-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm.py
85 lines (67 loc) · 3.01 KB
/
llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import re
import tiktoken
from openai import OpenAI
ANSWER_REGEX = re.compile(r"<answer>(.*?)</answer>", flags=re.DOTALL)
class LLM:
"""
The `LLM` class represents a large language model used for generating answers based on prompts.
Attributes:
- client: The client object used for making API requests (OpenAI compatible).
- model_name: The name of the language model.
- max_answer_tokens: The maximum number of tokens to generate in the answer.
- use_claude_fix: A boolean indicating whether to use the fix for better results in Anthropic models.
- encoding: The tokenizer used for the language model.
Methods:
- __init__(self, client, model_name, max_answer_tokens): Initializes the LLM object with the specified arguments.
- claude_prompt_fix(self, prompt): Fixes the prompt for better results in Anthropic models.
- answer(self, prompt, output_json=False): Generates an answer based on the prompt.
"""
def __init__(self, client: OpenAI, model_name, max_answer_tokens):
self.client = client
self.model_name = model_name
self.max_answer_tokens = max_answer_tokens
self.use_claude_fix = "claude" in model_name or "pulze" in model_name
try:
self.encoding = tiktoken.encoding_for_model(self.model_name)
except KeyError:
self.encoding = tiktoken.encoding_for_model("gpt-4")
def claude_prompt_fix(self, prompt):
"""This seems to give better results for Anthropic models"""
return (
prompt
if not self.use_claude_fix
else f"""
Human:
{prompt}
Please output your answer within <answer></answer> tags.
Assistant: <answer>"""
)
def answer(self, prompt, output_json: bool = False, **kwargs):
"""Ask LLM and parse the answer.
:param prompt: The prompt for generating the answer.
:param output_json: A boolean indicating whether the response should be returned as JSON. Default is False.
:return: The generated answer.
"""
response_content = (
self.client.chat.completions.create(
messages=[
{
"role": "user",
"content": self.claude_prompt_fix(prompt),
}
],
model=self.model_name,
# This parameter is not supported by Pulze
response_format={"type": "json_object" if output_json else "text"},
max_tokens=self.max_answer_tokens,
**kwargs,
)
.choices[0]
.message.content
)
# Sometimes we get "bla bla bla <answer>good stuff</answer> bla bla bla"
# Sometimes we get "bla bla bla: good stuff</answer>"
if "<answer>" not in response_content:
return response_content.removesuffix("</answer>")
match = ANSWER_REGEX.search(response_content)
return match.group(1) if match else None