forked from princeton-vl/DPVO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_tum.py
186 lines (142 loc) · 5.75 KB
/
evaluate_tum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import cv2
import numpy as np
import glob
import os.path as osp
import os
import sys
import time
from pathlib import Path
import datetime
from tqdm import tqdm
from dpvo.utils import Timer
from dpvo.dpvo import DPVO
from dpvo.config import cfg
from dpvo.lietorch import SE3
import matplotlib.pyplot as plt
from imageio.v3 import imwrite
import torch
from multiprocessing import Process, Queue
### evo evaluation library ###
import evo
from evo.core.trajectory import PoseTrajectory3D
from evo.tools import file_interface
from evo.core import sync
import evo.main_ape as main_ape
from evo.core.metrics import PoseRelation
from evo.tools import plot
from dpvo.plot_utils import plot_trajectory, save_trajectory_tum_format
SKIP = 0
def show_image(image, t=0):
image = image.permute(1, 2, 0).cpu().numpy()
cv2.imshow('image', image / 255.0)
cv2.waitKey(t)
def tum_image_stream(queue, scene_dir, sequence, stride, skip=0):
""" image generator """
images_dir = scene_dir / "rgb"
fx, fy, cx, cy = 517.3, 516.5, 318.6, 255.3
K_l = np.array([fx, 0.0, cx, 0.0, fy, cy, 0.0, 0.0, 1.0]).reshape(3,3)
d_l = np.array([0.2624, -0.9531, -0.0054, 0.0026, 1.1633])
image_list = sorted(images_dir.glob("*.png"))[skip::stride]
for imfile in image_list:
image = cv2.imread(str(imfile))
image = cv2.undistort(image, K_l, d_l)
image = cv2.resize(image, (320+32, 240+16))
image = image.transpose(2,0,1)
intrinsics = np.asarray([fx, fy, cx, cy])
intrinsics[0] *= image.shape[2] / 640.0
intrinsics[1] *= image.shape[1] / 480.0
intrinsics[2] *= image.shape[2] / 640.0
intrinsics[3] *= image.shape[1] / 480.0
# crop image to remove distortion boundary
intrinsics[2] -= 16
intrinsics[3] -= 8
# intrinsics = intrinsics[None]
image = image[:, 8:-8, 16:-16]
queue.put((float(imfile.stem), image, intrinsics))
queue.put((-1, image, intrinsics))
@torch.no_grad()
def run(cfg, network, scene_dir, sequence, stride=1, viz=False):
slam = None
queue = Queue(maxsize=8)
reader = Process(target=tum_image_stream, args=(queue, scene_dir, sequence, stride, 0))
reader.start()
for step in range(sys.maxsize):
(t, images, intrinsics) = queue.get()
if t < 0: break
images = torch.as_tensor(images, device='cuda')
intrinsics = torch.as_tensor(intrinsics, dtype=torch.float, device='cuda')
if viz:
show_image(images[0], 1)
if slam is None:
cam_poses = torch.as_tensor([-0.25, 0., 0., 0., 0., 0., 1.], dtype=torch.float, device='cuda')
slam = DPVO(cfg, network, ht=images.shape[-2], wd=images.shape[-1], viz=viz)
intrinsics = intrinsics.cuda()
with Timer("SLAM", enabled=False):
slam(t, images, intrinsics)
for _ in range(12):
slam.update()
reader.join()
poses, tstamps = slam.terminate()
np.save(f"poses_{sequence}.npy", poses)
np.save(f"tstamps_{sequence}.npy", tstamps)
return poses, tstamps
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--network', type=str, default='dpvo.pth')
parser.add_argument('--config', default="config/default.yaml")
parser.add_argument('--stride', type=int, default=2)
parser.add_argument('--viz', action="store_true")
parser.add_argument('--trials', type=int, default=1)
parser.add_argument('--tumdir', type=Path, default="datasets/TUM_RGBD")
parser.add_argument('--plot', action="store_true")
parser.add_argument('--save_trajectory', action="store_true")
args = parser.parse_args()
cfg.merge_from_file(args.config)
print("\nRunning with config...")
print(cfg, "\n")
main_seed = int(time.time())
print(f"main_seed: {main_seed}")
torch.manual_seed(main_seed)
tum_scenes = [
"360",
"desk",
"desk2",
"floor",
"plant",
"room",
"rpy",
"teddy",
"xyz",
]
results = {}
for scene in tum_scenes:
scene_dir = args.tumdir / "frieburg1" / f"rgbd_dataset_freiburg1_{scene}"
groundtruth = scene_dir / "groundtruth.txt"#"dataset" / "poses" / f"{scene}.txt"
traj_ref = file_interface.read_tum_trajectory_file(groundtruth)
scene_results = []
for trial_num in range(args.trials):
traj_est, timestamps = run(cfg, args.network, scene_dir, scene, args.stride, args.viz)
traj_est = PoseTrajectory3D(
positions_xyz=traj_est[:,:3],
orientations_quat_wxyz=traj_est[:,3:],
timestamps=timestamps)
traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est)
result = main_ape.ape(traj_ref, traj_est, est_name='traj',
pose_relation=PoseRelation.translation_part, align=True, correct_scale=True)
ate_score = result.stats["rmse"]
if args.plot:
Path("trajectory_plots").mkdir(exist_ok=True)
plot_trajectory(traj_est, traj_ref, f"TUM-RGBD Frieburg1 {scene} Trial #{trial_num+1} (ATE: {ate_score:.03f})",
f"trajectory_plots/TUM_RGBD_Frieburg1_{scene}_Trial{trial_num+1:02d}.pdf", align=True, correct_scale=True)
if args.save_trajectory:
Path("saved_trajectories").mkdir(exist_ok=True)
save_trajectory_tum_format(traj_est, f"saved_trajectories/TUM_RGBD_{scene}_Trial{trial_num+1:02d}.txt")
scene_results.append(ate_score)
results[scene] = np.median(scene_results)
print(scene, sorted(scene_results))
xs = []
for scene in results:
print(scene, results[scene])
xs.append(results[scene])
print("AVG: ", np.mean(xs))