-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_selector_rel_pos.py
298 lines (234 loc) · 11.8 KB
/
demo_selector_rel_pos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from abc import ABC
import ipdb
import torch
from torch import nn
import pytorch_lightning as pl
from pytorch_lightning.utilities.finite_checks import detect_nan_parameters
def check_nan(to_check_data, model):
try:
detect_nan_parameters(model)
except:
ipdb.set_trace()
for data in to_check_data:
if bool(torch.isnan(data).any()):
ipdb.set_trace()
class RelativePosition(nn.Module):
def __init__(self, num_units, max_relative_position):
super().__init__()
self.num_units = num_units
self.max_relative_position = max_relative_position
self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units))
nn.init.xavier_uniform_(self.embeddings_table)
def forward(self, length_q, length_k):
range_vec_q = torch.arange(length_q)
range_vec_k = torch.arange(length_k)
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
final_mat = distance_mat_clipped + self.max_relative_position
final_mat = torch.LongTensor(final_mat)
embeddings = self.embeddings_table[final_mat]
return embeddings
class RelPosMultiHeadAttentionLayer(nn.Module):
def __init__(self, hid_dim, n_heads, dropout, max_relative_position):
super().__init__()
assert hid_dim % n_heads == 0
self.hid_dim = hid_dim
self.n_heads = n_heads
self.head_dim = hid_dim // n_heads
self.relative_position_k = RelativePosition(self.head_dim, max_relative_position)
self.relative_position_v = RelativePosition(self.head_dim, max_relative_position)
self.fc_q = nn.Linear(hid_dim, hid_dim)
self.fc_k = nn.Linear(hid_dim, hid_dim)
self.fc_v = nn.Linear(hid_dim, hid_dim)
self.fc_o = nn.Linear(hid_dim, hid_dim)
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([self.head_dim]))
def forward(self, query, key, value, attn_mask=None):
# query = [batch size, query len, hid dim]
# key = [batch size, key len, hid dim]
# value = [batch size, value len, hid dim]
query = query.to(self.relative_position_k.embeddings_table.device)
key = key.to(self.relative_position_k.embeddings_table.device)
value = value.to(self.relative_position_k.embeddings_table.device)
batch_size = query.shape[0]
len_k = key.shape[1]
len_q = query.shape[1]
len_v = value.shape[1]
query = self.fc_q(query)
key = self.fc_k(key)
value = self.fc_v(value)
r_q1 = query.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
r_k1 = key.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
attn1 = torch.matmul(r_q1, r_k1.permute(0, 1, 3, 2))
r_q2 = query.permute(1, 0, 2).contiguous().view(len_q, batch_size * self.n_heads, self.head_dim)
r_k2 = self.relative_position_k(len_q, len_k)
attn2 = torch.matmul(r_q2, r_k2.transpose(1, 2)).transpose(0, 1)
attn2 = attn2.contiguous().view(batch_size, self.n_heads, len_q, len_k)
attn = (attn1 + attn2) / self.scale.to(attn1.device)
if attn_mask is not None:
attn = attn.masked_fill(attn_mask == 0, -1e10)
attn = self.dropout(torch.softmax(attn, dim=-1))
# attn = [batch size, n heads, query len, key len]
r_v1 = value.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
weight1 = torch.matmul(attn, r_v1)
r_v2 = self.relative_position_v(len_q, len_v)
weight2 = attn.permute(2, 0, 1, 3).contiguous().view(len_q, batch_size * self.n_heads, len_k)
weight2 = torch.matmul(weight2, r_v2)
weight2 = weight2.transpose(0, 1).contiguous().view(batch_size, self.n_heads, len_q, self.head_dim)
x = weight1 + weight2
# x = [batch size, n heads, query len, head dim]
x = x.permute(0, 2, 1, 3).contiguous()
# x = [batch size, query len, n heads, head dim]
x = x.view(batch_size, -1, self.hid_dim)
# x = [batch size, query len, hid dim]
x = self.fc_o(x)
# x = [batch size, query len, hid dim]
return x, attn
class RelativePositionTransformerLayer(nn.Module):
def __init__(self,
d_model: int,
nhead: int = 4,
dropout: float = 0.1,
dim_feedforward: int = 2048,
max_relative_position: int = 5,
):
super(RelativePositionTransformerLayer, self).__init__()
self.self_attn_layer_norm = nn.LayerNorm(d_model)
self.ff_layer_norm = nn.LayerNorm(d_model)
self.self_attention = RelPosMultiHeadAttentionLayer(d_model, nhead, 0.01, max_relative_position)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, src, src_mask=None):
attn_output, attn_w = self.self_attention(src, src, src, attn_mask=src_mask)
attn_output = self.dropout(attn_output)
# Add residual connection and apply layer normalization
norm_output1 = self.self_attn_layer_norm(src + attn_output)
# Apply feedforward layer
ff_output = self.linear2(self.dropout(torch.relu(self.linear1(norm_output1))))
ff_output = self.dropout(ff_output)
# Add residual connection and apply layer normalization
norm_output2 = self.ff_layer_norm(norm_output1 + ff_output)
return norm_output2
class DemoSelectorTransformerRelPosRegressor(pl.LightningModule, ABC):
def __init__(self,
model_name: str,
max_len: int,
score_cls_num: int,
embedding_dim: int,
lr: float,
num_heads: int = 4,
dropout: float = 0.1,
dim_feedforward: int = 2048,
max_relative_position: int = 5,
is_use_abs_pos: bool = True,
is_use_score_embed: bool = True
):
# Two-Tower Model
super(DemoSelectorTransformerRelPosRegressor, self).__init__()
self.model_name = model_name
self.is_use_abs_pos = is_use_abs_pos
self.is_use_score_embed = is_use_score_embed
if is_use_abs_pos:
self.pos_embedding = torch.nn.Embedding(max_len, embedding_dim)
if is_use_score_embed:
self.score_embedding = torch.nn.Embedding(score_cls_num, embedding_dim)
self.infer_text_head = torch.nn.Sequential(
torch.nn.Linear(embedding_dim, embedding_dim),
)
self.prompt_head_text = torch.nn.Sequential(
torch.nn.Linear(embedding_dim, embedding_dim),
)
self.prompt_head_demo = torch.nn.Sequential(
torch.nn.Linear(embedding_dim, embedding_dim),
)
self.demo_encoder_layer = torch.nn.Sequential(RelativePositionTransformerLayer(d_model=embedding_dim,
nhead=num_heads,
dropout=dropout,
dim_feedforward=dim_feedforward,
max_relative_position=max_relative_position
),
RelativePositionTransformerLayer(d_model=embedding_dim,
nhead=num_heads,
dropout=dropout,
dim_feedforward=dim_feedforward,
max_relative_position=max_relative_position
),
)
self.act = torch.nn.Sigmoid()
self.lr = lr
self.loss_func = nn.MSELoss()
def infer_text_tower(self, prompt, infer_text):
prompt = self.prompt_head_text(prompt)
infer_text = infer_text + prompt
infer_text_embed = self.infer_text_head(infer_text)
return infer_text_embed
def few_shot_demo_tower(self, demo_embed, demo_scores, prompt):
if self.is_use_abs_pos:
pos_demo_embed = torch.broadcast_to(torch.arange(demo_embed.shape[1]),
(demo_embed.shape[0], demo_embed.shape[1])).to(self.device)
pos_demo_embed = demo_embed.shape[1] - 1 - pos_demo_embed
pos_demo_embed = self.pos_embedding(pos_demo_embed)
assert demo_embed.shape == pos_demo_embed.shape
demo_embed += pos_demo_embed
if self.is_use_score_embed:
score_embed = self.score_embedding(demo_scores)
assert demo_embed.shape == score_embed.shape
demo_embed += score_embed
self.demo_encoder_layer = self.demo_encoder_layer.to(self.device)
demo_embed = self.demo_encoder_layer(demo_embed)
demo_embed_mean_pool = torch.mean(demo_embed, dim=1)
prompt = self.prompt_head_demo(prompt)
demo_embed_mean_pool = demo_embed_mean_pool + prompt
return demo_embed_mean_pool
def forward(self,
demo_embed,
demo_scores,
prompt,
infer_text
):
"""
Args:
demo_embed: torch.Size([batch_size, max_demo_num, 768])
demo_scores: torch.Size([batch_size, max_demo_num])
prompt: torch.Size([batch_size, 768])
infer_text: torch.Size([batch_size, 768])
Returns:
logits: (batch_size, num_classes)
tensor([[-0.7669, 0.0160, 0.0957],
[-0.8393, -0.0182, 0.1811]], grad_fn=<AddmmBackward0>)
"""
# Infer Text Tower
infer_text_embed = self.infer_text_tower(prompt, infer_text)
# Demo Tower
demo_embed_mean_pool = self.few_shot_demo_tower(demo_embed, demo_scores, prompt)
output = torch.diag(torch.matmul(demo_embed_mean_pool, infer_text_embed.T))
output = self.act(output)
return output
def compute_loss(self, batch_data):
(demo_embed, demo_scores, prompt, infer_text), actual_Y = batch_data
predicted_Y = self.forward(demo_embed, demo_scores, prompt, infer_text)
loss = self.loss_func(predicted_Y, actual_Y)
return loss
def training_step(self, train_batch, batch_idx):
X_tuple, Y = train_batch
check_nan(X_tuple, self)
check_nan(Y, self)
mean_loss = self.compute_loss(train_batch)
self.log('train_loss', mean_loss, prog_bar=True, on_step=False, on_epoch=True)
return mean_loss
def validation_step(self, val_batch, batch_idx):
X_tuple, Y = val_batch
check_nan(X_tuple, self)
check_nan(Y, self)
mean_loss = self.compute_loss(val_batch)
self.log('val_loss', mean_loss, prog_bar=True, on_step=False, on_epoch=True)
def test_step(self, test_batch, batch_idx):
X_tuple, Y = test_batch
check_nan(X_tuple, self)
check_nan(Y, self)
mean_loss = self.compute_loss(test_batch)
self.log('test_loss', mean_loss, prog_bar=True, on_step=False, on_epoch=True)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
return optimizer