-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFL_linearMixUP_main_mds.py
295 lines (243 loc) · 12.1 KB
/
FL_linearMixUP_main_mds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import tensorflow as tf
from tensorflow import keras
import numpy as np
import pandas as pd
from arguments import Args
import copy
from sklearn.manifold import MDS
# -*- coding: utf-8 -*-
import cv2
import matplotlib.pyplot as plt
from matplotlib import offsetbox
import os
import random
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def plot_data_with_images(data, images, ax=None, cmap='gray'):
ax = ax or plt.gca()
ax.scatter(data[:-1, 0], data[:-1, 1], c='k', s=100)
ax.scatter(data[-1, 0], data[-1, 1], c='r', s=100)
axis_lim = 2000
ax.set_xlim(-axis_lim, axis_lim)
ax.set_ylim(-axis_lim, axis_lim)
for i in range(data.shape[0]):
imagebox = offsetbox.AnnotationBbox(
offsetbox.OffsetImage(images[i], zoom=1.2, cmap=cmap),
data[i]
)
imagebox.patch.set_width(20)
ax.add_artist(imagebox)
class model(object):
def __init__(self, args, num):
self.num = num
self.model = self.build()
def build(self):
input_layer = keras.layers.Input(shape=(28, 28, 1), name='image_input')
conv1 = keras.layers.Conv2D(56, (3, 3), activation='relu')(input_layer)
pool1 = keras.layers.MaxPooling2D(2, 2)(conv1)
conv2 = keras.layers.Conv2D(56, (3, 3), activation='relu')(pool1)
pool2 = keras.layers.MaxPooling2D(2, 2)(conv2)
flatten = keras.layers.Flatten()(pool2)
dense1 = keras.layers.Dense(784, activation='relu')(flatten)
output_layer = keras.layers.Dense(10, activation='softmax')(dense1)
model = keras.models.Model(inputs=input_layer, outputs=output_layer, name='model' + str(self.num))
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
# model.summary()
return model
if __name__ == "__main__":
args = Args().getParameters()
is_test = False
img_loc = "./train_images"
# FL 위한 변수
num_edge = 3
num_max_image = int(5500 - (5500 % (num_edge + 1)))
# Edge Server 가 가지고 있다고 가정할 Class 별 image의 index
# 예 ) edge 0 : 0 ~ 200.png , edge 1 : 201 ~ 400.png ... , device 들은 여러개여도 한 array에
idx_images = np.arange(num_max_image).reshape((num_edge + 1), int(num_max_image / (num_edge + 1)))
# Data 관련 변수
class_size = 10
Target_class = 9
average_num = 2
skewed_data_num = 10
normal_data_num = 200
# 클래스 별 데이터 개수를 담고 있는 변수
data_num = np.ones(shape=(10,)) * normal_data_num
data_num[Target_class] = skewed_data_num
# XOR 이미지를 만들때 Target Class 제외한 Class 들의 이미지를 균등하게 사용하기 위한 변수
# dummy_num 만큼 각 class들은 XOR에 사용된다
dummy_num = normal_data_num - data_num[Target_class]
dummy_num = int(dummy_num / (class_size - 1))
# 데이터 수 파악을 위한 변수들
bef_num = copy.copy(data_num)
af_num = copy.copy(data_num)
##################
# MNIST 다운로드 #
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
input_shape = (28, 28, 1)
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
##################
############################
# Label의 one-hot encoding #
y_train = keras.utils.to_categorical(y_train, class_size)
y_test = keras.utils.to_categorical(y_test, class_size)
batch_size = 128
num_classes = 10
epochs = 100
if is_test == False:
# edge 개수만큼 학습을 반복
# 학습된 edge 들의 weight를 모아서 평균낸 모델을 만들어서
# 최종 모델의 Accuracy 측정이 FL 실험
models = []
images_history = []
for idx_device in range(num_edge):
# edge_(idx_device) 가 사용할 x, y 데이터 로드
x_train = [] # Shape : (class_size * class별 이미지수 총합, )
y_train = [] # Shape : (class_size * class별 이미지수 총합, )
for i in range(class_size):
temp = []
for j in range(int(data_num[i])):
img = cv2.cvtColor(cv2.imread(
img_loc + '/User/' + str(int(i)) + '/' + str(int(idx_images[idx_device][j])) + '.png'),
cv2.COLOR_BGR2GRAY)
x_train.append(img[:, :, np.newaxis].astype('float32') / 255)
y_train.append(keras.utils.to_categorical(i, class_size))
temp.append(img)
# Device 가 가졌다고 가정하는 x 로드
img_list = [] # Shape : (class_size , class별 이미지수)
for i in range(class_size):
temp = []
for j in range(int(data_num[i])):
img = cv2.cvtColor(
cv2.imread(img_loc + '/User/' + str(int(i)) + '/' + str(int(idx_images[num_edge][j])) + '.png'),
cv2.COLOR_BGR2GRAY)
temp.append(img)
img_list.append(temp)
# Device_(idx_device) 의 model 생성
models.append(model(args, idx_device))
# Device 가 Edge Server로 보낼 XOR 데이터를 생성
# idx_images 변수의 0~num_edge 까지는 edge가 가진 이미지 index로 가정
# num_edge+1 ~ 끝까지는 device가 가진 이미지 index로 가정
xor_data = []
for i in range(class_size):
# idx : device 가 가진 이미지의 index 들을 랜덤으로 suffle
# idx2 : target label 의 이미지는 skewed_data_num 으로 가정된 숫자만큼 있다고 가정하므로, 해당 index 내에서만 뽑음
idx = np.random.choice(np.arange(normal_data_num), dummy_num, replace=False)
idx2 = np.random.choice(np.arange(skewed_data_num), skewed_data_num, replace=False)
# Target class 내의 이미지 끼리 XOR 하는 것을 방지
if i == Target_class:
continue
# Dummy class 이미지와 target class 이미지의 XOR 수행
for j in range(dummy_num):
# 같은 클래스의 이미지 average_num 개 만큼 average 수행한다.
# 이때 average 하는 이미지는 연속된 index 이미지 사용
# ex ) 0.png 1.png 2.png .... 최대 normal_data_num 까지
# Dummy Label Image
dummy_img = img_list[i][idx[j]]
# Target Label Image
start_idx = np.random.choice(np.arange(skewed_data_num), 1, replace=False)[0]
target_img = img_list[Target_class][idx2[int(start_idx)]]
train_label = np.zeros(shape=(class_size,))
train_label[Target_class] = 0.5
train_label[i] = 0.5
# MixUP
user_mix = cv2.addWeighted(target_img, 0.5, dummy_img, 0.5, 0)
images_history.append(np.concatenate((
np.expand_dims(dummy_img, axis=0),
np.expand_dims(target_img, axis=0),
np.expand_dims(user_mix, axis=0)
), axis=0))
af_num[Target_class] += 1
train_img = user_mix[:, :, np.newaxis].astype('float32') / 255.
x_train.append(train_img)
y_train.append(train_label)
x_train = np.array(x_train)
y_train = np.array(y_train)
models[idx_device].model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size)
models[idx_device].model.save('./save/linearMixUP/model_' + str(idx_device) + '.h5')
# calculate MDS privacy and choose the minimum case
mds = MDS(n_components=2, metric=True)
min_privacy = 1e8
min_case_mapped_images = None
min_case_images = None
for images in images_history:
flatten = np.reshape(images, (images.shape[0], -1))
mapped_images = mds.fit_transform(flatten)
for i in range(len(mapped_images) - 1):
privacy = np.linalg.norm(mapped_images[i] - mapped_images[-1])
if privacy < min_privacy:
min_privacy = privacy
min_case_mapped_images = mapped_images
min_case_images = images
# plot the MDS measurement results and save to image
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(1, 1, 1)
plt.title(f'minimum privacy: {round(min_privacy)}', fontsize=15)
plot_data_with_images(min_case_mapped_images, min_case_images, ax)
plt.savefig(f'./save/linearMixUP/fig-{round(min_privacy, 3)}.png', dpi=300)
####################################################################
# Edge들 학습이 끝나면 학습된 3개의 모델의 Weight 들을 모아서 평균냄
scores = np.zeros(shape=(num_edge,))
score = models[0].model.evaluate(x_test, y_test, batch_size=1000)
print('[Worker 1] Test loss:', score[0])
print('[Worker 1] Test accuracy:', score[1])
scores[0] = score[1]
score = models[1].model.evaluate(x_test, y_test, batch_size=1000)
print('[Worker 2] Test loss:', score[0])
print('[Worker 2] Test accuracy:', score[1])
scores[1] = score[1]
score = models[2].model.evaluate(x_test, y_test, batch_size=1000)
print('[Worker 3] Test loss:', score[0])
print('[Worker 3] Test accuracy:', score[1])
scores[2] = score[1]
# 비율 계산
# rate = np.zeros(shape=(num_edge,))
# for i in range(num_edge):
# rate[i] = scores[i] / np.sum(scores)
print("========================")
print('Federated Learning Start')
main_model = model(args, 4)
for i in range(np.shape(models[0].model.layers)[0]):
layer_w = np.array(models[0].model.layers[i].get_weights()) * 0.95
for j in range(1, num_edge):
layer_w += np.array(models[j].model.layers[i].get_weights()) * 0.025
# layer_w = np.array(layer_w) / num_edge
main_model.model.layers[i].set_weights(layer_w)
main_model.model.save('./save/FL_linearMixUP/model_FL.h5')
score = main_model.model.evaluate(x_test, y_test, batch_size=1000)
print('[Main] Test loss:', score[0])
print('[Main] Test accuracy:', score[1])
predicted_result = main_model.model.predict(x_test)
predicted_labels = np.argmax(predicted_result, axis=1)
test_labels = np.argmax(y_test, axis=1)
# 아래 부분의 내용 추가
total_data = np.zeros(shape=(10,))
wrong_result = np.zeros(shape=(10,))
for n in range(0, len(test_labels)):
total_data[test_labels[n]] += 1
if predicted_labels[n] != test_labels[n]:
wrong_result[test_labels[n]] += 1
for i in range(10):
acc = 1 - wrong_result[i] / total_data[i]
print("Class [" + str(i) + "]" + " Acc : " + str(acc))
else:
# Test
print("Test Procedure")
main_model = model(args, 4)
main_model.model = tf.keras.models.load_model('./save/linearMixUP/model_FL.h5')
score = main_model.model.evaluate(x_test, y_test, batch_size=1000)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
predicted_result = main_model.model.predict(x_test)
predicted_labels = np.argmax(predicted_result, axis=1)
test_labels = np.argmax(y_test, axis=1)
total_data = np.zeros(shape=(10,))
wrong_result = np.zeros(shape=(10,))
for n in range(0, len(test_labels)):
total_data[test_labels[n]] += 1
if predicted_labels[n] != test_labels[n]:
wrong_result[test_labels[n]] += 1
for i in range(10):
acc = 1 - wrong_result[i] / total_data[i]
print("Class [" + str(i) + "]" + " Acc : " + str(acc))