-
Notifications
You must be signed in to change notification settings - Fork 0
/
euclideanDist.py
39 lines (31 loc) · 1.31 KB
/
euclideanDist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#Code to calculate euclidean distance and assign cluster to a new point
#Also plots the points on a graph
from math import sqrt
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
from matplotlib import style
import warnings
style.use('fivethirtyeight')
dataset= {'k':[[1,2], [2,3], [3,1]], 'r':[[6,5], [7,7], [8,6]]} #basically coordinates
#k-features, r- labels; two different classes/clusters
new_features=[5,7]
def kNearestNeighbors(data, predict, k=3):
if len(data) >=k :
warnings.warn('K is set to a value less than total number of clusters, idiot')
distances= []
for group in data:
for features in data[group]:
euclidean_distance= np.linalg.norm(np.array(features)-np.array(predict))
distances.append([euclidean_distance, group])
votes = [i[1] for i in sorted(distances)[:k]] # first k of sorted's 1st element
print(Counter(votes).most_common(1)[0])
vote_result= Counter(votes).most_common(1)[0][0] #get most common votes
return vote_result
result= kNearestNeighbors(dataset, new_features, k=3) #assigning cluster to the new_features
print(result)
for i in dataset:
for ii in dataset[i]:
plt.scatter(ii[0], ii[1], s=100, color=i)
plt.scatter(new_features[0], new_features[1], color= result, s=100)
plt.show()