-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
390 lines (330 loc) · 9.94 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# note: the doctsring code below within
# """ is converted to a restructuredText
# .rst file by sphinx to automatically
# generate the api's documentation
#
# docstring style used: Google style
"""""
This is the software's entry point.
usage:
.. highlight:: python
.. code-block:: python
python main.py
Copyright 2022 by Steeve Laquitaine, GNU license
"""
import logging
import logging.config
import os
import yaml
from matplotlib import pyplot as plt
from bsfit.nodes.config import parametrize_pipe
from bsfit.nodes.dataEng import (
simulate_dataset,
simulate_small_dataset,
simulate_task_conditions,
)
from bsfit.nodes.models.bayes import (
CardinalBayes,
StandardBayes,
)
from bsfit.nodes.models.utils import (
get_data,
get_data_stats,
)
from bsfit.nodes.viz.prediction import plot_mean
# setup logging
proj_path = os.getcwd()
logging_path = os.path.join(proj_path + "/conf/logging.yml")
with open(logging_path, "r") as f:
LOG_CONF = yaml.load(f, Loader=yaml.FullLoader)
logging.config.dictConfig(LOG_CONF)
logger = logging.getLogger(__name__)
# set parameters
# - PRIOR_NOISE: e.g., an object's motion direction density's std
# - STIM_NOISE: e.g., an object's motion coherence
# - CENTERING: center or not plot relative to prior mode
PRIOR_SHAPE = "vonMisesPrior"
PRIOR_MODE = 225
OBJ_FUN = "maxLLH"
READOUT = "map"
GRANULARITY = "trial"
CENTERING = True
CASE = 1
if __name__ == "__main__":
"""It is the entry point.
Usage:
.. code-block:: console
# to see arguments run
python main.py -h
# e.g.,
python main.py --model standard_bayes --analysis fit
"""
# select and parametrize a pipeline
args = parametrize_pipe()
if (
args.model == "standard_bayes"
and args.analysis == "fit"
):
# simulate case 0
if CASE == 0:
INIT_P = {
"k_llh": [33],
"k_prior": [0, 33],
"p_rand": [0],
"k_m": [2000],
}
elif CASE == 1:
# simulate case 1
PRIOR_NOISE = [80, 40]
STIM_NOISE = [0.33, 0.66, 1.0]
INIT_P = {
"k_llh": [2.7, 10.7, 33],
"k_prior": [2.7, 33],
"p_rand": [0],
"k_m": [2000],
}
# simulate a dataset
logger.info("Simulating dataset ...")
# simulate case 0
if CASE == 0:
dataset = simulate_small_dataset()
elif CASE == 1:
# simulate case 1
dataset = simulate_dataset(
stim_noise=STIM_NOISE,
prior_mode=PRIOR_MODE,
prior_noise=PRIOR_NOISE,
prior_shape=PRIOR_SHAPE,
)
# log status
logger.info("Fitting bayes model ...")
# instantiate model
model = StandardBayes(
initial_params=INIT_P,
prior_shape=PRIOR_SHAPE,
prior_mode=PRIOR_MODE,
readout=READOUT,
)
# train model
model = model.fit(dataset=dataset)
# print results
logger.info("Printing fitting results ...")
logger.info(
f"""best fit params: {model.best_fit_p}
- neglogl: {model.neglogl}"""
)
# get the test dataset
test_dataset = get_data(dataset)
# calculate predictions
output = model.predict(
test_dataset, granularity=GRANULARITY
)
# calculate data and prediction statistics
estimate = test_dataset[1]
output = get_data_stats(estimate, output)
# plot data and prediction mean
plot_mean(
output["data_mean"],
output["data_std"],
output["prediction_mean"],
output["prediction_std"],
output["conditions"],
prior_mode=PRIOR_MODE,
centering=CENTERING,
)
# log status
logger.info("Printing predict results ...")
logger.info(output.keys())
# done
logger.info("Done.")
elif (
args.model == "cardinal_bayes"
and args.analysis == "fit"
):
# case 0
if CASE == 0:
INIT_P = {
"k_llh": [33],
"k_prior": [0, 33],
"k_card": [2000],
"p_rand": [0],
"k_m": [2000],
}
# case 1
elif CASE == 1:
PRIOR_NOISE = [80, 40]
STIM_NOISE = [0.33, 0.66, 1.0]
INIT_P = {
"k_llh": [2.7, 10.7, 33],
"k_prior": [2.7, 33],
"k_card": [2000],
"p_rand": [0],
"k_m": [2000],
}
# simulate a dataset
logger.info("Simulating dataset ...")
# simulate case 0
if CASE == 0:
dataset = simulate_small_dataset()
elif CASE == 1:
# simulate case 1
dataset = simulate_dataset(
stim_noise=STIM_NOISE,
prior_mode=PRIOR_MODE,
prior_noise=PRIOR_NOISE,
prior_shape=PRIOR_SHAPE,
)
# log status
logger.info("Fitting cardinal bayesian model ...")
# instantiate model
model = CardinalBayes(
initial_params=INIT_P,
prior_shape=PRIOR_SHAPE,
prior_mode=PRIOR_MODE,
readout=READOUT,
)
# train model
model = model.fit(dataset=dataset)
# print results
logger.info("Printing fitting results ...")
logger.info(
f"""best fit params: {model.best_fit_p}
- neglogl: {model.neglogl}"""
)
# get the test dataset
test_dataset = get_data(dataset)
# calculate predictions
output = model.predict(
test_dataset, granularity=GRANULARITY
)
# calculate data and prediction statistics
estimate = test_dataset[1]
output = get_data_stats(estimate, output)
# plot data and prediction mean
plot_mean(
output["data_mean"],
output["data_std"],
output["prediction_mean"],
output["prediction_std"],
output["conditions"],
prior_mode=PRIOR_MODE,
centering=CENTERING,
)
# log status
logger.info("Printing predict results ...")
logger.info(output.keys())
# done
logger.info("Done.")
elif (
args.model == "standard_bayes"
and args.analysis == "simulate_data"
):
# set pipeline parameters
# - SIM_P: simulation parameters
# - N_REPEATS: number of repetition of
# task each condition
PRIOR_NOISE = [80, 40]
STIM_NOISE = [0.33, 0.66, 1.0]
SIM_P = {
"k_llh": [2.7, 5.7, 11],
"k_prior": [2.7, 11],
"prior_tail": [0],
"p_rand": [0],
"k_m": [2000],
}
GRANULARITY = "trial"
N_REPEATS = 5
# simulate a dataset
logger.info("simulating dataset ...")
# simulate task conditions
# (dataset design matrix)
conditions = simulate_task_conditions(
stim_noise=STIM_NOISE,
prior_mode=PRIOR_MODE,
prior_noise=PRIOR_NOISE,
prior_shape=PRIOR_SHAPE,
)
# instantiate model
model = StandardBayes(
initial_params=SIM_P,
prior_shape=PRIOR_SHAPE,
prior_mode=PRIOR_MODE,
readout=READOUT,
)
# simulate trial predictions
# stochastically
output = model.simulate(
dataset=conditions,
sim_p=SIM_P,
granularity=GRANULARITY,
centering=CENTERING,
n_repeats=N_REPEATS,
)
# calculate prediction statistics
plt.figure(figsize=(15, 5))
stat_out = model.simulate(
dataset=output["dataset"],
sim_p=SIM_P,
granularity="mean",
centering=CENTERING,
)
# print dataset
logger.info("Printing simulated trial dataset ...")
logger.info(output["dataset"])
elif (
args.model == "cardinal_bayes"
and args.analysis == "simulate_data"
):
# set pipeline parameters
# - SIM_P: simulation parameters
# - N_REPEATS: number of repetition of
# task each condition
PRIOR_NOISE = [80, 40]
STIM_NOISE = [0.33, 0.66, 1.0]
SIM_P = {
"k_llh": [2.7, 5.7, 11],
"k_prior": [2.7, 11],
"k_card": [2000],
"prior_tail": [0],
"p_rand": [0],
"k_m": [2000],
}
GRANULARITY = "trial"
N_REPEATS = 5
# simulate a dataset
logger.info("simulating dataset ...")
# simulate task conditions
# (dataset design matrix)
conditions = simulate_task_conditions(
stim_noise=STIM_NOISE,
prior_mode=PRIOR_MODE,
prior_noise=PRIOR_NOISE,
prior_shape=PRIOR_SHAPE,
)
# instantiate model
model = CardinalBayes(
initial_params=SIM_P,
prior_shape=PRIOR_SHAPE,
prior_mode=PRIOR_MODE,
readout=READOUT,
)
# simulate trial predictions
# stochastically
output = model.simulate(
dataset=conditions,
sim_p=SIM_P,
granularity=GRANULARITY,
centering=CENTERING,
n_repeats=N_REPEATS,
)
# calculate prediction statistics
plt.figure(figsize=(15, 5))
stat_out = model.simulate(
dataset=output["dataset"],
sim_p=SIM_P,
granularity="mean",
centering=CENTERING,
)
# print dataset
logger.info("Printing simulated trial dataset ...")
logger.info(output["dataset"])