-
Notifications
You must be signed in to change notification settings - Fork 36
/
Models.cpp
295 lines (251 loc) · 8.8 KB
/
Models.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#include "Models.hpp"
#include "CharacterNames.hpp"
#include "DummyMixer.hpp"
#include "file/OpenFromMyFolder.hpp"
#include "file/FileDisk.hpp"
/*
relationship between compression level, shared->mem and NormalModel memory use as an example
level shared->mem NormalModel memory use (shared->mem*32)
----- ----------- ----------------------
1 0.125 MB 4 MB
2 0.25 MB 8 MB
3 0.5 MB 16 MB
4 1.0 MB 32 MB
5 2.0 MB 64 MB
6 4.0 MB 128 MB
7 8.0 MB 256 MB
8 16.0 MB 512 MB
9 32.0 MB 1024 MB
10 64.0 MB 2048 MB
11 128.0 MB 4096 MB
12 256.0 MB 8192 MB
*/
Models::Models(Shared* const sh, MixerFactory* mf) : shared(sh), mixerFactory(mf) {}
void Models::trainModelsWhenNeeded() {
//initiate pre-training
if (shared->GetOptionTrainTxt()) {
trainText("english.dic", 3);
trainText("english.exp", 1);
}
if (shared->GetOptionTrainExe()) {
trainExe();
}
}
void Models::trainText(const char* const dictionary, int iterations) {
NormalModel& normalModel = this->normalModel();
WordModel& wordModel = this->wordModel();
DummyMixer mDummy(shared,
NormalModel::MIXERINPUTS + WordModel::MIXERINPUTS_TEXT,
NormalModel::MIXERCONTEXTS_PRE + WordModel::MIXERCONTEXTS,
NormalModel::MIXERCONTEXTSETS_PRE + WordModel::MIXERCONTEXTSETS);
shared->State.blockType = BlockType::TEXT;
INJECT_SHARED_pos
INJECT_SHARED_blockPos
assert(pos == 0 && blockPos == 0);
FileDisk f;
printf("Pre-training models with text...");
OpenFromMyFolder::anotherFile(&f, dictionary);
int c = 0;
int trainingByteCount = 0;
while (iterations-- > 0) {
f.setpos(0);
c = SPACE;
trainingByteCount = 0;
do {
trainingByteCount++;
uint8_t c1 = c == NEW_LINE ? SPACE : c;
if (c != CARRIAGE_RETURN) {
for (int bpos = 0; bpos < 8; bpos++) {
normalModel.mix(mDummy); //update (train) model
wordModel.mix(mDummy); //update (train) model
mDummy.p();
int y = (c1 >> (7 - bpos)) & 1;
shared->update(y, false);
}
}
// emulate a space before and after each word/expression
// reset models in between
if (c == NEW_LINE) {
normalModel.reset();
wordModel.reset();
for (int bpos = 0; bpos < 8; bpos++) {
normalModel.mix(mDummy); //update (train) model
wordModel.mix(mDummy); //update (train) model
mDummy.p();
int y = (c1 >> (7 - bpos)) & 1;
shared->update(y, false);
}
}
} while ((c = f.getchar()) != EOF);
}
normalModel.reset();
wordModel.reset();
shared->reset();
printf(" done [%s, %d bytes]\n", dictionary, trainingByteCount);
f.close();
}
void Models::trainExe() {
ExeModel& exeModel = this->exeModel();
DummyMixer mDummy(shared, ExeModel::MIXERINPUTS, ExeModel::MIXERCONTEXTS, ExeModel::MIXERCONTEXTSETS);
INJECT_SHARED_pos
INJECT_SHARED_blockPos
assert(pos == 0 && blockPos == 0);
FileDisk f;
printf("Pre-training x86/x64 model...");
OpenFromMyFolder::myself(&f);
int c = 0;
int trainingByteCount = 0;
do {
trainingByteCount++;
for (uint32_t bpos = 0; bpos < 8; bpos++) {
exeModel.mix(mDummy); //update (train) model
mDummy.p();
int y = (c >> (7 - bpos)) & 1;
shared->update(y, false);
}
} while ((c = f.getchar()) != EOF);
printf(" done [%d bytes]\n", trainingByteCount);
f.close();
shared->reset();
}
auto Models::normalModel() -> NormalModel & {
static NormalModel instance {shared, shared->mem * 32};
return instance;
}
auto Models::dmcForest() -> DmcForest & {
static DmcForest instance {shared, shared->mem}; /**< Not the actual memory use - see in the model */
return instance;
}
auto Models::charGroupModel() -> CharGroupModel & {
static CharGroupModel instance {shared, shared->mem / 2};
return instance;
}
auto Models::recordModel() -> RecordModel & {
static RecordModel instance {shared, shared->mem * 2};
return instance;
}
auto Models::sparseBitModel() -> SparseBitModel& {
static SparseBitModel instance{ shared, shared->mem / 4 };
return instance;
}
auto Models::sparseModel() -> SparseModel & {
static SparseModel instance {shared, shared->mem * 4};
return instance;
}
auto Models::matchModel() -> MatchModel & {
static MatchModel instance {shared, shared->mem / 4 /*hashtablesize*/, shared->mem /*mapmemorysize*/ }; /**< Not the actual memory use - see in the model */
return instance;
}
auto Models::sparseMatchModel() -> SparseMatchModel & {
static SparseMatchModel instance {shared, shared->mem};
return instance;
}
auto Models::indirectModel() -> IndirectModel & {
static IndirectModel instance {shared, shared->mem * 2};
return instance;
}
auto Models::chartModel() -> ChartModel& {
static ChartModel instance{ shared, shared->mem * 4 };
return instance;
}
auto Models::textModel() -> TextModel & {
static TextModel instance {shared, shared->mem * 16};
return instance;
}
auto Models::wordModel() -> WordModel & {
static WordModel instance {shared, shared->mem * 16};
return instance;
}
auto Models::nestModel() -> NestModel & {
static NestModel instance {shared, shared->mem};
return instance;
}
auto Models::xmlModel() -> XMLModel & {
static XMLModel instance {shared, shared->mem / 4};
return instance;
}
auto Models::exeModel() -> ExeModel & {
static ExeModel instance {shared, shared->mem * 4};
return instance;
}
auto Models::linearPredictionModel() -> LinearPredictionModel & {
static LinearPredictionModel instance {shared};
return instance;
}
auto Models::jpegModel() -> JpegModel & {
static JpegModel instance {shared, mixerFactory, shared->mem}; /**< Not the actual memory use - see in the model */
return instance;
}
auto Models::image24BitModel() -> Image24BitModel & {
static Image24BitModel instance {shared, shared->mem * 4};
return instance;
}
auto Models::image8BitModel() -> Image8BitModel & {
static Image8BitModel instance {shared, shared->mem * 4};
return instance;
}
auto Models::image4BitModel() -> Image4BitModel & {
static Image4BitModel instance {shared, shared->mem / 2};
return instance;
}
auto Models::image1BitModel() -> Image1BitModel & {
static Image1BitModel instance {shared};
return instance;
}
auto Models::audio8BitModel() -> Audio8BitModel & {
static Audio8BitModel instance {shared};
return instance;
}
auto Models::audio16BitModel() -> Audio16BitModel & {
static Audio16BitModel instance {shared};
return instance;
}
auto Models::decAlphaModel() -> DECAlphaModel & {
static DECAlphaModel instance{ shared };
return instance;
}
//An LSTM model adapts slowly to new contents, so we'll have a separate LSTM model per main content type
auto Models::lstmModelText() -> LstmModel<>& {
static LstmModel<>* instance = LstmFactory<>::CreateLSTM(shared, 200, 2, 100, 0.06f, 16.f); //warning: current pre-trained LSTM repository 'english.rnn' is using this structure, don't change these parameters
return *instance;
}
auto Models::lstmModelGeneric() -> LstmModel<>& {
static LstmModel<>* instance = LstmFactory<>::CreateLSTM(shared, 200, 2, 100, 0.06f, 16.f);
return *instance;
}
auto Models::lstmModelExe() -> LstmModel<>& {
static LstmModel<>* instance = LstmFactory<>::CreateLSTM(shared, 200, 2, 100, 0.06f, 16.f); //warning: current pre-trained LSTM repository 'x86_64.rnn' is using this structure, don't change these parameters
return *instance;
}
auto Models::lstmModelDec() -> LstmModel<>& {
static LstmModel<>* instance = LstmFactory<>::CreateLSTM(shared, 200, 2, 100, 0.06f, 16.f);
return *instance;
}
auto Models::lstmModelAudio8() -> LstmModel<>& {
static LstmModel<>* instance = LstmFactory<>::CreateLSTM(shared, 200, 2, 100, 0.06f, 16.f);
return *instance;
}
auto Models::lstmModelAudio16() -> LstmModel<>& {
static LstmModel<>* instance = LstmFactory<>::CreateLSTM(shared, 200, 2, 100, 0.06f, 16.f);
return *instance;
}
auto Models::lstmModelImage1() -> LstmModel<>& {
static LstmModel<>* instance = LstmFactory<>::CreateLSTM(shared, 200, 2, 100, 0.06f, 16.f);
return *instance;
}
auto Models::lstmModelImage4() -> LstmModel<>& {
static LstmModel<>* instance = LstmFactory<>::CreateLSTM(shared, 200, 2, 100, 0.06f, 16.f);
return *instance;
}
auto Models::lstmModelImage8() -> LstmModel<>& {
static LstmModel<>* instance = LstmFactory<>::CreateLSTM(shared, 200, 2, 100, 0.06f, 16.f);
return *instance;
}
auto Models::lstmModelImage24() -> LstmModel<>& {
static LstmModel<>* instance = LstmFactory<>::CreateLSTM(shared, 200, 2, 100, 0.06f, 16.f);
return *instance;
}
auto Models::lstmModelJpeg() -> LstmModel<>& {
static LstmModel<>* instance = LstmFactory<>::CreateLSTM(shared, 200, 2, 100, 0.06f, 16.f);
return *instance;
}