forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdnl_head.py
137 lines (115 loc) · 4.74 KB
/
dnl_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.cnn import NonLocal2d
from torch import nn
from mmseg.registry import MODELS
from .fcn_head import FCNHead
class DisentangledNonLocal2d(NonLocal2d):
"""Disentangled Non-Local Blocks.
Args:
temperature (float): Temperature to adjust attention. Default: 0.05
"""
def __init__(self, *arg, temperature, **kwargs):
super().__init__(*arg, **kwargs)
self.temperature = temperature
self.conv_mask = nn.Conv2d(self.in_channels, 1, kernel_size=1)
def embedded_gaussian(self, theta_x, phi_x):
"""Embedded gaussian with temperature."""
# NonLocal2d pairwise_weight: [N, HxW, HxW]
pairwise_weight = torch.matmul(theta_x, phi_x)
if self.use_scale:
# theta_x.shape[-1] is `self.inter_channels`
pairwise_weight /= torch.tensor(
theta_x.shape[-1],
dtype=torch.float,
device=pairwise_weight.device)**torch.tensor(
0.5, device=pairwise_weight.device)
pairwise_weight /= torch.tensor(
self.temperature, device=pairwise_weight.device)
pairwise_weight = pairwise_weight.softmax(dim=-1)
return pairwise_weight
def forward(self, x):
# x: [N, C, H, W]
n = x.size(0)
# g_x: [N, HxW, C]
g_x = self.g(x).view(n, self.inter_channels, -1)
g_x = g_x.permute(0, 2, 1)
# theta_x: [N, HxW, C], phi_x: [N, C, HxW]
if self.mode == 'gaussian':
theta_x = x.view(n, self.in_channels, -1)
theta_x = theta_x.permute(0, 2, 1)
if self.sub_sample:
phi_x = self.phi(x).view(n, self.in_channels, -1)
else:
phi_x = x.view(n, self.in_channels, -1)
elif self.mode == 'concatenation':
theta_x = self.theta(x).view(n, self.inter_channels, -1, 1)
phi_x = self.phi(x).view(n, self.inter_channels, 1, -1)
else:
theta_x = self.theta(x).view(n, self.inter_channels, -1)
theta_x = theta_x.permute(0, 2, 1)
phi_x = self.phi(x).view(n, self.inter_channels, -1)
# subtract mean
theta_x -= theta_x.mean(dim=-2, keepdim=True)
phi_x -= phi_x.mean(dim=-1, keepdim=True)
pairwise_func = getattr(self, self.mode)
# pairwise_weight: [N, HxW, HxW]
pairwise_weight = pairwise_func(theta_x, phi_x)
# y: [N, HxW, C]
y = torch.matmul(pairwise_weight, g_x)
# y: [N, C, H, W]
y = y.permute(0, 2, 1).contiguous().reshape(n, self.inter_channels,
*x.size()[2:])
# unary_mask: [N, 1, HxW]
unary_mask = self.conv_mask(x)
unary_mask = unary_mask.view(n, 1, -1)
unary_mask = unary_mask.softmax(dim=-1)
# unary_x: [N, 1, C]
unary_x = torch.matmul(unary_mask, g_x)
# unary_x: [N, C, 1, 1]
unary_x = unary_x.permute(0, 2, 1).contiguous().reshape(
n, self.inter_channels, 1, 1)
output = x + self.conv_out(y + unary_x)
return output
@MODELS.register_module()
class DNLHead(FCNHead):
"""Disentangled Non-Local Neural Networks.
This head is the implementation of `DNLNet
<https://arxiv.org/abs/2006.06668>`_.
Args:
reduction (int): Reduction factor of projection transform. Default: 2.
use_scale (bool): Whether to scale pairwise_weight by
sqrt(1/inter_channels). Default: False.
mode (str): The nonlocal mode. Options are 'embedded_gaussian',
'dot_product'. Default: 'embedded_gaussian.'.
temperature (float): Temperature to adjust attention. Default: 0.05
"""
def __init__(self,
reduction=2,
use_scale=True,
mode='embedded_gaussian',
temperature=0.05,
**kwargs):
super().__init__(num_convs=2, **kwargs)
self.reduction = reduction
self.use_scale = use_scale
self.mode = mode
self.temperature = temperature
self.dnl_block = DisentangledNonLocal2d(
in_channels=self.channels,
reduction=self.reduction,
use_scale=self.use_scale,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
mode=self.mode,
temperature=self.temperature)
def forward(self, inputs):
"""Forward function."""
x = self._transform_inputs(inputs)
output = self.convs[0](x)
output = self.dnl_block(output)
output = self.convs[1](output)
if self.concat_input:
output = self.conv_cat(torch.cat([x, output], dim=1))
output = self.cls_seg(output)
return output