-
Notifications
You must be signed in to change notification settings - Fork 159
/
power.cpp
80 lines (73 loc) · 3.2 KB
/
power.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
// Copyright (C) 2019. Huawei Technologies Co., Ltd. All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include "tensor_computing.h"
#ifdef _USE_CPU
#include "cpu/tensor_computing_cpu.h"
#endif
#ifdef _USE_GPU
#include "gpu/mali/tensor_computing_mali.h"
#endif
inline EE power_infer_output_size_cpu(
TensorDesc inputDesc, PowerParamSpec p, DataType tdt, TensorDesc *outputDesc, Arch arch)
{
*outputDesc = inputDesc;
if (outputDesc->dt == DT_U8) {
if ((int)p.scale != p.scale || (int)p.shift != p.shift) {
outputDesc->dt = tdt;
}
}
EE ret = SUCCESS;
#ifdef _USE_CPU
if (IS_CPU(arch) && tensorIsShape(inputDesc)) {
float int_max = (float)INT_MAX;
if (int_max - p.scale <= 1000) {
p.scale = int_max - 100000;
}
if (int_max - p.shift <= 1000) {
p.shift = int_max - 100000;
}
ret = power_cpu(inputDesc, inputDesc.dims + inputDesc.nDims, p, *outputDesc,
outputDesc->dims + outputDesc->nDims, arch);
}
#endif
return ret;
}
EE power_infer_output_size(
Tensor *inputTensor, PowerParamSpec p, DataType tdt, Tensor *outputTensor, ArchInfo_t archInfo)
{
if (inputTensor == nullptr || outputTensor == nullptr) {
return NULL_POINTER;
}
TensorDesc inputDesc = inputTensor->get_desc();
TensorDesc outputDesc = outputTensor->get_desc();
EE ret = power_infer_output_size_cpu(inputDesc, p, tdt, &outputDesc, archInfo->arch);
outputTensor->resize(outputDesc);
return ret;
}
EE power(Tensor inputTensor, PowerParamSpec p, Tensor outputTensor, ArchInfo_t archInfo)
{
auto arch = archInfo->arch;
TensorDesc inputDesc = inputTensor.get_desc();
void *input = get_ptr_from_tensor(inputTensor, arch);
TensorDesc outputDesc = outputTensor.get_desc();
void *output = get_ptr_from_tensor(outputTensor, arch);
EE ret = NOT_SUPPORTED;
if (IS_CPU(arch)) {
#ifdef _USE_CPU
ret = power_cpu(inputDesc, input, p, outputDesc, output, arch);
#endif
#ifdef _USE_GPU
} else if (IS_GPU(arch)) {
ret = power_mali(((MaliPara_t)(archInfo->archPara))->handle, inputDesc, (GCLMem_t)input, p,
outputDesc, (GCLMem_t)output);
#endif
}
return ret;
}