
Oracle Corporation
www.oracle.com

Submit comments about this document to jsr-250-comments@jcp.org

Common Annotations for the Java™

Platform™

Maintenance Release

Version 1.2

Editor:

Rajiv Mordani

February 15, 2013

February 2013

ORACLE IS WILLING TO LICENSE THIS SPECIFICATION TO YOU ONLY UPON THE CONDITION THAT YOU ACCEPT ALL OF THE
TERMS CONTAINED IN THIS AGREEMENT. PLEASE READ THE TERMS AND CONDITIONS OF THIS AGREEMENT CAREFULLY. BY
DOWNLOADING THIS SPECIFICATION, YOU ACCEPT THE TERMS AND CONDITIONS OF THE AGREEMENT. IF YOU ARE NOT
WILLING TO BE BOUND BY IT, SELECT THE "DECLINE" BUTTON AT THE BOTTOM OF THIS PAGE.

Specification: JSR-250 Common Annotations for the Java Platform ("Specification")

Version: 1.2

Status: Maintenance Release

Release: 31 May 2013

Copyright 2013 Oracle America, Inc.

500 Oracle Parkway, Redwood City, California 94065, U.S.A.

All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Specification Lead hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited
license (without the right to sublicense), under Specification Lead's applicable intellectual property rights to view, download, use and
reproduce the Specification only for the purpose of internal evaluation. This includes (i) developing applications intended to run on an
implementation of the Specification, provided that such applications do not themselves implement any portion(s) of the Specification, and (ii)
discussing the Specification with any third party; and (iii) excerpting brief portions of the Specification in oral or written communications which
discuss the Specification provided that such excerpts do not in the aggregate constitute a significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Specification Lead also grants you a perpetual, non-exclusive, non-transferable,
worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under any applicable copyrights or, subject to the
provisions of subsection 4 below, patent rights it may have covering the Specification to create and/or distribute an Independent
Implementation of the Specification that: (a) fully implements the Specification including all its required interfaces and functionality; (b) does
not modify, subset, superset or otherwise extend the Licensor Name Space, or include any public or protected packages, classes, Java interfaces,
fields or methods within the Licensor Name Space other than those required/authorized by the Specification or Specifications being
implemented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements of the applicable TCK Users Guide) for
such Specification ("Compliant Implementation"). In addition, the foregoing license is expressly conditioned on your not acting outside its
scope. No license is granted hereunder for any other purpose (including, for example, modifying the Specification, other than to the extent of
your fair use rights, or distributing the Specification to third parties). Also, no right, title, or interest in or to any trademarks, service marks, or
trade names of Specification Lead or Specification Lead's licensors is granted hereunder. Java, and Java-related logos, marks and names are
trademarks or registered trademarks of Oracle America, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any other particular "pass through"
requirements in any license You grant concerning the use of your Independent Implementation or products derived from it. However, except
with respect to Independent Implementations (and products derived from them) that satisfy limitations (a)-(c) from the previous paragraph,
You may neither: (a) grant or otherwise pass through to your licensees any licenses under Specification Lead's applicable intellectual property
rights; nor (b) authorize your licensees to make any claims concerning their implementation's compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that would be infringed by all technically
feasible implementations of the Specification, such license is conditioned upon your offering on fair, reasonable and non-discriminatory terms,
to any party seeking it from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your patent rights which are or would
be infringed by all technically feasible implementations of the Specification to develop, distribute and use a Compliant Implementation.

b With respect to any patent claims owned by Specification Lead and covered by the license granted under subparagraph 2, whether or not their
infringement can be avoided in a technically feasible manner when implementing the Specification, such license shall terminate with respect to
such claims if You initiate a claim against Specification Lead that it has, in the course of performing its responsibilities as the Specification Lead,
induced any other entity to infringe Your patent rights.

c Also with respect to any patent claims owned by Specification Lead and covered by the license granted under subparagraph 2 above, where
the infringement of such claims can be avoided in a technically feasible manner when implementing the Specification such license, with respect
to such claims, shall terminate if You initiate a claim against Specification Lead that its making, having made, using, offering to sell, selling or
importing a Compliant Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall mean an implementation of the Specification that
neither derives from any of Specification Lead's source code or binary code materials nor, except with an appropriate and separate license from
Specification Lead, includes any of Specification Lead's source code or binary code materials; "Licensor Name Space" shall mean the public
class or interface declarations whose names begin with "java", "javax", "com.<Specification Lead>" or their equivalents in any subsequent
naming convention adopted by Oracle through the Java Community Process, or any recognized successors or replacements thereof; and
"Technology Compatibility Kit" or "TCK" shall mean the test suite and accompanying TCK User's Guide provided by Specification Lead which
corresponds to the Specification and that was available either (i) from Specification Lead's 120 days before the first release of Your Independent
Implementation that allows its use for commercial purposes, or (ii) more recently than 120 days from such release but against which You elect to
test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Specification Lead if you breach the Agreement or act outside the scope of the
licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SPECIFICATION LEAD MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE
SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does not
represent any commitment to release or implement any portion of the Specification in any product. In addition, the Specification could include
technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SPECIFICATION LEAD OR ITS LICENSORS BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF OR RELATED IN ANY WAY TO YOUR HAVING, IMPELEMENTING OR OTHERWISE USING USING THE
SPECIFICATION, EVEN IF SPECIFICATION LEAD AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

You will indemnify, hold harmless, and defend Specification Lead and its licensors from any claims arising or resulting from: (i) your use of the
Specification; (ii) the use or distribution of your Java application, applet and/or implementation; and/or (iii) any claims that later versions or
releases of any Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government's rights in the Software and accompanying documentation shall be only as set forth in this
license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101
and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Specification Lead with any comments or suggestions concerning the Specification ("Feedback"), you hereby: (i) agree that such
Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Specification Lead a perpetual, non-exclusive, worldwide,
fully paid-up, irrevocable license, with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without
limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N. Convention for the
International Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other countries. Licensee agrees to
comply strictly with all such laws and regulations and acknowledges that it has the responsibility to obtain such licenses to export, re-export or
import as may be required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or contemporaneous oral or written
communications, proposals, conditions, representations and warranties and prevails over any conflicting or additional terms of any quote,
order, acknowledgment, or other communication between the parties relating to its subject matter during the term of this Agreement. No
modification to this Agreement will be binding, unless in writing and signed by an authorized representative of each party.

Rev. April, 2006

Contents

1. Introduction 1–1

1.1 Goals 1–1

1.2 Non-Goals 1–2

1.3 Compatibility 1–2

1.4 Conventions 1–2

1.5 Expert Group Members 1–3

1.6 Acknowledgements 1–3

2. Annotations 2–5

2.1 General Guidelines for Inheritance of Annotations 2–5

2.2 javax.annotation.Generated 2–9

2.3 javax.annotation.Resource 2–10

2.4 javax.annotation.Resources 2–15

2.5 javax.annotation.PostConstruct 2–16

2.6 javax.annotation.PreDestroy 2–17

2.7 javax.annotation.Priority 2–19

2.8 javax.annotation.security.RunAs 2–20

2.9 javax.annotation.security.RolesAllowed 2–21

2.10 javax.annotation.security.PermitAll 2–22

2.11 javax.annotation.security.DenyAll 2–23
Contents v

2.12 PermitAll, DenyAll and RolesAllowed interactions 2–24

2.13 javax.annotation.security.DeclareRoles 2–24

2.14 javax.annotation.sql.DataSourceDefinition 2–25

2.15 javax.annotation.sql.DataSourceDefinitions 2–29

2.16 javax.annotation.ManagedBean 2–30

3. References 3–1
vi Common Annotations for the JavaTM Platform

1

Introduction

With the addition of JSR 175 (A Metadata Facility for the JavaTM Programming
Language) in the Java platform we envision that various technologies will use
annotations to enable a declarative style of programming. It would be unfortunate if
these technologies each independently defined their own annotations for common
concepts. It would be valuable to have consistency within the Java EE and Java SE
component technologies, but it will also be valuable to allow consistency between
Java EE and Java SE.

It is the intention of this specification to define a small set of common annotations
that will be available for use within other specifications. It is hoped that this will
help to avoid unnecessary redundancy or duplication between annotations defined
in different Java Specification Requests (JSR). This would allow us to have the
common annotations all in one place and let the technologies refer to this
specification rather than have them specified in multiple specifications. This way all
technologies can use the same version of the annotations and there will be
consistency in the annotations used across the platforms.

1.1 Goals
Define annotations for use in Java EE 7: This JSR will define annotations
for use within component technologies in Java EE 6as well as the platform as a
whole.

Define annotations for use in future revisions of Java SE: This JSR
will define annotations for use in JSRs targeted for Java SE as well as a future
revision of Java SE.
Chapter 1 Introduction 1-1

1.2 Non-Goals
Support for Java versions prior to J2SE 5.0

Annotations were introduced in J2SE 5.0. It is not possible to do annotation
processing in versions prior to J2SE 5.0. It is not a goal of this specification to define
a way of doing annotation processing of any kind for versions prior to J2SE 5.0.

1.3 Compatibility
The annotations defined in this specification may be included individually as
needed in products that make use of them. Other Java specifications will require
support for subsets of these annotations. Products that support these Java
specifications must include the required annotations.

1.4 Conventions
The keywords ‘MUST’, ‘MUST NOT’, ‘REQUIRED’, ‘SHALL’, ‘SHALL NOT’,
‘SHOULD’, ‘SHOULD NOT’, ‘RECOMMENDED’, ‘MAY’ AND ‘OPTIONAL’ in this
document are to be interpreted as described in RFC 2119.

Java code is formatted as shown below in figure 1.1:

Figure 1.1 Example Java code

package com.wombat.hello;

public class Hello {

 public static void main(String[] args) {

 System.out.println(“Hello world”);

 }

}

1-2 Common Annotations for the JavaTM Platform

1.5 Expert Group Members
The following expert group members participated in the JSR -

Cedric Beust (individual)

Bill Burke (JBoss)

Wayne Carr (Intel)

Robert Clevenger (Oracle)

Evan Ireland (Sybase)

Woo Jin Kim (Tmax Soft)

Gavin King (JBoss)

Rajiv Mordani (Oracle Corporation, Specification lead)

Ted Neward (individual)

Anurag Parashar (Pramati technologies)

Michael Santos (individual)

Hani Suleiman (Ironflare AB)

Seth White (BEA)

1.6 Acknowledgements
In addition to the expert group listed above the following people Linda DeMichiel, Ron
Monzillo, Lance Andersen and Bill Shannon all of whom work at Oracle Corporation
have provided input to this specification.
Chapter 1 Introduction 1-3

1-4 Common Annotations for the JavaTM Platform

2

Annotations

This chapter describes the standard annotations, some guidelines for annotation
inheritance and the usage of these annotations where possible.

2.1 General Guidelines for Inheritance of
Annotations
The interplay of annotations and inheritance in the Java language is potentially a
source of complexity for developers. Developers will rely on some implicit
assumptions when figuring out how annotations compose with other language
features. At the same time, annotation semantics are defined by individual
specifications, hence the potential for inconsistencies to arise. For instance, consider
the following example:

public class Base {

 @TransactionAttribute(REQUIRES_NEW)

 public void foo {....}

}

@Stateless

public class Derived extends Base {

 @TransactionAttribute(NEVER)

 public void foo {....}

}

Chapter 2 Annotations 2-5

In keeping with the concept of method overriding, most developers will assume that
in the Derived class, the effective TransactionAttribute annotation for method
foo is @TransactionAttribute(NEVER). On the other hand, it might have
been possible for the specification governing the semantics of the
TransactionAttribute annotations type to require that the effective
TransactionAttribute to be the most restrictive one in the whole inheritance
tree, that is, in the example above @TransactionAttribute(REQUIRES_NEW). A
motivation for this semantics might have been that the foo method in the Derived
class may call super.foo(), resulting in the execution of some code that needs a
transaction to be in place. Such a choice on the part of the specification for
TransactionAttribute would have contradicted a developer’s intuition on how
method overriding works.

In order to keep the resulting complexity in control, below are some guidelines
recommended for how annotations defined in the different specifications should
interact with inheritance:

1. Class-level annotations only affect the class they annotate and their members, that
is, its methods and fields. They never affect a member declared by a superclass,
even if it is not hidden or overridden by the class in question.

2. In addition to affecting the annotated class, class-level annotations may act as a
shorthand for member-level annotations. If a member carries a specific member-
level annotation, any annotations of the same type implied by a class-level
annotation are ignored. In other words, explicit member-level annotations have
priority over member-level annotations implied by a class-level annotation. For
example, a @WebService annotation on a class implies that all the public
methods in the class that it is applied on are annotated with @WebMethod if there
is no @WebMethod annotation on any of the methods. However if there is a
@WebMethod annotation on any method then the @WebService does not imply
the presence of @WebMethod on the other public methods in the class.

3. The interfaces implemented by a class never contribute annotations to the class
itself or any of its members.

4. Members inherited from a superclass and which are not hidden or overridden
maintain the annotations they had in the class that declared them, including
member-level annotations implied by class-level ones.

5. Member-level annotations on a hidden or overridden member are always ignored.

These set of guidelines guarantees that the effects of an annotation are local to the
class on, or inside, which it appears. In order to find the effective annotation for a
class member, a developer has to track down its last non-hidden and non-overridden
declaration and examine it. If the sought-for annotation is not found there, then (s)he
will have to examine the enclosing class declaration. If even this step fails to provide
an annotation, no other source file will be consulted.
2-6 Common Annotations for the JavaTM Platform

Below are some examples that explain how the guidelines defined above will be
applied to the TransactionAttribute annotation.

@TransactionAttribute(REQUIRED)

class Base {

 @TransactionAttribute(NEVER)

 public void foo() {...}

 public void bar() {...}

}

@Stateless

class ABean extends Base {

 public void foo() {...}

}

@Stateless

public class BBean extends Base {

 @TransactionAttribute(REQUIRES_NEW)

 public void foo() {...}

}

@Stateless

@TransactionAttribute(REQUIRES_NEW)

public class CBean extends Base {

 public void foo() {...}

 public void bar() {...}

}

@Stateless

@TransactionAttribute(REQUIRES_NEW)

public class DBean extends Base {

 public void bar() {...}

}

@Stateless

@TransactionAttribute(REQUIRES_NEW)
Chapter 2 Annotations 2-7

public class EBean extends Base {

}

The table below shows the effective TransactionAttribute annotation in each of
the cases above by applying the guidelines specified for annotations and inheritance:

TABLE 2-1

Methods in derived classes Effective TransactionAttribute value

foo() in ABean REQUIRED (Default
TransactionAttribute as
defined by the EJB
specification).

bar() in ABean @Transaction(REQUIRED)

foo() in BBean @TransactionAttribute(REQUIR
ES_NEW)

bar() in BBean @TransactionAttribute(REQUIR
ED)

foo() in CBean @TransactionAttribute(REQUIR
ES_NEW)

bar() in CBean @TransactionAttribute(REQUIR
ES_NEW)

foo() in DBean @TransactionAttribute(NEVER)
(from the Base class)

bar() in DBean @TransactionAttribute(REQUIR
ES_NEW)

foo() in EBean @TransactionAttribute(NEVER)
(From Base class)

bar() in EBean @TransactionAttribute(REQUIR
ED)(From Base class)

For more details about TransactionAttribute see the EJB 3 Core Contracts
specification.

All annotations defined in this specification follow the guidelines defined above
unless explicitly stated otherwise.
2-8 Common Annotations for the JavaTM Platform

Note that even though we use some of the web services annotations in describing
the rules above, not all the rules defined in this section are followed by JAX-WS /
JSR 181 annotations. Please refer to the JAX-WS / JSR 181 specification for
exceptions to these gudelines.

2.2 javax.annotation.Generated
The Generated annotation is used to mark source code that has been generated. It
can be specified on a class, methods or fields. It can also be used to differentiate user
written code from generated code in a single file. When used, the value element
MUST have the name of the code generator. The recommended convention is to use
the fully qualified name of the code generator. For example:
com.company.package.classname. The date element is used to indicate the
date the source was generated. The date element MUST follow the ISO 8601
standard. For example the date element would have the following value:

2001-07-04T12:08:56.235-0700

which represents 2001-07-04 12:08:56 local time in the U.S. Pacific Time time zone.

The comments element is a place holder for any comments that the code generator
may want to include in the generated code.

package javax.annotation;

import static java.lang.annotation.ElementType.*;

import static java.lang.annotation.RetentionPolicy.*;

@Target({ANNOTATION_TYPE, CONSTRUCTOR, FIELD, LOCAL_VARIABLE,
METHOD, PACKAGE, PARAMETER, TYPE})

@Retention(SOURCE)

public @interface Generated {

 String[] value();

 String date() default ““;

 String comments() default ““;

}

Chapter 2 Annotations 2-9

TABLE 2-2

Element Description Default

value Name of the code generator

date Date source was generated. MUST
follow ISO 8601 standard

““

comments placeholder for comments that the
generator may want to include in the
generated code

““

The following example shows the usage of the annotation defined above:

@Generated(“com.sun.xml.rpc.AProcessor”)

public interface StockQuoteService extends java.rmi.Remote {

 this.context = context;

}

2.3 javax.annotation.Resource
The Resource annotation is used to declare a reference to a resource. It can be
specified on a class, methods or on fields. When the annotation is applied on a field
or method, the container will inject an instance of the requested resource into the
application when the application is initialized. If the annotation is applied to a class,
the annotation declares a resource that the application will look up at runtime. Even
though this annotation is not marked Inherited, if used all superclasses MUST be
examined to discover all uses of this annotation. All such annotation instances
specify resources that are needed by the application. Note that this annotation may
appear on private fields and methods of the superclasses. Injection of the declared
resources needs to happen in these cases as well, even if a method with such an
annotation is overridden by a subclass.
2-10 Common Annotations for the JavaTM Platform

The name element is the JNDI name of the resource. When the Resource annotation
is applied on a field, the default value of the name element is the field name
qualified by the class name. When applied on a method, the default is the JavaBeans
property name corresponding to the method qualified by the class name. When
applied on a class, there is no default and the name MUST be specified.

The type element defines the Java type of the resource. When the Resource
annotation is applied on a field, the default value of the type element is the type of
the field. When applied on a method, the default is the type of the JavaBeans
property. When applied on a class, there is no default and the type MUST be
specified. When used, the type MUST be assignment compatible.

The authenticationType element is used to indicate the authentication type to
use for the resource. It can take one of two values defined as an Enum: CONTAINER
or APPLICATION. This element may be specified for resources representing a
connection factory of any supported type and MUST NOT be specified for resources
of other types.

The shareable element is used to indicate whether a resource can be shared
between this component and other components. This element may be specified for
resources representing a connection factory of any supported type or ORB object
instances and MUST NOT be specified for resources of other types.

The mappedName element is a product specific name that this resource should be
mapped to. The name of this resource, as defined by the name element or defaulted,
is a name that is local to the application using the resource. Many application servers
provide a way to map these local names to names of resources known to the
application server. The mapped name could be of any form. Application servers are
not required to support any particular form or type of mapped name, nor the ability
to use mapped names. The mapped name is product-dependent and often
installation-dependent. No use of mapped name is portable.

The description element is the description of the resource. The description is
expected to be in the default language of the system on which the application is
deployed. The description can be presented to help in choosing the correct resource.

The lookup element specifies the JNDI name of a resource that the resource being
defined will be bound to. The type of the referenced resource must be compatible
with that of the resource being defined.

package javax.annotation;

import static java.lang.annotation.ElementType.*;

import static java.lang.annotation.RetentionPolicy.*;

@Target({TYPE, METHOD, FIELD})

@Retention(RUNTIME)

public @interface Resource {
Chapter 2 Annotations 2-11

 public enum AuthenticationType {

 CONTAINER,

 APPLICATION

 }

 String name() default ““;

 Class<?> type() default Object.class;

 AuthenticationType authenticationType() default
 AuthenticationType.CONTAINER;

 boolean shareable() default true;

 String mappedName() default ““;

 String description() default ““;

 String lookup() deafult ““;

}

TABLE 2-3

Element Description Default

name The JNDI name of the resource ““

type The Java type of the resource Object.class

authenticationType The authentication type to use for the
resource

CONTAINER

shareable Indicates whether the resource can be
shared.

true

mappedName A product specific name that the
resource should map to.

““

description Description of the resource. ““

lookup the JNDI name of a resource that
the resource being defined will be
bound to

““

Field based injection:

To access a resource a developer declares a field and annotates it as being a resource
reference. If the name and type elements are missing from the annotation it will be
inferred by looking at the field declaration itself. It is an error if the type specified by
the @Resource annotation and the type of the field are incompatible.

For example:
2-12 Common Annotations for the JavaTM Platform

@Resource

private DataSource myDB;

In the example above the effective name is com.example.class/myDB and the
effective type is javax.sql.DataSource.class.

@Resource(name=”customerDB”)

private DataSource myDB;

In the example above the name is customerDB and the effective type is
javax.sql.DataSource.class.

Setter based injection:

To access a resource a developer declares a setter method and annotates it as being a
resource reference. The name and type of resource may be inferred by inspecting the
method declaration if necessary. The name of the resource, if not declared, is the
name of the JavaBeans property as determined from the name of the setter method
in question. The setter method MUST follow the standard JavaBeans convention -
name starts with a “set”, void return type, and only one parameter. Additionally,
the type of the parameter MUST be compatible with the type specified as a property
of the Resource, if present.

For example:

@Resource

private void setMyDB(DataSource ds) {

 myDB = ds;

}

private DataSource myDB;

In the example above the effective name is com.example.class/myDB and the
type is javax.sql.DataSource.class.

@Resource(name=”customerDB”)

private void setMyDB(DataSource ds) {

 myDB = ds;

}

private DataSource myDB;
Chapter 2 Annotations 2-13

In the example above the name is customerDB and the type is
javax.sql.DataSource.class.

The table below shows the mapping from Java type to the equivalent resource type
in Java EE 5 deployment descriptors:

TABLE 2-4

Java Type Equivalent Resource type

java.lang.String env-entry

java.lang.Character env-entry

java.lang.Integer env-entry

java.lang.Boolean env-entry

java.lang.Double env-entry

java.lang.Byte env-entry

java.lang.Short env-entry

java.lang.Long env-entry

java.lang.Float env-entry

javax.xml.rpc.Service service-ref

javax.xml.ws.Service service-ref

javax.jws.WebService service-ref

javax.sql.DataSource resource-ref

javax.jms.ConnectionFactory resource-ref

javax.jms.QueueConnectionFactory resource-ref

javax.jms.TopicConnectionFactory resource-ref

javax.mail.Session resource-ref

java.net.URL resource-ref

javax.resource.cci.ConnectionFactory resource-ref

org.omg.CORBA_2_3.ORB resource-ref

any other connection factory defined by a
resource adapter

resource-ref

javax.jms.Queue message-destination-ref

javax.jms.Topic message-destination-ref
2-14 Common Annotations for the JavaTM Platform

2.4 javax.annotation.Resources
The Resource annotation is used to declare a reference to a resource. Since repeated
annotations are not allowed, the Resources annotation acts as a container for
multiple resource declarations.

package javax.annotation;

import static java.lang.annotation.ElementType.*;

import static java.lang.annotation.RetentionPolicy.*;

@Target({TYPE})

@Retention(RUNTIME)

public @interface Resources {

 Resource[] value;

}

TABLE 2-5

Element Description Default

value Container for defining multiple
resources.

The following example shows the usage of the annotation defined above:

@Resources ({

 @Resource(name=”myDB” type=javax.sql.DataSource),

 @Resource(name=”myMQ” type=javax.jms.ConnectionFactory)

})

public class CalculatorBean {

javax.resource.cci.InteractionSpec resource-env-ref

javax.transaction.UserTransaction resource-env-ref

Everything else resource-env-ref

Java Type Equivalent Resource type
Chapter 2 Annotations 2-15

 //...

}

2.5 javax.annotation.PostConstruct
The PostConstruct annotation is used on a method that needs to be executed after
dependency injection is done to perform any initialization. This method MUST be
invoked before the class is put into service. This annotation MUST be supported on
all classes that support dependency injection. The method annotated with
PostConstruct MUST be invoked even if the class does not request any resources
to be injected. Only one method can be annotated with this annotation. The method
on which the PostConstruct annotation is applied MUST fulfill all of the
following criteria:

- The method MUST NOT have any parameters except in the case of EJB interceptors
 in which case it takes an InvocationContext object as defined by the EJB
 specification.

- The return type of the method MUST be void.

- The method MUST NOT throw a checked exception.

- The method on which PostConstruct is applied MAY be public, protected,
 package private or private.

- The method MUST NOT be static except for the application client.

- The method MAY be final or non-final, except in the case of EJBs where it MUST be
 non-final.

- If the method throws an unchecked exception the class MUST NOT be put into
 service. In the case of EJBs the method annotated with PostConstruct can
 handle exceptions and cleanup before the bean instance is discarded.

package javax.annotation;

import static java.lang.annotation.ElementType.*;

import static java.lang.annotation.RetentionPolicy.*;

@Target(METHOD)

@Retention(RUNTIME)

public @interface PostConstruct {

}

2-16 Common Annotations for the JavaTM Platform

The following example shows the usage of the annotation defined above:

@Resource

private void setMyDB(DataSource ds) {

 myDB = ds;

}

@PostConstruct

private void initialize() {

 //Initialize the connection object from the DataSource

 connection = myDB.getConnection();

}

private DataSource myDB;

private Connection connection;

2.6 javax.annotation.PreDestroy
The PreDestroy annotation is used on methods as a callback notification to signal
that the instance is in the process of being removed by the container. The method
annotated with PreDestroy is typically used to release resources that it has been
holding. This annotation MUST be supported by all container managed objects that
support PostConstruct except the application client container in Java EE 5. The
method on which the PreDestroy annotation is applied MUST fulfill all of the
following criteria:

- The method MUST NOT have any parameters except in the case of EJB interceptors
 in which case it takes an InvocationContext object as defined by the EJB
 specification.

- The return type of the method MUST be void.

- The method MUST NOT throw a checked exception.

- The method on which PreDestroy is applied MAY be public, protected,
 package private or private.

- The method MUST NOT be static.
Chapter 2 Annotations 2-17

- The method MAY be final or non-final, except in the case of EJBs where it MUST be
 non-final.

- If the method throws an unchecked exception it is ignored except in the case of
 EJBs where the method annotated with PreDestroy can handle exceptions.

package javax.annotation;

import static java.lang.annotation.ElementType.*;

import static java.lang.annotation.RetentionPolicy.*;

@Target(METHOD)

@Retention(RUNTIME)

public @interface PreDestroy {

}

The following example shows the usage of the annotation defined above:

@Resource

private void setMyDB(DataSource ds) {

 myDB = ds;

}

@PostConstruct

private void initialize() {

 //Initialize the connection object from the DataSource

 connection = myDB.getConnection();

}

@PreDestroy

private void cleanup() {

 //Close the connection to the DataSource.

 connection.close();

}

private DataSource myDB;

private Connection connection;
2-18 Common Annotations for the JavaTM Platform

2.7 javax.annotation.Priority
The Priority annotation can be applied to classes to indicate in what order the
classes should be used. The effect of using the Priority annotation in any
particular instance is defined by other specifications that define the use of a specific
class.

For example, the Interceptors specification defines the use of priorities on
interceptors to control the order in which interceptors are called.

Priority values should generally be non-negative, with negative values reserved for
special meanings such as "undefined" or "not specified". A specification that defines
use of the Priority annotation may define the range of allowed priorities and any
priority values with special meaning.

package javax.annotation;

import java.lang.annotation.*;

import static java.lang.annotation.ElementType.*;

import static java.lang.annotation.RetentionPolicy.*;

@Target({TYPE})

@Retention(RUNTIME)

@Documented

public @interface Priority {

 /**

 * The priority value.

 */

 int value();

}

Chapter 2 Annotations 2-19

2.8 javax.annotation.security.RunAs
The RunAs annotation defines the role of the application during execution in a Java
EE container. It can be specified on a class. This allows developers to execute an
application under a particular role. The role MUST map to the user / group
information in the container’s security realm. The value element in the annotation
is the name of a security role.

package javax.annotation.security;

import static java.lang.annotation.ElementType.*;

import static java.lang.annotation.RetentionPolicy.*;

@Target(TYPE)

@Retention(RUNTIME)

public @interface RunAs {

 String value();

}

TABLE 2-6

Element Description Default

value Security role of the application during
execution in a Java EE container

The following example shows the usage of the annotation defined above:

@RunAs(“Admin”)

public class Calculator {

 //....

}

2-20 Common Annotations for the JavaTM Platform

2.9 javax.annotation.security.RolesAllowed
The RolesAllowed annotation specifies the security roles permitted to access
method(s) in an application. The value element of the RolesAllowed annotation is
a list of security role names.

The RolesAllowed annotation can be specified on a class or on method(s).
Specifying it at a class level means that it applies to all the methods in the class.
Specifying it on a method means that it is applicable to that method only. If applied
at both the class and method level, the method value overrides the class value.

package javax.annotation.security;

import static java.lang.annotation.ElementType.*;

import static java.lang.annotation.RetentionPolicy.*;

@Target({TYPE,METHOD})

@Retention(RUNTIME)

public @interface RolesAllowed {

 String[] value();

}

TABLE 2-7

Element Description Default

value List of roles permitted to access
methods in the application

The following example shows the usage of the annotation defined above:

@RolesAllowed("Users")

public class Calculator {

 @RolesAllowed(“Administrator”)

 public void setNewRate(int rate) {

 //..

}

Chapter 2 Annotations 2-21

2.10 javax.annotation.security.PermitAll
The PermitAll annotation specifies that all security roles are allowed to invoke the
specified method(s), that is, that the specified method(s) are “unchecked”. It can be
specified on a class or on methods. Specifying it on the class means that it applies to
all methods of the class. If specified at the method level, it only affects that method.

package javax.annotation.security;

import static java.lang.annotation.ElementType.*;

import static java.lang.annotation.RetentionPolicy.*;

@Target({TYPE,METHOD})

@Retention(RUNTIME)

public @interface PermitAll {

}

The following example shows the usage of the annotation defined above:

import javax.annotation.security.*;

@RolesAllowed("Users")

public class Calculator {

 @RolesAllowed(“Administrator”)

 public void setNewRate(int rate) {

 //...

 }

 @PermitAll

 public long convertCurrency(long amount) {

 //...

 }

}

2-22 Common Annotations for the JavaTM Platform

2.11 javax.annotation.security.DenyAll
This annotation specifies that no security roles are allowed to invoke the specified
method(s), that is, that the method(s) are to be excluded from execution in the Java
EE container.

package javax.annotation.security;

import static java.lang.annotation.ElementType.*;

import static java.lang.annotation.RetentionPolicy.*;

@Target({TYPE, METHOD})

@Retention(RUNTIME)

public @interface DenyAll {

}

The following example shows the usage of the annotation defined above:

import javax.annotation.security.*;

@RolesAllowed("Users")

public class Calculator {

 @RolesAllowed(“Administrator”)

 public void setNewRate(int rate) {

 //...

 }

 @DenyAll

 public long convertCurrency(long amount) {

 //...

 }

}

Chapter 2 Annotations 2-23

2.12 PermitAll, DenyAll and RolesAllowed
interactions
The PermitAll, DenyAll and RolesAllowed annotations all define what security
roles are allowed to access the methods on which they are applied. This section
describes how these annotations interact and which usages of these annotations are
valid.

If the PermitAll, DenyAll and RolesAllowed annotations are applied on
methods of a class, then the method level annotations take precedence (at the
corresponding methods) over any class level annotations of type PermitAll,
DenyAll and RolesAllowed.

2.13 javax.annotation.security.DeclareRoles
This annotation is used to specify the security roles by the application. It can be
specified on a class. It typically would be used to define roles that could be tested
(i.e., by calling isUserInRole) from within the methods of the annotated class. It
could also be used to declare roles that are not implicitly declared as the result of
their use in a RolesAllowed annotation on the class or a method of the class.

package javax.annotation.security;

import static java.lang.annotation.ElementType.*;

import static java.lang.annotation.RetentionPolicy.*;

@Target(TYPE)

@Retention(RUNTIME)

public @interface DeclareRoles{

 String[] value();

}

TABLE 2-8

Element Description Default

value List of security roles specified by the
application
2-24 Common Annotations for the JavaTM Platform

The following example shows the usage of the annotation defined above:

@DeclareRoles("BusinessAdmin")

public class Calculator {

 public void convertCurrency() {

 if(x.isUserInRole(“BusinessAdmin”)) {

 //....

 }

 }

 //...

}

2.14 javax.annotation.sql.DataSourceDefinition
This annotation is used to define a container DataSource and be registered with
JNDI. The DataSource may be configured by setting the annotation elements for
commonly used DataSource properties. Additional standard and vendor-specific
properties may be specified using the properties element. The data source will be
registered under the name specified in the name element. It may be defined to be in
any valid Java EE namespace, and will determine the accessibility of the data source
from other components. A JDBC driver implementation class of the appropriate
type, either DataSource, ConnectionPoolDataSource, or XADataSource, must
be indicated by the className element. The driver class is not required to be
available at deployment but must be available at runtime prior to any attempt to
access the DataSource.

DataSource properties should not be specified more than once. If the url
annotation element contains a DataSource property that was also specified using
the corresponding annotation element or was specified in the properties annotation
element, the precedence order is undefined and implementation specific.

Vendors are not required to support properties that do not normally apply to a
specific data source type. For example, specifying the transactional property to
be true but supplying a value for className that implements a data source class
other than XADataSource may not be supported.

Vendor-specific properties may be combined with or used to override standard data
source properties defined using this annotation.
Chapter 2 Annotations 2-25

DataSource properties that are specified and are not supported in a given
configuration or cannot be mapped to a vendor specific configuration property may
be ignored.

Although the annotation allows you to specify a password, it is recommended not to
embed passwords in production code. The password element in the annotation is
provided as a convenience for ease of development.

package javax.annotation.sql;

import java.lang.annotation.Target;

import java.lang.annotation.Retention;

import java.lang.annotation.ElementType;

import java.lang.annotation.RetentionPolicy;

@Target({ElementType.TYPE})

@Retention(RetentionPolicy.RUNTIME)

public @interface DataSourceDefinition {

 String name();

 String className();

 String description() default "";

 String url() default "";

 String user() default "";

 String password() default "";

 String databaseName() default "";

 int portNumber() default -1;

 String serverName() default "localhost";

 int isolationLevel() default -1;

 boolean transactional() default true;

 int initialPoolSize() default -1;

 int maxPoolSize() default -1;

 int minPoolSize() default -1;

 int maxIdleTime() default -1;

 int maxStatements() default -1;

 String[] properties() default {};

 int loginTimeout() default 0;

}

2-26 Common Annotations for the JavaTM Platform

TABLE 2-9

Element Description Default

name JNDI name by which the data source
will be registered

className DataSource implementation class
name

description Description of the data source ““

url A JDBC URL. If the url annotation
element contains a DataSource
property that was also specified using
the corresponding annotation
element, the precedence order is
undefined and implementation
specific.

““

user User name for connection
authentications

““

password password for connection
authentications

““

databaseName Name of a database on a server ““

portNumber Port number where a server is
listening for requests

““

serverName Database server name “localhost”

isolationLevel Isolation level for connections. -1 (vendor specific)

transactional Indicates whether a connection is
transactional or not

true

initialPoolSize Number of connections that should be
created when a connection pool is
initialized

-1 (vendor specific)

maxPoolSize Maximum number of connections that
should be concurrently allocated for a
connection pool

-1 (vendor specific)

minPoolSize Minimum number of connections that
should be allocated for a connection
pool

-1 (vendor specific)

maxIdleTime The number of seconds that a physical
connection should remain unused in
the pool before the connection is
closed for a connection pool

-1 (vendor specific)
Chapter 2 Annotations 2-27

Examples:

@DataSourceDefinition(name="java:global/MyApp/MyDataSource",

 className="com.foobar.MyDataSource",

 portNumber=6689,

 serverName="myserver.com",

 user="lance",

 password="secret")

Using a URL:

@DataSourceDefinition(name="java:global/MyApp/MyDataSource",

 className="org.apache.derby.jdbc.ClientDataSource",

 url="jdbc:derby://localhost:1527/myDB",

 user="lance",

 password="secret")

maxStatements The total number of statements that a
connection pool should keep open. A
value of 0 indicates that the caching of
statements is disabled for a
connection pool

-1 (vendor specific)

properties Used to specify vendor specific
properties and less commonly used
DataSource properties. If a
DataSource property is specified in
the properties element and the
annotation element for the property is
also specified, the annotation element
value takes precedence.

{}

loginTimeout The maximum time in seconds that
this data source will wait while
attempting to connect to a database. A
value of 0 specifies that the timeout is
the default system timeout if there is
one, otherwise it specifies that there is
no timeout

0

Element Description Default
2-28 Common Annotations for the JavaTM Platform

2.15 javax.annotation.sql.DataSourceDefinitions
The DataSource annotation is used to declare a container DataSource. Since
repeated annotations are not allowed, the DataSourceDefinitions annotation
acts as a container for multiple data source declaration.

package javax.annotation.sql;

import java.lang.annotation.Target;

import java.lang.annotation.Retention;

import java.lang.annotation.ElementType;

import java.lang.annotation.RetentionPolicy;

@Target({ElementType.TYPE})

@Retention(RetentionPolicy.RUNTIME)

public @interface DataSourceDefinitions {

 DataSourceDefinition[] value ();

}

TABLE 2-10

Element Description Default

value Container for defining multiple data
sources.

The following example shows the usage of the annotation defined above:

@DataSourceDefinitions ({

@DataSourceDefinition(name="java:global/MyApp/MyDataSource",

 className="com.foobar.MyDataSource",

 portNumber=6689,

 serverName="myserver.com",

 user="lance",

 password="secret")
Chapter 2 Annotations 2-29

@DataSourceDefinition(name="java:global/MyApp/MyDataSource",

 className="org.apache.derby.jdbc.ClientDataSource",

 url="jdbc:derby://localhost:1527/myDB",

 user="lance",

 password="secret")

})

public class CalculatorBean {

 //...

}

2.16 javax.annotation.ManagedBean
This annotation is used to declare a Managed Bean as specified in the Managed
Beans specification. Managed Beans are container managed objects that support a
small set of basic services such as resource injection, lifecycle callbacks and
interceptors. A Managed Bean may optionally have a name, a String specified via
the value element.

package javax.annotation;

import static java.lang.annotation.ElementType.*;

import static java.lang.annotation.RetentionPolicy.*;

@Target(TYPE)

@Retention(RUNTIME)

public @interface ManagedBean {

 boolean value() default ““;

}

}

TABLE 2-11

Element Description Default

value Name of the Managed Bean ““
2-30 Common Annotations for the JavaTM Platform

Examples:

@ManagedBean(“cart”)

public class ShoppingCart {

...

}

Chapter 2 Annotations 2-31

2-32 Common Annotations for the JavaTM Platform

CHAPTER 3

References

1. JSR 175: A Metadata Facility for the Java Programming Language.
http://jcp.org/en/jsr/detail?id=175

2. Java Platform, Enterprise Edition, v7 (Java EE). http://jcp.org/en/jsr/detail?id=342

3. Java 2 Platform, Standard Edition, v5.0 (J2SE). http://java.sun.com/j2se

4. Enterprise JavaBeans, v3.1 (EJB). http://jcp.org/en/jsr/detail?id=318

5. RFC 2119. http://www.faqs.org/rfcs/rfc2119.html
3-1

3-2 Common Annotations for the JavaTM Platform

	Contents
	1. Introduction 1–1
	2. Annotations 2–5
	3. References 3–1

	Introduction
	1.1 Goals
	1.2 Non-Goals
	1.3 Compatibility
	1.4 Conventions
	1.5 Expert Group Members
	1.6 Acknowledgements

	Annotations
	2.1 General Guidelines for Inheritance of Annotations
	2.2 javax.annotation.Generated
	2.3 javax.annotation.Resource
	2.4 javax.annotation.Resources
	2.5 javax.annotation.PostConstruct
	2.6 javax.annotation.PreDestroy
	2.7 javax.annotation.Priority
	2.8 javax.annotation.security.RunAs
	2.9 javax.annotation.security.RolesAllowed
	2.10 javax.annotation.security.PermitAll
	2.11 javax.annotation.security.DenyAll
	2.12 PermitAll, DenyAll and RolesAllowed interactions
	2.13 javax.annotation.security.DeclareRoles
	2.14 javax.annotation.sql.DataSourceDefinition
	2.15 javax.annotation.sql.DataSourceDefinitions
	2.16 javax.annotation.ManagedBean

	References

