-
Notifications
You must be signed in to change notification settings - Fork 159
/
random.cpp
82 lines (75 loc) · 3.12 KB
/
random.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
// Copyright (C) 2019. Huawei Technologies Co., Ltd. All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include "tensor_computing.h"
#include <random>
#include <chrono>
EE random_infer_output_size(
Tensor *inputTensor, RandomParamSpec p, Tensor *outputTensor, ArchInfo_t archInfo)
{
if (outputTensor == nullptr) {
CHECK_STATUS(NULL_POINTER);
}
TensorDesc desc;
if (inputTensor != nullptr) {
desc = inputTensor->get_desc();
} else {
desc.dt = p.dt;
desc.nDims = p.num_shape;
for (int i = 0; i < p.num_shape; i++) {
desc.dims[i] = p.shape[p.num_shape - 1 - i];
}
}
outputTensor->resize(desc);
return SUCCESS;
}
template <typename T>
static void generate(RandomParamSpec p, T *data, size_t length)
{
if (p.seed == UNI_RESERVE) {
p.seed = std::chrono::system_clock::now().time_since_epoch().count();
}
if (p.mode == RANDOM_NORMAL) {
std::default_random_engine generator{static_cast<U32>(p.seed)};
std::normal_distribution<float> distribution{p.value[0], p.value[1]};
for (size_t i = 0; i < length; i++) {
data[i] = distribution(generator);
}
} else {
std::default_random_engine generator{static_cast<U32>(p.seed)};
std::uniform_real_distribution<double> distribution{p.value[1], p.value[0]};
for (size_t i = 0; i < length; i++) {
data[i] = distribution(generator);
}
}
}
EE random(RandomParamSpec p, Tensor outputTensor, ArchInfo_t archInfo)
{
auto arch = archInfo->arch;
TensorDesc outputDesc = outputTensor.get_desc();
size_t length = tensorNumElements(outputDesc);
if (length == 0) {
return SUCCESS;
}
void *output = get_ptr_from_tensor(outputTensor, arch);
EE ret = NOT_SUPPORTED;
if (IS_CPU(arch)) {
ret = SUCCESS;
if (outputDesc.dt == DT_F32) {
generate<F32>(p, (F32 *)output, length);
#ifdef _USE_FP16
} else if (outputDesc.dt == DT_F16) {
generate<F16>(p, (F16 *)output, length);
#endif
} else {
ret = NOT_SUPPORTED;
}
}
return ret;
}