forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
retinaface_trt.py
337 lines (296 loc) · 11.8 KB
/
retinaface_trt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
"""
Use TensorRT's Python api to make inferences.
"""
# -*- coding: utf-8 -*
import ctypes
import os
import random
import sys
import threading
import time
import cv2
import numpy as np
import pycuda.autoinit
import pycuda.driver as cuda
import tensorrt as trt
import torch
import torchvision
INPUT_H = 480 #defined in decode.h
INPUT_W = 640
CONF_THRESH = 0.75
IOU_THRESHOLD = 0.4
np.set_printoptions(threshold=np.inf)
def plot_one_box(x, landmark,img, color=None, label=None, line_thickness=None):
"""
description: Plots one bounding box on image img,
param:
x: a box likes [x1,y1,x2,y2]
img: a opencv image object
color: color to draw rectangle, such as (0,255,0)
label: str
line_thickness: int
return:
no return
"""
tl = (
line_thickness or round(0.001 * (img.shape[0] + img.shape[1]) / 2) + 1
) # line/font thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
cv2.circle(img, (int(landmark[0]), int(landmark[1])), 1, (0, 0, 255), 4)
cv2.circle(img, (int(landmark[2]), int(landmark[3])), 1, (0, 255, 255), 4)
cv2.circle(img, (int(landmark[4]), int(landmark[5])), 1, (255, 0, 255), 4)
cv2.circle(img, (int(landmark[6]), int(landmark[7])), 1, (0, 255, 0), 4)
cv2.circle(img, (int(landmark[8]), int(landmark[9])), 1, (255, 0, 0), 4)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(
img,
label,
(c1[0], c1[1] - 2),
0,
tl / 3,
[225, 255, 255],
thickness=tf,
lineType=cv2.LINE_AA,
)
class Retinaface_trt(object):
"""
description: A Retineface class that warps TensorRT ops, preprocess and postprocess ops.
"""
def __init__(self, engine_file_path):
# Create a Context on this device,
self.cfx = cuda.Device(0).make_context()
stream = cuda.Stream()
TRT_LOGGER = trt.Logger(trt.Logger.INFO)
runtime = trt.Runtime(TRT_LOGGER)
# Deserialize the engine from file
with open(engine_file_path, "rb") as f:
engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()
host_inputs = []
cuda_inputs = []
host_outputs = []
cuda_outputs = []
bindings = []
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
cuda_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(cuda_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
host_inputs.append(host_mem)
cuda_inputs.append(cuda_mem)
else:
host_outputs.append(host_mem)
cuda_outputs.append(cuda_mem)
# Store
self.stream = stream
self.context = context
self.engine = engine
self.host_inputs = host_inputs
self.cuda_inputs = cuda_inputs
self.host_outputs = host_outputs
self.cuda_outputs = cuda_outputs
self.bindings = bindings
def infer(self, input_image_path):
threading.Thread.__init__(self)
# Make self the active context, pushing it on top of the context stack.
self.cfx.push()
# Restore
stream = self.stream
context = self.context
engine = self.engine
host_inputs = self.host_inputs
cuda_inputs = self.cuda_inputs
host_outputs = self.host_outputs
cuda_outputs = self.cuda_outputs
bindings = self.bindings
# Do image preprocess
input_image, image_raw, origin_h, origin_w = self.preprocess_image(
input_image_path
)
a = time.time()
# Copy input image to host buffer
np.copyto(host_inputs[0], input_image.ravel())
# Transfer input data to the GPU.
cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream)
# Run inference.
context.execute_async(bindings=bindings, stream_handle=stream.handle)
# Transfer predictions back from the GPU.
cuda.memcpy_dtoh_async(host_outputs[0], cuda_outputs[0], stream)
# Synchronize the stream
stream.synchronize()
# Remove any context from the top of the context stack, deactivating it.
self.cfx.pop()
# Here we use the first row of output in that batch_size = 1
output = host_outputs[0]
# Do postprocess
result_boxes, result_scores, result_landmark = self.post_process(
output, origin_h, origin_w
)
b = time.time()-a
print(b)
# Draw rectangles and labels on the original image
# Save image
for i in range(len(result_boxes)):
box = result_boxes[i]
landmark = result_landmark[i]
plot_one_box(
box,
landmark,
image_raw,
label="{}:{:.2f}".format( 'Face', result_scores[i]))
parent, filename = os.path.split(input_image_path)
save_name = os.path.join(parent, "output_" + filename)
cv2.imwrite(save_name, image_raw)
def destroy(self):
# Remove any context from the top of the context stack, deactivating it.
self.cfx.pop()
def preprocess_image(self, input_image_path):
"""
description: Read an image from image path, resize and pad it to target size,
normalize to [0,1],transform to NCHW format.
param:
input_image_path: str, image path
return:
image: the processed image
image_raw: the original image
h: original height
w: original width
"""
image_raw = cv2.imread(input_image_path)
h, w, c = image_raw.shape
# Calculate widht and height and paddings
r_w = INPUT_W / w
r_h = INPUT_H / h
if r_h > r_w:
tw = INPUT_W
th = int(r_w * h)
tx1 = tx2 = 0
ty1 = int((INPUT_H - th) / 2)
ty2 = INPUT_H - th - ty1
else:
tw = int(r_h * w)
th = INPUT_H
tx1 = int((INPUT_W - tw) / 2)
tx2 = INPUT_W - tw - tx1
ty1 = ty2 = 0
# Resize the image with long side while maintaining ratio
image = cv2.resize(image_raw, (tw, th))
# Pad the short side with (128,128,128)
image = cv2.copyMakeBorder(
image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, (128, 128, 128)
)
image = image.astype(np.float32)
# HWC to CHW format:
image -= (104, 117, 123)
image = np.transpose(image, [2, 0, 1])
# CHW to NCHW format
image = np.expand_dims(image, axis=0)
# Convert the image to row-major order, also known as "C order":
image = np.ascontiguousarray(image)
return image, image_raw, h, w
def xywh2xyxy(self, origin_h, origin_w, x,landmark):
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
r_w = INPUT_W / origin_w
r_h = INPUT_H / origin_h
if r_h > r_w:
y[:, 0] = x[:, 0] / r_w
y[:, 2] = x[:, 2] / r_w
y[:, 1] = (x[:, 1] - (INPUT_H - r_w * origin_h) / 2) / r_w
y[:, 3] = (x[:, 3] - (INPUT_H - r_w * origin_h) / 2) / r_w
landmark[:,0] = landmark[:,0]/r_w
landmark[:,1] = (landmark[:,1] - (INPUT_H - r_w * origin_h) / 2)/r_w
landmark[:,2] = landmark[:,2]/r_w
landmark[:,3] = (landmark[:,3] - (INPUT_H - r_w * origin_h) / 2)/r_w
landmark[:,4] = landmark[:,4]/r_w
landmark[:,5] = (landmark[:,5] - (INPUT_H - r_w * origin_h) / 2)/r_w
landmark[:,6] = landmark[:,6]/r_w
landmark[:,7] = (landmark[:,7] - (INPUT_H - r_w * origin_h) / 2)/r_w
landmark[:,8] = landmark[:,8]/r_w
landmark[:,9] = (landmark[:,9] - (INPUT_H - r_w * origin_h) / 2)/r_w
else:
y[:, 0] = (x[:, 0] - (INPUT_W - r_h * origin_w) / 2) / r_h
y[:, 2] = (x[:, 2] - (INPUT_W - r_h * origin_w) / 2) / r_h
y[:, 1] = x[:, 1] /r_h
y[:, 3] = x[:, 3] /r_h
landmark[:,0] = (landmark[:,0] - (INPUT_W - r_h * origin_w) / 2)/r_h
landmark[:,1] = landmark[:,1]/ r_h
landmark[:,2] = (landmark[:,2] - (INPUT_W - r_h * origin_w) / 2)/r_h
landmark[:,3] = landmark[:,3]/ r_h
landmark[:,4] = (landmark[:,4] - (INPUT_W - r_h * origin_w) / 2)/r_h
landmark[:,5] = landmark[:,5]/ r_h
landmark[:,6] = (landmark[:,6] - (INPUT_W - r_h * origin_w) / 2)/r_h
landmark[:,7] = landmark[:,7]/ r_h
landmark[:,8] = (landmark[:,8] - (INPUT_W - r_h * origin_w) / 2)/r_h
landmark[:,9] = landmark[:,9]/ r_h
return y, landmark
def post_process(self, output, origin_h, origin_w):
"""
description: postprocess the prediction
param:
output: A tensor likes [num_boxes,x1,y1,x2,y2,conf,landmark_x1,landmark_y1,
landmark_x2,landmark_y2,...]
origin_h: height of original image
origin_w: width of original image
return:
result_boxes: finally boxes, a boxes tensor, each row is a box [x1, y1, x2, y2]
result_scores: finally scores, a tensor, each element is the score correspoing to box
result_classid: finally classid, a tensor, each element is the classid correspoing to box
"""
# Get the num of boxes detected
num = int(output[0])
# Reshape to a two dimentional ndarray
pred = np.reshape(output[1:], (-1, 15))[:num, :]
# to torch Tensor
pred = torch.Tensor(pred).cuda()
# Get the boxes
boxes = pred[:, :4]
# Get the scores
scores = pred[:, 4]
# Get the landmark
landmark = pred[:,5:15]
# Choose those boxes that score > CONF_THRESH
si = scores > CONF_THRESH
boxes = boxes[si, :]
scores = scores[si]
landmark = landmark[si,:]
# Get boxes and landmark
boxes,landmark = self.xywh2xyxy(origin_h, origin_w, boxes,landmark)
# Do nms
indices = torchvision.ops.nms(boxes, scores, iou_threshold=IOU_THRESHOLD).cpu()
result_boxes = boxes[indices, :].cpu()
result_scores = scores[indices].cpu()
result_landmark = landmark[indices].cpu()
return result_boxes, result_scores, result_landmark
class myThread(threading.Thread):
def __init__(self, func, args):
threading.Thread.__init__(self)
self.func = func
self.args = args
def run(self):
self.func(*self.args)
if __name__ == "__main__":
# load custom plugins,make sure it has been generated
PLUGIN_LIBRARY = "build/libdecodeplugin.so"
ctypes.CDLL(PLUGIN_LIBRARY)
engine_file_path = "build/retina_r50.engine"
retinaface = Retinaface_trt(engine_file_path)
input_image_paths = ["zidane.jpg"]
for i in range(10):
for input_image_path in input_image_paths:
# create a new thread to do inference
thread = myThread(retinaface.infer, [input_image_path])
thread.start()
thread.join()
# destroy the instance
retinaface.destroy()