-
Notifications
You must be signed in to change notification settings - Fork 0
/
COVID_SCRIPT.R
655 lines (456 loc) · 20.2 KB
/
COVID_SCRIPT.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
library(GEOquery)
library(Biobase)
library(DESeq2)
library(dplyr)
library(org.Mm.eg.db)
library(gage)
library(cogena)
gset <- getGEO("GSE162113", GSEMatrix =TRUE)
###GPL21290 contains data for Homo Sapiens
###GPL21493 contains data fort Mus musculos
data_human <- gset$`GSE162113-GPL21290_series_matrix.txt.gz`
data_mouse <- gset$`GSE162113-GPL21493_series_matrix.txt.gz`
###PhenoData
phenodata_human <- pData(data_human)
phenodata_mouse <- pData(data_mouse)
##Expression data
##Expression is obtained from the provided matrix at GEO
datos_raton_dia3 <- read.delim("Raw_data/GSE162113_day3_raw_counts.txt")
###El chido es el dia 7
datos_raton_dia7 <- read.delim("Raw_data/GSE162113_day7_raw_counts.txt")
###Los controles son los eGFP
#######FUNCIONES AUXILIARES QUE RECIBEN EL DF Y EL TEJIDO DE ORIGEN, DEVUELVEN
###UN DF CON EL CONTROL DEL TEJIDO DE ORIGEN Y EL CASO CON EL TEJIDO DE ORIGEN
##El tejido de origen puede ser: "Heart","Kidney","Lung","Spleen"
###Para los controles
aux_control <- function(datos, tejido_origen){
index_tejido <- grep(tejido_origen, colnames(datos))
index_control <- grep("eGFP", colnames(datos))
index_final <- intersect(index_control, index_tejido)
return(datos[,index_final])
}
###Para los casos
aux_casos <- function(datos, tejido_origen){
index_tejido <- grep(tejido_origen, colnames(datos))
index_casos <- grep("hACE2", colnames(datos))
index_final <- intersect(index_casos, index_tejido)
return(datos[,index_final])
}
###Test de las funciones auxiliares
##El tejido de origen puede ser: "Heart","Kidney","Lung","Spleen"
##NOT RUN
#test <- aux_control(datos_raton_dia7,"Kidney")
#test2 <- aux_casos(datos_raton_dia7,"Spleen")
##########DRUG REPOSITIONING
####Este analisis se hara con el paquete COGENA de bioconductor
####Hay que tomar en cuenta que solo funcionaran aquellos genes de raton
####que tengan un ortologo en humanos
###Definimos las configuraciones globales de COGENA
# KEGG Pathway gene set
annoGMT <- "c2.cp.kegg.v7.01.symbols.gmt.xz"
# GO biological process gene set
# annoGMT <- "c5.bp.v7.0.symbols.gmt.xz"
annofile <- system.file("extdata", annoGMT, package="cogena")
# the number of clusters. It can be a vector.
# nClust <- 2:20
nClust <- 10
# the number of cores.
# ncore <- 8
ncore <- 6
# the clustering methods
# clMethods <- c("hierarchical","kmeans","diana","fanny","som","model",
# "sota","pam","clara","agnes") # All the methods can be used together.
clMethods <- c("hierarchical","kmeans")
# the distance metric
metric <- "correlation"
# the agglomeration method used for hierarchical clustering
# (hierarchical and agnes)
method <- "complete"
#######
####Diff exp between organs
#########Heart
#########
#########
#########
heart_controles <- aux_control(datos_raton_dia7,"Heart")
heart_casos <- aux_casos(datos_raton_dia7,"Heart")
heart_counts <- as.matrix(cbind(heart_controles, heart_casos))
condition <- factor(c( rep(c("control","enfermos"),
c(ncol(heart_controles),
ncol(heart_casos)))))
coldata <- data.frame(row.names=colnames(heart_counts), condition)
dds <- DESeqDataSetFromMatrix(countData=heart_counts,
colData=coldata,
design=~condition)
dds$condition <- relevel(dds$condition, ref="control")
dds <- DESeq(dds, parallel = TRUE)
####Obtener todos los resultados y quedarse solo con los significativos
res_heart <- as.data.frame(results(dds))
res_heart <- filter(res_heart, padj < 0.05)
####################END HEART
####################
####################
################Kidney
controles <- aux_control(datos_raton_dia7,"Kidney")
casos <- aux_casos(datos_raton_dia7,"Kidney")
counts <- as.matrix(cbind(controles, casos))
condition <- factor(c( rep(c("control","enfermos"),
c(ncol(controles),
ncol(casos)))))
coldata <- data.frame(row.names=colnames(counts), condition)
dds <- DESeqDataSetFromMatrix(countData=counts,
colData=coldata,
design=~condition)
dds$condition <- relevel(dds$condition, ref="control")
dds <- DESeq(dds, parallel = TRUE)
####Obtener todos los resultados y quedarse solo con los significativos
res <- as.data.frame(results(dds))
res_kidney <- filter(res, padj < 0.05)
counts_kidney <- counts [rownames(counts) %in% rownames(res_kidney),]
###Hacemos los rownames en mayusculas
rownames(counts_kidney) <- toupper(rownames(counts_kidney))
###Hacer samplelabels para el drug repositioning
names_control <- colnames(controles)
label_control <- rep("control",length(colnames(controles)))
names(label_control) <- names_control
names_casos <- colnames(casos)
label_casos <- rep("COVID",length(casos))
names(label_casos) <- names_casos
sample_labels <- c(label_control,label_casos)
# Making factor "DISEASE" behind factor "ct" means DISEASE Vs Control
# is up-regualted
sample_labels <- factor(sample_labels, levels=c("control", "COVID"))
# Co-expression Analysis
genecl_result <- coExp(counts_kidney, nClust=nClust,
clMethods=clMethods,
metric=metric,
method=method,
ncore=ncore)
# Enrichment (Pathway) analysis for the co-expressed genes
clen_res <- clEnrich(genecl_result,
annofile=annofile,
sampleLabel=sample_labels)
enrichment.table <- enrichment(clen_res, "kmeans", "10")
pdf("HEATMAP_KIDNEY.pdf")
heatmapCluster(clen_res, "kmeans", "10", maintitle="COVID-Riñon")
dev.off()
###Drug repositioning
cmapDn100_cogena_result <- clEnrich(genecl_result,
annofile=system.file("extdata", "CmapDn100.gmt.xz", package="cogena"),
sampleLabel=sample_labels)
###MultiInstance
heatmapCmap(cmapDn100_cogena_result, "kmeans", "10", printGS=FALSE,
orderMethod = "max", maintitle="Reposicionamiento de fármacos en COVID para riñon")
####################END Kidney
####################
####################
################Lung
controles <- aux_control(datos_raton_dia7,"Lung")
casos <- aux_casos(datos_raton_dia7,"Lung")
counts <- as.matrix(cbind(controles, casos))
condition <- factor(c( rep(c("control","enfermos"),
c(ncol(controles),
ncol(casos)))))
coldata <- data.frame(row.names=colnames(counts), condition)
dds <- DESeqDataSetFromMatrix(countData=counts,
colData=coldata,
design=~condition)
dds$condition <- relevel(dds$condition, ref="control")
dds <- DESeq(dds, parallel = TRUE)
####Obtener todos los resultados y quedarse solo con los significativos
res <- as.data.frame(results(dds))
res_lung <- filter(res, padj < 0.05)
counts_lung <- counts [rownames(counts) %in% rownames(res_lung),]
###Hacemos los rownames en mayusculas
rownames(counts_lung) <- toupper(rownames(counts_lung))
###Hacer samplelabels para el drug repositioning
names_control <- colnames(controles)
label_control <- rep("control",length(colnames(controles)))
names(label_control) <- names_control
names_casos <- colnames(casos)
label_casos <- rep("COVID",length(casos))
names(label_casos) <- names_casos
sample_labels <- c(label_control,label_casos)
# Making factor "DISEASE" behind factor "ct" means DISEASE Vs Control
# is up-regualted
sample_labels <- factor(sample_labels, levels=c("control", "COVID"))
# Co-expression Analysis
genecl_result <- coExp(counts_lung, nClust=nClust,
clMethods=clMethods,
metric=metric,
method=method,
ncore=ncore)
# Enrichment (Pathway) analysis for the co-expressed genes
clen_res <- clEnrich(genecl_result,
annofile=annofile,
sampleLabel=sample_labels)
enrichment.table <- enrichment(clen_res, "kmeans", "10")
pdf("HEATMAP_LUNG.pdf")
heatmapCluster(clen_res, "kmeans", "10", maintitle="COVID-Pulmón")
dev.off()
###Drug repositioning
cmapDn100_cogena_result <- clEnrich(genecl_result,
annofile=system.file("extdata", "CmapDn100.gmt.xz", package="cogena"),
sampleLabel=sample_labels)
###MultiInstance
heatmapCmap(cmapDn100_cogena_result, "kmeans", "10", printGS=FALSE,
orderMethod = "max", maintitle="Reposicionamiento de fármacos en COVID para pulmón")
####################END Lung
####################
####################
################Spleen
controles <- aux_control(datos_raton_dia7,"Spleen")
casos <- aux_casos(datos_raton_dia7,"Spleen")
counts <- as.matrix(cbind(controles, casos))
condition <- factor(c( rep(c("control","enfermos"),
c(ncol(controles),
ncol(casos)))))
coldata <- data.frame(row.names=colnames(counts), condition)
dds <- DESeqDataSetFromMatrix(countData=counts,
colData=coldata,
design=~condition)
dds$condition <- relevel(dds$condition, ref="control")
dds <- DESeq(dds, parallel = TRUE)
####Obtener todos los resultados y quedarse solo con los significativos
res <- as.data.frame(results(dds))
res_spleen <- filter(res, padj < 0.05)
####################END Spleen
####################
####################
####Guardar resultados de diff exp en csv
write.csv(res_heart,"Diff_Exp/res_heart.csv")
write.csv(res_kidney,"Diff_Exp/res_kidney.csv")
write.csv(res_lung,"Diff_Exp/res_lung.csv")
write.csv(res_spleen,"Diff_Exp/res_spleen.csv")
###Venn diagrams will be plotted using Venny 2.1
###(https://bioinfogp.cnb.csic.es/tools/venny/)
#####Transcritos compartidos en todos los organos
t_compartidos <- Reduce(intersect, list(rownames(res_heart),
rownames(res_kidney),
rownames(res_lung),
rownames(res_spleen)))
#####Transcritos unicos de Heart
heart_unicos <- setdiff(rownames(res_heart),
c(rownames(res_kidney),
rownames(res_lung),
rownames(res_spleen)))
#####Transcritos unicos de Kidney
kidney_unicos <- setdiff(rownames(res_kidney),
c(rownames(res_heart),
rownames(res_lung),
rownames(res_spleen)))
#####Transcritos unicos de Lung
lung_unicos <- setdiff(rownames(res_lung),
c(rownames(res_heart),
rownames(res_kidney),
rownames(res_spleen)))
#####Transcritos unicos de Spleen
spleen_unicos <- setdiff(rownames(res_spleen),
c(rownames(res_heart),
rownames(res_kidney),
rownames(res_lung)))
####La red se hará con los datos de MouseNet V2
##https://www.inetbio.org/mousenet/
datos_network <- read.delim("Raw_data/MouseNetV2_symbol.txt",
header = FALSE)
###Red de Heart con todos los diff exp en res_heart
red_heart <- filter(datos_network,
V1 %in% rownames(res_heart))
red_heart <- filter(red_heart, V2 %in% rownames(res_heart))
write.csv(red_heart,"Networks_files/All_genes/network_heart.csv")
###Red de Kidney con todos los diff exp en res_kidney
red_kidney <- filter(datos_network,
V1 %in% rownames(res_kidney))
red_kidney <- filter(red_kidney, V2 %in% rownames(res_kidney))
write.csv(red_kidney,"Networks_files/All_genes/network_kidney.csv")
###Red de Lung con todos los diff exp en res_lung
red_lung <- filter(datos_network,
V1 %in% rownames(res_lung))
red_lung <- filter(red_lung, V2 %in% rownames(res_lung))
write.csv(red_lung,"Networks_files/All_genes/network_lung.csv")
###Red de Spleen con todos los diff exp en res_spleen
red_spleen <- filter(datos_network,
V1 %in% rownames(res_spleen))
red_spleen <- filter(red_spleen, V2 %in% rownames(res_spleen))
write.csv(red_spleen,"Networks_files/All_genes/network_spleen.csv")
####Hacer red de los compartidos
red_compartidos <- filter(datos_network,
V1 %in% t_compartidos)
red_compartidos <- filter(red_compartidos,
V2 %in% t_compartidos)
write.csv(red_compartidos,"Networks_files/All_genes/network_all.csv")
#############
#############
#############KEGG
#####Se obtendran solo aquellos genes relacionados con la respuesta inmune
###Primero se obtendran los genes de las vias de señalizacion de kegg
kegg_mouse <- kegg.gsets(species = "mmu", id.type = "entrez", check.new=FALSE)
kegg_pathways <- kegg_mouse$kg.sets
##Hacemos un dataframe para que sea mas facil buscar las pathways
df_pathways <- as.data.frame(unlist(kegg_pathways))
colnames(df_pathways) <- "Entrez"
df_pathways$Pathway <- rownames(df_pathways)
###Definimos las pathways relacionadas con la respuesta inmune,
###estas son obtenidas de:
#https://www.genome.jp/kegg-bin/show_organism?menu_type=pathway_maps&org=mmu
vias_inmune <- c("Hematopoietic cell lineage",
"Complement and coagulation cascades",
"Platelet activation",
"Toll-like receptor signaling pathway",
"NOD-like receptor signaling pathway",
"RIG-I-like receptor signaling pathway",
"Cytosolic DNA-sensing pathway",
"C-type lectin receptor signaling pathway",
"Natural killer cell mediated cytotoxicity",
"Antigen processing and presentation",
"T cell receptor signaling pathway",
"Th1 and Th2 cell differentiation",
"Th17 cell differentiation",
"IL-17 signaling pathway",
"B cell receptor signaling pathway",
"Fc epsilon RI signaling pathway",
"Fc gamma R-mediated phagocytosis",
"Leukocyte transendothelial migration",
"Intestinal immune network for IgA production",
"Chemokine signaling pathway")
####Filtramos y solo nos quedamos con las vias inmunes
for (i in 1:length(vias_inmune)){
via <- vias_inmune[i]
index_via <- grep(via, df_pathways$Pathway)
if(!exists("index_via_final")){
index_via_final <- index_via
} else {
index_via_final <- c(index_via_final, index_via)
}
}
vias_chidas <- df_pathways[index_via_final,]
###Los genes en vias_chidas estan en ENTREZID, hay que convertirlas a
##symbol
resultados_symbol = mapIds(org.Mm.eg.db,
keys=vias_chidas$Entrez,
column="SYMBOL",#En esta opcion se selecciona que valor se quiere obtener de la conversion
keytype="ENTREZID",#En esta opcion se selecciona en que formato estan los datos de origen
multiVals="first")
vias_chidas$SYMBOL <- resultados_symbol
###Limpiar vias_chidas para que la pathway este bien
for (i in 1:length(vias_inmune)){
via <- vias_inmune[i]
index_via_limpia <- grep(via, vias_chidas$Pathway)
vias_chidas[index_via_limpia,2] <- via
}
###Guardamos las vias inmunes y sus genes
write.csv(vias_chidas,"KEGG_IMMUNE_PATHWAYS_AND_GENES.csv")
#######
######
#####Finalmente filtramos las redes de los organos para quedarnos
#####Solamente con genes que esten involucrados en vias inmunes
red_heart_inmune <- filter(red_heart, V1 %in% vias_chidas$SYMBOL)
colnames(red_heart_inmune) <- c("Source","Target","Score")
####Hacemos merge con las vias chidas para saber a que via
###pertenece cada source node
##Funciona pero se hacen repetidos ya que los genes source pertenecen
## a varias vias, de momento no se utilizara
#test <- merge(red_heart_inmune, vias_chidas,
# by.x = "Source",
# by.y = "SYMBOL")
write.csv(red_heart_inmune,"Networks_files/Only_Immune_genes/red_heart_inmune.csv")
##
red_kidney_inmune <- filter(red_kidney, V1 %in% vias_chidas$SYMBOL)
colnames(red_kidney_inmune) <- c("Source","Target","Score")
write.csv(red_kidney_inmune,"Networks_files/Only_Immune_genes/red_kidney_inmune.csv")
##
red_lung_inmune <- filter(red_lung, V1 %in% vias_chidas$SYMBOL)
colnames(red_lung_inmune) <- c("Source","Target","Score")
write.csv(red_lung_inmune,"Networks_files/Only_Immune_genes/red_lung_inmune.csv")
##
red_spleen_inmune <- filter(red_spleen, V1 %in% vias_chidas$SYMBOL)
colnames(red_spleen_inmune) <- c("Source","Target","Score")
write.csv(red_spleen_inmune,"Networks_files/Only_Immune_genes/red_spleen_inmune.csv")
##########DRUG REPOSITIONING
####Este analisis se hara con el paquete COGENA de bioconductor
####Hay que tomar en cuenta que solo funcionaran aquellos genes de raton
####que tengan un ortologo en humanos
###Definimos las configuraciones globales de COGENA
# KEGG Pathway gene set
annoGMT <- "c2.cp.kegg.v7.01.symbols.gmt.xz"
# GO biological process gene set
# annoGMT <- "c5.bp.v7.0.symbols.gmt.xz"
annofile <- system.file("extdata", annoGMT, package="cogena")
# the number of clusters. It can be a vector.
# nClust <- 2:20
nClust <- 10
# the number of cores.
# ncore <- 8
ncore <- 6
# the clustering methods
# clMethods <- c("hierarchical","kmeans","diana","fanny","som","model",
# "sota","pam","clara","agnes") # All the methods can be used together.
clMethods <- c("hierarchical","kmeans")
# the distance metric
metric <- "correlation"
# the agglomeration method used for hierarchical clustering
# (hierarchical and agnes)
method <- "complete"
#######
#############
#############PRIMER ANALISIS: USAR TODOS LOS GENES DE EN TODOS LOS ORGANOS
###Hacer expresion diferencial de controles vs covid
###TEST
index_casos <- grep("hACE2", colnames(datos_raton_dia7))
index_controles <- grep("eGFP", colnames(datos_raton_dia7))
counts_casos<- datos_raton_dia7[,index_casos]
counts_controles <- datos_raton_dia7[,index_controles]
counts_all <- as.matrix(cbind(counts_controles, counts_casos))
#condition <- factor(c( rep(c("control","enfermos"),
# c(ncol(counts_controles),
# ncol(counts_casos)))))
#coldata <- data.frame(row.names=colnames(counts_all), condition)
#dds <- DESeqDataSetFromMatrix(countData=counts_all,
# colData=coldata,
# design=~condition)
#dds$condition <- relevel(dds$condition, ref="control")
#dds <- DESeq(dds, parallel = TRUE)
####Obtener todos los resultados y quedarse solo con los significativos
#res_all <- as.data.frame(results(dds))
#res_all <- filter(res_all, padj < 0.05)
###Primero necesitamos la matriz de expresion de solo los genes DE
###que nos interesen
#t_compartidos
counts_compartidos <- counts_all[rownames(counts_all) %in% t_compartidos,]
###Hacemos los rownames en mayusculas
rownames(counts_compartidos) <- toupper(rownames(counts_compartidos))
####Hacemos los sampleLabels
names_control <- colnames(counts_controles)
label_control <- rep("control",length(names_control))
names(label_control) <- names_control
names_casos <- colnames(counts_casos)
label_casos <- rep("COVID",length(names_casos))
names(label_casos) <- names_casos
sample_labels <- c(label_control,label_casos)
# Making factor "DISEASE" behind factor "ct" means DISEASE Vs Control
# is up-regualted
sample_labels <- factor(sample_labels, levels=c("control", "COVID"))
# Co-expression Analysis
genecl_result <- coExp(counts_compartidos, nClust=nClust,
clMethods=clMethods,
metric=metric,
method=method,
ncore=ncore)
# Enrichment (Pathway) analysis for the co-expressed genes
clen_res <- clEnrich(genecl_result,
annofile=annofile,
sampleLabel=sample_labels)
enrichment.table <- enrichment(clen_res, "kmeans", "10")
pdf("HEATMAP1.pdf")
heatmapCluster(clen_res, "kmeans", "10", maintitle="COVID")
dev.off()
heatmapPEI(clen_res, "kmeans", "10", printGS=FALSE, maintitle="Pathway analysis for COVID")
###Esta imagen es prometedora, se observa que la fosforilacion oxidativa es un buen candidato
###Drug repositioning
# A comprehensive way
cmapDn100_cogena_result <- clEnrich(genecl_result,
annofile=system.file("extdata", "CmapDn100.gmt.xz", package="cogena"),
sampleLabel=sample_labels)
###MultiInstance
heatmapCmap(cmapDn100_cogena_result, "kmeans", "10", printGS=FALSE,
orderMethod = "max", maintitle="Drug repositioning for COVID")