forked from junyanz/pytorch-CycleGAN-and-pix2pix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nohup.out
872 lines (872 loc) · 66.5 KB
/
nohup.out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
------------ Options -------------
batchSize: 1
beta1: 0.5
checkpoints_dir: ./checkpoints
continue_train: False
dataroot: ./datasets/Transfert
dataset_mode: unaligned
display_freq: 100
display_id: 1
display_port: 8097
display_single_pane_ncols: 0
display_winsize: 256
fineHeight: 1024
fineSize: 128
gpu_ids: [0]
identity: 0.0
input_nc: 3
isTrain: True
lambda_A: 10.0
lambda_B: 10.0
loadHeight: 1024
loadSize: 128
lr: 0.0002
max_dataset_size: inf
model: cycle_gan
nThreads: 2
n_layers_D: 3
name: Transfert200_cyclegan
ndf: 64
ngf: 64
niter: 200
niter_decay: 200
no_flip: True
no_html: False
no_lsgan: False
norm: instance
output_nc: 3
phase: train
pool_size: 50
print_freq: 100
resize_or_crop: no_resize
save_epoch_freq: 5
save_latest_freq: 5000
serial_batches: False
use_dropout: False
which_direction: AtoB
which_epoch: latest
which_model_netD: basic
which_model_netG: resnet_9blocks
-------------- End ----------------
CustomDatasetDataLoader
dataset [UnalignedDataset] was created
#training images = 645
cycle_gan
---------- Networks initialized -------------
ResnetGenerator (
(model): Sequential (
(0): Conv2d(3, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))
(1): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(4): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU (inplace)
(6): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(7): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(8): ReLU (inplace)
(9): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(10): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(11): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(12): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(13): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(14): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(15): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(16): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(17): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(18): ConvTranspose2d(256, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(19): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(20): ReLU (inplace)
(21): ConvTranspose2d(128, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(22): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
(23): ReLU (inplace)
(24): Conv2d(64, 3, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))
(25): Tanh ()
)
)
Total number of parameters: 11388675
ResnetGenerator (
(model): Sequential (
(0): Conv2d(3, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))
(1): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(4): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU (inplace)
(6): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(7): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(8): ReLU (inplace)
(9): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(10): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(11): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(12): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(13): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(14): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(15): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(16): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(17): ResnetBlock (
(conv_block): Sequential (
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(18): ConvTranspose2d(256, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(19): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(20): ReLU (inplace)
(21): ConvTranspose2d(128, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(22): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
(23): ReLU (inplace)
(24): Conv2d(64, 3, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))
(25): Tanh ()
)
)
Total number of parameters: 11388675
NLayerDiscriminator (
(model): Sequential (
(0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(1): LeakyReLU (0.2, inplace)
(2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(3): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(4): LeakyReLU (0.2, inplace)
(5): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(7): LeakyReLU (0.2, inplace)
(8): Conv2d(256, 512, kernel_size=(4, 4), stride=(1, 1), padding=(1, 1))
(9): InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
(10): LeakyReLU (0.2, inplace)
(11): Conv2d(512, 1, kernel_size=(4, 4), stride=(1, 1), padding=(1, 1))
)
)
Total number of parameters: 2766529
NLayerDiscriminator (
(model): Sequential (
(0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(1): LeakyReLU (0.2, inplace)
(2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(3): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(4): LeakyReLU (0.2, inplace)
(5): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(7): LeakyReLU (0.2, inplace)
(8): Conv2d(256, 512, kernel_size=(4, 4), stride=(1, 1), padding=(1, 1))
(9): InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
(10): LeakyReLU (0.2, inplace)
(11): Conv2d(512, 1, kernel_size=(4, 4), stride=(1, 1), padding=(1, 1))
)
)
Total number of parameters: 2766529
-----------------------------------------------
model [CycleGANModel] was created
create web directory ./checkpoints/Transfert200_cyclegan/web...
(epoch: 1, iters: 100, time: 0.787) D_A: 0.415 G_A: 0.723 Cyc_A: 3.798 D_B: 0.611 G_B: 0.959 Cyc_B: 3.305
(epoch: 1, iters: 200, time: 0.796) D_A: 0.169 G_A: 0.236 Cyc_A: 3.764 D_B: 0.352 G_B: 0.323 Cyc_B: 3.071
(epoch: 1, iters: 300, time: 0.756) D_A: 0.129 G_A: 0.210 Cyc_A: 3.779 D_B: 0.325 G_B: 0.702 Cyc_B: 2.989
(epoch: 1, iters: 400, time: 0.786) D_A: 0.134 G_A: 0.357 Cyc_A: 3.748 D_B: 0.273 G_B: 0.103 Cyc_B: 2.939
(epoch: 1, iters: 500, time: 0.735) D_A: 0.172 G_A: 0.440 Cyc_A: 3.853 D_B: 0.165 G_B: 0.641 Cyc_B: 3.059
(epoch: 1, iters: 600, time: 0.899) D_A: 0.156 G_A: 0.822 Cyc_A: 3.008 D_B: 0.227 G_B: 0.140 Cyc_B: 3.233
End of epoch 1 / 400 Time Taken: 327 sec
(epoch: 2, iters: 55, time: 0.764) D_A: 0.222 G_A: 0.326 Cyc_A: 3.151 D_B: 0.215 G_B: 0.386 Cyc_B: 2.784
(epoch: 2, iters: 155, time: 0.785) D_A: 0.171 G_A: 0.373 Cyc_A: 3.053 D_B: 0.252 G_B: 0.093 Cyc_B: 2.836
(epoch: 2, iters: 255, time: 0.776) D_A: 0.167 G_A: 0.448 Cyc_A: 3.242 D_B: 0.219 G_B: 0.636 Cyc_B: 2.889
(epoch: 2, iters: 355, time: 0.825) D_A: 0.356 G_A: 0.236 Cyc_A: 3.294 D_B: 0.150 G_B: 0.473 Cyc_B: 2.727
(epoch: 2, iters: 455, time: 0.777) D_A: 0.266 G_A: 0.635 Cyc_A: 3.206 D_B: 0.324 G_B: 0.129 Cyc_B: 2.606
(epoch: 2, iters: 555, time: 0.748) D_A: 0.276 G_A: 0.159 Cyc_A: 3.187 D_B: 0.248 G_B: 0.368 Cyc_B: 2.518
End of epoch 2 / 400 Time Taken: 331 sec
(epoch: 3, iters: 10, time: 0.803) D_A: 0.037 G_A: 0.084 Cyc_A: 3.457 D_B: 0.166 G_B: 0.397 Cyc_B: 2.744
(epoch: 3, iters: 110, time: 0.748) D_A: 0.221 G_A: 0.208 Cyc_A: 2.859 D_B: 0.262 G_B: 0.169 Cyc_B: 2.671
(epoch: 3, iters: 210, time: 0.807) D_A: 0.113 G_A: 0.224 Cyc_A: 3.046 D_B: 0.211 G_B: 0.120 Cyc_B: 2.676
(epoch: 3, iters: 310, time: 0.781) D_A: 0.164 G_A: 0.375 Cyc_A: 3.205 D_B: 0.285 G_B: 0.258 Cyc_B: 2.626
(epoch: 3, iters: 410, time: 0.732) D_A: 0.222 G_A: 0.210 Cyc_A: 3.279 D_B: 0.209 G_B: 0.229 Cyc_B: 2.591
(epoch: 3, iters: 510, time: 0.758) D_A: 0.281 G_A: 0.070 Cyc_A: 3.061 D_B: 0.118 G_B: 0.048 Cyc_B: 2.972
(epoch: 3, iters: 610, time: 0.819) D_A: 0.443 G_A: 0.072 Cyc_A: 3.093 D_B: 0.130 G_B: 0.408 Cyc_B: 2.533
End of epoch 3 / 400 Time Taken: 331 sec
(epoch: 4, iters: 65, time: 0.749) D_A: 0.150 G_A: 0.176 Cyc_A: 2.952 D_B: 0.160 G_B: 0.210 Cyc_B: 2.589
(epoch: 4, iters: 165, time: 0.777) D_A: 0.251 G_A: 0.263 Cyc_A: 2.953 D_B: 0.250 G_B: 0.190 Cyc_B: 2.635
(epoch: 4, iters: 265, time: 0.792) D_A: 0.257 G_A: 0.354 Cyc_A: 3.191 D_B: 0.200 G_B: 0.393 Cyc_B: 2.348
(epoch: 4, iters: 365, time: 0.807) D_A: 0.126 G_A: 0.359 Cyc_A: 2.644 D_B: 0.062 G_B: 0.069 Cyc_B: 2.615
(epoch: 4, iters: 465, time: 0.786) D_A: 0.276 G_A: 0.115 Cyc_A: 2.835 D_B: 0.175 G_B: 0.508 Cyc_B: 2.501
(epoch: 4, iters: 565, time: 0.843) D_A: 0.230 G_A: 0.086 Cyc_A: 2.335 D_B: 0.090 G_B: 0.336 Cyc_B: 2.563
End of epoch 4 / 400 Time Taken: 331 sec
(epoch: 5, iters: 20, time: 0.763) D_A: 0.134 G_A: 0.274 Cyc_A: 2.995 D_B: 0.119 G_B: 0.088 Cyc_B: 2.553
(epoch: 5, iters: 120, time: 0.788) D_A: 0.245 G_A: 0.223 Cyc_A: 2.918 D_B: 0.317 G_B: 0.342 Cyc_B: 2.409
(epoch: 5, iters: 220, time: 0.816) D_A: 0.127 G_A: 0.508 Cyc_A: 2.393 D_B: 0.175 G_B: 0.605 Cyc_B: 2.595
(epoch: 5, iters: 320, time: 0.850) D_A: 0.202 G_A: 0.328 Cyc_A: 2.342 D_B: 0.208 G_B: 0.538 Cyc_B: 2.389
(epoch: 5, iters: 420, time: 0.806) D_A: 0.157 G_A: 0.401 Cyc_A: 2.646 D_B: 0.287 G_B: 0.228 Cyc_B: 2.493
(epoch: 5, iters: 520, time: 0.828) D_A: 0.266 G_A: 0.162 Cyc_A: 2.874 D_B: 0.279 G_B: 0.163 Cyc_B: 2.189
(epoch: 5, iters: 620, time: 0.812) D_A: 0.092 G_A: 0.208 Cyc_A: 2.486 D_B: 0.167 G_B: 0.270 Cyc_B: 2.295
saving the model at the end of epoch 5, iters 3225
End of epoch 5 / 400 Time Taken: 332 sec
(epoch: 6, iters: 75, time: 0.782) D_A: 0.140 G_A: 0.317 Cyc_A: 3.053 D_B: 0.289 G_B: 0.420 Cyc_B: 2.321
(epoch: 6, iters: 175, time: 0.728) D_A: 0.296 G_A: 0.079 Cyc_A: 3.195 D_B: 0.039 G_B: 0.910 Cyc_B: 2.360
(epoch: 6, iters: 275, time: 0.767) D_A: 0.162 G_A: 0.577 Cyc_A: 2.956 D_B: 0.056 G_B: 0.733 Cyc_B: 2.194
(epoch: 6, iters: 375, time: 0.790) D_A: 0.169 G_A: 0.391 Cyc_A: 2.075 D_B: 0.246 G_B: 0.562 Cyc_B: 2.165
(epoch: 6, iters: 475, time: 0.781) D_A: 0.065 G_A: 0.209 Cyc_A: 2.168 D_B: 0.333 G_B: 0.065 Cyc_B: 2.109
(epoch: 6, iters: 575, time: 0.819) D_A: 0.200 G_A: 0.568 Cyc_A: 2.192 D_B: 0.152 G_B: 0.332 Cyc_B: 2.215
End of epoch 6 / 400 Time Taken: 331 sec
(epoch: 7, iters: 30, time: 0.786) D_A: 0.234 G_A: 0.146 Cyc_A: 2.776 D_B: 0.117 G_B: 0.125 Cyc_B: 2.154
(epoch: 7, iters: 130, time: 0.784) D_A: 0.127 G_A: 0.636 Cyc_A: 3.516 D_B: 0.205 G_B: 0.276 Cyc_B: 2.443
(epoch: 7, iters: 230, time: 0.791) D_A: 0.127 G_A: 0.421 Cyc_A: 2.669 D_B: 0.277 G_B: 0.157 Cyc_B: 2.259
(epoch: 7, iters: 330, time: 0.808) D_A: 0.220 G_A: 0.532 Cyc_A: 2.652 D_B: 0.293 G_B: 0.125 Cyc_B: 2.030
(epoch: 7, iters: 430, time: 0.840) D_A: 0.139 G_A: 0.543 Cyc_A: 2.259 D_B: 0.251 G_B: 0.217 Cyc_B: 2.170
(epoch: 7, iters: 530, time: 0.792) D_A: 0.158 G_A: 0.476 Cyc_A: 1.829 D_B: 0.201 G_B: 0.065 Cyc_B: 2.223
(epoch: 7, iters: 630, time: 0.787) D_A: 0.141 G_A: 0.686 Cyc_A: 2.651 D_B: 0.119 G_B: 0.051 Cyc_B: 2.175
End of epoch 7 / 400 Time Taken: 331 sec
(epoch: 8, iters: 85, time: 0.773) D_A: 0.086 G_A: 0.137 Cyc_A: 2.315 D_B: 0.097 G_B: 0.019 Cyc_B: 2.186
(epoch: 8, iters: 185, time: 0.736) D_A: 0.185 G_A: 0.490 Cyc_A: 2.749 D_B: 0.440 G_B: 0.023 Cyc_B: 2.077
(epoch: 8, iters: 285, time: 0.796) D_A: 0.162 G_A: 0.718 Cyc_A: 2.504 D_B: 0.214 G_B: 0.233 Cyc_B: 2.053
(epoch: 8, iters: 385, time: 0.859) D_A: 0.260 G_A: 0.532 Cyc_A: 1.787 D_B: 0.099 G_B: 0.489 Cyc_B: 2.552
(epoch: 8, iters: 485, time: 0.747) D_A: 0.036 G_A: 0.063 Cyc_A: 2.854 D_B: 0.303 G_B: 0.145 Cyc_B: 2.062
saving the latest model (epoch 8, total_steps 5000)
(epoch: 8, iters: 585, time: 0.791) D_A: 0.039 G_A: 0.486 Cyc_A: 2.695 D_B: 0.231 G_B: 0.377 Cyc_B: 2.158
End of epoch 8 / 400 Time Taken: 330 sec
(epoch: 9, iters: 40, time: 0.734) D_A: 0.082 G_A: 0.382 Cyc_A: 2.699 D_B: 0.133 G_B: 0.334 Cyc_B: 2.099
(epoch: 9, iters: 140, time: 0.771) D_A: 0.277 G_A: 0.164 Cyc_A: 2.575 D_B: 0.111 G_B: 0.549 Cyc_B: 1.972
(epoch: 9, iters: 240, time: 0.758) D_A: 0.102 G_A: 0.076 Cyc_A: 2.275 D_B: 0.128 G_B: 0.157 Cyc_B: 1.980
(epoch: 9, iters: 340, time: 0.795) D_A: 0.211 G_A: 0.192 Cyc_A: 1.908 D_B: 0.162 G_B: 0.300 Cyc_B: 1.953
(epoch: 9, iters: 440, time: 0.752) D_A: 0.357 G_A: 0.063 Cyc_A: 2.492 D_B: 0.112 G_B: 0.191 Cyc_B: 1.992
(epoch: 9, iters: 540, time: 0.725) D_A: 0.202 G_A: 0.264 Cyc_A: 2.638 D_B: 0.159 G_B: 0.287 Cyc_B: 1.945
(epoch: 9, iters: 640, time: 0.821) D_A: 0.130 G_A: 0.465 Cyc_A: 1.824 D_B: 0.143 G_B: 0.285 Cyc_B: 2.171
End of epoch 9 / 400 Time Taken: 329 sec
(epoch: 10, iters: 95, time: 0.858) D_A: 0.059 G_A: 0.342 Cyc_A: 2.046 D_B: 0.322 G_B: 0.357 Cyc_B: 1.924
(epoch: 10, iters: 195, time: 0.853) D_A: 0.441 G_A: 0.025 Cyc_A: 1.756 D_B: 0.178 G_B: 0.276 Cyc_B: 1.965
(epoch: 10, iters: 295, time: 0.799) D_A: 0.033 G_A: 1.006 Cyc_A: 2.607 D_B: 0.145 G_B: 0.860 Cyc_B: 2.097
(epoch: 10, iters: 395, time: 0.755) D_A: 0.197 G_A: 0.519 Cyc_A: 2.617 D_B: 0.101 G_B: 0.121 Cyc_B: 2.088
(epoch: 10, iters: 495, time: 0.820) D_A: 0.161 G_A: 0.508 Cyc_A: 2.496 D_B: 0.245 G_B: 0.344 Cyc_B: 1.819
(epoch: 10, iters: 595, time: 0.824) D_A: 0.037 G_A: 0.078 Cyc_A: 2.562 D_B: 0.239 G_B: 0.579 Cyc_B: 2.024
saving the model at the end of epoch 10, iters 6450
End of epoch 10 / 400 Time Taken: 332 sec
(epoch: 11, iters: 50, time: 0.760) D_A: 0.105 G_A: 0.593 Cyc_A: 2.154 D_B: 0.213 G_B: 0.261 Cyc_B: 2.132
(epoch: 11, iters: 150, time: 0.774) D_A: 0.081 G_A: 0.709 Cyc_A: 2.631 D_B: 0.114 G_B: 0.398 Cyc_B: 1.991
(epoch: 11, iters: 250, time: 0.796) D_A: 0.106 G_A: 0.521 Cyc_A: 2.627 D_B: 0.507 G_B: 0.060 Cyc_B: 2.034
(epoch: 11, iters: 350, time: 0.793) D_A: 0.220 G_A: 0.185 Cyc_A: 2.501 D_B: 0.115 G_B: 0.333 Cyc_B: 1.970
(epoch: 11, iters: 450, time: 0.811) D_A: 0.117 G_A: 0.348 Cyc_A: 2.256 D_B: 0.085 G_B: 0.307 Cyc_B: 1.908
(epoch: 11, iters: 550, time: 0.822) D_A: 0.046 G_A: 0.067 Cyc_A: 2.023 D_B: 0.068 G_B: 0.446 Cyc_B: 1.994
End of epoch 11 / 400 Time Taken: 331 sec
(epoch: 12, iters: 5, time: 0.868) D_A: 0.159 G_A: 0.088 Cyc_A: 1.716 D_B: 0.068 G_B: 0.295 Cyc_B: 1.792
(epoch: 12, iters: 105, time: 0.805) D_A: 0.080 G_A: 0.438 Cyc_A: 2.375 D_B: 0.099 G_B: 0.264 Cyc_B: 1.891
(epoch: 12, iters: 205, time: 0.893) D_A: 0.137 G_A: 0.452 Cyc_A: 1.298 D_B: 0.130 G_B: 0.114 Cyc_B: 1.687
(epoch: 12, iters: 305, time: 0.919) D_A: 0.140 G_A: 0.667 Cyc_A: 1.714 D_B: 0.118 G_B: 0.244 Cyc_B: 1.810
(epoch: 12, iters: 405, time: 0.804) D_A: 0.100 G_A: 0.447 Cyc_A: 2.622 D_B: 0.234 G_B: 0.155 Cyc_B: 1.739
(epoch: 12, iters: 505, time: 0.823) D_A: 0.069 G_A: 0.927 Cyc_A: 2.249 D_B: 0.091 G_B: 0.460 Cyc_B: 1.730
(epoch: 12, iters: 605, time: 0.929) D_A: 0.038 G_A: 0.094 Cyc_A: 2.136 D_B: 0.277 G_B: 0.130 Cyc_B: 1.681
End of epoch 12 / 400 Time Taken: 331 sec
(epoch: 13, iters: 60, time: 0.779) D_A: 0.083 G_A: 0.529 Cyc_A: 2.393 D_B: 0.212 G_B: 0.371 Cyc_B: 1.841
(epoch: 13, iters: 160, time: 0.792) D_A: 0.058 G_A: 0.343 Cyc_A: 2.210 D_B: 0.274 G_B: 0.442 Cyc_B: 1.719
(epoch: 13, iters: 260, time: 0.813) D_A: 0.170 G_A: 1.134 Cyc_A: 2.336 D_B: 0.273 G_B: 0.313 Cyc_B: 1.736
(epoch: 13, iters: 360, time: 0.854) D_A: 0.231 G_A: 0.684 Cyc_A: 1.288 D_B: 0.192 G_B: 0.232 Cyc_B: 1.741
(epoch: 13, iters: 460, time: 0.864) D_A: 0.265 G_A: 1.081 Cyc_A: 1.784 D_B: 0.253 G_B: 0.299 Cyc_B: 1.856
(epoch: 13, iters: 560, time: 0.805) D_A: 0.212 G_A: 0.285 Cyc_A: 2.296 D_B: 0.278 G_B: 0.260 Cyc_B: 1.628
End of epoch 13 / 400 Time Taken: 329 sec
(epoch: 14, iters: 15, time: 0.819) D_A: 0.276 G_A: 0.150 Cyc_A: 2.233 D_B: 0.148 G_B: 0.365 Cyc_B: 1.378
(epoch: 14, iters: 115, time: 0.847) D_A: 0.156 G_A: 0.356 Cyc_A: 1.533 D_B: 0.295 G_B: 0.275 Cyc_B: 1.512
(epoch: 14, iters: 215, time: 0.789) D_A: 0.078 G_A: 0.508 Cyc_A: 1.645 D_B: 0.136 G_B: 0.233 Cyc_B: 1.635
(epoch: 14, iters: 315, time: 0.831) D_A: 0.048 G_A: 0.754 Cyc_A: 1.693 D_B: 0.183 G_B: 0.302 Cyc_B: 1.620
(epoch: 14, iters: 415, time: 0.913) D_A: 0.028 G_A: 0.383 Cyc_A: 1.225 D_B: 0.088 G_B: 0.351 Cyc_B: 1.580
(epoch: 14, iters: 515, time: 0.855) D_A: 0.046 G_A: 0.123 Cyc_A: 1.467 D_B: 0.250 G_B: 0.123 Cyc_B: 1.911
(epoch: 14, iters: 615, time: 0.806) D_A: 0.127 G_A: 0.583 Cyc_A: 2.413 D_B: 0.270 G_B: 0.287 Cyc_B: 1.606
End of epoch 14 / 400 Time Taken: 332 sec
(epoch: 15, iters: 70, time: 0.795) D_A: 0.039 G_A: 0.344 Cyc_A: 2.273 D_B: 0.288 G_B: 0.194 Cyc_B: 1.765
(epoch: 15, iters: 170, time: 0.808) D_A: 0.058 G_A: 0.877 Cyc_A: 2.167 D_B: 0.278 G_B: 0.294 Cyc_B: 1.562
(epoch: 15, iters: 270, time: 0.779) D_A: 0.017 G_A: 0.733 Cyc_A: 2.189 D_B: 0.149 G_B: 0.143 Cyc_B: 1.679
(epoch: 15, iters: 370, time: 0.803) D_A: 0.124 G_A: 0.661 Cyc_A: 1.857 D_B: 0.119 G_B: 0.178 Cyc_B: 2.160
(epoch: 15, iters: 470, time: 0.841) D_A: 0.060 G_A: 0.356 Cyc_A: 1.946 D_B: 0.150 G_B: 0.076 Cyc_B: 1.752
(epoch: 15, iters: 570, time: 0.791) D_A: 0.034 G_A: 0.529 Cyc_A: 2.247 D_B: 0.222 G_B: 0.292 Cyc_B: 1.595
saving the model at the end of epoch 15, iters 9675
End of epoch 15 / 400 Time Taken: 331 sec
(epoch: 16, iters: 25, time: 0.835) D_A: 0.088 G_A: 0.354 Cyc_A: 1.465 D_B: 0.092 G_B: 0.456 Cyc_B: 1.514
(epoch: 16, iters: 125, time: 0.805) D_A: 0.060 G_A: 0.761 Cyc_A: 2.053 D_B: 0.262 G_B: 0.147 Cyc_B: 1.484
(epoch: 16, iters: 225, time: 0.794) D_A: 0.054 G_A: 0.762 Cyc_A: 2.195 D_B: 0.254 G_B: 0.164 Cyc_B: 1.687
(epoch: 16, iters: 325, time: 0.783) D_A: 0.314 G_A: 0.623 Cyc_A: 2.134 D_B: 0.211 G_B: 0.212 Cyc_B: 1.636
saving the latest model (epoch 16, total_steps 10000)
(epoch: 16, iters: 425, time: 0.839) D_A: 0.194 G_A: 0.394 Cyc_A: 1.677 D_B: 0.203 G_B: 0.113 Cyc_B: 1.578
(epoch: 16, iters: 525, time: 0.849) D_A: 0.172 G_A: 0.553 Cyc_A: 1.259 D_B: 0.084 G_B: 0.251 Cyc_B: 1.550
(epoch: 16, iters: 625, time: 0.836) D_A: 0.028 G_A: 0.868 Cyc_A: 2.064 D_B: 0.177 G_B: 0.308 Cyc_B: 1.600
End of epoch 16 / 400 Time Taken: 330 sec
(epoch: 17, iters: 80, time: 0.753) D_A: 0.268 G_A: 0.099 Cyc_A: 2.228 D_B: 0.065 G_B: 0.271 Cyc_B: 1.485
(epoch: 17, iters: 180, time: 0.793) D_A: 0.035 G_A: 0.664 Cyc_A: 2.089 D_B: 0.228 G_B: 0.375 Cyc_B: 1.657
(epoch: 17, iters: 280, time: 0.765) D_A: 0.050 G_A: 0.716 Cyc_A: 2.052 D_B: 0.249 G_B: 0.254 Cyc_B: 1.474
(epoch: 17, iters: 380, time: 0.816) D_A: 0.040 G_A: 0.914 Cyc_A: 1.797 D_B: 0.153 G_B: 0.392 Cyc_B: 1.488
(epoch: 17, iters: 480, time: 0.792) D_A: 0.136 G_A: 0.356 Cyc_A: 2.013 D_B: 0.274 G_B: 0.451 Cyc_B: 1.549
(epoch: 17, iters: 580, time: 0.786) D_A: 0.047 G_A: 0.083 Cyc_A: 2.147 D_B: 0.263 G_B: 0.307 Cyc_B: 1.508
End of epoch 17 / 400 Time Taken: 329 sec
(epoch: 18, iters: 35, time: 0.861) D_A: 0.022 G_A: 0.223 Cyc_A: 1.216 D_B: 0.048 G_B: 0.304 Cyc_B: 1.360
(epoch: 18, iters: 135, time: 0.860) D_A: 0.128 G_A: 0.345 Cyc_A: 1.300 D_B: 0.048 G_B: 0.240 Cyc_B: 1.553
(epoch: 18, iters: 235, time: 0.832) D_A: 0.053 G_A: 0.380 Cyc_A: 1.853 D_B: 0.205 G_B: 0.408 Cyc_B: 1.456
(epoch: 18, iters: 335, time: 0.786) D_A: 0.020 G_A: 0.134 Cyc_A: 2.166 D_B: 0.297 G_B: 0.319 Cyc_B: 1.464
(epoch: 18, iters: 435, time: 0.797) D_A: 0.084 G_A: 0.596 Cyc_A: 2.261 D_B: 0.197 G_B: 0.207 Cyc_B: 1.440
(epoch: 18, iters: 535, time: 0.810) D_A: 0.065 G_A: 0.681 Cyc_A: 1.626 D_B: 0.146 G_B: 0.359 Cyc_B: 1.487
(epoch: 18, iters: 635, time: 0.751) D_A: 0.183 G_A: 0.196 Cyc_A: 2.086 D_B: 0.266 G_B: 0.791 Cyc_B: 1.471
End of epoch 18 / 400 Time Taken: 328 sec
(epoch: 19, iters: 90, time: 0.866) D_A: 0.093 G_A: 0.027 Cyc_A: 1.708 D_B: 0.160 G_B: 0.299 Cyc_B: 1.551
(epoch: 19, iters: 190, time: 0.806) D_A: 0.079 G_A: 0.620 Cyc_A: 2.032 D_B: 0.155 G_B: 0.382 Cyc_B: 1.455
(epoch: 19, iters: 290, time: 0.820) D_A: 0.027 G_A: 0.710 Cyc_A: 2.006 D_B: 0.251 G_B: 0.196 Cyc_B: 1.524
(epoch: 19, iters: 390, time: 0.782) D_A: 0.192 G_A: 0.212 Cyc_A: 2.017 D_B: 0.300 G_B: 0.239 Cyc_B: 1.437
(epoch: 19, iters: 490, time: 0.819) D_A: 0.206 G_A: 0.207 Cyc_A: 1.765 D_B: 0.179 G_B: 0.338 Cyc_B: 1.345
(epoch: 19, iters: 590, time: 0.815) D_A: 0.080 G_A: 0.387 Cyc_A: 1.952 D_B: 0.208 G_B: 0.315 Cyc_B: 1.427
End of epoch 19 / 400 Time Taken: 329 sec
(epoch: 20, iters: 45, time: 0.854) D_A: 0.081 G_A: 0.288 Cyc_A: 1.214 D_B: 0.281 G_B: 0.123 Cyc_B: 1.462
(epoch: 20, iters: 145, time: 0.843) D_A: 0.102 G_A: 0.729 Cyc_A: 1.716 D_B: 0.211 G_B: 0.086 Cyc_B: 1.488
(epoch: 20, iters: 245, time: 0.831) D_A: 0.016 G_A: 1.002 Cyc_A: 1.514 D_B: 0.262 G_B: 0.247 Cyc_B: 1.512
(epoch: 20, iters: 345, time: 0.820) D_A: 0.146 G_A: 0.794 Cyc_A: 1.352 D_B: 0.243 G_B: 0.158 Cyc_B: 1.532
(epoch: 20, iters: 445, time: 0.791) D_A: 0.033 G_A: 0.381 Cyc_A: 2.341 D_B: 0.287 G_B: 0.118 Cyc_B: 1.410
(epoch: 20, iters: 545, time: 0.759) D_A: 0.112 G_A: 0.323 Cyc_A: 1.524 D_B: 0.129 G_B: 0.417 Cyc_B: 1.602
(epoch: 20, iters: 645, time: 0.739) D_A: 0.092 G_A: 0.381 Cyc_A: 1.981 D_B: 0.173 G_B: 0.384 Cyc_B: 1.407
saving the model at the end of epoch 20, iters 12900
End of epoch 20 / 400 Time Taken: 330 sec
(epoch: 21, iters: 100, time: 0.765) D_A: 0.031 G_A: 0.416 Cyc_A: 1.923 D_B: 0.267 G_B: 0.541 Cyc_B: 1.452
(epoch: 21, iters: 200, time: 0.805) D_A: 0.028 G_A: 0.803 Cyc_A: 1.639 D_B: 0.302 G_B: 0.183 Cyc_B: 1.369
(epoch: 21, iters: 300, time: 0.846) D_A: 0.019 G_A: 0.395 Cyc_A: 1.351 D_B: 0.140 G_B: 0.303 Cyc_B: 1.453
(epoch: 21, iters: 400, time: 0.843) D_A: 0.103 G_A: 0.381 Cyc_A: 1.078 D_B: 0.119 G_B: 0.298 Cyc_B: 1.400
(epoch: 21, iters: 500, time: 0.891) D_A: 0.094 G_A: 0.145 Cyc_A: 1.000 D_B: 0.106 G_B: 0.187 Cyc_B: 1.506
(epoch: 21, iters: 600, time: 0.824) D_A: 0.096 G_A: 0.599 Cyc_A: 2.117 D_B: 0.214 G_B: 0.235 Cyc_B: 2.005
End of epoch 21 / 400 Time Taken: 328 sec
(epoch: 22, iters: 55, time: 0.817) D_A: 0.106 G_A: 0.400 Cyc_A: 1.881 D_B: 0.179 G_B: 0.425 Cyc_B: 1.585
(epoch: 22, iters: 155, time: 0.809) D_A: 0.015 G_A: 0.859 Cyc_A: 1.815 D_B: 0.327 G_B: 0.417 Cyc_B: 1.536
(epoch: 22, iters: 255, time: 0.812) D_A: 0.029 G_A: 0.792 Cyc_A: 1.889 D_B: 0.224 G_B: 0.267 Cyc_B: 1.344
(epoch: 22, iters: 355, time: 0.870) D_A: 0.016 G_A: 0.802 Cyc_A: 1.948 D_B: 0.160 G_B: 0.393 Cyc_B: 1.438
(epoch: 22, iters: 455, time: 0.797) D_A: 0.019 G_A: 0.927 Cyc_A: 1.998 D_B: 0.228 G_B: 0.219 Cyc_B: 1.430
(epoch: 22, iters: 555, time: 0.793) D_A: 0.090 G_A: 0.562 Cyc_A: 1.849 D_B: 0.161 G_B: 0.110 Cyc_B: 1.475
End of epoch 22 / 400 Time Taken: 328 sec
(epoch: 23, iters: 10, time: 0.823) D_A: 0.084 G_A: 0.832 Cyc_A: 1.571 D_B: 0.185 G_B: 0.352 Cyc_B: 1.382
(epoch: 23, iters: 110, time: 0.827) D_A: 0.069 G_A: 0.860 Cyc_A: 1.907 D_B: 0.127 G_B: 0.441 Cyc_B: 1.309
(epoch: 23, iters: 210, time: 0.884) D_A: 0.237 G_A: 0.127 Cyc_A: 0.778 D_B: 0.076 G_B: 0.484 Cyc_B: 1.435
(epoch: 23, iters: 310, time: 0.815) D_A: 0.018 G_A: 0.984 Cyc_A: 1.889 D_B: 0.250 G_B: 0.248 Cyc_B: 1.320
(epoch: 23, iters: 410, time: 0.851) D_A: 0.056 G_A: 0.560 Cyc_A: 1.637 D_B: 0.113 G_B: 0.627 Cyc_B: 1.633
(epoch: 23, iters: 510, time: 0.761) D_A: 0.040 G_A: 0.142 Cyc_A: 1.963 D_B: 0.152 G_B: 0.461 Cyc_B: 1.395
(epoch: 23, iters: 610, time: 0.811) D_A: 0.194 G_A: 0.186 Cyc_A: 1.955 D_B: 0.130 G_B: 0.120 Cyc_B: 1.308
End of epoch 23 / 400 Time Taken: 328 sec
(epoch: 24, iters: 65, time: 0.757) D_A: 0.090 G_A: 0.401 Cyc_A: 1.971 D_B: 0.266 G_B: 0.307 Cyc_B: 1.434
(epoch: 24, iters: 165, time: 0.847) D_A: 0.032 G_A: 0.602 Cyc_A: 1.405 D_B: 0.236 G_B: 0.679 Cyc_B: 1.404
saving the latest model (epoch 24, total_steps 15000)
(epoch: 24, iters: 265, time: 0.815) D_A: 0.218 G_A: 0.176 Cyc_A: 1.865 D_B: 0.291 G_B: 0.133 Cyc_B: 1.409
(epoch: 24, iters: 365, time: 0.825) D_A: 0.052 G_A: 0.393 Cyc_A: 1.743 D_B: 0.162 G_B: 0.546 Cyc_B: 1.342
(epoch: 24, iters: 465, time: 0.821) D_A: 0.118 G_A: 0.805 Cyc_A: 1.549 D_B: 0.148 G_B: 0.438 Cyc_B: 1.388
(epoch: 24, iters: 565, time: 0.864) D_A: 0.024 G_A: 0.171 Cyc_A: 1.083 D_B: 0.078 G_B: 0.087 Cyc_B: 1.575
End of epoch 24 / 400 Time Taken: 331 sec
(epoch: 25, iters: 20, time: 0.809) D_A: 0.085 G_A: 0.403 Cyc_A: 1.984 D_B: 0.183 G_B: 0.586 Cyc_B: 1.378
(epoch: 25, iters: 120, time: 0.834) D_A: 0.103 G_A: 0.928 Cyc_A: 1.887 D_B: 0.176 G_B: 0.478 Cyc_B: 1.403
(epoch: 25, iters: 220, time: 0.805) D_A: 0.032 G_A: 0.568 Cyc_A: 1.902 D_B: 0.245 G_B: 0.471 Cyc_B: 1.491
(epoch: 25, iters: 320, time: 0.809) D_A: 0.032 G_A: 0.496 Cyc_A: 1.842 D_B: 0.214 G_B: 0.216 Cyc_B: 1.595
(epoch: 25, iters: 420, time: 0.839) D_A: 0.238 G_A: 0.120 Cyc_A: 1.587 D_B: 0.225 G_B: 0.184 Cyc_B: 1.435
(epoch: 25, iters: 520, time: 0.828) D_A: 0.232 G_A: 0.497 Cyc_A: 1.809 D_B: 0.160 G_B: 0.505 Cyc_B: 1.341
(epoch: 25, iters: 620, time: 0.845) D_A: 0.079 G_A: 0.969 Cyc_A: 1.663 D_B: 0.330 G_B: 0.081 Cyc_B: 1.423
saving the model at the end of epoch 25, iters 16125
End of epoch 25 / 400 Time Taken: 341 sec
(epoch: 26, iters: 75, time: 0.780) D_A: 0.062 G_A: 0.389 Cyc_A: 1.881 D_B: 0.144 G_B: 0.689 Cyc_B: 1.488
(epoch: 26, iters: 175, time: 0.790) D_A: 0.035 G_A: 0.607 Cyc_A: 1.941 D_B: 0.203 G_B: 0.304 Cyc_B: 1.334
(epoch: 26, iters: 275, time: 0.782) D_A: 0.026 G_A: 0.331 Cyc_A: 1.728 D_B: 0.107 G_B: 0.355 Cyc_B: 1.512
(epoch: 26, iters: 375, time: 0.778) D_A: 0.094 G_A: 0.848 Cyc_A: 1.873 D_B: 0.217 G_B: 0.231 Cyc_B: 1.437
(epoch: 26, iters: 475, time: 0.830) D_A: 0.066 G_A: 0.566 Cyc_A: 1.860 D_B: 0.270 G_B: 0.577 Cyc_B: 1.267
(epoch: 26, iters: 575, time: 0.824) D_A: 0.203 G_A: 0.730 Cyc_A: 1.733 D_B: 0.123 G_B: 0.225 Cyc_B: 1.364
End of epoch 26 / 400 Time Taken: 340 sec
(epoch: 27, iters: 30, time: 0.828) D_A: 0.133 G_A: 1.049 Cyc_A: 1.745 D_B: 0.114 G_B: 0.307 Cyc_B: 1.275
(epoch: 27, iters: 130, time: 0.837) D_A: 0.052 G_A: 0.247 Cyc_A: 1.665 D_B: 0.278 G_B: 0.347 Cyc_B: 1.343
(epoch: 27, iters: 230, time: 0.822) D_A: 0.061 G_A: 0.451 Cyc_A: 1.755 D_B: 0.203 G_B: 0.435 Cyc_B: 1.372
(epoch: 27, iters: 330, time: 0.824) D_A: 0.247 G_A: 0.776 Cyc_A: 1.836 D_B: 0.232 G_B: 0.142 Cyc_B: 1.348
(epoch: 27, iters: 430, time: 0.822) D_A: 0.140 G_A: 0.272 Cyc_A: 1.794 D_B: 0.121 G_B: 0.202 Cyc_B: 1.372
(epoch: 27, iters: 530, time: 0.818) D_A: 0.241 G_A: 1.265 Cyc_A: 1.924 D_B: 0.284 G_B: 0.327 Cyc_B: 1.401
(epoch: 27, iters: 630, time: 0.833) D_A: 0.209 G_A: 0.853 Cyc_A: 1.735 D_B: 0.294 G_B: 0.206 Cyc_B: 1.271
End of epoch 27 / 400 Time Taken: 341 sec
(epoch: 28, iters: 85, time: 0.855) D_A: 0.118 G_A: 0.324 Cyc_A: 1.402 D_B: 0.140 G_B: 0.241 Cyc_B: 1.297
(epoch: 28, iters: 185, time: 0.878) D_A: 0.056 G_A: 0.512 Cyc_A: 1.254 D_B: 0.129 G_B: 0.164 Cyc_B: 1.288
(epoch: 28, iters: 285, time: 0.886) D_A: 0.131 G_A: 0.256 Cyc_A: 1.154 D_B: 0.114 G_B: 0.360 Cyc_B: 1.248
(epoch: 28, iters: 385, time: 0.894) D_A: 0.044 G_A: 0.174 Cyc_A: 0.891 D_B: 0.019 G_B: 0.288 Cyc_B: 1.272
(epoch: 28, iters: 485, time: 0.865) D_A: 0.151 G_A: 0.833 Cyc_A: 1.357 D_B: 0.128 G_B: 0.230 Cyc_B: 1.383
(epoch: 28, iters: 585, time: 0.816) D_A: 0.030 G_A: 0.303 Cyc_A: 1.835 D_B: 0.225 G_B: 0.369 Cyc_B: 1.298
End of epoch 28 / 400 Time Taken: 341 sec
(epoch: 29, iters: 40, time: 0.831) D_A: 0.098 G_A: 0.562 Cyc_A: 1.888 D_B: 0.260 G_B: 0.130 Cyc_B: 1.306
(epoch: 29, iters: 140, time: 0.862) D_A: 0.110 G_A: 0.395 Cyc_A: 1.549 D_B: 0.181 G_B: 0.529 Cyc_B: 1.294
(epoch: 29, iters: 240, time: 0.832) D_A: 0.073 G_A: 0.551 Cyc_A: 1.763 D_B: 0.147 G_B: 0.247 Cyc_B: 1.316
(epoch: 29, iters: 340, time: 0.810) D_A: 0.034 G_A: 0.353 Cyc_A: 1.778 D_B: 0.136 G_B: 0.440 Cyc_B: 1.424
(epoch: 29, iters: 440, time: 0.816) D_A: 0.117 G_A: 0.467 Cyc_A: 1.247 D_B: 0.220 G_B: 0.225 Cyc_B: 1.492
(epoch: 29, iters: 540, time: 0.822) D_A: 0.025 G_A: 0.710 Cyc_A: 1.778 D_B: 0.082 G_B: 0.159 Cyc_B: 1.309
(epoch: 29, iters: 640, time: 0.856) D_A: 0.072 G_A: 0.777 Cyc_A: 1.443 D_B: 0.150 G_B: 0.452 Cyc_B: 1.307
End of epoch 29 / 400 Time Taken: 341 sec
(epoch: 30, iters: 95, time: 0.893) D_A: 0.019 G_A: 0.338 Cyc_A: 1.123 D_B: 0.016 G_B: 0.282 Cyc_B: 1.277
(epoch: 30, iters: 195, time: 0.863) D_A: 0.015 G_A: 0.278 Cyc_A: 1.335 D_B: 0.109 G_B: 0.384 Cyc_B: 1.299
(epoch: 30, iters: 295, time: 0.823) D_A: 0.075 G_A: 0.573 Cyc_A: 1.735 D_B: 0.127 G_B: 0.129 Cyc_B: 1.340
(epoch: 30, iters: 395, time: 0.837) D_A: 0.089 G_A: 0.444 Cyc_A: 1.752 D_B: 0.200 G_B: 0.354 Cyc_B: 1.252
(epoch: 30, iters: 495, time: 0.833) D_A: 0.067 G_A: 0.751 Cyc_A: 1.614 D_B: 0.189 G_B: 0.288 Cyc_B: 1.272
(epoch: 30, iters: 595, time: 0.827) D_A: 0.082 G_A: 0.482 Cyc_A: 2.030 D_B: 0.220 G_B: 0.186 Cyc_B: 1.423
saving the model at the end of epoch 30, iters 19350
End of epoch 30 / 400 Time Taken: 342 sec
(epoch: 31, iters: 50, time: 0.902) D_A: 0.112 G_A: 0.458 Cyc_A: 0.841 D_B: 0.069 G_B: 0.350 Cyc_B: 1.353
(epoch: 31, iters: 150, time: 0.841) D_A: 0.111 G_A: 0.393 Cyc_A: 1.653 D_B: 0.072 G_B: 0.448 Cyc_B: 1.249
(epoch: 31, iters: 250, time: 0.881) D_A: 0.165 G_A: 0.244 Cyc_A: 1.013 D_B: 0.140 G_B: 0.307 Cyc_B: 1.302
(epoch: 31, iters: 350, time: 0.812) D_A: 0.100 G_A: 0.633 Cyc_A: 1.754 D_B: 0.254 G_B: 0.134 Cyc_B: 1.309
(epoch: 31, iters: 450, time: 0.883) D_A: 0.055 G_A: 0.558 Cyc_A: 1.085 D_B: 0.037 G_B: 0.436 Cyc_B: 1.363
(epoch: 31, iters: 550, time: 0.823) D_A: 0.117 G_A: 0.500 Cyc_A: 1.687 D_B: 0.164 G_B: 0.483 Cyc_B: 1.357
End of epoch 31 / 400 Time Taken: 341 sec
(epoch: 32, iters: 5, time: 0.873) D_A: 0.070 G_A: 0.857 Cyc_A: 1.033 D_B: 0.084 G_B: 0.086 Cyc_B: 1.258
saving the latest model (epoch 32, total_steps 20000)
(epoch: 32, iters: 105, time: 0.828) D_A: 0.047 G_A: 0.635 Cyc_A: 1.757 D_B: 0.120 G_B: 0.543 Cyc_B: 1.279
(epoch: 32, iters: 205, time: 0.885) D_A: 0.082 G_A: 0.516 Cyc_A: 1.013 D_B: 0.050 G_B: 0.394 Cyc_B: 1.127
(epoch: 32, iters: 305, time: 0.810) D_A: 0.079 G_A: 0.533 Cyc_A: 1.779 D_B: 0.102 G_B: 0.145 Cyc_B: 1.416
(epoch: 32, iters: 405, time: 0.858) D_A: 0.128 G_A: 0.284 Cyc_A: 1.552 D_B: 0.260 G_B: 0.301 Cyc_B: 1.266
(epoch: 32, iters: 505, time: 0.900) D_A: 0.132 G_A: 0.573 Cyc_A: 0.954 D_B: 0.203 G_B: 0.232 Cyc_B: 1.241
(epoch: 32, iters: 605, time: 0.880) D_A: 0.234 G_A: 0.592 Cyc_A: 0.989 D_B: 0.174 G_B: 0.227 Cyc_B: 1.386
End of epoch 32 / 400 Time Taken: 342 sec
(epoch: 33, iters: 60, time: 0.899) D_A: 0.023 G_A: 0.289 Cyc_A: 0.996 D_B: 0.105 G_B: 0.501 Cyc_B: 1.276
(epoch: 33, iters: 160, time: 0.814) D_A: 0.134 G_A: 1.005 Cyc_A: 2.581 D_B: 0.067 G_B: 0.817 Cyc_B: 1.716
(epoch: 33, iters: 260, time: 0.836) D_A: 0.038 G_A: 0.954 Cyc_A: 1.868 D_B: 0.040 G_B: 0.236 Cyc_B: 1.200
(epoch: 33, iters: 360, time: 0.828) D_A: 0.081 G_A: 0.746 Cyc_A: 1.777 D_B: 0.125 G_B: 0.402 Cyc_B: 1.279
(epoch: 33, iters: 460, time: 0.779) D_A: 0.069 G_A: 0.576 Cyc_A: 1.754 D_B: 0.090 G_B: 0.534 Cyc_B: 1.379
(epoch: 33, iters: 560, time: 0.782) D_A: 0.032 G_A: 0.518 Cyc_A: 1.762 D_B: 0.200 G_B: 1.057 Cyc_B: 1.286
End of epoch 33 / 400 Time Taken: 341 sec
(epoch: 34, iters: 15, time: 0.846) D_A: 0.012 G_A: 0.502 Cyc_A: 1.536 D_B: 0.085 G_B: 0.153 Cyc_B: 1.353
(epoch: 34, iters: 115, time: 0.844) D_A: 0.186 G_A: 0.244 Cyc_A: 1.017 D_B: 0.047 G_B: 0.656 Cyc_B: 1.358
(epoch: 34, iters: 215, time: 0.810) D_A: 0.093 G_A: 0.470 Cyc_A: 1.589 D_B: 0.212 G_B: 0.887 Cyc_B: 1.270
(epoch: 34, iters: 315, time: 0.786) D_A: 0.071 G_A: 0.824 Cyc_A: 1.720 D_B: 0.207 G_B: 0.217 Cyc_B: 1.216
(epoch: 34, iters: 415, time: 0.837) D_A: 0.054 G_A: 0.621 Cyc_A: 1.116 D_B: 0.058 G_B: 0.294 Cyc_B: 1.263
(epoch: 34, iters: 515, time: 0.818) D_A: 0.018 G_A: 0.608 Cyc_A: 1.716 D_B: 0.201 G_B: 0.367 Cyc_B: 1.247
(epoch: 34, iters: 615, time: 0.838) D_A: 0.020 G_A: 0.421 Cyc_A: 1.748 D_B: 0.063 G_B: 0.244 Cyc_B: 1.188
End of epoch 34 / 400 Time Taken: 343 sec
(epoch: 35, iters: 70, time: 0.867) D_A: 0.065 G_A: 0.569 Cyc_A: 1.458 D_B: 0.100 G_B: 0.478 Cyc_B: 1.258
(epoch: 35, iters: 170, time: 0.858) D_A: 0.027 G_A: 0.867 Cyc_A: 1.579 D_B: 0.271 G_B: 0.132 Cyc_B: 1.191
(epoch: 35, iters: 270, time: 0.817) D_A: 0.074 G_A: 0.463 Cyc_A: 1.724 D_B: 0.134 G_B: 0.787 Cyc_B: 1.406
(epoch: 35, iters: 370, time: 0.861) D_A: 0.045 G_A: 0.247 Cyc_A: 1.407 D_B: 0.246 G_B: 0.387 Cyc_B: 1.226
(epoch: 35, iters: 470, time: 0.825) D_A: 0.066 G_A: 0.332 Cyc_A: 1.690 D_B: 0.215 G_B: 0.345 Cyc_B: 1.190
(epoch: 35, iters: 570, time: 0.838) D_A: 0.243 G_A: 0.167 Cyc_A: 1.621 D_B: 0.145 G_B: 0.639 Cyc_B: 1.208
saving the model at the end of epoch 35, iters 22575
End of epoch 35 / 400 Time Taken: 342 sec
(epoch: 36, iters: 25, time: 0.839) D_A: 0.085 G_A: 0.515 Cyc_A: 1.579 D_B: 0.069 G_B: 0.136 Cyc_B: 1.289
(epoch: 36, iters: 125, time: 0.830) D_A: 0.058 G_A: 0.631 Cyc_A: 1.687 D_B: 0.224 G_B: 0.575 Cyc_B: 1.205
(epoch: 36, iters: 225, time: 0.824) D_A: 0.229 G_A: 1.095 Cyc_A: 1.625 D_B: 0.202 G_B: 0.590 Cyc_B: 1.181
(epoch: 36, iters: 325, time: 0.891) D_A: 0.156 G_A: 0.240 Cyc_A: 0.971 D_B: 0.033 G_B: 0.501 Cyc_B: 1.108
(epoch: 36, iters: 425, time: 0.819) D_A: 0.133 G_A: 0.442 Cyc_A: 1.599 D_B: 0.124 G_B: 0.355 Cyc_B: 1.215
(epoch: 36, iters: 525, time: 0.821) D_A: 0.120 G_A: 0.327 Cyc_A: 1.641 D_B: 0.061 G_B: 0.192 Cyc_B: 1.296
(epoch: 36, iters: 625, time: 0.859) D_A: 0.095 G_A: 0.693 Cyc_A: 1.247 D_B: 0.079 G_B: 0.581 Cyc_B: 1.208
End of epoch 36 / 400 Time Taken: 342 sec
(epoch: 37, iters: 80, time: 0.821) D_A: 0.054 G_A: 0.500 Cyc_A: 1.627 D_B: 0.223 G_B: 0.211 Cyc_B: 1.269
(epoch: 37, iters: 180, time: 0.814) D_A: 0.094 G_A: 1.229 Cyc_A: 1.619 D_B: 0.080 G_B: 0.680 Cyc_B: 1.209
(epoch: 37, iters: 280, time: 0.816) D_A: 0.088 G_A: 0.407 Cyc_A: 1.545 D_B: 0.091 G_B: 0.554 Cyc_B: 1.338
(epoch: 37, iters: 380, time: 0.833) D_A: 0.098 G_A: 0.425 Cyc_A: 1.485 D_B: 0.095 G_B: 0.479 Cyc_B: 1.129
(epoch: 37, iters: 480, time: 0.851) D_A: 0.068 G_A: 0.817 Cyc_A: 1.468 D_B: 0.162 G_B: 0.666 Cyc_B: 1.237
(epoch: 37, iters: 580, time: 0.849) D_A: 0.027 G_A: 0.506 Cyc_A: 1.284 D_B: 0.170 G_B: 0.493 Cyc_B: 1.120
End of epoch 37 / 400 Time Taken: 341 sec
(epoch: 38, iters: 35, time: 0.837) D_A: 0.098 G_A: 0.386 Cyc_A: 1.367 D_B: 0.147 G_B: 0.404 Cyc_B: 1.201
(epoch: 38, iters: 135, time: 0.891) D_A: 0.025 G_A: 1.105 Cyc_A: 1.087 D_B: 0.092 G_B: 0.288 Cyc_B: 1.148
(epoch: 38, iters: 235, time: 0.815) D_A: 0.105 G_A: 0.606 Cyc_A: 1.567 D_B: 0.102 G_B: 0.204 Cyc_B: 1.174
(epoch: 38, iters: 335, time: 0.843) D_A: 0.101 G_A: 0.992 Cyc_A: 1.621 D_B: 0.162 G_B: 0.486 Cyc_B: 1.281
(epoch: 38, iters: 435, time: 0.897) D_A: 0.050 G_A: 0.698 Cyc_A: 0.853 D_B: 0.074 G_B: 0.576 Cyc_B: 1.211
(epoch: 38, iters: 535, time: 0.848) D_A: 0.158 G_A: 0.231 Cyc_A: 1.366 D_B: 0.134 G_B: 0.997 Cyc_B: 1.249
(epoch: 38, iters: 635, time: 0.823) D_A: 0.041 G_A: 0.422 Cyc_A: 1.564 D_B: 0.056 G_B: 0.709 Cyc_B: 1.239
End of epoch 38 / 400 Time Taken: 342 sec
(epoch: 39, iters: 90, time: 0.831) D_A: 0.032 G_A: 0.245 Cyc_A: 1.579 D_B: 0.053 G_B: 0.711 Cyc_B: 1.170
(epoch: 39, iters: 190, time: 0.830) D_A: 0.076 G_A: 0.437 Cyc_A: 1.481 D_B: 0.128 G_B: 0.509 Cyc_B: 1.115
(epoch: 39, iters: 290, time: 0.865) D_A: 0.253 G_A: 0.569 Cyc_A: 1.069 D_B: 0.040 G_B: 0.384 Cyc_B: 1.176
(epoch: 39, iters: 390, time: 0.890) D_A: 0.111 G_A: 0.444 Cyc_A: 0.981 D_B: 0.058 G_B: 0.644 Cyc_B: 1.104
(epoch: 39, iters: 490, time: 0.899) D_A: 0.071 G_A: 0.549 Cyc_A: 1.076 D_B: 0.052 G_B: 0.565 Cyc_B: 1.135
saving the latest model (epoch 39, total_steps 25000)
(epoch: 39, iters: 590, time: 0.888) D_A: 0.254 G_A: 0.118 Cyc_A: 1.496 D_B: 0.151 G_B: 0.905 Cyc_B: 1.106
End of epoch 39 / 400 Time Taken: 342 sec
(epoch: 40, iters: 45, time: 0.920) D_A: 0.193 G_A: 0.215 Cyc_A: 1.537 D_B: 0.180 G_B: 0.548 Cyc_B: 1.080
(epoch: 40, iters: 145, time: 0.772) D_A: 0.060 G_A: 0.502 Cyc_A: 1.568 D_B: 0.081 G_B: 0.663 Cyc_B: 1.099
(epoch: 40, iters: 245, time: 0.779) D_A: 0.063 G_A: 0.543 Cyc_A: 1.552 D_B: 0.103 G_B: 0.475 Cyc_B: 1.090
(epoch: 40, iters: 345, time: 0.834) D_A: 0.090 G_A: 0.255 Cyc_A: 1.428 D_B: 0.162 G_B: 0.829 Cyc_B: 1.013
(epoch: 40, iters: 445, time: 0.772) D_A: 0.019 G_A: 0.355 Cyc_A: 1.274 D_B: 0.128 G_B: 0.629 Cyc_B: 1.040
(epoch: 40, iters: 545, time: 0.852) D_A: 0.041 G_A: 0.626 Cyc_A: 1.215 D_B: 0.106 G_B: 0.452 Cyc_B: 1.019
(epoch: 40, iters: 645, time: 0.859) D_A: 0.024 G_A: 0.518 Cyc_A: 1.167 D_B: 0.024 G_B: 0.521 Cyc_B: 0.976
saving the model at the end of epoch 40, iters 25800
End of epoch 40 / 400 Time Taken: 344 sec
(epoch: 41, iters: 100, time: 0.863) D_A: 0.025 G_A: 0.613 Cyc_A: 1.199 D_B: 0.168 G_B: 0.938 Cyc_B: 1.012
(epoch: 41, iters: 200, time: 0.820) D_A: 0.041 G_A: 0.447 Cyc_A: 1.337 D_B: 0.075 G_B: 0.574 Cyc_B: 0.997
(epoch: 41, iters: 300, time: 0.894) D_A: 0.096 G_A: 0.672 Cyc_A: 0.833 D_B: 0.044 G_B: 0.662 Cyc_B: 0.958
(epoch: 41, iters: 400, time: 0.826) D_A: 0.152 G_A: 0.237 Cyc_A: 1.408 D_B: 0.067 G_B: 0.751 Cyc_B: 1.059
(epoch: 41, iters: 500, time: 0.847) D_A: 0.150 G_A: 0.297 Cyc_A: 1.320 D_B: 0.132 G_B: 0.511 Cyc_B: 0.971
(epoch: 41, iters: 600, time: 0.846) D_A: 0.021 G_A: 0.461 Cyc_A: 1.244 D_B: 0.092 G_B: 0.551 Cyc_B: 0.916
End of epoch 41 / 400 Time Taken: 342 sec
(epoch: 42, iters: 55, time: 0.841) D_A: 0.107 G_A: 0.707 Cyc_A: 1.235 D_B: 0.043 G_B: 0.441 Cyc_B: 1.007
(epoch: 42, iters: 155, time: 0.872) D_A: 0.052 G_A: 0.740 Cyc_A: 1.094 D_B: 0.091 G_B: 0.085 Cyc_B: 1.000
(epoch: 42, iters: 255, time: 0.888) D_A: 0.022 G_A: 0.824 Cyc_A: 0.994 D_B: 0.093 G_B: 0.413 Cyc_B: 1.013
(epoch: 42, iters: 355, time: 0.824) D_A: 0.059 G_A: 0.500 Cyc_A: 1.297 D_B: 0.118 G_B: 0.700 Cyc_B: 0.961
(epoch: 42, iters: 455, time: 0.883) D_A: 0.050 G_A: 0.810 Cyc_A: 0.975 D_B: 0.043 G_B: 0.711 Cyc_B: 1.016
(epoch: 42, iters: 555, time: 0.817) D_A: 0.020 G_A: 0.349 Cyc_A: 1.369 D_B: 0.089 G_B: 0.401 Cyc_B: 1.252
End of epoch 42 / 400 Time Taken: 341 sec
(epoch: 43, iters: 10, time: 0.846) D_A: 0.114 G_A: 0.447 Cyc_A: 1.508 D_B: 0.106 G_B: 0.867 Cyc_B: 1.126
(epoch: 43, iters: 110, time: 0.879) D_A: 0.137 G_A: 0.856 Cyc_A: 0.864 D_B: 0.082 G_B: 0.548 Cyc_B: 1.110
(epoch: 43, iters: 210, time: 0.797) D_A: 0.051 G_A: 0.550 Cyc_A: 1.227 D_B: 0.021 G_B: 0.500 Cyc_B: 0.986
(epoch: 43, iters: 310, time: 0.831) D_A: 0.062 G_A: 0.451 Cyc_A: 1.262 D_B: 0.070 G_B: 0.534 Cyc_B: 1.018
(epoch: 43, iters: 410, time: 0.877) D_A: 0.072 G_A: 0.579 Cyc_A: 0.985 D_B: 0.125 G_B: 0.311 Cyc_B: 0.952
(epoch: 43, iters: 510, time: 0.858) D_A: 0.036 G_A: 0.459 Cyc_A: 1.223 D_B: 0.168 G_B: 0.223 Cyc_B: 0.963
(epoch: 43, iters: 610, time: 0.824) D_A: 0.201 G_A: 0.644 Cyc_A: 1.334 D_B: 0.143 G_B: 0.321 Cyc_B: 0.945
End of epoch 43 / 400 Time Taken: 341 sec
(epoch: 44, iters: 65, time: 0.903) D_A: 0.074 G_A: 0.305 Cyc_A: 0.820 D_B: 0.028 G_B: 0.984 Cyc_B: 1.127
(epoch: 44, iters: 165, time: 0.833) D_A: 0.038 G_A: 0.723 Cyc_A: 1.275 D_B: 0.087 G_B: 0.464 Cyc_B: 0.963
(epoch: 44, iters: 265, time: 0.857) D_A: 0.014 G_A: 0.471 Cyc_A: 1.239 D_B: 0.039 G_B: 0.381 Cyc_B: 0.944
(epoch: 44, iters: 365, time: 0.913) D_A: 0.103 G_A: 0.452 Cyc_A: 0.782 D_B: 0.041 G_B: 0.528 Cyc_B: 0.951
(epoch: 44, iters: 465, time: 0.829) D_A: 0.015 G_A: 0.492 Cyc_A: 1.234 D_B: 0.092 G_B: 0.726 Cyc_B: 0.960
(epoch: 44, iters: 565, time: 0.835) D_A: 0.013 G_A: 0.455 Cyc_A: 1.275 D_B: 0.129 G_B: 0.491 Cyc_B: 0.932
End of epoch 44 / 400 Time Taken: 341 sec
(epoch: 45, iters: 20, time: 0.863) D_A: 0.097 G_A: 0.898 Cyc_A: 1.054 D_B: 0.042 G_B: 0.496 Cyc_B: 0.894
(epoch: 45, iters: 120, time: 0.889) D_A: 0.071 G_A: 0.330 Cyc_A: 0.854 D_B: 0.186 G_B: 0.215 Cyc_B: 1.001
(epoch: 45, iters: 220, time: 0.901) D_A: 0.067 G_A: 0.790 Cyc_A: 0.830 D_B: 0.032 G_B: 0.561 Cyc_B: 0.958
(epoch: 45, iters: 320, time: 0.883) D_A: 0.072 G_A: 1.096 Cyc_A: 0.933 D_B: 0.088 G_B: 0.419 Cyc_B: 0.957
(epoch: 45, iters: 420, time: 0.842) D_A: 0.016 G_A: 0.544 Cyc_A: 1.213 D_B: 0.035 G_B: 0.507 Cyc_B: 0.962
(epoch: 45, iters: 520, time: 0.831) D_A: 0.122 G_A: 0.320 Cyc_A: 1.188 D_B: 0.062 G_B: 0.688 Cyc_B: 0.913
(epoch: 45, iters: 620, time: 0.830) D_A: 0.063 G_A: 1.086 Cyc_A: 1.279 D_B: 0.198 G_B: 0.191 Cyc_B: 0.975
saving the model at the end of epoch 45, iters 29025
End of epoch 45 / 400 Time Taken: 341 sec
(epoch: 46, iters: 75, time: 0.901) D_A: 0.159 G_A: 0.880 Cyc_A: 0.832 D_B: 0.067 G_B: 0.691 Cyc_B: 0.970
(epoch: 46, iters: 175, time: 0.845) D_A: 0.096 G_A: 0.635 Cyc_A: 1.088 D_B: 0.028 G_B: 0.543 Cyc_B: 0.930
(epoch: 46, iters: 275, time: 0.838) D_A: 0.190 G_A: 0.273 Cyc_A: 1.264 D_B: 0.075 G_B: 0.538 Cyc_B: 0.904
(epoch: 46, iters: 375, time: 0.827) D_A: 0.064 G_A: 0.602 Cyc_A: 1.310 D_B: 0.090 G_B: 0.858 Cyc_B: 0.878
(epoch: 46, iters: 475, time: 0.873) D_A: 0.126 G_A: 0.385 Cyc_A: 0.901 D_B: 0.052 G_B: 0.634 Cyc_B: 0.984
(epoch: 46, iters: 575, time: 0.814) D_A: 0.226 G_A: 0.550 Cyc_A: 1.125 D_B: 0.094 G_B: 0.618 Cyc_B: 0.937
End of epoch 46 / 400 Time Taken: 340 sec
(epoch: 47, iters: 30, time: 0.833) D_A: 0.037 G_A: 0.509 Cyc_A: 1.240 D_B: 0.192 G_B: 0.204 Cyc_B: 0.917
(epoch: 47, iters: 130, time: 0.838) D_A: 0.131 G_A: 0.305 Cyc_A: 1.195 D_B: 0.019 G_B: 0.882 Cyc_B: 0.943
(epoch: 47, iters: 230, time: 0.845) D_A: 0.219 G_A: 0.162 Cyc_A: 1.211 D_B: 0.057 G_B: 0.653 Cyc_B: 0.936
(epoch: 47, iters: 330, time: 0.915) D_A: 0.116 G_A: 0.412 Cyc_A: 1.187 D_B: 0.015 G_B: 0.462 Cyc_B: 0.942
saving the latest model (epoch 47, total_steps 30000)
(epoch: 47, iters: 430, time: 0.861) D_A: 0.062 G_A: 0.560 Cyc_A: 1.013 D_B: 0.116 G_B: 0.633 Cyc_B: 0.934
(epoch: 47, iters: 530, time: 0.850) D_A: 0.045 G_A: 0.693 Cyc_A: 1.266 D_B: 0.115 G_B: 0.733 Cyc_B: 0.907
(epoch: 47, iters: 630, time: 0.855) D_A: 0.087 G_A: 0.573 Cyc_A: 1.028 D_B: 0.076 G_B: 0.782 Cyc_B: 0.941
End of epoch 47 / 400 Time Taken: 341 sec
(epoch: 48, iters: 85, time: 0.845) D_A: 0.018 G_A: 0.787 Cyc_A: 1.245 D_B: 0.147 G_B: 0.337 Cyc_B: 0.913
(epoch: 48, iters: 185, time: 0.889) D_A: 0.110 G_A: 0.447 Cyc_A: 0.834 D_B: 0.043 G_B: 0.610 Cyc_B: 0.925
(epoch: 48, iters: 285, time: 0.867) D_A: 0.030 G_A: 0.232 Cyc_A: 0.959 D_B: 0.019 G_B: 0.524 Cyc_B: 0.955
(epoch: 48, iters: 385, time: 0.845) D_A: 0.077 G_A: 0.551 Cyc_A: 1.136 D_B: 0.060 G_B: 0.693 Cyc_B: 0.907
(epoch: 48, iters: 485, time: 0.899) D_A: 0.047 G_A: 0.393 Cyc_A: 0.815 D_B: 0.081 G_B: 0.470 Cyc_B: 0.911
(epoch: 48, iters: 585, time: 0.835) D_A: 0.026 G_A: 0.750 Cyc_A: 1.189 D_B: 0.079 G_B: 0.479 Cyc_B: 0.899
End of epoch 48 / 400 Time Taken: 341 sec
(epoch: 49, iters: 40, time: 0.856) D_A: 0.032 G_A: 0.836 Cyc_A: 1.143 D_B: 0.091 G_B: 1.191 Cyc_B: 0.906
(epoch: 49, iters: 140, time: 0.929) D_A: 0.032 G_A: 0.815 Cyc_A: 1.193 D_B: 0.047 G_B: 0.598 Cyc_B: 0.877
(epoch: 49, iters: 240, time: 0.896) D_A: 0.175 G_A: 0.766 Cyc_A: 0.923 D_B: 0.076 G_B: 0.511 Cyc_B: 0.907
(epoch: 49, iters: 340, time: 0.862) D_A: 0.058 G_A: 0.385 Cyc_A: 1.070 D_B: 0.122 G_B: 0.332 Cyc_B: 0.928
(epoch: 49, iters: 440, time: 0.916) D_A: 0.031 G_A: 0.692 Cyc_A: 0.834 D_B: 0.096 G_B: 0.450 Cyc_B: 0.966
(epoch: 49, iters: 540, time: 0.792) D_A: 0.023 G_A: 0.670 Cyc_A: 1.123 D_B: 0.059 G_B: 0.466 Cyc_B: 0.891
(epoch: 49, iters: 640, time: 0.814) D_A: 0.103 G_A: 0.416 Cyc_A: 1.128 D_B: 0.145 G_B: 0.689 Cyc_B: 0.889
End of epoch 49 / 400 Time Taken: 341 sec
(epoch: 50, iters: 95, time: 0.840) D_A: 0.071 G_A: 0.349 Cyc_A: 0.904 D_B: 0.052 G_B: 0.621 Cyc_B: 0.883
(epoch: 50, iters: 195, time: 0.843) D_A: 0.087 G_A: 0.492 Cyc_A: 1.206 D_B: 0.086 G_B: 0.709 Cyc_B: 0.912
(epoch: 50, iters: 295, time: 0.866) D_A: 0.046 G_A: 0.835 Cyc_A: 1.099 D_B: 0.045 G_B: 1.171 Cyc_B: 0.895
(epoch: 50, iters: 395, time: 0.887) D_A: 0.027 G_A: 0.305 Cyc_A: 1.138 D_B: 0.027 G_B: 0.526 Cyc_B: 0.847
(epoch: 50, iters: 495, time: 0.817) D_A: 0.029 G_A: 0.702 Cyc_A: 1.165 D_B: 0.049 G_B: 0.600 Cyc_B: 0.913
(epoch: 50, iters: 595, time: 0.808) D_A: 0.013 G_A: 0.981 Cyc_A: 1.334 D_B: 0.126 G_B: 0.311 Cyc_B: 0.904
saving the model at the end of epoch 50, iters 32250
End of epoch 50 / 400 Time Taken: 343 sec
(epoch: 51, iters: 50, time: 0.810) D_A: 0.035 G_A: 0.900 Cyc_A: 1.220 D_B: 0.178 G_B: 0.242 Cyc_B: 0.903
(epoch: 51, iters: 150, time: 0.835) D_A: 0.019 G_A: 0.441 Cyc_A: 0.910 D_B: 0.091 G_B: 0.699 Cyc_B: 0.862
(epoch: 51, iters: 250, time: 0.846) D_A: 0.018 G_A: 0.952 Cyc_A: 0.900 D_B: 0.034 G_B: 0.618 Cyc_B: 0.868
(epoch: 51, iters: 350, time: 0.800) D_A: 0.062 G_A: 1.010 Cyc_A: 1.245 D_B: 0.082 G_B: 0.795 Cyc_B: 0.873
(epoch: 51, iters: 450, time: 0.858) D_A: 0.139 G_A: 0.420 Cyc_A: 1.268 D_B: 0.048 G_B: 0.839 Cyc_B: 0.938
(epoch: 51, iters: 550, time: 0.837) D_A: 0.036 G_A: 0.772 Cyc_A: 1.145 D_B: 0.040 G_B: 0.816 Cyc_B: 0.863
End of epoch 51 / 400 Time Taken: 341 sec
(epoch: 52, iters: 5, time: 0.874) D_A: 0.040 G_A: 0.296 Cyc_A: 0.993 D_B: 0.059 G_B: 0.463 Cyc_B: 0.860
(epoch: 52, iters: 105, time: 0.859) D_A: 0.207 G_A: 0.852 Cyc_A: 1.001 D_B: 0.062 G_B: 0.726 Cyc_B: 0.875
(epoch: 52, iters: 205, time: 0.862) D_A: 0.073 G_A: 0.598 Cyc_A: 1.031 D_B: 0.102 G_B: 0.758 Cyc_B: 0.858
(epoch: 52, iters: 305, time: 0.874) D_A: 0.013 G_A: 0.548 Cyc_A: 0.953 D_B: 0.143 G_B: 0.824 Cyc_B: 0.887
(epoch: 52, iters: 405, time: 0.862) D_A: 0.092 G_A: 0.379 Cyc_A: 1.032 D_B: 0.032 G_B: 0.278 Cyc_B: 0.901
(epoch: 52, iters: 505, time: 0.903) D_A: 0.061 G_A: 0.414 Cyc_A: 0.912 D_B: 0.028 G_B: 0.330 Cyc_B: 0.878
(epoch: 52, iters: 605, time: 0.816) D_A: 0.057 G_A: 0.981 Cyc_A: 1.102 D_B: 0.076 G_B: 0.996 Cyc_B: 0.867
End of epoch 52 / 400 Time Taken: 341 sec
(epoch: 53, iters: 60, time: 0.796) D_A: 0.042 G_A: 0.680 Cyc_A: 1.260 D_B: 0.087 G_B: 0.402 Cyc_B: 0.906
(epoch: 53, iters: 160, time: 0.843) D_A: 0.020 G_A: 0.699 Cyc_A: 0.809 D_B: 0.048 G_B: 0.911 Cyc_B: 0.875
(epoch: 53, iters: 260, time: 0.824) D_A: 0.084 G_A: 0.715 Cyc_A: 0.989 D_B: 0.156 G_B: 0.281 Cyc_B: 0.886
(epoch: 53, iters: 360, time: 0.851) D_A: 0.014 G_A: 0.663 Cyc_A: 0.794 D_B: 0.093 G_B: 0.398 Cyc_B: 0.900
(epoch: 53, iters: 460, time: 0.788) D_A: 0.059 G_A: 0.559 Cyc_A: 1.204 D_B: 0.145 G_B: 0.935 Cyc_B: 0.913
(epoch: 53, iters: 560, time: 0.798) D_A: 0.056 G_A: 0.667 Cyc_A: 1.107 D_B: 0.075 G_B: 0.774 Cyc_B: 0.895
End of epoch 53 / 400 Time Taken: 339 sec
(epoch: 54, iters: 15, time: 0.881) D_A: 0.126 G_A: 0.405 Cyc_A: 0.888 D_B: 0.079 G_B: 1.181 Cyc_B: 0.923
(epoch: 54, iters: 115, time: 0.990) D_A: 0.129 G_A: 0.097 Cyc_A: 0.771 D_B: 0.041 G_B: 0.605 Cyc_B: 0.924
(epoch: 54, iters: 215, time: 0.906) D_A: 0.018 G_A: 0.374 Cyc_A: 0.845 D_B: 0.026 G_B: 0.793 Cyc_B: 0.841
(epoch: 54, iters: 315, time: 0.909) D_A: 0.042 G_A: 0.484 Cyc_A: 0.866 D_B: 0.067 G_B: 0.438 Cyc_B: 0.925
(epoch: 54, iters: 415, time: 0.839) D_A: 0.012 G_A: 0.426 Cyc_A: 1.120 D_B: 0.162 G_B: 0.231 Cyc_B: 0.920
(epoch: 54, iters: 515, time: 0.837) D_A: 0.054 G_A: 0.565 Cyc_A: 1.161 D_B: 0.148 G_B: 1.018 Cyc_B: 0.834
(epoch: 54, iters: 615, time: 0.842) D_A: 0.089 G_A: 0.672 Cyc_A: 1.156 D_B: 0.085 G_B: 0.440 Cyc_B: 0.856
End of epoch 54 / 400 Time Taken: 341 sec
(epoch: 55, iters: 70, time: 0.852) D_A: 0.037 G_A: 0.612 Cyc_A: 1.099 D_B: 0.043 G_B: 0.663 Cyc_B: 0.882
(epoch: 55, iters: 170, time: 0.919) D_A: 0.021 G_A: 0.840 Cyc_A: 0.748 D_B: 0.055 G_B: 0.515 Cyc_B: 0.799
saving the latest model (epoch 55, total_steps 35000)
(epoch: 55, iters: 270, time: 0.861) D_A: 0.080 G_A: 0.766 Cyc_A: 1.061 D_B: 0.024 G_B: 0.543 Cyc_B: 0.871
(epoch: 55, iters: 370, time: 0.831) D_A: 0.022 G_A: 0.790 Cyc_A: 1.180 D_B: 0.075 G_B: 0.504 Cyc_B: 0.887
(epoch: 55, iters: 470, time: 0.845) D_A: 0.146 G_A: 0.813 Cyc_A: 1.125 D_B: 0.060 G_B: 0.683 Cyc_B: 0.908
(epoch: 55, iters: 570, time: 0.851) D_A: 0.046 G_A: 0.970 Cyc_A: 0.998 D_B: 0.066 G_B: 1.024 Cyc_B: 0.854
saving the model at the end of epoch 55, iters 35475
End of epoch 55 / 400 Time Taken: 341 sec
(epoch: 56, iters: 25, time: 0.841) D_A: 0.020 G_A: 0.657 Cyc_A: 1.267 D_B: 0.033 G_B: 0.886 Cyc_B: 0.891
(epoch: 56, iters: 125, time: 0.838) D_A: 0.020 G_A: 0.726 Cyc_A: 1.145 D_B: 0.087 G_B: 0.901 Cyc_B: 0.910
(epoch: 56, iters: 225, time: 0.875) D_A: 0.102 G_A: 0.355 Cyc_A: 1.014 D_B: 0.067 G_B: 0.726 Cyc_B: 0.833
(epoch: 56, iters: 325, time: 0.860) D_A: 0.015 G_A: 0.774 Cyc_A: 1.086 D_B: 0.053 G_B: 0.547 Cyc_B: 0.838
(epoch: 56, iters: 425, time: 0.850) D_A: 0.073 G_A: 0.555 Cyc_A: 0.779 D_B: 0.040 G_B: 0.685 Cyc_B: 0.899
(epoch: 56, iters: 525, time: 0.793) D_A: 0.082 G_A: 0.468 Cyc_A: 1.188 D_B: 0.041 G_B: 0.930 Cyc_B: 0.875
(epoch: 56, iters: 625, time: 0.853) D_A: 0.139 G_A: 0.297 Cyc_A: 0.851 D_B: 0.037 G_B: 0.596 Cyc_B: 0.859
End of epoch 56 / 400 Time Taken: 341 sec
(epoch: 57, iters: 80, time: 0.854) D_A: 0.053 G_A: 0.431 Cyc_A: 1.095 D_B: 0.029 G_B: 0.799 Cyc_B: 0.843
(epoch: 57, iters: 180, time: 0.832) D_A: 0.063 G_A: 0.556 Cyc_A: 1.147 D_B: 0.075 G_B: 0.504 Cyc_B: 0.859
(epoch: 57, iters: 280, time: 0.809) D_A: 0.061 G_A: 1.187 Cyc_A: 1.065 D_B: 0.027 G_B: 0.565 Cyc_B: 0.914
(epoch: 57, iters: 380, time: 0.899) D_A: 0.136 G_A: 0.270 Cyc_A: 0.859 D_B: 0.035 G_B: 0.672 Cyc_B: 0.868
(epoch: 57, iters: 480, time: 0.843) D_A: 0.019 G_A: 0.969 Cyc_A: 1.035 D_B: 0.028 G_B: 1.026 Cyc_B: 0.855
(epoch: 57, iters: 580, time: 0.898) D_A: 0.038 G_A: 0.820 Cyc_A: 0.842 D_B: 0.022 G_B: 0.485 Cyc_B: 0.830
End of epoch 57 / 400 Time Taken: 340 sec
(epoch: 58, iters: 35, time: 0.901) D_A: 0.054 G_A: 0.387 Cyc_A: 0.920 D_B: 0.096 G_B: 0.787 Cyc_B: 0.876
(epoch: 58, iters: 135, time: 0.835) D_A: 0.029 G_A: 0.494 Cyc_A: 1.117 D_B: 0.075 G_B: 0.810 Cyc_B: 0.867
(epoch: 58, iters: 235, time: 0.845) D_A: 0.058 G_A: 0.768 Cyc_A: 1.119 D_B: 0.036 G_B: 0.953 Cyc_B: 0.842
(epoch: 58, iters: 335, time: 0.852) D_A: 0.053 G_A: 0.529 Cyc_A: 1.111 D_B: 0.132 G_B: 0.335 Cyc_B: 0.903
(epoch: 58, iters: 435, time: 0.924) D_A: 0.138 G_A: 0.779 Cyc_A: 0.754 D_B: 0.050 G_B: 0.598 Cyc_B: 0.870
(epoch: 58, iters: 535, time: 0.876) D_A: 0.029 G_A: 0.257 Cyc_A: 0.949 D_B: 0.021 G_B: 0.526 Cyc_B: 0.850
(epoch: 58, iters: 635, time: 0.835) D_A: 0.045 G_A: 0.802 Cyc_A: 1.102 D_B: 0.022 G_B: 1.066 Cyc_B: 0.910
End of epoch 58 / 400 Time Taken: 341 sec
(epoch: 59, iters: 90, time: 0.848) D_A: 0.089 G_A: 0.391 Cyc_A: 1.130 D_B: 0.022 G_B: 0.368 Cyc_B: 0.825
(epoch: 59, iters: 190, time: 0.898) D_A: 0.026 G_A: 0.524 Cyc_A: 0.793 D_B: 0.026 G_B: 0.974 Cyc_B: 0.864
(epoch: 59, iters: 290, time: 0.921) D_A: 0.034 G_A: 0.710 Cyc_A: 0.821 D_B: 0.064 G_B: 0.638 Cyc_B: 0.868
(epoch: 59, iters: 390, time: 0.903) D_A: 0.178 G_A: 0.934 Cyc_A: 0.753 D_B: 0.207 G_B: 0.294 Cyc_B: 0.877
(epoch: 59, iters: 490, time: 0.883) D_A: 0.252 G_A: 0.173 Cyc_A: 0.916 D_B: 0.061 G_B: 0.502 Cyc_B: 0.877
(epoch: 59, iters: 590, time: 0.833) D_A: 0.044 G_A: 1.059 Cyc_A: 1.127 D_B: 0.015 G_B: 0.991 Cyc_B: 0.886
End of epoch 59 / 400 Time Taken: 341 sec
(epoch: 60, iters: 45, time: 0.900) D_A: 0.045 G_A: 0.753 Cyc_A: 0.946 D_B: 0.026 G_B: 0.565 Cyc_B: 0.845
(epoch: 60, iters: 145, time: 0.809) D_A: 0.162 G_A: 0.480 Cyc_A: 1.013 D_B: 0.023 G_B: 0.769 Cyc_B: 0.870
(epoch: 60, iters: 245, time: 0.792) D_A: 0.084 G_A: 0.735 Cyc_A: 1.164 D_B: 0.062 G_B: 0.746 Cyc_B: 0.872
(epoch: 60, iters: 345, time: 0.846) D_A: 0.028 G_A: 0.751 Cyc_A: 1.159 D_B: 0.012 G_B: 1.027 Cyc_B: 0.848
(epoch: 60, iters: 445, time: 0.863) D_A: 0.165 G_A: 1.136 Cyc_A: 1.072 D_B: 0.107 G_B: 0.362 Cyc_B: 0.869
(epoch: 60, iters: 545, time: 0.897) D_A: 0.012 G_A: 0.330 Cyc_A: 0.779 D_B: 0.022 G_B: 0.641 Cyc_B: 0.885
(epoch: 60, iters: 645, time: 0.935) D_A: 0.181 G_A: 1.299 Cyc_A: 0.695 D_B: 0.053 G_B: 0.604 Cyc_B: 0.856
saving the model at the end of epoch 60, iters 38700
End of epoch 60 / 400 Time Taken: 341 sec
(epoch: 61, iters: 100, time: 0.895) D_A: 0.048 G_A: 0.853 Cyc_A: 0.976 D_B: 0.036 G_B: 0.763 Cyc_B: 0.827
(epoch: 61, iters: 200, time: 0.913) D_A: 0.048 G_A: 0.856 Cyc_A: 0.799 D_B: 0.042 G_B: 0.607 Cyc_B: 0.861
(epoch: 61, iters: 300, time: 0.865) D_A: 0.053 G_A: 0.561 Cyc_A: 1.036 D_B: 0.036 G_B: 0.688 Cyc_B: 0.848
(epoch: 61, iters: 400, time: 0.850) D_A: 0.063 G_A: 0.809 Cyc_A: 1.034 D_B: 0.044 G_B: 0.771 Cyc_B: 0.844
(epoch: 61, iters: 500, time: 0.878) D_A: 0.024 G_A: 0.816 Cyc_A: 0.846 D_B: 0.033 G_B: 0.801 Cyc_B: 0.870
(epoch: 61, iters: 600, time: 0.879) D_A: 0.026 G_A: 0.750 Cyc_A: 0.980 D_B: 0.026 G_B: 0.750 Cyc_B: 0.874
End of epoch 61 / 400 Time Taken: 340 sec
(epoch: 62, iters: 55, time: 0.957) D_A: 0.011 G_A: 0.962 Cyc_A: 0.767 D_B: 0.030 G_B: 0.798 Cyc_B: 0.804
(epoch: 62, iters: 155, time: 0.909) D_A: 0.038 G_A: 0.577 Cyc_A: 1.171 D_B: 0.029 G_B: 0.631 Cyc_B: 0.825
(epoch: 62, iters: 255, time: 0.854) D_A: 0.181 G_A: 0.304 Cyc_A: 1.013 D_B: 0.030 G_B: 0.819 Cyc_B: 0.808
(epoch: 62, iters: 355, time: 0.953) D_A: 0.093 G_A: 0.404 Cyc_A: 1.021 D_B: 0.051 G_B: 0.796 Cyc_B: 0.845
(epoch: 62, iters: 455, time: 0.922) D_A: 0.050 G_A: 0.639 Cyc_A: 0.822 D_B: 0.079 G_B: 0.415 Cyc_B: 0.814
(epoch: 62, iters: 555, time: 0.867) D_A: 0.097 G_A: 0.935 Cyc_A: 0.998 D_B: 0.031 G_B: 1.091 Cyc_B: 0.835
End of epoch 62 / 400 Time Taken: 341 sec
(epoch: 63, iters: 10, time: 0.931) D_A: 0.022 G_A: 0.525 Cyc_A: 0.768 D_B: 0.158 G_B: 0.231 Cyc_B: 0.848
saving the latest model (epoch 63, total_steps 40000)
(epoch: 63, iters: 110, time: 0.880) D_A: 0.061 G_A: 0.427 Cyc_A: 0.957 D_B: 0.034 G_B: 0.693 Cyc_B: 0.834
(epoch: 63, iters: 210, time: 0.841) D_A: 0.011 G_A: 0.418 Cyc_A: 1.192 D_B: 0.109 G_B: 0.346 Cyc_B: 0.825
(epoch: 63, iters: 310, time: 0.851) D_A: 0.054 G_A: 0.662 Cyc_A: 1.111 D_B: 0.030 G_B: 0.844 Cyc_B: 0.854
(epoch: 63, iters: 410, time: 0.901) D_A: 0.073 G_A: 0.523 Cyc_A: 0.831 D_B: 0.069 G_B: 0.907 Cyc_B: 0.863
(epoch: 63, iters: 510, time: 0.840) D_A: 0.038 G_A: 0.622 Cyc_A: 1.083 D_B: 0.030 G_B: 0.631 Cyc_B: 0.813
(epoch: 63, iters: 610, time: 1.030) D_A: 0.218 G_A: 0.158 Cyc_A: 0.793 D_B: 0.031 G_B: 0.908 Cyc_B: 0.833
End of epoch 63 / 400 Time Taken: 341 sec
(epoch: 64, iters: 65, time: 0.866) D_A: 0.031 G_A: 0.508 Cyc_A: 1.092 D_B: 0.062 G_B: 0.728 Cyc_B: 0.891
(epoch: 64, iters: 165, time: 0.917) D_A: 0.067 G_A: 0.501 Cyc_A: 0.786 D_B: 0.034 G_B: 0.710 Cyc_B: 0.854
(epoch: 64, iters: 265, time: 0.861) D_A: 0.026 G_A: 0.344 Cyc_A: 0.857 D_B: 0.036 G_B: 0.895 Cyc_B: 0.862
(epoch: 64, iters: 365, time: 0.872) D_A: 0.057 G_A: 0.630 Cyc_A: 1.027 D_B: 0.022 G_B: 0.730 Cyc_B: 0.814
(epoch: 64, iters: 465, time: 0.900) D_A: 0.013 G_A: 0.800 Cyc_A: 0.826 D_B: 0.163 G_B: 0.287 Cyc_B: 0.867
(epoch: 64, iters: 565, time: 0.922) D_A: 0.012 G_A: 0.952 Cyc_A: 0.786 D_B: 0.060 G_B: 0.733 Cyc_B: 0.856
End of epoch 64 / 400 Time Taken: 340 sec
(epoch: 65, iters: 20, time: 0.910) D_A: 0.084 G_A: 0.380 Cyc_A: 0.847 D_B: 0.045 G_B: 0.727 Cyc_B: 0.807
(epoch: 65, iters: 120, time: 0.836) D_A: 0.178 G_A: 0.192 Cyc_A: 1.131 D_B: 0.076 G_B: 0.425 Cyc_B: 0.841
(epoch: 65, iters: 220, time: 0.863) D_A: 0.027 G_A: 0.778 Cyc_A: 1.004 D_B: 0.053 G_B: 0.781 Cyc_B: 0.873
(epoch: 65, iters: 320, time: 0.845) D_A: 0.076 G_A: 0.425 Cyc_A: 1.142 D_B: 0.099 G_B: 0.364 Cyc_B: 0.876
(epoch: 65, iters: 420, time: 0.852) D_A: 0.017 G_A: 0.520 Cyc_A: 1.130 D_B: 0.061 G_B: 0.541 Cyc_B: 0.847
(epoch: 65, iters: 520, time: 0.943) D_A: 0.151 G_A: 0.233 Cyc_A: 1.044 D_B: 0.049 G_B: 0.468 Cyc_B: 0.823
(epoch: 65, iters: 620, time: 0.836) D_A: 0.041 G_A: 0.535 Cyc_A: 1.068 D_B: 0.059 G_B: 1.032 Cyc_B: 0.859
saving the model at the end of epoch 65, iters 41925
End of epoch 65 / 400 Time Taken: 341 sec
(epoch: 66, iters: 75, time: 0.854) D_A: 0.100 G_A: 1.058 Cyc_A: 1.030 D_B: 0.041 G_B: 1.314 Cyc_B: 0.846
(epoch: 66, iters: 175, time: 0.932) D_A: 0.076 G_A: 0.458 Cyc_A: 0.909 D_B: 0.068 G_B: 0.454 Cyc_B: 0.891
(epoch: 66, iters: 275, time: 0.866) D_A: 0.016 G_A: 0.728 Cyc_A: 1.097 D_B: 0.104 G_B: 0.409 Cyc_B: 0.838
(epoch: 66, iters: 375, time: 0.990) D_A: 0.096 G_A: 0.629 Cyc_A: 0.789 D_B: 0.046 G_B: 0.640 Cyc_B: 0.863
(epoch: 66, iters: 475, time: 0.857) D_A: 0.061 G_A: 1.224 Cyc_A: 1.133 D_B: 0.078 G_B: 0.421 Cyc_B: 0.810
(epoch: 66, iters: 575, time: 0.870) D_A: 0.017 G_A: 0.662 Cyc_A: 0.981 D_B: 0.088 G_B: 0.386 Cyc_B: 0.826
End of epoch 66 / 400 Time Taken: 340 sec
(epoch: 67, iters: 30, time: 0.861) D_A: 0.047 G_A: 0.640 Cyc_A: 1.018 D_B: 0.059 G_B: 0.483 Cyc_B: 0.782
(epoch: 67, iters: 130, time: 0.862) D_A: 0.038 G_A: 0.641 Cyc_A: 1.069 D_B: 0.060 G_B: 0.495 Cyc_B: 0.823
(epoch: 67, iters: 230, time: 0.863) D_A: 0.014 G_A: 0.507 Cyc_A: 1.004 D_B: 0.017 G_B: 0.803 Cyc_B: 0.808
(epoch: 67, iters: 330, time: 0.866) D_A: 0.037 G_A: 0.739 Cyc_A: 0.915 D_B: 0.058 G_B: 0.578 Cyc_B: 0.837
(epoch: 67, iters: 430, time: 0.958) D_A: 0.291 G_A: 0.172 Cyc_A: 1.083 D_B: 0.020 G_B: 0.516 Cyc_B: 0.785
(epoch: 67, iters: 530, time: 0.871) D_A: 0.033 G_A: 0.604 Cyc_A: 1.031 D_B: 0.066 G_B: 0.483 Cyc_B: 0.818
(epoch: 67, iters: 630, time: 0.884) D_A: 0.069 G_A: 0.661 Cyc_A: 0.939 D_B: 0.013 G_B: 0.377 Cyc_B: 0.820
End of epoch 67 / 400 Time Taken: 341 sec
(epoch: 68, iters: 85, time: 0.848) D_A: 0.156 G_A: 0.750 Cyc_A: 1.106 D_B: 0.033 G_B: 0.881 Cyc_B: 0.828
(epoch: 68, iters: 185, time: 0.854) D_A: 0.033 G_A: 0.711 Cyc_A: 1.068 D_B: 0.066 G_B: 0.457 Cyc_B: 0.889
(epoch: 68, iters: 285, time: 0.870) D_A: 0.128 G_A: 0.281 Cyc_A: 0.919 D_B: 0.104 G_B: 0.897 Cyc_B: 0.798
(epoch: 68, iters: 385, time: 0.913) D_A: 0.068 G_A: 0.978 Cyc_A: 0.808 D_B: 0.031 G_B: 0.694 Cyc_B: 0.869
(epoch: 68, iters: 485, time: 0.921) D_A: 0.023 G_A: 0.643 Cyc_A: 0.771 D_B: 0.016 G_B: 0.459 Cyc_B: 0.774
(epoch: 68, iters: 585, time: 0.872) D_A: 0.016 G_A: 1.050 Cyc_A: 0.977 D_B: 0.103 G_B: 0.836 Cyc_B: 0.831
End of epoch 68 / 400 Time Taken: 340 sec
(epoch: 69, iters: 40, time: 0.870) D_A: 0.015 G_A: 0.334 Cyc_A: 0.974 D_B: 0.027 G_B: 0.542 Cyc_B: 0.835
(epoch: 69, iters: 140, time: 0.885) D_A: 0.093 G_A: 0.437 Cyc_A: 0.957 D_B: 0.041 G_B: 0.601 Cyc_B: 0.850
(epoch: 69, iters: 240, time: 0.854) D_A: 0.071 G_A: 0.451 Cyc_A: 1.098 D_B: 0.048 G_B: 0.724 Cyc_B: 0.808
(epoch: 69, iters: 340, time: 0.916) D_A: 0.021 G_A: 0.440 Cyc_A: 0.783 D_B: 0.082 G_B: 0.536 Cyc_B: 0.815
(epoch: 69, iters: 440, time: 0.865) D_A: 0.043 G_A: 0.757 Cyc_A: 1.044 D_B: 0.064 G_B: 0.632 Cyc_B: 0.832
(epoch: 69, iters: 540, time: 0.862) D_A: 0.107 G_A: 0.328 Cyc_A: 1.030 D_B: 0.018 G_B: 0.689 Cyc_B: 0.811
(epoch: 69, iters: 640, time: 0.838) D_A: 0.192 G_A: 0.655 Cyc_A: 1.083 D_B: 0.057 G_B: 0.493 Cyc_B: 0.843
End of epoch 69 / 400 Time Taken: 340 sec
(epoch: 70, iters: 95, time: 0.935) D_A: 0.044 G_A: 0.879 Cyc_A: 0.736 D_B: 0.031 G_B: 0.963 Cyc_B: 0.824
(epoch: 70, iters: 195, time: 0.912) D_A: 0.063 G_A: 0.762 Cyc_A: 0.922 D_B: 0.019 G_B: 0.583 Cyc_B: 0.794
(epoch: 70, iters: 295, time: 0.865) D_A: 0.022 G_A: 0.236 Cyc_A: 1.022 D_B: 0.109 G_B: 0.426 Cyc_B: 0.842
(epoch: 70, iters: 395, time: 0.868) D_A: 0.152 G_A: 0.577 Cyc_A: 1.068 D_B: 0.015 G_B: 0.944 Cyc_B: 0.828
(epoch: 70, iters: 495, time: 0.887) D_A: 0.029 G_A: 0.801 Cyc_A: 0.813 D_B: 0.066 G_B: 0.507 Cyc_B: 0.877
saving the latest model (epoch 70, total_steps 45000)
(epoch: 70, iters: 595, time: 1.009) D_A: 0.061 G_A: 0.611 Cyc_A: 0.811 D_B: 0.047 G_B: 0.631 Cyc_B: 0.817
saving the model at the end of epoch 70, iters 45150
End of epoch 70 / 400 Time Taken: 341 sec
(epoch: 71, iters: 50, time: 0.841) D_A: 0.063 G_A: 0.784 Cyc_A: 1.023 D_B: 0.017 G_B: 0.641 Cyc_B: 0.801
(epoch: 71, iters: 150, time: 0.796) D_A: 0.046 G_A: 0.320 Cyc_A: 1.151 D_B: 0.023 G_B: 0.879 Cyc_B: 0.818
(epoch: 71, iters: 250, time: 0.823) D_A: 0.057 G_A: 0.582 Cyc_A: 1.056 D_B: 0.041 G_B: 0.660 Cyc_B: 0.792
(epoch: 71, iters: 350, time: 0.858) D_A: 0.059 G_A: 0.493 Cyc_A: 0.741 D_B: 0.035 G_B: 0.919 Cyc_B: 0.800
(epoch: 71, iters: 450, time: 0.811) D_A: 0.126 G_A: 0.277 Cyc_A: 0.995 D_B: 0.092 G_B: 0.371 Cyc_B: 0.824
(epoch: 71, iters: 550, time: 0.799) D_A: 0.035 G_A: 0.898 Cyc_A: 1.115 D_B: 0.031 G_B: 0.650 Cyc_B: 0.827
End of epoch 71 / 400 Time Taken: 339 sec
(epoch: 72, iters: 5, time: 0.852) D_A: 0.062 G_A: 0.154 Cyc_A: 0.900 D_B: 0.037 G_B: 0.391 Cyc_B: 0.856
(epoch: 72, iters: 105, time: 0.891) D_A: 0.052 G_A: 0.655 Cyc_A: 0.901 D_B: 0.032 G_B: 0.717 Cyc_B: 0.854
(epoch: 72, iters: 205, time: 0.882) D_A: 0.045 G_A: 0.520 Cyc_A: 0.968 D_B: 0.013 G_B: 0.857 Cyc_B: 0.835
(epoch: 72, iters: 305, time: 0.920) D_A: 0.027 G_A: 0.902 Cyc_A: 0.714 D_B: 0.010 G_B: 0.756 Cyc_B: 0.820
(epoch: 72, iters: 405, time: 0.932) D_A: 0.054 G_A: 0.421 Cyc_A: 0.792 D_B: 0.022 G_B: 0.737 Cyc_B: 0.829
(epoch: 72, iters: 505, time: 0.941) D_A: 0.048 G_A: 0.561 Cyc_A: 0.791 D_B: 0.070 G_B: 0.570 Cyc_B: 0.802
(epoch: 72, iters: 605, time: 0.847) D_A: 0.035 G_A: 0.325 Cyc_A: 1.094 D_B: 0.013 G_B: 0.729 Cyc_B: 0.862
End of epoch 72 / 400 Time Taken: 341 sec
(epoch: 73, iters: 60, time: 0.850) D_A: 0.154 G_A: 0.951 Cyc_A: 1.110 D_B: 0.056 G_B: 0.500 Cyc_B: 0.832
(epoch: 73, iters: 160, time: 0.915) D_A: 0.095 G_A: 0.071 Cyc_A: 0.871 D_B: 0.030 G_B: 0.600 Cyc_B: 0.792
(epoch: 73, iters: 260, time: 0.865) D_A: 0.017 G_A: 0.746 Cyc_A: 0.964 D_B: 0.031 G_B: 0.659 Cyc_B: 0.827
(epoch: 73, iters: 360, time: 0.911) D_A: 0.024 G_A: 0.789 Cyc_A: 0.870 D_B: 0.031 G_B: 0.700 Cyc_B: 0.837
(epoch: 73, iters: 460, time: 0.870) D_A: 0.014 G_A: 0.632 Cyc_A: 1.043 D_B: 0.028 G_B: 0.829 Cyc_B: 0.846
(epoch: 73, iters: 560, time: 0.983) D_A: 0.059 G_A: 0.548 Cyc_A: 0.880 D_B: 0.091 G_B: 0.924 Cyc_B: 0.835
End of epoch 73 / 400 Time Taken: 340 sec
(epoch: 74, iters: 15, time: 0.948) D_A: 0.034 G_A: 0.756 Cyc_A: 0.793 D_B: 0.063 G_B: 1.104 Cyc_B: 0.832
(epoch: 74, iters: 115, time: 0.847) D_A: 0.024 G_A: 0.939 Cyc_A: 1.156 D_B: 0.056 G_B: 1.043 Cyc_B: 0.804
(epoch: 74, iters: 215, time: 0.880) D_A: 0.013 G_A: 0.383 Cyc_A: 0.904 D_B: 0.050 G_B: 0.548 Cyc_B: 0.853
(epoch: 74, iters: 315, time: 0.862) D_A: 0.021 G_A: 0.842 Cyc_A: 1.186 D_B: 0.036 G_B: 0.668 Cyc_B: 0.826
(epoch: 74, iters: 415, time: 0.850) D_A: 0.075 G_A: 0.884 Cyc_A: 1.079 D_B: 0.026 G_B: 0.589 Cyc_B: 0.811
(epoch: 74, iters: 515, time: 0.865) D_A: 0.054 G_A: 0.857 Cyc_A: 1.085 D_B: 0.050 G_B: 0.716 Cyc_B: 0.825
(epoch: 74, iters: 615, time: 0.899) D_A: 0.019 G_A: 0.915 Cyc_A: 0.913 D_B: 0.034 G_B: 0.873 Cyc_B: 0.814
End of epoch 74 / 400 Time Taken: 340 sec