-
Notifications
You must be signed in to change notification settings - Fork 23
/
run.py
769 lines (671 loc) · 28.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
"""
Main entry point for running experiments with MIMIR
"""
import numpy as np
import torch
from tqdm import tqdm
import datetime
import os
import json
import math
from collections import defaultdict
from typing import List, Dict
from simple_parsing import ArgumentParser
from pathlib import Path
from mimir.config import (
ExperimentConfig,
EnvironmentConfig,
NeighborhoodConfig,
ReferenceConfig,
OpenAIConfig,
ReCaLLConfig
)
import mimir.data_utils as data_utils
import mimir.plot_utils as plot_utils
from mimir.utils import fix_seed
from mimir.models import LanguageModel, ReferenceModel, OpenAI_APIModel
from mimir.attacks.all_attacks import AllAttacks, Attack
from mimir.attacks.utils import get_attacker
from mimir.attacks.attack_utils import (
get_roc_metrics,
get_precision_recall_metrics,
get_auc_from_thresholds,
)
def get_attackers(
target_model,
ref_models,
config: ExperimentConfig,
):
# Look at all attacks, and attacks that we have implemented
attacks = config.blackbox_attacks
implemented_blackbox_attacks = [a.value for a in AllAttacks]
# check for unimplemented attacks
runnable_attacks = []
for a in attacks:
if a not in implemented_blackbox_attacks:
print(f"Attack {a} not implemented, will be ignored")
pass
runnable_attacks.append(a)
attacks = runnable_attacks
# Initialize attackers
attackers = {}
for attack in attacks:
if attack != AllAttacks.REFERENCE_BASED:
attackers[attack] = get_attacker(attack)(config, target_model)
# Initialize reference-based attackers if specified
if ref_models is not None:
for name, ref_model in ref_models.items():
attacker = get_attacker(AllAttacks.REFERENCE_BASED)(
config, target_model, ref_model
)
attackers[f"{AllAttacks.REFERENCE_BASED}-{name.split('/')[-1]}"] = attacker
return attackers
def get_mia_scores(
data,
attackers_dict: Dict[str, Attack],
ds_object,
target_model: LanguageModel,
ref_models: Dict[str, ReferenceModel],
config: ExperimentConfig,
is_train: bool,
n_samples: int = None,
batch_size: int = 50,
**kwargs
):
# Fix randomness
fix_seed(config.random_seed)
n_samples = len(data["records"]) if n_samples is None else n_samples
# Look at all attacks, and attacks that we have implemented
neigh_config = config.neighborhood_config
if neigh_config:
n_perturbation_list = neigh_config.n_perturbation_list
in_place_swap = neigh_config.original_tokenization_swap
results = []
neighbors = None
if AllAttacks.NEIGHBOR in attackers_dict.keys() and neigh_config.load_from_cache:
neighbors = data[f"neighbors"]
print("Loaded neighbors from cache!")
if neigh_config and neigh_config.dump_cache:
collected_neighbors = {
n_perturbation: [] for n_perturbation in n_perturbation_list
}
recall_config = config.recall_config
if recall_config:
nonmember_prefix = kwargs.get("nonmember_prefix", None)
num_shots = recall_config.num_shots
avg_length = int(np.mean([len(target_model.tokenizer.encode(ex)) for ex in data["records"]]))
recall_dict = {"prefix":nonmember_prefix, "num_shots":num_shots, "avg_length":avg_length}
# For each batch of data
# TODO: Batch-size isn't really "batching" data - change later
for batch in tqdm(range(math.ceil(n_samples / batch_size)), desc=f"Computing criterion"):
texts = data["records"][batch * batch_size : (batch + 1) * batch_size]
# For each entry in batch
for idx in range(len(texts)):
sample_information = defaultdict(list)
sample = (
texts[idx][: config.max_substrs]
if config.full_doc
else [texts[idx]]
)
# This will be a list of integers if pretokenized
sample_information["sample"] = sample
if config.pretokenized:
detokenized_sample = [target_model.tokenizer.decode(s) for s in sample]
sample_information["detokenized"] = detokenized_sample
if neigh_config and neigh_config.dump_cache:
neighbors_within = {n_perturbation: [] for n_perturbation in n_perturbation_list}
# For each substring
for i, substr in enumerate(sample):
# compute token probabilities for sample
s_tk_probs, s_all_probs = (
target_model.get_probabilities(substr, return_all_probs=True)
if not config.pretokenized
else target_model.get_probabilities(
detokenized_sample[i], tokens=substr, return_all_probs=True
)
)
# Always compute LOSS score. Also helpful for reference-based and many other attacks.
loss = (
target_model.get_ll(substr, probs=s_tk_probs)
if not config.pretokenized
else target_model.get_ll(
detokenized_sample[i], tokens=substr, probs=s_tk_probs
)
)
sample_information[AllAttacks.LOSS].append(loss)
# TODO: Shift functionality into each attack entirely, so that this is just a for loop
# For each attack
for attack, attacker in attackers_dict.items():
# LOSS already added above, Reference handled later
if attack.startswith(AllAttacks.REFERENCE_BASED) or attack == AllAttacks.LOSS:
continue
if attack == AllAttacks.RECALL:
score = attacker.attack(
substr,
probs = s_tk_probs,
detokenized_sample=(
detokenized_sample[i]
if config.pretokenized
else None
),
loss=loss,
all_probs=s_all_probs,
recall_dict = recall_dict
)
sample_information[attack].append(score)
elif attack != AllAttacks.NEIGHBOR:
score = attacker.attack(
substr,
probs=s_tk_probs,
detokenized_sample=(
detokenized_sample[i]
if config.pretokenized
else None
),
loss=loss,
all_probs=s_all_probs,
)
sample_information[attack].append(score)
else:
# For each 'number of neighbors'
for n_perturbation in n_perturbation_list:
# Use neighbors if available
if neighbors:
substr_neighbors = neighbors[n_perturbation][
batch * batch_size + idx
][i]
else:
substr_neighbors = attacker.get_neighbors(
[substr], n_perturbations=n_perturbation
)
# Collect this neighbor information if neigh_config.dump_cache is True
if neigh_config.dump_cache:
neighbors_within[n_perturbation].append(
substr_neighbors
)
if not neigh_config.dump_cache:
# Only evaluate neighborhood attack when not caching neighbors
score = attacker.attack(
substr,
probs=s_tk_probs,
detokenized_sample=(
detokenized_sample[i]
if config.pretokenized
else None
),
loss=loss,
batch_size=4,
substr_neighbors=substr_neighbors,
)
sample_information[
f"{attack}-{n_perturbation}"
].append(score)
if neigh_config and neigh_config.dump_cache:
for n_perturbation in n_perturbation_list:
collected_neighbors[n_perturbation].append(
neighbors_within[n_perturbation]
)
# Add the scores we collected for each sample for each
# attack into to respective list for its classification
results.append(sample_information)
if neigh_config and neigh_config.dump_cache:
# Save p_member_text and p_nonmember_text (Lists of strings) to cache
# For each perturbation
for n_perturbation in n_perturbation_list:
ds_object.dump_neighbors(
collected_neighbors[n_perturbation],
train=is_train,
num_neighbors=n_perturbation,
model=neigh_config.model,
in_place_swap=in_place_swap,
)
if neigh_config and neigh_config.dump_cache:
print(
"Data dumped! Please re-run with load_from_cache set to True in neigh_config"
)
exit(0)
# Perform reference-based attacks
if ref_models is not None:
for name, ref_model in ref_models.items():
ref_key = f"{AllAttacks.REFERENCE_BASED}-{name.split('/')[-1]}"
attacker = attackers_dict.get(ref_key, None)
if attacker is None:
continue
# Update collected scores for each sample with ref-based attack scores
for r in tqdm(results, desc="Ref scores"):
ref_model_scores = []
for i, s in enumerate(r["sample"]):
if config.pretokenized:
s = r["detokenized"][i]
score = attacker.attack(s, probs=None,
loss=r[AllAttacks.LOSS][i])
ref_model_scores.append(score)
r[ref_key].extend(ref_model_scores)
attacker.unload()
else:
print("No reference models specified, skipping Reference-based attacks")
# Rearrange the nesting of the results dict and calculated aggregated score for sample
# attack -> member/nonmember -> list of scores
samples = []
predictions = defaultdict(lambda: [])
for r in results:
samples.append(r["sample"])
for attack, scores in r.items():
if attack != "sample" and attack != "detokenized":
# TODO: Is there a reason for the np.min here?
predictions[attack].append(np.min(scores))
return predictions, samples
def compute_metrics_from_scores(
preds_member: dict,
preds_nonmember: dict,
samples_member: List,
samples_nonmember: List,
n_samples: int):
attack_keys = list(preds_member.keys())
if attack_keys != list(preds_nonmember.keys()):
raise ValueError("Mismatched attack keys for member/nonmember predictions")
# Collect outputs for each attack
blackbox_attack_outputs = {}
for attack in attack_keys:
preds_member_ = preds_member[attack]
preds_nonmember_ = preds_nonmember[attack]
fpr, tpr, roc_auc, roc_auc_res, thresholds = get_roc_metrics(
preds_member=preds_member_,
preds_nonmember=preds_nonmember_,
perform_bootstrap=True,
return_thresholds=True,
)
tpr_at_low_fpr = {
upper_bound: tpr[np.where(np.array(fpr) < upper_bound)[0][-1]]
for upper_bound in config.fpr_list
}
p, r, pr_auc = get_precision_recall_metrics(
preds_member=preds_member_,
preds_nonmember=preds_nonmember_
)
print(
f"{attack}_threshold ROC AUC: {roc_auc}, PR AUC: {pr_auc}, tpr_at_low_fpr: {tpr_at_low_fpr}"
)
blackbox_attack_outputs[attack] = {
"name": f"{attack}_threshold",
"predictions": {
"member": preds_member_,
"nonmember": preds_nonmember_,
},
"info": {
"n_samples": n_samples,
},
"raw_results": (
{"member": samples_member, "nonmember": samples_nonmember}
if not config.pretokenized
else []
),
"metrics": {
"roc_auc": roc_auc,
"fpr": fpr,
"tpr": tpr,
"bootstrap_roc_auc_mean": np.mean(roc_auc_res.bootstrap_distribution),
"bootstrap_roc_auc_std": roc_auc_res.standard_error,
"tpr_at_low_fpr": tpr_at_low_fpr,
"thresholds": thresholds,
},
"pr_metrics": {
"pr_auc": pr_auc,
"precision": p,
"recall": r,
},
"loss": 1 - pr_auc,
}
return blackbox_attack_outputs
def generate_data_processed(
base_model,
mask_model,
raw_data_member,
batch_size: int,
raw_data_non_member: List[str] = None
):
torch.manual_seed(42)
np.random.seed(42)
data = {
"nonmember": [],
"member": [],
}
seq_lens = []
num_batches = (len(raw_data_member) // batch_size) + 1
iterator = tqdm(range(num_batches), desc="Generating samples")
for batch in iterator:
member_text = raw_data_member[batch * batch_size : (batch + 1) * batch_size]
non_member_text = raw_data_non_member[batch * batch_size : (batch + 1) * batch_size]
# TODO make same len
for o, s in zip(non_member_text, member_text):
# o, s = data_utils.trim_to_shorter_length(o, s, config.max_words)
# # add to the data
# assert len(o.split(' ')) == len(s.split(' '))
if not config.full_doc:
seq_lens.append((len(s.split(" ")), len(o.split())))
if config.tok_by_tok:
for tok_cnt in range(len(o.split(" "))):
data["nonmember"].append(" ".join(o.split(" ")[: tok_cnt + 1]))
data["member"].append(" ".join(s.split(" ")[: tok_cnt + 1]))
else:
data["nonmember"].append(o)
data["member"].append(s)
# if config.tok_by_tok:
n_samples = len(data["nonmember"])
# else:
# n_samples = config.n_samples
if config.pre_perturb_pct > 0:
print(
f"APPLYING {config.pre_perturb_pct}, {config.pre_perturb_span_length} PRE-PERTURBATIONS"
)
print("MOVING MASK MODEL TO GPU...", end="", flush=True)
mask_model.load()
data["member"] = mask_model.generate_neighbors(
data["member"],
config.pre_perturb_span_length,
config.pre_perturb_pct,
config.chunk_size,
ceil_pct=True,
)
print("MOVING BASE MODEL TO GPU...", end="", flush=True)
base_model.load()
return data, seq_lens, n_samples
def generate_data(
dataset: str,
train: bool = True,
presampled: str = None,
specific_source: str = None,
mask_model_tokenizer = None
):
data_obj = data_utils.Data(dataset, config=config, presampled=presampled)
data = data_obj.load(
train=train,
mask_tokenizer=mask_model_tokenizer,
specific_source=specific_source,
)
return data_obj, data
# return generate_samples(data[:n_samples], batch_size=batch_size)
def main(config: ExperimentConfig):
env_config: EnvironmentConfig = config.env_config
neigh_config: NeighborhoodConfig = config.neighborhood_config
ref_config: ReferenceConfig = config.ref_config
openai_config: OpenAIConfig = config.openai_config
recall_config: ReCaLLConfig = config.recall_config
if openai_config:
openAI_model = OpenAI_APIModel(config)
if openai_config is not None:
import openai
assert openai_config.key is not None, "Must provide OpenAI API key"
openai.api_key = openai_config.key
START_DATE = datetime.datetime.now().strftime("%Y-%m-%d")
START_TIME = datetime.datetime.now().strftime("%H-%M-%S-%f")
# define SAVE_FOLDER as the timestamp - base model name - mask filling model name
# create it if it doesn't exist
output_subfolder = f"{config.output_name}/"
if openai_config is None:
base_model_name = config.base_model.replace("/", "_")
else:
base_model_name = "openai-" + openai_config.model.replace("/", "_")
exp_name = config.experiment_name
# Add pile source to suffix, if provided
# TODO: Shift dataset-specific processing to their corresponding classes
# Results go under target model
sf = os.path.join(exp_name, config.base_model.replace("/", "_"))
if config.specific_source is not None:
processed_source = data_utils.sourcename_process(config.specific_source)
sf = os.path.join(sf, processed_source)
SAVE_FOLDER = os.path.join(env_config.tmp_results, sf)
new_folder = os.path.join(env_config.results, sf)
##don't run if exists!!!
print(f"{new_folder}")
if os.path.isdir((new_folder)):
print(f"HERE folder exists, not running this exp {new_folder}")
exit(0)
if not (os.path.exists(SAVE_FOLDER) or config.dump_cache):
os.makedirs(SAVE_FOLDER)
print(f"Saving results to absolute path: {os.path.abspath(SAVE_FOLDER)}")
if neigh_config:
n_perturbation_list = neigh_config.n_perturbation_list
in_place_swap = neigh_config.original_tokenization_swap
# n_similarity_samples = args.n_similarity_samples # NOT USED
cache_dir = env_config.cache_dir
print(f"LOG: cache_dir is {cache_dir}")
os.environ["XDG_CACHE_HOME"] = cache_dir
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
print(f"Using cache dir {cache_dir}")
# generic generative model
base_model = LanguageModel(config)
# reference model if we are doing the ref-based attack
ref_models = None
if (
ref_config is not None
and AllAttacks.REFERENCE_BASED in config.blackbox_attacks
):
ref_models = {
model: ReferenceModel(config, model) for model in ref_config.models
}
# Prepare attackers
attackers_dict = get_attackers(base_model, ref_models, config)
# Load neighborhood attack model, only if we are doing the neighborhood attack AND generating neighbors
mask_model = None
if (
neigh_config
and (not neigh_config.load_from_cache)
and (AllAttacks.NEIGHBOR in config.blackbox_attacks)
):
attacker_ne = attackers_dict[AllAttacks.NEIGHBOR]
mask_model = attacker_ne.get_mask_model()
print("MOVING BASE MODEL TO GPU...", end="", flush=True)
base_model.load()
print(f"Loading dataset {config.dataset_nonmember}...")
# data, seq_lens, n_samples = generate_data(config.dataset_member)
data_obj_nonmem, data_nonmember = generate_data(
config.dataset_nonmember,
train=False,
presampled=config.presampled_dataset_nonmember,
mask_model_tokenizer=mask_model.tokenizer if mask_model else None,
)
print(f"Loading dataset {config.dataset_member}...")
data_obj_mem, data_member = generate_data(
config.dataset_member,
presampled=config.presampled_dataset_member,
mask_model_tokenizer=mask_model.tokenizer if mask_model else None,
)
#* ReCaLL Specific
if AllAttacks.RECALL in config.blackbox_attacks:
assert recall_config, "Must provide a recall_config"
num_shots = recall_config.num_shots
nonmember_prefix = data_nonmember[:num_shots]
else:
nonmember_prefix = None
other_objs, other_nonmembers = None, None
if config.dataset_nonmember_other_sources is not None:
other_objs, other_nonmembers = [], []
for other_name in config.dataset_nonmember_other_sources:
data_obj_nonmem_others, data_nonmember_others = generate_data(
config.dataset_nonmember,
train=False,
specific_source=other_name,
mask_model_tokenizer=mask_model.tokenizer if mask_model else None,
)
other_objs.append(data_obj_nonmem_others)
other_nonmembers.append(data_nonmember_others)
if config.dump_cache and not (config.load_from_cache or config.load_from_hf):
print("Data dumped! Please re-run with load_from_cache set to True")
exit(0)
if config.pretokenized:
assert data_member.shape == data_nonmember.shape
data = {
"nonmember": data_nonmember,
"member": data_member,
}
n_samples, seq_lens = data_nonmember.shape
else:
data, seq_lens, n_samples = generate_data_processed(
base_model, mask_model,
data_member,
batch_size=config.batch_size,
raw_data_non_member=data_nonmember,
)
# If neighborhood attack is used, see if we have cache available (and load from it, if we do)
neighbors_nonmember, neighbors_member = None, None
if (
AllAttacks.NEIGHBOR in config.blackbox_attacks
and neigh_config.load_from_cache
):
neighbors_nonmember, neighbors_member = {}, {}
for n_perturbations in n_perturbation_list:
neighbors_nonmember[n_perturbations] = data_obj_nonmem.load_neighbors(
train=False,
num_neighbors=n_perturbations,
model=neigh_config.model,
in_place_swap=in_place_swap,
)
neighbors_member[n_perturbations] = data_obj_mem.load_neighbors(
train=True,
num_neighbors=n_perturbations,
model=neigh_config.model,
in_place_swap=in_place_swap,
)
print("NEW N_SAMPLES IS ", n_samples)
if mask_model is not None:
attacker_ne.create_fill_dictionary(data)
if config.scoring_model_name:
print(f"Loading SCORING model {config.scoring_model_name}...")
del base_model
# Clear CUDA cache
torch.cuda.empty_cache()
base_model = LanguageModel(config, name=config.scoring_model_name)
print("MOVING BASE MODEL TO GPU...", end="", flush=True)
base_model.load()
# Add neighbordhood-related data to 'data' here if we want it to be saved in raw data. Otherwise, add jsut before calling attack
# write the data to a json file in the save folder
if not config.pretokenized:
with open(os.path.join(SAVE_FOLDER, "raw_data.json"), "w") as f:
print(f"Writing raw data to {os.path.join(SAVE_FOLDER, 'raw_data.json')}")
json.dump(data, f)
with open(os.path.join(SAVE_FOLDER, "raw_data_lens.json"), "w") as f:
print(
f"Writing raw data to {os.path.join(SAVE_FOLDER, 'raw_data_lens.json')}"
)
json.dump(seq_lens, f)
# TODO: Remove below if not needed/used
"""
tk_freq_map = None
if config.token_frequency_map is not None:
print("loading tk freq map")
tk_freq_map = pickle.load(open(config.token_frequency_map, "rb"))
"""
# TODO: Instead of extracting from 'data', construct directly somewhere above
data_members = {
"records": data["member"],
"neighbors": neighbors_member,
}
data_nonmembers = {
"records": data["nonmember"],
"neighbors": neighbors_nonmember,
}
outputs = []
if config.blackbox_attacks is None:
raise ValueError("No blackbox attacks specified in config!")
# Collect scores for members
member_preds, member_samples = get_mia_scores(
data_members,
attackers_dict,
data_obj_mem,
target_model=base_model,
ref_models=ref_models,
config=config,
is_train=True,
n_samples=n_samples,
nonmember_prefix = nonmember_prefix
)
# Collect scores for non-members
nonmember_preds, nonmember_samples = get_mia_scores(
data_nonmembers,
attackers_dict,
data_obj_nonmem,
target_model=base_model,
ref_models=ref_models,
config=config,
is_train=False,
n_samples=n_samples,
nonmember_prefix = nonmember_prefix
)
blackbox_outputs = compute_metrics_from_scores(
member_preds,
nonmember_preds,
member_samples,
nonmember_samples,
n_samples=n_samples,
)
# TODO: For now, AUCs for other sources of non-members are only printed (not saved)
# Will fix later!
if config.dataset_nonmember_other_sources is not None:
# Using thresholds returned in blackbox_outputs, compute AUCs and ROC curves for other non-member sources
for other_obj, other_nonmember, other_name in zip(
other_objs, other_nonmembers, config.dataset_nonmember_other_sources
):
other_nonmem_preds, _ = get_mia_scores(
other_nonmember,
attackers_dict,
other_obj,
target_model=base_model,
ref_models=ref_models,
config=config,
is_train=False,
n_samples=n_samples,
)
for attack in blackbox_outputs.keys():
member_scores = np.array(
member_preds[attack]["predictions"]["member"]
)
thresholds = blackbox_outputs[attack]["metrics"]["thresholds"]
nonmember_scores = np.array(other_nonmem_preds[attack])
auc = get_auc_from_thresholds(
member_scores, nonmember_scores, thresholds
)
print(
f"AUC using thresholds of original split on {other_name} using {attack}: {auc}"
)
exit(0)
# Dump main config into SAVE_FOLDER
config.save_json(os.path.join(SAVE_FOLDER, 'config.json'), indent=4)
for attack, output in blackbox_outputs.items():
outputs.append(output)
with open(os.path.join(SAVE_FOLDER, f"{attack}_results.json"), "w") as f:
json.dump(output, f)
neighbor_model_name = neigh_config.model if neigh_config else None
plot_utils.save_roc_curves(
outputs,
save_folder=SAVE_FOLDER,
model_name=base_model_name,
neighbor_model_name=neighbor_model_name,
)
plot_utils.save_ll_histograms(outputs, save_folder=SAVE_FOLDER)
plot_utils.save_llr_histograms(outputs, save_folder=SAVE_FOLDER)
# move results folder from env_config.tmp_results to results/, making sure necessary directories exist
if not os.path.exists(os.path.dirname(new_folder)):
os.makedirs(os.path.dirname(new_folder))
os.rename(SAVE_FOLDER, new_folder)
api_calls = 0
if openai_config:
api_calls = openai_config.api_calls
print(f"Used an *estimated* {api_calls} API tokens (may be inaccurate)")
if __name__ == "__main__":
# Extract relevant configurations from config file
parser = ArgumentParser(add_help=False)
parser.add_argument("--config", help="Path to attack config file", type=Path)
args, remaining_argv = parser.parse_known_args()
# Attempt to extract as much information from config file as you can
config = ExperimentConfig.load(args.config, drop_extra_fields=False)
# Also give user the option to provide config values over CLI
parser = ArgumentParser(parents=[parser])
parser.add_arguments(ExperimentConfig, dest="exp_config", default=config)
args = parser.parse_args(remaining_argv)
config: ExperimentConfig = args.exp_config
# Fix randomness
fix_seed(config.random_seed)
# Call main function
main(config)