forked from core-methods-in-edm/assignment1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hudk4050-references.rdf
1892 lines (1892 loc) · 91.4 KB
/
hudk4050-references.rdf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:z="http://www.zotero.org/namespaces/export#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:bib="http://purl.org/net/biblio#"
xmlns:vcard="http://nwalsh.com/rdf/vCard#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:prism="http://prismstandard.org/namespaces/1.2/basic/"
xmlns:link="http://purl.org/rss/1.0/modules/link/">
<bib:BookSection rdf:about="urn:isbn:978-0-9952408-0-3">
<z:itemType>bookSection</z:itemType>
<dcterms:isPartOf>
<bib:Book>
<dc:identifier>ISBN 978-0-9952408-0-3</dc:identifier>
<dc:title>The Handbook of Learning Analytics</dc:title>
</bib:Book>
</dcterms:isPartOf>
<dc:publisher>
<foaf:Organization>
<vcard:adr>
<vcard:Address>
<vcard:locality>Alberta, Canada</vcard:locality>
</vcard:Address>
</vcard:adr>
<foaf:name>Society for Learning Analytics Research (SoLAR)</foaf:name>
</foaf:Organization>
</dc:publisher>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Bergner</foaf:surname>
<foaf:givenName>Yoav</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<bib:editors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Lang</foaf:surname>
<foaf:givenName>Charles</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Siemens</foaf:surname>
<foaf:givenName>George</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Wise</foaf:surname>
<foaf:givenName>Alyssa Friend</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Gaševic</foaf:surname>
<foaf:givenName>Dragan</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:editors>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://solaresearch.org/hla-17/hla17-chapter1</rdf:value>
</dcterms:URI>
</dc:identifier>
<prism:edition>1</prism:edition>
<bib:pages>34-48</bib:pages>
<dc:date>2017</dc:date>
<dcterms:abstract>Psychological measurement is a process for making warranted claims about states of mind. As such, it typically comprises the following: de ning a construct; specifying a measurement model and (developing) a reliable instrument; analyzing and accounting for various sources of error (including operator error); and framing a valid argument for particular uses of the outcome. Measurement of latent variables is, after all, a noisy endeavor that can neverthe- less have high-stakes consequences for individuals and groups. This chapter is intended to serve as an introduction to educational and psychological measurement for practitioners in learning analytics and educational data mining. It is organized thematically rather than historically, from more conceptual material about constructs, instruments, and sources of measurement error toward increasing technical detail about particular measurement models and their uses. Some of the philosophical differences between explanatory and predictive modelling are explored toward the end.</dcterms:abstract>
<dc:title>Measurement and its Uses in Learning Analytics</dc:title>
</bib:BookSection>
<bib:BookSection rdf:about="http://solaresearch.org/hla-17/hla17-chapter1">
<z:itemType>bookSection</z:itemType>
<dcterms:isPartOf>
<bib:Book>
<dc:identifier>ISBN 978-0-9952408-0-3</dc:identifier>
<dc:title>The Handbook of Learning Analytics</dc:title>
</bib:Book>
</dcterms:isPartOf>
<dc:publisher>
<foaf:Organization>
<vcard:adr>
<vcard:Address>
<vcard:locality>Alberta, Canada</vcard:locality>
</vcard:Address>
</vcard:adr>
<foaf:name>Society for Learning Analytics Research (SoLAR)</foaf:name>
</foaf:Organization>
</dc:publisher>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Prinsloo</foaf:surname>
<foaf:givenName>Paul</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Slade</foaf:surname>
<foaf:givenName>Sharon</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<bib:editors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Lang</foaf:surname>
<foaf:givenName>Charles</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Siemens</foaf:surname>
<foaf:givenName>George</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Wise</foaf:surname>
<foaf:givenName>Alyssa Friend</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Gaševic</foaf:surname>
<foaf:givenName>Dragan</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:editors>
<link:link rdf:resource="#item_5058"/>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://solaresearch.org/hla-17/hla17-chapter1</rdf:value>
</dcterms:URI>
</dc:identifier>
<prism:edition>1</prism:edition>
<bib:pages>49-57</bib:pages>
<dc:date>2017</dc:date>
<dcterms:abstract>As the field of learning analytics matures, and discourses surrounding the scope, de nition, challenges, and opportunities of learning analytics become more nuanced, there is bene t both in reviewing how far we have come in considering associated ethical issues and in looking ahead. This chapter provides an overview of how our own thinking has developed and maps our journey against broader developments in the eld. Against a backdrop of technological advances and increasing concerns around pervasive surveillance and the role and unintended consequences of algorithms, the development of research in learning analytics as an ethical and moral practice provides a rich picture of fears and realities. More importantly, we begin to see ethics and privacy as crucial enablers within learning analytics. The chapter brie y locates ethics in learning analytics in the broader context of the forces shaping higher education and the roles of data and evidence before tracking our personal research journey, highlighting current work in the eld, and concluding by mapping future issues for consideration.</dcterms:abstract>
<dc:title>Ethics and Learning Analytics: Charting the (Un)Charted</dc:title>
</bib:BookSection>
<z:Attachment rdf:about="#item_5058">
<z:itemType>attachment</z:itemType>
<rdf:resource rdf:resource="/Users/cwmlang_old/Documents/References/Prinsloo_Slade_2017_Ethics and Learning Analytics.pdf"/>
<dc:title>Prinsloo_Slade_2017_Ethics and Learning Analytics.pdf</dc:title>
<z:linkMode>2</z:linkMode>
<link:type>application/pdf</link:type>
</z:Attachment>
<bib:BookSection rdf:about="#item_4709">
<z:itemType>bookSection</z:itemType>
<dcterms:isPartOf>
<bib:Book>
<dc:identifier>ISBN 978-0-9952408-0-3</dc:identifier>
<dc:title>The Handbook of Learning Analytics</dc:title>
</bib:Book>
</dcterms:isPartOf>
<dc:publisher>
<foaf:Organization>
<vcard:adr>
<vcard:Address>
<vcard:locality>Alberta, Canada</vcard:locality>
</vcard:Address>
</vcard:adr>
<foaf:name>Society for Learning Analytics Research (SoLAR)</foaf:name>
</foaf:Organization>
</dc:publisher>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Brooks</foaf:surname>
<foaf:givenName>Christopher</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Thompson</foaf:surname>
<foaf:givenName>Craig</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<bib:editors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Lang</foaf:surname>
<foaf:givenName>Charles</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Siemens</foaf:surname>
<foaf:givenName>George</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Wise</foaf:surname>
<foaf:givenName>Alyssa Friend</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Gaševic</foaf:surname>
<foaf:givenName>Dragan</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:editors>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://solaresearch.org/hla-17/hla17-chapter1</rdf:value>
</dcterms:URI>
</dc:identifier>
<prism:edition>1</prism:edition>
<bib:pages>61-68</bib:pages>
<dc:date>2017</dc:date>
<dcterms:abstract>This article describes the process, practice, and challenges of using predictive modelling in teaching and learning. In both the elds of educational data mining (EDM) and learning analytics (LA) predictive modelling has become a core practice of researchers, largely with a focus on predicting student success as operationalized by academic achievement. In this chapter, we provide a general overview of considerations when using predictive modelling, the steps that an educational data scientist must consider when engaging in the process, and a brief overview of the most popular techniques in the eld.</dcterms:abstract>
<dc:title>Predictive Modelling in Teaching and Learning</dc:title>
</bib:BookSection>
<bib:BookSection rdf:about="#item_4710">
<z:itemType>bookSection</z:itemType>
<dcterms:isPartOf>
<bib:Book>
<dc:identifier>ISBN 978-0-9952408-0-3</dc:identifier>
<dc:title>The Handbook of Learning Analytics</dc:title>
</bib:Book>
</dcterms:isPartOf>
<dc:publisher>
<foaf:Organization>
<vcard:adr>
<vcard:Address>
<vcard:locality>Alberta, Canada</vcard:locality>
</vcard:Address>
</vcard:adr>
<foaf:name>Society for Learning Analytics Research (SoLAR)</foaf:name>
</foaf:Organization>
</dc:publisher>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Liu</foaf:surname>
<foaf:givenName>Ren</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Koedinger</foaf:surname>
<foaf:givenName>Kenneth</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<bib:editors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Lang</foaf:surname>
<foaf:givenName>Charles</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Siemens</foaf:surname>
<foaf:givenName>George</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Wise</foaf:surname>
<foaf:givenName>Alyssa Friend</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Gaševic</foaf:surname>
<foaf:givenName>Dragan</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:editors>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://solaresearch.org/hla-17/hla17-chapter1</rdf:value>
</dcterms:URI>
</dc:identifier>
<prism:edition>1</prism:edition>
<bib:pages>69-76</bib:pages>
<dc:date>2017</dc:date>
<dcterms:abstract>In the statistical modelling of educational data, approaches vary depending on whether the goal is to build a predictive or an explanatory model. Predictive models aim to nd a combination of features that best predict outcomes; they are typically assessed by their accuracy in predicting held-out data. Explanatory models seek to identify interpretable causal relationships between constructs that can be either observed or inferred from the data. The vast majority of educational data mining research has focused on achieving pre- dictive accuracy, but we argue that the eld could bene t from more focus on developing explanatory models. We review examples of educational data mining efforts that have pro- duced explanatory models and led to improvements to learning outcomes and/or learning theory. We also summarize some of the common characteristics of explanatory models, such as having parameters that map to interpretable constructs, having fewer parameters overall, and involving human input early in the model development process.</dcterms:abstract>
<dc:title>Going Beyond Better Data Prediction to Create Explanatory Models of Educational Data</dc:title>
</bib:BookSection>
<bib:Article rdf:about="#item_5005">
<z:itemType>journalArticle</z:itemType>
<dcterms:isPartOf>
<bib:Journal><dc:title>Significance</dc:title></bib:Journal>
</dcterms:isPartOf>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Gelman</foaf:surname>
<foaf:givenName>A</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Niemi</foaf:surname>
<foaf:givenName>J</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<bib:pages>134-136</bib:pages>
<dc:date>September 2011</dc:date>
<dc:title>Statistical graphics: making information clear – and beautiful</dc:title>
</bib:Article>
<bib:Article rdf:about="#item_5007">
<z:itemType>journalArticle</z:itemType>
<dcterms:isPartOf>
<bib:Journal></bib:Journal>
</dcterms:isPartOf>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Gelman</foaf:surname>
<foaf:givenName>A</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Unwin</foaf:surname>
<foaf:givenName>A</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<dc:date>2012</dc:date>
<dc:title>Infovis and Statistical Graphics: Different Goals, Different Looks (with discussion)</dc:title>
</bib:Article>
<bib:Document rdf:about="http://junkcharts.typepad.com/junk_charts/junk-charts-trifecta-checkup-the-definitive-guide.html">
<z:itemType>blogPost</z:itemType>
<dcterms:isPartOf>
<z:Blog><dc:title>Junkcharts</dc:title></z:Blog>
</dcterms:isPartOf>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Fung</foaf:surname>
<foaf:givenName>K</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://junkcharts.typepad.com/junk_charts/junk-charts-trifecta-checkup-the-definitive-guide.html</rdf:value>
</dcterms:URI>
</dc:identifier>
<dc:date>2014</dc:date>
<z:type>Blog</z:type>
<dc:title>Junkcharts Trifecta Checkup: The Definitive Guide</dc:title>
</bib:Document>
<bib:Article rdf:about="#item_6533">
<z:itemType>journalArticle</z:itemType>
<dcterms:isPartOf rdf:resource="urn:issn:1531-7714"/>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Bowers</foaf:surname>
<foaf:givenName>Alex J.</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<link:link rdf:resource="#item_6534"/>
<link:link rdf:resource="#item_6535"/>
<dc:subject>
<z:AutomaticTag><rdf:value>Decision Making</rdf:value></z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag><rdf:value>Dropouts</rdf:value></z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>Elementary School Students</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>Grades (Scholastic)</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag><rdf:value>Identification</rdf:value></z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>MULTIVARIATE analysis</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>School Districts</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>Secondary School Students</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag><rdf:value>data</rdf:value></z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag><rdf:value>data analysis</rdf:value></z:AutomaticTag>
</dc:subject>
<dc:date>2010/05/00</dc:date>
<dcterms:dateSubmitted>2014-09-24 19:31:29</dcterms:dateSubmitted>
<z:libraryCatalog>ERIC</z:libraryCatalog>
<z:language>en</z:language>
<dcterms:abstract>School personnel currently lack an effective method to pattern and visually interpret disaggregated achievement data collected on students as a means to help inform decision making. This study, through the examination of longitudinal K-12 teacher assigned grading histories for entire cohorts of students from a school district (n=188), demonstrates a novel application of hierarchical cluster analysis and pattern visualization in which all data points collected on every student in a cohort can be patterned, visualized and interpreted to aid in data driven decision making by teachers and administrators. Additionally, as a proof-of-concept study, overall schooling outcomes, such as student dropout or taking a college entrance exam, are identified from the data patterns and compared to past methods of dropout identification as one example of the usefulness of the method. Hierarchical cluster analysis correctly identified over 80% of the students who dropped out using the entire student grade history patterns from either K-12 or K-8. (Contains 5 figures.)</dcterms:abstract>
<dc:title>Analyzing the Longitudinal K-12 Grading Histories of Entire Cohorts of Students: Grades, Data Driven Decision Making, Dropping out and Hierarchical Cluster Analysis</dc:title>
<z:shortTitle>Analyzing the Longitudinal K-12 Grading Histories of Entire Cohorts of Students</z:shortTitle>
</bib:Article>
<bib:Journal rdf:about="urn:issn:1531-7714">
<prism:volume>15</prism:volume>
<prism:number>7</prism:number>
<dc:title>Practical Assessment, Research & Evaluation</dc:title>
<dc:identifier>ISSN 1531-7714</dc:identifier>
</bib:Journal>
<z:Attachment rdf:about="#item_6534">
<z:itemType>attachment</z:itemType>
<dc:title>Bowers_2010_Analyzing the Longitudinal K-12 Grading Histories of Entire Cohorts of Students.pdf</dc:title>
<link:type>application/pdf</link:type>
</z:Attachment>
<z:Attachment rdf:about="#item_6535">
<z:itemType>attachment</z:itemType>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://eric.ed.gov/?id=EJ933686</rdf:value>
</dcterms:URI>
</dc:identifier>
<dcterms:dateSubmitted>2014-09-24 19:31:29</dcterms:dateSubmitted>
<dc:title>Snapshot</dc:title>
<z:linkMode>3</z:linkMode>
<link:type>text/html</link:type>
</z:Attachment>
<bib:Article rdf:about="http://www.lifescied.org/content/13/2/167">
<z:itemType>journalArticle</z:itemType>
<dcterms:isPartOf rdf:resource="urn:issn:,%201931-7913"/>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Grunspan</foaf:surname>
<foaf:givenName>Daniel Z.</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Wiggins</foaf:surname>
<foaf:givenName>Benjamin L.</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Goodreau</foaf:surname>
<foaf:givenName>Steven M.</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<link:link rdf:resource="#item_6537"/>
<link:link rdf:resource="#item_6538"/>
<dc:subject>Week 2</dc:subject>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://www.lifescied.org/content/13/2/167</rdf:value>
</dcterms:URI>
</dc:identifier>
<bib:pages>167-178</bib:pages>
<dc:date>06/20/2014</dc:date>
<dcterms:dateSubmitted>2014-08-20 20:21:46</dcterms:dateSubmitted>
<z:libraryCatalog>www.lifescied.org</z:libraryCatalog>
<z:language>en</z:language>
<dcterms:abstract>Social interactions between students are a major and underexplored part of undergraduate education. Understanding how learning relationships form in undergraduate classrooms, as well as the impacts these relationships have on learning outcomes, can inform educators in unique ways and improve educational reform. Social network analysis (SNA) provides the necessary tool kit for investigating questions involving relational data. We introduce basic concepts in SNA, along with methods for data collection, data processing, and data analysis, using a previously collected example study on an undergraduate biology classroom as a tutorial. We conduct descriptive analyses of the structure of the network of costudying relationships. We explore generative processes that create observed study networks between students and also test for an association between network position and success on exams. We also cover practical issues, such as the unique aspects of human subjects review for network studies. Our aims are to convince readers that using SNA in classroom environments allows rich and informative analyses to take place and to provide some initial tools for doing so, in the process inspiring future educational studies incorporating relational data.</dcterms:abstract>
<dc:title>Understanding Classrooms through Social Network Analysis: A Primer for Social Network Analysis in Education Research</dc:title>
<z:shortTitle>Understanding Classrooms through Social Network Analysis</z:shortTitle>
</bib:Article>
<bib:Journal rdf:about="urn:issn:,%201931-7913">
<prism:volume>13</prism:volume>
<prism:number>2</prism:number>
<dc:title>CBE-Life Sciences Education</dc:title>
<dc:identifier>ISSN , 1931-7913</dc:identifier>
<dcterms:alternative>CBE Life Sci Educ</dcterms:alternative>
<dc:identifier>DOI 10.1187/cbe.13-08-0162</dc:identifier>
</bib:Journal>
<z:Attachment rdf:about="#item_6537">
<z:itemType>attachment</z:itemType>
<dc:title>Grunspan et al_2014_Understanding Classrooms through Social Network Analysis.pdf</dc:title>
<link:type>application/pdf</link:type>
</z:Attachment>
<z:Attachment rdf:about="#item_6538">
<z:itemType>attachment</z:itemType>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://www.lifescied.org/content/13/2/167</rdf:value>
</dcterms:URI>
</dc:identifier>
<dcterms:dateSubmitted>2014-08-20 20:21:46</dcterms:dateSubmitted>
<dc:title>Snapshot</dc:title>
<z:linkMode>3</z:linkMode>
<link:type>text/html</link:type>
</z:Attachment>
<bib:Document rdf:about="http://chronicle.com/blogs/wiredcampus/why-students-should-own-their-educational-data/54329">
<z:itemType>blogPost</z:itemType>
<dcterms:isPartOf>
<z:Blog>
<dc:title>The Chronicle of Higher Education Blogs: Wired Campus</dc:title>
</z:Blog>
</dcterms:isPartOf>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Young</foaf:surname>
<foaf:givenName>Jeffrey R.</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<link:link rdf:resource="#item_6540"/>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://chronicle.com/blogs/wiredcampus/why-students-should-own-their-educational-data/54329</rdf:value>
</dcterms:URI>
</dc:identifier>
<dc:date>August 21, 2014</dc:date>
<dcterms:dateSubmitted>2014-08-23 21:32:22</dcterms:dateSubmitted>
<dc:title>Why Students Should Own Their Educational Data</dc:title>
</bib:Document>
<z:Attachment rdf:about="#item_6540">
<z:itemType>attachment</z:itemType>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://chronicle.com/blogs/wiredcampus/why-students-should-own-their-educational-data/54329</rdf:value>
</dcterms:URI>
</dc:identifier>
<dcterms:dateSubmitted>2014-08-23 21:32:24</dcterms:dateSubmitted>
<dc:title>Chronicle of Higher Education Snapshot</dc:title>
<z:linkMode>3</z:linkMode>
<link:type>text/html</link:type>
</z:Attachment>
<bib:Article rdf:about="http://link.springer.com.ezp-prod1.hul.harvard.edu/article/10.1007/BF01099821">
<z:itemType>journalArticle</z:itemType>
<dcterms:isPartOf rdf:resource="urn:issn:0924-1868,%201573-1391"/>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Corbett</foaf:surname>
<foaf:givenName>Albert T.</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Anderson</foaf:surname>
<foaf:givenName>John R.</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<link:link rdf:resource="#item_6542"/>
<dc:subject>
<z:AutomaticTag>
<rdf:value>Education (general)</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag><rdf:value>Learning</rdf:value></z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>Management of Computing and Information Systems</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>Multimedia Information Systems</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>Psychology, general</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>User Interfaces and Human Computer Interaction</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>empirical validity</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>individual differences</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>intelligent tutoring systems</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>mastery learning</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>procedural knowledge</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>student modeling</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://link.springer.com.ezp-prod1.hul.harvard.edu/article/10.1007/BF01099821</rdf:value>
</dcterms:URI>
</dc:identifier>
<bib:pages>253-278</bib:pages>
<dc:date>1994/12/01</dc:date>
<dcterms:dateSubmitted>2013-04-21 21:21:19</dcterms:dateSubmitted>
<z:libraryCatalog>link.springer.com.ezp-prod1.hul.harvard.edu</z:libraryCatalog>
<z:language>en</z:language>
<dcterms:abstract>This paper describes an effort to model students' changing knowledge state during skill acquisition. Students in this research are learning to write short programs with the ACT Programming Tutor (APT). APT is constructed around a production rule cognitive model of programming knowledge, called theideal student model. This model allows the tutor to solve exercises along with the student and provide assistance as necessary. As the student works, the tutor also maintains an estimate of the probability that the student has learned each of the rules in the ideal model, in a process calledknowledge tracing. The tutor presents an individualized sequence of exercises to the student based on these probability estimates until the student has ‘mastered’ each rule. The programming tutor, cognitive model and learning and performance assumptions are described. A series of studies is reviewed that examine the empirical validity of knowledge tracing and has led to modifications in the process. Currently the model is quite successful in predicting test performance. Further modifications in the modeling process are discussed that may improve performance levels.</dcterms:abstract>
<dc:title>Knowledge tracing: Modeling the acquisition of procedural knowledge</dc:title>
<z:shortTitle>Knowledge tracing</z:shortTitle>
</bib:Article>
<bib:Journal rdf:about="urn:issn:0924-1868,%201573-1391">
<prism:volume>4</prism:volume>
<prism:number>4</prism:number>
<dc:title>User Modeling and User-Adapted Interaction</dc:title>
<dc:identifier>ISSN 0924-1868, 1573-1391</dc:identifier>
<dcterms:alternative>User Model User-Adap Inter</dcterms:alternative>
<dc:identifier>DOI 10.1007/BF01099821</dc:identifier>
</bib:Journal>
<z:Attachment rdf:about="#item_6542">
<z:itemType>attachment</z:itemType>
<dc:title>Corbett_Anderson_1994_Knowledge tracing.pdf</dc:title>
<link:type>application/pdf</link:type>
</z:Attachment>
<rdf:Description rdf:about="urn:isbn:978-1-4503-1111-3">
<z:itemType>conferencePaper</z:itemType>
<dcterms:isPartOf>
<bib:Journal>
<dcterms:isPartOf>
<bib:Series><dc:title>LAK '12</dc:title></bib:Series>
</dcterms:isPartOf>
<dc:identifier>ISBN 978-1-4503-1111-3</dc:identifier>
<dc:identifier>DOI 10.1145/2330601.2330661</dc:identifier>
<dc:title>Proceedings of the 2Nd International Conference on Learning Analytics and Knowledge</dc:title>
</bib:Journal>
</dcterms:isPartOf>
<dc:publisher>
<foaf:Organization>
<vcard:adr>
<vcard:Address>
<vcard:locality>New York, NY, USA</vcard:locality>
</vcard:Address>
</vcard:adr>
<foaf:name>ACM</foaf:name>
</foaf:Organization>
</dc:publisher>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Siemens</foaf:surname>
<foaf:givenName>George</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Baker</foaf:surname>
<foaf:givenName>Ryan S. J. d.</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<link:link rdf:resource="#item_6544"/>
<dc:subject>
<z:AutomaticTag><rdf:value>Collaboration</rdf:value></z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>learning analytics and knowledge</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>educational data mining</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://doi.acm.org/10.1145/2330601.2330661</rdf:value>
</dcterms:URI>
</dc:identifier>
<bib:pages>252–254</bib:pages>
<dc:date>2012</dc:date>
<dcterms:dateSubmitted>2015-01-16 03:15:55</dcterms:dateSubmitted>
<z:libraryCatalog>ACM Digital Library</z:libraryCatalog>
<dcterms:abstract>Growing interest in data and analytics in education, teaching, and learning raises the priority for increased, high-quality research into the models, methods, technologies, and impact of analytics. Two research communities -- Educational Data Mining (EDM) and Learning Analytics and Knowledge (LAK) have developed separately to address this need. This paper argues for increased and formal communication and collaboration between these communities in order to share research, methods, and tools for data mining and analysis in the service of developing both LAK and EDM fields.</dcterms:abstract>
<dc:title>Learning Analytics and Educational Data Mining: Towards Communication and Collaboration</dc:title>
<z:shortTitle>Learning Analytics and Educational Data Mining</z:shortTitle>
</rdf:Description>
<z:Attachment rdf:about="#item_6544">
<z:itemType>attachment</z:itemType>
<dc:title>Siemens_Baker_2012_Learning Analytics and Educational Data Mining.pdf</dc:title>
<link:type>application/pdf</link:type>
</z:Attachment>
<bib:Book rdf:about="http://www.oreilly.com/data/free/evaluating-machine-learning-models.csp?intcmp=il-data-free-lp-lgen_free_reports_page">
<z:itemType>book</z:itemType>
<dc:publisher>
<foaf:Organization>
<vcard:adr>
<vcard:Address>
<vcard:locality>Sebastopol, CA</vcard:locality>
</vcard:Address>
</vcard:adr>
<foaf:name>O'Reily Media</foaf:name>
</foaf:Organization>
</dc:publisher>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Zheng</foaf:surname>
<foaf:givenName>Alice</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<link:link rdf:resource="#item_6549"/>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://www.oreilly.com/data/free/evaluating-machine-learning-models.csp?intcmp=il-data-free-lp-lgen_free_reports_page</rdf:value>
</dcterms:URI>
</dc:identifier>
<dc:date>September 2015</dc:date>
<dcterms:dateSubmitted>2015-12-15 18:26:39</dcterms:dateSubmitted>
<dcterms:abstract>Data science today is a lot like the Wild West: there’s endless opportunity and excitement, but also a lot of chaos and confusion. If you’re new to data science and applied machine learning, evaluating a machine-learning model can seem pretty overwhelming...</dcterms:abstract>
<dc:title>Evaluating Machine Learning Models</dc:title>
</bib:Book>
<z:Attachment rdf:about="#item_6549">
<z:itemType>attachment</z:itemType>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://www.oreilly.com/data/free/evaluating-machine-learning-models.csp?intcmp=il-data-free-lp-lgen_free_reports_page</rdf:value>
</dcterms:URI>
</dc:identifier>
<dcterms:dateSubmitted>2015-12-15 18:26:39</dcterms:dateSubmitted>
<dc:title>Snapshot</dc:title>
<z:linkMode>3</z:linkMode>
<link:type>text/html</link:type>
</z:Attachment>
<bib:Document rdf:about="https://www.edsurge.com/news/2015-03-16-why-opting-out-of-student-data-collection-isn-t-the-solution">
<z:itemType>blogPost</z:itemType>
<dcterms:isPartOf>
<z:Blog><dc:title>EdSurge</dc:title></z:Blog>
</dcterms:isPartOf>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Leong</foaf:surname>
<foaf:givenName>B</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>Polonetsky</foaf:surname>
<foaf:givenName>J</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<link:link rdf:resource="#item_6551"/>
<dc:identifier>
<dcterms:URI>
<rdf:value>https://www.edsurge.com/news/2015-03-16-why-opting-out-of-student-data-collection-isn-t-the-solution</rdf:value>
</dcterms:URI>
</dc:identifier>
<dc:date>March 16 2015</dc:date>
<dcterms:dateSubmitted>2016-01-16 16:31:25</dcterms:dateSubmitted>
<dcterms:abstract>In every privacy debate across every industry, the same questions arise about the rights of individuals to “opt-out” of their data being collected or used. So it should come as no surprise that the “when” and “how” of parent and student opt-outs of education data collection or use has become a robust</dcterms:abstract>
<dc:title>Why Opting Out of Student Data Collection Isn’t the Solution</dc:title>
</bib:Document>
<z:Attachment rdf:about="#item_6551">
<z:itemType>attachment</z:itemType>
<dc:identifier>
<dcterms:URI>
<rdf:value>https://www.edsurge.com/news/2015-03-16-why-opting-out-of-student-data-collection-isn-t-the-solution</rdf:value>
</dcterms:URI>
</dc:identifier>
<dcterms:dateSubmitted>2016-01-16 16:31:25</dcterms:dateSubmitted>
<dc:title>Snapshot</dc:title>
<z:linkMode>3</z:linkMode>
<link:type>text/html</link:type>
</z:Attachment>
<bib:Recording rdf:about="https://www.youtube.com/watch?v=_iv8A1pHNYA">
<z:itemType>videoRecording</z:itemType>
<z:directors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Educause</foaf:surname>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</z:directors>
<dc:subject>
<z:AutomaticTag><rdf:value>Assessment</rdf:value></z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag><rdf:value>Education</rdf:value></z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>Higher Education</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag><rdf:value>Learning</rdf:value></z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>Teaching and learning</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag><rdf:value>EDUCAUSE</rdf:value></z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag>
<rdf:value>educational assessment</rdf:value>
</z:AutomaticTag>
</dc:subject>
<dc:subject>
<z:AutomaticTag><rdf:value>learners</rdf:value></z:AutomaticTag>
</dc:subject>
<dc:identifier>
<dcterms:URI>
<rdf:value>https://www.youtube.com/watch?v=_iv8A1pHNYA</rdf:value>
</dcterms:URI>
</dc:identifier>
<dc:date>2015-08-17</dc:date>
<dcterms:dateSubmitted>2016-01-17 18:50:57</dcterms:dateSubmitted>
<z:libraryCatalog>YouTube</z:libraryCatalog>
<z:runningTime>470 seconds</z:runningTime>
<dcterms:abstract>Several higher education learning and assessment professionals discuss the difficulties of measuring learning.</dcterms:abstract>
<dc:title>Why Is Measuring Learning So Difficult?</dc:title>
</bib:Recording>
<bib:Document rdf:about="http://www.smbc-comics.com/index.php?id=3978">
<z:itemType>webpage</z:itemType>
<dcterms:isPartOf>
<z:Website></z:Website>
</dcterms:isPartOf>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Weinersmith</foaf:surname>
<foaf:givenName>Zach</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<link:link rdf:resource="#item_6554"/>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://www.smbc-comics.com/index.php?id=3978</rdf:value>
</dcterms:URI>
</dc:identifier>
<dc:date>January 5 2016</dc:date>
<dcterms:dateSubmitted>2016-01-18 18:17:09</dcterms:dateSubmitted>
<dc:title>Saturday Morning Breakfast Cereal</dc:title>
</bib:Document>
<z:Attachment rdf:about="#item_6554">
<z:itemType>attachment</z:itemType>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://www.smbc-comics.com/index.php?id=3978</rdf:value>
</dcterms:URI>
</dc:identifier>
<dcterms:dateSubmitted>2016-01-18 18:17:10</dcterms:dateSubmitted>
<dc:title>Saturday Morning Breakfast Cereal</dc:title>
<z:linkMode>3</z:linkMode>
<link:type>text/html</link:type>
</z:Attachment>
<rdf:Description rdf:about="#item_6555">
<z:itemType>conferencePaper</z:itemType>
<dcterms:isPartOf>
<bib:Journal>
<dc:title>Proceedings of the Fourth International Conference on Learning Analytics And Knowledge</dc:title>
</bib:Journal>
</dcterms:isPartOf>
<dc:publisher>
<foaf:Organization><foaf:name>ACM</foaf:name></foaf:Organization>
</dc:publisher>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Clow</foaf:surname>
<foaf:givenName>Doug</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<bib:pages>49–53</bib:pages>
<dc:date>2014</dc:date>
<dc:title>Data wranglers: human interpreters to help close the feedback loop</dc:title>
</rdf:Description>
<bib:Article rdf:about="http://theconversation.com/zuckerberg-is-ploughing-billions-into-personalised-learning-why-51940">
<z:itemType>magazineArticle</z:itemType>
<dcterms:isPartOf>
<bib:Periodical><dc:title>The Conversation</dc:title></bib:Periodical>
</dcterms:isPartOf>
<bib:authors>
<rdf:Seq>
<rdf:li>
<foaf:Person>
<foaf:surname>Kucirkova</foaf:surname>
<foaf:givenName>Natalia</foaf:givenName>
</foaf:Person>
</rdf:li>
<rdf:li>
<foaf:Person>
<foaf:surname>FitzGerald</foaf:surname>
<foaf:givenName>Elizabeth</foaf:givenName>
</foaf:Person>
</rdf:li>
</rdf:Seq>
</bib:authors>
<link:link rdf:resource="#item_6557"/>
<dc:identifier>
<dcterms:URI>
<rdf:value>http://theconversation.com/zuckerberg-is-ploughing-billions-into-personalised-learning-why-51940</rdf:value>
</dcterms:URI>
</dc:identifier>
<dc:date>December 9 2015</dc:date>
<dcterms:dateSubmitted>2016-01-18 19:14:05</dcterms:dateSubmitted>
<dcterms:abstract>Zuckerburg wants to plough billions into personalised learning, but his way may not be the right way.</dcterms:abstract>
<dc:title>Zuckerberg is ploughing billions into 'personalised learning' – why?</dc:title>
</bib:Article>
<z:Attachment rdf:about="#item_6557">
<z:itemType>attachment</z:itemType>
<dc:identifier>
<dcterms:URI>
<rdf:value>https://theconversation.com/zuckerberg-is-ploughing-billions-into-personalised-learning-why-51940</rdf:value>
</dcterms:URI>
</dc:identifier>
<dcterms:dateSubmitted>2016-01-18 19:14:05</dcterms:dateSubmitted>
<dc:title>Snapshot</dc:title>
<z:linkMode>3</z:linkMode>
<link:type>text/html</link:type>
</z:Attachment>
<bib:Recording rdf:about="https://www.youtube.com/watch?v=8CpRLplmdqE">
<z:itemType>videoRecording</z:itemType>
<dc:publisher>
<foaf:Organization><foaf:name>Youtube</foaf:name></foaf:Organization>
</dc:publisher>
<z:directors>
<rdf:Seq>
<rdf:li>
<foaf:Person>