-
Notifications
You must be signed in to change notification settings - Fork 0
/
darknet.py
496 lines (375 loc) · 16 KB
/
darknet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import cv2
import matplotlib.pyplot as plt
from darknet_util import count_parameters as count
from darknet_util import convert2cpu as cpu
from darknet_util import predict_transform
class test_net(nn.Module):
def __init__(self, num_layers, input_size):
super(test_net, self).__init__()
self.num_layers = num_layers
self.linear_1 = nn.Linear(input_size, 5)
self.middle = nn.ModuleList([nn.Linear(5, 5) for x in range(num_layers)])
self.output = nn.Linear(5, 2)
def forward(self, x):
x = x.view(-1)
fwd = nn.Sequential(self.linear_1, *self.middle, self.output)
return fwd(x)
def get_test_input():
img = cv2.imread("dog-cycle-car.png")
img = cv2.resize(img, (416, 416))
img_ = img[:, :, ::-1].transpose((2, 0, 1))
img_ = img_[np.newaxis, :, :, :] / 255.0
img_ = torch.from_numpy(img_).float()
img_ = Variable(img_)
return img_
def parse_cfg(cfgfile):
"""
Takes a configuration file
Returns a list of blocks. Each blocks describes a block in the neural
network to be built. Block is represented as a dictionary in the list
"""
file = open(cfgfile, 'r')
lines = file.read().split('\n') # store the lines in a list
lines = [x for x in lines if len(x) > 0] # get rid of the empty lines
lines = [x for x in lines if x[0] != '#'] # get rid of commented lines
lines = [x.rstrip().lstrip() for x in lines]
block = {} # 一个block即一个层
blocks = []
for line in lines:
if line[0] == '[': # This marks the start of a new block
if len(block) != 0:
blocks.append(block) # 将已经解析的层放入容器
block = {}
block['type'] = line[1:-1].rstrip() # 层类型
else:
key, value = line.split('=')
block[key.rstrip()] = value.lstrip()
blocks.append(block)
return blocks
# print('\n\n'.join([repr(x) for x in blocks]))
import pickle as pkl
class MaxPoolStride1(nn.Module):
def __init__(self, kernel_size):
super(MaxPoolStride1, self).__init__()
self.kernel_size = kernel_size
self.pad = kernel_size - 1
def forward(self, x):
padded_x = F.pad(x, (0, self.pad, 0, self.pad), mode="replicate")
pooled_x = nn.MaxPool2d(self.kernel_size, self.pad)(padded_x)
return pooled_x
class EmptyLayer(nn.Module):
def __init__(self):
super(EmptyLayer, self).__init__()
class DetectionLayer(nn.Module):
def __init__(self, anchors):
super(DetectionLayer, self).__init__()
self.anchors = anchors
def forward(self, x, inp_dim, num_classes, confidence):
x = x.data
global CUDA
prediction = x
prediction = predict_transform(prediction, inp_dim, self.anchors, num_classes, confidence, CUDA)
return prediction
class Upsample(nn.Module):
def __init__(self, stride=2):
super(Upsample, self).__init__()
self.stride = stride
def forward(self, x):
stride = self.stride
assert (x.data.dim() == 4)
B = x.data.size(0)
C = x.data.size(1)
H = x.data.size(2)
W = x.data.size(3)
ws = stride
hs = stride
x = x.view(B, C, H, 1, W, 1).expand(B, C, H, stride, W, stride).contiguous().view(B, C, H * stride, W * stride)
return x
#
class ReOrgLayer(nn.Module):
def __init__(self, stride=2):
super(ReOrgLayer, self).__init__()
self.stride = stride
def forward(self, x):
assert (x.data.dim() == 4)
B, C, H, W = x.data.shape
hs = self.stride
ws = self.stride
assert (H % hs == 0), "The stride " + str(self.stride) + " is not a proper divisor of height " + str(H)
assert (W % ws == 0), "The stride " + str(self.stride) + " is not a proper divisor of height " + str(W)
x = x.view(B, C, H // hs, hs, W // ws, ws).transpose(-2, -3).contiguous()
x = x.view(B, C, H // hs * W // ws, hs, ws)
x = x.view(B, C, H // hs * W // ws, hs * ws).transpose(-1, -2).contiguous()
x = x.view(B, C, ws * hs, H // ws, W // ws).transpose(1, 2).contiguous()
x = x.view(B, C * ws * hs, H // ws, W // ws)
return x
def create_modules(blocks):
net_info = blocks[0] # Captures the information about the input and pre-processing
module_list = nn.ModuleList()
index = 0 # indexing blocks helps with implementing route layers (skip connections)
prev_filters = 3 # 初始出入3通道图像数据
output_filters = []
for x in blocks:
module = nn.Sequential()
if x['type'] == 'net':
continue
# If it's a convolutional layer: conv layer包含conv layer batch norm和非线性激活
if x['type'] == 'convolutional':
# Get the info about the layer
activation = x['activation']
try:
batch_normalize = int(x['batch_normalize']) # 含有batch normalization就没有bias
bias = False
except:
batch_normalize = 0 # 没有batch normalization就有bias
bias = True
filters = int(x['filters'])
padding = int(x['pad'])
kernel_size = int(x['size'])
stride = int(x['stride'])
if padding:
pad = (kernel_size - 1) // 2 # 两边填充padding size
else:
pad = 0
# Add the convolutional layer
conv = nn.Conv2d(prev_filters, filters, kernel_size, stride, pad, bias=bias)
module.add_module('conv_{0}'.format(index), conv)
# Add the Batch Norm Layer
if batch_normalize: # batch norm是属于conv layer的
bn = nn.BatchNorm2d(filters)
module.add_module('batch_norm_{0}'.format(index), bn)
# Check the activation.
# It is either Linear or a Leaky ReLU for YOLO
if activation == 'leaky': # 非线性激活也属于conv layer
activn = nn.LeakyReLU(0.1, inplace=True)
module.add_module('leaky_{0}'.format(index), activn)
# If it's an upsampling layer
# We use Bilinear2dUpsampling
elif x['type'] == 'upsample':
stride = int(x['stride'])
# upsample = Upsample(stride)
upsample = nn.Upsample(scale_factor=2, mode='nearest') # 为什么使用最近邻插值, 而不用其他的?
module.add_module('upsample_{}'.format(index), upsample)
# If it is a route layer
elif x['type'] == 'route':
x['layers'] = x['layers'].split(',')
# Start of a route
start = int(x['layers'][0])
# end, if there exists one.
try:
end = int(x['layers'][1])
except:
end = 0
# Positive anotation
if start > 0:
start = start - index
if end > 0:
end = end - index
route = EmptyLayer()
module.add_module('route_{0}'.format(index), route)
if end < 0:
filters = output_filters[index + start] + output_filters[index + end]
else:
filters = output_filters[index + start]
# shortcut corresponds to skip connection
elif x["type"] == "shortcut":
from_ = int(x["from"])
shortcut = EmptyLayer()
module.add_module("shortcut_{}".format(index), shortcut)
elif x["type"] == "maxpool":
stride = int(x["stride"])
size = int(x["size"])
if stride != 1:
maxpool = nn.MaxPool2d(size, stride)
else:
maxpool = MaxPoolStride1(size)
module.add_module("maxpool_{}".format(index), maxpool)
# Yolo is the detection layer
elif x["type"] == "yolo":
mask = x["mask"].split(",")
mask = [int(x) for x in mask]
anchors = x["anchors"].split(",")
anchors = [int(a) for a in anchors]
anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)]
anchors = [anchors[i] for i in mask]
detection = DetectionLayer(anchors)
module.add_module("Detection_{}".format(index), detection)
else:
print("Something I dunno")
assert False
module_list.append(module)
prev_filters = filters #
output_filters.append(filters)
index += 1 # 更新index
return (net_info, module_list)
class Darknet(nn.Module):
def __init__(self, cfgfile):
super(Darknet, self).__init__()
self.blocks = parse_cfg(cfgfile)
self.net_info, self.module_list = create_modules(self.blocks)
self.header = torch.IntTensor([0, 0, 0, 0])
self.seen = 0
def get_blocks(self):
return self.blocks
def get_module_list(self):
return self.module_list
def forward(self, x, CUDA):
detections = []
modules = self.blocks[1:]
outputs = {} # We cache the outputs for the route layer
write = 0
for i in range(len(modules)):
module_type = (modules[i]['type'])
if module_type == 'convolutional' or module_type == 'upsample' or module_type == 'maxpool':
x = self.module_list[i](x)
outputs[i] = x
elif module_type == 'route':
layers = modules[i]['layers']
layers = [int(a) for a in layers]
if (layers[0]) > 0:
layers[0] = layers[0] - i
if len(layers) == 1:
x = outputs[i + (layers[0])]
else:
if (layers[1]) > 0:
layers[1] = layers[1] - i
map1 = outputs[i + layers[0]]
map2 = outputs[i + layers[1]]
x = torch.cat((map1, map2), 1)
outputs[i] = x
elif module_type == "shortcut":
from_ = int(modules[i]["from"])
x = outputs[i - 1] + outputs[i + from_]
outputs[i] = x
elif module_type == 'yolo':
anchors = self.module_list[i][0].anchors
# Get the input dimensions
inp_dim = int(self.net_info["height"])
# Get the number of classes
num_classes = int(modules[i]["classes"])
# Output the result
x = x.data
x = predict_transform(x, inp_dim, anchors, num_classes, CUDA)
if type(x) == int:
continue
if not write:
detections = x
write = 1
else:
detections = torch.cat((detections, x), 1)
outputs[i] = outputs[i - 1]
try:
return detections
except:
return 0
def load_weights(self, weight_file):
# Open the weights file
fp = open(weight_file, "rb")
# The first 4 values are header information
# 1. Major version number
# 2. Minor Version Number
# 3. Subversion number
# 4. IMages seen
header = np.fromfile(fp, dtype=np.int32, count=5)
self.header = torch.from_numpy(header)
self.seen = self.header[3]
# The rest of the values are the weights
# Let's load them up
weights = np.fromfile(fp, dtype=np.float32)
ptr = 0
for i in range(len(self.module_list)):
module_type = self.blocks[i + 1]["type"]
if module_type == "convolutional":
model = self.module_list[i]
try:
batch_normalize = int(self.blocks[i + 1]["batch_normalize"])
except:
batch_normalize = 0
conv = model[0]
if (batch_normalize):
bn = model[1]
# Get the number of weights of Batch Norm Layer
num_bn_biases = bn.bias.numel()
# Load the weights
bn_biases = torch.from_numpy(weights[ptr:ptr + num_bn_biases])
ptr += num_bn_biases
bn_weights = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
ptr += num_bn_biases
bn_running_mean = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
ptr += num_bn_biases
bn_running_var = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
ptr += num_bn_biases
# Cast the loaded weights into dims of net weights.
bn_biases = bn_biases.view_as(bn.bias.data)
bn_weights = bn_weights.view_as(bn.weight.data)
bn_running_mean = bn_running_mean.view_as(bn.running_mean)
bn_running_var = bn_running_var.view_as(bn.running_var)
# Copy the data to net
bn.bias.data.copy_(bn_biases)
bn.weight.data.copy_(bn_weights)
bn.running_mean.copy_(bn_running_mean)
bn.running_var.copy_(bn_running_var)
else:
# Number of biases
num_biases = conv.bias.numel()
# Load the weights
conv_biases = torch.from_numpy(weights[ptr: ptr + num_biases])
ptr = ptr + num_biases
# reshape the loaded weights according to the dims of the net weights
conv_biases = conv_biases.view_as(conv.bias.data)
# Finally copy the data
conv.bias.data.copy_(conv_biases)
# Let us load the weights for the Convolutional layers
num_weights = conv.weight.numel()
# Do the same as above for weights
conv_weights = torch.from_numpy(weights[ptr:ptr + num_weights])
ptr = ptr + num_weights
conv_weights = conv_weights.view_as(conv.weight.data)
conv.weight.data.copy_(conv_weights)
print('=> %s loaded.' % weight_file)
def save_weights(self, saved_file, cutoff=0):
if cutoff <= 0:
cutoff = len(self.blocks) - 1
fp = open(saved_file, 'wb')
# Attach the header at the top of the file
self.header[3] = self.seen
header = self.header
header = header.numpy()
header.tofile(fp)
# Now, let us save the weights
for i in range(len(self.module_list)):
module_type = self.blocks[i + 1]["type"]
if (module_type) == "convolutional":
model = self.module_list[i]
try:
batch_normalize = int(self.blocks[i + 1]["batch_normalize"])
except:
batch_normalize = 0
conv = model[0]
if (batch_normalize):
bn = model[1]
# If the parameters are on GPU, convert them back to CPU
# We don't convert the parameter to GPU
# Instead. we copy the parameter and then convert it to CPU
# This is done as weight are need to be saved during training
cpu(bn.bias.data).numpy().tofile(fp)
cpu(bn.weight.data).numpy().tofile(fp)
cpu(bn.running_mean).numpy().tofile(fp)
cpu(bn.running_var).numpy().tofile(fp)
else:
cpu(conv.bias.data).numpy().tofile(fp)
# Let us save the weights for the Convolutional layers
cpu(conv.weight.data).numpy().tofile(fp)
#
# dn = Darknet('cfg/yolov3.cfg')
# dn.load_weights("yolov3.weights")
# inp = get_test_input()
# a, interms = dn(inp)
# dn.eval()
# a_i, interms_i = dn(inp)