-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathutils.py
executable file
·68 lines (59 loc) · 1.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 12 14:17:28 2020
@author: af1tang
"""
import torch, os, pickle, matplotlib.pyplot as plt
import torch.nn as nn, torch.nn.functional as F
from itertools import groupby
from load_configs import tokenizer, p1_tok, p2_tok, start_tok, opts, device, create_dir
## Utils ##
flatten = lambda l: [item for sublist in l for item in sublist]
def chunker(seq, size):
return (seq[pos:pos + size] for pos in range(0, len(seq), size))
def to_data(x):
if torch.cuda.is_available():
x = x.cpu()
return x.data.numpy()
def to_var(x):
if not torch.is_tensor(x):
x = torch.Tensor(x)
if torch.cuda.is_available():
x = x.cuda()
return x
def process_conv(row, tokenizer, eos = True, make_flat=True):
if eos:
conv = list([tokenizer.encode(x) + [tokenizer.eos_token_id] for x in row])
else: conv = list([tokenizer.encode(x) for x in row])
if make_flat: conv = flatten(conv)
return conv
def split_by_index(seq, sep):
result = []
for el in seq:
result.append(el)
if el == sep:
yield result
result = []
def filter_turn_indices(x):
filtered = [[t[1] for t in list(g)] for k,g in groupby(list(enumerate(x)), lambda x: x[1]==tokenizer.eos_token_id) if not k]
return filtered
def display_dialog_history(dialog_hx):
for j, line in enumerate(dialog_hx):
msg = tokenizer.decode(line)
if j %2 == 0:
print(">> User: "+ msg)
else:
print("Bot: "+msg)
print()
### plotting ###
def plot_losses(stats, title='loss'):
create_dir(opts.plot_path)
x = list(sorted(stats.keys()))
loss = [stats[i][title] for i in x]
plt.plot(x, loss, label= title)
plt.legend()
plt.title("%s" %title)
plt.tight_layout()
plt.savefig(os.path.join(opts.plot_path,'%s.png'%title))
plt.close()