-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
77 lines (63 loc) · 2.3 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import cv2
import matplotlib.pyplot as plt
from darknet_util import count_parameters as count
from darknet_util import convert2cpu as cpu
from PIL import Image, ImageDraw
def letterbox_image(img, inp_dim):
'''
resize image with unchanged aspect ratio using padding
'''
img_w, img_h = img.shape[1], img.shape[0]
w, h = inp_dim
new_w = int(img_w * min(w / img_w, h / img_h))
new_h = int(img_h * min(w / img_w, h / img_h))
resized_image = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
canvas = np.full((inp_dim[1], inp_dim[0], 3), 128)
canvas[(h - new_h) // 2:(h - new_h) // 2 + new_h, (w - new_w) // 2:(w - new_w) // 2 + new_w, :] = resized_image
return canvas
def prep_image(img, inp_dim):
"""
Prepare image for inputting to the neural network.
Returns a Tensor or Variable
"""
orig_im = cv2.imread(img)
dim = orig_im.shape[1], orig_im.shape[0] # 图像原始宽高
img = (letterbox_image(orig_im, (inp_dim, inp_dim)))
img_ = img[:, :, ::-1].transpose((2, 0, 1)).copy() # BGR->RGB and WxHxchans => chansxWxH
img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0)
return img_, orig_im, dim
def process_img(img, inp_dim):
"""
input PIL img, return processed img
"""
dim = img.width, img.height
img = (letterbox_image(np.asarray(img), (inp_dim, inp_dim)))
img_ = img.transpose((2, 0, 1)).copy() # WxHxchans => chansxWxH
img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0)
return img_
def prep_image_pil(img, network_dim):
orig_im = Image.open(img)
img = orig_im.convert('RGB')
dim = img.size
img = img.resize(network_dim)
img = torch.ByteTensor(torch.ByteStorage.from_buffer(img.tobytes()))
img = img.view(*network_dim, 3).transpose(0, 1).transpose(0, 2).contiguous()
img = img.view(1, 3, *network_dim)
img = img.float().div(255.0)
return (img, orig_im, dim)
def inp_to_image(inp):
inp = inp.cpu().squeeze()
inp = inp * 255
try:
inp = inp.data.numpy()
except RuntimeError:
inp = inp.numpy()
inp = inp.transpose(1, 2, 0)
inp = inp[:, :, ::-1]
return inp