-
Notifications
You must be signed in to change notification settings - Fork 22
/
train.py
470 lines (375 loc) · 16.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import os
import time
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import torch.backends.cudnn as cudnn
from data_loader import get_loader
from args import get_parser
from models import *
from torch.optim import lr_scheduler
from tqdm import tqdm
import pdb
import torch.nn.functional as F
from triplet_loss import *
import pickle
from build_vocab import Vocabulary
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence
import torchvision.utils as vutils
# =============================================================================
parser = get_parser()
opts = parser.parse_args()
device = [0]
with open(opts.vocab_path, 'rb') as f:
vocab = pickle.load(f)
# =============================================================================
##load models
image_model = torch.nn.DataParallel(ImageEmbedding().cuda(), device_ids=device)
recipe_model = torch.nn.DataParallel(TextEmbedding().cuda(), device_ids=device)
netG = torch.nn.DataParallel(G_NET().cuda(), device_ids=device)
multi_label_net = torch.nn.DataParallel(MultiLabelNet().cuda(), device_ids=device)
cm_discriminator = torch.nn.DataParallel(cross_modal_discriminator().cuda(), device_ids=device)
text_discriminator = torch.nn.DataParallel(text_emb_discriminator().cuda(), device_ids=device)
netsD = torch.nn.DataParallel(D_NET128().cuda(), device_ids=device)
## load loss functions
triplet_loss = TripletLoss(device, margin=0.3)
img2text_criterion = nn.MultiLabelMarginLoss().cuda()
weights_class = torch.Tensor(opts.numClasses).fill_(1)
weights_class[0] = 0
class_criterion = nn.CrossEntropyLoss(weight=weights_class).cuda()
GAN_criterion = nn.BCELoss().cuda()
nz = opts.Z_DIM
noise = Variable(torch.FloatTensor(opts.batch_size, nz)).cuda()
fixed_noise = Variable(torch.FloatTensor(opts.batch_size, nz).normal_(0, 1)).cuda()
real_labels = Variable(torch.FloatTensor(opts.batch_size).fill_(1)).cuda()
fake_labels = Variable(torch.FloatTensor(opts.batch_size).fill_(0)).cuda()
fc_sia = nn.Sequential(
nn.Linear(opts.embDim, opts.embDim),
nn.BatchNorm1d(opts.embDim),
nn.Tanh(),
).cuda()
model_list = [image_model, recipe_model, netG, multi_label_net, cm_discriminator, text_discriminator, netsD, fc_sia]
optimizer = torch.optim.Adam([
{'params': image_model.parameters()},
{'params': recipe_model.parameters()},
{'params': netG.parameters()},
{'params': multi_label_net.parameters()}
], lr=opts.lr, betas=(0.5, 0.999))
optimizers_imgD = torch.optim.Adam(netsD.parameters(), lr=opts.lr, betas=(0.5, 0.999))
optimizer_cmD = torch.optim.Adam(cm_discriminator.parameters(), lr=opts.lr, betas=(0.5, 0.999))
label = list(range(0, opts.batch_size))
label.extend(label)
label = np.array(label)
label = torch.tensor(label).cuda().long()
method = 'acme'
save_folder = method
os.makedirs(save_folder, exist_ok=True)
epoch_trace_f_dir = os.path.join(save_folder, "trace_" + method + ".csv")
with open(epoch_trace_f_dir, "w") as f:
f.write("epoch,lr,I2R,R@1,R@5,R@10,R2I,R@1,R@5,R@10\n")
def main():
# data preparation, loaders
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_transform = transforms.Compose([
transforms.Resize(256),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip()])
val_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224)])
cudnn.benchmark = True
# preparing the training laoder
train_loader = get_loader(opts.img_path, train_transform, vocab, opts.data_path, partition='train',
batch_size=opts.batch_size, shuffle=True,
num_workers=opts.workers, pin_memory=True)
print('Training loader prepared.')
# preparing validation loader
val_loader = get_loader(opts.img_path, val_transform, vocab, opts.data_path, partition='test',
batch_size=opts.batch_size, shuffle=False,
num_workers=opts.workers, pin_memory=True)
print('Validation loader prepared.')
best_val_i2t = {1:0.0,5:0.0,10:0.0}
best_val_t2i = {1:0.0,5:0.0,10:0.0}
best_epoch_i2t = 0
best_epoch_t2i = 0
for epoch in range(0, opts.epochs):
train(train_loader, epoch, val_loader)
recall_i2t, recall_t2i, medR_i2t, medR_t2i = validate(val_loader)
with open(epoch_trace_f_dir, "a") as f:
lr = optimizer.param_groups[1]['lr']
f.write("{},{},{},{},{},{},{},{},{},{}\n".format\
(epoch,lr,medR_i2t,recall_i2t[1],recall_i2t[5],recall_i2t[10],\
medR_t2i,recall_t2i[1],recall_t2i[5],recall_t2i[10]))
for keys in best_val_i2t:
if recall_i2t[keys] > best_val_i2t[keys]:
best_val_i2t = recall_i2t
best_epoch = epoch+1
model_num = 1
for model_n in model_list:
filename = save_folder + '/model_e%03d_v%d.pkl' % (epoch+1, model_num)
torch.save(model_n.state_dict(), filename)
model_num += 1
break
print("best: ", best_epoch, best_val_i2t)
print('params lr: %f' % optimizer.param_groups[1]['lr'])
if epoch == 30:
optimizer.param_groups[0]['lr'] = 0.00001
optimizer.param_groups[1]['lr'] = 0.00001
optimizer.param_groups[2]['lr'] = 0.00001
optimizer.param_groups[3]['lr'] = 0.00001
optimizers_imgD.param_groups[0]['lr'] = 0.00001
optimizer_cmD.param_groups[0]['lr'] = 0.00001
def train_Dnet(idx, real_imgs, fake_imgs, mu, label_class):
netD = netsD
real_imgs = real_imgs[idx]
fake_imgs = fake_imgs[idx]
real_logits = netD(real_imgs, mu.detach())
fake_logits = netD(fake_imgs.detach(), mu.detach())
lossD_real = GAN_criterion(real_logits[0], real_labels)
lossD_fake = GAN_criterion(fake_logits[0], fake_labels)
lossD = lossD_real + lossD_fake
return lossD
def KL_loss(mu, logvar):
KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
KLD = torch.mean(KLD_element).mul_(-0.5)
return KLD
def train_Gnet(idx, real_imgs, fake_imgs, mu, logvar, label_class):
netD = netsD
real_imgs = real_imgs[idx]
fake_imgs = fake_imgs[idx]
real_logits = netD(real_imgs, mu)
fake_logits = netD(fake_imgs, mu)
lossG_fake = GAN_criterion(fake_logits[0], real_labels)
lossG_real_cond = class_criterion(real_logits[1], label_class)
lossG_fake_cond = class_criterion(fake_logits[1], label_class)
lossG_cond = lossG_real_cond + lossG_fake_cond
lossG = lossG_fake + lossG_cond
kl_loss = KL_loss(mu, logvar) * 2
lossG = kl_loss + lossG
return lossG
def compute_gradient_penalty(D, real_samples, fake_samples):
"""Calculates the gradient penalty loss for WGAN GP"""
# Random weight term for interpolation between real and fake samples
alpha = torch.cuda.FloatTensor(np.random.random((real_samples.size(0), 1)))
# Get random interpolation between real and fake samples
interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True)
d_interpolates = D(interpolates)
fake = torch.autograd.Variable(torch.cuda.FloatTensor(real_samples.shape[0], 1).fill_(1.0), requires_grad=False)
# Get gradient w.r.t. interpolates
gradients = torch.autograd.grad(
outputs=d_interpolates, # fack samples
inputs=interpolates, # real samples
grad_outputs=fake,
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
def train(train_loader, epoch, val_loader):
tri_losses = AverageMeter()
img_losses = AverageMeter()
text_losses = AverageMeter()
cmG_losses = AverageMeter()
image_model.train()
recipe_model.train()
for i, data in enumerate(tqdm(train_loader)):
img_emd_modal = image_model(data[0][0].cuda())
recipe_emb_modal = recipe_model(data[0][1].cuda(), data[0][2].cuda(), data[0][3].cuda(), data[0][4].cuda())
################################################################
# modal-level fusion
################################################################
real_validity = cm_discriminator(img_emd_modal.detach())
fake_validity = cm_discriminator(recipe_emb_modal.detach())
gradient_penalty = compute_gradient_penalty(cm_discriminator, img_emd_modal.detach(), recipe_emb_modal.detach())
loss_cmD = -torch.mean(real_validity) + torch.mean(fake_validity) + 10 * gradient_penalty
optimizer_cmD.zero_grad()
loss_cmD.backward()
optimizer_cmD.step()
g_fake_validity = cm_discriminator(recipe_emb_modal)
loss_cmG = -torch.mean(g_fake_validity)
################################################################
# cross-modal retrieval
################################################################
img_id_fea = norm(fc_sia(img_emd_modal))
rec_id_fea = norm(fc_sia(recipe_emb_modal))
tri_loss = global_loss(triplet_loss, torch.cat((img_id_fea, rec_id_fea)), label)[0]
################################################################
# translation consistency
label_class = data[1][7].cuda()
real_imgs = []
real_imgs.append(data[1][8].cuda())
ingr_cap = data[1][5].cuda()
lengths = torch.tensor(data[1][6]).cuda()
targets = pack_padded_sequence(ingr_cap, lengths, batch_first=True)[0]
one_hot_cap = data[1][9].cuda().long()
################################################################
# img2text
################################################################
recipe_out = multi_label_net(img_id_fea)
loss_i2t = img2text_criterion(recipe_out[0], one_hot_cap)
loss_t_class = class_criterion(recipe_out[1], label_class)
loss_text = loss_i2t + loss_t_class
###############################################################
# text2img
###############################################################
noise.data.normal_(0, 1)
fake_imgs, mu, logvar = netG(noise, rec_id_fea)
lossD_total = 0
lossD = train_Dnet(0, real_imgs, fake_imgs, mu, label_class)
optimizers_imgD.zero_grad()
lossD.backward()
optimizers_imgD.step()
lossG = train_Gnet(0, real_imgs, fake_imgs, mu, logvar, label_class)
loss_img = lossG
if loss_text.item() < loss_img.item():
loss_img = (loss_text.item()/loss_img.item()) * loss_img
else:
loss_text = (loss_img.item()/loss_text.item()) * loss_text
loss_g = loss_img + loss_text
###############################################################
# back-propogate
###############################################################
loss = tri_loss + 0.005 * loss_cmG + 0.002 * loss_g
tri_losses.update(tri_loss.item(), data[0][0].size(0))
img_losses.update(loss_img.item(), data[0][0].size(0))
text_losses.update(loss_text.item(), data[0][0].size(0))
cmG_losses.update(loss_cmG.item(), data[0][0].size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(epoch)
print('Epoch: {0} '
'tri loss {tri_loss.val:.4f} ({tri_loss.avg:.4f}), '
'cm loss {loss_cmG.val:.4f} ({loss_cmG.avg:.4f}), '
'img loss {img_losses.val:.4f} ({img_losses.avg:.4f}), '
'text loss {loss_text.val:.4f} ({loss_text.avg:.4f})'
.format(
epoch, tri_loss=tri_losses, loss_cmG=cmG_losses,
img_losses=img_losses, loss_text=text_losses))
def validate(val_loader):
# switch to evaluate mode
image_model.eval()
recipe_model.eval()
end = time.time()
for i, data in enumerate(tqdm(val_loader)):
with torch.no_grad():
img_emd_modal = image_model(data[0][0].cuda())
recipe_emb_modal = recipe_model(data[0][1].cuda(), data[0][2].cuda(), data[0][3].cuda(), data[0][4].cuda())
img_emd_modal = norm(fc_sia(img_emd_modal))
recipe_emb_modal = norm(fc_sia(recipe_emb_modal))
if i==0:
data0 = img_emd_modal.data.cpu().numpy()
data1 = recipe_emb_modal.data.cpu().numpy()
else:
data0 = np.concatenate((data0,img_emd_modal.data.cpu().numpy()),axis=0)
data1 = np.concatenate((data1,recipe_emb_modal.data.cpu().numpy()),axis=0)
medR_i2t, recall_i2t = rank_i2t(opts, data0, data1)
print('I2T Val medR {medR:.4f}\t'
'Recall {recall}'.format(medR=medR_i2t, recall=recall_i2t))
medR_t2i, recall_t2i = rank_t2i(opts, data0, data1)
print('T2I Val medR {medR:.4f}\t'
'Recall {recall}'.format(medR=medR_t2i, recall=recall_t2i))
return recall_i2t, recall_t2i, medR_i2t, medR_t2i
def rank_i2t(opts, img_embeds, rec_embeds):
random.seed(opts.seed)
im_vecs = img_embeds
instr_vecs = rec_embeds
# Ranker
N = 1000
idxs = range(N)
glob_rank = []
glob_recall = {1:0.0,5:0.0,10:0.0}
for i in range(10):
ids = random.sample(range(0,len(img_embeds)), N)
im_sub = im_vecs[ids,:]
instr_sub = instr_vecs[ids,:]
med_rank = []
recall = {1:0.0,5:0.0,10:0.0}
for ii in idxs:
distance = {}
for j in range(N):
distance[j] = np.linalg.norm(im_sub[ii] - instr_sub[j])
distance_sorted = sorted(distance.items(), key=lambda x:x[1])
pos = np.where(np.array(distance_sorted) == distance[ii])[0][0]
if (pos+1) == 1:
recall[1]+=1
if (pos+1) <=5:
recall[5]+=1
if (pos+1)<=10:
recall[10]+=1
# store the position
med_rank.append(pos+1)
for i in recall.keys():
recall[i]=recall[i]/N
med = np.median(med_rank)
for i in recall.keys():
glob_recall[i]+=recall[i]
glob_rank.append(med)
for i in glob_recall.keys():
glob_recall[i] = glob_recall[i]/10
return np.average(glob_rank), glob_recall
def rank_t2i(opts, img_embeds, rec_embeds):
random.seed(opts.seed)
im_vecs = img_embeds
instr_vecs = rec_embeds
# Ranker
N = 1000
idxs = range(N)
glob_rank = []
glob_recall = {1:0.0,5:0.0,10:0.0}
for i in range(10):
ids = random.sample(range(0,len(img_embeds)), N)
im_sub = im_vecs[ids,:]
instr_sub = instr_vecs[ids,:]
med_rank = []
recall = {1:0.0,5:0.0,10:0.0}
for ii in idxs:
distance = {}
for j in range(N):
distance[j] = np.linalg.norm(instr_sub[ii] - im_sub[j])
distance_sorted = sorted(distance.items(), key=lambda x:x[1])
pos = np.where(np.array(distance_sorted) == distance[ii])[0][0]
if (pos+1) == 1:
recall[1]+=1
if (pos+1) <=5:
recall[5]+=1
if (pos+1)<=10:
recall[10]+=1
# store the position
med_rank.append(pos+1)
for i in recall.keys():
recall[i]=recall[i]/N
med = np.median(med_rank)
for i in recall.keys():
glob_recall[i]+=recall[i]
glob_rank.append(med)
for i in glob_recall.keys():
glob_recall[i] = glob_recall[i]/10
return np.average(glob_rank), glob_recall
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == '__main__':
main()