Skip to content

Latest commit

 

History

History
191 lines (166 loc) · 4.27 KB

README.md

File metadata and controls

191 lines (166 loc) · 4.27 KB

Selectivity Functions of Range Queries are Learnable

Project Structure

In /src,

  1. hdpoint is correponding to PtsHist, while region_tree is for QuadHist.
  2. driver_*.py are the drivers for experiments, with different input parameters.
  3. *_estimator.py are the estimators, with train() and evaluate() as interfaces for their drivers.
  4. utility.py includes various data loaders, error metrics, and other shared tools for the estimators.
  5. geometry.py includes some geometric computations, like rectangle intersection.

Important Pieces

We present the pseudo-codes of our algorithms' frameworks in the following.

driver_*

load_data()
estimator = build_estimator()
estimator.train()
estimator.evaluate()
get_results()

region_tree_estimator (QuadHist)

class RegionTreeEstimator:
	...
	def train():
		tree = build_region_tree()
		for train_data in train_list:
			recursively_split(tree, train_data)

		build_equation_system()
		solve()

	def evaluate():
		for test_data in test_list:
			calc(test_data)
	...

hdpoint_estimator (PtsHist)

class HDPointEstimator:
	...
	def train():
		weighted_points = []
		for train_data in train_list:
			weighted_points.append(train_data.sample())

		build_equation_system()
		solve()

	def evaluate():
		for test_data in test_list:
			calc(test_data)
	...

Instructions

# driver_region_tree.py
# Vary XXX in the instruction, or use '--help' for hints
python driver_region_tree.py --dataset XXX --query_type XXX --train_size XXX --threshold XXX --buckets_limit XXX --test_size XXX --solver XXX
# driver_hdpoint.py
# Vary XXX in the instruction, or use '--help' for hints
python driver_hdpoint.py --dataset XXX --query_type XXX --train_size XXX --threshold XXX --buckets_limit XXX --alpha XXX --test_size XXX

To test other workloads, firstly add path and filename for both workload and min_max_range for data loaders in utility.py, place them in the corresponding position, and then add the new item into --dataset []. We will give more concrete examples in the released version.

Special Packages Requirement

scipy >= 1.7.2
cvxopt >= 1.2.7 (if use)
cplex >= 20.1.0.1 (and a license, if use)
gurobipy >= 9.5.0 (and a license, if use)

Example: Some Figures' Configuration

Figure 9

trainsize_buckets_threshold = {
	50 : [
		[100, 0.052],
		[500, 0.012],
		[1000, 0.0061],
		[5000, 0.0015],
		[10000, 0.0007]
	],
	200 : [
		[100, 0.08],
		[500, 0.018],
		[1000, 0.0096],
		[5000, 0.0021],
		[10000, 0.0013]
	],
	500 : [
		[100, 0.08],
		[500, 0.0205],
		[1000, 0.011],
		[5000, 0.00267],
		[10000, 0.0014]
	],
	1000 : [
		[100, 0.11],
		[500, 0.025],
		[1000, 0.014],
		[5000, 0.003],
		[10000, 0.0017]
	],
	2000 : [
		[100, 0.125],
		[500, 0.03],
		[1000, 0.016],
		[5000, 0.0033],
		[10000, 0.0019]
	]
}

Use triple (train_size, buckets_limit, threshold) as above in the following instruction

python3 drive_region_tree.py --dataset Power-2d-data --query_type rect --train_size XXX --threshold XXX --buckets_limit XXX --test_size 100 --solver nnls 

Figure 27, 28, 26

trainsize_buckets_threshold = {
    50 : [
        [100, 0.052],
        [500, 0.0105],
        [1000, 0.0063],
        [5000, 0.0015],
        [10000, 0.0006],
        [50000, 0.00015],
        [100000, 0.00007]
    ],
    200 : [
        [100, 0.08],
        [500, 0.018],
        [1000, 0.0096],
        [5000, 0.0021],
        [10000, 0.001],
        [50000, 0.0002],
        [100000, 0.0001]
    ],
    500 : [
        [100, 0.08],
        [500, 0.02],
        [1000, 0.0105],
        [5000, 0.0025],
        [10000, 0.0014],
        [50000, 0.0003],
        [100000, 0.00015]
    ],
    1000 : [
        [100, 0.11],
        [500, 0.027],
        [1000, 0.015],
        [5000, 0.0031],
        [10000, 0.0016],
        [50000, 0.0004],
        [100000, 0.00016]
    ],
    2000 : [
        [100, 0.125],
        [500, 0.031],
        [1000, 0.016],
        [5000, 0.0036],
        [10000, 0.0019],
        [50000, 0.0004],
        [100000, 0.0002]
    ]
}

Use triple(train_size, buckets_limit, threshold) as above in the following instruction

python3 driver_region_tree.py --dataset Power-2d-data --query_type rect --train_size XXX --buckets_limit XXX --threshold XXX --test_size 1000 --solver gurobi_linf