Jiayi Yin †, Hanyu Zhang †, Xiuna Sun, Nanxin You, Minjie Mou, Ziqi Pan, Fengcheng Li, Honglin Li * , Su Zeng * , and Feng Zhu *
- DD-Response should be deployed on Linux in python 3.6.
- Main requirments:
python==3.6.8
,pytorch==1.8.1
,captum==0.5.0
,lapjv==1.3.1
,umap-learn==0.3.10
,RDkit==2020.09.5
,scikit-learn==0.23.0
,scipy==1.1.0
. - To use GPU, please install the GPU version of
pytorch
.
- Download source codes of DD-Response.
- DD-Response should be deployed on Linux.
- The DD-Response tree includes three directories:
|- main
|- bashes
|- data
|- feamap
|- model
|- run
|- 0_feadist_fit.py
|- 0_map_transfer.py
|- 0_split_cvdata.py
|- main.py
|- tcga_main.py
|- paper
|- materials
|- README.md
|- LICENSE
The directory of main
deposits the basis of DD-Response.
1.1 Place the training data that users want to investigate into the .main/data/original_data/
imitating the examples.
sh 0_split_cvdata.sh # data splitting for cross-validation
sh 0_trans_cell.sh # SGM representation transform for cell lines
sh 0_trans_drug.sh # SGM representation transform for drugs
sh DRS_molossbt128.sh # model Training through cross-validation
Output: the output will be under the automatically generated ./main/data/processed_data
directory and ./main/pretrain_data/
directory.
1.3 If users want to reconstruct their own SGM template, Execute the following bash commands in the directory of .main/bashes
before SGM representation transform:
sh 0_feadist.sh # calculate the scales as config files for SGM template construction
Output: the output will be under the automatically generated ./main/data/processed_data
directory.
Note: the output .cfg
files should be manually moved to ./main/feamap/config/trans_from_ALL
before running 0_trans_cell.sh
and 0_trans_drug.sh
2.1 Place the predicting data that users want to investigate into the ./data/predict_data/
imitating the examples.
sh Predict_gCSI.sh # Run the model for gCSI data prediction
Output: the output will be under the automatically generated ./main/data/predict_result
directory.
3.1 Place the training data that users want to investigate into the .main/transfer/data/original_data/
imitating the examples.
sh TCGA_modeling.sh # model Training through cross-validation
Output: the output will be under the automatically generated ./main/transfer/data/processed_data
directory and ./main/transfer/pretrained
directory.
The manuscript is currently under peer review. Should you have any questions, please contact Dr. Zhang at [email protected]