-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlog_MLRKHS.py
486 lines (411 loc) · 19.8 KB
/
log_MLRKHS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
"""
Experimental machine for Reproducing kernel Hilbert spaces implemented in Theano.
Main functionalities of this code were aquired from the Theano Multilayer Perceptron
tutorial.
Only RKHS and number of layers functionalities were introduced by me.
Ignacio Arroyo-Fernandez
IIMAS -- UNAM
"""
from __future__ import print_function
__docformat__ = 'restructedtext en'
__op = "conc"
import os
import sys
import timeit
import numpy
import dill
import theano
import theano.tensor as T
from theano.tensor import _tensor_py_operators as ops
from logistic_sgd import LogisticRegression, load_data
from data_theano import *
theano.config.exception_verbosity="high"
class HiddenLayer(object):
def __init__(self, rng, input, n_in, n_out, batch_s, W=None, s=None, b=None,
kernel="gaussian"):
"""
Typical hidden layer of a mlRKHS: units are fully-connected and have
not activation function. Weight (mean) matrix W is of shape (n_in,n_out)
and the bias vector b is of shape (n_out,).
NOTE : The nonlinearity used here is tanh when kernel product is not asked
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.dmatrix
:param input: a symbolic tensor of shape (n_examples, n_in)
:type n_in: int
:param n_in: dimensionality of input
:type n_out: int
:param n_out: number of hidden units
:type kernel: str
:param kernel: Kernel type asked by user
"""
self.input = input
self.kernel = kernel
if W is None:
#low = -numpy.sqrt(6. / (n_in + n_out))
#high = numpy.sqrt(6. / (n_in + n_out))
low = -5.0
high = 5.0
Weights = rng.uniform(low=low, high=high, size=(n_in, n_out))
W_values = numpy.asarray(Weights, dtype=theano.config.floatX)
W = theano.shared(value=W_values, name='W', borrow=True)
if b is None:
#b_values = numpy.zeros((n_out,), dtype=theano.config.floatX)
bes = rng.uniform(low=0.001, high=1.0, size=(n_out,))
b_values = numpy.asarray(bes, dtype=theano.config.floatX)
b = theano.shared(value=b_values, name='b', borrow=True)
if s is None:
sigmas = rng.uniform(low=0.1, high=50.0, size=(n_out,))
s_values = numpy.asarray(sigmas, dtype=theano.config.floatX)
s = theano.shared(value=s_values, name='s', borrow=True)
self.W = W
self.b = b
self.s = s
print ("b: ", self.b.eval())
print ("s: ", self.s.eval())
if self.kernel is None:
dot_H = T.dot(input, self.W) + self.b
elif self.kernel == "sigmoid":
dot_H = T.tanh(T.dot(input, self.W) + self.b)
elif self.kernel == "gaussian":
# The RKHS inner product via the Gaussian kernel (dot_H)
dot_H = theano.map(lambda i :
T.exp(-(self.W.T - i).norm(2,axis=1) ** 2) / 2 * self.s ** 2,
input,
[])[0] + self.b
elif self.kernel == "gauss_dot":
dot_H = T.exp(-(T.dot(input, self.W) + self.b) / self.s ** 2)
# dot_H = T.exp(-T.dot(input, self.W) / self.s ** 2) + self.b
self.output = dot_H
# parameters of this hidden layer
self.params = [self.W, self.b, self.s]
class mlRKHS(object):
"""Multi-Layer Reproducing Kernel Hilbert Spaces Class
"""
def __init__(self, rng, input, n_in, n_hidden, n_out, batch_s, kernel=None):
"""Initialize the parameters for the multilayer RKHS
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.TensorType
:param input: symbolic variable that describes the input of the
architecture (one minibatch)
:type n_in: int
:param n_in: number of input units, the dimension of the space in
which the datapoints lie
:type n_hidden: list of int
:param n_hidden: number of hidden units for each layer
:type n_out: int
:param n_out: number of output units, the dimension of the space in
which the labels lie
"""
# Constructor of the hidden layers according to the number and size required of them.
self.hiddenLayers=[]
for i in xrange(len(n_hidden)):
if i == 0:
self.hiddenLayers.append(HiddenLayer(
rng=rng,
input=input,
batch_s=batch_s,
n_in=n_in,
n_out=n_hidden[i],
kernel=kernel)
)
elif i < len(n_hidden) and i > 0:
self.hiddenLayers.append(HiddenLayer(
rng=rng,
input=self.hiddenLayers[i-1].output,
batch_s=batch_s,
n_in=n_hidden[i-1],
n_out=n_hidden[i],
kernel=kernel)
)
# The logistic regression layer gets as input the hidden units
# of the hidden layer
self.logRegressionLayer = LogisticRegression(
input=self.hiddenLayers[-1].output,
n_in=n_hidden[-1],
n_out=n_out
)
# L1 norm ; one regularization option is to enforce L1 norm to
# be small. Weights (W) mostly zero, approach the Gaussian kernels nearly to the origin.
# The width values are not desirable to be nearly zero
self.L1 = (
numpy.array([abs(self.hiddenLayers[i].W).sum() for i in xrange(len(n_hidden))]).sum()
+ numpy.array([abs(self.hiddenLayers[i].s ** 2).sum() for i in xrange(len(n_hidden))]).sum()
+ abs(self.logRegressionLayer.W).sum()
)
# square of L2 norm ; one regularization option is to enforce
# square of L2 norm to be small
self.L2_sqr = (
numpy.array([abs(self.hiddenLayers[i].W ** 2).sum() for i in xrange(len(n_hidden))]).sum()
+ numpy.array([abs(self.hiddenLayers[i].s ** 2).sum() for i in xrange(len(n_hidden))]).sum()
+ (self.logRegressionLayer.W ** 2).sum()
)
# negative log likelihood of the mlRKHS is given by the negative
# log likelihood of the output of the model, computed in the
# logistic regression layer
self.negative_log_likelihood = (
self.logRegressionLayer.negative_log_likelihood
)
# same holds for the function computing the number of errors
self.errors = self.logRegressionLayer.errors
# here are the predicted outputs
self.y_pred = self.logRegressionLayer.y_pred
# the parameters of the model are the parameters of the N layers it is
# made out of
self.params = []
for i in xrange(len(n_hidden)):
self.params += self.hiddenLayers[i].params
self.params = self.params + self.logRegressionLayer.params
# keep track of model input
self.input = input
def test_mlRKHS(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000,
dataset='mnist.pkl.gz', batch_size=20, n_hidden=[10], verbose = False, kernel=None):
"""
Demonstrate stochastic gradient descent optimization for a multilayer
RKHS
This is demonstrated on MNIST.
:type learning_rate: float
:param learning_rate: learning rate used (factor for the stochastic
gradient
:type L1_reg: float
:param L1_reg: L1-norm's weight when added to the cost (see
regularization)
:type L2_reg: float
:param L2_reg: L2-norm's weight when added to the cost (see
regularization)
:type n_epochs: int
:param n_epochs: maximal number of epochs to run the optimizer
:type dataset: str
:param dataset: a marker for the input files (for now, this is the
sentence vector simensions)
"""
dim = dataset
missing_param = None
path = "/almac/ignacio/data/sts_all/"
tr_px = path + "pairs-SI/vectors_H%s/pairs_eng-SI-test-2e6-nonempty_d2v_H%s_%s_m5w8.mtx" % (dim, dim, __op)
tr_py = path + "pairs-SI/STS.gs.all-eng-SI-test-nonempty.txt"
ts_px = path + "pairs-NO/vectors_H%s/pairs_eng-NO-test-2e6-nonempty_d2v_H%s_%s_m5w8.mtx.half0" % (dim, dim, __op)
ts_py = path + "pairs-NO/STS.gs.all-eng-NO-test-nonempty-half0.txt"
vl_px = path + "pairs-NO/vectors_H%s/pairs_eng-NO-test-2e6-nonempty_d2v_H%s_%s_m5w8.mtx.half1" % (dim, dim, __op)
vl_py = path + "pairs-NO/STS.gs.all-eng-NO-test-nonempty-half1.txt"
"""
path = "/home/iarroyof/"
tr_px = path + "toy_data_2d_train.dat"
tr_py = path + "toy_labels_2d_train.dat"
ts_px = path + "toy_data_2d_test.dat"
ts_py = path + "toy_labels_2d_test.dat"
vl_px = path + "toy_data_2d_valid.dat"
vl_py = path + "toy_labels_2d_valid.dat"
"""
datasets = load_my_data(tr_px,tr_py,ts_px,ts_py,vl_px,vl_py, shared=True)
train_set_x, train_set_y = datasets[0]
valid_set_x, valid_set_y = datasets[1]
test_set_x, test_set_y = datasets[2]
print ("Shapes, train: %s, valid: %s, test: %s" % (train_set_x.get_value().shape, valid_set_x.get_value().shape, test_set_x.get_value().shape))
train_samples = train_set_x.get_value(borrow=True).shape[0]
n_train_batches = train_samples // batch_size
valid_samples = valid_set_x.get_value(borrow=True).shape[0]
n_valid_batches = valid_samples // batch_size
test_samples = test_set_x.get_value(borrow=True).shape[0]
n_test_batches = test_samples // batch_size
in_dimensions = train_set_x.get_value(borrow=True).shape[1]
assert (train_set_x.get_value(borrow=True).shape[1] \
== valid_set_x.get_value(borrow=True).shape[1] \
== test_set_x.get_value(borrow=True).shape[1]) # verify dataset dimensions
#k_classes = max(train_set_y) + 1 # for 0-based class index
k_classes = T.max(train_set_y, axis=0).eval() + 1
######################
# BUILD ACTUAL MODEL #
######################
# allocate symbolic variables for the data
index = T.lscalar() # index to a [mini]batch
x = T.matrix('x') # the data is presented as rasterized images
y = T.ivector('y') # the labels are presented as 1D vector of
# [int] labels
rng = numpy.random.RandomState()
# construct the classifier class
classifier = mlRKHS(
rng=rng,
input=x,
batch_s=batch_size,
n_in=in_dimensions,
n_hidden=n_hidden,
n_out=k_classes,
kernel=kernel
)
# the cost we minimize during training is the negative log likelihood of
# the model plus the regularization terms (L1 and L2); cost is expressed
# here symbolically
cost = (
classifier.negative_log_likelihood(y)
+ L1_reg * classifier.L1
+ L2_reg * classifier.L2_sqr
)
# compiling a Theano function that computes the mistakes that are made
# by the model on a minibatch
test_model = theano.function(
inputs=[index],
outputs=classifier.errors(y),
givens={
x: test_set_x[index * batch_size:(index + 1) * batch_size],
y: test_set_y[index * batch_size:(index + 1) * batch_size]
},
on_unused_input=missing_param
)
validate_model = theano.function(
inputs=[index],
outputs=classifier.errors(y),
givens={
x: valid_set_x[index * batch_size:(index + 1) * batch_size],
y: valid_set_y[index * batch_size:(index + 1) * batch_size]
},
on_unused_input=missing_param
)
# compute the gradient of cost with respect to theta (sorted in params)
# the resulting gradients will be stored in a list gparams
gparams = [T.grad(cost, param, disconnected_inputs=missing_param)
for param in classifier.params]
updates = [
(param, param - learning_rate * gparam)
for param, gparam in zip(classifier.params, gparams)
]
train_model = theano.function(
inputs=[index],
outputs=cost,
updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size],
y: train_set_y[index * batch_size: (index + 1) * batch_size]
},
on_unused_input=missing_param
)
###############
# TRAIN MODEL #
###############
# early-stopping parameters
patience = 10000 # look as this many examples regardless
patience_increase = 2 # wait this much longer when a new best is
# found
improvement_threshold = 0.995 # a relative improvement of this much is
# considered significant
validation_frequency = min(n_train_batches, patience // 2)
# go through this many
# minibatche before checking the network
# on the validation set; in this case we
# check every epoch
best_validation_loss = numpy.inf
best_iter = 0
test_score = 0.
start_time = timeit.default_timer()
epoch = 0
done_looping = False
while (epoch < n_epochs) and (not done_looping):
epoch = epoch + 1
for minibatch_index in range(n_train_batches):
minibatch_avg_cost = train_model(minibatch_index)
# iteration number
iter = (epoch - 1) * n_train_batches + minibatch_index
if (iter + 1) % validation_frequency == 0:
# compute zero-one loss on validation set
validation_losses = [validate_model(i) for i in range(n_valid_batches)]
this_validation_loss = numpy.mean(validation_losses)
if verbose:
print(
'epoch %i, minibatch %i/%i, validation error %f %%' %
(
epoch,
minibatch_index + 1,
n_train_batches,
this_validation_loss * 100.
)
)
# if we got the best validation score until now
if this_validation_loss < best_validation_loss:
#improve patience if loss improvement is good enough
if (
this_validation_loss < best_validation_loss *
improvement_threshold
):
patience = max(patience, iter * patience_increase)
best_validation_loss = this_validation_loss
best_iter = iter
# test it on the test set
test_losses = [test_model(i) for i in range(n_test_batches)]
test_score = numpy.mean(test_losses)
if verbose:
print((' epoch %i, minibatch %i/%i, test error of '
'best model %f %%') %
(epoch, minibatch_index + 1, n_train_batches,
test_score * 100.))
if patience <= iter:
done_looping = True
break
end_time = timeit.default_timer()
print('Run time required: %.2fm' % ((end_time - start_time) / 60.))
return best_iter + 1, best_validation_loss * 100.0, test_score * 100.0, classifier
def predict(model, dim):
"""
An example of how to load a trained model and use it
to predict labels.
"""
# We can test it on some examples from test test
path = "/almac/ignacio/data/sts_all/"
tr_px = path + "pairs-SI/vectors_H%s/pairs_eng-SI-test-2e6-nonempty_d2v_H%s_%s_m5w8.mtx" % (dim, dim, __op)
tr_py = path + "pairs-SI/STS.gs.all-eng-SI-test-nonempty.txt"
ts_px = path + "pairs-NO/vectors_H%s/pairs_eng-NO-test-2e6-nonempty_d2v_H%s_%s_m5w8.mtx.half0" % (dim, dim, __op)
ts_py = path + "pairs-NO/STS.gs.all-eng-NO-test-nonempty-half0.txt"
vl_px = path + "pairs-NO/vectors_H%s/pairs_eng-NO-test-2e6-nonempty_d2v_H%s_%s_m5w8.mtx.half1" % (dim, dim, __op)
vl_py = path + "pairs-NO/STS.gs.all-eng-NO-test-nonempty-half1.txt"
# load the saved model
with open(model, 'rb') as f:
classifier = dill.load(f)
# compile a predictor function
predict_model = theano.function(
inputs=[classifier.input],
outputs=classifier.y_pred
)
datasets = load_my_data(tr_px,tr_py,ts_px,ts_py,vl_px,vl_py, shared=True)
test_set_x, test_set_y = datasets[2]
test_set_x = test_set_x.get_value()
predicted_values = predict_model(test_set_x)
return predicted_values
if __name__ == '__main__':
from ast import literal_eval
from argparse import ArgumentParser as ap
parser = ap(description='This script trains/applies a Multi-Layer RKHS over any input dataset of numerical representations. The main aim is to determine a set of learning parameters and architecture.')
parser.add_argument("--hidden", help="Size of the hidden layer", metavar="hidden", default=100)
parser.add_argument("--dims", help="Size of the input layer", metavar="dims", default=2)
parser.add_argument("--lrate", help="The learning rate", metavar="lrate", default=0.01)
parser.add_argument("--predict", help="Predict by loading an existent mode or train a new model (specify the file name of the trained model)", metavar="predict", default=None)
parser.add_argument("--l1_reg", help="L1 regularization parameter", metavar="l1_reg", default=0.0)
parser.add_argument("--l2_reg", help="L2 regularization parameter", metavar="l2_reg", default=0.00010)
parser.add_argument("--n_epochs", help="Maximum number of training epochs", metavar="n_epochs", default=1000)
parser.add_argument("--batch", help="Size of the training mini batch", metavar="batch", default=20)
parser.add_argument("--kernel", help="The activation RKHS function", metavar="kernel", default=None)
parser.add_argument("--save", help="Toggles whether you want to save the learned model", action="store_true")
args = parser.parse_args()
if not args.predict:
best_iter, best_validation_loss, test_score, model = test_mlRKHS(learning_rate=float(args.lrate), batch_size=20,
n_epochs=int(args.n_epochs),
n_hidden=literal_eval(args.hidden),
dataset=int(args.dims), verbose=True,
L1_reg=float(args.l1_reg), L2_reg=float(args.l2_reg),
kernel=args.kernel )
if args.save:
with open("mlRKHS_STS-all_H%s_idim%s.pkl" % (args.hidden, args.dims), 'wb') as f:
dill.dump(model, f)
with open("mlrk.out", "a") as f:
f.write("%f\t%i\t%f\t%d\t%s\t%s\t%s\t%s\t%s\t%s\n" % (best_validation_loss, best_iter,
test_score, int(args.dims),
args.hidden, args.lrate, args.n_epochs,
args.l1_reg, args.l2_reg, args.kernel))
print("Validation score | Iteration | test performance | Dims | Hidden | Learning rate | N epochs | L1 regularizer | L2 regularizer")
print("%f\t%i\t%f\t%d\t%s\t%s\t%s\t%s\t%s\t%s\n" % (best_validation_loss, best_iter,
test_score, int(args.dims),
args.hidden, args.lrate, args.n_epochs,
args.l1_reg, args.l2_reg, args.kernel))
else:
y_pred = predict(args.predict, int(args.dims))
for item in y_pred:
print (item)