Skip to content

Files

Latest commit

 

History

History
 
 

vae

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Basic VAE Example

This is an improved implementation of the paper Auto-Encoding Variational Bayes by Kingma and Welling. It uses ReLUs and the adam optimizer, instead of sigmoids and adagrad. These changes make the network converge much faster.

pip install -r requirements.txt
python main.py

The main.py script accepts the following arguments:

optional arguments:
  --batch-size		input batch size for training (default: 128)
  --epochs		number of epochs to train (default: 10)
  --no-cuda		enables CUDA training
  --seed		random seed (default: 1)
  --log-interval	how many batches to wait before logging training status