is based on the observation that (A × B + C + D), 

where A, B, C, and D are one-word values, will never produce a result larger 

than two words. This means that one can add two low-order words to a two-

word product (or one low-order word and a carry) without generating a carry-

out of the high-order word. This allows one to efficiently consume the carry 

or in other words truncate the carry chain in some cases. 

There are, of course, many variations on these themes. For example, the 

multiplication of two words by two words using diagonals can be used as a 

primitive. The above property is used internally to consume the carry at 

various points, and then this primitive can be used in a column-wise manner 

to form the full multiplication. 
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New Instruction Definitions 

Three new integer instructions [2] are being introduced on Intel® 

Architecture Processors to enable fast implementations of large integer 

arithmetic. 

MULX Instruction 

The mulx instruction is an extension of the existing mul instruction, with the 

difference being in the effect on flags: 

mulx dest_hi, dest_lo, src1 

The instruction also uses an implicit src2 register, edx or rdx depending on 

whether the 32-bit or 64-bit version is being used. 

The operation is:  
                                  dest_hi:dest_lo = src1 * r/edx 

 

The reg/mem source operand src1 is multiplied by rdx/edx, and the result is 

stored in the two destination registers dest_hi:dest_lo. No flags are 

modified. 

This provides two key advantages over the existing mul instruction: 

o Greater flexibility in register usage, as current mul destination 

registers are implicitly defined. With mulx, the destination registers 

may be distinct from the source operands, so that the source 

operands are not over-written. 

o Since no flags are modified, mulx instructions can be mixed with 

add-carry instructions without corrupting the carry chain. 

ADCX/ADOX Instructions 

The adcx and adox instructions are extensions of the adc instruction, 

designed to support two separate carry chains. They are defined as: 

adcx dest/src1, src2 

adox dest/src1, src2 

Both instructions compute the sum of src1 and src2 plus a carry-in and 

generate an output sum dest and a carry-out. The difference between these 

two instructions is that adcx uses the CF flag for the carry in and carry out 

(leaving the OF flag unchanged), whereas the adox instruction uses the OF 

flag for the carry in and carry out (leaving the CF flag unchanged).  
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The primary advantage of these instructions over adc is that they support two 

independent carry chains. Note that the two carry chains can be initialized by 

an instruction that clears both the CF and OF flags, for example “xor reg,reg”. 

Programming Support and Tools 

Compilers will have support for these instructions via intrinsics, allowing 

programmers to code in C/C++. 

As an example, the following intrinsics can be used to develop 64-bit code: 

unsigned __int64 umul128(unsigned __int64 a, unsigned __int64 b, 

unsigned __int64 * hi); 

unsigned char _addcarryx_u64(unsigned char c_in, unsigned __int64 

src1, unsigned __int64 src2, unsigned __int64 *sum_out);  

The first intrinsic provides support for mulx and the second provides support 

for the adcx and adox instructions. 

 

Large Integer Multiplication 

For many compute-intensive operations using large operands, the 

multiplication implementation is a crucial problem to solve efficiently.  

In this section, the row-wise approach will be examined, as it has proven to 

be the most efficient method for many cryptographic and HPC applications.  

The main building block of the row-wise approach is the diagonal, as 

explained in Figure 2. As an example, we will show how to realize a 512x512-

bit multiplication using 8 512x64-bit diagonals. High level breakdown of this 

approach is shown in Figure 3.  

 

Algorithm: 512x512-bit multiplication 

Input: A[7:0], B[7:0] 

Output: C[15:0] = A * B 

Step1: {R[7:0], C[0]} = A[7:0] * B[0] 

for i from 1 to 7: 

 Step2: {R’[7:0], C[i]} = A[7:0] * B[i] + R[7:0] 

Step3: C[15:8] = R[7:0] 
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Here, R[7:0] are 64-bit registers and A, B, and C are memory locations (A 

and B are 512-bit operands and C is the 1024-bit result). At the end of the 

multiplication, the registers will be stored into the memory location C[15:8]. 

Note that R’[7:0] means the state of R[7:0] after an iteration of the loop. 

 

Figure 3. High-level breakdown of a 512x512 multiplication 

 

 

The first diagonal of the multiplication (Step 1) is shown in Figure 4. 

 

A × B0

C

A

B7 B6 B5 B4 B3 B2 B1 B0

A × B1

A × B2

A × B3

A × B4

A × B5

A × B6

A × B7

X

+
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Figure 4. First diagonal of a 512x64 bit multiplication for the row-wise approach 

 

 

 
 
 

 
 
 

 
 
 

 

Ao × B0

A1 × B0

A2 × B0

A3 × B0

A4 × B0

A5 × B0

A6 × B0

A7 × B0

[C0]R7 R6 R5 R4 R3 R2 R1 R0

B0

A7 A6 A5 A4 A3 A2 A1 A0

X

+
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Table 1. Instruction sequence for Step 1 

mul-based instruction sequence mulx-based instruction sequence 

mov OP, [pB+8*0] 

mov rax, [pA+8*0] 

mul OP 

mov  [pDst+8*0], rax 

mov R0, rdx 

 

mov rax, [pA+8*1] 

mul OP  

add R0, rax 

adc  rdx, 0 

mov R1, rdx 

 

mov rax, [pA+8*2] 

mul OP 

add R1, rax 

adc  rdx, 0 

mov R2, rdx 

... 

 mov rdx, [pB+8*0] 

  

 mulx R0, rax, [pA+8*0] 

 mov  [pDst + 8*0], rax 

  

 

 

 mulx R1, rax, [pA+8*1] 

 add R0, rax 

  

 

 

 

 mulx R2, rax, [pA+8*2] 

 adc  R1, rax 

... 

 

A comparison of the instruction sequences using the mul instruction and mulx 

instructions is shown in Table 1. Since there is only one carry chain, use of 

adcx/adox instructions is not necessary for this diagonal. 

Figure 5 shows the diagonal structure of Step 2 of the multiplication 

algorithm. As seen in the figure, the intermediate result stored in registers 

R7:R0 is added to the current row of the multiplication A*Bi and the result 

stays in registers R7:R0, with the exception of the bottom word being stored 

into memory. 

For step 2, a comparison of instruction sequences using the mul instruction, 

mulx instruction and adcx/adox instructions is shown in Table 2. It should be 

noted that Ri and R’i are the same registers, R’i shows the positions of the 

registers after a 512x64 diagonal multiplication. As can be seen from the 

figure, mulx instruction reduces the number of mov instructions required 

without any change in the method of implementation of a 512x64 diagonal, 

as a result of the structure of the instruction. Adcx/adox instructions further 

reduce the number of instructions required for a diagonal, by enabling the 

user to implement it with a more efficient code flow.  
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Table 2. Instruction sequence for Step 2 

mul-based instruction 
sequence 

mulx-based instruction 
sequence 

mulx/adcx/adox based 
instruction sequence 

mov OP, [pB+8*0]  

  

mov rax, [pA+8*0] 

mul OP 

add R0, rax 

adc  rdx, 0 

mov TMP, rdx 

mov pDst, R0 

 

mov rax, [pA+8*1] 

mul OP 

mov R0, rdx 

add R1, rax 

adc  R0, 0 

add R1, TMP 

adc  R0, 0 

 

mov rax, [pA+8*2] 

mul OP 

mov TMP, rdx 

add R2, rax 

adc  TMP, 0 

add R2, R0 

adc TMP, 0 

... 

mov OP, [pB+8*0]  

 

 

mulx TMP1,rax, [pA+8*0] 

add R0, rax 

adc  TMP1, 0 

mov pDst, R0 

 

 

 

mulx TMP2,R’0, [pA+8*1] 

add R’0, R1 

adc  TMP2, 0 

add R’0, TMP1 

adc  TMP2, 0 

 

 

 

mulx TMP1,R’1, [pA+8*2] 

add R’1, R2 

adc  TMP1, 0 

add R’1, TMP2 

adc  TMP1, 0 

... 

xor  rax, rax 

mov rdx, [pB+8*0] 

 

mulx T1, T2, [pA+8*0] 

adox R0, T2 

adcx R1, T1 

mov pDst, R0 

 

 

 

mulx T1, R’0, [pA+8*1] 

adox R’0, R1 

adcx R2, T1 

  

 

 

 

 

mulx T1, R’1, [pA+8*2] 

adox R’1, R2 

adcx R3, T1 

... 
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Figure 5. Diagonal structure for Step 2 

 

Conclusion 

New integer instructions are being introduced on Intel® Architecture 

Processors to enable fast implementations of large integer arithmetic. This 

paper presents a brief introduction to large integer multiplication and shows 

how it can be efficiently implemented using the Intel® Architecture 

instruction set.  We also demonstrate how the use of the new mulx, adcx, 

and adox instructions can result in an even more efficient solution. Complete 

Ao × B1

A1 × B1

A2 × B1

A3 × B1

A4 × B1

A5 × B1

A7 × B1

A6 × B1

[C0]R7 R6 R5 R4 R3 R2 R1 R0

B1

A7 A6 A5 A4 A3 A2 A1 A0

X

+

[C1]R’7 R’6 R’5 R’4 R’3 R’2 R’1 R’0 [C0]
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source code for optimized implementations of modular exponentiation can be 

found in [3]. 
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