-
Notifications
You must be signed in to change notification settings - Fork 124
/
Copy pathmyutil.py
196 lines (178 loc) · 7.22 KB
/
myutil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
__author__ = 'Iacopo'
import scipy.io as scio
import sklearn.metrics
import cv2
import os
import numpy as np
import matplotlib.pyplot as plt
import ThreeD_Model
import camera_calibration as calib
## Index to remap landmarks in case we flip an image
repLand = [ 17,16,15,14,13,12,11,10, 9,8,7,6,5,4,3,2,1,27,26,25, \
24,23,22,21,20,19,18,28,29,30,31,36,35,34,33,32,46,45,44,43, \
48,47,40,39,38,37,42,41,55,54,53,52,51,50,49,60,59,58,57,56, \
65,64,63,62,61,68,67,66 ]
def mymkdir(output):
if not os.path.exists(output):
os.makedirs(output)
def parse(argv):
fileList = []
outputFolder = 'output/'
## Case in which only an image is provided
if len(argv) == 2:
head, tail = os.path.split(argv[1])
fileList = [tail.split('.')[0]+','+str(argv[1])+',None']
## Ok landmarks are provided as well or we are in batch mode
elif len(argv) == 3:
#print argv[1]
## If we are not in batch mode
if "--batch" not in str(argv[1]):
head, tail = os.path.split(argv[1])
fileList = [tail.split('.')[0]+','+str(argv[1])+','+str(argv[2])]
else:
print '> Batch mode detected - reading from file: ' + str(argv[2])
filep = str(argv[2])
fileList = [line.strip() for line in open(filep)]
else:
print 'Usage for face rendering. See below'
print 'Usage: python demo.py <image-path>'
print 'Usage: python demo.py <image-path> <landmark-path>'
print 'Usage: python demo.py --batch <file-list-path>'
print 'where <file-list-path> is a csv file where each line has'
print 'image_key,<image-path>,<landmark-path> (lines that contain # are skipped)'
exit(1)
return fileList, outputFolder
def isFrontal(pose):
if '_-00_' in pose:
return True
return False
def preload(this_path, pose_models_folder, pose_models,nSub):
print '> Preloading all the models for efficiency'
allModels= dict()
for posee in pose_models:
## Looping over the subjects
for subj in range(1,nSub+1):
pose = posee + '_' + str(subj).zfill(2) +'.mat'
# load detections performed by dlib library on 3D model and Reference Image
print "> Loading pose model in " + pose
#model3D = ThreeD_Model.FaceModel(this_path + "/models3d_new/" + pose, 'model3D')
if '-00' in posee:
model3D = ThreeD_Model.FaceModel(this_path + pose_models_folder + pose, 'model3D', True)
else:
model3D = ThreeD_Model.FaceModel(this_path + pose_models_folder + pose, 'model3D', False)
allModels[pose] = model3D
return allModels
def cropFunc(pose,frontal_raw,crop_model):
frontal_raw = crop_face(frontal_raw, crop_model)
return frontal_raw
def crop_face(img, cropping):
if cropping is not None:
img = img[cropping[1]:cropping[3],\
cropping[0]:cropping[2],:]
print '> Cropping with: ', cropping
else:
print '> No Cropping'
return img
def flipInCase(img, lmarks, allModels):
## Check if we need to flip the image
yaws= []#np.zeros(1,len(allModels))
## Getting yaw estimate over poses and subjects
for mmm in allModels.itervalues():
proj_matrix, camera_matrix, rmat, tvec = calib.estimate_camera(mmm, lmarks[0])
yaws.append( calib.get_yaw(rmat) )
yaws=np.asarray(yaws)
yaw = yaws.mean()
print '> Yaw value mean: ', yaw
if yaw < 0:
print '> Positive yaw detected, flipping the image'
img = cv2.flip(img,1)
# Flipping X values for landmarks
lmarks[0][:,0] = img.shape[1] - lmarks[0][:,0]
# Creating flipped landmarks with new indexing
lmarks3 = np.zeros((1,68,2))
for i in range(len(repLand)):
lmarks3[0][i,:] = lmarks[0][repLand[i]-1,:]
lmarks = lmarks3
return img, lmarks, yaw
def show(img_display, img, lmarks, frontal_raw, \
face_proj, background_proj, temp_proj2_out_2, sym_weight):
plt.ion()
plt.show()
plt.subplot(221)
plt.title('Query Image')
plt.imshow(img_display[:, :, ::-1])
plt.axis('off')
plt.subplot(222)
plt.title('Landmarks Detected')
plt.imshow(img[:, :, ::-1])
plt.scatter(lmarks[0][:, 0], lmarks[0][:, 1],c='red', marker='.',s=100,alpha=0.5)
plt.axis('off')
plt.subplot(223)
plt.title('Rendering')
plt.imshow(frontal_raw[:, :, ::-1])
plt.axis('off')
plt.subplot(224)
if sym_weight is None:
plt.title('Face Mesh Projected')
plt.imshow(img[:, :, ::-1])
plt.axis('off')
face_proj = np.transpose(face_proj)
plt.plot( face_proj[1:-1:100,0], face_proj[1:-1:100,1] ,'b.')
background_proj = np.transpose(background_proj)
temp_proj2_out_2 = temp_proj2_out_2.T
plt.plot( background_proj[1:-1:100,0], background_proj[1:-1:100,1] ,'r.')
plt.plot( temp_proj2_out_2[1:-1:100,0], temp_proj2_out_2[1:-1:100,1] ,'m.')
else:
plt.title('Face Symmetry')
plt.imshow(sym_weight)
plt.axis('off')
plt.colorbar()
plt.draw()
plt.pause(0.001)
enter = raw_input("Press [enter] to continue.")
plt.clf()
# def decidePose(yaw,opts):
# if opts.getboolean('renderer', 'nearView'):
# yaw = abs(yaw)
# # If yaw is near-frontal we render everything
# if yaw < 15:
# return [0,1,2]
# # otherwise we render only 2 profiles (from profile to frontal is noisy)
# else:
# return [1,2]
# else:
# return [0,1,2]
def decidePose(yaw,opts, newModels=True):
if newModels == True:
if opts.getboolean('renderer', 'nearView'):
yaw = abs(yaw)
# If yaw is near-frontal we render everything
if yaw < 15:
return [0,1,2,3,4]
# otherwise we render only 2 profiles (from profile to frontal is noisy)
elif yaw > 40:
return [3,4]
else:
return [2,3,4]
else:
return [0,1,2,3,4]
else:
if opts.getboolean('renderer', 'nearView'):
yaw = abs(yaw)
# If yaw is near-frontal we render everything
if yaw < 15:
return [0,1,2]
# otherwise we render only 2 profiles (from profile to frontal is noisy)
else:
return [1,2]
else:
return [0,1,2]
def decideSide_from_db(img, pose_Rt, allModels):
## Check if we need to flip the image
#model3D = ThreeD_Model.FaceModel(this_path + "/models3d/" + pose_models[0] +'_01.mat', 'model3D')
## Getting yaw estimate over poses and subjects
mm = allModels.values()[0]
proj_matrix, camera_matrix, rmat, tvec = calib.estimate_camera(mm, pose_Rt, pose_db_on=True)
yaw = calib.get_yaw(rmat)
print '> Yaw value mean: ', yaw
return yaw