-
Notifications
You must be signed in to change notification settings - Fork 159
/
flow_facesr.cpp
82 lines (70 loc) · 3.32 KB
/
flow_facesr.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
// Copyright (C) 2019. Huawei Technologies Co., Ltd. All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <iostream>
#include "task.h"
#include "flow.h"
DataType inferencePrecision = DT_F16;
std::map<std::string, std::shared_ptr<Tensor>> inputOutput()
{
std::map<std::string, std::shared_ptr<Tensor>> tensors;
TensorDesc inputDesc = tensor4df(inferencePrecision, DF_NCHW, 1, 64, 48, 48);
tensors["geninput"] = std::shared_ptr<Tensor>(new Tensor());
tensors["geninput"]->resize(inputDesc);
tensors["geninput"]->alloc();
switch (inferencePrecision) {
case DT_F32: {
F32 *ptr = (F32 *)((CpuMemory *)tensors["geninput"]->get_memory())->get_ptr();
for (U32 i = 0; i < tensorNumElements(inputDesc); i++) {
ptr[i] = 1;
}
break;
}
#ifdef _USE_FP16
case DT_F16: {
F16 *ptr = (F16 *)((CpuMemory *)tensors["geninput"]->get_memory())->get_ptr();
for (U32 i = 0; i < tensorNumElements(inputDesc); i++) {
ptr[i] = 1;
}
break;
}
#endif
default:
UNI_ERROR_LOG("currently not support to init this data type(%d) facesr input data\n",
inferencePrecision);
break;
}
tensors["pixel_shuffle_final_out"] = std::shared_ptr<Tensor>(new Tensor());
tensors["pixel_shuffle_final_out"]->resize(
tensor4df(inferencePrecision, DF_NCHWC8, 1, 8, 384, 384));
tensors["pixel_shuffle_final_out"]->alloc();
return tensors;
}
int main(int argc, char *argv[])
{
int num = 100;
std::string facesrGraphPath = argv[1];
std::vector<std::string> graphPath = {facesrGraphPath};
int threads = atoi(argv[2]);
Flow flowExample;
flowExample.init(graphPath, inferencePrecision, AFFINITY_CPU_HIGH_PERFORMANCE, threads, false);
sleep(10);
for (int i = 0; i < num; i++) {
std::map<std::string, std::shared_ptr<Tensor>> data = inputOutput();
Task task(facesrGraphPath, data);
flowExample.enqueue(task);
}
std::vector<Task> results;
double start = ut_time_ms();
UNI_PROFILE(results = flowExample.dequeue(true), std::string("flow_facesr"),
std::string("flow_facesr"));
double end = ut_time_ms();
UNI_CI_LOG("avg_time:%fms/image\n", (end - start) / num);
return 0;
}