Skip to content

Latest commit

 

History

History
91 lines (75 loc) · 3.56 KB

readme.md

File metadata and controls

91 lines (75 loc) · 3.56 KB

Google sheet & Pandas intergation

test PyPI Latest Release PyPI - Downloads License

Package gheet-pandas allows you to easily get Pandas dataframe from Google Sheets or upload dataframe to the Sheets.

Installation

Install using pip:

pip install gsheet-pandas

Set up environment

Enable the API

Before using Google APIs, you need to turn them on in a Google Cloud project. You can turn on one or more APIs in a single Google Cloud project. In the Google Cloud console, enable the Google Sheets API.

Enable the API

Authorize credentials for a desktop application

To authenticate as an end user and access user data in your app, you need to create one or more OAuth 2.0 Client IDs. A client ID is used to identify a single app to Google's OAuth servers. If your app runs on multiple platforms, you must create a separate client ID for each platform.

  1. In the Google Cloud console, go to Menu > APIs & Services > Credentials.
  2. Go to Credentials
  3. Click Create Credentials > OAuth client ID.
  4. Click Application type > Desktop app.
  5. In the Name field, type a name for the credential. This name is only shown in the Google Cloud console.
  6. Click Create. The OAuth client created screen appears, showing your new Client ID and Client secret.
  7. Click OK. The newly created credential appears under OAuth 2.0 Client IDs.
  8. Save the downloaded JSON file as credentials.json, and move the file to your working directory.

Usage

Pandas extension

First, call setup method to register your credentials and initialize pandas extensions:

from pathlib import Path
import gsheet_pandas

secret_path = Path('/path/to/my/secrets/').resolve()
gsheet_pandas.setup(credentials_dir=secret_path / 'credentials.json',
                    token_dir=secret_path / 'token.json')

To download dataframe:

import pandas as pd

df = pd.from_gsheet(spreadsheet_id, 
                    sheet_name=sheet_name,
                    range_name='!A1:C100') # Range in Sheets; Optional

Default range_name is '!A1:ZZ900000'.

To upload dataframe:

df.to_gsheet(spreadsheet_id, 
             sheet_name=sheet_name,
             range_name='!B1:ZZ900000', # Range in Sheets; Optional
             drop_columns=False) # Upload column names or not; Optional

DriveConnection instance

First, init DriveConnection instance:

from gsheet_pandas import DriveConnection
secret_path = Path('/path/to/my/secrets/').resolve()
drive = DriveConnection(credentials_dir=secret_path / 'credentials.json', 
                        token_dir=secret_path / 'token.json')

To download dataframe:

df = drive.download(spreadsheet_id, 
                    sheet_name=sheet_name,
                    range_name='!A1:C100', # Range in Sheets; Optional
                    header=0) # Column row

Default range_name is '!A1:ZZ900000'.

To upload dataframe:

df = drive.upload(df,
                  spreadsheet_id, 
                  sheet_name=sheet_name,
                  range_name='!B1:ZZ900000', # Range in Sheets; Optional
                  drop_columns=False) # Upload column names or not; Optional