-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·716 lines (619 loc) · 29.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
# coding=utf-8
from __future__ import absolute_import, division, print_function
import logging
import argparse
import os
import random
import numpy as np
import time
import math
from datetime import timedelta
import torch
import torch.distributed as dist
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from torch.nn import KLDivLoss
import torch.nn.functional as F
from apex import amp
from apex.parallel import DistributedDataParallel as DDP
from models.modeling import VisionTransformer, CONFIGS
from utils.scheduler import WarmupLinearSchedule, WarmupCosineSchedule
from utils.data_utils import get_loader
from utils.dist_util import get_world_size
from utils.drop_and_restore_utils import (
sample_length_configuration,
sample_head_configuration,
sample_layer_configuration,
what_to_prune,
)
from utils.evolution import Evolution, inverse, approx_ratio, store2str
logger = logging.getLogger(__name__)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def reduce_mean(tensor, nprocs):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= nprocs
return rt
def save_model(args, model):
model_to_save = model.module if hasattr(model, 'module') else model
model_checkpoint = os.path.join(args.output_dir, "%s_checkpoint.bin" % args.name)
if args.fp16:
checkpoint = {
'model': model_to_save.state_dict(),
'amp': amp.state_dict()
}
else:
checkpoint = {
'model': model_to_save.state_dict(),
}
torch.save(checkpoint, model_checkpoint)
logger.info("Saved model checkpoint to [DIR: %s]", args.output_dir)
def setup(args):
# Prepare model
config = CONFIGS[args.model_type]
config.split = args.split
config.slide_step = args.slide_step
if args.dataset == "CUB_200_2011":
num_classes = 200
elif args.dataset == "car":
num_classes = 196
elif args.dataset == "nabirds":
num_classes = 555
elif args.dataset == "dog":
num_classes = 120
elif args.dataset == "INat2017":
num_classes = 5089
model = VisionTransformer(config, args.img_size, zero_head=True, num_classes=num_classes)
model.load_from(np.load(args.pretrained_dir))
if args.pretrained_model is not None:
pretrained_model = torch.load(args.pretrained_model)['model']
model.load_state_dict(pretrained_model)
model.to(args.device)
num_params = count_parameters(model)
logger.info("{}".format(config))
logger.info("Training parameters %s", args)
logger.info("Total Parameter: \t%2.1fM" % num_params)
return args, model
def count_parameters(model):
params = sum(p.numel() for p in model.parameters() if p.requires_grad)
return params/1000000
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def valid(args, model, writer, test_loader, global_step):
# Validation!
eval_losses = AverageMeter()
logger.info("***** Running Validation *****")
logger.info(" Num steps = %d", len(test_loader))
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
all_preds, all_label = [], []
epoch_iterator = tqdm(test_loader,
desc="Validating... (loss=X.X)",
bar_format="{l_bar}{r_bar}",
dynamic_ncols=True,
disable=args.local_rank not in [-1, 0])
loss_fct = torch.nn.CrossEntropyLoss()
for step, batch in enumerate(epoch_iterator):
batch = tuple(t.to(args.device) for t in batch)
x, y = batch
with torch.no_grad():
logits = model(x)
eval_loss = loss_fct(logits, y)
eval_loss = eval_loss.mean()
eval_losses.update(eval_loss.item())
preds = torch.argmax(logits, dim=-1)
if len(all_preds) == 0:
all_preds.append(preds.detach().cpu().numpy())
all_label.append(y.detach().cpu().numpy())
else:
all_preds[0] = np.append(
all_preds[0], preds.detach().cpu().numpy(), axis=0
)
all_label[0] = np.append(
all_label[0], y.detach().cpu().numpy(), axis=0
)
epoch_iterator.set_description("Validating... (loss=%2.5f)" % eval_losses.val)
all_preds, all_label = all_preds[0], all_label[0]
accuracy = simple_accuracy(all_preds, all_label)
accuracy = torch.tensor(accuracy).to(args.device)
dist.barrier()
val_accuracy = reduce_mean(accuracy, args.nprocs)
val_accuracy = val_accuracy.detach().cpu().numpy()
logger.info("\n")
logger.info("Validation Results")
logger.info("Global Steps: %d" % global_step)
logger.info("Valid Loss: %2.5f" % eval_losses.avg)
logger.info("Valid Accuracy: %2.5f" % val_accuracy)
if args.local_rank in [-1, 0]:
writer.add_scalar("test/accuracy", scalar_value=val_accuracy, global_step=global_step)
return val_accuracy
def train(args, model):
""" Train the model """
if args.local_rank in [-1, 0]:
os.makedirs(args.output_dir, exist_ok=True)
writer = SummaryWriter(log_dir=os.path.join("logs", args.name))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
# Prepare dataset
train_loader, test_loader = get_loader(args)
# Prepare optimizer and scheduler
optimizer = torch.optim.SGD(model.parameters(),
lr=args.learning_rate,
momentum=0.9,
weight_decay=args.weight_decay)
t_total = args.num_steps
if args.decay_type == "cosine":
scheduler = WarmupCosineSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
else:
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
if args.fp16:
model, optimizer = amp.initialize(models=model,
optimizers=optimizer,
opt_level=args.fp16_opt_level)
amp._amp_state.loss_scalers[0]._loss_scale = 2**20
# Distributed training
if args.local_rank != -1:
model = DDP(model, message_size=250000000, gradient_predivide_factor=get_world_size())
# Train!
logger.info("***** Running training *****")
logger.info(" Total optimization steps = %d", args.num_steps)
logger.info(" Instantaneous batch size per GPU = %d", args.train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
model.zero_grad()
set_seed(args) # Added here for reproducibility (even between python 2 and 3)
losses = AverageMeter()
global_step, best_acc = 0, 0
start_time = time.time()
while True:
model.train()
epoch_iterator = tqdm(train_loader,
desc="Training (X / X Steps) (loss=X.X)",
bar_format="{l_bar}{r_bar}",
dynamic_ncols=True,
disable=args.local_rank not in [-1, 0])
all_preds, all_label = [], []
for step, batch in enumerate(epoch_iterator):
batch = tuple(t.to(args.device) for t in batch)
x, y = batch
loss, logits = model(x, y)
loss = loss.mean()
preds = torch.argmax(logits, dim=-1)
if len(all_preds) == 0:
all_preds.append(preds.detach().cpu().numpy())
all_label.append(y.detach().cpu().numpy())
else:
all_preds[0] = np.append(
all_preds[0], preds.detach().cpu().numpy(), axis=0
)
all_label[0] = np.append(
all_label[0], y.detach().cpu().numpy(), axis=0
)
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
losses.update(loss.item()*args.gradient_accumulation_steps)
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
scheduler.step()
optimizer.step()
optimizer.zero_grad()
global_step += 1
epoch_iterator.set_description(
"Training (%d / %d Steps) (loss=%2.5f)" % (global_step, t_total, losses.val)
)
if args.local_rank in [-1, 0]:
writer.add_scalar("train/loss", scalar_value=losses.val, global_step=global_step)
writer.add_scalar("train/lr", scalar_value=scheduler.get_lr()[0], global_step=global_step)
if global_step % args.eval_every == 0:
with torch.no_grad():
accuracy = valid(args, model, writer, test_loader, global_step)
if args.local_rank in [-1, 0]:
if best_acc < accuracy:
save_model(args, model)
best_acc = accuracy
logger.info("best accuracy so far: %f" % best_acc)
model.train()
if global_step % t_total == 0:
break
all_preds, all_label = all_preds[0], all_label[0]
accuracy = simple_accuracy(all_preds, all_label)
accuracy = torch.tensor(accuracy).to(args.device)
dist.barrier()
train_accuracy = reduce_mean(accuracy, args.nprocs)
train_accuracy = train_accuracy.detach().cpu().numpy()
logger.info("train accuracy so far: %f" % train_accuracy)
losses.reset()
if global_step % t_total == 0:
break
writer.close()
logger.info("Best Accuracy: \t%f" % best_acc)
logger.info("End Training!")
end_time = time.time()
logger.info("Total Training Time: \t%f" % ((end_time - start_time) / 3600))
def distil(args, model):
""" Train the model """
if args.local_rank in [-1, 0]:
os.makedirs(args.output_dir, exist_ok=True)
writer = SummaryWriter(log_dir=os.path.join("logs", args.name))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
# Prepare dataset
train_loader, test_loader = get_loader(args)
# Prepare optimizer and scheduler
optimizer = torch.optim.SGD(model.parameters(),
lr=args.learning_rate,
momentum=0.9,
weight_decay=args.weight_decay)
t_total = args.num_steps
if args.decay_type == "cosine":
scheduler = WarmupCosineSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
else:
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
if args.fp16:
model, optimizer = amp.initialize(models=model,
optimizers=optimizer,
opt_level=args.fp16_opt_level)
amp._amp_state.loss_scalers[0]._loss_scale = 2**20
# Distributed training
if args.local_rank != -1:
model = DDP(model, message_size=250000000, gradient_predivide_factor=get_world_size(), delay_allreduce=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Total optimization steps = %d", args.num_steps)
logger.info(" Instantaneous batch size per GPU = %d", args.train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
model.zero_grad()
set_seed(args) # Added here for reproducibility (even between python 2 and 3)
losses = AverageMeter()
global_step, best_acc = 0, 0
start_time = time.time()
epoch = 0
while True:
model.train()
epoch_iterator = tqdm(train_loader,
desc="Training (X / X Steps) (loss=X.X)",
bar_format="{l_bar}{r_bar}",
dynamic_ncols=True,
disable=args.local_rank not in [-1, 0])
all_preds, all_label = [], []
for step, batch in enumerate(epoch_iterator):
batch = tuple(t.to(args.device) for t in batch)
x, y = batch
inputs = {
"x": x,
"labels": y,
}
layer_config = sample_layer_configuration(
args.num_model_layer,
layer_dropout_prob=args.layer_dropout_prob,
layer_dropout=0,
)
inputs["layer_config"] = layer_config
inputs["length_config"] = None
loss, logits = model(**inputs)
loss = loss + 0 * sum([x.sum() for x in model.parameters()])
loss = loss.mean()
loss = loss / (args.num_sandwich + 2)
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
for i in range(args.num_sandwich + 1):
t_logits = logits.detach()
layer_config = sample_layer_configuration(
args.num_model_layer,
layer_dropout_prob=args.layer_dropout_prob,
layer_dropout=(args.layer_dropout_bound if i == 0 else None),
layer_dropout_bound=args.layer_dropout_bound,
)
inputs["layer_config"] = layer_config
length_config = sample_length_configuration(
args.max_seq_length,
args.num_model_layer,
layer_config,
length_drop_ratio=(args.length_drop_ratio_bound if i == 0 else None),
length_drop_ratio_bound=args.length_drop_ratio_bound,
)
inputs["length_config"] = length_config
sub_loss, sub_logits = model(**inputs)
sub_loss = sub_loss.mean()
loss_fct = KLDivLoss(reduction="batchmean")
loss = loss_fct(F.log_softmax(t_logits, -1), F.softmax(sub_logits, -1))
loss = loss / (args.num_sandwich + 2)
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
preds = torch.argmax(logits, dim=-1)
if len(all_preds) == 0:
all_preds.append(preds.detach().cpu().numpy())
all_label.append(y.detach().cpu().numpy())
else:
all_preds[0] = np.append(
all_preds[0], preds.detach().cpu().numpy(), axis=0
)
all_label[0] = np.append(
all_label[0], y.detach().cpu().numpy(), axis=0
)
if (step + 1) % args.gradient_accumulation_steps == 0:
losses.update(loss.item()*args.gradient_accumulation_steps)
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
scheduler.step()
optimizer.step()
optimizer.zero_grad()
global_step += 1
epoch_iterator.set_description(
"Training (%d / %d Steps) (loss=%2.5f)" % (global_step, t_total, losses.val)
)
if args.local_rank in [-1, 0]:
writer.add_scalar("train/loss", scalar_value=losses.val, global_step=global_step)
writer.add_scalar("train/lr", scalar_value=scheduler.get_lr()[0], global_step=global_step)
if global_step % args.eval_every == 0 and epoch != 0:
with torch.no_grad():
accuracy = valid(args, model, writer, test_loader, global_step)
if args.local_rank in [-1, 0]:
if math.floor(best_acc*1000) / 1000 <= math.floor(accuracy*1000) / 1000 and epoch != 0:
save_model(args, model)
best_acc = accuracy
logger.info("best accuracy so far: %f" % best_acc)
model.train()
if global_step % t_total == 0:
break
epoch += 1
all_preds, all_label = all_preds[0], all_label[0]
accuracy = simple_accuracy(all_preds, all_label)
accuracy = torch.tensor(accuracy).to(args.device)
dist.barrier()
train_accuracy = reduce_mean(accuracy, args.nprocs)
train_accuracy = train_accuracy.detach().cpu().numpy()
logger.info("single epoch train accuracy so far: %f" % train_accuracy)
losses.reset()
if global_step % t_total == 0:
break
writer.close()
logger.info("Best Accuracy: \t%f" % best_acc)
logger.info("End Training!")
end_time = time.time()
logger.info("Total Training Time: \t%f" % ((end_time - start_time) / 3600))
def evaluate(args, model, test_loader):
# Validation!
eval_losses = AverageMeter()
model.eval()
all_preds, all_label = [], []
epoch_iterator = tqdm(test_loader,
desc="Validating... (loss=X.X)",
bar_format="{l_bar}{r_bar}",
dynamic_ncols=True,
disable=args.local_rank not in [-1, 0])
loss_fct = torch.nn.CrossEntropyLoss()
for step, batch in enumerate(epoch_iterator):
batch = tuple(t.to(args.device) for t in batch)
x, y = batch
with torch.no_grad():
logits = model(x)
eval_loss = loss_fct(logits, y)
eval_loss = eval_loss.mean()
eval_losses.update(eval_loss.item())
preds = torch.argmax(logits, dim=-1)
if len(all_preds) == 0:
all_preds.append(preds.detach().cpu().numpy())
all_label.append(y.detach().cpu().numpy())
else:
all_preds[0] = np.append(
all_preds[0], preds.detach().cpu().numpy(), axis=0
)
all_label[0] = np.append(
all_label[0], y.detach().cpu().numpy(), axis=0
)
epoch_iterator.set_description("Validating... (loss=%2.5f)" % eval_losses.val)
all_preds, all_label = all_preds[0], all_label[0]
accuracy = simple_accuracy(all_preds, all_label)
accuracy = torch.tensor(accuracy).to(args.device)
dist.barrier()
val_accuracy = reduce_mean(accuracy, args.nprocs)
val_accuracy = val_accuracy.detach().cpu().numpy()
#val_accuracy = accuracy.detach().cpu().numpy()
return val_accuracy
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--name", required=True,
help="Name of this run. Used for monitoring.")
parser.add_argument("--dataset", choices=["CUB_200_2011", "car", "dog", "nabirds", "INat2017"], default="CUB_200_2011",
help="Which dataset.")
parser.add_argument('--data_root', type=str, default='./dataset')
parser.add_argument("--model_type", choices=["ViT-B_16", "ViT-B_32", "ViT-L_16",
"ViT-L_32", "ViT-H_14"],
default="ViT-B_16",
help="Which variant to use.")
parser.add_argument("--pretrained_dir", type=str, default="./pretrained/ViT-B_16.npz",
help="Where to search for pretrained ViT models.")
parser.add_argument("--pretrained_model", type=str, default=None,
help="load pretrained model")
parser.add_argument("--output_dir", default="./output", type=str,
help="The output directory where checkpoints will be written.")
parser.add_argument("--img_size", default=448, type=int,
help="Resolution size")
parser.add_argument("--train_batch_size", default=16, type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size", default=8, type=int,
help="Total batch size for eval.")
parser.add_argument("--eval_every", default=100, type=int,
help="Run prediction on validation set every so many steps."
"Will always run one evaluation at the end of training.")
parser.add_argument("--learning_rate", default=3e-2, type=float,
help="The initial learning rate for SGD.")
parser.add_argument("--weight_decay", default=0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--num_steps", default=10000, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--decay_type", choices=["cosine", "linear"], default="cosine",
help="How to decay the learning rate.")
parser.add_argument("--warmup_steps", default=500, type=int,
help="Step of training to perform learning rate warmup for.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--local_rank", type=int, default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O2',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument('--loss_scale', type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument('--smoothing_value', type=float, default=0.0,
help="Label smoothing value\n")
parser.add_argument('--split', type=str, default='non-overlap',
help="Split method")
parser.add_argument('--slide_step', type=int, default=12,
help="Slide step for overlap split")
parser.add_argument('--num_sandwich', type=int, default=2,
help="number of sandwiches\n")
parser.add_argument('--length_drop_ratio_bound', type=float, default=0.2,
help="length drop ratio bound\n")
parser.add_argument('--layer_dropout_prob', type=float, default=0.2,
help="layer dropout prob\n")
parser.add_argument('--layer_dropout_bound', type=int, default=0,
help="layer dropout bound\n")
parser.add_argument('--max_seq_length', type=int, default=785,
help="layer dropout bound\n")
parser.add_argument('--num_model_layer', type=int, default=12,
help="layer number\n")
parser.add_argument("--do_search", action="store_true",
help="do evo search")
parser.add_argument("--do_distil", action="store_true",
help="do evo search")
parser.add_argument("--evo_path", type=str, default="./evo",
help="Where to search for evo results.")
parser.add_argument('--population_size', type=int, default=20,
help="evo search population size\n")
parser.add_argument('--mutation_prob', type=float, default=0.5,
help="evo search population size\n")
parser.add_argument('--mutation_size', type=int, default=30,
help="evo search population size\n")
parser.add_argument('--crossover_size', type=int, default=30,
help="evo search population size\n")
parser.add_argument('--evo_iter', type=int, default=30,
help="evo search population size\n")
args = parser.parse_args()
# if args.fp16 and args.smoothing_value != 0:
# raise NotImplementedError("label smoothing not supported for fp16 training now")
args.data_root = '{}/{}'.format(args.data_root, args.dataset)
# Setup CUDA, GPU & distributed training
if args.local_rank == -1:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl',
timeout=timedelta(minutes=60))
args.n_gpu = 1
args.device = device
args.nprocs = torch.cuda.device_count()
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" %
(args.local_rank, args.device, args.n_gpu, bool(args.local_rank != -1), args.fp16))
# Set seed
set_seed(args)
# Model & Tokenizer Setup
args, model = setup(args)
# Training
if args.do_distil:
distil(args, model)
if args.do_search:
if args.local_rank != -1:
model = DDP(model, message_size=250000000, gradient_predivide_factor=get_world_size())
_, test_loader = get_loader(args)
evolution = Evolution(model, args, evaluate, test_loader)
evolution.load_store(os.path.join(args.evo_path, args.name, 'store.tsv'))
if not os.path.exists(os.path.join(args.evo_path, args.name)):
os.makedirs(os.path.join(args.evo_path, args.name))
lower_gene = sample_length_configuration(
args.max_seq_length,
args.num_model_layer,
length_drop_ratio=args.length_drop_ratio_bound,
)
upper_gene = (args.max_seq_length,) * args.num_model_layer
evolution.add_gene(lower_gene, method=0)
evolution.add_gene(upper_gene, method=0)
evolution.lower_constraint = evolution.store[lower_gene][0]
evolution.upper_constraint = evolution.store[upper_gene][0]
length_drop_ratios = [inverse(r) for r in np.linspace(approx_ratio(args.length_drop_ratio_bound), 1, args.population_size + 2)[1:-1]]
for p in length_drop_ratios:
gene = sample_length_configuration(
args.max_seq_length,
args.num_model_layer,
length_drop_ratio=p,
)
evolution.add_gene(gene, method=0)
for i in range(args.evo_iter + 1):
logger.info(f"| Start Iteration {i}:")
population, area = evolution.pareto_frontier()
parents = evolution.convex_hull()
results = {"area": area, "population_size": len(population), "num_parents": len(parents)}
logger.info(f"| >>>>>>>> {' | '.join([f'{k} {v}' for k, v in results.items()])}")
for gene in parents: # population
logger.info("| " + store2str(gene, *evolution.store[gene][:3]))
evolution.save_store(os.path.join(args.evo_path, args.name, f'store-iter{i}.tsv'))
evolution.save_population(os.path.join(args.evo_path, args.name, f'population-iter{i}.tsv'), population)
evolution.save_population(os.path.join(args.evo_path, args.name, f'parents-iter{i}.tsv'), parents)
if i == args.evo_iter:
break
k = 0
while k < args.mutation_size:
if evolution.mutate(args.mutation_prob):
k += 1
k = 0
while k < args.crossover_size:
if evolution.crossover():
k += 1
if __name__ == "__main__":
main()