-
Notifications
You must be signed in to change notification settings - Fork 69
/
run_expid.py
88 lines (76 loc) · 3.82 KB
/
run_expid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# =========================================================================
# Copyright (C) 2022. Huawei Technologies Co., Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========================================================================
import os
os.chdir(os.path.dirname(os.path.realpath(__file__)))
import sys
import logging
import fuxictr_version
from fuxictr import datasets
from datetime import datetime
from fuxictr.utils import load_config, set_logger, print_to_json, print_to_list
from fuxictr.features import FeatureMap
from fuxictr.pytorch.torch_utils import seed_everything
from fuxictr.pytorch.dataloaders import H5DataLoader
from fuxictr.preprocess import FeatureProcessor, build_dataset
import src as model_zoo
import gc
import argparse
import os
from pathlib import Path
if __name__ == '__main__':
''' Usage: python run_expid.py --config {config_dir} --expid {experiment_id} --gpu {gpu_device_id}
'''
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='./config/', help='The config directory.')
parser.add_argument('--expid', type=str, default='DeepFM_test', help='The experiment id to run.')
parser.add_argument('--gpu', type=int, default=-1, help='The gpu index, -1 for cpu')
args = vars(parser.parse_args())
experiment_id = args['expid']
params = load_config(args['config'], experiment_id)
params['gpu'] = args['gpu']
set_logger(params)
logging.info("Params: " + print_to_json(params))
seed_everything(seed=params['seed'])
data_dir = os.path.join(params['data_root'], params['dataset_id'])
feature_map_json = os.path.join(data_dir, "feature_map.json")
if params["data_format"] == "csv":
# Build feature_map and transform h5 data
feature_encoder = FeatureProcessor(**params)
params["train_data"], params["valid_data"], params["test_data"] = \
build_dataset(feature_encoder, **params)
feature_map = FeatureMap(params['dataset_id'], data_dir)
feature_map.load(feature_map_json, params)
logging.info("Feature specs: " + print_to_json(feature_map.features))
model_class = getattr(model_zoo, params['model'])
model = model_class(feature_map, **params)
model.count_parameters() # print number of parameters used in model
train_gen, valid_gen = H5DataLoader(feature_map, stage='train', **params).make_iterator()
model.fit(train_gen, validation_data=valid_gen, **params)
logging.info('****** Validation evaluation ******')
valid_result = model.evaluate(valid_gen)
del train_gen, valid_gen
gc.collect()
logging.info('******** Test evaluation ********')
test_gen = H5DataLoader(feature_map, stage='test', **params).make_iterator()
test_result = {}
if test_gen:
test_result = model.evaluate(test_gen)
result_filename = Path(args['config']).name.replace(".yaml", "") + '.csv'
with open(result_filename, 'a+') as fw:
fw.write(' {},[command] python {},[exp_id] {},[dataset_id] {},[train] {},[val] {},[test] {}\n' \
.format(datetime.now().strftime('%Y%m%d-%H%M%S'),
' '.join(sys.argv), experiment_id, params['dataset_id'],
"N.A.", print_to_list(valid_result), print_to_list(test_result)))