Skip to content

Latest commit

 

History

History
 
 

VideoLT

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(MOVE) VideoLT dataset.

Data Preparation

For the data preparation, send an e-mail to zxwu at fudan.edu.cn and agree to the license, then they will send back the download links to you. Raw videos(~1.7TB) and extracted features(~900GB in total, ~295GB for each feature set from ResNet50, ResNet101, TSM) will be provided.

Then, to decompress the downloaded .tar.gz files, please use commands:

cat TSM-R50-feature.tar.gz.part* | tar zx 
cat ResNet50-feature.tar.gz.part* | tar zx
cat ResNet101-feature.tar.gz.part* | tar zx

For using extracted features, modify dataset/dutils.py and set the correct path to features.

Usage

Prepare Data Path

  1. Modify FEATURE_NAME, PATH_TO_FEATURE and FEATURE_DIM in dataset/dutils.py.

  2. Set ROOT in dataset/dutils.py to labels folder. The directory structure is:

    labels
    |-- count-labels-train.lst
    |-- test.lst
    |-- test_videofolder.txt
    |-- train.lst
    |-- train_videofolder.txt
    |-- val_videofolder.txt
    `-- validate.lst

Train

We provide scripts for training. Please refer to scripts directory.

  • base_main.py is for training our baselines.
  • base_main_Agg.py is for training our baselines with our learnable feature aggregators.
  • MOVE.py is for training our proposed method with all components.

Example training scripts:

FEATURE_NAME='ResNet101'

export CUDA_VISIBLE_DEVICES='0'
python MOVE.py    \
       --augment "None" \
       --feature_name $FEATURE_NAME \
       --lr 0.0001 \
       --lr_steps 30 60 \
       --epochs 100  \
       --batch-size 128  -j 16 --eval-freq 5 --print-freq 8000 \
       --root_log=$FEATURE_NAME-log      --root_model=$FEATURE_NAME'-checkpoints' \
       --store_name=$FEATURE_NAME'_MOVE'      --num_class=1004      --model_name=NonlinearClassifier  \
       --train_num_frames=60      --val_num_frames=150      --loss_func=BCELoss \
       --lb 3.0 \ 
       --mixupbias 0.5 --sampling_prob samplenum

Test

We also provide scripts for testing in scripts.

Example testing scripts:

FEATURE_NAME='ResNet101'
CKPT='/project/ResNet-101/ResNet101_MOVE/ckpt.best.pth.tar'

export CUDA_VISIBLE_DEVICES='0'
python MOVE.py \
     --resume $CKPT \
     --evaluate \
     --feature_name $FEATURE_NAME \
     --batch-size 128 -j 16 \
	 --print-freq 20 \
     --num_class=1004 \
     --model_name=NonlinearClassifier \
     --train_num_frames=60 \
     --val_num_frames=150 \
     --loss_func=BCELoss