forked from adamian98/pulse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbicubic.py
75 lines (65 loc) · 2.9 KB
/
bicubic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
from torch import nn
from torch.nn import functional as F
class BicubicDownSample(nn.Module):
def bicubic_kernel(self, x, a=-0.50):
"""
This equation is exactly copied from the website below:
https://clouard.users.greyc.fr/Pantheon/experiments/rescaling/index-en.html#bicubic
"""
abs_x = torch.abs(x)
if abs_x <= 1.:
return (a + 2.) * torch.pow(abs_x, 3.) - (a + 3.) * torch.pow(abs_x, 2.) + 1
elif 1. < abs_x < 2.:
return a * torch.pow(abs_x, 3) - 5. * a * torch.pow(abs_x, 2.) + 8. * a * abs_x - 4. * a
else:
return 0.0
def __init__(self, factor=4, cuda=True, padding='reflect'):
super().__init__()
self.factor = factor
size = factor * 4
k = torch.tensor([self.bicubic_kernel((i - torch.floor(torch.tensor(size / 2)) + 0.5) / factor)
for i in range(size)], dtype=torch.float32)
k = k / torch.sum(k)
# k = torch.einsum('i,j->ij', (k, k))
k1 = torch.reshape(k, shape=(1, 1, size, 1))
self.k1 = torch.cat([k1, k1, k1], dim=0)
k2 = torch.reshape(k, shape=(1, 1, 1, size))
self.k2 = torch.cat([k2, k2, k2], dim=0)
self.cuda = '.cuda' if cuda else ''
self.padding = padding
for param in self.parameters():
param.requires_grad = False
def forward(self, x, nhwc=False, clip_round=False, byte_output=False):
# x = torch.from_numpy(x).type('torch.FloatTensor')
filter_height = self.factor * 4
filter_width = self.factor * 4
stride = self.factor
pad_along_height = max(filter_height - stride, 0)
pad_along_width = max(filter_width - stride, 0)
filters1 = self.k1.type('torch{}.FloatTensor'.format(self.cuda))
filters2 = self.k2.type('torch{}.FloatTensor'.format(self.cuda))
# compute actual padding values for each side
pad_top = pad_along_height // 2
pad_bottom = pad_along_height - pad_top
pad_left = pad_along_width // 2
pad_right = pad_along_width - pad_left
# apply mirror padding
if nhwc:
x = torch.transpose(torch.transpose(
x, 2, 3), 1, 2) # NHWC to NCHW
# downscaling performed by 1-d convolution
x = F.pad(x, (0, 0, pad_top, pad_bottom), self.padding)
x = F.conv2d(input=x, weight=filters1, stride=(stride, 1), groups=3)
if clip_round:
x = torch.clamp(torch.round(x), 0.0, 255.)
x = F.pad(x, (pad_left, pad_right, 0, 0), self.padding)
x = F.conv2d(input=x, weight=filters2, stride=(1, stride), groups=3)
if clip_round:
x = torch.clamp(torch.round(x), 0.0, 255.)
if nhwc:
x = torch.transpose(torch.transpose(x, 1, 3), 1, 2)
if byte_output:
return x.type('torch.ByteTensor'.format(self.cuda))
else:
return x