

324101

Processing Multiple
Buffers in Parallel
to Increase
Performance on
Intel® Architecture
Processors

 July 2010

White Paper

Vinodh Gopal

Jim Guilford

Wajdi Feghali

Erdinc Ozturk

Gil Wolrich

Martin Dixon

IA Architects

Intel Corporation

 Processing Multiple Buffers in Parallel to Increase Performance

2

Executive Summary
SIMD (Single Instruction Multiple Data) is a well established

technique for increasing performance on processors when

working on identical workloads. In this case, multiple

independent data buffers can be processed simultaneously

using SIMD instructions and registers. SIMD can be efficiently

implemented on Intel® processors.

A similar “multi-buffer” approach can also speed up certain

algorithms where SIMD instructions do not exist, and where

data dependencies preclude optimal utilization of the

processor’s execution resources. Examples of this include

AES-CBC-Encrypt and 3DES.

In applications where the workloads are not identical, in

particular where the sizes of the buffers being processed

vary, we describe a “scheduler” to utilize the multi-buffer

routines efficiently. The main challenge is to implement a

scheduler with minimal performance overheads, and realize

good overall performance gains with the multi-buffer

technique despite the presence of significant numbers of

small-sized buffers.

 This paper describes how processing multiple independent data

buffers in parallel can dramatically improve performance, even

without SIMD. A scheduler allows this approach to be used even when

the size of each individual buffer varies. The net result is a 2X - 3X

improvement in performance over the best-known single-buffer

methods on Intel® processors.

 Processing Multiple Buffers in Parallel to Increase Performance

 3

The paper presents these ideas with pseudo code for the

schedulers, along with performance results on cryptographic

algorithms measured on an Intel® Core™ i5 processor 650.

The Intel® Embedded Design Center provides qualified

developers with web-based access to technical resources.

Access Intel Confidential design materials, step-by step

guidance, application reference solutions, training, Intel’s tool

loaner program, and connect with an e-help desk and the

embedded community. Design Fast. Design Smart. Get

started today. www.intel.com/embedded/edc.

http://www.intel.com/embedded/edc�

 Processing Multiple Buffers in Parallel to Increase Performance

4

Contents
Overview .. 5

Processing Multiple Buffers in Parallel ... 5

SIMD Approach .. 6
Non-SIMD Approach ... 6

Multi-buffer Scheduler for Arbitrary Length Buffers ... 7

Basic API .. 7
“In-order” vs. “Out-of-order” ... 8
Usage .. 8
Starvation ... 9

Performance .. 10

HMAC-SHA1 Performance .. 11
AES128 CBC Encrypt Performance .. 12

Implementation Details ... 14

Scheduler API .. 14
HMAC-SHA1 (Out of Order Scheduler) .. 14
AES (In Order Scheduler) .. 15

Scheduler Internals .. 16
Generic Out-of-Order Scheduler ... 16
HMAC-SHA1 (Out of Order Scheduler) .. 17
AES (In Order Scheduler) .. 20
Coding Considerations .. 20

Conclusion .. 20

References .. 21

324101

Overview
There are many algorithms, such as hashing or encryption, which are applied
to a stream of data buffers. This occurs in networking, storage and other
applications. Since the amount of data being processed is large, there is an
ever-increasing need for very high performance implementations of these
algorithms.

In many cases, one way to do this is to process multiple independent buffers
in parallel. For example, a networking application might be encrypting each
data packet. Each packet is encrypted independently from the other packets.
This means that it should be possible to process several packets at the same
time.

This may also be done when there is not a stream of buffers in a literal sense.
For example, in a data de-duplication application, the first step is usually to
partition the input data into a number of chunks, and then to compute the
hash digest of each chunk. This is a perfect case where hashing multiple
buffers in parallel can speed up the hashing step, as they are independent.

Implementations of the multi-buffer techniques may involve changes at the
application level, but can result in speed improvements of 2-3X on Intel
processors. The multi-buffer technique increases the performance of a single
thread, similar to the Stitching methods in [4], but is a complementary and
different approach.

One of the main challenges is to design a scheduler that can process the
multiple data buffers of different sizes with minimal performance overheads.
This paper shows how this can be done, illustrates this with pseudo code, and
presents the measured performance gains.

Processing Multiple Buffers in
Parallel

There are two basic ways that processing multiple buffers in parallel can
improve performance: processing the buffers with SIMD instructions or
processing multiple buffers in parallel to reduce data dependency limits.

 Processing Multiple Buffers in Parallel to Increase Performance

6

SIMD Approach

The Intel® 64 and IA-32 instruction set architectures have two distinct
instruction subsets: general Purpose instructions and Single Instruction
Multiple Data (SIMD) instructions [1]. SIMD instructions include, and are
mostly known as, Intel® SSE, SSE2 (Streaming SIMD Extensions) etc.
extensions.

A straight-forward way to process multiple buffers in parallel is using SIMD
instructions. This directly allows one instruction to operate on multiple data
items in parallel. Current SIMD extensions work on 128-bit XMM registers.

Each XMM register is 128-bits wide, and can hold, for example, four 32-bit
values. This means that a single SIMD instruction can operate on four 32-bit
values at the same time rather than just one 32-bit value. This allows the
SIMD approach to process 4X the amount of data per instruction. The general
purpose instructions are executed in multiple parallel execution units. Some
SIMD instructions can also execute on multiple execution units, but the
number of units is usually fewer than the units for general purpose
instructions. In both cases this results in more than one instruction executing
each cycle. The net effect is that the actual gain when going to a 4-way SIMD
implementation may be less than 4X.

Non-SIMD Approach

A less obvious case for processing multiple buffers in parallel is where the
algorithm or implementation cannot be implemented in SIMD, and where
data dependencies prevent multiple-issue cores from taking full advantage of
execution unit resources, or where instruction latency exceeds instruction
throughput, so that the execution unit is under-utilized.

One example of this is the AES encryption algorithm which can be
implemented on Intel’s 32-nm technology microarchitecture, using the Intel®
AES New Instructions (Intel® AES-NI) that have been defined as a set of SSE
instructions, but that are not SIMD. In particular the AESENC instruction,
which does one round of AES encryption, has a latency of several cycles. This
means that in some modes, such as counter-mode or CBC (Cipher Block
Chaining) decrypt, one can implement the algorithm such that multiple blocks
of the same buffer are being processed in parallel, but in the case of CBC-
encrypt, one cannot start encrypting a block until the previous block has been
encrypted. This means that CBC-encrypt requires a serial implementation,
where performance is limited by the latency rather than by the throughput.

However, if we can encrypt multiple independent buffers in parallel, we can
break the data dependencies and get ideal performance limited only by the
throughput.

 Processing Multiple Buffers in Parallel to Increase Performance

 7

Another example is 3DES (Triple Data Encryption Standard). In this case,
there are no special DES instructions, and the implementation is built on
basic logical primitives such as XOR, shifts and table lookup operations. In
this case, there are multiple execution units that can execute these
instructions, but due to the data dependencies inherent in the 3DES
algorithm, many of these execution units end up under-utilized. If we
interleave the code to perform two 3DES operations in parallel, we can reduce
those data dependencies, make better use of the execution unit resources,
and markedly improve the performance.

Multi-buffer Scheduler for Arbitrary
Length Buffers

Basic multi-buffer implementations work on identical workloads. In particular,
they work on multiple buffers as long as all of the buffers are the same
length. But in many applications the buffers are of different lengths. To bridge
this gap we use a “scheduler”.

The scheduler is an interface layer that presents a single job-oriented
interface to the application, and a parallel interface to the underlying
algorithm. It takes advantage of the property that these algorithms iterate
on the data in a buffer. The processing for a single buffer could be done in
one operation, or by doing a series of separate operations on sequential
portions of the buffer.

For the sake of the following discussion, assume that the underlying
algorithm processes four buffers in parallel. The basic idea behind the
scheduler is that it accumulates jobs until there are four of them. It then
computes the minimum of the job sizes and then calls the underlying
algorithm to process that much data. After this completes, one or more of
the jobs are finished. The completed jobs are replaced by new jobs and the
process continues.

Basic API

The basic API of the scheduler centers around a “job” object. This is a data
structure that completely describes the work item, e.g. the address and size
of the buffer, along with other necessary data such as the initial and final
hash values, etc.

The basic operation is that through a function call a job is submitted, and it
either returns a job or returns NULL. If it is not NULL, then it represents a job
whose processing has finished. Note that in general, the returned job will not
be the same as the submitted job.

 Processing Multiple Buffers in Parallel to Increase Performance

8

There is a related operation, flush, which does not take a new job as input,
and which either returns a finished job or returns NULL if there are no
remaining jobs in progress.

“In-order” vs. “Out-of-order”

The scheduler can be designed to return jobs in the same order as the order
in which they were submitted, or in a different order. Some applications may
tolerate jobs being completed in an arbitrary order, whereas other
applications might not.

The out-of-order (OOO) scheduler is simpler. It also features more
deterministic behavior. For example, consider an out of order scheduler for an
algorithm operating on four buffers at a time. When the first three jobs are
submitted, there will be no job returned. Thereafter for every job submitted
there will be one returned. This implies that there need be no more than four
job objects in existence.

If the jobs need to be completed in order, a more involved scheduler can be
used. In this case, if a job is finished before an earlier job, it remains within
the scheduler and isn’t returned until after the earlier jobs are returned. This
implies that depending on the sizes of the jobs, an arbitrary number of jobs
can reside within the scheduler.

There are many ways one could design such an in-order scheduler. In our
prototype design, there is a fixed number of job objects available. If the pool
of job objects becomes exhausted because the earliest job is taking a long
time and all of the other jobs are waiting for it, then the scheduler will “flush”
jobs until that earliest job completes.

Since flushing reduces the efficiency, the size of the job pool should be
chosen large enough so that normally it is not exhausted.

Usage

The basic usage of the scheduler can be illustrated by the following pseudo
code:
while (work to be done) {
 JOB *job;
 job = get_job();
 // fill in job data fields
 job = submit_job(job);
 if (job) {
 // complete application job processing
 return_job(job);
 }
} // end while
while (NULL != (job = flush_job())) {
 // complete application job processing
 return_job(job)
}

 Processing Multiple Buffers in Parallel to Increase Performance

 9

The submit_job() and flush_job() functions are provided by the scheduler,
while the get_job() and return_job() functions can be provided by the
application or scheduler. For our prototype in-order scheduler, these functions
are provided by the scheduler.

In the case of an out of order scheduler, the get_job() and return_job()
functions can be implemented as a simple stack of static objects.

Note that other usages are possible. For example if one were using an out-of-
order scheduler that processed 4 buffers in parallel, then one could do
something simpler as described below:

JOB *job, jobs[4];
for (i=0; i<3; i++) {
 // fill in jobs[i] data fields
 submit_job(&jobs[i]);
}
job = &jobs[3];
while (more work to be done) {
 // fill in job data fields
 job = submit_job(job);
 // job will never be NULL here
 // complete application job processing
}
for (i=0; i<3; i++) {
 job = flush_job();
 // complete application job processing
}

This takes advantage of the observation that for this out of order scheduler,
the first three jobs submitted will always return NULL, and thereafter
submitting a job will always return a completed job. Finally, at the end, there
are exactly three jobs to flush.

Starvation

If the arrival of data buffers is bursty in nature, a simple use of the scheduler
could be susceptible to starvation, where a particular job is delayed
indefinitely. For example, consider the case of a queue of work requests, and
a thread processing them through the scheduler. If no new requests arrived
and the queue became empty, the last few jobs would be stuck in the
scheduler until new requests arrived, which might not occur for a long time.

A variety of approaches could address this. In the above example, the
processing thread could, when it finds the work queue empty, start flushing
jobs, until either new work items arrived or all of the jobs were flushed.
Flushing jobs is less efficient than normal processing, but if the queue is
empty then presumably the rate at which work arrives is less than the
processing rate, and we can therefore afford the temporary decrease in
performance.

 Processing Multiple Buffers in Parallel to Increase Performance

10

In other applications, one might have a watchdog thread that records that no
new jobs have arrived in a given time period and starts flushing jobs.

Alternately, the application might have a definitive start and end and
therefore not be subject to starvation. An example of this would be hashing
the chunks of a larger buffer for data de-duplication.

Performance
The performance results provided in this section were measured on an Intel®
Core™ i5 650 processor at a frequency of 3.20 GHz, supporting Intel® AES-
NI. The tests were run with Intel® Turbo Boost Technology off, and represent
the performance without Intel® Hyper-Threading Technology (Intel® HT
Technology) on a single core.

Performance was measured for two code bases. The first implemented HMAC-
SHA1. The second implemented AES-128 CBC Encrypt using pre-expanded
keys.

For the HMAC case, the multi-buffer code used an out-of-order scheduler and
a SIMD-style SSE-based multi-buffer SHA1 kernel. The single-buffer code for
comparison used the best-known single-buffer SHA1 kernel [2], which utilizes
the SSE hardware for part of the single-buffer calculation, as well as other
optimizations.

The HMAC is a keyed message authentication code based on an underlying
hash function such as SHA1. It is defined as:

HMAC(K,m) = H((K ⊕ opad) ∥ H((K ⊕ ipad) ∥ m))

where H is the SHA1 hash function, m is the input “message” data buffer and
K is the secret key. The ipad and opad are constants defined by the algorithm
to be exactly 1 block in length. We assume that the SHA1 digest of (K ⊕
ipad) and (K ⊕ opad) are pre-computed. Details of the HMAC-SHA1 algorithm
can be found in [3].

For the AES case, both the multi-buffer and single-buffer code used the AES-
NI new instructions. The multi-buffer code demonstrates an in-order
scheduler and a non-SIMD multi-buffer kernel. The single-buffer code used
the best-known single-buffer AES implementation [5].

These code bases were tested on four different workloads:

Workload Description Average Buffer Size

0 Fixed “min sized” buffers:
64 bytes for HMAC
48 bytes for AES

64/48

1 Random Distribution 0:
66% 64
21% 544

330

 Processing Multiple Buffers in Parallel to Increase Performance

 11

13% 1360
2 Random Distribution 1:

40% Uniformly distributed from 48 – 100
20% Uniformly distributed from 101 – 1023
40% Uniformly distributed from 1024 - 1450

610

3 Fixed “large” buffers: 2048 bytes 2048

The first and last workload represent “limiting” cases of small and large
buffers, and the middle two workloads represent a rough approximation to
network traffic sizes. We picked two distributions to show that the
performance is not very sensitive to the exact nature of the distribution.

Note: Performance results are based on certain tests measured on specific computer
systems. Any difference in system hardware, software or configuration will affect
actual performance. Configurations: OS: Windows Server 2008 R2 Enterprise, 64-bit,
CPU:Intel® Core™ i5 650 3.20 GHz, Memory 8.00 GB. Testing conducted as
described in this section. For more information go to
http://www.intel.com/performance

HMAC-SHA1 Performance

The overall HMAC performance is given below:

Figure 1. HMAC-SHA1 Performance (Cycles/Buffer)

1,259

2,793

4,350

12,909

689
1,459

2,301

6,366

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

64 Byte Distribution 0 Distribution 1 2048 byte

HMAC: Total Cycles / Buffer

Single Buf fer

Multi Buf fer

2X

http://www.intel.com/performance�

 Processing Multiple Buffers in Parallel to Increase Performance

12

In all cases, including the multi-buffer scheduler overhead, the multi-buffer
version provided about 2X the performance of the best single-buffer
implementation.

Looking at the first two cases in more detail, the cycles break down as:

Figure 2. Breakdown of Cycles for HMAC-SHA1

0

500

1,000

1,500

2,000

2,500

3,000

Single Buffer Multi Buffer Single Buffer Multi Buffer

64 Byte Distribution 0

Cycle Breakdowns

Multibuf fer Overhead

HMAC Overhead

SHA1

These graphs clearly show that even for small buffers, the overhead of the
multi-buffer scheduler is still much smaller than the cost of computing the
HMAC digest, and that the improved SHA1 performance causes the overall
performance increase.

Note that for the other two workloads, the overheads associated with HMAC
and with the multi-buffer scheduler remain essentially the same, while the
number of cycles spent hashing the buffer contents increase. For these cases,
the overheads become an even smaller percentage of the total time.

AES128 CBC Encrypt Performance

The overall AES results are shown below:

 Processing Multiple Buffers in Parallel to Increase Performance

 13

Figure 3. AES128 CBC-Encrypt Performance (Cycles/Buffer)

158

1,333

2,528

8,438

137
582

972

2,841

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

48 Byte Distribution 0 Distribution 1 2048 Byte

AES: Total Cycles / Buffer

Single Buf fer

Multi Buf fer
3X

In this case, the increase in performance due to multi-buffer varies from 1.2X
on min-sized buffers to 3X on large buffers. This is to be expected as the time
to encrypt a min-sized buffer is small enough that the multi-buffer overhead
becomes a significant fraction of the encrypt time. The improvement is
modest for minimum-sized buffers but becomes much more significant for
larger buffers.

If the entire workload consisted of 48-byte buffers, then the 1.2X
improvement may not seem very high. However, in practical applications, we
expect a distribution of buffers where the multi-buffer approach has a much
larger gain, sufficient to justify the complexity. Furthermore, if all of the
buffers were 48 bytes, one could use a simpler scheduler for better
performance.

The main point to note is when the buffers have a reasonable mix of sizes
(e.g. the other three workloads), then the improvement from using a multi-
buffer approach varies from about 2.5X to 3X.

We should also note that in reality, there will be a mix of encrypt and decrypt
jobs, and since CBC Decrypt can be explicitly parallelized without multi-buffer
scheduling, the absolute performance for CBC on the whole will be better
than the worst-case shown here for CBC Encrypt.

The cycle breakdown for the 48-byte worst-case is shown below:

 Processing Multiple Buffers in Parallel to Increase Performance

14

Figure 4. Breakdown of Cycles for AES128 CBC Encrypt (Min size buffer)

From this, we can see that even for small buffers, the out-of-order overhead
is still small enough that the multi-buffer version performs better than the
single-buffer version, and also that the overhead for returning buffers in order
is yet smaller. As the average buffer size increases, the relative contribution
of the scheduler overhead becomes much smaller.

Implementation Details

Scheduler API

HMAC-SHA1 (Out of Order Scheduler)

The scheduler API could be designed a number of different ways. For the
HMAC (out of order) scheduler, we implemented:

void init_mb_mgr_state(MB_MGR_STATE *mb_mgr_state);
JOB* submit_job(MB_MGR_STATE *mb_mgr_state, JOB *job);
JOB* flush_job (MB_MGR_STATE *mb_mgr_state);

The basic paradigm is that the application fills in a “JOB” data structure with
enough information to fully specify the work to be done (e.g. a pointer to the
buffer, the buffer length, etc.) and submits it to the multi-buffer
manager/scheduler. This then returns a completed job (in an arbitrary order)
or NULL. At the end, the application calls flush_job() to get back the
remaining jobs without submitting new ones. The basic application flow is:

 Processing Multiple Buffers in Parallel to Increase Performance

 15

job = NULL;
while (work to be done) {
 if (job == NULL) job = get_new_job;
 fill in job object with new data
 job = submit_job(mb_mgr, job);
 if (job) use completed HMAC hash value
}
while (job = flush_job(mb_mgr)) {
 use completed HMAC hash value
}

In this case, there never needs to be more than 4 jobs at any time, so the
application could use a fixed pool of 4 jobs and avoid dynamic memory
allocation overhead.

AES (In Order Scheduler)

An “in-order” scheduler API could also be designed a number of ways.

The in-order scheduler can have a larger number of buffers currently being
processed. For example, if the first buffer submitted is very large, the
application might need to submit a large number of smaller buffers before the
first buffer is returned. And since the buffers need to be returned in the order
in which they were submitted, all of these smaller buffers can’t be returned
until the initial large buffer is returned.

So in this case, the buffer management is also handled by the multi-buffer
manager/scheduler. The API implemented was:

void init_mb_mgr(MB_MGR_AES *state);
JOB_AES* get_next_job(MB_MGR_AES *state);
JOB_AES* submit_job(MB_MGR_AES *state);
JOB_AES* flush_job(MB_MGR_AES *state);

The paradigm here is that get_next_job() returns a pointer to a job object,
which is filled in similar to the HMAC case. The submit_job() function
submits that job (which is an “implicit argument”). It returns NULL or a
completed job. If it returns a job, then the application needs to complete
processing on that buffer before it next calls get_next_job().

The flush_job() function takes no “implicit job” in as an argument, but it
returns completed jobs until there are no more jobs to return, in which case it
returns NULL.

 Processing Multiple Buffers in Parallel to Increase Performance

16

In this case, the application logic can be described as:

while (work to be done) {
 job = get_next_job(mb_mgr);
 fill in job object with new data
 job = submit_job(mb_mgr);
 if (job) process completed AES job
}
while (job = flush_job(mb_mgr)) {
 process completed AES job
}

Note that this application code outlined is almost identical to that for the
HMAC-SHA1 out-of-order case.

Scheduler Internals

Generic Out-of-Order Scheduler

A generic out-of-order scheduler has a fairly simple implementation. Assume
that the underlying algorithm code operates on N buffers in parallel for an
arbitrary number of blocks (where the block size is determined by the
algorithm). The scheduler accumulates jobs until it has N of them. It then
computes the minimum of the lengths of the N jobs, calls the algorithm
function, and then updates the buffer pointers and lengths.

At this point, at least one of the jobs is completed and can be returned.

The only complexity is handling the case where the minimum length before
the algorithm code is called, is zero. This happens when two or more buffers
are completed at the same time.

 Processing Multiple Buffers in Parallel to Increase Performance

 17

Figure 5. Generic Out of order Scheduler

Find unused lane

Store job info

Are
all lanes
used?

Find min length

Call algorithm code

Update pointers/lens

Return completed job

done

Y

N

HMAC-SHA1 (Out of Order Scheduler)

The HMAC-SHA1 scheduler as implemented for this paper is more
complicated, as it also needs to deal with the HMAC processing. Since the
length of the buffer is arbitrary, the SHA1 algorithm requires padding to make
the effective buffer length a multiple of 64 bytes. In particular this includes
copying the last block to a temporary buffer and adding the padding. For
convenience, we have implemented the SHA1 processing required for the last
block as part of the HMAC code, which also is responsible for creating a buffer
containing the inner hash that is hashed to generate the final outer hash.

This means that in general, each job is sent to the underlying SHA1 code
three times: once for all but the last block, once for the last block (with

 Processing Multiple Buffers in Parallel to Increase Performance

18

padding added to handle lengths that are non-multiples of 64 bytes), and
once for the final outer HMAC hash. One consequence of this is that after
performing a SHA1 hash, there may be no jobs which are actually completed.
Therefore the logic that finds the minimum size job, calls the SHA1 code, and
processes the results needs to be done iteratively in a loop.

 Processing Multiple Buffers in Parallel to Increase Performance

 19

Figure 6. HMAC-SHA1 out of order Scheduler

Find unused lane

Store job info
Copy/pad final block

Are
all lanes

used?

Find min length

Call SHA1 code

Update pointers/lens

Return completed job done

Y

N

len == 0?
Y

N

last
block processed

Y

N Update pointers
to last block

outer
hash done

Y

N Update pointers
to outer block

 Processing Multiple Buffers in Parallel to Increase Performance

20

AES (In Order Scheduler)

The in-order scheduler is layered on top of an out-of-order scheduler. In this
implementation, it has a fixed-size array of jobs arranged as a circular buffer.
At least one of these is always unused, so it can be returned to the
application when the application requests a new job.

When a job is submitted, it is submitted to the underlying out-of-order
scheduler. Then there are three cases:

• If the scheduler was previously empty, then the current job is
remembered as the “earliest job”.

• If the scheduler is not full, then if the earliest job is completed, that job
is returned, otherwise NULL is returned.

• If the scheduler is full and the earliest job is not completed, the
underlying out-of-order scheduler is flushed until the earliest job
completes, and that job is returned.

This approach removes the need for dynamic memory allocation and bounds
the worst-case latency in the sense that the number of “in-flight” jobs can
never exceed some threshold.

Coding Considerations

Since the time to encrypt one block with AES using the AES-NI instructions is
rather short, one must code the scheduler to be very efficient; otherwise the
multi-buffer overhead may exceed the multi-buffer savings for small buffers.

The sizes of buffers in these applications are less than 216, and therefore we
use the PHMINPOSUW SSE instruction to compute the minimum length in one
operation, and avoid conditional logic and potential branch mis-predicts.

Conclusion
Processing multiple buffers at the same time can result in significant
performance improvements—both for the case where the code can take
advantage of SIMD (SSE) instructions (e.g. SHA1), and even in some cases
where it can’t (e.g. AES CBC Encrypt).

An efficient scheduler or multi-buffer manager can be used to extend this
approach to streams of buffers where in general each buffer will be of a
different size. This scheduler can be designed to return completed buffers in
an arbitrary order or in the same order in which jobs were submitted.

Even in the case of an in-order scheduler layered on top of AES for small
buffers (the worst case), the multi-buffer code with scheduler still performs

 Processing Multiple Buffers in Parallel to Increase Performance

 21

better than the best single-buffer version. For larger buffers and for HMAC-
SHA1, the performance increase is more dramatic.

References
[1] Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1

[2] Improving the Performance of the Secure Hash Algorithm (SHA-1)
http://software.intel.com/en-us/articles/improving-the-performance-of-the-
secure-hash-algorithm-1/

[3] HMAC http://en.wikipedia.org/wiki/HMAC

[4] Fast Cryptographic Computation on Intel® Architecture Processors Via
Function Stitching
http://download.intel.com/design/intarch/PAPERS/323686.pdf

[5] Breakthrough AES Performance with Intel® AES New Instructions
http://software.intel.com/file/26898

The Intel® Embedded Design Center provides qualified developers with web-
based access to technical resources. Access Intel Confidential design
materials, step-by step guidance, application reference solutions, training,
Intel’s tool loaner program, and connect with an e-help desk and the
embedded community. Design Fast. Design Smart. Get started today.
http://intel.com/embedded/edc.

http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/�
http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/�
http://en.wikipedia.org/wiki/HMAC�
http://download.intel.com/design/intarch/PAPERS/323686.pdf�
http://software.intel.com/file/26898�
http://intel.com/embedded/edc�

 Processing Multiple Buffers in Parallel to Increase Performance

22

Authors

Vinodh Gopal, Jim Guilford, Erdinc Ozturk, Gil Wolrich,
Wajdi Feghali and Martin Dixon are IA Architects with the IAG
Group at Intel Corporation.

Acronyms

IA Intel® Architecture

API Application Programming Interface

SIMD Single Instruction Multiple Data

SSE Streaming SIMD Extensions

 Processing Multiple Buffers in Parallel to Increase Performance

 23

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO
WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including
liability for infringement of any proprietary rights, relating to use of information in this specification.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual
performance.Buyers should consult other sources of information to evaluate the performance of
systems or components they are considering purchasing. For more information on performance tests
and on the performance of Intel products, Go to:
http://www.intel.com/performance/resources/benchmark_limitations.htm

Intel ® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel
software to execute the instructions in the correct sequence. AES-NI is available on Intel® Core™
i5-600 Desktop Processor Series, Intel® Core™ i7-600 Mobile Processor Series, and Intel® Core™
i5-500 Mobile Processor Series. For availability, consult your reseller or system manufacturer. For
more information, see http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-
Set_WP.pdf

Hyper-Threading Technology requires a computer system with a processor supporting HT Technology
and an HT Technology-enabled chipset, BIOS and operating system. Performance will vary
depending on the specific hardware and software you use. For more information including details on
which processors support HT Technology, see here.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS,
operating system, device drivers and applications enabled for Intel® 64 architecture. Performance
will vary depending on your hardware and software configurations. Consult with your system vendor
for more information.

“Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology
capability. Intel Turbo Boost Technology performance varies depending on hardware, software and
overall system configuration. Check with your PC manufacturer on whether your system delivers
Intel Turbo Boost Technology.For more information, see
http://www.intel.com/technology/turboboost.”

Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel Turbo Boost
Technology, Intel Hyper Threading Technology, Intel Xeon, and Xeon Inside are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries.

http://www.intel.com/performance/resources/benchmark_limitations.htm�
http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf�
http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf�
http://www.intel.com/technology/turboboost�

 Processing Multiple Buffers in Parallel to Increase Performance

24

*Other names and brands may be claimed as the property of others.

Copyright © 2010 Intel Corporation. All rights reserved.

	Overview
	Processing Multiple Buffers in Parallel
	SIMD Approach
	Non-SIMD Approach

	Multi-buffer Scheduler for Arbitrary Length Buffers
	Basic API
	“In-order” vs. “Out-of-order”
	Usage
	Starvation

	Performance
	HMAC-SHA1 Performance
	AES128 CBC Encrypt Performance

	Implementation Details
	Scheduler API
	HMAC-SHA1 (Out of Order Scheduler)
	AES (In Order Scheduler)

	Scheduler Internals
	Generic Out-of-Order Scheduler
	HMAC-SHA1 (Out of Order Scheduler)
	AES (In Order Scheduler)
	Coding Considerations

	Conclusion
	References

