-
Notifications
You must be signed in to change notification settings - Fork 159
/
argmax.cpp
102 lines (95 loc) · 3.8 KB
/
argmax.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
// Copyright (C) 2019. Huawei Technologies Co., Ltd. All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include "tensor_computing.h"
#ifdef _USE_CPU
#include "cpu/tensor_computing_cpu.h"
#endif
#ifdef _USE_GPU
#include "gpu/mali/tensor_computing_mali.h"
#endif
EE argmax(
Tensor inputTensor, ArgMaxParamSpec p, Tensor tmpTensor, Tensor outputTensor, ArchInfo_t archInfo)
{
auto arch = archInfo->arch;
TensorDesc inputDesc = inputTensor.get_desc();
void *input = get_ptr_from_tensor(inputTensor, arch);
TensorDesc outputDesc = outputTensor.get_desc();
void *output = get_ptr_from_tensor(outputTensor, arch);
EE ret = NOT_SUPPORTED;
if (IS_CPU(arch)) {
#if defined(_USE_CPU)
ret = argmax_cpu(inputDesc, input, p, outputDesc, output);
#endif
#ifdef _USE_GPU
} else if (IS_GPU(arch)) {
void *tmp = get_ptr_from_tensor(tmpTensor, arch);
ret = argmax_mali(((MaliPara_t)(archInfo->archPara))->handle, inputDesc, (GCLMem_t)input, p,
(GCLMem_t)tmp, outputDesc, (GCLMem_t)output);
#endif
}
return ret;
}
EE argmax_infer_forward_tmp_bytes(
Tensor inputTensor, ArgMaxParamSpec p, Tensor outputTensor, U32 *bytes, ArchInfo_t archInfo)
{
EE ret = NOT_SUPPORTED;
if (IS_GPU(archInfo->arch)) {
#ifdef _USE_GPU
TensorDesc inputDesc = inputTensor.get_desc();
TensorDesc outputDesc = outputTensor.get_desc();
ret = argmax_infer_forward_tmp_bytes_mali(inputDesc, p, outputDesc, bytes);
#endif
} else {
*bytes = 0;
ret = SUCCESS;
}
return ret;
}
EE argmax_infer_output_size(
Tensor *inputTensor, ArgMaxParamSpec p, Tensor *outputTensor, ArchInfo_t archInfo)
{
if (inputTensor == nullptr) {
CHECK_STATUS(NULL_POINTER);
}
if (outputTensor == nullptr) {
CHECK_STATUS(NULL_POINTER);
}
TensorDesc inputDesc = inputTensor->get_desc();
TensorDesc outputDesc = outputTensor->get_desc();
outputDesc = inputDesc;
int axis = p.axis;
if (axis < 0) {
axis += inputDesc.nDims;
}
axis = inputDesc.nDims - 1 - axis;
for (int i = axis; i < (I32)(inputDesc.nDims) - 1; i++) {
outputDesc.dims[i] = outputDesc.dims[i + 1];
}
outputDesc.nDims = inputDesc.nDims - 1;
outputDesc.dt = DT_I32;
if (outputDesc.nDims == 2) {
outputDesc.df = DF_NORMAL;
}
if (outputDesc.nDims == 3) {
outputDesc.df = DF_MTK;
}
if (outputDesc.nDims >= 4) {
outputDesc.df = DF_NCHW;
}
if (IS_GPU(archInfo->arch)) {
#ifdef _USE_GPU
OclMemory *inputMem = (OclMemory *)inputTensor->get_memory();
OclMemory *outputMem = (OclMemory *)outputTensor->get_memory();
CHECK_STATUS(argmax_padding_input_mali(inputDesc, p, &outputDesc, inputMem, outputMem));
#endif
}
outputTensor->resize(outputDesc);
return SUCCESS;
}