diff --git a/_images/advanced-python_45DemoReweighting_11_1.png b/_images/advanced-python_45DemoReweighting_11_1.png index dacc020f..306bc0ab 100644 Binary files a/_images/advanced-python_45DemoReweighting_11_1.png and b/_images/advanced-python_45DemoReweighting_11_1.png differ diff --git a/_images/advanced-python_45DemoReweighting_13_1.png b/_images/advanced-python_45DemoReweighting_13_1.png index f1b69023..19b3214b 100644 Binary files a/_images/advanced-python_45DemoReweighting_13_1.png and b/_images/advanced-python_45DemoReweighting_13_1.png differ diff --git a/_images/advanced-python_45DemoReweighting_15_1.png b/_images/advanced-python_45DemoReweighting_15_1.png index d6b543ee..4681e38b 100644 Binary files a/_images/advanced-python_45DemoReweighting_15_1.png and b/_images/advanced-python_45DemoReweighting_15_1.png differ diff --git a/_images/advanced-python_45DemoReweighting_17_1.png b/_images/advanced-python_45DemoReweighting_17_1.png index 9ca1e7a5..00d96db8 100644 Binary files a/_images/advanced-python_45DemoReweighting_17_1.png and b/_images/advanced-python_45DemoReweighting_17_1.png differ diff --git a/_images/advanced-python_45DemoReweighting_28_1.png b/_images/advanced-python_45DemoReweighting_28_1.png index c213d601..58f9f1ea 100644 Binary files a/_images/advanced-python_45DemoReweighting_28_1.png and b/_images/advanced-python_45DemoReweighting_28_1.png differ diff --git a/_images/advanced-python_45DemoReweighting_32_1.png b/_images/advanced-python_45DemoReweighting_32_1.png index f213b89b..c7d145e7 100644 Binary files a/_images/advanced-python_45DemoReweighting_32_1.png and b/_images/advanced-python_45DemoReweighting_32_1.png differ diff --git a/_images/advanced-python_45DemoReweighting_35_1.png b/_images/advanced-python_45DemoReweighting_35_1.png index 2a2250ad..c348f3fb 100644 Binary files a/_images/advanced-python_45DemoReweighting_35_1.png and b/_images/advanced-python_45DemoReweighting_35_1.png differ diff --git a/_images/advanced-python_50LikelihoodInference_16_1.png b/_images/advanced-python_50LikelihoodInference_16_1.png index 57d047fb..83f20245 100644 Binary files a/_images/advanced-python_50LikelihoodInference_16_1.png and b/_images/advanced-python_50LikelihoodInference_16_1.png differ diff --git a/_images/advanced-python_50LikelihoodInference_28_1.png b/_images/advanced-python_50LikelihoodInference_28_1.png index 3b4944df..ae1af4d0 100644 Binary files a/_images/advanced-python_50LikelihoodInference_28_1.png and b/_images/advanced-python_50LikelihoodInference_28_1.png differ diff --git a/_images/advanced-python_60sPlot_10_0.png b/_images/advanced-python_60sPlot_10_0.png index 52a01533..dc406c92 100644 Binary files a/_images/advanced-python_60sPlot_10_0.png and b/_images/advanced-python_60sPlot_10_0.png differ diff --git a/_images/advanced-python_60sPlot_12_0.png b/_images/advanced-python_60sPlot_12_0.png index 571d5b30..c8424db1 100644 Binary files a/_images/advanced-python_60sPlot_12_0.png and b/_images/advanced-python_60sPlot_12_0.png differ diff --git a/_images/advanced-python_60sPlot_19_0.png b/_images/advanced-python_60sPlot_19_0.png index 70edd086..52dd7f86 100644 Binary files a/_images/advanced-python_60sPlot_19_0.png and b/_images/advanced-python_60sPlot_19_0.png differ diff --git a/_images/advanced-python_60sPlot_23_1.png b/_images/advanced-python_60sPlot_23_1.png index fc79a986..54e2846e 100644 Binary files a/_images/advanced-python_60sPlot_23_1.png and b/_images/advanced-python_60sPlot_23_1.png differ diff --git a/_images/advanced-python_60sPlot_28_0.png b/_images/advanced-python_60sPlot_28_0.png index 2381689b..5d06201d 100644 Binary files a/_images/advanced-python_60sPlot_28_0.png and b/_images/advanced-python_60sPlot_28_0.png differ diff --git a/_images/advanced-python_60sPlot_32_0.png b/_images/advanced-python_60sPlot_32_0.png index 40817d29..e3ca2c24 100644 Binary files a/_images/advanced-python_60sPlot_32_0.png and b/_images/advanced-python_60sPlot_32_0.png differ diff --git a/_images/advanced-python_60sPlot_35_0.png b/_images/advanced-python_60sPlot_35_0.png index a45434ce..7d94536c 100644 Binary files a/_images/advanced-python_60sPlot_35_0.png and b/_images/advanced-python_60sPlot_35_0.png differ diff --git a/_images/advanced-python_60sPlot_37_1.png b/_images/advanced-python_60sPlot_37_1.png index 6a341bfc..fa96d266 100644 Binary files a/_images/advanced-python_60sPlot_37_1.png and b/_images/advanced-python_60sPlot_37_1.png differ diff --git a/_images/advanced-python_60sPlot_39_1.png b/_images/advanced-python_60sPlot_39_1.png index ef9536e4..652247d4 100644 Binary files a/_images/advanced-python_60sPlot_39_1.png and b/_images/advanced-python_60sPlot_39_1.png differ diff --git a/_images/advanced-python_60sPlot_42_1.png b/_images/advanced-python_60sPlot_42_1.png index ba181cd3..c1a94203 100644 Binary files a/_images/advanced-python_60sPlot_42_1.png and b/_images/advanced-python_60sPlot_42_1.png differ diff --git a/_images/advanced-python_60sPlot_46_0.png b/_images/advanced-python_60sPlot_46_0.png index 751098b7..a46d3544 100644 Binary files a/_images/advanced-python_60sPlot_46_0.png and b/_images/advanced-python_60sPlot_46_0.png differ diff --git a/_images/advanced-python_60sPlot_48_0.png b/_images/advanced-python_60sPlot_48_0.png index 0b7ae004..016b208a 100644 Binary files a/_images/advanced-python_60sPlot_48_0.png and b/_images/advanced-python_60sPlot_48_0.png differ diff --git a/_images/advanced-python_60sPlot_4_1.png b/_images/advanced-python_60sPlot_4_1.png index 10fc3775..8b714eac 100644 Binary files a/_images/advanced-python_60sPlot_4_1.png and b/_images/advanced-python_60sPlot_4_1.png differ diff --git a/_images/advanced-python_60sPlot_54_0.png b/_images/advanced-python_60sPlot_54_0.png index e330cc0c..ba427c03 100644 Binary files a/_images/advanced-python_60sPlot_54_0.png and b/_images/advanced-python_60sPlot_54_0.png differ diff --git a/_images/advanced-python_60sPlot_7_0.png b/_images/advanced-python_60sPlot_7_0.png index 394e5253..57027d4c 100644 Binary files a/_images/advanced-python_60sPlot_7_0.png and b/_images/advanced-python_60sPlot_7_0.png differ diff --git a/_sources/python/further_reading.md.txt b/_sources/python/further_reading.md.txt index 0b3233c6..322871b4 100644 --- a/_sources/python/further_reading.md.txt +++ b/_sources/python/further_reading.md.txt @@ -1,12 +1,16 @@ # More advanced topics in Python ## Nice standard libraries -* argsparse, datetime, fnmatch, glob, os, re, sys, subprocess +* argsparse, datetime, fnmatch, re, sys, subprocess, pathlib ## Nice libraries for data analysis * [NumPy](https://numpy.org/) * [pandas](https://pandas.pydata.org/docs/) * [matplotlib](https://matplotlib.org/) +* [iminuit](https://iminuit.readthedocs.io/en/stable/) for fitting +* [resample](https://resample.readthedocs.io/en/stable/) for uncertainty estimation with the bootstrap and jackknife +* [jacobi](https://hdembinski.github.io/jacobi/) for error propagation based on first derivatives +* [numba-stats](https://github.com/HDembinski/numba-stats) fast implementations of statistical distributions to build statistical models ## Python and ROOT * pyROOT: Python interface for ROOT diff --git a/_sources/shell-extras/persistent-screen.md.txt b/_sources/shell-extras/persistent-screen.md.txt index 727e81f1..d8a412ba 100644 --- a/_sources/shell-extras/persistent-screen.md.txt +++ b/_sources/shell-extras/persistent-screen.md.txt @@ -3,23 +3,38 @@ ### Setting up password-less kerberos token In order for the kerberos token to be refreshed automatically, it must be possible to do so without a password. -Therefore, we create a keytab (similar to a private ssh key) on lxplus using the keytab utility. After starting it by typing `ktutil`, type the following three lines into the prompt and confirm the first two steps with your password. +Therefore, we create a keytab (similar to a private ssh key) on lxplus using the provided `cern-get-keytab` utility. Note it will prompt for your password, in order to generate the keytab. + +{% callout "The old way" %} + +The former recipe was to start `ktutil`, then type the following three lines into the prompt and confirm the first two steps with your password. ```bash -add_entry -password -p USERNAME@CERN.CH -k 1 -e arcfour-hmac-md5 -add_entry -password -p USERNAME@CERN.CH -k 1 -e aes256-cts -wkt USERNAME.keytab +cern-get-keytab --user USERNAME --keytab USERNAME.keytab ``` and close the `ktutil` prompt with `Ctrl+D`. -This will create a file called USERNAME.keytab in the current directory. It is strongly recommended to store this file in a directory to which only you have access as anyone who obtains a copy of this file can use it to obtain tokens in your name. +This would create a file called USERNAME.keytab in the current directory. +Since [OTG0077802](https://cern.service-now.com/service-portal?id=outage&n=OTG0077802), this recipe no longer works, and you will have to create a new keytab using these updated instructions. + +{% endcallout %} + +CERN [provides](https://cern.service-now.com/service-portal?id=kb_article&n=KB0003405) a shortcut command on lxplus9 (it will not work properly on lxplus7, though you can still use the created keytab from lxplus7 or lxplus8), which will prompt you for your password: +```bash +cern-get-keytab --keytab ~/private/$USER.keytab --user --login $USER +``` +This will create a file called `$USER.keytab` (where `$USER` is your username) in the directory `~/private/`. By default, on lxplus, only `$USER` has access to this directory; anyone who can access this file can use it to obtain tokens in your name, so be careful if you decide to move it to a different directory. -**NOTE** that the domain name `CERN.CH` has to be all uppercase, while the `USERNAME` should match your case-sensitive CERN username. +To test if the keytab works: +```bash +kdestroy; kinit -kt ~/private/$USER.keytab $USER; klist +``` +This should display information about a ticket cache. ### Making use of the keytab This keytab file can now be used to obtain kerberos tokens without having to type a password: ```bash -kinit -k -t USERNAME.keytab USERNAME@CERN.CH +kinit -k -t ~/private/$USER.keytab $USER@CERN.CH ``` -where `-k` tells `kinit` to use a keytab file and `-t USERNAME.keytab` where this keytab actually is. +where `-k` tells `kinit` to use a keytab file and `-t ~/private/$USER.keytab` where this keytab actually is. ### Using k5reauth to automatically refresh your kerberos token To create a permanent session of `tmux` or `screen`, the `k5reauth` command is used, which by default creates a new shell and attaches it as a child to itself and keeps renewing the kerberos token for its children. `k5reauth` can start processes other than a new shell by specifying the program you want to start as an argument ```bash @@ -27,9 +42,18 @@ k5reauth -f -i 3600 -p .... -- ``` To start `screen` or `tmux` run: ```bash -k5reauth -f -i 3600 -p USERNAME -k /path/to/USERNAME.keytab -- tmux new-session -s NAME +k5reauth -f -i 3600 -p $USER -k ~/private/$USER.keytab -- tmux new-session -s NAME +``` +which will create a `tmux` session whose kerberos token is refreshed automatically every 3600 seconds. + +This is not enough to actually get a persistent session. From inside the `tmux` session, run: +```bash +kinit $USER@CERN.CH ``` -which will create a `tmux` session whose kerberos token is refreshed automatically every 3600 seconds. When attaching back to the process, a simple +Make a note of which lxplus machine you are on. Then, detach the session (^B D by default) and log out. Finally, log back into the same machine, attach the session using `tmux a`, and run `kinit $USER@CERN.CH` again. +Now, you should have a persistent tmux session on the machine you logged in to. + +When attaching back to the process in the future, a simple ```bash tmux attach-session -t NAME ``` @@ -43,9 +67,9 @@ You will almost certainly want to use an alias or function to access this comman ```bash ktmux(){ if [[ -z "$1" ]]; then #if no argument passed - k5reauth -f -i 3600 -p USERNAME -k /path/to/USERNAME.keytab -- tmux new-session + k5reauth -f -i 3600 -p $USER -k ~/private/$USER.keytab -- tmux new-session else #pass the argument as the tmux session name - k5reauth -f -i 3600 -p USERNAME -k /path/to/USERNAME.keytab -- tmux new-session -s $1 + k5reauth -f -i 3600 -p $USER -k ~/private/$USER.keytab -- tmux new-session -s $1 fi } ``` @@ -53,3 +77,4 @@ You could then start a tmux session named “Test” using ```bash ktmux Test ``` +Note that you will still have to follow the rest of the recipe (`kinit`, detach, log out, log in, attach, `kinit`) manually to get a persistent session. diff --git a/advanced-python/10Basics.html b/advanced-python/10Basics.html index d61fc8d5..6e8bd9f7 100644 --- a/advanced-python/10Basics.html +++ b/advanced-python/10Basics.html @@ -738,7 +738,7 @@

Jupyter @@ -765,8 +765,8 @@

Jupyter
-CPU times: user 737 µs, sys: 171 µs, total: 908 µs
-Wall time: 913 µs
+CPU times: user 517 µs, sys: 96 µs, total: 613 µs
+Wall time: 617 µs
 
-CPU times: user 1.97 ms, sys: 0 ns, total: 1.97 ms
-Wall time: 1.98 ms
+CPU times: user 1.37 ms, sys: 0 ns, total: 1.37 ms
+Wall time: 1.37 ms
 

If something takes longer than you expect, you can profile it to find out where it spends it’s time:

diff --git a/advanced-python/10Basics.ipynb b/advanced-python/10Basics.ipynb index 9a0c4f9a..3ead4752 100644 --- a/advanced-python/10Basics.ipynb +++ b/advanced-python/10Basics.ipynb @@ -58,10 +58,10 @@ "start_time": "2023-11-09T18:21:54.591214759Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.144800Z", - "iopub.status.busy": "2023-11-09T20:15:31.144463Z", - "iopub.status.idle": "2023-11-09T20:15:31.151209Z", - "shell.execute_reply": "2023-11-09T20:15:31.150687Z" + "iopub.execute_input": "2023-11-09T22:04:41.702176Z", + "iopub.status.busy": "2023-11-09T22:04:41.702018Z", + "iopub.status.idle": "2023-11-09T22:04:41.707640Z", + "shell.execute_reply": "2023-11-09T22:04:41.707137Z" } }, "outputs": [ @@ -92,10 +92,10 @@ "start_time": "2023-11-09T18:21:54.591634409Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.193936Z", - "iopub.status.busy": "2023-11-09T20:15:31.193341Z", - "iopub.status.idle": "2023-11-09T20:15:31.196962Z", - "shell.execute_reply": "2023-11-09T20:15:31.196506Z" + "iopub.execute_input": "2023-11-09T22:04:41.734879Z", + "iopub.status.busy": "2023-11-09T22:04:41.734488Z", + "iopub.status.idle": "2023-11-09T22:04:41.737608Z", + "shell.execute_reply": "2023-11-09T22:04:41.737119Z" } }, "outputs": [ @@ -126,10 +126,10 @@ "start_time": "2023-11-09T18:21:54.592201956Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.199272Z", - "iopub.status.busy": "2023-11-09T20:15:31.198820Z", - "iopub.status.idle": "2023-11-09T20:15:31.202211Z", - "shell.execute_reply": "2023-11-09T20:15:31.201702Z" + "iopub.execute_input": "2023-11-09T22:04:41.739499Z", + "iopub.status.busy": "2023-11-09T22:04:41.739224Z", + "iopub.status.idle": "2023-11-09T22:04:41.742157Z", + "shell.execute_reply": "2023-11-09T22:04:41.741677Z" } }, "outputs": [ @@ -168,10 +168,10 @@ "start_time": "2023-11-09T18:21:54.592801793Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.204469Z", - "iopub.status.busy": "2023-11-09T20:15:31.204022Z", - "iopub.status.idle": "2023-11-09T20:15:31.207617Z", - "shell.execute_reply": "2023-11-09T20:15:31.207106Z" + "iopub.execute_input": "2023-11-09T22:04:41.744022Z", + "iopub.status.busy": "2023-11-09T22:04:41.743666Z", + "iopub.status.idle": "2023-11-09T22:04:41.746767Z", + "shell.execute_reply": "2023-11-09T22:04:41.746290Z" } }, "outputs": [ @@ -208,10 +208,10 @@ "start_time": "2023-11-09T18:21:54.639862013Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.209857Z", - "iopub.status.busy": "2023-11-09T20:15:31.209408Z", - "iopub.status.idle": "2023-11-09T20:15:31.213283Z", - "shell.execute_reply": "2023-11-09T20:15:31.212815Z" + "iopub.execute_input": "2023-11-09T22:04:41.748607Z", + "iopub.status.busy": "2023-11-09T22:04:41.748391Z", + "iopub.status.idle": "2023-11-09T22:04:41.751198Z", + "shell.execute_reply": "2023-11-09T22:04:41.750712Z" } }, "outputs": [ @@ -237,10 +237,10 @@ "start_time": "2023-11-09T18:21:54.640208754Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.215576Z", - "iopub.status.busy": "2023-11-09T20:15:31.215121Z", - "iopub.status.idle": "2023-11-09T20:15:31.218949Z", - "shell.execute_reply": "2023-11-09T20:15:31.218338Z" + "iopub.execute_input": "2023-11-09T22:04:41.752903Z", + "iopub.status.busy": "2023-11-09T22:04:41.752734Z", + "iopub.status.idle": "2023-11-09T22:04:41.755458Z", + "shell.execute_reply": "2023-11-09T22:04:41.754960Z" } }, "outputs": [ @@ -325,10 +325,10 @@ "start_time": "2023-11-09T18:21:54.640684978Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.221293Z", - "iopub.status.busy": "2023-11-09T20:15:31.220851Z", - "iopub.status.idle": "2023-11-09T20:15:31.224157Z", - "shell.execute_reply": "2023-11-09T20:15:31.223659Z" + "iopub.execute_input": "2023-11-09T22:04:41.757329Z", + "iopub.status.busy": "2023-11-09T22:04:41.757036Z", + "iopub.status.idle": "2023-11-09T22:04:41.759957Z", + "shell.execute_reply": "2023-11-09T22:04:41.759461Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "start_time": "2023-11-09T18:21:54.683193413Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.226419Z", - "iopub.status.busy": "2023-11-09T20:15:31.225979Z", - "iopub.status.idle": "2023-11-09T20:15:31.232253Z", - "shell.execute_reply": "2023-11-09T20:15:31.231799Z" + "iopub.execute_input": "2023-11-09T22:04:41.761774Z", + "iopub.status.busy": "2023-11-09T22:04:41.761497Z", + "iopub.status.idle": "2023-11-09T22:04:41.766125Z", + "shell.execute_reply": "2023-11-09T22:04:41.765658Z" } }, "outputs": [ @@ -405,10 +405,10 @@ "start_time": "2023-11-09T18:21:54.683507163Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.234443Z", - "iopub.status.busy": "2023-11-09T20:15:31.234000Z", - "iopub.status.idle": "2023-11-09T20:15:31.236680Z", - "shell.execute_reply": "2023-11-09T20:15:31.236211Z" + "iopub.execute_input": "2023-11-09T22:04:41.767945Z", + "iopub.status.busy": "2023-11-09T22:04:41.767564Z", + "iopub.status.idle": "2023-11-09T22:04:41.769958Z", + "shell.execute_reply": "2023-11-09T22:04:41.769497Z" } }, "outputs": [], @@ -432,10 +432,10 @@ "start_time": "2023-11-09T18:21:54.683700759Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.238877Z", - "iopub.status.busy": "2023-11-09T20:15:31.238451Z", - "iopub.status.idle": "2023-11-09T20:15:31.385007Z", - "shell.execute_reply": "2023-11-09T20:15:31.384204Z" + "iopub.execute_input": "2023-11-09T22:04:41.771776Z", + "iopub.status.busy": "2023-11-09T22:04:41.771497Z", + "iopub.status.idle": "2023-11-09T22:04:41.895907Z", + "shell.execute_reply": "2023-11-09T22:04:41.895212Z" } }, "outputs": [ @@ -466,10 +466,10 @@ "start_time": "2023-11-09T18:21:55.712286379Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.388533Z", - "iopub.status.busy": "2023-11-09T20:15:31.388016Z", - "iopub.status.idle": "2023-11-09T20:15:31.569688Z", - "shell.execute_reply": "2023-11-09T20:15:31.568908Z" + "iopub.execute_input": "2023-11-09T22:04:41.898245Z", + "iopub.status.busy": "2023-11-09T22:04:41.897934Z", + "iopub.status.idle": "2023-11-09T22:04:42.150350Z", + "shell.execute_reply": "2023-11-09T22:04:42.149835Z" } }, "outputs": [ @@ -477,8 +477,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-11-09 20:15:31-- https://example.com/index.html\r\n", - "Resolving example.com (example.com)... 93.184.216.34, 2606:2800:220:1:248:1893:25c8:1946\r\n", + "--2023-11-09 22:04:41-- https://example.com/index.html\r\n", + "Resolving example.com (example.com)... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "93.184.216.34, 2606:2800:220:1:248:1893:25c8:1946\r\n", "Connecting to example.com (example.com)|93.184.216.34|:443... connected.\r\n", "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 1256 (1.2K) [text/html]\r\n", @@ -488,7 +495,7 @@ "index.html 0%[ ] 0 --.-KB/s \r", "index.html 100%[===================>] 1.23K --.-KB/s in 0s \r\n", "\r\n", - "2023-11-09 20:15:31 (70.0 MB/s) - ‘index.html’ saved [1256/1256]\r\n", + "2023-11-09 22:04:42 (82.3 MB/s) - ‘index.html’ saved [1256/1256]\r\n", "\r\n" ] } @@ -513,10 +520,10 @@ "start_time": "2023-11-09T18:21:57.194328587Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.573171Z", - "iopub.status.busy": "2023-11-09T20:15:31.572809Z", - "iopub.status.idle": "2023-11-09T20:15:31.578871Z", - "shell.execute_reply": "2023-11-09T20:15:31.578443Z" + "iopub.execute_input": "2023-11-09T22:04:42.152460Z", + "iopub.status.busy": "2023-11-09T22:04:42.152143Z", + "iopub.status.idle": "2023-11-09T22:04:42.157140Z", + "shell.execute_reply": "2023-11-09T22:04:42.156675Z" } }, "outputs": [ @@ -524,8 +531,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 737 µs, sys: 171 µs, total: 908 µs\n", - "Wall time: 913 µs\n" + "CPU times: user 517 µs, sys: 96 µs, total: 613 µs\n", + "Wall time: 617 µs\n" ] }, { @@ -559,10 +566,10 @@ "start_time": "2023-11-09T18:21:57.208320012Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.581204Z", - "iopub.status.busy": "2023-11-09T20:15:31.580766Z", - "iopub.status.idle": "2023-11-09T20:15:31.586674Z", - "shell.execute_reply": "2023-11-09T20:15:31.586167Z" + "iopub.execute_input": "2023-11-09T22:04:42.158996Z", + "iopub.status.busy": "2023-11-09T22:04:42.158642Z", + "iopub.status.idle": "2023-11-09T22:04:42.163385Z", + "shell.execute_reply": "2023-11-09T22:04:42.162912Z" } }, "outputs": [ @@ -570,8 +577,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1.97 ms, sys: 0 ns, total: 1.97 ms\n", - "Wall time: 1.98 ms\n" + "CPU times: user 1.37 ms, sys: 0 ns, total: 1.37 ms\n", + "Wall time: 1.37 ms\n" ] } ], @@ -618,10 +625,10 @@ "start_time": "2023-11-09T18:21:57.263045210Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.589153Z", - "iopub.status.busy": "2023-11-09T20:15:31.588709Z", - "iopub.status.idle": "2023-11-09T20:15:31.591417Z", - "shell.execute_reply": "2023-11-09T20:15:31.590915Z" + "iopub.execute_input": "2023-11-09T22:04:42.165286Z", + "iopub.status.busy": "2023-11-09T22:04:42.164927Z", + "iopub.status.idle": "2023-11-09T22:04:42.167256Z", + "shell.execute_reply": "2023-11-09T22:04:42.166879Z" } }, "outputs": [], @@ -639,10 +646,10 @@ "start_time": "2023-11-09T18:21:57.263292639Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.593643Z", - "iopub.status.busy": "2023-11-09T20:15:31.593293Z", - "iopub.status.idle": "2023-11-09T20:15:31.628461Z", - "shell.execute_reply": "2023-11-09T20:15:31.627961Z" + "iopub.execute_input": "2023-11-09T22:04:42.169081Z", + "iopub.status.busy": "2023-11-09T22:04:42.168732Z", + "iopub.status.idle": "2023-11-09T22:04:42.195094Z", + "shell.execute_reply": "2023-11-09T22:04:42.194614Z" } }, "outputs": [], @@ -666,10 +673,10 @@ "start_time": "2023-11-09T18:21:57.541042260Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.631050Z", - "iopub.status.busy": "2023-11-09T20:15:31.630604Z", - "iopub.status.idle": "2023-11-09T20:15:31.635648Z", - "shell.execute_reply": "2023-11-09T20:15:31.635175Z" + "iopub.execute_input": "2023-11-09T22:04:42.196920Z", + "iopub.status.busy": "2023-11-09T22:04:42.196735Z", + "iopub.status.idle": "2023-11-09T22:04:42.200507Z", + "shell.execute_reply": "2023-11-09T22:04:42.200087Z" } }, "outputs": [], @@ -686,10 +693,10 @@ "start_time": "2023-11-09T18:21:57.552034854Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.637923Z", - "iopub.status.busy": "2023-11-09T20:15:31.637487Z", - "iopub.status.idle": "2023-11-09T20:15:31.643401Z", - "shell.execute_reply": "2023-11-09T20:15:31.642756Z" + "iopub.execute_input": "2023-11-09T22:04:42.202320Z", + "iopub.status.busy": "2023-11-09T22:04:42.202014Z", + "iopub.status.idle": "2023-11-09T22:04:42.205713Z", + "shell.execute_reply": "2023-11-09T22:04:42.205310Z" } }, "outputs": [], @@ -713,10 +720,10 @@ "start_time": "2023-11-09T18:21:57.647040419Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.646936Z", - "iopub.status.busy": "2023-11-09T20:15:31.646478Z", - "iopub.status.idle": "2023-11-09T20:15:31.649610Z", - "shell.execute_reply": "2023-11-09T20:15:31.649200Z" + "iopub.execute_input": "2023-11-09T22:04:42.207321Z", + "iopub.status.busy": "2023-11-09T22:04:42.207181Z", + "iopub.status.idle": "2023-11-09T22:04:42.210061Z", + "shell.execute_reply": "2023-11-09T22:04:42.209571Z" } }, "outputs": [ @@ -741,10 +748,10 @@ "start_time": "2023-11-09T18:21:57.695017046Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.651723Z", - "iopub.status.busy": "2023-11-09T20:15:31.651272Z", - "iopub.status.idle": "2023-11-09T20:15:31.657084Z", - "shell.execute_reply": "2023-11-09T20:15:31.656569Z" + "iopub.execute_input": "2023-11-09T22:04:42.211884Z", + "iopub.status.busy": "2023-11-09T22:04:42.211582Z", + "iopub.status.idle": "2023-11-09T22:04:42.215002Z", + "shell.execute_reply": "2023-11-09T22:04:42.214600Z" } }, "outputs": [ @@ -772,10 +779,10 @@ "start_time": "2023-11-09T18:21:57.695273312Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.659236Z", - "iopub.status.busy": "2023-11-09T20:15:31.658957Z", - "iopub.status.idle": "2023-11-09T20:15:31.662753Z", - "shell.execute_reply": "2023-11-09T20:15:31.662231Z" + "iopub.execute_input": "2023-11-09T22:04:42.216764Z", + "iopub.status.busy": "2023-11-09T22:04:42.216495Z", + "iopub.status.idle": "2023-11-09T22:04:42.219825Z", + "shell.execute_reply": "2023-11-09T22:04:42.219321Z" } }, "outputs": [], @@ -809,10 +816,10 @@ "start_time": "2023-11-09T18:21:57.695446136Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.665164Z", - "iopub.status.busy": "2023-11-09T20:15:31.664734Z", - "iopub.status.idle": "2023-11-09T20:15:31.669688Z", - "shell.execute_reply": "2023-11-09T20:15:31.669223Z" + "iopub.execute_input": "2023-11-09T22:04:42.221829Z", + "iopub.status.busy": "2023-11-09T22:04:42.221524Z", + "iopub.status.idle": "2023-11-09T22:04:42.224715Z", + "shell.execute_reply": "2023-11-09T22:04:42.224312Z" } }, "outputs": [ @@ -840,10 +847,10 @@ "start_time": "2023-11-09T18:21:57.695622001Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:31.671925Z", - "iopub.status.busy": "2023-11-09T20:15:31.671476Z", - "iopub.status.idle": "2023-11-09T20:15:32.028242Z", - "shell.execute_reply": "2023-11-09T20:15:32.027644Z" + "iopub.execute_input": "2023-11-09T22:04:42.226325Z", + "iopub.status.busy": "2023-11-09T22:04:42.226187Z", + "iopub.status.idle": "2023-11-09T22:04:42.459177Z", + "shell.execute_reply": "2023-11-09T22:04:42.458718Z" }, "tags": [ "raises-exception" @@ -885,10 +892,10 @@ "start_time": "2023-11-09T18:21:58.564441476Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:32.031213Z", - "iopub.status.busy": "2023-11-09T20:15:32.030808Z", - "iopub.status.idle": "2023-11-09T20:15:32.036682Z", - "shell.execute_reply": "2023-11-09T20:15:32.036191Z" + "iopub.execute_input": "2023-11-09T22:04:42.461298Z", + "iopub.status.busy": "2023-11-09T22:04:42.460970Z", + "iopub.status.idle": "2023-11-09T22:04:42.464484Z", + "shell.execute_reply": "2023-11-09T22:04:42.463985Z" } }, "outputs": [ @@ -937,10 +944,10 @@ "start_time": "2023-11-09T18:21:58.606952947Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:32.039080Z", - "iopub.status.busy": "2023-11-09T20:15:32.038696Z", - "iopub.status.idle": "2023-11-09T20:15:32.067384Z", - "shell.execute_reply": "2023-11-09T20:15:32.066438Z" + "iopub.execute_input": "2023-11-09T22:04:42.466399Z", + "iopub.status.busy": "2023-11-09T22:04:42.466031Z", + "iopub.status.idle": "2023-11-09T22:04:42.484033Z", + "shell.execute_reply": "2023-11-09T22:04:42.483616Z" }, "tags": [ "raises-exception" diff --git a/advanced-python/11AdvancedPython.html b/advanced-python/11AdvancedPython.html index 3743cdf4..604c6b50 100644 --- a/advanced-python/11AdvancedPython.html +++ b/advanced-python/11AdvancedPython.html @@ -951,7 +951,7 @@

Decorators and factories
 ()
 {'y': 4, 'x': 5}
-time needed: 9.5367431640625e-07
+time needed: 1.1920928955078125e-06
 
diff --git a/advanced-python/11AdvancedPython.ipynb b/advanced-python/11AdvancedPython.ipynb index 2b6f3895..6a15132c 100644 --- a/advanced-python/11AdvancedPython.ipynb +++ b/advanced-python/11AdvancedPython.ipynb @@ -23,10 +23,10 @@ "start_time": "2023-11-09T18:21:57.475130307Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.467097Z", - "iopub.status.busy": "2023-11-09T20:15:34.466745Z", - "iopub.status.idle": "2023-11-09T20:15:34.472507Z", - "shell.execute_reply": "2023-11-09T20:15:34.472014Z" + "iopub.execute_input": "2023-11-09T22:04:44.382441Z", + "iopub.status.busy": "2023-11-09T22:04:44.382286Z", + "iopub.status.idle": "2023-11-09T22:04:44.387108Z", + "shell.execute_reply": "2023-11-09T22:04:44.386708Z" } }, "outputs": [], @@ -54,10 +54,10 @@ "start_time": "2023-11-09T18:21:57.475439183Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.475220Z", - "iopub.status.busy": "2023-11-09T20:15:34.474743Z", - "iopub.status.idle": "2023-11-09T20:15:34.478197Z", - "shell.execute_reply": "2023-11-09T20:15:34.477728Z" + "iopub.execute_input": "2023-11-09T22:04:44.388948Z", + "iopub.status.busy": "2023-11-09T22:04:44.388628Z", + "iopub.status.idle": "2023-11-09T22:04:44.391207Z", + "shell.execute_reply": "2023-11-09T22:04:44.390725Z" } }, "outputs": [], @@ -74,10 +74,10 @@ "start_time": "2023-11-09T18:21:57.475730863Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.480503Z", - "iopub.status.busy": "2023-11-09T20:15:34.480058Z", - "iopub.status.idle": "2023-11-09T20:15:34.487221Z", - "shell.execute_reply": "2023-11-09T20:15:34.486740Z" + "iopub.execute_input": "2023-11-09T22:04:44.393081Z", + "iopub.status.busy": "2023-11-09T22:04:44.392824Z", + "iopub.status.idle": "2023-11-09T22:04:44.397467Z", + "shell.execute_reply": "2023-11-09T22:04:44.396997Z" } }, "outputs": [ @@ -112,10 +112,10 @@ "start_time": "2023-11-09T18:21:57.476020895Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.489626Z", - "iopub.status.busy": "2023-11-09T20:15:34.489160Z", - "iopub.status.idle": "2023-11-09T20:15:34.492041Z", - "shell.execute_reply": "2023-11-09T20:15:34.491526Z" + "iopub.execute_input": "2023-11-09T22:04:44.399142Z", + "iopub.status.busy": "2023-11-09T22:04:44.398989Z", + "iopub.status.idle": "2023-11-09T22:04:44.401444Z", + "shell.execute_reply": "2023-11-09T22:04:44.401049Z" } }, "outputs": [], @@ -132,10 +132,10 @@ "start_time": "2023-11-09T18:21:57.476279441Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.494441Z", - "iopub.status.busy": "2023-11-09T20:15:34.493988Z", - "iopub.status.idle": "2023-11-09T20:15:34.497565Z", - "shell.execute_reply": "2023-11-09T20:15:34.496991Z" + "iopub.execute_input": "2023-11-09T22:04:44.403185Z", + "iopub.status.busy": "2023-11-09T22:04:44.402882Z", + "iopub.status.idle": "2023-11-09T22:04:44.405908Z", + "shell.execute_reply": "2023-11-09T22:04:44.405487Z" } }, "outputs": [ @@ -170,10 +170,10 @@ "start_time": "2023-11-09T18:21:57.476626713Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.499960Z", - "iopub.status.busy": "2023-11-09T20:15:34.499506Z", - "iopub.status.idle": "2023-11-09T20:15:34.503035Z", - "shell.execute_reply": "2023-11-09T20:15:34.502562Z" + "iopub.execute_input": "2023-11-09T22:04:44.407582Z", + "iopub.status.busy": "2023-11-09T22:04:44.407433Z", + "iopub.status.idle": "2023-11-09T22:04:44.409611Z", + "shell.execute_reply": "2023-11-09T22:04:44.409203Z" } }, "outputs": [], @@ -197,10 +197,10 @@ "start_time": "2023-11-09T18:21:57.519751245Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.505425Z", - "iopub.status.busy": "2023-11-09T20:15:34.505064Z", - "iopub.status.idle": "2023-11-09T20:15:34.507737Z", - "shell.execute_reply": "2023-11-09T20:15:34.507219Z" + "iopub.execute_input": "2023-11-09T22:04:44.411340Z", + "iopub.status.busy": "2023-11-09T22:04:44.411044Z", + "iopub.status.idle": "2023-11-09T22:04:44.413578Z", + "shell.execute_reply": "2023-11-09T22:04:44.413117Z" } }, "outputs": [], @@ -224,10 +224,10 @@ "start_time": "2023-11-09T18:21:57.519943991Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.510080Z", - "iopub.status.busy": "2023-11-09T20:15:34.509719Z", - "iopub.status.idle": "2023-11-09T20:15:34.512745Z", - "shell.execute_reply": "2023-11-09T20:15:34.512190Z" + "iopub.execute_input": "2023-11-09T22:04:44.415291Z", + "iopub.status.busy": "2023-11-09T22:04:44.415131Z", + "iopub.status.idle": "2023-11-09T22:04:44.417714Z", + "shell.execute_reply": "2023-11-09T22:04:44.417313Z" } }, "outputs": [], @@ -246,10 +246,10 @@ "start_time": "2023-11-09T18:21:57.520119691Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.515277Z", - "iopub.status.busy": "2023-11-09T20:15:34.514822Z", - "iopub.status.idle": "2023-11-09T20:15:34.519292Z", - "shell.execute_reply": "2023-11-09T20:15:34.518691Z" + "iopub.execute_input": "2023-11-09T22:04:44.419315Z", + "iopub.status.busy": "2023-11-09T22:04:44.419164Z", + "iopub.status.idle": "2023-11-09T22:04:44.422225Z", + "shell.execute_reply": "2023-11-09T22:04:44.421829Z" } }, "outputs": [ @@ -277,10 +277,10 @@ "start_time": "2023-11-09T18:21:57.520366676Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.521622Z", - "iopub.status.busy": "2023-11-09T20:15:34.521268Z", - "iopub.status.idle": "2023-11-09T20:15:34.524187Z", - "shell.execute_reply": "2023-11-09T20:15:34.523684Z" + "iopub.execute_input": "2023-11-09T22:04:44.423951Z", + "iopub.status.busy": "2023-11-09T22:04:44.423801Z", + "iopub.status.idle": "2023-11-09T22:04:44.426523Z", + "shell.execute_reply": "2023-11-09T22:04:44.426122Z" } }, "outputs": [ @@ -306,10 +306,10 @@ "start_time": "2023-11-09T18:21:57.520883499Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.526314Z", - "iopub.status.busy": "2023-11-09T20:15:34.525969Z", - "iopub.status.idle": "2023-11-09T20:15:34.528335Z", - "shell.execute_reply": "2023-11-09T20:15:34.527828Z" + "iopub.execute_input": "2023-11-09T22:04:44.428346Z", + "iopub.status.busy": "2023-11-09T22:04:44.428039Z", + "iopub.status.idle": "2023-11-09T22:04:44.430299Z", + "shell.execute_reply": "2023-11-09T22:04:44.429904Z" } }, "outputs": [], @@ -360,10 +360,10 @@ "start_time": "2023-11-09T18:21:57.563095740Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.530568Z", - "iopub.status.busy": "2023-11-09T20:15:34.530219Z", - "iopub.status.idle": "2023-11-09T20:15:34.533076Z", - "shell.execute_reply": "2023-11-09T20:15:34.532553Z" + "iopub.execute_input": "2023-11-09T22:04:44.431928Z", + "iopub.status.busy": "2023-11-09T22:04:44.431790Z", + "iopub.status.idle": "2023-11-09T22:04:44.434311Z", + "shell.execute_reply": "2023-11-09T22:04:44.433917Z" } }, "outputs": [], @@ -387,10 +387,10 @@ "start_time": "2023-11-09T18:21:57.563347017Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.535267Z", - "iopub.status.busy": "2023-11-09T20:15:34.534921Z", - "iopub.status.idle": "2023-11-09T20:15:34.537804Z", - "shell.execute_reply": "2023-11-09T20:15:34.537396Z" + "iopub.execute_input": "2023-11-09T22:04:44.435986Z", + "iopub.status.busy": "2023-11-09T22:04:44.435828Z", + "iopub.status.idle": "2023-11-09T22:04:44.438830Z", + "shell.execute_reply": "2023-11-09T22:04:44.438354Z" } }, "outputs": [ @@ -429,10 +429,10 @@ "start_time": "2023-11-09T18:21:57.563714577Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.539944Z", - "iopub.status.busy": "2023-11-09T20:15:34.539573Z", - "iopub.status.idle": "2023-11-09T20:15:34.542543Z", - "shell.execute_reply": "2023-11-09T20:15:34.542033Z" + "iopub.execute_input": "2023-11-09T22:04:44.440632Z", + "iopub.status.busy": "2023-11-09T22:04:44.440482Z", + "iopub.status.idle": "2023-11-09T22:04:44.443288Z", + "shell.execute_reply": "2023-11-09T22:04:44.442802Z" } }, "outputs": [], @@ -457,10 +457,10 @@ "start_time": "2023-11-09T18:21:57.563857095Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.544860Z", - "iopub.status.busy": "2023-11-09T20:15:34.544407Z", - "iopub.status.idle": "2023-11-09T20:15:34.547299Z", - "shell.execute_reply": "2023-11-09T20:15:34.546802Z" + "iopub.execute_input": "2023-11-09T22:04:44.445087Z", + "iopub.status.busy": "2023-11-09T22:04:44.444764Z", + "iopub.status.idle": "2023-11-09T22:04:44.447561Z", + "shell.execute_reply": "2023-11-09T22:04:44.447060Z" } }, "outputs": [], @@ -491,10 +491,10 @@ "start_time": "2023-11-09T18:21:57.569931680Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.549487Z", - "iopub.status.busy": "2023-11-09T20:15:34.549058Z", - "iopub.status.idle": "2023-11-09T20:15:34.551684Z", - "shell.execute_reply": "2023-11-09T20:15:34.551182Z" + "iopub.execute_input": "2023-11-09T22:04:44.449385Z", + "iopub.status.busy": "2023-11-09T22:04:44.449234Z", + "iopub.status.idle": "2023-11-09T22:04:44.451588Z", + "shell.execute_reply": "2023-11-09T22:04:44.451207Z" } }, "outputs": [], @@ -524,10 +524,10 @@ "start_time": "2023-11-09T18:21:57.611213702Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.553951Z", - "iopub.status.busy": "2023-11-09T20:15:34.553516Z", - "iopub.status.idle": "2023-11-09T20:15:34.556763Z", - "shell.execute_reply": "2023-11-09T20:15:34.556250Z" + "iopub.execute_input": "2023-11-09T22:04:44.453249Z", + "iopub.status.busy": "2023-11-09T22:04:44.453095Z", + "iopub.status.idle": "2023-11-09T22:04:44.456123Z", + "shell.execute_reply": "2023-11-09T22:04:44.455697Z" } }, "outputs": [ @@ -561,10 +561,10 @@ "start_time": "2023-11-09T18:21:57.611718752Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.558958Z", - "iopub.status.busy": "2023-11-09T20:15:34.558517Z", - "iopub.status.idle": "2023-11-09T20:15:34.561436Z", - "shell.execute_reply": "2023-11-09T20:15:34.560926Z" + "iopub.execute_input": "2023-11-09T22:04:44.457827Z", + "iopub.status.busy": "2023-11-09T22:04:44.457678Z", + "iopub.status.idle": "2023-11-09T22:04:44.460163Z", + "shell.execute_reply": "2023-11-09T22:04:44.459785Z" } }, "outputs": [], @@ -595,10 +595,10 @@ "start_time": "2023-11-09T18:21:57.611948597Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.563785Z", - "iopub.status.busy": "2023-11-09T20:15:34.563331Z", - "iopub.status.idle": "2023-11-09T20:15:34.566793Z", - "shell.execute_reply": "2023-11-09T20:15:34.566277Z" + "iopub.execute_input": "2023-11-09T22:04:44.461898Z", + "iopub.status.busy": "2023-11-09T22:04:44.461744Z", + "iopub.status.idle": "2023-11-09T22:04:44.464779Z", + "shell.execute_reply": "2023-11-09T22:04:44.464309Z" } }, "outputs": [], @@ -627,10 +627,10 @@ "start_time": "2023-11-09T18:21:57.612144179Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.568991Z", - "iopub.status.busy": "2023-11-09T20:15:34.568640Z", - "iopub.status.idle": "2023-11-09T20:15:34.571477Z", - "shell.execute_reply": "2023-11-09T20:15:34.570990Z" + "iopub.execute_input": "2023-11-09T22:04:44.466555Z", + "iopub.status.busy": "2023-11-09T22:04:44.466396Z", + "iopub.status.idle": "2023-11-09T22:04:44.468951Z", + "shell.execute_reply": "2023-11-09T22:04:44.468478Z" } }, "outputs": [ @@ -674,10 +674,10 @@ "start_time": "2023-11-09T18:21:57.659281779Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.573687Z", - "iopub.status.busy": "2023-11-09T20:15:34.573343Z", - "iopub.status.idle": "2023-11-09T20:15:34.575985Z", - "shell.execute_reply": "2023-11-09T20:15:34.575471Z" + "iopub.execute_input": "2023-11-09T22:04:44.470662Z", + "iopub.status.busy": "2023-11-09T22:04:44.470519Z", + "iopub.status.idle": "2023-11-09T22:04:44.472908Z", + "shell.execute_reply": "2023-11-09T22:04:44.472514Z" } }, "outputs": [], @@ -697,10 +697,10 @@ "start_time": "2023-11-09T18:21:57.659526538Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.578404Z", - "iopub.status.busy": "2023-11-09T20:15:34.578029Z", - "iopub.status.idle": "2023-11-09T20:15:34.581287Z", - "shell.execute_reply": "2023-11-09T20:15:34.580825Z" + "iopub.execute_input": "2023-11-09T22:04:44.474466Z", + "iopub.status.busy": "2023-11-09T22:04:44.474330Z", + "iopub.status.idle": "2023-11-09T22:04:44.476496Z", + "shell.execute_reply": "2023-11-09T22:04:44.476116Z" } }, "outputs": [], @@ -717,10 +717,10 @@ "start_time": "2023-11-09T18:21:57.659712907Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.583519Z", - "iopub.status.busy": "2023-11-09T20:15:34.583171Z", - "iopub.status.idle": "2023-11-09T20:15:34.586569Z", - "shell.execute_reply": "2023-11-09T20:15:34.586040Z" + "iopub.execute_input": "2023-11-09T22:04:44.478065Z", + "iopub.status.busy": "2023-11-09T22:04:44.477927Z", + "iopub.status.idle": "2023-11-09T22:04:44.481062Z", + "shell.execute_reply": "2023-11-09T22:04:44.480585Z" } }, "outputs": [ @@ -748,10 +748,10 @@ "start_time": "2023-11-09T18:21:57.659911070Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.588776Z", - "iopub.status.busy": "2023-11-09T20:15:34.588421Z", - "iopub.status.idle": "2023-11-09T20:15:34.591146Z", - "shell.execute_reply": "2023-11-09T20:15:34.590631Z" + "iopub.execute_input": "2023-11-09T22:04:44.482986Z", + "iopub.status.busy": "2023-11-09T22:04:44.482683Z", + "iopub.status.idle": "2023-11-09T22:04:44.485210Z", + "shell.execute_reply": "2023-11-09T22:04:44.484817Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "start_time": "2023-11-09T18:21:57.660055943Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.593192Z", - "iopub.status.busy": "2023-11-09T20:15:34.593017Z", - "iopub.status.idle": "2023-11-09T20:15:34.595317Z", - "shell.execute_reply": "2023-11-09T20:15:34.594816Z" + "iopub.execute_input": "2023-11-09T22:04:44.486789Z", + "iopub.status.busy": "2023-11-09T22:04:44.486651Z", + "iopub.status.idle": "2023-11-09T22:04:44.488954Z", + "shell.execute_reply": "2023-11-09T22:04:44.488544Z" } }, "outputs": [], @@ -792,10 +792,10 @@ "start_time": "2023-11-09T18:21:57.707103066Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.597547Z", - "iopub.status.busy": "2023-11-09T20:15:34.597117Z", - "iopub.status.idle": "2023-11-09T20:15:34.600548Z", - "shell.execute_reply": "2023-11-09T20:15:34.600038Z" + "iopub.execute_input": "2023-11-09T22:04:44.490505Z", + "iopub.status.busy": "2023-11-09T22:04:44.490373Z", + "iopub.status.idle": "2023-11-09T22:04:44.493400Z", + "shell.execute_reply": "2023-11-09T22:04:44.492965Z" } }, "outputs": [ @@ -823,10 +823,10 @@ "start_time": "2023-11-09T18:21:57.707383203Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.602752Z", - "iopub.status.busy": "2023-11-09T20:15:34.602310Z", - "iopub.status.idle": "2023-11-09T20:15:34.604780Z", - "shell.execute_reply": "2023-11-09T20:15:34.604267Z" + "iopub.execute_input": "2023-11-09T22:04:44.495197Z", + "iopub.status.busy": "2023-11-09T22:04:44.494903Z", + "iopub.status.idle": "2023-11-09T22:04:44.497312Z", + "shell.execute_reply": "2023-11-09T22:04:44.496778Z" } }, "outputs": [], @@ -870,10 +870,10 @@ "start_time": "2023-11-09T18:21:57.714163427Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.607056Z", - "iopub.status.busy": "2023-11-09T20:15:34.606616Z", - "iopub.status.idle": "2023-11-09T20:15:34.610706Z", - "shell.execute_reply": "2023-11-09T20:15:34.610235Z" + "iopub.execute_input": "2023-11-09T22:04:44.499285Z", + "iopub.status.busy": "2023-11-09T22:04:44.498978Z", + "iopub.status.idle": "2023-11-09T22:04:44.501989Z", + "shell.execute_reply": "2023-11-09T22:04:44.501480Z" } }, "outputs": [], @@ -899,10 +899,10 @@ "start_time": "2023-11-09T18:21:57.755158988Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.612898Z", - "iopub.status.busy": "2023-11-09T20:15:34.612553Z", - "iopub.status.idle": "2023-11-09T20:15:34.615847Z", - "shell.execute_reply": "2023-11-09T20:15:34.615402Z" + "iopub.execute_input": "2023-11-09T22:04:44.503848Z", + "iopub.status.busy": "2023-11-09T22:04:44.503543Z", + "iopub.status.idle": "2023-11-09T22:04:44.506008Z", + "shell.execute_reply": "2023-11-09T22:04:44.505528Z" } }, "outputs": [], @@ -920,10 +920,10 @@ "start_time": "2023-11-09T18:21:57.755389720Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.618078Z", - "iopub.status.busy": "2023-11-09T20:15:34.617633Z", - "iopub.status.idle": "2023-11-09T20:15:34.620219Z", - "shell.execute_reply": "2023-11-09T20:15:34.619718Z" + "iopub.execute_input": "2023-11-09T22:04:44.507890Z", + "iopub.status.busy": "2023-11-09T22:04:44.507588Z", + "iopub.status.idle": "2023-11-09T22:04:44.510025Z", + "shell.execute_reply": "2023-11-09T22:04:44.509511Z" } }, "outputs": [], @@ -940,10 +940,10 @@ "start_time": "2023-11-09T18:21:57.755554232Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.622422Z", - "iopub.status.busy": "2023-11-09T20:15:34.621987Z", - "iopub.status.idle": "2023-11-09T20:15:34.624514Z", - "shell.execute_reply": "2023-11-09T20:15:34.624013Z" + "iopub.execute_input": "2023-11-09T22:04:44.511906Z", + "iopub.status.busy": "2023-11-09T22:04:44.511594Z", + "iopub.status.idle": "2023-11-09T22:04:44.514044Z", + "shell.execute_reply": "2023-11-09T22:04:44.513543Z" } }, "outputs": [], @@ -960,10 +960,10 @@ "start_time": "2023-11-09T18:21:57.755705542Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.626736Z", - "iopub.status.busy": "2023-11-09T20:15:34.626304Z", - "iopub.status.idle": "2023-11-09T20:15:34.629677Z", - "shell.execute_reply": "2023-11-09T20:15:34.629285Z" + "iopub.execute_input": "2023-11-09T22:04:44.515904Z", + "iopub.status.busy": "2023-11-09T22:04:44.515614Z", + "iopub.status.idle": "2023-11-09T22:04:44.518347Z", + "shell.execute_reply": "2023-11-09T22:04:44.517851Z" } }, "outputs": [ @@ -973,7 +973,7 @@ "text": [ "()\n", "{'y': 4, 'x': 5}\n", - "time needed: 9.5367431640625e-07\n" + "time needed: 1.1920928955078125e-06\n" ] } ], @@ -990,10 +990,10 @@ "start_time": "2023-11-09T18:21:57.756004166Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.631881Z", - "iopub.status.busy": "2023-11-09T20:15:34.631457Z", - "iopub.status.idle": "2023-11-09T20:15:34.634624Z", - "shell.execute_reply": "2023-11-09T20:15:34.634180Z" + "iopub.execute_input": "2023-11-09T22:04:44.520162Z", + "iopub.status.busy": "2023-11-09T22:04:44.519866Z", + "iopub.status.idle": "2023-11-09T22:04:44.522158Z", + "shell.execute_reply": "2023-11-09T22:04:44.521679Z" } }, "outputs": [], @@ -1019,10 +1019,10 @@ "start_time": "2023-11-09T18:21:57.756157832Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.636786Z", - "iopub.status.busy": "2023-11-09T20:15:34.636607Z", - "iopub.status.idle": "2023-11-09T20:15:34.639019Z", - "shell.execute_reply": "2023-11-09T20:15:34.638502Z" + "iopub.execute_input": "2023-11-09T22:04:44.524050Z", + "iopub.status.busy": "2023-11-09T22:04:44.523756Z", + "iopub.status.idle": "2023-11-09T22:04:44.526199Z", + "shell.execute_reply": "2023-11-09T22:04:44.525731Z" } }, "outputs": [], @@ -1066,10 +1066,10 @@ "start_time": "2023-11-09T18:21:57.803005602Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.641253Z", - "iopub.status.busy": "2023-11-09T20:15:34.640918Z", - "iopub.status.idle": "2023-11-09T20:15:34.784264Z", - "shell.execute_reply": "2023-11-09T20:15:34.783648Z" + "iopub.execute_input": "2023-11-09T22:04:44.528104Z", + "iopub.status.busy": "2023-11-09T22:04:44.527858Z", + "iopub.status.idle": "2023-11-09T22:04:44.646981Z", + "shell.execute_reply": "2023-11-09T22:04:44.646434Z" }, "tags": [ "raises-exception" @@ -1107,10 +1107,10 @@ "start_time": "2023-11-09T18:21:58.751370683Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.787067Z", - "iopub.status.busy": "2023-11-09T20:15:34.786579Z", - "iopub.status.idle": "2023-11-09T20:15:34.798669Z", - "shell.execute_reply": "2023-11-09T20:15:34.798150Z" + "iopub.execute_input": "2023-11-09T22:04:44.649265Z", + "iopub.status.busy": "2023-11-09T22:04:44.648886Z", + "iopub.status.idle": "2023-11-09T22:04:44.658648Z", + "shell.execute_reply": "2023-11-09T22:04:44.658183Z" }, "tags": [ "raises-exception" @@ -1156,10 +1156,10 @@ "start_time": "2023-11-09T18:21:58.795021637Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.801075Z", - "iopub.status.busy": "2023-11-09T20:15:34.800614Z", - "iopub.status.idle": "2023-11-09T20:15:34.803305Z", - "shell.execute_reply": "2023-11-09T20:15:34.802805Z" + "iopub.execute_input": "2023-11-09T22:04:44.660598Z", + "iopub.status.busy": "2023-11-09T22:04:44.660232Z", + "iopub.status.idle": "2023-11-09T22:04:44.662601Z", + "shell.execute_reply": "2023-11-09T22:04:44.662216Z" } }, "outputs": [], @@ -1176,10 +1176,10 @@ "start_time": "2023-11-09T18:21:58.795152334Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.805439Z", - "iopub.status.busy": "2023-11-09T20:15:34.805080Z", - "iopub.status.idle": "2023-11-09T20:15:34.816899Z", - "shell.execute_reply": "2023-11-09T20:15:34.816365Z" + "iopub.execute_input": "2023-11-09T22:04:44.664250Z", + "iopub.status.busy": "2023-11-09T22:04:44.664096Z", + "iopub.status.idle": "2023-11-09T22:04:44.673320Z", + "shell.execute_reply": "2023-11-09T22:04:44.672836Z" }, "tags": [ "raises-exception" @@ -1221,10 +1221,10 @@ "start_time": "2023-11-09T18:21:58.795308728Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.819246Z", - "iopub.status.busy": "2023-11-09T20:15:34.818908Z", - "iopub.status.idle": "2023-11-09T20:15:34.822326Z", - "shell.execute_reply": "2023-11-09T20:15:34.821864Z" + "iopub.execute_input": "2023-11-09T22:04:44.675325Z", + "iopub.status.busy": "2023-11-09T22:04:44.674949Z", + "iopub.status.idle": "2023-11-09T22:04:44.677456Z", + "shell.execute_reply": "2023-11-09T22:04:44.676969Z" } }, "outputs": [], @@ -1258,10 +1258,10 @@ "start_time": "2023-11-09T18:21:58.795410621Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.824616Z", - "iopub.status.busy": "2023-11-09T20:15:34.824242Z", - "iopub.status.idle": "2023-11-09T20:15:34.827265Z", - "shell.execute_reply": "2023-11-09T20:15:34.826841Z" + "iopub.execute_input": "2023-11-09T22:04:44.679449Z", + "iopub.status.busy": "2023-11-09T22:04:44.679081Z", + "iopub.status.idle": "2023-11-09T22:04:44.681982Z", + "shell.execute_reply": "2023-11-09T22:04:44.681512Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "start_time": "2023-11-09T18:21:58.795520523Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.829633Z", - "iopub.status.busy": "2023-11-09T20:15:34.829445Z", - "iopub.status.idle": "2023-11-09T20:15:34.832773Z", - "shell.execute_reply": "2023-11-09T20:15:34.832279Z" + "iopub.execute_input": "2023-11-09T22:04:44.683907Z", + "iopub.status.busy": "2023-11-09T22:04:44.683604Z", + "iopub.status.idle": "2023-11-09T22:04:44.685963Z", + "shell.execute_reply": "2023-11-09T22:04:44.685580Z" } }, "outputs": [], @@ -1333,10 +1333,10 @@ "start_time": "2023-11-09T18:21:58.795603420Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.835136Z", - "iopub.status.busy": "2023-11-09T20:15:34.834684Z", - "iopub.status.idle": "2023-11-09T20:15:34.849604Z", - "shell.execute_reply": "2023-11-09T20:15:34.849074Z" + "iopub.execute_input": "2023-11-09T22:04:44.687657Z", + "iopub.status.busy": "2023-11-09T22:04:44.687353Z", + "iopub.status.idle": "2023-11-09T22:04:44.698880Z", + "shell.execute_reply": "2023-11-09T22:04:44.698476Z" }, "tags": [ "raises-exception" @@ -1391,10 +1391,10 @@ "start_time": "2023-11-09T18:21:58.795680122Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.851979Z", - "iopub.status.busy": "2023-11-09T20:15:34.851533Z", - "iopub.status.idle": "2023-11-09T20:15:34.855142Z", - "shell.execute_reply": "2023-11-09T20:15:34.854740Z" + "iopub.execute_input": "2023-11-09T22:04:44.700669Z", + "iopub.status.busy": "2023-11-09T22:04:44.700371Z", + "iopub.status.idle": "2023-11-09T22:04:44.703487Z", + "shell.execute_reply": "2023-11-09T22:04:44.703001Z" }, "pycharm": { "name": "#%%\n" @@ -1442,10 +1442,10 @@ "start_time": "2023-11-09T18:21:58.795985110Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.857456Z", - "iopub.status.busy": "2023-11-09T20:15:34.856956Z", - "iopub.status.idle": "2023-11-09T20:15:34.870719Z", - "shell.execute_reply": "2023-11-09T20:15:34.870193Z" + "iopub.execute_input": "2023-11-09T22:04:44.705393Z", + "iopub.status.busy": "2023-11-09T22:04:44.705042Z", + "iopub.status.idle": "2023-11-09T22:04:44.715834Z", + "shell.execute_reply": "2023-11-09T22:04:44.715363Z" }, "pycharm": { "name": "#%%\n" @@ -1505,10 +1505,10 @@ "start_time": "2023-11-09T18:21:58.796186073Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.872933Z", - "iopub.status.busy": "2023-11-09T20:15:34.872582Z", - "iopub.status.idle": "2023-11-09T20:15:34.884376Z", - "shell.execute_reply": "2023-11-09T20:15:34.883828Z" + "iopub.execute_input": "2023-11-09T22:04:44.717591Z", + "iopub.status.busy": "2023-11-09T22:04:44.717452Z", + "iopub.status.idle": "2023-11-09T22:04:44.726913Z", + "shell.execute_reply": "2023-11-09T22:04:44.726417Z" }, "pycharm": { "name": "#%%\n" @@ -1561,10 +1561,10 @@ "start_time": "2023-11-09T18:21:58.796374250Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.886922Z", - "iopub.status.busy": "2023-11-09T20:15:34.886494Z", - "iopub.status.idle": "2023-11-09T20:15:34.890688Z", - "shell.execute_reply": "2023-11-09T20:15:34.890212Z" + "iopub.execute_input": "2023-11-09T22:04:44.728562Z", + "iopub.status.busy": "2023-11-09T22:04:44.728403Z", + "iopub.status.idle": "2023-11-09T22:04:44.731410Z", + "shell.execute_reply": "2023-11-09T22:04:44.730923Z" }, "pycharm": { "name": "#%%\n" @@ -1595,10 +1595,10 @@ "start_time": "2023-11-09T18:21:58.796560001Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.892937Z", - "iopub.status.busy": "2023-11-09T20:15:34.892754Z", - "iopub.status.idle": "2023-11-09T20:15:34.896216Z", - "shell.execute_reply": "2023-11-09T20:15:34.895815Z" + "iopub.execute_input": "2023-11-09T22:04:44.733150Z", + "iopub.status.busy": "2023-11-09T22:04:44.732872Z", + "iopub.status.idle": "2023-11-09T22:04:44.736312Z", + "shell.execute_reply": "2023-11-09T22:04:44.735854Z" }, "pycharm": { "name": "#%%\n" @@ -1650,10 +1650,10 @@ "start_time": "2023-11-09T18:21:58.796721888Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.898348Z", - "iopub.status.busy": "2023-11-09T20:15:34.898162Z", - "iopub.status.idle": "2023-11-09T20:15:34.900866Z", - "shell.execute_reply": "2023-11-09T20:15:34.900340Z" + "iopub.execute_input": "2023-11-09T22:04:44.738227Z", + "iopub.status.busy": "2023-11-09T22:04:44.737892Z", + "iopub.status.idle": "2023-11-09T22:04:44.740325Z", + "shell.execute_reply": "2023-11-09T22:04:44.739947Z" }, "pycharm": { "name": "#%%\n" @@ -1675,10 +1675,10 @@ "start_time": "2023-11-09T18:21:58.796792565Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.903114Z", - "iopub.status.busy": "2023-11-09T20:15:34.902757Z", - "iopub.status.idle": "2023-11-09T20:15:34.921028Z", - "shell.execute_reply": "2023-11-09T20:15:34.920480Z" + "iopub.execute_input": "2023-11-09T22:04:44.742278Z", + "iopub.status.busy": "2023-11-09T22:04:44.741922Z", + "iopub.status.idle": "2023-11-09T22:04:44.755736Z", + "shell.execute_reply": "2023-11-09T22:04:44.755343Z" }, "pycharm": { "name": "#%%\n" @@ -1713,10 +1713,10 @@ "start_time": "2023-11-09T18:21:58.796936035Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:34.923429Z", - "iopub.status.busy": "2023-11-09T20:15:34.923051Z", - "iopub.status.idle": "2023-11-09T20:15:34.927886Z", - "shell.execute_reply": "2023-11-09T20:15:34.927350Z" + "iopub.execute_input": "2023-11-09T22:04:44.757540Z", + "iopub.status.busy": "2023-11-09T22:04:44.757235Z", + "iopub.status.idle": "2023-11-09T22:04:44.760756Z", + "shell.execute_reply": "2023-11-09T22:04:44.760273Z" }, "pycharm": { "name": "#%%\n" diff --git a/advanced-python/12AdvancedClasses.ipynb b/advanced-python/12AdvancedClasses.ipynb index 38284679..d3bd0bfc 100644 --- a/advanced-python/12AdvancedClasses.ipynb +++ b/advanced-python/12AdvancedClasses.ipynb @@ -26,10 +26,10 @@ "start_time": "2023-11-09T18:22:01.447375824Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.385409Z", - "iopub.status.busy": "2023-11-09T20:15:37.385202Z", - "iopub.status.idle": "2023-11-09T20:15:37.392174Z", - "shell.execute_reply": "2023-11-09T20:15:37.391688Z" + "iopub.execute_input": "2023-11-09T22:04:46.724756Z", + "iopub.status.busy": "2023-11-09T22:04:46.724304Z", + "iopub.status.idle": "2023-11-09T22:04:46.730301Z", + "shell.execute_reply": "2023-11-09T22:04:46.729936Z" } }, "outputs": [], @@ -71,10 +71,10 @@ "start_time": "2023-11-09T18:22:01.447622989Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.394692Z", - "iopub.status.busy": "2023-11-09T20:15:37.394122Z", - "iopub.status.idle": "2023-11-09T20:15:37.397005Z", - "shell.execute_reply": "2023-11-09T20:15:37.396569Z" + "iopub.execute_input": "2023-11-09T22:04:46.731988Z", + "iopub.status.busy": "2023-11-09T22:04:46.731842Z", + "iopub.status.idle": "2023-11-09T22:04:46.734232Z", + "shell.execute_reply": "2023-11-09T22:04:46.733841Z" } }, "outputs": [], @@ -92,10 +92,10 @@ "start_time": "2023-11-09T18:22:01.447833842Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.399213Z", - "iopub.status.busy": "2023-11-09T20:15:37.398853Z", - "iopub.status.idle": "2023-11-09T20:15:37.404699Z", - "shell.execute_reply": "2023-11-09T20:15:37.404255Z" + "iopub.execute_input": "2023-11-09T22:04:46.735989Z", + "iopub.status.busy": "2023-11-09T22:04:46.735682Z", + "iopub.status.idle": "2023-11-09T22:04:46.741064Z", + "shell.execute_reply": "2023-11-09T22:04:46.740541Z" } }, "outputs": [ @@ -150,10 +150,10 @@ "start_time": "2023-11-09T18:22:01.448096154Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.406993Z", - "iopub.status.busy": "2023-11-09T20:15:37.406629Z", - "iopub.status.idle": "2023-11-09T20:15:37.410305Z", - "shell.execute_reply": "2023-11-09T20:15:37.409785Z" + "iopub.execute_input": "2023-11-09T22:04:46.742703Z", + "iopub.status.busy": "2023-11-09T22:04:46.742562Z", + "iopub.status.idle": "2023-11-09T22:04:46.745584Z", + "shell.execute_reply": "2023-11-09T22:04:46.745206Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "start_time": "2023-11-09T18:22:01.491308102Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.412750Z", - "iopub.status.busy": "2023-11-09T20:15:37.412222Z", - "iopub.status.idle": "2023-11-09T20:15:37.416289Z", - "shell.execute_reply": "2023-11-09T20:15:37.415751Z" + "iopub.execute_input": "2023-11-09T22:04:46.747507Z", + "iopub.status.busy": "2023-11-09T22:04:46.747217Z", + "iopub.status.idle": "2023-11-09T22:04:46.749958Z", + "shell.execute_reply": "2023-11-09T22:04:46.749463Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "start_time": "2023-11-09T18:22:01.491619526Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.418636Z", - "iopub.status.busy": "2023-11-09T20:15:37.418179Z", - "iopub.status.idle": "2023-11-09T20:15:37.420904Z", - "shell.execute_reply": "2023-11-09T20:15:37.420369Z" + "iopub.execute_input": "2023-11-09T22:04:46.751785Z", + "iopub.status.busy": "2023-11-09T22:04:46.751484Z", + "iopub.status.idle": "2023-11-09T22:04:46.753901Z", + "shell.execute_reply": "2023-11-09T22:04:46.753417Z" } }, "outputs": [], @@ -249,10 +249,10 @@ "start_time": "2023-11-09T18:22:01.491851791Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.423106Z", - "iopub.status.busy": "2023-11-09T20:15:37.422656Z", - "iopub.status.idle": "2023-11-09T20:15:37.425583Z", - "shell.execute_reply": "2023-11-09T20:15:37.425068Z" + "iopub.execute_input": "2023-11-09T22:04:46.755612Z", + "iopub.status.busy": "2023-11-09T22:04:46.755323Z", + "iopub.status.idle": "2023-11-09T22:04:46.757986Z", + "shell.execute_reply": "2023-11-09T22:04:46.757521Z" } }, "outputs": [ @@ -277,10 +277,10 @@ "start_time": "2023-11-09T18:22:01.492017010Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.427796Z", - "iopub.status.busy": "2023-11-09T20:15:37.427347Z", - "iopub.status.idle": "2023-11-09T20:15:37.430470Z", - "shell.execute_reply": "2023-11-09T20:15:37.429950Z" + "iopub.execute_input": "2023-11-09T22:04:46.759649Z", + "iopub.status.busy": "2023-11-09T22:04:46.759500Z", + "iopub.status.idle": "2023-11-09T22:04:46.762280Z", + "shell.execute_reply": "2023-11-09T22:04:46.761809Z" } }, "outputs": [ @@ -324,10 +324,10 @@ "start_time": "2023-11-09T18:22:01.498433654Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.432721Z", - "iopub.status.busy": "2023-11-09T20:15:37.432261Z", - "iopub.status.idle": "2023-11-09T20:15:37.436893Z", - "shell.execute_reply": "2023-11-09T20:15:37.436433Z" + "iopub.execute_input": "2023-11-09T22:04:46.764127Z", + "iopub.status.busy": "2023-11-09T22:04:46.763839Z", + "iopub.status.idle": "2023-11-09T22:04:46.767104Z", + "shell.execute_reply": "2023-11-09T22:04:46.766611Z" } }, "outputs": [], @@ -355,10 +355,10 @@ "start_time": "2023-11-09T18:22:01.503944286Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.439214Z", - "iopub.status.busy": "2023-11-09T20:15:37.438762Z", - "iopub.status.idle": "2023-11-09T20:15:37.441436Z", - "shell.execute_reply": "2023-11-09T20:15:37.440915Z" + "iopub.execute_input": "2023-11-09T22:04:46.769032Z", + "iopub.status.busy": "2023-11-09T22:04:46.768665Z", + "iopub.status.idle": "2023-11-09T22:04:46.771372Z", + "shell.execute_reply": "2023-11-09T22:04:46.770964Z" } }, "outputs": [], @@ -375,10 +375,10 @@ "start_time": "2023-11-09T18:22:01.513503176Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.443618Z", - "iopub.status.busy": "2023-11-09T20:15:37.443272Z", - "iopub.status.idle": "2023-11-09T20:15:37.446982Z", - "shell.execute_reply": "2023-11-09T20:15:37.446580Z" + "iopub.execute_input": "2023-11-09T22:04:46.773008Z", + "iopub.status.busy": "2023-11-09T22:04:46.772855Z", + "iopub.status.idle": "2023-11-09T22:04:46.776405Z", + "shell.execute_reply": "2023-11-09T22:04:46.775977Z" } }, "outputs": [ @@ -413,10 +413,10 @@ "start_time": "2023-11-09T18:22:01.555278832Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.448981Z", - "iopub.status.busy": "2023-11-09T20:15:37.448640Z", - "iopub.status.idle": "2023-11-09T20:15:37.451467Z", - "shell.execute_reply": "2023-11-09T20:15:37.450932Z" + "iopub.execute_input": "2023-11-09T22:04:46.778029Z", + "iopub.status.busy": "2023-11-09T22:04:46.777879Z", + "iopub.status.idle": "2023-11-09T22:04:46.780569Z", + "shell.execute_reply": "2023-11-09T22:04:46.780157Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "start_time": "2023-11-09T18:22:01.555519700Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.453842Z", - "iopub.status.busy": "2023-11-09T20:15:37.453666Z", - "iopub.status.idle": "2023-11-09T20:15:37.456365Z", - "shell.execute_reply": "2023-11-09T20:15:37.455850Z" + "iopub.execute_input": "2023-11-09T22:04:46.782223Z", + "iopub.status.busy": "2023-11-09T22:04:46.782072Z", + "iopub.status.idle": "2023-11-09T22:04:46.784700Z", + "shell.execute_reply": "2023-11-09T22:04:46.784303Z" } }, "outputs": [], @@ -481,10 +481,10 @@ "start_time": "2023-11-09T18:22:01.555728122Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.458628Z", - "iopub.status.busy": "2023-11-09T20:15:37.458184Z", - "iopub.status.idle": "2023-11-09T20:15:37.460830Z", - "shell.execute_reply": "2023-11-09T20:15:37.460302Z" + "iopub.execute_input": "2023-11-09T22:04:46.786285Z", + "iopub.status.busy": "2023-11-09T22:04:46.786135Z", + "iopub.status.idle": "2023-11-09T22:04:46.788959Z", + "shell.execute_reply": "2023-11-09T22:04:46.788442Z" } }, "outputs": [], @@ -502,10 +502,10 @@ "start_time": "2023-11-09T18:22:01.599103966Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.462895Z", - "iopub.status.busy": "2023-11-09T20:15:37.462721Z", - "iopub.status.idle": "2023-11-09T20:15:37.466926Z", - "shell.execute_reply": "2023-11-09T20:15:37.466292Z" + "iopub.execute_input": "2023-11-09T22:04:46.790762Z", + "iopub.status.busy": "2023-11-09T22:04:46.790473Z", + "iopub.status.idle": "2023-11-09T22:04:46.793705Z", + "shell.execute_reply": "2023-11-09T22:04:46.793211Z" } }, "outputs": [ @@ -533,10 +533,10 @@ "start_time": "2023-11-09T18:22:01.599306619Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.469112Z", - "iopub.status.busy": "2023-11-09T20:15:37.468773Z", - "iopub.status.idle": "2023-11-09T20:15:37.472133Z", - "shell.execute_reply": "2023-11-09T20:15:37.471638Z" + "iopub.execute_input": "2023-11-09T22:04:46.795461Z", + "iopub.status.busy": "2023-11-09T22:04:46.795167Z", + "iopub.status.idle": "2023-11-09T22:04:46.798413Z", + "shell.execute_reply": "2023-11-09T22:04:46.797932Z" } }, "outputs": [ @@ -602,10 +602,10 @@ "start_time": "2023-11-09T18:22:01.599476172Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.474648Z", - "iopub.status.busy": "2023-11-09T20:15:37.474206Z", - "iopub.status.idle": "2023-11-09T20:15:37.477884Z", - "shell.execute_reply": "2023-11-09T20:15:37.477156Z" + "iopub.execute_input": "2023-11-09T22:04:46.800279Z", + "iopub.status.busy": "2023-11-09T22:04:46.800121Z", + "iopub.status.idle": "2023-11-09T22:04:46.803338Z", + "shell.execute_reply": "2023-11-09T22:04:46.802833Z" } }, "outputs": [ @@ -640,10 +640,10 @@ "start_time": "2023-11-09T18:22:01.599607114Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.480087Z", - "iopub.status.busy": "2023-11-09T20:15:37.479650Z", - "iopub.status.idle": "2023-11-09T20:15:37.483845Z", - "shell.execute_reply": "2023-11-09T20:15:37.483325Z" + "iopub.execute_input": "2023-11-09T22:04:46.805056Z", + "iopub.status.busy": "2023-11-09T22:04:46.804902Z", + "iopub.status.idle": "2023-11-09T22:04:46.808234Z", + "shell.execute_reply": "2023-11-09T22:04:46.807738Z" } }, "outputs": [ @@ -676,10 +676,10 @@ "start_time": "2023-11-09T18:22:01.643176331Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.486079Z", - "iopub.status.busy": "2023-11-09T20:15:37.485633Z", - "iopub.status.idle": "2023-11-09T20:15:37.489245Z", - "shell.execute_reply": "2023-11-09T20:15:37.488743Z" + "iopub.execute_input": "2023-11-09T22:04:46.810072Z", + "iopub.status.busy": "2023-11-09T22:04:46.809781Z", + "iopub.status.idle": "2023-11-09T22:04:46.813164Z", + "shell.execute_reply": "2023-11-09T22:04:46.812655Z" } }, "outputs": [ @@ -726,10 +726,10 @@ "start_time": "2023-11-09T18:22:01.643423445Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.491489Z", - "iopub.status.busy": "2023-11-09T20:15:37.491145Z", - "iopub.status.idle": "2023-11-09T20:15:37.494960Z", - "shell.execute_reply": "2023-11-09T20:15:37.494430Z" + "iopub.execute_input": "2023-11-09T22:04:46.814984Z", + "iopub.status.busy": "2023-11-09T22:04:46.814695Z", + "iopub.status.idle": "2023-11-09T22:04:46.817953Z", + "shell.execute_reply": "2023-11-09T22:04:46.817478Z" } }, "outputs": [], @@ -760,10 +760,10 @@ "start_time": "2023-11-09T18:22:01.643613141Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.497286Z", - "iopub.status.busy": "2023-11-09T20:15:37.496785Z", - "iopub.status.idle": "2023-11-09T20:15:37.499519Z", - "shell.execute_reply": "2023-11-09T20:15:37.498983Z" + "iopub.execute_input": "2023-11-09T22:04:46.819736Z", + "iopub.status.busy": "2023-11-09T22:04:46.819449Z", + "iopub.status.idle": "2023-11-09T22:04:46.821805Z", + "shell.execute_reply": "2023-11-09T22:04:46.821311Z" } }, "outputs": [], @@ -780,10 +780,10 @@ "start_time": "2023-11-09T18:22:01.643815676Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.501930Z", - "iopub.status.busy": "2023-11-09T20:15:37.501469Z", - "iopub.status.idle": "2023-11-09T20:15:37.505552Z", - "shell.execute_reply": "2023-11-09T20:15:37.505029Z" + "iopub.execute_input": "2023-11-09T22:04:46.823506Z", + "iopub.status.busy": "2023-11-09T22:04:46.823222Z", + "iopub.status.idle": "2023-11-09T22:04:46.826392Z", + "shell.execute_reply": "2023-11-09T22:04:46.825924Z" } }, "outputs": [ @@ -811,10 +811,10 @@ "start_time": "2023-11-09T18:22:01.644071731Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.507616Z", - "iopub.status.busy": "2023-11-09T20:15:37.507437Z", - "iopub.status.idle": "2023-11-09T20:15:37.510748Z", - "shell.execute_reply": "2023-11-09T20:15:37.510204Z" + "iopub.execute_input": "2023-11-09T22:04:46.828271Z", + "iopub.status.busy": "2023-11-09T22:04:46.827901Z", + "iopub.status.idle": "2023-11-09T22:04:46.831230Z", + "shell.execute_reply": "2023-11-09T22:04:46.830717Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "start_time": "2023-11-09T18:22:01.655190658Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.513307Z", - "iopub.status.busy": "2023-11-09T20:15:37.512630Z", - "iopub.status.idle": "2023-11-09T20:15:37.515936Z", - "shell.execute_reply": "2023-11-09T20:15:37.515415Z" + "iopub.execute_input": "2023-11-09T22:04:46.833133Z", + "iopub.status.busy": "2023-11-09T22:04:46.832738Z", + "iopub.status.idle": "2023-11-09T22:04:46.835371Z", + "shell.execute_reply": "2023-11-09T22:04:46.834918Z" } }, "outputs": [ @@ -877,10 +877,10 @@ "start_time": "2023-11-09T18:22:01.662211437Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.518689Z", - "iopub.status.busy": "2023-11-09T20:15:37.518102Z", - "iopub.status.idle": "2023-11-09T20:15:37.521302Z", - "shell.execute_reply": "2023-11-09T20:15:37.520692Z" + "iopub.execute_input": "2023-11-09T22:04:46.837086Z", + "iopub.status.busy": "2023-11-09T22:04:46.836925Z", + "iopub.status.idle": "2023-11-09T22:04:46.839612Z", + "shell.execute_reply": "2023-11-09T22:04:46.839210Z" } }, "outputs": [ @@ -905,10 +905,10 @@ "start_time": "2023-11-09T18:22:01.679854902Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.523270Z", - "iopub.status.busy": "2023-11-09T20:15:37.523085Z", - "iopub.status.idle": "2023-11-09T20:15:37.525691Z", - "shell.execute_reply": "2023-11-09T20:15:37.525156Z" + "iopub.execute_input": "2023-11-09T22:04:46.841194Z", + "iopub.status.busy": "2023-11-09T22:04:46.841042Z", + "iopub.status.idle": "2023-11-09T22:04:46.843203Z", + "shell.execute_reply": "2023-11-09T22:04:46.842819Z" } }, "outputs": [], @@ -939,10 +939,10 @@ "start_time": "2023-11-09T18:22:01.685831397Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:37.527808Z", - "iopub.status.busy": "2023-11-09T20:15:37.527635Z", - "iopub.status.idle": "2023-11-09T20:15:37.531448Z", - "shell.execute_reply": "2023-11-09T20:15:37.531043Z" + "iopub.execute_input": "2023-11-09T22:04:46.845120Z", + "iopub.status.busy": "2023-11-09T22:04:46.844719Z", + "iopub.status.idle": "2023-11-09T22:04:46.847768Z", + "shell.execute_reply": "2023-11-09T22:04:46.847300Z" } }, "outputs": [ diff --git a/advanced-python/20DataAndPlotting.html b/advanced-python/20DataAndPlotting.html index 15b928cc..4a3ab9d3 100644 --- a/advanced-python/20DataAndPlotting.html +++ b/advanced-python/20DataAndPlotting.html @@ -1100,7 +1100,7 @@

Using rectangular cuts
-<matplotlib.legend.Legend at 0x7f040aebaf50>
+<matplotlib.legend.Legend at 0x7f77f9f22650>
 

diff --git a/advanced-python/20DataAndPlotting.ipynb b/advanced-python/20DataAndPlotting.ipynb index 87fba8d8..34ad9842 100644 --- a/advanced-python/20DataAndPlotting.ipynb +++ b/advanced-python/20DataAndPlotting.ipynb @@ -38,10 +38,10 @@ "start_time": "2023-11-09T18:22:10.715117611Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:39.633457Z", - "iopub.status.busy": "2023-11-09T20:15:39.633224Z", - "iopub.status.idle": "2023-11-09T20:15:40.376367Z", - "shell.execute_reply": "2023-11-09T20:15:40.375757Z" + "iopub.execute_input": "2023-11-09T22:04:48.648020Z", + "iopub.status.busy": "2023-11-09T22:04:48.647859Z", + "iopub.status.idle": "2023-11-09T22:04:49.218129Z", + "shell.execute_reply": "2023-11-09T22:04:49.217635Z" } }, "outputs": [], @@ -127,10 +127,10 @@ "start_time": "2023-11-09T18:22:10.715393509Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:40.379700Z", - "iopub.status.busy": "2023-11-09T20:15:40.379168Z", - "iopub.status.idle": "2023-11-09T20:15:42.605622Z", - "shell.execute_reply": "2023-11-09T20:15:42.605022Z" + "iopub.execute_input": "2023-11-09T22:04:49.220440Z", + "iopub.status.busy": "2023-11-09T22:04:49.220173Z", + "iopub.status.idle": "2023-11-09T22:04:51.581241Z", + "shell.execute_reply": "2023-11-09T22:04:51.580688Z" } }, "outputs": [ @@ -168,10 +168,10 @@ "start_time": "2023-11-09T18:22:10.996475027Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:42.608168Z", - "iopub.status.busy": "2023-11-09T20:15:42.607766Z", - "iopub.status.idle": "2023-11-09T20:15:46.341422Z", - "shell.execute_reply": "2023-11-09T20:15:46.340856Z" + "iopub.execute_input": "2023-11-09T22:04:51.583084Z", + "iopub.status.busy": "2023-11-09T22:04:51.582920Z", + "iopub.status.idle": "2023-11-09T22:04:55.434654Z", + "shell.execute_reply": "2023-11-09T22:04:55.434202Z" } }, "outputs": [ @@ -202,10 +202,10 @@ "start_time": "2023-11-09T18:22:11.577968658Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:15:46.344022Z", - "iopub.status.busy": "2023-11-09T20:15:46.343583Z", - "iopub.status.idle": "2023-11-09T20:16:16.249974Z", - "shell.execute_reply": "2023-11-09T20:16:16.249340Z" + "iopub.execute_input": "2023-11-09T22:04:55.436435Z", + "iopub.status.busy": "2023-11-09T22:04:55.436277Z", + "iopub.status.idle": "2023-11-09T22:05:25.792231Z", + "shell.execute_reply": "2023-11-09T22:05:25.791775Z" } }, "outputs": [ @@ -434,10 +434,10 @@ "start_time": "2023-11-09T18:22:24.447634455Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:16.253043Z", - "iopub.status.busy": "2023-11-09T20:16:16.252372Z", - "iopub.status.idle": "2023-11-09T20:16:16.258380Z", - "shell.execute_reply": "2023-11-09T20:16:16.257879Z" + "iopub.execute_input": "2023-11-09T22:05:25.794344Z", + "iopub.status.busy": "2023-11-09T22:05:25.794010Z", + "iopub.status.idle": "2023-11-09T22:05:25.797458Z", + "shell.execute_reply": "2023-11-09T22:05:25.797001Z" } }, "outputs": [ @@ -478,10 +478,10 @@ "start_time": "2023-11-09T18:22:24.453234659Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:16.261063Z", - "iopub.status.busy": "2023-11-09T20:16:16.260584Z", - "iopub.status.idle": "2023-11-09T20:16:16.409465Z", - "shell.execute_reply": "2023-11-09T20:16:16.408977Z" + "iopub.execute_input": "2023-11-09T22:05:25.799079Z", + "iopub.status.busy": "2023-11-09T22:05:25.798936Z", + "iopub.status.idle": "2023-11-09T22:05:25.909966Z", + "shell.execute_reply": "2023-11-09T22:05:25.909413Z" } }, "outputs": [ @@ -540,10 +540,10 @@ "start_time": "2023-11-09T18:22:24.819219840Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:16.411930Z", - "iopub.status.busy": "2023-11-09T20:16:16.411524Z", - "iopub.status.idle": "2023-11-09T20:16:16.415418Z", - "shell.execute_reply": "2023-11-09T20:16:16.414984Z" + "iopub.execute_input": "2023-11-09T22:05:25.912281Z", + "iopub.status.busy": "2023-11-09T22:05:25.911879Z", + "iopub.status.idle": "2023-11-09T22:05:25.915443Z", + "shell.execute_reply": "2023-11-09T22:05:25.914932Z" }, "pycharm": { "name": "#%%\n" @@ -565,10 +565,10 @@ "start_time": "2023-11-09T18:22:24.819392199Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:16.417684Z", - "iopub.status.busy": "2023-11-09T20:16:16.417201Z", - "iopub.status.idle": "2023-11-09T20:16:16.790081Z", - "shell.execute_reply": "2023-11-09T20:16:16.789588Z" + "iopub.execute_input": "2023-11-09T22:05:25.917682Z", + "iopub.status.busy": "2023-11-09T22:05:25.917210Z", + "iopub.status.idle": "2023-11-09T22:05:26.207528Z", + "shell.execute_reply": "2023-11-09T22:05:26.206994Z" }, "pycharm": { "name": "#%%\n" @@ -611,10 +611,10 @@ "start_time": "2023-11-09T18:22:25.966183784Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:16.792774Z", - "iopub.status.busy": "2023-11-09T20:16:16.792419Z", - "iopub.status.idle": "2023-11-09T20:16:17.145960Z", - "shell.execute_reply": "2023-11-09T20:16:17.145444Z" + "iopub.execute_input": "2023-11-09T22:05:26.209515Z", + "iopub.status.busy": "2023-11-09T22:05:26.209254Z", + "iopub.status.idle": "2023-11-09T22:05:26.522802Z", + "shell.execute_reply": "2023-11-09T22:05:26.522292Z" }, "pycharm": { "name": "#%%\n" @@ -657,10 +657,10 @@ "start_time": "2023-11-09T18:22:26.499064264Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:17.148874Z", - "iopub.status.busy": "2023-11-09T20:16:17.148387Z", - "iopub.status.idle": "2023-11-09T20:16:18.240706Z", - "shell.execute_reply": "2023-11-09T20:16:18.240098Z" + "iopub.execute_input": "2023-11-09T22:05:26.524771Z", + "iopub.status.busy": "2023-11-09T22:05:26.524597Z", + "iopub.status.idle": "2023-11-09T22:05:27.337127Z", + "shell.execute_reply": "2023-11-09T22:05:27.336573Z" }, "pycharm": { "name": "#%%\n" @@ -710,10 +710,10 @@ "start_time": "2023-11-09T18:22:27.444982487Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:18.243771Z", - "iopub.status.busy": "2023-11-09T20:16:18.243333Z", - "iopub.status.idle": "2023-11-09T20:16:18.691836Z", - "shell.execute_reply": "2023-11-09T20:16:18.691341Z" + "iopub.execute_input": "2023-11-09T22:05:27.339048Z", + "iopub.status.busy": "2023-11-09T22:05:27.338784Z", + "iopub.status.idle": "2023-11-09T22:05:27.740173Z", + "shell.execute_reply": "2023-11-09T22:05:27.739626Z" } }, "outputs": [ @@ -756,10 +756,10 @@ "start_time": "2023-11-09T18:22:29.626043515Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:18.694881Z", - "iopub.status.busy": "2023-11-09T20:16:18.694543Z", - "iopub.status.idle": "2023-11-09T20:16:18.704983Z", - "shell.execute_reply": "2023-11-09T20:16:18.704533Z" + "iopub.execute_input": "2023-11-09T22:05:27.742277Z", + "iopub.status.busy": "2023-11-09T22:05:27.741937Z", + "iopub.status.idle": "2023-11-09T22:05:27.752341Z", + "shell.execute_reply": "2023-11-09T22:05:27.751929Z" } }, "outputs": [ @@ -801,10 +801,10 @@ "start_time": "2023-11-09T18:22:29.648794140Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:18.707383Z", - "iopub.status.busy": "2023-11-09T20:16:18.706882Z", - "iopub.status.idle": "2023-11-09T20:16:18.726093Z", - "shell.execute_reply": "2023-11-09T20:16:18.725507Z" + "iopub.execute_input": "2023-11-09T22:05:27.754205Z", + "iopub.status.busy": "2023-11-09T22:05:27.753884Z", + "iopub.status.idle": "2023-11-09T22:05:27.766846Z", + "shell.execute_reply": "2023-11-09T22:05:27.766438Z" } }, "outputs": [ @@ -909,10 +909,10 @@ "start_time": "2023-11-09T18:22:29.678392856Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:18.728570Z", - "iopub.status.busy": "2023-11-09T20:16:18.728176Z", - "iopub.status.idle": "2023-11-09T20:16:19.145089Z", - "shell.execute_reply": "2023-11-09T20:16:19.144522Z" + "iopub.execute_input": "2023-11-09T22:05:27.768834Z", + "iopub.status.busy": "2023-11-09T22:05:27.768505Z", + "iopub.status.idle": "2023-11-09T22:05:28.130434Z", + "shell.execute_reply": "2023-11-09T22:05:28.129886Z" } }, "outputs": [ @@ -942,10 +942,10 @@ "start_time": "2023-11-09T18:22:30.368802764Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:19.148278Z", - "iopub.status.busy": "2023-11-09T20:16:19.147225Z", - "iopub.status.idle": "2023-11-09T20:16:19.589954Z", - "shell.execute_reply": "2023-11-09T20:16:19.589335Z" + "iopub.execute_input": "2023-11-09T22:05:28.132560Z", + "iopub.status.busy": "2023-11-09T22:05:28.132252Z", + "iopub.status.idle": "2023-11-09T22:05:28.517374Z", + "shell.execute_reply": "2023-11-09T22:05:28.516781Z" } }, "outputs": [ @@ -986,17 +986,17 @@ "start_time": "2023-11-09T18:22:31.166183480Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:19.592862Z", - "iopub.status.busy": "2023-11-09T20:16:19.592256Z", - "iopub.status.idle": "2023-11-09T20:16:20.100094Z", - "shell.execute_reply": "2023-11-09T20:16:20.099378Z" + "iopub.execute_input": "2023-11-09T22:05:28.519569Z", + "iopub.status.busy": "2023-11-09T22:05:28.519155Z", + "iopub.status.idle": "2023-11-09T22:05:28.956076Z", + "shell.execute_reply": "2023-11-09T22:05:28.955531Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 16, @@ -1047,10 +1047,10 @@ "start_time": "2023-11-09T18:22:32.129165982Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:20.103022Z", - "iopub.status.busy": "2023-11-09T20:16:20.102618Z", - "iopub.status.idle": "2023-11-09T20:16:20.108698Z", - "shell.execute_reply": "2023-11-09T20:16:20.107796Z" + "iopub.execute_input": "2023-11-09T22:05:28.958280Z", + "iopub.status.busy": "2023-11-09T22:05:28.957952Z", + "iopub.status.idle": "2023-11-09T22:05:28.961563Z", + "shell.execute_reply": "2023-11-09T22:05:28.961127Z" } }, "outputs": [ @@ -1083,10 +1083,10 @@ "start_time": "2023-11-09T18:22:32.134501210Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:20.111139Z", - "iopub.status.busy": "2023-11-09T20:16:20.110668Z", - "iopub.status.idle": "2023-11-09T20:16:25.113211Z", - "shell.execute_reply": "2023-11-09T20:16:25.112503Z" + "iopub.execute_input": "2023-11-09T22:05:28.963240Z", + "iopub.status.busy": "2023-11-09T22:05:28.963079Z", + "iopub.status.idle": "2023-11-09T22:05:33.949310Z", + "shell.execute_reply": "2023-11-09T22:05:33.948782Z" } }, "outputs": [ @@ -1153,10 +1153,10 @@ "start_time": "2023-11-09T18:22:33.874056558Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:16:25.115990Z", - "iopub.status.busy": "2023-11-09T20:16:25.115583Z", - "iopub.status.idle": "2023-11-09T20:20:59.582348Z", - "shell.execute_reply": "2023-11-09T20:20:59.581459Z" + "iopub.execute_input": "2023-11-09T22:05:33.951179Z", + "iopub.status.busy": "2023-11-09T22:05:33.951008Z", + "iopub.status.idle": "2023-11-09T22:10:26.002764Z", + "shell.execute_reply": "2023-11-09T22:10:26.002225Z" } }, "outputs": [], @@ -1191,10 +1191,10 @@ "start_time": "2023-11-09T18:23:21.182938710Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:20:59.585929Z", - "iopub.status.busy": "2023-11-09T20:20:59.585499Z", - "iopub.status.idle": "2023-11-09T20:21:00.029854Z", - "shell.execute_reply": "2023-11-09T20:21:00.029209Z" + "iopub.execute_input": "2023-11-09T22:10:26.005036Z", + "iopub.status.busy": "2023-11-09T22:10:26.004869Z", + "iopub.status.idle": "2023-11-09T22:10:26.368190Z", + "shell.execute_reply": "2023-11-09T22:10:26.367683Z" } }, "outputs": [ @@ -1239,17 +1239,17 @@ "start_time": "2023-11-09T18:23:21.630331279Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:00.033018Z", - "iopub.status.busy": "2023-11-09T20:21:00.032592Z", - "iopub.status.idle": "2023-11-09T20:21:00.411515Z", - "shell.execute_reply": "2023-11-09T20:21:00.410768Z" + "iopub.execute_input": "2023-11-09T22:10:26.370274Z", + "iopub.status.busy": "2023-11-09T22:10:26.369949Z", + "iopub.status.idle": "2023-11-09T22:10:26.715795Z", + "shell.execute_reply": "2023-11-09T22:10:26.715247Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 21, @@ -1289,17 +1289,17 @@ "start_time": "2023-11-09T18:23:22.130434993Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:00.414480Z", - "iopub.status.busy": "2023-11-09T20:21:00.414254Z", - "iopub.status.idle": "2023-11-09T20:21:00.837010Z", - "shell.execute_reply": "2023-11-09T20:21:00.836196Z" + "iopub.execute_input": "2023-11-09T22:10:26.717853Z", + "iopub.status.busy": "2023-11-09T22:10:26.717544Z", + "iopub.status.idle": "2023-11-09T22:10:27.092363Z", + "shell.execute_reply": "2023-11-09T22:10:27.091805Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 22, @@ -1344,10 +1344,10 @@ "start_time": "2023-11-09T18:23:22.640877567Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:00.839895Z", - "iopub.status.busy": "2023-11-09T20:21:00.839688Z", - "iopub.status.idle": "2023-11-09T20:21:00.844391Z", - "shell.execute_reply": "2023-11-09T20:21:00.843883Z" + "iopub.execute_input": "2023-11-09T22:10:27.094445Z", + "iopub.status.busy": "2023-11-09T22:10:27.094121Z", + "iopub.status.idle": "2023-11-09T22:10:27.097734Z", + "shell.execute_reply": "2023-11-09T22:10:27.097236Z" } }, "outputs": [], @@ -1392,10 +1392,10 @@ "start_time": "2023-11-09T18:23:22.649403635Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:00.846877Z", - "iopub.status.busy": "2023-11-09T20:21:00.846498Z", - "iopub.status.idle": "2023-11-09T20:21:13.475633Z", - "shell.execute_reply": "2023-11-09T20:21:13.474983Z" + "iopub.execute_input": "2023-11-09T22:10:27.099736Z", + "iopub.status.busy": "2023-11-09T22:10:27.099422Z", + "iopub.status.idle": "2023-11-09T22:10:37.413112Z", + "shell.execute_reply": "2023-11-09T22:10:37.412573Z" } }, "outputs": [ @@ -1403,7 +1403,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_6346/3447827755.py:2: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.\n", + "/tmp/ipykernel_6447/3447827755.py:2: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.\n", " plt.figure() # creates a new figure\n" ] }, @@ -1771,10 +1771,10 @@ "start_time": "2023-11-09T18:23:39.986976807Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:13.479203Z", - "iopub.status.busy": "2023-11-09T20:21:13.478692Z", - "iopub.status.idle": "2023-11-09T20:21:14.323131Z", - "shell.execute_reply": "2023-11-09T20:21:14.322635Z" + "iopub.execute_input": "2023-11-09T22:10:37.415277Z", + "iopub.status.busy": "2023-11-09T22:10:37.414926Z", + "iopub.status.idle": "2023-11-09T22:10:38.048955Z", + "shell.execute_reply": "2023-11-09T22:10:38.048393Z" }, "pycharm": { "name": "#%%\n" @@ -1785,13 +1785,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Stored 'bkg_df' (DataFrame)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Stored 'bkg_df' (DataFrame)\n", "Stored 'mc_df' (DataFrame)\n" ] }, diff --git a/advanced-python/30Classification.html b/advanced-python/30Classification.html index 759b356f..c93726d2 100644 --- a/advanced-python/30Classification.html +++ b/advanced-python/30Classification.html @@ -519,7 +519,7 @@

Using a classifier
-<matplotlib.legend.Legend at 0x7f7539ad5a50>
+<matplotlib.legend.Legend at 0x7f4928f8a210>
 
@@ -1014,7 +1014,7 @@

Evaluating classifier performance
-<matplotlib.legend.Legend at 0x7f753066e910>
+<matplotlib.legend.Legend at 0x7f4906c5cd90>
 
diff --git a/advanced-python/30Classification.ipynb b/advanced-python/30Classification.ipynb index c8484d91..53bc6387 100644 --- a/advanced-python/30Classification.ipynb +++ b/advanced-python/30Classification.ipynb @@ -25,10 +25,10 @@ "start_time": "2023-11-09T18:25:07.925906320Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:17.222038Z", - "iopub.status.busy": "2023-11-09T20:21:17.221797Z", - "iopub.status.idle": "2023-11-09T20:21:18.237590Z", - "shell.execute_reply": "2023-11-09T20:21:18.236936Z" + "iopub.execute_input": "2023-11-09T22:10:40.559017Z", + "iopub.status.busy": "2023-11-09T22:10:40.558862Z", + "iopub.status.idle": "2023-11-09T22:10:41.251385Z", + "shell.execute_reply": "2023-11-09T22:10:41.250824Z" } }, "outputs": [], @@ -47,10 +47,10 @@ "start_time": "2023-11-09T18:25:08.698996144Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:18.241045Z", - "iopub.status.busy": "2023-11-09T20:21:18.240617Z", - "iopub.status.idle": "2023-11-09T20:21:19.313227Z", - "shell.execute_reply": "2023-11-09T20:21:19.312092Z" + "iopub.execute_input": "2023-11-09T22:10:41.253754Z", + "iopub.status.busy": "2023-11-09T22:10:41.253535Z", + "iopub.status.idle": "2023-11-09T22:10:41.924240Z", + "shell.execute_reply": "2023-11-09T22:10:41.923737Z" } }, "outputs": [], @@ -89,17 +89,17 @@ "start_time": "2023-11-09T18:25:09.007997107Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:19.316276Z", - "iopub.status.busy": "2023-11-09T20:21:19.315736Z", - "iopub.status.idle": "2023-11-09T20:21:20.970962Z", - "shell.execute_reply": "2023-11-09T20:21:20.970235Z" + "iopub.execute_input": "2023-11-09T22:10:41.926738Z", + "iopub.status.busy": "2023-11-09T22:10:41.926238Z", + "iopub.status.idle": "2023-11-09T22:10:43.090899Z", + "shell.execute_reply": "2023-11-09T22:10:43.090321Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 3, @@ -155,10 +155,10 @@ "start_time": "2023-11-09T18:25:11.747609552Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:20.974752Z", - "iopub.status.busy": "2023-11-09T20:21:20.973593Z", - "iopub.status.idle": "2023-11-09T20:21:20.980895Z", - "shell.execute_reply": "2023-11-09T20:21:20.979478Z" + "iopub.execute_input": "2023-11-09T22:10:43.092876Z", + "iopub.status.busy": "2023-11-09T22:10:43.092666Z", + "iopub.status.idle": "2023-11-09T22:10:43.096598Z", + "shell.execute_reply": "2023-11-09T22:10:43.096176Z" } }, "outputs": [ @@ -189,10 +189,10 @@ "start_time": "2023-11-09T18:25:11.752531431Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:20.984123Z", - "iopub.status.busy": "2023-11-09T20:21:20.983090Z", - "iopub.status.idle": "2023-11-09T20:21:20.987069Z", - "shell.execute_reply": "2023-11-09T20:21:20.986576Z" + "iopub.execute_input": "2023-11-09T22:10:43.098362Z", + "iopub.status.busy": "2023-11-09T22:10:43.098202Z", + "iopub.status.idle": "2023-11-09T22:10:43.100710Z", + "shell.execute_reply": "2023-11-09T22:10:43.100299Z" } }, "outputs": [], @@ -220,10 +220,10 @@ "start_time": "2023-11-09T18:25:11.795008544Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:20.989669Z", - "iopub.status.busy": "2023-11-09T20:21:20.989194Z", - "iopub.status.idle": "2023-11-09T20:21:21.026070Z", - "shell.execute_reply": "2023-11-09T20:21:21.025458Z" + "iopub.execute_input": "2023-11-09T22:10:43.102601Z", + "iopub.status.busy": "2023-11-09T22:10:43.102225Z", + "iopub.status.idle": "2023-11-09T22:10:43.121115Z", + "shell.execute_reply": "2023-11-09T22:10:43.120594Z" } }, "outputs": [], @@ -242,10 +242,10 @@ "start_time": "2023-11-09T18:25:11.795121407Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:21.029325Z", - "iopub.status.busy": "2023-11-09T20:21:21.028866Z", - "iopub.status.idle": "2023-11-09T20:21:21.553250Z", - "shell.execute_reply": "2023-11-09T20:21:21.552572Z" + "iopub.execute_input": "2023-11-09T22:10:43.123171Z", + "iopub.status.busy": "2023-11-09T22:10:43.122793Z", + "iopub.status.idle": "2023-11-09T22:10:43.528050Z", + "shell.execute_reply": "2023-11-09T22:10:43.527497Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "start_time": "2023-11-09T18:25:12.375467218Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:21.556486Z", - "iopub.status.busy": "2023-11-09T20:21:21.555982Z", - "iopub.status.idle": "2023-11-09T20:21:21.983935Z", - "shell.execute_reply": "2023-11-09T20:21:21.983375Z" + "iopub.execute_input": "2023-11-09T22:10:43.529923Z", + "iopub.status.busy": "2023-11-09T22:10:43.529762Z", + "iopub.status.idle": "2023-11-09T22:10:43.775279Z", + "shell.execute_reply": "2023-11-09T22:10:43.774781Z" } }, "outputs": [ @@ -345,10 +345,10 @@ "start_time": "2023-11-09T18:25:13.764223021Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:21.986485Z", - "iopub.status.busy": "2023-11-09T20:21:21.986281Z", - "iopub.status.idle": "2023-11-09T20:21:21.998431Z", - "shell.execute_reply": "2023-11-09T20:21:21.997574Z" + "iopub.execute_input": "2023-11-09T22:10:43.777817Z", + "iopub.status.busy": "2023-11-09T22:10:43.777415Z", + "iopub.status.idle": "2023-11-09T22:10:43.788574Z", + "shell.execute_reply": "2023-11-09T22:10:43.788114Z" } }, "outputs": [ @@ -389,10 +389,10 @@ "start_time": "2023-11-09T18:25:13.787561597Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:22.000639Z", - "iopub.status.busy": "2023-11-09T20:21:22.000432Z", - "iopub.status.idle": "2023-11-09T20:21:22.056060Z", - "shell.execute_reply": "2023-11-09T20:21:22.055583Z" + "iopub.execute_input": "2023-11-09T22:10:43.791180Z", + "iopub.status.busy": "2023-11-09T22:10:43.790770Z", + "iopub.status.idle": "2023-11-09T22:10:43.826013Z", + "shell.execute_reply": "2023-11-09T22:10:43.825547Z" } }, "outputs": [ @@ -430,10 +430,10 @@ "start_time": "2023-11-09T18:25:13.865725416Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:22.059664Z", - "iopub.status.busy": "2023-11-09T20:21:22.058587Z", - "iopub.status.idle": "2023-11-09T20:21:22.246542Z", - "shell.execute_reply": "2023-11-09T20:21:22.245996Z" + "iopub.execute_input": "2023-11-09T22:10:43.828243Z", + "iopub.status.busy": "2023-11-09T22:10:43.827906Z", + "iopub.status.idle": "2023-11-09T22:10:43.957577Z", + "shell.execute_reply": "2023-11-09T22:10:43.957052Z" } }, "outputs": [], @@ -460,10 +460,10 @@ "start_time": "2023-11-09T18:25:14.147685274Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:22.250534Z", - "iopub.status.busy": "2023-11-09T20:21:22.249443Z", - "iopub.status.idle": "2023-11-09T20:21:22.434877Z", - "shell.execute_reply": "2023-11-09T20:21:22.434297Z" + "iopub.execute_input": "2023-11-09T22:10:43.960149Z", + "iopub.status.busy": "2023-11-09T22:10:43.959830Z", + "iopub.status.idle": "2023-11-09T22:10:44.082872Z", + "shell.execute_reply": "2023-11-09T22:10:44.082374Z" } }, "outputs": [], @@ -490,10 +490,10 @@ "start_time": "2023-11-09T18:25:14.351502685Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:22.437696Z", - "iopub.status.busy": "2023-11-09T20:21:22.437462Z", - "iopub.status.idle": "2023-11-09T20:21:22.443265Z", - "shell.execute_reply": "2023-11-09T20:21:22.442751Z" + "iopub.execute_input": "2023-11-09T22:10:44.085421Z", + "iopub.status.busy": "2023-11-09T22:10:44.085106Z", + "iopub.status.idle": "2023-11-09T22:10:44.090065Z", + "shell.execute_reply": "2023-11-09T22:10:44.089556Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "start_time": "2023-11-09T18:25:14.359199993Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:22.445641Z", - "iopub.status.busy": "2023-11-09T20:21:22.445255Z", - "iopub.status.idle": "2023-11-09T20:21:22.597174Z", - "shell.execute_reply": "2023-11-09T20:21:22.596576Z" + "iopub.execute_input": "2023-11-09T22:10:44.091642Z", + "iopub.status.busy": "2023-11-09T22:10:44.091481Z", + "iopub.status.idle": "2023-11-09T22:10:44.242521Z", + "shell.execute_reply": "2023-11-09T22:10:44.242032Z" } }, "outputs": [ @@ -565,17 +565,17 @@ "start_time": "2023-11-09T18:25:14.601766515Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:22.599887Z", - "iopub.status.busy": "2023-11-09T20:21:22.599671Z", - "iopub.status.idle": "2023-11-09T20:21:22.945060Z", - "shell.execute_reply": "2023-11-09T20:21:22.944347Z" + "iopub.execute_input": "2023-11-09T22:10:44.244619Z", + "iopub.status.busy": "2023-11-09T22:10:44.244305Z", + "iopub.status.idle": "2023-11-09T22:10:44.536143Z", + "shell.execute_reply": "2023-11-09T22:10:44.535609Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 15, @@ -624,10 +624,10 @@ "start_time": "2023-11-09T18:25:16.409914497Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:22.948802Z", - "iopub.status.busy": "2023-11-09T20:21:22.947675Z", - "iopub.status.idle": "2023-11-09T20:21:28.440550Z", - "shell.execute_reply": "2023-11-09T20:21:28.439944Z" + "iopub.execute_input": "2023-11-09T22:10:44.538286Z", + "iopub.status.busy": "2023-11-09T22:10:44.537949Z", + "iopub.status.idle": "2023-11-09T22:10:50.303099Z", + "shell.execute_reply": "2023-11-09T22:10:50.302590Z" } }, "outputs": [ @@ -676,10 +676,10 @@ "start_time": "2023-11-09T18:25:17.380970864Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:28.443396Z", - "iopub.status.busy": "2023-11-09T20:21:28.442901Z", - "iopub.status.idle": "2023-11-09T20:21:28.592159Z", - "shell.execute_reply": "2023-11-09T20:21:28.591505Z" + "iopub.execute_input": "2023-11-09T22:10:50.305125Z", + "iopub.status.busy": "2023-11-09T22:10:50.304958Z", + "iopub.status.idle": "2023-11-09T22:10:50.456191Z", + "shell.execute_reply": "2023-11-09T22:10:50.455712Z" } }, "outputs": [ @@ -718,10 +718,10 @@ "start_time": "2023-11-09T18:25:17.573465928Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:28.594501Z", - "iopub.status.busy": "2023-11-09T20:21:28.594298Z", - "iopub.status.idle": "2023-11-09T20:21:28.703442Z", - "shell.execute_reply": "2023-11-09T20:21:28.702892Z" + "iopub.execute_input": "2023-11-09T22:10:50.458350Z", + "iopub.status.busy": "2023-11-09T22:10:50.457993Z", + "iopub.status.idle": "2023-11-09T22:10:50.545151Z", + "shell.execute_reply": "2023-11-09T22:10:50.544655Z" } }, "outputs": [], @@ -751,10 +751,10 @@ "start_time": "2023-11-09T18:25:17.695016918Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:28.706752Z", - "iopub.status.busy": "2023-11-09T20:21:28.706093Z", - "iopub.status.idle": "2023-11-09T20:21:28.855491Z", - "shell.execute_reply": "2023-11-09T20:21:28.854999Z" + "iopub.execute_input": "2023-11-09T22:10:50.547522Z", + "iopub.status.busy": "2023-11-09T22:10:50.547154Z", + "iopub.status.idle": "2023-11-09T22:10:50.686919Z", + "shell.execute_reply": "2023-11-09T22:10:50.686377Z" } }, "outputs": [ @@ -797,10 +797,10 @@ "start_time": "2023-11-09T18:25:17.824214208Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:28.858180Z", - "iopub.status.busy": "2023-11-09T20:21:28.857744Z", - "iopub.status.idle": "2023-11-09T20:21:28.861853Z", - "shell.execute_reply": "2023-11-09T20:21:28.861412Z" + "iopub.execute_input": "2023-11-09T22:10:50.688934Z", + "iopub.status.busy": "2023-11-09T22:10:50.688744Z", + "iopub.status.idle": "2023-11-09T22:10:50.692349Z", + "shell.execute_reply": "2023-11-09T22:10:50.691824Z" } }, "outputs": [], @@ -817,10 +817,10 @@ "start_time": "2023-11-09T18:25:17.871252944Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:28.864081Z", - "iopub.status.busy": "2023-11-09T20:21:28.863706Z", - "iopub.status.idle": "2023-11-09T20:21:29.016799Z", - "shell.execute_reply": "2023-11-09T20:21:29.016280Z" + "iopub.execute_input": "2023-11-09T22:10:50.694192Z", + "iopub.status.busy": "2023-11-09T22:10:50.694036Z", + "iopub.status.idle": "2023-11-09T22:10:50.828658Z", + "shell.execute_reply": "2023-11-09T22:10:50.828149Z" } }, "outputs": [ @@ -865,10 +865,10 @@ "start_time": "2023-11-09T18:25:17.994427329Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:29.019255Z", - "iopub.status.busy": "2023-11-09T20:21:29.018841Z", - "iopub.status.idle": "2023-11-09T20:21:29.021667Z", - "shell.execute_reply": "2023-11-09T20:21:29.021238Z" + "iopub.execute_input": "2023-11-09T22:10:50.830849Z", + "iopub.status.busy": "2023-11-09T22:10:50.830510Z", + "iopub.status.idle": "2023-11-09T22:10:50.832932Z", + "shell.execute_reply": "2023-11-09T22:10:50.832508Z" } }, "outputs": [], @@ -893,10 +893,10 @@ "start_time": "2023-11-09T18:25:18.035311051Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:29.023934Z", - "iopub.status.busy": "2023-11-09T20:21:29.023478Z", - "iopub.status.idle": "2023-11-09T20:21:29.027572Z", - "shell.execute_reply": "2023-11-09T20:21:29.027007Z" + "iopub.execute_input": "2023-11-09T22:10:50.834864Z", + "iopub.status.busy": "2023-11-09T22:10:50.834529Z", + "iopub.status.idle": "2023-11-09T22:10:50.837703Z", + "shell.execute_reply": "2023-11-09T22:10:50.837272Z" } }, "outputs": [ @@ -904,7 +904,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_6728/4020814425.py:3: RuntimeWarning: invalid value encountered in divide\n", + "/tmp/ipykernel_7043/4020814425.py:3: RuntimeWarning: invalid value encountered in divide\n", " metric = S/np.sqrt(S+B)\n" ] } @@ -931,10 +931,10 @@ "start_time": "2023-11-09T18:25:18.035655070Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:29.029829Z", - "iopub.status.busy": "2023-11-09T20:21:29.029531Z", - "iopub.status.idle": "2023-11-09T20:21:29.176556Z", - "shell.execute_reply": "2023-11-09T20:21:29.175940Z" + "iopub.execute_input": "2023-11-09T22:10:50.839399Z", + "iopub.status.busy": "2023-11-09T22:10:50.839252Z", + "iopub.status.idle": "2023-11-09T22:10:50.956335Z", + "shell.execute_reply": "2023-11-09T22:10:50.955723Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "start_time": "2023-11-09T18:25:18.243137106Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:29.179004Z", - "iopub.status.busy": "2023-11-09T20:21:29.178799Z", - "iopub.status.idle": "2023-11-09T20:21:29.183318Z", - "shell.execute_reply": "2023-11-09T20:21:29.182776Z" + "iopub.execute_input": "2023-11-09T22:10:50.958664Z", + "iopub.status.busy": "2023-11-09T22:10:50.958223Z", + "iopub.status.idle": "2023-11-09T22:10:50.961683Z", + "shell.execute_reply": "2023-11-09T22:10:50.961299Z" } }, "outputs": [ @@ -1013,10 +1013,10 @@ "start_time": "2023-11-09T18:25:18.243349315Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:29.185767Z", - "iopub.status.busy": "2023-11-09T20:21:29.185317Z", - "iopub.status.idle": "2023-11-09T20:21:29.395930Z", - "shell.execute_reply": "2023-11-09T20:21:29.395362Z" + "iopub.execute_input": "2023-11-09T22:10:50.963576Z", + "iopub.status.busy": "2023-11-09T22:10:50.963416Z", + "iopub.status.idle": "2023-11-09T22:10:51.130546Z", + "shell.execute_reply": "2023-11-09T22:10:51.130006Z" } }, "outputs": [ @@ -1039,7 +1039,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 26, @@ -1075,10 +1075,10 @@ "start_time": "2023-11-09T18:25:18.551392406Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:29.398534Z", - "iopub.status.busy": "2023-11-09T20:21:29.398323Z", - "iopub.status.idle": "2023-11-09T20:21:29.532296Z", - "shell.execute_reply": "2023-11-09T20:21:29.531760Z" + "iopub.execute_input": "2023-11-09T22:10:51.132624Z", + "iopub.status.busy": "2023-11-09T22:10:51.132300Z", + "iopub.status.idle": "2023-11-09T22:10:51.237475Z", + "shell.execute_reply": "2023-11-09T22:10:51.236931Z" } }, "outputs": [ @@ -1123,10 +1123,10 @@ "start_time": "2023-11-09T18:25:18.743820685Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:29.534758Z", - "iopub.status.busy": "2023-11-09T20:21:29.534554Z", - "iopub.status.idle": "2023-11-09T20:21:29.539309Z", - "shell.execute_reply": "2023-11-09T20:21:29.538671Z" + "iopub.execute_input": "2023-11-09T22:10:51.240044Z", + "iopub.status.busy": "2023-11-09T22:10:51.239849Z", + "iopub.status.idle": "2023-11-09T22:10:51.246194Z", + "shell.execute_reply": "2023-11-09T22:10:51.245721Z" } }, "outputs": [], @@ -1159,10 +1159,10 @@ "start_time": "2023-11-09T18:25:18.791163354Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:29.541812Z", - "iopub.status.busy": "2023-11-09T20:21:29.541271Z", - "iopub.status.idle": "2023-11-09T20:21:29.545656Z", - "shell.execute_reply": "2023-11-09T20:21:29.545126Z" + "iopub.execute_input": "2023-11-09T22:10:51.248174Z", + "iopub.status.busy": "2023-11-09T22:10:51.248000Z", + "iopub.status.idle": "2023-11-09T22:10:51.253386Z", + "shell.execute_reply": "2023-11-09T22:10:51.252907Z" } }, "outputs": [], @@ -1195,10 +1195,10 @@ "start_time": "2023-11-09T18:25:18.791369479Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:21:29.547973Z", - "iopub.status.busy": "2023-11-09T20:21:29.547538Z", - "iopub.status.idle": "2023-11-09T20:28:38.796341Z", - "shell.execute_reply": "2023-11-09T20:28:38.795558Z" + "iopub.execute_input": "2023-11-09T22:10:51.255409Z", + "iopub.status.busy": "2023-11-09T22:10:51.255232Z", + "iopub.status.idle": "2023-11-09T22:17:55.446596Z", + "shell.execute_reply": "2023-11-09T22:17:55.446044Z" } }, "outputs": [ @@ -1213,7 +1213,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_6728/4278176416.py:9: RuntimeWarning: invalid value encountered in divide\n", + "/tmp/ipykernel_7043/4278176416.py:9: RuntimeWarning: invalid value encountered in divide\n", " metric = S/np.sqrt(S+B)\n" ] }, @@ -1299,10 +1299,10 @@ "start_time": "2023-11-09T18:30:20.708314393Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:28:38.799139Z", - "iopub.status.busy": "2023-11-09T20:28:38.798608Z", - "iopub.status.idle": "2023-11-09T20:28:39.613444Z", - "shell.execute_reply": "2023-11-09T20:28:39.612736Z" + "iopub.execute_input": "2023-11-09T22:17:55.448792Z", + "iopub.status.busy": "2023-11-09T22:17:55.448402Z", + "iopub.status.idle": "2023-11-09T22:17:56.214077Z", + "shell.execute_reply": "2023-11-09T22:17:56.213541Z" } }, "outputs": [ diff --git a/advanced-python/31ClassificationExtension.html b/advanced-python/31ClassificationExtension.html index a503b351..8129562e 100644 --- a/advanced-python/31ClassificationExtension.html +++ b/advanced-python/31ClassificationExtension.html @@ -616,11 +616,11 @@

Alternative implimentations
-/tmp/ipykernel_7186/2193470804.py:21: RuntimeWarning: invalid value encountered in divide
+/tmp/ipykernel_7401/2193470804.py:21: RuntimeWarning: invalid value encountered in divide
   metric = S / np.sqrt(S + B)
-/tmp/ipykernel_7186/2193470804.py:21: RuntimeWarning: invalid value encountered in divide
+/tmp/ipykernel_7401/2193470804.py:21: RuntimeWarning: invalid value encountered in divide
   metric = S / np.sqrt(S + B)
-/tmp/ipykernel_7186/2193470804.py:21: RuntimeWarning: invalid value encountered in divide
+/tmp/ipykernel_7401/2193470804.py:21: RuntimeWarning: invalid value encountered in divide
   metric = S / np.sqrt(S + B)
 
@@ -771,11 +771,11 @@

Feature engineering
-/tmp/ipykernel_7186/2193470804.py:21: RuntimeWarning: invalid value encountered in divide
+/tmp/ipykernel_7401/2193470804.py:21: RuntimeWarning: invalid value encountered in divide
   metric = S / np.sqrt(S + B)
-/tmp/ipykernel_7186/2193470804.py:21: RuntimeWarning: invalid value encountered in divide
+/tmp/ipykernel_7401/2193470804.py:21: RuntimeWarning: invalid value encountered in divide
   metric = S / np.sqrt(S + B)
-/tmp/ipykernel_7186/2193470804.py:21: RuntimeWarning: invalid value encountered in divide
+/tmp/ipykernel_7401/2193470804.py:21: RuntimeWarning: invalid value encountered in divide
   metric = S / np.sqrt(S + B)
 
@@ -785,7 +785,7 @@

Feature engineering
-<matplotlib.legend.Legend at 0x7faf865cb0d0>
+<matplotlib.legend.Legend at 0x7fbe3d6fb710>
 
diff --git a/advanced-python/31ClassificationExtension.ipynb b/advanced-python/31ClassificationExtension.ipynb index 34c302ba..2a5aaf67 100644 --- a/advanced-python/31ClassificationExtension.ipynb +++ b/advanced-python/31ClassificationExtension.ipynb @@ -31,10 +31,10 @@ "start_time": "2023-11-09T18:39:58.305187065Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:28:42.078000Z", - "iopub.status.busy": "2023-11-09T20:28:42.077793Z", - "iopub.status.idle": "2023-11-09T20:28:43.542572Z", - "shell.execute_reply": "2023-11-09T20:28:43.541926Z" + "iopub.execute_input": "2023-11-09T22:17:58.377288Z", + "iopub.status.busy": "2023-11-09T22:17:58.377132Z", + "iopub.status.idle": "2023-11-09T22:17:59.343281Z", + "shell.execute_reply": "2023-11-09T22:17:59.342683Z" } }, "outputs": [], @@ -55,10 +55,10 @@ "start_time": "2023-11-09T18:40:00.001945534Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:28:43.546411Z", - "iopub.status.busy": "2023-11-09T20:28:43.545179Z", - "iopub.status.idle": "2023-11-09T20:28:44.331142Z", - "shell.execute_reply": "2023-11-09T20:28:44.330504Z" + "iopub.execute_input": "2023-11-09T22:17:59.345846Z", + "iopub.status.busy": "2023-11-09T22:17:59.345589Z", + "iopub.status.idle": "2023-11-09T22:17:59.934733Z", + "shell.execute_reply": "2023-11-09T22:17:59.934236Z" } }, "outputs": [], @@ -80,10 +80,10 @@ "start_time": "2023-11-09T18:40:00.375142416Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:28:44.334909Z", - "iopub.status.busy": "2023-11-09T20:28:44.333686Z", - "iopub.status.idle": "2023-11-09T20:28:44.342891Z", - "shell.execute_reply": "2023-11-09T20:28:44.342376Z" + "iopub.execute_input": "2023-11-09T22:17:59.937037Z", + "iopub.status.busy": "2023-11-09T22:17:59.936605Z", + "iopub.status.idle": "2023-11-09T22:17:59.943204Z", + "shell.execute_reply": "2023-11-09T22:17:59.942797Z" } }, "outputs": [], @@ -147,10 +147,10 @@ "start_time": "2023-11-09T18:40:00.386255547Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:28:44.345293Z", - "iopub.status.busy": "2023-11-09T20:28:44.344913Z", - "iopub.status.idle": "2023-11-09T20:29:04.158095Z", - "shell.execute_reply": "2023-11-09T20:29:04.157453Z" + "iopub.execute_input": "2023-11-09T22:17:59.944888Z", + "iopub.status.busy": "2023-11-09T22:17:59.944709Z", + "iopub.status.idle": "2023-11-09T22:18:17.975403Z", + "shell.execute_reply": "2023-11-09T22:18:17.974815Z" } }, "outputs": [], @@ -171,10 +171,10 @@ "start_time": "2023-11-09T18:40:22.738816458Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:04.161133Z", - "iopub.status.busy": "2023-11-09T20:29:04.160634Z", - "iopub.status.idle": "2023-11-09T20:29:12.817471Z", - "shell.execute_reply": "2023-11-09T20:29:12.816838Z" + "iopub.execute_input": "2023-11-09T22:18:17.977706Z", + "iopub.status.busy": "2023-11-09T22:18:17.977529Z", + "iopub.status.idle": "2023-11-09T22:18:25.551742Z", + "shell.execute_reply": "2023-11-09T22:18:25.551185Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "start_time": "2023-11-09T18:40:32.406995877Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:12.820175Z", - "iopub.status.busy": "2023-11-09T20:29:12.819964Z", - "iopub.status.idle": "2023-11-09T20:29:13.402752Z", - "shell.execute_reply": "2023-11-09T20:29:13.402193Z" + "iopub.execute_input": "2023-11-09T22:18:25.553999Z", + "iopub.status.busy": "2023-11-09T22:18:25.553690Z", + "iopub.status.idle": "2023-11-09T22:18:25.912950Z", + "shell.execute_reply": "2023-11-09T22:18:25.912440Z" } }, "outputs": [], @@ -219,10 +219,10 @@ "start_time": "2023-11-09T18:40:33.890325623Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:13.405699Z", - "iopub.status.busy": "2023-11-09T20:29:13.405485Z", - "iopub.status.idle": "2023-11-09T20:29:15.603529Z", - "shell.execute_reply": "2023-11-09T20:29:15.602930Z" + "iopub.execute_input": "2023-11-09T22:18:25.915528Z", + "iopub.status.busy": "2023-11-09T22:18:25.915146Z", + "iopub.status.idle": "2023-11-09T22:18:27.757284Z", + "shell.execute_reply": "2023-11-09T22:18:27.756728Z" } }, "outputs": [ @@ -230,7 +230,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7186/2193470804.py:21: RuntimeWarning: invalid value encountered in divide\n", + "/tmp/ipykernel_7401/2193470804.py:21: RuntimeWarning: invalid value encountered in divide\n", " metric = S / np.sqrt(S + B)\n" ] }, @@ -238,9 +238,9 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7186/2193470804.py:21: RuntimeWarning: invalid value encountered in divide\n", + "/tmp/ipykernel_7401/2193470804.py:21: RuntimeWarning: invalid value encountered in divide\n", " metric = S / np.sqrt(S + B)\n", - "/tmp/ipykernel_7186/2193470804.py:21: RuntimeWarning: invalid value encountered in divide\n", + "/tmp/ipykernel_7401/2193470804.py:21: RuntimeWarning: invalid value encountered in divide\n", " metric = S / np.sqrt(S + B)\n" ] }, @@ -348,10 +348,10 @@ "start_time": "2023-11-09T18:40:37.963705203Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:15.606318Z", - "iopub.status.busy": "2023-11-09T20:29:15.605786Z", - "iopub.status.idle": "2023-11-09T20:29:16.225921Z", - "shell.execute_reply": "2023-11-09T20:29:16.225300Z" + "iopub.execute_input": "2023-11-09T22:18:27.759384Z", + "iopub.status.busy": "2023-11-09T22:18:27.758986Z", + "iopub.status.idle": "2023-11-09T22:18:28.273179Z", + "shell.execute_reply": "2023-11-09T22:18:28.272645Z" } }, "outputs": [ @@ -432,10 +432,10 @@ "start_time": "2023-11-09T18:40:38.878807747Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:16.228729Z", - "iopub.status.busy": "2023-11-09T20:29:16.228182Z", - "iopub.status.idle": "2023-11-09T20:29:20.161894Z", - "shell.execute_reply": "2023-11-09T20:29:20.161201Z" + "iopub.execute_input": "2023-11-09T22:18:28.275145Z", + "iopub.status.busy": "2023-11-09T22:18:28.274873Z", + "iopub.status.idle": "2023-11-09T22:18:31.351681Z", + "shell.execute_reply": "2023-11-09T22:18:31.351133Z" } }, "outputs": [ @@ -443,9 +443,9 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7186/2193470804.py:21: RuntimeWarning: invalid value encountered in divide\n", + "/tmp/ipykernel_7401/2193470804.py:21: RuntimeWarning: invalid value encountered in divide\n", " metric = S / np.sqrt(S + B)\n", - "/tmp/ipykernel_7186/2193470804.py:21: RuntimeWarning: invalid value encountered in divide\n", + "/tmp/ipykernel_7401/2193470804.py:21: RuntimeWarning: invalid value encountered in divide\n", " metric = S / np.sqrt(S + B)\n" ] }, @@ -453,14 +453,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7186/2193470804.py:21: RuntimeWarning: invalid value encountered in divide\n", + "/tmp/ipykernel_7401/2193470804.py:21: RuntimeWarning: invalid value encountered in divide\n", " metric = S / np.sqrt(S + B)\n" ] }, { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 9, diff --git a/advanced-python/40Histograms.html b/advanced-python/40Histograms.html index 029abd55..54283e89 100644 --- a/advanced-python/40Histograms.html +++ b/advanced-python/40Histograms.html @@ -516,7 +516,7 @@

6: Histograms
-ColormeshArtists(pcolormesh=<matplotlib.collections.QuadMesh object at 0x7fa31717d0d0>, cbar=<matplotlib.colorbar.Colorbar object at 0x7fa316f893d0>, text=[])
+ColormeshArtists(pcolormesh=<matplotlib.collections.QuadMesh object at 0x7fa2da74e8d0>, cbar=<matplotlib.colorbar.Colorbar object at 0x7fa2da7dce90>, text=[])
 

@@ -3701,8 +3701,8 @@

Weights - - + + @@ -3749,12 +3749,12 @@

Weights - - - - - - + + + + + + @@ -3799,13 +3799,13 @@

Weights - - - - - - - + + + + + + + @@ -3849,13 +3849,13 @@

Weights - - - - - - - + + + + + + + @@ -3898,14 +3898,14 @@

Weights - - - - - - - - + + + + + + + + @@ -3948,14 +3948,14 @@

Weights - - - - - - - - + + + + + + + + @@ -3999,13 +3999,13 @@

Weights - - - + + + - - - + + + @@ -4047,15 +4047,15 @@

Weights - - - - - - - - - + + + + + + + + + @@ -4098,14 +4098,14 @@

Weights - - - - - - - - + + + + + + + + @@ -4148,15 +4148,15 @@

Weights - - - - - - - - - + + + + + + + + + @@ -4198,14 +4198,14 @@

Weights - - - - - - - - + + + + + + + + @@ -4248,15 +4248,15 @@

Weights - - - - - - - - - + + + + + + + + + @@ -4297,15 +4297,15 @@

Weights - - - - - - - - - + + + + + + + + + @@ -4348,14 +4348,14 @@

Weights - - - - - - - - + + + + + + + + @@ -4397,16 +4397,16 @@

Weights - - - - - - - - - - + + + + + + + + + + @@ -4447,16 +4447,16 @@

Weights - - - - - - - - - - + + + + + + + + + + @@ -4497,16 +4497,16 @@

Weights - - - - - - - - - - + + + + + + + + + + @@ -4546,18 +4546,18 @@

Weights - - - - - - - - - - - - + + + + + + + + + + + + @@ -4594,24 +4594,24 @@

Weights - + - - - - - - - - - - - - - - + + + + + + + + + + + + + + - + @@ -4635,7 +4635,7 @@

Weights Regular(50, 2.75, 3.5, name='mass')
Regular(20, 0.026503, 0.993653, name='BDT')

-Weight() Σ=WeightedSum(value=119865, variance=120964) (WeightedSum(value=119924, variance=121024) with flow) +Weight() Σ=WeightedSum(value=119911, variance=121055) (WeightedSum(value=119969, variance=121113) with flow)

@@ -4734,7 +4734,7 @@

Weights 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.15797279e+00], + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.38184875e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, @@ -4744,72 +4744,72 @@

Weights 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 2.28765338e+00, 7.62207168e+00], + 0.00000000e+00, 0.00000000e+00, 1.95301077e+00, 8.00566324e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, - 1.12405263e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 9.90871637e-01, 0.00000000e+00, 7.49697194e-01, - 1.19013577e+00, 2.38787001e+00, 1.91736926e+00, 2.64413273e+01], + 1.26121591e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, + 0.00000000e+00, 9.87966693e-01, 0.00000000e+00, 1.02575476e+00, + 9.40850782e-01, 2.38790471e+00, 1.57102435e+00, 2.67727395e+01], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 9.66707778e-01, 2.72651103e+00, 0.00000000e+00, - 7.67961404e+00, 2.88785172e+00, 9.06057553e+00, 4.83743531e+00, - 4.78414501e+00, 1.22219045e+01, 7.17027957e+00, 1.23354599e+01, - 1.68521268e+01, 2.35393319e+01, 4.05992739e+01, 1.04536702e+02], - [0.00000000e+00, 0.00000000e+00, 2.48722298e+00, 6.26204783e+00, - 7.93800613e+00, 2.95852691e+01, 4.54747287e+01, 9.49162086e+01, - 8.75125021e+01, 9.51865490e+01, 8.86229801e+01, 8.40514026e+01, - 8.31807990e+01, 8.56840505e+01, 1.17959569e+02, 1.15145430e+02, - 1.27387046e+02, 1.55454101e+02, 2.42546915e+02, 3.39393758e+02], - [0.00000000e+00, 0.00000000e+00, 1.44172130e+01, 8.60266102e+01, - 1.72905912e+02, 3.19303474e+02, 5.98842276e+02, 9.50914146e+02, - 9.56568451e+02, 8.78672227e+02, 7.88276991e+02, 7.66829779e+02, - 7.37705970e+02, 6.85317445e+02, 6.96239260e+02, 7.02391392e+02, - 6.85099975e+02, 7.31033087e+02, 9.92835045e+02, 9.76058854e+02], - [0.00000000e+00, 2.80926784e+00, 4.23320694e+01, 2.68314546e+02, - 5.84056047e+02, 1.25911910e+03, 2.39189303e+03, 4.12796551e+03, - 3.81640745e+03, 3.29070745e+03, 3.10789736e+03, 2.70472061e+03, - 2.60080175e+03, 2.28443335e+03, 2.22477443e+03, 2.23365535e+03, - 2.19463738e+03, 2.13484094e+03, 2.44702821e+03, 2.32886393e+03], - [0.00000000e+00, 6.92362879e-01, 6.56284298e+01, 2.75690714e+02, - 7.04811806e+02, 1.39042896e+03, 2.83584141e+03, 4.68991176e+03, - 4.39522039e+03, 3.94902692e+03, 3.64696232e+03, 3.19701447e+03, - 2.96457289e+03, 2.58253989e+03, 2.79206753e+03, 2.43931435e+03, - 2.46405825e+03, 2.50434584e+03, 2.70153268e+03, 2.65991362e+03], - [0.00000000e+00, 0.00000000e+00, 1.09531376e+01, 9.27845663e+01, - 2.36723964e+02, 4.88233944e+02, 8.42360537e+02, 1.52055015e+03, - 1.49884117e+03, 1.32676645e+03, 1.23111864e+03, 1.15985843e+03, - 1.17038813e+03, 1.06786860e+03, 1.09538638e+03, 9.81557537e+02, - 1.03295678e+03, 1.04136398e+03, 1.33084716e+03, 1.34867972e+03], - [0.00000000e+00, 0.00000000e+00, 1.19016853e+00, 5.83341238e+00, - 2.36666591e+01, 4.30788193e+01, 9.01841459e+01, 1.32138018e+02, - 1.76347947e+02, 1.54043570e+02, 1.57603012e+02, 1.35409266e+02, - 1.64018775e+02, 1.57881698e+02, 2.02067465e+02, 1.84501569e+02, - 1.95068864e+02, 2.69292788e+02, 3.59389628e+02, 4.40443395e+02], - [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 8.83398717e-01, - 8.01498401e-01, 4.16905894e+00, 7.03730279e+00, 7.03337666e+00, - 1.38522927e+01, 6.95355561e+00, 8.12486855e+00, 1.04412686e+01, - 1.38640700e+01, 1.07348460e+01, 1.79051088e+01, 2.97571776e+01, - 1.49827326e+01, 3.37482046e+01, 6.76246526e+01, 1.27267684e+02], + 0.00000000e+00, 1.15865183e+00, 2.53524119e+00, 0.00000000e+00, + 6.81288944e+00, 2.60657187e+00, 7.86963672e+00, 3.84502162e+00, + 5.34681626e+00, 1.12229098e+01, 7.24136859e+00, 1.33879586e+01, + 1.73254045e+01, 2.27666089e+01, 4.06093030e+01, 9.99412809e+01], + [0.00000000e+00, 0.00000000e+00, 1.56268934e+00, 5.62372203e+00, + 6.35679645e+00, 2.97665147e+01, 4.60813356e+01, 9.56027756e+01, + 8.62861190e+01, 9.69372810e+01, 8.62099342e+01, 8.13658014e+01, + 8.34236801e+01, 8.26901669e+01, 1.15767445e+02, 1.10451094e+02, + 1.28949825e+02, 1.51750042e+02, 2.48842057e+02, 3.35350742e+02], + [0.00000000e+00, 0.00000000e+00, 1.36893104e+01, 8.15123079e+01, + 1.71029668e+02, 3.16827636e+02, 5.96318055e+02, 9.49844171e+02, + 9.72365208e+02, 8.71555169e+02, 8.01572683e+02, 7.66231154e+02, + 7.38491969e+02, 6.81386811e+02, 6.98295005e+02, 7.12405798e+02, + 6.96596781e+02, 7.32734509e+02, 9.93737970e+02, 9.88241928e+02], + [0.00000000e+00, 2.83350976e+00, 4.15577977e+01, 2.76366459e+02, + 5.81545274e+02, 1.24200700e+03, 2.39421554e+03, 4.12089344e+03, + 3.78955275e+03, 3.29214102e+03, 3.11647174e+03, 2.70552708e+03, + 2.61285313e+03, 2.28658436e+03, 2.23912449e+03, 2.24305352e+03, + 2.15498469e+03, 2.16596384e+03, 2.44536478e+03, 2.34065244e+03], + [0.00000000e+00, 6.41255870e-01, 6.24630272e+01, 2.72887799e+02, + 6.87240665e+02, 1.40142642e+03, 2.81238700e+03, 4.71159445e+03, + 4.42124291e+03, 3.96282531e+03, 3.64380803e+03, 3.18499839e+03, + 2.98937950e+03, 2.59185488e+03, 2.79388044e+03, 2.43547006e+03, + 2.47062514e+03, 2.50914193e+03, 2.71454577e+03, 2.61155155e+03], + [0.00000000e+00, 0.00000000e+00, 1.27146809e+01, 9.38097339e+01, + 2.36702346e+02, 4.89010987e+02, 8.38835114e+02, 1.51690953e+03, + 1.49565491e+03, 1.33989374e+03, 1.23414521e+03, 1.15522280e+03, + 1.17132302e+03, 1.05165109e+03, 1.10702223e+03, 9.70418608e+02, + 1.04878206e+03, 1.04526220e+03, 1.33576583e+03, 1.36116128e+03], + [0.00000000e+00, 0.00000000e+00, 1.05144646e+00, 6.82167370e+00, + 2.55937259e+01, 4.19023568e+01, 9.16943249e+01, 1.38124951e+02, + 1.74814146e+02, 1.58247301e+02, 1.60939057e+02, 1.35037931e+02, + 1.68145239e+02, 1.55923820e+02, 2.05856152e+02, 1.81174478e+02, + 1.94219518e+02, 2.63632251e+02, 3.53306616e+02, 4.48311390e+02], + [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.42583518e+00, + 7.98916311e-01, 3.88639383e+00, 6.73129334e+00, 7.73734784e+00, + 1.50830975e+01, 6.17078907e+00, 8.22044784e+00, 1.03290343e+01, + 1.38827005e+01, 1.30328225e+01, 1.75107028e+01, 3.02420288e+01, + 1.64447553e+01, 3.28084380e+01, 6.83904626e+01, 1.30243681e+02], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 1.06622991e+00, 0.00000000e+00, - 1.53567235e+00, 0.00000000e+00, 0.00000000e+00, 3.27154939e+00, - 2.75799802e+00, 4.02480349e+00, 1.40981975e+01, 2.39364617e+01], + 0.00000000e+00, 0.00000000e+00, 9.78315960e-01, 0.00000000e+00, + 1.12034969e+00, 0.00000000e+00, 0.00000000e+00, 3.65733784e+00, + 2.35608218e+00, 4.55161287e+00, 1.26611365e+01, 2.39761266e+01], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 2.09857594e+00, 1.05752299e+01], + 0.00000000e+00, 0.00000000e+00, 2.53174151e+00, 1.06309819e+01], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 2.43945537e+00], + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 2.16962485e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 3.06778379e+00], + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 3.18158787e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, @@ -4819,7 +4819,7 @@

Weights 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.01250795e+00], + 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.02553096e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, diff --git a/advanced-python/40Histograms.ipynb b/advanced-python/40Histograms.ipynb index 1bfc5653..0e0314b5 100644 --- a/advanced-python/40Histograms.ipynb +++ b/advanced-python/40Histograms.ipynb @@ -37,10 +37,10 @@ "start_time": "2023-11-09T18:40:41.774097506Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:22.685232Z", - "iopub.status.busy": "2023-11-09T20:29:22.684868Z", - "iopub.status.idle": "2023-11-09T20:29:24.155567Z", - "shell.execute_reply": "2023-11-09T20:29:24.154927Z" + "iopub.execute_input": "2023-11-09T22:18:33.398882Z", + "iopub.status.busy": "2023-11-09T22:18:33.398422Z", + "iopub.status.idle": "2023-11-09T22:18:34.399670Z", + "shell.execute_reply": "2023-11-09T22:18:34.399150Z" }, "pycharm": { "name": "#%%\n" @@ -68,10 +68,10 @@ "start_time": "2023-11-09T18:40:42.719110990Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:24.158450Z", - "iopub.status.busy": "2023-11-09T20:29:24.158132Z", - "iopub.status.idle": "2023-11-09T20:29:24.318474Z", - "shell.execute_reply": "2023-11-09T20:29:24.317997Z" + "iopub.execute_input": "2023-11-09T22:18:34.402054Z", + "iopub.status.busy": "2023-11-09T22:18:34.401659Z", + "iopub.status.idle": "2023-11-09T22:18:34.544186Z", + "shell.execute_reply": "2023-11-09T22:18:34.543783Z" }, "pycharm": { "name": "#%%\n" @@ -81,7 +81,7 @@ { "data": { "text/plain": [ - "ColormeshArtists(pcolormesh=, cbar=, text=[])" + "ColormeshArtists(pcolormesh=, cbar=, text=[])" ] }, "execution_count": 2, @@ -180,10 +180,10 @@ "start_time": "2023-11-09T18:40:42.916739161Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:24.321172Z", - "iopub.status.busy": "2023-11-09T20:29:24.320819Z", - "iopub.status.idle": "2023-11-09T20:29:24.325369Z", - "shell.execute_reply": "2023-11-09T20:29:24.324792Z" + "iopub.execute_input": "2023-11-09T22:18:34.546227Z", + "iopub.status.busy": "2023-11-09T22:18:34.545890Z", + "iopub.status.idle": "2023-11-09T22:18:34.549332Z", + "shell.execute_reply": "2023-11-09T22:18:34.548943Z" } }, "outputs": [], @@ -208,10 +208,10 @@ "start_time": "2023-11-09T18:40:42.927046922Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:24.327592Z", - "iopub.status.busy": "2023-11-09T20:29:24.327397Z", - "iopub.status.idle": "2023-11-09T20:29:24.331001Z", - "shell.execute_reply": "2023-11-09T20:29:24.330532Z" + "iopub.execute_input": "2023-11-09T22:18:34.550976Z", + "iopub.status.busy": "2023-11-09T22:18:34.550825Z", + "iopub.status.idle": "2023-11-09T22:18:34.553211Z", + "shell.execute_reply": "2023-11-09T22:18:34.552825Z" }, "pycharm": { "name": "#%%\n" @@ -231,10 +231,10 @@ "start_time": "2023-11-09T18:40:42.937126378Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:24.333181Z", - "iopub.status.busy": "2023-11-09T20:29:24.332804Z", - "iopub.status.idle": "2023-11-09T20:29:24.338170Z", - "shell.execute_reply": "2023-11-09T20:29:24.337751Z" + "iopub.execute_input": "2023-11-09T22:18:34.555048Z", + "iopub.status.busy": "2023-11-09T22:18:34.554726Z", + "iopub.status.idle": "2023-11-09T22:18:34.559244Z", + "shell.execute_reply": "2023-11-09T22:18:34.558852Z" } }, "outputs": [ @@ -289,10 +289,10 @@ "start_time": "2023-11-09T18:40:42.949363041Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:24.340501Z", - "iopub.status.busy": "2023-11-09T20:29:24.339868Z", - "iopub.status.idle": "2023-11-09T20:29:24.343698Z", - "shell.execute_reply": "2023-11-09T20:29:24.343268Z" + "iopub.execute_input": "2023-11-09T22:18:34.560980Z", + "iopub.status.busy": "2023-11-09T22:18:34.560792Z", + "iopub.status.idle": "2023-11-09T22:18:34.563697Z", + "shell.execute_reply": "2023-11-09T22:18:34.563293Z" } }, "outputs": [], @@ -320,17 +320,17 @@ "start_time": "2023-11-09T18:40:42.955171365Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:24.346254Z", - "iopub.status.busy": "2023-11-09T20:29:24.345657Z", - "iopub.status.idle": "2023-11-09T20:29:24.744635Z", - "shell.execute_reply": "2023-11-09T20:29:24.744129Z" + "iopub.execute_input": "2023-11-09T22:18:34.565432Z", + "iopub.status.busy": "2023-11-09T22:18:34.565274Z", + "iopub.status.idle": "2023-11-09T22:18:34.873076Z", + "shell.execute_reply": "2023-11-09T22:18:34.872443Z" } }, "outputs": [ { "data": { "text/plain": [ - "[StairsArtists(stairs=, errorbar=, legend_artist=)]" + "[StairsArtists(stairs=, errorbar=, legend_artist=)]" ] }, "execution_count": 7, @@ -371,17 +371,17 @@ "start_time": "2023-11-09T18:40:43.211187900Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:24.747018Z", - "iopub.status.busy": "2023-11-09T20:29:24.746596Z", - "iopub.status.idle": "2023-11-09T20:29:24.876824Z", - "shell.execute_reply": "2023-11-09T20:29:24.876319Z" + "iopub.execute_input": "2023-11-09T22:18:34.875448Z", + "iopub.status.busy": "2023-11-09T22:18:34.875113Z", + "iopub.status.idle": "2023-11-09T22:18:34.979906Z", + "shell.execute_reply": "2023-11-09T22:18:34.979515Z" } }, "outputs": [ { "data": { "text/plain": [ - "[StairsArtists(stairs=, errorbar=, legend_artist=)]" + "[StairsArtists(stairs=, errorbar=, legend_artist=)]" ] }, "execution_count": 8, @@ -412,17 +412,17 @@ "start_time": "2023-11-09T18:40:43.415174250Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:24.879341Z", - "iopub.status.busy": "2023-11-09T20:29:24.878762Z", - "iopub.status.idle": "2023-11-09T20:29:25.017796Z", - "shell.execute_reply": "2023-11-09T20:29:25.017321Z" + "iopub.execute_input": "2023-11-09T22:18:34.981892Z", + "iopub.status.busy": "2023-11-09T22:18:34.981727Z", + "iopub.status.idle": "2023-11-09T22:18:35.087813Z", + "shell.execute_reply": "2023-11-09T22:18:35.087401Z" } }, "outputs": [ { "data": { "text/plain": [ - "[StairsArtists(stairs=, errorbar=, legend_artist=)]" + "[StairsArtists(stairs=, errorbar=, legend_artist=)]" ] }, "execution_count": 9, @@ -454,10 +454,10 @@ "start_time": "2023-11-09T18:40:43.622364563Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.020280Z", - "iopub.status.busy": "2023-11-09T20:29:25.019704Z", - "iopub.status.idle": "2023-11-09T20:29:25.023800Z", - "shell.execute_reply": "2023-11-09T20:29:25.023388Z" + "iopub.execute_input": "2023-11-09T22:18:35.089978Z", + "iopub.status.busy": "2023-11-09T22:18:35.089661Z", + "iopub.status.idle": "2023-11-09T22:18:35.093491Z", + "shell.execute_reply": "2023-11-09T22:18:35.093106Z" } }, "outputs": [ @@ -500,10 +500,10 @@ "start_time": "2023-11-09T18:40:43.629433139Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.026107Z", - "iopub.status.busy": "2023-11-09T20:29:25.025581Z", - "iopub.status.idle": "2023-11-09T20:29:25.029660Z", - "shell.execute_reply": "2023-11-09T20:29:25.029238Z" + "iopub.execute_input": "2023-11-09T22:18:35.095551Z", + "iopub.status.busy": "2023-11-09T22:18:35.095240Z", + "iopub.status.idle": "2023-11-09T22:18:35.098704Z", + "shell.execute_reply": "2023-11-09T22:18:35.098345Z" } }, "outputs": [], @@ -521,10 +521,10 @@ "start_time": "2023-11-09T18:40:43.671235206Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.031845Z", - "iopub.status.busy": "2023-11-09T20:29:25.031327Z", - "iopub.status.idle": "2023-11-09T20:29:25.035562Z", - "shell.execute_reply": "2023-11-09T20:29:25.035139Z" + "iopub.execute_input": "2023-11-09T22:18:35.100696Z", + "iopub.status.busy": "2023-11-09T22:18:35.100389Z", + "iopub.status.idle": "2023-11-09T22:18:35.104087Z", + "shell.execute_reply": "2023-11-09T22:18:35.103735Z" } }, "outputs": [], @@ -541,10 +541,10 @@ "start_time": "2023-11-09T18:40:43.671469880Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.037760Z", - "iopub.status.busy": "2023-11-09T20:29:25.037241Z", - "iopub.status.idle": "2023-11-09T20:29:25.065263Z", - "shell.execute_reply": "2023-11-09T20:29:25.064589Z" + "iopub.execute_input": "2023-11-09T22:18:35.106081Z", + "iopub.status.busy": "2023-11-09T22:18:35.105780Z", + "iopub.status.idle": "2023-11-09T22:18:35.124938Z", + "shell.execute_reply": "2023-11-09T22:18:35.124434Z" } }, "outputs": [ @@ -1611,17 +1611,17 @@ "start_time": "2023-11-09T18:40:43.712937233Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.069670Z", - "iopub.status.busy": "2023-11-09T20:29:25.069125Z", - "iopub.status.idle": "2023-11-09T20:29:25.251662Z", - "shell.execute_reply": "2023-11-09T20:29:25.250956Z" + "iopub.execute_input": "2023-11-09T22:18:35.127927Z", + "iopub.status.busy": "2023-11-09T22:18:35.127573Z", + "iopub.status.idle": "2023-11-09T22:18:35.298054Z", + "shell.execute_reply": "2023-11-09T22:18:35.297624Z" } }, "outputs": [ { "data": { "text/plain": [ - "ColormeshArtists(pcolormesh=, cbar=, text=[])" + "ColormeshArtists(pcolormesh=, cbar=, text=[])" ] }, "execution_count": 14, @@ -1661,10 +1661,10 @@ "start_time": "2023-11-09T18:40:44.022960001Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.254226Z", - "iopub.status.busy": "2023-11-09T20:29:25.253790Z", - "iopub.status.idle": "2023-11-09T20:29:25.258061Z", - "shell.execute_reply": "2023-11-09T20:29:25.257590Z" + "iopub.execute_input": "2023-11-09T22:18:35.300012Z", + "iopub.status.busy": "2023-11-09T22:18:35.299683Z", + "iopub.status.idle": "2023-11-09T22:18:35.303029Z", + "shell.execute_reply": "2023-11-09T22:18:35.302616Z" } }, "outputs": [ @@ -1704,10 +1704,10 @@ "start_time": "2023-11-09T18:40:44.029760988Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.260452Z", - "iopub.status.busy": "2023-11-09T20:29:25.259887Z", - "iopub.status.idle": "2023-11-09T20:29:25.268330Z", - "shell.execute_reply": "2023-11-09T20:29:25.267917Z" + "iopub.execute_input": "2023-11-09T22:18:35.304686Z", + "iopub.status.busy": "2023-11-09T22:18:35.304538Z", + "iopub.status.idle": "2023-11-09T22:18:35.311790Z", + "shell.execute_reply": "2023-11-09T22:18:35.311390Z" } }, "outputs": [ @@ -1943,10 +1943,10 @@ "start_time": "2023-11-09T18:40:44.062252938Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.270405Z", - "iopub.status.busy": "2023-11-09T20:29:25.270039Z", - "iopub.status.idle": "2023-11-09T20:29:25.275018Z", - "shell.execute_reply": "2023-11-09T20:29:25.274603Z" + "iopub.execute_input": "2023-11-09T22:18:35.313670Z", + "iopub.status.busy": "2023-11-09T22:18:35.313361Z", + "iopub.status.idle": "2023-11-09T22:18:35.317378Z", + "shell.execute_reply": "2023-11-09T22:18:35.316874Z" } }, "outputs": [ @@ -2010,10 +2010,10 @@ "start_time": "2023-11-09T18:40:44.071307572Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.277268Z", - "iopub.status.busy": "2023-11-09T20:29:25.276715Z", - "iopub.status.idle": "2023-11-09T20:29:25.280470Z", - "shell.execute_reply": "2023-11-09T20:29:25.280054Z" + "iopub.execute_input": "2023-11-09T22:18:35.319211Z", + "iopub.status.busy": "2023-11-09T22:18:35.318917Z", + "iopub.status.idle": "2023-11-09T22:18:35.322286Z", + "shell.execute_reply": "2023-11-09T22:18:35.321856Z" } }, "outputs": [ @@ -2042,10 +2042,10 @@ "start_time": "2023-11-09T18:40:44.076331708Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.282738Z", - "iopub.status.busy": "2023-11-09T20:29:25.282213Z", - "iopub.status.idle": "2023-11-09T20:29:25.287280Z", - "shell.execute_reply": "2023-11-09T20:29:25.286673Z" + "iopub.execute_input": "2023-11-09T22:18:35.323945Z", + "iopub.status.busy": "2023-11-09T22:18:35.323787Z", + "iopub.status.idle": "2023-11-09T22:18:35.327218Z", + "shell.execute_reply": "2023-11-09T22:18:35.326813Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "start_time": "2023-11-09T18:40:44.087011298Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.289523Z", - "iopub.status.busy": "2023-11-09T20:29:25.289051Z", - "iopub.status.idle": "2023-11-09T20:29:25.294219Z", - "shell.execute_reply": "2023-11-09T20:29:25.293744Z" + "iopub.execute_input": "2023-11-09T22:18:35.328857Z", + "iopub.status.busy": "2023-11-09T22:18:35.328683Z", + "iopub.status.idle": "2023-11-09T22:18:35.332277Z", + "shell.execute_reply": "2023-11-09T22:18:35.331885Z" } }, "outputs": [ @@ -2114,10 +2114,10 @@ "start_time": "2023-11-09T18:40:44.098073547Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.296332Z", - "iopub.status.busy": "2023-11-09T20:29:25.296146Z", - "iopub.status.idle": "2023-11-09T20:29:25.301413Z", - "shell.execute_reply": "2023-11-09T20:29:25.300947Z" + "iopub.execute_input": "2023-11-09T22:18:35.334099Z", + "iopub.status.busy": "2023-11-09T22:18:35.333788Z", + "iopub.status.idle": "2023-11-09T22:18:35.337374Z", + "shell.execute_reply": "2023-11-09T22:18:35.336861Z" } }, "outputs": [ @@ -2154,10 +2154,10 @@ "start_time": "2023-11-09T18:40:44.102908180Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.303564Z", - "iopub.status.busy": "2023-11-09T20:29:25.303380Z", - "iopub.status.idle": "2023-11-09T20:29:25.308864Z", - "shell.execute_reply": "2023-11-09T20:29:25.308151Z" + "iopub.execute_input": "2023-11-09T22:18:35.339236Z", + "iopub.status.busy": "2023-11-09T22:18:35.338855Z", + "iopub.status.idle": "2023-11-09T22:18:35.342596Z", + "shell.execute_reply": "2023-11-09T22:18:35.342084Z" } }, "outputs": [ @@ -2203,10 +2203,10 @@ "start_time": "2023-11-09T18:40:44.111345363Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.311099Z", - "iopub.status.busy": "2023-11-09T20:29:25.310737Z", - "iopub.status.idle": "2023-11-09T20:29:25.318522Z", - "shell.execute_reply": "2023-11-09T20:29:25.317997Z" + "iopub.execute_input": "2023-11-09T22:18:35.344489Z", + "iopub.status.busy": "2023-11-09T22:18:35.344178Z", + "iopub.status.idle": "2023-11-09T22:18:35.350889Z", + "shell.execute_reply": "2023-11-09T22:18:35.350387Z" } }, "outputs": [ @@ -2466,10 +2466,10 @@ "start_time": "2023-11-09T18:40:44.159650878Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.320857Z", - "iopub.status.busy": "2023-11-09T20:29:25.320475Z", - "iopub.status.idle": "2023-11-09T20:29:25.349667Z", - "shell.execute_reply": "2023-11-09T20:29:25.349161Z" + "iopub.execute_input": "2023-11-09T22:18:35.352993Z", + "iopub.status.busy": "2023-11-09T22:18:35.352581Z", + "iopub.status.idle": "2023-11-09T22:18:35.373445Z", + "shell.execute_reply": "2023-11-09T22:18:35.372960Z" } }, "outputs": [ @@ -3538,10 +3538,10 @@ "start_time": "2023-11-09T18:40:44.190637837Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.352245Z", - "iopub.status.busy": "2023-11-09T20:29:25.351769Z", - "iopub.status.idle": "2023-11-09T20:29:25.355019Z", - "shell.execute_reply": "2023-11-09T20:29:25.354507Z" + "iopub.execute_input": "2023-11-09T22:18:35.375726Z", + "iopub.status.busy": "2023-11-09T22:18:35.375428Z", + "iopub.status.idle": "2023-11-09T22:18:35.378208Z", + "shell.execute_reply": "2023-11-09T22:18:35.377722Z" } }, "outputs": [], @@ -3558,17 +3558,17 @@ "start_time": "2023-11-09T18:40:44.231188307Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.357279Z", - "iopub.status.busy": "2023-11-09T20:29:25.356912Z", - "iopub.status.idle": "2023-11-09T20:29:25.556467Z", - "shell.execute_reply": "2023-11-09T20:29:25.555993Z" + "iopub.execute_input": "2023-11-09T22:18:35.379955Z", + "iopub.status.busy": "2023-11-09T22:18:35.379666Z", + "iopub.status.idle": "2023-11-09T22:18:35.559623Z", + "shell.execute_reply": "2023-11-09T22:18:35.559169Z" } }, "outputs": [ { "data": { "text/plain": [ - "[StairsArtists(stairs=, errorbar=None, legend_artist=None)]" + "[StairsArtists(stairs=, errorbar=None, legend_artist=None)]" ] }, "execution_count": 26, @@ -3599,17 +3599,17 @@ "start_time": "2023-11-09T18:40:44.419136722Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.559330Z", - "iopub.status.busy": "2023-11-09T20:29:25.558737Z", - "iopub.status.idle": "2023-11-09T20:29:25.689047Z", - "shell.execute_reply": "2023-11-09T20:29:25.688509Z" + "iopub.execute_input": "2023-11-09T22:18:35.561702Z", + "iopub.status.busy": "2023-11-09T22:18:35.561358Z", + "iopub.status.idle": "2023-11-09T22:18:35.663979Z", + "shell.execute_reply": "2023-11-09T22:18:35.663445Z" } }, "outputs": [ { "data": { "text/plain": [ - "[StairsArtists(stairs=, errorbar=None, legend_artist=None)]" + "[StairsArtists(stairs=, errorbar=None, legend_artist=None)]" ] }, "execution_count": 27, @@ -3671,10 +3671,10 @@ "start_time": "2023-11-09T18:40:44.667447153Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.692006Z", - "iopub.status.busy": "2023-11-09T20:29:25.691420Z", - "iopub.status.idle": "2023-11-09T20:29:25.699765Z", - "shell.execute_reply": "2023-11-09T20:29:25.699329Z" + "iopub.execute_input": "2023-11-09T22:18:35.666024Z", + "iopub.status.busy": "2023-11-09T22:18:35.665842Z", + "iopub.status.idle": "2023-11-09T22:18:35.672721Z", + "shell.execute_reply": "2023-11-09T22:18:35.672213Z" } }, "outputs": [], @@ -3693,10 +3693,10 @@ "start_time": "2023-11-09T18:40:44.667709042Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.702011Z", - "iopub.status.busy": "2023-11-09T20:29:25.701710Z", - "iopub.status.idle": "2023-11-09T20:29:25.723478Z", - "shell.execute_reply": "2023-11-09T20:29:25.723035Z" + "iopub.execute_input": "2023-11-09T22:18:35.674844Z", + "iopub.status.busy": "2023-11-09T22:18:35.674537Z", + "iopub.status.idle": "2023-11-09T22:18:35.691480Z", + "shell.execute_reply": "2023-11-09T22:18:35.690966Z" } }, "outputs": [ @@ -3797,8 +3797,8 @@ "\n", "\n", "\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -3845,12 +3845,12 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -3895,13 +3895,13 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -3945,13 +3945,13 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -3994,14 +3994,14 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4044,14 +4044,14 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4095,13 +4095,13 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4143,15 +4143,15 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4194,14 +4194,14 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4244,15 +4244,15 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4294,14 +4294,14 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4344,15 +4344,15 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4393,15 +4393,15 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4444,14 +4444,14 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4493,16 +4493,16 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4543,16 +4543,16 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4593,16 +4593,16 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4642,18 +4642,18 @@ "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "\n", "\n", @@ -4690,24 +4690,24 @@ "\n", "\n", "\n", - "\n", + "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - "\n", + "\n", "\n", "\n", "\n", @@ -4731,7 +4731,7 @@ "Regular(50, 2.75, 3.5, name='mass')
\n", "Regular(20, 0.026503, 0.993653, name='BDT')
\n", "
\n", - "Weight() Σ=WeightedSum(value=119865, variance=120964) (WeightedSum(value=119924, variance=121024) with flow)\n", + "Weight() Σ=WeightedSum(value=119911, variance=121055) (WeightedSum(value=119969, variance=121113) with flow)\n", "\n", "\n", "\n", @@ -4741,7 +4741,7 @@ "Hist(\n", " Regular(50, 2.75, 3.5, name='mass'),\n", " Regular(20, 0.026503, 0.993653, name='BDT'),\n", - " storage=Weight()) # Sum: WeightedSum(value=119865, variance=120964) (WeightedSum(value=119924, variance=121024) with flow)" + " storage=Weight()) # Sum: WeightedSum(value=119911, variance=121055) (WeightedSum(value=119969, variance=121113) with flow)" ] }, "execution_count": 29, @@ -4762,10 +4762,10 @@ "start_time": "2023-11-09T18:40:44.698968002Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:25.728141Z", - "iopub.status.busy": "2023-11-09T20:29:25.727842Z", - "iopub.status.idle": "2023-11-09T20:29:25.735452Z", - "shell.execute_reply": "2023-11-09T20:29:25.735037Z" + "iopub.execute_input": "2023-11-09T22:18:35.693690Z", + "iopub.status.busy": "2023-11-09T22:18:35.693529Z", + "iopub.status.idle": "2023-11-09T22:18:35.700505Z", + "shell.execute_reply": "2023-11-09T22:18:35.700004Z" } }, "outputs": [ @@ -4851,7 +4851,7 @@ " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", - " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.15797279e+00],\n", + " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.38184875e+00],\n", " [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", @@ -4861,72 +4861,72 @@ " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", - " 0.00000000e+00, 0.00000000e+00, 2.28765338e+00, 7.62207168e+00],\n", + " 0.00000000e+00, 0.00000000e+00, 1.95301077e+00, 8.00566324e+00],\n", " [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", - " 1.12405263e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", - " 0.00000000e+00, 9.90871637e-01, 0.00000000e+00, 7.49697194e-01,\n", - " 1.19013577e+00, 2.38787001e+00, 1.91736926e+00, 2.64413273e+01],\n", + " 1.26121591e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", + " 0.00000000e+00, 9.87966693e-01, 0.00000000e+00, 1.02575476e+00,\n", + " 9.40850782e-01, 2.38790471e+00, 1.57102435e+00, 2.67727395e+01],\n", " [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", - " 0.00000000e+00, 9.66707778e-01, 2.72651103e+00, 0.00000000e+00,\n", - " 7.67961404e+00, 2.88785172e+00, 9.06057553e+00, 4.83743531e+00,\n", - " 4.78414501e+00, 1.22219045e+01, 7.17027957e+00, 1.23354599e+01,\n", - " 1.68521268e+01, 2.35393319e+01, 4.05992739e+01, 1.04536702e+02],\n", - " [0.00000000e+00, 0.00000000e+00, 2.48722298e+00, 6.26204783e+00,\n", - " 7.93800613e+00, 2.95852691e+01, 4.54747287e+01, 9.49162086e+01,\n", - " 8.75125021e+01, 9.51865490e+01, 8.86229801e+01, 8.40514026e+01,\n", - " 8.31807990e+01, 8.56840505e+01, 1.17959569e+02, 1.15145430e+02,\n", - " 1.27387046e+02, 1.55454101e+02, 2.42546915e+02, 3.39393758e+02],\n", - " [0.00000000e+00, 0.00000000e+00, 1.44172130e+01, 8.60266102e+01,\n", - " 1.72905912e+02, 3.19303474e+02, 5.98842276e+02, 9.50914146e+02,\n", - " 9.56568451e+02, 8.78672227e+02, 7.88276991e+02, 7.66829779e+02,\n", - " 7.37705970e+02, 6.85317445e+02, 6.96239260e+02, 7.02391392e+02,\n", - " 6.85099975e+02, 7.31033087e+02, 9.92835045e+02, 9.76058854e+02],\n", - " [0.00000000e+00, 2.80926784e+00, 4.23320694e+01, 2.68314546e+02,\n", - " 5.84056047e+02, 1.25911910e+03, 2.39189303e+03, 4.12796551e+03,\n", - " 3.81640745e+03, 3.29070745e+03, 3.10789736e+03, 2.70472061e+03,\n", - " 2.60080175e+03, 2.28443335e+03, 2.22477443e+03, 2.23365535e+03,\n", - " 2.19463738e+03, 2.13484094e+03, 2.44702821e+03, 2.32886393e+03],\n", - " [0.00000000e+00, 6.92362879e-01, 6.56284298e+01, 2.75690714e+02,\n", - " 7.04811806e+02, 1.39042896e+03, 2.83584141e+03, 4.68991176e+03,\n", - " 4.39522039e+03, 3.94902692e+03, 3.64696232e+03, 3.19701447e+03,\n", - " 2.96457289e+03, 2.58253989e+03, 2.79206753e+03, 2.43931435e+03,\n", - " 2.46405825e+03, 2.50434584e+03, 2.70153268e+03, 2.65991362e+03],\n", - " [0.00000000e+00, 0.00000000e+00, 1.09531376e+01, 9.27845663e+01,\n", - " 2.36723964e+02, 4.88233944e+02, 8.42360537e+02, 1.52055015e+03,\n", - " 1.49884117e+03, 1.32676645e+03, 1.23111864e+03, 1.15985843e+03,\n", - " 1.17038813e+03, 1.06786860e+03, 1.09538638e+03, 9.81557537e+02,\n", - " 1.03295678e+03, 1.04136398e+03, 1.33084716e+03, 1.34867972e+03],\n", - " [0.00000000e+00, 0.00000000e+00, 1.19016853e+00, 5.83341238e+00,\n", - " 2.36666591e+01, 4.30788193e+01, 9.01841459e+01, 1.32138018e+02,\n", - " 1.76347947e+02, 1.54043570e+02, 1.57603012e+02, 1.35409266e+02,\n", - " 1.64018775e+02, 1.57881698e+02, 2.02067465e+02, 1.84501569e+02,\n", - " 1.95068864e+02, 2.69292788e+02, 3.59389628e+02, 4.40443395e+02],\n", - " [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 8.83398717e-01,\n", - " 8.01498401e-01, 4.16905894e+00, 7.03730279e+00, 7.03337666e+00,\n", - " 1.38522927e+01, 6.95355561e+00, 8.12486855e+00, 1.04412686e+01,\n", - " 1.38640700e+01, 1.07348460e+01, 1.79051088e+01, 2.97571776e+01,\n", - " 1.49827326e+01, 3.37482046e+01, 6.76246526e+01, 1.27267684e+02],\n", + " 0.00000000e+00, 1.15865183e+00, 2.53524119e+00, 0.00000000e+00,\n", + " 6.81288944e+00, 2.60657187e+00, 7.86963672e+00, 3.84502162e+00,\n", + " 5.34681626e+00, 1.12229098e+01, 7.24136859e+00, 1.33879586e+01,\n", + " 1.73254045e+01, 2.27666089e+01, 4.06093030e+01, 9.99412809e+01],\n", + " [0.00000000e+00, 0.00000000e+00, 1.56268934e+00, 5.62372203e+00,\n", + " 6.35679645e+00, 2.97665147e+01, 4.60813356e+01, 9.56027756e+01,\n", + " 8.62861190e+01, 9.69372810e+01, 8.62099342e+01, 8.13658014e+01,\n", + " 8.34236801e+01, 8.26901669e+01, 1.15767445e+02, 1.10451094e+02,\n", + " 1.28949825e+02, 1.51750042e+02, 2.48842057e+02, 3.35350742e+02],\n", + " [0.00000000e+00, 0.00000000e+00, 1.36893104e+01, 8.15123079e+01,\n", + " 1.71029668e+02, 3.16827636e+02, 5.96318055e+02, 9.49844171e+02,\n", + " 9.72365208e+02, 8.71555169e+02, 8.01572683e+02, 7.66231154e+02,\n", + " 7.38491969e+02, 6.81386811e+02, 6.98295005e+02, 7.12405798e+02,\n", + " 6.96596781e+02, 7.32734509e+02, 9.93737970e+02, 9.88241928e+02],\n", + " [0.00000000e+00, 2.83350976e+00, 4.15577977e+01, 2.76366459e+02,\n", + " 5.81545274e+02, 1.24200700e+03, 2.39421554e+03, 4.12089344e+03,\n", + " 3.78955275e+03, 3.29214102e+03, 3.11647174e+03, 2.70552708e+03,\n", + " 2.61285313e+03, 2.28658436e+03, 2.23912449e+03, 2.24305352e+03,\n", + " 2.15498469e+03, 2.16596384e+03, 2.44536478e+03, 2.34065244e+03],\n", + " [0.00000000e+00, 6.41255870e-01, 6.24630272e+01, 2.72887799e+02,\n", + " 6.87240665e+02, 1.40142642e+03, 2.81238700e+03, 4.71159445e+03,\n", + " 4.42124291e+03, 3.96282531e+03, 3.64380803e+03, 3.18499839e+03,\n", + " 2.98937950e+03, 2.59185488e+03, 2.79388044e+03, 2.43547006e+03,\n", + " 2.47062514e+03, 2.50914193e+03, 2.71454577e+03, 2.61155155e+03],\n", + " [0.00000000e+00, 0.00000000e+00, 1.27146809e+01, 9.38097339e+01,\n", + " 2.36702346e+02, 4.89010987e+02, 8.38835114e+02, 1.51690953e+03,\n", + " 1.49565491e+03, 1.33989374e+03, 1.23414521e+03, 1.15522280e+03,\n", + " 1.17132302e+03, 1.05165109e+03, 1.10702223e+03, 9.70418608e+02,\n", + " 1.04878206e+03, 1.04526220e+03, 1.33576583e+03, 1.36116128e+03],\n", + " [0.00000000e+00, 0.00000000e+00, 1.05144646e+00, 6.82167370e+00,\n", + " 2.55937259e+01, 4.19023568e+01, 9.16943249e+01, 1.38124951e+02,\n", + " 1.74814146e+02, 1.58247301e+02, 1.60939057e+02, 1.35037931e+02,\n", + " 1.68145239e+02, 1.55923820e+02, 2.05856152e+02, 1.81174478e+02,\n", + " 1.94219518e+02, 2.63632251e+02, 3.53306616e+02, 4.48311390e+02],\n", + " [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.42583518e+00,\n", + " 7.98916311e-01, 3.88639383e+00, 6.73129334e+00, 7.73734784e+00,\n", + " 1.50830975e+01, 6.17078907e+00, 8.22044784e+00, 1.03290343e+01,\n", + " 1.38827005e+01, 1.30328225e+01, 1.75107028e+01, 3.02420288e+01,\n", + " 1.64447553e+01, 3.28084380e+01, 6.83904626e+01, 1.30243681e+02],\n", " [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", - " 0.00000000e+00, 0.00000000e+00, 1.06622991e+00, 0.00000000e+00,\n", - " 1.53567235e+00, 0.00000000e+00, 0.00000000e+00, 3.27154939e+00,\n", - " 2.75799802e+00, 4.02480349e+00, 1.40981975e+01, 2.39364617e+01],\n", + " 0.00000000e+00, 0.00000000e+00, 9.78315960e-01, 0.00000000e+00,\n", + " 1.12034969e+00, 0.00000000e+00, 0.00000000e+00, 3.65733784e+00,\n", + " 2.35608218e+00, 4.55161287e+00, 1.26611365e+01, 2.39761266e+01],\n", " [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", - " 0.00000000e+00, 0.00000000e+00, 2.09857594e+00, 1.05752299e+01],\n", + " 0.00000000e+00, 0.00000000e+00, 2.53174151e+00, 1.06309819e+01],\n", " [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", - " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 2.43945537e+00],\n", + " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 2.16962485e+00],\n", " [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", - " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 3.06778379e+00],\n", + " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 3.18158787e+00],\n", " [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", @@ -4936,7 +4936,7 @@ " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", - " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.01250795e+00],\n", + " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.02553096e+00],\n", " [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n", diff --git a/advanced-python/45DemoReweighting.html b/advanced-python/45DemoReweighting.html index 2dbd546f..a454749c 100644 --- a/advanced-python/45DemoReweighting.html +++ b/advanced-python/45DemoReweighting.html @@ -629,11 +629,11 @@

train part of original distribution
-KS over  hSPD  =  0.5173107960198898
-KS over  pt_b  =  0.21825811940134798
-KS over  pt_phi  =  0.4065876517414134
-KS over  vchi2_b  =  0.4078260994964574
-KS over  mu_pt_sum  =  0.21825811940134798
+KS over  hSPD  =  0.5212065671641686
+KS over  pt_b  =  0.21911392039638183
+KS over  pt_phi  =  0.4042199900498724
+KS over  vchi2_b  =  0.4054638109390862
+KS over  mu_pt_sum  =  0.21911392039638183
 
@@ -905,9 +905,9 @@

GB-discrimination
-original 0.9383051166636476
-bins 0.9119662410317213
-gb_weights 0.5315137942416742
+original 0.9326905282282532
+bins 0.9052877741488814
+gb_weights 0.5341842227167279
 
@@ -961,7 +961,7 @@

What did just happen?
-(474.30249325344704, 70142.01496046843)
+(555.188238558999, 66922.97254342238)
 

With such a high weight for a single event, this does not look desireable. And be aware of ad-hoc solutions: just clipping or removing weights is completely wrong as this would disturb the distribution completely.

@@ -1005,11 +1005,11 @@

Folding reweighter
 KFold prediction using folds column
-KS over  hSPD  =  0.30688085708695023
-KS over  pt_b  =  0.18052275594200184
-KS over  pt_phi  =  0.3079253167194888
-KS over  vchi2_b  =  0.2991908161695863
-KS over  mu_pt_sum  =  0.18052275594200184
+KS over  hSPD  =  0.30781267860583916
+KS over  pt_b  =  0.18064045190795774
+KS over  pt_phi  =  0.3080389675968616
+KS over  vchi2_b  =  0.2987982939810002
+KS over  mu_pt_sum  =  0.18064045190795774
 
diff --git a/advanced-python/45DemoReweighting.ipynb b/advanced-python/45DemoReweighting.ipynb index e9a3285a..1aec33ea 100644 --- a/advanced-python/45DemoReweighting.ipynb +++ b/advanced-python/45DemoReweighting.ipynb @@ -31,10 +31,10 @@ "start_time": "2023-11-09T18:25:53.142978500Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:27.983705Z", - "iopub.status.busy": "2023-11-09T20:29:27.983474Z", - "iopub.status.idle": "2023-11-09T20:29:29.066574Z", - "shell.execute_reply": "2023-11-09T20:29:29.065945Z" + "iopub.execute_input": "2023-11-09T22:18:37.453886Z", + "iopub.status.busy": "2023-11-09T22:18:37.453730Z", + "iopub.status.idle": "2023-11-09T22:18:38.315106Z", + "shell.execute_reply": "2023-11-09T22:18:38.314597Z" } }, "outputs": [], @@ -64,10 +64,10 @@ "start_time": "2023-11-09T18:25:53.489875451Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:29:29.070401Z", - "iopub.status.busy": "2023-11-09T20:29:29.069109Z", - "iopub.status.idle": "2023-11-09T20:34:22.920203Z", - "shell.execute_reply": "2023-11-09T20:34:22.919597Z" + "iopub.execute_input": "2023-11-09T22:18:38.317376Z", + "iopub.status.busy": "2023-11-09T22:18:38.317100Z", + "iopub.status.idle": "2023-11-09T22:23:42.558738Z", + "shell.execute_reply": "2023-11-09T22:23:42.558203Z" } }, "outputs": [], @@ -108,10 +108,10 @@ "start_time": "2023-11-09T18:27:45.799133696Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:34:22.922998Z", - "iopub.status.busy": "2023-11-09T20:34:22.922673Z", - "iopub.status.idle": "2023-11-09T20:34:23.025923Z", - "shell.execute_reply": "2023-11-09T20:34:23.025325Z" + "iopub.execute_input": "2023-11-09T22:23:42.561171Z", + "iopub.status.busy": "2023-11-09T22:23:42.560831Z", + "iopub.status.idle": "2023-11-09T22:23:42.631121Z", + "shell.execute_reply": "2023-11-09T22:23:42.630625Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "start_time": "2023-11-09T18:27:45.965651595Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:34:23.028886Z", - "iopub.status.busy": "2023-11-09T20:34:23.028400Z", - "iopub.status.idle": "2023-11-09T20:34:23.034440Z", - "shell.execute_reply": "2023-11-09T20:34:23.033908Z" + "iopub.execute_input": "2023-11-09T22:23:42.633379Z", + "iopub.status.busy": "2023-11-09T22:23:42.633068Z", + "iopub.status.idle": "2023-11-09T22:23:42.637318Z", + "shell.execute_reply": "2023-11-09T22:23:42.636820Z" } }, "outputs": [], @@ -178,10 +178,10 @@ "start_time": "2023-11-09T18:27:45.971355495Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:34:23.037087Z", - "iopub.status.busy": "2023-11-09T20:34:23.036628Z", - "iopub.status.idle": "2023-11-09T20:34:23.042476Z", - "shell.execute_reply": "2023-11-09T20:34:23.042011Z" + "iopub.execute_input": "2023-11-09T22:23:42.639228Z", + "iopub.status.busy": "2023-11-09T22:23:42.638859Z", + "iopub.status.idle": "2023-11-09T22:23:42.642799Z", + "shell.execute_reply": "2023-11-09T22:23:42.642317Z" } }, "outputs": [ @@ -210,10 +210,10 @@ "start_time": "2023-11-09T18:27:45.983111062Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:34:23.044646Z", - "iopub.status.busy": "2023-11-09T20:34:23.044339Z", - "iopub.status.idle": "2023-11-09T20:34:26.067592Z", - "shell.execute_reply": "2023-11-09T20:34:26.067007Z" + "iopub.execute_input": "2023-11-09T22:23:42.644570Z", + "iopub.status.busy": "2023-11-09T22:23:42.644269Z", + "iopub.status.idle": "2023-11-09T22:23:45.544676Z", + "shell.execute_reply": "2023-11-09T22:23:45.544111Z" } }, "outputs": [ @@ -283,10 +283,10 @@ "start_time": "2023-11-09T18:27:52.282166289Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:34:26.070919Z", - "iopub.status.busy": "2023-11-09T20:34:26.069859Z", - "iopub.status.idle": "2023-11-09T20:34:28.717797Z", - "shell.execute_reply": "2023-11-09T20:34:28.717165Z" + "iopub.execute_input": "2023-11-09T22:23:45.546772Z", + "iopub.status.busy": "2023-11-09T22:23:45.546591Z", + "iopub.status.idle": "2023-11-09T22:23:48.055035Z", + "shell.execute_reply": "2023-11-09T22:23:48.054506Z" } }, "outputs": [ @@ -294,40 +294,40 @@ "name": "stdout", "output_type": "stream", "text": [ - "KS over hSPD = 0.5173107960198898\n" + "KS over hSPD = 0.5212065671641686\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "KS over pt_b = 0.21825811940134798\n" + "KS over pt_b = 0.21911392039638183\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "KS over pt_phi = 0.4065876517414134\n" + "KS over pt_phi = 0.4042199900498724\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "KS over vchi2_b = 0.4078260994964574\n" + "KS over vchi2_b = 0.4054638109390862\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "KS over mu_pt_sum = 0.21825811940134798\n" + "KS over mu_pt_sum = 0.21911392039638183\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNAAAAJbCAYAAAAllWnEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACPvElEQVR4nOzde1hVZf7//xdy2HRQzBNIAaId1PDUxhSMbEpxsBwtTdLCLHS+DE0KTDOJ2i+1A1M5DpmCWTiM44mZ1KlmmJTmm6SJpQhNH/VTzqRiBhLMBFYTKK7fH37dsd2bLYe9YQPPx3Wt69rr3u91r/te2V7s977XfXsYhmEIAAAAAAAAgF1d2roBAAAAAAAAgDsjgQYAAAAAAAA4QAINAAAAAAAAcIAEGgAAAAAAAOAACTQAAAAAAADAARJoAAAAAAAAgAMk0AAAAAAAAAAHSKABAAAAAAAADpBAAwAAAAAAABwggQY4wZIlS+Th4aGKigqHcd9++61eeOEFDRs2TN26dVPXrl01YMAATZ8+Xfn5+Za4Xbt2ycPDw7J5enrK399f999/v44cOWKJO378uFWct7e3evbsqZEjRyo5OVmHDh1yWZ8BAO4vIyND2dnZzTq2X79+uueee5zbIABAu9OSe0ljXfz+88Ybb1w2dvbs2erXr59L2wPYQwINaCV1dXWKjo7Wc889p2nTpulPf/qT3njjDSUnJ6uqqkq7d++2Oeb5559XQUGB3nvvPT355JPKy8vTmDFjdOrUKau4xx9/XAUFBcrPz9cf/vAHTZkyRW+99ZaGDRuml156qbW6CABwM63xpQcA0LG5273kqaee0vbt29u6GeiEvNq6AUBn8f7772vv3r1at26dHnnkEUv5hAkT9POf/1znz5+3OeaGG27Q6NGjJUm33367unfvrvj4eGVnZ2vRokWWuODgYEucJE2cOFEpKSm677779Ktf/UphYWGKiYlxYe8AAAAAwPUGDBjQ1k1AJ8UINMCJTp8+rRkzZsjPz0/+/v569NFHVVVVJUmqrKyUJPXt29fusV26XP5/x4tJshMnTlw29oorrlBWVpa8vb0ZhQYAHczFqQOKiop03333qVu3bvLz89NDDz2kr776StKFRzAPHTqk/Px8y6P+zXnkZfv27Ro6dKh8fX3Vv39/rVy50sm9AQC0hda4l1ycDqCx95KzZ89q0aJFCgwMVLdu3TRu3Dh9+umnVjE8wom2QgINcKKpU6fqxhtv1NatW7VgwQJt2rRJycnJkqTw8HB5e3tr/vz52rhxo0pLS5tc/z//+U9JUu/evRsVHxgYKLPZrL179+rcuXNNPh8AwL3de++9uv766/XGG29oyZIl+vOf/6wJEybo7Nmz2r59u/r3768RI0aooKBABQUFTX7kpbi4WElJSUpOTtb27dsVGRmp+fPna/ny5S7qEQCgtbnTvWThwoU6ceKEXn/9da1du1ZHjx7VpEmTVFdX56zuAs3GI5yAE8XHx+uXv/ylJGncuHH65z//qXXr1ikrK0v9+vXTmjVrNH/+fD300EOSLoxGGz9+vObMmaOoqCib+s6fP69z587p7NmzOnDggH7xi1/I09NTsbGxjW5TSEiI9u3bp3//+9/q06ePczoKAHAL9913n1588UVJUnR0tPz9/fXggw/qj3/8ox588EFdccUV6tatm9Vj/k3x5ZdfqqioSMOGDZMkxcTEqLy8XM8884wSExN15ZVXOq0vAIC24U73ksGDB2vDhg2WfU9PT02fPl379+9v9vkBZ2EEGuBEP/nJT6z2hw4dqu+//17l5eWSpEcffVRffPGFNm3apHnz5ikoKEgbNmzQ2LFj7T5mGRsbK29vb1155ZW6/fbbVVdXpzfeeENDhw5tdJsMw2hZpwAAbuvBBx+02p8+fbq8vLz03nvvOaX+m2++2fKF56KZM2equrpaBw8edMo5AABty53uJfa+T0mNm8IGcDVGoAFO1LNnT6t9k8kkSfrvf/9rKfPz89OMGTM0Y8YMSdKhQ4c0btw4LVq0SHPnzlX37t0tsS+88ILuvPNOeXp6qlevXgoKCmpym06cOCGTyaQePXo0o0cAAHcWEBBgte/l5aWePXta5t10dv31y5x1DgBA23Kne0ljvk8BbYURaEAbu/nmm/XAAw/o7Nmz+uyzz6ze69+/v8LDwzVixIhmJc9OnTqlwsJC3XbbbfLyIl8OAB1NWVmZ1f65c+dUWVlp8wXEWfXXL3PWOQAAbYt7CdA4JNCAVlJZWana2lq77/3v//6vpAuT/jvLf//7X82ZM0fnzp3Tr371K6fVCwBwHxs3brTa/+Mf/6hz587pjjvukHThl/uW/Gp/6NAhffzxx1ZlmzZtUteuXXXLLbc0u14AgPvgXgI0DkNSgFby3nvvaf78+XrwwQcVGRmpnj17qry8XJs3b9Y777yjWbNm6brrrmtW3SUlJdq3b5/Onz+vqqoqFRUVad26dTpx4oR+85vfKDo62sm9AQC4g23btsnLy0vjx4/XoUOH9NRTT2nYsGGaPn26JGnIkCHasmWLcnJy1L9/f/n6+mrIkCGNrj8wMFA/+clPtGTJEvXt21cbNmxQXl6eXnjhBRYQAIAOgnsJ0Dgk0IBWMnr0aD366KN677339Ic//EEVFRW64oorNHjwYL3yyiv62c9+1uy6X3nlFb3yyivy9PRUt27d1L9/f02aNElz587V4MGDndgLAIA72bZtm5YsWaLMzEx5eHho0qRJSk9Pl4+PjyRp6dKlKi0t1dy5c3XmzBmFhITo+PHjja5/+PDheuSRR/T000/r6NGjCgwM1IoVK5ScnOyiHgEAWhv3EqBxPAyW6AMAAGhXlixZoqVLl+qrr75Sr1692ro5AIB2qDXuJf369VNYWJj+8pe/uKR+oDUxBxoAAAAAAADgAI9wAgAAdCJ1dXVy9ACCh4eHPD09W7FFAID2hnsJOiMe4QQAAOhE+vXrpxMnTjT4/tixY7Vr167WaxAAoN3hXoLOiBFoAAAAncjbb7+tmpqaBt/v2rVrK7YGANAecS9BZ8QINAAAAAAAAMABFhEAALidjIwMhYaGytfXV2azWbt3724wtrS0VDNnztRNN92kLl26KCkpySbmjjvukIeHh8129913W2KWLFli835AQIArugcAAACgnelUj3CeP39eX375pbp27SoPD4+2bg4AtHuGYejMmTMKDAxUly7O+U0mJydHSUlJysjI0JgxY/Tqq68qJiZGhw8fVnBwsE18TU2NevfurUWLFum3v/2t3Tq3bdum2tpay35lZaWGDRum+++/3yru5ptv1rvvvmvZb+rkt9xnAMC5XHGfac+4zwCAczXlPtOpEmhffvmlgoKC2roZANDhnDx5Utddd51T6lqxYoXi4+M1Z84cSVJ6erp27NihzMxMpaWl2cT369dPL7/8siRp3bp1duvs0aOH1f6WLVt05ZVX2iTQvLy8WjTqjPsMALiGM+8z7Rn3GQBwjcbcZzpVAu3iRIYnT55Ut27d2rg1AND+VVdXKygoyGkTxdbW1qqwsFALFiywKo+OjtbevXudcg5JysrK0gMPPKCrrrrKqvzo0aMKDAyUyWTSqFGj9Pzzz6t///4N1lNTU2M1ge7FaUW5zwCAczj7PtPe8X0GAJyrKfeZTpVAuzjMuVu3btxwAMCJnPUYSUVFherq6uTv729V7u/vr7KyMqec46OPPtL//M//KCsry6p81KhRWr9+vW688UadPn1azz77rCIjI3Xo0CH17NnTbl1paWlaunSpTTn3GQBwLh5XvIDvMwDgGo25zzCRAADA7Vx6AzMMw2lfnrKyshQWFqZbb73VqjwmJkZTp07VkCFDNG7cOP31r3+VJP3+979vsK7U1FRVVVVZtpMnTzqljQAAAADcS6cagQYAcG+9evWSp6enzWiz8vJym1FpzfHdd99py5YtWrZs2WVjr7rqKg0ZMkRHjx5tMMZkMslkMrW4XQAAAADcGyPQAABuw8fHR2azWXl5eVbleXl5ioyMbHH9f/zjH1VTU6OHHnrosrE1NTU6cuSI+vbt2+LzAgAAAGjfGIEGAHArKSkpiouLU3h4uCIiIrR27VqVlJQoISFB0oXHJk+dOqX169dbjikuLpYkffPNN/rqq69UXFwsHx8fDR482KrurKwsTZkyxe6cZk888YQmTZqk4OBglZeX69lnn1V1dbUefvhh13UWAAAAQLtAAg0A4FZiY2NVWVmpZcuWqbS0VGFhYcrNzVVISIgkqbS0VCUlJVbHjBgxwvK6sLBQmzZtUkhIiI4fP24p/+yzz7Rnzx7t3LnT7nm/+OILzZgxQxUVFerdu7dGjx6tffv2Wc4LAAAAoPPyMAzDaOtGtJbq6mr5+fmpqqqKVWsAwAn4XLXG9QAA5+Jz1RrXAwCcqymfq8yBBgAAAAAAADhAAg0AAAAAAABwgAQaAAAAAAAA4ACLCLRz8dn7rfazZo9so5YAANrEptgfXs/Mabt2AADaH+4hANBojEADAAAAAAAAHCCBBgAAAAAAADjAI5zt0KWPbQIAAAAAAMB1SKC1EyTNAAAAAAAA2gYJtA6mfqKNBQUAAAAAAABajgQaAAAdBaupAQAAAC7BIgIAAAAAAACAA4xA68B4nBMAAAAAAKDlGIEGAAAAAAAAOEACDQAAAAAAAHCgWQm0jIwMhYaGytfXV2azWbt373YYn5+fL7PZLF9fX/Xv319r1qyxidm6dasGDx4sk8mkwYMHa/v27Q3Wl5aWJg8PDyUlJTWn+e1GfPZ+ywYAAAAAAIC20eQEWk5OjpKSkrRo0SIVFRUpKipKMTExKikpsRt/7NgxTZw4UVFRUSoqKtLChQs1b948bd261RJTUFCg2NhYxcXF6eOPP1ZcXJymT5+uDz/80Ka+/fv3a+3atRo6dGhTmw4AAAAAAAA0WZMTaCtWrFB8fLzmzJmjQYMGKT09XUFBQcrMzLQbv2bNGgUHBys9PV2DBg3SnDlz9Oijj2r58uWWmPT0dI0fP16pqakaOHCgUlNTdddddyk9Pd2qrm+++UYPPvigXnvtNV1zzTVNbToAAAAAAADQZE1KoNXW1qqwsFDR0dFW5dHR0dq7d6/dYwoKCmziJ0yYoAMHDujs2bMOYy6t87HHHtPdd9+tcePGNaXZAAAAAAAAQLN5NSW4oqJCdXV18vf3tyr39/dXWVmZ3WPKysrsxp87d04VFRXq27dvgzH169yyZYsOHjyo/fsbPx9YTU2NampqLPvV1dWNPrajqT+PWtbskW3YEgAAAAAAgPalWYsIeHh4WO0bhmFTdrn4S8sd1Xny5EnNnz9fGzZskK+vb6PbmZaWJj8/P8sWFBTU6GMBAAAAAAAAqYkJtF69esnT09NmtFl5ebnNCLKLAgIC7MZ7eXmpZ8+eDmMu1llYWKjy8nKZzWZ5eXnJy8tL+fn5Wrlypby8vFRXV2f33KmpqaqqqrJsJ0+ebEp3AQAAAAAAgKYl0Hx8fGQ2m5WXl2dVnpeXp8jISLvHRERE2MTv3LlT4eHh8vb2dhhzsc677rpLn3zyiYqLiy1beHi4HnzwQRUXF8vT09PuuU0mk7p162a1AQAAAAAAAE3RpDnQJCklJUVxcXEKDw9XRESE1q5dq5KSEiUkJEi6MOrr1KlTWr9+vSQpISFBq1atUkpKiubOnauCggJlZWVp8+bNljrnz5+v22+/XS+88IImT56sN998U++++6727NkjSeratavCwsKs2nHVVVepZ8+eNuUAAHR4m2LbugUAAABAp9LkOdBiY2OVnp6uZcuWafjw4Xr//feVm5urkJAQSVJpaalKSkos8aGhocrNzdWuXbs0fPhwPfPMM1q5cqWmTp1qiYmMjNSWLVv0u9/9TkOHDlV2drZycnI0atQoJ3SxfYnP3m/ZAKCzysjIUGhoqHx9fWU2m7V79+4GY0tLSzVz5kzddNNN6tKli5KSkmxisrOz5eHhYbN9//33zT4vAAAAgM6jySPQJCkxMVGJiYl238vOzrYpGzt2rA4ePOiwzmnTpmnatGmNbsOuXbsaHQsAaD9ycnKUlJSkjIwMjRkzRq+++qpiYmJ0+PBhBQcH28TX1NSod+/eWrRokX772982WG+3bt306aefWpXVX5imqecFAAAA0Hk0axVOAABcZcWKFYqPj9ecOXM0aNAgpaenKygoSJmZmXbj+/Xrp5dfflmzZs2Sn59fg/V6eHgoICDAamvJeQEAAAB0HiTQAABuo7a2VoWFhYqOjrYqj46O1t69e1tU9zfffKOQkBBdd911uueee1RUVNQq5wUAAADQ/pFAAwC4jYqKCtXV1cnf39+q3N/fX2VlZc2ud+DAgcrOztZbb72lzZs3y9fXV2PGjNHRo0dbdN6amhpVV1dbbQAAAAA6HhJoAAC34+HhYbVvGIZNWVOMHj1aDz30kIYNG6aoqCj98Y9/1I033qhXXnmlRedNS0uTn5+fZQsKCmp2GwEAAAC4LxJonRArfQJwV7169ZKnp6fNqK/y8nKb0WEt0aVLF40cOdIyAq25501NTVVVVZVlO3nypNPaCAAAAMB9kEADALgNHx8fmc1m5eXlWZXn5eUpMjLSaecxDEPFxcXq27dvi85rMpnUrVs3qw0AAABAx+PV1g0AAKC+lJQUxcXFKTw8XBEREVq7dq1KSkqUkJAg6cKor1OnTmn9+vWWY4qLiyVdWCjgq6++UnFxsXx8fDR48GBJ0tKlSzV69GjdcMMNqq6u1sqVK1VcXKzVq1c3+rwAAAAAOi8SaAAAtxIbG6vKykotW7ZMpaWlCgsLU25urkJCQiRJpaWlKikpsTpmxIgRlteFhYXatGmTQkJCdPz4cUnS119/rZ/+9KcqKyuTn5+fRowYoffff1+33npro88LAMClMjIy9NJLL6m0tFQ333yz0tPTFRUV1WD8xo0b9eKLL+ro0aPy8/PTj3/8Yy1fvlw9e/ZsxVYDAJrDwzAMo60b0Vqqq6vl5+enqqoqt33MprXnJcuaPbJVzwegY2kPn6utqdWux6bYy8fMzHHd+QGglbjzfSYnJ0dxcXHKyMjQmDFj9Oqrr+r111/X4cOHFRwcbBO/Z88ejR07Vr/97W81adIknTp1SgkJCbrhhhu0ffv2Rp3T6dej/v2E+waATqgpn6vMgQYAQEe0KfaHDQDgdCtWrFB8fLzmzJmjQYMGKT09XUFBQcrMzLQbv2/fPvXr10/z5s1TaGiobrvtNv2f//N/dODAgVZuOQCgOUigAQAAAEAT1NbWqrCwUNHR0Vbl0dHR2rt3r91jIiMj9cUXXyg3N1eGYej06dN64403dPfddzd4npqaGlVXV1ttAIC2wRxobqC1H9sEAAAA0HwVFRWqq6uTv7+/Vbm/v7/KysrsHhMZGamNGzcqNjZW33//vc6dO6ef/OQneuWVVxo8T1pampYuXerUtgMAmocRaAAAAADQDB4eHlb7hmHYlF10+PBhzZs3T//f//f/qbCwUO+8846OHTvmcLXn1NRUVVVVWbaTJ086tf0AgMZjBBoAAAAANEGvXr3k6elpM9qsvLzcZlTaRWlpaRozZox++ctfSpKGDh2qq666SlFRUXr22WfVt29fm2NMJpNMJpPzOwAAaDJGoAEAAABAE/j4+MhsNisvL8+qPC8vT5GRkXaP+e6779Sli/XXL09PT0kXRq4BANwbCTQAAAAAaKKUlBS9/vrrWrdunY4cOaLk5GSVlJRYHslMTU3VrFmzLPGTJk3Stm3blJmZqc8//1wffPCB5s2bp1tvvVWBgYFt1Q0AQCPxCCcAAAAANFFsbKwqKyu1bNkylZaWKiwsTLm5uQoJCZEklZaWqqSkxBI/e/ZsnTlzRqtWrdIvfvELde/eXXfeeadeeOGFtuoCAKAJSKABAAAAQDMkJiYqMTHR7nvZ2dk2ZY8//rgef/xxF7cKAOAKPMIJAAAAAAAAOEACDQAAAAAAAHCABBoAAAAAAADgAAk0AAAAAAAAwAEWEWgj8dn727oJAAAAAAAAaAQSaLCon9TLmj2yDVsCAAAAAADgPniEEwAAAAAAAHCABBoAAAAAAADgAAk0AAAAAAAAwAESaAAAAAAAAIADJNAAAAAAAAAAB1iFEwCAjm5T7A+vZ+a0XTsAAACAdooRaAAAAAAAAIADjEADAKA9qD+KDAAAAECrIoHWycVn72/rJgAAWhOPcwIAAABNxiOcsCs+e79lA4DWlpGRodDQUPn6+spsNmv37t0NxpaWlmrmzJm66aab1KVLFyUlJdnEvPbaa4qKitI111yja665RuPGjdNHH31kFbNkyRJ5eHhYbQEBAc7uGgAAAIB2iAQaAMCt5OTkKCkpSYsWLVJRUZGioqIUExOjkpISu/E1NTXq3bu3Fi1apGHDhtmN2bVrl2bMmKH33ntPBQUFCg4OVnR0tE6dOmUVd/PNN6u0tNSyffLJJ07vHwAAAID2hwQaAMCtrFixQvHx8ZozZ44GDRqk9PR0BQUFKTMz0258v3799PLLL2vWrFny8/OzG7Nx40YlJiZq+PDhGjhwoF577TWdP39ef//7363ivLy8FBAQYNl69+7t9P4BAAAAaH9IoAEA3EZtba0KCwsVHR1tVR4dHa29e/c67Tzfffedzp49qx49eliVHz16VIGBgQoNDdUDDzygzz//3GE9NTU1qq6uttoAAAAAdDwk0AAAbqOiokJ1dXXy9/e3Kvf391dZWZnTzrNgwQJde+21GjdunKVs1KhRWr9+vXbs2KHXXntNZWVlioyMVGVlZYP1pKWlyc/Pz7IFBQU5rY0AAAAA3AcJNACA2/Hw8LDaNwzDpqy5XnzxRW3evFnbtm2Tr6+vpTwmJkZTp07VkCFDNG7cOP31r3+VJP3+979vsK7U1FRVVVVZtpMnTzqljQAAAADci1dbN6AzYUVLAHCsV69e8vT0tBltVl5ebjMqrTmWL1+u559/Xu+++66GDh3qMPaqq67SkCFDdPTo0QZjTCaTTCZTi9sFAAAAwL0xAg0A4DZ8fHxkNpuVl5dnVZ6Xl6fIyMgW1f3SSy/pmWee0TvvvKPw8PDLxtfU1OjIkSPq27dvi84LAAAAoP1jBBoAwK2kpKQoLi5O4eHhioiI0Nq1a1VSUqKEhARJFx6bPHXqlNavX285pri4WJL0zTff6KuvvlJxcbF8fHw0ePBgSRce23zqqae0adMm9evXzzLC7eqrr9bVV18tSXriiSc0adIkBQcHq7y8XM8++6yqq6v18MMPt2LvAQAAALgjEmi4rPqPnmbNHtmGLQHQGcTGxqqyslLLli1TaWmpwsLClJubq5CQEElSaWmpSkpKrI4ZMWKE5XVhYaE2bdqkkJAQHT9+XJKUkZGh2tpaTZs2zeq4p59+WkuWLJEkffHFF5oxY4YqKirUu3dvjR49Wvv27bOcFwAAAEDnRQINAOB2EhMTlZiYaPe97OxsmzLDMBzWdzGR5siWLVsa0zQAAAAAnVCz5kDLyMhQaGiofH19ZTabtXv3bofx+fn5MpvN8vX1Vf/+/bVmzRqbmK1bt2rw4MEymUwaPHiwtm/fbvV+Zmamhg4dqm7duqlbt26KiIjQ3/72t+Y0HwAAAABQ36bYHzYAgI0mJ9BycnKUlJSkRYsWqaioSFFRUYqJibF5nOaiY8eOaeLEiYqKilJRUZEWLlyoefPmaevWrZaYgoICxcbGKi4uTh9//LHi4uI0ffp0ffjhh5aY6667Tr/+9a914MABHThwQHfeeacmT56sQ4cONaPbAAAAAAAAQON4GJd77uUSo0aN0i233KLMzExL2aBBgzRlyhSlpaXZxD/55JN66623dOTIEUtZQkKCPv74YxUUFEi6MN9NdXW11YiyH//4x7rmmmu0efPmBtvSo0cPvfTSS4qPj29U26urq+Xn56eqqip169atUcc4U/25xNor5kADUF9bf666G5dej9YYETAzx/XnAIAm4D5jzenXo6F7C/cDAJ1EUz5XmzQCrba2VoWFhYqOjrYqj46O1t69e+0eU1BQYBM/YcIEHThwQGfPnnUY01CddXV12rJli7799ltFREQ02N6amhpVV1dbbQAAAAAAAEBTNCmBVlFRobq6Ovn7+1uV+/v7q6yszO4xZWVlduPPnTuniooKhzGX1vnJJ5/o6quvlslkUkJCgrZv367Bgwc32N60tDT5+flZtqCgoEb3FQAAAAAAAJCauYiAh4eH1b5hGDZll4u/tLwxdd50000qLi7Wvn379LOf/UwPP/ywDh8+3OB5U1NTVVVVZdlOnjzpuGMAAAAAAADAJbyaEtyrVy95enrajAwrLy+3GUF2UUBAgN14Ly8v9ezZ02HMpXX6+Pjo+uuvlySFh4dr//79evnll/Xqq6/aPbfJZJLJZGp8BwEAAAAAAIBLNGkEmo+Pj8xms/Ly8qzK8/LyFBkZafeYiIgIm/idO3cqPDxc3t7eDmMaqvMiwzBUU1PTlC4AAAAAAAAATdKkEWiSlJKSori4OIWHhysiIkJr165VSUmJEhISJF14bPLUqVNav369pAsrbq5atUopKSmaO3euCgoKlJWVZbW65vz583X77bfrhRde0OTJk/Xmm2/q3Xff1Z49eywxCxcuVExMjIKCgnTmzBlt2bJFu3bt0jvvvNPSawAAAAAAAAA0qMkJtNjYWFVWVmrZsmUqLS1VWFiYcnNzFRISIkkqLS1VSUmJJT40NFS5ublKTk7W6tWrFRgYqJUrV2rq1KmWmMjISG3ZskWLFy/WU089pQEDBignJ0ejRo2yxJw+fVpxcXEqLS2Vn5+fhg4dqnfeeUfjx49vSf8BAAAAAAAAh5qcQJOkxMREJSYm2n0vOzvbpmzs2LE6ePCgwzqnTZumadOmNfh+VlZWk9oIAAAAAAAAOEOzVuEEAAAAAAAAOotmjUBD5xWfvd9qP2v2yDZqCQAAAAAAQOtgBBoAAAAANENGRoZCQ0Pl6+srs9ms3bt3O4yvqanRokWLFBISIpPJpAEDBmjdunWt1FoAQEswAg0AAAAAmignJ0dJSUnKyMjQmDFj9OqrryomJkaHDx9WcHCw3WOmT5+u06dPKysrS9dff73Ky8t17ty5Vm45AKA5SKABAAAAQBOtWLFC8fHxmjNnjiQpPT1dO3bsUGZmptLS0mzi33nnHeXn5+vzzz9Xjx49JEn9+vVrzSYDAFqARzgBAAAAoAlqa2tVWFio6Ohoq/Lo6Gjt3bvX7jFvvfWWwsPD9eKLL+raa6/VjTfeqCeeeEL//e9/GzxPTU2NqqurrTYAQNtgBJqLXTrpPgAAAID2raKiQnV1dfL397cq9/f3V1lZmd1jPv/8c+3Zs0e+vr7avn27KioqlJiYqH//+98NzoOWlpampUuXOr39AICmYwQaAAAAADSDh4eH1b5hGDZlF50/f14eHh7auHGjbr31Vk2cOFErVqxQdnZ2g6PQUlNTVVVVZdlOnjzp9D4AABqHEWgAAAAA0AS9evWSp6enzWiz8vJym1FpF/Xt21fXXnut/Pz8LGWDBg2SYRj64osvdMMNN9gcYzKZZDKZnNt4AECzMAINAAAAAJrAx8dHZrNZeXl5VuV5eXmKjIy0e8yYMWP05Zdf6ptvvrGUffbZZ+rSpYuuu+46l7YXANByJNAAAAAAoIlSUlL0+uuva926dTpy5IiSk5NVUlKihIQESRcev5w1a5YlfubMmerZs6ceeeQRHT58WO+//75++ctf6tFHH9UVV1zRVt0AADQSj3ACAAAAQBPFxsaqsrJSy5YtU2lpqcLCwpSbm6uQkBBJUmlpqUpKSizxV199tfLy8vT4448rPDxcPXv21PTp0/Xss8+2VRcAAE1AAg0AAAAAmiExMVGJiYl238vOzrYpGzhwoM1jnwCA9oFHONEi8dn7LRsAOEtGRoZCQ0Pl6+srs9ms3bt3NxhbWlqqmTNn6qabblKXLl2UlJRkN27r1q0aPHiwTCaTBg8erO3bt7fovAAAAAA6DxJoAAC3kpOTo6SkJC1atEhFRUWKiopSTEyM1WMw9dXU1Kh3795atGiRhg0bZjemoKBAsbGxiouL08cff6y4uDhNnz5dH374YbPP2xHxowgAAABgHwk0AIBbWbFiheLj4zVnzhwNGjRI6enpCgoKUmZmpt34fv366eWXX9asWbPk5+dnNyY9PV3jx49XamqqBg4cqNTUVN11111KT09v9nnbk+KTX1u2hsovfQ8AAADAD0igAQDcRm1trQoLCxUdHW1VHh0drb179za73oKCAps6J0yYYKmzueetqalRdXW11daePX56sWUDAAAA8AMWEQAAuI2KigrV1dXJ39/fqtzf319lZWXNrresrMxhnc09b1pampYuXdrsdrUFRpoBAAAATUcCDQDgdjw8PKz2DcOwKXNFnU09b2pqqlJSUiz71dXVCgoKalE7naWlibKG5kHLmj2yRfUCAAAA7REJNACA2+jVq5c8PT1tRn2Vl5fbjA5rioCAAId1Nve8JpNJJpOp2e0CAAAA0D4wBxoAwG34+PjIbDYrLy/PqjwvL0+RkZHNrjciIsKmzp07d1rqdNV5AQAAAHQMjEADALiVlJQUxcXFKTw8XBEREVq7dq1KSkqUkJAg6cJjk6dOndL69estxxQXF0uSvvnmG3311VcqLi6Wj4+PBg8eLEmaP3++br/9dr3wwguaPHmy3nzzTb377rvas2dPo88LAAAAoPMigQanqT9fDnPkAGiu2NhYVVZWatmyZSotLVVYWJhyc3MVEhIiSSotLVVJSYnVMSNGjLC8Liws1KZNmxQSEqLjx49LkiIjI7VlyxYtXrxYTz31lAYMGKCcnByNGjWq0ecFAAAA0HmRQAMAuJ3ExEQlJibafS87O9umzDCMy9Y5bdo0TZs2rdnnBQAAANB5kUADAKCDaOnKm43BaGMAAAB0RiTQ0H5sirXen5nTNu0AAAAAAACdCqtwAgAAAAAAAA6QQAMAAAAAAAAcIIEGAAAAAAAAOEACDQAAAAAAAHCARQScrP7qZAAAdGSsyAkAAIDOghFoAAAAAAAAgAOMQIP72RT7w+uZOW3XDgAAAAAAAJFAg4vwWA8AAAAAAOgoeIQTAAAAAAAAcIARaHBv9R/ndGZdPBoKoD1oxGdg8cmvXXLqx08vtrx+xf9Zl5wDAAAAaC9IoKFjIDkGAAAAAABchAQaAABoMea+BAAAQEdGAg2dEyPWAKDReJwTAAAAnR0JNLheWyarnDmHGgAAAAAA6JRYhRMAAAAAAABwgBFoaL8YXQYAAAAAAFoBCTS0roYe5yQZBgAAAAAA3FSzHuHMyMhQaGiofH19ZTabtXv3bofx+fn5MpvN8vX1Vf/+/bVmzRqbmK1bt2rw4MEymUwaPHiwtm/fbvV+WlqaRo4cqa5du6pPnz6aMmWKPv300+Y0Hy7y+OnFdrfik19bNgAAAAAAgPamyQm0nJwcJSUladGiRSoqKlJUVJRiYmJUUlJiN/7YsWOaOHGioqKiVFRUpIULF2revHnaunWrJaagoECxsbGKi4vTxx9/rLi4OE2fPl0ffvihJSY/P1+PPfaY9u3bp7y8PJ07d07R0dH69ttvm9FtOEv9RBkAAAAAAEBH1ORHOFesWKH4+HjNmTNHkpSenq4dO3YoMzNTaWlpNvFr1qxRcHCw0tPTJUmDBg3SgQMHtHz5ck2dOtVSx/jx45WamipJSk1NVX5+vtLT07V582ZJ0jvvvGNV7+9+9zv16dNHhYWFuv3225vaDQAA4CLx2fstr7Nmj2zDlgAAAADO0aQRaLW1tSosLFR0dLRVeXR0tPbu3Wv3mIKCApv4CRMm6MCBAzp79qzDmIbqlKSqqipJUo8ePRqMqampUXV1tdUGN7Ip9ocNAAAAAADATTUpgVZRUaG6ujr5+/tblfv7+6usrMzuMWVlZXbjz507p4qKCocxDdVpGIZSUlJ02223KSwsrMH2pqWlyc/Pz7IFBQVdto8AAAAA0KnxQzcA2GjWIgIeHh5W+4Zh2JRdLv7S8qbU+fOf/1z/+Mc/LI93NiQ1NVVVVVWW7eTJkw7jAQDuwdmL1dxxxx3y8PCw2e6++25LzJIlS2zeDwgIcEn/AAAAALQvTZoDrVevXvL09LQZGVZeXm4zguyigIAAu/FeXl7q2bOnwxh7dT7++ON666239P777+u6665z2F6TySSTyXTZfgEA3MfFxWoyMjI0ZswYvfrqq4qJidHhw4cVHBxsE39xsZq5c+dqw4YN+uCDD5SYmKjevXtb5trctm2bamtrLcdUVlZq2LBhuv/++63quvnmm/Xuu+9a9j09PV3USwAAAADtSZMSaD4+PjKbzcrLy9O9995rKc/Ly9PkyZPtHhMREaG3337bqmznzp0KDw+Xt7e3JSYvL0/JyclWMZGRkZZ9wzD0+OOPa/v27dq1a5dCQ0Ob0nQ0Uf1VNV/xf7YNWwKgs3HFYjWXzpe5ZcsWXXnllTYJNC8vL0adAQA6Nh7LBIBmafIqnCkpKYqLi1N4eLgiIiK0du1alZSUKCEhQdKFxyZPnTql9evXS5ISEhK0atUqpaSkaO7cuSooKFBWVpbV45fz58/X7bffrhdeeEGTJ0/Wm2++qXfffVd79uyxxDz22GPatGmT3nzzTXXt2tUyYs3Pz09XXHFFiy4COrn6f0TMzGm7dgCwLFazYMECq/LmLFaTlZWls2fPWn6sqS8rK0sPPPCArrrqKqvyo0ePKjAwUCaTSaNGjdLzzz+v/v37N9jempoa1dTUWPZba7Ga4pNft8p5AAAAAFzQ5DnQYmNjlZ6ermXLlmn48OF6//33lZubq5CQEElSaWmpSkpKLPGhoaHKzc3Vrl27NHz4cD3zzDNauXKlZVSAJEVGRmrLli363e9+p6FDhyo7O1s5OTkaNWqUJSYzM1NVVVW644471LdvX8uWk0PCAwA6ClctVlPfRx99pP/5n/+xjHC7aNSoUVq/fr127Nih1157TWVlZYqMjFRlZWWD7WWxGgDo3Jo6Z+dFH3zwgby8vDR8+HDXNhAA4DRNHoEmSYmJiUpMTLT7XnZ2tk3Z2LFjdfDgQYd1Tps2TdOmTWvw/YsLD6B9qz9qYnhQ9zZrR6NcOryd0WlAq3HFYjUXZWVlKSwsTLfeeqtVeUxMjOX1kCFDFBERoQEDBuj3v/+9UlJS7J43NTXV6r3q6uoOn0Rr6iP+8dn7La+zZo90SZsAoC00dc7Oi6qqqjRr1izdddddOn36dCu2GADQEs1ahRNwayy7DbRbrlqs5qLvvvtOW7ZssRl9Zs9VV12lIUOG6OjRow3GmEwmdevWzWoDAHQO9efsHDRokNLT0xUUFKTMzEyHx/2f//N/NHPmTEVERLRSSwEAztCsEWiwVv/XdbRzjU26NRTHKDWgRVy1WM1Ff/zjH1VTU6OHHnrosm2pqanRkSNHFBUV1YyeAAA6subM2SlJv/vd7/Svf/1LGzZs0LPPXn4Ub1vNtQkAsMUINFzW46cXWzYAcLWUlBS9/vrrWrdunY4cOaLk5GSbxWpmzZpliU9ISNCJEyeUkpKiI0eOaN26dcrKytITTzxhU3dWVpamTJliMzJNkp544gnl5+fr2LFj+vDDDzVt2jRVV1fr4Ycfdl1nAQDtUnPm7Dx69KgWLFigjRs3ysurceMYmGsTANwHI9AAAG4lNjZWlZWVWrZsmUpLSxUWFtaoxWqSk5O1evVqBQYG2ixWI0mfffaZ9uzZo507d9o97xdffKEZM2aooqJCvXv31ujRo7Vv3z7LeQEAuFRj5+ysq6vTzJkztXTpUt14442Nrr8zzrUJAO6KBBoAwO24YrGaG2+80eGCNFu2bGlSGwEAnVdT5+w8c+aMDhw4oKKiIv385z+XJJ0/f16GYcjLy0s7d+7UnXfeaXOcyWSSyWRyTScAAE3CI5wAAAAA0AT15+ysLy8vT5GRkTbx3bp10yeffKLi4mLLlpCQoJtuuknFxcUaNWpUazUdANBMjEADAAAAgCZKSUlRXFycwsPDFRERobVr19rM2Xnq1CmtX79eXbp0UVhYmNXxffr0ka+vr005AMA9kUCDRWMWCWAhAQAAAKDpc3YCANo3EmgAAAAA0AxNnbOzviVLlmjJkiXObxQAwCVIoHVybTmirPjk15bXw4O6t1k7Gm1TbFu3AAAAAAAAtAESaAAAoFXEZ++3vM6aPbINWwIAAAA0DatwAgAAAAAAAA4wAg1oDfUf/5yZ03btAAAAAAAATUYCDWhLJNYAAAAAAHB7JNA6obZcOKBTaeqiA5fGk1ADUE/9hVcAAAAAtC4SaIAzsVIngE6k/g8yr/g/24YtAQAAAFyLBFoHxhcbAAAAAACAliOBBrdQ/9Gk4UHd26wdAAAAAAAAl+rS1g0AAAAAAAAA3Bkj0IDWxjxpAKD47P1W+1mzR7ZRSwAAAIDLYwQaAAAAAAAA4AAj0AB3VX+k2syctmsHAAAAOi/+JgUASYxAAwAAAAAAABxiBBrcDityAkD78/jpxZbXr/g/24YtAQC4Sv35K5m7EkBnwwg0AAAAAAAAwAFGoAEAAAAA7Kr/dIj826wZANDmSKAB7Q0TuQIAAKCN8TgngM6GBFonUX9uGgAA3A1fxAAAAODOmAMNAOB2MjIyFBoaKl9fX5nNZu3evdthfH5+vsxms3x9fdW/f3+tWbPG6v3s7Gx5eHjYbN9//32LzgsAAACgcyCBBgBwKzk5OUpKStKiRYtUVFSkqKgoxcTEqKSkxG78sWPHNHHiREVFRamoqEgLFy7UvHnztHXrVqu4bt26qbS01Grz9fVt9nkBAAAAdB4k0AAAbmXFihWKj4/XnDlzNGjQIKWnpysoKEiZmZl249esWaPg4GClp6dr0KBBmjNnjh599FEtX77cKs7Dw0MBAQFWW0vOCwAAAKDzYA40uLX6q/4MD+reZu1oF1hcAB1AbW2tCgsLtWDBAqvy6Oho7d271+4xBQUFio6OtiqbMGGCsrKydPbsWXl7e0uSvvnmG4WEhKiurk7Dhw/XM888oxEjRjT7vAAA4IL681hKzGUJoGMigdZMl94kAJeqnxwDOrCKigrV1dXJ39/fqtzf319lZWV2jykrK7Mbf+7cOVVUVKhv374aOHCgsrOzNWTIEFVXV+vll1/WmDFj9PHHH+uGG25o1nklqaamRjU1NZb96urqpnYZAAAAQDvAI5wAALfj4eFhtW8Yhk3Z5eLrl48ePVoPPfSQhg0bpqioKP3xj3/UjTfeqFdeeaVF501LS5Ofn59lCwoKunznAAAAALQ7jEDrYB4/vbitmwAAzdarVy95enrajPoqLy+3GR12UUBAgN14Ly8v9ezZ0+4xXbp00ciRI3X06NFmn1eSUlNTlZKSYtmvrq4miQYAaPfqT6MCALiABBoAwG34+PjIbDYrLy9P9957r6U8Ly9PkydPtntMRESE3n77bauynTt3Kjw83DL/2aUMw1BxcbGGDBnS7PNKkslkkslkanT/mqq9foGp/2POK/7PNvn4+tMkMI8OAAAA3AEJNACAW0lJSVFcXJzCw8MVERGhtWvXqqSkRAkJCZIujPo6deqU1q9fL0lKSEjQqlWrlJKSorlz56qgoEBZWVnavHmzpc6lS5dq9OjRuuGGG1RdXa2VK1equLhYq1evbvR5AQBA4/BDCICOiAQa2o1LR2KwKifQMcXGxqqyslLLli1TaWmpwsLClJubq5CQEElSaWmpSkpKLPGhoaHKzc1VcnKyVq9ercDAQK1cuVJTp061xHz99df66U9/qrKyMvn5+WnEiBF6//33deuttzb6vAAAAAA6LxJoQHvG6pzooBITE5WYmGj3vezsbJuysWPH6uDBgw3W99vf/la//e1vW3ReAAAAAJ0XCTSgI6qfWJuZ03btAAAAAACgAyCB1s6x6iYAAACA1tDSRWIAoD0jgQYAAAAAcAkWFADQUZBAAwAAbosvXgAAAHAHXZpzUEZGhkJDQ+Xr6yuz2azdu3c7jM/Pz5fZbJavr6/69++vNWvW2MRs3bpVgwcPlslk0uDBg7V9+3ar999//31NmjRJgYGB8vDw0J///OfmNB3ofDbF/rABAAAAAIAma3ICLScnR0lJSVq0aJGKiooUFRWlmJgYlZSU2I0/duyYJk6cqKioKBUVFWnhwoWaN2+etm7daokpKChQbGys4uLi9PHHHysuLk7Tp0/Xhx9+aIn59ttvNWzYMK1ataoZ3URHVHzya8sGAHBPj59ebNkAAACA9qrJj3CuWLFC8fHxmjNnjiQpPT1dO3bsUGZmptLS0mzi16xZo+DgYKWnp0uSBg0apAMHDmj58uWaOnWqpY7x48crNTVVkpSamqr8/Hylp6dr8+bNkqSYmBjFxMQ0q5MdDV9CAAAAAAAAWk+TRqDV1taqsLBQ0dHRVuXR0dHau3ev3WMKCgps4idMmKADBw7o7NmzDmMaqhMAAAAA4Dyt8XRHfPZ+ywYA7U2TRqBVVFSorq5O/v7+VuX+/v4qKyuze0xZWZnd+HPnzqmiokJ9+/ZtMKahOhurpqZGNTU1lv3q6uoW1QcAAAAAAIDOp1mLCHh4eFjtG4ZhU3a5+EvLm1pnY6SlpcnPz8+yBQUFtag+AAAAALioKYurbdu2TePHj1fv3r3VrVs3RUREaMeOHa3YWgBASzQpgdarVy95enrajAwrLy+3GUF2UUBAgN14Ly8v9ezZ02FMQ3U2VmpqqqqqqizbyZMnW1QfAABoOzz6A8CdNHVxtffff1/jx49Xbm6uCgsL9aMf/UiTJk1SUVFRK7ccANAcTXqE08fHR2azWXl5ebr33nst5Xl5eZo8ebLdYyIiIvT2229ble3cuVPh4eHy9va2xOTl5Sk5OdkqJjIysinNs2EymWQymVpUh7tg4QA43aZY6/2ZOW3TDgCd0qX3tVf8n22jlgBA8zR1cbWLi6pd9Pzzz+vNN9/U22+/rREjRrRGkwEALdDkVThTUlIUFxen8PBwRUREaO3atSopKVFCQoKkC6O+Tp06pfXr10uSEhIStGrVKqWkpGju3LkqKChQVlaWZXVNSZo/f75uv/12vfDCC5o8ebLefPNNvfvuu9qzZ48l5ptvvtE///lPy/6xY8dUXFysHj16KDg4uNkXAB1D/clOhwd1b7N2AAAaxo9BADqKi4urLViwwKrc0eJqlzp//rzOnDmjHj16NBjDnM4A4D6anECLjY1VZWWlli1bptLSUoWFhSk3N1chISGSpNLSUqthy6GhocrNzVVycrJWr16twMBArVy5UlOnTrXEREZGasuWLVq8eLGeeuopDRgwQDk5ORo1apQl5sCBA/rRj35k2U9JSZEkPfzww8rOzm5yx4FO6dJRZwDcC/+PAkC70JzF1S71m9/8Rt9++62mT5/eYExaWpqWLl3aora6q/qP42fNHtmGLQGAxmlyAk2SEhMTlZiYaPc9e8mssWPH6uDBgw7rnDZtmqZNm9bg+3fccYdl8QEAAAAAaGvNXQht8+bNWrJkid5880316dOnwbjU1FTLwAHpwgg0d1kYrf6oYh7DB9AZNCuBBgAAAACdVXMWV7soJydH8fHx+tOf/qRx48Y5jO1IczoDQHvXpFU4AQAA3AErcgJoS/UXV6svLy/P4UJomzdv1uzZs7Vp0ybdfffdrm4mAMCJGIGGDocFBZqp/txLrMgJAADgUFMXV9u8ebNmzZqll19+WaNHj7aMXrviiivk5+fXZv0AADQOCTQAAAAAaKKmLq726quv6ty5c3rsscf02GOPWcpZFI0FBQC0DyTQAAAAAKAZmrK42q5du1zfIACAy5BAQ4fG45xOwKOdAAAAcKD+ipwSq3IC6JhIoAEAgDZX/8tXU7948egPAAAAXI0Emhu79JccAAA6g5Yk0wAAAABXIIHWBPV/4QYAAAAAOBejigG4qy5t3QBYe/z0YssGuLVNsfY3wAkyMjIUGhoqX19fmc1m7d6922F8fn6+zGazfH191b9/f61Zs8bq/ddee01RUVG65pprdM0112jcuHH66KOPrGKWLFkiDw8Pqy0gIMDpfQMAAADQ/pBAAwC4lZycHCUlJWnRokUqKipSVFSUYmJiVFJSYjf+2LFjmjhxoqKiolRUVKSFCxdq3rx52rp1qyVm165dmjFjht577z0VFBQoODhY0dHROnXqlFVdN998s0pLSy3bJ5984tK+AgDQlopPfm3ZAACO8QgnOg1W5ATahxUrVig+Pl5z5syRJKWnp2vHjh3KzMxUWlqaTfyaNWsUHBys9PR0SdKgQYN04MABLV++XFOnTpUkbdy40eqY1157TW+88Yb+/ve/a9asWZZyLy8vRp21czz6AwAAAFcggQbAFo9ioo3U1taqsLBQCxYssCqPjo7W3r177R5TUFCg6Ohoq7IJEyYoKytLZ8+elbe3t80x3333nc6ePasePXpYlR89elSBgYEymUwaNWqUnn/+efXv37+FvQIAAM3BjyIA3AkJNACA26ioqFBdXZ38/f2tyv39/VVWVmb3mLKyMrvx586dU0VFhfr27WtzzIIFC3Tttddq3LhxlrJRo0Zp/fr1uvHGG3X69Gk9++yzioyM1KFDh9SzZ0+7566pqVFNTY1lv7q6utF9BQCgo2I1ZQAdEXOgAQDcjoeHh9W+YRg2ZZeLt1cuSS+++KI2b96sbdu2ydfX11IeExOjqVOnasiQIRo3bpz++te/SpJ+//vfN3jetLQ0+fn5WbagoKDLdw4AAABAu8MINHRKzIfmQvUf/5yZ03btQLvUq1cveXp62ow2Ky8vtxlldlFAQIDdeC8vL5uRY8uXL9fzzz+vd999V0OHDnXYlquuukpDhgzR0aNHG4xJTU1VSkqKZb+6upokmhvh0R8AAAA4Cwk0AI3X1LnRHCXTSLTBDh8fH5nNZuXl5enee++1lOfl5Wny5Ml2j4mIiNDbb79tVbZz506Fh4dbzX/20ksv6dlnn9WOHTsUHh5+2bbU1NToyJEjioqKajDGZDLJZDJdti4AADorZz3OyY8iANoaCTQArYOFCdBIKSkpiouLU3h4uCIiIrR27VqVlJQoISFB0oVRX6dOndL69eslSQkJCVq1apVSUlI0d+5cFRQUKCsrS5s3b7bU+eKLL+qpp57Spk2b1K9fP8uItauvvlpXX321JOmJJ57QpEmTFBwcrPLycj377LOqrq7Www8/3MpXAPUxjw4AAADcAQk0AIBbiY2NVWVlpZYtW6bS0lKFhYUpNzdXISEhkqTS0lKVlJRY4kNDQ5Wbm6vk5GStXr1agYGBWrlypaZOnWqJycjIUG1traZNm2Z1rqefflpLliyRJH3xxReaMWOGKioq1Lt3b40ePVr79u2znLc11H+8HM5Vf+SCxOgFAAAANA0JNDdQ/9d1tD7mQwPcT2JiohITE+2+l52dbVM2duxYHTx4sMH6jh8/ftlzbtmypbHNAwAAANDJkEADAADtAo9zAgAkRhUDaBsk0AC0vYbmR2NxAQAuwmTUAAAAaAoSaEA9PM4JAAAAAAAuRQINgPuqPzKN0WgAAADtmqsexWdUMYDWQAKtjbBwAAAAAAAAQPtAAg1oQP3HOSUe6QSAjoqRCwDQ+lgYBkB7QwINQPvA45wA6uGLFwDAHn4UAeAqJNBaEY9tAm3k0lU+ScABAAAAAJqABBrQSKzQ6UYuTYjZQ5IM6DQa+oGqOSPTGLkAAB0Hn+kAnKlLWzcAAAAAAAAAcGeMQAOagdFoANDxMXIBAFoH81oCaA9IoAEAAAAAOjR+FAHQUiTQgBZiNJqbcjRPGit6AmgivngBQOtgNBoAd0UCDQAAdEiNXf2aL2gA4J5clUzjRxEAzUECzcUa+8c7OgZGo7VDjRmNxog1APXwxQsAAKDzIYEGAAAAAOiU+FEEQGORQANchNFo7ZCjedMuF8PINKBT4osXALQO5kYD0NZIoAGAszlKxJFoAzoskmkA0DounSbHWQk1PscBOEICzcmY8wz2MBoNANxXQ/fulnwhq/8lTOKLGAC0NyTTAFyKBBrQykimAUD74MzHhfgiBsBd1P9bFI3DjyIAJBJoTsGoMzQXybQOpDHzpwGASKYBgCu1xlxpfI4DnRMJNMBNXPprIAk1AHAfrvpCdumohov4QgYAjdeWAxpIpgGdBwk0wE0xOg0A3F9rJNb4QgYAzdPQZzSf3QCagwQa0A6QTAMA99HSkQ5N/eLGFzIAaLmGPrsZYQygsZqVQMvIyNBLL72k0tJS3XzzzUpPT1dUVFSD8fn5+UpJSdGhQ4cUGBioX/3qV0pISLCK2bp1q5566in961//0oABA/Tcc8/p3nvvbdF5XYl5z9BWGpr4lcQaOhLuM2iPmvO3QUuSaY7wBQ1oHa64X6HttPb8afXxuQ24vyYn0HJycpSUlKSMjAyNGTNGr776qmJiYnT48GEFBwfbxB87dkwTJ07U3LlztWHDBn3wwQdKTExU7969NXXqVElSQUGBYmNj9cwzz+jee+/V9u3bNX36dO3Zs0ejRo1q1nmBzobEGjoK7jNAy7/ENSbRxpc1oGVccb+C+2iNZFp9jj63+bwG3IOHYRhGUw4YNWqUbrnlFmVmZlrKBg0apClTpigtLc0m/sknn9Rbb72lI0eOWMoSEhL08ccfq6CgQJIUGxur6upq/e1vf7PE/PjHP9Y111yjzZs3N+u89lRXV8vPz09VVVXq1q1bU7otyfpDjRFo6MhIurnQzJy2boFTtfRz1Z7OfJ8pfmFCk49Bx9eceXtc/cWPL3NoLa64zziLK+5Xl+OM68G9pvW1RgKuPj6jgcZryudqk0ag1dbWqrCwUAsWLLAqj46O1t69e+0eU1BQoOjoaKuyCRMmKCsrS2fPnpW3t7cKCgqUnJxsE5Oent7s80pSTU2NampqLPtVVVWSLlyg5njkxA/n/6ZZNQDtw56jFU2KH3qtn4ta0gE18/PHXV38PG3ibzEN6uz3mW++P9es49CxNfT3R/3ySzUm7tU+9n8M/D/lz142Ji7zPbvxjo5pqtUPmp1SD9o3Z99nnMVV96tLOfs+I3GvaQuOPq+bqjGfsfU/o52Jz2V0RE25zzQpgVZRUaG6ujr5+/tblfv7+6usrMzuMWVlZXbjz507p4qKCvXt27fBmIt1Nue8kpSWlqalS5falAcFBTXcSQBwpbnb27oFLnHmzBn5+bU8kcp9BmhN/9du6YZGxDQc37hjGmNDolOqQQfhrPuMs7jqfnUp7jOw5ZzP2ObgcxkdWWPuM81aRMDDw8Nq3zAMm7LLxV9a3pg6m3re1NRUpaSkWPbPnz+vf//73+rZs6fd46qrqxUUFKSTJ0+63RBxV6LfnavfUuftO/12fr8Nw9CZM2cUGBjo1Ho76n3Gkc7679MersUPuBYXcB1+0NmuhavuM87iivtVfc29z3S2fyeNwTWxxTWxxTWx1dGvSVPuM01KoPXq1Uuenp42v6qUl5fb/JpyUUBAgN14Ly8v9ezZ02HMxTqbc15JMplMMplMVmXdu3dvuIP/T7du3TrkP4zLod+dT2ftO/12LmeOCOgs9xlHOuu/T3u4Fj/gWlzAdfhBZ7oW7jTy7CJX3a8u1dL7TGf6d9JYXBNbXBNbXBNbHfmaNPY+06Uplfr4+MhsNisvL8+qPC8vT5GRkXaPiYiIsInfuXOnwsPDLc/5NxRzsc7mnBcA0P5wnwEAtAeuul8BANyY0URbtmwxvL29jaysLOPw4cNGUlKScdVVVxnHjx83DMMwFixYYMTFxVniP//8c+PKK680kpOTjcOHDxtZWVmGt7e38cYbb1hiPvjgA8PT09P49a9/bRw5csT49a9/bXh5eRn79u1r9HmdoaqqypBkVFVVOa3O9oB+d65+G0bn7Tv9bh/97sj3GUfa238nV+Ja/IBrcQHX4QdcC/fhivuVs/DvxBbXxBbXxBbXxBbX5AdNTqAZhmGsXr3aCAkJMXx8fIxbbrnFyM/Pt7z38MMPG2PHjrWK37VrlzFixAjDx8fH6Nevn5GZmWlT55/+9CfjpptuMry9vY2BAwcaW7dubdJ5neH77783nn76aeP77793ar3ujn53rn4bRuftO/1uP/3uqPcZR9rjfydX4Vr8gGtxAdfhB1wL9+KK+5Uz8O/EFtfEFtfEFtfEFtfkBx6G4WZrQgMAAAAAAABupElzoAEAAAAAAACdDQk0AAAAAAAAwAESaAAAAAAAAIADJNAAAAAAAAAAB0ig/T8ZGRkKDQ2Vr6+vzGazdu/e3dZNapG0tDSNHDlSXbt2VZ8+fTRlyhR9+umnVjGGYWjJkiUKDAzUFVdcoTvuuEOHDh2yiqmpqdHjjz+uXr166aqrrtJPfvITffHFF63ZlRZJS0uTh4eHkpKSLGUdtd+nTp3SQw89pJ49e+rKK6/U8OHDVVhYaHm/o/b73LlzWrx4sUJDQ3XFFVeof//+WrZsmc6fP2+J6Qh9f//99zVp0iQFBgbKw8NDf/7zn63ed1Yf//Of/yguLk5+fn7y8/NTXFycvv76axf3DlLHuw81hjP+XXcEzrpndwSZmZkaOnSounXrpm7duikiIkJ/+9vfLO93lutwqeb+PYPOqTPeTxxZsmSJPDw8rLaAgIC2blar4n5r63LXZPbs2Tb/bkaPHt02jW0F/C3SOCTQJOXk5CgpKUmLFi1SUVGRoqKiFBMTo5KSkrZuWrPl5+frscce0759+5SXl6dz584pOjpa3377rSXmxRdf1IoVK7Rq1Srt379fAQEBGj9+vM6cOWOJSUpK0vbt27Vlyxbt2bNH33zzje655x7V1dW1RbeaZP/+/Vq7dq2GDh1qVd4R+/2f//xHY8aMkbe3t/72t7/p8OHD+s1vfqPu3btbYjpivyXphRde0Jo1a7Rq1SodOXJEL774ol566SW98sorlpiO0Pdvv/1Ww4YN06pVq+y+76w+zpw5U8XFxXrnnXf0zjvvqLi4WHFxcS7vX2fXEe9DjeGMf9cdgbPu2R3Bddddp1//+tc6cOCADhw4oDvvvFOTJ0+2/IHeWa5DfS35ewadT2e9n1zOzTffrNLSUsv2ySeftHWTWhX3W1uXuyaS9OMf/9jq301ubm4rtrB18bdIIxkwbr31ViMhIcGqbODAgcaCBQvaqEXOV15ebkgy8vPzDcMwjPPnzxsBAQHGr3/9a0vM999/b/j5+Rlr1qwxDMMwvv76a8Pb29vYsmWLJebUqVNGly5djHfeead1O9BEZ86cMW644QYjLy/PGDt2rDF//nzDMDpuv5988knjtttua/D9jtpvwzCMu+++23j00Uetyu677z7joYceMgyjY/ZdkrF9+3bLvrP6ePjwYUOSsW/fPktMQUGBIcn43//9Xxf3qnPrDPehy2nOv+uOqjn37I7smmuuMV5//fVOeR1a8vcMOifuJ7aefvppY9iwYW3dDLfB/dbWpdfEMAzj4YcfNiZPntwm7XEH/C1iX6cfgVZbW6vCwkJFR0dblUdHR2vv3r1t1Crnq6qqkiT16NFDknTs2DGVlZVZ9dtkMmns2LGWfhcWFurs2bNWMYGBgQoLC3P7a/PYY4/p7rvv1rhx46zKO2q/33rrLYWHh+v+++9Xnz59NGLECL322muW9ztqvyXptttu09///nd99tlnkqSPP/5Ye/bs0cSJEyV17L5f5Kw+FhQUyM/PT6NGjbLEjB49Wn5+fu3iOrRXneU+1FSN+XfdUTXnnt0R1dXVacuWLfr2228VERHRKa9DS/6eQefD/aRhR48eVWBgoEJDQ/XAAw/o888/b+smuQ0+Txq2a9cu9enTRzfeeKPmzp2r8vLytm5Sq+FvEfu82roBba2iokJ1dXXy9/e3Kvf391dZWVkbtcq5DMNQSkqKbrvtNoWFhUmSpW/2+n3ixAlLjI+Pj6655hqbGHe+Nlu2bNHBgwe1f/9+m/c6ar8///xzZWZmKiUlRQsXLtRHH32kefPmyWQyadasWR2235L05JNPqqqqSgMHDpSnp6fq6ur03HPPacaMGZI67n/z+pzVx7KyMvXp08em/j59+rSL69BedYb7UHM05t91R9Tce3ZH8sknnygiIkLff/+9rr76am3fvl2DBw+2/IHeWa5DS/+eQefD/cS+UaNGaf369brxxht1+vRpPfvss4qMjNShQ4fUs2fPtm5em+PzxL6YmBjdf//9CgkJ0bFjx/TUU0/pzjvvVGFhoUwmU1s3z6X4W6RhnT6BdpGHh4fVvmEYNmXt1c9//nP94x//0J49e2zea06/3fnanDx5UvPnz9fOnTvl6+vbYFxH6/f58+cVHh6u559/XpI0YsQIHTp0SJmZmZo1a5YlrqP1W7ow18eGDRu0adMm3XzzzSouLlZSUpICAwP18MMPW+I6Yt8v5Yw+2otvb9ehverI96GW6GzXxdn37PbopptuUnFxsb7++mtt3bpVDz/8sPLz8y3vd4br4Mq/Z9Dx8e/CWkxMjOX1kCFDFBERoQEDBuj3v/+9UlJS2rBl7oV/N9ZiY2Mtr8PCwhQeHq6QkBD99a9/1X333deGLXM9/hZpWKd/hLNXr17y9PS0+VWmvLzcJrvaHj3++ON666239N577+m6666zlF9cecZRvwMCAlRbW6v//Oc/Dca4m8LCQpWXl8tsNsvLy0teXl7Kz8/XypUr5eXlZWl3R+t33759NXjwYKuyQYMGWSaM7aj/vSXpl7/8pRYsWKAHHnhAQ4YMUVxcnJKTk5WWliapY/f9Imf1MSAgQKdPn7ap/6uvvmoX16G96uj3oeZqzL/rjqYl9+yOxMfHR9dff73Cw8OVlpamYcOG6eWXX+5U18EZf8+g8+F+0jhXXXWVhgwZoqNHj7Z1U9xCZ/psbYm+ffsqJCSkw/+74W8Rxzp9As3Hx0dms1l5eXlW5Xl5eYqMjGyjVrWcYRj6+c9/rm3btun//t//q9DQUKv3Q0NDFRAQYNXv2tpa5efnW/ptNpvl7e1tFVNaWqr/+Z//cdtrc9ddd+mTTz5RcXGxZQsPD9eDDz6o4uJi9e/fv0P2e8yYMTbLDH/22WcKCQmR1HH/e0vSd999py5drD/KPD09df78eUkdu+8XOauPERERqqqq0kcffWSJ+fDDD1VVVdUurkN71VHvQy3VmH/XHYUz7tkdmWEYqqmp6VTXwRl/z6Dz4X7SODU1NTpy5Ij69u3b1k1xC53ps7UlKisrdfLkyQ7774a/RRqplRYrcGtbtmwxvL29jaysLOPw4cNGUlKScdVVVxnHjx9v66Y1289+9jPDz8/P2LVrl1FaWmrZvvvuO0vMr3/9a8PPz8/Ytm2b8cknnxgzZsww+vbta1RXV1tiEhISjOuuu8549913jYMHDxp33nmnMWzYMOPcuXNt0a1mqb9qlWF0zH5/9NFHhpeXl/Hcc88ZR48eNTZu3GhceeWVxoYNGywxHbHfhnFhhZxrr73W+Mtf/mIcO3bM2LZtm9GrVy/jV7/6lSWmI/T9zJkzRlFRkVFUVGRIMlasWGEUFRUZJ06cMAzDeX388Y9/bAwdOtQoKCgwCgoKjCFDhhj33HNPq/e3s+mI96HGcMa/647AWffsjiA1NdV4//33jWPHjhn/+Mc/jIULFxpdunQxdu7caRhG57kO9jTn7xl0Pp31fuLIL37xC2PXrl3G559/buzbt8+45557jK5du3aqa8L91paja3LmzBnjF7/4hbF3717j2LFjxnvvvWdEREQY1157bYe9Jvwt0jgk0P6f1atXGyEhIYaPj49xyy23WJZrba8k2d1+97vfWWLOnz9vPP3000ZAQIBhMpmM22+/3fjkk0+s6vnvf/9r/PznPzd69OhhXHHFFcY999xjlJSUtHJvWubSPzg7ar/ffvttIywszDCZTMbAgQONtWvXWr3fUftdXV1tzJ8/3wgODjZ8fX2N/v37G4sWLTJqamosMR2h7++9957d/6cffvhhwzCc18fKykrjwQcfNLp27Wp07drVePDBB43//Oc/rdTLzq2j3Ycawxn/rjsCZ92zO4JHH33U8v9B7969jbvuusuSPDOMznMd7GnO3zPonDrj/cSR2NhYo2/fvoa3t7cRGBho3HfffcahQ4faulmtivutLUfX5LvvvjOio6ON3r17G97e3kZwcLDx8MMPu9V3A2fjb5HG8TAMw3DV6DYAAAAAAACgvev0c6ABAAAAAAAAjpBAAwAAAAAAABwggQYAAAAAAAA4QAINAAAAAAAAcIAEGgAAAAAAAOAACTQAAAAAAADAARJoAAAAAAAAgAMk0IBWsGTJEnl4eKiiouKysf369dPs2bMt+5999pmeeOIJmc1mde/eXT169NCYMWP0xhtvNLkdu3btkoeHR7OOBQB0DJs2bVJ6enpbNwMAAKBdIYEGuJnt27frqaeesuzv3LlTf/3rXzV16lT96U9/0saNG3XDDTfo/vvv17Jly9qwpQCA9ogEGgAAQNN5tXUDAFgbMWKE1f4DDzygxx57TB4eHpaymJgYVVRU6IUXXtCTTz4pk8nU2s0EAAAAAKDTYAQa0IA///nP8vDw0N///neb9zIzM+Xh4aF//OMfkqQPP/xQkyZNUs+ePeXr66sBAwYoKSnJ5rjTp09rxowZ8vPzk7+/vx599FFVVVVZxVz6CGevXr2skmcX3Xrrrfruu+/073//u8l9+/7775WSkqKAgABdccUVGjt2rIqKippcDwB0dhcf0f/HP/6h+++/X35+furRo4dSUlJ07tw5ffrpp/rxj3+srl27ql+/fnrxxRctx2ZnZ8vDw0PHjx+3qvPi4/a7du1qdDsu1pWXl6dHHnlEPXr00FVXXaVJkybp888/t8Tdcccd+utf/6oTJ07Iw8PDsjVWUVGR7rnnHvXp00cmk0mBgYG6++679cUXX0iSjh8/Lg8PD2VnZ9sc6+HhoSVLllj2W3LtAAAAWhsJNKABF78g/O53v7N5Lzs7W7fccouGDh2qHTt2KCoqSiUlJVqxYoX+9re/afHixTp9+rTNcVOnTtWNN96orVu3asGCBdq0aZOSk5Ob1b733ntPvXv3Vp8+fZp87MKFC/X555/r9ddf1+uvv64vv/xSd9xxh9WXLABA402fPl3Dhg3T1q1bNXfuXP32t79VcnKypkyZorvvvlvbt2/XnXfeqSeffFLbtm1zWTvi4+PVpUsXy2OaH330ke644w59/fXXkqSMjAyNGTNGAQEBKigosGyN8e2332r8+PE6ffq0Vq9erby8PKWnpys4OFhnzpxpdpvd5doBAAA4wiOcQAO8vLz00EMPKTMzU1VVVfLz85MkHTlyRB999JFeeeUVSdJjjz2m4OBgffjhh/L19bUc/8gjj9jUGR8fr1/+8peSpHHjxumf//yn1q1bp6ysrCaNAHj99de1a9cuvfzyy/L09Gxy33r37q3t27dbznnbbbfphhtuUFpaml577bUm1wcAnd1Pf/pTpaSkSLrw+b5z506tWrVK27Zt07333ivpwuivv/zlL9q4caPuu+8+l7QjPDxcWVlZlv2bb75ZY8aM0erVq7Vo0SINHjxY3bt3l8lk0ujRo5tU9//+7/+qsrJSWVlZmjx5sqV8+vTpLWqzu1w7AAAARxiBBjjw6KOP6r///a9ycnIsZb/73e9kMpk0c+ZMffbZZ/rXv/6l+Ph4q+RZQ37yk59Y7Q8dOlTff/+9ysvLG92mv/3tb3rsscc0bdo0Pf74443vTD0zZ860StiFhIQoMjJS7733XrPqA4DO7p577rHaHzRokDw8PBQTE2Mp8/Ly0vXXX68TJ064rB0PPvig1X5kZKRCQkKc8vl+/fXX65prrtGTTz6pNWvW6PDhwy2uU3KfawcAAOAICTTAgZtvvlkjR460PMZZV1enDRs2aPLkyerRo4e++uorSdJ1113XqPp69uxptX9x8v///ve/jTp+x44duu+++zR+/Hht3LixSaPW6gsICLBbVllZ2az6AKCz69Gjh9W+j4+PrrzySpsfV3x8fPT999+7rB2u/Hz38/NTfn6+hg8froULF+rmm29WYGCgnn76aZ09e7bZ9brLtQMAAHCEBBpwGY888oj27dunI0eO6J133lFpaanl8czevXtLkmXyZFfasWOHpkyZorFjx2rr1q3y8fFpdl1lZWV2yy5N8AEAXOdigqimpsaqvKKiotl1uvrzfciQIdqyZYsqKytVXFys2NhYLVu2TL/5zW8kNdwnfqABAADtHQk04DJmzJghX19fZWdnKzs7W9dee62io6MlSTfeeKMGDBigdevW2XxZcKadO3dqypQpuu222/TnP//ZMnKtuTZv3izDMCz7J06c0N69e3XHHXe0sKUAgMbq16+fJFlWdL7orbfeanadGzdutNrfu3evTpw4YfX5bjKZGj3yuSEeHh4aNmyYfvvb36p79+46ePCgJMnf31++vr42fXrzzTdbdD4AAIC2xiICwGV0795d9957r7Kzs/X111/riSeeUJcuP+SeV69erUmTJmn06NFKTk5WcHCwSkpKtGPHDpsvMs2xZ88eTZkyRQEBAVq4cKGKi4ut3h88eLC6devWpDrLy8t17733au7cuaqqqtLTTz8tX19fpaamtri9AIDGGTlypG666SY98cQTOnfunK655hpt375de/bsaXadBw4c0Jw5c3T//ffr5MmTWrRoka699lolJiZaYoYMGaJt27YpMzNTZrNZXbp0UXh4+GXr/stf/qKMjAxNmTJF/fv3l2EY2rZtm77++muNHz9e0oXE2kMPPaR169ZpwIABGjZsmD766CNt2rSp2X0CAABwByTQgEZ45JFHtHnzZknS7Nmzrd6bMGGC3n//fS1btkzz5s3T999/r+uuu85mwYDmevfdd/Xf//5Xx48f15133mnz/nvvvdfkkWPPP/+89u/fr0ceeUTV1dW69dZbtWXLFg0YMMApbQYAXJ6np6fefvtt/fznP1dCQoJMJpMeeOABrVq1SnfffXez6szKytIf/vAHPfDAA6qpqdGPfvQjvfzyy1bzjM2fP1+HDh3SwoULVVVVJcMwrEYlN+SGG25Q9+7d9eKLL+rLL7+Uj4+PbrrpJmVnZ+vhhx+2xF18nPPFF1/UN998ozvvvFN/+ctfLCPuAAAA2iMPozF/MQEAAMBtZWdn65FHHtH+/fsbNZoMAAAATcMcaAAAAAAAAIADPMIJdACGYaiurs5hjKenpzw8PFqpRQAAZ2js53tL1dXVOXyM08PDwynnAQAAaK8YgQZ0APn5+fL29na4/f73v2/rZgIAmuj3v//9ZT/f8/PzNXv2bBmG0ezHN++66y6H52COTAAA0NkxBxrQAZw5c0affvqpw5jQ0FD17NmzlVoEAHCGyspKHTt2zGHMTTfdpK5du7boPJ9++qnOnDnT4Psmk0lDhgxp0TkAAADaMxJoAAAAAAAAgAM8wgkAAAAAAAA40KkWETh//ry+/PJLde3alcnUAcAJDMPQmTNnFBgYqC5d+E2G+wwAOBf3GQCAu+hUCbQvv/xSQUFBbd0MAOhwTp48qeuuu66tm9HmuM8AgGtwnwEAtLVOlUC7OMHuyZMn1a1btzZuDQC0f9XV1QoKCmrxBOYdBfcZAHAu7jMAAHfRqRJoFx+n6datG19sAMCJeFzxAu4zAOAa3GcAAG2NiQQAAAAAAAAAB0igAQAAAAAAAA6QQAMAAAAAAAAcIIEGAAAAAAAAOEACDQAAAAAAAHCABBoAAAAAAADgAAk0AAAAAAAAwAESaAAAAAAAAIADJNAAAAAAAAAAB7zaugGdSXz2fsvrrNkj27AlAIAOY1PsD69n5rRdOwAAAIAOjBFoAAAAAAAAgAMk0AAAAAAAAAAHSKABAAAAAAAADpBAAwAAAAAAABxgEYE2woICAAAAAAAA7QMj0AAA7VJGRoZCQ0Pl6+srs9ms3bt3O4zPz8+X2WyWr6+v+vfvrzVr1jQYu2XLFnl4eGjKlClObrWLbYr9YQMAAADgNCTQAADtTk5OjpKSkrRo0SIVFRUpKipKMTExKikpsRt/7NgxTZw4UVFRUSoqKtLChQs1b948bd261Sb2xIkTeuKJJxQVFeXqbgAAAABoJ0igAQDanRUrVig+Pl5z5szRoEGDlJ6erqCgIGVmZtqNX7NmjYKDg5Wenq5BgwZpzpw5evTRR7V8+XKruLq6Oj344INaunSp+vfv3xpdAQAAANAOMAeai9Wf6wwA0HK1tbUqLCzUggULrMqjo6O1d+9eu8cUFBQoOjraqmzChAnKysrS2bNn5e3tLUlatmyZevfurfj4+Ms+EgoAAACg83DZCLSmzE1TWlqqmTNn6qabblKXLl2UlJRkN27r1q0aPHiwTCaTBg8erO3bt7uo9QAAd1VRUaG6ujr5+/tblfv7+6usrMzuMWVlZXbjz507p4qKCknSBx98oKysLL322muNbktNTY2qq6utNgAAAAAdj0sSaE2dm6ampka9e/fWokWLNGzYMLsxBQUFio2NVVxcnD7++GPFxcVp+vTp+vDDD13RBQCAm/Pw8LDaNwzDpuxy8RfLz5w5o4ceekivvfaaevXq1eg2pKWlyc/Pz7IFBQU1oQcAAAAA2guXJNCaOjdNv3799PLLL2vWrFny8/OzG5Oenq7x48crNTVVAwcOVGpqqu666y6lp6e7ogsAADfVq1cveXp62ow2Ky8vtxlldlFAQIDdeC8vL/Xs2VP/+te/dPz4cU2aNEleXl7y8vLS+vXr9dZbb8nLy0v/+te/7Nabmpqqqqoqy3by5EnndBIAAACAW3F6Au3i3DSXzjXjaG6axmho/pqW1AkAaH98fHxkNpuVl5dnVZ6Xl6fIyEi7x0RERNjE79y5U+Hh4fL29tbAgQP1ySefqLi42LL95Cc/0Y9+9CMVFxc3OLLMZDKpW7duVhsAAACAjsfpiwg0Z26axmho/hpHddbU1Kimpsayz9w0ANAxpKSkKC4uTuHh4YqIiNDatWtVUlKihIQESRdGhp06dUrr16+XJCUkJGjVqlVKSUnR3LlzVVBQoKysLG3evFmS5Ovrq7CwMKtzdO/eXZJsygEAAAB0Pi5bhbOpc9O4os60tDQtXbq0RecEALif2NhYVVZWatmyZSotLVVYWJhyc3MVEhIi6cLiNPXn3QwNDVVubq6Sk5O1evVqBQYGauXKlZo6dWpbdQEAAABAO+L0BFpz5qZpjIbmr3FUZ2pqqlJSUiz71dXVTPAMAB1EYmKiEhMT7b6XnZ1tUzZ27FgdPHiw0fXbqwMAAABA5+T0OdCaMzdNYzQ0f42jOpmbBgAAAAAAAC3lkkc4mzo3jSQVFxdLkr755ht99dVXKi4ulo+PjwYPHixJmj9/vm6//Xa98MILmjx5st588029++672rNnjyu6AAAAAAAAAEhyUQKtqXPTSNKIESMsrwsLC7Vp0yaFhITo+PHjkqTIyEht2bJFixcv1lNPPaUBAwYoJydHo0aNckUXAABwX5ti27oFAAAAQKfiskUEmjo3jWEYl61z2rRpmjZtWkubBgAAAAAAADSayxJoaLz47P2W11mzR7ZhSwAAAAAAAHAppy8iAAAAAAAAAHQkJNAAAAAAAAAAB0igAQAAAAAAAA6QQAMAAAAAAAAcIIEGAAAAAAAAOEACDQAAAAAAAHCABBoAAAAAAADgAAk0AAAAAAAAwAESaAAAAAAAAIADXm3dAAAA4AKbYn94PTOn7doBAAAAdACMQAMAAAAAAAAcIIEGAAAAAAAAOEACDQAAAAAAAHCABBoAAAAAAADgAAk0AAAAAAAAwAESaAAAAAAAAIADXm3dgI4mPnt/WzcBAAAAAAAATkQCzc3UT8BlzR7Zhi0BAAAAAACAxCOcAAAAAAAAgEMk0AAAAAAAAAAHSKABAAAAAAAADpBAAwAAAAAAABwggQYAAAAAAAA4QAINAAAAAAAAcIAEGgAAAAAAAOAACTQAAAAAAADAARJoAAAAAAAAgAMk0AAAAAAAAAAHSKABAAAAAAAADni1dQMAAICLbYr94fXMnLZrBwAAANBOMQINAAAAAAAAcIARaAAAtAf1R5EBAAAAaFUuG4GWkZGh0NBQ+fr6ymw2a/fu3Q7j8/PzZTab5evrq/79+2vNmjU2Menp6brpppt0xRVXKCgoSMnJyfr+++9d1QUAADqeTbE/bAAAAAAaxSUJtJycHCUlJWnRokUqKipSVFSUYmJiVFJSYjf+2LFjmjhxoqKiolRUVKSFCxdq3rx52rp1qyVm48aNWrBggZ5++mkdOXJEWVlZysnJUWpqqiu6AAAAAAAAAEhy0SOcK1asUHx8vObMmSPpwsixHTt2KDMzU2lpaTbxa9asUXBwsNLT0yVJgwYN0oEDB7R8+XJNnTpVklRQUKAxY8Zo5syZkqR+/fppxowZ+uijj1zRBQAAAAAAAECSC0ag1dbWqrCwUNHR0Vbl0dHR2rt3r91jCgoKbOInTJigAwcO6OzZs5Kk2267TYWFhZaE2eeff67c3Fzdfffdzu4CAAAAAAAAYOH0EWgVFRWqq6uTv7+/Vbm/v7/KysrsHlNWVmY3/ty5c6qoqFDfvn31wAMP6KuvvtJtt90mwzB07tw5/exnP9OCBQsabEtNTY1qamos+9XV1S3oGQAAAAAAADojl63C6eHhYbVvGIZN2eXi65fv2rVLzz33nDIyMjRq1Cj985//1Pz589W3b1899dRTdutMS0vT0qVLW9KNNhWfvd/yOmv2yDZsCQAAAAAAQOfl9ARar1695OnpaTParLy83GaU2UUBAQF24728vNSzZ09J0lNPPaW4uDjLvGpDhgzRt99+q5/+9KdatGiRunSxfRo1NTVVKSkplv3q6moFBQW1qH8AAAAAAADoXJw+B5qPj4/MZrPy8vKsyvPy8hQZGWn3mIiICJv4nTt3Kjw8XN7e3pKk7777ziZJ5unpKcMwLKPVLmUymdStWzerDQAAAAAAAGgKpyfQJCklJUWvv/661q1bpyNHjig5OVklJSVKSEiQdGFk2KxZsyzxCQkJOnHihFJSUnTkyBGtW7dOWVlZeuKJJywxkyZNUmZmprZs2aJjx44pLy9PTz31lH7yk5/I09PTFd0AALixjIwMhYaGytfXV2azWbt373YYn5+fL7PZLF9fX/Xv319r1qyxen/btm0KDw9X9+7dddVVV2n48OH6wx/+4MouAAAAAGgnXDIHWmxsrCorK7Vs2TKVlpYqLCxMubm5CgkJkSSVlpaqpKTEEh8aGqrc3FwlJydr9erVCgwM1MqVKzV16lRLzOLFi+Xh4aHFixfr1KlT6t27tyZNmqTnnnvOFV0AALixnJwcJSUlKSMjQ2PGjNGrr76qmJgYHT58WMHBwTbxx44d08SJEzV37lxt2LBBH3zwgRITE9W7d2/LvaZHjx5atGiRBg4cKB8fH/3lL3/RI488oj59+mjChAmt3UUAAAAAbsTDaOj5xw6ourpafn5+qqqqctnjnPUn/ncmFhEA4I5a43PVnlGjRumWW25RZmampWzQoEGaMmWK0tLSbOKffPJJvfXWWzpy5IilLCEhQR9//LEKCgoaPM8tt9yiu+++W88880yj2uXS67Ep1rn1SdLMHOfXCQBO1Fb3GQAALuWSRzgBAHCV2tpaFRYWKjo62qo8Ojpae/futXtMQUGBTfyECRN04MABnT171ibeMAz9/e9/16effqrbb7+9wbbU1NSourraagMAAADQ8ZBAAwC0KxUVFaqrq7NZ2dnf399mReeLysrK7MafO3dOFRUVlrKqqipdffXV8vHx0d13361XXnlF48ePb7AtaWlp8vPzs2ys9AwAAAB0TCTQAADtkoeHh9W+YRg2ZZeLv7S8a9euKi4u1v79+/Xcc88pJSVFu3btarDO1NRUVVVVWbaTJ082oycAAAAA3J1LFhEAAMBVevXqJU9PT5vRZuXl5TajzC4KCAiwG+/l5aWePXtayrp06aLrr79ekjR8+HAdOXJEaWlpuuOOO+zWazKZZDKZWtCbNnbpvGrMiQYAAADYxQg0AEC74uPjI7PZrLy8PKvyvLw8RUZG2j0mIiLCJn7nzp0KDw+Xt7d3g+cyDEM1NTUtbzQAAACAdo0RaACAdiclJUVxcXEKDw9XRESE1q5dq5KSEiUkJEi68GjlqVOntH79ekkXVtxctWqVUlJSNHfuXBUUFCgrK0ubN2+21JmWlqbw8HANGDBAtbW1ys3N1fr1661W+gQAAADQOZFAAwC0O7GxsaqsrNSyZctUWlqqsLAw5ebmKiQkRJJUWlqqkpISS3xoaKhyc3OVnJys1atXKzAwUCtXrtTUqVMtMd9++60SExP1xRdf6IorrtDAgQO1YcMGxcbG2pwfAAAAQOfiYVycRbkTqK6ulp+fn6qqqtStWzeXnCM+e79L6s2aPdIl9QJAS7TG52p74tLrcel8Za7AHGgA3Az3GQCAu2AONAAAAAAAAMABEmgAAAAAAACAAyTQAAAAAAAAAAdIoAEAAAAAAAAOkEADAAAAAAAAHCCBBgAAAAAAADjg1dYNQOPEZ++3vM6aPbINWwIAAAAAANC5MAINAAAAAAAAcIAEGgAAAAAAAOAACTQAAAAAAADAARJoAAAAAAAAgAMk0AAAAAAAAAAHSKABAAAAAAAADpBAAwAAAAAAABwggQYAAAAAAAA4QAINAAAAAAAAcIAEGgAAAAAAAOAACTQAAAAAAADAAa+2bgAAAHAP8dn7La+zZo9sw5YAAAAA7oUEGgAAHVzxya8tr4cHdbdbLknyb5XmAAAAAO0OCTQAACBJevz04np7O9qsHQAAAIC7IYHmBPUfeQEAwJ3ZjDoDAAAAcFkk0AAA6IBamihr6Mch5kYDAABAZ8QqnAAAAAAAAIADJNAAAAAAAAAAB1yWQMvIyFBoaKh8fX1lNpu1e/duh/H5+fkym83y9fVV//79tWbNGpuYr7/+Wo899pj69u0rX19fDRo0SLm5ua7qAgAAAAAAAOCaOdBycnKUlJSkjIwMjRkzRq+++qpiYmJ0+PBhBQcH28QfO3ZMEydO1Ny5c7VhwwZ98MEHSkxMVO/evTV16lRJUm1trcaPH68+ffrojTfe0HXXXaeTJ0+qa9euruiCW6s/Lw1z0QAAAAAAALiWSxJoK1asUHx8vObMmSNJSk9P144dO5SZmam0tDSb+DVr1ig4OFjp6emSpEGDBunAgQNavny5JYG2bt06/fvf/9bevXvl7e0tSQoJCXFF8wEAAAAAAAALpz/CWVtbq8LCQkVHR1uVR0dHa+/evXaPKSgosImfMGGCDhw4oLNnz0qS3nrrLUVEROixxx6Tv7+/wsLC9Pzzz6uurq7BttTU1Ki6utpqAwCgoyo++bVlc5X47P2WDQAAAOgsnJ5Aq6ioUF1dnfz9/a3K/f39VVZWZveYsrIyu/Hnzp1TRUWFJOnzzz/XG2+8obq6OuXm5mrx4sX6zW9+o+eee67BtqSlpcnPz8+yBQUFtbB3AAAAAAAA6GxctoiAh4eH1b5hGDZll4uvX37+/Hn16dNHa9euldls1gMPPKBFixYpMzOzwTpTU1NVVVVl2U6ePNnc7gAAAAAAAKCTcvocaL169ZKnp6fNaLPy8nKbUWYXBQQE2I338vJSz549JUl9+/aVt7e3PD09LTGDBg1SWVmZamtr5ePjY1OvyWSSyWRqaZcAAAAAAADQiTl9BJqPj4/MZrPy8vKsyvPy8hQZGWn3mIiICJv4nTt3Kjw83LJgwJgxY/TPf/5T58+ft8R89tln6tu3r93kGQAAAAAAAOAMLnmEMyUlRa+//rrWrVunI0eOKDk5WSUlJUpISJB04dHKWbNmWeITEhJ04sQJpaSk6MiRI1q3bp2ysrL0xBNPWGJ+9rOfqbKyUvPnz9dnn32mv/71r3r++ef12GOPuaILAAAAAAAAgCQXPMIpSbGxsaqsrNSyZctUWlqqsLAw5ebmKiQkRJJUWlqqkpISS3xoaKhyc3OVnJys1atXKzAwUCtXrtTUqVMtMUFBQdq5c6eSk5M1dOhQXXvttZo/f76efPJJV3QBAABcRv2VOLNmj2zDlgAAAACu5ZIEmiQlJiYqMTHR7nvZ2dk2ZWPHjtXBgwcd1hkREaF9+/Y5o3kAAAAAAABAo7hsFU4AAAAAAACgIyCBBgAAAAAAADhAAg0AAAAAAABwwGVzoAEAgBbaFHvZkOKTX7vk1I+fXmx5/Yr/sy45BwAAANBeMAINAAAAAAAAcIARaC7GL/gAgM4gPnu/5XXW7JFt2BIAAADA+UigAQAAh/gxCAAAAJ0dj3ACAAAAAAAADjACrZ2r/8iMxGMzAAAAAAAAzsYINABAu5SRkaHQ0FD5+vrKbDZr9+7dDuPz8/NlNpvl6+ur/v37a82aNVbvv/baa4qKitI111yja665RuPGjdNHH33kyi4AAAAAaCdIoAEA2p2cnBwlJSVp0aJFKioqUlRUlGJiYlRSUmI3/tixY5o4caKioqJUVFSkhQsXat68edq6daslZteuXZoxY4bee+89FRQUKDg4WNHR0Tp16lRrdQsAAACAmyKBBgBod1asWKH4+HjNmTNHgwYNUnp6uoKCgpSZmWk3fs2aNQoODlZ6eroGDRqkOXPm6NFHH9Xy5cstMRs3blRiYqKGDx+ugQMH6rXXXtP58+f197//vbW6BQAAAMBNkUADALQrtbW1KiwsVHR0tFV5dHS09u7da/eYgoICm/gJEybowIEDOnv2rN1jvvvuO509e1Y9evRosC01NTWqrq622gAAAAB0PCwiAABoVyoqKlRXVyd/f3+rcn9/f5WVldk9pqyszG78uXPnVFFRob59+9ocs2DBAl177bUaN25cg21JS0vT0qVLm9GLjq3+AjcsbgMAAICOgBFoAIB2ycPDw2rfMAybssvF2yuXpBdffFGbN2/Wtm3b5Ovr22CdqampqqqqsmwnT55sShcAAAAAtBOMQAMAtCu9evWSp6enzWiz8vJym1FmFwUEBNiN9/LyUs+ePa3Kly9frueff17vvvuuhg4d6rAtJpNJJpOpGb0AAAAA0J4wAg0A0K74+PjIbDYrLy/PqjwvL0+RkZF2j4mIiLCJ37lzp8LDw+Xt7W0pe+mll/TMM8/onXfeUXh4uPMbDwAAAKBdIoEGAGh3UlJS9Prrr2vdunU6cuSIkpOTVVJSooSEBEkXHq2cNWuWJT4hIUEnTpxQSkqKjhw5onXr1ikrK0tPPPGEJebFF1/U4sWLtW7dOvXr109lZWUqKyvTN9980+r9AwAAAOBeeIQTANDuxMbGqrKyUsuWLVNpaanCwsKUm5urkJAQSVJpaalKSkos8aGhocrNzVVycrJWr16twMBArVy5UlOnTrXEZGRkqLa2VtOmTbM619NPP60lS5a0Sr8AAAAAuCcSaACAdikxMVGJiYl238vOzrYpGzt2rA4ePNhgfcePH3dSy1yv+OTXbd0EAAAAoFPhEU4AAAAAAADAAUagAQCARnv89GLL61f8n71sfHz2fsvrrNkjXdImAAAAwNVIoLWRpn4BAQAAAAAAQNsggdbB8Es/AAAAAACAczEHGgAAAAAAAOAAI9DcAI9zAgAAAAAAuC9GoAEAAAAAAAAOMAKtFdUfaQYAAAAAAID2gRFoAAAAAAAAgAMk0AAAAAAAAAAHeITTzbCgAAAAAAAAgHthBBoAAAAAAADggMsSaBkZGQoNDZWvr6/MZrN2797tMD4/P19ms1m+vr7q37+/1qxZ02Dsli1b5OHhoSlTpji51S33+OnFVhsAALggPnu/ZQMAAADaE5ck0HJycpSUlKRFixapqKhIUVFRiomJUUlJid34Y8eOaeLEiYqKilJRUZEWLlyoefPmaevWrTaxJ06c0BNPPKGoqChXNB0AAAAAAACw4pIE2ooVKxQfH685c+Zo0KBBSk9PV1BQkDIzM+3Gr1mzRsHBwUpPT9egQYM0Z84cPfroo1q+fLlVXF1dnR588EEtXbpU/fv3d0XTAQAAAAAAACtOT6DV1taqsLBQ0dHRVuXR0dHau3ev3WMKCgps4idMmKADBw7o7NmzlrJly5apd+/eio+Pd3az3RKPggIAAAAAALQ9p6/CWVFRobq6Ovn7+1uV+/v7q6yszO4xZWVlduPPnTuniooK9e3bVx988IGysrJUXFzc6LbU1NSopqbGsl9dXd34jgAA4EaKT37d1k0AAAAAOi2nJ9Au8vDwsNo3DMOm7HLxF8vPnDmjhx56SK+99pp69erV6DakpaVp6dKlTWg1AABorPojpF/xf7YNWwIAAAC4ltMTaL169ZKnp6fNaLPy8nKbUWYXBQQE2I338vJSz549dejQIR0/flyTJk2yvH/+/HlJkpeXlz799FMNGDDApt7U1FSlpKRY9qurqxUUFNTsvrU39Vc5y5o9sg1bAgAAAAAA0H45PYHm4+Mjs9msvLw83XvvvZbyvLw8TZ482e4xERERevvtt63Kdu7cqfDwcHl7e2vgwIH65JNPrN5fvHixzpw5o5dffrnBpJjJZJLJZGphjwAAAAAAANCZueQRzpSUFMXFxSk8PFwRERFau3atSkpKlJCQIOnCyLBTp05p/fr1kqSEhAStWrVKKSkpmjt3rgoKCpSVlaXNmzdLknx9fRUWFmZ1ju7du0uSTTkAAAAAAADgTC5JoMXGxqqyslLLli1TaWmpwsLClJubq5CQEElSaWmpSkpKLPGhoaHKzc1VcnKyVq9ercDAQK1cuVJTp051RfMAAEAbqz/NgMRUAwAAAHBvLltEIDExUYmJiXbfy87OtikbO3asDh482Oj67dUBAAAAAAAAOFuXtm4AAAAAAAAA4M5cNgINrvP46cWW16/4P9uGLQEAAAAAAOj4SKABAIAW48cdAAAAdGQk0NqJ+l9MAAAAAAAA0HqYAw0AAAAAAABwgAQaAAAAAAAA4ACPcAIAgDYXn73f8jpr9sg2bAkAAABgixFoAAAAAAAAgAOMQOsk+GUfAAAAAACgeRiBBgAAAAAAADhAAg0AAAAAAABwgAQaAAAAAAAA4AAJNAAAAAAAAMABEmgAAAAAAACAA6zCCQCAmyo++XVbN6FZHj+92PL6Ff9nm3w8K0cDAADA3TACDQAAAAAAAHCAEWhOUP+XdgAAAAAAAHQsjEADAAAAAAAAHCCBBgAAAAAAADjAI5ydEJMzAwAAAAAANB4j0AAAAAAAAAAHSKABANqljIwMhYaGytfXV2azWbt373YYn5+fL7PZLF9fX/Xv319r1qyxev/QoUOaOnWq+vXrJw8PD6Wnp7uw9Wis+Oz9lg0AAABoKzzC2c5dugLoK/7PtlFLAKD15OTkKCkpSRkZGRozZoxeffVVxcTE6PDhwwoODraJP3bsmCZOnKi5c+dqw4YN+uCDD5SYmKjevXtr6tSpkqTvvvtO/fv31/3336/k5OTW7hIAAAAAN0YCrYOpn1AjmQago1qxYoXi4+M1Z84cSVJ6erp27NihzMxMpaWl2cSvWbNGwcHBllFlgwYN0oEDB7R8+XJLAm3kyJEaOfLCvJALFixonY50AtyXAAAA0BHwCGcH9vjpxZYNADqK2tpaFRYWKjo62qo8Ojpae/futXtMQUGBTfyECRN04MABnT171mVtBQAAANAxMAKtmerPxfJ4G7YDADqbiooK1dXVyd/f36rc399fZWVldo8pKyuzG3/u3DlVVFSob9++zWpLTU2NampqLPvV1dXNqgcAAACAe2MEGgCgXfLw8LDaNwzDpuxy8fbKmyItLU1+fn6WLSgoqNl1AQAAAHBfJNAAAO1Kr1695OnpaTParLy83GaU2UUBAQF24728vNSzZ89mtyU1NVVVVVWW7eTJk82uCwAAAID74hHOTq7+o6hZs0e2YUsAoHF8fHxkNpuVl5ene++911Kel5enyZMn2z0mIiJCb7/9tlXZzp07FR4eLm9v72a3xWQyyWQyNft4NA33LAAAALQVEmgAgHYnJSVFcXFxCg8PV0REhNauXauSkhIlJCRIujAy7NSpU1q/fr0kKSEhQatWrVJKSormzp2rgoICZWVlafPmzZY6a2trdfjwYcvrU6dOqbi4WFdffbWuv/761u9kB3fpAjes0AkAAAB3RgINANDuxMbGqrKyUsuWLVNpaanCwsKUm5urkJAQSVJpaalKSkos8aGhocrNzVVycrJWr16twMBArVy5UlOnTrXEfPnllxoxYoRlf/ny5Vq+fLnGjh2rXbt2tVrfOjJWhQYAAEB7RQKtk6j/pYVf+QF0BImJiUpMTLT7XnZ2tk3Z2LFjdfDgwQbr6/f/t3f/wVFVdx/HP5H8QsRAEkmybRIjgwM1ILpraYKRjqWLsSoi1VgU8SkyTyaAhK1T8QdDamlSER2GQoJhGJVRIH8oFcdYiIKpkThiBKXoWFrxCc0kzYQqAa0JkPv84XDNsj+ySXZzdzfv10xmsueee3Pul10ufHLuPZdfbi4sYJltRdb+fAAAAABesYgAAAAAAAAA4EfIArTKykrl5OQoMTFRdrtd77zzjt/+9fX1stvtSkxM1BVXXKFNmza5bd+8ebMKCgo0duxYjR07VjNnztT7778fquFHtaX/ftz8AgAAAAAAgH8hCdBqampUWlqqxx57TAcPHlRBQYEKCwvdnkfT27Fjx3TzzTeroKBABw8e1KOPPqoHH3xQL7/8stnn7bff1q9+9Svt27dPjY2NysrKktPpVEtLSyhOAQAAhLGFzx8wvwAAAIBQC0mA9swzz2jhwoV64IEHNGnSJK1bt06ZmZmqqqry2n/Tpk3KysrSunXrNGnSJD3wwAP69a9/rbVr15p9XnrpJZWUlGjq1KmaOHGiNm/erJ6eHr311luhOAUAAAAAAABAUggCtO7ubjU1NcnpdLq1O51O7d+/3+s+jY2NHv1nzZqlDz74QGfOnPG6zzfffKMzZ84oOTk5OAMHv80HAAAAAADwIuircHZ0dOjcuXNKS0tza09LS1NbW5vXfdra2rz2P3v2rDo6OpSRkeGxz4oVK/SDH/xAM2fO9DmWrq4udXV1ma87Ozv7cyrDW++V4ObVWDcOAAAAAAAAi4VsEYGYmBi314ZheLT11d9buyStWbNG27dv1yuvvKLExESfx6yoqFBSUpL5lZmZ2Z9TAAAAAAAAAII/Ay01NVUjRozwmG3W3t7uMcvsvPT0dK/9Y2NjlZKS4ta+du1alZeX680339SUKVP8juWRRx6Ry+UyX3d2dhKiAQAQhnqvDP2ntNX92rf3owe23H9d0MYEAAAAnBf0AC0+Pl52u111dXWaM2eO2V5XV6fZs2d73ScvL0+vvfaaW9uePXvkcDgUFxdntj311FNavXq1du/eLYfD0edYEhISlJCQMMAzGX56/+dFmWMsGwcAYHgbTJgGAAAAhELQAzRJcrlcmj9/vhwOh/Ly8lRdXa3m5mYVFxdL+m5mWEtLi7Zu3SpJKi4u1oYNG+RyubRo0SI1NjZqy5Yt2r59u3nMNWvWaOXKldq2bZsuv/xyc8baJZdcoksuuSQUpzEsuIVmAAAAAAAA8BCSAK2oqEgnTpzQE088odbWVuXm5qq2tlbZ2dmSpNbWVjU3N5v9c3JyVFtbq+XLl2vjxo2y2Wxav3695s6da/aprKxUd3e3fvnLX7r9rFWrVqmsrCwUpzGsHTr+lfn9VMtGAQAAAAAAYL2QBGiSVFJSopKSEq/bnn/+eY+2GTNm6MMPP/R5vC+++CJIIwMAAAAAAAACF7IADQAAYKixoAAAAABCgQANfdtW9P3382qsGwcAAAAAAIAFLrJ6AAAAAAAAAEA4I0ADAAAAAAAA/OAWTvSJFTkBAJGI56EBAAAgWJiBBgAAAAAAAPjBDLQBWvrvx60eAgAAUa/39fZPaastHAkAAACGMwI0AADCRO9b5hFcvW/nlLilEwAAAP1DgIZ+8fgPSPza71/Mq+n7ANuK+tcfAAAAAADAYgRoCB7CMQBACHE7JwAAAKxCgIZ+8Xj2W+YYS8YBAMBgsEInAAAA+oMADaERyGw0ZqwBAAAAAIAIQICGQen9wOupzEYDAAAAAABRiAANodd7phkAAAAAAECEIUAD4InbawEMIzwPDQAAAH0hQEPQcDsnAGCosCInAAAAhhIBGsLDYGc8DWb/gezLIgmBGU41CPRch1NNAAAAACBKEKAh/PgKGC58llq0hQ9DcX7+nkcXyM8L9/An3McXTqgVokjv2Wi9DWRmGrdzAgAAwBsCNIRE0G7n9Bf4+NoWjcEA5xTYcawcx2B/dm++guNo+bMHAAAAgAhDgIbhYyhWAw3kZwxFIDKQcw0kkAzmzwu1wd6a60skhFiBBHMA+sRsNAAAAJxHgIaQi5rFBYY6YOrvDLtwDLECFerAJ5i1CZcZYZH85w0AAAAAEYYADehtqEOJSA5BwmVGn5UCDVUHs7BFIO2DPS6APjEbDQAAYHgjQMOQGvLZaNEeGET7+QHAIPhaXOBCA1lsAAAAAMMLARqAoTGcw77hfO5AFGI2GgAAwPBDgAbLRM2z0QAAAAAAQFQjQENYIEwDAEQiZqMBAAAMDwRoAAAAQUCYBgAAEL0I0BB2mI0GABhKvhYbGMziAr3DNIlADQAAINIRoCGsEaYBAKzSO1gb7EqdzE4DAACIbARoiBi9w7QLEa4BACIFYRoAAEDkIUBDVGCmGgAglII5G623C2/1PI9gDQAAILwQoCHq+JqpRrAGAAi2oQjWCNMAAACsR4CGYcPfLaDnEbIBAPria9GBgewfSOhGmAYAAGC9kAVolZWVeuqpp9Ta2qqrrrpK69atU0FBgc/+9fX1crlcOnLkiGw2m37729+quLjYrc/LL7+slStX6p///KfGjx+vP/zhD5ozZ06oTgHDUCAh24UI3QBrcJ1BuBlIsDaYMM0fgjYAAIDgCkmAVlNTo9LSUlVWVmr69Ol69tlnVVhYqE8++URZWVke/Y8dO6abb75ZixYt0osvvqh3331XJSUluuyyyzR37lxJUmNjo4qKivT73/9ec+bM0c6dO3XXXXepoaFB06ZNC8VpAAEZSOjmDUEcEDiuM4h2g701NJCgjZANAAAgcDGGYRjBPui0adN07bXXqqqqymybNGmSbr/9dlVUVHj0f/jhh7Vr1y59+umnZltxcbE++ugjNTY2SpKKiorU2dmpN954w+xz0003aezYsdq+fXtA4+rs7FRSUpJOnjypSy+9tP8ntq3I/DZYoQkQ7gj2hoF5NQPeddB/rw5QtF5nDj05q9/7IPr1DtACDdZC9Wy28wjfMFSsus4AAHChoM9A6+7uVlNTk1asWOHW7nQ6tX//fq/7NDY2yul0urXNmjVLW7Zs0ZkzZxQXF6fGxkYtX77co8+6det8jqWrq0tdXV3m65MnT0r67kI8EB8f7RjQfkAka+B9H/WmDPDvROn7v09D8LsYn6L5OnP627MD2g/R7X/+7/v3+mkf7RcKpN+z47zfcvq/7av77DO/ap/X/v726a+N99iDchxENiuuMwAAeBP0AK2jo0Pnzp1TWlqaW3taWpra2tq87tPW1ua1/9mzZ9XR0aGMjAyffXwdU5IqKir0u9/9zqM9MzMz0NMBgOhXljToQ5w6dUpJSYM/TiC4zgDBstdr64sB9PHdP7B9AvFiSVAOgygxlNcZAAC8CdkiAjExMW6vDcPwaOur/4Xt/T3mI488IpfLZb7u6enRf/7zH6WkpPjdz5/Ozk5lZmbq+PHjTCMfJGoZHNQxOKjjwBiGoVOnTslmsw35z4626wzvweCinsFDLYOLevaPldcZAAB6C3qAlpqaqhEjRnj8xr69vd3jN/vnpaene+0fGxurlJQUv318HVOSEhISlJCQ4NY2ZsyYQE/Fr0svvZR/9AQJtQwO6hgc1LH/hnpGQLRfZ3gPBhf1DB5qGVzUM3DMPAMAhIOLgn3A+Ph42e121dXVubXX1dUpPz/f6z55eXke/ffs2SOHw6G4uDi/fXwdEwAQnbjOAAAAABhqIbmF0+Vyaf78+XI4HMrLy1N1dbWam5tVXFws6btbXlpaWrR161ZJ362EtmHDBrlcLi1atEiNjY3asmWL26pny5Yt0w033KAnn3xSs2fP1quvvqo333xTDQ0NoTgFAEAY4zoDAAAAYCiFJEArKirSiRMn9MQTT6i1tVW5ubmqra1Vdna2JKm1tVXNzc1m/5ycHNXW1mr58uXauHGjbDab1q9fr7lz55p98vPztWPHDj3++ONauXKlxo8fr5qaGk2bNi0Up+BTQkKCVq1a5XHLDvqPWgYHdQwO6hhZovE6w3swuKhn8FDL4KKeAABEphiDNaEBAAAAAAAAn4L+DDQAAAAAAAAgmhCgAQAAAAAAAH4QoAEAAAAAAAB+EKABAAAAAAAAfhCg9VNlZaVycnKUmJgou92ud955x+ohhbWKigpdd911Gj16tMaNG6fbb79dn332mVsfwzBUVlYmm82mkSNH6qc//amOHDli0YgjQ0VFhWJiYlRaWmq2UcfAtLS06N5771VKSoouvvhiTZ06VU1NTeZ26gircH3pv7KyMsXExLh9paenm9v5PPv217/+VbfeeqtsNptiYmL05z//2W17ILXr6urS0qVLlZqaqlGjRum2227Tv/71ryE8i/DRVz3vv/9+j/fqT37yE7c+1BMAgPBGgNYPNTU1Ki0t1WOPPaaDBw+qoKBAhYWFam5utnpoYau+vl6LFy/We++9p7q6Op09e1ZOp1Nff/212WfNmjV65plntGHDBh04cEDp6en6+c9/rlOnTlk48vB14MABVVdXa8qUKW7t1LFvX375paZPn664uDi98cYb+uSTT/T0009rzJgxZh/qCCtwfRm4q666Sq2trebX4cOHzW18nn37+uuvdfXVV2vDhg1etwdSu9LSUu3cuVM7duxQQ0ODTp8+rVtuuUXnzp0bqtMIG33VU5Juuukmt/dqbW2t23bqCQBAmDMQsB//+MdGcXGxW9vEiRONFStWWDSiyNPe3m5IMurr6w3DMIyenh4jPT3d+OMf/2j2+fbbb42kpCRj06ZNVg0zbJ06dcqYMGGCUVdXZ8yYMcNYtmyZYRjUMVAPP/ywcf311/vcTh1hFa4vA7Nq1Srj6quv9rqNz3PgJBk7d+40XwdSu6+++sqIi4szduzYYfZpaWkxLrroIuMvf/nLkI09HF1YT8MwjAULFhizZ8/2uQ/1BAAg/DEDLUDd3d1qamqS0+l0a3c6ndq/f79Fo4o8J0+elCQlJydLko4dO6a2tja3uiYkJGjGjBnU1YvFixfrF7/4hWbOnOnWTh0Ds2vXLjkcDt15550aN26crrnmGm3evNncTh1hBa4vg3P06FHZbDbl5OTo7rvv1ueffy6Jz/NgBFK7pqYmnTlzxq2PzWZTbm4u9fXh7bff1rhx43TllVdq0aJFam9vN7dRTwAAwh8BWoA6Ojp07tw5paWlubWnpaWpra3NolFFFsMw5HK5dP311ys3N1eSzNpR177t2LFDH374oSoqKjy2UcfAfP7556qqqtKECRO0e/duFRcX68EHH9TWrVslUUdYg+vLwE2bNk1bt27V7t27tXnzZrW1tSk/P18nTpzg8zwIgdSura1N8fHxGjt2rM8++F5hYaFeeukl7d27V08//bQOHDigG2+8UV1dXZKoJwAAkSDW6gFEmpiYGLfXhmF4tMG7JUuW6OOPP1ZDQ4PHNurq3/Hjx7Vs2TLt2bNHiYmJPvtRR/96enrkcDhUXl4uSbrmmmt05MgRVVVV6b777jP7UUdYgfdd/xUWFprfT548WXl5eRo/frxeeOEF8wHt1HXgBlI76utdUVGR+X1ubq4cDoeys7P1+uuv64477vC5H/UEACB8MAMtQKmpqRoxYoTHbwHb29s9fkMLT0uXLtWuXbu0b98+/fCHPzTbz6+WRl39a2pqUnt7u+x2u2JjYxUbG6v6+nqtX79esbGxZq2oo38ZGRn60Y9+5NY2adIk80HtvB9hBa4vwTNq1ChNnjxZR48e5fM8CIHULj09Xd3d3fryyy999oFvGRkZys7O1tGjRyVRTwAAIgEBWoDi4+Nlt9tVV1fn1l5XV6f8/HyLRhX+DMPQkiVL9Morr2jv3r3Kyclx256Tk6P09HS3unZ3d6u+vp669vKzn/1Mhw8f1qFDh8wvh8Ohe+65R4cOHdIVV1xBHQMwffp0ffbZZ25tf//735WdnS2J9yOswfUleLq6uvTpp58qIyODz/MgBFI7u92uuLg4tz6tra3629/+Rn0DcOLECR0/flwZGRmSqCcAAJGAWzj7weVyaf78+XI4HMrLy1N1dbWam5tVXFxs9dDC1uLFi7Vt2za9+uqrGj16tPnb7KSkJI0cOVIxMTEqLS1VeXm5JkyYoAkTJqi8vFwXX3yx5s2bZ/How8fo0aPN58adN2rUKKWkpJjt1LFvy5cvV35+vsrLy3XXXXfp/fffV3V1taqrqyWJ9yMsw/VlYB566CHdeuutysrKUnt7u1avXq3Ozk4tWLCAz3MfTp8+rX/84x/m62PHjunQoUNKTk5WVlZWn7VLSkrSwoUL9Zvf/EYpKSlKTk7WQw89pMmTJ3ssdDMc+KtncnKyysrKNHfuXGVkZOiLL77Qo48+qtTUVM2ZM0cS9QQAICJYtPpnxNq4caORnZ1txMfHG9dee61RX19v9ZDCmiSvX88995zZp6enx1i1apWRnp5uJCQkGDfccINx+PBh6wYdIWbMmGEsW7bMfE0dA/Paa68Zubm5RkJCgjFx4kSjurrabTt1hFW4vvRfUVGRkZGRYcTFxRk2m8244447jCNHjpjb+Tz7tm/fPq/X5wULFhiGEVjt/vvf/xpLliwxkpOTjZEjRxq33HKL0dzcbMHZWM9fPb/55hvD6XQal112mREXF2dkZWUZCxYs8KgV9QQAILzFGIZhDH1sBwAAAAAAAEQGnoEGAAAAAAAA+EGABgAAAAAAAPhBgAYAAAAAAAD4QYAGAAAAAAAA+EGABgAAAAAAAPhBgAYAAAAAAAD4QYAGAAAAAAAA+EGABgAAAAAAAPhBgAYAAAAAAAD4QYAGAAAAAAAA+EGABgAAAAAAAPhBgAYAAAAAAAD48f9duon2AS+dHwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNAAAAJbCAYAAAAllWnEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACOfUlEQVR4nOzdfVxUdf7//yeCDF0IXgZSgGhXGF7UYAZGtqW4WK6ZrqSlWejnw1IpsO0n8eKbum5s5bpkCmbhsq5X7KZutcumtJukSZsitH3UT7mfVMxAwv0kdgWC5/eHP2cdZxgZYJiBedxvt3O7zXmf13mf9zninJnXvN/n7WMYhiEAAAAAAAAAdnVxdwMAAAAAAAAAT0YCDQAAAAAAAHCABBoAAAAAAADgAAk0AAAAAAAAwAESaAAAAAAAAIADJNAAAAAAAAAAB0igAQAAAAAAAA6QQAMAAAAAAAAcIIEGAAAAAAAAOEACDWgDixYtko+Pj2pqahzGffPNN3r++ec1ZMgQBQYGqlu3bhowYIAmT56s4uJiS9zOnTvl4+NjWXx9fRUcHKwf//jHOnTokCXu6NGjVnFdu3ZVr169NGzYMKWnp+vAgQMuO2cAgOfLyclRfn5+i/bt16+f7r///rZtEACgw2nNvaS5Lnz/ef311y8bO2PGDPXr18+l7QHsIYEGtJPGxkYlJCToF7/4hSZNmqQ//OEPev3115Wenq7Tp09r165dNvs899xzKikp0bvvvqtnnnlGRUVFGjFihE6cOGEV99RTT6mkpETFxcX63e9+pwceeEBvvvmmhgwZohdffLG9ThEA4GHa40sPAKBz87R7ycKFC7Vt2zZ3NwNeyM/dDQC8xXvvvac9e/Zo7dq1euyxxyzlY8aM0ZNPPqlz587Z7HPDDTfojjvukCTddddd6t69u5KTk5Wfn6/58+db4sLDwy1xkjR27FhlZGTowQcf1H/9138pOjpaiYmJLjw7AAAAAHC9AQMGuLsJ8FL0QAPa0MmTJzVlyhQFBQUpODhYjz/+uE6fPi1JOnXqlCSpb9++dvft0uXy/x0vJMmOHTt22dgrrrhCeXl56tq1K73QAKCTufDogLKyMj344IMKDAxUUFCQHnnkEX355ZeSzg/BPHDggIqLiy1D/Vsy5GXbtm0aPHiwAgIC1L9/f61YsaKNzwYA4A7tcS+58DiA5t5Lzp49q/nz5ys0NFSBgYEaNWqUPvnkE6sYhnDCXUigAW1o4sSJuvHGG7VlyxbNnTtXGzduVHp6uiQpJiZGXbt21Zw5c7RhwwZVVlY6Xf8///lPSVKfPn2aFR8aGiqz2aw9e/aooaHB6eMBADzbhAkTdP311+v111/XokWL9Mc//lFjxozR2bNntW3bNvXv31+33nqrSkpKVFJS4vSQl/LycqWlpSk9PV3btm1TXFyc5syZo2XLlrnojAAA7c2T7iXz5s3TsWPH9Nprr2nNmjU6fPiwxo0bp8bGxrY6XaDFGMIJtKHk5GT97Gc/kySNGjVK//znP7V27Vrl5eWpX79+Wr16tebMmaNHHnlE0vneaKNHj9bMmTMVHx9vU9+5c+fU0NCgs2fPat++ffrpT38qX19fJSUlNbtNERER+uCDD/Svf/1L11xzTducKADAIzz44IN64YUXJEkJCQkKDg7Www8/rN///vd6+OGHdcUVVygwMNBqmL8zvvjiC5WVlWnIkCGSpMTERFVXV+vnP/+5UlNTdeWVV7bZuQAA3MOT7iUDBw7U+vXrLeu+vr6aPHmy9u7d2+LjA22FHmhAG/rRj35ktT548GB9//33qq6uliQ9/vjj+vzzz7Vx40bNnj1bYWFhWr9+vUaOHGl3mGVSUpK6du2qK6+8UnfddZcaGxv1+uuva/Dgwc1uk2EYrTspAIDHevjhh63WJ0+eLD8/P7377rttUv8tt9xi+cJzwdSpU1VbW6v9+/e3yTEAAO7lSfcSe9+npOY9wgZwNXqgAW2oV69eVusmk0mS9N1331nKgoKCNGXKFE2ZMkWSdODAAY0aNUrz58/XrFmz1L17d0vs888/r3vuuUe+vr7q3bu3wsLCnG7TsWPHZDKZ1LNnzxacEQDAk4WEhFit+/n5qVevXpbnbrZ1/ReXtdUxAADu5Un3kuZ8nwLchR5ogJvdcssteuihh3T27Fl9+umnVtv69++vmJgY3XrrrS1Knp04cUKlpaW688475edHvhwAOpuqqiqr9YaGBp06dcrmC0hb1X9xWVsdAwDgXtxLgOYhgQa0k1OnTqm+vt7utv/5n/+RdP6h/23lu+++08yZM9XQ0KD/+q//arN6AQCeY8OGDVbrv//979XQ0KC7775b0vlf7lvzq/2BAwf00UcfWZVt3LhR3bp102233dbiegEAnoN7CdA8dEkB2sm7776rOXPm6OGHH1ZcXJx69eql6upqbdq0SW+//bamT5+u6667rkV1V1RU6IMPPtC5c+d0+vRplZWVae3atTp27Jh+9atfKSEhoY3PBgDgCbZu3So/Pz+NHj1aBw4c0MKFCzVkyBBNnjxZkjRo0CBt3rxZBQUF6t+/vwICAjRo0KBm1x8aGqof/ehHWrRokfr27av169erqKhIzz//PBMIAEAnwb0EaB4SaEA7ueOOO/T444/r3Xff1e9+9zvV1NToiiuu0MCBA/Xyyy/rJz/5SYvrfvnll/Xyyy/L19dXgYGB6t+/v8aNG6dZs2Zp4MCBbXgWAABPsnXrVi1atEi5ubny8fHRuHHjlJ2dLX9/f0nS4sWLVVlZqVmzZunMmTOKiIjQ0aNHm13/0KFD9dhjj+nZZ5/V4cOHFRoaquXLlys9Pd1FZwQAaG/cS4Dm8TGYog8AAKBDWbRokRYvXqwvv/xSvXv3dndzAAAdUHvcS/r166fo6Gj96U9/ckn9QHviGWgAAAAAAACAAwzhBAAA8CKNjY1yNADBx8dHvr6+7dgiAEBHw70E3oghnAAAAF6kX79+OnbsWJPbR44cqZ07d7ZfgwAAHQ73EngjeqABAAB4kbfeekt1dXVNbu/WrVs7tgYA0BFxL4E3ogcaAAAAAAAA4ACTCAAAAAAAAAAOeNUQznPnzumLL75Qt27d5OPj4+7mAECHZxiGzpw5o9DQUHXpwm8y3GcAoG1xn7HGfQYA2pYz9xmvSqB98cUXCgsLc3czAKDTOX78uK677jp3N8PtuM8AgGtwnzmP+wwAuEZz7jNelUC78CDD48ePKzAw0M2tAYCOr7a2VmFhYTwo9v/HfQYA2hb3GWvcZwCgbTlzn/GqBNqFbs6BgYHccACgDTGM5DzuMwDgGtxnzuM+AwCu0Zz7DA8SAAAAAAAAABwggQYAAAAAAAA4QAINAAAAAAAAcIAEGgAAAAAAAOAACTQAAAAAAADAARJoAAAAAAAAgAMk0AAAAAAAAAAHSKABAAAAAAAADpBAAwAAAAAAABzwc3cD0LaS8/daXufNGObGlgAA2sXGpH+/nlrgvnYAADoe7iEA0Gz0QAMAAAAAAAAcoAdaJ0ZvNAAAAAAAgNYjgdbBXZwkAwAAAAAAQNtjCCcAAAAAAADgAAk0AAAAAAAAwAGGcHZADNsEAAAAAABoPyTQvAQTCgCAF9iY9O/XUwvc1w4AAACgk2EIJwAAAAAAAOAACTQAAAAAAADAARJoAAAAAAAAgAM8Aw0AgM6I56EBAAAAbYYeaAAAAAAAAIADJNAAAAAAAAAAB0igAQAAAAAAAA60KIGWk5OjyMhIBQQEyGw2a9euXQ7ji4uLZTabFRAQoP79+2v16tU2MVu2bNHAgQNlMpk0cOBAbdu2rcn6srKy5OPjo7S0tJY0HwAAAAAAAGg2pxNoBQUFSktL0/z581VWVqb4+HglJiaqoqLCbvyRI0c0duxYxcfHq6ysTPPmzdPs2bO1ZcsWS0xJSYmSkpI0bdo0ffTRR5o2bZomT56sv//97zb17d27V2vWrNHgwYOdbToAAAAAAADgNKcTaMuXL1dycrJmzpypqKgoZWdnKywsTLm5uXbjV69erfDwcGVnZysqKkozZ87U448/rmXLlllisrOzNXr0aGVmZurmm29WZmam7r33XmVnZ1vV9fXXX+vhhx/Wq6++qh49ejjbdABAB+FMT+fKykpNnTpVN910k7p06WK3d3J+fr58fHxslu+//77FxwUAAADgPZxKoNXX16u0tFQJCQlW5QkJCdqzZ4/dfUpKSmzix4wZo3379uns2bMOYy6t84knntB9992nUaNGNau9dXV1qq2ttVpgLTl/r2UBAE/gbE/nuro69enTR/Pnz9eQIUOarDcwMFCVlZVWS0BAQIuPCwAAAMB7OJVAq6mpUWNjo4KDg63Kg4ODVVVVZXefqqoqu/ENDQ2qqalxGHNxnZs3b9b+/fuVlZXV7PZmZWUpKCjIsoSFhTV7X09AcguAN3K2p3O/fv300ksvafr06QoKCmqyXh8fH4WEhFgtrTkuAAAAAO/RokkEfHx8rNYNw7Apu1z8peWO6jx+/LjmzJmj9evXW/UWuJzMzEydPn3ashw/frzZ+wIA2l9Lejo319dff62IiAhdd911uv/++1VWVtYuxwUAAADQ8fk5E9y7d2/5+vra9Darrq626UF2QUhIiN14Pz8/9erVy2HMhTpLS0tVXV0ts9ls2d7Y2Kj33ntPK1euVF1dnXx9fW2ObTKZZDKZnDlFAIAbtaSnc3PcfPPNys/P16BBg1RbW6uXXnpJI0aM0EcffaQbbrihxcetq6tTXV2dZZ1HBQAAAACdk1M90Pz9/WU2m1VUVGRVXlRUpLi4OLv7xMbG2sTv2LFDMTEx6tq1q8OYC3Xee++9+vjjj1VeXm5ZYmJi9PDDD6u8vNxu8gwA0HE529P5cu644w498sgjGjJkiOLj4/X73/9eN954o15++eVWHbejPyoAAAAAQPM41QNNkjIyMjRt2jTFxMQoNjZWa9asUUVFhVJSUiSdHzZ54sQJrVu3TpKUkpKilStXKiMjQ7NmzVJJSYny8vK0adMmS51z5szRXXfdpeeff17jx4/XG2+8oXfeeUe7d++WJHXr1k3R0dFW7bjqqqvUq1cvm3IAQMfVkp7OLdGlSxcNGzZMhw8fbtVxMzMzlZGRYVmvra0liQYAAAB0Qk4/Ay0pKUnZ2dlasmSJhg4dqvfee0+FhYWKiIiQJFVWVlrNWBYZGanCwkLt3LlTQ4cO1c9//nOtWLFCEydOtMTExcVp8+bN+s1vfqPBgwcrPz9fBQUFGj58eBucIgCgo2hJT+eWMAxD5eXl6tu3b6uOazKZFBgYaLUAAAAA6Hyc7oEmSampqUpNTbW7LT8/36Zs5MiR2r9/v8M6J02apEmTJjW7DTt37mx2LACg43C2p7MklZeXSzo/UcCXX36p8vJy+fv7a+DAgZKkxYsX64477tANN9yg2tparVixQuXl5Vq1alWzjwsAAADAe7UogQYAgKskJSXp1KlTWrJkiSorKxUdHe2wp7Mk3XrrrZbXpaWl2rhxoyIiInT06FFJ0ldffaX/+I//UFVVlYKCgnTrrbfqvffe0+23397s4wIAAADwXiTQYJGcv9fyOm/GMDe2BIC3c7ans2EYDuv79a9/rV//+tetOq5H2Zjk7hYAAAAAXsXpZ6ABAAAAAAAA3oQeaB7m4l5gAAAAAAAAcD96oAEAAABAC+Tk5CgyMlIBAQEym83atWuXw/gNGzZoyJAhuvLKK9W3b1899thjOnXqVDu1FgDQGiTQAAAAAMBJBQUFSktL0/z581VWVqb4+HglJibaTHRzwe7duzV9+nQlJyfrwIED+sMf/qC9e/dq5syZ7dxyAEBLkEADAAAAACctX75cycnJmjlzpqKiopSdna2wsDDl5ubajf/ggw/Ur18/zZ49W5GRkbrzzjv1n//5n9q3b187txwA0BIk0AAAAADACfX19SotLVVCQoJVeUJCgvbs2WN3n7i4OH3++ecqLCyUYRg6efKkXn/9dd13333t0WQAQCsxiYAXas5EBRfH5M0Y5srmAAAAAB1KTU2NGhsbFRwcbFUeHBysqqoqu/vExcVpw4YNSkpK0vfff6+Ghgb96Ec/0ssvv9zkcerq6lRXV2dZr62tbZsTAAA4jR5oAAAAANACPj4+VuuGYdiUXXDw4EHNnj1b/+///T+Vlpbq7bff1pEjR5SSktJk/VlZWQoKCrIsYWFhbdp+AEDz0QOtg2hOrzEAAAAArte7d2/5+vra9Darrq626ZV2QVZWlkaMGKGf/exnkqTBgwfrqquuUnx8vJYuXaq+ffva7JOZmamMjAzLem1tLUk0AHATeqABAAAAgBP8/f1lNptVVFRkVV5UVKS4uDi7+3z77bfq0sX665evr6+k8z3X7DGZTAoMDLRaAADuQQINAAAAAJyUkZGh1157TWvXrtWhQ4eUnp6uiooKy5DMzMxMTZ8+3RI/btw4bd26Vbm5ufrss8/0/vvva/bs2br99tsVGhrqrtMAADQTQzgBAOjsNib9+/XUAve1AwA6kaSkJJ06dUpLlixRZWWloqOjVVhYqIiICElSZWWlKioqLPEzZszQmTNntHLlSv30pz9V9+7ddc899+j555931ykAAJxAAg0AAAAAWiA1NVWpqal2t+Xn59uUPfXUU3rqqadc3CoAgCuQQPMATBAAAAAAAADguUigAQDgTRjOCQAAADiNSQQAAAAAAAAAB+iBhsu6eIhp3oxhbmwJAAAAAABA+6MHGgAAAAAAAOAACTQAAAAAAADAARJoAAAAAAAAgAMk0AAAAAAAAAAHSKABAAAAAAAADpBAAwAAAAAAABwggQYAAAAAAAA4QAINAAAAAAAAcIAEGgDA4+Tk5CgyMlIBAQEym83atWtXk7GVlZWaOnWqbrrpJnXp0kVpaWk2Ma+++qri4+PVo0cP9ejRQ6NGjdKHH35oFbNo0SL5+PhYLSEhIW19agAAAAA6IBJocEpy/l6rBQDaWkFBgdLS0jR//nyVlZUpPj5eiYmJqqiosBtfV1enPn36aP78+RoyZIjdmJ07d2rKlCl69913VVJSovDwcCUkJOjEiRNWcbfccosqKysty8cff9zm5wcAAACg4yGBBgDwKMuXL1dycrJmzpypqKgoZWdnKywsTLm5uXbj+/Xrp5deeknTp09XUFCQ3ZgNGzYoNTVVQ4cO1c0336xXX31V586d01//+lerOD8/P4WEhFiWPn36tPn5AQAAAOh4/NzdAG9F7y0AsFVfX6/S0lLNnTvXqjwhIUF79uxps+N8++23Onv2rHr27GlVfvjwYYWGhspkMmn48OF67rnn1L9//ybrqaurU11dnWW9tra2zdoIAEC72pj079dTC9zXDgDwUPRAAwB4jJqaGjU2Nio4ONiqPDg4WFVVVW12nLlz5+raa6/VqFGjLGXDhw/XunXrtH37dr366quqqqpSXFycTp061WQ9WVlZCgoKsixhYWFt1kYAAAAAnoMeaAAAj+Pj42O1bhiGTVlLvfDCC9q0aZN27typgIAAS3liYqLl9aBBgxQbG6sBAwbot7/9rTIyMuzWlZmZabWttrbWdUm0i3sGAAAAAGhXJNAAAB6jd+/e8vX1teltVl1dbdMrrSWWLVum5557Tu+8844GDx7sMPaqq67SoEGDdPjw4SZjTCaTTCZTq9sFAAAAwLORQEOrXPwst7wZw9zYEgCdgb+/v8xms4qKijRhwgRLeVFRkcaPH9+qul988UUtXbpU27dvV0xMzGXj6+rqdOjQIcXHx7fquB7t0l5tPPMGAAAAsIsEGgDAo2RkZGjatGmKiYlRbGys1qxZo4qKCqWkpEg6P2zyxIkTWrdunWWf8vJySdLXX3+tL7/8UuXl5fL399fAgQMlnR+2uXDhQm3cuFH9+vWz9HC7+uqrdfXVV0uSnn76aY0bN07h4eGqrq7W0qVLVVtbq0cffbQdzx4AAACAJyKBBgDwKElJSTp16pSWLFmiyspKRUdHq7CwUBEREZKkyspKVVRUWO1z6623Wl6XlpZq48aNioiI0NGjRyVJOTk5qq+v16RJk6z2e/bZZ7Vo0SJJ0ueff64pU6aopqZGffr00R133KEPPvjAclwAAAAA3osEGgDA46Smpio1NdXutvz8fJsywzAc1nchkebI5s2bm9M0AAAAAF6oi7sbAAAAAAAAAHgyEmgAAAAAAACAAyTQAAAAAAAAAAdIoAEAAAAAAAAOtCiBlpOTo8jISAUEBMhsNmvXrl0O44uLi2U2mxUQEKD+/ftr9erVNjFbtmzRwIEDZTKZNHDgQG3bts1qe25urgYPHqzAwEAFBgYqNjZWf/nLX1rSfAAAAAAAAKDZnE6gFRQUKC0tTfPnz1dZWZni4+OVmJioiooKu/FHjhzR2LFjFR8fr7KyMs2bN0+zZ8/Wli1bLDElJSVKSkrStGnT9NFHH2natGmaPHmy/v73v1tirrvuOv3yl7/Uvn37tG/fPt1zzz0aP368Dhw40ILTBgAAAAAAAJrHxzAMw5kdhg8frttuu025ubmWsqioKD3wwAPKysqyiX/mmWf05ptv6tChQ5aylJQUffTRRyopKZEkJSUlqba21qpH2Q9/+EP16NFDmzZtarItPXv21Isvvqjk5ORmtb22tlZBQUE6ffq0AgMDm7WPqyTn73Xr8V0hb8YwdzcBQDvzpPdVT+DS67ExqW3rs2dqgeuPAQBO4D5jrc2vR1P3Fu4HALyEM++rTvVAq6+vV2lpqRISEqzKExIStGfPHrv7lJSU2MSPGTNG+/bt09mzZx3GNFVnY2OjNm/erG+++UaxsbHOnAIAAAAAAADgFD9ngmtqatTY2Kjg4GCr8uDgYFVVVdndp6qqym58Q0ODampq1Ldv3yZjLq3z448/VmxsrL7//ntdffXV2rZtmwYOHNhke+vq6lRXV2dZr62tbdZ5AgAAAAAAABc4lUC7wMfHx2rdMAybssvFX1renDpvuukmlZeX66uvvtKWLVv06KOPqri4uMkkWlZWlhYvXnz5E2onnXHYJgAAAAAAQGfn1BDO3r17y9fX16ZnWHV1tU0PsgtCQkLsxvv5+alXr14OYy6t09/fX9dff71iYmKUlZWlIUOG6KWXXmqyvZmZmTp9+rRlOX78eLPPFQAAAAAAAJCcTKD5+/vLbDarqKjIqryoqEhxcXF294mNjbWJ37Fjh2JiYtS1a1eHMU3VeYFhGFZDNC9lMpkUGBhotQAAAAAAAADOcHoIZ0ZGhqZNm6aYmBjFxsZqzZo1qqioUEpKiqTzvb5OnDihdevWSTo/4+bKlSuVkZGhWbNmqaSkRHl5eVaza86ZM0d33XWXnn/+eY0fP15vvPGG3nnnHe3evdsSM2/ePCUmJiosLExnzpzR5s2btXPnTr399tutvQYAAAAAAABAk5xOoCUlJenUqVNasmSJKisrFR0drcLCQkVEREiSKisrVVFRYYmPjIxUYWGh0tPTtWrVKoWGhmrFihWaOHGiJSYuLk6bN2/WggULtHDhQg0YMEAFBQUaPny4JebkyZOaNm2aKisrFRQUpMGDB+vtt9/W6NGjW3P+AADggo1J/349tcB97QAAAAA8TIsmEUhNTVVqaqrdbfn5+TZlI0eO1P79+x3WOWnSJE2aNKnJ7Xl5eU61EQAAAAAAAGgLTj0DDQAAAAAAAPA2JNAAAAAAoAVycnIUGRmpgIAAmc1m7dq1y2F8XV2d5s+fr4iICJlMJg0YMEBr165tp9YCAFqjRUM4AQAAAMCbFRQUKC0tTTk5ORoxYoReeeUVJSYm6uDBgwoPD7e7z+TJk3Xy5Enl5eXp+uuvV3V1tRoaGtq55QCAliCBBgAAAABOWr58uZKTkzVz5kxJUnZ2trZv367c3FxlZWXZxL/99tsqLi7WZ599pp49e0qS+vXr155NBgC0AkM4AQAAAMAJ9fX1Ki0tVUJCglV5QkKC9uzZY3efN998UzExMXrhhRd07bXX6sYbb9TTTz+t7777rsnj1NXVqba21moBALgHPdDgEsn5ey2v82YMc2NLAAAAgLZVU1OjxsZGBQcHW5UHBwerqqrK7j6fffaZdu/erYCAAG3btk01NTVKTU3Vv/71ryafg5aVlaXFixe3efsBAM6jBxoAAAAAtICPj4/VumEYNmUXnDt3Tj4+PtqwYYNuv/12jR07VsuXL1d+fn6TvdAyMzN1+vRpy3L8+PE2PwcAQPPQAw0AAAAAnNC7d2/5+vra9Darrq626ZV2Qd++fXXttdcqKCjIUhYVFSXDMPT555/rhhtusNnHZDLJZDK1beMBAC1CDzQAAAAAcIK/v7/MZrOKioqsyouKihQXF2d3nxEjRuiLL77Q119/bSn79NNP1aVLF1133XUubS8AoPVIoAEAPE5OTo4iIyMVEBAgs9msXbt2NRlbWVmpqVOn6qabblKXLl2UlpZmN27Lli0aOHCgTCaTBg4cqG3btrXquJ3exqR/LwAAGxkZGXrttde0du1aHTp0SOnp6aqoqFBKSoqk88Mvp0+fbomfOnWqevXqpccee0wHDx7Ue++9p5/97Gd6/PHHdcUVV7jrNAAAzUQCDQDgUQoKCpSWlqb58+errKxM8fHxSkxMVEVFhd34uro69enTR/Pnz9eQIUPsxpSUlCgpKUnTpk3TRx99pGnTpmny5Mn6+9//3uLjdlTlx7+yLM5sAwBYS0pKUnZ2tpYsWaKhQ4fqvffeU2FhoSIiIiSd/4Hn4nvI1VdfraKiIn311VeKiYnRww8/rHHjxmnFihXuOgUAgBN8DMMw3N2I9lJbW6ugoCCdPn1agYGB7X78i2em9CbMwgl0Xq54Xx0+fLhuu+025ebmWsqioqL0wAMPKCsry+G+d999t4YOHars7Gyr8qSkJNXW1uovf/mLpeyHP/yhevTooU2bNrX6uBe49D7TRj3BLk6ODQ3r3rxtUwva5NgA4Cx3f373NG1+PZq6t/C+D8BLOPO+yiQCcLmLE4ck0wA4Ul9fr9LSUs2dO9eqPCEhQXv27GlxvSUlJUpPT7cqGzNmjCXR1tLj1tXVqa6uzrJeW1vb4ja6UlM9yhz1NLNKprVpawAAAICOhyGcAACPUVNTo8bGRpsZzIKDg21mOnNGVVWVwzpbetysrCwFBQVZlrCwsBa3EQAAAIDnIoEGAPA4Pj4+VuuGYdiUuaJOZ4+bmZmp06dPW5bjx4+3qo2eKjl/r2UBAAAAvBFDOF2MLxsA0Hy9e/eWr6+vTa+v6upqm95hzggJCXFYZ0uPazKZZDKZWtyujohh+QAAAPBG9EADAHgMf39/mc1mFRUVWZUXFRUpLi6uxfXGxsba1Lljxw5Lna46LgAAAIDOgR5oAACPkpGRoWnTpikmJkaxsbFas2aNKioqlJKSIun8sMkTJ05o3bp1ln3Ky8slSV9//bW+/PJLlZeXy9/fXwMHDpQkzZkzR3fddZeef/55jR8/Xm+88Ybeeecd7d69u9nH7WgcTRAAAAAAwDkk0AAAHiUpKUmnTp3SkiVLVFlZqejoaBUWFioiIkKSVFlZqYqKCqt9br31Vsvr0tJSbdy4URERETp69KgkKS4uTps3b9aCBQu0cOFCDRgwQAUFBRo+fHizjwsAAADAe5FAAwB4nNTUVKWmptrdlp+fb1NmGMZl65w0aZImTZrU4uMCAAAA8F4k0NC5bUz69+upBe5rBwAAAAAA6LBIoAEAgBZhRk4AAAB4CxJoaFd82QIAAAAAAB0NCTQAADoJZt4EAAAAXKOLuxsAAAAAAAAAeDISaAAAAAAAAIADDOEEAACtxjMuAQAA0JnRAw0AAAAAAABwgB5o8E4bk/79emqB+9oBAAAAAAA8Hj3QAAAAAAAAAAfogYbOgR5lAAAAAADARUigwW144DQAAAAAAOgIGMIJAAAAAAAAOEAPNAAA4NBTJxdYXr8cvPSy8fQwBgAAQGdDAg242MXPUrsUz1YDAAAAAMArkUCDZ2ASAAAAAMAz8NkcAGyQQAMAoAMrP/6Vu5sAAAAAdHok0NBxXDq8kl/DAAAAAABAO2AWTgAAAAAAAMABeqDBI1w8BGmo21oBAB7G0cQmAAAAANoNCTSguXiYKgAAAAAAXokEGgAAcJnk/L2W13kzhrmxJQAAAEDLkUBDqzx1coHl9cvBS9s8vkUY8gQALtMu7+MAAACAh2nRJAI5OTmKjIxUQECAzGazdu3a5TC+uLhYZrNZAQEB6t+/v1avXm0Ts2XLFg0cOFAmk0kDBw7Utm3brLZnZWVp2LBh6tatm6655ho98MAD+uSTT1rSfHQWG5P+vQAAAAAAALiI0wm0goICpaWlaf78+SorK1N8fLwSExNVUVFhN/7IkSMaO3as4uPjVVZWpnnz5mn27NnasmWLJaakpERJSUmaNm2aPvroI02bNk2TJ0/W3//+d0tMcXGxnnjiCX3wwQcqKipSQ0ODEhIS9M0337TgtNGenjq5wLI4rSMkyZpqY0doO+Ch2vqHmrvvvls+Pj42y3333WeJWbRokc32kJAQl5wfAAAAgI7F6SGcy5cvV3JysmbOnClJys7O1vbt25Wbm6usrCyb+NWrVys8PFzZ2dmSpKioKO3bt0/Lli3TxIkTLXWMHj1amZmZkqTMzEwVFxcrOztbmzZtkiS9/fbbVvX+5je/0TXXXKPS0lLdddddzp4GAMBDXfihJicnRyNGjNArr7yixMREHTx4UOHh4TbxF36omTVrltavX6/3339fqamp6tOnj+U+s3XrVtXX11v2OXXqlIYMGaIf//jHVnXdcssteueddyzrvr6+LjpLAAAAAB2JUwm0+vp6lZaWau7cuVblCQkJ2rNnj919SkpKlJCQYFU2ZswY5eXl6ezZs+ratatKSkqUnp5uE3Mh6WbP6dOnJUk9e/ZsMqaurk51dXWW9dra2iZj0f5a1COtNegJBnQIrvih5tJ7xebNm3XllVfaJND8/PzodQYAAADAhlMJtJqaGjU2Nio4ONiqPDg4WFVVVXb3qaqqshvf0NCgmpoa9e3bt8mYpuo0DEMZGRm68847FR0d3WR7s7KytHjx4uacGpqp3ZNeALyKq36ouVReXp4eeughXXXVVVblhw8fVmhoqEwmk4YPH67nnntO/fv3b7K9/FADAAAAeIcWzcLp4+NjtW4Yhk3Z5eIvLXemzieffFL/+Mc/tHv3boftzMzMVEZGhmW9trZWYWFhDvdpreT8vS6tHwA6M1f9UHOxDz/8UP/93/+tvLw8q/Lhw4dr3bp1uvHGG3Xy5EktXbpUcXFxOnDggHr16mX32PxQAwAAAHgHpxJovXv3lq+vr82XmOrqapsvLxeEhITYjffz87N8IWkqxl6dTz31lN5880299957uu666xy212QyyWQyXfa8AACexRU/1FyQl5en6Oho3X777VbliYmJlteDBg1SbGysBgwYoN/+9rdWP8ZczB0/1HRkF//IlDdjmBtbAgAAADjHqVk4/f39ZTabVVRUZFVeVFSkuLg4u/vExsbaxO/YsUMxMTGWYTVNxVxcp2EYevLJJ7V161b97W9/U2RkpDNNB5rGbJmAx3DVDzUXfPvtt9q8ebPl+WqOXHXVVRo0aJAOHz7cZIzJZFJgYKDVAgAAAKDzcSqBJkkZGRl67bXXtHbtWh06dEjp6emqqKhQSkqKpPO/xk+fPt0Sn5KSomPHjikjI0OHDh3S2rVrlZeXp6efftoSM2fOHO3YsUPPP/+8/ud//kfPP/+83nnnHaWlpVlinnjiCa1fv14bN25Ut27dVFVVpaqqKn333XetOH0AgCdx1Q81F/z+979XXV2dHnnkkcu2pa6uTocOHbIZAuoJyo9/ZVnc6amTCywLAHijnJwcRUZGKiAgQGazWbt27WrWfu+//778/Pw0dOhQ1zYQANBmnH4GWlJSkk6dOqUlS5aosrJS0dHRKiwsVEREhCSpsrJSFRUVlvjIyEgVFhYqPT1dq1atUmhoqFasWGGZGU2S4uLitHnzZi1YsEALFy7UgAEDVFBQoOHDh1ticnNzJUl33323VXt+85vfaMaMGc6eBjwZPcEAr5aRkaFp06YpJiZGsbGxWrNmjc0PNSdOnNC6desknf+hZuXKlcrIyNCsWbNUUlKivLw8bdq0yabuvLw8PfDAA3afafb0009r3LhxCg8PV3V1tZYuXara2lo9+uijrj1hAECHVFBQoLS0NOXk5GjEiBF65ZVXlJiYqIMHDyo8PLzJ/U6fPq3p06fr3nvv1cmTJ9uxxQCA1mjRJAKpqalKTU21uy0/P9+mbOTIkdq/f7/DOidNmqRJkyY1uf3C82wAj9BUko/kH9BqrvihRpI+/fRT7d69Wzt27LB73M8//1xTpkxRTU2N+vTpozvuuEMffPCB5bgAAFxs+fLlSk5OtjwWIDs7W9u3b1dubq6ysrKa3O8///M/NXXqVPn6+uqPf/xjO7UWANBaLUqgAWiFi5NsUwvc1w7Ag7nih5obb7zR4Y8xmzdvdqqNAADvVV9fr9LSUs2dO9eqPCEhQXv27Glyv9/85jf63//9X61fv15Lly697HHq6upUV1dnWa+trW15oy/gB18AaBGnn4EGAAAAAN6spqZGjY2NNhPcBAcH20xsc8Hhw4c1d+5cbdiwQX5+zevHkJWVpaCgIMvCTM8A4D70QINL8EDpZqI3GgAAQIfl4+NjtW4Yhk2ZJDU2Nmrq1KlavHixbrzxxmbXn5mZqYyMDMt6bW0tSTQAcBMSaG0gOX+vu5sAAAAAoJ307t1bvr6+Nr3NqqurbXqlSdKZM2e0b98+lZWV6cknn5QknTt3ToZhyM/PTzt27NA999xjs5/JZJLJZHLNSQAAnEICDR6t/PhXltdDw7q7rR0AAADABf7+/jKbzSoqKtKECRMs5UVFRRo/frxNfGBgoD7++GOrspycHP3tb3/T66+/rsjISJe3GQDQOiTQgPbAw1oBwMqlvbfzZgxzU0sAoGUyMjI0bdo0xcTEKDY2VmvWrFFFRYVSUlIknR9+eeLECa1bt05dunRRdHS01f7XXHONAgICbMoBAJ6JBBrsuvgZZi8HX36GoLZ0ca8zAAAAwBMlJSXp1KlTWrJkiSorKxUdHa3CwkJFRERIkiorK1VRUeHmVgIA2goJNAAAAABogdTUVKWmptrdlp+f73DfRYsWadGiRW3fKACAS5BAQ5th5s02xgydAAAAAAB4hC7ubgAAAAAAAADgyeiBBnRk9FIDAACAK/F5EwAkkUADOobmfHDhww0AAAAAAC5BAg0dxqWzcw4N6+6WdgAAbLlz9mYAAADA1Uig4bKYHMDDXNzTDAA6ieT8vZbXeTOGubElAAAAgC0SaAAAdACX9sIFAAAA0H5IoAGdHc9GA9DOGM4JAACAzoYEGiwYqgkAAAAAAGCri7sbAAAAAAAAAHgyeqChw7r4eUDMyAkAAAAAAFyFHmgAAAAAAACAA/RAAzzFxQ/7BwAvlpy/1/I6b8YwN7YEAAAAOI8Empdj4oBOimQcAAAA2hg/cADwZgzhBAAAAAAAABygBxoAAAAAwCn0RgPgbeiBBgAAAAAAADhAAs0LPXVygWXpLMqPf2VZAHR8OTk5ioyMVEBAgMxms3bt2uUwvri4WGazWQEBAerfv79Wr15ttT0/P18+Pj42y/fff9+q4wIAAADwDgzhBAB4lIKCAqWlpSknJ0cjRozQK6+8osTERB08eFDh4eE28UeOHNHYsWM1a9YsrV+/Xu+//75SU1PVp08fTZw40RIXGBioTz75xGrfgICAFh8XAABvYPUDdbD9mIuHc0oM6QTQOdEDDYBjG5P+vQDtYPny5UpOTtbMmTMVFRWl7OxshYWFKTc312786tWrFR4eruzsbEVFRWnmzJl6/PHHtWzZMqs4Hx8fhYSEWC2tOS4AAAAA70ECDcB5JMrgAerr61VaWqqEhASr8oSEBO3Zs8fuPiUlJTbxY8aM0b59+3T27FlL2ddff62IiAhdd911uv/++1VWVtaq4wIAAADwHgzhBAB4jJqaGjU2Nio42HqMSHBwsKqqquzuU1VVZTe+oaFBNTU16tu3r26++Wbl5+dr0KBBqq2t1UsvvaQRI0boo48+0g033NCi40pSXV2d6urqLOu1tbXOnjIug1neAAAA4AlIoAHeip5m8GA+Pj5W64Zh2JRdLv7i8jvuuEN33HGHZfuIESN022236eWXX9aKFStafNysrCwtXrz4MmcDAAAAoKMjgdZClz4o0xNdPMvmy8FL3dgSAGie3r17y9fX16bXV3V1tU3vsAtCQkLsxvv5+alXr1529+nSpYuGDRumw4cPt/i4kpSZmamMjAzLem1trcLCwpo+QQAAvAC9hwF0RiTQvMTFybTO7uKZgoaGdXdbOzq9i3uwTS1wXzvQqfj7+8tsNquoqEgTJkywlBcVFWn8+PF294mNjdVbb71lVbZjxw7FxMSoa9eudvcxDEPl5eUaNGhQi48rSSaTSSaTqdnnBwBAR8YP9AC8GQk0wJswbBMdQEZGhqZNm6aYmBjFxsZqzZo1qqioUEpKiqTzvb5OnDihdevWSZJSUlK0cuVKZWRkaNasWSopKVFeXp42bdpkqXPx4sW64447dMMNN6i2tlYrVqxQeXm5Vq1a1ezjAgAAAPBeJNAAAB4lKSlJp06d0pIlS1RZWano6GgVFhYqIiJCklRZWamKigpLfGRkpAoLC5Wenq5Vq1YpNDRUK1as0MSJEy0xX331lf7jP/5DVVVVCgoK0q233qr33ntPt99+e7OP6w4X96gFAAAA4D4k0AAAHic1NVWpqal2t+Xn59uUjRw5Uvv372+yvl//+tf69a9/3arjAgAAAPBeJNAAAIDLtOXzcngoNQC0j7bsAc17N4DOggQaOjUmFAAAAAAAAK3Vxd0NAAAAAAAAADwZPdAA2GK2TgAAAAAALEigAWi9ixNuUwvc1w4AHq0tn4cGAOh4eB4agI6MIZwAAAAAAACAAy1KoOXk5CgyMlIBAQEym83atWuXw/ji4mKZzWYFBASof//+Wr16tU3Mli1bNHDgQJlMJg0cOFDbtm2z2v7ee+9p3LhxCg0NlY+Pj/74xz+2pOmd3lMnF1gWAAAAAAAAtJ7TQzgLCgqUlpamnJwcjRgxQq+88ooSExN18OBBhYeH28QfOXJEY8eO1axZs7R+/Xq9//77Sk1NVZ8+fTRx4kRJUklJiZKSkvTzn/9cEyZM0LZt2zR58mTt3r1bw4cPlyR98803GjJkiB577DHLfhCJMgCAV2IYEAAAANqT0wm05cuXKzk5WTNnzpQkZWdna/v27crNzVVWVpZN/OrVqxUeHq7s7GxJUlRUlPbt26dly5ZZEmHZ2dkaPXq0MjMzJUmZmZkqLi5Wdna2Nm3aJElKTExUYmJii04SAAB4lkt/AOKZaADQsfBcSwDexqkhnPX19SotLVVCQoJVeUJCgvbs2WN3n5KSEpv4MWPGaN++fTp79qzDmKbqBAAAAAB0XMn5ey0LAHQETiXQampq1NjYqODgYKvy4OBgVVVV2d2nqqrKbnxDQ4NqamocxjRVZ3PV1dWptrbWagEAAACAtuDMs6G3bt2q0aNHq0+fPgoMDFRsbKy2b9/ejq11rPz4V5YFAGCrRZMI+Pj4WK0bhmFTdrn4S8udrbM5srKyFBQUZFnCwsJaVR86Dz4gAIDnYkIcAB3BhWdDz58/X2VlZYqPj1diYqIqKirsxr/33nsaPXq0CgsLVVpaqh/84AcaN26cysrK2rnlAICWcOoZaL1795avr69Nz7Dq6mqbHmQXhISE2I338/NTr169HMY0VWdzZWZmKiMjw7JeW1tLEg1ojY1J7m4BAACAR3D22dAXngl9wXPPPac33nhDb731lm699db2aDIAoBWcSqD5+/vLbDarqKhIEyZMsJQXFRVp/PjxdveJjY3VW2+9ZVW2Y8cOxcTEqGvXrpaYoqIipaenW8XExcU50zwbJpNJJpOpVXWg86C3GQB4rtb0NmNGTgDt7cKzoefOnWtV7ujZ0Jc6d+6czpw5o549e7qiiQCANub0LJwZGRmaNm2aYmJiFBsbqzVr1qiiokIpKSmSzvf6OnHihNatWydJSklJ0cqVK5WRkaFZs2appKREeXl5ltk1JWnOnDm666679Pzzz2v8+PF644039M4772j37t2WmK+//lr//Oc/LetHjhxReXm5evbsqfDw8BZfAAAAAABwRkueDX2pX/3qV/rmm280efLkJmPq6upUV1dnWeeZzgDgPk4n0JKSknTq1CktWbJElZWVio6OVmFhoSIiIiRJlZWVVuP+IyMjVVhYqPT0dK1atUqhoaFasWKFJk6caImJi4vT5s2btWDBAi1cuFADBgxQQUGBhg8fbonZt2+ffvCDH1jWLwzNfPTRR5Wfn+/0iQMA4HEYJg0AHUpLn+O8adMmLVq0SG+88YauueaaJuOysrK0ePHiVrfT09GTGEBH4HQCTZJSU1OVmppqd5u9ZNbIkSO1f/9+h3VOmjRJkyZNanL73XffbZl8AAAAAADcpSXPhr6goKBAycnJ+sMf/qBRo0Y5jOWZzgDgOVqUQAM6k4ufjTY0rLvb2tEpXdybZmqB+9oBAADQhlrybGjpfM+zxx9/XJs2bdJ999132ePwTGcA8Bwk0AAAQKfBMCAA7cXZZ0Nv2rRJ06dP10svvaQ77rjD0nvtiiuuUFBQkNvOAwDQPCTQALQtnuEEAAC8gLPPhn7llVfU0NCgJ554Qk888YSlvDM80/nSmZRfDl7a4rr4IQSApyKBBlyE4ZxuwlBPAADQATnzbOidO3e6vkEAAJchgdYBXfoLD9AhXNozjUQZAAAAAKCD6OLuBgAAAAAAAACejB5oTrh4PD4AAPBsPEcHADo23scBeBISaEATLn4emsQz0QAAAAAA8FYM4QTguTYm/XuBV8nJyVFkZKQCAgJkNpu1a9cuh/HFxcUym80KCAhQ//79tXr1aqvtr776quLj49WjRw/16NFDo0aN0ocffmgVs2jRIvn4+FgtISEhbX5ucM5TJxdYFgAAAMBdSKB5ML40APBGBQUFSktL0/z581VWVqb4+HglJiaqoqLCbvyRI0c0duxYxcfHq6ysTPPmzdPs2bO1ZcsWS8zOnTs1ZcoUvfvuuyopKVF4eLgSEhJ04sQJq7puueUWVVZWWpaPP/7YpecKAAAAoGNgCCcAwKMsX75cycnJmjlzpiQpOztb27dvV25urrKysmziV69erfDwcGVnZ0uSoqKitG/fPi1btkwTJ06UJG3YsMFqn1dffVWvv/66/vrXv2r69OmWcj8/P3qdAQDQShd3AHg5eGmb1Mnz0AC4Gwk0oJkufiYaz0Nzg4uHcU4tcF874FL19fUqLS3V3LlzrcoTEhK0Z88eu/uUlJQoISHBqmzMmDHKy8vT2bNn1bVrV5t9vv32W509e1Y9e/a0Kj98+LBCQ0NlMpk0fPhwPffcc+rfv3+T7a2rq1NdXZ1lvba29rLniJZrzReySycC4ssXAAAAnEECrYNgGCdwEZJpnVZNTY0aGxsVHBxsVR4cHKyqqiq7+1RVVdmNb2hoUE1Njfr27Wuzz9y5c3Xttddq1KhRlrLhw4dr3bp1uvHGG3Xy5EktXbpUcXFxOnDggHr16mX32FlZWVq8eLGzpwkAgEe4dNIsAEDTSKAB6JxIsnVoPj4+VuuGYdiUXS7eXrkkvfDCC9q0aZN27typgIAAS3liYqLl9aBBgxQbG6sBAwbot7/9rTIyMuweNzMz02pbbW2twsLCHJwZAAAAgI6IBBoAz8KMm16td+/e8vX1teltVl1dbdPL7IKQkBC78X5+fjY9x5YtW6bnnntO77zzjgYPHuywLVdddZUGDRqkw4cPNxljMplkMpkc1gPPxLN0AKDjYlg+AHcggQbAu9FTzaP4+/vLbDarqKhIEyZMsJQXFRVp/PjxdveJjY3VW2+9ZVW2Y8cOxcTEWD3/7MUXX9TSpUu1fft2xcTEXLYtdXV1OnTokOLj41t4NgAAoKlH0bTV5AIA0F5IoHkYnnUGOIkEWKeTkZGhadOmKSYmRrGxsVqzZo0qKiqUkpIi6fywyRMnTmjdunWSpJSUFK1cuVIZGRmaNWuWSkpKlJeXp02bNlnqfOGFF7Rw4UJt3LhR/fr1s/RYu/rqq3X11VdLkp5++mmNGzdO4eHhqq6u1tKlS1VbW6tHH320na8AAAAAAE9DAg2AezBUE01ISkrSqVOntGTJElVWVio6OlqFhYWKiIiQJFVWVqqiosISHxkZqcLCQqWnp2vVqlUKDQ3VihUrNHHiREtMTk6O6uvrNWnSJKtjPfvss1q0aJEk6fPPP9eUKVNUU1OjPn366I477tAHH3xgOS4AAPBMDMsH0B5IoAEt0NSMRUPDurdrO4DOKjU1VampqXa35efn25SNHDlS+/fvb7K+o0ePXvaYmzdvbm7zXIbZ0NyDL14AAAC4HBJoADq/S3u7MdQTAAAAAOAEEmgAOo/mDgtl+CjQ4V38zNC2fBA1vdEAAABgDwk0oA1dPPyK4ZwAAABA++KHEACuQgINAFqKGUABAABaxFU9iQHAVUigAS5CbzQAAADAfeiNBqAtkUADAFejpxrgUhf3YrhYa3s08MULANoHvdEAdAQk0ADgckiAAQAAAIBXI4HmAZr65RydB8M5OyBm6gQAAOg06FUMoLVIoLkJSTPAA5E0AzqtS++7zg4R4osXAACAdyOBBgBtgWGegMfhxyoA6Hja43lo/CgCoCVIoAHtjOGcHRy91ACvxxcvAGgfTC4AwJOQQAMAAGghkmkA0LHxPg6guUigAW5EbzQvx7BPwG3o1QAAAABnkEADgPbEEFCg06IXAwAAQOdFAq0d8TBjwEuQJAMAAGhTjr5LtVVPYn4IAeAICTTAQ1w8nPNSDO/0Mk0N7WTIJ+BybTW08+IvYRJfxACgoyGZBuBSJNCADoBnpXmxpnqzkUwD2gw9xAEAAHA5JNBcjA/lAFzu0iQbvdaANtGWEw1c2iPtAno1AEDruXpiGHoVA5BIoAEdDr3ROimemwZ4JYYIAUDbao9ZlnnvBrwTCTSgAyOZBqfQGw1oMb6QAQDs4b0b8B4k0NoAwzThCUimwYLebIBLkUwD0JE5mriqs2nqexrv3QBaggQaAABACzX3R7S2mtGTL2QA0DHw3g10PiTQgE6oqV8W6ZkGAJ7F2d5sTEYAAK3XnB8/2rKXGsk0oHMggdZCDNtER8QwTwBwv6Y+Q7RmaCgzxAFAx8APIUDH1aIEWk5Ojl588UVVVlbqlltuUXZ2tuLj45uMLy4uVkZGhg4cOKDQ0FD913/9l1JSUqxitmzZooULF+p///d/NWDAAP3iF7/QhAkTWnVcAE1r7vMvSLTBHbjPoLNx9oe31j63p6kvaBfjyxrQeq64X8EzOHrfdsUz1By9b/N+DXgGpxNoBQUFSktLU05OjkaMGKFXXnlFiYmJOnjwoMLDw23ijxw5orFjx2rWrFlav3693n//faWmpqpPnz6aOHGiJKmkpERJSUn6+c9/rgkTJmjbtm2aPHmydu/ereHDh7fouADaRlO91ujNBlfhPgM0T2snM2hOku1ifIEDrLnifoWOwZ1DQJvCezTgej6GYRjO7DB8+HDddtttys3NtZRFRUXpgQceUFZWlk38M888ozfffFOHDh2ylKWkpOijjz5SSUmJJCkpKUm1tbX6y1/+Yon54Q9/qB49emjTpk0tOq49tbW1CgoK0unTpxUYGOjMaUuSyp8f4/Q+AM4jyeZhpha0STWtfV+1h/sM4LxLv6g52+PNVTPSXYwvd2gJV9xn2oor7leX0xbXg3tN+7v4Pba9ZwZtCu/JwHnOvK861QOtvr5epaWlmjt3rlV5QkKC9uzZY3efkpISJSQkWJWNGTNGeXl5Onv2rLp27aqSkhKlp6fbxGRnZ7f4uJJUV1enuro6y/rp06clnb9ALfH19w0t2g+AtPtwTav2H3xtUBu1BJKkFr4P2lZzvh4nf4tpEvcZ7jNomceOWf/tft3K/VvjlWvsfzncvfhep+L/s3qp3ZiLyy/dtuphc7PbiY6hre8zbcVV96tLtfV9RuJe4w4Xv8c29f7c3PdhZ98zmzIt991mHa81eE9GR+DMfcapBFpNTY0aGxsVHBxsVR4cHKyqqiq7+1RVVdmNb2hoUE1Njfr27dtkzIU6W3JcScrKytLixYttysPCwpo+SQDwBrO2tWl1Z86cUVBQ65Oc3GeAzuBvdkvXtyr+b02UX7It1WHD0IG11X2mrbjqfnUp7jOw5dx7pjvxnoyOpDn3mRZNIuDj42O1bhiGTdnl4i8tb06dzh43MzNTGRkZlvVz587pX//6l3r16mW1X21trcLCwnT8+HGP6xrublwb+7gu9nFdmtZZr41hGDpz5oxCQ0PbtN7Odp9pjs76N9IWuDZN49o4xvVpWke5Nq66z7QVV9yvLtaS+0xH+bf1BFwr53C9mo9r1XzuvlbO3GecSqD17t1bvr6+Nr+qVFdX2/yackFISIjdeD8/P/Xq1cthzIU6W3JcSTKZTDKZTFZl3bt3bzI+MDCQP+4mcG3s47rYx3VpWme8Nm3ZI6Cz32eaozP+jbQVrk3TuDaOcX2a1hGujSf1PLvAVferS7XmPtMR/m09BdfKOVyv5uNaNZ87r1Vz7zNdnKnU399fZrNZRUVFVuVFRUWKi4uzu09sbKxN/I4dOxQTE2MZ599UzIU6W3JcAEDHw30GANARuOp+BQDwYIaTNm/ebHTt2tXIy8szDh48aKSlpRlXXXWVcfToUcMwDGPu3LnGtGnTLPGfffaZceWVVxrp6enGwYMHjby8PKNr167G66+/bol5//33DV9fX+OXv/ylcejQIeOXv/yl4efnZ3zwwQfNPm5rnD592pBknD59utV1dTZcG/u4LvZxXZrGtWm+znifaQ7+RprGtWka18Yxrk/TuDat54r7VVvg37b5uFbO4Xo1H9eq+TrStXI6gWYYhrFq1SojIiLC8Pf3N2677TajuLjYsu3RRx81Ro4caRW/c+dO49ZbbzX8/f2Nfv36Gbm5uTZ1/uEPfzBuuukmo2vXrsbNN99sbNmyxanjtsb3339vPPvss8b333/fJvV1Jlwb+7gu9nFdmsa1cU5nu880B38jTePaNI1r4xjXp2lcm7bhivtVa/Fv23xcK+dwvZqPa9V8Hela+RiGh80JDQAAAAAAAHgQp56BBgAAAAAAAHgbEmgAAAAAAACAAyTQAAAAAAAAAAdIoAEAAAAAAAAOkECTlJOTo8jISAUEBMhsNmvXrl3ubpLLZGVladiwYerWrZuuueYaPfDAA/rkk0+sYgzD0KJFixQaGqorrrhCd999tw4cOGAVU1dXp6eeekq9e/fWVVddpR/96Ef6/PPP2/NUXCorK0s+Pj5KS0uzlHnzdTlx4oQeeeQR9erVS1deeaWGDh2q0tJSy3ZvvDYNDQ1asGCBIiMjdcUVV6h///5asmSJzp07Z4nxxuuClvOme1FT3nvvPY0bN06hoaHy8fHRH//4R6vtzfk/1Vm11f27M8rNzdXgwYMVGBiowMBAxcbG6i9/+Ytlu7del0u19LMNOh7uJ5e3aNEi+fj4WC0hISHubpZH4F7snMtdrxkzZtj8rd1xxx3uaawbdZbPMV6fQCsoKFBaWprmz5+vsrIyxcfHKzExURUVFe5umksUFxfriSee0AcffKCioiI1NDQoISFB33zzjSXmhRde0PLly7Vy5Urt3btXISEhGj16tM6cOWOJSUtL07Zt27R582bt3r1bX3/9te6//341Nja647Ta1N69e7VmzRoNHjzYqtxbr8v//d//acSIEeratav+8pe/6ODBg/rVr36l7t27W2K88do8//zzWr16tVauXKlDhw7phRde0IsvvqiXX37ZEuON1wUt4233oqZ88803GjJkiFauXGl3e3P+T3VWbXX/7oyuu+46/fKXv9S+ffu0b98+3XPPPRo/frzlQ7e3XpeLteazDToW7ifNd8stt6iystKyfPzxx+5ukkfgXuycy10vSfrhD39o9bdWWFjYji30DJ3mc4zh5W6//XYjJSXFquzmm2825s6d66YWta/q6mpDklFcXGwYhmGcO3fOCAkJMX75y19aYr7//nsjKCjIWL16tWEYhvHVV18ZXbt2NTZv3myJOXHihNGlSxfj7bffbt8TaGNnzpwxbrjhBqOoqMgYOXKkMWfOHMMwvPu6PPPMM8add97Z5HZvvTb33Xef8fjjj1uVPfjgg8YjjzxiGIb3Xhe0jLffi+yRZGzbts2y3pz/U96kJfdvb9KjRw/jtdde47oYrftsg46H+0nzPPvss8aQIUPc3QyPx73YOZdeL8MwjEcffdQYP368W9rjyTrq5xiv7oFWX1+v0tJSJSQkWJUnJCRoz549bmpV+zp9+rQkqWfPnpKkI0eOqKqqyuqamEwmjRw50nJNSktLdfbsWauY0NBQRUdHd/jr9sQTT+i+++7TqFGjrMq9+bq8+eabiomJ0Y9//GNdc801uvXWW/Xqq69atnvrtbnzzjv117/+VZ9++qkk6aOPPtLu3bs1duxYSd57XeA87kXN05z/U96kJfdvb9DY2KjNmzfrm2++UWxsLNdFrftsg46F+4lzDh8+rNDQUEVGRuqhhx7SZ5995u4meTzeN1pm586duuaaa3TjjTdq1qxZqq6udneT3K6jfo7xc3cD3KmmpkaNjY0KDg62Kg8ODlZVVZWbWtV+DMNQRkaG7rzzTkVHR0uS5bztXZNjx45ZYvz9/dWjRw+bmI583TZv3qz9+/dr7969Ntu8+bp89tlnys3NVUZGhubNm6cPP/xQs2fPlslk0vTp07322jzzzDM6ffq0br75Zvn6+qqxsVG/+MUvNGXKFEne/TcD53j7vai5mvN/ylu09P7dmX388ceKjY3V999/r6uvvlrbtm3TwIEDLR+6vfW6tPazDToW7ifNN3z4cK1bt0433nijTp48qaVLlyouLk4HDhxQr1693N08j8X7hvMSExP14x//WBERETpy5IgWLlyoe+65R6WlpTKZTO5unlt05M8xXp1Au8DHx8dq3TAMm7LO6Mknn9Q//vEP7d6922ZbS65JR75ux48f15w5c7Rjxw4FBAQ0Gedt10WSzp07p5iYGD333HOSpFtvvVUHDhxQbm6upk+fbonztmtTUFCg9evXa+PGjbrllltUXl6utLQ0hYaG6tFHH7XEedt1Qct5673IWVyntr9/dwY33XSTysvL9dVXX2nLli169NFHVVxcbNnujdfFlZ9t4Nn4N728xMREy+tBgwYpNjZWAwYM0G9/+1tlZGS4sWUdA39jzZeUlGR5HR0drZiYGEVEROjPf/6zHnzwQTe2zH068ucYrx7C2bt3b/n6+tr8IlNdXW2T+exsnnrqKb355pt69913dd1111nKL8w+4+iahISEqL6+Xv/3f//XZExHU1paqurqapnNZvn5+cnPz0/FxcVasWKF/Pz8LOflbddFkvr27auBAwdalUVFRVkeRuutfzM/+9nPNHfuXD300EMaNGiQpk2bpvT0dGVlZUny3usC53nzvcgZzfk/5Q1ac//uzPz9/XX99dcrJiZGWVlZGjJkiF566SWvvi5t8dkGHQv3k5a76qqrNGjQIB0+fNjdTfFo3vye2lb69u2riIgIr/1b6+ifY7w6gebv7y+z2ayioiKr8qKiIsXFxbmpVa5lGIaefPJJbd26VX/7298UGRlptT0yMlIhISFW16S+vl7FxcWWa2I2m9W1a1ermMrKSv33f/93h71u9957rz7++GOVl5dblpiYGD388MMqLy9X//79vfK6SNKIESNsphj+9NNPFRERIcl7/2a+/fZbdeli/Rbq6+urc+fOSfLe6wLneeO9qCWa83+qM2uL+7c3MQxDdXV1Xn1d2uKzDToW7ictV1dXp0OHDqlv377ubopH8+b31LZy6tQpHT9+3Ov+1jrN55j2m6/AM23evNno2rWrkZeXZxw8eNBIS0szrrrqKuPo0aPubppL/OQnPzGCgoKMnTt3GpWVlZbl22+/tcT88pe/NIKCgoytW7caH3/8sTFlyhSjb9++Rm1trSUmJSXFuO6664x33nnH2L9/v3HPPfcYQ4YMMRoaGtxxWi5x8UxVhuG91+XDDz80/Pz8jF/84hfG4cOHjQ0bNhhXXnmlsX79ekuMN16bRx991Lj22muNP/3pT8aRI0eMrVu3Gr179zb+67/+yxLjjdcFLeNt96KmnDlzxigrKzPKysoMScby5cuNsrIy49ixY4ZhNO//VGfVVvfvzigzM9N47733jCNHjhj/+Mc/jHnz5hldunQxduzYYRiG914Xe1ry2QYdC/eT5vnpT39q7Ny50/jss8+MDz74wLj//vuNbt26cZ0M7sXOcnS9zpw5Y/z0pz819uzZYxw5csR49913jdjYWOPaa6/1uuvVWT7HeH0CzTAMY9WqVUZERITh7+9v3HbbbZapVDsjSXaX3/zmN5aYc+fOGc8++6wREhJimEwm46677jI+/vhjq3q+++4748knnzR69uxpXHHFFcb9999vVFRUtPPZuNalHzK9+bq89dZbRnR0tGEymYybb77ZWLNmjdV2b7w2tbW1xpw5c4zw8HAjICDA6N+/vzF//nyjrq7OEuON1wUt5033oqa8++67du9Rjz76qGEYzfs/1Vm11f27M3r88cct/3f69Olj3HvvvZbkmWF473WxpyWfbdDxcD+5vKSkJKNv375G165djdDQUOPBBx80Dhw44O5meQTuxc5xdL2+/fZbIyEhwejTp4/RtWtXIzw83Hj00Ue98rN+Z/kc42MYhuHaPm4AAAAAAABAx+XVz0ADAAAAAAAALocEGgAAAAAAAOAACTQAAAAAAADAARJoAAAAAAAAgAMk0AAAAAAAAAAHSKABAAAAAAAADpBAAwAAAAAAABwggQa0g0WLFsnHx0c1NTWXje3Xr59mzJhhWf/000/19NNPy2w2q3v37urZs6dGjBih119/3el27Ny5Uz4+Pi3aFwDQOWzcuFHZ2dnubgYAAECHQgIN8DDbtm3TwoULLes7duzQn//8Z02cOFF/+MMftGHDBt1www368Y9/rCVLlrixpQCAjogEGgAAgPP83N0AANZuvfVWq/WHHnpITzzxhHx8fCxliYmJqqmp0fPPP69nnnlGJpOpvZsJAAAAAIDXoAca0IQ//vGP8vHx0V//+lebbbm5ufLx8dE//vEPSdLf//53jRs3Tr169VJAQIAGDBigtLQ0m/1OnjypKVOmKCgoSMHBwXr88cd1+vRpq5hLh3D27t3bKnl2we23365vv/1W//rXv5w+t++//14ZGRkKCQnRFVdcoZEjR6qsrMzpegDA210Yov+Pf/xDP/7xjxUUFKSePXsqIyNDDQ0N+uSTT/TDH/5Q3bp1U79+/fTCCy9Y9s3Pz5ePj4+OHj1qVeeF4fY7d+5sdjsu1FVUVKTHHntMPXv21FVXXaVx48bps88+s8Tdfffd+vOf/6xjx47Jx8fHsjRXWVmZ7r//fl1zzTUymUwKDQ3Vfffdp88//1ySdPToUfn4+Cg/P99mXx8fHy1atMiy3pprBwAA0N5IoAFNuPAF4Te/+Y3Ntvz8fN12220aPHiwtm/frvj4eFVUVGj58uX6y1/+ogULFujkyZM2+02cOFE33nijtmzZorlz52rjxo1KT09vUfveffdd9enTR9dcc43T+86bN0+fffaZXnvtNb322mv64osvdPfdd1t9yQIANN/kyZM1ZMgQbdmyRbNmzdKvf/1rpaen64EHHtB9992nbdu26Z577tEzzzyjrVu3uqwdycnJ6tKli2WY5ocffqi7775bX331lSQpJydHI0aMUEhIiEpKSixLc3zzzTcaPXq0Tp48qVWrVqmoqEjZ2dkKDw/XmTNnWtxmT7l2AAAAjjCEE2iCn5+fHnnkEeXm5ur06dMKCgqSJB06dEgffvihXn75ZUnSE088ofDwcP39739XQECAZf/HHnvMps7k5GT97Gc/kySNGjVK//znP7V27Vrl5eU51QPgtdde086dO/XSSy/J19fX6XPr06ePtm3bZjnmnXfeqRtuuEFZWVl69dVXna4PALzdf/zHfygjI0PS+ff3HTt2aOXKldq6dasmTJgg6Xzvrz/96U/asGGDHnzwQZe0IyYmRnl5eZb1W265RSNGjNCqVas0f/58DRw4UN27d5fJZNIdd9zhVN3/8z//o1OnTikvL0/jx4+3lE+ePLlVbfaUawcAAOAIPdAABx5//HF99913KigosJT95je/kclk0tSpU/Xpp5/qf//3f5WcnGyVPGvKj370I6v1wYMH6/vvv1d1dXWz2/SXv/xFTzzxhCZNmqSnnnqq+SdzkalTp1ol7CIiIhQXF6d33323RfUBgLe7//77rdajoqLk4+OjxMRES5mfn5+uv/56HTt2zGXtePjhh63W4+LiFBER0Sbv79dff7169OihZ555RqtXr9bBgwdbXafkOdcOAADAERJogAO33HKLhg0bZhnG2djYqPXr12v8+PHq2bOnvvzyS0nSdddd16z6evXqZbV+4eH/3333XbP23759ux588EGNHj1aGzZscKrX2sVCQkLslp06dapF9QGAt+vZs6fVur+/v6688kqbH1f8/f31/fffu6wdrnx/DwoKUnFxsYYOHap58+bplltuUWhoqJ599lmdPXu2xfV6yrUDAABwhAQacBmPPfaYPvjgAx06dEhvv/22KisrLcMz+/TpI0mWhye70vbt2/XAAw9o5MiR2rJli/z9/VtcV1VVld2ySxN8AADXuZAgqqursyqvqalpcZ2ufn8fNGiQNm/erFOnTqm8vFxJSUlasmSJfvWrX0lq+pz4gQYAAHR0JNCAy5gyZYoCAgKUn5+v/Px8XXvttUpISJAk3XjjjRowYIDWrl1r82WhLe3YsUMPPPCA7rzzTv3xj3+09FxrqU2bNskwDMv6sWPHtGfPHt19992tbCkAoLn69esnSZYZnS948803W1znhg0brNb37NmjY8eOWb2/m0ymZvd8boqPj4+GDBmiX//61+revbv2798vSQoODlZAQIDNOb3xxhutOh4AAIC7MYkAcBndu3fXhAkTlJ+fr6+++kpPP/20unT5d+551apVGjdunO644w6lp6crPDxcFRUV2r59u80XmZbYvXu3HnjgAYWEhGjevHkqLy+32j5w4EAFBgY6VWd1dbUmTJigWbNm6fTp03r22WcVEBCgzMzMVrcXANA8w4YN00033aSnn35aDQ0N6tGjh7Zt26bdu3e3uM59+/Zp5syZ+vGPf6zjx49r/vz5uvbaa5WammqJGTRokLZu3arc3FyZzWZ16dJFMTExl637T3/6k3JycvTAAw+of//+MgxDW7du1VdffaXRo0dLOp9Ye+SRR7R27VoNGDBAQ4YM0YcffqiNGze2+JwAAAA8AQk0oBkee+wxbdq0SZI0Y8YMq21jxozRe++9pyVLlmj27Nn6/vvvdd1119lMGNBS77zzjr777jsdPXpU99xzj832d9991+meY88995z27t2rxx57TLW1tbr99tu1efNmDRgwoE3aDAC4PF9fX7311lt68sknlZKSIpPJpIceekgrV67Ufffd16I68/Ly9Lvf/U4PPfSQ6urq9IMf/EAvvfSS1XPG5syZowMHDmjevHk6ffq0DMOw6pXclBtuuEHdu3fXCy+8oC+++EL+/v666aablJ+fr0cffdQSd2E45wsvvKCvv/5a99xzj/70pz9ZetwBAAB0RD5Gcz4xAQAAwGPl5+frscce0969e5vVmwwAAADO4RloAAAAAAAAgAMM4QQ6AcMw1NjY6DDG19dXPj4+7dQiAEBbaO77e2s1NjY6HMbp4+PTJscBAADoqOiBBnQCxcXF6tq1q8Plt7/9rbubCQBw0m9/+9vLvr8XFxdrxowZMgyjxcM37733XofH4BmZAADA2/EMNKATOHPmjD755BOHMZGRkerVq1c7tQgA0BZOnTqlI0eOOIy56aab1K1bt1Yd55NPPtGZM2ea3G4ymTRo0KBWHQMAAKAjI4EGAAAAAAAAOMAQTgAAAAAAAMABr5pE4Ny5c/riiy/UrVs3HqYOAG3AMAydOXNGoaGh6tKF32S4zwBA2+I+AwDwFF6VQPviiy8UFhbm7mYAQKdz/PhxXXfdde5uhttxnwEA1+A+AwBwN69KoF14wO7x48cVGBjo5tYAQMdXW1ursLCwVj/AvLPgPgMAbYv7DADAU3hVAu3CcJrAwEC+2ABAG2K44nncZwDANbjPAADcjQcJAAAAAAAAAA6QQAMAAAAAAAAcIIEGAAAAAAAAOEACDQAAAAAAAHCABBoAAAAAAADgAAk0AAAAAAAAwAESaAAAAAAAAIADJNAAAAAAAAAAB0igAQAAAAAAAA74ubsB3iQ5f6/ldd6MYW5sCQCg09iY9O/XUwvc1w4AAACgE6MHGgAAAAAAAOAACTQAAAAAAADAARJoAIAOKScnR5GRkQoICJDZbNauXbscxhcXF8tsNisgIED9+/fX6tWrm4zdvHmzfHx89MADD7RxqwEAAAB0RCTQAAAdTkFBgdLS0jR//nyVlZUpPj5eiYmJqqiosBt/5MgRjR07VvHx8SorK9O8efM0e/ZsbdmyxSb22LFjevrppxUfH+/q0wAAAADQQZBAc5Pk/L2WBQDgnOXLlys5OVkzZ85UVFSUsrOzFRYWptzcXLvxq1evVnh4uLKzsxUVFaWZM2fq8ccf17Jly6ziGhsb9fDDD2vx4sXq379/e5wKAAAAgA6ABBoAoEOpr69XaWmpEhISrMoTEhK0Z88eu/uUlJTYxI8ZM0b79u3T2bNnLWVLlixRnz59lJyc3PYNBwAAANBh+bm7AQAAOKOmpkaNjY0KDg62Kg8ODlZVVZXdfaqqquzGNzQ0qKamRn379tX777+vvLw8lZeXN7stdXV1qqurs6zX1tY2/0RcYWPSv19PLXBfOwAAAIBOhh5oAIAOycfHx2rdMAybssvFXyg/c+aMHnnkEb366qvq3bt3s9uQlZWloKAgyxIWFubEGQAAAADoKOiB5mI84wwA2lbv3r3l6+tr09usurrappfZBSEhIXbj/fz81KtXLx04cEBHjx7VuHHjLNvPnTsnSfLz89Mnn3yiAQMG2NSbmZmpjIwMy3ptbS1JNAAAAKATclkPtJycHEVGRiogIEBms1m7du1qMrayslJTp07VTTfdpC5duigtLc1u3JYtWzRw4ECZTCYNHDhQ27Ztc1HrAQCeyt/fX2azWUVFRVblRUVFiouLs7tPbGysTfyOHTsUExOjrl276uabb9bHH3+s8vJyy/KjH/1IP/jBD1ReXt5kUsxkMikwMNBqAQAAAND5uCSBVlBQoLS0NM2fP19lZWWKj49XYmKiKioq7MbX1dWpT58+mj9/voYMGWI3pqSkRElJSZo2bZo++ugjTZs2TZMnT9bf//53V5wCAMCDZWRk6LXXXtPatWt16NAhpaenq6KiQikpKZLO9wybPn26JT4lJUXHjh1TRkaGDh06pLVr1yovL09PP/20JCkgIEDR0dFWS/fu3dWtWzdFR0fL39/fLefZKhuT/r0AAAAAaBWXJNCWL1+u5ORkzZw5U1FRUcrOzlZYWJhyc3Ptxvfr108vvfSSpk+frqCgILsx2dnZGj16tDIzM3XzzTcrMzNT9957r7Kzs11xCgAAD5aUlKTs7GwtWbJEQ4cO1XvvvafCwkJFRERIOt+z+eIfbSIjI1VYWKidO3dq6NCh+vnPf64VK1Zo4sSJ7joFAAAAAB1Imz8Drb6+XqWlpZo7d65VeUJCgvbs2dPiektKSpSenm5VNmbMGBJoAOClUlNTlZqaandbfn6+TdnIkSO1f//+Ztdvrw4AAAAA3qnNE2g1NTVqbGy0eZBzcHCwzQOcnVFVVeV0nXV1daqrq7Os19bWtvj4AAAAAAAA8E4um0TAx8fHat0wDJsyV9eZlZWloKAgy8LMaAAAAAAAAHBWmyfQevfuLV9fX5ueYdXV1TY9yJwREhLidJ2ZmZk6ffq0ZTl+/HiLjw8AAAAAAADv1OYJNH9/f5nNZhUVFVmVFxUVKS4ursX1xsbG2tS5Y8cOh3WaTCYFBgZaLQAAAAAAAIAz2vwZaJKUkZGhadOmKSYmRrGxsVqzZo0qKiqUkpIi6XzPsBMnTmjdunWWfcrLyyVJX3/9tb788kuVl5fL399fAwcOlCTNmTNHd911l55//nmNHz9eb7zxht555x3t3r3bFacAAAAAAAAASHJRAi0pKUmnTp3SkiVLVFlZqejoaBUWFioiIkKSVFlZqYqKCqt9br31Vsvr0tJSbdy4URERETp69KgkKS4uTps3b9aCBQu0cOFCDRgwQAUFBRo+fLgrTgEAAAAAAACQ5KIEmiSlpqYqNTXV7rb8/HybMsMwLlvnpEmTNGnSpNY2DQAAAAAAAGg2lyXQ0HzJ+Xstr/NmDHNjSwAAAAAAAHCpNp9EAAAAAAAAAOhMSKABAAAAAAAADpBAAwAAAAAAABwggQYAAAAAAAA4QAINAAAAAAAAcIBZOAEA6Gg2Jrm7BQAAAIBXoQcaAAAAAAAA4AAJNAAAAAAAAMABEmgAAAAAAACAAyTQAAAAAAAAAAdIoAEAAAAAAAAOkEADAAAAAAAAHCCBBgAAAAAAADhAAg0AAAAAAABwgAQaAAAAAAAA4AAJNAAAAAAAAMABEmgAAAAAAACAA37ubkBnk5y/t832z5sxrLXNAQBA2pj079dTC9zXDgAAAKCDogcaAAAAAAAA4AAJNAAAAAAAAMABhnACAOBNGM4JAAAAOI0eaAAAAAAAAIADJNAAAAAAAAAAB0igAQAAAAAAAA6QQAMAAAAAAAAcIIEGAAAAAAAAOEACDQAAAAAAAHCABBoAAAAAAADgAAk0AAAAAAAAwAESaAAAAAAAAIADJNAAAAAAAAAAB0igAQAAAAAAAA64LIGWk5OjyMhIBQQEyGw2a9euXQ7ji4uLZTabFRAQoP79+2v16tU2MdnZ2brpppt0xRVXKCwsTOnp6fr+++9ddQoAAAAAAACAaxJoBQUFSktL0/z581VWVqb4+HglJiaqoqLCbvyRI0c0duxYxcfHq6ysTPPmzdPs2bO1ZcsWS8yGDRs0d+5cPfvsszp06JDy8vJUUFCgzMxMV5wCAAAAAAAAIEnyc0Wly5cvV3JysmbOnCnpfM+x7du3Kzc3V1lZWTbxq1evVnh4uLKzsyVJUVFR2rdvn5YtW6aJEydKkkpKSjRixAhNnTpVktSvXz9NmTJFH374oStOAQAAAAAAAJDkgh5o9fX1Ki0tVUJCglV5QkKC9uzZY3efkpISm/gxY8Zo3759Onv2rCTpzjvvVGlpqSVh9tlnn6mwsFD33Xdfk22pq6tTbW2t1QIAAAAAAAA4o817oNXU1KixsVHBwcFW5cHBwaqqqrK7T1VVld34hoYG1dTUqG/fvnrooYf05Zdf6s4775RhGGpoaNBPfvITzZ07t8m2ZGVlafHixa0/KQAA3G1jkrtbAAAAAHgtl00i4OPjY7VuGIZN2eXiLy7fuXOnfvGLXygnJ0f79+/X1q1b9ac//Uk///nPm6wzMzNTp0+ftizHjx9v6em4RXL+XssCAAAAAAAA92jzBFrv3r3l6+tr09usurrappfZBSEhIXbj/fz81KtXL0nSwoULNW3aNM2cOVODBg3ShAkT9NxzzykrK0vnzp2zW6/JZFJgYKDVAgDoHNp6tuetW7cqJiZG3bt311VXXaWhQ4fqd7/7nStPwf02JlkvAAAAAOxq8wSav7+/zGazioqKrMqLiooUFxdnd5/Y2Fib+B07digmJkZdu3aVJH377bfq0sW6ub6+vjIMw9JbDQDgHVwx23PPnj01f/58lZSU6B//+Icee+wxPfbYY9q+fXt7nRYAAAAAD+WSIZwZGRl67bXXtHbtWh06dEjp6emqqKhQSkqKpPNDK6dPn26JT0lJ0bFjx5SRkaFDhw5p7dq1ysvL09NPP22JGTdunHJzc7V582YdOXJERUVFWrhwoX70ox/J19fXFacBAPBQF8/2HBUVpezsbIWFhSk3N9du/MWzPUdFRWnmzJl6/PHHtWzZMkvM3XffrQkTJigqKkoDBgzQnDlzNHjwYO3evbu9TgsAAACAh2rzSQQkKSkpSadOndKSJUtUWVmp6OhoFRYWKiIiQpJUWVlp1UsgMjJShYWFSk9P16pVqxQaGqoVK1Zo4sSJlpgFCxbIx8dHCxYs0IkTJ9SnTx+NGzdOv/jFL1xxCgAAD3VhtudLJ5FpyWzPeXl5Onv2rKW38wWGYehvf/ubPvnkEz3//PNNtqWurk51dXWWdWZ7BgAAADonlyTQJCk1NVWpqal2t+Xn59uUjRw5Uvv372+yPj8/Pz377LN69tln26qJAIAOyFWzPUvS6dOnde2116qurk6+vr7KycnR6NGjm2wLsz0DAAAA3sFls3ACAOBKbT3bsyR169ZN5eXl2rt3r37xi18oIyNDO3fubLLOjj7bMwAAAIDmcVkPNAAAXMFVsz1LUpcuXXT99ddLkoYOHapDhw4pKytLd999t916TSaTTCZTK84GAAAAQEdADzQAQIfiqtme7TEMw+oZZwAAAAC8Ez3QAAAdTkZGhqZNm6aYmBjFxsZqzZo1NrM9nzhxQuvWrZN0frbnlStXKiMjQ7NmzVJJSYny8vK0adMmS51ZWVmKiYnRgAEDVF9fr8LCQq1bt67JmT0BAAAAeA8SaACADscVsz1/8803Sk1N1eeff64rrrhCN998s9avX6+kpKR2Pz8AAAAAnsXHuPAUZS9QW1uroKAgnT59WoGBgS45RnL+XpfUmzdjmEvqBYDWaI/31Y7EpddjYzsk8qYWuP4YAOAE7jMAAE/BM9AAAAAAAAAAB0igAQAAAAAAAA6QQAMAAAAAAAAcIIEGAAAAAAAAOEACDQAAAAAAAHCABBoAAAAAAADggJ+7GwAAADzExqR/v55a4L52AAAAAB6GHmgAAAAAAACAA/RA6yCS8/daXufNGObGlgAAAAAAAHgXeqABAAAAAAAADpBAAwAAAAAAABwggQYAAAAAAAA4QAINAAAAAAAAcIAEGgAAAAAAAOAACTQAAAAAAADAARJoAAAAAAAAgAMk0AAAAAAAAAAH/NzdAAAA4IE2Jv379dQC97UDAAAA8AAk0AAA8CLlx7+yvB4a1r3Z2wAAAABvxhBOAAAAAAAAwAF6oAEA0Mld3LOsOeWXbhvapq0BAAAAOh56oAEAAAAAAAAO0AMNAAA4lJy/1/I6b8YwN7YEAAAAcA8SaG3g4i8WAAB0ZiTTAAAA4I0YwgkAAAAAAAA4QA80AAA6IUcTBAAAAABwDj3QAAAAAAAAAAdclkDLyclRZGSkAgICZDabtWvXLofxxcXFMpvNCggIUP/+/bV69WqbmK+++kpPPPGE+vbtq4CAAEVFRamwsNBVpwAAAAAAAAC4ZghnQUGB0tLSlJOToxEjRuiVV15RYmKiDh48qPDwcJv4I0eOaOzYsZo1a5bWr1+v999/X6mpqerTp48mTpwoSaqvr9fo0aN1zTXX6PXXX9d1112n48ePq1u3bq44BY/GA5wBAAAAAADaj0sSaMuXL1dycrJmzpwpScrOztb27duVm5urrKwsm/jVq1crPDxc2dnZkqSoqCjt27dPy5YtsyTQ1q5dq3/961/as2ePunbtKkmKiIhwRfMBAEAz8IMOAAAAvEWbD+Gsr69XaWmpEhISrMoTEhK0Z88eu/uUlJTYxI8ZM0b79u3T2bNnJUlvvvmmYmNj9cQTTyg4OFjR0dF67rnn1NjY2GRb6urqVFtba7UAAAAAAAAAzmjzHmg1NTVqbGxUcHCwVXlwcLCqqqrs7lNVVWU3vqGhQTU1Nerbt68+++wz/e1vf9PDDz+swsJCHT58WE888YQaGhr0//7f/7Nbb1ZWlhYvXtw2JwYAgIdj5k0AAADANVw2iYCPj4/VumEYNmWXi7+4/Ny5c7rmmmu0Zs0amc1mPfTQQ5o/f75yc3ObrDMzM1OnT5+2LMePH2/p6QAAAAAAAMBLtXkPtN69e8vX19emt1l1dbVNL7MLQkJC7Mb7+fmpV69ekqS+ffuqa9eu8vX1tcRERUWpqqpK9fX18vf3t6nXZDLJZDK19pQAAAAAAADgxdq8B5q/v7/MZrOKioqsyouKihQXF2d3n9jYWJv4HTt2KCYmxjJhwIgRI/TPf/5T586ds8R8+umn6tu3r93kGQAAaD/J+XstCwAAANDZuGQIZ0ZGhl577TWtXbtWhw4dUnp6uioqKpSSkiLp/NDK6dOnW+JTUlJ07NgxZWRk6NChQ1q7dq3y8vL09NNPW2J+8pOf6NSpU5ozZ44+/fRT/fnPf9Zzzz2nJ554whWnAAAAAAAAAEhywRBOSUpKStKpU6e0ZMkSVVZWKjo6WoWFhYqIiJAkVVZWqqKiwhIfGRmpwsJCpaena9WqVQoNDdWKFSs0ceJES0xYWJh27Nih9PR0DR48WNdee63mzJmjZ555xhWnAAAAAAAAAEhyUQJNklJTU5Wammp3W35+vk3ZyJEjtX//fod1xsbG6oMPPmiL5gEAAAAAAADN4rJZOAEAAAAAAIDOgAQaAAAAAAAA4AAJNAAAAAAAAMABlz0DDQAAdA5PnVxgef1y8NLLxifn77W8zpsxzCVtAgAAANoTPdAAAAAAAAAAB0igAQAAAAAAAA4whBMAgA6s/PhX7m4CAAAA0OnRA62DS87fa7UAgLfIyclRZGSkAgICZDabtWvXLofxxcXFMpvNCggIUP/+/bV69Wqr7a+++qri4+PVo0cP9ejRQ6NGjdKHH37oylMAAAAA0EGQQHOxp04usCwAgLZRUFCgtLQ0zZ8/X2VlZYqPj1diYqIqKirsxh85ckRjx45VfHy8ysrKNG/ePM2ePVtbtmyxxOzcuVNTpkzRu+++q5KSEoWHhyshIUEnTpxor9MCAAAA4KEYwgkA6HCWL1+u5ORkzZw5U5KUnZ2t7du3Kzc3V1lZWTbxq1evVnh4uLKzsyVJUVFR2rdvn5YtW6aJEydKkjZs2GC1z6uvvqrXX39df/3rXzV9+nTXnlBTNia557gAAAAArNADDQDQodTX16u0tFQJCQlW5QkJCdqzZ4/dfUpKSmzix4wZo3379uns2bN29/n222919uxZ9ezZs8m21NXVqba21moBAAAA0PnQAw0A0KHU1NSosbFRwcHBVuXBwcGqqqqyu09VVZXd+IaGBtXU1Khv3742+8ydO1fXXnutRo0a1WRbsrKytHjx4hachfe4+PmceTOGubElAAAAQMuRQAMAdEg+Pj5W64Zh2JRdLt5euSS98MIL2rRpk3bu3KmAgIAm68zMzFRGRoZlvba2VmFhYc1qf0d18TM9Xw5e6saWAAAAAO2HBBoAoEPp3bu3fH19bXqbVVdX2/QyuyAkJMRuvJ+fn3r16mVVvmzZMj333HN65513NHjwYIdtMZlMMplMLTgLAAAAAB0Jz0ADAHQo/v7+MpvNKioqsiovKipSXFyc3X1iY2Nt4nfs2KGYmBh17drVUvbiiy/q5z//ud5++23FxMS0feMBAAAAdEgk0AAAHU5GRoZee+01rV27VocOHVJ6eroqKiqUkpIi6fzQyotnzkxJSdGxY8eUkZGhQ4cOae3atcrLy9PTTz9tiXnhhRe0YMECrV27Vv369VNVVZWqqqr09ddft/v5AQAAAPAsDOEEAHQ4SUlJOnXqlJYsWaLKykpFR0ersLBQERERkqTKykpVVFRY4iMjI1VYWKj09HStWrVKoaGhWrFihSZOnGiJycnJUX19vSZNmmR1rGeffVaLFi1ql/MCAAAA4JlIoAEAOqTU1FSlpqba3Zafn29TNnLkSO3fv7/J+o4ePdpGLQMAAADQ2TCEEwAAAAAAAHCAHmgAAKBdJOfvtbzOmzHMjS0BAAAAnEMCzU2eOrnA8vrl4KVubAkAAAAAAAAcIYEGAEAHU378K3c3QRI/BgEAAMB7kEDzAHwBAQAAAAAA8Fwk0DoZni8DAAAAAADQtkigtaOLe5oBAAAAAACgY+ji7gYAAAAAAAAAnowEGgAAAAAAAOAACTQAAAAAAADAARJoAAAAAAAAgANMIuBhLp5o4OXgpW5sCQAArnPxrNESM0cDAADAs9EDDQAAAAAAAHCABBoAAAAAAADggMsSaDk5OYqMjFRAQIDMZrN27drlML64uFhms1kBAQHq37+/Vq9e3WTs5s2b5ePjowceeKCNWw0AAAAAAABYc0kCraCgQGlpaZo/f77KysoUHx+vxMREVVRU2I0/cuSIxo4dq/j4eJWVlWnevHmaPXu2tmzZYhN77NgxPf3004qPj3dF0wEAAAAAAAArLkmgLV++XMnJyZo5c6aioqKUnZ2tsLAw5ebm2o1fvXq1wsPDlZ2draioKM2cOVOPP/64li1bZhXX2Niohx9+WIsXL1b//v1d0XSP8tTJBZYFAAAAAAAA7tHmCbT6+nqVlpYqISHBqjwhIUF79uyxu09JSYlN/JgxY7Rv3z6dPXvWUrZkyRL16dNHycnJbd1sAAAAAAAAwC6/tq6wpqZGjY2NCg4OtioPDg5WVVWV3X2qqqrsxjc0NKimpkZ9+/bV+++/r7y8PJWXlze7LXV1daqrq7Os19bWNv9EAABAs13cW/rl4KVubAkAAADQ9to8gXaBj4+P1bphGDZll4u/UH7mzBk98sgjevXVV9W7d+9mtyErK0uLFy92otWtx3BLAACcl5y/1/I6b8YwN7YEAAAAsNXmCbTevXvL19fXprdZdXW1TS+zC0JCQuzG+/n5qVevXjpw4ICOHj2qcePGWbafO3dOkuTn56dPPvlEAwYMsKk3MzNTGRkZlvXa2lqFhYW1+Nw6Gr6MAEDnUX78K3c3AQAAAPBabZ5A8/f3l9lsVlFRkSZMmGApLyoq0vjx4+3uExsbq7feesuqbMeOHYqJiVHXrl1188036+OPP7bavmDBAp05c0YvvfRSk0kxk8kkk8nUyjMCAADOYDgnAAAAOhuXDOHMyMjQtGnTFBMTo9jYWK1Zs0YVFRVKSUmRdL5n2IkTJ7Ru3TpJUkpKilauXKmMjAzNmjVLJSUlysvL06ZNmyRJAQEBio6OtjpG9+7dJcmmHAAAAAAAAGhLLkmgJSUl6dSpU1qyZIkqKysVHR2twsJCRURESJIqKytVUVFhiY+MjFRhYaHS09O1atUqhYaGasWKFZo4caIrmgcAAAAAAAA0m8smEUhNTVVqaqrdbfn5+TZlI0eO1P79+5tdv706AAAAAAAAgLbmsgQaXIdnywAAAAAAALQfEmgAAMCjMIs0AAAAPA0JtA7i4l5nAAAAAAAAaD9d3N0AAAAAAAAAwJORQAMAAAAAAAAcIIEGAAAAAAAAOEACDQAAAAAAAHCABBoAAAAAAADgALNweonk/L2W13kzhrmxJQAAAAAAAB0LPdAAAAAAAAAAB+iBBgAAPBY9qAEAAOAJ6IEGAAAAAAAAOEACDQAAAAAAAHCABBoAAAAAAADgAAk0AAAAAAAAwAEmEQAAwEOVH//K3U0AAAAAIBJobeKpkwvc3QQAAAAAAAC4CAk0AADgMhf/yPRy8NJW1ZWcv9fyOm/GsFbVBQAAADiDZ6ABAAAAAAAADtADzQvxCz4AAAAAAEDz0QMNANAh5eTkKDIyUgEBATKbzdq1a5fD+OLiYpnNZgUEBKh///5avXq11fYDBw5o4sSJ6tevn3x8fJSdne3C1gMAAADoSEigAQA6nIKCAqWlpWn+/PkqKytTfHy8EhMTVVFRYTf+yJEjGjt2rOLj41VWVqZ58+Zp9uzZ2rJliyXm22+/Vf/+/fXLX/5SISEh7XUqXuWpkwssCwAAANCRMISzg7v0S0hrH9AMAB3B8uXLlZycrJkzZ0qSsrOztX37duXm5iorK8smfvXq1QoPD7f0KouKitK+ffu0bNkyTZw4UZI0bNgwDRt2flj73Llz2+dEAAAAAHQI9EDrZPh1H0BnV19fr9LSUiUkJFiVJyQkaM+ePXb3KSkpsYkfM2aM9u3bp7Nnz7qsrQAAAAA6B3qgdWIXJ9HomQags6ipqVFjY6OCg4OtyoODg1VVVWV3n6qqKrvxDQ0NqqmpUd++fVvUlrq6OtXV1VnWa2trW1QPnMeEOAAAAGhPJNBa6OIP7k+5sR0A4K18fHys1g3DsCm7XLy9cmdkZWVp8eLFLd7fm/EIAgAAAHQkDOEEAHQovXv3lq+vr01vs+rqapteZheEhITYjffz81OvXr1a3JbMzEydPn3ashw/frzFdQEAAADwXCTQAAAdir+/v8xms4qKiqzKi4qKFBcXZ3ef2NhYm/gdO3YoJiZGXbt2bXFbTCaTAgMDrRYAAAAAnQ9DOL0cz5AB0BFlZGRo2rRpiomJUWxsrNasWaOKigqlpKRIOt8z7MSJE1q3bp0kKSUlRStXrlRGRoZmzZqlkpIS5eXladOmTZY66+vrdfDgQcvrEydOqLy8XFdffbWuv/769j9JL8YzPAEAAOBpSKABADqcpKQknTp1SkuWLFFlZaWio6NVWFioiIgISVJlZaUqKios8ZGRkSosLFR6erpWrVql0NBQrVixQhMnTrTEfPHFF7r11lst68uWLdOyZcs0cuRI7dy5s93ODQAAAIDnIYEGAOiQUlNTlZqaandbfn6+TdnIkSO1f//+Juvr16+fZWIBtL9LJxVwBr2pAQAA4Gok0LxEU19MGBoDAAAAAADgGAk0AAA8xcYkd7cAAAAAgB0um4UzJydHkZGRCggIkNls1q5duxzGFxcXy2w2KyAgQP3799fq1auttr/66quKj49Xjx491KNHD40aNUoffvihq5oPAAAAAAAASHJRAq2goEBpaWmaP3++ysrKFB8fr8TERKsHOl/syJEjGjt2rOLj41VWVqZ58+Zp9uzZ2rJliyVm586dmjJlit59912VlJQoPDxcCQkJOnHihCtOAQAAAAAAAJDkoiGcy5cvV3JysmbOnClJys7O1vbt25Wbm6usrCyb+NWrVys8PFzZ2dmSpKioKO3bt0/Lli2zzJC2YcMGq31effVVvf766/rrX/+q6dOnu+I0AABAB8OEAgAAAHCFNu+BVl9fr9LSUiUkJFiVJyQkaM+ePXb3KSkpsYkfM2aM9u3bp7Nnz9rd59tvv9XZs2fVs2fPtmk4lJy/17IAAAAAAADgvDbvgVZTU6PGxkYFBwdblQcHB6uqqsruPlVVVXbjGxoaVFNTo759+9rsM3fuXF177bUaNWpUk22pq6tTXV2dZb22ttaZUwEAAAAAAABcN4mAj4+P1bphGDZll4u3Vy5JL7zwgjZt2qStW7cqICCgyTqzsrIUFBRkWcLCwpw5BQAAAAAAAKDtE2i9e/eWr6+vTW+z6upqm15mF4SEhNiN9/PzU69evazKly1bpueee047duzQ4MGDHbYlMzNTp0+ftizHjx9vwRl5qY1J/14AAAAAAAC8WJsP4fT395fZbFZRUZEmTJhgKS8qKtL48ePt7hMbG6u33nrLqmzHjh2KiYlR165dLWUvvviili5dqu3btysmJuaybTGZTDKZTC08EwAA0JExoQAAAADaiktm4czIyNC0adMUExOj2NhYrVmzRhUVFUpJSZF0vmfYiRMntG7dOklSSkqKVq5cqYyMDM2aNUslJSXKy8vTpk2bLHW+8MILWrhwoTZu3Kh+/fpZeqxdffXVuvrqq11xGl7hqZML7G8I696u7QAAAAAAAPBULkmgJSUl6dSpU1qyZIkqKysVHR2twsJCRURESJIqKytVUVFhiY+MjFRhYaHS09O1atUqhYaGasWKFZo4caIlJicnR/X19Zo0aZLVsZ599lktWrTIFafh1cqPf2V5PdRtrQAAeLuLf+h5OXipG1sCAAAAb+aSBJokpaamKjU11e62/Px8m7KRI0dq//79TdZ39OjRNmoZAAAAAAAA0Hwum4UTAAAAAAAA6Axc1gMNAACgLbVmOOfFEwpITCoAAMD/197dB0dV3X8c/6xmE4GBIGAetkAaMzooQYSkpYCig200lYLKYFAU/KmZXyooMXYabMsArRYfpo5jeRA60dHBGv4QLB3wIYwQjcQhk4BicDAtKaE0MQOVEKUkgZzfH/6yzWYfskl2994b3q+ZzCTnnrv53m/O3gPfPfdeAH3DCjQAAAAAAAAgBApoAAAAAAAAQAhcwtlP3S8jGewOPnur9/vri9+zMBIAACKj+yWdXM4JAACA3rACDQAAAAAAAAiBAhoAAAAAAAAQApdwok9CPsXsz3n//f7erTGKCAAAAAAAILoooKFP/O799ueRlsQBAIPRweOnrQ7hosT90AAAANAbCmiIDlajAQAAAACAQYICGmKre2GtO4psAIA+6L4i+o/JT0XsdVmNBgAAgEB4iAAAAAAAAAAQAivQMCDd79dz/biRlsUBAAAAAAAQLRTQEH3BLtsEAAAAAABwAApoAADA0fyeEP3/BnpvNO6HBgAAgC4U0BAxXM45iPAUVQAAAAAAvCigwR76U7ChyDMwPS+tJYexwbgFAAAAAMehgAb7iXUxzS7Fu1gUtGJ9P7rBUiyKxXHEOleD5W8DhKnnZZ59vbyTyzkBAAAubhTQEBURu5zTLsWt/rBLQSTcolk4/SJ5TOH8vlj//cI5vnDy3J+xOpCYAAQU7N5oAAAAQF9RQMPFw2nFCrsUmKx8impf/x79iTWcQpkdhZsbO41pYJBgNRoAAMDFhwIaoi4qq9HsygkxRoOVq+3s9FrRFsnVhAAigmIaAADAxYECGga3WBRa+rqyLRZi8fv6mo+BxmTHolC4x8rKL8B2ul/e2df7oQEAAODiQwENMRWx1Wj4jh2LShi4vv5dWZkG2AKr0QAAAAYvCmhAMBQbECmMJQAAAABwNAposAyr0QAAdhOpSzu7r0aTWJEGAADgdBTQYAsU0wAAVuleNAMAAAACoYAGAAAQQCQfNNBzRVoXVqYBAAA4AwU02A6r0QAAFwsePAAAAOAMFNBga92LaT1RXAMAxEokV6MFQzENAADAviigwbFYqQYAsALFNAAAgIsPBTQMChTTAABWCPcBBJF6oifFNAAAAGtQQMOgE+qyzy4U2QAAdtDX1Ww8jAAAAMAaFNBwUQpWZKOwBgCItmCr1gZyaWjPwhoFNQAAgMiKWgFtw4YNev7559XY2KiJEyfqxRdf1I033hi0f3l5uYqKilRbWyuPx6Nf/vKXKigo8Onz1ltvaeXKlfr73/+ujIwMPf3007rzzjujdQi4CIWzeq0nim6ANZhn4CThXurZW/9wC2vBVqp1R5ENAAAgfFEpoG3dulWFhYXasGGDZs6cqU2bNik3N1eHDx/W+PHj/frX19frpz/9qfLz87VlyxZ9/PHHeuSRR3TFFVdo/vz5kqTKykrl5eXpd7/7ne68805t375dd999tyoqKjRt2rRoHAYQlv4U3bpQfAP6h3kGGPjDDMIpsnVHwQ0AAFzMXMYYE+kXnTZtmqZOnaqNGzd626655hrdcccdWrt2rV//4uJi7dixQ1988YW3raCgQJ9++qkqKyslSXl5eTpz5ozeeecdb5/bbrtNl19+ud58882w4jpz5owSExPV0tKiESNG9P3A/pzn/XYgRRPASSjyXQTu3drvXQd8Xu2nwTrPHHz21j7vA0j+BbS+rniL1tNEu6MAh/6wap4BAKCniK9Aa29vV3V1tVasWOHTnpOTo3379gXcp7KyUjk5OT5tt956q0pKStTR0SG3263Kyko9/vjjfn1efPHFoLG0tbWpra3N+3NLS4uk7ybi/vis7mS/9gOcrIJxP+hd189zovTf82kUPosJajDPM9+cO9+v/YD/Oeb7fvhmgPsPxKakwMW7ijW39Kn//zY/FbBP9/ae29Yvygo7TjiDFfMMAACBRLyAdvLkSV24cEHJyck+7cnJyWpqagq4T1NTU8D+58+f18mTJ5Wamhq0T7DXlKS1a9dqzZo1fu3jxo0L93AAYPBbnTjgl2htbVVi4sBfJxzMM4DdfRCwdcuA+n8QpL3HtkdCBgYHi+U8AwBAIFF7iIDL5fL52Rjj19Zb/57tfX3NJ598UkVFRd6fOzs79e9//1ujR48OuV8oZ86c0bhx43T8+HGWkQ8QuYwM8hgZ5LF/jDFqbW2Vx+OJ+e8ebPOME8eg02J2WryS82Im3uhzWswDjdfKeQYAgO4iXkAbM2aMLr30Ur9P7Jubm/0+2e+SkpISsH9cXJxGjx4dsk+w15SkhIQEJSQk+LSNHDky3EMJacSIEY74R4sTkMvIII+RQR77LtYrAgb7POPEMei0mJ0Wr+S8mIk3+pwW80DiZeUZAMAOLon0C8bHxysrK0tlZWU+7WVlZZoxY0bAfaZPn+7X//3331d2drbcbnfIPsFeEwAwODHPAAAAAIi1qFzCWVRUpPvvv1/Z2dmaPn26Nm/erIaGBhUUFEj67pKXEydO6PXXX5f03ZPQ1q1bp6KiIuXn56uyslIlJSU+Tz1bvny5Zs2apWeffVbz5s3TX/7yF+3evVsVFRXROAQAgI0xzwAAAACIpagU0PLy8nTq1Cn99re/VWNjozIzM7Vr1y6lpaVJkhobG9XQ0ODtn56erl27dunxxx/X+vXr5fF49NJLL2n+/PnePjNmzFBpaal+85vfaOXKlcrIyNDWrVs1bdq0aBxCUAkJCVq1apXfJTvoO3IZGeQxMsijswzGecaJY9BpMTstXsl5MRNv9DktZqfFCwBAMC7DM6EBAAAAAACAoCJ+DzQAAAAAAABgMKGABgAAAAAAAIRAAQ0AAAAAAAAIgQIaAAAAAAAAEAIFtD7asGGD0tPTddlllykrK0sfffSR1SHZ2tq1a/WDH/xAw4cPV1JSku644w4dOXLEp48xRqtXr5bH49GQIUN08803q7a21qKInWHt2rVyuVwqLCz0tpHH8Jw4cUL33XefRo8eraFDh+r6669XdXW1dzt5hFXsOr+Ecx5/4IEH5HK5fL5+9KMfWRLv6tWr/WJJSUnxbrfje/z73/++X8wul0tLly6VZH1+P/zwQ/3sZz+Tx+ORy+XS22+/7bM9nJy2tbXp0Ucf1ZgxYzRs2DDNnTtX//znPy2JuaOjQ8XFxZo0aZKGDRsmj8ejxYsX61//+pfPa9x8881+eV+4cGHM45XCGwN2yrGkgGPa5XLp+eef9/aJZY4BABgoCmh9sHXrVhUWFurXv/61Dhw4oBtvvFG5ublqaGiwOjTbKi8v19KlS/XJJ5+orKxM58+fV05Ojr799ltvn+eee04vvPCC1q1bp6qqKqWkpOgnP/mJWltbLYzcvqqqqrR582Zdd911Pu3ksXdff/21Zs6cKbfbrXfeeUeHDx/WH/7wB40cOdLbhzzCCnaeX8I5j0vSbbfdpsbGRu/Xrl27LIpYmjhxok8shw4d8m6z43u8qqrKJ96ysjJJ0oIFC7x9rMzvt99+q8mTJ2vdunUBt4eT08LCQm3fvl2lpaWqqKjQN998ozlz5ujChQsxj/ns2bOqqanRypUrVVNTo23btunLL7/U3Llz/frm5+f75H3Tpk0xj7dLb2PATjmW5BNrY2OjXnnlFblcLs2fP9+nX6xyDADAgBmE7Yc//KEpKCjwaZswYYJZsWKFRRE5T3Nzs5FkysvLjTHGdHZ2mpSUFPPMM894+5w7d84kJiaal19+2aowbau1tdVcddVVpqyszNx0001m+fLlxhjyGK7i4mJzww03BN1OHmEVJ80vPc/jxhizZMkSM2/ePOuC6mbVqlVm8uTJAbc55T2+fPlyk5GRYTo7O40x9sqvJLN9+3bvz+Hk9PTp08btdpvS0lJvnxMnTphLLrnEvPvuuzGPOZD9+/cbSebYsWPetu7zbCwFire3MeCEHM+bN8/Mnj3bp82qHAMA0B+sQAtTe3u7qqurlZOT49Oek5Ojffv2WRSV87S0tEiSRo0aJUmqr69XU1OTT14TEhJ00003kdcAli5dqttvv10//vGPfdrJY3h27Nih7OxsLViwQElJSZoyZYr+9Kc/ebeTR1jBafNLz/N4l7179yopKUlXX3218vPz1dzcbEV4kqS6ujp5PB6lp6dr4cKFOnr0qCRnvMfb29u1ZcsWPfjgg3K5XN52O+W3u3ByWl1drY6ODp8+Ho9HmZmZtsl7S0uLXC6Xz4pkSXrjjTc0ZswYTZw4Ub/4xS8sXakYagzYPcdfffWVdu7cqYceeshvm51yDABAKHFWB+AUJ0+e1IULF5ScnOzTnpycrKamJouichZjjIqKinTDDTcoMzNTkry5C5TXY8eOxTxGOystLVVNTY2qqqr8tpHH8Bw9elQbN25UUVGRfvWrX2n//v167LHHlJCQoMWLF5NHWMJJ80ug87gk5ebmasGCBUpLS1N9fb1Wrlyp2bNnq7q6WgkJCTGNcdq0aXr99dd19dVX66uvvtJTTz2lGTNmqLa21hHv8bffflunT5/WAw884G2zU357CienTU1Nio+P1+WXX+7Xxw5j/Ny5c1qxYoXuvfdejRgxwtu+aNEipaenKyUlRZ9//rmefPJJffrpp95LbGOptzFg9xy/9tprGj58uO666y6fdjvlGACA3lBA66PunwZL3/1nomcbAlu2bJk+++wzVVRU+G0jr6EdP35cy5cv1/vvv6/LLrssaD/yGFpnZ6eys7P1+9//XpI0ZcoU1dbWauPGjVq8eLG3H3mEFZww7oKdx/Py8rzfZ2ZmKjs7W2lpadq5c6fff5ijLTc31/v9pEmTNH36dGVkZOi1117z3nTdzrkuKSlRbm6uPB6Pt81O+Q2mPzm1Q947Ojq0cOFCdXZ2asOGDT7b8vPzvd9nZmbqqquuUnZ2tmpqajR16tSYxtnfMWCHHEvSK6+8okWLFvn9G8ZOOQYAoDdcwhmmMWPG6NJLL/X7FK+5udnvU1f4e/TRR7Vjxw7t2bNHY8eO9bZ3PRmNvIZWXV2t5uZmZWVlKS4uTnFxcSovL9dLL72kuLg4b67IY2ipqam69tprfdquueYa743aGY+wglPml2Dn8UBSU1OVlpamurq6GEUX3LBhwzRp0iTV1dXZ/j1+7Ngx7d69Ww8//HDIfnbKbzg5TUlJUXt7u77++uugfazQ0dGhu+++W/X19SorK/NZfRbI1KlT5Xa7bZH3nmPArjmWpI8++khHjhzpdVxL9soxAAA9UUALU3x8vLKysvyWlJeVlWnGjBkWRWV/xhgtW7ZM27Zt0wcffKD09HSf7V3L9rvntb29XeXl5eS1m1tuuUWHDh3SwYMHvV/Z2dlatGiRDh48qCuvvJI8hmHmzJk6cuSIT9uXX36ptLQ0SYxHWMPu80tv5/FATp06pePHjys1NTUGEYbW1tamL774QqmpqbZ/j7/66qtKSkrS7bffHrKfnfIbTk6zsrLkdrt9+jQ2Nurzzz+3LO9dxbO6ujrt3r1bo0eP7nWf2tpadXR02CLvPceAHXPcpaSkRFlZWZo8eXKvfe2UYwAA/Fjy6AKHKi0tNW6325SUlJjDhw+bwsJCM2zYMPOPf/zD6tBs6+c//7lJTEw0e/fuNY2Njd6vs2fPevs888wzJjEx0Wzbts0cOnTI3HPPPSY1NdWcOXPGwsjtr+eTq8hj7/bv32/i4uLM008/berq6swbb7xhhg4darZs2eLtQx5hBTvPL72dx1tbW80TTzxh9u3bZ+rr682ePXvM9OnTzfe+9z1L3jdPPPGE2bt3rzl69Kj55JNPzJw5c8zw4cO9ubTre/zChQtm/Pjxpri42KfdDvltbW01Bw4cMAcOHDCSzAsvvGAOHDjgfWJlODktKCgwY8eONbt37zY1NTVm9uzZZvLkyeb8+fMxj7mjo8PMnTvXjB071hw8eNBnXLe1tRljjPnb3/5m1qxZY6qqqkx9fb3ZuXOnmTBhgpkyZUpUYg4Vb7hjwE457tLS0mKGDh1qNm7c6Ld/rHMMAMBAUUDro/Xr15u0tDQTHx9vpk6dasrLy60OydYkBfx69dVXvX06OzvNqlWrTEpKiklISDCzZs0yhw4dsi5oh+hZQCOP4fnrX/9qMjMzTUJCgpkwYYLZvHmzz3byCKvYdX7p7Tx+9uxZk5OTY6644grjdrvN+PHjzZIlS0xDQ4Ml8ebl5ZnU1FTjdruNx+Mxd911l6mtrfVut+t7/L333jOSzJEjR3za7ZDfPXv2BBwDS5YsMcaEl9P//Oc/ZtmyZWbUqFFmyJAhZs6cOVE9hlAx19fXBx3Xe/bsMcYY09DQYGbNmmVGjRpl4uPjTUZGhnnsscfMqVOnYh5vuGPATjnusmnTJjNkyBBz+vRpv/1jnWMAAAbKZYwxUVrcBgAAAAAAADge90ADAAAAAAAAQqCABgAAAAAAAIRAAQ0AAAAAAAAIgQIaAAAAAAAAEAIFNAAAAAAAACAECmgAAAAAAABACBTQAAAAAAAAgBAooAEAAAAAAAAhUEADAAAAAAAAQqCABgAAAAAAAIRAAQ0AAAAAAAAIgQIaAAAAAAAAEML/ARO77reviC25AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -356,10 +356,10 @@ "start_time": "2023-11-09T18:27:56.779869734Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:34:28.720526Z", - "iopub.status.busy": "2023-11-09T20:34:28.720186Z", - "iopub.status.idle": "2023-11-09T20:34:30.549823Z", - "shell.execute_reply": "2023-11-09T20:34:30.549170Z" + "iopub.execute_input": "2023-11-09T22:23:48.104173Z", + "iopub.status.busy": "2023-11-09T22:23:48.103755Z", + "iopub.status.idle": "2023-11-09T22:23:49.716084Z", + "shell.execute_reply": "2023-11-09T22:23:49.715535Z" } }, "outputs": [ @@ -367,28 +367,28 @@ "name": "stdout", "output_type": "stream", "text": [ - "KS over hSPD = 0.5294821734751087\n", - "KS over pt_b = 0.21236421152740986\n" + "KS over hSPD = 0.5183323618727957\n", + "KS over pt_b = 0.21163497369863993\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "KS over pt_phi = 0.38958749151265654\n", - "KS over vchi2_b = 0.3990153228883447\n" + "KS over pt_phi = 0.3966438086176893\n", + "KS over vchi2_b = 0.40352927774747877\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "KS over mu_pt_sum = 0.21236421152740986\n" + "KS over mu_pt_sum = 0.21163497369863993\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNAAAAJbCAYAAAAllWnEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACRU0lEQVR4nOzdfVxUdf7//ydy2ZV4GUgBopUXeZENlmBkW4qLZVaapIWZ6H5YKgU+7SZq39Rto1rXJVNgNYx184LPpm7tLpvSrpImlSK0rfkpd1Mxgwj3o9iFIHh+f/hzYpxhZIBhZuBxv93O7TbnPa/zPq9z1DnOa97nfbwMwzAEAAAAAAAAwKYurk4AAAAAAAAAcGcU0AAAAAAAAAA7KKABAAAAAAAAdlBAAwAAAAAAAOyggAYAAAAAAADYQQENAAAAAAAAsIMCGgAAAAAAAGAHBTQAAAAAAADADgpoAAAAAAAAgB0U0IA2sHjxYnl5eam6utpu3LfffqsXX3xRw4cPV9euXXXVVVepf//+mjp1qoqKisxxO3fulJeXl3nx9vZWUFCQHnzwQR08eNAcd+TIEYs4X19f9ezZUyNHjlRqaqoOHDjgtGMGALi/rKws5eXltWjbvn376p577mnbhAAAHqc115LmuvD954033rhk7MyZM9W3b1+n5gPYQgENaCcNDQ2KjY3VL3/5S02ZMkV/+MMf9MYbbyg1NVWnTp3Srl27rLZ5/vnnVVxcrB07dujpp59WYWGhRo8erePHj1vEPfnkkyouLlZRUZF+//vf67777tNbb72l4cOH61e/+lV7HSIAwM20x5ceAEDH5m7XkmeeeUZbt251dRrohHxcnQDQWbz77rvas2eP1q5dq8cee8zcPn78eD3xxBM6d+6c1TbXX3+9Ro0aJUm6/fbb1a1bNyUmJiovL08LFy40x4WFhZnjJGnChAlKS0vTAw88oJ///OcaMmSI4uLinHh0AAAAAOB8/fv3d3UK6KQYgQa0oa+++krTpk1TYGCggoKCNGvWLJ06dUqSdOLECUlSnz59bG7bpcul/zleKJIdPXr0krGXXXaZcnNz5evryyg0AOhgLkwdUFpaqgceeEBdu3ZVYGCgHnnkEX399deSzt+CeeDAARUVFZlv9W/JLS9bt27VsGHDFBAQoH79+mnFihVtfDQAAFdoj2vJhekAmnstOXv2rBYuXKiQkBB17dpVY8eO1aeffmoRwy2ccBUKaEAbmjx5sm644QZt3rxZ8+fP14YNG5SamipJioyMlK+vr+bNm6f169eroqLC4f7/9a9/SZJ69+7drPiQkBCZTCbt2bNH9fX1Du8PAODe7r//fl133XV64403tHjxYv3xj3/U+PHjdfbsWW3dulX9+vXTiBEjVFxcrOLiYodveSkrK1NKSopSU1O1detWRUdHa968eVq2bJmTjggA0N7c6VqyYMECHT16VK+++qpWr16tQ4cOaeLEiWpoaGirwwVajFs4gTaUmJion/3sZ5KksWPH6l//+pfWrl2r3Nxc9e3bVzk5OZo3b54eeeQRSedHo40bN06zZ89WTEyMVX/nzp1TfX29zp49q3379um///u/5e3trfj4+GbnFB4ervfff1//+c9/dPXVV7fNgQIA3MIDDzygl156SZIUGxuroKAgPfzww/qf//kfPfzww7rsssvUtWtXi9v8HfHll1+qtLRUw4cPlyTFxcWpqqpKv/jFL5ScnKzLL7+8zY4FAOAa7nQtGTx4sF5//XXzure3t6ZOnaq9e/e2eP9AW2EEGtCG7r33Xov1YcOG6cyZM6qqqpIkzZo1S1988YU2bNiguXPnKjQ0VK+//rrGjBlj8zbL+Ph4+fr66vLLL9ftt9+uhoYGvfHGGxo2bFizczIMo3UHBQBwWw8//LDF+tSpU+Xj46MdO3a0Sf833nij+QvPBdOnT1dNTY3279/fJvsAALiWO11LbH2fkpo3hQ3gbIxAA9pQz549Ldb9/f0lSd9//725LTAwUNOmTdO0adMkSQcOHNDYsWO1cOFCzZkzR926dTPHvvjii7rzzjvl7e2tXr16KTQ01OGcjh49Kn9/f/Xo0aMFRwQAcGfBwcEW6z4+PurZs6d53s227r9xW1vtAwDgWu50LWnO9ynAVRiBBrjYjTfeqIceekhnz57VZ599ZvFev379FBkZqREjRrSoeHb8+HGVlJTotttuk48P9XIA6GgqKyst1uvr63XixAmrLyBt1X/jtrbaBwDAtbiWAM1DAQ1oJydOnFBdXZ3N9/73f/9X0vlJ/9vK999/r9mzZ6u+vl4///nP26xfAID7WL9+vcX6//zP/6i+vl533HGHpPO/3LfmV/sDBw7oo48+smjbsGGDrrrqKt18880t7hcA4D64lgDNw5AUoJ3s2LFD8+bN08MPP6zo6Gj17NlTVVVV2rhxo95++23NmDFD1157bYv6Li8v1/vvv69z587p1KlTKi0t1dq1a3X06FH9+te/VmxsbBsfDQDAHWzZskU+Pj4aN26cDhw4oGeeeUbDhw/X1KlTJUlDhw7Vpk2blJ+fr379+ikgIEBDhw5tdv8hISG69957tXjxYvXp00evv/66CgsL9eKLL/IAAQDoILiWAM1DAQ1oJ6NGjdKsWbO0Y8cO/f73v1d1dbUuu+wyDR48WK+88op++tOftrjvV155Ra+88oq8vb3VtWtX9evXTxMnTtScOXM0ePDgNjwKAIA72bJlixYvXqzs7Gx5eXlp4sSJyszMlJ+fnyRpyZIlqqio0Jw5c3T69GmFh4fryJEjze7/pptu0mOPPaZnn31Whw4dUkhIiJYvX67U1FQnHREAoL1xLQGax8vgEX0AAAAeZfHixVqyZIm+/vpr9erVy9XpAAA8UHtcS/r27ashQ4boz3/+s1P6B9oTc6ABAAAAAAAAdnALJwAAQCfS0NAgezcgeHl5ydvbux0zAgB4Gq4l6Iy4hRMAAKAT6du3r44ePdrk+2PGjNHOnTvbLyEAgMfhWoLOiBFoAAAAncif/vQn1dbWNvn+VVdd1Y7ZAAA8EdcSdEaMQAMAAAAAAADs4CECAAAAAAAAgB2d6hbOc+fO6csvv9RVV10lLy8vV6cDAB7PMAydPn1aISEh6tKF32S4zgBA2+I6Y4nrDAC0LUeuM52qgPbll18qNDTU1WkAQIdz7NgxXXvtta5Ow+W4zgCAc3CdOY/rDAA4R3OuM52qgHZhIsNjx46pa9euLs4GADxfTU2NQkNDmSj2/8d1BgDaFtcZS1xnAKBtOXKd6VQFtAvDnLt27coFBwDaELeRnMd1BgCcg+vMeVxnAMA5mnOdYSIBAAAAAAAAwA4KaAAAAAAAAIAdFNAAAAAAAAAAOyigAQAAAAAAAHZQQAMAAAAAAADsoIAGAAAAAAAA2EEBDQAAAAAAALCDAhoAAAAAAABgBwU0AAAAAAAAwA4fVycAxyXm7TW/zp050oWZAADcyob4H15Pz3ddHgAAz8B1AwCajRFoAAAAAAAAgB0U0AAAAAAAAAA7KKABAAAAAAAAdjAHmodrPB+aZDknGnOlAQAAAAAAtB4j0AAAAAAAAAA7GIEGAAAAAJ0dT+QEALsYgQYAAAAAAADYQQENAAAAAAAAsIMCGgAAAAAAAGAHBTQAAAAAAADADh4i0Ekk5u01v86dOdKFmQAAAAAAAHgWRqABAAAAQAtkZWUpIiJCAQEBMplM2rVrl9349evXa/jw4br88svVp08fPfbYYzpx4kQ7ZQsAaA0KaAAAAADgoPz8fKWkpGjhwoUqLS1VTEyM4uLiVF5ebjN+9+7dmjFjhhITE3XgwAH94Q9/0N69ezV79ux2zhwA0BIU0AAAAADAQcuXL1diYqJmz56tQYMGKTMzU6GhocrOzrYZ//7776tv376aO3euIiIidNttt+m//uu/tG/fvnbOHADQEhTQAAAAAMABdXV1KikpUWxsrEV7bGys9uzZY3Ob6OhoffHFFyooKJBhGPrqq6/0xhtv6O67726PlAEArcRDBNwYE/8DAAAA7qe6uloNDQ0KCgqyaA8KClJlZaXNbaKjo7V+/XrFx8frzJkzqq+v17333qtXXnmlyf3U1taqtrbWvF5TU9M2BwAAcBgj0AAA8GQb4n9YmtMOAGgzXl5eFuuGYVi1XfDJJ59o7ty5+n//7/+ppKREb7/9tg4fPqykpKQm+8/IyFBgYKB5CQ0NbdP8AQDNxwg0AAA6usZFtOn5rssDADqIXr16ydvb22q0WVVVldWotAsyMjI0evRo/exnP5MkDRs2TFdccYViYmL03HPPqU+fPlbbpKenKy0tzbxeU1NDEQ0AXIQRaAAAt5OVlaWIiAgFBATIZDJp165dTcZWVFRo+vTpGjBggLp06aKUlBSrmLy8PHl5eVktZ86cafF+AQCdl5+fn0wmkwoLCy3aCwsLFR0dbXOb7777Tl26WH798vb2lnR+5Jot/v7+6tq1q8UCAHCNFhXQHP2CUVRUJJPJpICAAPXr1085OTlWMZs3b9bgwYPl7++vwYMHa+vWrU32l5GRIS8vL5tfkgAAni0/P18pKSlauHChSktLFRMTo7i4OJWXl9uMr62tVe/evbVw4UINHz68yX67du2qiooKiyUgIKDF+wUAdG5paWl69dVXtXbtWh08eFCpqakqLy8335KZnp6uGTNmmOMnTpyoLVu2KDs7W59//rnee+89zZ07V7fccotCQkJcdRgAgGZyuIDm6BeMw4cPa8KECYqJiVFpaakWLFiguXPnavPmzeaY4uJixcfHKyEhQR999JESEhI0depUffDBB1b97d27V6tXr9awYcMcTR0A4AGWL1+uxMREzZ49W4MGDVJmZqZCQ0OVnZ1tM75v3756+eWXNWPGDAUGBjbZr5eXl4KDgy2W1uwXANC5xcfHKzMzU0uXLtVNN92kd999VwUFBQoPD5d0foR04+9IM2fO1PLly7Vy5UoNGTJEDz74oAYMGKAtW7a46hAAAA5wuIDm6BeMnJwchYWFKTMzU4MGDdLs2bM1a9YsLVu2zByTmZmpcePGKT09XQMHDlR6erruuusuZWZmWvT1zTff6OGHH9aaNWvUvXt3R1MHALi5uro6lZSUKDY21qI9NjZWe/bsaVXf33zzjcLDw3XttdfqnnvuUWlpaav3W1tbq5qaGovF7fFwAQBoM8nJyTpy5Ihqa2tVUlKi22+/3fxeXl6edu7caRH/5JNP6sCBA/ruu+/05Zdf6vXXX9c111zTzlkDAFrCoQJaS75gFBcXW8WPHz9e+/bt09mzZ+3GXNzn448/rrvvvltjx45tVr4e+cWmnSXm7TUvAOBq1dXVamhosJqAOSgoyGqiZkcMHDhQeXl5euutt7Rx40YFBARo9OjROnToUKv2y9PRAAAAgM7BoadwtuQLRmVlpc34+vp6VVdXq0+fPk3GNO5z06ZN2r9/v/bubX6hJyMjQ0uWLGl2vDtobSGLQhiAjsDLy8ti3TAMqzZHjBo1SqNGjTKvjx49WjfffLNeeeUVrVixosX79fino108Co0ndAIAAAA2teghAo5+wbAVf3G7vT6PHTumefPm6fXXX7eY8PlS0tPTderUKfNy7NixZm8LAGh/vXr1kre3t9WPMlVVVVY/tLRGly5dNHLkSPMItJbul6ejAQAAAJ2DQwW0lnzBCA4Othnv4+Ojnj172o250GdJSYmqqqpkMpnk4+MjHx8fFRUVacWKFfLx8VFDQ4PNffPFBgA8i5+fn0wmkwoLCy3aCwsLFR0d3Wb7MQxDZWVl6tOnT7vuFwAAAIBncqiA1pIvGFFRUVbx27dvV2RkpHx9fe3GXOjzrrvu0scff6yysjLzEhkZqYcfflhlZWXy9vZ25DAAAG4sLS1Nr776qtauXauDBw8qNTVV5eXlSkpKknR+dPGMGTMstrlwbfjmm2/09ddfq6ysTJ988on5/SVLlmjbtm36/PPPVVZWpsTERJWVlZn7bM5+AQAAAHReDs2BJp3/gpGQkKDIyEhFRUVp9erVVl9sjh8/rnXr1kmSkpKStHLlSqWlpWnOnDkqLi5Wbm6uNm7caO5z3rx5uv322/Xiiy9q0qRJevPNN/XOO+9o9+7dkqSrrrpKQ4YMscjjiiuuUM+ePa3aAQCeLT4+XidOnNDSpUtVUVGhIUOGqKCgQOHh4ZKkiooKlZeXW2wzYsQI8+uSkhJt2LBB4eHhOnLkiCTp5MmT+slPfqLKykoFBgZqxIgRevfdd3XLLbc0e78AAAAAOi+HC2iOfrGJiIhQQUGBUlNTtWrVKoWEhGjFihWaPHmyOSY6OlqbNm3SokWL9Mwzz6h///7Kz8/Xrbfe2gaH2DG0x8MBGu8jd+ZIp+8PAJqSnJys5ORkm+/l5eVZtV2YW7Mpv/nNb/Sb3/ymVfsFAAAA0Hk5XECTHP9iM2bMGO3fv99un1OmTNGUKVOancPOnTubHQsAAAAAAAC0VIuewgkAAAAAAAB0FhTQAAAAAAAAADsooAEAAAAAAAB2UEADAAAAAAAA7KCABgAAAAAAANjRoqdwwrMl5u11dQoAAAAAAAAegxFoAAAAAAAAgB0U0AAAAAAAAAA7KKABAAAAAAAAdlBAAwAAAAAAAOyggAYAAAAAAADYQQENAAAAAAAAsIMCGgAAAAAAAGAHBTQAAAAAAADADgpoAAAAAAAAgB0U0AAAAAAAAAA7fFydQGeVmLfX/Dp35kgXZgIAAAAAAAB7KKDhkij2AQAAAACAzoxbOAEAAAAAAAA7KKABAAAAAAAAdlBAAwAAAAAAAOyggAYAAAAAAADYQQENAAAAAAAAsIMCmhtIzNtrXtxd41w9IV8AnikrK0sREREKCAiQyWTSrl27moytqKjQ9OnTNWDAAHXp0kUpKSlWMWvWrFFMTIy6d++u7t27a+zYsfrwww8tYhYvXiwvLy+LJTg4uK0PDQAAAIAHooAGAHAr+fn5SklJ0cKFC1VaWqqYmBjFxcWpvLzcZnxtba169+6thQsXavjw4TZjdu7cqWnTpmnHjh0qLi5WWFiYYmNjdfz4cYu4G2+8URUVFebl448/bvPjAwAAAOB5fFydAAAAjS1fvlyJiYmaPXu2JCkzM1Pbtm1Tdna2MjIyrOL79u2rl19+WZK0du1am32uX7/eYn3NmjV644039Le//U0zZswwt/v4+HjGqLMN8a7OAAAAAOhUGIEGAHAbdXV1KikpUWxsrEV7bGys9uzZ02b7+e6773T27Fn16NHDov3QoUMKCQlRRESEHnroIX3++ed2+6mtrVVNTY3FAgAAAKDjoYAGAHAb1dXVamhoUFBQkEV7UFCQKisr22w/8+fP1zXXXKOxY8ea22699VatW7dO27Zt05o1a1RZWano6GidOHGiyX4yMjIUGBhoXkJDQ9ssRwAAAADugwIaAMDteHl5WawbhmHV1lIvvfSSNm7cqC1btiggIMDcHhcXp8mTJ2vo0KEaO3as/vKXv0iSfve73zXZV3p6uk6dOmVejh071iY5AgAAAHAvzIEGAHAbvXr1kre3t9Vos6qqKqtRaS2xbNkyPf/883rnnXc0bNgwu7FXXHGFhg4dqkOHDjUZ4+/vL39//1bnBQCAW2k81+b0fNflAQBuhAIabErM2+vqFAB0Qn5+fjKZTCosLNT9999vbi8sLNSkSZNa1fevfvUrPffcc9q2bZsiIyMvGV9bW6uDBw8qJiamVfsFAAAA4PkooAEA3EpaWpoSEhIUGRmpqKgorV69WuXl5UpKSpJ0/rbJ48ePa926deZtysrKJEnffPONvv76a5WVlcnPz0+DBw+WdP62zWeeeUYbNmxQ3759zSPcrrzySl155ZWSpKeeekoTJ05UWFiYqqqq9Nxzz6mmpkaPPvpoOx69izHiAAAAALCJAhoAwK3Ex8frxIkTWrp0qSoqKjRkyBAVFBQoPDxcklRRUaHy8nKLbUaMGGF+XVJSog0bNig8PFxHjhyRJGVlZamurk5Tpkyx2O7ZZ5/V4sWLJUlffPGFpk2bpurqavXu3VujRo3S+++/b94vAAAAgM6LAhoAwO0kJycrOTnZ5nt5eXlWbYZh2O3vQiHNnk2bNjUnNQAAAACdEAW0dsS8YgAAAAAAAJ6ni6sTAAAAAAAAANwZBTQAAAAAaIGsrCxFREQoICBAJpNJu3btshtfW1urhQsXKjw8XP7+/urfv7/Wrl3bTtkCAFqDWzgBAAAAwEH5+flKSUlRVlaWRo8erd/+9reKi4vTJ598orCwMJvbTJ06VV999ZVyc3N13XXXqaqqSvX19e2cOQCgJSigAQAAaxvif3g9Pd91eQCAm1q+fLkSExM1e/ZsSVJmZqa2bdum7OxsZWRkWMW//fbbKioq0ueff64ePXpIkvr27dueKQMAWoFbOAEAAADAAXV1dSopKVFsbKxFe2xsrPbs2WNzm7feekuRkZF66aWXdM011+iGG27QU089pe+//77J/dTW1qqmpsZiAQC4BiPQAAAAAMAB1dXVamhoUFBQkEV7UFCQKisrbW7z+eefa/fu3QoICNDWrVtVXV2t5ORk/ec//2lyHrSMjAwtWbKkzfMHADiuRSPQHJ0ss6ioSCaTSQEBAerXr59ycnKsYjZv3qzBgwfL399fgwcP1tatWy3ez87O1rBhw9S1a1d17dpVUVFR+utf/9qS9AEAAACg1by8vCzWDcOwarvg3Llz8vLy0vr163XLLbdowoQJWr58ufLy8pochZaenq5Tp06Zl2PHjrX5MQAAmsfhAtqFyTIXLlyo0tJSxcTEKC4uTuXl5TbjDx8+rAkTJigmJkalpaVasGCB5s6dq82bN5tjiouLFR8fr4SEBH300UdKSEjQ1KlT9cEHH5hjrr32Wr3wwgvat2+f9u3bpzvvvFOTJk3SgQMHWnDYAAAAANAyvXr1kre3t9Vos6qqKqtRaRf06dNH11xzjQIDA81tgwYNkmEY+uKLL2xu4+/vbx5AcGEBALiGwwW0xpNlDho0SJmZmQoNDVV2drbN+JycHIWFhSkzM1ODBg3S7NmzNWvWLC1btswck5mZqXHjxik9PV0DBw5Uenq67rrrLmVmZppjJk6cqAkTJuiGG27QDTfcoF/+8pe68sor9f777zt+1AAAAADQQn5+fjKZTCosLLRoLywsVHR0tM1tRo8erS+//FLffPONue2zzz5Tly5ddO211zo1XwBA6zlUQGvJZJnFxcVW8ePHj9e+fft09uxZuzFN9dnQ0KBNmzbp22+/VVRUlCOHAAAAAACtlpaWpldffVVr167VwYMHlZqaqvLyciUlJUk6f/vljBkzzPHTp09Xz5499dhjj+mTTz7Ru+++q5/97GeaNWuWLrvsMlcdBgCgmRx6iEBLJsusrKy0GV9fX6/q6mr16dOnyZiL+/z4448VFRWlM2fO6Morr9TWrVs1ePDgJvOtra1VbW2teZ2n1gAAAABoC/Hx8Tpx4oSWLl2qiooKDRkyRAUFBQoPD5ckVVRUWExzc+WVV6qwsFBPPvmkIiMj1bNnT02dOlXPPfecqw4BAOCAFj2F05HJMpuKv7i9OX0OGDBAZWVlOnnypDZv3qxHH31URUVFTRbReGpN+0rM22t+nTtzpAszAYAOaEO8qzMAAFwkOTlZycnJNt/Ly8uzahs4cKDVbZ8AAM/g0C2cLZksMzg42Ga8j4+PevbsaTfm4j79/Px03XXXKTIyUhkZGRo+fLhefvnlJvPlqTUAAAAAAABoLYcKaC2ZLDMqKsoqfvv27YqMjJSvr6/dmKb6vMAwDItbNC/GU2sAAAAAAADQWg7fwpmWlqaEhARFRkYqKipKq1evtpos8/jx41q3bp0kKSkpSStXrlRaWprmzJmj4uJi5ebmauPGjeY+582bp9tvv10vvviiJk2apDfffFPvvPOOdu/ebY5ZsGCB4uLiFBoaqtOnT2vTpk3auXOn3n777daeAwAAAAAAAKBJDhfQHJ0sMyIiQgUFBUpNTdWqVasUEhKiFStWaPLkyeaY6Ohobdq0SYsWLdIzzzyj/v37Kz8/X7feeqs55quvvlJCQoIqKioUGBioYcOG6e2339a4ceNac/xopcbzngEAAAAAAHRELXqIgKOTZY4ZM0b79++32+eUKVM0ZcqUJt/Pzc11KEcAAAAAAACgLbSogAZcCk/kBAAAAAAAHYVDDxEAAAAAAAAAOhsKaAAAAAAAAIAdFNAAAAAAAAAAOyigAQAAAAAAAHbwEAEAADqpsmMnLdZvCu3mkjwAAAAAd8cINACA28nKylJERIQCAgJkMpm0a9euJmMrKio0ffp0DRgwQF26dFFKSorNuM2bN2vw4MHy9/fX4MGDtXXr1lbttyMqO3bSvAAAAAD4AQU0AIBbyc/PV0pKihYuXKjS0lLFxMQoLi5O5eXlNuNra2vVu3dvLVy4UMOHD7cZU1xcrPj4eCUkJOijjz5SQkKCpk6dqg8++KDF+/VULSqSbYj/YQEAAAA6IQpoAAC3snz5ciUmJmr27NkaNGiQMjMzFRoaquzsbJvxffv21csvv6wZM2YoMDDQZkxmZqbGjRun9PR0DRw4UOnp6brrrruUmZnZ4v12dIxGAwAAAH5AAQ0A4Dbq6upUUlKi2NhYi/bY2Fjt2bOnxf0WFxdb9Tl+/Hhzny3db21trWpqaiyWjohiGgAAADo7HiIAAHAb1dXVamhoUFBQkEV7UFCQKisrW9xvZWWl3T5but+MjAwtWbKkxXl5usS8vebXuTNHujATAAAAwLkooAEA3I6Xl5fFumEYVm3O6NPR/aanpystLc28XlNTo9DQ0Fbl6e4aF80AAACAzoICGgDAbfTq1Uve3t5Wo76qqqqsRoc5Ijg42G6fLd2vv7+//P39W5xXR8JoNAAAAHRkFNAAAG7Dz89PJpNJhYWFuv/++83thYWFmjRpUov7jYqKUmFhoVJTU81t27dvV3R0tFP32xE9+dUim+2vBD3XzpkAAAAA7YcCGgDAraSlpSkhIUGRkZGKiorS6tWrVV5erqSkJEnnb5s8fvy41q1bZ96mrKxMkvTNN9/o66+/VllZmfz8/DR48GBJ0rx583T77bfrxRdf1KRJk/Tmm2/qnXfe0e7du5u9X0/G5P8AAABA61BAAwC4lfj4eJ04cUJLly5VRUWFhgwZooKCAoWHh0uSKioqVF5ebrHNiBEjzK9LSkq0YcMGhYeH68iRI5Kk6Ohobdq0SYsWLdIzzzyj/v37Kz8/X7feemuz9wsAAACg86KABgBwO8nJyUpOTrb5Xl5enlWbYRiX7HPKlCmaMmVKi/cLAAAAoPOigNbGeDoZAKCz44ECAAAA6Gi6uDoBAAAAAAAAwJ0xAg3tqt1HJWyI/+H19Hzn7w8AAAAAAHQ4FNDg3iiAAYBH43ZOAAAAdAQU0AAA6IDKjp10dQoAAABAh8EcaAAAAAAAAIAdFNAAAAAAAAAAO7iFE07XeP4bAEDnxXxoAOCBmJMYACQxAg0AAAAAAACwiwIaAAAAAAAAYAcFNAAAAAAAAMAOCmgAAAAAAACAHTxEAC7DZNIAAAAAAMATUEAD2vLJQjylCIALlR076eoUAAAAgA6JAhoAAGh3jUchS4xEBgAAgHujgAbP0Xh0l8QILwAAAAAA0C54iAAAAAAAAABgBwU0AAAAAAAAwA5u4YR7aMnk+0zYDwBu48mvFplfvxL0nAszAQAAANoeBTQAAOByjR8qwAMFAAAA4G4ooKFzuviBBLbaGdUGAAAAAADEHGhA822I/2EBAABAp5eVlaWIiAgFBATIZDJp165dzdruvffek4+Pj2666SbnJggAaDMU0ABXoigHAADgkfLz85WSkqKFCxeqtLRUMTExiouLU3l5ud3tTp06pRkzZuiuu+5qp0wBAG2BWzjbQON5W9B8jSecVmi31nXGrZcAAABoR8uXL1diYqJmz54tScrMzNS2bduUnZ2tjIyMJrf7r//6L02fPl3e3t764x//2E7ZAgBaq0Uj0BwdqlxUVCSTyaSAgAD169dPOTk5VjGbN2/W4MGD5e/vr8GDB2vr1q0W72dkZGjkyJG66qqrdPXVV+u+++7Tp59+2pL00YQnv1pkXgDAldr6OnPHHXfIy8vLarn77rvNMYsXL7Z6Pzg42CnHBwDwbHV1dSopKVFsbKxFe2xsrPbs2dPkdq+99pr+/e9/69lnn23Wfmpra1VTU2OxAABcw+ECmqNDlQ8fPqwJEyYoJiZGpaWlWrBggebOnavNmzebY4qLixUfH6+EhAR99NFHSkhI0NSpU/XBBx+YY4qKivT444/r/fffV2Fhoerr6xUbG6tvv/22BYcNAHBXzrjObNmyRRUVFebln//8p7y9vfXggw9a9HXjjTdaxH388cdOPda2UHbspHkBALSP6upqNTQ0KCgoyKI9KChIlZWVNrc5dOiQ5s+fr/Xr18vHp3k3AmVkZCgwMNC8hIaGtjp3AEDLOHwLp6NDlXNychQWFqbMzExJ0qBBg7Rv3z4tW7ZMkydPNvcxbtw4paenS5LS09NVVFSkzMxMbdy4UZL09ttvW/T72muv6eqrr1ZJSYluv/12Rw8DAOCmnHGd6dGjh8U2mzZt0uWXX25VQPPx8WHUGQCg2by8vCzWDcOwapOkhoYGTZ8+XUuWLNENN9zQ7P7T09OVlpZmXq+pqaGIBgAu4lAB7cJQ5fnz51u02xuqXFxcbDW0efz48crNzdXZs2fl6+ur4uJipaamWsVc+DJky6lTpyRZfymC6zS+9fOVoOcuGdOUxnPK5fq1Pi8AnsNZ15mL5ebm6qGHHtIVV1xh0X7o0CGFhITI399ft956q55//nn169evyXxra2tVW1trXufWmrZhcR2YOdKFmQCAbb169ZK3t7fVaLOqqiqrUWmSdPr0ae3bt0+lpaV64oknJEnnzp2TYRjy8fHR9u3bdeedd1pt5+/vL39/f+ccBADAIQ4V0FoyVLmystJmfH19vaqrq9WnT58mY5rq0zAMpaWl6bbbbtOQIUOazJcvNmgXzXmCJg85AJrFWdeZxj788EP985//VG5urkX7rbfeqnXr1umGG27QV199peeee07R0dE6cOCAevbsaXPfGRkZWrJkiaOH2eE15wcVAPBkfn5+MplMKiws1P33329uLyws1KRJk6ziu3btajUtQFZWlv7+97/rjTfeUEREhNNzBgC0Touewtncocr24i9ud6TPJ554Qv/4xz+0e/duu3nyxcb5Ou0DB5pTNAPQYs64zlyQm5urIUOG6JZbbrFoj4uLM78eOnSooqKi1L9/f/3ud7+zuH2mMW6tAYDOKy0tTQkJCYqMjFRUVJRWr16t8vJyJSUlSTp/jTh+/LjWrVunLl26WP3wf/XVVysgIMDugAAAgPtwqIDm6FBlSQoODrYZ7+PjY/5Fv6kYW30++eSTeuutt/Tuu+/q2muvtZsvX2wAwLM46zpzwXfffadNmzZp6dKll8zliiuu0NChQ3Xo0KEmY7i1BgA6r/j4eJ04cUJLly5VRUWFhgwZooKCAoWHh0uSKioqmnwADgDA8zj0FM7GQ5UbKywsVHR0tM1toqKirOK3b9+uyMhI87w0TcU07tMwDD3xxBPasmWL/v73vzdrmLO/v7+6du1qscA98RQ5AJLzrjMX/M///I9qa2v1yCOPXDKX2tpaHTx40OoWULSNJ79aZLEAgCdKTk7WkSNHVFtba/Vws7y8PO3cubPJbRcvXqyysjLnJwkAaBMO38LpyFBlSUpKStLKlSuVlpamOXPmqLi4WLm5ueana0rSvHnzdPvtt+vFF1/UpEmT9Oabb+qdd96xuEXz8ccf14YNG/Tmm2/qqquuMo82CAwM1GWXXdaqkwDncpsvRtx2CXgEZ1xnLsjNzdV9991nc06zp556ShMnTlRYWJiqqqr03HPPqaamRo8++qhzDxgAAACA23O4gOboUOWIiAgVFBQoNTVVq1atUkhIiFasWKHJkyebY6Kjo7Vp0yYtWrRIzzzzjPr376/8/Hzdeuut5pjs7GxJ0h133GGRz2uvvaaZM2c6ehhwMpcWzdqqUOasghuFPMAuZ1xnJOmzzz7T7t27tX37dpv7/eKLLzRt2jRVV1erd+/eGjVqlN5//33zfl2CzwsAAADALbToIQLJyclKTk62+V5eXp5V25gxY7R//367fU6ZMkVTpkxp8v0LE0IDADo+Z1xnbrjhBrvXkk2bNjmUIwAAnQ5PlgfQibWogAYAANAeEvP2ml/nzhzpwkwAAADQmVFAg0PcZj4zAAAAAACAdkIBDW7HokgX2s1lebgcQ+QBAAAAAHALXVydAAAAAAAAAODOGIEGt1Z27KT59U2eNhqNp+cBAAAAANAhUEADOgpu+QQAAAAAwCkooAGegOIYgEYaj84FAAAA4HzMgQYAAAAAAADYQQENAAAAAAAAsINbOAEAgNM8+dUi8+tXgp5rVV+JeXvNr3NnjmxVXwAAAIAjGIEGAAAAAAAA2EEBDQAAAAAAALCDWzgBAAAAAC3W+BZ7idvsAXRMFNAAAAAAAI7ZEN9o5SmXpQEA7YUCGi6p8QTQcCKL/4Q4qd/p+c7ZBwC0Mx4oAACuVXbs5A8rQS5LAwDaDQU0AADQLvhBBgA6B37kANARUUDr5Dz5y0zjX71uCu3msjxcylmj1gAAANAx8f9HAGgRCmgAAAAAAKdgNBqAjoICGjyGxTwLAAAAANoV/x8H0Jl1cXUCAAAAAAAAgDtjBBrQETG3BdDh8Ks/AAAA4DoU0AAAAAAATsd8aAA8GQU0wNO0ZnRZ422n57c+FwAAAAAAOgEKaC3U+NcTAADgOoxoAAAAgLPxEAF0CGXHTpoXAJ4vKytLERERCggIkMlk0q5du+zGFxUVyWQyKSAgQP369VNOTo7F+3l5efLy8rJazpw506r9AgAAAOgcGIHWCT351SJXpwAATcrPz1dKSoqysrI0evRo/fa3v1VcXJw++eQThYWFWcUfPnxYEyZM0Jw5c/T666/rvffeU3Jysnr37q3Jkyeb47p27apPP/3UYtuAgIAW7xcAALQco4cBeBpGoAEA3Mry5cuVmJio2bNna9CgQcrMzFRoaKiys7Ntxufk5CgsLEyZmZkaNGiQZs+erVmzZmnZsmUWcV5eXgoODrZYWrNfAAAAAJ0HI9AAnMcDBuAG6urqVFJSovnz51u0x8bGas+ePTa3KS4uVmxsrEXb+PHjlZubq7Nnz8rX11eS9M033yg8PFwNDQ266aab9Itf/EIjRoxo8X4lqba2VrW1teb1mpqa5h8sAAAeoDlTpFx8h8srQc85KRsAcB1GoAEA3EZ1dbUaGhoUFBRk0R4UFKTKykqb21RWVtqMr6+vV3V1tSRp4MCBysvL01tvvaWNGzcqICBAo0eP1qFDh1q8X0nKyMhQYGCgeQkNDXX4mAEAAAC4P0agAWg9Rq+hjXl5eVmsG4Zh1Xap+Mbto0aN0qhRo8zvjx49WjfffLNeeeUVrVixosX7TU9PV1pamnm9pqaGIpqLMacOAHgePrsBeAIKaAAAt9GrVy95e3tbjfqqqqqyGh12QXBwsM14Hx8f9ezZ0+Y2Xbp00ciRI80j0FqyX0ny9/eXv7//JY8LAAAAgGejgAZ0Vo1HjTU3jtFlcDI/Pz+ZTCYVFhbq/vvvN7cXFhZq0qRJNreJiorSn/70J4u27du3KzIy0jz/2cUMw1BZWZmGDh3a4v3CeRrPpcM8OgAAAHAHFNA6iYsn9gQAd5WWlqaEhARFRkYqKipKq1evVnl5uZKSkiSdv23y+PHjWrdunSQpKSlJK1euVFpamubMmaPi4mLl5uZq48aN5j6XLFmiUaNG6frrr1dNTY1WrFihsrIyrVq1qtn7BQAAANB5UUADALiV+Ph4nThxQkuXLlVFRYWGDBmigoIChYeHS5IqKipUXl5ujo+IiFBBQYFSU1O1atUqhYSEaMWKFZo8ebI55uTJk/rJT36iyspKBQYGasSIEXr33Xd1yy23NHu/AADA+ZgPDYC7ooDWgTHqzPKx2zeFdnNZHh6nubd3Ak6SnJys5ORkm+/l5eVZtY0ZM0b79+9vsr/f/OY3+s1vftOq/cK5uGYBAADAnVFAA9AyFNkAAAAAAJ0EBTQAbYuHDgAAAHi0xndxAADOo4CGDocLPoCOgs+z1mEeHQDwbHyOA3AnFNAc0PgDvKNjLhoAAAAAAIDzKKCh0+CBAgAAAAAAoCW6uDoBAAAAZ0vM22uxAEBbyMrKUkREhAICAmQymbRr164mY7ds2aJx48apd+/e6tq1q6KiorRt27Z2zBYA0BoU0AAAAADAQfn5+UpJSdHChQtVWlqqmJgYxcXFqby83Gb8u+++q3HjxqmgoEAlJSX60Y9+pIkTJ6q0tLSdM/dM/AgCwNVaVEBz5JcWSSoqKpLJZFJAQID69eunnJwcq5jNmzdr8ODB8vf31+DBg7V161aL9999911NnDhRISEh8vLy0h//+MeWpA6gNTbE/7AAAAB0YsuXL1diYqJmz56tQYMGKTMzU6GhocrOzrYZn5mZqZ///OcaOXKkrr/+ej3//PO6/vrr9ac//amdMwcAtITDBTRHf2k5fPiwJkyYoJiYGJWWlmrBggWaO3euNm/ebI4pLi5WfHy8EhIS9NFHHykhIUFTp07VBx98YI759ttvNXz4cK1cubIFh9lxPfnVIosFAAAAgHPV1dWppKREsbGxFu2xsbHas2dPs/o4d+6cTp8+rR49ejQZU1tbq5qaGosFAOAaDj9EoPEvLdL5X1K2bdum7OxsZWRkWMXn5OQoLCxMmZmZkqRBgwZp3759WrZsmSZPnmzuY9y4cUpPT5ckpaenq6ioSJmZmdq4caMkKS4uTnFxcS06SAAA4Jma+nHolaDnbMY0bgcAZ6murlZDQ4OCgoIs2oOCglRZWdmsPn7961/r22+/1dSpU5uMycjI0JIlS1qVqyvwuQygI3JoBFpLfmkpLi62ih8/frz27duns2fP2o1p7q83TeEXGwAAAADO4uXlZbFuGIZVmy0bN27U4sWLlZ+fr6uvvrrJuPT0dJ06dcq8HDt2rNU5AwBaxqERaC35paWystJmfH19vaqrq9WnT58mY5r7601TPPUXGwAA4FyNJ6HOnTnShZkA8ES9evWSt7e31feVqqoqq+81F8vPz1diYqL+8Ic/aOzYsXZj/f395e/v3+p8O5qLHyTA5ziA9tCihwg4+kuLrfiL21v66409/GIDAAAAoK35+fnJZDKpsLDQor2wsFDR0dFNbrdx40bNnDlTGzZs0N133+3sNN0C8zUD6CgcGoHWkl9agoODbcb7+PioZ8+edmMu9evNpfCLDQAAAABnSEtLU0JCgiIjIxUVFaXVq1ervLxcSUlJks7/mH/8+HGtW7dO0vni2YwZM/Tyyy9r1KhR5u8/l112mQIDA112HBeUHTvp6hQAwK05NAKtJb+0REVFWcVv375dkZGR8vX1tRtj79cbAAAAAHCV+Ph4ZWZmaunSpbrpppv07rvvqqCgQOHh4ZKkiooKlZeXm+N/+9vfqr6+Xo8//rj69OljXubNm+eqQwAAOMDhp3A6+ktLUlKSVq5cqbS0NM2ZM0fFxcXKzc01P11TkubNm6fbb79dL774oiZNmqQ333xT77zzjnbv3m2O+eabb/Svf/3LvH748GGVlZWpR48eCgsLa/EJ6GgYGg0AgGOYDw1ASyUnJys5Odnme3l5eRbrO3fudH5CnRSf4wDag8MFtPj4eJ04cUJLly5VRUWFhgwZYveXloiICBUUFCg1NVWrVq1SSEiIVqxYocmTJ5tjoqOjtWnTJi1atEjPPPOM+vfvr/z8fN16663mmH379ulHP/qReT0tLU2S9Oijj1pdnABHNB6uflNoN5flAQAAAAAA3JPDBTTJsV9aJGnMmDHav3+/3T6nTJmiKVOmNPn+HXfcYX74ANBazPEAAAAAAACaq0UFNKCjYjQaAHgGpiwAANjC7ZwAnIUCmhtr/OXglaDnXJgJAAAAAABA50UBDQAA4P/HyAUAAADYQgENAAB3sSHe1RkAAAAAsIECGgDXaFwomJ7vujwAAADQITGqGEBbooAGwPVcWUyjkAd0KMwfCgAAAGfo4uoEYOnJrxaZFwDorLKyshQREaGAgACZTCbt2rXLbnxRUZFMJpMCAgLUr18/5eTkWLy/Zs0axcTEqHv37urevbvGjh2rDz/80CJm8eLF8vLysliCg4Pb/NjgORLz9poXAAAAdG6MQAPQPtpybidGjXVo+fn5SklJUVZWlkaPHq3f/va3iouL0yeffKKwsDCr+MOHD2vChAmaM2eOXn/9db333ntKTk5W7969NXnyZEnSzp07NW3aNEVHRysgIEAvvfSSYmNjdeDAAV1zzTXmvm688Ua988475nVvb2/nHzAAAJ1Qe48Y5nZOAK1FAc0DMTrNNcqOnTS/vim0m8vy8ChMiI4WWL58uRITEzV79mxJUmZmprZt26bs7GxlZGRYxefk5CgsLEyZmZmSpEGDBmnfvn1atmyZuYC2fv16i23WrFmjN954Q3/72980Y8YMc7uPjw+jzgAAAABYoYAGwLMxGq1DqaurU0lJiebPn2/RHhsbqz179tjcpri4WLGxsRZt48ePV25urs6ePStfX1+rbb777judPXtWPXr0sGg/dOiQQkJC5O/vr1tvvVXPP/+8+vXr12S+tbW1qq2tNa/X1NRc8hjhmRi5AAAA0LlRQAOa0HjEGYD2UV1drYaGBgUFBVm0BwUFqbKy0uY2lZWVNuPr6+tVXV2tPn36WG0zf/58XXPNNRo7dqy57dZbb9W6det0ww036KuvvtJzzz2n6OhoHThwQD179rS574yMDC1ZssTRwwQAoFPiThoAnowCGtAC3M4JOJeXl5fFumEYVm2XirfVLkkvvfSSNm7cqJ07dyogIMDcHhcXZ349dOhQRUVFqX///vrd736ntLQ0m/tNT0+3eK+mpkahoaF2jgwAAFysqcKas+ZGY1QxgJaggAbAvTR1S6aj86lxa6dH6tWrl7y9va1Gm1VVVVmNMrsgODjYZryPj4/VyLFly5bp+eef1zvvvKNhw4bZzeWKK67Q0KFDdejQoSZj/P395e/vb7cfAAAAAJ6vi6sTAADgAj8/P5lMJhUWFlq0FxYWKjo62uY2UVFRVvHbt29XZGSkxfxnv/rVr/SLX/xCb7/9tiIjIy+ZS21trQ4ePGjzFlB0bol5e80LAAAAOgdGoAEA3EpaWpoSEhIUGRmpqKgorV69WuXl5UpKSpJ0/rbJ48ePa926dZKkpKQkrVy5UmlpaZozZ46Ki4uVm5urjRs3mvt86aWX9Mwzz2jDhg3q27evecTalVdeqSuvvFKS9NRTT2nixIkKCwtTVVWVnnvuOdXU1OjRRx9t5zMAAADaC7dzAmguCmgAOj5Hb/+ES8XHx+vEiRNaunSpKioqNGTIEBUUFCg8PFySVFFRofLycnN8RESECgoKlJqaqlWrVikkJEQrVqzQ5MmTzTFZWVmqq6vTlClTLPb17LPPavHixZKkL774QtOmTVN1dbV69+6tUaNG6f333zfvF57H3mTVzppXBwDgfBd/vvOZDqA9UEAD4L5aM+8ZPFpycrKSk5NtvpeXl2fVNmbMGO3fv7/J/o4cOXLJfW7atKm56QFmjFwAAOdpXChrjyIZn+kA7KGA5iF45DMAAACAttT4yfIAAPsooAGt1NR/PG4K7daueQAAAAAdFQMKALgaBTQAaE+NbzOdnu+6PAC0OW79AYCOg890ABejgAY4SeORaYxGA9Ac3EoDAAAAuCcKaAAAoFNzxiTVjUcuSIxeAABncvbDBvhMByBRQAOAtsGtmUCH0NSXsPZ+EhwAAADcCwU0ALjA0SJY43gAsIO5dACgffCDBwBnoYDmBniiDOCGGFEGdGhcewEALcWPIkDnRAENaAc8UACXRMEO6DT44gUAAOB5KKC1I4YTQ6KY5pEobgEAAHic9pjX8uIHDFzADyRAx9PF1QkAAAAAAAAA7owRaAAAAG3s4jnWmhrhwMgFAOiYuF0f6HgooAEuxO2cAAAAAAC4PwpoLsLTvwA0C/OvAW6nPeY0ZeQCAHQcfKYDHQMFNMBNMTrNTTUuaDU3pr0LXxTdAAAALDCAAUBrUUAD3ETjghngkOYU9QB4LOZJA4D20VSRrS1HG/OZDnguCmiAB2A0modrqsDlysIXo9SAS2rOaAVXjmjgliAAAID2QwGtjTE0GECrteQ2UQAAAHgsfhQB3B8FtDZA0QztidFoANBxtNUDCcpeHG+x3rgvvogBQNNaO9rYGQ+Tufg2Tz7HAfdAAQ3wYBTTOhlGnQEeqz2e3AkAaH/t/WTmxiisAe2LAhrQQVBMwyVRgAM8Rlt+IeOLFwAAQOtRQAM6oKae6ElhDQA8j7NGN1BYAwDPxuc40L4ooAGdCKPUOiFGnQEew13mVGUia6Bja+qHVrReU5/j7X3rPoU1wDkooAGQRHENANpLWxXK2qPgxpcwAGi9pkYSt/f8mHymA63TpSUbZWVlKSIiQgEBATKZTNq1a5fd+KKiIplMJgUEBKhfv37Kycmxitm8ebMGDx4sf39/DR48WFu3bm31fgE0rezYSYulqfcAV+A6A7SdJ79aZF7aqp/EvL3NWhprqh3wZM64XqFzsvdZ3Vaf401p7uc40Nk5PAItPz9fKSkpysrK0ujRo/Xb3/5WcXFx+uSTTxQWFmYVf/jwYU2YMEFz5szR66+/rvfee0/Jycnq3bu3Jk+eLEkqLi5WfHy8fvGLX+j+++/X1q1bNXXqVO3evVu33npri/brDO5yawXQnpoamcY8a3CWznydAS6luf8XaSquObcXNWdEhL2Yxu8l5tnut3F7Y4yCgCdxxvUKkOx/1rf3aDZHi2h8jqMj8zIMw3Bkg1tvvVU333yzsrOzzW2DBg3Sfffdp4yMDKv4p59+Wm+99ZYOHjxobktKStJHH32k4uJiSVJ8fLxqamr017/+1Rzz4x//WN27d9fGjRtbtF9bampqFBgYqFOnTqlr166OHLYkqezF8Q5vA+A8CmtubHp+izdt7eeqLVxnAM9ir4DWmi93Lfky2PiLG3O5dQzOuM60FWdcry6lLc4H15qOozmfsa39TG7v20z5vEZ7c+Rz1aERaHV1dSopKdH8+fMt2mNjY7Vnzx6b2xQXFys2Ntaibfz48crNzdXZs2fl6+ur4uJipaamWsVkZma2eL+SVFtbq9raWvP6qVOnJJ0/QS3xzZn6Fm0HQNp9qLrN+hp2TWCb9QVJLfxMPL/p+W0d/C2mSVxnuM7A8zx21PLfzTeNXtd9/8Na47/fjdv/q+qHL2S/vXqRQ/EXb7N7yV0/bNOoPSF7xyX31x5WPWwyv358fYnN9lb7n5k/vJ6a13b9ukhbX2fairOuVxdr6+uMxLWmI2n8+ftNK9obf8ZezNHP7qY0N76pz+umNO7LWZ/vbfoZDbfjyHXGoQJadXW1GhoaFBQUZNEeFBSkyspKm9tUVlbajK+vr1d1dbX69OnTZMyFPluyX0nKyMjQkiVLrNpDQ0ObPkgA6GzmWM8F5qjTp08rMLD1hU2uM0BH83fzq9ed0t68bRprToyzvJ7sWHurtcHnu7toq+tMW3HW9epiXGfQPpr+LHT0M9rRfpq/TVNanlNzOe0zGm6lOdeZFj2F08vLy2LdMAyrtkvFX9zenD4d3W96errS0tLM6+fOndN//vMf9ezZU15eXqqpqVFoaKiOHTvmdkPC3QHnxz7OT9M4N/Z1pPNjGIZOnz6tkJCQNu23o1xnHNGR/l64Guey7XAu2w7nsmWcdZ1pK864XjXmyHXG0/+Okb9rkb9reXL+npy75Nh1xqECWq9eveTt7W31q0pVVZXVrykXBAcH24z38fFRz5497cZc6LMl+5Ukf39/+fv7W7R169bNKq5r164e+QfdXjg/9nF+msa5sa+jnJ+2HBHQUa8zjugofy/cAeey7XAu2w7n0nHuNPLsAmddry7WkuuMp/8dI3/XIn/X8uT8PTn35l5nujjSqZ+fn0wmkwoLCy3aCwsLFR0dbXObqKgoq/jt27crMjLSfJ9/UzEX+mzJfgEAnofrDADAEzjregUAcGOGgzZt2mT4+voaubm5xieffGKkpKQYV1xxhXHkyBHDMAxj/vz5RkJCgjn+888/Ny6//HIjNTXV+OSTT4zc3FzD19fXeOONN8wx7733nuHt7W288MILxsGDB40XXnjB8PHxMd5///1m77clTp06ZUgyTp061eI+OjLOj32cn6Zxbuzj/NjXka4zjuDvRdvhXLYdzmXb4Vx2PM64XrWGp/8dI3/XIn/X8uT8PTl3RzlcQDMMw1i1apURHh5u+Pn5GTfffLNRVFRkfu/RRx81xowZYxG/c+dOY8SIEYafn5/Rt29fIzs726rPP/zhD8aAAQMMX19fY+DAgcbmzZsd2m9LnDlzxnj22WeNM2fOtKqfjorzYx/np2mcG/s4P5fWUa4zjuDvRdvhXLYdzmXb4Vx2TM64XrWUp/8dI3/XIn/X8uT8PTl3R3kZhps9ExoAAAAAAABwIw7NgQYAAAAAAAB0NhTQAAAAAAAAADsooAEAAAAAAAB2UEADAAAAAAAA7OjUBbSsrCxFREQoICBAJpNJu3btcnVKTpeRkaGRI0fqqquu0tVXX6377rtPn376qUWMYRhavHixQkJCdNlll+mOO+7QgQMHLGJqa2v15JNPqlevXrriiit077336osvvmjPQ3G6jIwMeXl5KSUlxdzW2c/N8ePH9cgjj6hnz566/PLLddNNN6mkpMT8fmc+P/X19Vq0aJEiIiJ02WWXqV+/flq6dKnOnTtnjunM5weX1hmvSa317rvvauLEiQoJCZGXl5f++Mc/WrzfnH9zaLv/G0DKzs7WsGHD1LVrV3Xt2lVRUVH661//an6f84jWcvRaUVRUJJPJpICAAPXr1085OTntlKml5nzOXGznzp3y8vKyWv73f/+3nbL+weLFi63yCA4OtruNu5x7Serbt6/Nc/n444/bjHf1uXfW9X3z5s0aPHiw/P39NXjwYG3durXd8z979qyefvppDR06VFdccYVCQkI0Y8YMffnll3b7zMvLs/lncubMmXbLXZJmzpxplcOoUaMu2W97nXtn67QFtPz8fKWkpGjhwoUqLS1VTEyM4uLiVF5e7urUnKqoqEiPP/643n//fRUWFqq+vl6xsbH69ttvzTEvvfSSli9frpUrV2rv3r0KDg7WuHHjdPr0aXNMSkqKtm7dqk2bNmn37t365ptvdM8996ihocEVh9Xm9u7dq9WrV2vYsGEW7Z353Pzf//2fRo8eLV9fX/31r3/VJ598ol//+tfq1q2bOaYzn58XX3xROTk5WrlypQ4ePKiXXnpJv/rVr/TKK6+YYzrz+YF9nfWa1Frffvuthg8frpUrV9p8vzn/5tB2/zeAdO211+qFF17Qvn37tG/fPt15552aNGmS+Ysd5xGt4ei14vDhw5owYYJiYmJUWlqqBQsWaO7cudq8eXM7Z968z5mmfPrpp6qoqDAv119/fTtkbO3GG2+0yOPjjz9uMtadzr10/rtN49wLCwslSQ8++KDd7Vx17p1xfS8uLlZ8fLwSEhL00UcfKSEhQVOnTtUHH3zQrvl/99132r9/v5555hnt379fW7Zs0WeffaZ77733kv127drV4s+joqJCAQEB7Zb7BT/+8Y8tcigoKLDbZ3uee6czOqlbbrnFSEpKsmgbOHCgMX/+fBdl5BpVVVWGJKOoqMgwDMM4d+6cERwcbLzwwgvmmDNnzhiBgYFGTk6OYRiGcfLkScPX19fYtGmTOeb48eNGly5djLfffrt9D8AJTp8+bVx//fVGYWGhMWbMGGPevHmGYXBunn76aeO2225r8v3Ofn7uvvtuY9asWRZtDzzwgPHII48YhsH5gX1ck1pPkrF161bzenP+zcG2lvzfAE3r3r278eqrr3Ie0WqOXit+/vOfGwMHDrRo+6//+i9j1KhRTsuxuS7+nLFlx44dhiTj//7v/9ovsSY8++yzxvDhw5sd787n3jAMY968eUb//v2Nc+fO2Xzfnc59W13fp06davz4xz+2aBs/frzx0EMPtXnOjV2cvy0ffvihIck4evRokzGvvfaaERgY2LbJXYKt3B999FFj0qRJDvXjqnPvDJ1yBFpdXZ1KSkoUGxtr0R4bG6s9e/a4KCvXOHXqlCSpR48eks7/WlJZWWlxbvz9/TVmzBjzuSkpKdHZs2ctYkJCQjRkyJAOcf4ef/xx3X333Ro7dqxFe2c/N2+99ZYiIyP14IMP6uqrr9aIESO0Zs0a8/ud/fzcdttt+tvf/qbPPvtMkvTRRx9p9+7dmjBhgiTOD5rGNck5mvNvDra15P8GsNbQ0KBNmzbp22+/VVRUFOcRrdKSa0VxcbFV/Pjx47Vv3z6dPXvWabk2x8WfM/aMGDFCffr00V133aUdO3Y4O7UmHTp0SCEhIYqIiNBDDz2kzz//vMlYdz73dXV1ev311zVr1ix5eXnZjXWXc99YSz9Lm/ozcYfP31OnTsnLy8vizh5bvvnmG4WHh+vaa6/VPffco9LS0vZJ8CI7d+7U1VdfrRtuuEFz5sxRVVWV3Xh3PveO6pQFtOrqajU0NCgoKMiiPSgoSJWVlS7Kqv0ZhqG0tDTddtttGjJkiCSZj9/euamsrJSfn5+6d+/eZIyn2rRpk/bv36+MjAyr9zr7ufn888+VnZ2t66+/Xtu2bVNSUpLmzp2rdevWSeL8PP3005o2bZoGDhwoX19fjRgxQikpKZo2bZokzg+axjXJOZrzbw7WWvp/A/zg448/1pVXXil/f38lJSVp69atGjx4MOcRrdKSa0VlZaXN+Pr6elVXVzst10ux9TljS58+fbR69Wpt3rxZW7Zs0YABA3TXXXfp3Xffbcdsz7v11lu1bt06bdu2TWvWrFFlZaWio6N14sQJm/Hueu4l6Y9//KNOnjypmTNnNhnjTuf+Yi39LG3qz8TVn79nzpzR/PnzNX36dHXt2rXJuIEDByovL09vvfWWNm7cqICAAI0ePVqHDh1qx2yluLg4rV+/Xn//+9/161//Wnv37tWdd96p2traJrdx13PfEj6uTsCVLq64G4ZxySp8R/LEE0/oH//4h3bv3m31XkvOjaefv2PHjmnevHnavn273XvJO+O5kaRz584pMjJSzz//vKTzv0gdOHBA2dnZmjFjhjmus56f/Px8vf7669qwYYNuvPFGlZWVKSUlRSEhIXr00UfNcZ31/ODSOvs1yVk4r45p6/8bdEYDBgxQWVmZTp48qc2bN+vRRx9VUVGR+X3OI1rD0b8/tuJttbcne58zjQ0YMEADBgwwr0dFRenYsWNatmyZbr/9dmenaSEuLs78eujQoYqKilL//v31u9/9TmlpaTa3ccdzL0m5ubmKi4tTSEhIkzHudO6b0pLPUnf7/D179qweeughnTt3TllZWXZjR40aZTFZ/+jRo3XzzTfrlVde0YoVK5ydqll8fLz59ZAhQxQZGanw8HD95S9/0QMPPNDkdu527luqU45A69Wrl7y9va0qnlVVVVaV0Y7qySef1FtvvaUdO3bo2muvNbdfeJqMvXMTHBysuro6/d///V+TMZ6opKREVVVVMplM8vHxkY+Pj4qKirRixQr5+PiYj60znhvp/C9RgwcPtmgbNGiQeeLazvx3R5J+9rOfaf78+XrooYc0dOhQJSQkKDU11TyasbOfHzSNa5JzNOffHCy15v8G+IGfn5+uu+46RUZGKiMjQ8OHD9fLL7/MeUSrtORaERwcbDPex8dHPXv2dFqu9jT1OdNco0aNavcRN7ZcccUVGjp0aJO5uOO5l6SjR4/qnXfe0ezZsx3e1l3OfUs/S5v6M3HV5+/Zs2c1depUHT58WIWFhXZHn9nSpUsXjRw50uV/Jn369FF4eLjdPNzt3LdGpyyg+fn5yWQymZ8+ckFhYaGio6NdlFX7MAxDTzzxhLZs2aK///3vioiIsHg/IiJCwcHBFuemrq5ORUVF5nNjMpnk6+trEVNRUaF//vOfHn3+7rrrLn388ccqKyszL5GRkXr44YdVVlamfv36ddpzI53/lePix41/9tlnCg8Pl9S5/+5I55+o06WL5Ueqt7e3zp07J4nzg6Z15muSMzXn3xzOa4v/G6BphmGotraW84hWacm1Iioqyip++/btioyMlK+vr9NyteVSnzPNVVpaqj59+rRxdo6rra3VwYMHm8zFnc59Y6+99pquvvpq3X333Q5v6y7nvqWfpU39mbji8/dC8ezQoUN65513WlRUNQxDZWVlLv8zOXHihI4dO2Y3D3c6963WTg8rcDubNm0yfH19jdzcXOOTTz4xUlJSjCuuuMI4cuSIq1Nzqp/+9KdGYGCgsXPnTqOiosK8fPfdd+aYF154wQgMDDS2bNlifPzxx8a0adOMPn36GDU1NeaYpKQk49prrzXeeecdY//+/cadd95pDB8+3Kivr3fFYTlN46dwGkbnPjcffvih4ePjY/zyl780Dh06ZKxfv964/PLLjddff90c05nPz6OPPmpcc801xp///Gfj8OHDxpYtW4xevXoZP//5z80xnfn8wL7Oek1qrdOnTxulpaVGaWmpIclYvny5UVpaan6KVXP+zaHt/m8Aw0hPTzfeffdd4/Dhw8Y//vEPY8GCBUaXLl2M7du3G4bBeUTrXOpaMX/+fCMhIcEc//nnnxuXX365kZqaanzyySdGbm6u4evra7zxxhvtnntzPmcuzv83v/mNsXXrVuOzzz4z/vnPfxrz5883JBmbN29u9/z/+7//29i5c6fx+eefG++//75xzz33GFdddZVHnPsLGhoajLCwMOPpp5+2es/dzn1bXN8TEhIsnlD73nvvGd7e3sYLL7xgHDx40HjhhRcMHx8f4/3332/X/M+ePWvce++9xrXXXmuUlZVZ/Huora1tMv/Fixcbb7/9tvHvf//bKC0tNR577DHDx8fH+OCDD9ot99OnTxv//d//bezZs8c4fPiwsWPHDiMqKsq45ppr3ObcO1unLaAZhmGsWrXKCA8PN/z8/Iybb77Z7mOUOwpJNpfXXnvNHHPu3Dnj2WefNYKDgw1/f3/j9ttvNz7++GOLfr7//nvjiSeeMHr06GFcdtllxj333GOUl5e389E438UFtM5+bv70pz8ZQ4YMMfz9/Y2BAwcaq1evtni/M5+fmpoaY968eUZYWJgREBBg9OvXz1i4cKHFhbAznx9cWme8JrXWjh07bF7THn30UcMwmvdvDm33fwMYxqxZs8z/jnv37m3cdddd5uKZYXAe0Xr2rhWPPvqoMWbMGIv4nTt3GiNGjDD8/PyMvn37GtnZ2e2c8XnN+Zy5OP8XX3zR6N+/vxEQEGB0797duO2224y//OUv7Z+8YRjx8fFGnz59DF9fXyMkJMR44IEHjAMHDpjfd+dzf8G2bdsMScann35q9Z67nfu2uL6PGTPGHH/BH/7wB2PAgAGGr6+vMXDgQKcVBO3lf/jw4Sb/PezYsaPJ/FNSUoywsDDz9SU2NtbYs2dPu+b+3XffGbGxsUbv3r0NX19fIywszHj00Uetvqu48tw7m5dh/P+zGQIAAAAAAACw0innQAMAAAAAAACaiwIaAAAAAAAAYAcFNAAAAAAAAMAOCmgAAAAAAACAHRTQAAAAAAAAADsooAEAAAAAAAB2UEADAAAAAAAA7KCABrSDxYsXy8vLS9XV1ZeM7du3r2bOnGle/+yzz/TUU0/JZDKpW7du6tGjh0aPHq033njD4Tx27twpLy+vFm0LAOgYNmzYoMzMTFenAQAA4FEooAFuZuvWrXrmmWfM69u3b9df/vIXTZ48WX/4wx+0fv16XX/99XrwwQe1dOlSF2YKAPBEFNAAAAAc5+PqBABYGjFihMX6Qw89pMcff1xeXl7mtri4OFVXV+vFF1/U008/LX9///ZOEwAAAACAToMRaEAT/vjHP8rLy0t/+9vfrN7Lzs6Wl5eX/vGPf0iSPvjgA02cOFE9e/ZUQECA+vfvr5SUFKvtvvrqK02bNk2BgYEKCgrSrFmzdOrUKYuYi2/h7NWrl0Xx7IJbbrlF3333nf7zn/84fGxnzpxRWlqagoODddlll2nMmDEqLS11uB8A6Owu3KL/j3/8Qw8++KACAwPVo0cPpaWlqb6+Xp9++ql+/OMf66qrrlLfvn310ksvmbfNy8uTl5eXjhw5YtHnhdvtd+7c2ew8LvRVWFioxx57TD169NAVV1yhiRMn6vPPPzfH3XHHHfrLX/6io0ePysvLy7w0V2lpqe655x5dffXV8vf3V0hIiO6++2598cUXkqQjR47Iy8tLeXl5Vtt6eXlp8eLF5vXWnDsAAID2RgENaMKFLwivvfaa1Xt5eXm6+eabNWzYMG3btk0xMTEqLy/X8uXL9de//lWLFi3SV199ZbXd5MmTdcMNN2jz5s2aP3++NmzYoNTU1Bblt2PHDvXu3VtXX321w9suWLBAn3/+uV599VW9+uqr+vLLL3XHHXdYfMkCADTf1KlTNXz4cG3evFlz5szRb37zG6Wmpuq+++7T3Xffra1bt+rOO+/U008/rS1btjgtj8TERHXp0sV8m+aHH36oO+64QydPnpQkZWVlafTo0QoODlZxcbF5aY5vv/1W48aN01dffaVVq1apsLBQmZmZCgsL0+nTp1ucs7ucOwAAAHu4hRNogo+Pjx555BFlZ2fr1KlTCgwMlCQdPHhQH374oV555RVJ0uOPP66wsDB98MEHCggIMG//2GOPWfWZmJion/3sZ5KksWPH6l//+pfWrl2r3Nxch0YAvPrqq9q5c6defvlleXt7O3xsvXv31tatW837vO2223T99dcrIyNDa9ascbg/AOjsfvKTnygtLU3S+c/37du3a+XKldqyZYvuv/9+SedHf/35z3/W+vXr9cADDzglj8jISOXm5prXb7zxRo0ePVqrVq3SwoULNXjwYHXr1k3+/v4aNWqUQ33/7//+r06cOKHc3FxNmjTJ3D516tRW5ewu5w4AAMAeRqABdsyaNUvff/+98vPzzW2vvfaa/P39NX36dH322Wf697//rcTERIviWVPuvfdei/Vhw4bpzJkzqqqqanZOf/3rX/X4449rypQpevLJJ5t/MI1Mnz7domAXHh6u6Oho7dixo0X9AUBnd88991isDxo0SF5eXoqLizO3+fj46LrrrtPRo0edlsfDDz9ssR4dHa3w8PA2+Xy/7rrr1L17dz399NPKycnRJ5980uo+Jfc5dwAAAPZQQAPsuPHGGzVy5EjzbZwNDQ16/fXXNWnSJPXo0UNff/21JOnaa69tVn89e/a0WL8w+f/333/frO23bdumBx54QOPGjdP69esdGrXWWHBwsM22EydOtKg/AOjsevToYbHu5+enyy+/3OrHFT8/P505c8ZpeTjz8z0wMFBFRUW66aabtGDBAt14440KCQnRs88+q7Nnz7a4X3c5dwAAAPZQQAMu4bHHHtP777+vgwcP6u2331ZFRYX59szevXtLknnyZGfatm2b7rvvPo0ZM0abN2+Wn59fi/uqrKy02XZxgQ8A4DwXCkS1tbUW7dXV1S3u09mf70OHDtWmTZt04sQJlZWVKT4+XkuXLtWvf/1rSU0fEz/QAAAAT0cBDbiEadOmKSAgQHl5ecrLy9M111yj2NhYSdINN9yg/v37a+3atVZfFtrS9u3bdd999+m2227TH//4R/PItZbauHGjDMMwrx89elR79uzRHXfc0cpMAQDN1bdvX0kyP9H5grfeeqvFfa5fv95ifc+ePTp69KjF57u/v3+zRz43xcvLS8OHD9dvfvMbdevWTfv375ckBQUFKSAgwOqY3nzzzVbtDwAAwNV4iABwCd26ddP999+vvLw8nTx5Uk899ZS6dPmh9rxq1SpNnDhRo0aNUmpqqsLCwlReXq5t27ZZfZFpid27d+u+++5TcHCwFixYoLKyMov3Bw8erK5duzrUZ1VVle6//37NmTNHp06d0rPPPquAgAClp6e3Ol8AQPOMHDlSAwYM0FNPPaX6+np1795dW7du1e7du1vc5759+zR79mw9+OCDOnbsmBYuXKhrrrlGycnJ5pihQ4dqy5Ytys7OlslkUpcuXRQZGXnJvv/85z8rKytL9913n/r16yfDMLRlyxadPHlS48aNk3S+sPbII49o7dq16t+/v4YPH64PP/xQGzZsaPExAQAAuAMKaEAzPPbYY9q4caMkaebMmRbvjR8/Xu+++66WLl2quXPn6syZM7r22mutHhjQUu+8846+//57HTlyRHfeeafV+zt27HB45Njzzz+vvXv36rHHHlNNTY1uueUWbdq0Sf3792+TnAEAl+bt7a0//elPeuKJJ5SUlCR/f3899NBDWrlype6+++4W9Zmbm6vf//73euihh1RbW6sf/ehHevnlly3mGZs3b54OHDigBQsW6NSpUzIMw2JUclOuv/56devWTS+99JK+/PJL+fn5acCAAcrLy9Ojjz5qjrtwO+dLL72kb775Rnfeeaf+/Oc/m0fcAQAAeCIvozn/YwIAAIDbysvL02OPPaa9e/c2azQZAAAAHMMcaAAAAAAAAIAd3MIJdACGYaihocFujLe3t7y8vNopIwBAW2ju53trNTQ02L2N08vLq032AwAA4KkYgQZ0AEVFRfL19bW7/O53v3N1mgAAB/3ud7+75Od7UVGRZs6cKcMwWnz75l133WV3H8yRCQAAOjvmQAM6gNOnT+vTTz+1GxMREaGePXu2U0YAgLZw4sQJHT582G7MgAEDdNVVV7VqP59++qlOnz7d5Pv+/v4aOnRoq/YBAADgySigAQAAAAAAAHZwCycAAAAAAABgR6d6iMC5c+f05Zdf6qqrrmIydQBoA4Zh6PTp0woJCVGXLvwmw3UGANoW1xkAgLvoVAW0L7/8UqGhoa5OAwA6nGPHjunaa691dRoux3UGAJyD6wwAwNU6VQHtwgS7x44dU9euXV2cDQB4vpqaGoWGhrZ6AvOOgusMALQtrjMAAHfRqQpoF26n6dq1K19sAKANcbvieVxnAMA5uM4AAFyNiQQAAAAAAAAAOyigAQAAAAAAAHZQQAMAAAAAAADsoIAGAAAAAAAA2EEBDQAAAAAAALCDAhoAAAAAAABgBwU0AAAAAAAAwA4KaAAAAAAAAIAdFNAAAAAAAAAAO3xcnUBHl5i31/w6d+ZIF2YCAOjwNsT/8Hp6vuvyAAAAADoYRqABAAAAAAAAdlBAAwAAAAAAAOyggAYAAAAAAADYQQENAAAAAAAAsIMCWjtKzNtrXgAArZOVlaWIiAgFBATIZDJp165dduOLiopkMpkUEBCgfv36KScnp8nYTZs2ycvLS/fdd18bZw0AAADAE1FAAwB4nPz8fKWkpGjhwoUqLS1VTEyM4uLiVF5ebjP+8OHDmjBhgmJiYlRaWqoFCxZo7ty52rx5s1Xs0aNH9dRTTykmJsbZhwEAAADAQ1BAAwB4nOXLlysxMVGzZ8/WoEGDlJmZqdDQUGVnZ9uMz8nJUVhYmDIzMzVo0CDNnj1bs2bN0rJlyyziGhoa9PDDD2vJkiXq169fexwKAAAAAA/g4+oEOhpuzwQA56qrq1NJSYnmz59v0R4bG6s9e/bY3Ka4uFixsbEWbePHj1dubq7Onj0rX19fSdLSpUvVu3dvJSYmXvKWUEmqra1VbW2teb2mpsbRwwEAAADgARiBBgDwKNXV1WpoaFBQUJBFe1BQkCorK21uU1lZaTO+vr5e1dXVkqT33ntPubm5WrNmTbNzycjIUGBgoHkJDQ118GgAAAAAeAKnFdAcmdy5oqJC06dP14ABA9SlSxelpKTYjNu8ebMGDx4sf39/DR48WFu3bnVS9gAAd+fl5WWxbhiGVdul4i+0nz59Wo888ojWrFmjXr16NTuH9PR0nTp1yrwcO3bMgSMAAAAA4CmcUkBzdHLn2tpa9e7dWwsXLtTw4cNtxhQXFys+Pl4JCQn66KOPlJCQoKlTp+qDDz5wxiEAANxUr1695O3tbTXarKqqymqU2QXBwcE24318fNSzZ0/9+9//1pEjRzRx4kT5+PjIx8dH69at01tvvSUfHx/9+9//ttmvv7+/unbtarEAAAAA6HicUkBzdHLnvn376uWXX9aMGTMUGBhoMyYzM1Pjxo1Tenq6Bg4cqPT0dN11113KzMx0xiEAANyUn5+fTCaTCgsLLdoLCwsVHR1tc5uoqCir+O3btysyMlK+vr4aOHCgPv74Y5WVlZmXe++9Vz/60Y9UVlbGrZkAAABAJ9fmBbQLkztfPFmzvcmdm6OpCaBb0ycAwDOlpaXp1Vdf1dq1a3Xw4EGlpqaqvLxcSUlJks7fWjljxgxzfFJSko4ePaq0tDQdPHhQa9euVW5urp566ilJUkBAgIYMGWKxdOvWTVdddZWGDBkiPz8/lxwnAAAAAPfQ5k/hbMnkzs3R1ATQ9vrk6WgA0DHFx8frxIkTWrp0qSoqKjRkyBAVFBQoPDxc0vm5NRtPGxAREaGCggKlpqZq1apVCgkJ0YoVKzR58mRXHQIAAAAAD9LmBbQLHJ3c2Rl9ZmRkaMmSJa3aJwDAPSUnJys5Odnme3l5eVZtY8aM0f79+5vdv60+AAAAAHRObX4LZ0smd26OpiaAttcnT0cDAAAAAABAa7X5CLTGkzvff//95vbCwkJNmjSpxf1emAA6NTXV3LZ9+/YmJ4yWzj8dzd/fv8X7BADA7W2Iv3T79Pz2yQUAAADooJxyC2daWpoSEhIUGRmpqKgorV692mpy5+PHj2vdunXmbcrKyiRJ33zzjb7++muVlZXJz89PgwcPliTNmzdPt99+u1588UVNmjRJb775pt555x3t3r3bGYcAAEDHQTENAAAAaBWnFNAcndxZkkaMGGF+XVJSog0bNig8PFxHjhyRJEVHR2vTpk1atGiRnnnmGfXv31/5+fm69dZbnXEIAAAAAAAAgCTJyzAMw9VJtJeamhoFBgbq1KlT6tq1q1P2kZi31+FtcmeOdEImAOB87fG56klccj6auoWzKYxAA+BBuM4AANxFmz9EAAAAAAAAAOhInHILJwAAcFPMhwYAAAA4jBFoAAAAAAAAgB2MQAMAoLO6eP40RqQBAAAANjECDQAAAAAAALCDAhoAAAAAAABgBwU0AAAAAAAAwA4KaAAAAAAAAIAdFNAAAAAAAAAAOyigAQAAAAAAAHZQQAMAAAAAAADsoIAGAAAAAAAA2EEBDQAAAAAAALCDAhoAAAAAAABgBwU0AAAAAAAAwA4KaAAAAAAAAIAdPq5OAFJi3l7z69yZI12YCQAAAAAAAC7GCDQAAAAAAADADgpoAAAAAAAAgB3cwtkGGt+CCQAAAAAAgI6FEWgAAAAAAACAHRTQAAAAAAAAADsooAEAAAAAAAB2UEADAAAAAAAA7KCABgAAAAAAANhBAQ0AAAAAAACwgwIaAAAAAAAAYAcFNAAAAAAAAMAOCmgAAAAAAACAHRTQAAAAAAAAADsooAEAAAAAAAB2UEADAAAAAAAA7KCABgAAAAAAANjhtAJaVlaWIiIiFBAQIJPJpF27dtmNLyoqkslkUkBAgPr166ecnByrmMzMTA0YMECXXXaZQkNDlZqaqjNnzjjrEAAAAAAAAADnFNDy8/OVkpKihQsXqrS0VDExMYqLi1N5ebnN+MOHD2vChAmKiYlRaWmpFixYoLlz52rz5s3mmPXr12v+/Pl69tlndfDgQeXm5io/P1/p6enOOAQAAAAAAABAkuTjjE6XL1+uxMREzZ49W9L5kWPbtm1Tdna2MjIyrOJzcnIUFhamzMxMSdKgQYO0b98+LVu2TJMnT5YkFRcXa/To0Zo+fbokqW/fvpo2bZo+/PBDZxwCAADua0O8qzMAAAAAOpU2H4FWV1enkpISxcbGWrTHxsZqz549NrcpLi62ih8/frz27duns2fPSpJuu+02lZSUmAtmn3/+uQoKCnT33Xe39SEAAAAAAAAAZm0+Aq26uloNDQ0KCgqyaA8KClJlZaXNbSorK23G19fXq7q6Wn369NFDDz2kr7/+WrfddpsMw1B9fb1++tOfav78+U3mUltbq9raWvN6TU1NK44MAAAAAAAAnZHTHiLg5eVlsW4YhlXbpeIbt+/cuVO//OUvlZWVpf3792vLli3685//rF/84hdN9pmRkaHAwEDzEhoa2tLDAQAAAAAAQCfV5iPQevXqJW9vb6vRZlVVVVajzC4IDg62Ge/j46OePXtKkp555hklJCSY51UbOnSovv32W/3kJz/RwoUL1aWLdS0wPT1daWlp5vWamhq3L6Il5u01v86dOdKFmQAAAAAAAEBywgg0Pz8/mUwmFRYWWrQXFhYqOjra5jZRUVFW8du3b1dkZKR8fX0lSd99951Vkczb21uGYZhHq13M399fXbt2tVgAAB1DVlaWIiIiFBAQIJPJpF27dtmNLyoqkslkUkBAgPr166ecnByL97ds2aLIyEh169ZNV1xxhW666Sb9/ve/d+YhAAAAAPAQTrmFMy0tTa+++qrWrl2rgwcPKjU1VeXl5UpKSpJ0fmTYjBkzzPFJSUk6evSo0tLSdPDgQa1du1a5ubl66qmnzDETJ05Udna2Nm3apMOHD6uwsFDPPPOM7r33Xnl7ezvjMAAAbio/P18pKSlauHChSktLFRMTo7i4OJWXl9uMP3z4sCZMmKCYmBiVlpZqwYIFmjt3rjZv3myO6dGjhxYuXKji4mL94x//0GOPPabHHntM27Zta6/Dcr0N8T8sAAAAAMza/BZOSYqPj9eJEye0dOlSVVRUaMiQISooKFB4eLgkqaKiwuJLTkREhAoKCpSamqpVq1YpJCREK1as0OTJk80xixYtkpeXlxYtWqTjx4+rd+/emjhxon75y1864xAAAG5s+fLlSkxMNN/Wn5mZqW3btik7O1sZGRlW8Tk5OQoLC1NmZqYkadCgQdq3b5+WLVtmvtbccccdFtvMmzdPv/vd77R7926NHz/eqccDAAAAwL05pYAmScnJyUpOTrb5Xl5enlXbmDFjtH///ib78/Hx0bPPPqtnn322rVIEAHiguro6lZSUWD2FOTY2Vnv27LG5TXFxsWJjYy3axo8fr9zcXJ09e9Y8XcAFhmHo73//uz799FO9+OKLTebC054BAACAzsFpT+EEAMAZqqur1dDQYPVgmqCgIKsH0lxQWVlpM76+vl7V1dXmtlOnTunKK6+Un5+f7r77br3yyisaN25ck7nwtGcAAACgc6CABgDwSF5eXhbrhmFYtV0q/uL2q666SmVlZdq7d69++ctfKi0tTTt37myyz/T0dJ06dcq8HDt2rAVHAgAAAMDdOe0WTgAAnKFXr17y9va2Gm1WVVVlNcrsguDgYJvxPj4+6tmzp7mtS5cuuu666yRJN910kw4ePKiMjAyr+dEu8Pf3l7+/fyuOBgAAAIAnYAQaAMCj+Pn5yWQyqbCw0KK9sLBQ0dHRNreJioqyit++fbsiIyOt5j9rzDAMiznOAAAAAHROjEADAHictLQ0JSQkKDIyUlFRUVq9erXKy8uVlJQk6fytlcePH9e6deskSUlJSVq5cqXS0tI0Z84cFRcXKzc3Vxs3bjT3mZGRocjISPXv3191dXUqKCjQunXrlJ2d7ZJjdLkN8T+8np7vujwAAAAAN0ABDQDgceLj43XixAktXbpUFRUVGjJkiAoKChQeHi5JqqioUHl5uTk+IiJCBQUFSk1N1apVqxQSEqIVK1Zo8uTJ5phvv/1WycnJ+uKLL3TZZZdp4MCBev311xUfH2+1fwAAAACdi5dxYRblTqCmpkaBgYE6deqUunbt2mb9JubtbbO+GsudOdIp/QJAW3HW56qnarfzsaGdi3qMQAPgIlxnAADugjnQAAAAAAAAADsooAEAAAAAAAB2UEADAAAAAAAA7KCABgAAAAAAANhBAQ0AAAAAAACww8fVCaBpjZ/uyRM5AaCTa+8nbwIAAAAwYwQaAAAAAAAAYAcFNAAAAAAAAMAOCmgAAAAAAACAHRTQAAAAAAAAADsooAEAAAAAAAB2UEADAAAAAAAA7KCABgAAAAAAANhBAQ0AAAAAAACwgwIaAAAAAAAAYAcFNAAAAAAAAMAOH1cnAAAAXKPs2EmL9ZtCu7kkDwAAAMDdUUADAACSLAtqFNMAAACAH1BAAwCgE7l41FmzbIj/4fX0/DbLBQAAAPAUFNAAAIAVRqMBAAAAP6CABgAA7LIoprksCwAAAMB1KKABAIAWSczba36dO3OkCzMBAAAAnIsCGgAAaLbGRTMAAACgs6CA1kJ8gQAA4AeMRgMAAEBHRgENAAA025NfLbLZ/krQc+2cCQAAANB+KKB5CH7ZBwC0VOOHAAAAAABwXBdndZyVlaWIiAgFBATIZDJp165dduOLiopkMpkUEBCgfv36KScnxyrm5MmTevzxx9WnTx8FBARo0KBBKigocNYhAAAAAAAAAM4poOXn5yslJUULFy5UaWmpYmJiFBcXp/Lycpvxhw8f1oQJExQTE6PS0lItWLBAc+fO1ebNm80xdXV1GjdunI4cOaI33nhDn376qdasWaNrrrnGGYcAAAAAAAAASHLSLZzLly9XYmKiZs+eLUnKzMzUtm3blJ2drYyMDKv4nJwchYWFKTMzU5I0aNAg7du3T8uWLdPkyZMlSWvXrtV//vMf7dmzR76+vpKk8PBwZ6QPAABagWkHAAAA0NG0+Qi0uro6lZSUKDY21qI9NjZWe/bssblNcXGxVfz48eO1b98+nT17VpL01ltvKSoqSo8//riCgoI0ZMgQPf/882poaGgyl9raWtXU1FgsAAAAAAAAgCPavIBWXV2thoYGBQUFWbQHBQWpsrLS5jaVlZU24+vr61VdXS1J+vzzz/XGG2+ooaFBBQUFWrRokX7961/rl7/8ZZO5ZGRkKDAw0LyEhoa28ugAAAAAAADQ2TjtKZxeXl4W64ZhWLVdKr5x+7lz53T11Vdr9erV8vb2lslk0pdffqlf/epX+n//7//Z7DM9PV1paWnm9ZqaGopoAAC0I27nBAAAQEfQ5gW0Xr16ydvb22q0WVVVldUoswuCg4Ntxvv4+Khnz56SpD59+sjX11fe3t7mmEGDBqmyslJ1dXXy8/Oz6tff31/+/v6tPSQAADxO2bGTrk4BAAAA6DDa/BZOPz8/mUwmFRYWWrQXFhYqOjra5jZRUVFW8du3b1dkZKT5gQGjR4/Wv/71L507d84c89lnn6lPnz42i2cAAAAAAABAW2jzApokpaWl6dVXX9XatWt18OBBpaamqry8XElJSZLO31o5Y8YMc3xSUpKOHj2qtLQ0HTx4UGvXrlVubq6eeuopc8xPf/pTnThxQvPmzdNnn32mv/zlL3r++ef1+OOPO+MQAAAAAAAAAElOmgMtPj5eJ06c0NKlS1VRUaEhQ4aooKBA4eHhkqSKigqVl5eb4yMiIlRQUKDU1FStWrVKISEhWrFihSZPnmyOCQ0N1fbt25Wamqphw4bpmmuu0bx58/T000874xAAAEAbYz40AAAAeCqnPUQgOTlZycnJNt/Ly8uzahszZoz2799vt8+oqCi9//77bZEeAAAAAAAA0CxOuYUTAAAAAAAA6CgooAEAAAAAAAB2UEADAAAAAAAA7HDaHGiw9uRXi8yvXwl6zoWZAAAAAAAAoLkooAEA0EGUHTvp6hQAAACADokCGgAAaHeJeXst1nNnjnRRJgAAAMClUUDzQI2/dPCFAwAAAAAAwLl4iAAAAAAAAABgBwU0AIBHysrKUkREhAICAmQymbRr1y678UVFRTKZTAoICFC/fv2Uk5Nj8f6aNWsUExOj7t27q3v37ho7dqw+/PBDZx4CAAAAAA9BAc1FnvxqkXkBADgmPz9fKSkpWrhwoUpLSxUTE6O4uDiVl5fbjD98+LAmTJigmJgYlZaWasGCBZo7d642b95sjtm5c6emTZumHTt2qLi4WGFhYYqNjdXx48fb67A8Gtc1AAAAdGTMgQYA8DjLly9XYmKiZs+eLUnKzMzUtm3blJ2drYyMDKv4nJwchYWFKTMzU5I0aNAg7du3T8uWLdPkyZMlSevXr7fYZs2aNXrjjTf0t7/9TTNmzHDuAYH5PQEAAODWKKA5Gb/EA0DbqqurU0lJiebPn2/RHhsbqz179tjcpri4WLGxsRZt48ePV25urs6ePStfX1+rbb777judPXtWPXr0aDKX2tpa1dbWmtdramocORQAAAAAHoJbOAEAHqW6uloNDQ0KCgqyaA8KClJlZaXNbSorK23G19fXq7q62uY28+fP1zXXXKOxY8c2mUtGRoYCAwPNS2hoqINHAwAAAMATUEADAHgkLy8vi3XDMKzaLhVvq12SXnrpJW3cuFFbtmxRQEBAk32mp6fr1KlT5uXYsWOOHAIAAAAAD8EtnAAAj9KrVy95e3tbjTarqqqyGmV2QXBwsM14Hx8f9ezZ06J92bJlev755/XOO+9o2LBhdnPx9/eXv79/C44CAAAAgCdhBBoAwKP4+fnJZDKpsLDQor2wsFDR0dE2t4mKirKK3759uyIjIy3mP/vVr36lX/ziF3r77bcVGRnZ9skDAAAA8EiMQAMAeJy0tDQlJCQoMjJSUVFRWr16tcrLy5WUlCTp/K2Vx48f17p16yRJSUlJWrlypdLS0jRnzhwVFxcrNzdXGzduNPf50ksv6ZlnntGGDRvUt29f84i1K6+8UldeeWX7H2QzlR076eoUAAAAgA6PAhoAwOPEx8frxIkTWrp0qSoqKjRkyBAVFBQoPDxcklRRUaHy8nJzfEREhAoKCpSamqpVq1YpJCREK1as0OTJk80xWVlZqqur05QpUyz29eyzz2rx4sXtclwAAAAA3BMFNACAR0pOTlZycrLN9/Ly8qzaxowZo/379zfZ35EjR9ooM7RWYt5e8+vcmSNdmAkAAABwHgU0AADQpp78apH59StBz7kwEwAAAKBtUEBrY42/NAAAAAAAAMDzUUDzcI1vc5G41QUAAAAAAKCtUUADAADt7uIR29zqCQAAAHdGAc3NMG8MAAAAAACAe6GABgCAu9oQ7+oMAAAAAEjq4uoEAAAAAAAAAHfGCDQAAOC2Gj8shwflAAAAwFUYgQYAAAAAAADYQQENAAAAAAAAsIMCGgAAAAAAAGAHBTQAAAAAAADADgpoAAAAAAAAgB1OK6BlZWUpIiJCAQEBMplM2rVrl934oqIimUwmBQQEqF+/fsrJyWkydtOmTfLy8tJ9993XxlkDAOD+yo6dNC8AAAAAnM/HGZ3m5+crJSVFWVlZGj16tH77298qLi5On3zyicLCwqziDx8+rAkTJmjOnDl6/fXX9d577yk5OVm9e/fW5MmTLWKPHj2qp556SjExMc5I3SWe/GqRq1MAAAAAAABAE5wyAm358uVKTEzU7NmzNWjQIGVmZio0NFTZ2dk243NychQWFqbMzEwNGjRIs2fP1qxZs7Rs2TKLuIaGBj388MNasmSJ+vXr54zUAQAAAAAAAAttPgKtrq5OJSUlmj9/vkV7bGys9uzZY3Ob4uJixcbGWrSNHz9eubm5Onv2rHx9fSVJS5cuVe/evZWYmHjJW0IBAIDrNR5l/UrQc63qKzFvr/l17syRreoLAAAAcESbF9Cqq6vV0NCgoKAgi/agoCBVVlba3KaystJmfH19vaqrq9WnTx+99957ys3NVVlZWbNzqa2tVW1trXm9pqam+QcCAAAAAAAAyElzoEmSl5eXxbphGFZtl4q/0H769Gk98sgjWrNmjXr16tXsHDIyMrRkyRIHsvZ8/DoPAAAAAADQttq8gNarVy95e3tbjTarqqqyGmV2QXBwsM14Hx8f9ezZUwcOHNCRI0c0ceJE8/vnzp2TJPn4+OjTTz9V//79rfpNT09XWlqaeb2mpkahoaEtPjYAAAAAAAB0Pm1eQPPz85PJZFJhYaHuv/9+c3thYaEmTZpkc5uoqCj96U9/smjbvn27IiMj5evrq4EDB+rjjz+2eH/RokU6ffq0Xn755SaLYv7+/vL392/lEQEAAAAAAKAzc8otnGlpaUpISFBkZKSioqK0evVqlZeXKykpSdL5kWHHjx/XunXrJElJSUlauXKl0tLSNGfOHBUXFys3N1cbN26UJAUEBGjIkCEW++jWrZskWbUDAICOjykLAAAA0J6cUkCLj4/XiRMntHTpUlVUVGjIkCEqKChQeHi4JKmiokLl5eXm+IiICBUUFCg1NVWrVq1SSEiIVqxYocmTJzsjvTbX+AljAADANq6XAAAA8FROe4hAcnKykpOTbb6Xl5dn1TZmzBjt37+/2f3b6qOjafxF45Wg51yYCQAAAAAAQOfltAIa2hbFNAAAAAAAANfo4uoEAAAAAAAAAHdGAQ0AAAAAAACwg1s4AQDwAGXHTro6BQAAAKDTYgQaAAAAAAAAYAcFNAAAAAAAAMAObuEEAAAeLTFvr/l17syRLswEAAAAHRUFtA6MLxQAAAAAAACtxy2cAAAAAAAAgB0U0AAAAAAAAAA7KKABAAAAAAAAdlBAAwAAAAAAAOzgIQIAAKDD4AE6AAAAcAZGoAEAAAAAAAB2MALNAz351SLz61eCnnNhJgAAtD2ucwAAAHA3jEADAAAAAAAA7GAEWgs1/nUcAAAAAAAAHRcFNA93cSGvqVtdmFQZAODO+GEKAAAA7oxbOAEAAAAAAAA7KKABAAAAAAAAdnALJwAAbqrs2ElXp+DRmL4AAAAAbYURaAAAj5SVlaWIiAgFBATIZDJp165dduOLiopkMpkUEBCgfv36KScnx+L9AwcOaPLkyerbt6+8vLyUmZnpxOwBAAAAeBIKaA5IzNtrXgAArpOfn6+UlBQtXLhQpaWliomJUVxcnMrLy23GHz58WBMmTFBMTIxKS0u1YMECzZ07V5s3bzbHfPfdd+rXr59eeOEFBQcHt9ehAAAAAPAA3MIJAPA4y5cvV2JiombPni1JyszM1LZt25Sdna2MjAyr+JycHIWFhZlHlQ0aNEj79u3TsmXLNHnyZEnSyJEjNXLk+dv85s+f3z4HgnZz8Y9f3NIJAAAARzACDQDgUerq6lRSUqLY2FiL9tjYWO3Zs8fmNsXFxVbx48eP1759+3T27NkW51JbW6uamhqLBQAAAEDHwwi0DubJrxaZX78S9JwLMwEA56iurlZDQ4OCgoIs2oOCglRZWWlzm8rKSpvx9fX1qq6uVp8+fVqUS0ZGhpYsWdKibQEAAAB4DkagAQA8kpeXl8W6YRhWbZeKt9XuiPT0dJ06dcq8HDt2rMV9AQAAAHBfjEDrhBrPA8McMAA8Ta9eveTt7W012qyqqspqlNkFwcHBNuN9fHzUs2fPFufi7+8vf3//Fm+PS2s8srqxxqOsGX0NAAAAZ2MEGgDAo/j5+clkMqmwsNCivbCwUNHR0Ta3iYqKsorfvn27IiMj5evr67RcAQAAAHQMjEDrJPh1HkBHkpaWpoSEBEVGRioqKkqrV69WeXm5kpKSJJ2/tfL48eNat26dJCkpKUkrV65UWlqa5syZo+LiYuXm5mrjxo3mPuvq6vTJJ5+YXx8/flxlZWW68sordd1117X/QcKpGI0NAAAAR1BAAwB4nPj4eJ04cUJLly5VRUWFhgwZooKCAoWHh0uSKioqVF5ebo6PiIhQQUGBUlNTtWrVKoWEhGjFihWaPHmyOebLL7/UiBEjzOvLli3TsmXLNGbMGO3cubPdjg0AAACA+6GABgDwSMnJyUpOTrb5Xl5enlXbmDFjtH///ib769u3r/nBAgAAAADQGHOgAQAAAAAAAHY4rYCWlZWliIgIBQQEyGQyadeuXXbji4qKZDKZFBAQoH79+iknJ8fi/TVr1igmJkbdu3dX9+7dNXbsWH344YfOSh8AAHQSiXl7zQsAAABgi1MKaPn5+UpJSdHChQtVWlqqmJgYxcXFWcxH09jhw4c1YcIExcTEqLS0VAsWLNDcuXO1efNmc8zOnTs1bdo07dixQ8XFxQoLC1NsbKyOHz/ujEPoNPjSAAAAAAAAYJ9TCmjLly9XYmKiZs+erUGDBikzM1OhoaHKzs62GZ+Tk6OwsDBlZmZq0KBBmj17tmbNmqVly5aZY9avX6/k5GTddNNNGjhwoNasWaNz587pb3/7mzMOAQAAAAAAAJDkhIcI1NXVqaSkRPPnz7doj42N1Z49e2xuU1xcrNjYWIu28ePHKzc3V2fPnpWvr6/VNt99953Onj2rHj16tF3yAADAIzz51SJXpwAAAIBOpM0LaNXV1WpoaFBQUJBFe1BQkCorK21uU1lZaTO+vr5e1dXV6tOnj9U28+fP1zXXXKOxY8c2mUttba1qa2vN6zU1NY4cCgAAAAAAAND2BbQLvLy8LNYNw7Bqu1S8rXZJeumll7Rx40bt3LlTAQEBTfaZkZGhJUuWOJI2AADoxBrPCZo7c6QLMwEAAIA7afMCWq9eveTt7W012uz/a+/ug6Oq7j+Of6JJFkUJEoRkBWJkdBCDCNmWJlhwtI2mUrRSCNUK/tpmfikPEmJngFYGfKiobZ0OhSB0MloGNPxmCpaOUUlGSKXEIZOAYnAwHSKhNDEDFRJFkkDO7w+GZTf7kA3Zh3uT92tmZ3bPPffuebi5B7577j0tLS0+s8wuSUlJ8Zs/Pj5eycnJXum///3v9cILL6iiokJ33nln0LKsWLFCRUVF7s+tra0aPXp0b6pja9zeAgA280ZerEsAAAAAwI+wLyKQmJiozMxMlZeXe6WXl5crOzvb7z5ZWVk++Xft2iWXy+X1/LPf/e53eu655/Tuu+/K5XL1WBaHw6EhQ4Z4vQAAAAAAAIDeiMgtnEVFRXr88cflcrmUlZWlTZs2qbGxUQUFBZIuzgw7ceKENm/eLEkqKCjQunXrVFRUpPz8fFVVVamkpERvvvmm+5gvv/yyVq5cqTfeeEM333yze8baddddp+uuuy4S1QAAADbjOfv6TyOfj2FJAAAA0J9EJICWl5enU6dO6dlnn1VTU5MyMjJUVlamtLQ0SVJTU5MaGxvd+dPT01VWVqalS5dq/fr1cjqdWrt2rWbNmuXOU1xcrI6ODv34xz/2+q5Vq1Zp9erVkajGgMNzXwAAuIxxEQAAAJdEbBGBBQsWaMGCBX63vf766z5p06dPV21tbcDjff7552EqGQLxfmbaezErBwAAAAAAgJVELIAGe2ChAQAAAAAAgOAIoAEAAPSA2zkBAAAGNgJovTCQZmvxHwUAAAAAAICLrop1AQAAAAAAAAArYwbaANTrmXRv5F1+/+i28BYGAAAAAADA4gigIXwItAEABgAecwAAADDwcAsnAAAAAAAAEAQz0NCjg8dPu9/f1X2j56wzAAAsJNgjC/408vkolgQAAAB2RwANfg2kFUcBALhS3M4JAAAwMBBAQ+8w4wwAAAAAAAwwBNDQK563c0rSXaOHxqQcAAAAAAAA0UIADZHH6pywO85hACHgdk4AAID+iwAaootABPzhvAAk+c7yBQAAAGANBNBgH92fv0agBQAQBp4L54RrdU7P2WgSM9IAAADsjgAa+sRztoTX89CsstgAM5sAAL0QKJgWiSAbAAAA7IMAGgAAQITxfDQAAAB7I4CGsAk4Gy0UzBSLvnDeEkv/AbAZzxllAAAAQE8IoMG+At0matcATjSe8WaVW2sla5WlN0I576z0vL5AwU2CnkDMMBsNAADAfgigIXaiHUCxSsDAKuXoLtLlCrW/QylHNNpwoJ6fAAAAAAAfBNBgPdEOjlzJd0Q7yGOn2XaRCjyF87ihzMrqyzGv5Lv78n1WPA8AAAAAoB8hgIaI6NPz0DxFYxaQVQMRodS9t4G8K/nucAWYosGu5Q5Vf6kHMAB0f8ZaoJU7PW/n9MStnQAAANZCAA3oK6sENawaCETfWOX8AgAAAIABjAAaIi5ss9FCFa6Aw0B7qH8gdihjf9PbNg/1XKUvgbDwnF0WaGZZX7HQAAAAgLUQQAM82eH5XVb8vljqa12jfZtwNL57IPU/AAAAAEQBATREVdRno4UTQQkAQAzwnDQAAIDYI4CGmLF1MA3REY1VMQEggO4LAVxpnkjhNk8AAIDouSrWBQAAAAAAAACsjBlosATP2WiemJkGAOjPwrUgwcGX7vf67HksZqcBAAD0HQE0WBq3eQIA+oNorNwJAACAyCGABtsINEtNIrgGAOhfwhlwYxECAACAviOABgAAYGGRmr1GYA0AACB0BNDQL4TyDDVuBwUAWFksV/T0xOqeAAAAvgigoV8LFFhj0QIAQKyEK1AWjYAbs9QAAAAuuipSBy4uLlZ6eroGDRqkzMxMffDBB0HzV1ZWKjMzU4MGDdItt9yiV1991SfPX//6V40fP14Oh0Pjx4/Xjh07IlV8DFAHj592v3qzDUD0Mc4AoVn8xdPuV7iO8/PXq0N6eQqUDgAAYAcRmYG2bds2FRYWqri4WFOnTtXGjRuVm5urw4cPa8yYMT75Gxoa9IMf/ED5+fnasmWL/vnPf2rBggW68cYbNWvWLElSVVWV8vLy9Nxzz+lHP/qRduzYoTlz5mjv3r2aMmVKJKqBAS5YoKwvQTRuKwX6jnEGA1WoQbBA+QKlez5bLZRnrgXL47nt56/7P65nuidmtgEAAKuKM8aYcB90ypQpmjx5sjZs2OBOu/322/Xwww9rzZo1PvmXLVumnTt36tNPP3WnFRQU6KOPPlJVVZUkKS8vT62trXrnnXfceR544AHdcMMNevPNN0MqV2trq5KSknTmzBkNGTKk1/U6+NL9vd4HsAsCewPYo9uueNe+XlevFOMMYB3BAmi9DcyFcpxgPANwPMutf4jVOAMAQHdhn4HW0dGhmpoaLV++3Cs9JydH+/bt87tPVVWVcnJyvNLuv/9+lZSUqLOzUwkJCaqqqtLSpUt98vzxj38MWJb29na1t7e7P585c0bSxYH4Snx17vwV7QfYwd76k71KR2zdeVOS+/3HJ8707VhXeE2ULl9PI/BbTECMM4C1/M8x77/Frzzed3xz+ZPn+e2Z/r8tl4NjG0c83av83ffZ+8x9l/fxSH98w+4evy8a1j+W6X6/cGuN3/Q++78nLr+f83r4jhsjsRhnAADwJ+wBtJMnT+rChQsaOXKkV/rIkSPV3Nzsd5/m5ma/+c+fP6+TJ08qNTU1YJ5Ax5SkNWvW6JlnnvFJHz16dKjVAYD+b3VSz3l60NbWpqSkvh8nFIwzgJ287363JSLpoe3jKZQ8kbJlQe/S+yy//zzHMZrjDAAA/kRsFc64uDivz8YYn7Se8ndP7+0xV6xYoaKiIvfnrq4u/fe//1VycnLQ/bprbW3V6NGjdfz4caaO9xFtGV60Z/jQllfGGKO2tjY5nc6of3d/Gmek/ncOUh9roz7WRn0ui+U4AwCAp7AH0IYPH66rr77a5xf7lpYWn1/2L0lJSfGbPz4+XsnJyUHzBDqmJDkcDjkcDq+0oUOHhloVH0OGDOkX/4ixAtoyvGjP8KEtey/aMwL68zgj9b9zkPpYG/WxNupzETPPAABWcFW4D5iYmKjMzEyVl5d7pZeXlys7O9vvPllZWT75d+3aJZfLpYSEhKB5Ah0TANA/Mc4AAAAAiLaI3MJZVFSkxx9/XC6XS1lZWdq0aZMaGxtVUFAg6eItLydOnNDmzZslXVwJbd26dSoqKlJ+fr6qqqpUUlLiterZkiVLNG3aNL300kt66KGH9Le//U0VFRXau3dvJKoAALAwxhkAAAAA0RSRAFpeXp5OnTqlZ599Vk1NTcrIyFBZWZnS0tIkSU1NTWpsbHTnT09PV1lZmZYuXar169fL6XRq7dq1mjVrljtPdna2SktL9fTTT2vlypUaO3astm3bpilTpkSiCl4cDodWrVrlc5sOeo+2DC/aM3xoS3vpb+OM1P/OQepjbdTH2qgPAADWE2dYExoAAAAAAAAIKOzPQAMAAAAAAAD6EwJoAAAAAAAAQBAE0AAAAAAAAIAgCKABAAAAAAAAQRBAC0FxcbHS09M1aNAgZWZm6oMPPoh1kSxvzZo1+ta3vqXrr79eI0aM0MMPP6wjR4545THGaPXq1XI6nbrmmmt0zz33qK6uLkYltoc1a9YoLi5OhYWF7jTasXdOnDihn/70p0pOTta1116ru+66SzU1Ne7ttCdixY5jTSjX+ieeeEJxcXFer+985zsxKnFwq1ev9ilrSkqKe7vdrg8333yzT33i4uK0cOFCSdbvm3/84x/64Q9/KKfTqbi4OL311lte20Ppj/b2di1evFjDhw/X4MGDNXPmTP373/+OYi0uC1afzs5OLVu2TBMmTNDgwYPldDo1b948/ec///E6xj333OPTZ3Pnzo1yTS7qqX9COb+s1D8AAPSEAFoPtm3bpsLCQv3mN7/RgQMH9N3vfle5ublqbGyMddEsrbKyUgsXLtSHH36o8vJynT9/Xjk5Ofr666/deV5++WW98sorWrdunaqrq5WSkqLvf//7amtri2HJrau6ulqbNm3SnXfe6ZVOO4buyy+/1NSpU5WQkKB33nlHhw8f1h/+8AcNHTrUnYf2RCzYdawJ5VovSQ888ICamprcr7KyshiVuGd33HGHV1kPHTrk3ma360N1dbVXXcrLyyVJs2fPduexct98/fXXmjhxotatW+d3eyj9UVhYqB07dqi0tFR79+7VV199pRkzZujChQvRqoZbsPqcPXtWtbW1WrlypWpra7V9+3Z99tlnmjlzpk/e/Px8rz7buHFjNIrvo6f+kXo+v6zUPwAA9MggqG9/+9umoKDAK23cuHFm+fLlMSqRPbW0tBhJprKy0hhjTFdXl0lJSTEvvviiO8+5c+dMUlKSefXVV2NVTMtqa2szt956qykvLzfTp083S5YsMcbQjr21bNkyc/fddwfcTnsiVvrLWNP9Wm+MMfPnzzcPPfRQ7ArVC6tWrTITJ070u60/XB+WLFlixo4da7q6uowx9uobSWbHjh3uz6H0x+nTp01CQoIpLS115zlx4oS56qqrzLvvvhu1svvTvT7+7N+/30gyx44dc6d5/hvASvzVp6fzy8r9AwCAP8xAC6Kjo0M1NTXKycnxSs/JydG+fftiVCp7OnPmjCRp2LBhkqSGhgY1Nzd7ta3D4dD06dNpWz8WLlyoBx98UN/73ve80mnH3tm5c6dcLpdmz56tESNGaNKkSfrzn//s3k57Ihb601jT/Vp/yZ49ezRixAjddtttys/PV0tLSyyKF5L6+no5nU6lp6dr7ty5Onr0qCT7Xx86Ojq0ZcsW/exnP1NcXJw73U594ymU/qipqVFnZ6dXHqfTqYyMDFv02ZkzZxQXF+c1S1qStm7dquHDh+uOO+7Qr371K8vOgJSCn1927x8AwMATH+sCWNnJkyd14cIFjRw50it95MiRam5ujlGp7McYo6KiIt19993KyMiQJHf7+WvbY8eORb2MVlZaWqra2lpVV1f7bKMde+fo0aPasGGDioqK9Otf/1r79+/Xk08+KYfDoXnz5tGeiIn+Mtb4u9ZLUm5urmbPnq20tDQ1NDRo5cqVuvfee1VTUyOHwxHDEvuaMmWKNm/erNtuu01ffPGFnn/+eWVnZ6uurs7214e33npLp0+f1hNPPOFOs1PfdBdKfzQ3NysxMVE33HCDTx6r/22dO3dOy5cv16OPPqohQ4a40x977DGlp6crJSVFn3zyiVasWKGPPvrIfXuulfR0ftm5fwAAAxMBtBB4/lIrXfxPQvc0BLZo0SJ9/PHH2rt3r8822ja448ePa8mSJdq1a5cGDRoUMB/tGJquri65XC698MILkqRJkyaprq5OGzZs0Lx589z5aE/Egt3Pu0DX+ry8PPf7jIwMuVwupaWl6e2339YjjzwS7WIGlZub634/YcIEZWVlaezYsfrLX/7ifvi5XfuppKREubm5cjqd7jQ79U0gV9IfVu+zzs5OzZ07V11dXSouLvbalp+f736fkZGhW2+9VS6XS7W1tZo8eXK0ixrUlZ5fVu8fAMDAxS2cQQwfPlxXX321z69gLS0tPr94wr/Fixdr586d2r17t0aNGuVOv7SqGW0bXE1NjVpaWpSZman4+HjFx8ersrJSa9euVXx8vLutaMfQpKamavz48V5pt99+u/tB7ZyXiIX+MNYEutb7k5qaqrS0NNXX10epdFdu8ODBmjBhgurr6219fTh27JgqKir0i1/8Img+O/VNKP2RkpKijo4OffnllwHzWE1nZ6fmzJmjhoYGlZeXe80+82fy5MlKSEiwRZ91P7/s2D8AgIGNAFoQiYmJyszM9JkWX15eruzs7BiVyh6MMVq0aJG2b9+u999/X+np6V7bL91+4Nm2HR0dqqyspG093HfffTp06JAOHjzofrlcLj322GM6ePCgbrnlFtqxF6ZOnaojR454pX322WdKS0uTxHmJ2LDzWNPTtd6fU6dO6fjx40pNTY1CCfumvb1dn376qVJTU219fXjttdc0YsQIPfjgg0Hz2alvQumPzMxMJSQkeOVpamrSJ598Ysk+uxQ8q6+vV0VFhZKTk3vcp66uTp2dnbbos+7nl936BwAAVuHsQWlpqUlISDAlJSXm8OHDprCw0AwePNh8/vnnsS6apf3yl780SUlJZs+ePaapqcn9Onv2rDvPiy++aJKSksz27dvNoUOHzE9+8hOTmppqWltbY1hy6+u+AhftGLr9+/eb+Ph489vf/tbU19ebrVu3mmuvvdZs2bLFnYf2RCzYdazp6Vrf1tZmnnrqKbNv3z7T0NBgdu/ebbKyssxNN91kyb+pp556yuzZs8ccPXrUfPjhh2bGjBnm+uuvd/eDHa8PFy5cMGPGjDHLli3zSrdD37S1tZkDBw6YAwcOGEnmlVdeMQcOHHCvShlKfxQUFJhRo0aZiooKU1tba+69914zceJEc/78eUvVp7Oz08ycOdOMGjXKHDx40Ovvqb293RhjzL/+9S/zzDPPmOrqatPQ0GDefvttM27cODNp0iTL1SfU88tK/QMAQE8IoIVg/fr1Ji0tzSQmJprJkyebysrKWBfJ8iT5fb322mvuPF1dXWbVqlUmJSXFOBwOM23aNHPo0KHYFdomugfQaMfe+fvf/24yMjKMw+Ew48aNM5s2bfLaTnsiVuw41vR0rT979qzJyckxN954o0lISDBjxowx8+fPN42NjbEteAB5eXkmNTXVJCQkGKfTaR555BFTV1fn3m7H68N7771nJJkjR454pduhb3bv3u33/Jo/f74xJrT++Oabb8yiRYvMsGHDzDXXXGNmzJgRszoGq09DQ0PAv6fdu3cbY4xpbGw006ZNM8OGDTOJiYlm7Nix5sknnzSnTp2yXH1CPb+s1D8AAPQkzhhjIjrFDQAAAAAAALAxnoEGAAAAAAAABEEADQAAAAAAAAiCABoAAAAAAAAQBAE0AAAAAAAAIAgCaAAAAAAAAEAQBNAAAAAAAACAIAigAQAAAAAAAEEQQAMAAAAAAACCIIAGAAAAAAAABEEADQAAAAAAAAiCABoAAAAAAAAQBAE0AAAAAAAAIIj/Bz4q544jtbZbAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNAAAAJbCAYAAAAllWnEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACPIklEQVR4nOzdf1xUZd7/8TfyY+iH4M9AChDth5i/ajADI7tLcbFcLV1JCzPR/bJUCmy7idadWhubuS6ZglkY65bKburW7rIp7a2mSaUIbbd6V3tnYgYS7gZWGyie7x/ezjLOMPJjhpmB1/PxOI/HnGs+5zrXdco5zGeuc10+hmEYAgAAAAAAAGBXN3c3AAAAAAAAAPBkJNAAAAAAAAAAB0igAQAAAAAAAA6QQAMAAAAAAAAcIIEGAAAAAAAAOEACDQAAAAAAAHCABBoAAAAAAADgAAk0AAAAAAAAwAESaAAAAAAAAIADJNAAJ1i8eLF8fHxUU1PjMO7bb7/Vs88+q+HDhysoKEjdu3fXwIEDNW3aNO3atcsSt3PnTvn4+Fg2X19fhYSE6Ec/+pEOHz5sifv888+t4vz9/dW7d2+NHDlSGRkZOnjwoMv6DADwfLm5uSooKGjTsf3799ddd93l3AYBALxOe+4lLXX++8/rr79+0dhZs2apf//+Lm0PYA8JNKCDNDY2KiEhQb/4xS80depU/f73v9frr7+ujIwM1dbWavfu3TbHPPPMMyopKdGOHTv02GOPqbi4WKNHj9bx48et4h555BGVlJRo165d+u1vf6vJkyfrzTff1PDhw/Xcc891VBcBAB6mI770AAA6N0+7lzzxxBPaunWru5uBLsjP3Q0Auop33nlHe/fu1bp16/Tggw9aysePH6+HH35YZ8+etTnmmmuu0c033yxJuvXWW9WjRw+lpKSooKBAixYtssRFRERY4iRpwoQJyszM1D333KOf//znGjJkiBITE13YOwAAAABwvYEDB7q7CeiiGIEGONGJEyc0ffp0BQcHKyQkRLNnz1Ztba0k6eTJk5Kkfv362T22W7eL/3M8nyQ7evToRWMvueQS5efny9/fn1FoANDJnJ86oKysTPfcc4+CgoIUHBys+++/X1999ZWkc49gHjx4ULt27bI86t+WR162bt2qYcOGKTAwUAMGDNDKlSud3BsAgDt0xL3k/HQALb2XnD59WosWLVJYWJiCgoI0duxYffzxx1YxPMIJdyGBBjjRlClTdO2112rz5s1asGCBNmzYoIyMDElSTEyM/P39NX/+fL322muqrKxsdf1///vfJUl9+/ZtUXxYWJjMZrP27t2rM2fOtPp8AADPdvfdd+vqq6/W66+/rsWLF+sPf/iDxo8fr9OnT2vr1q0aMGCAbrjhBpWUlKikpKTVj7yUl5crPT1dGRkZ2rp1q+Li4jR//nwtX77cRT0CAHQ0T7qXLFy4UEePHtXLL7+stWvX6tNPP9XEiRPV2NjorO4CbcYjnIATpaSk6Gc/+5kkaezYsfr73/+udevWKT8/X/3799eaNWs0f/583X///ZLOjUYbN26c5syZo/j4eJv6zp49qzNnzuj06dPav3+/fvrTn8rX11dJSUktblNkZKTee+89/eMf/9AVV1zhnI4CADzCPffco2XLlkmSEhISFBISovvuu0+/+93vdN999+mSSy5RUFCQ1WP+rfHll1+qrKxMw4cPlyQlJiaqurpaTz31lNLS0nTppZc6rS8AAPfwpHvJ4MGD9eqrr1r2fX19NW3aNO3bt6/N5wechRFogBP98Ic/tNofNmyYvv/+e1VXV0uSZs+erS+++EIbNmzQvHnzFB4erldffVVjxoyx+5hlUlKS/P39demll+rWW29VY2OjXn/9dQ0bNqzFbTIMo32dAgB4rPvuu89qf9q0afLz89OOHTucUv/1119v+cJz3owZM1RXV6cDBw445RwAAPfypHuJve9TUsumsAFcjRFogBP17t3bat9kMkmS/vWvf1nKgoODNX36dE2fPl2SdPDgQY0dO1aLFi3S3Llz1aNHD0vss88+q9tvv12+vr7q06ePwsPDW92mo0ePymQyqVevXm3oEQDAk4WGhlrt+/n5qXfv3pZ5N51df9MyZ50DAOBennQvacn3KcBdGIEGuNn111+ve++9V6dPn9Ynn3xi9d6AAQMUExOjG264oU3Js+PHj6u0tFS33HKL/PzIlwNAZ1NVVWW1f+bMGZ08edLmC4iz6m9a5qxzAADci3sJ0DIk0IAOcvLkSTU0NNh973/+538knZv031n+9a9/ac6cOTpz5ox+/vOfO61eAIDneO2116z2f/e73+nMmTO67bbbJJ375b49v9ofPHhQH374oVXZhg0b1L17d914441trhcA4Dm4lwAtw5AUoIPs2LFD8+fP13333ae4uDj17t1b1dXV2rhxo9566y3NnDlTV111VZvqrqio0HvvvaezZ8+qtrZWZWVlWrdunY4ePapf/epXSkhIcHJvAACeYMuWLfLz89O4ceN08OBBPfHEExo+fLimTZsmSRo6dKg2bdqkwsJCDRgwQIGBgRo6dGiL6w8LC9MPf/hDLV68WP369dOrr76q4uJiPfvssywgAACdBPcSoGVIoAEd5Oabb9bs2bO1Y8cO/fa3v1VNTY0uueQSDR48WC+88IJ+8pOftLnuF154QS+88IJ8fX0VFBSkAQMGaOLEiZo7d64GDx7sxF4AADzJli1btHjxYuXl5cnHx0cTJ05UTk6OAgICJElLlixRZWWl5s6dq1OnTikyMlKff/55i+sfMWKEHnzwQT355JP69NNPFRYWphUrVigjI8NFPQIAdDTuJUDL+Bgs0QcAAOBVFi9erCVLluirr75Snz593N0cAIAX6oh7Sf/+/TVkyBD96U9/ckn9QEdiDjQAAAAAAADAAR7hBAAA6EIaGxvl6AEEHx8f+fr6dmCLAADehnsJuiIe4QQAAOhC+vfvr6NHjzb7/pgxY7Rz586OaxAAwOtwL0FXxAg0AACALuSPf/yj6uvrm32/e/fuHdgaAIA34l6CrogRaAAAAAAAAIADLCIAAAAAAAAAONClHuE8e/asvvzyS3Xv3l0+Pj7ubg4AeD3DMHTq1CmFhYWpWzd+k+E+AwDOxX3GGvcZAHCu1txnulQC7csvv1R4eLi7mwEAnc6xY8d01VVXubsZbsd9BgBcg/vMOdxnAMA1WnKf6VIJtPMTGR47dkxBQUFubg0AeL+6ujqFh4czUez/4T4DAM7FfcYa9xkAcK7W3Ge6VALt/DDnoKAgbjgA4EQ8RnIO9xkAcA3uM+dwnwEA12jJfYaJBAAAAAAAAAAHSKABAAAAAAAADpBAAwAAAAAAABwggQYAAAAAAAA4QAINAAAAAAAAcIAEGgAAAAAAAOAACTQAAAAAAADAARJoAAAAAAAAgAMk0AAAAAAAAAAH/NzdADQvpWCf5XX+rJEXLQcAdEEbkv79ekah+9oBAPA+3EMAoMUYgQYAAAAAAAA4QAINAAAAAAAAcIAEGgAAAAAAAOAAc6B5iabzngEAAAAAAKDjMAINAAAAAAAAcIARaF7uwpFprMoJAAAAAADgXIxAAwAAAAAAABwggQYAAAAAAAA4wCOcnUzTRzp5nBMAAAAAAKD9GIEGAAAAAAAAONCmBFpubq6ioqIUGBgos9ms3bt3O4zftWuXzGazAgMDNWDAAK1Zs8YmZvPmzRo8eLBMJpMGDx6srVu3Nltfdna2fHx8lJ6e3pbmAwAAAAAAAC3W6gRaYWGh0tPTtWjRIpWVlSk+Pl6JiYmqqKiwG3/kyBFNmDBB8fHxKisr08KFCzVv3jxt3rzZElNSUqKkpCQlJyfrww8/VHJysqZNm6b333/fpr59+/Zp7dq1GjZsWGub7hVSCvZZNgAAAAAAALhfqxNoK1asUEpKiubMmaPo6Gjl5OQoPDxceXl5duPXrFmjiIgI5eTkKDo6WnPmzNHs2bO1fPlyS0xOTo7GjRunrKwsDRo0SFlZWbrjjjuUk5NjVdc333yj++67Ty+99JJ69uzZ2qYDANA5bEj699aScgAAAADt0qoEWkNDg0pLS5WQkGBVnpCQoL1799o9pqSkxCZ+/Pjx2r9/v06fPu0w5sI6H3roId15550aO3Zsa5oNAEDXQzINAAAAcJpWJdBqamrU2NiokJAQq/KQkBBVVVXZPaaqqspu/JkzZ1RTU+MwpmmdmzZt0oEDB5Sdnd3i9tbX16uurs5qAwB4vtbMtVlZWakZM2bouuuuU7du3ezOj1lQUCAfHx+b7fvvv2/zeQEAAAB0HW1aRMDHx8dq3zAMm7KLxV9Y7qjOY8eOaf78+Xr11VcVGBjY4nZmZ2crODjYsoWHh7f4WACAe7R2rs36+nr17dtXixYt0vDhw5utNygoSJWVlVZb03tKa88LAAAAoOtoVQKtT58+8vX1tRltVl1dbTOC7LzQ0FC78X5+furdu7fDmPN1lpaWqrq6WmazWX5+fvLz89OuXbu0cuVK+fn5qbGx0e65s7KyVFtba9mOHTvWmu4CANygtXNt9u/fX88//7xmzpyp4ODgZuv18fFRaGio1dae8wIAAADoOlqVQAsICJDZbFZxcbFVeXFxseLi4uweExsbaxO/fft2xcTEyN/f32HM+TrvuOMOffTRRyovL7dsMTExuu+++1ReXi5fX1+75zaZTAoKCrLauhJW9ATgbdoy12ZLffPNN4qMjNRVV12lu+66S2VlZe0+L1MFAAAAAF2DX2sPyMzMVHJysmJiYhQbG6u1a9eqoqJCqampks6N+jp+/LjWr18vSUpNTdWqVauUmZmpuXPnqqSkRPn5+dq4caOlzvnz5+vWW2/Vs88+q0mTJumNN97Q22+/rT179kiSunfvriFDhli147LLLlPv3r1tygEA3qstc222xKBBg1RQUKChQ4eqrq5Ozz//vEaPHq0PP/xQ11xzTZvPm52drSVLlrS5XQAAAAC8Q6sTaElJSTp58qSWLl2qyspKDRkyREVFRYqMjJR0bjLnpvPFREVFqaioSBkZGVq9erXCwsK0cuVKTZkyxRITFxenTZs26fHHH9cTTzyhgQMHqrCwUKNGjXJCFwEA3qa1c21ezM0336ybb77Zsj969GjdeOONeuGFF7Ry5co2nzcrK0uZmZmW/bq6OubbBAAAADqhVifQJCktLU1paWl23ysoKLApGzNmjA4cOOCwzqlTp2rq1KktbsPOnTtbHAsA8A5tmWuzLbp166aRI0fq008/bdd5TSaTTCaT09oFAAAAwDO1aRVOAABcoS1zbbaFYRgqLy9Xv379OvS8AAAAALwTCTQAgEfJzMzUyy+/rHXr1unw4cPKyMiwmWtz5syZVsecX2Dmm2++0VdffaXy8nIdOnTI8v6SJUu0bds2ffbZZyovL1dKSorKy8stdbbkvAAAXCg3N1dRUVEKDAyU2WzW7t27Hca/9tprGj58uC699FL169dPDz74oE6ePNlBrQUAtEebHuEEAMBVWjvXpiTdcMMNltelpaXasGGDIiMj9fnnn0uSvv76a/34xz9WVVWVgoODdcMNN+idd97RTTfd1OLzAgDQVGFhodLT05Wbm6vRo0frxRdfVGJiog4dOqSIiAib+D179mjmzJn69a9/rYkTJ+r48eNKTU3VnDlztHXrVjf0AADQGj6GYRjubkRHqaurU3BwsGpraxUUFOTu5likFOxz+TnyZ410+TkAdD2e+rnqLh12PTYktS5+RqFr2gEALubJ95lRo0bpxhtvVF5enqUsOjpakydPVnZ2tk388uXLlZeXp//93/+1lL3wwgtatmyZjh071qJzOv16NL2fcK8A0AW15nOVRzgBAAAAoBUaGhpUWlqqhIQEq/KEhATt3bvX7jFxcXH64osvVFRUJMMwdOLECb3++uu68847O6LJAIB2IoEGAAAAAK1QU1OjxsZGm5WaQ0JCbFZ0Pi8uLk6vvfaakpKSFBAQoNDQUPXo0UMvvPBCs+epr69XXV2d1QYAcA8SaAAAAADQBj4+Plb7hmHYlJ136NAhzZs3T//5n/+p0tJSvfXWWzpy5IjDxWqys7MVHBxs2cLDw53afgBAy5FAAwAAAIBW6NOnj3x9fW1Gm1VXV9uMSjsvOztbo0eP1s9+9jMNGzZM48ePV25urtatW6fKykq7x2RlZam2ttaytXSuNACA87EKZxfRdKECFhQAAAAA2i4gIEBms1nFxcW6++67LeXFxcWaNGmS3WO+++47+flZf/3y9fWVdG7kmj0mk0kmk8lJrQYAtAcj0AAAAACglTIzM/Xyyy9r3bp1Onz4sDIyMlRRUWF5JDMrK0szZ860xE+cOFFbtmxRXl6ePvvsM7377ruaN2+ebrrpJoWFhbmrGwCAFmIEGgAAAAC0UlJSkk6ePKmlS5eqsrJSQ4YMUVFRkSIjIyVJlZWVqqiosMTPmjVLp06d0qpVq/TTn/5UPXr00O23365nn33WXV0AALQCCTQAADq7DUn/fj2j0H3tAIBOJi0tTWlpaXbfKygosCl75JFH9Mgjj7i4VQAAV+ARTgAAAAAAAMABRqC5SdNJ/QEAAAAAAOC5SKABAAAAQFfH4/4A4BCPcAIAAAAAAAAOkEADAAAAAAAAHCCBBgAAAAAAADhAAg0AAAAAAABwgEUEuqCmK4DmzxrpxpYAAAAAAAB4PkagAQAAAAAAAA6QQAMAAAAAAAAcIIEGAAAAAAAAOEACDQAAAAAAAHCARQQAAPAGG5Lc3QIAAACgy2IEGgAAAAAAAOAAI9A6UErBPnc3AQAAAAAAAK3ECDQAAAAAAADAARJoAACPk5ubq6ioKAUGBspsNmv37t3NxlZWVmrGjBm67rrr1K1bN6Wnp9vEvPTSS4qPj1fPnj3Vs2dPjR07Vh988IFVzOLFi+Xj42O1hYaGOrtrAAAAALwQCbQuLqVgn2UDAE9QWFio9PR0LVq0SGVlZYqPj1diYqIqKirsxtfX16tv375atGiRhg8fbjdm586dmj59unbs2KGSkhJFREQoISFBx48ft4q7/vrrVVlZadk++ugjp/cPAAAAgPchgQYA8CgrVqxQSkqK5syZo+joaOXk5Cg8PFx5eXl24/v376/nn39eM2fOVHBwsN2Y1157TWlpaRoxYoQGDRqkl156SWfPntVf//pXqzg/Pz+FhoZatr59+zq9fwAAAAC8Dwk0AIDHaGhoUGlpqRISEqzKExIStHfvXqed57vvvtPp06fVq1cvq/JPP/1UYWFhioqK0r333qvPPvvMaef0GBuS/r0BAAAAaBFW4QQAeIyamho1NjYqJCTEqjwkJERVVVVOO8+CBQt05ZVXauzYsZayUaNGaf369br22mt14sQJPf3004qLi9PBgwfVu3dvu/XU19ervr7esl9XV+e0NgIAAADwHIxAAwB4HB8fH6t9wzBsytpq2bJl2rhxo7Zs2aLAwEBLeWJioqZMmaKhQ4dq7Nix+vOf/yxJ+s1vftNsXdnZ2QoODrZs4eHhTmkjAAAAAM9CAg0A4DH69OkjX19fm9Fm1dXVNqPS2mL58uV65plntH37dg0bNsxh7GWXXaahQ4fq008/bTYmKytLtbW1lu3YsWPtbiMAAAAAz0MCDQDgMQICAmQ2m1VcXGxVXlxcrLi4uHbV/dxzz+mpp57SW2+9pZiYmIvG19fX6/Dhw+rXr1+zMSaTSUFBQVYbAAAAgM6HOdAAAB4lMzNTycnJiomJUWxsrNauXauKigqlpqZKOjfq6/jx41q/fr3lmPLycknSN998o6+++krl5eUKCAjQ4MGDJZ17bPOJJ57Qhg0b1L9/f8sIt8svv1yXX365JOnRRx/VxIkTFRERoerqaj399NOqq6vTAw880IG9BwAAAOCJSKABADxKUlKSTp48qaVLl6qyslJDhgxRUVGRIiMjJUmVlZWqqKiwOuaGG26wvC4tLdWGDRsUGRmpzz//XJKUm5urhoYGTZ061eq4J598UosXL5YkffHFF5o+fbpqamrUt29f3XzzzXrvvfcs5wUAAADQdZFAAwB4nLS0NKWlpdl9r6CgwKbMMAyH9Z1PpDmyadOmljQNAAAAQBfEHGgAAAAAAACAAyTQAAAAAAAAAAd4hBMWKQX7LK/zZ410Y0sAAAAAAAA8ByPQAAAAAAAAAAdIoAEAAAAAAAAOtCmBlpubq6ioKAUGBspsNmv37t0O43ft2iWz2azAwEANGDBAa9assYnZvHmzBg8eLJPJpMGDB2vr1q1W7+fl5WnYsGEKCgpSUFCQYmNj9Ze//KUtzQcAAAAAAABarNUJtMLCQqWnp2vRokUqKytTfHy8EhMTVVFRYTf+yJEjmjBhguLj41VWVqaFCxdq3rx52rx5syWmpKRESUlJSk5O1ocffqjk5GRNmzZN77//viXmqquu0i9/+Uvt379f+/fv1+23365Jkybp4MGDbeg2AAAAAAAA0DI+hmEYrTlg1KhRuvHGG5WXl2cpi46O1uTJk5WdnW0T/9hjj+nNN9/U4cOHLWWpqan68MMPVVJSIklKSkpSXV2d1YiyH/zgB+rZs6c2btzYbFt69eql5557TikpKS1qe11dnYKDg1VbW6ugoKAWHeNMTSfp93QsIgCgJdz9ueppXHo9NiQ5tz5JmlHo/DoBwIm4z1hz+vVo7t7C/QFAF9Gaz9VWjUBraGhQaWmpEhISrMoTEhK0d+9eu8eUlJTYxI8fP1779+/X6dOnHcY0V2djY6M2bdqkb7/9VrGxsc22t76+XnV1dVYbAAD4PxuSrDcAAAAAdrUqgVZTU6PGxkaFhIRYlYeEhKiqqsruMVVVVXbjz5w5o5qaGocxF9b50Ucf6fLLL5fJZFJqaqq2bt2qwYMHN9ve7OxsBQcHW7bw8PAW9xUAAAAAAACQ2riIgI+Pj9W+YRg2ZReLv7C8JXVed911Ki8v13vvvaef/OQneuCBB3To0KFmz5uVlaXa2lrLduzYMccdAwAAAAAAAC7g15rgPn36yNfX12ZkWHV1tc0IsvNCQ0Ptxvv5+al3794OYy6sMyAgQFdffbUkKSYmRvv27dPzzz+vF1980e65TSaTTCZTyzsIAAAAAAAAXKBVI9ACAgJkNptVXFxsVV5cXKy4uDi7x8TGxtrEb9++XTExMfL393cY01yd5xmGofr6+tZ0AQAAAAAAAGiVVo1Ak6TMzEwlJycrJiZGsbGxWrt2rSoqKpSamirp3GOTx48f1/r16yWdW3Fz1apVyszM1Ny5c1VSUqL8/Hyr1TXnz5+vW2+9Vc8++6wmTZqkN954Q2+//bb27NljiVm4cKESExMVHh6uU6dOadOmTdq5c6feeuut9l4DAAAAAAAAoFmtngMtKSlJOTk5Wrp0qUaMGKF33nlHRUVFioyMlCRVVlaqoqLCEh8VFaWioiLt3LlTI0aM0FNPPaWVK1dqypQplpi4uDht2rRJr7zyioYNG6aCggIVFhZq1KhRlpgTJ04oOTlZ1113ne644w69//77euuttzRu3Lj29B8AAAAA2iQ3N1dRUVEKDAyU2WzW7t27HcbX19dr0aJFioyMlMlk0sCBA7Vu3boOai0AoD1aPQJNktLS0pSWlmb3vYKCApuyMWPG6MCBAw7rnDp1qqZOndrs+/n5+a1qo6dIKdjn7iYAAAAAcLLCwkKlp6crNzdXo0eP1osvvqjExEQdOnRIERERdo+ZNm2aTpw4ofz8fF199dWqrq7WmTNnOrjlAIC2aFMCDZ1f08Rf/qyRbmwJAAAA4HlWrFihlJQUzZkzR5KUk5Ojbdu2KS8vT9nZ2Tbxb731lnbt2qXPPvtMvXr1kiT179+/I5sMAGiHVj/CCQAAAABdWUNDg0pLS5WQkGBVnpCQoL1799o95s0331RMTIyWLVumK6+8Utdee60effRR/etf/2r2PPX19aqrq7PaAADuwQg0AABwzoakf7+eUei+dgCAh6upqVFjY6NCQkKsykNCQlRVVWX3mM8++0x79uxRYGCgtm7dqpqaGqWlpekf//hHs/OgZWdna8mSJU5vPwCg9RiBBgAAAABt4OPjY7VvGIZN2Xlnz56Vj4+PXnvtNd10002aMGGCVqxYoYKCgmZHoWVlZam2ttayHTt2zOl9AAC0DCPQAAAAAKAV+vTpI19fX5vRZtXV1Taj0s7r16+frrzySgUHB1vKoqOjZRiGvvjiC11zzTU2x5hMJplMJuc2HgDQJoxAAwAAAIBWCAgIkNlsVnFxsVV5cXGx4uLi7B4zevRoffnll/rmm28sZZ988om6deumq666yqXtBQC0Hwk0AAAAAGilzMxMvfzyy1q3bp0OHz6sjIwMVVRUKDU1VdK5xy9nzpxpiZ8xY4Z69+6tBx98UIcOHdI777yjn/3sZ5o9e7YuueQSd3UDANBCPMIJAAAAAK2UlJSkkydPaunSpaqsrNSQIUNUVFSkyMhISVJlZaUqKios8ZdffrmKi4v1yCOPKCYmRr1799a0adP09NNPu6sLAIBWIIEGAAAAAG2QlpamtLQ0u+8VFBTYlA0aNMjmsU8AgHfgEU4AgMfJzc1VVFSUAgMDZTabtXv37mZjKysrNWPGDF133XXq1q2b0tPT7cZt3rxZgwcPlslk0uDBg7V169Z2ndeblB/72rIBAAAAaD0SaAAAj1JYWKj09HQtWrRIZWVlio+PV2JiotVjME3V19erb9++WrRokYYPH243pqSkRElJSUpOTtaHH36o5ORkTZs2Te+//36bzwsAAACg6yCBBgDwKCtWrFBKSormzJmj6Oho5eTkKDw8XHl5eXbj+/fvr+eff14zZ85UcHCw3ZicnByNGzdOWVlZGjRokLKysnTHHXcoJyenzeftjBipBgAAANjHHGgAAI/R0NCg0tJSLViwwKo8ISFBe/fubXO9JSUlysjIsCobP368JYHmqvN6opYmx1IK9lle588a6aLWAAAAAN6BBBoAwGPU1NSosbFRISEhVuUhISGqqqpqc71VVVUO62zreevr61VfX2/Zr6ura3MbAQAAAHguEmi4KEYhAOhoPj4+VvuGYdiUuaLO1p43OztbS5YsaVe7vAH3AQAAAHR1zIEGAPAYffr0ka+vr82or+rqapvRYa0RGhrqsM62njcrK0u1tbWW7dixY21uo7MxnxkAAADgPCTQAAAeIyAgQGazWcXFxVblxcXFiouLa3O9sbGxNnVu377dUmdbz2symRQUFGS1dXYpBfssGwAAANBV8AgnAMCjZGZmKjk5WTExMYqNjdXatWtVUVGh1NRUSedGfR0/flzr16+3HFNeXi5J+uabb/TVV1+pvLxcAQEBGjx4sCRp/vz5uvXWW/Xss89q0qRJeuONN/T2229rz549LT4vAAAAgK6LBBoAwKMkJSXp5MmTWrp0qSorKzVkyBAVFRUpMjJSklRZWamKigqrY2644QbL69LSUm3YsEGRkZH6/PPPJUlxcXHatGmTHn/8cT3xxBMaOHCgCgsLNWrUqBaft6t55MTjltcvhDztxpYAAAAA7kcCDQDgcdLS0pSWlmb3vYKCApsywzAuWufUqVM1derUNp+3KyOZBgAAgK6OOdAAAAAAAAAABxiBBgAA2qTpQgL5s0a6sSUAAACAazECDQAAAAAAAHCAEWhO1vTXeAAAAAAAAHg/RqABAAAAAAAADjACDQCATqL82NfubgIAAADQKZFAQ6tc+IhquyaN3pD079czCtteDwDA7VhQAAAAAJ0ZCTS4HokyAAAAAADgxZgDDQAAAAAAAHCABBoAAAAAAADgAI9wdhGPnHjc8vqFkKfd2BIAAAAAHo0pWADABiPQAAAAAAAAAAcYgQbPwK9cAAAAAADAQzECDQAAAAAAAHCABBoAAAAAAADgAI9w4qJYgAAAPFf5sa879HwtuSekFOyzvM6fNdLlbQIAAABcjQQaWqXpF6dztrmlHQAAAAAAAB2FBBoAAJ6q6QIrAAAAANyGBBo8G6tzAgAAAAAANyOBhnZp9Tw3jKYAAAAAAABehgQaOgdGqgGAR2JBAQAAAHQG3dzdAAAAAAAAAMCTMQINrsGjmgAAAAAAoJNo0wi03NxcRUVFKTAwUGazWbt373YYv2vXLpnNZgUGBmrAgAFas2aNTczmzZs1ePBgmUwmDR48WFu3brV6Pzs7WyNHjlT37t11xRVXaPLkyfr444/b0nygeRuS/r0BAAAAAACoDSPQCgsLlZ6ertzcXI0ePVovvviiEhMTdejQIUVERNjEHzlyRBMmTNDcuXP16quv6t1331VaWpr69u2rKVOmSJJKSkqUlJSkp556Snfffbe2bt2qadOmac+ePRo1apSkc0m4hx56SCNHjtSZM2e0aNEiJSQk6NChQ7rsssvaeRnQVo+cePzfOxt6uPZkFya1mOsMAAAAAAB0gFaPQFuxYoVSUlI0Z84cRUdHKycnR+Hh4crLy7Mbv2bNGkVERCgnJ0fR0dGaM2eOZs+ereXLl1ticnJyNG7cOGVlZWnQoEHKysrSHXfcoZycHEvMW2+9pVmzZun666/X8OHD9corr6iiokKlpaWt7zUAwKM5e6TzbbfdJh8fH5vtzjvvtMQsXrzY5v3Q0FCX9A8AAACAd2lVAq2hoUGlpaVKSEiwKk9ISNDevXvtHlNSUmITP378eO3fv1+nT592GNNcnZJUW1srSerVq1ezMfX19aqrq7PaAACe7fxI50WLFqmsrEzx8fFKTExURUWF3fjzI53j4+NVVlamhQsXat68edq8ebMlZsuWLaqsrLRs//3f/y1fX1/96Ec/sqrr+uuvt4r76KOPXNpXAAAAAN6hVQm0mpoaNTY2KiQkxKo8JCREVVVVdo+pqqqyG3/mzBnV1NQ4jGmuTsMwlJmZqVtuuUVDhgxptr3Z2dkKDg62bOHh4RftIwDAvVwx0rlXr14KDQ21bMXFxbr00kttEmh+fn5WcX379nVpXwEAAAB4hzatwunj42O1bxiGTdnF4i8sb02dDz/8sP72t79pz549DtuZlZWlzMxMy35dXZ1LkmgpBfucXicAdEXnRzovWLDAqrwtI53z8/N1+vRp+fv72xyTn5+ve++912YOzU8//VRhYWEymUwaNWqUnnnmGQ0YMKDZ9tbX16u+vt6yz0hnx5reL/NnjXRjSwAAAIDWadUItD59+sjX19dmZFh1dbXNCLLzQkND7cb7+fmpd+/eDmPs1fnII4/ozTff1I4dO3TVVVc5bK/JZFJQUJDVhi6AlTQBr+Wqkc5NffDBB/rv//5vzZkzx6p81KhRWr9+vbZt26aXXnpJVVVViouL08mTJ5ttLyOdAaBra+2cnee9++678vPz04gRI1zbQACA07QqgRYQECCz2azi4mKr8uLiYsXFxdk9JjY21iZ++/btiomJsYwKaC6maZ2GYejhhx/Wli1b9F//9V+KiopqTdMBayTZAI/mipHO5+Xn52vIkCG66aabrMoTExM1ZcoUDR06VGPHjtWf//xnSdJvfvObZs+blZWl2tpay3bs2DHHHQMAdBqtnbPzvNraWs2cOVN33HFHB7UUAOAMrX6EMzMzU8nJyYqJiVFsbKzWrl2riooKpaamSjr3ZeL48eNav369JCk1NVWrVq1SZmam5s6dq5KSEuXn52vjxo2WOufPn69bb71Vzz77rCZNmqQ33nhDb7/9ttUjmg899JA2bNigN954Q927d7eMRAgODtYll1zSrosAL9WS5FfTmBmFrmsLAKdw1Ujn87777jtt2rRJS5cuvWhbLrvsMg0dOlSffvppszEmk0kmk+midQEAOp+mc3ZKUk5OjrZt26a8vDxlZ2c3e9z/+3//TzNmzJCvr6/+8Ic/dFBrAQDt1aoRaJKUlJSknJwcLV26VCNGjNA777yjoqIiRUZGSpIqKyutfnWJiopSUVGRdu7cqREjRuipp57SypUrNWXKFEtMXFycNm3apFdeeUXDhg1TQUGBCgsLNWrUKEtMXl6eamtrddttt6lfv36WrbCQpAgAdBauGul83u9+9zvV19fr/vvvv2hb6uvrdfjwYfXr16+VvQAAdHbn5+y8cA5OR3N2StIrr7yi//3f/9WTTz7p6iYCAJysTYsIpKWlKS0tze57BQUFNmVjxozRgQMHHNY5depUTZ06tdn3zz+OAwDo3Fwx0vm8/Px8TZ482WZkmiQ9+uijmjhxoiIiIlRdXa2nn35adXV1euCBB1zb4TYoP/a1u5sgSXrkxOOW1y+EPO3GlgBAx2rLnJ2ffvqpFixYoN27d8vPr2Vfw1isBgA8R5sSaECnwjxogEdJSkrSyZMntXTpUlVWVmrIkCEtGumckZGh1atXKywszGaksyR98skn2rNnj7Zv3273vF988YWmT5+umpoa9e3bVzfffLPee+89y3kBALhQS+fsbGxs1IwZM7RkyRJde+21La4/OztbS5YsaXc7AQDtRwINTtN0RMSI8B5uawcA7+eKkc7XXnutw9HMmzZtalUbAQBdV2vn7Dx16pT279+vsrIyPfzww5Kks2fPyjAM+fn5afv27br99tttjsvKylJmZqZlv66ujhWfAcBNSKABAAAAQCs0nbPz7rvvtpQXFxdr0qRJNvFBQUH66KOPrMpyc3P1X//1X3r99dcVFRVl9zwsVgMAnoMEGlyC0WgAAADozFozZ2e3bt00ZMgQq+OvuOIKBQYG2pQDADwTCTSgORfOjTaDFV8BAABwTmvn7AQAeDcSaLCr6cpqAAAAAGy1ds7OphYvXqzFixc7v1EAAJcggQYAADpcSsE+q/38WSPd1BIAAADg4kigoeu48JFMAAAAAACAFujm7gYAAAAAAAAAnowRaF1c07nOXgh52o0t6YSajnhjAQIAAAAAALwWI9AAAAAAAAAABxiBBs/jzXOVeXPbAQAAAACAXYxAAwAAAAAAABxgBBpcrvzY15bXI8J7uK0dAICOwfyaAAAA6GxIoHVBTb/YtKQcAAAAAACgKyOBBgAAAABdBXP2AkCbkEADAMALNH0cvjNKKdhneZ0/a6QbWwIAsNI04Taj0H3tAAA3YxEBAAAAAAAAwAFGoAEAgHZjHk0AAAB0ZiTQ0KFYkRMAAAAAAHgbEmhAWzAXBAAAALoY5qsE0JWRQANaihWLAAAAAADokkigAQAAAABahdFoALoaVuEEAAAAAAAAHGAEWifDKmheoKXzpzHPGoAuilENAAAA8DQk0ICOwPxpAAAAAAB4LR7hBAB4nNzcXEVFRSkwMFBms1m7d+92GL9r1y6ZzWYFBgZqwIABWrNmjdX7BQUF8vHxsdm+//77dp0XAIDOrvzY15atOSkF+6w2AOiMSKABADxKYWGh0tPTtWjRIpWVlSk+Pl6JiYmqqKiwG3/kyBFNmDBB8fHxKisr08KFCzVv3jxt3rzZKi4oKEiVlZVWW2BgYJvPi5Z55MTjlg0AAADwViTQ4DYt+TULQNezYsUKpaSkaM6cOYqOjlZOTo7Cw8OVl5dnN37NmjWKiIhQTk6OoqOjNWfOHM2ePVvLly+3ivPx8VFoaKjV1p7zAgAAAOg6SKABADxGQ0ODSktLlZCQYFWekJCgvXv32j2mpKTEJn78+PHav3+/Tp8+bSn75ptvFBkZqauuukp33XWXysrK2nVeAAAAAF0Hiwi0Ec/2A4Dz1dTUqLGxUSEhIVblISEhqqqqsntMVVWV3fgzZ86opqZG/fr106BBg1RQUKChQ4eqrq5Ozz//vEaPHq0PP/xQ11xzTZvOK0n19fWqr6+37NfV1bW2ywAAdDqspgygM2IEGgDA4/j4+FjtG4ZhU3ax+KblN998s+6//34NHz5c8fHx+t3vfqdrr71WL7zwQrvOm52dreDgYMsWHh5+8c4BAAAA8Dok0AAAHqNPnz7y9fW1GfVVXV1tMzrsvNDQULvxfn5+6t27t91junXrppEjR+rTTz9t83klKSsrS7W1tZbt2LFjF+0jWodV3QAAAOAJSKABADxGQECAzGaziouLrcqLi4sVFxdn95jY2Fib+O3btysmJkb+/v52jzEMQ+Xl5erXr1+bzytJJpNJQUFBVhsAAACAzoc50AAAHiUzM1PJycmKiYlRbGys1q5dq4qKCqWmpko6N+rr+PHjWr9+vSQpNTVVq1atUmZmpubOnauSkhLl5+dr48aNljqXLFmim2++Wddcc43q6uq0cuVKlZeXa/Xq1S0+LwAAaD3mQwPQWZBAA9prQ5Jn1QN4uaSkJJ08eVJLly5VZWWlhgwZoqKiIkVGRkqSKisrVVFRYYmPiopSUVGRMjIytHr1aoWFhWnlypWaMmWKJebrr7/Wj3/8Y1VVVSk4OFg33HCD3nnnHd10000tPi8AAF1F+bGv3d0EAPA4JNDgEZrepEeE93BbOwB4hrS0NKWlpdl9r6CgwKZszJgxOnDgQLP1/frXv9avf/3rdp3XHfgCAwDwJI+ceNzy+oWQp93YEgDoeMyBBgAAAAAAADjACDTAnXhsEwAAAAAAj0cCDQAAeAUmogYAAIC7kEADAAAAALgcP4QA8GYk0LwQk3cCAAAAAAB0HBJoXq5pMq2zYEVOAOic+AEIAAAA3qpNq3Dm5uYqKipKgYGBMpvN2r17t8P4Xbt2yWw2KzAwUAMGDNCaNWtsYjZv3qzBgwfLZDJp8ODB2rp1q9X777zzjiZOnKiwsDD5+PjoD3/4Q1uaDninDUn/3gAAAAAAQIdqdQKtsLBQ6enpWrRokcrKyhQfH6/ExERVVFTYjT9y5IgmTJig+Ph4lZWVaeHChZo3b542b95siSkpKVFSUpKSk5P14YcfKjk5WdOmTdP7779vifn22281fPhwrVq1qg3dBAAAnUlKwT7LBgDwPnyOA/A2rX6Ec8WKFUpJSdGcOXMkSTk5Odq2bZvy8vKUnZ1tE79mzRpFREQoJydHkhQdHa39+/dr+fLlmjJliqWOcePGKSsrS5KUlZWlXbt2KScnRxs3bpQkJSYmKjExsU2d7Aw646OaAAAAAAAA3qBVI9AaGhpUWlqqhIQEq/KEhATt3bvX7jElJSU28ePHj9f+/ft1+vRphzHN1QkAAAAA7taaqW22bNmicePGqW/fvgoKClJsbKy2bdvWga0FALRHq0ag1dTUqLGxUSEhIVblISEhqqqqsntMVVWV3fgzZ86opqZG/fr1azamuTpbqr6+XvX19Zb9urq6dtUHeISm86DNKHRfOwAAALqw81Pb5ObmavTo0XrxxReVmJioQ4cOKSIiwib+nXfe0bhx4/TMM8+oR48eeuWVVzRx4kS9//77uuGGG9zQA2tNF/JqCRaGAdDVtGkRAR8fH6t9wzBsyi4Wf2F5a+tsiezsbAUHB1u28PDwdtUHAAAAAJL11DbR0dHKyclReHi48vLy7Mbn5OTo5z//uUaOHKlrrrlGzzzzjK655hr98Y9/7OCWAwDaolUj0Pr06SNfX1+bkWHV1dU2I8jOCw0NtRvv5+en3r17O4xprs6WysrKUmZmpmW/rq6OJBoAAB7gwrk9Gb0AwJucn9pmwYIFVuWOpra50NmzZ3Xq1Cn16tXLFU0EADhZq0agBQQEyGw2q7i42Kq8uLhYcXFxdo+JjY21id++fbtiYmLk7+/vMKa5OlvKZDIpKCjIagMAAACA9mjL1DYX+tWvfqVvv/1W06ZNazamvr5edXV1VltnxIqcALxBq1fhzMzMVHJysmJiYhQbG6u1a9eqoqJCqampks6N+jp+/LjWr18vSUpNTdWqVauUmZmpuXPnqqSkRPn5+ZbVNSVp/vz5uvXWW/Xss89q0qRJeuONN/T2229rz549lphvvvlGf//73y37R44cUXl5uXr16mV3jgF0Dk3nYhgR3sNt7QAAeK6mX7jyZ410Y0sAdDVtnYZm48aNWrx4sd544w1dccUVzcZlZ2dryZIl7W4nAKD9Wp1AS0pK0smTJ7V06VJVVlZqyJAhKioqUmRkpCSpsrJSFRUVlvioqCgVFRUpIyNDq1evVlhYmFauXKkpU6ZYYuLi4rRp0yY9/vjjeuKJJzRw4EAVFhZq1KhRlpj9+/frP/7jPyz75x/NfOCBB1RQUNDqjgMAAABAW7RlapvzCgsLlZKSot///vcaO3asw1impAEAz9HqBJokpaWlKS0tze579pJZY8aM0YEDBxzWOXXqVE2dOrXZ92+77TbL4gMAAAAA4C5Np7a5++67LeXFxcWaNGlSs8dt3LhRs2fP1saNG3XnnXde9Dwmk0kmk8kpbQYAtE+bEmgAAADO1HRRARYUAOANWju1zcaNGzVz5kw9//zzuvnmmy2j1y655BIFBwe7rR8AgJYhgebBLlyhDAAAOMZ8aAA6SmuntnnxxRd15swZPfTQQ3rooYcs5Z1hShpWVgbQFZBAAwAAHouRaQA8WWumttm5c6frG9QJ8EMIAE9FAg1eo+mKnBKrctrYkPTv1zMK3dcOAAAAAAA6GRJoAAAAAACXYCQxgM6CBBrgzZqOOmvvsYxaAwAAAADALhJordD0eXwAAJyuPUlxAAA8hLMWQ2M+NACehASaB2BYc9s0nRON+dAuwHxoALwYq1ADAADA03RzdwNg7ZETj1s2AOiqcnNzFRUVpcDAQJnNZu3evdth/K5du2Q2mxUYGKgBAwZozZo1Vu+/9NJLio+PV8+ePdWzZ0+NHTtWH3zwgVXM4sWL5ePjY7WFhoY6vW/oOCkF+ywbAAAA0B4k0AAAHqWwsFDp6elatGiRysrKFB8fr8TERFVUVNiNP3LkiCZMmKD4+HiVlZVp4cKFmjdvnjZv3myJ2blzp6ZPn64dO3aopKREERERSkhI0PHjx63quv7661VZWWnZPvroI5f2FQAAAIB34BFOAOe09rFPHhOFi6xYsUIpKSmaM2eOJCknJ0fbtm1TXl6esrOzbeLXrFmjiIgI5eTkSJKio6O1f/9+LV++XFOmTJEkvfbaa1bHvPTSS3r99df117/+VTNnzrSU+/n5MeoMAAAAgA0SaAAcI1GGDtTQ0KDS0lItWLDAqjwhIUF79+61e0xJSYkSEhKsysaPH6/8/HydPn1a/v7+Nsd89913On36tHr16mVV/umnnyosLEwmk0mjRo3SM888owEDBrSzV/AEFz7GyWTUAOBdWFAAgLuRQEOnwIICQOdQU1OjxsZGhYSEWJWHhISoqqrK7jFVVVV248+cOaOamhr169fP5pgFCxboyiuv1NixYy1lo0aN0vr163XttdfqxIkTevrppxUXF6eDBw+qd+/eds9dX1+v+vp6y35dXV2L+4rWY9EdAAAAuAsJNAAt13Q0GuBCPj4+VvuGYdiUXSzeXrkkLVu2TBs3btTOnTsVGBhoKU9MTLS8Hjp0qGJjYzVw4ED95je/UWZmpt3zZmdna8mSJRfvEAAAHqjpj9AAAMdIoAEAPEafPn3k6+trM9qsurraZpTZeaGhoXbj/fz8bEaOLV++XM8884zefvttDRs2zGFbLrvsMg0dOlSffvppszFZWVlWybW6ujqFh4c7rBeuxSg1AOj8eCwfgDuQQAMAeIyAgACZzWYVFxfr7rvvtpQXFxdr0qRJdo+JjY3VH//4R6uy7du3KyYmxmr+s+eee05PP/20tm3bppiYmIu2pb6+XocPH1Z8fHyzMSaTSSaT6aJ1wfnamyhjLh0AAAC0Bgm0DsSv4h2D+dCcgEc14UaZmZlKTk5WTEyMYmNjtXbtWlVUVCg1NVXSuVFfx48f1/r16yVJqampWrVqlTIzMzV37lyVlJQoPz9fGzdutNS5bNkyPfHEE9qwYYP69+9vGbF2+eWX6/LLL5ckPfroo5o4caIiIiJUXV2tp59+WnV1dXrggQc6+AoAAAAA8DQk0ICuhMQYvEBSUpJOnjyppUuXqrKyUkOGDFFRUZEiIyMlSZWVlaqoqLDER0VFqaioSBkZGVq9erXCwsK0cuVKTZkyxRKTm5urhoYGTZ061epcTz75pBYvXixJ+uKLLzR9+nTV1NSob9++uvnmm/Xee+9ZzgsAANqHAQUAvBkJNKCzI2kGL5SWlqa0tDS77xUUFNiUjRkzRgcOHGi2vs8///yi59y0aVNLm+cyTOYMAEDr8Vg+gI5AAs1Nmv76AgAA3IcvXgAAALgYEmjo1JgPDQAAAOg6+FEEgKt0c3cDAAAAAAAAAE/GCDQAAID/w8gFAAAA2EMCDQAAAADQoZqbE9qZq3PyowgAZyKBhi6D+dAAAK3BFy8AAACcRwINQMfYkGS9P6PQPe0AAAAAAKCVSKABcK6miTKSZAAAAGiFpo92OvNxTgBoLxJo6JJ4nBMA0Bo8zgkA3o3PcQDtRQINgGdhBBsAAAAAwMOQQEOXx2g0APBuza3k1pbjeVwIADo/RqMBaAsSaC7W3j/qAQBA27gqMcYXLwDoGPzAAcCTkEAD0H4XrrAJAB6OH7gAwLvwowgAdyOBBsB1vCGxxpxrQJfgqoQZX7wAAAC6BhJoQBPMh+bBSHQB8HAk0wDAu/E5DsAREmhAM5om0yQSal6BJBuAdmrJI0ItiWn6JUziixgAAIC3I4EGwD3ak+wiUQYAAAAXYjQagAuRQHMyJiXuvHi80w3aM4caSTYA7eTMezpfxADAeS78fHb1Cp2MKgYgkUAD4Am8YbEBAHASkmkA4FyuWqETAJoigeYEjDrrehiNBgAAAHiejkim8UMI0DWRQAPg3Voyeu3CGB7pBOAhLnws6Dy+kAFA+5FMA+BMJNCAdrpwtc7zGJnmwXhkFICH4wsZAFdp7m/Xzq65p4acmVjjsxvo3EigAS7CY54AAGfgCxkAeB8+u4HOhwQaAACAB2s6aiKlwP5ICb6cAUDbdPRjnk3x2Q14FxJoQAdgNBoAdE7NffFq6QJDzvqyduGXM76UAUD7OPocd8VnN5/bgOfr1paDcnNzFRUVpcDAQJnNZu3evdth/K5du2Q2mxUYGKgBAwZozZo1NjGbN2/W4MGDZTKZNHjwYG3durXd5wU8Ufmxr+1uAP6N+wy80SMnHrdsHX1802MfOfG4Ugr2XXQD0H6uuF/Bfdr7Od4efF4Dnq/VI9AKCwuVnp6u3NxcjR49Wi+++KISExN16NAhRURE2MQfOXJEEyZM0Ny5c/Xqq6/q3XffVVpamvr27aspU6ZIkkpKSpSUlKSnnnpKd999t7Zu3app06Zpz549GjVqVJvOCwDwTtxngJZp7xe8lnwpY0QE0DxX3K/gHVq7IEF7HxPl8xrwDD6GYRitOWDUqFG68cYblZeXZymLjo7W5MmTlZ2dbRP/2GOP6c0339Thw4ctZampqfrwww9VUlIiSUpKSlJdXZ3+8pe/WGJ+8IMfqGfPntq4cWObzmtPXV2dgoODVVtbq6CgoNZ0W5L1B5c7fpUAHOHRUCeYUejuFnScpiuRtqPf7f1ctacr32fKnx3f6mOAi3HVF7qW4Asd2ssV9xlnccX96mKccT2413iOln72uvrzms9qdGWt+Vxt1Qi0hoYGlZaWasGCBVblCQkJ2rt3r91jSkpKlJCQYFU2fvx45efn6/Tp0/L391dJSYkyMjJsYnJyctp8Xkmqr69XfX29Zb+2tlbSuQvUFg3/+sby+pvvz7SpDsBV9nxa067jh10Z7KSWeLE2fjZ4pe9O//t1O/p9/vO0lb/FNKur32e4t8AVmv790lTT/98ePLrAbsyLV/z7S9v/q37abvmFmsYl57XuB8fmztHSc6++z2y3/KHXSi8aA8/k7PuMs7jqfnUhZ99nJO41nqS5z94LNf0Ub8nndVMt+fxMztvRonY4C5/D8CStuc+0KoFWU1OjxsZGhYSEWJWHhISoqqrK7jFVVVV248+cOaOamhr169ev2ZjzdbblvJKUnZ2tJUuW2JSHh4c338kWerXdNQDwOHNt58TqEpzQ71OnTik4uP1JWO4zgCv8l93Slv0t8+9jX22m3HG9zce15tgWnzutBedoQQw8j7PuM87iqvvVhbjPoOVa8lnfus9kV+FzGJ6oJfeZNq3C6ePjY7VvGIZN2cXiLyxvSZ2tPW9WVpYyMzMt+2fPntU//vEP9e7d2+5xdXV1Cg8P17FjxzxuiLiz0MfOobP3sbP3T+o8fTQMQ6dOnVJYWJhT6+2s9xlHOsv/E67AtWke16Z5XJvmedO1cdV9xllccb9qqi33GW/67+tuXKuW41q1HNeq5TzhWrXmPtOqBFqfPn3k6+tr86tKdXW1za8p54WGhtqN9/PzU+/evR3GnK+zLeeVJJPJJJPJZFXWo0eP5jv4f4KCgjr9/+j0sXPo7H3s7P2TOkcfnTkioKvcZxzpDP9PuArXpnlcm+ZxbZrnLdfGk0aeneeq+9WF2nOf8Zb/vp6Aa9VyXKuW41q1nLuvVUvvM91aU2lAQIDMZrOKi4utyouLixUXF2f3mNjYWJv47du3KyYmxvKcf3Mx5+tsy3kBAN6H+wwAwBu46n4FAPBgRitt2rTJ8Pf3N/Lz841Dhw4Z6enpxmWXXWZ8/vnnhmEYxoIFC4zk5GRL/GeffWZceumlRkZGhnHo0CEjPz/f8Pf3N15//XVLzLvvvmv4+voav/zlL43Dhw8bv/zlLw0/Pz/jvffea/F5naG2ttaQZNTW1jqtTk9DHzuHzt7Hzt4/w+gafWyrznyfcYT/J5rHtWke16Z5XJvmcW2cwxX3K2fgv2/Lca1ajmvVclyrlvO2a9XqBJphGMbq1auNyMhIIyAgwLjxxhuNXbt2Wd574IEHjDFjxljF79y507jhhhuMgIAAo3///kZeXp5Nnb///e+N6667zvD39zcGDRpkbN68uVXndYbvv//eePLJJ43vv//eqfV6EvrYOXT2Pnb2/hlG1+hje3TW+4wj/D/RPK5N87g2zePaNI9r4zyuuF+1F/99W45r1XJcq5bjWrWct10rH8PwsDWhAQAAAAAAAA/SqjnQAAAAAAAAgK6GBBoAAAAAAADgAAk0AAAAAAAAwAESaAAAAAAAAIADJNCayM3NVVRUlAIDA2U2m7V79253N6lFsrOzNXLkSHXv3l1XXHGFJk+erI8//tgqxjAMLV68WGFhYbrkkkt022236eDBg1Yx9fX1euSRR9SnTx9ddtll+uEPf6gvvviiI7vSItnZ2fLx8VF6erqlrDP07/jx47r//vvVu3dvXXrppRoxYoRKS0st73t7H8+cOaPHH39cUVFRuuSSSzRgwAAtXbpUZ8+etcR4Wx/feecdTZw4UWFhYfLx8dEf/vAHq/ed1Z9//vOfSk5OVnBwsIKDg5WcnKyvv/7axb1DR/PWe5AzOePfVGfkrPt8Z5SXl6dhw4YpKChIQUFBio2N1V/+8hfL+131utjT1r+f4H24n1zc4sWL5ePjY7WFhoa6u1kegXtxy13sWs2aNcvm/7Obb77ZPY11o870dwwJtP9TWFio9PR0LVq0SGVlZYqPj1diYqIqKirc3bSL2rVrlx566CG99957Ki4u1pkzZ5SQkKBvv/3WErNs2TKtWLFCq1at0r59+xQaGqpx48bp1KlTlpj09HRt3bpVmzZt0p49e/TNN9/orrvuUmNjozu6Zde+ffu0du1aDRs2zKrc2/v3z3/+U6NHj5a/v7/+8pe/6NChQ/rVr36lHj16WGK8vY/PPvus1qxZo1WrVunw4cNatmyZnnvuOb3wwguWGG/r47fffqvhw4dr1apVdt93Vn9mzJih8vJyvfXWW3rrrbdUXl6u5ORkl/cPHceb70HO5Ix/U52Rs+7zndFVV12lX/7yl9q/f7/279+v22+/XZMmTbL80d1Vr8uF2vP3E7wL95OWu/7661VZWWnZPvroI3c3ySNwL265i10rSfrBD35g9f9ZUVFRB7bQM3Sqv2MMGIZhGDfddJORmppqVTZo0CBjwYIFbmpR21VXVxuSjF27dhmGYRhnz541QkNDjV/+8peWmO+//94IDg421qxZYxiGYXz99deGv7+/sWnTJkvM8ePHjW7duhlvvfVWx3agGadOnTKuueYao7i42BgzZowxf/58wzA6R/8ee+wx45Zbbmn2/c7QxzvvvNOYPXu2Vdk999xj3H///YZheH8fJRlbt2617DurP4cOHTIkGe+9954lpqSkxJBk/M///I+Le4WO0pnuQc7Sln9TXUVb7vNdSc+ePY2XX36Z6/J/2vP3E7wP95OWefLJJ43hw4e7uxkej3txy114rQzDMB544AFj0qRJbmmPJ/Pmv2MYgSapoaFBpaWlSkhIsCpPSEjQ3r173dSqtqutrZUk9erVS5J05MgRVVVVWfXPZDJpzJgxlv6Vlpbq9OnTVjFhYWEaMmSIx1yDhx56SHfeeafGjh1rVd4Z+vfmm28qJiZGP/rRj3TFFVfohhtu0EsvvWR5vzP08ZZbbtFf//pXffLJJ5KkDz/8UHv27NGECRMkdY4+NuWs/pSUlCg4OFijRo2yxNx8880KDg72uD6jbTrbPchVWvJvqqtoy32+K2hsbNSmTZv07bffKjY2luvyf9rz9xO8C/eT1vn0008VFhamqKgo3Xvvvfrss8/c3SSPx+dG6+3cuVNXXHGFrr32Ws2dO1fV1dXubpLbefPfMX7uboAnqKmpUWNjo0JCQqzKQ0JCVFVV5aZWtY1hGMrMzNQtt9yiIUOGSJKlD/b6d/ToUUtMQECAevbsaRPjCddg06ZNOnDggPbt22fzXmfo32effaa8vDxlZmZq4cKF+uCDDzRv3jyZTCbNnDmzU/TxscceU21trQYNGiRfX181NjbqF7/4haZPny6pc/x3bMpZ/amqqtIVV1xhU/8VV1zhcX1G23Sme5ArteTfVFfQ1vt8Z/bRRx8pNjZW33//vS6//HJt3bpVgwcPtvzR3VWvi9T+v5/gXbiftNyoUaO0fv16XXvttTpx4oSefvppxcXF6eDBg+rdu7e7m+ex+NxoncTERP3oRz9SZGSkjhw5oieeeEK33367SktLZTKZ3N08t/D2v2NIoDXh4+NjtW8Yhk2Zp3v44Yf1t7/9TXv27LF5ry3984RrcOzYMc2fP1/bt29XYGBgs3He2j9JOnv2rGJiYvTMM89Ikm644QYdPHhQeXl5mjlzpiXOm/tYWFioV199VRs2bND111+v8vJypaenKywsTA888IAlzpv7aI8z+mMv3pP7jLbpDPegjtDVr5Oz7/OdwXXXXafy8nJ9/fXX2rx5sx544AHt2rXL8n5XvS6u/PsJno3/pheXmJhoeT106FDFxsZq4MCB+s1vfqPMzEw3tsw78P9YyyQlJVleDxkyRDExMYqMjNSf//xn3XPPPW5smft4+98xPMIpqU+fPvL19bX5Zaa6utomC+rJHnnkEb355pvasWOHrrrqKkv5+RVlHPUvNDRUDQ0N+uc//9lsjLuUlpaqurpaZrNZfn5+8vPz065du7Ry5Ur5+flZ2uet/ZOkfv36afDgwVZl0dHRlglfvf2/oST97Gc/04IFC3Tvvfdq6NChSk5OVkZGhrKzsyV1jj425az+hIaG6sSJEzb1f/XVVx7XZ7RNZ7kHuVpL/k11du25z3dmAQEBuvrqqxUTE6Ps7GwNHz5czz//fJe/Ls74+wnehftJ21122WUaOnSoPv30U3c3xaN19c/V9urXr58iIyO77P9nneHvGBJoOveHl9lsVnFxsVV5cXGx4uLi3NSqljMMQw8//LC2bNmi//qv/1JUVJTV+1FRUQoNDbXqX0NDg3bt2mXpn9lslr+/v1VMZWWl/vu//9vt1+COO+7QRx99pPLycssWExOj++67T+Xl5RowYIBX90+SRo8ebbOU7yeffKLIyEhJ3v/fUJK+++47detm/ZHj6+urs2fPSuocfWzKWf2JjY1VbW2tPvjgA0vM+++/r9raWo/rM9rG2+9BHaUl/6Y6K2fc57sSwzBUX1/f5a+LM/5+gnfhftJ29fX1Onz4sPr16+fupni0rv652l4nT57UsWPHutz/Z53q75gOWqzA423atMnw9/c38vPzjUOHDhnp6enGZZddZnz++efubtpF/eQnPzGCg4ONnTt3GpWVlZbtu+++s8T88pe/NIKDg40tW7YYH330kTF9+nSjX79+Rl1dnSUmNTXVuOqqq4y3337bOHDggHH77bcbw4cPN86cOeOObjnUdBUpw/D+/n3wwQeGn5+f8Ytf/ML49NNPjddee8249NJLjVdffdUS4+19fOCBB4wrr7zS+NOf/mQcOXLE2LJli9GnTx/j5z//uSXG2/p46tQpo6yszCgrKzMkGStWrDDKysqMo0ePOrU/P/jBD4xhw4YZJSUlRklJiTF06FDjrrvu6vD+wnW8+R7kTM74N9UZOes+3xllZWUZ77zzjnHkyBHjb3/7m7Fw4UKjW7duxvbt2w3D6LrXpTlt+fsJ3oX7Scv89Kc/NXbu3Gl89tlnxnvvvWfcddddRvfu3blOBvfi1nB0rU6dOmX89Kc/Nfbu3WscOXLE2LFjhxEbG2tceeWVXe5adaa/Y0igNbF69WojMjLSCAgIMG688UbLsqqeTpLd7ZVXXrHEnD171njyySeN0NBQw2QyGbfeeqvx0UcfWdXzr3/9y3j44YeNXr16GZdccolx1113GRUVFR3cm5a58A/AztC/P/7xj8aQIUMMk8lkDBo0yFi7dq3V+97ex7q6OmP+/PlGRESEERgYaAwYMMBYtGiRUV9fb4nxtj7u2LHD7r+9Bx54wDAM5/Xn5MmTxn333Wd0797d6N69u3HfffcZ//znPzuol+go3noPciZn/JvqjJx1n++MZs+ebfl307dvX+OOO+6wJM8Mo+tel+a05e8neB/uJxeXlJRk9OvXz/D39zfCwsKMe+65xzh48KC7m+URuBe3nKNr9d133xkJCQlG3759DX9/fyMiIsJ44IEHPOa7WUfqTH/H+BiGYbhqdBsAAAAAAADg7ZgDDQAAAAAAAHCABBoAAAAAAADgAAk0AAAAAAAAwAESaAAAAAAAAIADJNAAAAAAAAAAB0igAQAAAAAAAA6QQAMAAAAAAAAcIIEGdIDFixfLx8dHNTU1F43t37+/Zs2aZdn/5JNP9Oijj8psNqtHjx7q1auXRo8erddff73V7di5c6d8fHzadCwAoHPYsGGDcnJy3N0MAAAAr0ICDfAwW7du1RNPPGHZ3759u/785z9rypQp+v3vf6/XXntN11xzjX70ox9p6dKlbmwpAMAbkUADAABoPT93NwCAtRtuuMFq/95779VDDz0kHx8fS1liYqJqamr07LPP6rHHHpPJZOroZgIAAAAA0GUwAg1oxh/+8Af5+Pjor3/9q817eXl58vHx0d/+9jdJ0vvvv6+JEyeqd+/eCgwM1MCBA5Wenm5z3IkTJzR9+nQFBwcrJCREs2fPVm1trVXMhY9w9unTxyp5dt5NN92k7777Tv/4xz9a3bfvv/9emZmZCg0N1SWXXKIxY8aorKys1fUAQFd3/hH9v/3tb/rRj36k4OBg9erVS5mZmTpz5ow+/vhj/eAHP1D37t3Vv39/LVu2zHJsQUGBfHx89Pnnn1vVef5x+507d7a4HefrKi4u1oMPPqhevXrpsssu08SJE/XZZ59Z4m677Tb9+c9/1tGjR+Xj42PZWqqsrEx33XWXrrjiCplMJoWFhenOO+/UF198IUn6/PPP5ePjo4KCAptjfXx8tHjxYst+e64dAABARyOBBjTj/BeEV155xea9goIC3XjjjRo2bJi2bdum+Ph4VVRUaMWKFfrLX/6ixx9/XCdOnLA5bsqUKbr22mu1efNmLViwQBs2bFBGRkab2rdjxw717dtXV1xxRauPXbhwoT777DO9/PLLevnll/Xll1/qtttus/qSBQBouWnTpmn48OHavHmz5s6dq1//+tfKyMjQ5MmTdeedd2rr1q26/fbb9dhjj2nLli0ua0dKSoq6detmeUzzgw8+0G233aavv/5akpSbm6vRo0crNDRUJSUllq0lvv32W40bN04nTpzQ6tWrVVxcrJycHEVEROjUqVNtbrOnXDsAAABHeIQTaIafn5/uv/9+5eXlqba2VsHBwZKkw4cP64MPPtALL7wgSXrooYcUERGh999/X4GBgZbjH3zwQZs6U1JS9LOf/UySNHbsWP3973/XunXrlJ+f36oRAC+//LJ27typ559/Xr6+vq3uW9++fbV161bLOW+55RZdc801ys7O1ksvvdTq+gCgq/vxj3+szMxMSec+37dv365Vq1Zpy5YtuvvuuyWdG/31pz/9Sa+99pruuecel7QjJiZG+fn5lv3rr79eo0eP1urVq7Vo0SINHjxYPXr0kMlk0s0339yquv/nf/5HJ0+eVH5+viZNmmQpnzZtWrva7CnXDgAAwBFGoAEOzJ49W//6179UWFhoKXvllVdkMpk0Y8YMffLJJ/rf//1fpaSkWCXPmvPDH/7Qan/YsGH6/vvvVV1d3eI2/eUvf9FDDz2kqVOn6pFHHml5Z5qYMWOGVcIuMjJScXFx2rFjR5vqA4Cu7q677rLaj46Olo+PjxITEy1lfn5+uvrqq3X06FGXteO+++6z2o+Li1NkZKRTPt+vvvpq9ezZU4899pjWrFmjQ4cOtbtOyXOuHQAAgCMk0AAHrr/+eo0cOdLyGGdjY6NeffVVTZo0Sb169dJXX30lSbrqqqtaVF/v3r2t9s9P/v+vf/2rRcdv27ZN99xzj8aNG6fXXnutVaPWmgoNDbVbdvLkyTbVBwBdXa9evaz2AwICdOmll9r8uBIQEKDvv//eZe1w5ed7cHCwdu3apREjRmjhwoW6/vrrFRYWpieffFKnT59uc72ecu0AAAAcIYEGXMSDDz6o9957T4cPH9Zbb72lyspKy+OZffv2lSTL5MmutG3bNk2ePFljxozR5s2bFRAQ0Oa6qqqq7JZdmOADALjO+QRRfX29VXlNTU2b63T15/vQoUO1adMmnTx5UuXl5UpKStLSpUv1q1/9SlLzfeIHGgAA4O1IoAEXMX36dAUGBqqgoEAFBQW68sorlZCQIEm69tprNXDgQK1bt87my4Izbd++XZMnT9Ytt9yiP/zhD5aRa221ceNGGYZh2T969Kj27t2r2267rZ0tBQC0VP/+/SXJsqLzeW+++Wab63zttdes9vfu3aujR49afb6bTKYWj3xujo+Pj4YPH65f//rX6tGjhw4cOCBJCgkJUWBgoE2f3njjjXadDwAAwN1YRAC4iB49eujuu+9WQUGBvv76az366KPq1u3fuefVq1dr4sSJuvnmm5WRkaGIiAhVVFRo27ZtNl9k2mLPnj2aPHmyQkNDtXDhQpWXl1u9P3jwYAUFBbWqzurqat19992aO3euamtr9eSTTyowMFBZWVntbi8AoGVGjhyp6667To8++qjOnDmjnj17auvWrdqzZ0+b69y/f7/mzJmjH/3oRzp27JgWLVqkK6+8UmlpaZaYoUOHasuWLcrLy5PZbFa3bt0UExNz0br/9Kc/KTc3V5MnT9aAAQNkGIa2bNmir7/+WuPGjZN0LrF2//33a926dRo4cKCGDx+uDz74QBs2bGhznwAAADwBCTSgBR588EFt3LhRkjRr1iyr98aPH6933nlHS5cu1bx58/T999/rqquuslkwoK3efvtt/etf/9Lnn3+u22+/3eb9HTt2tHrk2DPPPKN9+/bpwQcfVF1dnW666SZt2rRJAwcOdEqbAQAX5+vrqz/+8Y96+OGHlZqaKpPJpHvvvVerVq3SnXfe2aY68/Pz9dvf/lb33nuv6uvr9R//8R96/vnnreYZmz9/vg4ePKiFCxeqtrZWhmFYjUpuzjXXXKMePXpo2bJl+vLLLxUQEKDrrrtOBQUFeuCBByxx5x/nXLZsmb755hvdfvvt+tOf/mQZcQcAAOCNfIyW/MUEAAAAj1VQUKAHH3xQ+/bta9FoMgAAALQOc6ABAAAAAAAADvAIJ9AJGIahxsZGhzG+vr7y8fHpoBYBAJyhpZ/v7dXY2OjwMU4fHx+nnAcAAMBbMQIN6AR27dolf39/h9tvfvMbdzcTANBKv/nNby76+b5r1y7NmjVLhmG0+fHNO+64w+E5mCMTAAB0dcyBBnQCp06d0scff+wwJioqSr179+6gFgEAnOHkyZM6cuSIw5jrrrtO3bt3b9d5Pv74Y506darZ900mk4YOHdqucwAAAHgzEmgAAAAAAACAAzzCCQAAAAAAADjQpRYROHv2rL788kt1796dydQBwAkMw9CpU6cUFhambt34TYb7DAA4F/cZAICn6FIJtC+//FLh4eHubgYAdDrHjh3TVVdd5e5muB33GQBwDe4zAAB361IJtPMT7B47dkxBQUFubg0AeL+6ujqFh4e3ewLzzoL7DAA4F/cZAICn6FIJtPOP0wQFBfHFBgCciMcVz+E+AwCuwX0GAOBuTCQAAAAAAAAAOEACDQAAAAAAAHCABBoAAAAAAADgAAk0AAAAAAAAwAESaAAAAAAAAIADJNAAAAAAAAAAB0igAQAAAAAAAA6QQAMAAAAAAAAcIIEGAAAAAAAAOEACzcVSCvbZ3QAA7ZObm6uoqCgFBgbKbDZr9+7dDuN37dols9mswMBADRgwQGvWrGk2dtOmTfLx8dHkyZOd3GoX2JD07w0AAACAS5BAAwB4ncLCQqWnp2vRokUqKytTfHy8EhMTVVFRYTf+yJEjmjBhguLj41VWVqaFCxdq3rx52rx5s03s0aNH9eijjyo+Pt7V3QAAAADgJUigAQC8zooVK5SSkqI5c+YoOjpaOTk5Cg8PV15ent34NWvWKCIiQjk5OYqOjtacOXM0e/ZsLV++3CqusbFR9913n5YsWaIBAwZ0RFcAAAAAeAESaAAAr9LQ0KDS0lIlJCRYlSckJGjv3r12jykpKbGJHz9+vPbv36/Tp09bypYuXaq+ffsqJSXF+Q0HAAAA4LX83N0AAABao6amRo2NjQoJCbEqDwkJUVVVld1jqqqq7MafOXNGNTU16tevn959913l5+ervLy8xW2pr69XfX29Zb+urq7lHQEAAADgNRiBBgDwSj4+Plb7hmHYlF0s/nz5qVOndP/99+ull15Snz59WtyG7OxsBQcHW7bw8PBW9AAAAACAt2AEGgDAq/Tp00e+vr42o82qq6ttRpmdFxoaajfez89PvXv31sGDB/X5559r4sSJlvfPnj0rSfLz89PHH3+sgQMH2tSblZWlzMxMy35dXR1JNAAAAKATIoEGAPAqAQEBMpvNKi4u1t13320pLy4u1qRJk+weExsbqz/+8Y9WZdu3b1dMTIz8/f01aNAgffTRR1bvP/744zp16pSef/75ZpNiJpNJJpOpnT0CAAAA4OlIoAEAvE5mZqaSk5MVExOj2NhYrV27VhUVFUpNTZV0bmTY8ePHtX79eklSamqqVq1apczMTM2dO1clJSXKz8/Xxo0bJUmBgYEaMmSI1Tl69OghSTblAAAAALoel82Blpubq6ioKAUGBspsNmv37t3NxlZWVmrGjBm67rrr1K1bN6Wnp9uN27x5swYPHiyTyaTBgwdr69atLmo9AMCTJSUlKScnR0uXLtWIESP0zjvvqKioSJGRkZLO3VcqKios8VFRUSoqKtLOnTs1YsQIPfXUU1q5cqWmTJniri4AAAAA8CIuGYFWWFio9PR05ebmavTo0XrxxReVmJioQ4cOKSIiwia+vr5effv21aJFi/TrX//abp0lJSVKSkrSU089pbvvvltbt27VtGnTtGfPHo0aNcoV3QAAeLC0tDSlpaXZfa+goMCmbMyYMTpw4ECL67dXBwAAAICuycc4vwyZE40aNUo33nij8vLyLGXR0dGaPHmysrOzHR572223acSIEcrJybEqT0pKUl1dnf7yl79Yyn7wgx+oZ8+elkdwLqaurk7BwcGqra1VUFBQyzvUCikF+1oUlz9rpEvODwAdqSM+V72JW67HhqR/v55R2DHnBIAOwn0GAOApnP4IZ0NDg0pLS5WQkGBVnpCQoL1797a53pKSEps6x48f77DO+vp61dXVWW0AAAAAAABAazj9Ec6amho1NjYqJCTEqjwkJERVVVVtrreqqqrVdWZnZ2vJkiVtPicAAB6p6aiz5soZjQYAAAA4jctW4fTx8bHaNwzDpszVdWZlZSkzM9OyX1dXp/Dw8Ha1wVmaPurJ45wAAKcjmQYAAAA4jdMTaH369JGvr6/NyLDq6mqbEWStERoa2uo6TSaTTCZTm88JAAAAAAAAOH0OtICAAJnNZhUXF1uVFxcXKy4urs31xsbG2tS5ffv2dtUJAAAAAAAAXIxLHuHMzMxUcnKyYmJiFBsbq7Vr16qiokKpqamSzj1aefz4ca1fv95yTHl5uSTpm2++0VdffaXy8nIFBARo8ODBkqT58+fr1ltv1bPPPqtJkybpjTfe0Ntvv609e/a4ogsAAAAAAACAJBcl0JKSknTy5EktXbpUlZWVGjJkiIqKihQZGSlJqqysVEVFhdUxN9xwg+V1aWmpNmzYoMjISH3++eeSpLi4OG3atEmPP/64nnjiCQ0cOFCFhYUaNWqUK7oAAAAAAAAASHLhIgJpaWlKS0uz+15BQYFNmWEYF61z6tSpmjp1anubBgAAAAAAALSY0+dAAwAAAAAAADoTEmgAAAAAAACAAyTQAAAAAAAAAAdIoAEAAAAAAAAOkEADAAAAAAAAHCCBBgAAAAAAADhAAg0AAAAAAABwgAQaAAAAAAAA4AAJNAAAAAAAAMABEmgAAAAAAACAAyTQAAAAAAAAAAdIoAEAAAAAAAAO+Lm7AZBSCvZZXufPGunGlgAAAAAAAOBCJNAAAOjsNiT9+/WMQve1AwAAAPBSPMIJAAAAAAAAOEACDQAAAAAAAHCABBoAAAAAAADgAAk0AAAAAAAAwAESaAAAAAAAAIADJNAAAAAAAAAAB0igAQAAAAAAAA6QQAMAAAAAAAAcIIEGAAAAAAAAOEACDQAAAAAAAHCABBoAAAAAAADggJ+7G9AZpBTsc3cTAAAAAAAA4CIk0AAA8AYbktzdAgAAAKDL4hFOAAAAAAAAwAESaAAAAAAAAIADJNAAAAAAAAAAB0igAQAAAAAAAA6QQAMAAAAAAAAcIIEGAAAAAAAAOOCyBFpubq6ioqIUGBgos9ms3bt3O4zftWuXzGazAgMDNWDAAK1Zs8YmJicnR9ddd50uueQShYeHKyMjQ99//72ruuAWKQX7LBsAAE63IenfGwAAAIAWcUkCrbCwUOnp6Vq0aJHKysoUHx+vxMREVVRU2I0/cuSIJkyYoPj4eJWVlWnhwoWaN2+eNm/ebIl57bXXtGDBAj355JM6fPiw8vPzVVhYqKysLFd0AQAAAAAAAJAk+bmi0hUrViglJUVz5syRdG7k2LZt25SXl6fs7Gyb+DVr1igiIkI5OTmSpOjoaO3fv1/Lly/XlClTJEklJSUaPXq0ZsyYIUnq37+/pk+frg8++MAVXQAAAAAAAAAkuWAEWkNDg0pLS5WQkGBVnpCQoL1799o9pqSkxCZ+/Pjx2r9/v06fPi1JuuWWW1RaWmpJmH322WcqKirSnXfe2Wxb6uvrVVdXZ7UBAAAAAAAAreH0EWg1NTVqbGxUSEiIVXlISIiqqqrsHlNVVWU3/syZM6qpqVG/fv1077336quvvtItt9wiwzB05swZ/eQnP9GCBQuabUt2draWLFnS/k4BAAAAAACgy3LZIgI+Pj5W+4Zh2JRdLL5p+c6dO/WLX/xCubm5OnDggLZs2aI//elPeuqpp5qtMysrS7W1tZbt2LFjbe0OAMDDOHuxmi1btigmJkY9evTQZZddphEjRui3v/2tK7sAAAAAwEs4fQRanz595OvrazParLq62maU2XmhoaF24/38/NS7d29J0hNPPKHk5GTLvGpDhw7Vt99+qx//+MdatGiRunWzzQWaTCaZTCZndAsA4EHOL1aTm5ur0aNH68UXX1RiYqIOHTqkiIgIm/jzi9XMnTtXr776qt59912lpaWpb9++lrk2e/XqpUWLFmnQoEEKCAjQn/70Jz344IO64oorNH78+I7uIgAAAAAP4vQRaAEBATKbzSouLrYqLy4uVlxcnN1jYmNjbeK3b9+umJgY+fv7S5K+++47mySZr6+vDMOwjFYDAHQNTReriY6OVk5OjsLDw5WXl2c3vuliNdHR0ZozZ45mz56t5cuXW2Juu+023X333YqOjtbAgQM1f/58DRs2THv27OmobgEAAADwUC55hDMzM1Mvv/yy1q1bp8OHDysjI0MVFRVKTU2VdO7RypkzZ1riU1NTdfToUWVmZurw4cNat26d8vPz9eijj1piJk6cqLy8PG3atElHjhxRcXGxnnjiCf3whz+Ur6+vK7oBAPBArlqspinDMPTXv/5VH3/8sW699dZm28JiNQAAAEDX4PRHOCUpKSlJJ0+e1NKlS1VZWakhQ4aoqKhIkZGRkqTKykpVVFRY4qOiolRUVKSMjAytXr1aYWFhWrlypeWxGkl6/PHH5ePjo8cff1zHjx9X3759NXHiRP3iF79wRRcAAB7KVYvVSFJtba2uvPJK1dfXy9fXV7m5uRo3blyzbWGxGgAAAKBrcEkCTZLS0tKUlpZm972CggKbsjFjxujAgQPN1ufn56cnn3xSTz75pLOaCADwYs5erEaSunfvrvLycn3zzTf661//qszMTA0YMEC33Xab3TqzsrKUmZlp2a+rq1N4eHhruwIAAADAw7ksgQYAgCu4arEaSerWrZuuvvpqSdKIESN0+PBhZWdnN5tAY7EaAAAAoGtwyRxoAAC4iqsWq7HHMAzV19e3v9EAAAAAvBoj0AAAXiczM1PJycmKiYlRbGys1q5da7NYzfHjx7V+/XpJ5xarWbVqlTIzMzV37lyVlJQoPz9fGzdutNSZnZ2tmJgYDRw4UA0NDSoqKtL69eubXdkTAAAAQNdBAg0A4HVcsVjNt99+q7S0NH3xxRe65JJLNGjQIL366qtKSkrq8P4BAAAA8Cw+xvlZlLuAuro6BQcHq7a2VkFBQU6rN6Vgn9Pqaip/1kiX1AsAzuKqz1Vv5dLrscEFibwZhc6vEwCciPsMAMBTMAINAICu6sKkHAk1AAAAwC4WEQAAAAAAAAAcIIEGAAAAAAAAOEACDQAAAAAAAHCAOdA8WNPFCVhQAAAAAAAAwD0YgQYAAAAAAAA4QAINAAAAAAAAcIAEGgAAAAAAAOAACTQAAAAAAADAARJoAAAAAAAAgAOswgkAAM7ZkPTv1zMK3dcOAAAAwMMwAg0AAAAAAABwgAQaAAAAAAAA4AAJNAAAAAAAAMABEmgAAAAAAACAAyTQAAAAAAAAAAdIoAEAAAAAAAAO+Lm7AQAAwLXKj31teT0ivIfb2gEAAAB4K0agAQAAAAAAAA4wAg0AAEi6YKSa21oBAAAAeB4SaAAAdCFNk2SOpBTss7zOnzXSRa0BAAAAvAOPcAIAAAAAAAAOMALNSzASAADgLtyDAAAA0NWRQAMAoBNq6aOaAAAAAC6OBBoAAGgxRqMBAACgK2IONAAAAAAAAMABRqABAAAbj5x43PL6hZCn3dgSAAAAwP1IoAEAAIdIpgEAAKCrc9kjnLm5uYqKilJgYKDMZrN2797tMH7Xrl0ym80KDAzUgAEDtGbNGpuYr7/+Wg899JD69eunwMBARUdHq6ioyFVdAAAAAAAAAFwzAq2wsFDp6enKzc3V6NGj9eKLLyoxMVGHDh1SRESETfyRI0c0YcIEzZ07V6+++qreffddpaWlqW/fvpoyZYokqaGhQePGjdMVV1yh119/XVdddZWOHTum7t27u6ILAADgIlhQAAAAAF2FSxJoK1asUEpKiubMmSNJysnJ0bZt25SXl6fs7Gyb+DVr1igiIkI5OTmSpOjoaO3fv1/Lly+3JNDWrVunf/zjH9q7d6/8/f0lSZGRka5oPgAAAAAAAGDh9Ec4GxoaVFpaqoSEBKvyhIQE7d271+4xJSUlNvHjx4/X/v37dfr0aUnSm2++qdjYWD300EMKCQnRkCFD9Mwzz6ixsbHZttTX16uurs5qAwAAAAAAAFrD6Qm0mpoaNTY2KiQkxKo8JCREVVVVdo+pqqqyG3/mzBnV1NRIkj777DO9/vrramxsVFFRkR5//HH96le/0i9+8Ytm25Kdna3g4GDLFh4e3s7eAQAAAAAAoKtx2SqcPj4+VvuGYdiUXSy+afnZs2d1xRVXaO3atfL19ZXZbNaXX36p5557Tv/5n/9pt86srCxlZmZa9uvq6kiiAQA6rfJjX7u7CQAAAECn5PQEWp8+feTr62sz2qy6utpmlNl5oaGhduP9/PzUu3dvSVK/fv3k7+8vX19fS0x0dLSqqqrU0NCggIAAm3pNJpNMJlN7uwQAAC6CBQUAAADQmTn9Ec6AgACZzWYVFxdblRcXFysuLs7uMbGxsTbx27dvV0xMjGXBgNGjR+vvf/+7zp49a4n55JNP1K9fP7vJMwAAAAAAAMAZnJ5Ak6TMzEy9/PLLWrdunQ4fPqyMjAxVVFQoNTVV0rlHK2fOnGmJT01N1dGjR5WZmanDhw9r3bp1ys/P16OPPmqJ+clPfqKTJ09q/vz5+uSTT/TnP/9ZzzzzjB566CFXdAEAAAAAAACQ5KI50JKSknTy5EktXbpUlZWVGjJkiIqKihQZGSlJqqysVEVFhSU+KipKRUVFysjI0OrVqxUWFqaVK1dqypQplpjw8HBt375dGRkZGjZsmK688krNnz9fjz32mCu6AAAAAAAAAEhy4SICaWlpSktLs/teQUGBTdmYMWN04MABh3XGxsbqvffec0bzAAAAAAAAgBZxySOcAAAAAAAAQGdBAg0AAAAAAABwwGWPcHZ2KQX73N0EAAAAAAAAdABGoAEAAAAAAAAOMALNCzUd/ZY/a6QbWwIAcLfyY1936PkeOfG45fULIU/bjeE+BQAAgM6GEWgAAAAAAACAA4xAAwDAU21IcncLAAAAAIgRaAAAL5Wbm6uoqCgFBgbKbDZr9+7dDuN37dols9mswMBADRgwQGvWrLF6/6WXXlJ8fLx69uypnj17auzYsfrggw9c2QUAAAAAXoIEGgDA6xQWFio9PV2LFi1SWVmZ4uPjlZiYqIqKCrvxR44c0YQJExQfH6+ysjItXLhQ8+bN0+bNmy0xO3fu1PTp07Vjxw6VlJQoIiJCCQkJOn78eEd1CwAAAICH8jEMw3B3IzpKXV2dgoODVVtbq6CgoHbV1XSCZHdicmYA7uTMz9XWGDVqlG688Ubl5eVZyqKjozV58mRlZ2fbxD/22GN68803dfjwYUtZamqqPvzwQ5WUlNg9R2Njo3r27KlVq1Zp5syZLWqX069HCx7h7OhFBJpqbhGB5nDPAtBa7rrPAABwIeZA60AtWbkMAOBYQ0ODSktLtWDBAqvyhIQE7d271+4xJSUlSkhIsCobP3688vPzdfr0afn7+9sc89133+n06dPq1atXs22pr69XfX29Zb+urq41XQEAAADgJXiEEwDgVWpqatTY2KiQkBCr8pCQEFVVVdk9pqqqym78mTNnVFNTY/eYBQsW6Morr9TYsWObbUt2draCg4MtW3h4eCt7AwAAAMAbMALNyZqOMpMYaQYAruLj42O1bxiGTdnF4u2VS9KyZcu0ceNG7dy5U4GBgc3WmZWVpczMTMt+XV0dSTQAAACgEyKBBgDwKn369JGvr6/NaLPq6mqbUWbnhYaG2o338/NT7969rcqXL1+uZ555Rm+//baGDRvmsC0mk0kmk6kNvQAAAADgTXiEEwDgVQICAmQ2m1VcXGxVXlxcrLi4OLvHxMbG2sRv375dMTExVvOfPffcc3rqqaf01ltvKSYmxvmNBwAAAOCVGIHmYhc+0gkAaL/MzEwlJycrJiZGsbGxWrt2rSoqKpSamirp3KOVx48f1/r16yWdW3Fz1apVyszM1Ny5c1VSUqL8/Hxt3LjRUueyZcv0xBNPaMOGDerfv79lxNrll1+uyy+/vOM7CQAAAMBjkEADAHidpKQknTx5UkuXLlVlZaWGDBmioqIiRUZGSpIqKytVUVFhiY+KilJRUZEyMjK0evVqhYWFaeXKlZoyZYolJjc3Vw0NDZo6darVuZ588kktXry4Q/oFAAAAwDORQHOTpiPTWGgAAFovLS1NaWlpdt8rKCiwKRszZowOHDjQbH2ff/65k1qG5qQU7LO8zp810o0tAQAAAFqHOdAAAAAAAAAAB0igAQAAAAAAAA7wCKeXa/o4jMQjMQAAAAAAAM7GCDQAAAAAAADAAUagAQDgZcqPfe3uJkhiQRwAAAB0HYxAAwAAAAAAABwggQYAAAAAAAA4QAINAAAAAAAAcIAEGgAAAAAAAOAACTQAAAAAAADAARJoAAAAAAAAgAN+7m4AAADoelIK9lnt588a6aaWAAAAABdHAs0JHjnxuLubAAAAAAAAABchgeYBmibgXgh52o0tAQAAAAAAwIWYAw0AAAAAAABwwGUJtNzcXEVFRSkwMFBms1m7d+92GL9r1y6ZzWYFBgZqwIABWrNmTbOxmzZtko+PjyZPnuzkVgMAAAAAAADWXJJAKywsVHp6uhYtWqSysjLFx8crMTFRFRUVduOPHDmiCRMmKD4+XmVlZVq4cKHmzZunzZs328QePXpUjz76qOLj413RdAAAAAAAAMCKSxJoK1asUEpKiubMmaPo6Gjl5OQoPDxceXl5duPXrFmjiIgI5eTkKDo6WnPmzNHs2bO1fPlyq7jGxkbdd999WrJkiQYMGOCKpnu9lIJ9lg0AAAAAAADt5/RFBBoaGlRaWqoFCxZYlSckJGjv3r12jykpKVFCQoJV2fjx45Wfn6/Tp0/L399fkrR06VL17dtXKSkpF30kVJLq6+tVX19v2a+rq2ttdzocCwoAALwd9zIAAAB0Nk4fgVZTU6PGxkaFhIRYlYeEhKiqqsruMVVVVXbjz5w5o5qaGknSu+++q/z8fL300kstbkt2draCg4MtW3h4eCt7AwAAAAAAgK7OZYsI+Pj4WO0bhmFTdrH48+WnTp3S/fffr5deekl9+vRpcRuysrJUW1tr2Y4dO9aKHgAAAAAAAAAueISzT58+8vX1tRltVl1dbTPK7LzQ0FC78X5+furdu7cOHjyozz//XBMnTrS8f/bsWUmSn5+fPv74Yw0cONCmXpPJJJPJ1N4uAQDgduXHvnZ3E1yq6dyd+bNGurElAAAAgC2nj0ALCAiQ2WxWcXGxVXlxcbHi4uLsHhMbG2sTv337dsXExMjf31+DBg3SRx99pPLycsv2wx/+UP/xH/+h8vJyHs0EAAAAAACAyzh9BJokZWZmKjk5WTExMYqNjdXatWtVUVGh1NRUSecerTx+/LjWr18vSUpNTdWqVauUmZmpuXPnqqSkRPn5+dq4caMkKTAwUEOGDLE6R48ePSTJphwAAHS8pgsHAAAAAJ2NSxJoSUlJOnnypJYuXarKykoNGTJERUVFioyMlCRVVlaqoqLCEh8VFaWioiJlZGRo9erVCgsL08qVKzVlyhRXNM9rsIoZAAAAAACA+7kkgSZJaWlpSktLs/teQUGBTdmYMWN04MCBFtdvrw4AAAAAAADA2VyWQINzMRoNAAAAAADAPZy+iAAAAAAAAADQmZBAAwAAAAAAABzgEU4AAOBRUgr2WV7nzxrpxpYAAAAA55BA68T4AgIAAAAAANB+JNC8EAsKAAAAAAAAdBwSaAAAwGX40QcAAACdAYsIAAAAAAAAAA6QQAMAAAAAAAAcIIEGAAAAAAAAOEACDQAAAAAAAHCARQQAAIDHSinYZ3mdP2ukG1sCAACArowRaAAAAAAAAIADJNAAAAAAAAAAB0igAQAAAAAAAA4wBxoAAB6q/NjX7m4CAAAAAJFA6zKYhBkAAAAAAKBteIQTAAAAAAAAcIARaAAAwCswmhoAAADuwgg0AAAAAAAAwAESaF7ukROPW20A0FXk5uYqKipKgYGBMpvN2r17t8P4Xbt2yWw2KzAwUAMGDNCaNWus3j948KCmTJmi/v37y8fHRzk5OS5sPQAAAABvQgINAOB1CgsLlZ6erkWLFqmsrEzx8fFKTExURUWF3fgjR45owoQJio+PV1lZmRYuXKh58+Zp8+bNlpjvvvtOAwYM0C9/+UuFhoZ2VFe6FH7wAQAAgLcigQYA8DorVqxQSkqK5syZo+joaOXk5Cg8PFx5eXl249esWaOIiAjl5OQoOjpac+bM0ezZs7V8+XJLzMiRI/Xcc8/p3nvvlclk6qiuAAAAAPACLCLQRt786zmTMAPwZg0NDSotLdWCBQusyhMSErR37167x5SUlCghIcGqbPz48crPz9fp06fl7+/fprbU19ervr7esl9XV9emetB63MsAAADQkUigdTJNE3svhDztxpYAgGvU1NSosbFRISEhVuUhISGqqqqye0xVVZXd+DNnzqimpkb9+vVrU1uys7O1ZMmSNh0LAAAAwHvwCCcAwCv5+PhY7RuGYVN2sXh75a2RlZWl2tpay3bs2LE21wUAAADAczECDQDgVfr06SNfX1+b0WbV1dU2o8zOCw0NtRvv5+en3r17t7ktJpOJ+dIAAACALoARaAAArxIQECCz2azi4mKr8uLiYsXFxdk9JjY21iZ++/btiomJafP8ZwAAAAC6DkagAQC8TmZmppKTkxUTE6PY2FitXbtWFRUVSk1NlXTu0crjx49r/fr1kqTU1FStWrVKmZmZmjt3rkpKSpSfn6+NGzda6mxoaNChQ4csr48fP67y8nJdfvnluvrqqzu+k53chYvxMG8nAAAAPBkJNACA10lKStLJkye1dOlSVVZWasiQISoqKlJkZKQkqbKyUhUVFZb4qKgoFRUVKSMjQ6tXr1ZYWJhWrlypKVOmWGK+/PJL3XDDDZb95cuXa/ny5RozZox27tzZYX0DAAAA4HlIoAEAvFJaWprS0tLsvldQUGBTNmbMGB04cKDZ+vr3729ZWADeJaVgn+V1/qyRbmwJAAAAOivmQAMAAAAAAAAcYARaJ9Z0fpnm5pbhV3sAAAAAAADHXDYCLTc3V1FRUQoMDJTZbNbu3bsdxu/atUtms1mBgYEaMGCA1qxZY/X+Sy+9pPj4ePXs2VM9e/bU2LFj9cEHH7iq+QAAoAM9cuJxywYAAAB4Gpck0AoLC5Wenq5FixaprKxM8fHxSkxMtJrQuakjR45owoQJio+PV1lZmRYuXKh58+Zp8+bNlpidO3dq+vTp2rFjh0pKShQREaGEhAQdP37cFV0AAABeKKVgn2UDAAAAnMUlj3CuWLFCKSkpmjNnjiQpJydH27ZtU15enrKzs23i16xZo4iICOXk5EiSoqOjtX//fi1fvtyyQtprr71mdcxLL72k119/XX/96181c+ZMV3QDAAC4WUumIwAAAABczekj0BoaGlRaWqqEhASr8oSEBO3du9fuMSUlJTbx48eP1/79+3X69Gm7x3z33Xc6ffq0evXq1Wxb6uvrVVdXZ7UBAAAAAAAAreH0EWg1NTVqbGxUSEiIVXlISIiqqqrsHlNVVWU3/syZM6qpqVG/fv1sjlmwYIGuvPJKjR07ttm2ZGdna8mSJW3oRefDL/gAAAAAAABt47JFBHx8fKz2DcOwKbtYvL1ySVq2bJk2btyoLVu2KDAwsNk6s7KyVFtba9mOHTvWmi50PRuS/r0BAAAAAABAkgtGoPXp00e+vr42o82qq6ttRpmdFxoaajfez89PvXv3tipfvny5nnnmGb399tsaNmyYw7aYTCaZTKY29KJrKj/2teX1CLe1AgC6MH7AAAAAADyS0xNoAQEBMpvNKi4u1t13320pLy4u1qRJk+weExsbqz/+8Y9WZdu3b1dMTIz8/f0tZc8995yefvppbdu2TTExMc5uOgAA8ABNpx0AAAAAPIFLVuHMzMxUcnKyYmJiFBsbq7Vr16qiokKpqamSzj1aefz4ca1fv16SlJqaqlWrVikzM1Nz585VSUmJ8vPztXHjRkudy5Yt0xNPPKENGzaof//+lhFrl19+uS6//HJXdMNGSsE+y+tHOuSMAACgrZret/NnjXRjSwAAAODtXJJAS0pK0smTJ7V06VJVVlZqyJAhKioqUmRkpCSpsrJSFRUVlvioqCgVFRUpIyNDq1evVlhYmFauXKkpU6ZYYnJzc9XQ0KCpU6danevJJ5/U4sWLXdENAAAAAAAAwDUJNElKS0tTWlqa3fcKCv5/e/cfW1V9/3H8dbW3FQgUAfvjDui6RoOjiNBuDFAwuFU7GagEy2SCm2u+nYDUugzcJOCGQ2dmjAM6WKrTQFb+GDgWcLNE6OyooWmpw2KwG5Uy1tLApFSRttDP9w/Tu97eHz1t773n3PJ8JE3az/3ce9/37bnn4Ot+zrm/9xubO3euampqgj7exx9/HKbKYEnP6/A8vMu+OgAAAAAAAGwWsQANAADAKXqezilxSicAAAD6hwDtGsTFmQEAsajn8es3yRttrAQAAADXGgI0BFR7+oL399ttqwIAAAAAAMB+BGjoG9dDAwDECFapAQAAIBII0AAAQMwZbFDW85poXA8NAAAAfbnO7gIAAAAAAAAAJ2MFGiKD0z4BAAAAAMAQQYCGPoX8QgGCMgAIm577WwAAAADOQYAGAACuaVwPDQAAAH0hQEPksUoNAAAAAADEMAI09EvtC/f4/H37hNH2FDIQBHkAAAAAAGAACNAAhBdBJYAYxumcAAAACIQADeHTMzix87kJbQAAAAAAQBgRoAEAAATAajQAAAB0I0DDoNSevuD93dL10FgpNjTZufoQofGeAwAAAIBBI0ADom2oBBpOCc2c0k+n1AEAAAAACDsCNIRNv1ej9WQlfOgd2EQ6pBjI8wV7HU4Jm4a6aIdYTvnvGu33BnAN4nROAACAaxsBGpyHlTyRE8u9tTMci7VeAQAAAADCigAN9rGyescpK3xCCVaj02sPVV+4AqNQIVSw53diWNXfMC3UijCnBHNOqQMIg1Vnnwnb/X+TvHGw5QAAAGAIIkBDRAzqdE6rBhNQOTE8iIXT8JweCsYyK4GiE7dbwMEiFYxxOicAAMC1hwCtHwb7CTdsEM7Ax4nX13JKHbHM6aHUQPo/1P+bAWHAMR0AAAD9QYAG2GmwQcdAvnzBLk6pY6ggWAP6JVKBGavRAAAArg0EaIi4qJzOORhOX4GEwbMaHBEwARgEwjQAAIChiwANUeX4MM0qJwYt4QwCnfj6+msovAYAUWflumlW5vQM0yQCNQAAgFhHgAb0NFRCl6HyOoKJtdcXq9/UCgAAAACQRIAGG0VsNRqhBCKJ7Qu4ZoTzummc3gkAABDbCNDgCEPm1E4MHtekAzDEEaYBAADEHgI0OA5hGrxY7QUAAAAAcAACNDgaYRoAYCjr/WUD3ViZBgAA4CwEaIgZPcM0iUANADB0cZonAACAsxCgIWb1DtS6EawBAIYSwjQAAAD7EaBhyOG0TwDAUNLz20Af+/3GgHMI1gAAACKLAA1DWrBVasEQuAEA+qNnuPWb5I0Bx0PpeZ/B6H0tNQI1AACA8IpYgLZ161a9+OKLampq0uTJk/Xyyy/rzjvvDDq/vLxcRUVFqqurk8fj0U9+8hMVFBT4zPnjH/+odevW6V//+pcyMjL03HPP6YEHHojUS8A1qL+Bm0ToBtiF4wycxmpoZuX+/Q3Wej93sJVqPRGyAQAAWBeRAG3Xrl0qLCzU1q1bNXv2bG3btk25ubk6fvy4Jk6c6De/oaFB3/72t5Wfn68dO3bo73//ux5//HHddNNNWrRokSSpsrJSeXl5+sUvfqEHHnhAe/bs0UMPPaSKigrNmDEjEi8DsMRK6NYzZOPabcDgcZwBBh/YBfsG0J4I2QAAAL7gMsaYcD/ojBkzNH36dBUXF3vHbr31Vt1///3atGmT3/w1a9Zo7969+vDDD71jBQUFev/991VZWSlJysvL08WLF/XWW29559x777268cYb9Yc//MFSXRcvXlRiYqJaW1s1atSofr+u2hfu6fd9gKGKwG8IeXjXgO862P3qQHGcAawLtpptMCverCKAw2DZdZwBAKC3sK9A6+joUHV1tdauXesznpOTo8OHDwe8T2VlpXJycnzG7rnnHpWUlKizs1Nut1uVlZV68skn/ea8/PLLQWtpb29Xe3u79+/W1lZJXxyIB+LTy1cGdD9gKKqoP2d3CQiT2wa4T5T+tz+NwGcxQXGcAfqn4/NPA4733N6+f2ptwDnbkv4Xsv1fy8aA4731nPdIcf9WyQV7DqvPvWVpVsDxFTur+5wDZ7LjOAMAQCBhD9DOnTunq1evKjk52Wc8OTlZzc3NAe/T3NwccP6VK1d07tw5paamBp0T7DEladOmTXr22Wf9xidMmGD15QDA0LchcdAP0dbWpsTEwT+OFRxngP56J+Dojn7ed0eQ8dCPG3xef+5r+bkft/AcFubAeaJ5nAEAIJCIfYmAy+Xy+dsY4zfW1/ze4/19zKefflpFRUXev7u6uvTf//5XY8eODXm/QC5evKgJEybo9OnTLB8fJHoZPvQyfOjlwBhj1NbWJo/HE/Xn5jhjv1irmXojK9bqlWKv5muxXjuPMwAA9BT2AG3cuHG6/vrr/T6xb2lp8ftkv1tKSkrA+XFxcRo7dmzIOcEeU5ISEhKUkJDgMzZ69GirLyWgUaNGxcQ/WGIBvQwfehk+9LL/or0igOOM88RazdQbWbFWrxR7NV9r9bLyDADgBNeF+wHj4+OVlZWlsrIyn/GysjLNmjUr4H1mzpzpN//tt99Wdna23G53yDnBHhMAMDRxnAEAAAAQbRE5hbOoqEiPPPKIsrOzNXPmTG3fvl2NjY0qKCiQ9MUpL2fOnNEbb7wh6YtvQtu8ebOKioqUn5+vyspKlZSU+Hzr2erVqzVnzhy98MILWrhwof70pz/pwIEDqqioiMRLAAA4GMcZAAAAANEUkQAtLy9P58+f189//nM1NTUpMzNT+/fvV1pamiSpqalJjY2N3vnp6enav3+/nnzySW3ZskUej0evvPKKFi1a5J0za9YslZaW6plnntG6deuUkZGhXbt2acaMGZF4CX4SEhK0fv16v1N10H/0MnzoZfjQy9jCccYZYq1m6o2sWKtXir2aqRcAAPu4DN8JDQAAAAAAAAQV9mugAQAAAAAAAEMJARoAAAAAAAAQAgEaAAAAAAAAEAIBGgAAAAAAABACAZoFW7duVXp6um644QZlZWXp3Xfftbskx9u0aZO+9rWvaeTIkUpKStL999+vEydO+MwxxmjDhg3yeDwaNmyY7rrrLtXV1dlUcezYtGmTXC6XCgsLvWP00rozZ87oe9/7nsaOHavhw4fr9ttvV3V1tfd2egm7OPVYY2V//uijj8rlcvn8fOMb37Cl3g0bNvjVkpKS4r3dae/xL3/5y371ulwurVixQpIzevu3v/1N3/nOd+TxeORyufTmm2/63G6lp+3t7Vq1apXGjRunESNGaMGCBfr3v/8d9Xo7Ozu1Zs0aTZkyRSNGjJDH49GyZcv0n//8x+cx7rrrLr++L1myJOr1Sta2gWj210rNgbZpl8ulF1980Tsnmj0GACAcCND6sGvXLhUWFupnP/uZjh49qjvvvFO5ublqbGy0uzRHKy8v14oVK/Tee++prKxMV65cUU5Ojj777DPvnF/96ld66aWXtHnzZlVVVSklJUXf+ta31NbWZmPlzlZVVaXt27frtttu8xmnl9Z88sknmj17ttxut9566y0dP35cv/71rzV69GjvHHoJOzj5WGNlfy5J9957r5qamrw/+/fvt6liafLkyT61HDt2zHub097jVVVVPrWWlZVJkhYvXuydY3dvP/vsM02dOlWbN28OeLuVnhYWFmrPnj0qLS1VRUWFPv30U82fP19Xr16Nar2XLl1STU2N1q1bp5qaGu3evVsfffSRFixY4Dc3Pz/fp+/btm0Le6191dutr20gmv21UnPPWpuamvTqq6/K5XJp0aJFPvOi1WMAAMLCIKSvf/3rpqCgwGds0qRJZu3atTZVFJtaWlqMJFNeXm6MMaarq8ukpKSY559/3jvn8uXLJjEx0fz2t7+1q0xHa2trMzfffLMpKyszc+fONatXrzbG0Mv+WLNmjbnjjjuC3k4vYZdYOtb03p8bY8zy5cvNwoUL7Suqh/Xr15upU6cGvC0W3uOrV682GRkZpquryxjjrN4aY4wks2fPHu/fVnp64cIF43a7TWlpqXfOmTNnzHXXXWf+8pe/RLXeQI4cOWIkmVOnTnnHeh5noylQvX1tA3b21xhrPV64cKGZN2+ez5hdPQYAYKBYgRZCR0eHqqurlZOT4zOek5Ojw4cP21RVbGptbZUkjRkzRpLU0NCg5uZmn94mJCRo7ty59DaIFStW6L777tM3v/lNn3F6ad3evXuVnZ2txYsXKykpSdOmTdPvfvc77+30EnaItWNN7/15t0OHDikpKUm33HKL8vPz1dLSYkd5kqT6+np5PB6lp6dryZIlOnnypCTnv8c7Ojq0Y8cO/eAHP5DL5fKOO6m3vVnpaXV1tTo7O33meDweZWZmOqLvra2tcrlcPquRJWnnzp0aN26cJk+erB//+Me2rkQOtQ04vb9nz57Vvn379Nhjj/nd5qQeAwDQlzi7C3Cyc+fO6erVq0pOTvYZT05OVnNzs01VxR5jjIqKinTHHXcoMzNTkrz9C9TbU6dORb1GpystLVVNTY2qqqr8bqOX1p08eVLFxcUqKirST3/6Ux05ckRPPPGEEhIStGzZMnoJW8TSsSbQ/lyScnNztXjxYqWlpamhoUHr1q3TvHnzVF1drYSEhKjWOGPGDL3xxhu65ZZbdPbsWW3cuFGzZs1SXV2d49/jb775pi5cuKBHH33UO+ak3gZipafNzc2Kj4/XjTfe6DfH7m388uXLWrt2rR5++GGNGjXKO7506VKlp6crJSVFH3zwgZ5++mm9//773lNso6mvbcDJ/ZWk119/XSNHjtSDDz7oM+6kHgMAYAUBmgU9PwWWvvgfiN5jCG7lypX6xz/+oYqKCr/b6G3fTp8+rdWrV+vtt9/WDTfcEHQevexbV1eXsrOz9ctf/lKSNG3aNNXV1am4uFjLli3zzqOXsEMsbHfB9ud5eXne3zMzM5Wdna20tDTt27fP73+aIy03N9f7+5QpUzRz5kxlZGTo9ddf91543am9LikpUW5urjwej3fMSb0NZSA9tbvvnZ2dWrJkibq6urR161af2/Lz872/Z2Zm6uabb1Z2drZqamo0ffr0qNY50G3A7v52e/XVV7V06VK/f8M4qccAAFjBKZwhjBs3Ttdff73fp3ctLS1+n7QisFWrVmnv3r06ePCgxo8f7x3v/kY0etu36upqtbS0KCsrS3FxcYqLi1N5ebleeeUVxcXFeftFL/uWmpqqr371qz5jt956q/dC7WyXsEOsHGuC7c8DSU1NVVpamurr66NUXXAjRozQlClTVF9f7+j3+KlTp3TgwAH98Ic/DDnPSb2VrO03U1JS1NHRoU8++STonGjr7OzUQw89pIaGBpWVlfmsPgtk+vTpcrvdjuh7723Aif3t9u677+rEiRN9bteSs3oMAEAgBGghxMfHKysry28peVlZmWbNmmVTVbHBGKOVK1dq9+7deuedd5Senu5ze/eS/Z697ejoUHl5Ob3t5e6779axY8dUW1vr/cnOztbSpUtVW1urr3zlK/TSotmzZ+vEiRM+Yx999JHS0tIksV3CHk4/1vS1Pw/k/PnzOn36tFJTU6NQYWjt7e368MMPlZqa6uj3+GuvvaakpCTdd999Iec5qbeStf1mVlaW3G63z5ympiZ98MEHtvS9Ozyrr6/XgQMHNHbs2D7vU1dXp87OTkf0vfc24LT+9lRSUqKsrCxNnTq1z7lO6jEAAAHZ8tUFMaS0tNS43W5TUlJijh8/bgoLC82IESPMxx9/bHdpjvajH/3IJCYmmkOHDpmmpibvz6VLl7xznn/+eZOYmGh2795tjh07Zr773e+a1NRUc/HiRRsrjw29v7mKXlpz5MgRExcXZ5577jlTX19vdu7caYYPH2527NjhnUMvYQcnH2v62p+3tbWZp556yhw+fNg0NDSYgwcPmpkzZ5ovfelLtrxvnnrqKXPo0CFz8uRJ895775n58+ebkSNHenvpxPf41atXzcSJE82aNWt8xp3S27a2NnP06FFz9OhRI8m89NJL5ujRo95vrbTS04KCAjN+/Hhz4MABU1NTY+bNm2emTp1qrly5EtV6Ozs7zYIFC8z48eNNbW2tzzbd3t5ujDHmn//8p3n22WdNVVWVaWhoMPv27TOTJk0y06ZNi3q9VreBaPa3r5q7tba2muHDh5vi4mK/+0e7xwAAhAMBmgVbtmwxaWlpJj4+3kyfPt2Ul5fbXZLjSQr489prr3nndHV1mfXr15uUlBSTkJBg5syZY44dO2Zf0TGkd4BGL63785//bDIzM01CQoKZNGmS2b59u8/t9BJ2ceqxpq/9+aVLl0xOTo656aabjNvtNhMnTjTLly83jY2NttSbl5dnUlNTjdvtNh6Pxzz44IOmrq7Oe7sT3+N//etfjSRz4sQJn3Gn9PbgwYMBt4Hly5cbY6z19PPPPzcrV640Y8aMMcOGDTPz58+P2OsIVW9DQ0PQbfrgwYPGGGMaGxvNnDlzzJgxY0x8fLzJyMgwTzzxhDl//nzU67W6DUSzv33V3G3btm1m2LBh5sKFC373j3aPAQAIB5cxxkRocRsAAAAAAAAQ87gGGgAAAAAAABACARoAAAAAAAAQAgEaAAAAAAAAEAIBGgAAAAAAABACARoAAAAAAAAQAgEaAAAAAAAAEAIBGgAAAAAAABACARoAAAAAAAAQAgEaAAAAAAAAEAIBGgAAAAAAABACARoAAAAAAAAQAgEaAAAAAAAAEML/AxKAdnDNjHhfAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -432,10 +432,10 @@ "start_time": "2023-11-09T18:28:00.206358826Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:34:30.552431Z", - "iopub.status.busy": "2023-11-09T20:34:30.551943Z", - "iopub.status.idle": "2023-11-09T20:34:39.701321Z", - "shell.execute_reply": "2023-11-09T20:34:39.700601Z" + "iopub.execute_input": "2023-11-09T22:23:49.717959Z", + "iopub.status.busy": "2023-11-09T22:23:49.717802Z", + "iopub.status.idle": "2023-11-09T22:23:55.586894Z", + "shell.execute_reply": "2023-11-09T22:23:55.586398Z" } }, "outputs": [ @@ -443,28 +443,28 @@ "name": "stdout", "output_type": "stream", "text": [ - "KS over hSPD = 0.4183458917059325\n", - "KS over pt_b = 0.11458581625768172\n" + "KS over hSPD = 0.40485593940667297\n", + "KS over pt_b = 0.11630298487102164\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "KS over pt_phi = 0.26841115796356757\n" + "KS over pt_phi = 0.27716375657790304\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "KS over vchi2_b = 0.3392269149550772\n", - "KS over mu_pt_sum = 0.11458581625768172\n" + "KS over vchi2_b = 0.3427841068127371\n", + "KS over mu_pt_sum = 0.11630298487102164\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNAAAAJbCAYAAAAllWnEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACSy0lEQVR4nOzdf1zV9f3///uRH+dUS8wfgRQguvJHqLWDKRjZ+oHDZr90YpZloRvDVGBtidgntRbZnJEmkIYxlz/YUre2sZQ2JU0qRWi905V7p2IGMdhbsFog+Pr+4dcTx3M48vsc4Ha9XF6XyznP83g9X4/XS329PI/zfL5eJsMwDAEAAAAAAABwqpe7EwAAAAAAAAA8GQU0AAAAAAAAwAUKaAAAAAAAAIALFNAAAAAAAAAAFyigAQAAAAAAAC5QQAMAAAAAAABcoIAGAAAAAAAAuEABDQAAAAAAAHCBAhoAAAAAAADgAgU0oB0sWbJEJpNJlZWVLuO++uorLV++XKNHj1bv3r11+eWXa8iQIZo2bZoKCgpscbt375bJZLItXl5e8vf3149+9CMdPnzYFnfs2DG7OB8fH/Xr109jxoxRUlKSPvroow7bZwCA58vIyFBOTk6r1h00aJB++MMftm9CAIAupy3XkuY6//3n9ddfv2jsrFmzNGjQoA7NB3CGAhrQSRoaGhQdHa1f/vKXmjp1qn7/+9/r9ddfV1JSkqqrq7Vnzx6HdZ599lkVFhZq165deuKJJ5Sfn6/x48fr5MmTdnHz5s1TYWGhCgoK9Nvf/lb33HOP3njjDY0ePVq/+tWvOmsXAQAepjO+9AAAujdPu5Y8+eST2r59u7vTQA/k7e4EgJ7i7bff1r59+7R+/Xo98sgjtvaJEyfqscce09mzZx3WueaaazRu3DhJ0s0336w+ffooLi5OOTk5Sk1NtcUFBwfb4iRp0qRJSk5O1n333adf/OIXCgsLU0xMTAfuHQAAAAB0vCFDhrg7BfRQjEAD2tEXX3yh+++/X35+fvL399ejjz6q6upqSVJVVZUkaeDAgU7X7dXr4v8czxfJjh8/ftHYSy65RNnZ2fLx8WEUGgB0M+dvHVBcXKz77rtPvXv3lp+fnx588EH9+9//lnRuCuZHH32kgoIC21T/1kx52b59u0aNGiWLxaLBgwdr1apV7bw3AAB36IxryfnbATT3WnLmzBmlpqYqMDBQvXv31u23366PP/7YLoYpnHAXCmhAO5oyZYquvfZabd26VQsXLtSmTZuUlJQkSQoPD5ePj48WLFigjRs3qqysrMX9/+tf/5IkDRgwoFnxgYGBslqt2rdvn+rr61u8PQCAZ7v33nv13e9+V6+//rqWLFmiP/zhD5o4caLOnDmj7du3a/DgwbrhhhtUWFiowsLCFk95KSkpUWJiopKSkrR9+3ZFRkZqwYIFWrFiRQftEQCgs3nStWTRokU6fvy4XnnlFa1du1ZHjhzR5MmT1dDQ0F67C7QaUziBdhQXF6ef//znkqTbb79d//rXv7R+/XplZ2dr0KBBysrK0oIFC/Tggw9KOjca7Y477tDs2bMVFRXl0N/Zs2dVX1+vM2fO6MCBA/rZz34mLy8vxcbGNjunkJAQvfvuu/rPf/6jK6+8sn12FADgEe677z49//zzkqTo6Gj5+/vrgQce0O9+9zs98MADuuSSS9S7d2+7af4t8fnnn6u4uFijR4+WJMXExKiiokJPP/20EhISdOmll7bbvgAA3MOTriUjRozQa6+9Znvv5eWladOmaf/+/a3ePtBeGIEGtKO77rrL7v2oUaP0zTffqKKiQpL06KOP6rPPPtOmTZs0f/58BQUF6bXXXtOECROcTrOMjY2Vj4+PLr30Ut18881qaGjQ66+/rlGjRjU7J8Mw2rZTAACP9cADD9i9nzZtmry9vbVr16526f+6666zfeE5b8aMGaqpqdHBgwfbZRsAAPfypGuJs+9TUvNuYQN0NEagAe2oX79+du/NZrMk6b///a+tzc/PT/fff7/uv/9+SdJHH32k22+/XampqZozZ4769Olji12+fLluvfVWeXl5qX///goKCmpxTsePH5fZbFbfvn1bsUcAAE8WEBBg997b21v9+vWz3Xezvftv3NZe2wAAuJcnXUua830KcBdGoAFudt1112n69Ok6c+aMPvnkE7vPBg8erPDwcN1www2tKp6dPHlSRUVFuummm+TtTb0cALqb8vJyu/f19fWqqqpy+ALSXv03bmuvbQAA3ItrCdA8FNCATlJVVaW6ujqnn/3zn/+UdO6m/+3lv//9r2bPnq36+nr94he/aLd+AQCeY+PGjXbvf/e736m+vl633HKLpHO/3LflV/uPPvpIH3zwgV3bpk2bdPnll+t73/teq/sFAHgOriVA8zAkBegku3bt0oIFC/TAAw8oMjJS/fr1U0VFhTZv3qw333xTDz30kK6++upW9V1aWqp3331XZ8+eVXV1tYqLi7V+/XodP35cv/71rxUdHd3OewMA8ATbtm2Tt7e37rjjDn300Ud68sknNXr0aE2bNk2SNHLkSG3ZskW5ubkaPHiwLBaLRo4c2ez+AwMDddddd2nJkiUaOHCgXnvtNeXn52v58uU8QAAAugmuJUDzUEADOsm4ceP06KOPateuXfrtb3+ryspKXXLJJRoxYoRWr16tn/70p63ue/Xq1Vq9erW8vLzUu3dvDR48WJMnT9acOXM0YsSIdtwLAIAn2bZtm5YsWaLMzEyZTCZNnjxZ6enp8vX1lSQtXbpUZWVlmjNnjk6fPq2QkBAdO3as2f1ff/31euSRR/TUU0/pyJEjCgwM1MqVK5WUlNRBewQA6GxcS4DmMRk8og8AAKBLWbJkiZYuXap///vf6t+/v7vTAQB0QZ1xLRk0aJDCwsL05z//uUP6BzoT90ADAAAAAAAAXGAKJwAAQA/S0NAgVxMQTCaTvLy8OjEjAEBXw7UEPRFTOAEAAHqQQYMG6fjx401+PmHCBO3evbvzEgIAdDlcS9ATMQINAACgB/nTn/6k2traJj+//PLLOzEbAEBXxLUEPREj0AAAAAAAAAAXWvUQgYyMDIWGhspischqtWrPnj0u4wsKCmS1WmWxWDR48GBlZWU5xGzdulUjRoyQ2WzWiBEjtH379ib7S0tLk8lkUmJiYmvSBwAAAAAAAJqtxVM4c3NzlZiYqIyMDI0fP14vv/yyYmJidOjQIQUHBzvEHz16VJMmTdKcOXP02muv6Z133lFCQoIGDBigKVOmSJIKCwsVGxurp59+Wvfee6+2b9+uadOmae/evRo7dqxdf/v379fatWs1atSoFu/s2bNn9fnnn+vyyy+XyWRq8foAAHuGYej06dMKDAxUr1482JnrDAC0L64z9rjOAED7atF1xmihG2+80YiPj7drGzZsmLFw4UKn8b/4xS+MYcOG2bX95Cc/McaNG2d7P23aNOMHP/iBXczEiRON6dOn27WdPn3auOaaa4z8/HxjwoQJxoIFC1qU+4kTJwxJLCwsLCztvJw4caJF5+PuiusMCwsLS8csXGfO4TrDwsLC0jFLc64zLRqBVldXp6KiIi1cuNCuPTo6Wvv27XO6TmFhoaKjo+3aJk6cqOzsbJ05c0Y+Pj4qLCxUUlKSQ0x6erpd29y5c3XnnXfq9ttv1zPPPHPRfGtra+1ubGj8/7d7O3HihHr37n3R9QEArtXU1CgoKIgbxf7/zh8HrjMA0D64ztjjOgMA7asl15kWFdAqKyvV0NAgf39/u3Z/f3+Vl5c7Xae8vNxpfH19vSorKzVw4MAmYxr3uWXLFh08eFD79+9vdr5paWlaunSpQ3vv3r254ABAO2IayTnnjwPXGQBoX1xnzuE6AwAdoznXmVbdSODCjg3DcLkxZ/EXtrvq88SJE1qwYIFee+01WSyWZueZkpKi6upq23LixIlmrwsAAAAAAABILRyB1r9/f3l5eTmMNquoqHAYQXZeQECA03hvb2/169fPZcz5PouKilRRUSGr1Wr7vKGhQW+//bZeeukl1dbWysvLy2HbZrNZZrO5JbsIAAAAAAAA2GnRCDRfX19ZrVbl5+fbtefn5ysyMtLpOhEREQ7xO3fuVHh4uHx8fFzGnO/ztttu04cffqiSkhLbEh4ergceeEAlJSVOi2cAAAAAAABAe2jRCDRJSk5O1syZMxUeHq6IiAitXbtWpaWlio+Pl3Ru2uTJkye1YcMGSVJ8fLxeeuklJScna86cOSosLFR2drY2b95s63PBggW6+eabtXz5ct1999364x//qLfeekt79+6VdO5mmWFhYXZ5XHbZZerXr59DOwAAAAAAANCeWlxAi42NVVVVlZYtW6aysjKFhYUpLy9PISEhkqSysjKVlpba4kNDQ5WXl6ekpCStWbNGgYGBWrVqlaZMmWKLiYyM1JYtW7R48WI9+eSTGjJkiHJzczV27Nh22EUAAAAAAACg9UzG+Tv69wA1NTXy8/NTdXU1T60BgHbAedUexwMA2hfnVXscDwBoXy05r7bqKZwAAAAAAABAT0EBDQAAAAAAAHCBAhoAAAAAAADgQosfIoCeLS5nv9377Flj3JQJAMDBpthvX8/IdV8eAICugesGADQbI9AAAAAAAAAAFyigAQAAAAAAAC4whbOHazwlk+mYAAAAAAAAjiig4aIuvO8ZAAAAAABAT8IUTgAAAAAAAMAFRqABAAAAQE/HEzkBwCVGoAEAAAAAAAAuUEADAAAAAAAAXGAKJ2x4IicAAAAAAIAjRqABAAAAAAAALlBAAwAAAAAAAFyggIYOEZez37YAAAAA3VFGRoZCQ0NlsVhktVq1Z88el/EbN27U6NGjdemll2rgwIF65JFHVFVV1UnZAgDaggIaAAAAALRQbm6uEhMTlZqaquLiYkVFRSkmJkalpaVO4/fu3auHHnpIcXFx+uijj/T73/9e+/fv1+zZszs5cwBAa1BAAwAAAIAWWrlypeLi4jR79mwNHz5c6enpCgoKUmZmptP4d999V4MGDdL8+fMVGhqqm266ST/5yU904MCBTs4cANAaFNAAAAAAoAXq6upUVFSk6Ohou/bo6Gjt27fP6TqRkZH67LPPlJeXJ8Mw9MUXX+j111/XnXfe2RkpAwDaiAIaAAAAALRAZWWlGhoa5O/vb9fu7++v8vJyp+tERkZq48aNio2Nla+vrwICAtSnTx+tXr26ye3U1taqpqbGbgEAuAcFNAAAurJNsd8uzWkHALQbk8lk994wDIe28w4dOqT58+fr//2//6eioiK9+eabOnr0qOLj45vsPy0tTX5+frYlKCioXfMHADSft7sTQPfBEzcBwEM1LqLNyHVfHgDQTfTv319eXl4Oo80qKiocRqWdl5aWpvHjx+vnP/+5JGnUqFG67LLLFBUVpWeeeUYDBw50WCclJUXJycm29zU1NRTRAMBNGIEGAPA4GRkZCg0NlcVikdVq1Z49e5qMLSsr04wZMzR06FD16tVLiYmJDjE5OTkymUwOyzfffNPq7QIAei5fX19ZrVbl5+fbtefn5ysyMtLpOl9//bV69bL/+uXl5SXp3Mg1Z8xms3r37m23AADcgwIaAMCj5ObmKjExUampqSouLlZUVJRiYmJUWlrqNL62tlYDBgxQamqqRo8e3WS/vXv3VllZmd1isVhavV0AQM+WnJysV155RevXr9fhw4eVlJSk0tJS25TMlJQUPfTQQ7b4yZMna9u2bcrMzNSnn36qd955R/Pnz9eNN96owMBAd+0GAKCZmMIJAPAoK1euVFxcnGbPni1JSk9P144dO5SZmam0tDSH+EGDBunFF1+UJK1fv77Jfk0mkwICAtptuwCAni02NlZVVVVatmyZysrKFBYWpry8PIWEhEg6N0K68Y8ws2bN0unTp/XSSy/pZz/7mfr06aNbb71Vy5cvd9cuAABagAIaAMBj1NXVqaioSAsXLrRrj46O1r59+9rU95dffqmQkBA1NDTo+uuv19NPP60bbrihTdutra1VbW2t7X2XeDoa90MDgHaTkJCghIQEp5/l5OQ4tM2bN0/z5s3r4KwAAB2BKZwAAI9RWVmphoYGhxsw+/v7O9youSWGDRumnJwcvfHGG9q8ebMsFovGjx+vI0eOtGm7PB0NAAAA6BkYgQYA8Dgmk8nuvWEYDm0tMW7cOI0bN872fvz48fre976n1atXa9WqVa3ebpd/Olrj0WgSI9IAAACAJlBAAwB4jP79+8vLy8th1FdFRYXD6LC26NWrl8aMGWMbgdba7ZrNZpnN5nbLCwAAAIBnYgonAMBj+Pr6ymq1Kj8/3649Pz9fkZGR7bYdwzBUUlKigQMHdup2AQAAAHRNjEADAHiU5ORkzZw5U+Hh4YqIiNDatWtVWlqq+Ph4SeemTZ48eVIbNmywrVNSUiLp3IMC/v3vf6ukpES+vr4aMWKEJGnp0qUaN26crrnmGtXU1GjVqlUqKSnRmjVrmr1dAAAAAD0XBTQAgEeJjY1VVVWVli1bprKyMoWFhSkvL08hISGSpLKyMpWWltqtc/5pmpJUVFSkTZs2KSQkRMeOHZMknTp1Sj/+8Y9VXl4uPz8/3XDDDXr77bd14403Nnu7AAAAAHouCmjoVHE5+22vs2eNcWMmADxZQkKCEhISnH6Wk5Pj0GYYhsv+XnjhBb3wwgtt2i4AAACAnot7oAEAAAAAAAAuMAINbdJ4RBkAAAAAAEB3RAGtG2O6JAAAAAAAQNsxhRMAAAAAAABwgQIaAAAAAAAA4AIFNAAAAAAAAMAF7oEGt+EebQAAAAAAoCtgBBoAAAAAAADgAgU0AAAAAAAAwAUKaAAAAAAAAIAL3AOth+B+YwAAAAAAAK3DCDQAAAAAAADABUagwanGI9YAAAAAAAB6MgpoAAD0ICUnTtleXx/Ux215AAAAAF0JBTQAAHqoxsU0SbreLVkAAAAAno97oAEAAAAAAAAuMAINAIBu7sKRZgAAAABaplUj0DIyMhQaGiqLxSKr1ao9e/a4jC8oKJDVapXFYtHgwYOVlZXlELN161aNGDFCZrNZI0aM0Pbt2+0+z8zM1KhRo9S7d2/17t1bERER+utf/9qa9NHJ4nL22xYAAAAAAICupsUFtNzcXCUmJio1NVXFxcWKiopSTEyMSktLncYfPXpUkyZNUlRUlIqLi7Vo0SLNnz9fW7dutcUUFhYqNjZWM2fO1AcffKCZM2dq2rRpeu+992wxV199tZ577jkdOHBABw4c0K233qq7775bH330USt2GwAAAAAAAGieFk/hXLlypeLi4jR79mxJUnp6unbs2KHMzEylpaU5xGdlZSk4OFjp6emSpOHDh+vAgQNasWKFpkyZYuvjjjvuUEpKiiQpJSVFBQUFSk9P1+bNmyVJkydPtuv3l7/8pTIzM/Xuu+/quuuua+ludBsXjurKnjXGTZkAAAAAAAB0Ty0agVZXV6eioiJFR0fbtUdHR2vfvn1O1yksLHSInzhxog4cOKAzZ864jGmqz4aGBm3ZskVfffWVIiIimsy3trZWNTU1dgsAAHCOKfcAAACAcy0agVZZWamGhgb5+/vbtfv7+6u8vNzpOuXl5U7j6+vrVVlZqYEDBzYZc2GfH374oSIiIvTNN9/oO9/5jrZv364RI0Y0mW9aWpqWLl3akl0EAKBb4MEBAAAAQPtp1VM4TSaT3XvDMBzaLhZ/YXtz+hw6dKhKSkp06tQpbd26VQ8//LAKCgqaLKKlpKQoOTnZ9r6mpkZBQUEu9qzr6w6jBhrvA1NSAQAAAACAu7WogNa/f395eXk5jAyrqKhwGEF2XkBAgNN4b29v9evXz2XMhX36+vrqu9/9riQpPDxc+/fv14svvqiXX37Z6bbNZrPMZnPzdxAAAAAAAAC4QIvugebr6yur1ar8/Hy79vz8fEVGRjpdJyIiwiF+586dCg8Pl4+Pj8uYpvo8zzAM1dbWtmQXAABdQEZGhkJDQ2WxWGS1WrVnz54mY8vKyjRjxgwNHTpUvXr1UmJiokPMunXrFBUVpSuuuEJXXHGFbr/9dr3//vt2MUuWLJHJZLJbAgIC2nvXAAAAAHRBLSqgSVJycrJeeeUVrV+/XocPH1ZSUpJKS0sVHx8v6dy0yYceesgWHx8fr+PHjys5OVmHDx/W+vXrlZ2drccff9wWs2DBAu3cuVPLly/XP//5Ty1fvlxvvfWW3ZegRYsWac+ePTp27Jg+/PBDpaamavfu3XrggQfasPsAAE+Tm5urxMREpaamqri4WFFRUYqJiVFpaanT+NraWg0YMECpqakaPXq005jdu3fr/vvv165du1RYWKjg4GBFR0fr5MmTdnHXXXedysrKbMuHH37Y7vsHAAAAoOtp8T3QYmNjVVVVpWXLlqmsrExhYWHKy8tTSEiIpHMjARp/yQkNDVVeXp6SkpK0Zs0aBQYGatWqVZoyZYotJjIyUlu2bNHixYv15JNPasiQIcrNzdXYsWNtMV988YVmzpypsrIy+fn5adSoUXrzzTd1xx13tGX/AQAeZuXKlYqLi9Ps2bMlSenp6dqxY4cyMzOVlpbmED9o0CC9+OKLkqT169c77XPjxo1279etW6fXX39df/vb3+x+9PH29u4ao842xbo7AwAAAKBHadVDBBISEpSQkOD0s5ycHIe2CRMm6ODBgy77nDp1qqZOndrk59nZ2S3KEQDQ9dTV1amoqEgLFy60a4+Ojta+ffvabTtff/21zpw5o759+9q1HzlyRIGBgTKbzRo7dqyeffZZDR48uMl+amtr7W4lUFNT0245AgAAAPAcLZ7CCQBAR6msrFRDQ4PDQ2T8/f0dHjbTFgsXLtRVV12l22+/3dY2duxYbdiwQTt27NC6detUXl6uyMhIVVVVNdlPWlqa/Pz8bEt3f9IzAAAA0FO1agQaAAAdyWQy2b03DMOhrbWef/55bd68Wbt375bFYrG1x8TE2F6PHDlSERERGjJkiH7zm98oOTnZaV8pKSl2n9XU1HSbIlpczn7b6+xZY9yYCQAAAOB+FNB6oMZfigDAk/Tv319eXl4Oo80qKiocRqW1xooVK/Tss8/qrbfe0qhRo1zGXnbZZRo5cqSOHDnSZIzZbJbZbG5zXgAAeJTG99qckeu+PADAgzCFEwDgMXx9fWW1WpWfn2/Xnp+fr8jIyDb1/atf/UpPP/203nzzTYWHh180vra2VocPH9bAgQPbtF0AAAAAXR8j0AAAHiU5OVkzZ85UeHi4IiIitHbtWpWWlio+Pl7SuWmTJ0+e1IYNG2zrlJSUSJK+/PJL/fvf/1ZJSYl8fX01YsQISeembT755JPatGmTBg0aZBvh9p3vfEff+c53JEmPP/64Jk+erODgYFVUVOiZZ55RTU2NHn744U7ce/ea98Vi2+vV/s+4MRMAAADAs1BAAwB4lNjYWFVVVWnZsmUqKytTWFiY8vLyFBISIkkqKytTaWmp3To33HCD7XVRUZE2bdqkkJAQHTt2TJKUkZGhuro6h6c9P/XUU1qyZIkk6bPPPtP999+vyspKDRgwQOPGjdO7775r2y4AAACAnosCGgDA4yQkJCghIcHpZzk5OQ5thmG47O98Ic2VLVu2NCc1j1Zy4lSH9MsDBQAAANDTcQ80AAAAAAAAwAVGoHVBPEUTAAAAAACg8zACDQAAAABaISMjQ6GhobJYLLJardqzZ4/L+NraWqWmpiokJERms1lDhgzR+vXrOylbAEBbMAINAAAAAFooNzdXiYmJysjI0Pjx4/Xyyy8rJiZGhw4dUnBwsNN1pk2bpi+++ELZ2dn67ne/q4qKCtXX13dy5gCA1qCABgAAHMz7YrHt9Wr/Z9yYCQB4ppUrVyouLk6zZ8+WJKWnp2vHjh3KzMxUWlqaQ/ybb76pgoICffrpp+rbt68kadCgQZ2ZMgCgDSigwSM0dV83nvwGAAAAT1NXV6eioiItXLjQrj06Olr79u1zus4bb7yh8PBwPf/88/rtb3+ryy67THfddZeefvppXXLJJU7Xqa2tVW1tre19TU1N++0EAKBFKKABAAAAQAtUVlaqoaFB/v7+du3+/v4qLy93us6nn36qvXv3ymKxaPv27aqsrFRCQoL+85//NHkftLS0NC1durTd8wcAtBwFNAAA0GyMDAaAb5lMJrv3hmE4tJ139uxZmUwmbdy4UX5+fpLOTQOdOnWq1qxZ43QUWkpKipKTk23va2pqFBQU1I57AABoLgpoAAAAANAC/fv3l5eXl8Nos4qKCodRaecNHDhQV111la14JknDhw+XYRj67LPPdM011zisYzabZTab2zd5AECr9HJ3AgAAAADQlfj6+spqtSo/P9+uPT8/X5GRkU7XGT9+vD7//HN9+eWXtrZPPvlEvXr10tVXX92h+QIA2o4CGgAAAAC0UHJysl555RWtX79ehw8fVlJSkkpLSxUfHy/p3PTLhx56yBY/Y8YM9evXT4888ogOHTqkt99+Wz//+c/16KOPNvkQAQCA52AKJwAAAAC0UGxsrKqqqrRs2TKVlZUpLCxMeXl5CgkJkSSVlZWptLTUFv+d73xH+fn5mjdvnsLDw9WvXz9NmzZNzzzzjLt2AQDQAhTQAADoCjbFujsDAMAFEhISlJCQ4PSznJwch7Zhw4Y5TPsEAHQNTOEEAAAAAAAAXGAEmgeLy9lve509a4wbMwEAAAAAAOi5KKB5mMZFM7SDxlOeZuS6Lw8AAAAAANBlMYUTAAAAAAAAcIERaPBo875Y3OjdDrflAQAAAAAAei4KaOiyuEccAEglJ065OwUAAACg26OABgAAWoUfMgAAANBTUEDrIni4AAAAAAAAgHvwEAEAAAAAAADABQpoAAAAAAAAgAtM4QQAAG3G/dAAAADQnTECDQDgcTIyMhQaGiqLxSKr1ao9e/Y0GVtWVqYZM2Zo6NCh6tWrlxITE53Gbd26VSNGjJDZbNaIESO0ffv2Nm0XAAAAQM9BAQ0A4FFyc3OVmJio1NRUFRcXKyoqSjExMSotLXUaX1tbqwEDBig1NVWjR492GlNYWKjY2FjNnDlTH3zwgWbOnKlp06bpvffea/V2e5J5Xyy2LQAAAEBPRAENAOBRVq5cqbi4OM2ePVvDhw9Xenq6goKClJmZ6TR+0KBBevHFF/XQQw/Jz8/PaUx6erruuOMOpaSkaNiwYUpJSdFtt92m9PT0Vm8XAAAAQM9BAQ0A4DHq6upUVFSk6Ohou/bo6Gjt27ev1f0WFhY69Dlx4kRbn63dbm1trWpqauwWAAAAAN0PDxEANsV++3pGruf0BfRAlZWVamhokL+/v127v7+/ysvLW91veXm5yz5bu920tDQtXbq01XkBAAAA6BoYgQYA8Dgmk8nuvWEYDm0d0WdLt5uSkqLq6mrbcuLEiTblCAAAAMAzMQINXUZczn53pwCgg/Xv319eXl4Oo74qKiocRoe1REBAgMs+W7tds9kss9nc6rwAAAAAdA0U0NBlXPj0t9X+z7gpEwAdxdfXV1arVfn5+br33ntt7fn5+br77rtb3W9ERITy8/OVlJRka9u5c6ciIyM7dLvdUVNP4uScDAAAgO6MAhq6hcaj07JnjXFjJgDaKjk5WTNnzlR4eLgiIiK0du1alZaWKj4+XtK5aZMnT57Uhg0bbOuUlJRIkr788kv9+9//VklJiXx9fTVixAhJ0oIFC3TzzTdr+fLluvvuu/XHP/5Rb731lvbu3dvs7QIAAADouSigAQA8SmxsrKqqqrRs2TKVlZUpLCxMeXl5CgkJkSSVlZWptLTUbp0bbrjB9rqoqEibNm1SSEiIjh07JkmKjIzUli1btHjxYj355JMaMmSIcnNzNXbs2GZvFwAAAEDPRQHNTRgxZa/xlKDmTgNqzToAuoaEhAQlJCQ4/SwnJ8ehzTCMi/Y5depUTZ06tdXbRfNxjQMAAEB3w1M4AQAAAAAAABcYgYaeaVPsxdtn5HZOLgAAAAAAwKMxAg0AAAAAAABwgRFoHqDxvWLgwRidBgAAAABAj0QBDXAninIAAAAAAHg8Cmhwm8ZP0Wzfvna0W78AAAAAAAAU0AAAQIdpfJuC7Flj3JgJAAAA0HqteohARkaGQkNDZbFYZLVatWfPHpfxBQUFslqtslgsGjx4sLKyshxitm7dqhEjRshsNmvEiBHavn273edpaWkaM2aMLr/8cl155ZW655579PHHH7cmfTRh3heLbQsAAAAAaFPstwsA9GAtLqDl5uYqMTFRqampKi4uVlRUlGJiYlRaWuo0/ujRo5o0aZKioqJUXFysRYsWaf78+dq6dastprCwULGxsZo5c6Y++OADzZw5U9OmTdN7771niykoKNDcuXP17rvvKj8/X/X19YqOjtZXX33Vit0GAAAAAAAAmqfFUzhXrlypuLg4zZ49W5KUnp6uHTt2KDMzU2lpaQ7xWVlZCg4OVnp6uiRp+PDhOnDggFasWKEpU6bY+rjjjjuUkpIiSUpJSVFBQYHS09O1efNmSdKbb75p1++rr76qK6+8UkVFRbr55ptbuhvoAI1Hrq32f+aiMQAAAAAAAF1Bi0ag1dXVqaioSNHR0Xbt0dHR2rdvn9N1CgsLHeInTpyoAwcO6MyZMy5jmupTkqqrqyVJffv2bckuAO2vOcPaGfoOAAAAAECX1aIRaJWVlWpoaJC/v79du7+/v8rLy52uU15e7jS+vr5elZWVGjhwYJMxTfVpGIaSk5N10003KSwsrMl8a2trVVtba3tfU1Pjcv86WuMbKaNzlJw4ZXt9vduyAID21fjcBgAAAKDjteopnCaTye69YRgObReLv7C9JX0+9thj+sc//qG9e/e6zDMtLU1Lly51GYO26bFTMhlJBgAtxhM5AQAA0FW1aApn//795eXl5TAyrKKiwmEE2XkBAQFO4729vdWvXz+XMc76nDdvnt544w3t2rVLV199tct8U1JSVF1dbVtOnDhx0X0EAAAAAAAAGmtRAc3X11dWq1X5+fl27fn5+YqMjHS6TkREhEP8zp07FR4eLh8fH5cxjfs0DEOPPfaYtm3bpr///e8KDQ29aL5ms1m9e/e2WwAAAAAAzVNy4pRtAYCerMVTOJOTkzVz5kyFh4crIiJCa9euVWlpqeLj4yWdG/V18uRJbdiwQZIUHx+vl156ScnJyZozZ44KCwuVnZ1te7qmJC1YsEA333yzli9frrvvvlt//OMf9dZbb9lN0Zw7d642bdqkP/7xj7r88sttI9b8/Px0ySWXtOkgAAAAAAAAAE1pcQEtNjZWVVVVWrZsmcrKyhQWFqa8vDyFhIRIksrKylRaWmqLDw0NVV5enpKSkrRmzRoFBgZq1apVmjJlii0mMjJSW7Zs0eLFi/Xkk09qyJAhys3N1dixY20xmZmZkqRbbrnFLp9XX31Vs2bNauluoBN5zH3SuG8ZAAAAAABohVY9RCAhIUEJCQlOP8vJyXFomzBhgg4ePOiyz6lTp2rq1KlNfn7+wQPoGtxaNGuvQllHFdwo5AEAAKAL4mEwAHqyVhXQAE/G/RkAoPM1/uFktf8zbswEANBW/H8aABy16CECAAAAAAAAQE/DCDS0iMfcz6wVGv+Sdn1QH7flAQAAAAAAuhZGoMHjzPtisW3p0TbFfrsAAADA42RkZCg0NFQWi0VWq1V79uxp1nrvvPOOvL29df3113dsggCAdkMBDQAAAABaKDc3V4mJiUpNTVVxcbGioqIUExOj0tJSl+tVV1froYce0m233dZJmQIA2gNTOAEAQKdr/CQ3iae5Aeh6Vq5cqbi4OM2ePVuSlJ6erh07digzM1NpaWlNrveTn/xEM2bMkJeXl/7whz90UrbtjydyAuhpGIEGdBSmYAKt1tIpMQUFBbJarbJYLBo8eLCysrLsPr/llltkMpkcljvvvNMWs2TJEofPAwICOmT/AABdW11dnYqKihQdHW3XHh0drX379jW53quvvqr//d//1VNPPdWs7dTW1qqmpsZuAQC4ByPQgO6icaFuRq778gDa6PyUmIyMDI0fP14vv/yyYmJidOjQIQUHBzvEHz16VJMmTdKcOXP02muv6Z133lFCQoIGDBigKVOmSJK2bdumuro62zpVVVUaPXq0fvSjH9n1dd111+mtt96yvffy8uqgvQQAdGWVlZVqaGiQv7+/Xbu/v7/Ky8udrnPkyBEtXLhQe/bskbd3876GpaWlaenSpW3OFwDQdhTQgK6A4hh6kJZOicnKylJwcLDS09MlScOHD9eBAwe0YsUKWwGtb9++duts2bJFl156qUMBzdvbm1FnAIBmM5lMdu8Nw3Bok6SGhgbNmDFDS5cu1bXXXtvs/lNSUpScnGx7X1NTo6CgoNYn3EGYlg+gJ2AKJwDAY7RmSkxhYaFD/MSJE3XgwAGdOXPG6TrZ2dmaPn26LrvsMrv2I0eOKDAwUKGhoZo+fbo+/fRTl/kytQYAeqb+/fvLy8vLYbRZRUWFw6g0STp9+rQOHDigxx57TN7e3vL29tayZcv0wQcfyNvbW3//+9+dbsdsNqt37952CwDAPSigAQA8RmumxJSXlzuNr6+vV2VlpUP8+++/r//5n/+xjXA7b+zYsdqwYYN27NihdevWqby8XJGRkaqqqmoy37S0NPn5+dkWTxwV4A7zvlhsWwCgO/L19ZXValV+fr5de35+viIjIx3ie/furQ8//FAlJSW2JT4+XkOHDlVJSYnGjh3bWakDAFqJKZwAAI/T3CkxruKdtUvnRp+FhYXpxhtvtGuPiYmxvR45cqQiIiI0ZMgQ/eY3v7GbPtNYV5laAwBof8nJyZo5c6bCw8MVERGhtWvXqrS0VPHx8ZLOXSNOnjypDRs2qFevXgoLC7Nb/8orr5TFYnFoBwB4JgpoAACP0dIpMZIUEBDgNN7b21v9+vWza//666+1ZcsWLVu27KK5XHbZZRo5cqSOHDnSZIzZbJbZbL5oXwCA7ic2NlZVVVVatmyZysrKFBYWpry8PIWEhEiSysrKVFpa6uYsAQDthQIaAMBjNJ4Sc++999ra8/PzdffddztdJyIiQn/605/s2nbu3Knw8HD5+PjYtf/ud79TbW2tHnzwwYvmUltbq8OHDysqKqoVe4KLcZzeucMteQBAWyQkJCghIcHpZzk5OS7XXbJkiZYsWdL+SQEAOgT3QAMAeJTk5GS98sorWr9+vQ4fPqykpCSHKTEPPfSQLT4+Pl7Hjx9XcnKyDh8+rPXr1ys7O1uPP/64Q9/Z2dm65557HEamSdLjjz+ugoICHT16VO+9956mTp2qmpoaPfzwwx23swAAAAC6BEagAQA8SkunxISGhiovL09JSUlas2aNAgMDtWrVKk2ZMsWu308++UR79+7Vzp07nW73s88+0/3336/KykoNGDBA48aN07vvvmvbrltsinXftgEAaKW4nP2219mzxrgxEwBoPxTQAAAep6VTYiZMmKCDBw+67PPaa6+1PVzAmS1btrQoR7QvvmwBgOdrPP1+tf8zbswEADofBbR21vgLgNQ9vgQ43qcGHaKjRpo07ndGbsdsAwAAAACAbox7oAEAAAAAAAAuMAKtg104Ig0AAAAAPE3JiVPuTgEAPBoFtB6O6ZldHDcYBwAAAACgw1FAAwAAAAB0CB4SA6C7oICGHq/xcPXrg/q4LQ8AAAAAAOCZKKChR+IeDwDguRitAAAAAE9DAQ3ojrg3GgAAAAAA7aaXuxMAAAAAAAAAPBkj0IBGusT90NoyuqzxujNy254LAFxE46c9r/Z/xo2ZAAAAAK3HCDQAAAAAAADABUagAQDQBfDwEwAAAMB9GIEGAAAAAAAAuMAItB6o8f1oAAAAAKClWnOPy7ic/bbX2bPGtHtOANCRGIEGAAAAAAAAuMAINAAA0ClaMwKa0QoAAADwBBTQAJyzKfbb1zNy3ZcHAAAAOk7j//MBAJqNAhqAtqP4BgAAAADoxrgHGgAAAAAAAOACI9DaQeP7swAAAAAAAKB7oYAG9FTNvf8F0zMBAAAAAD0cBbQeojVPPgMAAAAAAAAFNAAAAABAJ2t8G5zsWWPcmAkANA8FNKCZSk6csr2+PqiP2/IAAAAAAACdi6dwdmPzvlhsW4AW2RT77QK4QUZGhkJDQ2WxWGS1WrVnzx6X8QUFBbJarbJYLBo8eLCysrLsPs/JyZHJZHJYvvnmmzZtFwAAAEDPQAENQOtQZEMHyc3NVWJiolJTU1VcXKyoqCjFxMSotLTUafzRo0c1adIkRUVFqbi4WIsWLdL8+fO1detWu7jevXurrKzMbrFYLK3eLgAAAICegymcQBMaT9lEC/DUTrTRypUrFRcXp9mzZ0uS0tPTtWPHDmVmZiotLc0hPisrS8HBwUpPT5ckDR8+XAcOHNCKFSs0ZcoUW5zJZFJAQEC7bRedj/vlAAAAwF0ooAGtwP3QgI5RV1enoqIiLVy40K49Ojpa+/btc7pOYWGhoqOj7domTpyo7OxsnTlzRj4+PpKkL7/8UiEhIWpoaND111+vp59+WjfccEOrtytJtbW1qq2ttb2vqalp/s4CANBNXHjLmNX+z7gpEwDoOBTQ4BT3TQPgDpWVlWpoaJC/v79du7+/v8rLy52uU15e7jS+vr5elZWVGjhwoIYNG6acnByNHDlSNTU1evHFFzV+/Hh98MEHuuaaa1q1XUlKS0vT0qVLW7m3AAAAALoK7oEGAPA4JpPJ7r1hGA5tF4tv3D5u3Dg9+OCDGj16tKKiovS73/1O1157rVavXt2m7aakpKi6utq2nDhx4uI7BwAAAKDLYQQaAMBj9O/fX15eXg6jvioqKhxGh50XEBDgNN7b21v9+vVzuk6vXr00ZswYHTlypNXblSSz2Syz2XzR/UL7435oANB9cE4H0BUwAg0A4DF8fX1ltVqVn59v156fn6/IyEin60RERDjE79y5U+Hh4bb7n13IMAyVlJRo4MCBrd4uOs68LxbbFgAAAMATMAINAOBRkpOTNXPmTIWHhysiIkJr165VaWmp4uPjJZ2bNnny5Elt2LBBkhQfH6+XXnpJycnJmjNnjgoLC5Wdna3Nmzfb+ly6dKnGjRuna665RjU1NVq1apVKSkq0Zs2aZm8XAAAAQM/VqhFoGRkZCg0NlcVikdVq1Z49e1zGFxQUyGq1ymKxaPDgwcrKynKI2bp1q0aMGCGz2awRI0Zo+/btdp+//fbbmjx5sgIDA2UymfSHP/yhNakDaItNsd8uQAeJjY1Venq6li1bpuuvv15vv/228vLyFBISIkkqKytTaWmpLT40NFR5eXnavXu37emaq1at0pQpU2wxp06d0o9//GMNHz5c0dHROnnypN5++23deOONzd4uAAAAgJ6rxSPQcnNzlZiYqIyMDI0fP14vv/yyYmJidOjQIQUHBzvEHz16VJMmTdKcOXP02muv6Z133lFCQoIGDBhg+3JTWFio2NhYPf3007r33nu1fft2TZs2TXv37tXYsWMlSV999ZVGjx6tRx55xO5LUU/HI6MBdEcJCQlKSEhw+llOTo5D24QJE3Tw4MEm+3vhhRf0wgsvtGm76FhM1wQAAIAna3EBbeXKlYqLi9Ps2bMlSenp6dqxY4cyMzOVlpbmEJ+VlaXg4GClp6dLkoYPH64DBw5oxYoVtkJYenq67rjjDqWkpEg6Nz2noKBA6enptik4MTExiomJadVOAgAAAAAAAK3VoimcdXV1KioqUnR0tF17dHS09u3b53SdwsJCh/iJEyfqwIEDOnPmjMuYpvoEAAAAAAAAOkuLRqBVVlaqoaFB/v7+du3+/v4qLy93uk55ebnT+Pr6elVWVmrgwIFNxjTVZ3PV1taqtrbW9r6mpqZN/QEAAAAAOk5czn7b6+xZY9yYCQDYa9VDBEwmk917wzAc2i4Wf2F7S/tsjrS0NPn5+dmWoKCgNvUHAAAAAACAnqdFBbT+/fvLy8vLYWRYRUWFwwiy8wICApzGe3t7q1+/fi5jmuqzuVJSUlRdXW1bTpw40ab+AACA54nL2W9bAAAAgI7QogKar6+vrFar8vPz7drz8/MVGRnpdJ2IiAiH+J07dyo8PFw+Pj4uY5rqs7nMZrN69+5ttwAAAABAe8jIyFBoaKgsFousVqv27NnTZOy2bdt0xx13aMCAAerdu7ciIiK0Y8eOTswWANAWLX4KZ3JysmbOnKnw8HBFRERo7dq1Ki0tVXx8vKRzo75OnjypDRs2SJLi4+P10ksvKTk5WXPmzFFhYaGys7NtT9eUpAULFujmm2/W8uXLdffdd+uPf/yj3nrrLe3du9cW8+WXX+pf//qX7f3Ro0dVUlKivn37Kjg4uNUHAGirkhOnnLZfH9SnU/MAAABA58nNzVViYqIyMjI0fvx4vfzyy4qJidGhQ4ecfj95++23dccdd+jZZ59Vnz599Oqrr2ry5Ml67733dMMNN7hhDwAALdHiAlpsbKyqqqq0bNkylZWVKSwsTHl5eQoJCZEklZWVqbS01BYfGhqqvLw8JSUlac2aNQoMDNSqVas0ZcoUW0xkZKS2bNmixYsX68knn9SQIUOUm5ursWPH2mIOHDig73//+7b3ycnJkqSHH35YOTk5Ld7x7mreF4vdnQIAAADQ7a1cuVJxcXGaPXu2JCk9PV07duxQZmam0tLSHOLT09Pt3j/77LP64x//qD/96U8U0ACgC2hxAU2SEhISlJCQ4PQzZ8WsCRMm6ODBgy77nDp1qqZOndrk57fccovt4QOegPusAAAAAD1TXV2dioqKtHDhQrv26Oho7du3r1l9nD17VqdPn1bfvn2bjKmtrVVtba3tfU1NTesSbkJTMyk8BU/kBOBJWlVAAwAA6AxNjaxe7f9MEzHcTwhAx6usrFRDQ4PDQ8/8/f0dHo7WlF//+tf66quvNG3atCZj0tLStHTp0jbl6g6Nz8uNz9cA0JW16CECAJqv5MQp2wIAAIDux2Qy2b03DMOhzZnNmzdryZIlys3N1ZVXXtlkXEpKiqqrq23LiRMn2pwzAKB1GIEGAAAAAC3Qv39/eXl5OYw2q6iocBiVdqHc3FzFxcXp97//vW6//XaXsWazWWazuc35AgDajgKaB2PoMwD0bIxgbTnulwOgM/j6+spqtSo/P1/33nuvrT0/P1933313k+tt3rxZjz76qDZv3qw777yzM1J1O77TAOguKKABAAAAQAslJydr5syZCg8PV0REhNauXavS0lLFx8dLOjf98uTJk9qwYYOkc8Wzhx56SC+++KLGjRtnG712ySWXyM/Pz237AQBoHgpoAAAAANBCsbGxqqqq0rJly1RWVqawsDDl5eUpJCREklRWVqbS0lJb/Msvv6z6+nrNnTtXc+fOtbU//PDDysnJ6ez0AQAtRAENgHtsiv329Yxc9+UBAADQSgkJCUpISHD62YVFsd27d3d8QgCADkMBDYD7ubOYRiEPAADA43GPSwDu1svdCQAAAAAAAACejBFoLdD4V4+O0vgpNQAAwDmulwAAAOhMFNAAdI7GUyXbsy+mXQIAAAAAOhgFtC6IX927npITp2yvrw/q47Y8Ol17Fs0AoIW4Xw4AAADaCwU0AF0bo9HQnVB0BgAAADwSBTSgk/XY0WgA4EYX3seUEWkA0HVxTgfgDhTQAABAt9H4Nger/Z9xYyYAAADoTnq5OwEAsLMp9tulOe0t7QddQkZGhkJDQ2WxWGS1WrVnzx6X8QUFBbJarbJYLBo8eLCysrLsPl+3bp2ioqJ0xRVX6IorrtDtt9+u999/3y5myZIlMplMdktAQEC77xsAAACArocCGgDAo+Tm5ioxMVGpqakqLi5WVFSUYmJiVFpa6jT+6NGjmjRpkqKiolRcXKxFixZp/vz52rp1qy1m9+7duv/++7Vr1y4VFhYqODhY0dHROnnypF1f1113ncrKymzLhx9+2KH7CgBATzXvi8W2BQC6AqZwAgA8ysqVKxUXF6fZs2dLktLT07Vjxw5lZmYqLS3NIT4rK0vBwcFKT0+XJA0fPlwHDhzQihUrNGXKFEnSxo0b7dZZt26dXn/9df3tb3/TQw89ZGv39vZm1BkAAF0MT10G0BkYgQYA8Bh1dXUqKipSdHS0XXt0dLT27dvndJ3CwkKH+IkTJ+rAgQM6c+aM03W+/vprnTlzRn379rVrP3LkiAIDAxUaGqrp06fr008/dZlvbW2tampq7BZ0DXE5+20LAAAAcDGMQAPQ/XEftC6jsrJSDQ0N8vf3t2v39/dXeXm503XKy8udxtfX16uyslIDBw50WGfhwoW66qqrdPvtt9vaxo4dqw0bNujaa6/VF198oWeeeUaRkZH66KOP1K9fP6fbTktL09KlS1u6mwAA9EhM1wTQlVFAA9yo5MQp2+vrg/q4LQ+P1dLCF4WybsNkMtm9NwzDoe1i8c7aJen555/X5s2btXv3blksFlt7TEyM7fXIkSMVERGhIUOG6De/+Y2Sk5OdbjclJcXus5qaGgUFBbnYMwAAcKGmCms8TRmAJ6GABgDwGP3795eXl5fDaLOKigqHUWbnBQQEOI339vZ2GDm2YsUKPfvss3rrrbc0atQol7lcdtllGjlypI4cOdJkjNlsltlsdtkPAADoPNwPDUBHoYDWRTDcGUBP4OvrK6vVqvz8fN1777229vz8fN19991O14mIiNCf/vQnu7adO3cqPDxcPj4+trZf/epXeuaZZ7Rjxw6Fh4dfNJfa2lodPnxYUVFRrdwbdBV82QIAAMDF8BABAIBHSU5O1iuvvKL169fr8OHDSkpKUmlpqeLj4yWdmzbZ+MmZ8fHxOn78uJKTk3X48GGtX79e2dnZevzxx20xzz//vBYvXqz169dr0KBBKi8vV3l5ub788ktbzOOPP66CggIdPXpU7733nqZOnaqamho9/PDDnbfzAAAAADwSI9AAD8X90bqpxvdpm5Hrvjw8WGxsrKqqqrRs2TKVlZUpLCxMeXl5CgkJkSSVlZWptLTUFh8aGqq8vDwlJSVpzZo1CgwM1KpVqzRlyhRbTEZGhurq6jR16lS7bT311FNasmSJJOmzzz7T/fffr8rKSg0YMEDjxo3Tu+++a9suuh5Xo7e5rw4AdF0Xnt85pwPoDBTQAA/RuGAG9HQJCQlKSEhw+llOTo5D24QJE3Tw4MEm+zt27NhFt7lly5bmpodujOmcAOA5GhfKWlMk45wOoD0xhRMAAAAAAABwgRFoQBfAdM4ugKmZAAAAHYaHqgFwNwpoAHBeS4tgjeMBAAAAAN0WBTQPwK8pgAdiRBnQ43HvHADoPjinA2grCmgAAKBHa+tNqgEA7sV5HEBnoIAGAJ6AEW+AR2jySxj/RgEAAHo0CmidiF9G0B54oIAb8MUZAACgS+A7F4COQgEN6MIopgHdS+N/0+hY3H8UAHou7ocGoDV6uTsBAAAAAAAAwJMxAg0AAOAi7Eb8ui0LAEBLNDWds3F7XM637YxGA+AKBTQ3YeoI2hvTObsp7r8GAAAAAG5HAQ0AWqJxQau5MZ1d+KLoBrifu88DAAAAaFcU0IBuiNFoANBxuPk0AHRPnN8BuEIBDejmKKb1AM0ZFQeg3djfhmGH2/IAAHQcimkALkQBDehBKKa5SVMFLncWvpjmCbQLvmABQNfAPagBtBUFtHbGiRlAm7XmPmsAAADN0PgHVdhr6rtc4yd1SvxgAvRUFNAAAACcaM6PYo1jSpZ/284oXwAAgO6FAlo7YNQZugOmdwJA+7lwhMf1bskCAAAA7YUCGgB0FUzbBLqsJu+V1l73I7zw/MC9DQGgWVo62li6YMTxEzxMBugpKKABPZSr+18wGq2bogAHuE3jL1+N76WT7euObAAA7aVk+UTba4ppQPdGAQ1Aq1Bk6yIomgFdE0/KBYAuhyczA90bBTQAAAA3afxjxOrGX7waj0yjmAYAXQ7FNKD7oYAGwKXmPOqc0WgA0HZ2T/RsIub6zkgEANAqTd1PzW7qPsU0oMuigAYAANCJ2vL07sYjGhr3w48XAOC5mr4P5opvgxhhDHi8Xq1ZKSMjQ6GhobJYLLJardqzZ4/L+IKCAlmtVlksFg0ePFhZWVkOMVu3btWIESNkNps1YsQIbd++vc3bbW/zvljsdAHwrZITp5wuQEv01OsM0FoXnnPjcvbblpLlE21Lm2yK/XYBIKljrlfoOezO3a7O1Zx/AY/Q4hFoubm5SkxMVEZGhsaPH6+XX35ZMTExOnTokIKDgx3ijx49qkmTJmnOnDl67bXX9M477yghIUEDBgzQlClTJEmFhYWKjY3V008/rXvvvVfbt2/XtGnTtHfvXo0dO7ZV2wXgWZpbRGMUBbjOAE1r7g93TcU1VURb7d/CERGu7svW1Gfcyw3dTEdcrwCp6XO1JKmpp35yjgU6nMkwDKMlK4wdO1bf+973lJmZaWsbPny47rnnHqWlpTnEP/HEE3rjjTd0+PBhW1t8fLw++OADFRYWSpJiY2NVU1Ojv/71r7aYH/zgB7riiiu0efPmVm3XmZqaGvn5+am6ulq9e/duyW5LusiJDECnocjWztrwn6y2nled4ToDeD6783BHFdD4Mgh1zHWmvXTE9epi2uN4cK3pPhr/+NH4h5Om2ltVcONcjG6uJefVFo1Aq6urU1FRkRYuXGjXHh0drX379jldp7CwUNHR0XZtEydOVHZ2ts6cOSMfHx8VFhYqKSnJISY9Pb3V25Wk2tpa1dbW2t5XV1dLOneAWuPLb+pbtR6A9rX3SGWL4kdd5ddBmXQTrTwnnlv13Lot/C2mSVxnuM6ga7A7Dy+9rcm4lzN32V7/pKKyifZvv+i9fOXii8av8Vltt425Z+Y5/2xajvOkfjfr4jFdWTfbv/a+zrSXjrpeXai9rzMS15ru5JHj3/79+7IZ7XubOF83PsdeqKXn7jUPWJ131JpzU+N1mtK4r252/kPnaMl1pkUFtMrKSjU0NMjf39+u3d/fX+Xl5U7XKS8vdxpfX1+vyspKDRw4sMmY8322ZruSlJaWpqVLlzq0BwUFNb2TANDTzHG8F1hLnT59Wn5+bS9Ucp0Bupu/21691iHtkrTd+WfNObe1w/nPo3Wj/Wuv60x76ajr1YW4zqBz/L3JT1p8jk5oxuba89zUVF/d6PyHztGc60yrnsJpMpns3huG4dB2sfgL25vTZ0u3m5KSouTkZNv7s2fP6j//+Y/69esnk8mkmpoaBQUF6cSJEx43JNwTcHxc4/g0jWPjWnc6PoZh6PTp0woMDGzXfrvLdaYlutPfC3fjWLYfjmX74Vi2TkddZ9pLR1yvGmvJdaar/x0jf/cif/fqyvl35dylll1nWlRA69+/v7y8vBx+VamoqHD4NeW8gIAAp/He3t7q16+fy5jzfbZmu5JkNptlNpvt2vr06eMQ17t37y75B91ZOD6ucXyaxrFxrbscn/YcEdBdrzMt0V3+XngCjmX74Vi2H45ly3nSyLPzOup6daHWXGe6+t8x8ncv8nevrpx/V869udeZXi3p1NfXV1arVfn5+Xbt+fn5ioyMdLpORESEQ/zOnTsVHh5um+ffVMz5PluzXQBA18N1BgDQFXTU9QoA4MGMFtqyZYvh4+NjZGdnG4cOHTISExONyy67zDh27JhhGIaxcOFCY+bMmbb4Tz/91Lj00kuNpKQk49ChQ0Z2drbh4+NjvP7667aYd955x/Dy8jKee+454/Dhw8Zzzz1neHt7G++++26zt9sa1dXVhiSjurq61X10Zxwf1zg+TePYuMbxca07XWdagr8X7Ydj2X44lu2HY9n9dMT1qi26+t8x8ncv8nevrpx/V869pVpcQDMMw1izZo0REhJi+Pr6Gt/73veMgoIC22cPP/ywMWHCBLv43bt3GzfccIPh6+trDBo0yMjMzHTo8/e//70xdOhQw8fHxxg2bJixdevWFm23Nb755hvjqaeeMr755ps29dNdcXxc4/g0jWPjGsfn4rrLdaYl+HvRfjiW7Ydj2X44lt1TR1yvWqur/x0jf/cif/fqyvl35dxbymQYHvZMaAAAAAAAAMCDtOgeaAAAAAAAAEBPQwENAAAAAAAAcIECGgAAAAAAAOACBTQAAAAAAADAhR5dQMvIyFBoaKgsFousVqv27Nnj7pQ6XFpamsaMGaPLL79cV155pe655x59/PHHdjGGYWjJkiUKDAzUJZdcoltuuUUfffSRXUxtba3mzZun/v3767LLLtNdd92lzz77rDN3pcOlpaXJZDIpMTHR1tbTj83Jkyf14IMPql+/frr00kt1/fXXq6ioyPZ5Tz4+9fX1Wrx4sUJDQ3XJJZdo8ODBWrZsmc6ePWuL6cnHBxfXE69JbfX2229r8uTJCgwMlMlk0h/+8Ae7z5vzbw7t938DSJmZmRo1apR69+6t3r17KyIiQn/9619tn3Mc0VYtvVYUFBTIarXKYrFo8ODBysrK6qRM7TXnPHOh3bt3y2QyOSz//Oc/Oynrby1ZssQhj4CAAJfreMqxl6RBgwY5PZZz5851Gu/uY99R1/etW7dqxIgRMpvNGjFihLZv397p+Z85c0ZPPPGERo4cqcsuu0yBgYF66KGH9Pnnn7vsMycnx+mfyTfffNNpuUvSrFmzHHIYN27cRfvtrGPf0XpsAS03N1eJiYlKTU1VcXGxoqKiFBMTo9LSUnen1qEKCgo0d+5cvfvuu8rPz1d9fb2io6P11Vdf2WKef/55rVy5Ui+99JL279+vgIAA3XHHHTp9+rQtJjExUdu3b9eWLVu0d+9effnll/rhD3+ohoYGd+xWu9u/f7/Wrl2rUaNG2bX35GPzf//3fxo/frx8fHz017/+VYcOHdKvf/1r9enTxxbTk4/P8uXLlZWVpZdeekmHDx/W888/r1/96ldavXq1LaYnHx+41lOvSW311VdfafTo0XrppZecft6cf3Nov/8bQLr66qv13HPP6cCBAzpw4IBuvfVW3X333bYvdhxHtEVLrxVHjx7VpEmTFBUVpeLiYi1atEjz58/X1q1bOznz5p1nmvLxxx+rrKzMtlxzzTWdkLGj6667zi6PDz/8sMlYTzr20rnvNo1zz8/PlyT96Ec/crmeu459R1zfCwsLFRsbq5kzZ+qDDz7QzJkzNW3aNL333nudmv/XX3+tgwcP6sknn9TBgwe1bds2ffLJJ7rrrrsu2m/v3r3t/jzKyspksVg6LffzfvCDH9jlkJeX57LPzjz2Hc7ooW688UYjPj7erm3YsGHGwoUL3ZSRe1RUVBiSjIKCAsMwDOPs2bNGQECA8dxzz9livvnmG8PPz8/IysoyDMMwTp06Zfj4+BhbtmyxxZw8edLo1auX8eabb3buDnSA06dPG9dcc42Rn59vTJgwwViwYIFhGBybJ554wrjpppua/LynH58777zTePTRR+3a7rvvPuPBBx80DIPjA9e4JrWdJGP79u229835NwfnWvN/AzTtiiuuMF555RWOI9qspdeKX/ziF8awYcPs2n7yk58Y48aN67Acm+vC84wzu3btMiQZ//d//9d5iTXhqaeeMkaPHt3seE8+9oZhGAsWLDCGDBlinD171unnnnTs2+v6Pm3aNOMHP/iBXdvEiRON6dOnt3vOjV2YvzPvv/++Ick4fvx4kzGvvvqq4efn177JXYSz3B9++GHj7rvvblE/7jr2HaFHjkCrq6tTUVGRoqOj7dqjo6O1b98+N2XlHtXV1ZKkvn37Sjr3a0l5ebndsTGbzZowYYLt2BQVFenMmTN2MYGBgQoLC+sWx2/u3Lm68847dfvtt9u19/Rj88Ybbyg8PFw/+tGPdOWVV+qGG27QunXrbJ/39ONz00036W9/+5s++eQTSdIHH3ygvXv3atKkSZI4Pmga16SO0Zx/c3CuNf83gKOGhgZt2bJFX331lSIiIjiOaJPWXCsKCwsd4idOnKgDBw7ozJkzHZZrc1x4nnHlhhtu0MCBA3Xbbbdp165dHZ1ak44cOaLAwECFhoZq+vTp+vTTT5uM9eRjX1dXp9dee02PPvqoTCaTy1hPOfaNtfZc2tSfiSecf6urq2Uymexm9jjz5ZdfKiQkRFdffbV++MMfqri4uHMSvMDu3bt15ZVX6tprr9WcOXNUUVHhMt6Tj31L9cgCWmVlpRoaGuTv72/X7u/vr/Lycjdl1fkMw1BycrJuuukmhYWFSZJt/10dm/Lycvn6+uqKK65oMqar2rJliw4ePKi0tDSHz3r6sfn000+VmZmpa665Rjt27FB8fLzmz5+vDRs2SOL4PPHEE7r//vs1bNgw+fj46IYbblBiYqLuv/9+SRwfNI1rUsdozr85OGrt/w3wrQ8//FDf+c53ZDabFR8fr+3bt2vEiBEcR7RJa64V5eXlTuPr6+tVWVnZYblejLPzjDMDBw7U2rVrtXXrVm3btk1Dhw7VbbfdprfffrsTsz1n7Nix2rBhg3bs2KF169apvLxckZGRqqqqchrvqcdekv7whz/o1KlTmjVrVpMxnnTsL9Tac2lTfybuPv9+8803WrhwoWbMmKHevXs3GTds2DDl5OTojTfe0ObNm2WxWDR+/HgdOXKkE7OVYmJitHHjRv3973/Xr3/9a+3fv1+33nqramtrm1zHU499a3i7OwF3urDibhjGRavw3cljjz2mf/zjH9q7d6/DZ605Nl39+J04cUILFizQzp07Xc4l74nHRpLOnj2r8PBwPfvss5LO/SL10UcfKTMzUw899JAtrqcen9zcXL322mvatGmTrrvuOpWUlCgxMVGBgYF6+OGHbXE99fjg4nr6NamjcFxbpr3/b9ATDR06VCUlJTp16pS2bt2qhx9+WAUFBbbPOY5oi5b+/XEW76y9M7k6zzQ2dOhQDR061PY+IiJCJ06c0IoVK3TzzTd3dJp2YmJibK9HjhypiIgIDRkyRL/5zW+UnJzsdB1PPPaSlJ2drZiYGAUGBjYZ40nHvimtOZd62vn3zJkzmj59us6ePauMjAyXsePGjbO7Wf/48eP1ve99T6tXr9aqVas6OlWb2NhY2+uwsDCFh4crJCREf/nLX3Tfffc1uZ6nHfvW6pEj0Pr37y8vLy+HimdFRYVDZbS7mjdvnt544w3t2rVLV199ta39/NNkXB2bgIAA1dXV6f/+7/+ajOmKioqKVFFRIavVKm9vb3l7e6ugoECrVq2St7e3bd964rGRzv0SNWLECLu24cOH225c25P/7kjSz3/+cy1cuFDTp0/XyJEjNXPmTCUlJdlGM/b044OmcU3qGM35Nwd7bfm/Ab7l6+ur7373uwoPD1daWppGjx6tF198keOINmnNtSIgIMBpvLe3t/r169dhubrS1HmmucaNG9fpI26cueyyyzRy5Mgmc/HEYy9Jx48f11tvvaXZs2e3eF1POfatPZc29WfirvPvmTNnNG3aNB09elT5+fkuR58506tXL40ZM8btfyYDBw5USEiIyzw87di3RY8soPn6+spqtdqePnJefn6+IiMj3ZRV5zAMQ4899pi2bdumv//97woNDbX7PDQ0VAEBAXbHpq6uTgUFBbZjY7Va5ePjYxdTVlam//mf/+nSx++2227Thx9+qJKSEtsSHh6uBx54QCUlJRo8eHCPPTbSuV85Lnzc+CeffKKQkBBJPfvvjnTuiTq9etmfUr28vHT27FlJHB80rSdfkzpSc/7N4Zz2+L8BmmYYhmprazmOaJPWXCsiIiIc4nfu3Knw8HD5+Ph0WK7OXOw801zFxcUaOHBgO2fXcrW1tTp8+HCTuXjSsW/s1Vdf1ZVXXqk777yzxet6yrFv7bm0qT8Td5x/zxfPjhw5orfeeqtVRVXDMFRSUuL2P5OqqiqdOHHCZR6edOzbrJMeVuBxtmzZYvj4+BjZ2dnGoUOHjMTEROOyyy4zjh075u7UOtRPf/pTw8/Pz9i9e7dRVlZmW77++mtbzHPPPWf4+fkZ27ZtMz788EPj/vvvNwYOHGjU1NTYYuLj442rr77aeOutt4yDBw8at956qzF69Gijvr7eHbvVYRo/hdMwevaxef/99w1vb2/jl7/8pXHkyBFj48aNxqWXXmq89tprtpiefHwefvhh46qrrjL+/Oc/G0ePHjW2bdtm9O/f3/jFL35hi+nJxweu9dRrUludPn3aKC4uNoqLiw1JxsqVK43i4mLbU6ya828O7fd/AxhGSkqK8fbbbxtHjx41/vGPfxiLFi0yevXqZezcudMwDI4j2uZi14qFCxcaM2fOtMV/+umnxqWXXmokJSUZhw4dMrKzsw0fHx/j9ddf7/Tcm3OeuTD/F154wdi+fbvxySefGP/zP/9jLFy40JBkbN26tdPz/9nPfmbs3r3b+PTTT413333X+OEPf2hcfvnlXeLYn9fQ0GAEBwcbTzzxhMNnnnbs2+P6PnPmTLsn1L7zzjuGl5eX8dxzzxmHDx82nnvuOcPb29t49913OzX/M2fOGHfddZdx9dVXGyUlJXb/Hmpra5vMf8mSJcabb75p/O///q9RXFxsPPLII4a3t7fx3nvvdVrup0+fNn72s58Z+/btM44ePWrs2rXLiIiIMK666iqPOfYdrccW0AzDMNasWWOEhIQYvr6+xve+9z2Xj1HuLiQ5XV599VVbzNmzZ42nnnrKCAgIMMxms3HzzTcbH374oV0///3vf43HHnvM6Nu3r3HJJZcYP/zhD43S0tJO3puOd2EBracfmz/96U9GWFiYYTabjWHDhhlr1661+7wnH5+amhpjwYIFRnBwsGGxWIzBgwcbqampdhfCnnx8cHE98ZrUVrt27XJ6TXv44YcNw2jevzm03/8NYBiPPvqo7d/xgAEDjNtuu81WPDMMjiPaztW14uGHHzYmTJhgF797927jhhtuMHx9fY1BgwYZmZmZnZzxOc05z1yY//Lly40hQ4YYFovFuOKKK4ybbrrJ+Mtf/tL5yRuGERsbawwcONDw8fExAgMDjfvuu8/46KOPbJ978rE/b8eOHYYk4+OPP3b4zNOOfXtc3ydMmGCLP+/3v/+9MXToUMPHx8cYNmxYhxUEXeV/9OjRJv897Nq1q8n8ExMTjeDgYNv1JTo62ti3b1+n5v71118b0dHRxoABAwwfHx8jODjYePjhhx2+q7jz2Hc0k2H8/3czBAAAAAAAAOCgR94DDQAAAAAAAGguCmgAAAAAAACACxTQAAAAAAAAABcooAEAAAAAAAAuUEADAAAAAAAAXKCABgAAAAAAALhAAQ0AAAAAAABwgQIa0AmWLFkik8mkysrKi8YOGjRIs2bNsr3/5JNP9Pjjj8tqtapPnz7q27evxo8fr9dff73FeezevVsmk6lV6wIAuodNmzYpPT3d3WkAAAB0KRTQAA+zfft2Pfnkk7b3O3fu1F/+8hdNmTJFv//977Vx40Zdc801+tGPfqRly5a5MVMAQFdEAQ0AAKDlvN2dAAB7N9xwg9376dOna+7cuTKZTLa2mJgYVVZWavny5XriiSdkNps7O00AAAAAAHoMRqABTfjDH/4gk8mkv/3tbw6fZWZmymQy6R//+Ick6b333tPkyZPVr18/WSwWDRkyRImJiQ7rffHFF7r//vvl5+cnf39/Pfroo6qurraLuXAKZ//+/e2KZ+fdeOON+vrrr/Wf//ynxfv2zTffKDk5WQEBAbrkkks0YcIEFRcXt7gfAOjpzk/R/8c//qEf/ehH8vPzU9++fZWcnKz6+np9/PHH+sEPfqDLL79cgwYN0vPPP29bNycnRyaTSceOHbPr8/x0+927dzc7j/N95efn65FHHlHfvn112WWXafLkyfr0009tcbfccov+8pe/6Pjx4zKZTLaluYqLi/XDH/5QV155pcxmswIDA3XnnXfqs88+kyQdO3ZMJpNJOTk5DuuaTCYtWbLE9r4txw4AAKCzUUADmnD+C8Krr77q8FlOTo6+973vadSoUdqxY4eioqJUWlqqlStX6q9//asWL16sL774wmG9KVOm6Nprr9XWrVu1cOFCbdq0SUlJSa3Kb9euXRowYICuvPLKFq+7aNEiffrpp3rllVf0yiuv6PPPP9ctt9xi9yULANB806ZN0+jRo7V161bNmTNHL7zwgpKSknTPPffozjvv1Pbt23XrrbfqiSee0LZt2zosj7i4OPXq1cs2TfP999/XLbfcolOnTkmSMjIyNH78eAUEBKiwsNC2NMdXX32lO+64Q1988YXWrFmj/Px8paenKzg4WKdPn251zp5y7AAAAFxhCifQBG9vbz344IPKzMxUdXW1/Pz8JEmHDx/W+++/r9WrV0uS5s6dq+DgYL333nuyWCy29R955BGHPuPi4vTzn/9cknT77bfrX//6l9avX6/s7OwWjQB45ZVXtHv3br344ovy8vJq8b4NGDBA27dvt23zpptu0jXXXKO0tDStW7euxf0BQE/34x//WMnJyZLOnd937typl156Sdu2bdO9994r6dzorz//+c/auHGj7rvvvg7JIzw8XNnZ2bb31113ncaPH681a9YoNTVVI0aMUJ8+fWQ2mzVu3LgW9f3Pf/5TVVVVys7O1t13321rnzZtWpty9pRjBwAA4Aoj0AAXHn30Uf33v/9Vbm6ure3VV1+V2WzWjBkz9Mknn+h///d/FRcXZ1c8a8pdd91l937UqFH65ptvVFFR0eyc/vrXv2ru3LmaOnWq5s2b1/ydaWTGjBl2BbuQkBBFRkZq165dreoPAHq6H/7wh3bvhw8fLpPJpJiYGFubt7e3vvvd7+r48eMdlscDDzxg9z4yMlIhISHtcn7/7ne/qyuuuEJPPPGEsrKydOjQoTb3KXnOsQMAAHCFAhrgwnXXXacxY8bYpnE2NDTotdde0913362+ffvq3//+tyTp6quvblZ//fr1s3t//ub///3vf5u1/o4dO3Tffffpjjvu0MaNG1s0aq2xgIAAp21VVVWt6g8Aerq+ffvavff19dWll17q8OOKr6+vvvnmmw7LoyPP735+fiooKND111+vRYsW6brrrlNgYKCeeuopnTlzptX9esqxAwAAcIUCGnARjzzyiN59910dPnxYb775psrKymzTMwcMGCBJtpsnd6QdO3bonnvu0YQJE7R161b5+vq2uq/y8nKnbRcW+AAAHed8gai2ttauvbKystV9dvT5feTIkdqyZYuqqqpUUlKi2NhYLVu2TL/+9a8lNb1P/EADAAC6OgpowEXcf//9slgsysnJUU5Ojq666ipFR0dLkq699loNGTJE69evd/iy0J527type+65RzfddJP+8Ic/2EautdbmzZtlGIbt/fHjx7Vv3z7dcsstbcwUANBcgwYNkiTbE53Pe+ONN1rd58aNG+3e79u3T8ePH7c7v5vN5maPfG6KyWTS6NGj9cILL6hPnz46ePCgJMnf318Wi8Vhn/74xz+2aXsAAADuxkMEgIvo06eP7r33XuXk5OjUqVN6/PHH1avXt7XnNWvWaPLkyRo3bpySkpIUHBys0tJS7dixw+GLTGvs3btX99xzjwICArRo0SKVlJTYfT5ixAj17t27RX1WVFTo3nvv1Zw5c1RdXa2nnnpKFotFKSkpbc4XANA8Y8aM0dChQ/X444+rvr5eV1xxhbZv3669e/e2us8DBw5o9uzZ+tGPfqQTJ04oNTVVV111lRISEmwxI0eO1LZt25SZmSmr1apevXopPDz8on3/+c9/VkZGhu655x4NHjxYhmFo27ZtOnXqlO644w5J5wprDz74oNavX68hQ4Zo9OjRev/997Vp06ZW7xMAAIAnoIAGNMMjjzyizZs3S5JmzZpl99nEiRP19ttva9myZZo/f76++eYbXX311Q4PDGitt956S//973917Ngx3XrrrQ6f79q1q8Ujx5599lnt379fjzzyiGpqanTjjTdqy5YtGjJkSLvkDAC4OC8vL/3pT3/SY489pvj4eJnNZk2fPl0vvfSS7rzzzlb1mZ2drd/+9reaPn26amtr9f3vf18vvvii3X3GFixYoI8++kiLFi1SdXW1DMOwG5XclGuuuUZ9+vTR888/r88//1y+vr4aOnSocnJy9PDDD9vizk/nfP755/Xll1/q1ltv1Z///GfbiDsAAICuyGQ0539MAAAA8Fg5OTl65JFHtH///maNJgMAAEDLcA80AAAAAAAAwAWmcALdgGEYamhocBnj5eUlk8nUSRkBANpDc8/vbdXQ0OByGqfJZGqX7QAAAHRVjEADuoGCggL5+Pi4XH7zm9+4O00AQAv95je/uej5vaCgQLNmzZJhGK2evnnbbbe53Ab3yAQAAD0d90ADuoHTp0/r448/dhkTGhqqfv36dVJGAID2UFVVpaNHj7qMGTp0qC6//PI2befjjz/W6dOnm/zcbDZr5MiRbdoGAABAV0YBDQAAAAAAAHCBKZwAAAAAAACACz3qIQJnz57V559/rssvv5ybqQNAOzAMQ6dPn1ZgYKB69eI3Ga4zANC+uM4AADxFjyqgff755woKCnJ3GgDQ7Zw4cUJXX321u9NwO64zANAxuM4AANytRxXQzt9g98SJE+rdu7ebswGArq+mpkZBQUFtvoF5d8F1BgDaF9cZAICn6FEFtPPTaXr37s0XGwBoR0xXPIfrDAB0DK4zAAB340YCAAAAAAAAgAsU0AAAAAAAAAAXKKABAAAAAAAALlBAAwAAAAAAAFyggAYAAAAAAAC4QAENAAAAAAAAcIECGgAAAAAAAOACBTQAAAAAAADABQpoAAAAAAAAgAve7k6gu4vL2W97nT1rjBszAQB0e5tiv309I9d9eQAAAADdDCPQAAAAAAAAABcooAEAAAAAAAAuMIWznTWesgkAAAAAAICujxFoAAAAAAAAgAsU0AAAXVJGRoZCQ0NlsVhktVq1Z88el/EFBQWyWq2yWCwaPHiwsrKymozdsmWLTCaT7rnnnnbOGgAAAEBXRAGtE8Xl7LctAIDWy83NVWJiolJTU1VcXKyoqCjFxMSotLTUafzRo0c1adIkRUVFqbi4WIsWLdL8+fO1detWh9jjx4/r8ccfV1RUVEfvBgAAAIAuggIaAKDLWblypeLi4jR79mwNHz5c6enpCgoKUmZmptP4rKwsBQcHKz09XcOHD9fs2bP16KOPasWKFXZxDQ0NeuCBB7R06VINHjy4M3YFAAAAQBdAAQ0A0KXU1dWpqKhI0dHRdu3R0dHat2+f03UKCwsd4idOnKgDBw7ozJkztrZly5ZpwIABiouLa1YutbW1qqmpsVsAAAAAdD8U0AAAXUplZaUaGhrk7+9v1+7v76/y8nKn65SXlzuNr6+vV2VlpSTpnXfeUXZ2ttatW9fsXNLS0uTn52dbgoKCWrg3AAAAALoCCmgAgC7JZDLZvTcMw6HtYvHn20+fPq0HH3xQ69atU//+/ZudQ0pKiqqrq23LiRMnWrAHAAAAALoKb3cnAABAS/Tv319eXl4Oo80qKiocRpmdFxAQ4DTe29tb/fr100cffaRjx45p8uTJts/Pnj0rSfL29tbHH3+sIUOGOPRrNptlNpvbuksAAAAAPBwj0AAAXYqvr6+sVqvy8/Pt2vPz8xUZGel0nYiICIf4nTt3Kjw8XD4+Pho2bJg+/PBDlZSU2Ja77rpL3//+91VSUsLUTAAAAKCHYwQaAKDLSU5O1syZMxUeHq6IiAitXbtWpaWlio+Pl3RuauXJkye1YcMGSVJ8fLxeeuklJScna86cOSosLFR2drY2b94sSbJYLAoLC7PbRp8+fSTJoR0AAABAz0MBDQDQ5cTGxqqqqkrLli1TWVmZwsLClJeXp5CQEElSWVmZSktLbfGhoaHKy8tTUlKS1qxZo8DAQK1atUpTpkxx1y4AAAAA6EJMxvm7KPcANTU18vPzU3V1tXr37t0h24jL2d+suOxZYzpk+wDQmTrjvNqVuP14bIr99vWM3M7fPgC0M7efVwEA+P9xDzQAAAAAAADABaZwAgDQlTUeddZUO6PRAAAAgDahgAYAQHdHMQ0AAABoE6ZwAgAAAAAAAC5QQAMAAAAAAABcYAqnmzR+WidP5AQAAAAAAPBcFNAAAOhJuB8aAAAA0GJM4QQAAAAAAABcYAQaAAA9VePRaBIj0gAAAIAmMAINAAAAAAAAcKHDCmgZGRkKDQ2VxWKR1WrVnj17XMYXFBTIarXKYrFo8ODBysrKcohJT0/X0KFDdckllygoKEhJSUn65ptvOmoXAAAAAAAAgI4poOXm5ioxMVGpqakqLi5WVFSUYmJiVFpa6jT+6NGjmjRpkqKiolRcXKxFixZp/vz52rp1qy1m48aNWrhwoZ566ikdPnxY2dnZys3NVUpKSkfsAgAAAAAAACCpg+6BtnLlSsXFxWn27NmSzo0c27FjhzIzM5WWluYQn5WVpeDgYKWnp0uShg8frgMHDmjFihWaMmWKJKmwsFDjx4/XjBkzJEmDBg3S/fffr/fff78jdgEAAAAAAACQ1AEj0Orq6lRUVKTo6Gi79ujoaO3bt8/pOoWFhQ7xEydO1IEDB3TmzBlJ0k033aSioiJbwezTTz9VXl6e7rzzzvbeBQAAAAAAAMCm3UegVVZWqqGhQf7+/nbt/v7+Ki8vd7pOeXm50/j6+npVVlZq4MCBmj59uv7973/rpptukmEYqq+v109/+lMtXLiwyVxqa2tVW1tre19TU9OGPQMAAAAAAEBP1GEPETCZTHbvDcNwaLtYfOP23bt365e//KUyMjJ08OBBbdu2TX/+85/19NNPN9lnWlqa/Pz8bEtQUFBrdwcAAAAAAAA9VLuPQOvfv7+8vLwcRptVVFQ4jDI7LyAgwGm8t7e3+vXrJ0l68sknNXPmTNt91UaOHKmvvvpKP/7xj5WamqpevRxrgSkpKUpOTra9r6mpoYgGAAAAAACAFmn3EWi+vr6yWq3Kz8+3a8/Pz1dkZKTTdSIiIhzid+7cqfDwcPn4+EiSvv76a4cimZeXlwzDsI1Wu5DZbFbv3r3tFgAAAAAAAKAlOuQpnMnJyZo5c6bCw8MVERGhtWvXqrS0VPHx8ZLOjQw7efKkNmzYIEmKj4/XSy+9pOTkZM2ZM0eFhYXKzs7W5s2bbX1OnjxZK1eu1A033KCxY8fqX//6l5588knddddd8vLy6ojd6DRxOfttr7NnjXFjJgAAAAAAALhQhxTQYmNjVVVVpWXLlqmsrExhYWHKy8tTSEiIJKmsrEylpaW2+NDQUOXl5SkpKUlr1qxRYGCgVq1apSlTpthiFi9eLJPJpMWLF+vkyZMaMGCAJk+erF/+8pcdsQsAAAAAAACAJMlkNDX/sRuqqamRn5+fqqur23U6Z+MRZG3FCDQAXUlHnVe7Krccj02x7dfXjNz26wsA2gHXGQCAp+iwp3ACAAAAAAAA3QEFNAAAAAAAAMAFCmgAAAAAAACACxTQAAAAAAAAABcooAEAAAAAAAAuUEADAAAAAAAAXPB2dwIAAKDzlJw4ZXt9fVAft+UBAAAAdCUU0AAA6KEaF9Mk6Xq3ZAEAAAB4PqZwAgAAAAAAAC4wAg0AgG7uwpFmAAAAAFqGEWgAAAAAAACACxTQAAAAAAAAABcooAEAAAAAAAAucA80AAAgSYrL2W97nT1rjBszAQAAADwLBTQPw5cXAEB74MEBAAAAQPthCicAAAAAAADgAgU0AAAAAAAAwAUKaAAAAAAAAIALFNAAAAAAAAAAF3iIAAAAXc2mWHdnAAAAAPQojEADAAAAAAAAXKCABgAAAAAAALjAFE4AAOAgLme/7XX2rDFuzAQAAABwP0agAQAAAAAAAC5QQAMAdEkZGRkKDQ2VxWKR1WrVnj17XMYXFBTIarXKYrFo8ODBysrKsvt827ZtCg8PV58+fXTZZZfp+uuv129/+9uO3AUAAAAAXQRTOAEAXU5ubq4SExOVkZGh8ePH6+WXX1ZMTIwOHTqk4OBgh/ijR49q0qRJmjNnjl577TW98847SkhI0IABAzRlyhRJUt++fZWamqphw4bJ19dXf/7zn/XII4/oyiuv1MSJEzt7F91i3heLba9X+z/jxkwAAAAAz8IINABAl7Ny5UrFxcVp9uzZGj58uNLT0xUUFKTMzEyn8VlZWQoODlZ6erqGDx+u2bNn69FHH9WKFStsMbfccovuvfdeDR8+XEOGDNGCBQs0atQo7d27t7N2CwAAAICHYgQaAKBLqaurU1FRkRYuXGjXHh0drX379jldp7CwUNHR0XZtEydOVHZ2ts6cOSMfHx+7zwzD0N///nd9/PHHWr58eZO51NbWqra21va+pqampbvTrkpOnOqQfnmgAAAAAHo6RqABALqUyspKNTQ0yN/f367d399f5eXlTtcpLy93Gl9fX6/KykpbW3V1tb7zne/I19dXd955p1avXq077rijyVzS0tLk5+dnW4KCgtqwZwAAAAA8FQU0AECXZDKZ7N4bhuHQdrH4C9svv/xylZSUaP/+/frlL3+p5ORk7d69u8k+U1JSVF1dbVtOnDjRij0BAAAA4OmYwgkA6FL69+8vLy8vh9FmFRUVDqPMzgsICHAa7+3trX79+tnaevXqpe9+97uSpOuvv16HDx9WWlqabrnlFqf9ms1mmc3mNuwNAAAAgK6AEWgeLC5nv20BAJzj6+srq9Wq/Px8u/b8/HxFRkY6XSciIsIhfufOnQoPD3e4/1ljhmHY3eMMAAAAQM/ECDQAQJeTnJysmTNnKjw8XBEREVq7dq1KS0sVHx8v6dzUypMnT2rDhg2SpPj4eL300ktKTk7WnDlzVFhYqOzsbG3evNnWZ1pamsLDwzVkyBDV1dUpLy9PGzZsaPLJnt3dvC8W216v9n/GjZkAAAAA7kcBDQDQ5cTGxqqqqkrLli1TWVmZwsLClJeXp5CQEElSWVmZSktLbfGhoaHKy8tTUlKS1qxZo8DAQK1atUpTpkyxxXz11VdKSEjQZ599pksuuUTDhg3Ta6+9ptjY2E7fPwAAAACexWScv4tyD1BTUyM/Pz9VV1erd+/e7dZvZ0yxzJ41psO3AQAt1VHn1a6q047HJudFvZITpzpkc41HoHE9AtCZuM4AADwFI9AAAECzNf7RiGIaAAAAegoeIgAAAAAAAAC4QAENAAAAAAAAcIECGgAAAAAAAOACBTQAAAAAAADAhQ4roGVkZCg0NFQWi0VWq1V79uxxGV9QUCCr1SqLxaLBgwcrKyvLIebUqVOaO3euBg4cKIvFouHDhysvL6+jdgEAAM+xKfbbBQAAAECn6pACWm5urhITE5Wamqri4mJFRUUpJiZGpaWlTuOPHj2qSZMmKSoqSsXFxVq0aJHmz5+vrVu32mLq6up0xx136NixY3r99df18ccfa926dbrqqqs6YhcAAAAAAAAASZJ3R3S6cuVKxcXFafbs2ZKk9PR07dixQ5mZmUpLS3OIz8rKUnBwsNLT0yVJw4cP14EDB7RixQpNmTJFkrR+/Xr95z//0b59++Tj4yNJCgkJ6Yj0AQAAAAAAAJt2H4FWV1enoqIiRUdH27VHR0dr3759TtcpLCx0iJ84caIOHDigM2fOSJLeeOMNRUREaO7cufL391dYWJieffZZNTQ0NJlLbW2tampq7BYAAAAAAACgJdp9BFplZaUaGhrk7+9v1+7v76/y8nKn65SXlzuNr6+vV2VlpQYOHKhPP/1Uf//73/XAAw8oLy9PR44c0dy5c1VfX6//9//+n9N+09LStHTp0vbZMTeLy9lve509a4wbMwEAAAAAAOhZOuwhAiaTye69YRgObReLb9x+9uxZXXnllVq7dq2sVqumT5+u1NRUZWZmNtlnSkqKqqurbcuJEydauzsAAAAAAADoodp9BFr//v3l5eXlMNqsoqLCYZTZeQEBAU7jvb291a9fP0nSwIED5ePjIy8vL1vM8OHDVV5errq6Ovn6+jr0azabZTab27pLAAB4rJITp9ydAgAAANDttfsINF9fX1mtVuXn59u15+fnKzIy0uk6ERERDvE7d+5UeHi47YEB48eP17/+9S+dPXvWFvPJJ59o4MCBTotnAACgY8Xl7LctAAAAQHfWIVM4k5OT9corr2j9+vU6fPiwkpKSVFpaqvj4eEnnplY+9NBDtvj4+HgdP35cycnJOnz4sNavX6/s7Gw9/vjjtpif/vSnqqqq0oIFC/TJJ5/oL3/5i5599lnNnTu3I3YBAAAAAAAAkNQBUzglKTY2VlVVVVq2bJnKysoUFhamvLw8hYSESJLKyspUWlpqiw8NDVVeXp6SkpK0Zs0aBQYGatWqVZoyZYotJigoSDt37lRSUpJGjRqlq666SgsWLNATTzzREbsAAAAAAAAASOqgApokJSQkKCEhwelnOTk5Dm0TJkzQwYMHXfYZERGhd999tz3SAwAAAAAAAJqlwwpoAACg52h8H7TsWWPcmAkAAADQ/jrkHmgAAAAAAABAd8EINAAA4NK8LxbbXq/2f8aNmQAAAADuwQg0AAAAAAAAwAVGoLVS43u9AAAAAAAAoPuigNaJmAIDAAAAAADQ9TCFEwAAAAAAAHCBAhoAAAAAAADgAlM4AQBAszW+HUFj3JoAAAAA3Rkj0AAAAAAAAAAXKKABAAAAAAAALjCFEwAAtKu4nP2219mzxrgxEwAAAKB9UEBzk8b3kOG+MQAAAAAAAJ6LKZwAAAAAAACAC4xA62BNPa0MAAAAAAAAXQMFtC6Ie8sAAAAAAAB0HqZwAgAAAAAAAC5QQAMAAAAAAABcYAonAADoMNx2AAAAAN0BI9AAAAAAAAAAFyigAQAAAAAAAC5QQAMAAAAAAABcoIAGAAAAAAAAuMBDBAAA6GJKTpxydwoAAABAj0IBDQAAdAqeyAkAAICuigJaO5v3xeJO3V7jLyMSX0gAAAAAAADaG/dAAwAAAAAAAFyggAYAAAAAAAC4wBROD9N4Cuhq/2fcmAkAAAAAAAAkRqABALqojIwMhYaGymKxyGq1as+ePS7jCwoKZLVaZbFYNHjwYGVlZdl9vm7dOkVFRemKK67QFVdcodtvv13vv/9+R+4CAAAAgC6CAhoAoMvJzc1VYmKiUlNTVVxcrKioKMXExKi0tNRp/NGjRzVp0iRFRUWpuLhYixYt0vz587V161ZbzO7du3X//fdr165dKiwsVHBwsKKjo3Xy5MnO2q0ubd4Xi20LAAAA0N1QQAMAdDkrV65UXFycZs+ereHDhys9PV1BQUHKzMx0Gp+VlaXg4GClp6dr+PDhmj17th599FGtWLHCFrNx40YlJCTo+uuv17Bhw7Ru3TqdPXtWf/vb3zprtwAAAAB4KApoAIAupa6uTkVFRYqOjrZrj46O1r59+5yuU1hY6BA/ceJEHThwQGfOnHG6ztdff60zZ86ob9++TeZSW1urmpoauwUAAABA90MBDQDQpVRWVqqhoUH+/v527f7+/iovL3e6Tnl5udP4+vp6VVZWOl1n4cKFuuqqq3T77bc3mUtaWpr8/PxsS1BQUAv3BgAAAEBXQAENANAlmUwmu/eGYTi0XSzeWbskPf/889q8ebO2bdsmi8XSZJ8pKSmqrq62LSdOnGjJLgAAAADoIrzdnQAAAC3Rv39/eXl5OYw2q6iocBhldl5AQIDTeG9vb/Xr18+ufcWKFXr22Wf11ltvadSoUS5zMZvNMpvNrdgLxOXst3ufPWuMmzIBAAAALo4RaACALsXX11dWq1X5+fl27fn5+YqMjHS6TkREhEP8zp07FR4eLh8fH1vbr371Kz399NN68803FR4e3v7JAwAAAOiSKKABALqc5ORkvfLKK1q/fr0OHz6spKQklZaWKj4+XtK5qZUPPfSQLT4+Pl7Hjx9XcnKyDh8+rPXr1ys7O1uPP/64Leb555/X4sWLtX79eg0aNEjl5eUqLy/Xl19+2en7BwAAAMCzMIUTANDlxMbGqqqqSsuWLVNZWZnCwsKUl5enkJAQSVJZWZlKS0tt8aGhocrLy1NSUpLWrFmjwMBArVq1SlOmTLHFZGRkqK6uTlOnTrXb1lNPPaUlS5Z0yn4BAAAA8EwU0DzAvC8WuzsFAOhyEhISlJCQ4PSznJwch7YJEybo4MGDTfZ37NixdsoMAAAAQHfTYVM4MzIyFBoaKovFIqvVqj179riMLygokNVqlcVi0eDBg5WVldVk7JYtW2QymXTPPfe0c9YAAKCt5n2x2LYAAAAA3UGHFNByc3OVmJio1NRUFRcXKyoqSjExMXbTaRo7evSoJk2apKioKBUXF2vRokWaP3++tm7d6hB7/PhxPf7444qKiuqI1AEAAAAAAAA7HVJAW7lypeLi4jR79mwNHz5c6enpCgoKUmZmptP4rKwsBQcHKz09XcOHD9fs2bP16KOPasWKFXZxDQ0NeuCBB7R06VINHjy4I1Lv8uJy9tsWAAAAAAAAtF273wOtrq5ORUVFWrhwoV17dHS09u3b53SdwsJCRUdH27VNnDhR2dnZOnPmjHx8fCRJy5Yt04ABAxQXF3fRKaGSVFtbq9raWtv7mpqalu4OAADoAI7TO3e4JQ8AAACgOdp9BFplZaUaGhrk7+9v1+7v76/y8nKn65SXlzuNr6+vV2VlpSTpnXfeUXZ2ttatW9fsXNLS0uTn52dbgoKCWrg3AAAAAAAA6Ok67CmcJpPJ7r1hGA5tF4s/33769Gk9+OCDWrdunfr379/sHFJSUpScnGx7X1NTQxENANB1bIp1dwYAAAAA1AEFtP79+8vLy8thtFlFRYXDKLPzAgICnMZ7e3urX79++uijj3Ts2DFNnjzZ9vnZs2clSd7e3vr44481ZMgQh37NZrPMZnNbdwkAAHSwxvfuzJ41xo2ZAAAAAI7afQqnr6+vrFar8vPz7drz8/MVGRnpdJ2IiAiH+J07dyo8PFw+Pj4aNmyYPvzwQ5WUlNiWu+66S9///vdVUlLCqDIAAAAAAAB0mA6ZwpmcnKyZM2cqPDxcERERWrt2rUpLSxUfHy/p3NTKkydPasOGDZKk+Ph4vfTSS0pOTtacOXNUWFio7Oxsbd68WZJksVgUFhZmt40+ffpIkkM7AAAAAAAA0J46pIAWGxurqqoqLVu2TGVlZQoLC1NeXp5CQkIkSWVlZSotLbXFh4aGKi8vT0lJSVqzZo0CAwO1atUqTZkypSPSa3eOTxIDAAAAAABAd9FhDxFISEhQQkKC089ycnIc2iZMmKCDBw82u39nfXQ3jQtzq/2fcWMmAAAAAAAAPVeHFdDQviimAQAAAAAAuEe7P0QAAAAAAAAA6E4YgQYAADxKXM5+2+vsWWPcmAkAAABwDiPQAAAAAAAAABcYgdaN8Qs+AAAAAABA21FAAwAAHYaH4AAAAKA7YAonAAAAAAAA4AIj0AAA6AJKTpxydwoAAABAj8UINAAAAAAAAMAFCmgAAAAAAACACxTQAAAAAAAAABe4B1oPEZez3/Y6e9YYN2YCAOipGj+Rs7m4fgEAAMATMAINAAAAAAAAcIECGgAAAAAAAOACBTQAAAAAAADABQpoAAAAAAAAgAs8RKALanwT5tX+z7gxEwAAAAAAgO6PEWgAAAAAAACAC4xAa6XGo8AAAAAAAADQfTECDQAAAAAAAHCBEWhd3IUj4bgnGgAAAAAAQPtiBBoAAAAAAADgAiPQAABAlxCXs9/2OnvWGDdmAgAAgJ6GEWgAAAAAAACAC4xA64H4BR8AAAAAAKD5GIEGAAAAAAAAuMAINAAA0OUwmhoAAACdiQIaAADwKPO+WGx7vdr/GTdmAgAAAJzDFE4AAAAAAADABUagdTP8ag8AAAAAANC+KKABAAC3a/wDEAAAAOBpmMIJAAAAAAAAuEABDQAAAAAAAHCBKZwtEJez3/Z6nhvzaE+N9yl71hg3ZgIAAAAAAOCZGIHWQ8z7YrFtAYDuICMjQ6GhobJYLLJardqzZ4/L+IKCAlmtVlksFg0ePFhZWVl2n3/00UeaMmWKBg0aJJPJpPT09A7MHgAAAEBXQgENANDl5ObmKjExUampqSouLlZUVJRiYmJUWlrqNP7o0aOaNGmSoqKiVFxcrEWLFmn+/PnaunWrLebrr7/W4MGD9dxzzykgIKCzdgXtIC5nv20BAAAAOgIFNABAl7Ny5UrFxcVp9uzZGj58uNLT0xUUFKTMzEyn8VlZWQoODlZ6erqGDx+u2bNn69FHH9WKFStsMWPGjNGvfvUrTZ8+XWazubN2BQAAAEAXwD3QYMP90AB0BXV1dSoqKtLChQvt2qOjo7Vv3z6n6xQWFio6OtqubeLEicrOztaZM2fk4+PTqlxqa2tVW1tre19TU9OqfgAAAAB4NkagAQC6lMrKSjU0NMjf39+u3d/fX+Xl5U7XKS8vdxpfX1+vysrKVueSlpYmPz8/2xIUFNTqvgAAAAB4rg4roLX3zZ3XrVunqKgoXXHFFbriiit0++236/333++o9AEAHs5kMtm9NwzDoe1i8c7aWyIlJUXV1dW25cSJE63uCwAAAIDn6pApnOdv7pyRkaHx48fr5ZdfVkxMjA4dOqTg4GCH+PM3d57z/7V398FRVfcfxz+RPCkjURLIA0iIjA5ikIfE0gQLjtpoKgWVYlBbYNpmfimgQHQGbGUAS0UpdToIQbBB60ANv5mCxRELoZJUBIc0IRYDg3GIhGLSDFQgSk0COb8//LFksw/ZJPtw7+b9msnM5tyzd7/nnMu95Lvnnpufry1btujDDz/U3LlzNWjQIE2fPl2SVFZWpscee0zZ2dmKjY3V6tWrlZOTo5qaGg0ZMiQQzQAAWFBCQoL69evnMtusqanJZZbZFUlJSW7rR0ZGKj4+vsexxMTEsF5agHl6evQriSs91Nkd4IgAAADQFwVkBlogFnfeunWr5s6dq7Fjx2rkyJF67bXX1N7err/97W+BaAIAwKKio6OVkZGh0tJSp/LS0lJlZ2e7fU9WVpZL/T179igzM7PH658BAAAA6Dv8nkC7srhz58Wae7K48z/+8Q+1tbW5fc/FixfV1tamgQMH+idwAIBtFBYW6g9/+IM2b96sY8eOadGiRaqvr1dBQYGkb2+tnDVrlqN+QUGBTp48qcLCQh07dkybN29WcXGxnnnmGUed1tZWVVdXq7q6Wq2trTp9+rSqq6v12WefBb19AAAAAKzF77dwBmJx5+TkZJf3LFmyREOGDNF9993nMRaejgYA4SkvL09nz57V888/r4aGBqWnp2vXrl1KTU2VJDU0NKi+vt5RPy0tTbt27dKiRYu0fv16paSkaO3atY5lAiTpiy++0Lhx4xy/r1mzRmvWrNHkyZNVVlYWtLZ1VH3qXEg+1854ojQAAAACISBroEmBXdx59erVeuutt1RWVqbY2FiP+1y1apVWrFjRnbDx//gDBIDVzZ07V3PnznW77Y033nApmzx5sqqqqjzub/jw4Y5rDwAAAAB05PdbOAO9uPOaNWv0wgsvaM+ePbrjjju8xsLT0QAAAAAAANBbfp+B1nFx54cffthRXlpaqmnTprl9T1ZWlt555x2nMneLO//2t7/VypUrtXv3bmVmZnYZS19/OpqnJ5cBAAAAAADAdwF5CmcgFndevXq1nnvuOW3evFnDhw9XY2OjGhsb9dVXXwWiCQAAAAAAAICkAK2BFojFnYuKitTa2qof/ehHTp+1bNkyLV++PBDNAAAAAAAAAAL3EAF/L+78+eef+ykyAABgdyxTAAAAgGAKWAIN9tPxj5FXElc6XvNETgAAAAAA0JeRQOvj+AYfABCu+AIIAAAA/kICDQAAq/hTXqgjAAAAAOAGCbRuYLYWAAD21HE2msSMNAAAAHQPCTQAABA2PK3nCQAAAPQGCTR0C9/gAwAAAACAvoYEWh/U3VtRff42v+PaPY9v625YAAAAAAAAlkQCDb3i9ISz6BAGAgAAAAAAECAk0AAAQJ/j9AUQyxEAAACgCyTQ4DfVp845Xo8NWRQAAAAAAAD+RQINvdLd9dQAAAAAAADshgQa3PKUGCNhBgAAAAAA+hoSaAAAoE9jPTQAAAB0hQQaAu9PeVdfP74tdHEAAAAAAAD0AAk0AOgKSWDAlrwtO/BK4sogRgIAAAC7I4GG4CIRAXc4LgBYBLdzAgAAwB0SaAgIpz9Aov20045JFolECwAAAAAACAoSaAgIp9tmbrohZHEwswkAAAAAAPTWNaEOAAAAAAAAALAyZqABAAC4wXpoAAAAuIIEGgKu+tQ5x+uxnm7n7O2tluFwq2Yw1njr/Bn++rxw6H9f2a2tnuK1WzuAAOq47ABP5wQAAIA7JNBgX96SQbC+cBg/X5JTnbcBsDSPyTSSzgAAAH0aCTQEldNstGAnUKzyx49V4ugs0HH5Ot6+xBGMPuyrxycAAAAAwAUJNFhPsJMjgbpl1J/t8JTMsWKiJVCJJ3/u19eZYz3dZ08+uzefZ8XjAD3S8UsGBJbT06IBAACALpBAQ8j4tDZaX2b1WxytGB9JJQAAAABAAJBAgyV4TKYFI0kTjJligeLLzLSexBSIGVqhZNe4JXvHDoQRp+tUyKIAAABAqJBAg+XYbmYaCQ4AAAAAAMIaCTSEH38ltILxJEU7JN/sEKPVeerD7pb7un9f1uUDEFg8jRcAACCskECDpQV9NpodFsC34ueFUm/bGo59FY5tAizkZ29UOF4Xz7kzhJEAAAAgWEigwTY6P50u6Ld3kpQAAKjzEzx3hywOAAAABA8JNNiW7dZKQ/f1JmlJwhNAEDAbDQAAoG+4JtQBAAAAAAAAAFbGDDSEBWajAQD8zflWza7rVL90tZxrEQAAQHghgYaw4ymZRpINABAsLut2hiQKAAAA+AsJNIS1zn/AuCsnmQYACDSPa6V1XK/x8W09/4DO6z72Zl8AAABwQQINfR7JNABAoHW81fNnb6x0vC6ODkU0AAAA6C4SaEAH3pJpJNoAAEHjr5lpAAAA8AsSaEAPeLo1lMQaAKA7Ol5PXul4m2fHmWkk0wAAAEKOBBrggackWW/fT5INAOCO0xM9PdQZG4xAAAAA4IIEGuBHviTdepKY8/Q0UU91AADW1TFR1l0dH0bQcT9cAwAAAALrmkDtuKioSGlpaYqNjVVGRoY++OADr/XLy8uVkZGh2NhY3XzzzXr11Vdd6vz5z3/WqFGjFBMTo1GjRmnHjh2BCh+wlOpT5xw/vtTpyU93Pw8INa4zwFWdz+k/e6PC8VP90v2On175U97VHwAAgD4mIDPQtm3bpoULF6qoqEgTJ07Uxo0blZubq6NHj2rYsGEu9evq6vSDH/xA+fn52rJliz788EPNnTtXgwYN0vTp0yVJBw8eVF5enn7961/r4Ycf1o4dO/Too49q//79mjBhQiCaAfQpnpJlwU6i+TLbzpf6vZ2NwUMjrI3rDPoqX2evearnKYn2SmLHJ4OuubrB05pr3tZl87SNtdwAAICNRRhjjL93OmHCBI0fP14bNmxwlN1222166KGHtGrVKpf6ixcv1s6dO3Xs2DFHWUFBgT7++GMdPHhQkpSXl6cLFy7ovffec9R54IEHdOONN+qtt97yKa4LFy4oLi5O58+f14ABA7rdrl5/cwsAftLdRKPXfS3e3eP39va82lNcZ4DQcvpiIVAJNBJuUOiuMwAAdOb3GWitra2qrKzUkiVLnMpzcnJ04MABt+85ePCgcnJynMruv/9+FRcXq62tTVFRUTp48KAWLVrkUuf3v/+9x1haWlrU0tLi+P38+fOSvr0Q98RX31zq0fsAwN/2157x2756ek7s+N4AfBfjEdcZIPSczkEr7vVYb+OGfY7X/9N0xkP51dlvGwc/12X99VGvOH3GvLYn3W979A33Qf3vnK7r2FmYtS8U1xkAANzxewLtzJkzunz5shITE53KExMT1djY6PY9jY2NbutfunRJZ86cUXJyssc6nvYpSatWrdKKFStcym+66SZfmwMA4W95XK930dzcrLi43u/HF1xnADt53/FqS0DKJWmH+235Pqxh6EsdOwuj9gXzOgMAgDsBewpnRESE0+/GGJeyrup3Lu/uPp999lkVFhY6fm9vb9d//vMfxcfHe31fZxcuXNBNN92kU6dOMXW8l+hL/6I//Ye+7BljjJqbm5WSkhL0zw6n64wUfscg7bE22mNttOeqUF5nAADoyO8JtISEBPXr18/lG/umpiaXb/avSEpKcls/MjJS8fHxXut42qckxcTEKCYmxqnshhtu8LUpLgYMGBAW/4mxAvrSv+hP/6Evuy/YMwLC+Tojhd8xSHusjfZYG+35FjPPAABWcI2/dxgdHa2MjAyVlpY6lZeWlio7O9vte7Kyslzq79mzR5mZmYqKivJax9M+AQDhiesMAAAAgGALyC2chYWF+slPfqLMzExlZWVp06ZNqq+vV0FBgaRvb3k5ffq03nzzTUnfPglt3bp1KiwsVH5+vg4ePKji4mKnp54tWLBAkyZN0ksvvaRp06bpL3/5i/bu3av9+/cHogkAAAvjOgMAAAAgmAKSQMvLy9PZs2f1/PPPq6GhQenp6dq1a5dSU1MlSQ0NDaqvr3fUT0tL065du7Ro0SKtX79eKSkpWrt2raZPn+6ok52drZKSEj333HNaunSpRowYoW3btmnChAmBaIKTmJgYLVu2zOU2HXQffelf9Kf/0Jf2Em7XGSn8jkHaY220x9poDwAA1hNheCY0AAAAAAAA4JHf10ADAAAAAAAAwgkJNAAAAAAAAMALEmgAAAAAAACAFyTQAAAAAAAAAC9IoPmgqKhIaWlpio2NVUZGhj744INQh2R5q1at0p133qnrr79egwcP1kMPPaTjx4871THGaPny5UpJSdG1116ru+++WzU1NSGK2B5WrVqliIgILVy40FFGP3bP6dOn9eMf/1jx8fG67rrrNHbsWFVWVjq2058IFTtea3w518+ZM0cRERFOP9/97ndDFLF3y5cvd4k1KSnJsd1u54fhw4e7tCciIkLz5s2TZP2x+fvf/64f/vCHSklJUUREhN5++22n7b6MR0tLi5588kklJCSof//+mjp1qv71r38FsRVXeWtPW1ubFi9erNGjR6t///5KSUnRrFmz9MUXXzjt4+6773YZs5kzZwa5Jd/qanx8Ob6sND4AAHSFBFoXtm3bpoULF+pXv/qVDh8+rO9973vKzc1VfX19qEOztPLycs2bN08fffSRSktLdenSJeXk5Ojrr7921Fm9erVefvllrVu3ThUVFUpKStL3v/99NTc3hzBy66qoqNCmTZt0xx13OJXTj7778ssvNXHiREVFRem9997T0aNH9bvf/U433HCDow79iVCw67XGl3O9JD3wwANqaGhw/OzatStEEXft9ttvd4r1yJEjjm12Oz9UVFQ4taW0tFSSNGPGDEcdK4/N119/rTFjxmjdunVut/syHgsXLtSOHTtUUlKi/fv366uvvtKUKVN0+fLlYDXDwVt7Ll68qKqqKi1dulRVVVXavn27Pv30U02dOtWlbn5+vtOYbdy4MRjhu+hqfKSujy8rjQ8AAF0y8Oo73/mOKSgocCobOXKkWbJkSYgisqempiYjyZSXlxtjjGlvbzdJSUnmxRdfdNT55ptvTFxcnHn11VdDFaZlNTc3m1tuucWUlpaayZMnmwULFhhj6MfuWrx4sbnrrrs8bqc/ESrhcq3pfK43xpjZs2ebadOmhS6obli2bJkZM2aM223hcH5YsGCBGTFihGlvbzfG2GtsJJkdO3Y4fvdlPM6dO2eioqJMSUmJo87p06fNNddcY/76178GLXZ3OrfHnUOHDhlJ5uTJk46yjv8HsBJ37enq+LLy+AAA4A4z0LxobW1VZWWlcnJynMpzcnJ04MCBEEVlT+fPn5ckDRw4UJJUV1enxsZGp76NiYnR5MmT6Vs35s2bpwcffFD33XefUzn92D07d+5UZmamZsyYocGDB2vcuHF67bXXHNvpT4RCOF1rOp/rrygrK9PgwYN16623Kj8/X01NTaEIzye1tbVKSUlRWlqaZs6cqRMnTkiy//mhtbVVW7Zs0U9/+lNFREQ4yu00Nh35Mh6VlZVqa2tzqpOSkqL09HRbjNn58+cVERHhNEtakrZu3aqEhATdfvvteuaZZyw7A1LyfnzZfXwAAH1PZKgDsLIzZ87o8uXLSkxMdCpPTExUY2NjiKKyH2OMCgsLdddddyk9PV2SHP3nrm9PnjwZ9BitrKSkRFVVVaqoqHDZRj92z4kTJ7RhwwYVFhbql7/8pQ4dOqSnnnpKMTExmjVrFv2JkAiXa427c70k5ebmasaMGUpNTVVdXZ2WLl2qe+65R5WVlYqJiQlhxK4mTJigN998U7feeqv+/e9/a+XKlcrOzlZNTY3tzw9vv/22zp07pzlz5jjK7DQ2nfkyHo2NjYqOjtaNN97oUsfq/7a++eYbLVmyRI8//rgGDBjgKH/iiSeUlpampKQkffLJJ3r22Wf18ccfO27PtZKuji87jw8AoG8igeaDjt/USt/+kdC5DJ7Nnz9f//znP7V//36XbfStd6dOndKCBQu0Z88excbGeqxHP/qmvb1dmZmZeuGFFyRJ48aNU01NjTZs2KBZs2Y56tGfCAW7H3eezvV5eXmO1+np6crMzFRqaqreffddPfLII8EO06vc3FzH69GjRysrK0sjRozQH//4R8fi53Ydp+LiYuXm5iolJcVRZqex8aQn42H1MWtra9PMmTPV3t6uoqIip235+fmO1+np6brllluUmZmpqqoqjR8/PtihetXT48vq4wMA6Lu4hdOLhIQE9evXz+VbsKamJpdvPOHek08+qZ07d2rfvn0aOnSoo/zKU83oW+8qKyvV1NSkjIwMRUZGKjIyUuXl5Vq7dq0iIyMdfUU/+iY5OVmjRo1yKrvtttscC7VzXCIUwuFa4+lc705ycrJSU1NVW1sbpOh6rn///ho9erRqa2ttfX44efKk9u7dq5///Ode69lpbHwZj6SkJLW2turLL7/0WMdq2tra9Oijj6qurk6lpaVOs8/cGT9+vKKiomwxZp2PLzuODwCgbyOB5kV0dLQyMjJcpsWXlpYqOzs7RFHZgzFG8+fP1/bt2/X+++8rLS3NafuV2w869m1ra6vKy8vp2w7uvfdeHTlyRNXV1Y6fzMxMPfHEE6qurtbNN99MP3bDxIkTdfz4caeyTz/9VKmpqZI4LhEadr7WdHWud+fs2bM6deqUkpOTgxBh77S0tOjYsWNKTk629fnh9ddf1+DBg/Xggw96rWensfFlPDIyMhQVFeVUp6GhQZ988oklx+xK8qy2tlZ79+5VfHx8l++pqalRW1ubLcas8/Flt/EBAICncHahpKTEREVFmeLiYnP06FGzcOFC079/f/P555+HOjRL+8UvfmHi4uJMWVmZaWhocPxcvHjRUefFF180cXFxZvv27ebIkSPmscceM8nJyebChQshjNz6Oj+Bi3703aFDh0xkZKT5zW9+Y2pra83WrVvNddddZ7Zs2eKoQ38iFOx6renqXN/c3Gyefvppc+DAAVNXV2f27dtnsrKyzJAhQyz5b+rpp582ZWVl5sSJE+ajjz4yU6ZMMddff71jHOx4frh8+bIZNmyYWbx4sVO5HcamubnZHD582Bw+fNhIMi+//LI5fPiw46mUvoxHQUGBGTp0qNm7d6+pqqoy99xzjxkzZoy5dOmSpdrT1tZmpk6daoYOHWqqq6ud/j21tLQYY4z57LPPzIoVK0xFRYWpq6sz7777rhk5cqQZN26c5drj6/FlpfEBAKArJNB8sH79epOammqio6PN+PHjTXl5eahDsjxJbn9ef/11R5329nazbNkyk5SUZGJiYsykSZPMkSNHQhe0TXROoNGP3fPOO++Y9PR0ExMTY0aOHGk2bdrktJ3+RKjY8VrT1bn+4sWLJicnxwwaNMhERUWZYcOGmdmzZ5v6+vrQBu5BXl6eSU5ONlFRUSYlJcU88sgjpqamxrHdjueH3bt3G0nm+PHjTuV2GJt9+/a5Pb5mz55tjPFtPP773/+a+fPnm4EDB5prr73WTJkyJWRt9Naeuro6j/+e9u3bZ4wxpr6+3kyaNMkMHDjQREdHmxEjRpinnnrKnD171nLt8fX4stL4AADQlQhjjAnoFDcAAAAAAADAxlgDDQAAAAAAAPCCBBoAAAAAAADgBQk0AAAAAAAAwAsSaAAAAAAAAIAXJNAAAAAAAAAAL0igAQAAAAAAAF6QQAMAAAAAAAC8IIEGAAAAAAAAeEECDQAAAAAAAPCCBBoAAAAAAADgBQk0AAAAAAAAwAsSaAAAAAAAAIAX/wf0WswgUf9djQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNgAAAJbCAYAAAA2QikwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACcFUlEQVR4nOzdf1xUZf7//+cIMlgJ5S9+FCK6WRpqBa6CkW4lhuWaaVIWaaG7LJUC224h+kndknRdl0yBtTByS2Xfqf3YKKXdJF2xlKD1bW6571DIQIJdwX6B4Pn+4deJkUEZBhh+PO6327ntnGte5zrXdTbnYl5zneuYDMMwBAAAAAAAAKBFeji7AQAAAAAAAEBnRoINAAAAAAAAcAAJNgAAAAAAAMABJNgAAAAAAAAAB5BgAwAAAAAAABxAgg0AAAAAAABwAAk2AAAAAAAAwAEk2AAAAAAAAAAHkGADAAAAAAAAHECCDWgnS5YskclkUkVFxQXjvv32W61YsUKjRo2Sh4eHevfurSFDhmjmzJnKzc21xO3atUsmk8myubi4yMvLS/fcc48OHz5siTt69KhVXM+ePdW3b1+NHj1a8fHxOnToUJv1GQDQ8aWmpiozM7NFxw4aNEh33nln6zYIANDpODKWNNe57z+vvfbaRWPnzJmjQYMGtWl7gPORYAM6kPr6eoWHh+uZZ57RjBkz9D//8z967bXXFB8fr6qqKu3evbvRMcuXL1deXp7ef/99PfHEE8rJydG4ceN0/Phxq7jHHntMeXl5ys3N1Z///GfdddddevPNNzVq1Cj9/ve/b68uAgA6mPb4UgQA6No62liyePFibd++3dnNQDfj6uwGAPjRBx98oL1792rDhg166KGHLOWTJk3So48+qjNnzjQ65uqrr9bYsWMlSTfffLMuv/xyRUdHKzMzU0lJSZa4gQMHWuIkafLkyUpISNDdd9+t3/72twoMDFREREQb9g4AAAAA2t6QIUOc3QR0Q8xgA9rZiRMndN9998nT01NeXl56+OGHVVVVJUmqrKyUJPn4+Ng8tkePi/+TPZdEO3bs2EVje/XqpYyMDPXs2ZNZbADQxZxbmqCgoEB33323PDw85OnpqQceeEBff/21pLO3eB46dEi5ubmWpQRackvN9u3bNXLkSLm7u2vw4MFas2ZNK/cGAOAM7TGWnFtuoLljyenTp5WUlCRfX195eHjotttu02effWYVwy2icAYSbEA7mz59uoYOHaqtW7fqySef1KZNmxQfHy9JCg4OVs+ePbVgwQK9+uqrKi0ttbv+f//735Kk/v37Nyve19dXQUFB2rt3r+rq6uw+HwCgY5s2bZp+8pOf6LXXXtOSJUv0+uuva9KkSTp9+rS2b9+uwYMH64YbblBeXp7y8vLsvqWmsLBQcXFxio+P1/bt2xUaGqoFCxZo1apVbdQjAEB760hjycKFC3Xs2DG9+OKLWr9+vY4cOaIpU6aovr6+tboLtAi3iALtLDo6Wr/5zW8kSbfddpv+/e9/a8OGDcrIyNCgQYOUnp6uBQsW6IEHHpB0djbbxIkTNXfuXIWFhTWq78yZM6qrq9Pp06d14MAB/frXv5aLi4siIyOb3SZ/f3/t27dP//nPfzRgwIDW6SgAoEO4++67tXLlSklSeHi4vLy8dP/99+svf/mL7r//fvXq1UseHh5WywjY46uvvlJBQYFGjRolSYqIiFB5ebl+97vfKTY2Vpdcckmr9QUA4BwdaSwZPny4XnnlFcu+i4uLZs6cqf3797f4/EBrYAYb0M5+/vOfW+2PHDlSP/zwg8rLyyVJDz/8sL788ktt2rRJ8+fPl5+fn1555RWNHz/e5m2ckZGR6tmzpy655BLdfPPNqq+v12uvvaaRI0c2u02GYTjWKQBAh3X//fdb7c+cOVOurq56//33W6X+6667zvKF6JxZs2apurpaH3/8caucAwDgXB1pLLH1fUpq3hI5QFtiBhvQzvr27Wu1bzabJUnff/+9pczT01P33Xef7rvvPknSoUOHdNtttykpKUnz5s3T5ZdfboldsWKFbrnlFrm4uKhfv37y8/Ozu03Hjh2T2WxWnz59WtAjAEBH5u3tbbXv6uqqvn37Wtb9bO36G5a11jkAAM7VkcaS5nyfApyBGWxAJ3Ddddfp3nvv1enTp/X5559bvTd48GAFBwfrhhtuaFFy7fjx48rPz9dNN90kV1dy7gDQ1ZSVlVnt19XVqbKystEXlNaqv2FZa50DAOBcjCXAxZFgAzqQyspK1dbW2nzvX//6l6SzDyVoLd9//73mzp2ruro6/fa3v221egEAHcerr75qtf+Xv/xFdXV1mjBhgqSzv/w78qv/oUOH9Mknn1iVbdq0Sb1799aNN97Y4noBAB0HYwlwcUxXATqQ999/XwsWLND999+v0NBQ9e3bV+Xl5dq8ebPeffddPfjgg7rqqqtaVHdxcbH27dunM2fOqKqqSgUFBdqwYYOOHTumP/zhDwoPD2/l3gAAOoJt27bJ1dVVEydO1KFDh7R48WKNGjVKM2fOlCSNGDFCW7ZsUVZWlgYPHix3d3eNGDGi2fX7+vrq5z//uZYsWSIfHx+98sorysnJ0YoVK3jAAQB0EYwlwMWRYAM6kLFjx+rhhx/W+++/rz//+c+qqKhQr169NHz4cD3//PP61a9+1eK6n3/+eT3//PNycXGRh4eHBg8erClTpmjevHkaPnx4K/YCANCRbNu2TUuWLFFaWppMJpOmTJmilJQUubm5SZKWLl2q0tJSzZs3T6dOnZK/v7+OHj3a7Pqvv/56PfTQQ3rqqad05MgR+fr6avXq1YqPj2+jHgEA2htjCXBxJoPHBwIAAHQ5S5Ys0dKlS/X111+rX79+zm4OAKATao+xZNCgQQoMDNRf//rXNqkfaC+swQYAAAAAAAA4gFtEAQAAYKW+vl4XusnBZDLJxcWlHVsEAOhsGEvQ3XCLKAAAAKwMGjRIx44da/L98ePHa9euXe3XIABAp8NYgu6GGWwAAACw8tZbb6mmpqbJ93v37t2OrQEAdEaMJehumMEGAAAAAAAAOICHHAAAAAAAAAAO4BbRBs6cOaOvvvpKvXv3lslkcnZzAKDTMwxDp06dkq+vr3r04DcdibEGAFobY401xhkAaF3NHWdIsDXw1Vdfyc/Pz9nNAIAup6SkRFdddZWzm9EhMNYAQNtgrDmLcQYA2sbFxhkSbA2cW2SxpKREHh4eTm4NAHR+1dXV8vPzYxHbBhhrAKB1MdZYY5wBgNbV3HGGBFsD56ZQe3h4MBgBQCviFpUfMdYAQNtgrDmLcQYA2sbFxhkWKQAAAAAAAAAcQIINAAAAAAAAcAAJNgAAAAAAAMABJNgAAAAAAAAAB5BgAwAAAAAAABxAgg0AAAAAAABwAAk2AAAAAAAAwAEk2AAAAAAAAAAHkGADAAAAAAAAHODq7Aag44vO3G95nTFntBNbAgBokU2RP76eleW8dgAAOh/GEABoFmawAQAAAAAAAA4gwQYAAAAAAAA4gAQbAAAAAAAA4AASbAAAAAAAAIADSLABAAAAAAAADiDBBgAAAAAAADjA1dkNgHNFZ+63vM6YM9qJLQEAAAAAAOicmMEGAAAAAAAAOIAEGwAAAAAAAOAAEmwAAAAAAACAA1iDDXZhzTYAAAAAAABrzGADAAAAAAAAHMAMNgAAuqJNkRcvn5XVPm0BAAAAurgWzWBLTU1VQECA3N3dFRQUpN27d18wPjc3V0FBQXJ3d9fgwYOVnp7eKGbr1q0aPny4zGazhg8fru3bt1u9n5aWppEjR8rDw0MeHh4KCQnRO++8YxUzZ84cmUwmq23s2LEt6SIAAF3fpsgfNwAAAAAtZneCLSsrS3FxcUpKSlJBQYHCwsIUERGh4uJim/FFRUWaPHmywsLCVFBQoIULF2r+/PnaunWrJSYvL0+RkZGKiorSJ598oqioKM2cOVMffvihJeaqq67Ss88+qwMHDujAgQO65ZZbNHXqVB06dMjqfLfffrtKS0stW3Z2tr1d7LaiM/dbtraIB4DWZM+PPaWlpZo1a5auueYa9ejRQ3FxcY1iMjMzG/1IYzKZ9MMPP7T4vAAAAAC6B7sTbKtXr1Z0dLTmzp2rYcOGKSUlRX5+fkpLS7MZn56eroEDByolJUXDhg3T3Llz9fDDD2vVqlWWmJSUFE2cOFGJiYm69tprlZiYqFtvvVUpKSmWmClTpmjy5MkaOnSohg4dqmeeeUaXXXaZ9u3bZ3U+s9ksb29vy9anTx97uwgA6ODs/bGnpqZG/fv3V1JSkkaNGtVkvR4eHlY/0pSWlsrd3b3F5wUAAADQPdiVYKutrVV+fr7Cw8OtysPDw7V3716bx+Tl5TWKnzRpkg4cOKDTp09fMKapOuvr67VlyxZ9++23CgkJsXpv165dGjBggIYOHap58+apvLzcni4CADoBe3/sGTRokJ577jk9+OCD8vT0bLJek8lk9SONt7e3Q+cFAAAA0D3YlWCrqKhQfX29vLy8rMq9vLxUVlZm85iysjKb8XV1daqoqLhgzPl1Hjx4UJdddpnMZrNiYmK0fft2DR8+3PJ+RESEXn31Vf3973/XH/7wB+3fv1+33HKLampqbLatpqZG1dXVVhsAoGNryY89zfXNN9/I399fV111le68804VFBQ4fF7GGgAAAKDra9FDDkwmk9W+YRiNyi4Wf355c+q85pprVFhYqH379ulXv/qVZs+erU8//dTyfmRkpO644w4FBgZqypQpeuedd/T555/r7bffttmu5ORkeXp6WjY/P78L9BoA0BG05Mee5rj22muVmZmpN998U5s3b5a7u7vGjRunI0eOOHRexhoAAACg67MrwdavXz+5uLg0+iJRXl7e6AvHOd7e3jbjXV1d1bdv3wvGnF+nm5ubfvKTnyg4OFjJyckaNWqUnnvuuSbb6+PjI39/f8uXo/MlJiaqqqrKspWUlDRZFwCgY7H3x56LGTt2rB544AGNGjVKYWFh+stf/qKhQ4fq+eefd+i8jDUAAABA12dXgs3NzU1BQUHKycmxKs/JyVFoaKjNY0JCQhrF79y5U8HBwerZs+cFY5qq8xzDMJq8/VOSKisrVVJSIh8fH5vvm81meXh4WG0AgI6tJT/2tESPHj00evRoy480LT0vYw0AAADQ9dl9i2hCQoJefPFFbdiwQYcPH1Z8fLyKi4sVExMj6ewv9Q8++KAlPiYmRseOHVNCQoIOHz6sDRs2KCMjQ48//rglZsGCBdq5c6dWrFihf/3rX1qxYoXee+89xcXFWWIWLlyo3bt36+jRozp48KCSkpK0a9cu3X///ZLOrpvz+OOPKy8vT0ePHtWuXbs0ZcoU9evXT9OmTWvp9QEAdDAt+bGnJQzDUGFhoeVHmvY6LwAAAIDOx+4EW2RkpFJSUrRs2TJdf/31+uCDD5SdnS1/f39JUmlpqYqLiy3xAQEBys7O1q5du3T99dfrd7/7ndasWaPp06dbYkJDQ7Vlyxa99NJLGjlypDIzM5WVlaUxY8ZYYk6cOKGoqChdc801uvXWW/Xhhx/q3Xff1cSJEyVJLi4uOnjwoKZOnaqhQ4dq9uzZGjp0qPLy8tS7d+8WXyAAQMdj7489klRYWKjCwkJ98803+vrrr1VYWGi1jufSpUu1Y8cOffHFFyosLFR0dLQKCwstdTbnvAAAnC81NVUBAQFyd3dXUFCQdu/efcH4V199VaNGjdIll1wiHx8fPfTQQ6qsrGyn1gIAWsq1JQfFxsYqNjbW5nuZmZmNysaPH6+PP/74gnXOmDFDM2bMaPL9jIyMCx7fq1cv7dix44IxAICuITIyUpWVlVq2bJlKS0sVGBh4wR97JOmGG26wvM7Pz9emTZvk7++vo0ePSpJOnjypX/ziFyorK5Onp6duuOEGffDBB/rpT3/a7PMCANBQVlaW4uLilJqaqnHjxulPf/qTIiIi9Omnn2rgwIGN4vfs2aMHH3xQf/zjHzVlyhQdP35cMTExmjt3rrZv3+6EHgAAmstknHukJ1RdXS1PT09VVVV1mzVyojP32yzPmDP6ojFNxQPAOd3xc/Vi2u2abIq0L35WVtu0AwDaWEcea8aMGaMbb7xRaWlplrJhw4bprrvuUnJycqP4VatWKS0tTf/3f/9nKXv++ee1cuXKZj8kp9WvR8PxhLECQDfU3M9Vu28RRfcQnbnfsgEAAACwT21trfLz8xUeHm5VHh4err1799o8JjQ0VF9++aWys7NlGIZOnDih1157TXfccUd7NBkA4IAW3SIKnK9hIo7ZbAAAAOjuKioqVF9f3+hJ015eXo2eSH1OaGioXn31VUVGRuqHH35QXV2dfv7zn+v5559v8jw1NTWqqamx7FdXV7dOBwAAdmEGGwAAAAC0EZPJZLVvGEajsnM+/fRTzZ8/X//v//0/5efn691331VRUdEFH6aTnJwsT09Py+bn59eq7QcANA8JNgAAAABoZf369ZOLi0uj2Wrl5eWNZrWdk5ycrHHjxuk3v/mNRo4cqUmTJik1NVUbNmxQaWmpzWMSExNVVVVl2Zq7VhsAoHWRYAMAAACAVubm5qagoCDl5ORYlefk5Cg0NNTmMd9995169LD+iubi4iLp7Mw3W8xmszw8PKw2AED7I8EGAAAAAG0gISFBL774ojZs2KDDhw8rPj5excXFlls+ExMT9eCDD1rip0yZom3btiktLU1ffPGF/vGPf2j+/Pn66U9/Kl9fX2d1AwDQDDzkAAAAAADaQGRkpCorK7Vs2TKVlpYqMDBQ2dnZ8vf3lySVlpaquLjYEj9nzhydOnVKa9eu1a9//WtdfvnluuWWW7RixQpndQEA0Ewk2AAAgLQp8sfXs7Kc1w4A6GJiY2MVGxtr873MzMxGZY899pgee+yxNm4VAKC1kWDroqIz91teZ8wZ7cSWAAAAAAAAdG2swQYAAAAAAAA4gBlsaHXMngMAAAC6IJYTAIAmMYMNAAAAAAAAcAAJNgAAAAAAAMABJNgAAAAAAAAAB7AGGwAAUGHJScvr653WCgAAAKBzIsEGAEA31TCpBgAAAKDluEUUAAAAAAAAcAAJNgAAAAAAAMAB3CLaDURn7re8zpgz2oktAQAAAAAA6HpaNIMtNTVVAQEBcnd3V1BQkHbv3n3B+NzcXAUFBcnd3V2DBw9Wenp6o5itW7dq+PDhMpvNGj58uLZv3271flpamkaOHCkPDw95eHgoJCRE77zzjlWMYRhasmSJfH191atXL02YMEGHDh1qSRe7rOjM/VYbAAAAAAAAHGN3gi0rK0txcXFKSkpSQUGBwsLCFBERoeLiYpvxRUVFmjx5ssLCwlRQUKCFCxdq/vz52rp1qyUmLy9PkZGRioqK0ieffKKoqCjNnDlTH374oSXmqquu0rPPPqsDBw7owIEDuuWWWzR16lSrBNrKlSu1evVqrV27Vvv375e3t7cmTpyoU6dO2dtNAAA6n02RP24O4IcYAAAAwD52J9hWr16t6OhozZ07V8OGDVNKSor8/PyUlpZmMz49PV0DBw5USkqKhg0bprlz5+rhhx/WqlWrLDEpKSmaOHGiEhMTde211yoxMVG33nqrUlJSLDFTpkzR5MmTNXToUA0dOlTPPPOMLrvsMu3bt0/S2dlrKSkpSkpK0t13363AwEC9/PLL+u6777Rp0yZ7uwkAAAAAAAA0i10JttraWuXn5ys8PNyqPDw8XHv37rV5TF5eXqP4SZMm6cCBAzp9+vQFY5qqs76+Xlu2bNG3336rkJAQSWdnypWVlVnVYzabNX78+CbrqampUXV1tdWG1sUtqQAAAAAAoKuz6yEHFRUVqq+vl5eXl1W5l5eXysrKbB5TVlZmM76urk4VFRXy8fFpMub8Og8ePKiQkBD98MMPuuyyy7R9+3YNHz7ccp5zx51fz7Fjx2y2LTk5WUuXLr1IrwEA6DoKS046uwkAAABAl9OihxyYTCarfcMwGpVdLP788ubUec0116iwsFD79u3Tr371K82ePVuffvppi9uWmJioqqoqy1ZSUtJkHwAAHYs9D9wpLS3VrFmzdM0116hHjx6Ki4trFPPCCy8oLCxMV1xxha644grddttt+uijj6xilixZIpPJZLV5e3u3dtcAAAAAdDJ2Jdj69esnFxeXRjPLysvLG80cO8fb29tmvKurq/r27XvBmPPrdHNz009+8hMFBwcrOTlZo0aN0nPPPWepQ5JdbTObzZankp7bAAAdn70P3KmpqVH//v2VlJSkUaNG2YzZtWuX7rvvPr3//vvKy8vTwIEDFR4eruPHj1vFXXfddSotLbVsBw8ebPX+AQAAAOhc7Eqwubm5KSgoSDk5OVblOTk5Cg0NtXlMSEhIo/idO3cqODhYPXv2vGBMU3WeYxiGampqJEkBAQHy9va2qqe2tla5ubkXrQcA0LnY+8CdQYMG6bnnntODDz4oT09PmzGvvvqqYmNjdf311+vaa6/VCy+8oDNnzuhvf/ubVZyrq6u8vb0tW//+/Vu9fwAAAAA6F7vWYJOkhIQERUVFKTg4WCEhIVq/fr2Ki4sVExMj6extl8ePH9fGjRslSTExMVq7dq0SEhI0b9485eXlKSMjQ5s3b7bUuWDBAt18881asWKFpk6dqjfeeEPvvfee9uzZY4lZuHChIiIi5Ofnp1OnTmnLli3atWuX3n33XUlnbw2Ni4vT8uXLdfXVV+vqq6/W8uXLdckll2jWrFkOXSQAQMdx7oE7Tz75pFX5hR640xLfffedTp8+rT59+liVHzlyRL6+vjKbzRozZoyWL1+uwYMHt9p5O4LHTiyyvI7OfNryOmPOaGc0BwAAAOjw7E6wRUZGqrKyUsuWLVNpaakCAwOVnZ0tf39/SWfXuWl4i05AQICys7MVHx+vdevWydfXV2vWrNH06dMtMaGhodqyZYsWLVqkxYsXa8iQIcrKytKYMWMsMSdOnFBUVJRKS0vl6empkSNH6t1339XEiRMtMb/97W/1/fffKzY2Vv/97381ZswY7dy5U717927RxQEAdDwteeBOSzz55JO68sorddttt1nKxowZo40bN2ro0KE6ceKEnn76aYWGhurQoUOWZQ/OV1NTY5ltLYknVgMAAABdkN0JNkmKjY1VbGyszfcyMzMblY0fP14ff/zxBeucMWOGZsyY0eT7GRkZF22XyWTSkiVLtGTJkovGAgA6N3sfuGOPlStXavPmzdq1a5fc3d0t5REREZbXI0aMUEhIiIYMGaKXX35ZCQkJNuviidUAAABA19eip4gCAOAsLXngjj1WrVql5cuXa+fOnRo5cuQFYy+99FKNGDFCR44caTKGJ1YDAAAAXR8JNgBAp9KSB+401+9//3v97ne/07vvvqvg4OCLxtfU1Ojw4cPy8fFpMoYnVgMAAABdX4tuEQUAwJnsfeCOJBUWFkqSvvnmG3399dcqLCyUm5ubhg8fLunsbaGLFy/Wpk2bNGjQIMsMucsuu0yXXXaZJOnxxx/XlClTNHDgQJWXl+vpp59WdXW1Zs+e3Y69d57ozP2W1zzwAAAAAPgRCTYAQKdj7wN3JOmGG26wvM7Pz9emTZvk7++vo0ePSpJSU1NVW1vbaD3Qp556yrK255dffqn77rtPFRUV6t+/v8aOHat9+/ZZzgsAAACgeyLBBgDolOx94I5hGBes71yi7UK2bNnSnKYBAAAA6GZYgw0AAAAAAABwAAk2AAAAAAAAwAHcItqFNFx8ujNgsWwAAAAAANAVkGADAKCLKyw56ewmAAAAAF0aCTYAAGC382dNMxMZAAAA3RlrsAEAAAAAAAAOIMEGAAAAAAAAOIAEGwAAAAAAAOAA1mADAABNeuzEIsvr572edmJLAAAAgI6LGWwAAAAAAACAA0iwAQAAAAAAAA7gFlG0q+jM/c5uAgAAAAAAQKtiBhsAAAAAAADgAGawdXLMCAMAAAAAAHCuFs1gS01NVUBAgNzd3RUUFKTdu3dfMD43N1dBQUFyd3fX4MGDlZ6e3ihm69atGj58uMxms4YPH67t27dbvZ+cnKzRo0erd+/eGjBggO666y599tlnVjFz5syRyWSy2saOHduSLgIAAACAw+z97lRTU6OkpCT5+/vLbDZryJAh2rBhQzu1FgDQUnYn2LKyshQXF6ekpCQVFBQoLCxMERERKi4uthlfVFSkyZMnKywsTAUFBVq4cKHmz5+vrVu3WmLy8vIUGRmpqKgoffLJJ4qKitLMmTP14YcfWmJyc3P1yCOPaN++fcrJyVFdXZ3Cw8P17bffWp3v9ttvV2lpqWXLzs62t4sAAAAA4DB7vztJ0syZM/W3v/1NGRkZ+uyzz7R582Zde+217dhqAEBLmAzDMOw5YMyYMbrxxhuVlpZmKRs2bJjuuusuJScnN4p/4okn9Oabb+rw4cOWspiYGH3yySfKy8uTJEVGRqq6ulrvvPOOJeb222/XFVdcoc2bN9tsx9dff60BAwYoNzdXN998s6SzM9hOnjyp119/3Z4uWVRXV8vT01NVVVXy8PBoUR3travcIpoxZ7SzmwCgDXTGz9W21qbXZFOkzeLCkpOtUv3zXk83+R6f4wCcpSOPNfZ+d3r33Xd177336osvvlCfPn1adM5Wvx5NjC2aleV43QDQCTT3c9WuGWy1tbXKz89XeHi4VXl4eLj27t1r85i8vLxG8ZMmTdKBAwd0+vTpC8Y0VackVVVVSVKjgWfXrl0aMGCAhg4dqnnz5qm8vLx5nQMAAACAVtKS705vvvmmgoODtXLlSl155ZUaOnSoHn/8cX3//fdNnqempkbV1dVWGwCg/dn1kIOKigrV19fLy8vLqtzLy0tlZWU2jykrK7MZX1dXp4qKCvn4+DQZ01SdhmEoISFBN910kwIDAy3lERERuueee+Tv76+ioiItXrxYt9xyi/Lz82U2mxvVU1NTo5qaGss+gxEAAE177MQiy+sLzWYDALTsu9MXX3yhPXv2yN3dXdu3b1dFRYViY2P1n//8p8l12JKTk7V06dJWbz8AwD4teoqoyWSy2jcMo1HZxeLPL7enzkcffVT//Oc/tWfPHqvyyMgfpy8HBgYqODhY/v7+evvtt3X33Xc3qofBqONoeKsrtxkBAACgq7Dne86ZM2dkMpn06quvytPTU5K0evVqzZgxQ+vWrVOvXr0aHZOYmKiEhATLfnV1tfz8/FqxBwCA5rArwdavXz+5uLg0+sWlvLy80S8z53h7e9uMd3V1Vd++fS8YY6vOxx57TG+++aY++OADXXXVVRdsr4+Pj/z9/XXkyBGb73fWwairrLsGAOg6+KEEAKy15LuTj4+PrrzySktyTTq7ZpthGPryyy919dVXNzrGbDbbvFsHANC+7FqDzc3NTUFBQcrJybEqz8nJUWhoqM1jQkJCGsXv3LlTwcHB6tmz5wVjGtZpGIYeffRRbdu2TX//+98VEBBw0fZWVlaqpKREPj4+Nt83m83y8PCw2gAAAADAUS357jRu3Dh99dVX+uabbyxln3/+uXr06HHRyQUAAOeyK8EmSQkJCXrxxRe1YcMGHT58WPHx8SouLlZMTIyks7PCHnzwQUt8TEyMjh07poSEBB0+fFgbNmxQRkaGHn/8cUvMggULtHPnTq1YsUL/+te/tGLFCr333nuKi4uzxDzyyCN65ZVXtGnTJvXu3VtlZWUqKyuzLPj5zTff6PHHH1deXp6OHj2qXbt2acqUKerXr5+mTZvW0usDAAAAAC1i73enWbNmqW/fvnrooYf06aef6oMPPtBvfvMbPfzwwzZvDwUAdBx2r8EWGRmpyspKLVu2TKWlpQoMDFR2drb8/f0lSaWlpSouLrbEBwQEKDs7W/Hx8Vq3bp18fX21Zs0aTZ8+3RITGhqqLVu2aNGiRVq8eLGGDBmirKwsjRkzxhJz7tHWEyZMsGrPSy+9pDlz5sjFxUUHDx7Uxo0bdfLkSfn4+OhnP/uZsrKy1Lt3b3u7CSfiNiMAAAB0BfZ+d7rsssuUk5Ojxx57TMHBwerbt69mzpypp5/mwTIA0NGZjHNPHICqq6vl6empqqqqDn27aHdag40EG9C5dZbP1fbUptdkU6TN4sKSk617Hl34KaJ8dgNoT4w11lr9ejQxtmhWluN1A0An0NzPVbtvEYVzRGfut2zdyqbIHzcAaCA1NVUBAQFyd3dXUFCQdu/e3WRsaWmpZs2apWuuuUY9evSwWoKgoa1bt2r48OEym80aPny4tm/f7tB5AQAAAHQPJNjQITx2YpFlA4CLycrKUlxcnJKSklRQUKCwsDBFRERY3WbTUE1Njfr376+kpCSNGjXKZkxeXp4iIyMVFRWlTz75RFFRUZo5c6Y+/PDDFp+3u+q2PwoBAACg2yLBBgDodFavXq3o6GjNnTtXw4YNU0pKivz8/CzrdZ5v0KBBeu655/Tggw/K09PTZkxKSoomTpyoxMREXXvttUpMTNStt96qlJSUFp8XAAAAQPdAgg0A0KnU1tYqPz9f4eHhVuXh4eHau3dvi+vNy8trVOekSZMsdbbVeQEAAAB0fnY/RRQAAGeqqKhQfX29vLy8rMq9vLxUVlbW4nrLysouWGdLz1tTU6OamhrLfnV1dYvbCAAAAKBjIsEGi4brn13o6XAA0BGYTCarfcMwGpW1RZ32njc5OVlLly51qF0AAAAAOjZuEQUAdCr9+vWTi4tLo1lj5eXljWaX2cPb2/uCdbb0vImJiaqqqrJsJSUlLW4jAAAAgI6JBBs6j02RP24Aui03NzcFBQUpJyfHqjwnJ0ehoaEtrjckJKRRnTt37rTU2dLzms1meXh4WG3tobDkpGUDAAAA0La4RRQA0OkkJCQoKipKwcHBCgkJ0fr161VcXKyYmBhJZ2eNHT9+XBs3brQcU1hYKEn65ptv9PXXX6uwsFBubm4aPny4JGnBggW6+eabtWLFCk2dOlVvvPGG3nvvPe3Zs6fZ5wUAAADQPZFgAwB0OpGRkaqsrNSyZctUWlqqwMBAZWdny9/fX5JUWlqq4uJiq2NuuOEGy+v8/Hxt2rRJ/v7+Onr0qCQpNDRUW7Zs0aJFi7R48WINGTJEWVlZGjNmTLPP2500XLdTYu1OAAAAdG8k2Dqw6Mz9zm5Cs/GABADtLTY2VrGxsTbfy8zMbFRmGMZF65wxY4ZmzJjR4vN2Z4wDAAAA6M5IsAEAgDbT8MeijDmjndgSAAAAoO2QYEOrYxYDAAAAAADoTkiwoUNr+PS76/0ud1o7AAAAAAAAmkKCDZ3fpsgfX8/Kcl47AAAAAABAt0SCDR3O+U+mAwAAAAAA6Mh6OLsBAAAAAAAAQGfGDLYOpuHT1tDKuJUUAAAAAAC0AWawAQAAAAAAAA5gBhuchrXWAAAAAABAV9CiGWypqakKCAiQu7u7goKCtHv37gvG5+bmKigoSO7u7ho8eLDS09MbxWzdulXDhw+X2WzW8OHDtX37dqv3k5OTNXr0aPXu3VsDBgzQXXfdpc8++8wqxjAMLVmyRL6+vurVq5cmTJigQ4cOtaSLQNM2Rf64AQAAAACAbs/uGWxZWVmKi4tTamqqxo0bpz/96U+KiIjQp59+qoEDBzaKLyoq0uTJkzVv3jy98sor+sc//qHY2Fj1799f06dPlyTl5eUpMjJSv/vd7zRt2jRt375dM2fO1J49ezRmzBhJZ5N0jzzyiEaPHq26ujolJSUpPDxcn376qS699FJJ0sqVK7V69WplZmZq6NChevrppzVx4kR99tln6t27tyPXCS3U7rPUWGcNAAAAaHv83Q0AVuxOsK1evVrR0dGaO3euJCklJUU7duxQWlqakpOTG8Wnp6dr4MCBSklJkSQNGzZMBw4c0KpVqywJtpSUFE2cOFGJiYmSpMTEROXm5iolJUWbN2+WJL377rtW9b700ksaMGCA8vPzdfPNN8swDKWkpCgpKUl33323JOnll1+Wl5eXNm3apF/+8pf2dhUdTGHJScvr653WCgBASzV8kE/GnNFObAkAAADQuuy6RbS2tlb5+fkKDw+3Kg8PD9fevXttHpOXl9coftKkSTpw4IBOnz59wZim6pSkqqoqSVKfPn0knZ0pV1ZWZlWP2WzW+PHjL1gPAAAAAAAA4Ai7ZrBVVFSovr5eXl5eVuVeXl4qKyuzeUxZWZnN+Lq6OlVUVMjHx6fJmKbqNAxDCQkJuummmxQYGGg5z7njzq/n2LFjNuupqalRTU2NZb+6utpmHAAAAAAAANCUFj3kwGQyWe0bhtGo7GLx55fbU+ejjz6qf/7zn5bbR1vatuTkZHl6elo2Pz+/JvsAAAAAAAAA2GLXDLZ+/frJxcWl0cyy8vLyRjPHzvH29rYZ7+rqqr59+14wxladjz32mN5880198MEHuuqqq6zOI52dyebj49OstiUmJiohIcGyX11dTZKtu2BRVgBoMw0fcPO819NObAkAAADQPuyawebm5qagoCDl5ORYlefk5Cg0NNTmMSEhIY3id+7cqeDgYPXs2fOCMQ3rNAxDjz76qLZt26a///3vCggIsIoPCAiQt7e3VT21tbXKzc1tsm1ms1keHh5WG2CxKfLHDQAAAAAAoAl2P0U0ISFBUVFRCg4OVkhIiNavX6/i4mLFxMRIOjsr7Pjx49q4caMkKSYmRmvXrlVCQoLmzZunvLw8ZWRkWN3euWDBAt18881asWKFpk6dqjfeeEPvvfee9uzZY4l55JFHtGnTJr3xxhvq3bu3Zcabp6enevXqJZPJpLi4OC1fvlxXX321rr76ai1fvlyXXHKJZs2a5dBFQifV3MQYs9kAdFb8AAAAAAB0CHYn2CIjI1VZWally5aptLRUgYGBys7Olr+/vySptLRUxcXFlviAgABlZ2crPj5e69atk6+vr9asWaPp06dbYkJDQ7VlyxYtWrRIixcv1pAhQ5SVlaUxY8ZYYtLS0iRJEyZMsGrPSy+9pDlz5kiSfvvb3+r7779XbGys/vvf/2rMmDHauXOnevfubW83AQAAAAAAgGaxO8EmSbGxsYqNjbX5XmZmZqOy8ePH6+OPP75gnTNmzNCMGTOafP/cgxEuxGQyacmSJVqyZMlFYwEAAAAAAIDW0KKniAIAAAAAAAA4q0Uz2IBuh3WOAAAAAABAE0iwoVOKztxveZ3h5sSGAAAAAACAbo9bRAEAAAAAAAAHMIMNAAC0O6uZyHNGO7ElAICWKCw5aXl9vdNaAQAdBzPYAACdUmpqqgICAuTu7q6goCDt3r37gvG5ubkKCgqSu7u7Bg8erPT0dKv3J0yYIJPJ1Gi74447LDFLlixp9L63t3eb9A8AAABA58EMNsARDR9+MCvLee0AupmsrCzFxcUpNTVV48aN05/+9CdFRETo008/1cCBAxvFFxUVafLkyZo3b55eeeUV/eMf/1BsbKz69++v6dOnS5K2bdum2tpayzGVlZUaNWqU7rnnHqu6rrvuOr333nuWfRcXlzbqJQAAnQOzkgGABBsc8NiJRc5uAoBuavXq1YqOjtbcuXMlSSkpKdqxY4fS0tKUnJzcKD49PV0DBw5USkqKJGnYsGE6cOCAVq1aZUmw9enTx+qYLVu26JJLLmmUYHN1dWXWGgAAAAArJNicrOGvPQCAi6utrVV+fr6efPJJq/Lw8HDt3bvX5jF5eXkKDw+3Kps0aZIyMjJ0+vRp9ezZs9ExGRkZuvfee3XppZdalR85ckS+vr4ym80aM2aMli9frsGDBzfZ3pqaGtXU1Fj2q6urL9pHAAAAAJ0La7ABDW2K/HED0CFVVFSovr5eXl5eVuVeXl4qKyuzeUxZWZnN+Lq6OlVUVDSK/+ijj/S///u/lhly54wZM0YbN27Ujh079MILL6isrEyhoaGqrKxssr3Jycny9PS0bH5+fs3tKgCgC7B3zdBz/vGPf8jV1VXXX3992zYQANAqSLABADolk8lktW8YRqOyi8XbKpfOzl4LDAzUT3/6U6vyiIgITZ8+XSNGjNBtt92mt99+W5L08ssvN3nexMREVVVVWbaSkpILdwwA0GWcWzM0KSlJBQUFCgsLU0REhIqLiy94XFVVlR588EHdeuut7dRSAICjuEUUF9VwrbXnvZ52Yku6IB6SANitX79+cnFxaTRbrby8vNEstXO8vb1txru6uqpv375W5d999522bNmiZcuWXbQtl156qUaMGKEjR440GWM2m2U2my9aV2soLDnZLucBADSPvWuGnvPLX/5Ss2bNkouLi15//fV2au3FMc4AQNOYwQYA6FTc3NwUFBSknJwcq/KcnByFhobaPCYkJKRR/M6dOxUcHNxo/bW//OUvqqmp0QMPPHDRttTU1Ojw4cPy8fGxsxcAgK7u3Jqh568BeqE1QyXppZde0v/93//pqaeeausmtonozP2WDQC6E2awAe2N9d0AhyUkJCgqKkrBwcEKCQnR+vXrVVxcrJiYGElnb8s8fvy4Nm7cKEmKiYnR2rVrlZCQoHnz5ikvL08ZGRnavHlzo7ozMjJ01113NZrZJkmPP/64pkyZooEDB6q8vFxPP/20qqurNXv27LbtcCfGLGgA3VVL1gw9cuSInnzySe3evVuurs37qsbDdACgYyDBhk6p4Rc2+V3utHYAcI7IyEhVVlZq2bJlKi0tVWBgoLKzs+Xv7y9JKi0ttVrfJiAgQNnZ2YqPj9e6devk6+urNWvWaPr06Vb1fv7559qzZ4927txp87xffvml7rvvPlVUVKh///4aO3as9u3bZzkvWqbhLIeMOaOd2BIAaH3NXTO0vr5es2bN0tKlSzV06NBm15+cnKylS5c63E4AgGNIsAEAOqXY2FjFxsbafC8zM7NR2fjx4/Xxxx9fsM6hQ4daHn5gy5YtW+xqIwCg+7J3zdBTp07pwIEDKigo0KOPPipJOnPmjAzDkKurq3bu3Klbbrml0XGJiYlKSEiw7FdXV/PEagBwAhJsAAAAANDKGq4ZOm3aNEt5Tk6Opk6d2ijew8NDBw8etCpLTU3V3//+d7322msKCAiweZ72fJgOAKBpJNhgk9UtmM0oBwAAAGDNnjVDe/ToocDAQKvjBwwYIHd390blAICOhwQbOr2Gjwu/nvXYAAAA0EHYu2YoAKDzIsEGAAAAAG3E3jVDG1qyZImWLFnS+o1qJzzEBkB30qMlB6WmpiogIEDu7u4KCgrS7t27Lxifm5uroKAgubu7a/DgwUpPT28Us3XrVg0fPlxms1nDhw/X9u3brd7/4IMPNGXKFPn6+spkMun1119vVMecOXNkMpmstrFjx7akiwAAAAAAAECz2J1gy8rKUlxcnJKSklRQUKCwsDBFREQ0ObW5qKhIkydPVlhYmAoKCrRw4ULNnz9fW7dutcTk5eUpMjJSUVFR+uSTTxQVFaWZM2fqww8/tMR8++23GjVqlNauXXvB9t1+++0qLS21bNnZ2fZ2sc1FZ+63bAAAAAAAAOjc7L5FdPXq1YqOjtbcuXMlSSkpKdqxY4fS0tKUnJzcKD49PV0DBw5USkqKJGnYsGE6cOCAVq1apenTp1vqmDhxohITEyWdXewzNzdXKSkp2rx5syQpIiJCERERF22f2WyWt7e3vd0CAAAdALcTAQAAoDOyawZbbW2t8vPzFR4eblUeHh6uvXv32jwmLy+vUfykSZN04MABnT59+oIxTdV5Ibt27dKAAQM0dOhQzZs3T+Xl5U3G1tTUqLq62moDWs2myB83AAAAAADQZdk1g62iokL19fXy8vKyKvfy8lJZWZnNY8rKymzG19XVqaKiQj4+Pk3GNFVnUyIiInTPPffI399fRUVFWrx4sW655Rbl5+fLbDY3ik9OTtbSpUvtOgfQJBJpAAAAAAB0Sy16iqjJZLLaNwyjUdnF4s8vt7dOWyIjf0xwBAYGKjg4WP7+/nr77bd19913N4pPTExUQkKCZb+6ulp+fn52nRMAAAAAAADdm10Jtn79+snFxaXRzLLy8vJGM9DO8fb2thnv6uqqvn37XjCmqTqby8fHR/7+/jpy5IjN981ms82ZbQAAAAAAAEBz2bUGm5ubm4KCgpSTk2NVnpOTo9DQUJvHhISENIrfuXOngoOD1bNnzwvGNFVnc1VWVqqkpEQ+Pj4O1YPOo7DkpGUDAHRcj51YZNkAAACAzs7uW0QTEhIUFRWl4OBghYSEaP369SouLlZMTIyks7ddHj9+XBs3bpQkxcTEaO3atUpISNC8efOUl5enjIwMy9NBJWnBggW6+eabtWLFCk2dOlVvvPGG3nvvPe3Zs8cS88033+jf//63Zb+oqEiFhYXq06ePBg4cqG+++UZLlizR9OnT5ePjo6NHj2rhwoXq16+fpk2b1uIL1NXwRaYLOX/Nt1lZzmkHAAAAAADdnN0JtsjISFVWVmrZsmUqLS1VYGCgsrOz5e/vL0kqLS1VcXGxJT4gIEDZ2dmKj4/XunXr5OvrqzVr1mj69OmWmNDQUG3ZskWLFi3S4sWLNWTIEGVlZWnMmDGWmAMHDuhnP/uZZf/c2mmzZ89WZmamXFxcdPDgQW3cuFEnT56Uj4+PfvaznykrK0u9e/e2/8oAztQweUbiDAAAAO2Jh3cBgN1a9JCD2NhYxcbG2nwvMzOzUdn48eP18ccfX7DOGTNmaMaMGU2+P2HCBMvDEWzp1auXduzYccFzAB0af8gAAACgE2p4l8zzXk/bjInO3G95nTFndJu3CQDam11rsAEAAAAAAACw1qIZbAAAAPZiHVAAAAB0VcxgAwAAAAAAABzADDZ0WYUlJ632r/e73CntAAAAAAAAXRsJNgAA0CGxIDYAAAA6C24RBQAAAAAAABxAgg0AAAAAAABwAAk2AAAAAAAAwAGswdZOGq4jAwAAAAAAgK6DGWxAe9gU+ePWEeoBuoDU1FQFBATI3d1dQUFB2r179wXjc3NzFRQUJHd3dw0ePFjp6elW72dmZspkMjXafvjhB4fOCwAArEVn7rfaAKArIMEGAOh0srKyFBcXp6SkJBUUFCgsLEwREREqLi62GV9UVKTJkycrLCxMBQUFWrhwoebPn6+tW7daxXl4eKi0tNRqc3d3b/F50TyPnVhk2QAAAIDOiAQbAKDTWb16taKjozV37lwNGzZMKSkp8vPzU1pams349PR0DRw4UCkpKRo2bJjmzp2rhx9+WKtWrbKKM5lM8vb2ttocOS8AAACA7oEEGwCgU6mtrVV+fr7Cw8OtysPDw7V3716bx+Tl5TWKnzRpkg4cOKDTp09byr755hv5+/vrqquu0p133qmCggKHzgsAAACge+AhB0BHx3prgJWKigrV19fLy8vLqtzLy0tlZWU2jykrK7MZX1dXp4qKCvn4+Ojaa69VZmamRowYoerqaj333HMaN26cPvnkE1199dUtOq8k1dTUqKamxrJfXV1tb5cBAAAAdHAk2NBtFJactLy+3u9yp7UDQOswmUxW+4ZhNCq7WHzD8rFjx2rs2LGW98eNG6cbb7xRzz//vNasWdPi8yYnJ2vp0qUX6Q0AAACAzoxbRAEAnUq/fv3k4uLSaNZYeXl5o9ll53h7e9uMd3V1Vd++fW0e06NHD40ePVpHjhxp8XklKTExUVVVVZatpKTkon0EAAAA0Lkwg62Lavgktue9nnZiSwCgdbm5uSkoKEg5OTmaNm2apTwnJ0dTp061eUxISIjeeustq7KdO3cqODhYPXv2tHmMYRgqLCzUiBEjWnxeSTKbzTKbzc3uH2yLztxvtZ8xZ7STWgIAaG0NP+P5fAfQWZFg6wYaJtsAoCtISEhQVFSUgoODFRISovXr16u4uFgxMTGSzs4aO378uDZu3ChJiomJ0dq1a5WQkKB58+YpLy9PGRkZ2rx5s6XOpUuXauzYsbr66qtVXV2tNWvWqLCwUOvWrWv2eQEA6GoaLrMCAGgaCTagq2j4MIRZWc5rB9AOIiMjVVlZqWXLlqm0tFSBgYHKzs6Wv7+/JKm0tFTFxcWW+ICAAGVnZys+Pl7r1q2Tr6+v1qxZo+nTp1tiTp48qV/84hcqKyuTp6enbrjhBn3wwQf66U9/2uzzAgAAAOieWrQGW2pqqgICAuTu7q6goCDt3r37gvG5ubkKCgqSu7u7Bg8erPT09EYxW7du1fDhw2U2mzV8+HBt377d6v0PPvhAU6ZMka+vr0wmk15//fVGdRiGoSVLlsjX11e9evXShAkTdOjQoZZ0EQDQwcXGxuro0aOqqalRfn6+br75Zst7mZmZ2rVrl1X8+PHj9fHHH6umpkZFRUWNZp398Y9/1LFjx1RTU6Py8nLt2LFDISEhdp0XAIDu7rETiywbAHQndifYsrKyFBcXp6SkJBUUFCgsLEwRERFWMwUaKioq0uTJkxUWFqaCggItXLhQ8+fP19atWy0xeXl5ioyMVFRUlD755BNFRUVp5syZ+vDDDy0x3377rUaNGqW1a9c22baVK1dq9erVWrt2rfbv3y9vb29NnDhRp06dsreb6OIKS05aNgAAAAAAAEfYfYvo6tWrFR0drblz50qSUlJStGPHDqWlpSk5OblRfHp6ugYOHKiUlBRJ0rBhw3TgwAGtWrXKcmtOSkqKJk6cqMTEREln187Jzc1VSkqKZX2ciIgIRURENNkuwzCUkpKipKQk3X333ZKkl19+WV5eXtq0aZN++ctf2tvVTodfiQAA3QULYgMAAKAjsWsGW21trfLz8xUeHm5VHh4err1799o8Ji8vr1H8pEmTdODAAZ0+ffqCMU3VaUtRUZHKysqs6jGbzRo/frxd9QAAAAAAAAD2sGsGW0VFherr6+Xl5WVV7uXlpbKyMpvHlJWV2Yyvq6tTRUWFfHx8moxpqs6mznPuuPPrOXbsmM1jampqVFNTY9mvrq5u9vmADo0HHgAAAAAA0G5a9JADk8lktW8YRqOyi8WfX25vna3RtuTkZHl6elo2Pz8/u88HAAAAAACA7s2uBFu/fv3k4uLSaGZZeXl5o5lj53h7e9uMd3V1Vd++fS8Y01SdTZ1Hkl31JCYmqqqqyrKVlJQ0+3wAAKD18fQ5AAAAdEZ2Jdjc3NwUFBSknJwcq/KcnByFhobaPCYkJKRR/M6dOxUcHKyePXteMKapOm0JCAiQt7e3VT21tbXKzc1tsh6z2SwPDw+rDQAAAAAAALCH3U8RTUhIUFRUlIKDgxUSEqL169eruLhYMTExks7OCjt+/Lg2btwoSYqJidHatWuVkJCgefPmKS8vTxkZGZang0rSggULdPPNN2vFihWaOnWq3njjDb333nvas2ePJeabb77Rv//9b8t+UVGRCgsL1adPHw0cOFAmk0lxcXFavny5rr76al199dVavny5LrnkEs2aNavFFwgAgI6qsOSks5sAAAAAQC1IsEVGRqqyslLLli1TaWmpAgMDlZ2dLX9/f0lSaWmpiouLLfEBAQHKzs5WfHy81q1bJ19fX61Zs0bTp0+3xISGhmrLli1atGiRFi9erCFDhigrK0tjxoyxxBw4cEA/+9nPLPsJCQmSpNmzZyszM1OS9Nvf/lbff/+9YmNj9d///ldjxozRzp071bt3b3u7iW6k4RfU6/0ud1o7AAAAgO4uOnO/5XXGnNFObAkA2MfuBJskxcbGKjY21uZ755JdDY0fP14ff/zxBeucMWOGZsyY0eT7EyZMsDwcoSkmk0lLlizRkiVLLhgHAAAAAO0hNTVVv//971VaWqrrrrtOKSkpCgsLsxm7bds2paWlqbCwUDU1Nbruuuu0ZMkSTZo0qZ1bDQCwV4ueIgoAAAAAuLCsrCzFxcUpKSlJBQUFCgsLU0REhNUdPw198MEHmjhxorKzs5Wfn6+f/exnmjJligoKCtq55a2DB9cA6E5IsAEAAABAG1i9erWio6M1d+5cDRs2TCkpKfLz81NaWprN+JSUFP32t7/V6NGjLWtKX3311XrrrbfaueUAAHu16BZRNE/D9QPaCr8GAQC6qoZj3PNeTzuxJQBgv9raWuXn5+vJJ5+0Kg8PD9fevXubVceZM2d06tQp9enTpy2aCABoRSTYAABAp8aC2AA6ooqKCtXX18vLy8uq3MvLS2VlZc2q4w9/+IO+/fZbzZw5s8mYmpoa1dTUWParq6tb1uAOiM93AJ0JCTagO9kU+ePrWVnOawcAAEA3YTKZrPYNw2hUZsvmzZu1ZMkSvfHGGxowYECTccnJyVq6dKnD7QQAOIY12IAGCktOWjYAAACgpfr16ycXF5dGs9XKy8sbzWo7X1ZWlqKjo/WXv/xFt9122wVjExMTVVVVZdlKSkocbjsAwH7MYAO6uoaz1hw5lhlvAAAAzebm5qagoCDl5ORo2rRplvKcnBxNnTq1yeM2b96shx9+WJs3b9Ydd9xx0fOYzWaZzeZWaTMAoOVIsAEAgA7v/If68NADAJ1BQkKCoqKiFBwcrJCQEK1fv17FxcWKiYmRdHb22fHjx7Vx40ZJZ5NrDz74oJ577jmNHTvWMvutV69e8vT0dFo/AAAXR4Ktk+BJamh1zE4DAABoU5GRkaqsrNSyZctUWlqqwMBAZWdny9/fX5JUWlqq4uJiS/yf/vQn1dXV6ZFHHtEjjzxiKZ89e7YyMzPbu/mtiu8zALo6EmwAAKBTs57dtsNp7QAAW2JjYxUbG2vzvfOTZrt27Wr7BgEA2gQJtk7o/NtkAAAAAAAA4Dwk2IAmNHyS6PV+lzutHQCA5ovO3G95nTFntBNbAgBoLm4fBdAVkGAD0DznP420Oeu2sc4bAAAAWgE/oADo6EiwAQDQmZyf7AYAoJNhyRsAXREJNgCOY6YagHbGlzMAAAB0JD2c3QCgMygsOWnZAHQMqampCggIkLu7u4KCgrR79+4Lxufm5iooKEju7u4aPHiw0tPTrd5/4YUXFBYWpiuuuEJXXHGFbrvtNn300UdWMUuWLJHJZLLavL29W71vaB3RmfstGwAAANCWSLABaF2bIn/cgDaSlZWluLg4JSUlqaCgQGFhYYqIiFBxcbHN+KKiIk2ePFlhYWEqKCjQwoULNX/+fG3dutUSs2vXLt133316//33lZeXp4EDByo8PFzHjx+3quu6665TaWmpZTt48GCb9hUAAABAx8ctogCATmf16tWKjo7W3LlzJUkpKSnasWOH0tLSlJyc3Cg+PT1dAwcOVEpKiiRp2LBhOnDggFatWqXp06dLkl599VWrY1544QW99tpr+tvf/qYHH3zQUu7q6sqsNQAAAABWmMEGAOhUamtrlZ+fr/DwcKvy8PBw7d271+YxeXl5jeInTZqkAwcO6PTp0zaP+e6773T69Gn16dPHqvzIkSPy9fVVQECA7r33Xn3xxRcO9AYAAABAV8AMtg6m4aLNz3s97cSWABfBLaBwkoqKCtXX18vLy8uq3MvLS2VlZTaPKSsrsxlfV1eniooK+fj4NDrmySef1JVXXqnbbrvNUjZmzBht3LhRQ4cO1YkTJ/T0008rNDRUhw4dUt++fW2eu6amRjU1NZb96urqZvcV9mMcBYCur+HamhlzRjuxJQDwoxbNYGvthaUlaevWrRo+fLjMZrOGDx+u7du3233eOXPmNFp8euzYsS3pItB9sYYaOgmTyWS1bxhGo7KLxdsql6SVK1dq8+bN2rZtm9zd3S3lERERmj59ukaMGKHbbrtNb7/9tiTp5ZdfbvK8ycnJ8vT0tGx+fn4X7xxaHQ88AAAAQFuyO8HWFgtL5+XlKTIyUlFRUfrkk08UFRWlmTNn6sMPP7T7vLfffrvV4tPZ2dn2dhHofkiqoRPp16+fXFxcGs1WKy8vbzRL7Rxvb2+b8a6uro1mnq1atUrLly/Xzp07NXLkyAu25dJLL9WIESN05MiRJmMSExNVVVVl2UpKSi5YJ9oBn3kAAABoZXbfItoWC0unpKRo4sSJSkxMlHT2y0hubq5SUlK0efNmu85rNpu7zOLTDW9zAQCc5ebmpqCgIOXk5GjatGmW8pycHE2dOtXmMSEhIXrrrbesynbu3Kng4GD17NnTUvb73/9eTz/9tHbs2KHg4OCLtqWmpkaHDx9WWFhYkzFms1lms/midaH1cbsoAAAA2otdM9jaamHppmLO1WnPeXft2qUBAwZo6NChmjdvnsrLy+3pInBRhSUnLRsA50hISNCLL76oDRs26PDhw4qPj1dxcbFiYmIknf2hpuGTP2NiYnTs2DElJCTo8OHD2rBhgzIyMvT4449bYlauXKlFixZpw4YNGjRokMrKylRWVqZvvvnGEvP4448rNzdXRUVF+vDDDzVjxgxVV1dr9uzZ7dd5AABgwRIAADoKu2awtdXC0k3FnKuzueeNiIjQPffcI39/fxUVFWnx4sW65ZZblJ+fb3P2AAtPA0DnFBkZqcrKSi1btkylpaUKDAxUdna2/P39JUmlpaVWSwgEBAQoOztb8fHxWrdunXx9fbVmzRrLTGrp7DqftbW1mjFjhtW5nnrqKS1ZskSS9OWXX+q+++5TRUWF+vfvr7Fjx2rfvn2W86JzaPgDyfVOawUAwBZmHwPorFr0FNG2WFi6OXVeLCYy8se1VAIDAxUcHCx/f3+9/fbbuvvuuxu1Kzk5WUuXLm2y3S3BLyfdi9WXNL/LndYOoDuKjY1VbGyszfcyMzMblY0fP14ff/xxk/UdPXr0oufcsmVLc5sHAAAAoBux6xbRtlpYuqmYc3W25LyS5OPjI39//yYXn2bhaQAAAAAAADjKrgRbw4WlG8rJyVFoaKjNY0JCQhrFn7+wdFMx5+psyXklqbKyUiUlJfLx8bH5vtlsloeHh9UGAAAAAAAA2MPuW0QTEhIUFRWl4OBghYSEaP369Y0Wlj5+/Lg2btwo6ezC0mvXrlVCQoLmzZunvLw8ZWRkWJ4OKkkLFizQzTffrBUrVmjq1Kl644039N5772nPnj3NPu8333yjJUuWaPr06fLx8dHRo0e1cOFC9evXz+opcwAAAAAAAEBrsjvB1hYLS4eGhmrLli1atGiRFi9erCFDhigrK0tjxoxp9nldXFx08OBBbdy4USdPnpSPj49+9rOfKSsrS717927xBQLQjjb9uI6iZmU5rx0Auo2Ga6dmzBntxJYAABzFZzoAZ2rRQw5ae2FpSZoxY0ajJ7fZc95evXppx44dFzweaEsNH3gg8dCDCyKRBgAAgIto+ETRhni6KICOqEUJNgAA4BznJ/MBAAAAOB8JNgCdDzPgAAAAAAAdCAk2AAAAsXYPAHQWDW8dbep2UT7TAbQ3EmxO1tS6Auj8Gt7GxXpsAAAAAAB0XSTYALSPhrd1AgAAAADQhZBgA+BcnSHxxppvQKfn8IxxPgcAAABwASTYgHbA7aIA0DE1Zx0fAEDHZe96bBJrsgFoGyTYgHZGsq0NMcMEQCspXDHJap/PawDo+PjRBIAzkWADAAAQDx4CgO6CJ4wCaAsk2AAnYjabEzDLDUALWH1eO60VANA+Gn7mAQCahwQbgI7J0UQYiTQAbaU5ny98BgFAp8BsNgCthQSbE3ALCtCKHHkKKV+AAQAAAACtgAQbgI7PkSQaALQyq9tF+XwCgA6JBx4AaG8k2NoJs9ZwMazHBgCdD5/dANDxnf9drKmEG7eLAnAECTagA+ILWytrzgwTbhcFAADoFpjdBqAtkGADOjiSbU7ALV8AWoDPawDofJpKtjGbDYC9SLABAAC0Mqtkm9NaAQCwR9PL+uxo13YA6JxIsAEAALShhrMgGmJGBAB0DsxmA9AcJNiATqrh7AiJ25EAoLNp1S9srCMJAG2m4cy26MwfbyMl2QagIRJsQCdyflKtOe+ReAMA52pqfR+rW5E2Xd50BSTMAKBDKlwxyfLa6m9uPreBbqlHSw5KTU1VQECA3N3dFRQUpN27d18wPjc3V0FBQXJ3d9fgwYOVnp7eKGbr1q0aPny4zGazhg8fru3bt9t9XsMwtGTJEvn6+qpXr16aMGGCDh061JIuAl1GYclJywZ0JR11LAIu5LETiyxbQw0/q8/fojP3W7bCFZMsm902Rf64AWg3bTFewXma8zne8HO7qWUCAHQ9ds9gy8rKUlxcnFJTUzVu3Dj96U9/UkREhD799FMNHDiwUXxRUZEmT56sefPm6ZVXXtE//vEPxcbGqn///po+fbokKS8vT5GRkfrd736nadOmafv27Zo5c6b27NmjMWPGNPu8K1eu1OrVq5WZmamhQ4fq6aef1sSJE/XZZ5+pd+/ejlwnoEvgCXfoKjryWAS0l4Zf2h47cdLy+vqGQSTTAKdqi/EKHV+j5NuKH183nMlsdYspt/oDnZ7JMAzDngPGjBmjG2+8UWlpaZayYcOG6a677lJycnKj+CeeeEJvvvmmDh8+bCmLiYnRJ598ory8PElSZGSkqqur9c4771hibr/9dl1xxRXavHlzs85rGIZ8fX0VFxenJ554QpJUU1MjLy8vrVixQr/85S8v2rfq6mp5enqqqqpKHh4e9lwWC+s/dpt6Cg3Q+ZCQ+/91pz94WuEPvdb4XLWlo45FzeHoNWnRzCXgPI0+05v6N84XPnQCbTXWtIa2GK8upjWuB2ONc9l9u+n5P6bweQ20quZ+rto1g622tlb5+fl68sknrcrDw8O1d+9em8fk5eUpPDzcqmzSpEnKyMjQ6dOn1bNnT+Xl5Sk+Pr5RTEpKSrPPW1RUpLKyMqtzmc1mjR8/Xnv37rWZYKupqVFNTY1lv6qqStLZi9dStd9/Y3n9zQ91La4H6Gj2HKloVtzIKz3buCVO5sDnQ6fz3ekfX7ew3+c+T+38LeeCOvJYZEtrjzWMLWgN53+m/yntfZtxvyxvELf0Vpsxfxrw4w+Kvyz/cWbGyPjGt1hL0j//OM1qv6m4Jv1lzo+vZ2ZevBxdXluMNa2hrcar87XFdxrGGuey+oxu4rP3Qka+eLfl9T+PV/1Y3tTnLZ+fwAU1d5yxK8FWUVGh+vp6eXl5WZV7eXmprKzM5jFlZWU24+vq6lRRUSEfH58mY87V2ZzznvtfWzHHjh2z2bbk5GQtXbq0Ubmfn5/NeHu90iq1AOhQ5tn5RbCrcLDfp06dkqdn6yRfO/JYZEtbjzVA6/i7zdLm/S3z47FW8Uua+W++uXG2NPXZ1F0/q7u51hxrWkNbjVfnY5xBszXn85bPT6BJFxtnWvQUUZPJZLVvGEajsovFn1/enDpbK+acxMREJSQkWPbPnDmj//znP+rbt2+Tx1RXV8vPz08lJSUdbgp6a6GPnV9X759EHzsLwzB06tQp+fr6tnrdHXksaqglY01TusJ/E22Fa9M0rk3TuDZN60zXpi3HmtbQFuNVQ3ynaVtcq+bjWjUf16r5OsK1au44Y1eCrV+/fnJxcWn0i0t5eXmjX1rO8fb2thnv6uqqvn37XjDmXJ3NOa+3t7eks7/6NPxl50JtM5vNMpvNVmWXX365zdjzeXh4dPl/CPSx8+vq/ZPoY2fQ2rMJOvJYZIsjY01TOvt/E22Ja9M0rk3TuDZN6yzXpiPNXDunrcar8/Gdpn1wrZqPa9V8XKvmc/a1as4408OeCt3c3BQUFKScnByr8pycHIWGhto8JiQkpFH8zp07FRwcbFlDoKmYc3U257wBAQHy9va2iqmtrVVubm6TbQMAdD4deSwCAOCcthqvAAAdlGGnLVu2GD179jQyMjKMTz/91IiLizMuvfRS4+jRo4ZhGMaTTz5pREVFWeK/+OIL45JLLjHi4+ONTz/91MjIyDB69uxpvPbaa5aYf/zjH4aLi4vx7LPPGocPHzaeffZZw9XV1di3b1+zz2sYhvHss88anp6exrZt24yDBw8a9913n+Hj42NUV1fb280mVVVVGZKMqqqqVquzo6GPnV9X759h0MfuriOPRW2J/yaaxrVpGtemaVybpnFtWkdbjFetgf9/m49r1Xxcq+bjWjVfZ7pWdifYDMMw1q1bZ/j7+xtubm7GjTfeaOTm5lremz17tjF+/Hir+F27dhk33HCD4ebmZgwaNMhIS0trVOf//M//GNdcc43Rs2dP49prrzW2bt1q13kNwzDOnDljPPXUU4a3t7dhNpuNm2++2Th48GBLutikH374wXjqqaeMH374oVXr7UjoY+fX1ftnGPQRHXcsakv8N9E0rk3TuDZN49o0jWvTetpivHIU//82H9eq+bhWzce1ar7OdK1MhtHBnmcNAAAAAAAAdCJ2rcEGAAAAAAAAwBoJNgAAAAAAAMABJNgAAAAAAAAAB5BgAwAAAAAAABxAgs1OqampCggIkLu7u4KCgrR7925nN6lZkpOTNXr0aPXu3VsDBgzQXXfdpc8++8wqxjAMLVmyRL6+vurVq5cmTJigQ4cOWcXU1NToscceU79+/XTppZfq5z//ub788sv27EqzJCcny2QyKS4uzlLWFfp3/PhxPfDAA+rbt68uueQSXX/99crPz7e839n7WFdXp0WLFikgIEC9evXS4MGDtWzZMp05c8YS09n6+MEHH2jKlCny9fWVyWTS66+/bvV+a/Xnv//9r6KiouTp6SlPT09FRUXp5MmTbdw7tKfOOv60ttb4N9UVtdY43xWlpaVp5MiR8vDwkIeHh0JCQvTOO+9Y3u+u18WWlv79hM6HMeXilixZIpPJZLV5e3s7u1kdAmNx81zsOs2ZM6fRf2Njx451TmOdrKv8HUOCzQ5ZWVmKi4tTUlKSCgoKFBYWpoiICBUXFzu7aReVm5urRx55RPv27VNOTo7q6uoUHh6ub7/91hKzcuVKrV69WmvXrtX+/fvl7e2tiRMn6tSpU5aYuLg4bd++XVu2bNGePXv0zTff6M4771R9fb0zumXT/v37tX79eo0cOdKqvLP377///a/GjRunnj176p133tGnn36qP/zhD7r88sstMZ29jytWrFB6errWrl2rw4cPa+XKlfr973+v559/3hLT2fr47bffatSoUVq7dq3N91urP7NmzVJhYaHeffddvfvuuyosLFRUVFSb9w/tozOPP62tNf5NdUWtNc53RVdddZWeffZZHThwQAcOHNAtt9yiqVOnWv4o767X5XyO/P2EzoUxpfmuu+46lZaWWraDBw86u0kdAmNx81zsOknS7bffbvXfWHZ2dju2sOPoMn/HGGi2n/70p0ZMTIxV2bXXXms8+eSTTmpRy5WXlxuSjNzcXMMwDOPMmTOGt7e38eyzz1pifvjhB8PT09NIT083DMMwTp48afTs2dPYsmWLJeb48eNGjx49jHfffbd9O9CEU6dOGVdffbWRk5NjjB8/3liwYIFhGF2jf0888YRx0003Nfl+V+jjHXfcYTz88MNWZXfffbfxwAMPGIbR+fsoydi+fbtlv7X68+mnnxqSjH379lli8vLyDEnGv/71rzbuFdpDVxp/WlNL/k11Fy0Z57uTK664wnjxxRe5Lv8/R/5+QufDmNI8Tz31lDFq1ChnN6PDYyxunvOvk2EYxuzZs42pU6c6pT0dXWf9O4YZbM1UW1ur/Px8hYeHW5WHh4dr7969TmpVy1VVVUmS+vTpI0kqKipSWVmZVf/MZrPGjx9v6V9+fr5Onz5tFePr66vAwMAOcw0eeeQR3XHHHbrtttusyrtC/958800FBwfrnnvu0YABA3TDDTfohRdesLzfFfp400036W9/+5s+//xzSdInn3yiPXv2aPLkyZK6Rh8baq3+5OXlydPTU2PGjLHEjB07Vp6enh2uz7BfVxt/2lJz/k11Fy0Z57uD+vp6bdmyRd9++61CQkK4Lv8/R/5+QufCmGKfI0eOyNfXVwEBAbr33nv1xRdfOLtJHR6fG/bZtWuXBgwYoKFDh2revHkqLy93dpM6hM76d4yrsxvQWVRUVKi+vl5eXl5W5V5eXiorK3NSq1rGMAwlJCTopptuUmBgoCRZ+mCrf8eOHbPEuLm56YorrmgU0xGuwZYtW/Txxx9r//79jd7rCv374osvlJaWpoSEBC1cuFAfffSR5s+fL7PZrAcffLBL9PGJJ55QVVWVrr32Wrm4uKi+vl7PPPOM7rvvPkld4//HhlqrP2VlZRowYECj+gcMGNDh+gz7daXxp601599Ud9DScb4rO3jwoEJCQvTDDz/osssu0/bt2zV8+HDLH+Xd9bpIjv/9hM6FMaX5xowZo40bN2ro0KE6ceKEnn76aYWGhurQoUPq27evs5vXYfG50XwRERG655575O/vr6KiIi1evFi33HKL8vPzZTabnd08p+nMf8eQYLOTyWSy2jcMo1FZR/foo4/qn//8p/bs2dPovZb0ryNcg5KSEi1YsEA7d+6Uu7t7k3GdtX+SdObMGQUHB2v58uWSpBtuuEGHDh1SWlqaHnzwQUtcZ+5jVlaWXnnlFW3atEnXXXedCgsLFRcXJ19fX82ePdsS15n7aEtr9MdWfEfuM+zXFcaf9tLdr1Vrj/NdwTXXXKPCwkKdPHlSW7du1ezZs5Wbm2t5v7tel7b8+wkdG/+fXlxERITl9YgRIxQSEqIhQ4bo5ZdfVkJCghNb1jnw39jFRUZGWl4HBgYqODhY/v7+evvtt3X33Xc7sWXO1Zn/juEW0Wbq16+fXFxcGv2yU15e3iiL2pE99thjevPNN/X+++/rqquuspSfeyLOhfrn7e2t2tpa/fe//20yxlny8/NVXl6uoKAgubq6ytXVVbm5uVqzZo1cXV0t7eus/ZMkHx8fDR8+3Kps2LBhlgVpO/v/h5L0m9/8Rk8++aTuvfdejRgxQlFRUYqPj1dycrKkrtHHhlqrP97e3jpx4kSj+r/++usO12fYr6uMP+2hOf+mujpHxvmuzM3NTT/5yU8UHBys5ORkjRo1Ss8991y3vy6t8fcTOhfGlJa79NJLNWLECB05csTZTenQuvvnqiN8fHzk7+/frf8b6+x/x5BgayY3NzcFBQUpJyfHqjwnJ0ehoaFOalXzGYahRx99VNu2bdPf//53BQQEWL0fEBAgb29vq/7V1tYqNzfX0r+goCD17NnTKqa0tFT/+7//6/RrcOutt+rgwYMqLCy0bMHBwbr//vtVWFiowYMHd+r+SdK4ceMaPar4888/l7+/v6TO//+hJH333Xfq0cP6Y8nFxUVnzpyR1DX62FBr9SckJERVVVX66KOPLDEffvihqqqqOlyfYb/OPv60p+b8m+qqWmOc704Mw1BNTU23vy6t8fcTOhfGlJarqanR4cOH5ePj4+ymdGjd/XPVEZWVlSopKemW/411mb9j2ulhCl3Cli1bjJ49exoZGRnGp59+asTFxRmXXnqpcfToUWc37aJ+9atfGZ6ensauXbuM0tJSy/bdd99ZYp599lnD09PT2LZtm3Hw4EHjvvvuM3x8fIzq6mpLTExMjHHVVVcZ7733nvHxxx8bt9xyizFq1Cijrq7OGd26oIZPwTKMzt+/jz76yHB1dTWeeeYZ48iRI8arr75qXHLJJcYrr7xiiensfZw9e7Zx5ZVXGn/961+NoqIiY9u2bUa/fv2M3/72t5aYztbHU6dOGQUFBUZBQYEhyVi9erVRUFBgHDt2rFX7c/vttxsjR4408vLyjLy8PGPEiBHGnXfe2e79RdvozONPa2uNf1NdUWuN811RYmKi8cEHHxhFRUXGP//5T2PhwoVGjx49jJ07dxqG0X2vS1Na8vcTOhfGlOb59a9/bezatcv44osvjH379hl33nmn0bt3b66TwVjcXBe6TqdOnTJ+/etfG3v37jWKioqM999/3wgJCTGuvPLKbnedDKPr/B1Dgs1O69atM/z9/Q03NzfjxhtvtDw2tqOTZHN76aWXLDFnzpwxnnrqKcPb29swm83GzTffbBw8eNCqnu+//9549NFHjT59+hi9evUy7rzzTqO4uLide9M85/+B2BX699ZbbxmBgYGG2Ww2rr32WmP9+vVW73f2PlZXVxsLFiwwBg4caLi7uxuDBw82kpKSjJqaGktMZ+vj+++/b/Pf3uzZsw3DaL3+VFZWGvfff7/Ru3dvo3fv3sb9999v/Pe//22nXqI9dNbxp7W1xr+prqi1xvmu6OGHH7b82+nfv79x6623WpJrhtF9r0tTWvL3EzofxpSLi4yMNHx8fIyePXsavr6+xt13320cOnTI2c3qEBiLm+dC1+m7774zwsPDjf79+xs9e/Y0Bg4caMyePbvDfC9rb13l7xiTYRhGW82OAwAAAAAAALo61mADAAAAAAAAHECCDQAAAAAAAHAACTYAAAAAAADAASTYAAAAAAAAAAeQYAMAAAAAAAAcQIINAAAAAAAAcAAJNgAAAAAAAMABJNiADmLJkiUymUyqqKi4aOygQYM0Z84cy/7nn3+uxx9/XEFBQbr88svVp08fjRs3Tq+99prd7di1a5dMJlOLjgUAdA2bNm1SSkqKs5sBAADQaZBgAzqh7du3a/HixZb9nTt36u2339b06dP1P//zP3r11Vd19dVX65577tGyZcuc2FIAQGdEgg0AAMA+rs5uAAD73XDDDVb79957rx555BGZTCZLWUREhCoqKrRixQo98cQTMpvN7d1MAAAAAAC6BWawAQ54/fXXZTKZ9Le//a3Re2lpaTKZTPrnP/8pSfrwww81ZcoU9e3bV+7u7hoyZIji4uIaHXfixAndd9998vT0lJeXlx5++GFVVVVZxZx/i2i/fv2skmvn/PSnP9V3332n//znP3b37YcfflBCQoK8vb3Vq1cvjR8/XgUFBXbXAwDd3bklAP75z3/qnnvukaenp/r06aOEhATV1dXps88+0+23367evXtr0KBBWrlypeXYzMxMmUwmHT161KrOc7fz79q1q9ntOFdXTk6OHnroIfXp00eXXnqppkyZoi+++MISN2HCBL399ts6duyYTCaTZWuugoIC3XnnnRowYIDMZrN8fX11xx136Msvv5QkHT16VCaTSZmZmY2ONZlMWrJkiWXfkWsHAADQnkiwAQ449wXipZdeavReZmambrzxRo0cOVI7duxQWFiYiouLtXr1ar3zzjtatGiRTpw40ei46dOna+jQodq6dauefPJJbdq0SfHx8S1q3/vvv6/+/ftrwIABdh+7cOFCffHFF3rxxRf14osv6quvvtKECROsvoQBAJpv5syZGjVqlLZu3ap58+bpj3/8o+Lj43XXXXfpjjvu0Pbt23XLLbfoiSee0LZt29qsHdHR0erRo4flNtCPPvpIEyZM0MmTJyVJqampGjdunLy9vZWXl2fZmuPbb7/VxIkTdeLECa1bt045OTlKSUnRwIEDderUqRa3uaNcOwAAgKZwiyjgAFdXVz3wwANKS0tTVVWVPD09JUmHDx/WRx99pOeff16S9Mgjj2jgwIH68MMP5e7ubjn+oYcealRndHS0fvOb30iSbrvtNv373//Whg0blJGRYdcMghdffFG7du3Sc889JxcXF7v71r9/f23fvt1yzptuuklXX321kpOT9cILL9hdHwB0d7/4xS+UkJAg6ezn+86dO7V27Vpt27ZN06ZNk3R29thf//pXvfrqq7r77rvbpB3BwcHKyMiw7F933XUaN26c1q1bp6SkJA0fPlyXX365zGazxo4da1fd//rXv1RZWamMjAxNnTrVUj5z5kyH2txRrh0AAEBTmMEGOOjhhx/W999/r6ysLEvZSy+9JLPZrFmzZunzzz/X//3f/yk6OtoqudaUn//851b7I0eO1A8//KDy8vJmt+mdd97RI488ohkzZuixxx5rfmcamDVrllVCz9/fX6GhoXr//fdbVB8AdHd33nmn1f6wYcNkMpkUERFhKXN1ddVPfvITHTt2rM3acf/991vth4aGyt/fv1U+33/yk5/oiiuu0BNPPKH09HR9+umnDtcpdZxrBwAA0BQSbICDrrvuOo0ePdpym2h9fb1eeeUVTZ06VX369NHXX38tSbrqqquaVV/fvn2t9s89nOD7779v1vE7duzQ3XffrYkTJ+rVV1+1a9ZbQ97e3jbLKisrW1QfAHR3ffr0sdp3c3PTJZdc0ujHFzc3N/3www9t1o62/Hz39PRUbm6urr/+ei1cuFDXXXedfH199dRTT+n06dMtrrejXDsAAICmkGADWsFDDz2kffv26fDhw3r33XdVWlpquf2zf//+kmRZ3Lkt7dixQ3fddZfGjx+vrVu3ys3NrcV1lZWV2Sw7PwEIAGg75xJINTU1VuUVFRUtrrOtP99HjBihLVu2qLKyUoWFhYqMjNSyZcv0hz/8QVLTfeIHHAAA0JmRYANawX333Sd3d3dlZmYqMzNTV155pcLDwyVJQ4cO1ZAhQ7Rhw4ZGXyZa086dO3XXXXfppptu0uuvv26Z+dZSmzdvlmEYlv1jx45p7969mjBhgoMtBQA016BBgyTJ8kTqc958880W1/nqq69a7e/du1fHjh2z+nw3m83NnjndFJPJpFGjRumPf/yjLr/8cn388ceSJC8vL7m7uzfq0xtvvOHQ+QAAAJyJhxwAreDyyy/XtGnTlJmZqZMnT+rxxx9Xjx4/5q/XrVunKVOmaOzYsYqPj9fAgQNVXFysHTt2NPqi0xJ79uzRXXfdJW9vby1cuFCFhYVW7w8fPlweHh521VleXq5p06Zp3rx5qqqq0lNPPSV3d3clJiY63F4AQPOMHj1a11xzjR5//HHV1dXpiiuu0Pbt27Vnz54W13ngwAHNnTtX99xzj0pKSpSUlKQrr7xSsbGxlpgRI0Zo27ZtSktLU1BQkHr06KHg4OCL1v3Xv/5VqampuuuuuzR48GAZhqFt27bp5MmTmjhxoqSzibcHHnhAGzZs0JAhQzRq1Ch99NFH2rRpU4v7BAAA4Gwk2IBW8tBDD2nz5s2SpDlz5li9N2nSJH3wwQdatmyZ5s+frx9++EFXXXVVowcatNR7772n77//XkePHtUtt9zS6P3333/f7plny5cv1/79+/XQQw+purpaP/3pT7VlyxYNGTKkVdoMALg4FxcXvfXWW3r00UcVExMjs9mse++9V2vXrtUdd9zRojozMjL05z//Wffee69qamr0s5/9TM8995zVOmcLFizQoUOHtHDhQlVVVckwDKtZzU25+uqrdfnll2vlypX66quv5ObmpmuuuUaZmZmaPXu2Je7c7aIrV67UN998o1tuuUV//etfLTP2AAAAOhuT0Zy/lgAAANCpZWZm6qGHHtL+/fubNRsNAAAAzccabAAAAAAAAIADuEUU6CYMw1B9ff0FY1xcXGQymdqpRQCA1tDcz3dH1dfXX/A2UZPJ1CrnAQAA6IyYwQZ0E7m5uerZs+cFt5dfftnZzQQA2Onll1++6Od7bm6u5syZI8MwWnx76K233nrBc7BGJwAA6M5Ygw3oJk6dOqXPPvvsgjEBAQHq27dvO7UIANAaKisrVVRUdMGYa665Rr1793boPJ999plOnTrV5Ptms1kjRoxw6BwAAACdFQk2AAAAAAAAwAHcIgoAAAAAAAA4gIccNHDmzBl99dVX6t27Nwu9A0ArMAxDp06dkq+vr3r04DcdibEGAFobYw0AoCMgwdbAV199JT8/P2c3AwC6nJKSEl111VXObkaHwFgDAG2DsQYA4Ewk2Bo4t/hvSUmJPDw8nNwaAOj8qqur5efn5/Di6l0JYw0AtC7GGgBAR0CCrYFzt+p4eHjwpQcAWhG3Qv6IsQYA2gZjDQDAmVikAAAAAAAAAHAACTYAAAAAAADAASTYAAAAAAAAAAeQYAMAAAAAAAAcQIINAAAAAAAAcAAJNgAAAAAAAMABJNgAAAAAAAAAB5BgAwAAAAAAABxAgg0AAAAAAABwAAk2J4vO3G+1AQBaT2pqqgICAuTu7q6goCDt3r37gvG5ubkKCgqSu7u7Bg8erPT09CZjt2zZIpPJpLvuuquVW90GNkX+uAEAAABodSTYAABdUlZWluLi4pSUlKSCggKFhYUpIiJCxcXFNuOLioo0efJkhYWFqaCgQAsXLtT8+fO1devWRrHHjh3T448/rrCwsLbuBgAAAIBOgARbB8NsNgBoHatXr1Z0dLTmzp2rYcOGKSUlRX5+fkpLS7MZn56eroEDByolJUXDhg3T3Llz9fDDD2vVqlVWcfX19br//vu1dOlSDR48uD26AgAAAKCDI8EGAOhyamtrlZ+fr/DwcKvy8PBw7d271+YxeXl5jeInTZqkAwcO6PTp05ayZcuWqX///oqOjm79hgMAAADolFyd3QAAAFpbRUWF6uvr5eXlZVXu5eWlsrIym8eUlZXZjK+rq1NFRYV8fHz0j3/8QxkZGSosLGx2W2pqalRTU2PZr66ubn5HAAAAAHQKzGADAHRZJpPJat8wjEZlF4s/V37q1Ck98MADeuGFF9SvX79mtyE5OVmenp6Wzc/Pz44eAAAAAOgMmMEGAOhy+vXrJxcXl0az1crLyxvNUjvH29vbZryrq6v69u2rQ4cO6ejRo5oyZYrl/TNnzkiSXF1d9dlnn2nIkCGN6k1MTFRCQoJlv7q6miQbAAAA0MWQYAMAdDlubm4KCgpSTk6Opk2bZinPycnR1KlTbR4TEhKit956y6ps586dCg4OVs+ePXXttdfq4MGDVu8vWrRIp06d0nPPPddk0sxsNstsNjvYIwAAAAAdGQk2J+AJoQDQ9hISEhQVFaXg4GCFhIRo/fr1Ki4uVkxMjKSzM8uOHz+ujRs3SpJiYmK0du1aJSQkaN68ecrLy1NGRoY2b94sSXJ3d1dgYKDVOS6//HJJalQOAAAAoHshwQYA6JIiIyNVWVmpZcuWqbS0VIGBgcrOzpa/v78kqbS0VMXFxZb4gIAAZWdnKz4+XuvWrZOvr6/WrFmj6dOnO6sLAAAAADoJk3FuBWeourpanp6eqqqqkoeHR5udp7kz2DLmjG6zNgBAe2ivz9XOxCnXZFPkj69nZbXPOQGgnTDWAAA6Ap4iCgAAAAAAADiABBsAAAAAAADgANZgAwCgK2p4W2hT5dwuCgAAALQKEmwdWMO12liPDQDQ6ki2AQAAAK2CW0QBAAAAAAAAB5BgAwAAAAAAABxAgg0AAAAAAABwAAk2AAAAAAAAwAEk2AAAAAAAAAAHkGADAAAAAAAAHECCDQAAAAAAAHAACTYAAAAAAADAASTYAAAAAAAAAAeQYAMAAAAAAAAcQIINAAAAAAAAcIBTE2ypqakKCAiQu7u7goKCtHv37gvG5+bmKigoSO7u7ho8eLDS09MbxaSkpOiaa65Rr1695Ofnp/j4eP3www9t1QUAAAAAAAB0c05LsGVlZSkuLk5JSUkqKChQWFiYIiIiVFxcbDO+qKhIkydPVlhYmAoKCrRw4ULNnz9fW7dutcS8+uqrevLJJ/XUU0/p8OHDysjIUFZWlhITE9urWwAAAAAAAOhmXJ114tWrVys6Olpz586VdHbm2Y4dO5SWlqbk5ORG8enp6Ro4cKBSUlIkScOGDdOBAwe0atUqTZ8+XZKUl5encePGadasWZKkQYMG6b777tNHH33UPp0CAAAAAABAt+OUGWy1tbXKz89XeHi4VXl4eLj27t1r85i8vLxG8ZMmTdKBAwd0+vRpSdJNN92k/Px8S0Ltiy++UHZ2tu644w6bddbU1Ki6utpq66iiM/dbNgAAAAAAAHQcTpnBVlFRofr6enl5eVmVe3l5qayszOYxZWVlNuPr6upUUVEhHx8f3Xvvvfr666910003yTAM1dXV6Ve/+pWefPJJm3UmJydr6dKlrdMpAAAAAAAAdEtOfciByWSy2jcMo1HZxeIblu/atUvPPPOMUlNT9fHHH2vbtm3661//qt/97nc260tMTFRVVZVlKykpcaQ7AAAAAAAA6IacMoOtX79+cnFxaTRbrby8vNEstXO8vb1txru6uqpv376SpMWLFysqKsqyrtuIESP07bff6he/+IWSkpLUo4d1PtFsNstsNrdWtwAAAAAAANANOWUGm5ubm4KCgpSTk2NVnpOTo9DQUJvHhISENIrfuXOngoOD1bNnT0nSd9991yiJ5uLiIsMwLLPdAACADZsif9wAAAAA2MVpt4gmJCToxRdf1IYNG3T48GHFx8eruLhYMTExks7evvnggw9a4mNiYnTs2DElJCTo8OHD2rBhgzIyMvT4449bYqZMmaK0tDRt2bJFRUVFysnJ0eLFi/Xzn/9cLi4u7d5HAAAAAAAAdH1OuUVUkiIjI1VZWally5aptLRUgYGBys7Olr+/vySptLRUxcXFlviAgABlZ2crPj5e69atk6+vr9asWaPp06dbYhYtWiSTyaRFixbp+PHj6t+/v6ZMmaJnnnmm3fsHAAAAAACA7sFkcO+kRXV1tTw9PVVVVSUPD482O0905n6Hjs+YM7qVWgIAbau9Plc7k3a7Jo7c6jkrq/XaAQBtjLEGANAROPUpogAAAAAAAEBnR4INAAAAAAAAcAAJNgAAAAAAAMABTnvIAQAA6DgKS05aXl/vtFYAAAAAnRMJNgAAuqmGSTUAAAAALcctogAAAAAAAIADmMHWTqIz9zu7CQAAAAAAAGgDzGADAAAAAAAAHMAMtk6o4Wy4jDmjndgSAAAAAAAAkGADAKCr2BTZKtXwQw4AAABgH24RBQAAAAAAABxAgg0AAAAAAABwALeIAgDQjRSWnHR2EwAAAIAuhxlsAAAAAAAAgANIsAEAAAAAAAAOIMEGAAAAAAAAOIA12AAAgJXHTiyyvI7OfNryOmPOaGc0BwAAAOjwmMEGAAAAAAAAOIAEGwAAAAAAAOAAEmwAAAAAAACAA0iwAQAAAAAAAA4gwQYA6LJSU1MVEBAgd3d3BQUFaffu3ReMz83NVVBQkNzd3TV48GClp6dbvb9t2zYFBwfr8ssv16WXXqrrr79ef/7zn9uyCx1KdOZ+ywYAAADgRyTYAABdUlZWluLi4pSUlKSCggKFhYUpIiJCxcXFNuOLioo0efJkhYWFqaCgQAsXLtT8+fO1detWS0yfPn2UlJSkvLw8/fOf/9RDDz2khx56SDt27GivbgEAAADogEiwAQC6pNWrVys6Olpz587VsGHDlJKSIj8/P6WlpdmMT09P18CBA5WSkqJhw4Zp7ty5evjhh7Vq1SpLzIQJEzRt2jQNGzZMQ4YM0YIFCzRy5Ejt2bOnvboFAAAAoAMiwQYA6HJqa2uVn5+v8PBwq/Lw8HDt3bvX5jF5eXmN4idNmqQDBw7o9OnTjeINw9Df/vY3ffbZZ7r55pubbEtNTY2qq6utNgAAAABdCwk2AECXU1FRofr6enl5eVmVe3l5qayszOYxZWVlNuPr6upUUVFhKauqqtJll10mNzc33XHHHXr++ec1ceLEJtuSnJwsT09Py+bn5+dAzwAAAAB0RCTYAABdlslksto3DKNR2cXizy/v3bu3CgsLtX//fj3zzDNKSEjQrl27mqwzMTFRVVVVlq2kpKQFPQEAAADQkbk6uwEAALS2fv36ycXFpdFstfLy8kaz1M7x9va2Ge/q6qq+fftaynr06KGf/OQnkqTrr79ehw8fVnJysiZMmGCzXrPZLLPZ7EBvHFdYctKp5wcAAAC6OhJsnVx05n7L64w5o53YEgDoONzc3BQUFKScnBxNmzbNUp6Tk6OpU6faPCYkJERvvfWWVdnOnTsVHBysnj17NnkuwzBUU1PTOg3vRBqOPxJjEAAAALo3EmwAgC4pISFBUVFRCg4OVkhIiNavX6/i4mLFxMRIOnvr5vHjx7Vx40ZJUkxMjNauXauEhATNmzdPeXl5ysjI0ObNmy11JicnKzg4WEOGDFFtba2ys7O1cePGJp9MCgAAAKB7IMEGAOiSIiMjVVlZqWXLlqm0tFSBgYHKzs6Wv7+/JKm0tFTFxcWW+ICAAGVnZys+Pl7r1q2Tr6+v1qxZo+nTp1tivv32W8XGxurLL79Ur169dO211+qVV15RZGRku/cPAAAAQMdhMs6t4AxVV1fL09NTVVVV8vDwaNW6z7+Vpi1wew6AjqYtP1c7qza9JptsJ/ocWYPtea+nmxXHGATAWRhrAAAdATPYAABAkx47scjyurnJNgAAAKC76eHsBgAAAAAAAACdGQk2AAAAAAAAwAEk2AAAAAAAAAAHkGADAAAAAAAAHECCDQAAAAAAAHAACTYAAAAAAADAAU5NsKWmpiogIEDu7u4KCgrS7t27Lxifm5uroKAgubu7a/DgwUpPT28Uc/LkST3yyCPy8fGRu7u7hg0bpuzs7LbqAgAAAAAAALo5pyXYsrKyFBcXp6SkJBUUFCgsLEwREREqLi62GV9UVKTJkycrLCxMBQUFWrhwoebPn6+tW7daYmprazVx4kQdPXpUr732mj777DO98MILuvLKK9urWwAAAAAAAOhmXJ114tWrVys6Olpz586VJKWkpGjHjh1KS0tTcnJyo/j09HQNHDhQKSkpkqRhw4bpwIEDWrVqlaZPny5J2rBhg/7zn/9o79696tmzpyTJ39+/fTrUAURn7re8zpgz2oktAQAAAAAA6D6cMoOttrZW+fn5Cg8PtyoPDw/X3r17bR6Tl5fXKH7SpEk6cOCATp8+LUl68803FRISokceeUReXl4KDAzU8uXLVV9f3zYdAQCgG3nsxCLLBgAAAOBHTpnBVlFRofr6enl5eVmVe3l5qayszOYxZWVlNuPr6upUUVEhHx8fffHFF/r73/+u+++/X9nZ2Tpy5IgeeeQR1dXV6f/9v//XqM6amhrV1NRY9qurq1uhdwAAAAAAAOhOnHaLqCSZTCarfcMwGpVdLL5h+ZkzZzRgwACtX79eLi4uCgoK0ldffaXf//73NhNsycnJWrp0qaPdAACg22OZAgAAAHRnTrlFtF+/fnJxcWk0W628vLzRLLVzvL29bca7urqqb9++kiQfHx8NHTpULi4ulphhw4aprKxMtbW1jepMTExUVVWVZSspKXG0awAAAAAAAOhmnJJgc3NzU1BQkHJycqzKc3JyFBoaavOYkJCQRvE7d+5UcHCw5YEG48aN07///W+dOXPGEvP555/Lx8dHbm5ujeo0m83y8PCw2gAAAAAAAAB7OCXBJkkJCQl68cUXtWHDBh0+fFjx8fEqLi5WTEyMpLOzyx588EFLfExMjI4dO6aEhAQdPnxYGzZsUEZGhh5//HFLzK9+9StVVlZqwYIF+vzzz/X2229r+fLleuSRR9q9fwAAAAAAAOgenLYGW2RkpCorK7Vs2TKVlpYqMDBQ2dnZ8vf3lySVlpaquLjYEh8QEKDs7GzFx8dr3bp18vX11Zo1azR9+nRLjJ+fn3bu3Kn4+HiNHDlSV155pRYsWKAnnnii3fsHAAAAAACA7sGpDzmIjY1VbGyszfcyMzMblY0fP14ff/zxBesMCQnRvn37WqN5AAAAAAAAwEU5NcEGAAC6Hp4oCgAAgO7GaWuwAQAAAAAAAF0BCTYAAAAAAADAASTYAAAAAAAAAAeQYAMAAAAAAAAcQIINAAAAAAAAcABPEQUAoAsqLDnp7CYAAAAA3QYz2AAAAAAAAAAHMIMNAADY7bETi6z2n/d62kktAQAAAJyPBBsAAHBYw4QbyTYAAAB0NyTYAABAm4nO3G95nTFntBNbAgAAALQd1mADAAAAAAAAHMAMti6KGQMAAAAAAADtgwRbB8MaNgAAAAAAAJ0Lt4gCAAAAAAAADiDBBgAAAAAAADiAW0SdgNtAAQAAAAAAug5msAEAAAAAAAAOIMEGAAAAAAAAOIBbRJ2s4e2iAAAAAAAA6HxIsLWh6Mz9zm4CAAAAAAAA2hgJtg6MhyEAALqShj88ZcwZ7cSWAAAAAK2LNdgAAAAAAAAAB5BgAwAAAAAAABxAgg0AAAAAAABwAGuwAQCAVsUaogAAAOhuSLB1AywqDQAAAAAA0HZIsAEA0FltinR2CwAAAACINdgAAF1YamqqAgIC5O7urqCgIO3evfuC8bm5uQoKCpK7u7sGDx6s9PR0q/dfeOEFhYWF6YorrtAVV1yh2267TR999FFbdgEAAABAJ0CCDQDQJWVlZSkuLk5JSUkqKChQWFiYIiIiVFxcbDO+qKhIkydPVlhYmAoKCrRw4ULNnz9fW7dutcTs2rVL9913n95//33l5eVp4MCBCg8P1/Hjx9urWwAAAAA6IBJsAIAuafXq1YqOjtbcuXM1bNgwpaSkyM/PT2lpaTbj09PTNXDgQKWkpGjYsGGaO3euHn74Ya1atcoS8+qrryo2NlbXX3+9rr32Wr3wwgs6c+aM/va3v7VXtwAAAAB0QCTYAABdTm1trfLz8xUeHm5VHh4err1799o8Ji8vr1H8pEmTdODAAZ0+fdrmMd99951Onz6tPn36NNmWmpoaVVdXW20AAAAAuhYSbACALqeiokL19fXy8vKyKvfy8lJZWZnNY8rKymzG19XVqaKiwuYxTz75pK688krddtttTbYlOTlZnp6els3Pz8/O3gAAAADo6EiwAQC6LJPJZLVvGEajsovF2yqXpJUrV2rz5s3atm2b3N3dm6wzMTFRVVVVlq2kpMSeLgAAAADoBFyd3QAAAFpbv3795OLi0mi2Wnl5eaNZaud4e3vbjHd1dVXfvn2tyletWqXly5frvffe08iRIy/YFrPZLLPZ3IJedG3RmfstrzPmjHZiSwAAAADHMYMNANDluLm5KSgoSDk5OVblOTk5Cg0NtXlMSEhIo/idO3cqODhYPXv2tJT9/ve/1+9+9zu9++67Cg4Obv3GAwAAAOh0mMHWTh47scjZTQCAbiUhIUFRUVEKDg5WSEiI1q9fr+LiYsXExEg6e+vm8ePHtXHjRklSTEyM1q5dq4SEBM2bN095eXnKyMjQ5s2bLXWuXLlSixcv1qZNmzRo0CDLjLfLLrtMl112Wft3EgAAAECHQIKtk2iYoHve62kntgQAOofIyEhVVlZq2bJlKi0tVWBgoLKzs+Xv7y9JKi0tVXFxsSU+ICBA2dnZio+P17p16+Tr66s1a9Zo+vTplpjU1FTV1tZqxowZVud66qmntGTJknbpFwAAAICOhwRbN9NwzRuJdW8AdG2xsbGKjY21+V5mZmajsvHjx+vjjz9usr6jR4+2UssAAAAAdCWswQYAAAAAAAA4wKkJttTUVAUEBMjd3V1BQUHavXv3BeNzc3MVFBQkd3d3DR48WOnp6U3GbtmyRSaTSXfddVcrtxoAAAAAgP+vvXsPjqq+/z/+iuSCUgmXSC4KIVAdUqMICaVBI461wXhDpBoURUbIfFMUCNEpoDAIRaNC+aUIhEuDyOgX+E29VEcshBaoSBxiSCwGBmmNhMaETKiQKDUJ4fP7wx/rLtmQTTbZc3bzfMzszO7nfM7u+7w5OYd97+ecDwD8yLIC27Zt25SVlaXnnntOJSUlSklJUVpamsv9cJyVl5frrrvuUkpKikpKSvTss89q1qxZeuutt1r0PX78uJ555hmlpKR09WYAAGAbpSdOOx4AAAAAfMeyAtuKFSs0bdo0TZ8+XfHx8crNzdXAgQOVl5fntv/atWs1aNAg5ebmKj4+XtOnT9cTTzyh5cuXu/Rrbm7W5MmTtXjxYg0ZMsQXmwIAAAAAAIBuzJICW2Njo4qLi5WamurSnpqaqv3797tdp7CwsEX/cePG6dNPP1VTU5OjbcmSJbrqqqs0bdq0zg8cAAC0y8yTCxwPAAAAIFBZMotobW2tmpubFRkZ6dIeGRmp6upqt+tUV1e77X/u3DnV1tYqOjpaH3/8sfLz81VaWupRHA0NDWpoaHC8rqura9+GWMT5S8qrkUstjAQAAO85z3DN7NYAAADwR5ZOchAUFOTy2hjToq2t/hfa6+vr9eijj2rDhg2KiIjw6PNzcnIUHh7ueAwcOLCdWwAAAAAAAIDuzpIRbBEREerRo0eL0Wo1NTUtRqldEBUV5bZ/cHCw+vfvr7KyMn311Ve69957HcvPnz8vSQoODtbRo0c1dOhQl/Xnz5+v7Oxsx+u6ujqKbAAAAAAAAGgXSwpsoaGhSkxMVEFBgSZMmOBoLygo0Pjx492uk5ycrPfff9+lbefOnUpKSlJISIiGDRumQ4cOuSxfsGCB6uvr9Yc//MFt4SwsLExhYWGdsEUAAAAAAADoriwpsElSdna2HnvsMSUlJSk5OVnr169XRUWFMjMzJf0wuqyyslKbN2+WJGVmZmrVqlXKzs5WRkaGCgsLlZ+fry1btkiSevbsqYSEBJfP6NOnjyS1aAcAAAAAAAA6i2UFtvT0dJ06dUpLlixRVVWVEhIStH37dsXGxkqSqqqqVFFR4egfFxen7du3a86cOVq9erViYmK0cuVKTZw40apNAAAAAAAAAKwrsEnSjBkzNGPGDLfLNm3a1KJt7NixOnjwoMfv7+49Ag0zigIAAAAAAFjL0llEAQAAAAAAAH9n6Qg2AAAAZ9M2FTme508dZWEkAAAAgOcosAUQLhcFAAAAAADwPQps3RwjBQAAAAAAALzDPdgAAAAAAAAAL1BgAwAAAAAAALzAJaIAAMDnuG8oAAAAAgkFtgDFFxcAAAAAAADf4BJRAAAAAAAAwAsU2AAAAAAAAAAvUGADAAAAAAAAvMA92OAwbVOR43n+1FEWRgIACETO9wcFAAAAAgkj2AAAAAAAAAAvUGADAAAAAAAAvMAlogAAwJa4dQEAAAD8BSPYAAAAAAAAAC9QYAMAAAAAAAC8QIENAAAAAAAA8AIFNgAAAAAAAMALFNgAAAAAAAAALzCLKAAAsNTMkwscz1+NXGphJAAAAEDHUGCDW9M2FTme508dZWEkAAAAAAAA9sYlogAAAAAAAIAXKLABAAAAAAAAXqDABgAAAAAAAHiBe7B1A9w8GgAAAAAAoOtQYAMAALbnPPmOxAQ8AAAAsBcuEQUAAAAAAAC8wAi2LuR8aSYAAAAAAAACEwW2bubioh/3ZAMAAAAAAPAOl4gCAAAAAAAAXmAEGwAA8DvOkx4w4QEAAACsRoENbeJLDAAAAAAAQOu4RBQAAAAAAADwAgU2AEDAWrNmjeLi4tSzZ08lJibqo48+umT/vXv3KjExUT179tSQIUO0du1al+VlZWWaOHGiBg8erKCgIOXm5nZh9AAAAAD8BQU2tMu0TUWOBwDY2bZt25SVlaXnnntOJSUlSklJUVpamioqKtz2Ly8v11133aWUlBSVlJTo2Wef1axZs/TWW285+pw9e1ZDhgzRSy+9pKioKF9tSrcy8+QCxwMAAADwFxTYAAABacWKFZo2bZqmT5+u+Ph45ebmauDAgcrLy3Pbf+3atRo0aJByc3MVHx+v6dOn64knntDy5csdfUaNGqVly5Zp0qRJCgsL89WmAAAAALA5JjkAAAScxsZGFRcXa968eS7tqamp2r9/v9t1CgsLlZqa6tI2btw45efnq6mpSSEhIR2KpaGhQQ0NDY7XdXV1HXofd0pPnO609wIAAADQcYxgAwAEnNraWjU3NysyMtKlPTIyUtXV1W7Xqa6udtv/3Llzqq2t7XAsOTk5Cg8PdzwGDhzY4fcCAAAAYE+MYOvmnO9x82rkUgsjAYDOFxQU5PLaGNOira3+7trbY/78+crOzna8rquro8gGAAAABBhLR7B19uxuGzZsUEpKivr27au+ffvqjjvu0IEDB7pyEwAANhQREaEePXq0GK1WU1PTYpTaBVFRUW77BwcHq3///h2OJSwsTL1793Z5AAAAAAgslhXYumJ2tz179ujhhx/W7t27VVhYqEGDBik1NVWVlZW+2iwAgA2EhoYqMTFRBQUFLu0FBQUaM2aM23WSk5Nb9N+5c6eSkpI6fP81AAAAAN2DZZeIOs/uJkm5ubnasWOH8vLylJOT06K/8+xukhQfH69PP/1Uy5cv18SJEyVJb775pss6GzZs0J/+9Cf99a9/1ZQpU7p2gwAAtpKdna3HHntMSUlJSk5O1vr161VRUaHMzExJP1y6WVlZqc2bN0uSMjMztWrVKmVnZysjI0OFhYXKz8/Xli1bHO/Z2Niow4cPO55XVlaqtLRUP/nJT/TTn/7U9xsZ4LiNAQAAAPyFJQU2X83udvbsWTU1Nalfv35u37MrZ3YDAFgrPT1dp06d0pIlS1RVVaWEhARt375dsbGxkqSqqiqXUdNxcXHavn275syZo9WrVysmJkYrV650/IgjSV9//bVGjBjheL18+XItX75cY8eO1Z49e3y2bXA1bVOR43n+1FEWRgIAAIDuypICW1fM7hYdHd1inXnz5unqq6/WHXfc4fY9c3JytHjx4g5uReBhpACAQDNjxgzNmDHD7bJNmza1aBs7dqwOHjzY6vsNHjzYMfEBAAAAAFxg6SyiXTm72yuvvKItW7Zoz5496tmzp9v3Y2Y37zBiAAAAAAAAwKICW1fP7rZ8+XK9+OKL2rVrl2688cZW4wgLC1NYWFgHt6J7YpQbAAAAAACAK0sKbM6zu02YMMHRXlBQoPHjx7tdJzk5We+//75Lm7vZ3ZYtW6alS5dqx44dSkpK6poNAAAAPuX8A4/EjzwAAACwl8us+uDs7Gz98Y9/1MaNG3XkyBHNmTOnxexuzjN/ZmZm6vjx48rOztaRI0e0ceNG5efn65lnnnH0eeWVV7RgwQJt3LhRgwcPVnV1taqrq/Xtt9/6fPsAAAAAAADQPVh2D7aumN1tzZo1amxs1K9//WuXz1q0aJGef/55n2wXAADwLdfRbTssiwMAAADdl6WTHHT27G5fffVVJ0UGAAAAAAAAeMbSAhv8m/OIgWmbfrwXDjOKAgCswgzXAAAAsIJl92ADAAAAAAAAAgEj2ODWxbO1AQBs4n/TrY4AAAAAwEUosHUy50tTZloYBwAAgYwfggAAAGAnFNjQKZjBDQBgN9yPDQAAAL5CgQ2dji80AAAAAACgO2GSAwAAAAAAAMALFNgAAAAAAAAAL3CJKKzjPBPeI9usiwMAEDCc7wn6auRSCyMBAABAd0KBDV2q9OVxLq9vmssECAAA3+P+oAAAAOhKFNjgUy5fcEItDAQA0H0xghoAAACdjAIb7IEvOwCATsblogAAAPAVJjkAAAAAAAAAvMAINnQ65xEDfoeRdAAQ8EpPnHY8v8myKAAAABBIGMEGAAAAAAAAeIERbPAp59FtpU7tNw3s0/Ufzug0++DfAgAAAAAQQBjBBgAAAAAAAHiBAhsAAAAAAADgBS4Rhf1w+WDg5MB5O2BfgbK/AR0wbVOR43n+1FEWRgIAAAB/RoENQOCzSwHJLnEAAAAAADoVBTbYQumJ047nrU544ElxwtcFjI58XmvrMNrLN6zcR6xEcS9gOB8vAQAAANgDBTbYjkuxrbXihF2KFp7yp+3wtABoxyKNXYpn3n62XYphdokDAAAAAGyOAhuA1vmiANiREX2BUOyheAXYDvdjAwAAQEdRYEPg8rY4ZMcCiB1jupgdR+UFCk9GzPnDPgIAAAAAAYYCG2yttXsNtXqfto7orIKQry+htNMIr0AvqlG0AgAAAABcAgW2Tjbz5AKrQwDaXxCyS4HMLnH4m/be4+9SeebfAAHK6/MzhXYAAABcAgU2+CWPZh0NFIF4qSsA2IRz4e3VyKUWRgIAAAB/RoEN8ARFqsDnaSGTEV5At1D68jiX1wH/Yw4AAAC8QoENfs/no9n8uRDTmTHZcfuceRKfXbaBSzYBW+A2DwAAAOgoCmwAAABtcPkxx7IoAAAAYFcU2BBQPB7NxqggdCX2LyCweXLbAG4tAAAA0K1QYEPAci62XYx76fg5vrgCAAAAAGyEAhsA/8ZoMQA+5jJammMQAAAARIEN3VRrl5L6fMIEAIBf47wBAAAAiQIb0OqlpK218wUKAAAAAAA4o8AGAADQCRjNBgAA0H1RYAPa6VKTJzjjyxUAdF8uxTbLogAAAICvUGADuognhTiKcAAQ+KZtKnLbnj91lI8jAQAAQFehwAZYyJPLibjkCAACk3Phzetim/Nspo9s8+69AAAA0G4U2ACb8GTE26X6eDIbKsU6APC9mScXOJ6/GrnUbbv+t0/rb0DBDAAAwPYsLbCtWbNGy5YtU1VVla6//nrl5uYqJSWl1f579+5Vdna2ysrKFBMTo9/+9rfKzMx06fPWW29p4cKF+te//qWhQ4fqhRde0IQJE7p6UwDLtXc2VE/vJecNiniwGucZ2I1LUc3JpY7JrzqNdHNe/6a5O9r34YxyAwAA6DKWFdi2bdumrKwsrVmzRjfffLPWrVuntLQ0HT58WIMGDWrRv7y8XHfddZcyMjL0xhtv6OOPP9aMGTN01VVXaeLEiZKkwsJCpaen63e/+50mTJigd955Rw899JD27dun0aNH+3oTgW6vvfeh83YCifaO0GNEX2DjPINAN82l8Hba8fwm507ORTUAAAB0mSBjjLHig0ePHq2RI0cqLy/P0RYfH6/7779fOTk5LfrPnTtX7733no4cOeJoy8zM1GeffabCwkJJUnp6uurq6vThhx86+tx5553q27evtmzZ0mZMdXV1Cg8P15kzZ9S7d+8ObVfpy+M6tB4A2Fm7R8r8f51xXO0oO55nJO9zwnkGnaHFjwqtjWhj1Bv8gJXnGgAALrBkBFtjY6OKi4s1b948l/bU1FTt37/f7TqFhYVKTU11aRs3bpzy8/PV1NSkkJAQFRYWas6cOS365Obmun3PhoYGNTQ0OF6fOXNG0g8n6Y769vtzHV4XAOyqo8fFC+v5+rccu5xnpM4/13CeQWfYd6zW5fW6vN1u+/1PjVO/xb9022fdgB8vW/2fmh/vMXfjnHfc9v/H/3G9pLq1fq36v1N/fP7QprbbEfCsOtcAAODMkgJbbW2tmpubFRkZ6dIeGRmp6upqt+tUV1e77X/u3DnV1tYqOjq61T6tvWdOTo4WL17con3gwIHt2RwACHzPh3u1en19vcLDvXuP9rDLeUbiXAN/8Te3rW+0c12X/p4eN7w5vmS0UpxrrR0BzdfnGgAAnFk6yUFQUJDLa2NMi7a2+l/c3p73nD9/vrKzsx2vz58/r//85z/q37//JeNoTV1dnQYOHKgTJ04wPN1L5LLzkMvOQy7bzxij+vp6xcTEWPL5Vp9npM491/jbPuhv8Ur+FzPxdj1/i7k7xmv1uQYAAMmiAltERIR69OjR4hf/mpqaFiMDLoiKinLbPzg4WP37979kn9beMywsTGFhYS5tffr0ac+muNW7d2+/+A+NPyCXnYdcdh5y2T5WjCawy3lG6ppzjb/tg/4Wr+R/MRNv1/O3mLtbvIxcAwBY7TIrPjQ0NFSJiYkqKChwaS8oKNCYMWPcrpOcnNyi/86dO5WUlKSQkJBL9mntPQEAgYnzDAAAAABfsuwS0ezsbD322GNKSkpScnKy1q9fr4qKCmVmZkr64ZKayspKbd68WdIPM7mtWrVK2dnZysjIUGFhofLz811mbZs9e7ZuvfVWvfzyyxo/frz+/Oc/a9euXdq3b58l2wgAsA7nGQAAAAC+YlmBLT09XadOndKSJUtUVVWlhIQEbd++XbGxsZKkqqoqVVRUOPrHxcVp+/btmjNnjlavXq2YmBitXLlSEydOdPQZM2aMtm7dqgULFmjhwoUaOnSotm3bptGjR/tkm8LCwrRo0aIWlwKh/chl5yGXnYdc+hfOM9bzt3gl/4uZeLuev8VMvAAAWCPIMJ81AAAAAAAA0GGW3IMNAAAAAAAACBQU2AAAAAAAAAAvUGADAAAAAAAAvECBDQAAAAAAAPACBbZOsmbNGsXFxalnz55KTEzURx99ZHVItpeTk6NRo0bpyiuv1IABA3T//ffr6NGjLn2MMXr++ecVExOjyy+/XLfddpvKysosith/5OTkKCgoSFlZWY42cum5yspKPfroo+rfv7+uuOIK3XTTTSouLnYsJ5ewgp3PM54cz6dOnaqgoCCXxy9+8QtL4n3++edbxBIVFeVYbre/8cGDB7eINygoSE8++aQke+T273//u+69917FxMQoKChI7777rstyT3La0NCgmTNnKiIiQr169dJ9992nf//73z6Pt6mpSXPnztUNN9ygXr16KSYmRlOmTNHXX3/t8h633XZbi7xPmjTJ5/FKnu0DvsyvJzG726eDgoK0bNkyRx9f5hgAAG9RYOsE27ZtU1ZWlp577jmVlJQoJSVFaWlpqqiosDo0W9u7d6+efPJJffLJJyooKNC5c+eUmpqq7777ztHnlVde0YoVK7Rq1SoVFRUpKipKv/rVr1RfX29h5PZWVFSk9evX68Ybb3RpJ5ee+eabb3TzzTcrJCREH374oQ4fPqzf//736tOnj6MPuYSv2f0848nxXJLuvPNOVVVVOR7bt2+3KGLp+uuvd4nl0KFDjmV2+xsvKipyibWgoECS9OCDDzr6WJ3b7777TsOHD9eqVavcLvckp1lZWXrnnXe0detW7du3T99++63uueceNTc3+zTes2fP6uDBg1q4cKEOHjyot99+W1988YXuu+++Fn0zMjJc8r5u3bpOj7WteC9oax/wZX49idk51qqqKm3cuFFBQUGaOHGiSz9f5RgAAK8ZeO3nP/+5yczMdGkbNmyYmTdvnkUR+aeamhojyezdu9cYY8z58+dNVFSUeemllxx9vv/+exMeHm7Wrl1rVZi2Vl9fb6699lpTUFBgxo4da2bPnm2MIZftMXfuXHPLLbe0upxcwgr+dp65+HhujDGPP/64GT9+vHVBOVm0aJEZPny422X+8Dc+e/ZsM3ToUHP+/HljjL1ya4wxksw777zjeO1JTk+fPm1CQkLM1q1bHX0qKyvNZZddZv7yl7/4NF53Dhw4YCSZ48ePO9qcz7O+5C7etvYBK/NrjGc5Hj9+vLn99ttd2qzKMQAAHcEINi81NjaquLhYqampLu2pqanav3+/RVH5pzNnzkiS+vXrJ0kqLy9XdXW1S27DwsI0duxYctuKJ598UnfffbfuuOMOl3Zy6bn33ntPSUlJevDBBzVgwACNGDFCGzZscCwnl/A1fzzPXHw8v2DPnj0aMGCArrvuOmVkZKimpsaK8CRJx44dU0xMjOLi4jRp0iR9+eWXkuz/N97Y2Kg33nhDTzzxhIKCghztdsrtxTzJaXFxsZqamlz6xMTEKCEhwRZ5P3PmjIKCglxGM0vSm2++qYiICF1//fV65plnLB3JfKl9wO75PXnypD744ANNmzatxTI75RgAgEsJtjoAf1dbW6vm5mZFRka6tEdGRqq6utqiqPyPMUbZ2dm65ZZblJCQIEmO/LnL7fHjx30eo91t3bpVBw8eVFFRUYtl5NJzX375pfLy8pSdna1nn31WBw4c0KxZsxQWFqYpU6aQS/icv51n3B3PJSktLU0PPvigYmNjVV5eroULF+r2229XcXGxwsLCfBrj6NGjtXnzZl133XU6efKkli5dqjFjxqisrMz2f+PvvvuuTp8+ralTpzra7JRbdzzJaXV1tUJDQ9W3b98Wfazez7///nvNmzdPjzzyiHr37u1onzx5suLi4hQVFaXPP/9c8+fP12effea4hNeX2toH7JxfSXr99dd15ZVX6oEHHnBpt1OOAQBoCwW2TuL8K7L0wxeMi9vQuqeeekr/+Mc/tG/fvhbLyG3bTpw4odmzZ2vnzp3q2bNnq/3IZdvOnz+vpKQkvfjii5KkESNGqKysTHl5eZoyZYqjH7mEr/nLPtfa8Tw9Pd3xPCEhQUlJSYqNjdUHH3zQ4kt1V0tLS3M8v+GGG5ScnKyhQ4fq9ddfd9wY3q75zs/PV1pammJiYhxtdsrtpXQkp1bnvampSZMmTdL58+e1Zs0al2UZGRmO5wkJCbr22muVlJSkgwcPauTIkT6Ns6P7gNX5vWDjxo2aPHlyi//D2CnHAAC0hUtEvRQREaEePXq0+PWvpqamxS+1cG/mzJl67733tHv3bl1zzTWO9gszupHbthUXF6umpkaJiYkKDg5WcHCw9u7dq5UrVyo4ONiRL3LZtujoaP3sZz9zaYuPj3fcTJ79Er7mT+eZ1o7n7kRHRys2NlbHjh3zUXSt69Wrl2644QYdO3bM1n/jx48f165duzR9+vRL9rNTbiXPjptRUVFqbGzUN99802ofX2tqatJDDz2k8vJyFRQUuIxec2fkyJEKCQmxRd4v3gfsmN8LPvroIx09erTN/VqyV44BALgYBTYvhYaGKjExscVQ9YKCAo0ZM8aiqPyDMUZPPfWU3n77bf3tb39TXFycy/ILlwQ457axsVF79+4ltxf55S9/qUOHDqm0tNTxSEpK0uTJk1VaWqohQ4aQSw/dfPPNOnr0qEvbF198odjYWEnsl/A9fzjPtHU8d+fUqVM6ceKEoqOjfRDhpTU0NOjIkSOKjo629d/4a6+9pgEDBujuu+++ZD875Vby7LiZmJiokJAQlz5VVVX6/PPPLcn7heLasWPHtGvXLvXv37/NdcrKytTU1GSLvF+8D9gtv87y8/OVmJio4cOHt9nXTjkGAKAFS6ZWCDBbt241ISEhJj8/3xw+fNhkZWWZXr16ma+++srq0GztN7/5jQkPDzd79uwxVVVVjsfZs2cdfV566SUTHh5u3n77bXPo0CHz8MMPm+joaFNXV2dh5P7h4pm3yKVnDhw4YIKDg80LL7xgjh07Zt58801zxRVXmDfeeMPRh1zC1+x+nmnreF5fX2+efvpps3//flNeXm52795tkpOTzdVXX23J383TTz9t9uzZY7788kvzySefmHvuucdceeWVjnza8W+8ubnZDBo0yMydO9el3S65ra+vNyUlJaakpMRIMitWrDAlJSWOWTc9yWlmZqa55pprzK5du8zBgwfN7bffboYPH27OnTvn03ibmprMfffdZ6655hpTWlrqsk83NDQYY4z55z//aRYvXmyKiopMeXm5+eCDD8ywYcPMiBEjfB6vp/uAL/PbVswXnDlzxlxxxRUmLy+vxfq+zjEAAN6iwNZJVq9ebWJjY01oaKgZOXKk2bt3r9Uh2Z4kt4/XXnvN0ef8+fNm0aJFJioqyoSFhZlbb73VHDp0yLqg/cjFBTZy6bn333/fJCQkmLCwMDNs2DCzfv16l+XkElaw83mmreP52bNnTWpqqrnqqqtMSEiIGTRokHn88cdNRUWFJfGmp6eb6OhoExISYmJiYswDDzxgysrKHMvt+De+Y8cOI8kcPXrUpd0uud29e7fbfeDxxx83xniW0//+97/mqaeeMv369TOXX365ueeee7psOy4Vb3l5eav79O7du40xxlRUVJhbb73V9OvXz4SGhpqhQ4eaWbNmmVOnTvk8Xk/3AV/mt62YL1i3bp25/PLLzenTp1us7+scAwDgrSBjjOmiwXEAAAAAAABAwOMebAAAAAAAAIAXKLABAAAAAAAAXqDABgAAAAAAAHiBAhsAAAAAAADgBQpsAAAAAAAAgBcosAEAAAAAAABeoMAGAAAAAAAAeIECGwAAAAAAAOAFCmwAAAAAAACAFyiwAQAAAAAAAF6gwAYAAAAAAAB4gQIbAAAAAAAA4IX/B5MlQYI7v7gPAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -506,10 +506,10 @@ "start_time": "2023-11-09T18:28:21.649791476Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:34:39.704104Z", - "iopub.status.busy": "2023-11-09T20:34:39.703623Z", - "iopub.status.idle": "2023-11-09T20:39:17.660759Z", - "shell.execute_reply": "2023-11-09T20:39:17.660015Z" + "iopub.execute_input": "2023-11-09T22:23:55.588666Z", + "iopub.status.busy": "2023-11-09T22:23:55.588500Z", + "iopub.status.idle": "2023-11-09T22:28:04.141080Z", + "shell.execute_reply": "2023-11-09T22:28:04.140527Z" } }, "outputs": [ @@ -517,28 +517,28 @@ "name": "stdout", "output_type": "stream", "text": [ - "KS over hSPD = 0.035351037636424554\n", - "KS over pt_b = 0.020934513422663975\n" + "KS over hSPD = 0.04263217386448881\n", + "KS over pt_b = 0.029367621097527802\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "KS over pt_phi = 0.03862763525433732\n", - "KS over vchi2_b = 0.03908711997814751\n" + "KS over pt_phi = 0.024531682786723796\n", + "KS over vchi2_b = 0.01810184169643042\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "KS over mu_pt_sum = 0.020934513422663975\n" + "KS over mu_pt_sum = 0.029367621097527802\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNgAAAJbCAYAAAA2QikwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACke0lEQVR4nOzde1xVZfr//zdy2FijmCcOKYimqWlqYAqGOk1iWI6ZJmXhIXSGD6UC40yi9U2dPpGOY2QKZmHklMpM6lQTk9KMoiaVEpSjjjmfVMxABmcE7QCK6/eHP3ds9wbZbGBzeD0fj/WIfa9r3etaK9mLfe17rdvFMAxDAAAAAAAAAOqkjbMTAAAAAAAAAJozCmwAAAAAAACAAyiwAQAAAAAAAA6gwAYAAAAAAAA4gAIbAAAAAAAA4AAKbAAAAAAAAIADKLABAAAAAAAADqDABgAAAAAAADiAAhsAAAAAAADgAApsQCNZvHixXFxcVFJSUmPct99+q2XLlmnQoEFq37692rVrp169emnKlCnKzs42x+3atUsuLi7mxdXVVd7e3nrooYd05MgRc9yJEycs4tzd3dWpUycNHTpU8fHxOnToUIMdMwCg6UtJSVF6enqdtu3Ro4fuv//++k0IANDsOHItqa2rn3/efvvt68bOmDFDPXr0aNB8gGtRYAOakMrKSoWHh+t///d/NXnyZP3pT3/S22+/rfj4eJWWlmrPnj1W2zz//PPKycnRzp079dRTTykrK0sjRozQ6dOnLeLmzJmjnJwcZWdn6w9/+IMeeOABvfvuuxo0aJB+97vfNdYhAgCamMb4UAQAaNma2rXkmWee0bZt25ydBloZN2cnAOBHu3fv1r59+7R+/XrNnDnT3D527Fg9+eSTunz5stU2vXv31vDhwyVJI0eOVIcOHRQdHa309HQtWrTIHOfv72+Ok6Rx48YpISFBDz74oH7zm99owIABioiIaMCjAwAAAICG16tXL2engFaIEWxAIztz5oweeeQReXl5ydvbW48//rhKS0slSWfPnpUk+fr62ty2TZvr/8peLaKdPHnyurFt27ZVWlqa3N3dGcUGAC3M1UcT5OXl6cEHH1T79u3l5eWlxx57TP/+978lXbnF89ChQ8rOzjY/SqAut9Rs27ZNt99+uzw9PdWzZ0+tWrWqno8GAOAMjXEtufq4gdpeSy5evKhFixbJz89P7du31z333KOjR49axHCLKJyBAhvQyCZNmqQ+ffpoy5YtWrBggTZu3Kj4+HhJUnBwsNzd3TVv3jy99dZbKiwstLv/f/3rX5KkLl261Crez89PQUFB2rdvny5dumT3/gAATdvEiRN1yy236O2339bixYv15z//WWPHjtXFixe1bds29ezZU0OGDFFOTo5ycnLsvqUmPz9fcXFxio+P17Zt2xQaGqp58+ZpxYoVDXREAIDG1pSuJQsXLtTJkyf12muvad26dTp27JjGjx+vysrK+jpcoE64RRRoZNHR0fr1r38tSbrnnnv0r3/9S+vXr1daWpp69OihtWvXat68eXrsscckXRnNNmbMGM2aNUthYWFW/V2+fFmXLl3SxYsXdeDAAf3qV7+Sq6urIiMja51TQECAPv74Y/3nP/9R165d6+dAAQBNwoMPPqjly5dLksLDw+Xt7a1HH31Uf/zjH/Xoo4+qbdu2at++vcVjBOzxzTffKC8vT4MGDZIkRUREqLi4WL/97W8VGxurG264od6OBQDgHE3pWtK/f3+9+eab5teurq6aMmWK9u/fX+f9A/WBEWxAI/v5z39u8fr222/XDz/8oOLiYknS448/rq+//lobN27U3Llz1b17d7355psaNWqUzds4IyMj5e7urhtuuEEjR45UZWWl3n77bd1+++21zskwDMcOCgDQZD366KMWr6dMmSI3Nzft3LmzXvq/7bbbzB+Irpo6darKysr02Wef1cs+AADO1ZSuJbY+T0m1e0QO0JAYwQY0sk6dOlm8NplMkqTvv//e3Obl5aVHHnlEjzzyiCTp0KFDuueee7Ro0SLNnj1bHTp0MMcuW7ZMd999t1xdXdW5c2d1797d7pxOnjwpk8mkjh071uGIAABNmY+Pj8VrNzc3derUyfzcz/ruv2pbfe0DAOBcTelaUpvPU4AzMIINaAZuu+02Pfzww7p48aK+/PJLi3U9e/ZUcHCwhgwZUqfi2unTp5Wbm6u77rpLbm7U3AGgpSkqKrJ4fenSJZ09e9bqA0p99V+1rb72AQBwLq4lwPVRYAOakLNnz6qiosLmun/+85+SrkxKUF++//57zZo1S5cuXdJvfvObeusXANB0vPXWWxav//jHP+rSpUsaPXq0pCvf/Dvyrf+hQ4f0+eefW7Rt3LhR7dq10x133FHnfgEATQfXEuD6GK4CNCE7d+7UvHnz9Oijjyo0NFSdOnVScXGxNm3apA8++EDTpk1Tt27d6tR3QUGBPv74Y12+fFmlpaXKy8vT+vXrdfLkSf3+979XeHh4PR8NAKAp2Lp1q9zc3DRmzBgdOnRIzzzzjAYNGqQpU6ZIkgYOHKjNmzcrIyNDPXv2lKenpwYOHFjr/v38/PTzn/9cixcvlq+vr958801lZWVp2bJlTHAAAC0E1xLg+iiwAU3I8OHD9fjjj2vnzp36wx/+oJKSErVt21b9+/fXyy+/rP/5n/+pc98vv/yyXn75Zbm6uqp9+/bq2bOnxo8fr9mzZ6t///71eBQAgKZk69atWrx4sVJTU+Xi4qLx48crOTlZHh4ekqQlS5aosLBQs2fP1vnz5xUQEKATJ07Uuv/Bgwdr5syZevbZZ3Xs2DH5+flp5cqVio+Pb6AjAgA0Nq4lwPW5GEwfCAAA0OIsXrxYS5Ys0b///W917tzZ2ekAAJqhxriW9OjRQwMGDNBf/vKXBukfaCw8gw0AAAAAAABwALeIAgAAwEJlZaVqusnBxcVFrq6ujZgRAKC54VqC1oZbRAEAAGChR48eOnnyZLXrR40apV27djVeQgCAZodrCVobRrABAADAwnvvvafy8vJq17dr164RswEANEdcS9DaMIINAAAAAAAAcACTHAAAAAAAAAAO4BbRKi5fvqxvvvlG7dq1k4uLi7PTAYBmzzAMnT9/Xn5+fmrThu90JK41AFDfuNZY4joDAPWrttcZCmxVfPPNN+revbuz0wCAFufUqVPq1q2bs9NoErjWAEDD4FpzBdcZAGgY17vOUGCr4upDFk+dOqX27ds7ORsAaP7KysrUvXv3BnmIbUpKin73u9+psLBQt912m5KTkxUWFmYztrCwUL/61a+Um5urY8eOae7cuUpOTraIGT16tLKzs622HTdunN5//31J0uLFi7VkyRKL9d7e3ioqKqp13lxrAKB+NeS1pjniOgMA9au21xkKbFVcHULdvn17LkYAUI/q+xaVjIwMxcXFKSUlRSNGjNArr7yiiIgIHT58WP7+/lbx5eXl6tKlixYtWqQXX3zRZp9bt25VRUWF+fXZs2c1aNAgPfTQQxZxt912mz788EPza1dXV7ty51oDAA2D2yGv4DoDAA3jetcZCmwAgGZn5cqVio6O1qxZsyRJycnJ2r59u1JTU5WUlGQV36NHD7300kuSpPXr19vss2PHjhavN2/erBtuuMGqwObm5iYfH5/6OAwAAAAALQRPAQUANCsVFRXKzc1VeHi4RXt4eLj27dtXb/tJS0vTww8/rBtvvNGi/dixY/Lz81NgYKAefvhhffXVVzX2U15errKyMosFAAAAQMtCgQ0A0KyUlJSosrJS3t7eFu32PgutJp9++qn+8Y9/mEfIXTVs2DBt2LBB27dv16uvvqqioiKFhobq7Nmz1faVlJQkLy8v88KDpwEAAICWhwIbAKBZuvYZCIZh1Nvzd9LS0jRgwADdeeedFu0RERGaNGmSBg4cqHvuucc8+cEbb7xRbV+JiYkqLS01L6dOnaqXHAEAAAA0HTyDDQDQrHTu3Fmurq5Wo9WKi4utRrXVxXfffafNmzdr6dKl14298cYbNXDgQB07dqzaGJPJJJPJ5HBeAAAAAJquOo1gS0lJUWBgoDw9PRUUFKQ9e/bUGJ+dna2goCB5enqqZ8+eWrt2rVXMli1b1L9/f5lMJvXv31/btm2zWJ+amqrbb7/dPBtOSEiI/vrXv1rEGIahxYsXy8/PT23bttXo0aN16NChuhwiAKCJ8vDwUFBQkLKysizas7KyFBoa6nD/f/zjH1VeXq7HHnvsurHl5eU6cuSIfH19Hd4vAAAAgObL7gJbRkaG4uLitGjRIuXl5SksLEwREREqKCiwGX/8+HGNGzdOYWFhysvL08KFCzV37lxt2bLFHJOTk6PIyEhFRUXp888/V1RUlKZMmaJPPvnEHNOtWze98MILOnDggA4cOKC7775bEyZMsCigLV++XCtXrtTq1au1f/9++fj4aMyYMTp//ry9hwkAaMISEhL02muvaf369Tpy5Iji4+NVUFCgmJgYSVduy5w2bZrFNvn5+crPz9eFCxf073//W/n5+Tp8+LBV32lpaXrggQfUqVMnq3Xz589Xdna2jh8/rk8++USTJ09WWVmZpk+f3jAHCgAAAKBZcDEMw7Bng2HDhumOO+5Qamqqua1fv3564IEHlJSUZBX/1FNP6d1339WRI0fMbTExMfr888+Vk5MjSYqMjFRZWZnFiLR7771XN910kzZt2lRtLh07dtTvfvc7RUdHyzAM+fn5KS4uTk899ZSkKyMLvL29tWzZMv3yl7+87rGVlZXJy8tLpaWlat++/fVPBgCgRg35vpqSkqLly5ersLBQAwYM0IsvvqiRI0dKkmbMmKETJ05o165d5nhbz2cLCAjQiRMnzK+//PJL3XrrrdqxY4fGjBljFf/www9r9+7dKikpUZcuXTR8+HD99re/Vf/+/WudN9caAKhfvK9a4nwAQP2q7fuqXc9gq6ioUG5urhYsWGDRHh4ern379tncJicnR+Hh4RZtY8eOVVpami5evCh3d3fl5OQoPj7eKiY5Odlmn5WVlfrTn/6kb7/9ViEhIZKujJQrKiqy2JfJZNKoUaO0b98+mwW28vJylZeXm1+XlZVVf/AAgCYlNjZWsbGxNtelp6dbtdXm+6Q+ffrUGLd58+Za5wcAAACg9bCrwFZSUqLKykqrh0h7e3tbPWz6qqKiIpvxly5dUklJiXx9fauNubbPgwcPKiQkRD/88IN+8pOfaNu2beZRA1djbfVz8uRJm7klJSVpyZIl1zlqAHUVnb7f/HPajKFOzASALfyOAgDswXUDAKpXp0kOrr3NxjAMm7fe1BR/bXtt+rz11luVn5+vjz/+WP/zP/+j6dOnWz0/x57cEhMTVVpaal5OnTpV7TEAAAAAAAAAttg1gq1z585ydXW1GllWXFxsNXLsKh8fH5vxbm5u5gdIVxdzbZ8eHh665ZZbJEnBwcHav3+/XnrpJb3yyivy8fGRdGUkW9XZ3GrKzWQyyWQyXe+wAQAAAAAAgGrZNYLNw8NDQUFBysrKsmjPyspSaGiozW1CQkKs4nfs2KHg4GC5u7vXGFNdn1cZhmF+hlpgYKB8fHws+qmoqFB2dvZ1+wEAAAAAAADqyq4RbJKUkJCgqKgoBQcHKyQkROvWrVNBQYFiYmIkXbnt8vTp09qwYYOkKzOGrl69WgkJCZo9e7ZycnKUlpZmMTvovHnzNHLkSC1btkwTJkzQO++8ow8//FB79+41xyxcuFARERHq3r27zp8/r82bN2vXrl364IMPJF25NTQuLk7PP/+8evfurd69e+v555/XDTfcoKlTpzp0kgAAAAAAAIDq2F1gi4yM1NmzZ7V06VIVFhZqwIAByszMVEBAgCSpsLBQBQUF5vjAwEBlZmYqPj5ea9askZ+fn1atWqVJkyaZY0JDQ7V582Y9/fTTeuaZZ9SrVy9lZGRo2LBh5pgzZ84oKipKhYWF8vLy0u23364PPvhAY8aMMcf85je/0ffff6/Y2Fj997//1bBhw7Rjxw61a9euTicHAIAWZ2NklRfznZYGAAAA0JK4GFdnHIDKysrk5eWl0tJStW/f3tnpAM0eM02B91VrTj8nVQps0RU/Ftj4HQXQXDn9fbWJacjzwd92AFqj2r6v1mkWUQAAAAAAAABX2H2LKAAAAACgleDRAgBQK4xgAwAAAAAAABxAgQ0AAAAAAABwAAU2AAAAAAAAwAEU2AAAAAAAAAAHMMkBAAAAAOC65px5usqr7U7LAwCaIkawAQAAAAAAAA6gwAYAAAAAAAA4gAIbAAAAAAAA4AAKbAAAAAAAAIADKLABAAAAAAAADqDABgAAAAAAADiAAhsAALAQnb7fvAAAHJOSkqLAwEB5enoqKChIe/bsqTH+rbfe0qBBg3TDDTfI19dXM2fO1NmzZxspWwBAXVFgAwCgpdsY+eMCAGg0GRkZiouL06JFi5SXl6ewsDBFRESooKDAZvzevXs1bdo0RUdH69ChQ/rTn/6k/fv3a9asWY2cOQDAXm7OTgAAADjHnDNPV3m13Wl5AEBLtXLlSkVHR5sLZMnJydq+fbtSU1OVlJRkFf/xxx+rR48emjt3riQpMDBQv/zlL7V8+fJGzbuq/FPnnLZvAGhOGMEGAGiW7LnlprCwUFOnTtWtt96qNm3aKC4uziomPT1dLi4uVssPP/xQ5/02K4xyA4B6VVFRodzcXIWHh1u0h4eHa9++fTa3CQ0N1ddff63MzEwZhqEzZ87o7bff1n333VftfsrLy1VWVmaxAAAaHwU2AECzY+8tN+Xl5erSpYsWLVqkQYMGVdtv+/btVVhYaLF4enrWeb/NSf6pc+YFAOC4kpISVVZWytvb26Ld29tbRUVFNrcJDQ3VW2+9pcjISHl4eMjHx0cdOnTQyy+/XO1+kpKS5OXlZV66d+9er8cBAKgdCmwAgGan6i03/fr1U3Jysrp3767U1FSb8T169NBLL72kadOmycvLq9p+XVxc5OPjY7E4sl8AAFxcXCxeG4Zh1XbV4cOHNXfuXP2///f/lJubqw8++EDHjx9XTExMtf0nJiaqtLTUvJw6dape8wcA1A4FNgBAs1KXW25q68KFCwoICFC3bt10//33Ky8vr1H2CwBoeTp37ixXV1er0WrFxcVWo9quSkpK0ogRI/TrX/9at99+u8aOHauUlBStX79ehYWFNrcxmUxq3769xQIAaHxMcgAAaFbqcstNbfTt21fp6ekaOHCgysrK9NJLL2nEiBH6/PPP1bt37zrvt7y8XOXl5ebXzeHZOEx+AACO8/DwUFBQkLKysjRx4kRze1ZWliZMmGBzm++++05ubpYf0VxdXSVdGfkGAGi6GMEGAGiW7LnlpjaGDx+uxx57TIMGDVJYWJj++Mc/qk+fPlbPvbF3vzwbBwBar4SEBL322mtav369jhw5ovj4eBUUFJhv+UxMTNS0adPM8ePHj9fWrVuVmpqqr776Sh999JHmzp2rO++8U35+fs46DABALTCCDQDQrNTllpu6aNOmjYYOHapjx445tN/ExEQlJCSYX5eVlTVKkS06fb/55zQPBzqqOqvo1AwHOgKA1icyMlJnz57V0qVLVVhYqAEDBigzM1MBAQGSrsxyXXWinBkzZuj8+fNavXq1fvWrX6lDhw66++67tWzZMmcdAgCgliiwAQCalbrcclMXhmEoPz9fAwcOdGi/JpNJJpOp3vJyFLOEAkDjio2NVWxsrM116enpVm1z5szRnDlzGjgrAEB9o8AGAGh2EhISFBUVpeDgYIWEhGjdunVWt9ycPn1aGzZsMG+Tn58v6cpEBv/+97+Vn58vDw8P9e/fX5K0ZMkSDR8+XL1791ZZWZlWrVql/Px8rVmzptb7BQAAANA6UWADADQ79t5yI0lDhgwx/5ybm6uNGzcqICBAJ06ckCSdO3dOv/jFL1RUVCQvLy8NGTJEu3fv1p133lnr/QIAAABonSiwAQCaJXtvubne7GsvvviiXnzxRYf2CwAAAKB1YhZRAAAAAAAAwAF1KrClpKQoMDBQnp6eCgoK0p49e2qMz87OVlBQkDw9PdWzZ0+tXbvWKmbLli3q37+/TCaT+vfvr23btlmsT0pK0tChQ9WuXTt17dpVDzzwgI4ePWoRM2PGDLm4uFgsw4cPr8shAgAAAAAAALVid4EtIyNDcXFxWrRokfLy8hQWFqaIiAirZ91cdfz4cY0bN05hYWHKy8vTwoULNXfuXG3ZssUck5OTo8jISEVFRenzzz9XVFSUpkyZok8++cQck52drSeeeEIff/yxsrKydOnSJYWHh+vbb7+12N+9996rwsJC85KZmWnvIQIAAAAAAAC1Zvcz2FauXKno6GjNmjVLkpScnKzt27crNTVVSUlJVvFr166Vv7+/kpOTJUn9+vXTgQMHtGLFCk2aNMncx5gxY5SYmCjpyuxv2dnZSk5O1qZNmyRJH3zwgUW/r7/+urp27arc3FyNHDnS3G4ymeTj42PvYQEAAAAAAAB1YtcItoqKCuXm5io8PNyiPTw8XPv27bO5TU5OjlX82LFjdeDAAV28eLHGmOr6lKTS0lJJUseOHS3ad+3apa5du6pPnz6aPXu2iouLq+2jvLxcZWVlFgtaoY2RPy4AAAAAAAB2sqvAVlJSosrKSnl7e1u0e3t7q6ioyOY2RUVFNuMvXbqkkpKSGmOq69MwDCUkJOiuu+7SgAEDzO0RERF666239Pe//12///3vtX//ft19990qLy+32U9SUpK8vLzMS/fu3Ws+AWiaKJABAAAAAAAnsvsWUUlycXGxeG0YhlXb9eKvbbenzyeffFJffPGF9u7da9EeGfljgWXAgAEKDg5WQECA3n//fT344INW/SQmJiohIcH8uqysjCIbAAAAAAAA7GJXga1z585ydXW1GllWXFxsNQLtKh8fH5vxbm5u6tSpU40xtvqcM2eO3n33Xe3evVvdunWrMV9fX18FBATo2LFjNtebTCaZTKYa+wAAAAAAAABqYtctoh4eHgoKClJWVpZFe1ZWlkJDQ21uExISYhW/Y8cOBQcHy93dvcaYqn0ahqEnn3xSW7du1d///ncFBgZeN9+zZ8/q1KlT8vX1rdXxAQAAAAAAAPayq8AmSQkJCXrttde0fv16HTlyRPHx8SooKFBMTIykK7ddTps2zRwfExOjkydPKiEhQUeOHNH69euVlpam+fPnm2PmzZunHTt2aNmyZfrnP/+pZcuW6cMPP1RcXJw55oknntCbb76pjRs3ql27dioqKlJRUZG+//57SdKFCxc0f/585eTk6MSJE9q1a5fGjx+vzp07a+LEiXU9PwAAAAAAAECN7H4GW2RkpM6ePaulS5eqsLBQAwYMUGZmpgICAiRJhYWFKigoMMcHBgYqMzNT8fHxWrNmjfz8/LRq1SpNmjTJHBMaGqrNmzfr6aef1jPPPKNevXopIyNDw4YNM8ekpqZKkkaPHm2Rz+uvv64ZM2bI1dVVBw8e1IYNG3Tu3Dn5+vrqpz/9qTIyMtSuXTt7DxMAAAAAAAColTpNchAbG6vY2Fib69LT063aRo0apc8++6zGPidPnqzJkydXu/7qxAjVadu2rbZv315jDAAAAAAAAFDf7L5FFAAAAAAAAMCP6jSCDWgs0en7zT+nzRjqxEwAAAAAAABso8AGAABqhS89AAAAANu4RRQAAAAAAABwACPY0ORUHSHRGPJPnTP/PLhR9wwAAAAAAFoCRrABAAAAAAAADqDABgAAAAAAADiAW0QBAEC1qt5GL2+npQEAAAA0aRTYgNrYGPnjz1Mzmk5fAAAAAADA6SiwAQAAh1WdoCZtxlAnZgIAAAA0PgpsQD25dvZTPmACAAAAANA6MMkB4ETR6fvNCwD7pKSkKDAwUJ6engoKCtKePXuqjS0sLNTUqVN16623qk2bNoqLi7OKefXVVxUWFqabbrpJN910k+655x59+umnFjGLFy+Wi4uLxeLj41PfhwYAAACgmaHAhpZlY+SPC4AWKyMjQ3FxcVq0aJHy8vIUFhamiIgIFRQU2IwvLy9Xly5dtGjRIg0aNMhmzK5du/TII49o586dysnJkb+/v8LDw3X69GmLuNtuu02FhYXm5eDBg/V+fAAANHV8UQwAliiwAQCanZUrVyo6OlqzZs1Sv379lJycrO7duys1NdVmfI8ePfTSSy9p2rRp8vLyshnz1ltvKTY2VoMHD1bfvn316quv6vLly/rb3/5mEefm5iYfHx/z0qVLl3o/PgAAAADNC89gAwA0KxUVFcrNzdWCBQss2sPDw7Vv37562893332nixcvqmPHjhbtx44dk5+fn0wmk4YNG6bnn39ePXv2rLf91pc5Z57+8UX3Dk7LAwAAAGgNKLCh+ah62+fUDPvia7sNgCavpKRElZWV8vb2tmj39vZWUVFRve1nwYIFuvnmm3XPPfeY24YNG6YNGzaoT58+OnPmjJ577jmFhobq0KFD6tSpk81+ysvLVV5ebn5dVlZWbzkCAAAAaBoosAEAmiUXFxeL14ZhWLXV1fLly7Vp0ybt2rVLnp6e5vaIiAjzzwMHDlRISIh69eqlN954QwkJCTb7SkpK0pIlS+olr+up+hycOY2yRwAAAAASBTY0U1U/RKZ5ODERAI2uc+fOcnV1tRqtVlxcbDWqrS5WrFih559/Xh9++KFuv/32GmNvvPFGDRw4UMeOHas2JjEx0aL4VlZWpu7duzucJwAAAICmgwIbUJ1qZiLNXzbW/PPgp7Y3VjYA/n8eHh4KCgpSVlaWJk6caG7PysrShAkTHOr7d7/7nZ577jlt375dwcHB140vLy/XkSNHFBYWVm2MyWSSyWRyKC9H5Z8659T9AwAAAC0dBTYAQLOTkJCgqKgoBQcHKyQkROvWrVNBQYFiYmIkXRk1dvr0aW3YsMG8TX5+viTpwoUL+ve//638/Hx5eHiof//+kq7cFvrMM89o48aN6tGjh3mE3E9+8hP95Cc/kSTNnz9f48ePl7+/v4qLi/Xcc8+prKxM06dPb8SjBwAAANDUUGADaqE2oz8sZuyTFJ3+nPnntBlD6zsloFWLjIzU2bNntXTpUhUWFmrAgAHKzMxUQECAJKmwsFAFBQUW2wwZMsT8c25urjZu3KiAgACdOHFCkpSSkqKKigpNnjzZYrtnn31WixcvliR9/fXXeuSRR1RSUqIuXbpo+PDh+vjjj837beks3+cYwQsArRnXBACwRIENANAsxcbGKjY21ua69PR0qzbDMGrs72qhrSabN2+uTWoAAAAAWhkKbEBTV/VZcFMznJdHM2Ax+QWjBgEAAAAAjYQCG+CAqgWdOU7MAwAAAAAAOA8FNjRpFs926N7Bsc4YCQYAAAAAABoABTbYhyIVAAAAAACAhTbOTgAAAAAAWqqUlBQFBgbK09NTQUFB2rNnT43x5eXlWrRokQICAmQymdSrVy+tX7++kbIFANQVI9gAAID9qo5oliTNd0oaANCUZWRkKC4uTikpKRoxYoReeeUVRURE6PDhw/L397e5zZQpU3TmzBmlpaXplltuUXFxsS5dutTImQMA7FWnEWz2fguTnZ2toKAgeXp6qmfPnlq7dq1VzJYtW9S/f3+ZTCb1799f27Zts1iflJSkoUOHql27durataseeOABHT161CLGMAwtXrxYfn5+atu2rUaPHq1Dhw7V5RDRyKLT95sXAAAAoCVYuXKloqOjNWvWLPXr10/Jycnq3r27UlNTbcZ/8MEHys7OVmZmpu655x716NFDd955p0JDQxs5cwCAvewusF39FmbRokXKy8tTWFiYIiIiVFBQYDP++PHjGjdunMLCwpSXl6eFCxdq7ty52rJlizkmJydHkZGRioqK0ueff66oqChNmTJFn3zyiTkmOztbTzzxhD7++GNlZWXp0qVLCg8P17fffmuOWb58uVauXKnVq1dr//798vHx0ZgxY3T+/Hl7DxMNZWPkj0s15px52rwAAAAAzVFFRYVyc3MVHh5u0R4eHq59+/bZ3Obdd99VcHCwli9frptvvll9+vTR/Pnz9f333zdGygAAB9h9i2jVb2EkKTk5Wdu3b1dqaqqSkpKs4teuXSt/f38lJydLkvr166cDBw5oxYoVmjRpkrmPMWPGKDExUZKUmJio7OxsJScna9OmTZKufJtT1euvv66uXbsqNzdXI0eOlGEYSk5O1qJFi/Tggw9Kkt544w15e3tr48aN+uUvf2nvoaIVqjqCLs2jHjuuoaBoM4YJJAAAAJq1kpISVVZWytvb26Ld29tbRUVFNrf56quvtHfvXnl6emrbtm0qKSlRbGys/vOf/1T7HLby8nKVl5ebX5eVldXfQQAAas2uEWx1+RYmJyfHKn7s2LE6cOCALl68WGNMdX1KUmlpqSSpY8eOkq6MlCsqKrLox2QyadSoUdX2U15errKyMosFdcMtngAAAIA1FxcXi9eGYVi1XXX58mW5uLjorbfe0p133qlx48Zp5cqVSk9Pr3YUW1JSkry8vMxL9+7d6/0YAADXZ9cItrp8C1NUVGQz/tKlSyopKZGvr2+1MdX1aRiGEhISdNddd2nAgAHm/Vzd7tp+Tp48abOfpKQkLVmypJqjRb2ozcitFsriFtfuHZyWBwAAABpf586d5erqavWZpri42Oozy1W+vr66+eab5eXlZW7r16+fDMPQ119/rd69e1ttk5iYqISEBPPrsrIyimwA4AR1muTAnm9hqou/tt2ePp988kl98cUX5ttH65pbYmKiSktLzcupU6eqPQYAAAAAqC0PDw8FBQUpKyvLoj0rK6vaSQtGjBihb775RhcuXDC3ffnll2rTpo26detmcxuTyaT27dtbLACAxmdXga0u38L4+PjYjHdzc1OnTp1qjLHV55w5c/Tuu+9q586dFhcZHx8fSbIrNy5GAAAAABpKQkKCXnvtNa1fv15HjhxRfHy8CgoKFBMTI+nKF/7Tpk0zx0+dOlWdOnXSzJkzdfjwYe3evVu//vWv9fjjj6tt27bOOgwAQC3YdYto1W9hJk6caG7PysrShAkTbG4TEhKi9957z6Jtx44dCg4Olru7uzkmKytL8fHxFjFVv9kxDENz5szRtm3btGvXLgUGBlr0GRgYKB8fH2VlZWnIkCGSrjwzLjs7W8uWLbPnMNHM5J86Z/55MLdi1shiEocZQ52YCYCGwOzLANC0REZG6uzZs1q6dKkKCws1YMAAZWZmKiAgQJJUWFiogoICc/xPfvITZWVlac6cOQoODlanTp00ZcoUPffcc846BABALdk9i2hCQoKioqIUHByskJAQrVu3zupbmNOnT2vDhg2SpJiYGK1evVoJCQmaPXu2cnJylJaWZnF757x58zRy5EgtW7ZMEyZM0DvvvKMPP/xQe/fuNcc88cQT2rhxo9555x21a9fOPFLNy8tLbdu2lYuLi+Li4vT888+rd+/e6t27t55//nndcMMNmjp1qkMnCQAAAADqIjY2VrGxsTbXpaenW7X17dvX6rZSAEDTZ3eBzd5vYQIDA5WZman4+HitWbNGfn5+WrVqlSZNmmSOCQ0N1ebNm/X000/rmWeeUa9evZSRkaFhw4aZY1JTUyVJo0ePtsjn9ddf14wZMyRJv/nNb/T9998rNjZW//3vfzVs2DDt2LFD7dq1s/cw0ciayqgLJiYAAAAAAAD2srvAJtn/LcyoUaP02Wef1djn5MmTNXny5GrXX50YoSYuLi5avHixFi9efN1YAAAAAAAAoD7UqcAG1IuNkY26O4tntdXTvhts5F0jnxsAAAAAAFB3FNgAWGAiBAAAAAAA7EOBDWghGrowVrX/htoHAAAAAADNEQU21D9ubwQAAAAAAK0IBTagmbp2RBkANBXcag4AAIDWhgIbmqUGm1ygGbn2HLzs/ZyTMgEAAAAAoHVr4+wEAAAAAAAAgOaMAhsAoFlKSUlRYGCgPD09FRQUpD179lQbW1hYqKlTp+rWW29VmzZtFBcXZzNuy5Yt6t+/v0wmk/r3769t27Y5tF8AAAAArQMFNsCJ5px52rzknzpnXgDULCMjQ3FxcVq0aJHy8vIUFhamiIgIFRQU2IwvLy9Xly5dtGjRIg0aNMhmTE5OjiIjIxUVFaXPP/9cUVFRmjJlij755JM677c1qfp+BgAAALQ2FNgAAM3OypUrFR0drVmzZqlfv35KTk5W9+7dlZqaajO+R48eeumllzRt2jR5eXnZjElOTtaYMWOUmJiovn37KjExUT/72c+UnJxc5/0CAAAAaB2Y5ABOw0itxmc5smR7o+6bWQVRXyoqKpSbm6sFCxZYtIeHh2vfvn117jcnJ0fx8fEWbWPHjjUX2Oq63/LycpWXl5tfl5WV1TlHAAAAAE0TBTaghbC3eEbBC81VSUmJKisr5e3tbdHu7e2toqKiOvdbVFRUY5913W9SUpKWLFlS57wAAAAANH3cIgoAaJZcXFwsXhuGYdXWEH3au9/ExESVlpaal1OnTjmUIwAAAICmhxFssEvV2zoHOy0LAK1Z586d5erqajVqrLi42Gp0mT18fHxq7LOu+zWZTDKZTHXOCwAAAEDTxwg21DtmwwTQkDw8PBQUFKSsrCyL9qysLIWGhta535CQEKs+d+zYYe6zofbbElnMKLox8scFAAAAaKEYwYZmozkX7CxG/nXv4LQ8gJYiISFBUVFRCg4OVkhIiNatW6eCggLFxMRIunJb5unTp7VhwwbzNvn5+ZKkCxcu6N///rfy8/Pl4eGh/v37S5LmzZunkSNHatmyZZowYYLeeecdffjhh9q7d2+t9wsAAACgdaLABqBOmCQBzhQZGamzZ89q6dKlKiws1IABA5SZmamAgABJUmFhoQoKCiy2GTJkiPnn3Nxcbdy4UQEBATpx4oQkKTQ0VJs3b9bTTz+tZ555Rr169VJGRoaGDRtW6/0CAAAAaJ0osAFNECPegOuLjY1VbGyszXXp6elWbYZhXLfPyZMna/LkyXXeLwAAAIDWiQIbGlVzvs0TAPAj3s8BAACAH1FgQ4Ny5gewpvrhr6nmBQAAAAAA6oYCG1oUilcAAAAAAKCxUWADYDFhAQAAAAAAsA8FNqAZqVoIm+PEPAAAAAAAwI8osKFezDnztLNTaBUa6jxX7fdl7+caZB8AAAAAALRUFNiAavA8NwAAAAAAUBsU2IAmjkIfAAAAAABNGwU2XN/GSGdnAEfw/w8AAAAAgAbVpi4bpaSkKDAwUJ6engoKCtKePXtqjM/OzlZQUJA8PT3Vs2dPrV271ipmy5Yt6t+/v0wmk/r3769t27ZZrN+9e7fGjx8vPz8/ubi46M9//rNVHzNmzJCLi4vFMnz48LocIgAAAACgNjZG/rgAQCtld4EtIyNDcXFxWrRokfLy8hQWFqaIiAgVFBTYjD9+/LjGjRunsLAw5eXlaeHChZo7d662bNlijsnJyVFkZKSioqL0+eefKyoqSlOmTNEnn3xijvn22281aNAgrV69usb87r33XhUWFpqXzMxMew8RAAAAAAAAqDW7bxFduXKloqOjNWvWLElScnKytm/frtTUVCUlJVnFr127Vv7+/kpOTpYk9evXTwcOHNCKFSs0adIkcx9jxoxRYmKiJCkxMVHZ2dlKTk7Wpk2bJEkRERGKiIi4bn4mk0k+Pj72HhYAAAAAAABQJ3aNYKuoqFBubq7Cw8Mt2sPDw7Vv3z6b2+Tk5FjFjx07VgcOHNDFixdrjKmuz5rs2rVLXbt2VZ8+fTR79mwVFxfb3QcAAAAAAABQW3aNYCspKVFlZaW8vb0t2r29vVVUVGRzm6KiIpvxly5dUklJiXx9fauNqa7P6kREROihhx5SQECAjh8/rmeeeUZ33323cnNzZTKZrOLLy8tVXl5ufl1WVmbX/oDmbM6Zp52dAgAAAAAALUKdZhF1cXGxeG0YhlXb9eKvbbe3T1siI398qOaAAQMUHBysgIAAvf/++3rwwQet4pOSkrRkyRK79tEa5Z865+wUAAAAADRRVT8vvJy+3/xz2oyhTsgGAJzDrltEO3fuLFdXV6uRZcXFxVYj0K7y8fGxGe/m5qZOnTrVGFNdn7Xl6+urgIAAHTt2zOb6xMRElZaWmpdTp045tD8AAAAAAAC0PnYV2Dw8PBQUFKSsrCyL9qysLIWGhtrcJiQkxCp+x44dCg4Olru7e40x1fVZW2fPntWpU6fk6+trc73JZFL79u0tFgAAAAAAAMAedt8impCQoKioKAUHByskJETr1q1TQUGBYmJiJF0ZFXb69Glt2LBBkhQTE6PVq1crISFBs2fPVk5OjtLS0syzg0rSvHnzNHLkSC1btkwTJkzQO++8ow8//FB79+41x1y4cEH/+te/zK+PHz+u/Px8dezYUf7+/rpw4YIWL16sSZMmydfXVydOnNDChQvVuXNnTZw4sc4nCGiWNkZeP6Yals9m2+54LgBwVdX3pqkZzssDAAAAqGd2F9giIyN19uxZLV26VIWFhRowYIAyMzMVEBAgSSosLFRBQYE5PjAwUJmZmYqPj9eaNWvk5+enVatWadKkSeaY0NBQbd68WU8//bSeeeYZ9erVSxkZGRo2bJg55sCBA/rpT39qfp2QkCBJmj59utLT0+Xq6qqDBw9qw4YNOnfunHx9ffXTn/5UGRkZateunf1nBgAAAAAAAKiFOk1yEBsbq9jYWJvr0tPTrdpGjRqlzz77rMY+J0+erMmTJ1e7fvTo0ebJEWxp27attm9ntE1jiq7yANM5TswDAAAAAADAmepUYAMAAKgv0cw4BwAAgGbOrkkO0PJEp+83L61J/qlz5gUAAABoKCkpKQoMDJSnp6eCgoK0Z8+eWm330Ucfyc3NTYMHD27YBAEA9YIRbLDNgYfkAwAAAJAyMjIUFxenlJQUjRgxQq+88ooiIiJ0+PBh+fv7V7tdaWmppk2bpp/97Gc6c+ZMI2YMAKgrRrABAJole0cEZGdnKygoSJ6enurZs6fWrl1rsX706NFycXGxWu677z5zzOLFi63W+/j4NMjxAQCav5UrVyo6OlqzZs1Sv379lJycrO7duys1NbXG7X75y19q6tSpCgkJaaRMAQCOosAGAGh2ro4IWLRokfLy8hQWFqaIiAiLWayrOn78uMaNG6ewsDDl5eVp4cKFmjt3rrZs2WKO2bp1qwoLC83LP/7xD7m6uuqhhx6y6Ou2226ziDt48GCDHisAoHmqqKhQbm6uwsPDLdrDw8O1b9++ard7/fXX9X//93969tlnGzpFAEA94hZRALUy58zTFq9f9n7OSZkAliMCJCk5OVnbt29XamqqkpKSrOLXrl0rf39/JScnS5L69eunAwcOaMWKFZo0aZIkqWPHjhbbbN68WTfccINVgc3NzY1RawCA6yopKVFlZaW8vb0t2r29vVVUVGRzm2PHjmnBggXas2eP3Nxq91GtvLxc5eXl5tdlZWV1TxoAUGcU2GBmMYubhxMTQbPW1CfMYLbC5u/qiIAFCxZYtNc0IiAnJ8dqBMHYsWOVlpamixcvyt3d3WqbtLQ0Pfzww7rxxhst2o8dOyY/Pz+ZTCYNGzZMzz//vHr27Fltvq39g0/VyWQGd+/gtDwAwFlcXFwsXhuGYdUmSZWVlZo6daqWLFmiPn361Lr/pKQkLVmyxOE8AQCOocAGoFFYjoDb7rQ80PzVZURAUVGRzfhLly6ppKREvr6+Fus+/fRT/eMf/1BaWppF+7Bhw7Rhwwb16dNHZ86c0XPPPafQ0FAdOnRInTp1srlvPvhUw2IynflOSwMAGkrnzp3l6upqdW0qLi62uiZJ0vnz53XgwAHl5eXpySeflCRdvnxZhmHIzc1NO3bs0N133221XWJiohISEsyvy8rK1L1793o+GgDA9VBgg01VRxwAQFNU2xEBNcXbapeujF4bMGCA7rzzTov2iIgI888DBw5USEiIevXqpTfeeMPiw01VfPABgNbJw8NDQUFBysrK0sSJE83tWVlZmjBhglV8+/btrZ7rmZKSor///e96++23FRgYaHM/JpNJJpOpfpMHANiNAhsAoFmxd0SAJPn4+NiMd3Nzsxp59t1332nz5s1aunTpdXO58cYbNXDgQB07dqzamIb84HPtLdlzGmQvDcPiixzb/9sAoNlLSEhQVFSUgoODFRISonXr1qmgoEAxMTGSrnwJc/r0aW3YsEFt2rTRgAEDLLbv2rWrPD09rdoBAE0PBTYA1bO4hau2cdzqhYZl74gASQoJCdF7771n0bZjxw4FBwdbPX/tj3/8o8rLy/XYY49dN5fy8nIdOXJEYWFhdTgSXFfV95apGc7LAwDqKDIyUmfPntXSpUtVWFioAQMGKDMzUwEBAZKkwsLCamfABgA0L22cnQAAAPZKSEjQa6+9pvXr1+vIkSOKj4+3GhEwbdo0c3xMTIxOnjyphIQEHTlyROvXr1daWprmz7cuCKelpemBBx6w+Uy1+fPnKzs7W8ePH9cnn3yiyZMnq6ysTNOnT2+4gwUANGuxsbE6ceKEysvLlZubq5EjR5rXpaena9euXdVuu3jxYuXn5zd8kgAAhzGCDWaWD6EHgKbL3hEBgYGByszMVHx8vNasWSM/Pz+tWrVKkyZNsuj3yy+/1N69e7Vjxw6b+/3666/1yCOPqKSkRF26dNHw4cP18ccfm/fb2HjfBgAAAJoGCmwAgGYpNjZWsbGxNtelp6dbtY0aNUqfffZZjX326dPHPPmBLZs3b7YrRwAAAACtA7eIAgAAAAAAAA5gBFsrx+1FqCuLfzvdOzgtDwAAADQdlp8vtjstDwBobIxgAwAAAAAAABzACDYADYYRkgAAAACA1oACG4DGtzHyx5+nZjgvDwAAAAAA6gEFNgAA0GREp+83/5zm4cREAAAAADtQYEOdcfsfAAAA0PJU/bJjTgP0mTZjaD31CgBNB5McAAAAAAAAAA6gwAYAAAAAAAA4gFtEAQCAU1V95MDL3s85MRMAAACgbiiwAWh0+afOmX8e7LQsAAAAAACoHxTYWpmqDxeV6u+hpWhaLApY3Ts4LQ9n4kG6AAAAAIDGQoENAAA0edd+QUThHAAAAE0JBTaghas6mq0xVH2WEgAAAAAArUGdZhFNSUlRYGCgPD09FRQUpD179tQYn52draCgIHl6eqpnz55au3atVcyWLVvUv39/mUwm9e/fX9u2bbNYv3v3bo0fP15+fn5ycXHRn//8Z6s+DMPQ4sWL5efnp7Zt22r06NE6dOhQXQ6xZdkY+eMCAICT5J86Z14AAK0An0MAtCJ2F9gyMjIUFxenRYsWKS8vT2FhYYqIiFBBQYHN+OPHj2vcuHEKCwtTXl6eFi5cqLlz52rLli3mmJycHEVGRioqKkqff/65oqKiNGXKFH3yySfmmG+//VaDBg3S6tWrq81t+fLlWrlypVavXq39+/fLx8dHY8aM0fnz5+09zBaFDzQAgOZizpmnzQsAAADQXNh9i+jKlSsVHR2tWbNmSZKSk5O1fft2paamKikpySp+7dq18vf3V3JysiSpX79+OnDggFasWKFJkyaZ+xgzZowSExMlSYmJicrOzlZycrI2bdokSYqIiFBERES1eRmGoeTkZC1atEgPPvigJOmNN96Qt7e3Nm7cqF/+8pf2HmqzVvVZNUxkgJbs2ucyAWh9mNQEAAAAzmbXCLaKigrl5uYqPDzcoj08PFz79u2zuU1OTo5V/NixY3XgwAFdvHixxpjq+rTl+PHjKioqsujHZDJp1KhRdvUDAAAAAK0Zo4kBwH52jWArKSlRZWWlvL29Ldq9vb1VVFRkc5uioiKb8ZcuXVJJSYl8fX2rjamuz+r2c3W7a/s5efKkzW3Ky8tVXl5ufl1WVlbr/QEAAAAAqmfxiBrvasMAoEWo0yyiLi4uFq8Nw7Bqu178te329lkfuSUlJWnJkiV27wNA/anuFk9u8wIAAAAANBd23SLauXNnubq6Wo0sKy4utho5dpWPj4/NeDc3N3Xq1KnGmOr6rG4/kuzqJzExUaWlpebl1KlTtd4fgOYvOn2/eQEAAAAAoK7sKrB5eHgoKChIWVlZFu1ZWVkKDQ21uU1ISIhV/I4dOxQcHCx3d/caY6rr05bAwED5+PhY9FNRUaHs7Oxq+zGZTGrfvr3FAgAAAAAAANjD7ltEExISFBUVpeDgYIWEhGjdunUqKChQTEyMpCujwk6fPq0NGzZIkmJiYrR69WolJCRo9uzZysnJUVpamnl2UEmaN2+eRo4cqWXLlmnChAl655139OGHH2rv3r3mmAsXLuhf//qX+fXx48eVn5+vjh07yt/fXy4uLoqLi9Pzzz+v3r17q3fv3nr++ed1ww03aOrUqXU+QQAAAAAAAEBN7BrBJkmRkZFKTk7W0qVLNXjwYO3evVuZmZkKCAiQJBUWFqqgoMAcHxgYqMzMTO3atUuDBw/Wb3/7W61atUqTJk0yx4SGhmrz5s16/fXXdfvttys9PV0ZGRkaNmyYOebAgQMaMmSIhgwZIulKoW/IkCH6f//v/5ljfvOb3yguLk6xsbEKDg7W6dOntWPHDrVr187+MwMAaNJSUlIUGBgoT09PBQUFac+ePTXGZ2dnKygoSJ6enurZs6fWrl1rsT49PV0uLi5Wyw8//ODQfgEAAAC0fHWa5CA2NlaxsbE216Wnp1u1jRo1Sp999lmNfU6ePFmTJ0+udv3o0aPNkyNUx8XFRYsXL9bixYtrjGvNmGobDcFihiigEWRkZCguLk4pKSkaMWKEXnnlFUVEROjw4cPy9/e3ij9+/LjGjRun2bNn680339RHH32k2NhYdenSxeILn/bt2+vo0aMW23p6etZ5vwAAAABaB7tHsAEA4GwrV65UdHS0Zs2apX79+ik5OVndu3dXamqqzfi1a9fK399fycnJ6tevn2bNmqXHH39cK1assIhzcXGRj4+PxeLIfuGY/FPnzAsAAADQlFFgAwA0KxUVFcrNzVV4eLhFe3h4uPbt22dzm5ycHKv4sWPH6sCBA7p48aK57cKFCwoICFC3bt10//33Ky8vz6H9AgAAAGgdKLABAJqVkpISVVZWytvb26Ld29tbRUVFNrcpKiqyGX/p0iWVlJRIkvr27av09HS9++672rRpkzw9PTVixAgdO3aszvuVpPLycpWVlVksAAAAAFqWOj2DDQAAZ3NxcbF4bRiGVdv14qu2Dx8+XMOHDzevHzFihO644w69/PLLWrVqVZ33m5SUpCVLllznaAAAaNksnwW93Wl5AEBDocAGoFqt9blH0en7LV6nzRjqpExgS+fOneXq6mo1aqy4uNhqdNlVPj4+NuPd3NzUqVMnm9u0adNGQ4cONY9gq8t+JSkxMVEJCQnm12VlZerevXv1B4haufb3FAAAAHAmbhEFADQrHh4eCgoKUlZWlkV7VlaWQkNDbW4TEhJiFb9jxw4FBwfL3d3d5jaGYSg/P1++vr513q8kmUwmtW/f3mKB4+acedq8AAAAAM7GCLbmbmPkjz9PzXBeHgDQiBISEhQVFaXg4GCFhIRo3bp1KigoUExMjKQro8ZOnz6tDRs2SJJiYmK0evVqJSQkaPbs2crJyVFaWpo2bdpk7nPJkiUaPny4evfurbKyMq1atUr5+flas2ZNrfcLAAAAoHWiwAYA11H1VjRuF20aIiMjdfbsWS1dulSFhYUaMGCAMjMzFRAQIEkqLCxUQUGBOT4wMFCZmZmKj4/XmjVr5Ofnp1WrVmnSpEnmmHPnzukXv/iFioqK5OXlpSFDhmj37t268847a73fxlD13+OcRtsrAAAAgJpQYAPQJFHUwvXExsYqNjbW5rr09HSrtlGjRumzzz6rtr8XX3xRL774okP7RcPhVlAAAAA0ZRTYADRJzDQFAAAAAGgumOQAAAAAAAAAcAAj2AA0fVUn85AafUIPRtMBAAAAAGrCCDYAAAAAAADAAYxga46uHc0DAAAAAAAAp6HABqDJqM9ZArmtEwAAAADQWLhFFAAAAAAaSEpKigIDA+Xp6amgoCDt2bOn2titW7dqzJgx6tKli9q3b6+QkBBt384XhQDQHDCCrYWqz5FAQEPi3yoAAGipMjIyFBcXp5SUFI0YMUKvvPKKIiIidPjwYfn7+1vF7969W2PGjNHzzz+vDh066PXXX9f48eP1ySefaMiQIU44AgBAbVFga0Gi0/ebf57jxDwAAAAASCtXrlR0dLRmzZolSUpOTtb27duVmpqqpKQkq/jk5GSL188//7zeeecdvffeey26wFb1c0zajKFOzAQA6o4CG4CWz2JikPlOS8NR/PEJ1ELV3/epGddvB4AGUlFRodzcXC1YsMCiPTw8XPv27atVH5cvX9b58+fVsWPHamPKy8tVXl5ufl1WVla3hAEADqHA1gzlnzpne4V3o6YBOE3VQhMAWNxq3r2D0/IAgKpKSkpUWVkpb2/LP9K9vb1VVFRUqz5+//vf69tvv9WUKVOqjUlKStKSJUscyrXRWXz5KTXnL0AB4ComOQAAAACABuLi4mLx2jAMqzZbNm3apMWLFysjI0Ndu3atNi4xMVGlpaXm5dSpUw7nDACwHyPYADQ7VUervOz9nM12e/uRmKELAADUn86dO8vV1dVqtFpxcbHVqLZrZWRkKDo6Wn/60590zz331BhrMplkMpkczhcA4BgKbAAAAABQzzw8PBQUFKSsrCxNnDjR3J6VlaUJEyZUu92mTZv0+OOPa9OmTbrvvvsaI9VGd+0jb+aILz0BNH8U2AAAQItR9UPbYKdlAQBXJCQkKCoqSsHBwQoJCdG6detUUFCgmJgYSVdu7zx9+rQ2bNgg6Upxbdq0aXrppZc0fPhw8+i3tm3bysvLy2nHAQC4PgpsAAAAANAAIiMjdfbsWS1dulSFhYUaMGCAMjMzFRAQIEkqLCxUQUGBOf6VV17RpUuX9MQTT+iJJ54wt0+fPl3p6emNnT4AwA4U2AAAAACggcTGxio2NtbmumuLZrt27Wr4hAAADYICGwBIFtPFzzlzznl5AAAAAACaHQpsAACgZapSOAcAAAAaUpu6bJSSkqLAwEB5enoqKChIe/bsqTE+OztbQUFB8vT0VM+ePbV27VqrmC1btqh///4ymUzq37+/tm3bZvd+Z8yYIRcXF4tl+PDhdTlEAM3EnDNPm5eGiAcAAEDjiU7fb14AoDmxu8CWkZGhuLg4LVq0SHl5eQoLC1NERITFwzmrOn78uMaNG6ewsDDl5eVp4cKFmjt3rrZs2WKOycnJUWRkpKKiovT5558rKipKU6ZM0SeffGL3fu+9914VFhaal8zMTHsPEUATk3/qnMUCAAAAAEBTYvctoitXrlR0dLRmzZolSUpOTtb27duVmpqqpKQkq/i1a9fK399fycnJkqR+/frpwIEDWrFihSZNmmTuY8yYMUpMTJR0Zbrq7OxsJScna9OmTXbt12QyycfHx97DahEYkQMALR/v9QAAAEDTY9cItoqKCuXm5io8PNyiPTw8XPv27bO5TU5OjlX82LFjdeDAAV28eLHGmKt92rPfXbt2qWvXrurTp49mz56t4uLiao+nvLxcZWVlFgsAOIpbGwAAAACgdbFrBFtJSYkqKyvl7e1t0e7t7a2ioiKb2xQVFdmMv3TpkkpKSuTr61ttzNU+a7vfiIgIPfTQQwoICNDx48f1zDPP6O6771Zubq5MJpNVbklJSVqyZEntTwAAAGiWqt5ePrjq5AdTMxo/GQAAALQ4dZrkwMXFxeK1YRhWbdeLv7a9Nn1eLyYyMlL33XefBgwYoPHjx+uvf/2rvvzyS73//vs280pMTFRpaal5OXXqVLXH4GyMiAFakY2RPy4NoOr7SXN+T6nvCXdeffVVhYWF6aabbtJNN92ke+65R59++qlFzOLFi60m02mtjyVoDnh2IwAAABqLXQW2zp07y9XV1Wq0WnFxsdXosqt8fHxsxru5ualTp041xlztsy77lSRfX18FBATo2LFjNtebTCa1b9/eYgEANH0NMeHOrl279Mgjj2jnzp3KycmRv7+/wsPDdfr0aYu+brvtNovJdA4ePNigxwoAQKvVwF86AkB9sqvA5uHhoaCgIGVlZVm0Z2VlKTQ01OY2ISEhVvE7duxQcHCw3N3da4y52mdd9itJZ8+e1alTp+Tr61u7AwTQIjGKpeWpOvFNv379lJycrO7duys1NdVmfNUJd/r166dZs2bp8ccf14oVK8wxb731lmJjYzV48GD17dtXr776qi5fvqy//e1vFn25ubnJx8fHvHTp0qVBjxUAAABA02f3LaIJCQl67bXXtH79eh05ckTx8fEqKChQTEyMpCu3XU6bNs0cHxMTo5MnTyohIUFHjhzR+vXrlZaWpvnz55tj5s2bpx07dmjZsmX65z//qWXLlunDDz9UXFxcrfd74cIFzZ8/Xzk5OTpx4oR27dql8ePHq3Pnzpo4cWJdzw8A1B++ha0XDTXhzrW+++47Xbx4UR07drRoP3bsmPz8/BQYGKiHH35YX331VY35MqEOAAAA0PLZNcmBdOU5Z2fPntXSpUtVWFioAQMGKDMzUwEBAZKkwsJCi1t0AgMDlZmZqfj4eK1Zs0Z+fn5atWqVJk2aZI4JDQ3V5s2b9fTTT+uZZ55Rr169lJGRoWHDhtV6v66urjp48KA2bNigc+fOydfXVz/96U+VkZGhdu3a1fkEAQCaloaacOdaCxYs0M0336x77rnH3DZs2DBt2LBBffr00ZkzZ/Tcc88pNDRUhw4dMj/24FpMqAMAQO3NOfP0jy+6d3BaHgBgL7sLbJIUGxur2NhYm+vS09Ot2kaNGqXPPvusxj4nT56syZMn13m/bdu21fbt22vcHgAcZu/sg4xWazANMeHOVcuXL9emTZu0a9cueXp6mtsjIiLMPw8cOFAhISHq1auX3njjDSUkJNjcb2JiosW6srIyde/evYYjQ3NSdaKQtBlDnZgJALQ8zAANoDmpU4ENjaM5z+4HtDb8vjaehppw56oVK1bo+eef14cffqjbb7+9xlxuvPFGDRw4sNrJdKQrE+qYTKYa+0HjsvjA5rQsAAB1RrENQBNEga2ZsBgqDaBpsBidNr/aMNSvqhPfVH3GZlZWliZMmGBzm5CQEL333nsWbddOuCNJv/vd7/Tcc89p+/btCg4Ovm4u5eXlOnLkiMLCwup4NGhKGI0GAACAuqLABgDNhGWhvXXfEp+QkKCoqCgFBwcrJCRE69ats5pw5/Tp09qwYYOkKxPurF69WgkJCZo9e7ZycnKUlpamTZs2mftcvny5nnnmGW3cuFE9evQwj3j7yU9+op/85CeSpPnz52v8+PHy9/dXcXGxnnvuOZWVlWn69OmNfAZQbyiUA0CzUN1s8IMbNQsAqB4FtiaG28wA4PoaYsKdlJQUVVRUWD0P9Nlnn9XixYslSV9//bUeeeQRlZSUqEuXLho+fLg+/vhj837RvFHEBoAWhNtIATQyCmxNTNU/7l/2fs6JmQCwB7+7ja++J9w5ceLEdfe5efPm2qYHAAAaA4U0AE0EBTYAANBqVXfLEQAAAGAPCmwAAAAAgObP4rmaANC42jg7AQAAAAAAAKA5YwQbAADA9fCMHwAAANSAApsTVJ0pNG3G0GrjLGczA4BqOPjBv7bvSQCugyIcADS6qs/SHNy9g+2ga28d5T0aQAOgwAYAAGAPiw9q852WBgDAUq2KbQDQQCiwAUA9sxh9WptvUhv5W9RrR8e+7P1co+4faA6qjuyUpDlnzpl/5kMbADRzjDgG0AAosAFAa8CsWoBdeEwDADRvdRnNxmMzADiCApuTWX1D7qQ8AAAAAAD/P0a5AbATBTYAcLaaRpc5c+QZf1gCAICWjudqAqgnFNgAAACcgSI2AABAi0GBrZFUvRWU57oAcFhtRrbx3DWgQVR9ro+8rx/PM30AoGlhtlEADYECWyOhqAYAQCvi4C1HFOUAoP5YfDFSh20G11smAFoyCmwAAAAAgFapaiFtjhgUAaDuKLABQBPj0G0L3BYKOA23HAFAK1Dd31o8SxNo9SiwAYCT1eW2BQBNm73PaQMAAEDzRoENAPAjRsABdqnNM1YtYjZ2aLhkAAAA4DQU2ACglbP48M9tbUCDqm7E6stVJjUAADQx9n4BeW08t48CrQIFtgZUdQawOU7MAwAANG3XjoR72fu5H19U/aDmyIe0+uoHAGCtpiIc779Aq0CBDQDqiGenAWhsVb+8S/NY8eMKPrABQIOpzd98TG4DgAIbAABAc1eL0REWs5w2bDYA0KpdW5Cj+Aa0DhTY6lk0z1ABAAANxJnPTLQYPTdjaKPuGwCauppGuVmsWzbWZszgp7bXb0IAGh0FtnpWm9nEAAAAalL174l8RzpqgjMDX/tlJMU6AFD1I5F5fhvQbLSpy0YpKSkKDAyUp6engoKCtGfPnhrjs7OzFRQUJE9PT/Xs2VNr1661itmyZYv69+8vk8mk/v37a9u2bXbv1zAMLV68WH5+fmrbtq1Gjx6tQ4cO1eUQAbQy+afOmZf6iEPDa6rXIsAZqr43RafvNy+1tjHyx6UKu/uqph+gNWuI6xVanurex6u25y8ba14sVH3v5f0XcBq7R7BlZGQoLi5OKSkpGjFihF555RVFRETo8OHD8vf3t4o/fvy4xo0bp9mzZ+vNN9/URx99pNjYWHXp0kWTJk2SJOXk5CgyMlK//e1vNXHiRG3btk1TpkzR3r17NWzYsFrvd/ny5Vq5cqXS09PVp08fPffccxozZoyOHj2qdu3aOXKeAMBhFs8/cvDWrvrsqzlqytcioLE4Uui3+nBWxeAqH87mnPlxH3bPbMqoC6BBrleAZPk+fu3fglXXVX3vZsQw0LBcDMMw7Nlg2LBhuuOOO5Sammpu69evnx544AElJSVZxT/11FN69913deTIEXNbTEyMPv/8c+Xk5EiSIiMjVVZWpr/+9a/mmHvvvVc33XSTNm3aVKv9GoYhPz8/xcXF6amnnpIklZeXy9vbW8uWLdMvf/nL6x5bWVmZvLy8VFpaqvbt29tzWsxq+oMVQOtT9Q+eunwYrs329hbYasqj2r7q+OG4Pt5XbWmq16LacPSccJ1BU1Or96Aq7yHX/huu+tyh2nwodHQmVZ4l1/I01LWmPjTE9ep6+EyDqqq+l1Z9/EB17RbPgrP3y5Sa4oBmrLbvq3aNYKuoqFBubq4WLFhg0R4eHq59+/bZ3CYnJ0fh4eEWbWPHjlVaWpouXrwod3d35eTkKD4+3iomOTm51vs9fvy4ioqKLPZlMpk0atQo7du3z2aBrby8XOXl5ebXpaWlkq6cvLq68MOlOm8LoOUp++6i+ee6vD/sPVZi1z6+OF1q/vn2m71sxteUR9W+LFfU7X3x6vupnd/l1KgpX4tsqe9rDdcZNDW1eZ/Skp9Vuyoqdaf5519W+fdd8f0F889lrz34Y/vFOT+2X6rynlXld+qLFyeaf7493vJW75knF1TZxPo2cEnSH2f8+POU9Gpzb7Za2PE1xLWmPjTU9epafKZBTaq+512oRfveat6vX6nyXl3VGnfLvx2fqPqeXvxjEa/qe/ETb+X+uP2jQT9uXM17U9V46/2/XO06W321tPc/NI7aXmfsKrCVlJSosrJS3t7eFu3e3t4qKiqyuU1RUZHN+EuXLqmkpES+vr7Vxlztszb7vfpfWzEnT560mVtSUpKWLFli1d69e3eb8QDQas2u5kNoLZ0/f15eXrYLfvZqytciW7jWANfzd/NPb9aqfZvt9urepxbX8N5T07rr9dtStKDjq89rTX1oqOvVtbjOoHH83Wbrm1Yt1bxHV/N++2ZsNbur5XuT9f7t6KsFvf+hcVzvOlOnWURdXFwsXhuGYdV2vfhr22vTZ33FXJWYmKiEhATz68uXL+s///mPOnXqZN6mrKxM3bt316lTp5rckPOmgPNTM85P9Tg3NWsp58cwDJ0/f15+fn713ndTvhZVVZtrTW21lH8XTQHnsv5wLusP57JuGvJaUx8a4npVlT3Xmeb+b4z8nYv8nac55y41//xre52xq8DWuXNnubq6Wn3jUlxcbPVNy1U+Pj42493c3NSpU6caY672WZv9+vj4SLryrU/Vb3Zqys1kMslkMlm0dejQwWZs+/btm+U/hMbC+akZ56d6nJuatYTzU9+jCZrytcgWe641tdUS/l00FZzL+sO5rD+cS/s1pZFrVzXU9epadbnONPd/Y+TvXOTvPM05d6l551+b60wbezr08PBQUFCQsrKyLNqzsrIUGhpqc5uQkBCr+B07dig4ONj8DIHqYq72WZv9BgYGysfHxyKmoqJC2dnZ1eYGAGh+mvK1CACAqxrqegUAaKIMO23evNlwd3c30tLSjMOHDxtxcXHGjTfeaJw4ccIwDMNYsGCBERUVZY7/6quvjBtuuMGIj483Dh8+bKSlpRnu7u7G22+/bY756KOPDFdXV+OFF14wjhw5YrzwwguGm5ub8fHHH9d6v4ZhGC+88ILh5eVlbN261Th48KDxyCOPGL6+vkZZWZm9h2lWWlpqSDJKS0vr3EdLxvmpGeenepybmnF+ataUr0UNiX8X9YdzWX84l/WHc9nyNMT1yhHN/d8Y+TsX+TtPc87dMJp//rVld4HNMAxjzZo1RkBAgOHh4WHccccdRnZ2tnnd9OnTjVGjRlnE79q1yxgyZIjh4eFh9OjRw0hNTbXq809/+pNx6623Gu7u7kbfvn2NLVu22LVfwzCMy5cvG88++6zh4+NjmEwmY+TIkcbBgwfrcohmP/zwg/Hss88aP/zwg0P9tFScn5pxfqrHuakZ5+f6muq1qCHx76L+cC7rD+ey/nAuW6aGuF7VVXP/N0b+zkX+ztOcczeM5p9/bbkYRhObzxoAAAAAAABoRux6BhsAAAAAAAAASxTYAAAAAAAAAAdQYAMAAAAAAAAcQIENAAAAAAAAcAAFtutISUlRYGCgPD09FRQUpD179jg7pQaVlJSkoUOHql27durataseeOABHT161CLGMAwtXrxYfn5+atu2rUaPHq1Dhw5ZxJSXl2vOnDnq3LmzbrzxRv385z/X119/3ZiH0iiSkpLk4uKiuLg4c1trPz+nT5/WY489pk6dOumGG27Q4MGDlZuba17fms/PpUuX9PTTTyswMFBt27ZVz549tXTpUl2+fNkc05rPD2rW2q5H9WX37t0aP368/Pz85OLioj//+c8W62vzO4f6+/sAUmpqqm6//Xa1b99e7du3V0hIiP7617+a13Me4Sh7rxfZ2dkKCgqSp6enevbsqbVr1zZSppZq8z5zrV27dsnFxcVq+ec//9lIWf9o8eLFVnn4+PjUuE1TOfeS1KNHD5vn8oknnrAZ7+xz31DX9y1btqh///4ymUzq37+/tm3b1uj5X7x4UU899ZQGDhyoG2+8UX5+fpo2bZq++eabGvtMT0+3+f/khx9+aLTcJWnGjBlWOQwfPvy6/TbWuW9IFNhqkJGRobi4OC1atEh5eXkKCwtTRESECgoKnJ1ag8nOztYTTzyhjz/+WFlZWbp06ZLCw8P17bffmmOWL1+ulStXavXq1dq/f798fHw0ZswYnT9/3hwTFxenbdu2afPmzdq7d68uXLig+++/X5WVlc44rAaxf/9+rVu3TrfffrtFe2s+P//97381YsQIubu7669//asOHz6s3//+9+rQoYM5pjWfn2XLlmnt2rVavXq1jhw5ouXLl+t3v/udXn75ZXNMaz4/qF5rvB7Vl2+//VaDBg3S6tWrba6vze8c6u/vA0jdunXTCy+8oAMHDujAgQO6++67NWHCBPMHP84jHGHv9eL48eMaN26cwsLClJeXp4ULF2ru3LnasmVLI2deu/eZ6hw9elSFhYXmpXfv3o2QsbXbbrvNIo+DBw9WG9uUzr105bNN1dyzsrIkSQ899FCN2znr3DfE9T0nJ0eRkZGKiorS559/rqioKE2ZMkWffPJJo+b/3Xff6bPPPtMzzzyjzz77TFu3btWXX36pn//859ftt3379hb/PwoLC+Xp6dlouV917733WuSQmZlZY5+Nee4blIFq3XnnnUZMTIxFW9++fY0FCxY4KaPGV1xcbEgysrOzDcMwjMuXLxs+Pj7GCy+8YI754YcfDC8vL2Pt2rWGYRjGuXPnDHd3d2Pz5s3mmNOnTxtt2rQxPvjgg8Y9gAZy/vx5o3fv3kZWVpYxatQoY968eYZhcH6eeuop46677qp2fWs/P/fdd5/x+OOPW7Q9+OCDxmOPPWYYBucH1eN6VD8kGdu2bTO/rs3vHGyry98HqN5NN91kvPbaa5xHOMze68VvfvMbo2/fvhZtv/zlL43hw4c3WI61de37jC07d+40JBn//e9/Gy+xajz77LPGoEGDah3flM+9YRjGvHnzjF69ehmXL1+2ub4pnfv6ur5PmTLFuPfeey3axo4dazz88MP1nnNV1+Zvy6effmpIMk6ePFltzOuvv254eXnVb3LXYSv36dOnGxMmTLCrH2ed+/rGCLZqVFRUKDc3V+Hh4Rbt4eHh2rdvn5OyanylpaWSpI4dO0q68k1LUVGRxXkxmUwaNWqU+bzk5ubq4sWLFjF+fn4aMGBAizl3TzzxhO677z7dc889Fu2t/fy8++67Cg4O1kMPPaSuXbtqyJAhevXVV83rW/v5ueuuu/S3v/1NX375pSTp888/1969ezVu3DhJnB/YxvWo4dTmdw621eXvA1irrKzU5s2b9e233yokJITzCIfU5XqRk5NjFT927FgdOHBAFy9ebLBca+Pa95maDBkyRL6+vvrZz36mnTt3NnRq1Tp27Jj8/PwUGBiohx9+WF999VW1sU353FdUVOjNN9/U448/LhcXlxpjm8q5r6qu76XV/T9pCu+/paWlcnFxsbgzyJYLFy4oICBA3bp10/3336+8vLzGSfAau3btUteuXdWnTx/Nnj1bxcXFNcY35XNvDwps1SgpKVFlZaW8vb0t2r29vVVUVOSkrBqXYRhKSEjQXXfdpQEDBkiS+dhrOi9FRUXy8PDQTTfdVG1Mc7Z582Z99tlnSkpKslrX2s/PV199pdTUVPXu3Vvbt29XTEyM5s6dqw0bNkji/Dz11FN65JFH1LdvX7m7u2vIkCGKi4vTI488IonzA9u4HjWc2vzOwVpd/z7Ajw4ePKif/OQnMplMiomJ0bZt29S/f3/OIxxSl+tFUVGRzfhLly6ppKSkwXK9HlvvM7b4+vpq3bp12rJli7Zu3apbb71VP/vZz7R79+5GzPaKYcOGacOGDdq+fbteffVVFRUVKTQ0VGfPnrUZ31TPvST9+c9/1rlz5zRjxoxqY5rSub9WXd9Lq/t/4uz33x9++EELFizQ1KlT1b59+2rj+vbtq/T0dL377rvatGmTPD09NWLECB07dqwRs5UiIiL01ltv6e9//7t+//vfa//+/br77rtVXl5e7TZN9dzby83ZCTR111bsDcO4bhW/pXjyySf1xRdfaO/evVbr6nJeWsK5O3XqlObNm6cdO3bUeC97az0/ly9fVnBwsJ5//nlJV77ROnTokFJTUzVt2jRzXGs9PxkZGXrzzTe1ceNG3XbbbcrPz1dcXJz8/Pw0ffp0c1xrPT+oWWu+HjU0zq196vvvg9bo1ltvVX5+vs6dO6ctW7Zo+vTpys7ONq/nPMIR9v77sRVvq70x1fQ+U9Wtt96qW2+91fw6JCREp06d0ooVKzRy5MiGTtNCRESE+eeBAwcqJCREvXr10htvvKGEhASb2zTFcy9JaWlpioiIkJ+fX7UxTencV6cu76VN7f334sWLevjhh3X58mWlpKTUGDt8+HCLyQRGjBihO+64Qy+//LJWrVrV0KmaRUZGmn8eMGCAgoODFRAQoPfff18PPvhgtds1tXNfF4xgq0bnzp3l6upqVTEtLi62qqy2RHPmzNG7776rnTt3qlu3bub2qzPh1HRefHx8VFFRof/+97/VxjRXubm5Ki4uVlBQkNzc3OTm5qbs7GytWrVKbm5u5uNrrefH19dX/fv3t2jr16+f+cG6rf3fz69//WstWLBADz/8sAYOHKioqCjFx8ebR0O29vMD21r79agh1eZ3DpYc+fsAP/Lw8NAtt9yi4OBgJSUladCgQXrppZc4j3BIXa4XPj4+NuPd3NzUqVOnBsu1JtW9z9TW8OHDG33Eji033nijBg4cWG0uTfHcS9LJkyf14YcfatasWXZv21TOfV3fS6v7f+Ks99+LFy9qypQpOn78uLKysmocvWZLmzZtNHToUKf/P/H19VVAQECNeTS1c19XFNiq4eHhoaCgIPPsKVdlZWUpNDTUSVk1PMMw9OSTT2rr1q36+9//rsDAQIv1gYGB8vHxsTgvFRUVys7ONp+XoKAgubu7W8QUFhbqH//4R7M/dz/72c908OBB5efnm5fg4GA9+uijys/PV8+ePVv1+RkxYoTVdOpffvmlAgICJPHv57vvvlObNpZvu66urrp8+bIkzg9sa63Xo8ZQm985XFEffx+geoZhqLy8nPMIh9TlehESEmIVv2PHDgUHB8vd3b3BcrXleu8ztZWXlydfX996zs5+5eXlOnLkSLW5NKVzX9Xrr7+url276r777rN726Zy7uv6Xlrd/xNnvP9eLa4dO3ZMH374YZ2KroZhKD8/3+n/T86ePatTp07VmEdTOvcOaaTJFJqlzZs3G+7u7kZaWppx+PBhIy4uzrjxxhuNEydOODu1BvM///M/hpeXl7Fr1y6jsLDQvHz33XfmmBdeeMHw8vIytm7dahw8eNB45JFHDF9fX6OsrMwcExMTY3Tr1s348MMPjc8++8y4++67jUGDBhmXLl1yxmE1qKqziBpG6z4/n376qeHm5mb87//+r3Hs2DHjrbfeMm644QbjzTffNMe05vMzffp04+abbzb+8pe/GMePHze2bt1qdO7c2fjNb35jjmnN5wfVa43Xo/py/vx5Iy8vz8jLyzMkGStXrjTy8vLMs3DV5ncO9ff3AQwjMTHR2L17t3H8+HHjiy++MBYuXGi0adPG2LFjh2EYnEc45nrXiwULFhhRUVHm+K+++sq44YYbjPj4eOPw4cNGWlqa4e7ubrz99tuNnntt3meuzf/FF180tm3bZnz55ZfGP/7xD2PBggWGJGPLli2Nnv+vfvUrY9euXcZXX31lfPzxx8b9999vtGvXrlmc+6sqKysNf39/46mnnrJa19TOfX1c36Oioixm2P3oo48MV1dX44UXXjCOHDlivPDCC4abm5vx8ccfN2r+Fy9eNH7+858b3bp1M/Lz8y1+H8rLy6vNf/HixcYHH3xg/N///Z+Rl5dnzJw503BzczM++eSTRsv9/Pnzxq9+9Stj3759xvHjx42dO3caISEhxs0339xkzn1DosB2HWvWrDECAgIMDw8P44477qhxmuiWQJLN5fXXXzfHXL582Xj22WcNHx8fw2QyGSNHjjQOHjxo0c/3339vPPnkk0bHjh2Ntm3bGvfff79RUFDQyEfTOK4tsLX28/Pee+8ZAwYMMEwmk9G3b19j3bp1Futb8/kpKysz5s2bZ/j7+xuenp5Gz549jUWLFllcKFvz+UHNWtv1qL7s3LnT5nVt+vTphmHU7ncO9ff3AQzj8ccfN/8ud+nSxfjZz35mLq4ZBucRjqvpejF9+nRj1KhRFvG7du0yhgwZYnh4eBg9evQwUlNTGznjK2rzPnNt/suWLTN69epleHp6GjfddJNx1113Ge+//37jJ28YRmRkpOHr62u4u7sbfn5+xoMPPmgcOnTIvL4pn/urtm/fbkgyjh49arWuqZ37+ri+jxo1yhx/1Z/+9Cfj1ltvNdzd3Y2+ffs2WMGwpvyPHz9e7e/Dzp07q80/Li7O8Pf3N19fwsPDjX379jVq7t99950RHh5udOnSxXB3dzf8/f2N6dOnW31Wcea5b0guhvH/P0kRAAAAAAAAgN14BhsAAAAAAADgAApsAAAAAAAAgAMosAEAAAAAAAAOoMAGAAAAAAAAOIACGwAAAAAAAOAACmwAAAAAAACAAyiwAQAAAAAAAA6gwAY0EYsXL5aLi4tKSkquG9ujRw/NmDHD/PrLL7/U/PnzFRQUpA4dOqhjx44aMWKE3n77bbvz2LVrl1xcXOq0LQCgZdi4caOSk5OdnQYAAECzQYENaIa2bdumZ555xvx6x44dev/99zVp0iT96U9/0ltvvaXevXvroYce0tKlS52YKQCgOaLABgAAYB83ZycAwH5DhgyxeP3www/riSeekIuLi7ktIiJCJSUlWrZsmZ566imZTKbGThMAAAAAgFaBEWyAA/785z/LxcVFf/vb36zWpaamysXFRV988YUk6ZNPPtH48ePVqVMneXp6qlevXoqLi7Pa7syZM3rkkUfk5eUlb29vPf744yotLbWIufYW0c6dO1sU166688479d133+k///mP3cf2ww8/KCEhQT4+Pmrbtq1GjRqlvLw8u/sBgNbu6iMAvvjiCz300EPy8vJSx44dlZCQoEuXLuno0aO699571a5dO/Xo0UPLly83b5ueni4XFxedOHHCos+rt/Pv2rWr1nlc7SsrK0szZ85Ux44ddeONN2r8+PH66quvzHGjR4/W+++/r5MnT8rFxcW81FZeXp7uv/9+de3aVSaTSX5+frrvvvv09ddfS5JOnDghFxcXpaenW23r4uKixYsXm187cu4AAAAaEwU2wAFXP0C8/vrrVuvS09N1xx136Pbbb9f27dsVFhamgoICrVy5Un/961/19NNP68yZM1bbTZo0SX369NGWLVu0YMECbdy4UfHx8XXKb+fOnerSpYu6du1q97YLFy7UV199pddee02vvfaavvnmG40ePdriQxgAoPamTJmiQYMGacuWLZo9e7ZefPFFxcfH64EHHtB9992nbdu26e6779ZTTz2lrVu3Nlge0dHRatOmjfk20E8//VSjR4/WuXPnJEkpKSkaMWKEfHx8lJOTY15q49tvv9WYMWN05swZrVmzRllZWUpOTpa/v7/Onz9f55ybyrkDAACoDreIAg5wc3PTY489ptTUVJWWlsrLy0uSdOTIEX366ad6+eWXJUlPPPGE/P399cknn8jT09O8/cyZM636jI6O1q9//WtJ0j333KN//etfWr9+vdLS0uwaQfDaa69p165deumll+Tq6mr3sXXp0kXbtm0z7/Ouu+5S7969lZSUpFdffdXu/gCgtfvFL36hhIQESVfe33fs2KHVq1dr69atmjhxoqQro8f+8pe/6K233tKDDz7YIHkEBwcrLS3N/Pq2227TiBEjtGbNGi1atEj9+/dXhw4dZDKZNHz4cLv6/uc//6mzZ88qLS1NEyZMMLdPmTLFoZybyrkDAACoDiPYAAc9/vjj+v7775WRkWFue/3112UymTR16lR9+eWX+r//+z9FR0dbFNeq8/Of/9zi9e23364ffvhBxcXFtc7pr3/9q5544glNnjxZc+bMqf3BVDF16lSLgl5AQIBCQ0O1c+fOOvUHAK3d/fffb/G6X79+cnFxUUREhLnNzc1Nt9xyi06ePNlgeTz66KMWr0NDQxUQEFAv7++33HKLbrrpJj311FNau3atDh8+7HCfUtM5dwAAANWhwAY46LbbbtPQoUPNt4lWVlbqzTff1IQJE9SxY0f9+9//liR169atVv116tTJ4vXVyQm+//77Wm2/fft2PfjggxozZozeeustu0a9VeXj42Oz7ezZs3XqDwBau44dO1q89vDw0A033GD15YuHh4d++OGHBsujId/fvby8lJ2drcGDB2vhwoW67bbb5Ofnp2effVYXL16sc79N5dwBAABUhwIbUA9mzpypjz/+WEeOHNEHH3ygwsJC8+2fXbp0kSTzw50b0vbt2/XAAw9o1KhR2rJlizw8POrcV1FRkc22awuAAICGc7WAVF5ebtFeUlJS5z4b+v194MCB2rx5s86ePav8/HxFRkZq6dKl+v3vfy+p+mPiCxwAANCcUWAD6sEjjzwiT09PpaenKz09XTfffLPCw8MlSX369FGvXr20fv16qw8T9WnHjh164IEHdNddd+nPf/6zeeRbXW3atEmGYZhfnzx5Uvv27dPo0aMdzBQAUFs9evSQJPOM1Fe9++67de7zrbfesni9b98+nTx50uL93WQy1XrkdHVcXFw0aNAgvfjii+rQoYM+++wzSZK3t7c8PT2tjumdd95xaH8AAADOxCQHQD3o0KGDJk6cqPT0dJ07d07z589XmzY/1q/XrFmj8ePHa/jw4YqPj5e/v78KCgq0fft2qw86dbF371498MAD8vHx0cKFC5Wfn2+xvn///mrfvr1dfRYXF2vixImaPXu2SktL9eyzz8rT01OJiYkO5wsAqJ2hQ4fq1ltv1fz583Xp0iXddNNN2rZtm/bu3VvnPg8cOKBZs2bpoYce0qlTp7Ro0SLdfPPNio2NNccMHDhQW7duVWpqqoKCgtSmTRsFBwdft++//OUvSklJ0QMPPKCePXvKMAxt3bpV586d05gxYyRdKbw99thjWr9+vXr16qVBgwbp008/1caNG+t8TAAAAM5GgQ2oJzNnztSmTZskSTNmzLBYN3bsWO3evVtLly7V3Llz9cMPP6hbt25WExrU1Ycffqjvv/9eJ06c0N133221fufOnXaPPHv++ee1f/9+zZw5U2VlZbrzzju1efNm9erVq15yBgBcn6urq9577z09+eSTiomJkclk0sMPP6zVq1frvvvuq1OfaWlp+sMf/qCHH35Y5eXl+ulPf6qXXnrJ4jln8+bN06FDh7Rw4UKVlpbKMAyLUc3V6d27tzp06KDly5frm2++kYeHh2699Valp6dr+vTp5rirt4suX75cFy5c0N13362//OUv5hF7AAAAzY2LUZu/lgAAANCspaena+bMmdq/f3+tRqMBAACg9ngGGwAAAAAAAOAAbhEFWgnDMFRZWVljjKurq1xcXBopIwBAfajt+7ujKisra7xN1MXFpV72AwAA0Bwxgg1oJbKzs+Xu7l7j8sYbbzg7TQCAnd54443rvr9nZ2drxowZMgyjzreH/uxnP6txHzyjEwAAtGY8gw1oJc6fP6+jR4/WGBMYGKhOnTo1UkYAgPpw9uxZHT9+vMaYW2+9Ve3atXNoP0ePHtX58+erXW8ymTRw4ECH9gEAANBcUWADAAAAAAAAHMAtogAAAAAAAIADmOSgisuXL+ubb75Ru3bteNA7ANQDwzB0/vx5+fn5qU0bvtORuNYAQH3jWgMAaAoosFXxzTffqHv37s5OAwBanFOnTqlbt27OTqNJ4FoDAA2Daw0AwJkosFVx9eG/p06dUvv27Z2cDQA0f2VlZerevbvDD1dvSbjWAED94loDAGgKKLBVcfVWnfbt2/OhBwDqEbdC/ohrDQA0DK41AABn4iEFAAAAAAAAgAMosAEAAAAAAAAOoMAGAAAAAAAAOIACGwAAAAAAAOAACmwAAAAAAACAAyiwAQAAAAAAAA6gwAYAAAAAAAA4gAIbAAAAAAAA4AAKbAAAAAAAAIAD3JydAK6xMfLHn6dmOC8PAECLF52+3/xz2oyhTswEAAAAaN4YwQYAAAAAAAA4gAIbAAAAAAAA4AAKbAAAAAAAAIADKLABAAAAAAAADmCSAwAAWpOqk+lovtPSAAAAAFoSRrABAAAAAAAADqDABgAAAAAAADiAAhsAAAAAAADgAApsAIAWKyUlRYGBgfL09FRQUJD27NlTY3x2draCgoLk6empnj17au3atdXGbt68WS4uLnrggQfqOWsAAAAAzQ0FNgBAi5SRkaG4uDgtWrRIeXl5CgsLU0REhAoKCmzGHz9+XOPGjVNYWJjy8vK0cOFCzZ07V1u2bLGKPXnypObPn6+wsLCGPgwAAAAAzQAFNgBAi7Ry5UpFR0dr1qxZ6tevn5KTk9W9e3elpqbajF+7dq38/f2VnJysfv36adasWXr88ce1YsUKi7jKyko9+uijWrJkiXr27NkYhwIAAACgiaPA1pRtjPxxAQDUWkVFhXJzcxUeHm7RHh4ern379tncJicnxyp+7NixOnDggC5evGhuW7p0qbp06aLo6Oj6TxwAAABAs+Tm7AQAAKhvJSUlqqyslLe3t0W7t7e3ioqKbG5TVFRkM/7SpUsqKSmRr6+vPvroI6WlpSk/P7/WuZSXl6u8vNz8uqysrPYHAgAAAKBZYAQbAKDFcnFxsXhtGIZV2/Xir7afP39ejz32mF599VV17ty51jkkJSXJy8vLvHTv3t2OIwAAAADQHDCCzdm4/RMA6l3nzp3l6upqNVqtuLjYapTaVT4+Pjbj3dzc1KlTJx06dEgnTpzQ+PHjzesvX74sSXJzc9PRo0fVq1cvq34TExOVkJBgfl1WVkaRDQAAAGhhKLABAFocDw8PBQUFKSsrSxMnTjS3Z2VlacKECTa3CQkJ0XvvvWfRtmPHDgUHB8vd3V19+/bVwYMHLdY//fTTOn/+vF566aVqi2Ymk0kmk8nBIwIAAADQlFFgAwC0SAkJCYqKilJwcLBCQkK0bt06FRQUKCYmRtKVkWWnT5/Whg0bJEkxMTFavXq1EhISNHv2bOXk5CgtLU2bNm2SJHl6emrAgAEW++jQoYMkWbUDAAAAaF2c+gy2lJQUBQYGytPTU0FBQdqzZ0+N8dnZ2QoKCpKnp6d69uyptWvXWqxPT0+Xi4uL1fLDDz805GEAAJqgyMhIJScna+nSpRo8eLB2796tzMxMBQQESJIKCwtVUFBgjg8MDFRmZqZ27dqlwYMH67e//a1WrVqlSZMmOesQAAAAADQTThvBlpGRobi4OKWkpGjEiBF65ZVXFBERocOHD8vf398q/vjx4xo3bpxmz56tN998Ux999JFiY2PVpUsXiw8/7du319GjRy229fT0bPDjAQA0PbGxsYqNjbW5Lj093apt1KhR+uyzz2rdv60+AAAAALQ+TiuwrVy5UtHR0Zo1a5YkKTk5Wdu3b1dqaqqSkpKs4teuXSt/f38lJydLkvr166cDBw5oxYoVFgU2FxcX+fj4NMoxAADQEkWn7zf/nDZjqBMzAQAAAJoHp9wiWlFRodzcXIWHh1u0h4eHa9++fTa3ycnJsYofO3asDhw4oIsXL5rbLly4oICAAHXr1k3333+/8vLy6v8AAABoTjZG/rgAAAAAqHdOGcFWUlKiyspKeXt7W7R7e3urqKjI5jZFRUU24y9duqSSkhL5+vqqb9++Sk9P18CBA1VWVqaXXnpJI0aM0Oeff67evXtb9VleXq7y8nLz67Kysno4OgAAmoc5Z56u8mq70/IAAAAAmjunziLq4uJi8dowDKu268VXbR8+fLiGDx9uXj9ixAjdcccdevnll7Vq1Sqr/pKSkrRkyZI65w8AQIthMbptvtPSAAAAAJojp9wi2rlzZ7m6ulqNVisuLrYapXaVj4+PzXg3Nzd16tTJ5jZt2rTR0KFDdezYMZvrExMTVVpaal5OnTpVh6MBAKD5yz91zrwAAAAAsI9TCmweHh4KCgpSVlaWRXtWVpZCQ0NtbhMSEmIVv2PHDgUHB8vd3d3mNoZhKD8/X76+vjbXm0wmtW/f3mIBAAAAAAAA7OGUApskJSQk6LXXXtP69et15MgRxcfHq6CgQDExMZKujC6bNm2aOT4mJkYnT55UQkKCjhw5ovXr1ystLU3z5/94G8uSJUu0fft2ffXVV8rPz1d0dLTy8/PNfQIAAAAAAAD1zWnPYIuMjNTZs2e1dOlSFRYWasCAAcrMzFRAQIAkqbCwUAUFBeb4wMBAZWZmKj4+XmvWrJGfn59WrVqlSZMmmWPOnTunX/ziFyoqKpKXl5eGDBmi3bt3684772z04wMAoLli8gMAAADAPi7G1ZkCoLKyMnl5eam0tLTxbhe1eKh0DaZmNGweANAAnPK+2sQ1pWtNbZ63NvgpCmwAmjauNQCApsCps4gCAICGEZ2+3/xzmocDHVUtzvFlDwAAAGATBTYAAFoRZgkFAAAA6p/TJjkAAAAAAAAAWgIKbAAAAAAAAIADuEXUGWo7sQEAAAAAAACaPEawAQAAAAAAAA6gwAYAAAAAAAA4gAIbAAAAAAAA4ACeweYE+afOmX8e3L2D0/IAAAAAAACA4yiwNUdVJ0mYmuG8PAAAAAAAAMAtogAAAAAAAIAjKLABAAAAAAAADqDABgAAAAAAADiAZ7A5WdUJDyQmPQAAAAAAAGhuGMEGAAAAAAAAOIACGwAAAAAAAOAAbhFtYqreMsrtogAAAAAAAE0fBbYmzKLY5rQsAAAAAAAAUBNuEQUAAAAAAAAcwAg2AABQK9Hp+80/p80Y6sRMAAAAgKaFEWwAAAAAAACAAyiwAQAAAAAAAA6gwAYAAAAAAAA4gAIbAAAAAAAA4AAmOQAAANXKP3XuxxfeTksDAAAAaNIYwQYAAAAAAAA4gBFsAADAYdHp+80/p80Y6sRMAAAAgMbHCDYAAAAAAADAAYxgay42Rjo7AwAAAAAAANjACDYAAAAAAADAARTYAAAAAAAAAAc4tcCWkpKiwMBAeXp6KigoSHv27KkxPjs7W0FBQfL09FTPnj21du3aamM3b94sFxcXPfDAA/WcNQAATd+cM0+bFwAAAAANy2kFtoyMDMXFxWnRokXKy8tTWFiYIiIiVFBQYDP++PHjGjdunMLCwpSXl6eFCxdq7ty52rJli1XsyZMnNX/+fIWFhTX0YQAAAAAAAKCVc9okBytXrlR0dLRmzZolSUpOTtb27duVmpqqpKQkq/i1a9fK399fycnJkqR+/frpwIEDWrFihSZNmmSOq6ys1KOPPqolS5Zoz549OnfuXGMcDgAAThedvt/88xwn5gEAAAC0Nk4ZwVZRUaHc3FyFh4dbtIeHh2vfvn02t8nJybGKHzt2rA4cOKCLFy+a25YuXaouXbooOjq6/hNvgqLT95sXAAAAAAAAND6nFNhKSkpUWVkpb29vi3Zvb28VFRXZ3KaoqMhm/KVLl1RSUiJJ+uijj5SWlqZXX321VnmUl5errKzMYgEAtBz1/azPrVu3Kjg4WB06dNCNN96owYMH6w9/+ENDHkK9yD91zrwAAAAAqH9OneTAxcXF4rVhGFZt14u/2n7+/Hk99thjevXVV9W5c+da7T8pKUleXl7mpXv37nYeAQCgqWqIZ3127NhRixYtUk5Ojr744gvNnDlTM2fO1Pbt2xvrsAAAAAA0QU55Blvnzp3l6upqNVqtuLjYapTaVT4+Pjbj3dzc1KlTJx06dEgnTpzQ+PHjzesvX74sSXJzc9PRo0fVq1cvi+0TExOVkJBgfl1WVkaRDQBaiIZ41ufo0aMttpk3b57eeOMN7d27V2PHjm3Q42kKLGckpagIAAAAXOWUEWweHh4KCgpSVlaWRXtWVpZCQ0NtbhMSEmIVv2PHDgUHB8vd3V19+/bVwYMHlZ+fb15+/vOf66c//any8/NtFs5MJpPat29vsQAAmr+GfNbnVYZh6G9/+5uOHj2qkSNH1l/yAAAAAJodp80impCQoKioKAUHByskJETr1q1TQUGBYmJiJF0ZXXb69Glt2LBBkhQTE6PVq1crISFBs2fPVk5OjtLS0rRp0yZJkqenpwYMGGCxjw4dOkiSVTsAoGVriGd9+vr6SpJKS0t18803q7y8XK6urkpJSdGYMWOqzaW8vFzl5eXm1zzvEwAAAGh5nFZgi4yM1NmzZ7V06VIVFhZqwIAByszMVEBAgCSpsLDQ4jk5gYGByszMVHx8vNasWSM/Pz+tWrXKfNsOAADXqs9nfV7Vrl075efn68KFC/rb3/6mhIQE9ezZ0+r20auSkpK0ZMmSOh4BAAAAgObAaQU2SYqNjVVsbKzNdenp6VZto0aN0meffVbr/m31AQBo+RriWZ9XtWnTRrfccoskafDgwTpy5IiSkpKqLbDxvE8AAACg5XNqga01iU7fb/55jhPzAIDWoOqzPidOnGhuz8rK0oQJE2xuExISovfee8+ireqzPqtjGIbFLaDXMplMMplMdh4BAAAAgOaEAhsAoEWq72d9Sldu9wwODlavXr1UUVGhzMxMbdiwQampqU45RgAAAABNAwU2AECL1BDP+vz2228VGxurr7/+Wm3btlXfvn315ptvKjIystGPz+k2XnvM852SBgAAANAUUGBrJHPOPO3sFACg1anvZ30+99xzeu655+orPQAAAAAtRBtnJwAAAAAAAAA0Z4xgaybyT52z2T5HVUfGbW+UXAAAAAAAAPAjCmwtSdXn4UzNcF4eAAAAAAAArQi3iAIAAAAAAAAOoMAGAAAAAAAAOIACGwAAAAAAAOAAnsEGAEALMefM09cPAgAAAFDvGMEGAAAAAAAAOIACGwAAAAAAAOAACmwAAAAAAACAAyiwAQAAAAAAAA6gwAYAAAAAAAA4gAIbAAAAAAAA4AA3ZyeAhhGdvt/8c9qMoU7MBAAAAAAAoGWjwAYAAOoVX/IAAACgteEWUQAAAAAAAMABFNgAAAAAAAAAB3CLaAuSf+rcjy+8nZYGAAAAAABAq0KBDQAAOGzOmafNP7/s/ZwTMwEAAAAaH7eIAgAAAAAAAA6gwAYAAAAAAAA4gAIbAAAAAAAA4AAKbAAAAAAAAIADKLABAAAAAAAADmAWUQAAUK+qziiqjR1+/HlqRqPnAgAAADQGRrABAAAAAAAADqDABgAAAAAAADiAAhsAAAAAAADgAKcW2FJSUhQYGChPT08FBQVpz549NcZnZ2crKChInp6e6tmzp9auXWuxfuvWrQoODlaHDh104403avDgwfrDH/7QkIfQZM0587R5AQCgvuWfOmexAAAAAK2Z0wpsGRkZiouL06JFi5SXl6ewsDBFRESooKDAZvzx48c1btw4hYWFKS8vTwsXLtTcuXO1ZcsWc0zHjh21aNEi5eTk6IsvvtDMmTM1c+ZMbd++vbEOCwAAAAAAAK2M0wpsK1euVHR0tGbNmqV+/fopOTlZ3bt3V2pqqs34tWvXyt/fX8nJyerXr59mzZqlxx9/XCtWrDDHjB49WhMnTlS/fv3Uq1cvzZs3T7fffrv27t3bWIcFAAAAAACAVsYpBbaKigrl5uYqPDzcoj08PFz79u2zuU1OTo5V/NixY3XgwAFdvHjRKt4wDP3tb3/T0aNHNXLkSJt9lpeXq6yszGIBAAAAAAAA7OHmjJ2WlJSosrJS3t7eFu3e3t4qKiqyuU1RUZHN+EuXLqmkpES+vr6SpNLSUt18880qLy+Xq6urUlJSNGbMGJt9JiUlacmSJfVwRNXYGNlwfQMAAAAAAKBJcOokBy4uLhavDcOwarte/LXt7dq1U35+vvbv36///d//VUJCgnbt2mWzv8TERJWWlpqXU6dO1fFIAAAAAAAA0Fo5ZQRb586d5erqajVarbi42GqU2lU+Pj42493c3NSpUydzW5s2bXTLLbdIkgYPHqwjR44oKSlJo0ePturTZDLJZDI5eDTNQNWRdFMznJcHAAAAAABAC+SUEWweHh4KCgpSVlaWRXtWVpZCQ0NtbhMSEmIVv2PHDgUHB8vd3b3afRmGofLycseTBgAAAAAAAGxwygg2SUpISFBUVJSCg4MVEhKidevWqaCgQDExMZKu3L55+vRpbdiwQZIUExOj1atXKyEhQbNnz1ZOTo7S0tK0adMmc59JSUkKDg5Wr169VFFRoczMTG3YsKHamUkBAAAAAAAARzmtwBYZGamzZ89q6dKlKiws1IABA5SZmamAgABJUmFhoQoKCszxgYGByszMVHx8vNasWSM/Pz+tWrVKkyZNMsd8++23io2N1ddf/3/t3XtwFFX+9/FPJDdv3CEXTUJALdCowITlFxCxXDYYdEWMGNQFeYTUk42iSbQKUCwuukYxyy/FQgiwUZYCIU+t4EoZheBCFiQWkBAXgVK2jISNiamwQlDWJEA/f1gMM5nJdSbTM5P3q2qqpk+f7jnn9Ew3fPPtPv/Wtddeq+HDh2vTpk1KSWGyAQAAAAAAAHSPAOPKTAFQQ0OD+vTpo3Pnzql3796u79Dm2WcVp8+6vr8uGhnV9+oCz2AD4EFuP6/6ge4ck4q3Jrt1f+7ANQhAd+NaAwDwBqbOIgoAAAAAAAD4OtNuEe0JzMxaAwAAAAAAgGeQwQYAAAAAAAC4gAAbAAAAAAAA4AICbAAAAAAAAIALCLABAPxWXl6eYmNjFRoaKovFon379rVZv6SkRBaLRaGhoRo6dKjy8/Pt1q9fv14TJkxQv3791K9fP02aNEkHDx7szi4AAAAA8AEE2AAAfqmwsFAZGRl65ZVXdOTIEU2YMEFJSUmqqqpyWr+yslJTpkzRhAkTdOTIEb388st6/vnn9f7771vr7N27V0888YT27Nmj0tJSRUdHKzExUdXV1Z7qlm97L+XqCwAAAPAjBNgAAH5pxYoVmjNnjubOnasRI0YoNzdXUVFRWrNmjdP6+fn5io6OVm5urkaMGKG5c+fqmWeeUU5OjrXO5s2blZ6erpEjR2r48OFav369Ll++rE8//dRT3QIAAADghQiwAQD8TlNTk8rKypSYmGhXnpiYqAMHDjjdprS01KH+5MmTdfjwYTU3Nzvd5sKFC2publb//v3d03AAAAAAPinQ7AYAAOBu9fX1unTpksLCwuzKw8LCVFtb63Sb2tpap/UvXryo+vp6RUREOGyzYMEC3XTTTZo0aVKrbWlsbFRjY6N1uaGhoTNd6RHmbDhkfV8we4yJLQEAAAC6hgw2AIDfCggIsFs2DMOhrL36zsolafny5dqyZYu2bdum0NDQVveZnZ2tPn36WF9RUVGd6QIAAAAAH0AGW0/T4sHSc5pesr4nawCAvxg4cKB69erlkK1WV1fnkKV2RXh4uNP6gYGBGjBggF15Tk6O3njjDe3evVt33XVXm21ZuHChsrKyrMsNDQ0E2QAAAAA/QwYbAMDvBAcHy2KxqLi42K68uLhY48aNc7pNQkKCQ/1du3YpPj5eQUFB1rK3335br732mj755BPFx8e325aQkBD17t3b7gUAAADAvxBgAwD4paysLP35z3/WO++8oxMnTigzM1NVVVVKS0uT9Etm2axZs6z109LSdOrUKWVlZenEiRN65513VFBQoJdeuprpu3z5ci1atEjvvPOOhgwZotraWtXW1urHH3/0eP8AAAAAeA9uEQUA+KWUlBSdOXNGy5YtU01NjeLi4lRUVKSYmBhJUk1Njaqqqqz1Y2NjVVRUpMzMTK1evVqRkZFauXKlkpOTrXXy8vLU1NSkxx57zO6zFi9erCVLlnikXwAAAAC8DwE2AIDfSk9PV3p6utN1GzZscCibOHGiysvLW93ft99+66aW9RwVp89a34+M6mtaOwAAAIDuRIANAAB4nt2kOy+1Wg0AAADwBTyDDQAAAAAAAHABGWy4yjab4MlC89oBAOiQORsO2S3PM6kdXWF766jCTGsGAAAA4BYE2AAAgHfiDz8AAADwEQTYeoCOPmDarl63tQYAAAAAAMC/EGDrYexuyZG4LQcAfNi87xeZ3QQAAAAAYpIDAAAAAAAAwCUE2AAAAAAAAAAXEGADAAAAAAAAXMAz2NApczYcsr4vmD3GxJYAAAAAAAB4BzLYAAAAAAAAABcQYAMAAAAAAABcwC2iAADAa9g9iiDYxIYAAAAAnUAGGwAAAAAAAOACAmwAAAAAAACAC0wNsOXl5Sk2NlahoaGyWCzat29fm/VLSkpksVgUGhqqoUOHKj8/3279+vXrNWHCBPXr10/9+vXTpEmTdPDgwe7sAgAAAAAAAHo40wJshYWFysjI0CuvvKIjR45owoQJSkpKUlVVldP6lZWVmjJliiZMmKAjR47o5Zdf1vPPP6/333/fWmfv3r164okntGfPHpWWlio6OlqJiYmqrq72VLcAAEAnzft+kfUFAAAA+CLTJjlYsWKF5syZo7lz50qScnNztXPnTq1Zs0bZ2dkO9fPz8xUdHa3c3FxJ0ogRI3T48GHl5OQoOTlZkrR582a7bdavX6+//vWv+vTTTzVr1qzu7ZAfs33gNAAAAAAAAOyZksHW1NSksrIyJSYm2pUnJibqwIEDTrcpLS11qD958mQdPnxYzc3NTre5cOGCmpub1b9/f6frGxsb1dDQYPcCAAAAAAAAOsOUDLb6+npdunRJYWFhduVhYWGqra11uk1tba3T+hcvXlR9fb0iIiIctlmwYIFuuukmTZo0yek+s7OztXTp0i72AgAAeErLbOqC2WNMagkAAADgyNRJDgICAuyWDcNwKGuvvrNySVq+fLm2bNmibdu2KTQ01On+Fi5cqHPnzllfp0+f7mwXAAAAAAAA0MOZksE2cOBA9erVyyFbra6uziFL7Yrw8HCn9QMDAzVgwAC78pycHL3xxhvavXu37rrrrlbbERISopCQkC72wr/x3DUAgLtVnD5rdhMAAACAbmFKgC04OFgWi0XFxcWaNm2atby4uFhTp051uk1CQoJ27NhhV7Zr1y7Fx8crKCjIWvb222/r9ddf186dOxUfH989HfAjzNgGAPAmdtelqL6mtQMAAADoDNNmEc3KytLMmTMVHx+vhIQErVu3TlVVVUpLS5P0y+2b1dXV2rhxoyQpLS1Nq1atUlZWllJTU1VaWqqCggJt2bLFus/ly5fr1Vdf1XvvvachQ4ZYM95uuOEG3XDDDZ7vJAAA6Ha2Wdc8mw0AAABmMC3AlpKSojNnzmjZsmWqqalRXFycioqKFBMTI0mqqalRVVWVtX5sbKyKioqUmZmp1atXKzIyUitXrlRycrK1Tl5enpqamvTYY4/ZfdbixYu1ZMkSj/QL/EcHaA2/DQAAAADwT6YF2CQpPT1d6enpTtdt2LDBoWzixIkqLy9vdX/ffvutm1oGAAAAAAAAdIyps4gCAAAAAAAAvo4AGwAAAAAAAOACAmwAAAAAAACACwiwAQAAAAAAAC4wdZID+J553y+yWdppWjs6wnbGRolZGwEAAAAAQPcggw0AAAAAAABwARlsaJd91hqAnsI2C5QMUJih4vTZqwthpjUDAAAAaBcZbAAAAAAAAIALyGCDW7R83hkAAAAAAEBPQYDN3d5LMbsFAAAAAAAA8CACbAAAwOeQOQ0AAABvQoANAAD4HNsJeP4U9rqJLQEAAAAIsAFAlzHLJgAAAABAIsCGVthmBnS2PpkEANB9bAO780xsBwAAAICrCLDBs2wngXiy0Lx2uAkZTADgGZ39ww8AAADgSQTYAHgEwUgAAAAAgL8iwIYu4zYleBt/CeL5Sz8AAAAAoKcgwAYAfoTgHAAAAAB43jVmNwAAgO6Sl5en2NhYhYaGymKxaN++fW3WLykpkcViUWhoqIYOHar8/Hy79ceOHVNycrKGDBmigIAA5ebmdmPrAQAAAPgKMtjQvWwnNQAADyosLFRGRoby8vI0fvx4rV27VklJSTp+/Liio6Md6ldWVmrKlClKTU3Vpk2b9Nlnnyk9PV2DBg1ScnKyJOnChQsaOnSopk+frszMTE93CQAAAICXIoMNAOCXVqxYoTlz5mju3LkaMWKEcnNzFRUVpTVr1jitn5+fr+joaOXm5mrEiBGaO3eunnnmGeXk5FjrjBkzRm+//bZmzJihkJAQT3UFAAAAgJcjwAYA8DtNTU0qKytTYmKiXXliYqIOHDjgdJvS0lKH+pMnT9bhw4fV3Nzc5bY0NjaqoaHB7gUAAADAv3CLKLps3veLzG4CADhVX1+vS5cuKSwszK48LCxMtbW1Trepra11Wv/ixYuqr69XREREl9qSnZ2tpUuXdmlbAAAAAL6BABvczi7wFtXXbl3F6bPW9yM90hoAPVlAQIDdsmEYDmXt1XdW3hkLFy5UVlaWdbmhoUFRUVFd3h8AAAAA70OAzc1sA0gAzDNnwyHr+4LZY0xsCcwwcOBA9erVyyFbra6uziFL7Yrw8HCn9QMDAzVgwIAutyUkJITntXmS7eQ6Txa2Xw4AAAC4AQE2AIDfCQ4OlsViUXFxsaZNm2YtLy4u1tSpU51uk5CQoB07dtiV7dq1S/Hx8QoKCurW9sI1bWVOAwAAAJ5AgA3egcwCAG6WlZWlmTNnKj4+XgkJCVq3bp2qqqqUlpYm6ZdbN6urq7Vx40ZJUlpamlatWqWsrCylpqaqtLRUBQUF2rJli3WfTU1NOn78uPV9dXW1KioqdMMNN+iWW27xfCcBAAAAeAUCbADgDgSJvU5KSorOnDmjZcuWqaamRnFxcSoqKlJMTIwkqaamRlVVVdb6sbGxKioqUmZmplavXq3IyEitXLlSycnJ1jrfffedRo0aZV3OyclRTk6OJk6cqL1793qsbwAAAAC8CwE2AIDfSk9PV3p6utN1GzZscCibOHGiysvLW93fkCFDrBMfAAAAAMAVBNjgfcgEQku23wmJ70UHMdEDeiJmqwYAAIAZCLABgA8ieAYAAAAA3uMaMz88Ly9PsbGxCg0NlcVi0b59+9qsX1JSIovFotDQUA0dOlT5+fl2648dO6bk5GQNGTJEAQEBys3N7cbWoyMqTp+1e3W791KuvlqYs+GQ9YXOsx0/xrBtjBMAAAAA9CymZbAVFhYqIyNDeXl5Gj9+vNauXaukpCQdP35c0dHRDvUrKys1ZcoUpaamatOmTfrss8+Unp6uQYMGWR9AfeHCBQ0dOlTTp09XZmamp7uEznISBDMFt6R6JbsMrWATGwIAAAAAQDtMC7CtWLFCc+bM0dy5cyVJubm52rlzp9asWaPs7GyH+vn5+YqOjrZmpY0YMUKHDx9WTk6ONcA2ZswYjRnzy61SCxYs8ExH4HY8PwedQZYYgFZ5yx9yAAAA4PdMuUW0qalJZWVlSkxMtCtPTEzUgQMHnG5TWlrqUH/y5Mk6fPiwmpubu9SOxsZGNTQ02L0AAAAAAACAzjAlg62+vl6XLl1SWFiYXXlYWJhqa2udblNbW+u0/sWLF1VfX6+IiIhOtyM7O1tLly7t9HaAL+Fh+AAAAAAAdC9TZxENCAiwWzYMw6GsvfrOyjtq4cKFysrKsi43NDQoKiqqS/tC59ndChrVt/0NfOxZaX4R2LK7veoll3Y17/tFNks7XdoX3Msvvqs9iP1vCQAAAIA3MCXANnDgQPXq1cshW62urs4hS+2K8PBwp/UDAwM1YMCALrUjJCREISEhXdoWvqcjAR6vDzR4Isjoh88s8vRx9bVgYmvt9bV+AAAAAIBZTAmwBQcHy2KxqLi4WNOmTbOWFxcXa+rUqU63SUhI0I4dO+zKdu3apfj4eAUFBXVre+GbfC3Lw+uDex5md/w6kuHorVrLAvSxjEzA19llTfP7AwAAgJuZdotoVlaWZs6cqfj4eCUkJGjdunWqqqpSWlqapF9u36yurtbGjRslSWlpaVq1apWysrKUmpqq0tJSFRQUaMuWLdZ9NjU16fjx49b31dXVqqio0A033KBbbrnF851Eh9n+x6cjdUa6sJ/uwmyWbtDR7Dk33rrqSyremnx1Iex18xoC+AgzrwkAAADoWUwLsKWkpOjMmTNatmyZampqFBcXp6KiIsXExEiSampqVFVVZa0fGxuroqIiZWZmavXq1YqMjNTKlSuVnJxsrfPdd99p1KhR1uWcnBzl5ORo4sSJ2rt3r8f6BjfqQMDFNrA1z8WP85pb4rwwu8IxI9C88bH7T7Pzu8rt2vunbgpGdSTLriNtBQAAAAD4NlMnOUhPT1d6errTdRs2bHAomzhxosrLy1vd35AhQ6wTHwDeyl9uBfWHfvhDHwAAAAAA5jM1wAZ4NY9PKODirY6tZvt54S2UXpihZ6flWNq2sRsmgeiu24tby8hs+XmuZn4CAAAAQE9HgA2+yQeeweU1t5t2kt2z7jwxuYAbA1auTGxhl80W7I7WOOroxA2++t0BAAAAgJ6KABvgq7ohk8rd7B7K7y18IDhry53PGATgftxqDgAAAIkAG/yAK1lLHWUbKBo537cyijqUDdWFYF2r+/WBwJ8zHc0u80Z2QTgP/B4AX9eRWakBAACAziDAhh7PbpZHDzA1kOPtzz5DlxBUA9yDbDQAAAB0FQE2eLXWgl+eDoq5rJNZXa5mV5g5Pj53bAD0bD522zgAAAC8EwE29Ewu3MbY2u14fwp73aUmtaqVtrYMZHlkQoLWdPNtoQTtHHU6a62jQQQfvcUXcAcmGAEAAEBXEWAD/ARBKN/VVrCM2z8BAAAAwPsRYAM6qbsCHh4PpNhkKvl7cM7l5951Q1aXmWNO0A64yt/PfwAAAPAMAmxAK/hPF2MAAAAAAEBHEGAD3ISsIN9gFzQMc3F7P+Tv/QMAAACA7kCADeih/CWQ4kpg051BUX8ZTwCtsL1V/MlC89oBAAAAr0SADT2StwRDOtIO2zqmzhTaTfy9fwB6EIJwAAAAPRYBNsADvCWg5+0YJwA+wW7ik5dMawYAAAC8BwE2wIcQgDIH4w70PHM2HLJbnvf9Wet7sm0BAADQEgE2AC7rbACKgBUAb8fENQAAAOgMAmxAD0JgCwAAAAAA9yPABgA9AMFVAAAAAOg+BNgAAADMwKyjAAAAfoMAGwAAQCfYZYSGtV/fdsKEgtlj3N8gAAAAmI4AGwC0wO2UAFxmm52mlzq9OUE5AAAA33KN2Q0AAAAAAAAAfBkZbAAAAG5gm/06Mqqvae0AAACA5xFgAwAAcLPOPqcNAAAAvo0AGwAAQBfN+35R5+q817f7GgMAAADTEGADAADwkNYmUfmTzaQGAAAA8D0E2AAAAEzWMhPuT2GvX12wnZH0ycKuf4i79gMAAAAHBNgAAAB8xBybTLeC4JyrKwiYAQAAmIoAGwAAgK/rQHaa3Syn3dsaAACAHocAGwAAgI+wu5U0qq9HP9sue272GI9+NgAAgLcjwAYAAOBlbANpFa7syDazzUvMaTGhA8E6AADgD64x88Pz8vIUGxur0NBQWSwW7du3r836JSUlslgsCg0N1dChQ5Wfn+9Q5/3339ftt9+ukJAQ3X777dq+fXt3NR8A4OW4zqCnqDh91vqas+GQ9dVh76Vcfdno9L5a2Q8AAIC/My2DrbCwUBkZGcrLy9P48eO1du1aJSUl6fjx44qOjnaoX1lZqSlTpig1NVWbNm3SZ599pvT0dA0aNEjJycmSpNLSUqWkpOi1117TtGnTtH37dj3++OPav3+/xo4d6+kuAgBMxHUG/s72mWqd3vatya2uG2kTHJv3/dXP6PTMpsxaCgAAepAAwzAMMz547NixGj16tNasWWMtGzFihB555BFlZ2c71J8/f74+/PBDnThxwlqWlpamL774QqWlpZKklJQUNTQ06OOPP7bWeeCBB9SvXz9t2bKl3TY1NDSoT58+OnfunHr37t2lfrX1D1YA8FUj5+/s0nbuOK92lTdeZyTXx4TrDLzNyI48C84mwNbyO2x7frFdZxvQs72N1NWZVHmWnP8x81oDAMAVpmSwNTU1qaysTAsWLLArT0xM1IEDB5xuU1paqsTERLuyyZMnq6CgQM3NzQoKClJpaakyMzMd6uTm5jrdZ2NjoxobG63L586dk/TLRbqrfvz5Ype3BQBv1dXz4pXtPP23HG+5zkjuv9ZwnYG32X+yvv1KS3/d6qqZa/ZY3/9fm+93039/tL5v+POjV8ub510tv9h8dUc2v6l//u806/u7Mu1v4/4/pxbYbNLKLd7/b/bV949vaLXtPsvP+mfWtQYAAFumBNjq6+t16dIlhYWF2ZWHhYWptrbW6Ta1tbVO61+8eFH19fWKiIhotU5r+8zOztbSpUsdyqOiojrTHQDwf0v6uLT5+fPn1aePa/voDG+5zkhca4D2/d36blOHyrc7L09tJVjW1vmrI+e21vbrL/yof56+1gAAYMvUWUQDAgLslg3DcChrr37L8s7sc+HChcrKyrIuX758Wf/5z380YMCANtvhTENDg6KionT69GlS013EWLoPY+lejGfnGYah8+fPKzIy0pTPN/s6I3GtaQv98W70x7v5U39c7YvZ1xoAACSTAmwDBw5Ur169HP7iX1dX55AZcEV4eLjT+oGBgRowYECbdVrbZ0hIiEJCQuzK+vbt25muOOjdu7fP/yPHWzCW7sNYuhfj2TlmZBN4y3VG4lrTEfTHu9Ef7+ZP/XGlL2SuAQDMdo0ZHxocHCyLxaLi4mK78uLiYo0bN87pNgkJCQ71d+3apfj4eAUFBbVZp7V9AgD8E9cZAAAAAJ5k2i2iWVlZmjlzpuLj45WQkKB169apqqpKaWlpkn65paa6ulobN26U9MtMbqtWrVJWVpZSU1NVWlqqgoICu1nbXnjhBd1777166623NHXqVP3tb3/T7t27tX//flP6CAAwD9cZAAAAAJ5iWoAtJSVFZ86c0bJly1RTU6O4uDgVFRUpJiZGklRTU6Oqqipr/djYWBUVFSkzM1OrV69WZGSkVq5cqeTkZGudcePGaevWrVq0aJFeffVVDRs2TIWFhRo7dmy39yckJESLFy92uA0IncdYug9j6V6Mp2/xt+uM5H/fQfrj3eiPd/On/vhTXwAAPVeAwXzWAAAAAAAAQJeZ8gw2AAAAAAAAwF8QYAMAAAAAAABcQIANAAAAAAAAcAEBNgAAAAAAAMAFBNjcJC8vT7GxsQoNDZXFYtG+ffvMbpJXy87O1pgxY3TjjTdq8ODBeuSRR/TVV1/Z1TEMQ0uWLFFkZKSuvfZa3XfffTp27JhJLfYd2dnZCggIUEZGhrWMseyc6upq/e53v9OAAQN03XXXaeTIkSorK7OuZzxhBl+9znTkfD979mwFBATYvf7nf/7HpBa3bcmSJQ5tDQ8Pt673tfPDkCFDHPoTEBCgZ599VpL3H5t//OMf+u1vf6vIyEgFBATogw8+sFvfkePR2NioefPmaeDAgbr++uv18MMP69///rcHe3FVW/1pbm7W/Pnzdeedd+r6669XZGSkZs2ape+++85uH/fdd5/DMZsxY4aHe/KL9o5PR75f3nR8AABoCwE2NygsLFRGRoZeeeUVHTlyRBMmTFBSUpKqqqrMbprXKikp0bPPPqvPP/9cxcXFunjxohITE/XTTz9Z6yxfvlwrVqzQqlWrdOjQIYWHh+s3v/mNzp8/b2LLvduhQ4e0bt063XXXXXbljGXH/fDDDxo/fryCgoL08ccf6/jx4/rjH/+ovn37WuswnvA0X77OdOR8L0kPPPCAampqrK+ioiKTWty+O+64w66tR48eta7ztfPDoUOH7PpSXFwsSZo+fbq1jjcfm59++kl33323Vq1a5XR9R45HRkaGtm/frq1bt2r//v368ccf9dBDD+nSpUue6oZVW/25cOGCysvL9eqrr6q8vFzbtm3T119/rYcfftihbmpqqt0xW7t2rSea76C94yO1//3ypuMDAECbDLjsV7/6lZGWlmZXNnz4cGPBggUmtcj31NXVGZKMkpISwzAM4/Lly0Z4eLjx5ptvWuv8/PPPRp8+fYz8/HyzmunVzp8/b9x6661GcXGxMXHiROOFF14wDIOx7Kz58+cb99xzT6vrGU+YwZ+uMy3P94ZhGE8//bQxdepU8xrVCYsXLzbuvvtup+v84fzwwgsvGMOGDTMuX75sGIZvHRtJxvbt263LHTkeZ8+eNYKCgoytW7da61RXVxvXXHON8cknn3is7c607I8zBw8eNCQZp06dspbZ/hvAmzjrT3vfL28+PgAAtEQGm4uamppUVlamxMREu/LExEQdOHDApFb5nnPnzkmS+vfvL0mqrKxUbW2t3biGhIRo4sSJjGsrnn32WT344IOaNGmSXTlj2Tkffvih4uPjNX36dA0ePFijRo3S+vXrresZT3iav11nWp7vr9i7d68GDx6s2267TampqaqrqzOjeR1y8uRJRUZGKjY2VjNmzNA333wjyffPD01NTdq0aZOeeeYZBQQEWMt96djY6sjxKCsrU3Nzs12dyMhIxcXF+cQxO3funAICAuyyrCVp8+bNGjhwoO644w699NJLXptBKbX9/fL14wMA6FkCzW6Ar6uvr9elS5cUFhZmVx4WFqba2lqTWuVbDMNQVlaW7rnnHsXFxUmSdeycjeupU6c83kZvt3XrVpWXl+vQoUMO6xjLzvnmm2+0Zs0aZWVl6eWXX9bBgwf1/PPPKyQkRLNmzWI84XH+dJ1xdr6XpKSkJE2fPl0xMTGqrKzUq6++qvvvv19lZWUKCQkxscWOxo4dq40bN+q2227T999/r9dff13jxo3TsWPHfP788MEHH+js2bOaPXu2tcyXjk1LHTketbW1Cg4OVr9+/RzqePvv6+eff9aCBQv05JNPqnfv3tbyp556SrGxsQoPD9eXX36phQsX6osvvrDe/utN2vt++fLxAQD0PATY3MT2L73SL/+JaFkG55577jn985//1P79+x3WMa7tO336tF544QXt2rVLoaGhrdZjLDvm8uXLio+P1xtvvCFJGjVqlI4dO6Y1a9Zo1qxZ1nqMJzzNH75zrZ3vU1JSrO/j4uIUHx+vmJgYffTRR3r00Uc93cw2JSUlWd/feeedSkhI0LBhw/SXv/zF+nB2Xz1WBQUFSkpKUmRkpLXMl45Na7pyPLz9mDU3N2vGjBm6fPmy8vLy7NalpqZa38fFxenWW29VfHy8ysvLNXr0aE83tU1d/X55+/EBAPRM3CLqooEDB6pXr14Of0Wrq6tz+IspHM2bN08ffvih9uzZo5tvvtlafmVGNsa1fWVlZaqrq5PFYlFgYKACAwNVUlKilStXKjAw0DpejGXHRERE6Pbbb7crGzFihPVh8nw34Wn+cp1p7XzvTEREhGJiYnTy5EkPta7rrr/+et155506efKkT58fTp06pd27d2vu3Llt1vOlY9OR4xEeHq6mpib98MMPrdbxNs3NzXr88cdVWVmp4uJiu+w1Z0aPHq2goCCfOGYtv1++eHwAAD0XATYXBQcHy2KxOKTdFxcXa9y4cSa1yvsZhqHnnntO27Zt09///nfFxsbarb9ya4PtuDY1NamkpIRxbeHXv/61jh49qoqKCusrPj5eTz31lCoqKjR06FDGshPGjx+vr776yq7s66+/VkxMjCS+m/A8X7/OtHe+d+bMmTM6ffq0IiIiPNBC1zQ2NurEiROKiIjw6fPDu+++q8GDB+vBBx9ss54vHZuOHA+LxaKgoCC7OjU1Nfryyy+98phdCa6dPHlSu3fv1oABA9rd5tixY2pubvaJY9by++VrxwcA0MOZMrWCn9m6dasRFBRkFBQUGMePHzcyMjKM66+/3vj222/NbprX+v3vf2/06dPH2Lt3r1FTU2N9XbhwwVrnzTffNPr06WNs27bNOHr0qPHEE08YERERRkNDg4kt9w0tZxBjLDvu4MGDRmBgoPGHP/zBOHnypLF582bjuuuuMzZt2mStw3jC03z5OtPe+f78+fPGiy++aBw4cMCorKw09uzZYyQkJBg33XSTV/6mXnzxRWPv3r3GN998Y3z++efGQw89ZNx4443WY+GL54dLly4Z0dHRxvz58+3KfeHYnD9/3jhy5Ihx5MgRQ5KxYsUK48iRI9ZZNTtyPNLS0oybb77Z2L17t1FeXm7cf//9xt13321cvHjRq/rT3NxsPPzww8bNN99sVFRU2P2eGhsbDcMwjH/961/G0qVLjUOHDhmVlZXGRx99ZAwfPtwYNWqU1/Wno98vbzo+AAC0hQCbm6xevdqIiYkxgoODjdGjRxslJSVmN8mrSXL6evfdd611Ll++bCxevNgIDw83QkJCjHvvvdc4evSoeY32IS0DbIxl5+zYscOIi4szQkJCjOHDhxvr1q2zW894wgy+ep1p73x/4cIFIzEx0Rg0aJARFBRkREdHG08//bRRVVVlbsNbkZKSYkRERBhBQUFGZGSk8eijjxrHjh2zrvfF88POnTsNScZXX31lV+4Lx2bPnj1Ov19PP/20YRgdOx7//e9/jeeee87o37+/ce211xoPPfSQaX1sqz+VlZWt/p727NljGIZhVFVVGffee6/Rv39/Izg42Bg2bJjx/PPPG2fOnPG6/nT0++VNxwcAgLYEGIZhdGuKHAAAAAAAAODHeAYbAAAAAAAA4AICbAAAAAAAAIALCLABAAAAAAAALiDABgAAAAAAALiAABsAAAAAAADgAgJsAAAAAAAAgAsIsAEAAAAAAAAuIMAGAAAAAAAAuIAAGwAAAAAAAOACAmwAAAAAAACACwiwAQAAAAAAAC4gwAYAAAAAAAC44P8Dp5SYa/cWw0EAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNgAAAJbCAYAAAA2QikwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACdpUlEQVR4nOzdf1zV9f3///uRn9YU8xc/ChCdJYY/CkzBSNcSh+WyrCjLH4VuvDEVmFuh9kldi+mckSmShZEzlS11a4ultBI1qRSheqsrt1DIQAbvCdoPEHx9//DridM5KHCAw4Hb9XJ5XTqv53m8nq/n85Wc13k9zvP1epoMwzAEAAAAAAAAoEW6OboBAAAAAAAAgDMjwQYAAAAAAADYgQQbAAAAAAAAYAcSbAAAAAAAAIAdSLABAAAAAAAAdiDBBgAAAAAAANiBBBsAAAAAAABgBxJsAAAAAAAAgB1IsAEAAAAAAAB2IMEGtJOlS5fKZDKpoqLisnFfffWVVqxYoREjRqhnz57q0aOHBg0apAceeEC5ubnmuD179shkMpkXFxcXeXt76/7779exY8fMcSdOnLCIc3NzU58+fTRq1CglJibqyJEjbdZnAEDHl5aWpszMzBZtO2DAAN11112t2yAAgNOx51zSVJeuf15//fUrxs6aNUsDBgxo0/YA30eCDehA6uvrFRUVpd/85je677779Kc//Umvv/66EhMTVVVVpX379llt8+yzzyovL0/vvvuunnjiCeXk5Gjs2LE6deqURdy8efOUl5en3Nxc/eEPf9CUKVP0xhtvaMSIEfrd737XXl0EAHQw7XFRBADo3DraueSpp57Szp07Hd0MdDGujm4AgO/s3btXBw4c0MaNG/Xoo4+ayydOnKjHH39cFy5csNpm8ODBGjNmjCTptttuU69evRQbG6vMzEwtXrzYHBcQEGCOk6RJkyYpKSlJ9957r371q18pJCRE0dHRbdg7AAAAAGh7gwYNcnQT0AUxgg1oZ6dPn9ZDDz0kLy8veXt767HHHlNVVZUkqbKyUpLk6+trc9tu3a78J3spiXby5Mkrxnbv3l0ZGRlyc3NjFBsAdDKXHk1QUFCge++9Vz179pSXl5ceeeQR/ec//5F08RbPI0eOKDc31/wogZbcUrNz504NHz5cnp6eGjhwoNasWdPKvQEAOEJ7nEsuPW6gqeeS8+fPa/HixfLz81PPnj11xx136NNPP7WI4RZROAIJNqCdTZ06Vddff722b9+uJ598Ulu2bFFiYqIkKSwsTG5ublqwYIFee+01lZaWNrv+f/3rX5Kkfv36NSnez89PoaGhOnDggOrq6pq9PwBAx3bPPffohz/8oV5//XUtXbpUf/7znzVx4kSdP39eO3fu1MCBA3XTTTcpLy9PeXl5zb6lprCwUAkJCUpMTNTOnTsVERGhBQsWaNWqVW3UIwBAe+tI55JFixbp5MmTevnll7VhwwYdP35ckydPVn19fWt1F2gRbhEF2llsbKx++ctfSpLuuOMO/etf/9LGjRuVkZGhAQMGKD09XQsWLNAjjzwi6eJotgkTJmj27NmKjIy0qu/ChQuqq6vT+fPndejQIf3iF7+Qi4uLYmJimtymwMBAvf/++/q///s/9e/fv3U6CgDoEO69916tXLlSkhQVFSVvb289/PDD+uMf/6iHH35Y3bt3V8+ePS0eI9AcX375pQoKCjRixAhJUnR0tMrLy/XrX/9a8fHxuuqqq1qtLwAAx+hI55KhQ4dq8+bN5nUXFxc98MADOnjwYIv3D7QGRrAB7eynP/2pxfrw4cP17bffqry8XJL02GOP6YsvvtCWLVs0f/58+fv7a/PmzRo3bpzN2zhjYmLk5uamq666Srfddpvq6+v1+uuva/jw4U1uk2EY9nUKANBhPfzwwxbrDzzwgFxdXfXuu++2Sv033nij+YLokmnTpqm6ulqHDx9ulX0AAByrI51LbF1PSU17RA7QlhjBBrSzPn36WKx7eHhIkr755htzmZeXlx566CE99NBDkqQjR47ojjvu0OLFizVnzhz16tXLHLtixQrdfvvtcnFxUd++feXv79/sNp08eVIeHh7q3bt3C3oEAOjIfHx8LNZdXV3Vp08f83M/W7v+hmWttQ8AgGN1pHNJU66nAEdgBBvgBG688UY9+OCDOn/+vD777DOL9wYOHKiwsDDddNNNLUqunTp1Svn5+br11lvl6krOHQA6m7KyMov1uro6VVZWWl2gtFb9Dctaax8AAMfiXAJcGQk2oAOprKxUbW2tzff++c9/Sro4KUFr+eabbzR79mzV1dXpV7/6VavVCwDoOF577TWL9T/+8Y+qq6vT+PHjJV385d+eX/2PHDmijz76yKJsy5Yt6tGjh26++eYW1wsA6Dg4lwBXxnAVoAN59913tWDBAj388MOKiIhQnz59VF5erq1bt+qtt97SjBkzdN1117Wo7uLiYr3//vu6cOGCqqqqVFBQoI0bN+rkyZP6/e9/r6ioqFbuDQCgI9ixY4dcXV01YcIEHTlyRE899ZRGjBihBx54QJI0bNgwbdu2TVlZWRo4cKA8PT01bNiwJtfv5+enn/70p1q6dKl8fX21efNm5eTkaMWKFUxwAACdBOcS4MpIsAEdyJgxY/TYY4/p3Xff1R/+8AdVVFSoe/fuGjp0qF544QX9z//8T4vrfuGFF/TCCy/IxcVFPXv21MCBAzV58mTNmTNHQ4cObcVeAAA6kh07dmjp0qVav369TCaTJk+erNTUVLm7u0uSli1bptLSUs2ZM0dnz55VYGCgTpw40eT6R44cqUcffVRPP/20jh8/Lj8/P61evVqJiYlt1CMAQHvjXAJcmclg+kAAAIBOZ+nSpVq2bJn+85//qG/fvo5uDgDACbXHuWTAgAEKCQnR3/72tzapH2gvPIMNAAAAAAAAsAO3iAIAAMBCfX29LneTg8lkkouLSzu2CADgbDiXoKvhFlEAAABYGDBggE6ePNno++PGjdOePXvar0EAAKfDuQRdDSPYAAAAYOGvf/2rampqGn2/R48e7dgaAIAz4lyCroYRbAAAAAAAAIAdmOQAAAAAAAAAsAO3iDZw4cIFffnll+rRo4dMJpOjmwMATs8wDJ09e1Z+fn7q1o3fdCTONQDQ2jjXWOI8AwCtq6nnGRJsDXz55Zfy9/d3dDMAoNMpKSnRdddd5+hmdAicawCgbXCuuYjzDAC0jSudZ0iwNXDpIYslJSXq2bOng1sDAM6vurpa/v7+PMS2Ac41ANC6ONdY4jwDAK2rqecZEmwNXBpC3bNnT05GANCKuEXlO5xrAKBtdMRzzd69e/W73/1O+fn5Ki0t1c6dOzVlypTLbpObm6ukpCQdOXJEfn5++tWvfqW4uLgm75PzDAC0jSudZ3hIAQAAAAC0ga+++kojRozQ2rVrmxRfVFSkSZMmKTIyUgUFBVq0aJHmz5+v7du3t3FLAQD2YgQbAAAAALSB6OhoRUdHNzk+PT1dAQEBSk1NlSQFBwfr0KFDWrVqlaZOndpGrQQAtAZGsAEAAABAB5CXl6eoqCiLsokTJ+rQoUM6f/68zW1qampUXV1tsQAA2h8JNgAAAADoAMrKyuTt7W1R5u3trbq6OlVUVNjcJiUlRV5eXuaFGUQBwDFIsAEAAABAB/H9h2gbhmGz/JLk5GRVVVWZl5KSkjZvIwDAGs9gAwAAAIAOwMfHR2VlZRZl5eXlcnV1VZ8+fWxu4+HhIQ8Pj/ZoHgDgMhjBBgAAAAAdQHh4uHJycizKdu/erbCwMLm5uTmoVQCApiDBBgAAAABt4Ny5cyosLFRhYaEkqaioSIWFhSouLpZ08fbOGTNmmOPj4uJ08uRJJSUl6dixY9q4caMyMjK0cOFCRzQfANAM3CIKAAAAAG3g0KFD+tGPfmReT0pKkiTNnDlTmZmZKi0tNSfbJCkoKEjZ2dlKTEzUunXr5OfnpzVr1mjq1Knt3nYAQPOQYIPTiM08aLM8Y9aodm4JADivhp+lfH4CQNsaP368eZICWzIzM63Kxo0bp8OHD7dhq5qH8wYANA0JNgAAOrstMQ1WuM0IAAAAaG08gw0AAAAAAACwAwk2AAAAAAAAwA4k2AAAAAAAAAA7kGADAAAAAAAA7ECCDQAAAAAAALADCTYAAAAAAADADi1KsKWlpSkoKEienp4KDQ3Vvn37Lhufm5ur0NBQeXp6auDAgUpPT7eK2b59u4YOHSoPDw8NHTpUO3futHg/JSVFo0aNUo8ePdS/f39NmTJFn376qUXMrFmzZDKZLJYxY8a0pIsAAAAAAABAkzQ7wZaVlaWEhAQtXrxYBQUFioyMVHR0tIqLi23GFxUVadKkSYqMjFRBQYEWLVqk+fPna/v27eaYvLw8xcTEaPr06froo480ffp0PfDAA/rggw/MMbm5uZo7d67ef/995eTkqK6uTlFRUfrqq68s9veTn/xEpaWl5iU7O7u5XQQAAAAAAACazLW5G6xevVqxsbGaPXu2JCk1NVW7du3S+vXrlZKSYhWfnp6ugIAApaamSpKCg4N16NAhrVq1SlOnTjXXMWHCBCUnJ0uSkpOTlZubq9TUVG3dulWS9NZbb1nU+8orr6h///7Kz8/XbbfdZi738PCQj49Pc7sFAAAAAAAAtEizRrDV1tYqPz9fUVFRFuVRUVE6cOCAzW3y8vKs4idOnKhDhw7p/Pnzl41prE5JqqqqkiT17t3bonzPnj3q37+/rr/+es2ZM0fl5eWN1lFTU6Pq6mqLBQAAAAAAAGiOZiXYKioqVF9fL29vb4tyb29vlZWV2dymrKzMZnxdXZ0qKiouG9NYnYZhKCkpSbfeeqtCQkLM5dHR0Xrttdf0zjvv6Pe//70OHjyo22+/XTU1NTbrSUlJkZeXl3nx9/e//AEAAAAAAAAAvqfZt4hKkslkslg3DMOq7Erx3y9vTp2PP/64Pv74Y+3fv9+iPCYmxvw6JCREYWFhCgwM1Jtvvql7773Xqp7k5GQlJSWZ16urq0myAQAAAAAAoFmalWDr27evXFxcrEaWlZeXW41Au8THx8dmvKurq/r06XPZGFt1zps3T2+88Yb27t2r66677rLt9fX1VWBgoI4fP27zfQ8PD3l4eFy2DgAAnNKWGJvF804vMb+OzXzG/Dpj1qg2bxIAAADQWTXrFlF3d3eFhoYqJyfHojwnJ0cRERE2twkPD7eK3717t8LCwuTm5nbZmIZ1Goahxx9/XDt27NA777yjoKCgK7a3srJSJSUl8vX1bVL/AADoSuadXmJeAAAAALRcsxJskpSUlKSXX35ZGzdu1LFjx5SYmKji4mLFxcVJunjb5YwZM8zxcXFxOnnypJKSknTs2DFt3LhRGRkZWrhwoTlmwYIF2r17t1asWKF//vOfWrFihd5++20lJCSYY+bOnavNmzdry5Yt6tGjh8rKylRWVqZvvvlGknTu3DktXLhQeXl5OnHihPbs2aPJkyerb9++uueee1p6fAAAHVRaWpqCgoLk6emp0NBQ7du3r9HY0tJSTZs2TTfccIO6detmcX65JDMzUyaTyWr59ttvW7xfAACcHT/GAEDTNDvBFhMTo9TUVC1fvlwjR47U3r17lZ2drcDAQEkXL2KKi4vN8UFBQcrOztaePXs0cuRI/frXv9aaNWs0depUc0xERIS2bdumV155RcOHD1dmZqaysrI0evRoc8z69etVVVWl8ePHy9fX17xkZWVJklxcXPTJJ5/o7rvv1vXXX6+ZM2fq+uuvV15ennr06NHiAwQA6HiysrKUkJCgxYsXq6CgQJGRkYqOjrY4/zRUU1Ojfv36afHixRoxYkSj9fbs2VOlpaUWi6enZ4v3CwAAAKBrMBmXZhyAqqur5eXlpaqqKvXs2dPRzcH3xGYetFnOc4OAjqutPldHjx6tm2++WevXrzeXBQcHa8qUKUpJSbnstuPHj9fIkSOVmppqUZ6ZmamEhASdOXOmTfZ7Sbudaxp5BlthyRmb5SOf2NV2bQGANsR3eEutfTwKV0w0v+ZcAaAraurnarNHsAEA4Ei1tbXKz89XVFSURXlUVJQOHDhgV93nzp1TYGCgrrvuOt11110qKCiwe781NTWqrq62WNpbYckZ8wIAAACg9ZFgAwA4lYqKCtXX11vNNO3t7W01I3VzDBkyRJmZmXrjjTe0detWeXp6auzYseaZqFu635SUFHl5eZkXf3//FrcRAAAAQMfk6ugGAJdlcYvTwkbDAHQ9JpPJYt0wDKuy5hgzZozGjBljXh87dqxuvvlmvfDCC1qzZk2L95ucnKykpCTzenV1NUk2AAAAoJMhwQYAcCp9+/aVi4uL1aix8vJyq9Fl9ujWrZtGjRplHsHW0v16eHjIw8Oj1doFAAAAoOPhFlF0DFtivlsa4LlBAL7P3d1doaGhysnJsSjPyclRREREq+3HMAwVFhbK19e3XfcLAAAAwPkwgg0A4HSSkpI0ffp0hYWFKTw8XBs2bFBxcbHi4uIkXbwt89SpU9q0aZN5m8LCQkkXJzL4z3/+o8LCQrm7u2vo0KGSpGXLlmnMmDEaPHiwqqurtWbNGhUWFmrdunVN3i8AAACArokEGwDA6cTExKiyslLLly9XaWmpQkJClJ2drcDAQElSaWmpiouLLba56aabzK/z8/O1ZcsWBQYG6sSJE5KkM2fO6Gc/+5nKysrk5eWlm266SXv37tUtt9zS5P0CAAAA6JpIsAEAnFJ8fLzi4+NtvpeZmWlVZhjGZet77rnn9Nxzz9m1XwAAAABdEwk2AABgITbzoPl1xqxRDmwJAAAA4ByY5AAAAAAAAACwAyPY8J2GM3hOy3JcOwAAAAAAAJwII9gAAAAAAAAAO5BgAwAAAAAAAOzALaJwGvNOLzG/fsH7GQe2BAAAAAAA4Dsk2NBpNZwFT2ImPAC4nO9/ZgIAAABoOhJsAACAUcIAAACAHUiwAQCARjUc2cZIYAAAAMA2EmxoHVtizC9jaxeaXzf1Yqyw5Iz59cjWahMAAAAAAEA7YBZRAAAAAGgjaWlpCgoKkqenp0JDQ7Vv377Lxr/22msaMWKErrrqKvn6+urRRx9VZWVlO7UWANBSJNjQ6uadXmJeAAAAgK4qKytLCQkJWrx4sQoKChQZGano6GgVFxfbjN+/f79mzJih2NhYHTlyRH/605908OBBzZ49u51bDgBoLhJsAAAAANAGVq9erdjYWM2ePVvBwcFKTU2Vv7+/1q9fbzP+/fff14ABAzR//nwFBQXp1ltv1c9//nMdOnSonVsOAGguEmwAAAAA0Mpqa2uVn5+vqKgoi/KoqCgdOHDA5jYRERH64osvlJ2dLcMwdPr0ab3++uu6884726PJAAA7MMkBnF+DCRY0Lctx7QAAAAD+fxUVFaqvr5e3t7dFube3t8rKymxuExERoddee00xMTH69ttvVVdXp5/+9Kd64YUXGt1PTU2NampqzOvV1dWt0wEAQLMwgg0dz5aY7xYAAADAiZlMJot1wzCsyi45evSo5s+fr//3//6f8vPz9dZbb6moqEhxcXGN1p+SkiIvLy/z4u/v36rtBwA0DSPY0CyxmQfNrzNmjXJgS+Bo/FsAAABoXN++feXi4mI1Wq28vNxqVNslKSkpGjt2rH75y19KkoYPH66rr75akZGReuaZZ+Tr62u1TXJyspKSkszr1dXVJNkAwAFIsKFNNUzCSG2fiPn+/gAAAABHcHd3V2hoqHJycnTPPfeYy3NycnT33Xfb3Obrr7+Wq6vlJZqLi4ukiyPfbPHw8JCHh0crtRoA0FIk2NB18Kw2AAAAtKOkpCRNnz5dYWFhCg8P14YNG1RcXGy+5TM5OVmnTp3Spk2bJEmTJ0/WnDlztH79ek2cOFGlpaVKSEjQLbfcIj8/P0d2BQBwBSTYAADoLHh2JQB0KDExMaqsrNTy5ctVWlqqkJAQZWdnKzAwUJJUWlqq4uJic/ysWbN09uxZrV27Vr/4xS/Uq1cv3X777VqxYoWjugAAaCISbAAAAADQRuLj4xUfH2/zvczMTKuyefPmad68eW3cKgBAayPBBsdhpAUAAAAAAOgESLABAAAAAK6MZxoDQKNIsMFhCkvONKu8w+CLBYAOquHn50j/Xg5rBwAAANDVdHN0A9C5zTu9xGLRlpjvljbeH4DOLS0tTUFBQfL09FRoaKj27dvXaGxpaammTZumG264Qd26dVNCQoJVzEsvvaTIyEhdc801uuaaa3THHXfoww8/tIhZunSpTCaTxeLj49PaXQMAAADgZFqUYGvORY0k5ebmKjQ0VJ6enho4cKDS09OtYrZv366hQ4fKw8NDQ4cO1c6dOy3eT0lJ0ahRo9SjRw/1799fU6ZM0aeffmoRYxiGli5dKj8/P3Xv3l3jx4/XkSNHWtJFAEAHlpWVpYSEBC1evFgFBQWKjIxUdHS0xUxsDdXU1Khfv35avHixRowYYTNmz549euihh/Tuu+8qLy9PAQEBioqK0qlTpyzibrzxRpWWlpqXTz75pNX7BwAAAMC5NDvB1tyLmqKiIk2aNEmRkZEqKCjQokWLNH/+fG3fvt0ck5eXp5iYGE2fPl0fffSRpk+frgceeEAffPCBOSY3N1dz587V+++/r5ycHNXV1SkqKkpfffWVOWblypVavXq11q5dq4MHD8rHx0cTJkzQ2bNnm9tNAEAHtnr1asXGxmr27NkKDg5Wamqq/P39tX79epvxAwYM0PPPP68ZM2bIy8vLZsxrr72m+Ph4jRw5UkOGDNFLL72kCxcu6B//+IdFnKurq3x8fMxLv379Wr1/AAAAAJxLsxNszb2oSU9PV0BAgFJTUxUcHKzZs2frscce06pVq8wxqampmjBhgpKTkzVkyBAlJyfrxz/+sVJTU80xb731lmbNmqUbb7xRI0aM0CuvvKLi4mLl5+dLujh6LTU1VYsXL9a9996rkJAQvfrqq/r666+1ZcuW5nYTANBB1dbWKj8/X1FRURblUVFROnDgQKvt5+uvv9b58+fVu3dvi/Ljx4/Lz89PQUFBevDBB/X555+32j47Cm63BwAAAJqnWQm2llzU5OXlWcVPnDhRhw4d0vnz5y8bc7kLpaqqKkkyX/gUFRWprKzMoh4PDw+NGzeuVS+4AACOVVFRofr6enl7e1uUe3t7q6ysrNX28+STT+raa6/VHXfcYS4bPXq0Nm3apF27dumll15SWVmZIiIiVFlZ2Wg9NTU1qq6utlgAAAAAdC7NmkW0JRc1ZWVlNuPr6upUUVEhX1/fRmMaq9MwDCUlJenWW29VSEiIeT+Xtvt+PSdPnrRZT01NjWpqaszrXPTYFpt50NFNaDcN+5oxa5QDWwLgSkwmk8W6YRhWZS21cuVKbd26VXv27JGnp6e5PDo62vx62LBhCg8P16BBg/Tqq68qKSnJZl0pKSlatmxZq7QLAAAAQMfUokkOmntRYyv+++XNqfPxxx/Xxx9/rK1bt9rVtpSUFHl5eZkXf3//RvsAAOgY+vbtKxcXF6sfYcrLy61+ZGmJVatW6dlnn9Xu3bs1fPjwy8ZeffXVGjZsmI4fP95oTHJysqqqqsxLSUmJ3W0EAAAA0LE0K8HWkosaHx8fm/Gurq7q06fPZWNs1Tlv3jy98cYbevfdd3XddddZ7EdSs9rGRU/nUFhyxrwA6Pzc3d0VGhqqnJwci/KcnBxFRETYVffvfvc7/frXv9Zbb72lsLCwK8bX1NTo2LFj8vX1bTTGw8NDPXv2tFgAAAAAdC7NSrC15KImPDzcKn737t0KCwuTm5vbZWMa1mkYhh5//HHt2LFD77zzjoKCgizig4KC5OPjY1FPbW2tcnNzG20bFz1d2JaY75Z2Fpt50LwAaJmkpCS9/PLL2rhxo44dO6bExEQVFxcrLi5O0sUfUGbMmGGxTWFhoQoLC3Xu3Dn95z//UWFhoY4ePWp+f+XKlVqyZIk2btyoAQMGqKysTGVlZTp37pw5ZuHChcrNzVVRUZE++OAD3XfffaqurtbMmTPbp+MAAAAAOqRmPYNNunhRM336dIWFhSk8PFwbNmywuqg5deqUNm3aJEmKi4vT2rVrlZSUpDlz5igvL08ZGRkWt3cuWLBAt912m1asWKG7775bf/nLX/T2229r//795pi5c+dqy5Yt+stf/qIePXqYR6p5eXmpe/fuMplMSkhI0LPPPqvBgwdr8ODBevbZZ3XVVVdp2rRpdh0kdFENk2/TshzXDgBWYmJiVFlZqeXLl6u0tFQhISHKzs5WYGCgJKm0tFTFxcUW29x0003m1/n5+dqyZYsCAwN14sQJSVJaWppqa2t13333WWz39NNPa+nSpZKkL774Qg899JAqKirUr18/jRkzRu+//755vwAAAAC6pmYn2Jp7URMUFKTs7GwlJiZq3bp18vPz05o1azR16lRzTEREhLZt26YlS5boqaee0qBBg5SVlaXRo0ebY9avXy9JGj9+vEV7XnnlFc2aNUuS9Ktf/UrffPON4uPj9d///lejR4/W7t271aNHj+Z2EwDQwcXHxys+Pt7me5mZmVZll57/2ZhLibbL2bZtW1Oa1iV8fxQuE8MAAACgK2t2gk1q/kXNuHHjdPjw4cvWed9991mNGmjoShdG0sUJDpYuXWoeaYCubd7pJZYF/r1sB1rcJrqwrZoDAAAAAAA6qRbNIgoAAAAAAADgohaNYAOcXcMZR0c2NrKtgYa3QmW4t0GDAKCVMbMyAAAA0H4YwQYAAAAAAADYgRFs6PIsRnl4X7kcAAAAAACgIUawAQAAAAAAAHZgBBvQBBYzkjbhmW0A0Bk1fB4lAAAAgO+QYEOX0dYP/P7+hWfGrFFtuj8AaA8Nf2B4wfsZB7YEAAAA6Li4RRQAAAAAAACwAyPY0GINR2xluDuwIQAAAAAAAA7ECDYAAAAAAADADoxgQ7tq6+egAQAAAAAAtDcSbIA9tsQ0WFnosGYAAAAAAADHIcGGFms4s5z8ezmsHQAAAAAAAI5Egg02NZzAoCm49dOaxSQQs0Y5sCUAAAAAAKAtMckBAAAAAAAAYAdGsAENWNz22oUw2g4AAAAAgJZjBBsAAAAAAABgB0awAQCAJmk4yvcF72cc2BIAgCM0fO7ySIe1AgA6JhJsuCIuqCxZfLGwd/bULTHfvZ6WZV9dAAAAAADAIbhFFAAAAAAAALADCTYAAAAAAADADtwiCrQzi5lK7b3FFAAAAAAAOBwj2AAAAACgjaSlpSkoKEienp4KDQ3Vvn37LhtfU1OjxYsXKzAwUB4eHho0aJA2btzYTq0FALQUI9hg1vDh/fJ2WDOaxGIUGAAAANABZWVlKSEhQWlpaRo7dqxefPFFRUdH6+jRowoICLC5zQMPPKDTp08rIyNDP/zhD1VeXq66urp2bjkAoLkYwQYAcErNGRFQWlqqadOm6YYbblC3bt2UkJBgM2779u0aOnSoPDw8NHToUO3cudOu/QIAurbVq1crNjZWs2fPVnBwsFJTU+Xv76/169fbjH/rrbeUm5ur7Oxs3XHHHRowYIBuueUWRUREtHPLAQDNRYINAOB0Lo0IWLx4sQoKChQZGano6GgVFxfbjK+pqVG/fv20ePFijRgxwmZMXl6eYmJiNH36dH300UeaPn26HnjgAX3wwQct3i8AoOuqra1Vfn6+oqKiLMqjoqJ04MABm9u88cYbCgsL08qVK3Xttdfq+uuv18KFC/XNN9+0R5MBAHYgwQYAcDrNHREwYMAAPf/885oxY4a8vLxsxqSmpmrChAlKTk7WkCFDlJycrB//+MdKTU1t8X4BAF1XRUWF6uvr5e1t+ewVb29vlZWV2dzm888/1/79+/W///u/2rlzp1JTU/X6669r7ty5je6npqZG1dXVFgsAoP3xDDbY1Ngzznj2GQBHuzQi4Mknn7Qov9yIgKbIy8tTYmKiRdnEiRPNCbaW7rempkY1NTXmdS58AKBrMZlMFuuGYViVXXLhwgWZTCa99tpr5h+EVq9erfvuu0/r1q1T9+7drbZJSUnRsmXLWr/hAIBmYQQbAMCptGREQFOUlZVdts6W7jclJUVeXl7mxd/fv8VtBAA4j759+8rFxcXqHFFeXm51LrnE19dX1157rcVo6+DgYBmGoS+++MLmNsnJyaqqqjIvJSUlrdcJAECTkWADADil5owIaM06m7tfLnwAoGtyd3dXaGiocnJyLMpzcnIanbRg7Nix+vLLL3Xu3Dlz2WeffaZu3brpuuuus7mNh4eHevbsabEAANofCTYAgFNpyYiApvDx8blsnS3dLxc+ANB1JSUl6eWXX9bGjRt17NgxJSYmqri4WHFxcZIu/ggzY8YMc/y0adPUp08fPfroozp69Kj27t2rX/7yl3rsscds3h4KAOg4SLABAJxKS0YENEV4eLhVnbt37zbX2Vb7BQB0XjExMUpNTdXy5cs1cuRI7d27V9nZ2QoMDJQklZaWWsxE/YMf/EA5OTk6c+aMwsLC9PDDD2vy5Mlas2aNo7oAAGgiJjkAADidpKQkTZ8+XWFhYQoPD9eGDRusRgScOnVKmzZtMm9TWFgoSTp37pz+85//qLCwUO7u7ho6dKgkacGCBbrtttu0YsUK3X333frLX/6it99+W/v372/yfgEA+L74+HjFx8fbfC8zM9OqbMiQIVY/5gAAOr4WjWBLS0tTUFCQPD09FRoaqn379l02Pjc3V6GhofL09NTAgQOVnp5uFbN9+3YNHTpUHh4eGjp0qHbu3Gnx/t69ezV58mT5+fnJZDLpz3/+s1Uds2bNkslksljGjBnTki4CADqw5o4IkKSbbrpJN910k/Lz87VlyxbddNNNmjRpkvn9iIgIbdu2Ta+88oqGDx+uzMxMZWVlafTo0U3eb1cy7/QSiwUAAADoypo9gi0rK0sJCQlKS0vT2LFj9eKLLyo6OlpHjx5VQECAVXxRUZEmTZqkOXPmaPPmzXrvvfcUHx+vfv36aerUqZKkvLw8xcTE6Ne//rXuuece7dy5Uw888ID2799vvrD56quvNGLECD366KPm7Wz5yU9+oldeecW87u7u3twuAgCcQHNHBBiGccU677vvPt13330t3m+XtiXmu9fTshzXDgAAAMABmp1gW716tWJjYzV79mxJUmpqqnbt2qX169crJSXFKj49PV0BAQFKTU2VdHGa6UOHDmnVqlXmRFlqaqomTJig5ORkSRdv7cnNzVVqaqq2bt0qSYqOjlZ0dPQV2+fh4SEfH5/mdqvLiM08aLGeMWuUg1rSORSWnPlupeXPVgcAAAAAAE6sWQm22tpa5efn68knn7Qoj4qK0oEDB2xuk5eXp6ioKIuyiRMnKiMjQ+fPn5ebm5vy8vKUmJhoFXMpKdcce/bsUf/+/dWrVy+NGzdOv/nNb9S/f/9m19NVNEy4zXNgOzojy1umdjmsHQAAAAAAoG01K8FWUVGh+vp6eXtbDtXx9vZWWVmZzW3KyspsxtfV1amiokK+vr6NxjRWZ2Oio6N1//33KzAwUEVFRXrqqad0++23Kz8/Xx4eHlbxNTU1qqmpMa9XV1c3a39AU5HIBAAAAACg82rRLKImk8li3TAMq7IrxX+/vLl12hIT893zX0JCQhQWFqbAwEC9+eabuvfee63iU1JStGzZsmbtA2hMSx7y3fAW05Gt1xQAAAAAANCOmjWLaN++feXi4mI1sqy8vNxqBNolPj4+NuNdXV3Vp0+fy8Y0VmdT+fr6KjAwUMePH7f5fnJysqqqqsxLSUmJXfsDAAAAAABA19OsBJu7u7tCQ0OVk5NjUZ6Tk6OIiAib24SHh1vF7969W2FhYXJzc7tsTGN1NlVlZaVKSkrk6+tr830PDw/17NnTYgEAAAAAAACao9m3iCYlJWn69OkKCwtTeHi4NmzYoOLiYsXFxUm6OCrs1KlT2rRpkyQpLi5Oa9euVVJSkubMmaO8vDxlZGSYZweVpAULFui2227TihUrdPfdd+svf/mL3n77be3fv98cc+7cOf3rX/8yrxcVFamwsFC9e/dWQECAzp07p6VLl2rq1Kny9fXViRMntGjRIvXt21f33HNPiw8QAAAAAAAAcDnNTrDFxMSosrJSy5cvV2lpqUJCQpSdna3AwEBJUmlpqYqLi83xQUFBys7OVmJiotatWyc/Pz+tWbNGU6dONcdERERo27ZtWrJkiZ566ikNGjRIWVlZGj16tDnm0KFD+tGPfmReT0pKkiTNnDlTmZmZcnFx0SeffKJNmzbpzJkz8vX11Y9+9CNlZWWpR48ezT8ynVRLnhOGDmpLjOX6tCzHtAMAAAAAgC6uRZMcxMfHKz4+3uZ7mZmZVmXjxo3T4cOHL1vnfffdp/vuu6/R98ePH2+eHMGW7t27a9euXZfdBwAAAAAAANDaWpRgA9DGGo5OY2QaAAAAAAAdGgk2oKP4/i2fAAAAAADAKTRrFlEAAAAAAAAAlhjBBgAAWlVs5kHz64xZoxzYEgAAAKB9MIINAAAAAAAAsAMJNgAAAAAAAMAO3CIKoEka3vIFAJcz7/SSBmu7HNYOAAAAoL0wgg0AAAAAAACwAyPYAABwVltiHN0CAAAAACLBBnQYhSVnzK9H+vdyWDsAAACAK2r4I8+0LMe1AwA6CG4RBQAAAAAAAOzACDYAAAAAQLNY3H3hsFYAQMfBCDYAAAAAAADADoxgAzq42MyD5tcZs0Y5sCUAAAAAAMAWRrABAAAAAAAAdiDB1gXEZh40LwDQWaSlpSkoKEienp4KDQ3Vvn37Lhufm5ur0NBQeXp6auDAgUpPT7d4f/z48TKZTFbLnXfeaY5ZunSp1fs+Pj5t0j8AAAAAzoNbRDspkmkAOrOsrCwlJCQoLS1NY8eO1Ysvvqjo6GgdPXpUAQEBVvFFRUWaNGmS5syZo82bN+u9995TfHy8+vXrp6lTp0qSduzYodraWvM2lZWVGjFihO6//36Lum688Ua9/fbb5nUXF5c26iUAAAAAZ0GCDWgH804vaZ2KtsS0Tj2Ak1u9erViY2M1e/ZsSVJqaqp27dql9evXKyUlxSo+PT1dAQEBSk1NlSQFBwfr0KFDWrVqlTnB1rt3b4tttm3bpquuusoqwebq6sqoNQAAAAAWuEUU6EK4XRidQW1trfLz8xUVFWVRHhUVpQMHDtjcJi8vzyp+4sSJOnTokM6fP29zm4yMDD344IO6+uqrLcqPHz8uPz8/BQUF6cEHH9Tnn39uR28AAAAAdAYk2AAATqWiokL19fXy9va2KPf29lZZWZnNbcrKymzG19XVqaKiwir+ww8/1P/+7/+aR8hdMnr0aG3atEm7du3SSy+9pLKyMkVERKiysrLR9tbU1Ki6utpiAQAAANC5kGADADglk8lksW4YhlXZleJtlUsXR6+FhITolltusSiPjo7W1KlTNWzYMN1xxx168803JUmvvvpqo/tNSUmRl5eXefH39798xwAAAAA4HRJsAACn0rdvX7m4uFiNVisvL7capXaJj4+PzXhXV1f16dPHovzrr7/Wtm3brEav2XL11Vdr2LBhOn78eKMxycnJqqqqMi8lJSVXrNcZFZacMS8AAABAV0OCDQDgVNzd3RUaGqqcnByL8pycHEVERNjcJjw83Cp+9+7dCgsLk5ubm0X5H//4R9XU1OiRRx65Yltqamp07Ngx+fr6Nhrj4eGhnj17WiwAAAAAOhdmEQU6OIsZSP17OawdQEeSlJSk6dOnKywsTOHh4dqwYYOKi4sVFxcn6eKosVOnTmnTpk2SpLi4OK1du1ZJSUmaM2eO8vLylJGRoa1bt1rVnZGRoSlTpliNbJOkhQsXavLkyQoICFB5ebmeeeYZVVdXa+bMmW3bYWfWcPbjaVmOawcAAADQhkiwAQCcTkxMjCorK7V8+XKVlpYqJCRE2dnZCgwMlCSVlpaquLjYHB8UFKTs7GwlJiZq3bp18vPz05o1azR16lSLej/77DPt379fu3fvtrnfL774Qg899JAqKirUr18/jRkzRu+//755v7DW8JbRkQ5rBQAAANC2SLABAJxSfHy84uPjbb6XmZlpVTZu3DgdPnz4snVef/315skPbNm2bVuz2tjWeN4ZAAAA0DHwDDYAAAAAaCNpaWkKCgqSp6enQkNDtW/fviZt995778nV1VUjR45s2wa2gtjMg+YFALoqRrB1Ug2f2/WC9zMObAkcjS86AAAAjpGVlaWEhASlpaVp7NixevHFFxUdHa2jR48qICCg0e2qqqo0Y8YM/fjHP9bp06fbscUAgJZiBBsAAAAAtIHVq1crNjZWs2fPVnBwsFJTU+Xv76/169dfdruf//znmjZtmsLDw9uppQAAezGCrQuwmIUSAAAAQJurra1Vfn6+nnzySYvyqKgoHThwoNHtXnnlFf373//W5s2b9cwz3IkCAM6CBBvQWWyJ+e71tCzHtQMAGtHwlvWMWaMc2BIAaHsVFRWqr6+Xt7e3Rbm3t7fKyspsbnP8+HE9+eST2rdvn1xdm3apVlNTo5qaGvN6dXV1yxsNAGgxbhEFAAAAgDZiMpks1g3DsCqTpPr6ek2bNk3Lli3T9ddf3+T6U1JS5OXlZV78/f3tbjMAoPlIsAEAAABAK+vbt69cXFysRquVl5dbjWqTpLNnz+rQoUN6/PHH5erqKldXVy1fvlwfffSRXF1d9c4779jcT3JysqqqqsxLSUlJm/QHAHB53CLamTS8RRAAAACAw7i7uys0NFQ5OTm65557zOU5OTm6++67reJ79uypTz75xKIsLS1N77zzjl5//XUFBQXZ3I+Hh4c8PDxat/EAgGZr0Qi2tLQ0BQUFydPTU6Ghodq3b99l43NzcxUaGipPT08NHDhQ6enpVjHbt2/X0KFD5eHhoaFDh2rnzp0W7+/du1eTJ0+Wn5+fTCaT/vznP1vVYRiGli5dKj8/P3Xv3l3jx4/XkSNHWtJFAAAAALBLUlKSXn75ZW3cuFHHjh1TYmKiiouLFRcXJ+ni6LMZM2ZIkrp166aQkBCLpX///vL09FRISIiuvvpqR3YFAHAFzU6wZWVlKSEhQYsXL1ZBQYEiIyMVHR2t4uJim/FFRUWaNGmSIiMjVVBQoEWLFmn+/Pnavn27OSYvL08xMTGaPn26PvroI02fPl0PPPCAPvjgA3PMV199pREjRmjt2rWNtm3lypVavXq11q5dq4MHD8rHx0cTJkzQ2bNnm9tNAAAAALBLTEyMUlNTtXz5co0cOVJ79+5Vdna2AgMDJUmlpaWNXkcBAJxLs28RXb16tWJjYzV79mxJUmpqqnbt2qX169crJSXFKj49PV0BAQFKTU2VJAUHB+vQoUNatWqVpk6daq5jwoQJSk5OlnTxl5zc3FylpqZq69atkqTo6GhFR0c32i7DMJSamqrFixfr3nvvlSS9+uqr8vb21pYtW/Tzn/+8uV11OoUlZxzdBHQUFrcLL3RYMwAAALq6+Ph4xcfH23wvMzPzstsuXbpUS5cubf1GAQBaXbNGsNXW1io/P19RUVEW5VFRUTpw4IDNbfLy8qziJ06cqEOHDun8+fOXjWmsTluKiopUVlZmUY+Hh4fGjRvXaD01NTWqrq62WAAAQDvYEvPdAgAAADi5ZiXYKioqVF9fbzXrjbe3t9XsOJeUlZXZjK+rq1NFRcVlYxqrs7H9XNquqfUwpTUAAAAAAADs1aJJDkwmk8W6YRhWZVeK/355c+tsjbYxpTUAAAAAAADs1axnsPXt21cuLi5WI8LKy8utRo5d4uPjYzPe1dVVffr0uWxMY3U2th/p4kg2X1/fJtXDlNboqHieHgAAAAAAzqNZI9jc3d0VGhqqnJwci/KcnBxFRETY3CY8PNwqfvfu3QoLC5Obm9tlYxqr05agoCD5+PhY1FNbW6vc3Nxm1QMAAAAAAAA0R7NnEU1KStL06dMVFham8PBwbdiwQcXFxYqLi5N08bbLU6dOadOmTZKkuLg4rV27VklJSZozZ47y8vKUkZFhnh1UkhYsWKDbbrtNK1as0N13362//OUvevvtt7V//35zzLlz5/Svf/3LvF5UVKTCwkL17t1bAQEBMplMSkhI0LPPPqvBgwdr8ODBevbZZ3XVVVdp2rRpLT5AAAAAAAAAwOU0O8EWExOjyspKLV++XKWlpQoJCVF2drYCAwMlSaWlpSouLjbHBwUFKTs7W4mJiVq3bp38/Py0Zs0aTZ061RwTERGhbdu2acmSJXrqqac0aNAgZWVlafTo0eaYQ4cO6Uc/+pF5PSkpSZI0c+ZM8/TWv/rVr/TNN98oPj5e//3vfzV69Gjt3r1bPXr0aG43AQBAK5t3esl3K/69HNYOAAAAoLU1O8EmSfHx8YqPj7f53qVkV0Pjxo3T4cOHL1vnfffdp/vuu6/R98ePH2+eHKExJpNJS5cu1dKlSy8bBwAAAAAAALSWFiXYAAAAAACd1JYYR7cAAJwOCTYAAAAAQItZPAJAuxzWDgBwJBJsgJMqLDljsT6ywfOMLN7zbpfmAAAAAADQZZFgAzqJ7yfcAMDZxWYeNL/OmDXKgS0BAAAALq+boxsAAAAAAAAAODNGsDk7HkAKAAAAAADgUIxgAwA4pbS0NAUFBcnT01OhoaHat2/fZeNzc3MVGhoqT09PDRw4UOnp6RbvZ2ZmymQyWS3ffvutXftFE2yJ+W4BAAAAnBAJNgCA08nKylJCQoIWL16sgoICRUZGKjo6WsXFxTbji4qKNGnSJEVGRqqgoECLFi3S/PnztX37dou4nj17qrS01GLx9PRs8X4BAAAAdA3cIgp0Ie0xhToPJUd7WL16tWJjYzV79mxJUmpqqnbt2qX169crJSXFKj49PV0BAQFKTU2VJAUHB+vQoUNatWqVpk6dao4zmUzy8fFptf0CAAAA6BoYwQYAcCq1tbXKz89XVFSURXlUVJQOHDhgc5u8vDyr+IkTJ+rQoUM6f/68uezcuXMKDAzUddddp7vuuksFBQV27VeSampqVF1dbbEAAAAA6FwYwQY4kcKSM45ugk0NR60Bba2iokL19fXy9va2KPf29lZZWZnNbcrKymzG19XVqaKiQr6+vhoyZIgyMzM1bNgwVVdX6/nnn9fYsWP10UcfafDgwS3arySlpKRo2bJlLext59Xw82ykfy+HtQMAAABoDSTYgE7O8rbQZrJ44PhCu9sCtCaTyWSxbhiGVdmV4huWjxkzRmPGjDG/P3bsWN1888164YUXtGbNmhbvNzk5WUlJSeb16upq+fv7NxoPAAAAwPmQYANgweIZau4ObAjQiL59+8rFxcVq1Fh5ebnV6LJLfHx8bMa7urqqT58+Nrfp1q2bRo0apePHj7d4v5Lk4eEhDw+PK/YLAICOwp67JngeL4CuimewAQCciru7u0JDQ5WTk2NRnpOTo4iICJvbhIeHW8Xv3r1bYWFhcnNzs7mNYRgqLCyUr69vi/cLAAAAoGtgBJuzaHir3rQs88uO+kwuOAFu/4QTS0pK0vTp0xUWFqbw8HBt2LBBxcXFiouLk3TxtsxTp05p06ZNkqS4uDitXbtWSUlJmjNnjvLy8pSRkaGtW7ea61y2bJnGjBmjwYMHq7q6WmvWrFFhYaHWrVvX5P2iZSyex+awVgAAAAAtR4INAOB0YmJiVFlZqeXLl6u0tFQhISHKzs5WYGCgJKm0tFTFxcXm+KCgIGVnZysxMVHr1q2Tn5+f1qxZo6lTp5pjzpw5o5/97GcqKyuTl5eXbrrpJu3du1e33HJLk/cLAAAAoGsiwQYAcErx8fGKj4+3+V5mZqZV2bhx43T48OFG63vuuef03HPP2bVf2I9ZiQEAAOCMSLA5ocIVEx3dBAAAAAAAAPz/SLABAAAAAFodM4oC6EpIsAEAAAAAWsW800vMr1/wfsaBLQGA9kWCzUkwWygcreGXJamJX5gamf0WAAAAAIDOhAQbALvxSyWA1sLnCQAAAJxRN0c3AAAAAAAAAHBmJNgAAAAAAAAAO3CLKIBWZfGsNv9eDmsHAAAAAADthRFsAAAAAAAAgB1IsAEAAAAAAAB2IMEGAAAAAAAA2IFnsAEAgA7J4pmO2uWwdgAAAABXwgi2jmZLzHcL0IHNO73EvAAAAMC2tLQ0BQUFydPTU6Ghodq3b1+jsTt27NCECRPUr18/9ezZU+Hh4dq1ix8YAMAZMIINgAVmAQUAAGgdWVlZSkhIUFpamsaOHasXX3xR0dHROnr0qAICAqzi9+7dqwkTJujZZ59Vr1699Morr2jy5Mn64IMPdNNNNzmgB/ZhJDKAroQRbAAAAADQBlavXq3Y2FjNnj1bwcHBSk1Nlb+/v9avX28zPjU1Vb/61a80atQoDR48WM8++6wGDx6sv/71r+3ccgBAczGCDQC3eQIAALSy2tpa5efn68knn7Qoj4qK0oEDB5pUx4ULF3T27Fn17t270ZiamhrV1NSY16urq1vWYACAXVo0gq05zxGQpNzcXIWGhsrT01MDBw5Uenq6Vcz27ds1dOhQeXh4aOjQodq5c2ez9ztr1iyZTCaLZcyYMS3pYsfA89gAALio4TmR8yIAJ1BRUaH6+np5e3tblHt7e6usrKxJdfz+97/XV199pQceeKDRmJSUFHl5eZkXf39/u9oNAGiZZifYLj1HYPHixSooKFBkZKSio6NVXFxsM76oqEiTJk1SZGSkCgoKtGjRIs2fP1/bt283x+Tl5SkmJkbTp0/XRx99pOnTp+uBBx7QBx980Oz9/uQnP1Fpaal5yc7Obm4XAQAAAKBVmEwmi3XDMKzKbNm6dauWLl2qrKws9e/fv9G45ORkVVVVmZeSkhK729wWYjMPmhcA6IyanWBr7nME0tPTFRAQoNTUVAUHB2v27Nl67LHHtGrVKnNMamqqJkyYoOTkZA0ZMkTJycn68Y9/rNTU1Gbv18PDQz4+PublcsOpAQBAJ8DINgAdUN++feXi4mI1Wq28vNxqVNv3ZWVlKTY2Vn/84x91xx13XDbWw8NDPXv2tFgAAO2vWQm2S88RiIqKsii/3HME8vLyrOInTpyoQ4cO6fz585eNuVRnc/a7Z88e9e/fX9dff73mzJmj8vLyRvtTU1Oj6upqi6UjKSw5Y14AAAAAOA93d3eFhoYqJyfHojwnJ0cRERGNbrd161bNmjVLW7Zs0Z133tnWzQQAtJJmTXLQkucIlJWV2Yyvq6tTRUWFfH19G425VGdT9xsdHa37779fgYGBKioq0lNPPaXbb79d+fn58vDwsGpbSkqKli1b1vQDAHQiJG4B59Tw1pp5DmxHe/v+Z9ZIh7QCAJonKSlJ06dPV1hYmMLDw7VhwwYVFxcrLi5O0sXbO0+dOqVNmzZJuphcmzFjhp5//nmNGTPGfK3TvXt3eXl5OawfrcFyUq1dDmsHALSVFs0i2tznCNiK/355U+q8UkxMzHe3hoSEhCgsLEyBgYF68803de+991q1Kzk5WUlJSeb16upqHgoKAAAAoFXExMSosrJSy5cvV2lpqUJCQpSdna3AwEBJUmlpqcUzpV988UXV1dVp7ty5mjt3rrl85syZyszMbO/mAwCaoVkJtpY8R8DHx8dmvKurq/r06XPZmEt1tvT5Bb6+vgoMDNTx48dtvu/h4WFzZBsAAB2V5QgAAEBHFx8fr/j4eJvvfT9ptmfPnrZvEACgTTQrwdbwOQL33HOPuTwnJ0d33323zW3Cw8P117/+1aJs9+7dCgsLk5ubmzkmJydHiYmJFjGXnk3Qkv1KUmVlpUpKSuTr69ucbgIAgI6OCQ0AwGl9fybRDPfvJsDTtKx2bg0AtI5mzyKalJSkl19+WRs3btSxY8eUmJho9RyBGTNmmOPj4uJ08uRJJSUl6dixY9q4caMyMjK0cOFCc8yCBQu0e/durVixQv/85z+1YsUKvf3220pISGjyfs+dO6eFCxcqLy9PJ06c0J49ezR58mT17dvXIikHAOgc0tLSFBQUJE9PT4WGhmrfvn2Xjc/NzVVoaKg8PT01cOBApaenW7z/0ksvKTIyUtdcc42uueYa3XHHHfrwww8tYpYuXSqTyWSx+Pj4tHrfcGVMBAQAAICOpNnPYGvucwSCgoKUnZ2txMRErVu3Tn5+flqzZo2mTp1qjomIiNC2bdu0ZMkSPfXUUxo0aJCysrI0evToJu/XxcVFn3zyiTZt2qQzZ87I19dXP/rRj5SVlaUePXq0+AABXRkXruiosrKylJCQoLS0NI0dO1YvvviioqOjdfToUQUEBFjFFxUVadKkSZozZ442b96s9957T/Hx8erXr5/5fLRnzx499NBDioiIkKenp1auXKmoqCgdOXJE1157rbmuG2+8UW+//bZ53cXFpe07DABAJ2L1uAP/Xg5pBwC0JpNxacYBqLq6Wl5eXqqqqlLPnj0d0obCFRMdsl+gLYxs+GWJ4f5dUlt9ro4ePVo333yz1q9fby4LDg7WlClTlJKSYhX/xBNP6I033tCxY8fMZXFxcfroo4+Ul5dncx/19fW65pprtHbtWvPI7KVLl+rPf/6zCgsLW9x2e48J5wlrfNYAXVtH+A7fkbTG8Wjvcw2f4wA6sqZ+rjb7FlEAaDNbYr5bgEbU1tYqPz9fUVFRFuVRUVE6cOCAzW3y8vKs4idOnKhDhw7p/PnzNrf5+uuvdf78efXu3dui/Pjx4/Lz81NQUJAefPBBff7553b0BgAAAEBn0OxbRAHAbg0TaPxKiWaqqKhQfX291SzS3t7eVrNNX1JWVmYzvq6uThUVFTYnw3nyySd17bXX6o477jCXjR49Wps2bdL111+v06dP65lnnlFERISOHDlinhn7+2pqalRTU2Ner66ubnJf0QJ8vgAAAMABSLABAJySyWSyWDcMw6rsSvG2yiVp5cqV2rp1q/bs2SNPT09zeXR0tPn1sGHDFB4erkGDBunVV19VUlKSzf2mpKRo2bJlV+4QWqzh8yJH8hwfAAAAOAC3iAIAnErfvn3l4uJiNVqtvLzcapTaJT4+PjbjXV1drUaerVq1Ss8++6x2796t4cOHX7YtV199tYYNG6bjx483GpOcnKyqqirzUlJSctk60Q64HR0AAACtjBFsAJwPt4B1ae7u7goNDVVOTo7uuecec3lOTo7uvvtum9uEh4frr3/9q0XZ7t27FRYWJjc3N3PZ7373Oz3zzDPatWuXwsLCrtiWmpoaHTt2TJGRkY3GeHh4yMPD44p1oQ00+KyIrV1ofp3h7ojGAAAAoDMjwQYAcDpJSUmaPn26wsLCFB4erg0bNqi4uFhxcXGSLo4aO3XqlDZt2iTp4oyha9euVVJSkubMmaO8vDxlZGRo69at5jpXrlypp556Slu2bNGAAQPMI95+8IMf6Ac/+IEkaeHChZo8ebICAgJUXl6uZ555RtXV1Zo5c2Y7HwEAADqn2MyD5tcZs0Y5sCUA0Dwk2AAATicmJkaVlZVavny5SktLFRISouzsbAUGBkqSSktLVVxcbI4PCgpSdna2EhMTtW7dOvn5+WnNmjWaOnWqOSYtLU21tbW67777LPb19NNPa+nSpZKkL774Qg899JAqKirUr18/jRkzRu+//755v+hYGj6bTbbvHgYAdAB8XgPoDEiwORrPfwGAFomPj1d8fLzN9zIzM63Kxo0bp8OHDzda34kTJ664z23btjW1eXAQi4s0AAAAoJ2QYAMAAAAAdAjzTi9psLbLYe0AgOYiwQagfTBaEwAAAADQSZFgA+BYzpB4Y9ZSAACAdseEBwCcSTdHNwAAAAAAAABwZoxgczAexgy0IkaaAQAAAAAcgAQbgA6JWwIAAAAAAM6CBJsDNEwczHNgOwAAAACgo7KYUXRLr+9ec6cCgA6IBBuATs9iNJz7qu/e4MsZ0CU1fDzDSIe1AgAAAJ0JCTYAHZLFL5ba1fwKLGYnXWhvcwB0AdyaDgAdFz+OAOjoSLABAAAAAJwHE1sB6IBIsDmA5cgcAHaxGKlmx7Z8OQNwOXxeAAAA4DJIsLUTJjYA7GBPEg0AdJkftxq5nbzheVuSMtzboFEAAADoNEiwAWgXFs/N8O/lsHYAQFNYJeT43AKADqlwxUTz65FPtOC5vQDQSkiwtRNuCwUAoGPjXA0ATo7b+QE4EAk2AJ2exUVzY6NQ+EIG4DKYvQ4AOo6Gn8kA0FGQYAMAAF1Wiy7SmpKQb0JMw+e8Zcwa1fx2AAAAoMMgwQYA38ekCgAAAE6H0cYAHIkEG4A2w/B9AJ2RxQUcCXkA6Jh4/AeAdkaCDQAAoIWYIRkAOqbL/hhCwg1AGyDB1oYaPltlngPbATgLRrwBAACgtX3/O+ZIh7QCQGdHgg0AAAAA0GUUrphofm0x+piRbQDsQIINAACgFTQ2Cndku7YCANAcFp/dDRNvT+xq/8YAcGok2AA4HZ55BMCZNHxkRMasUQ5sCQCgyZgkAUAzkWADAABoJw2TbZcrb3YijgtBAGhVDX/QfYEfSgA0AQk2AO2OyQwAdCXzTi8xv37B+xmb5Va29PruNQkzAHAoy8/r724d5VluABrq1pKN0tLSFBQUJE9PT4WGhmrfvn2Xjc/NzVVoaKg8PT01cOBApaenW8Vs375dQ4cOlYeHh4YOHaqdO3c2e7+GYWjp0qXy8/NT9+7dNX78eB05cqQlXWyx2MyD5gVA2yssOWNe0LV01HMRcDnzTi8xL5fT8LPN4rvFlpjvlkbiG9XItgDaVlucr+A4hSsmmhcAaKjZI9iysrKUkJCgtLQ0jR07Vi+++KKio6N19OhRBQQEWMUXFRVp0qRJmjNnjjZv3qz33ntP8fHx6tevn6ZOnSpJysvLU0xMjH7961/rnnvu0c6dO/XAAw9o//79Gj16dJP3u3LlSq1evVqZmZm6/vrr9cwzz2jChAn69NNP1aNHD3uOU4tc6cszAHRoHfiWs458LgLaUmO3LM1rEGPxzDf3Ve3QKgCNaYvzFTqmxiZL+L6GI5ktbjftwN+7ADSNyTAMozkbjB49WjfffLPWr19vLgsODtaUKVOUkpJiFf/EE0/ojTfe0LFjx8xlcXFx+uijj5SXlydJiomJUXV1tf7+97+bY37yk5/ommuu0datW5u0X8Mw5Ofnp4SEBD3xxBOSpJqaGnl7e2vFihX6+c9/fsW+VVdXy8vLS1VVVerZs2dzDotZwy+1JNgAx2k4TL9VJ0XoSl94WuGLXmt8rtrSUc9FTWHvMeEXczRHkz/zGvsbb/A5EFu70Py64UUhkzjA0drqXNMa2uJ8dSWtcTw413QczGYKOF5TP1ebNYKttrZW+fn5evLJJy3Ko6KidODAAZvb5OXlKSoqyqJs4sSJysjI0Pnz5+Xm5qa8vDwlJiZaxaSmpjZ5v0VFRSorK7PYl4eHh8aNG6cDBw7YTLDV1NSopqbGvF5VVSXp4sFrqdpvzplfn/u2rsX1ALBP9dfnza8b/i02LG9ZxS3/fHA6DY9VC/t96fO0mb/lXFZHPhfZ0trnGs4taI79xyuaFPfi+ndtlv+8/LvtH9V3//b3L/suprb/dz8oVr9873dvPJBps86Pn7vHYn144ne3Ys99Ld/8et3DobYb+8dZtvfRWDk6vbY417SGtjpffV9bXNNwruk49i/7cbO3GX6tl/n1x6eqzK9fbPB5bfEZy+cncFlNPc80K8FWUVGh+vp6eXt7W5R7e3urrKzM5jZlZWU24+vq6lRRUSFfX99GYy7V2ZT9XvqvrZiTJ0/abFtKSoqWLVtmVe7v728zvrk2t0otADqUOdbP5OoS7Oz32bNn5eXldeXAJujI5yJb2vpcA7SOd2yWNu27zHfbWsQ39XNjqe3Phs3xTdi2sX101c/qLq41zzWtoa3OV9/HeQZN1+DzurHPWD4/gUZd6TzTollETSaTxbphGFZlV4r/fnlT6mytmEuSk5OVlJRkXr9w4YL+7//+T3369Gl0m+rqavn7+6ukpKTDDUFvLfTR+XX2/kn00VkYhqGzZ8/Kz8+v1evuyOeihlpyrmlMZ/g30VY4No3j2DSOY9M4Zzo2bXmuaQ1tcb5qiGuatsWxajqOVdNxrJquIxyrpp5nmpVg69u3r1xcXKx+cSkvL7f6peUSHx8fm/Gurq7q06fPZWMu1dmU/fr4+Ei6+KtPw192Ltc2Dw8PeXh4WJT16tXLZuz39ezZs9P/IdBH59fZ+yfRR2fQ2qMJOvK5yBZ7zjWNcfZ/E22JY9M4jk3jODaNc5Zj05FGrl3SVuer7+Oapn1wrJqOY9V0HKumc/Sxasp5pltzKnR3d1doaKhycnIsynNychQREWFzm/DwcKv43bt3KywszPwMgcZiLtXZlP0GBQXJx8fHIqa2tla5ubmNtg0A4Hw68rkIAIBL2up8BQDooIxm2rZtm+Hm5mZkZGQYR48eNRISEoyrr77aOHHihGEYhvHkk08a06dPN8d//vnnxlVXXWUkJiYaR48eNTIyMgw3Nzfj9ddfN8e89957houLi/Hb3/7WOHbsmPHb3/7WcHV1Nd5///0m79cwDOO3v/2t4eXlZezYscP45JNPjIceesjw9fU1qqurm9vNRlVVVRmSjKqqqlars6Ohj86vs/fPMOhjV9eRz0VtiX8TjePYNI5j0ziOTeM4Nq2jLc5XrYH/v03HsWo6jlXTcayazpmOVbMTbIZhGOvWrTMCAwMNd3d34+abbzZyc3PN782cOdMYN26cRfyePXuMm266yXB3dzcGDBhgrF+/3qrOP/3pT8YNN9xguLm5GUOGDDG2b9/erP0ahmFcuHDBePrppw0fHx/Dw8PDuO2224xPPvmkJV1s1Lfffms8/fTTxrffftuq9XYk9NH5dfb+GQZ9RMc9F7Ul/k00jmPTOI5N4zg2jePYtJ62OF/Zi/+/TcexajqOVdNxrJrOmY6VyTA62HzWAAAAAAAAgBNp1jPYAAAAAAAAAFgiwQYAAAAAAADYgQQbAAAAAAAAYAcSbAAAAAAAAIAdSLA1U1pamoKCguTp6anQ0FDt27fP0U1qkpSUFI0aNUo9evRQ//79NWXKFH366acWMYZhaOnSpfLz81P37t01fvx4HTlyxCKmpqZG8+bNU9++fXX11Vfrpz/9qb744ov27EqTpKSkyGQyKSEhwVzWGfp36tQpPfLII+rTp4+uuuoqjRw5Uvn5+eb3nb2PdXV1WrJkiYKCgtS9e3cNHDhQy5cv14ULF8wxztbHvXv3avLkyfLz85PJZNKf//xni/dbqz///e9/NX36dHl5ecnLy0vTp0/XmTNn2rh3aE/Oev5pba3xN9UZtdZ5vjNav369hg8frp49e6pnz54KDw/X3//+d/P7XfW42NLS709wPpxTrmzp0qUymUwWi4+Pj6Ob1SFwLm6aKx2nWbNmWf0bGzNmjGMa62Cd5XsMCbZmyMrKUkJCghYvXqyCggJFRkYqOjpaxcXFjm7aFeXm5mru3Ll6//33lZOTo7q6OkVFRemrr74yx6xcuVKrV6/W2rVrdfDgQfn4+GjChAk6e/asOSYhIUE7d+7Utm3btH//fp07d0533XWX6uvrHdEtmw4ePKgNGzZo+PDhFuXO3r///ve/Gjt2rNzc3PT3v/9dR48e1e9//3v16tXLHOPsfVyxYoXS09O1du1aHTt2TCtXrtTvfvc7vfDCC+YYZ+vjV199pREjRmjt2rU232+t/kybNk2FhYV666239NZbb6mwsFDTp09v8/6hfTjz+ae1tcbfVGfUWuf5zui6667Tb3/7Wx06dEiHDh3S7bffrrvvvtv8pbyrHpfvs+f7E5wL55Smu/HGG1VaWmpePvnkE0c3qUPgXNw0VzpOkvSTn/zE4t9YdnZ2O7aw4+g032MMNNktt9xixMXFWZQNGTLEePLJJx3UopYrLy83JBm5ubmGYRjGhQsXDB8fH+O3v/2tOebbb781vLy8jPT0dMMwDOPMmTOGm5ubsW3bNnPMqVOnjG7duhlvvfVW+3agEWfPnjUGDx5s5OTkGOPGjTMWLFhgGEbn6N8TTzxh3HrrrY2+3xn6eOeddxqPPfaYRdm9995rPPLII4ZhOH8fJRk7d+40r7dWf44ePWpIMt5//31zTF5eniHJ+Oc//9nGvUJ76Eznn9bUkr+prqIl5/mu5JprrjFefvlljsv/z57vT3A+nFOa5umnnzZGjBjh6GZ0eJyLm+b7x8kwDGPmzJnG3Xff7ZD2dHTO+j2GEWxNVFtbq/z8fEVFRVmUR0VF6cCBAw5qVctVVVVJknr37i1JKioqUllZmUX/PDw8NG7cOHP/8vPzdf78eYsYPz8/hYSEdJhjMHfuXN1555264447LMo7Q//eeOMNhYWF6f7771f//v1100036aWXXjK/3xn6eOutt+of//iHPvvsM0nSRx99pP3792vSpEmSOkcfG2qt/uTl5cnLy0ujR482x4wZM0ZeXl4drs9ovs52/mlLTfmb6ipacp7vCurr67Vt2zZ99dVXCg8P57j8/+z5/gTnwjmleY4fPy4/Pz8FBQXpwQcf1Oeff+7oJnV4fG40z549e9S/f39df/31mjNnjsrLyx3dpA7BWb/HuDq6Ac6ioqJC9fX18vb2tij39vZWWVmZg1rVMoZhKCkpSbfeeqtCQkIkydwHW/07efKkOcbd3V3XXHONVUxHOAbbtm3T4cOHdfDgQav3OkP/Pv/8c61fv15JSUlatGiRPvzwQ82fP18eHh6aMWNGp+jjE088oaqqKg0ZMkQuLi6qr6/Xb37zGz300EOSOsf/x4Zaqz9lZWXq37+/Vf39+/fvcH1G83Wm809ba8rfVFfQ0vN8Z/bJJ58oPDxc3377rX7wgx9o586dGjp0qPlLeVc9LpL935/gXDinNN3o0aO1adMmXX/99Tp9+rSeeeYZRURE6MiRI+rTp4+jm9dh8bnRdNHR0br//vsVGBiooqIiPfXUU7r99tuVn58vDw8PRzfPYZz5ewwJtmYymUwW64ZhWJV1dI8//rg+/vhj7d+/3+q9lvSvIxyDkpISLViwQLt375anp2ejcc7aP0m6cOGCwsLC9Oyzz0qSbrrpJh05ckTr16/XjBkzzHHO3MesrCxt3rxZW7Zs0Y033qjCwkIlJCTIz89PM2fONMc5cx9taY3+2IrvyH1G83WG80976erHqrXP853BDTfcoMLCQp05c0bbt2/XzJkzlZuba36/qx6Xtvz+hI6N/6dXFh0dbX49bNgwhYeHa9CgQXr11VeVlJTkwJY5B/6NXVlMTIz5dUhIiMLCwhQYGKg333xT9957rwNb5ljO/D2GW0SbqG/fvnJxcbH6Zae8vNwqi9qRzZs3T2+88YbeffddXXfddebySzPiXK5/Pj4+qq2t1X//+99GYxwlPz9f5eXlCg0Nlaurq1xdXZWbm6s1a9bI1dXV3D5n7Z8k+fr6aujQoRZlwcHB5gfSOvv/Q0n65S9/qSeffFIPPvighg0bpunTpysxMVEpKSmSOkcfG2qt/vj4+Oj06dNW9f/nP//pcH1G83WW8097aMrfVGdnz3m+M3N3d9cPf/hDhYWFKSUlRSNGjNDzzz/f5Y9La3x/gnPhnNJyV199tYYNG6bjx487uikdWlf/XLWHr6+vAgMDu/S/MWf/HkOCrYnc3d0VGhqqnJwci/KcnBxFREQ4qFVNZxiGHn/8ce3YsUPvvPOOgoKCLN4PCgqSj4+PRf9qa2uVm5tr7l9oaKjc3NwsYkpLS/W///u/Dj8GP/7xj/XJJ5+osLDQvISFhenhhx9WYWGhBg4c6NT9k6SxY8daTVX82WefKTAwUJLz/z+UpK+//lrdull+LLm4uOjChQuSOkcfG2qt/oSHh6uqqkoffvihOeaDDz5QVVVVh+szms/Zzz/tqSl/U51Va5znuxLDMFRTU9Plj0trfH+Cc+Gc0nI1NTU6duyYfH19Hd2UDq2rf67ao7KyUiUlJV3y31in+R7TTpMpdArbtm0z3NzcjIyMDOPo0aNGQkKCcfXVVxsnTpxwdNOu6H/+538MLy8vY8+ePUZpaal5+frrr80xv/3tbw0vLy9jx44dxieffGI89NBDhq+vr1FdXW2OiYuLM6677jrj7bffNg4fPmzcfvvtxogRI4y6ujpHdOuyGs6CZRjO378PP/zQcHV1NX7zm98Yx48fN1577TXjqquuMjZv3myOcfY+zpw507j22muNv/3tb0ZRUZGxY8cOo2/fvsavfvUrc4yz9fHs2bNGQUGBUVBQYEgyVq9ebRQUFBgnT55s1f785Cc/MYYPH27k5eUZeXl5xrBhw4y77rqr3fuLtuHM55/W1hp/U51Ra53nO6Pk5GRj7969RlFRkfHxxx8bixYtMrp162bs3r3bMIyue1wa05LvT3AunFOa5he/+IWxZ88e4/PPPzfef/9946677jJ69OjBcTI4FzfV5Y7T2bNnjV/84hfGgQMHjKKiIuPdd981wsPDjWuvvbbLHSfD6DzfY0iwNdO6deuMwMBAw93d3bj55pvN08Z2dJJsLq+88oo55sKFC8bTTz9t+Pj4GB4eHsZtt91mfPLJJxb1fPPNN8bjjz9u9O7d2+jevbtx1113GcXFxe3cm6b5/hfEztC/v/71r0ZISIjh4eFhDBkyxNiwYYPF+87ex+rqamPBggVGQECA4enpaQwcONBYvHixUVNTY45xtj6+++67Nv/2Zs6caRhG6/WnsrLSePjhh40ePXoYPXr0MB5++GHjv//9bzv1Eu3BWc8/ra01/qY6o9Y6z3dGjz32mPlvp1+/fsaPf/xjc3LNMLrucWlMS74/wflwTrmymJgYw9fX13BzczP8/PyMe++91zhy5Iijm9UhcC5umssdp6+//tqIiooy+vXrZ7i5uRkBAQHGzJkzO8x1WXvrLN9jTIZhGG01Og4AAAAAAADo7HgGGwAAAAAAAGAHEmwAAAAAAACAHUiwAQAAAAAAAHYgwQYAAAAAAADYgQQbAAAAAAAAYAcSbAAAAAAAAIAdSLABAAAAAAAAdiDBBnQQS5culclkUkVFxRVjBwwYoFmzZpnXP/vsMy1cuFChoaHq1auXevfurbFjx+r1119vdjv27Nkjk8nUom0BAJ3Dli1blJqa6uhmAAAAOA0SbIAT2rlzp5566inz+u7du/Xmm29q6tSp+tOf/qTXXntNgwcP1v3336/ly5c7sKUAAGdEgg0AAKB5XB3dAADNd9NNN1msP/jgg5o7d65MJpO5LDo6WhUVFVqxYoWeeOIJeXh4tHczAQAAAADoEhjBBtjhz3/+s0wmk/7xj39Yvbd+/XqZTCZ9/PHHkqQPPvhAkydPVp8+feTp6alBgwYpISHBarvTp0/roYcekpeXl7y9vfXYY4+pqqrKIub7t4j27dvXIrl2yS233KKvv/5a//d//9fsvn377bdKSkqSj4+PunfvrnHjxqmgoKDZ9QBAV3fpEQAff/yx7r//fnl5eal3795KSkpSXV2dPv30U/3kJz9Rjx49NGDAAK1cudK8bWZmpkwmk06cOGFR56Xb+ffs2dPkdlyqKycnR48++qh69+6tq6++WpMnT9bnn39ujhs/frzefPNNnTx5UiaTybw0VUFBge666y71799fHh4e8vPz05133qkvvvhCknTixAmZTCZlZmZabWsymbR06VLzuj3HDgAAoD2RYAPscOkC4pVXXrF6LzMzUzfffLOGDx+uXbt2KTIyUsXFxVq9erX+/ve/a8mSJTp9+rTVdlOnTtX111+v7du368knn9SWLVuUmJjYova9++676tevn/r379/sbRctWqTPP/9cL7/8sl5++WV9+eWXGj9+vMVFGACg6R544AGNGDFC27dv15w5c/Tcc88pMTFRU6ZM0Z133qmdO3fq9ttv1xNPPKEdO3a0WTtiY2PVrVs3822gH374ocaPH68zZ85IktLS0jR27Fj5+PgoLy/PvDTFV199pQkTJuj06dNat26dcnJylJqaqoCAAJ09e7bFbe4oxw4AAKAx3CIK2MHV1VWPPPKI1q9fr6qqKnl5eUmSjh07pg8//FAvvPCCJGnu3LkKCAjQBx98IE9PT/P2jz76qFWdsbGx+uUvfylJuuOOO/Svf/1LGzduVEZGRrNGELz88svas2ePnn/+ebm4uDS7b/369dPOnTvN+7z11ls1ePBgpaSk6KWXXmp2fQDQ1f3sZz9TUlKSpIuf77t379batWu1Y8cO3XPPPZIujh7729/+ptdee0333ntvm7QjLCxMGRkZ5vUbb7xRY8eO1bp167R48WINHTpUvXr1koeHh8aMGdOsuv/5z3+qsrJSGRkZuvvuu83lDzzwgF1t7ijHDgAAoDGMYAPs9Nhjj+mbb75RVlaWueyVV16Rh4eHpk2bps8++0z//ve/FRsba5Fca8xPf/pTi/Xhw4fr22+/VXl5eZPb9Pe//11z587Vfffdp3nz5jW9Mw1MmzbNIqEXGBioiIgIvfvuuy2qDwC6urvuustiPTg4WCaTSdHR0eYyV1dX/fCHP9TJkyfbrB0PP/ywxXpERIQCAwNb5fP9hz/8oa655ho98cQTSk9P19GjR+2uU+o4xw4AAKAxJNgAO914440aNWqU+TbR+vp6bd68WXfffbd69+6t//znP5Kk6667rkn19enTx2L90uQE33zzTZO237Vrl+69915NmDBBr732WrNGvTXk4+Njs6yysrJF9QFAV9e7d2+LdXd3d1111VVWP764u7vr22+/bbN2tOXnu5eXl3JzczVy5EgtWrRIN954o/z8/PT000/r/PnzLa63oxw7AACAxpBgA1rBo48+qvfff1/Hjh3TW2+9pdLSUvPtn/369ZMk88Od29KuXbs0ZcoUjRs3Ttu3b5e7u3uL6yorK7NZ9v0EIACg7VxKINXU1FiUV1RUtLjOtv58HzZsmLZt26bKykoVFhYqJiZGy5cv1+9//3tJjfeJH3AAAIAzI8EGtIKHHnpInp6eyszMVGZmpq699lpFRUVJkq6//noNGjRIGzdutLqYaE27d+/WlClTdOutt+rPf/6zeeRbS23dulWGYZjXT548qQMHDmj8+PF2thQA0FQDBgyQJPOM1Je88cYbLa7ztddes1g/cOCATp48afH57uHh0eSR040xmUwaMWKEnnvuOfXq1UuHDx+WJHl7e8vT09OqT3/5y1/s2h8AAIAjMckB0Ap69eqle+65R5mZmTpz5owWLlyobt2+y1+vW7dOkydP1pgxY5SYmKiAgAAVFxdr165dVhc6LbF//35NmTJFPj4+WrRokQoLCy3eHzp0qHr27NmsOsvLy3XPPfdozpw5qqqq0tNPPy1PT08lJyfb3V4AQNOMGjVKN9xwgxYuXKi6ujpdc8012rlzp/bv39/iOg8dOqTZs2fr/vvvV0lJiRYvXqxrr71W8fHx5phhw4Zpx44dWr9+vUJDQ9WtWzeFhYVdse6//e1vSktL05QpUzRw4EAZhqEdO3bozJkzmjBhgqSLibdHHnlEGzdu1KBBgzRixAh9+OGH2rJlS4v7BAAA4Ggk2IBW8uijj2rr1q2SpFmzZlm8N3HiRO3du1fLly/X/Pnz9e233+q6666zmtCgpd5++2198803OnHihG6//Xar9999991mjzx79tlndfDgQT366KOqrq7WLbfcom3btmnQoEGt0mYAwJW5uLjor3/9qx5//HHFxcXJw8NDDz74oNauXas777yzRXVmZGToD3/4gx588EHV1NToRz/6kZ5//nmL55wtWLBAR44c0aJFi1RVVSXDMCxGNTdm8ODB6tWrl1auXKkvv/xS7u7uuuGGG5SZmamZM2ea4y7dLrpy5UqdO3dOt99+u/72t7+ZR+wBAAA4G5PRlG9LAAAAcGqZmZl69NFHdfDgwSaNRgMAAEDT8Qw2AAAAAAAAwA7cIgp0EYZhqL6+/rIxLi4uMplM7dQiAEBraOrnu73q6+sve5uoyWRqlf0AAAA4I0awAV1Ebm6u3NzcLru8+uqrjm4mAKCZXn311St+vufm5mrWrFkyDKPFt4f++Mc/vuw+eEYnAADoyngGG9BFnD17Vp9++ullY4KCgtSnT592ahEAoDVUVlaqqKjosjE33HCDevToYdd+Pv30U509e7bR9z08PDRs2DC79gEAAOCsSLABAAAAAAAAduAWUQAAAAAAAMAOTHLQwIULF/Tll1+qR48ePOgdAFqBYRg6e/as/Pz81K0bv+lInGsAoLVxrgEAdAQk2Br48ssv5e/v7+hmAECnU1JSouuuu87RzegQONcAQNvgXAMAcCQSbA1cevhvSUmJevbs6eDWAIDzq66ulr+/v90PV+9MONcAQOviXAMA6AhIsDVw6Vadnj17ctEDAK2IWyG/w7kGANoG5xoAgCPxkAIAAAAAAADADiTYAAAAAAAAADuQYAMAAAAAAADsQIINAAAAAAAAsAMJNgAAAAAAAMAOJNgAAAAAAAAAO5BgAwAAAAAAAOxAgg0AAAAAAACwAwk2AAAAAAAAwA6ujm5AVxebedBiPWPWKAe1BADQFTQ873DOAQAAAFoHI9gAAJ1WWlqagoKC5OnpqdDQUO3bt++y8bm5uQoNDZWnp6cGDhyo9PT0RmO3bdsmk8mkKVOmtHKr28CWmO8WAAAAAK2OBBsAoFPKyspSQkKCFi9erIKCAkVGRio6OlrFxcU244uKijRp0iRFRkaqoKBAixYt0vz587V9+3ar2JMnT2rhwoWKjIxs624AAAAAcAIk2AAAndLq1asVGxur2bNnKzg4WKmpqfL399f69ettxqenpysgIECpqakKDg7W7Nmz9dhjj2nVqlUWcfX19Xr44Ye1bNkyDRw4sD26AgAAAKCDc2iCrS1u3Tlz5ozmzp0rX19feXp6Kjg4WNnZ2W3VBQBAB1RbW6v8/HxFRUVZlEdFRenAgQM2t8nLy7OKnzhxog4dOqTz58+by5YvX65+/fopNja29RsOAAAAwCk5bJKDS7fupKWlaezYsXrxxRcVHR2to0ePKiAgwCr+0q07c+bM0ebNm/Xee+8pPj5e/fr109SpUyVdvKCaMGGC+vfvr9dff13XXXedSkpK1KNHj/buHgDAgSoqKlRfXy9vb2+Lcm9vb5WVldncpqyszGZ8XV2dKioq5Ovrq/fee08ZGRkqLCxscltqampUU1NjXq+urm56RwAAAAA4BYcl2BreuiNJqamp2rVrl9avX6+UlBSr+Ia37khScHCwDh06pFWrVpkTbBs3btT//d//6cCBA3Jzc5MkBQYGtk+HAAAdjslkslg3DMOq7Erxl8rPnj2rRx55RC+99JL69u3b5DakpKRo2bJlzWg1AAAAAGfjkFtE2+rWnTfeeEPh4eGaO3euvL29FRISomeffVb19fVt0xEAQIfUt29fubi4WI1WKy8vtxqldomPj4/NeFdXV/Xp00f//ve/deLECU2ePFmurq5ydXXVpk2b9MYbb8jV1VX//ve/bdabnJysqqoq81JSUtI6nQQAAADQYThkBFtb3brz+eef65133tHDDz+s7OxsHT9+XHPnzlVdXZ3+3//7f1Z1ctsOAHRO7u7uCg0NVU5Oju655x5zeU5Oju6++26b24SHh+uvf/2rRdnu3bsVFhYmNzc3DRkyRJ988onF+0uWLNHZs2f1/PPPy9/f32a9Hh4e8vDwsLNHAAAAADoyh90iKrXurTuSdOHCBfXv318bNmyQi4uLQkND9eWXX+p3v/udzQQbt+0AQOeVlJSk6dOnKywsTOHh4dqwYYOKi4sVFxcn6eLIslOnTmnTpk2SpLi4OK1du1ZJSUmaM2eO8vLylJGRoa1bt0qSPD09FRISYrGPXr16SZJVOQAAAICuxSEJtra4dUeSfH195ebmJhcXF3NMcHCwysrKVFtbK3d3d4vtk5OTlZSUZF6vrq5udAQCAMC5xMTEqLKyUsuXL1dpaalCQkKUnZ1tfjZnaWmpiouLzfFBQUHKzs5WYmKi1q1bJz8/P61Zs8b8nE8AAAAAaIxDEmxtceuOJI0dO1ZbtmzRhQsX1K3bxcfLffbZZ/L19bVKrknctgMAnV18fLzi4+NtvpeZmWlVNm7cOB0+fLjJ9duqAwAAAEDX45BJDqSLt+68/PLL2rhxo44dO6bExESrW3dmzJhhjo+Li9PJkyeVlJSkY8eOaePGjcrIyNDChQvNMf/zP/+jyspKLViwQJ999pnefPNNPfvss5o7d2679w8AAAAAAABdg8OewdYWt+74+/tr9+7dSkxM1PDhw3XttddqwYIFeuKJJ9q9fwAAAAAAAOgaTMalmQKg6upqeXl5qaqqSj179myXfcZmHrRYz5g1ql32CwDtwRGfqx1dux2TLTE2iwtLzphfv+D9jPk15x8AzopzDQCgI3DoLKIAAMBx5p1e0mBtl8PaAQAAADg7hz2DDQAAAAAAAOgMSLABAAAAAAAAdiDBBgAAAAAAANiBZ7ABANDJNZzYAAAAAEDrYwQbAAAAAAAAYAcSbAAAAAAAAIAdSLABAAAAAAAAdiDBBgAAAAAAANiBBBsAAAAAAABgBxJsAAAAAAAAgB1IsAEAAAAAAAB2cHV0AwAAQMcSm3nQ/Dpj1igHtgQAAABwDoxgAwAAAAAAAOxAgg0AAAAAAACwAwk2AAAAAAAAwA4k2AAAAAAAAAA7kGADAAAAAAAA7MAsogAAwGLmUAAAAADNQ4INAABo3ukl5tcveD/jwJYAAAAAzocEGwAAaFTDkW0Zs0Y5sCUAAABAx8Uz2AAAAAAAAAA7MIKto9kS893raVmOawcAAAAAAACahBFsAAAAAAAAgB1IsAEAAAAAAAB2IMEGAAAAAAAA2IFnsDlCw+esaaHDmgEAAAAAAAD7OXQEW1pamoKCguTp6anQ0FDt27fvsvG5ubkKDQ2Vp6enBg4cqPT0dIv3MzMzZTKZrJZvv/22LbsBAAAAAACALsxhCbasrCwlJCRo8eLFKigoUGRkpKKjo1VcXGwzvqioSJMmTVJkZKQKCgq0aNEizZ8/X9u3b7eI69mzp0pLSy0WT0/P9uhSqygsOWNeAAAAAAAA0PE57BbR1atXKzY2VrNnz5YkpaamateuXVq/fr1SUlKs4tPT0xUQEKDU1FRJUnBwsA4dOqRVq1Zp6tSp5jiTySQfH5926QMAAAAAAADgkBFstbW1ys/PV1RUlEV5VFSUDhw4YHObvLw8q/iJEyfq0KFDOn/+vLns3LlzCgwM1HXXXae77rpLBQUFjbajpqZG1dXVFgsAAAAAAADQHA4ZwVZRUaH6+np5e3tblHt7e6usrMzmNmVlZTbj6+rqVFFRIV9fXw0ZMkSZmZkaNmyYqqur9fzzz2vs2LH66KOPNHjwYKs6U1JStGzZstbrWAvMO73EofsHAHQiFpPoAAAAAGgvDp3kwGQyWawbhmFVdqX4huVjxozRI488ohEjRigyMlJ//OMfdf311+uFF16wWV9ycrKqqqrMS0lJiT3dAQAAAAAAQBfkkBFsffv2lYuLi9VotfLycqtRapf4+PjYjHd1dVWfPn1sbtOtWzeNGjVKx48ft/m+h4eHPDw8WtADAAAAAAAA4CKHjGBzd3dXaGiocnJyLMpzcnIUERFhc5vw8HCr+N27dyssLExubm42tzEMQ4WFhfL19W2dhre3LTHfLQAAAAAAAOiQHDaLaFJSkqZPn66wsDCFh4drw4YNKi4uVlxcnKSLt2+eOnVKmzZtkiTFxcVp7dq1SkpK0pw5c5SXl6eMjAxt3brVXOeyZcs0ZswYDR48WNXV1VqzZo0KCwu1bt06h/QRAID2VFhyxvx6pH8vh7UDAAAA6GoclmCLiYlRZWWlli9frtLSUoWEhCg7O1uBgYGSpNLSUhUXF5vjg4KClJ2drcTERK1bt05+fn5as2aNpk6dao45c+aMfvazn6msrExeXl666aabtHfvXt1yyy3t3j8AAAAAAAB0DQ5LsElSfHy84uPjbb6XmZlpVTZu3DgdPny40fqee+45Pffcc63VPAAAAAAAAOCKHDqLKAAAAAAAAODsHDqCDQAAdDzzTi8xv37B+xkHtgQAAABwDoxgAwAAAAAAAOxAgg0AAAAAAACwAwk2AAAAAAAAwA4k2BygsOSMeQEAtJ20tDQFBQXJ09NToaGh2rdv32Xjc3NzFRoaKk9PTw0cOFDp6ekW7+/YsUNhYWHq1auXrr76ao0cOVJ/+MMf2rILAAAAAJwACTYAQKeUlZWlhIQELV68WAUFBYqMjFR0dLSKi4ttxhcVFWnSpEmKjIxUQUGBFi1apPnz52v79u3mmN69e2vx4sXKy8vTxx9/rEcffVSPPvqodu3a1V7dAgAAANABkWADAHRKq1evVmxsrGbPnq3g4GClpqbK399f69evtxmfnp6ugIAApaamKjg4WLNnz9Zjjz2mVatWmWPGjx+ve+65R8HBwRo0aJAWLFig4cOHa//+/e3VLQAAAAAdkKujG4DGNbyFdKTDWgEAzqe2tlb5+fl68sknLcqjoqJ04MABm9vk5eUpKirKomzixInKyMjQ+fPn5ebmZvGeYRh655139Omnn2rFihWt2wEnEJt50GI9Y9YoB7UEAAAAcDwSbACATqeiokL19fXy9va2KPf29lZZWZnNbcrKymzG19XVqaKiQr6+vpKkqqoqXXvttaqpqZGLi4vS0tI0YcKERttSU1Ojmpoa83p1dXVLuwUAAACggyLBBgDotEwmk8W6YRhWZVeK/355jx49VFhYqHPnzukf//iHkpKSNHDgQI0fP95mnSkpKVq2bFkLewAAAADAGZBgc0INb8vhlhwAsNa3b1+5uLhYjVYrLy+3GqV2iY+Pj814V1dX9enTx1zWrVs3/fCHP5QkjRw5UseOHVNKSkqjCbbk5GQlJSWZ16urq+Xv79+SbjULM1UDAAAA7YdJDgAAnY67u7tCQ0OVk5NjUZ6Tk6OIiAib24SHh1vF7969W2FhYVbPX2vIMAyLW0C/z8PDQz179rRYAAAAAHQujGADAHRKSUlJmj59usLCwhQeHq4NGzaouLhYcXFxki6OLDt16pQ2bdokSYqLi9PatWuVlJSkOXPmKC8vTxkZGdq6dau5zpSUFIWFhWnQoEGqra1Vdna2Nm3a1OjMpAAAAAC6BhJsAIBOKSYmRpWVlVq+fLlKS0sVEhKi7OxsBQYGSpJKS0tVXFxsjg8KClJ2drYSExO1bt06+fn5ac2aNZo6dao55quvvlJ8fLy++OILde/eXUOGDNHmzZsVExPT7v0DAAAA0HGQYAMAdFrx8fGKj4+3+V5mZqZV2bhx43T48OFG63vmmWf0zDPPtFbznE7DZ4ACAAAA+A4JNifHhAcAgLY07/QS8+sXvLtuchEAAAC4HCY5AAAAAAAAAOzACLb2soXn8wAAAAAAAHRGjGADAAAAAAAA7MAINmdhMQJuocOaAQAAAAAAAEuMYAMAAAAAAADsQIINAAAAAAAAsAMJNgAAAAAAAMAOPIOtnRSWnHF0EwAAAAAAANAGSLA5CYsEnbfDmgEAAAAAAIDvcegtomlpaQoKCpKnp6dCQ0O1b9++y8bn5uYqNDRUnp6eGjhwoNLT0xuN3bZtm0wmk6ZMmdLKrQYAAAAAAAC+47AEW1ZWlhISErR48WIVFBQoMjJS0dHRKi4uthlfVFSkSZMmKTIyUgUFBVq0aJHmz5+v7du3W8WePHlSCxcuVGRkZFt3AwCALmPe6SXmBQAAAMB3HJZgW716tWJjYzV79mwFBwcrNTVV/v7+Wr9+vc349PR0BQQEKDU1VcHBwZo9e7Yee+wxrVq1yiKuvr5eDz/8sJYtW6aBAwe2R1cAAAAAAADQhTkkwVZbW6v8/HxFRUVZlEdFRenAgQM2t8nLy7OKnzhxog4dOqTz58+by5YvX65+/fopNjb2iu2oqalRdXW1xeIMGEEAAAAAAADQcTgkwVZRUaH6+np5e1s+rd/b21tlZWU2tykrK7MZX1dXp4qKCknSe++9p4yMDL300ktNakdKSoq8vLzMi7+/fwt6AwAAAAAAgK7MoZMcmEwmi3XDMKzKrhR/qfzs2bN65JFH9NJLL6lv375N2n9ycrKqqqrMS0lJSTN7AAAAAAAAgK7O1RE77du3r1xcXKxGq5WXl1uNUrvEx8fHZryrq6v69OmjI0eO6MSJE5o8ebL5/QsXLkiSXF1d9emnn2rQoEEW23t4eMjDw6M1ugQAAAAAAIAuyiEj2Nzd3RUaGqqcnByL8pycHEVERNjcJjw83Cp+9+7dCgsLk5ubm4YMGaJPPvlEhYWF5uWnP/2pfvSjH6mwsJDbPwEAAAAAANAmHDKCTZKSkpI0ffp0hYWFKTw8XBs2bFBxcbHi4uIkXbx989SpU9q0aZMkKS4uTmvXrlVSUpLmzJmjvLw8ZWRkaOvWrZIkT09PhYSEWOyjV69ekmRVDgAAAAAAALQWhyXYYmJiVFlZqeXLl6u0tFQhISHKzs5WYGCgJKm0tFTFxcXm+KCgIGVnZysxMVHr1q2Tn5+f1qxZo6lTpzqqCwAAAAAAAIDjEmySFB8fr/j4eJvvZWZmWpWNGzdOhw8fbnL9tuoAAAAAAAAAWpNDZxEFAAAAAAAAnJ1DR7DBfvNOL2mwtsth7QAAAAAAAOiqGMEGAAAAAAAA2IEEGwAAAAAAAGAHEmwAAAAAAACAHXgGWydSuGKi+fXIJ3geGwAAAAAAQHsgwQYAAJrNcpIdiYl2AAAA0JWRYAMAAPbbEvPd62lZjmsHAAAA4AA8gw0AAAAAAACwAwk2AAAAAAAAwA4k2AAAAAAAAAA7kGADAAAAAAAA7ECCDQAAAAAAALADCTYAAAAAAADADq6ObgDayJaY715Py3JcOwAAAAAAADo5RrABAAAAAAAAdiDBBgAAAAAAANiBBBsAAAAAAABgBxJsAAAAAAAAgB1IsAEAAAAAAAB2YBZRAADQqmIzD5pfZ8wa5cCWAAAAAO2DEWwAAAAAAACAHUiwAQAAAAAAAHbgFlEAANCq5p1e0mBtl8PaAQAAALQXEmydVGHJGfPrkQ5rBQAAAAAAQOfHLaJtKDbzoHkBALS/tLQ0BQUFydPTU6Ghodq3b99l43NzcxUaGipPT08NHDhQ6enpFu+/9NJLioyM1DXXXKNrrrlGd9xxhz788MO27MLlbYmxXAAAAAA4hEMTbK194bNjxw6FhYWpV69euvrqqzVy5Ej94Q9/aMsuAAA6qKysLCUkJGjx4sUqKChQZGSkoqOjVVxcbDO+qKhIkyZNUmRkpAoKCrRo0SLNnz9f27dvN8fs2bNHDz30kN59913l5eUpICBAUVFROnXqVHt1CwAAAEAH5LAEW1tc+PTu3VuLFy9WXl6ePv74Yz366KN69NFHtWsXz38BgK5m9erVio2N1ezZsxUcHKzU1FT5+/tr/fr1NuPT09MVEBCg1NRUBQcHa/bs2Xrssce0atUqc8xrr72m+Ph4jRw5UkOGDNFLL72kCxcu6B//+Ed7dQsAAABAB+SwBFtbXPiMHz9e99xzj4KDgzVo0CAtWLBAw4cP1/79+9urWwCADqC2tlb5+fmKioqyKI+KitKBAwdsbpOXl2cVP3HiRB06dEjnz5+3uc3XX3+t8+fPq3fv3q3TcAAAAABOySEJtva48DEMQ//4xz/06aef6rbbbmu9xgMAOryKigrV19fL29vbotzb21tlZWU2tykrK7MZX1dXp4qKCpvbPPnkk7r22mt1xx13NNqWmpoaVVdXWywAAAAAOheHzCLaFhc+vr6+kqSqqipde+21qqmpkYuLi9LS0jRhwgSbddbU1Kimpsa8zkUPAHQuJpPJYt0wDKuyK8XbKpeklStXauvWrdqzZ488PT0brTMlJUXLli1rTrMBAAAAOBmHTnLQFhc+PXr0UGFhoQ4ePKjf/OY3SkpK0p49e2zWl5KSIi8vL/Pi7+/fwp4AADqSvn37ysXFxepHm/Lycqsfay7x8fGxGe/q6qo+ffpYlK9atUrPPvusdu/ereHDh1+2LcnJyaqqqjIvJSUlLegRAAAAgI7MIQm2trzw6datm374wx9q5MiR+sUvfqH77rtPKSkpNuvkogcAOid3d3eFhoYqJyfHojwnJ0cRERE2twkPD7eK3717t8LCwuTm5mYu+93vfqdf//rXeuuttxQWFnbFtnh4eKhnz54WCwAAAIDOxSEJtra88Pk+wzAsbgNtiIseAOi8kpKS9PLLL2vjxo06duyYEhMTVVxcrLi4OEkXf2SZMWOGOT4uLk4nT55UUlKSjh07po0bNyojI0MLFy40x6xcuVJLlizRxo0bNWDAAJWVlamsrEznzp1r9/4BAAAA6Dgc8gw26eKFz/Tp0xUWFqbw8HBt2LDB6sLn1KlT2rRpk6SLFz5r165VUlKS5syZo7y8PGVkZGjr1q3mOlNSUhQWFqZBgwaptrZW2dnZ2rRpU6MzkwIAOq+YmBhVVlZq+fLlKi0tVUhIiLKzsxUYGChJKi0tVXFxsTk+KChI2dnZSkxM1Lp16+Tn56c1a9Zo6tSp5pi0tDTV1tbqvvvus9jX008/raVLl7ZLvwAAAAB0PA5LsLXFhc9XX32l+Ph4ffHFF+revbuGDBmizZs3KyYmpt37BwBwvPj4eMXHx9t8LzMz06ps3LhxOnz4cKP1nThxopVaBgAAAKAzcViCTWr9C59nnnlGzzzzTGs1DwAAAAAAALgih84iCgAAAAAAADg7h45gAwAAnUNhyRlHNwEAAABwGEawAQAAAAAAAHZgBFtXsKXBJA/TshzXDgBA18M5CAAAAF0ACTYAANBmGt46OtJhrQAAAADaFgk2AACcFM89AwAAADoGnsEGAAAAAAAA2IERbG1o3ukljm4CAAAAAAAA2hgj2AAAAAAAAAA7MIKtq2k4m5vEjG4AAAAAAAB2IsEGAADaRWzmQfPrjFmjHNgSAAAAoHVxiygAAAAAAABgBxJsAAAAAAAAgB24RbSLKSw5Y7E+0iGtAAAAAAAA6DwYwQYAAAAAAADYgQQbAAAAAAAAYAduEYVNzPQGAAAA4P9r7/6Dqqzzv4+/SH6Vlj+TH6WIVpNFmR5cF4ts2hbD2qzYoh+rda8yN2upSM34K8e03bBivR1XkeymzCmVe1Zta6IUd5XVlUYFbE0bcycKl0AGN8XNb4D6uf9oPHI8BzhwDue6DjwfM9fMOZ/rc128r7fXOZe8+VzXBwDgHQpsAAAg8DakX3r9VKF1cQAAAAB+wC2iAAAAAAAAgA8YwdYDXD5zKAAAAAAAAPyHEWwAAAAAAACADyiwAQAAAAAAAD6gwAYAAAAAAAD4gGew9XTM4gYACJCZJ1669GZIP8viAAAAAPyNEWwAAAAAAACADyiwAQAAAAAAAD6gwAYAAAAAAAD4wNICW15enuLj4xUZGSmHw6Hdu3e32b+kpEQOh0ORkZEaPny48vPzXda/9dZbSk5OVv/+/dW/f3/dd9992rdvX1ceQo82bd1+5wIAAAAAANBTWVZgKywsVFZWlhYuXKiKigolJycrNTVVVVVVHvtXVlZq0qRJSk5OVkVFhRYsWKBZs2Zp8+bNzj67du3Sk08+qZ07d6q0tFRDhw5VSkqKqqurA3VYAADAT/hDDgAAAIKFZbOILl++XNOmTdP06dMlSStWrNC2bdu0Zs0a5eTkuPXPz8/X0KFDtWLFCknSyJEjdeDAAeXm5iotLU2S9P7777ts89Zbb+nPf/6z/vrXv2rq1Klde0BB6uDxU87Xd1gWBQAAAAAAQPCypMDW1NSksrIyzZs3z6U9JSVFe/fu9bhNaWmpUlJSXNomTpyogoICNTc3KywszG2bs2fPqrm5WQMGDPC4z8bGRjU2NjrfNzQ0dPRQuhVGCAAAAAAAAHScJQW2+vp6nT9/XlFRUS7tUVFRqq2t9bhNbW2tx/7nzp1TfX29YmJi3LaZN2+errvuOt13330e95mTk6MlS5Z08ii6n5knXnK+/lPU7y2MBADQo2xIv/T6qULr4gAAAAA6ydJJDkJCQlzeG2Pc2trr76ldkl5//XVt3LhRW7ZsUWRkpMf9zZ8/X6dPn3Yux48f7+ghAAAAAAAAoIezZATboEGD1KtXL7fRanV1dW6j1C6Kjo722D80NFQDBw50ac/NzdWrr76qHTt26Pbbb281joiICEVERHTyKAAAAAAAAACLRrCFh4fL4XCouLjYpb24uFjjx4/3uE1SUpJb/+3btysxMdHl+WtvvPGGXnnlFX366adKTEz0f/A93Yb0SwsAAAAAAACsm0U0OztbU6ZMUWJiopKSkrR27VpVVVUpMzNT0k+3b1ZXV2v9+vWSpMzMTK1atUrZ2dnKyMhQaWmpCgoKtHHjRuc+X3/9dS1atEgbNmzQsGHDnCPe+vTpoz59+gT+IAEAgEcus1gP6WdZHAAAAIA/WFZgS09P18mTJ7V06VLV1NQoISFBRUVFiouLkyTV1NSoqqrK2T8+Pl5FRUWaM2eOVq9erdjYWK1cuVJpaWnOPnl5eWpqatKvf/1rl5+1ePFivfzyywE5LgAAAAAAAPQslhXYJGnGjBmaMWOGx3Xr1q1za5swYYLKy8tb3d8333zjp8gAAAAAAAAA71g6iygAAAAAAAAQ7CwdwQYAAODyPDbLogAAAAA6jxFsAAAAAAAAgA8YwYYOaTnKYKZearFmW8BjAQB0P9PW7bc6BAAAAKDDGMEGAAAAAAAA+IACGwAAAAAAAOADbhGFRzNPtLj9c0M/y+IAAAAAAACwO0awoV0Hj59yLgAumbZuv3Ppiv7wXV5enuLj4xUZGSmHw6Hdu3e32b+kpEQOh0ORkZEaPny48vPzXdYfPnxYaWlpGjZsmEJCQrRixYoujB4AAABAsKDABgDolgoLC5WVlaWFCxeqoqJCycnJSk1NVVVVlcf+lZWVmjRpkpKTk1VRUaEFCxZo1qxZ2rx5s7PP2bNnNXz4cC1btkzR0dGBOpQeZeaJl5wLAAAAECy4RRQAglzLEXEFz461MBJ7Wb58uaZNm6bp06dLklasWKFt27ZpzZo1ysnJceufn5+voUOHOkeljRw5UgcOHFBubq7S0tIkSWPHjtXYsT/leN68eYE5EAAAAAC2xwg2+MeG9EsLAFisqalJZWVlSklJcWlPSUnR3r17PW5TWlrq1n/ixIk6cOCAmpubOx1LY2OjGhoaXBYAAAAA3QsFNvgFz2kDYCf19fU6f/68oqKiXNqjoqJUW1vrcZva2lqP/c+dO6f6+vpOx5KTk6O+ffs6lyFDhnR6XwAAAADsiQIbAKDbCgkJcXlvjHFra6+/p/aOmD9/vk6fPu1cjh8/3ul9AQAAALAnnsGGbuvymRp5NhXQcwwaNEi9evVyG61WV1fnNkrtoujoaI/9Q0NDNXDgwE7HEhERoYiIiE5vDwAAAMD+GMEGAOh2wsPD5XA4VFxc7NJeXFys8ePHe9wmKSnJrf/27duVmJiosLCwLosVAAAAQPBjBBus03JChKcKrYsDCBLMFtox2dnZmjJlihITE5WUlKS1a9eqqqpKmZmZkn66dbO6ulrr16+XJGVmZmrVqlXKzs5WRkaGSktLVVBQoI0bNzr32dTUpCNHjjhfV1dX6+DBg+rTp49uuOGGwB9kNzfzxEst3m2zLA4AAACgPRTYAHQKxR7YXXp6uk6ePKmlS5eqpqZGCQkJKioqUlxcnCSppqZGVVVVzv7x8fEqKirSnDlztHr1asXGxmrlypVKS0tz9vnuu+80evRo5/vc3Fzl5uZqwoQJ2rVrV8CODQAAAIC9UGDzs5ZFh5kWxmEbLUepSYxUAxBQM2bM0IwZMzyuW7dunVvbhAkTVF5e3ur+hg0b5pz4AAAAAAAu4hlsAAAAAAAAgA8YwQYAl2EGWgAAAABAR1Bggz0w4QEAoC08cgAAAAA2RoENCDAmBwAAAAAAoHuhwAb/u3yUQSsOHj/lfH3HkH5dEwsAoPtjFDQAAAAsRoENaIlf0lww2q5n4N8ZAAAAAHxDgQ1A4FHIBDqtZUF0poVxBFrLUc+SdIclUQAAAACeUWBDYHl5+2iX/2yKOhAjtwAAAAAA/nGFlT88Ly9P8fHxioyMlMPh0O7du9vsX1JSIofDocjISA0fPlz5+fku6w8fPqy0tDQNGzZMISEhWrFiRRdGD/hu2rr9zgUAvDHzxEvOBQAAAIA9WFZgKywsVFZWlhYuXKiKigolJycrNTVVVVVVHvtXVlZq0qRJSk5OVkVFhRYsWKBZs2Zp8+bNzj5nz57V8OHDtWzZMkVHRwfqUOAHB4+fci4AALRrQ/qlBQAAALCYZbeILl++XNOmTdP06dMlSStWrNC2bdu0Zs0a5eTkuPXPz8/X0KFDnaPSRo4cqQMHDig3N1dpaWmSpLFjx2rs2J9u85o3b15gDgQAAAQcM1EDAADATiwpsDU1NamsrMytCJaSkqK9e/d63Ka0tFQpKSkubRMnTlRBQYGam5sVFhbWZfGiY9r6pcerEWo8K617YpSJbbnearjNsjgAAAAAIFhZUmCrr6/X+fPnFRUV5dIeFRWl2tpaj9vU1tZ67H/u3DnV19crJiamw3E0NjaqsbHR+b6hoaHD+wC6RHcpMlJUAwAAAAD0AJbOIhoSEuLy3hjj1tZef0/t3srJydGSJUs6tS26J5fRd5ZFAb+zScEy0CPFmCUVAAAAAALDkgLboEGD1KtXL7fRanV1dW6j1C6Kjo722D80NFQDBw7sVBzz589Xdna2831DQ4OGDBnSqX0hAGxSJHHhz5gCPNqrteJLt5/R1CXPL1oWBoAuYsdrBQAAALo9Swps4eHhcjgcKi4u1iOPPOJsLy4u1uTJkz1uk5SUpI8++silbfv27UpMTOz089ciIiIUERHRqW1hHy6FovDcFmvsWTxpOYrpT1G/7/R+Li+EtVYkY+SSxTpROO2Sfz+KDujGmPAAAAAAVrPsFtHs7GxNmTJFiYmJSkpK0tq1a1VVVaXMzExJP40uq66u1vr16yVJmZmZWrVqlbKzs5WRkaHS0lIVFBRo48aNzn02NTXpyJEjztfV1dU6ePCg+vTpoxtuuCHwB4lO8eo2zQCMQuqpRSp/FQAtEeAikr9u+fTnqMFuPwIR8AcKzgAAAPAzywps6enpOnnypJYuXaqamholJCSoqKhIcXFxkqSamhpVVVU5+8fHx6uoqEhz5szR6tWrFRsbq5UrVyotLc3Z57vvvtPo0aOd73Nzc5Wbm6sJEyZo165dATs2XOLVrKFtbf/aROfr1kYluBQ57DpyoZVRTEER+0Vux9Cxwma3H2Hix1/YbTOrJ0UIBLsW5/C0pkvfWQXhVgQDAACA7szSSQ5mzJihGTNmeFy3bt06t7YJEyaovLy81f0NGzbMOfEB4K2WI35mdrB/d/8lLSAFwNaKOG3dWtkdij02fRZcTzq/AQAAAMBfLC2wAZ3lzcg411FA0sEWr+/w4mf4OoqoSwoVbRRlbHNrYIAna+hJXM7JDf1arHnRY5+gu8UX8DOXa4XnOZQAAAAAv6DAhh7v8kJcp/l4C2VHtRV3wAsr3b2o1sFbJRkFBljH10cTAAAAAJ1Bgc3P/FasAXxgm2d4ISA6/L3T3QuiAAAAABBgFNjQrTByoZPsUnDxMQ6vZqDtQTrzDL2gmngDAAAAAGyCAht6pI5ObGCpFkWnThUQu+FMkC63YD47tst/HoU7AAAAAEBbKLABXjj42sRLb1o838yl8OLjaJ/W9uXPUXm2mQjBQt489DwYbvVmtCYAAAAA2AcFNgC2Kdb4s2DZYd7enmqX22kBAAAAALZBgQ1Bwy5FIG/Z8VlWLWPq6Eyjl+d/pto/Pn/9m7ntp5WRZx3VmX+jYDsPAQAAAABdjwIb0EHBcPtgS60VhKw8Dm9GqnlbyGr1eXpBNNKszX+LIDoOAAAAAOipKLABAcCop9YFIjfk3xX5QE/HxCUAAADwNwps6JG6YvRWTy5aWPrstFZY+e9hx9uDAbQv0DMUAwAAoPu4wuoAAAAAAAAAgGDGCDbAhnryaDhv+DJZAwB0SsvnIT5VaF0cAAAAsCUKbACgwBc1KaICgdXqowFcJhJ50fmq5e2iklQQ3gVBAQAAoNugwAYgqNl9VlcKaUBwcvtu4XmKAAAAaAMFNgB+RUEJQLCye8EeAAAA9kWBDQD8wO6FRbvHB9idy2zJlkUBAAAAu6LABgAAeqxOFZ+9mfDAiz4tn/NW8OzYjscBAAAA27jC6gAAAAAAAACAYMYINgCAR9wSB3jm8tlwmYUUAAAAPRUFNgAAgE5yKbYx0ygAAECPRYENAGyMyQkAAAAAwP54BhsAAAAAAADgA0awAQAA+EFrI07vCGgUAAAAsAIFNgAAgC40bd1+5+uCZ8daGAkAAAC6CgU2AACAAGlZbGurvcOFuJazmT5V2NGwAAAA4CMKbAAAAF1o5omXnK//FPV7j+1uNvS79JqCGQAAgO1ZOslBXl6e4uPjFRkZKYfDod27d7fZv6SkRA6HQ5GRkRo+fLjy8/Pd+mzevFm33HKLIiIidMstt2jr1q1dFT4AwOa4zsBuZp54ybm05eDxU85l2rr9zkUb0i8trfRvVSvbAgAAwHeWjWArLCxUVlaW8vLydOedd+rNN99Uamqqjhw5oqFDh7r1r6ys1KRJk5SRkaH33ntP//jHPzRjxgxde+21SktLkySVlpYqPT1dr7zyih555BFt3bpVjz/+uPbs2aNx48YF+hABABbiOoPuqGUB7U8tbiud2aKPyzPfwnMDEBUAAABCjDHGih88btw4jRkzRmvWrHG2jRw5Ug8//LBycnLc+s+dO1cffvihvvzyS2dbZmamPv/8c5WWlkqS0tPT1dDQoE8++cTZ5/7771f//v21cePGdmNqaGhQ3759dfr0aV1zzTWdOq6Dr03s1HYAYGd3zN3Wqe388b3aWXa8zki+54TrDDrijiH9vOvY2m2oLUa7TWt60fm65TPimMQBVrPyWgMAwEWWjGBrampSWVmZ5s2b59KekpKivXv3etymtLRUKSkpLm0TJ05UQUGBmpubFRYWptLSUs2ZM8etz4oVKzzus7GxUY2Njc73p0+flvTTRbqz/vvjuU5vCwB21dnvxYvbBfpvOXa5zkj+v9ZwnUFH7DlW71W/N9fs9Nj+v+subf+/dOnztGfJpT5Ngy/d7trwfx+9tOLxdR73+c//84jL+9vnXLrN+rn3y5yvVz/t8Bzs/3vW889orR3dnlXXGgAAWrKkwFZfX6/z588rKirKpT0qKkq1tbUet6mtrfXY/9y5c6qvr1dMTEyrfVrbZ05OjpYsWeLWPmTIkI4cDgB0fy/39WnzM2fOqG9f3/bREXa5zkhcaxAs/uax9b0ObuvSP8PL5xO28v3y3gwvtm3tZ3j7s9GtBPpaAwBAS5bOIhoSEuLy3hjj1tZe/8vbO7LP+fPnKzs72/n+woUL+s9//qOBAwe2GUdrGhoaNGTIEB0/fpzh6T4il/5DLv2HXHacMUZnzpxRbGysJT/f6uuM5N9rTbCdg8EWrxR8MRNv1wu2mHtivFZfawAAkCwqsA0aNEi9evVy+4t/XV2d28iAi6Kjoz32Dw0N1cCBA9vs09o+IyIiFBER4dLWr1+/jhyKR9dcc01Q/IcmGJBL/yGX/kMuO8aK0QR2uc5IXXOtCbZzMNjilYIvZuLtesEWc0+Ll5FrAACrXWHFDw0PD5fD4VBxcbFLe3FxscaPH+9xm6SkJLf+27dvV2JiosLCwtrs09o+AQDdE9cZAAAAAIFk2S2i2dnZmjJlihITE5WUlKS1a9eqqqpKmZmZkn66paa6ulrr16+X9NNMbqtWrVJ2drYyMjJUWlqqgoICl1nbZs+erbvvvluvvfaaJk+erL/85S/asWOH9uzZY8kxAgCsw3UGAAAAQKBYVmBLT0/XyZMntXTpUtXU1CghIUFFRUWKi4uTJNXU1KiqqsrZPz4+XkVFRZozZ45Wr16t2NhYrVy5Umlpac4+48eP16ZNm/TSSy9p0aJFGjFihAoLCzVu3LiAHFNERIQWL17sdisQOo5c+g+59B9yGVy4zlgv2OKVgi9m4u16wRYz8QIAYI0Qw3zWAAAAAAAAQKdZ8gw2AAAAAAAAoLugwAYAAAAAAAD4gAIbAAAAAAAA4AMKbAAAAAAAAIAPKLD5SV5enuLj4xUZGSmHw6Hdu3dbHZLt5eTkaOzYsbr66qs1ePBgPfzwwzp69KhLH2OMXn75ZcXGxurKK6/UPffco8OHD1sUcfDIyclRSEiIsrKynG3k0nvV1dX6zW9+o4EDB+qqq67SHXfcobKyMud6cgkr2Pk64833+bPPPquQkBCX5ec//7kl8b788stusURHRzvX2+0zPmzYMLd4Q0JC9Nxzz0myR27//ve/61e/+pViY2MVEhKiDz74wGW9NzltbGzUzJkzNWjQIPXu3VsPPfSQ/v3vfwc83ubmZs2dO1e33XabevfurdjYWE2dOlXfffedyz7uuecet7w/8cQTAY9X8u4cCGR+vYnZ0zkdEhKiN954w9knkDkGAMBXFNj8oLCwUFlZWVq4cKEqKiqUnJys1NRUVVVVWR2arZWUlOi5557TZ599puLiYp07d04pKSn64YcfnH1ef/11LV++XKtWrdL+/fsVHR2tX/7ylzpz5oyFkdvb/v37tXbtWt1+++0u7eTSO99//73uvPNOhYWF6ZNPPtGRI0f0xz/+Uf369XP2IZcINLtfZ7z5Ppek+++/XzU1Nc6lqKjIooilW2+91SWWQ4cOOdfZ7TO+f/9+l1iLi4slSY899pizj9W5/eGHHzRq1CitWrXK43pvcpqVlaWtW7dq06ZN2rNnj/773//qwQcf1Pnz5wMa79mzZ1VeXq5FixapvLxcW7Zs0VdffaWHHnrIrW9GRoZL3t98802/x9pevBe1dw4EMr/exNwy1pqaGr399tsKCQlRWlqaS79A5RgAAJ8Z+OxnP/uZyczMdGm7+eabzbx58yyKKDjV1dUZSaakpMQYY8yFCxdMdHS0WbZsmbPPjz/+aPr27Wvy8/OtCtPWzpw5Y2688UZTXFxsJkyYYGbPnm2MIZcdMXfuXHPXXXe1up5cwgrBdp25/PvcGGOeeeYZM3nyZOuCamHx4sVm1KhRHtcFw2d89uzZZsSIEebChQvGGHvl1hhjJJmtW7c633uT01OnTpmwsDCzadMmZ5/q6mpzxRVXmE8//TSg8Xqyb98+I8l8++23zraW19lA8hRve+eAlfk1xrscT5482dx7770ubVblGACAzmAEm4+amppUVlamlJQUl/aUlBTt3bvXoqiC0+nTpyVJAwYMkCRVVlaqtrbWJbcRERGaMGECuW3Fc889pwceeED33XefSzu59N6HH36oxMREPfbYYxo8eLBGjx6tt956y7meXCLQgvE6c/n3+UW7du3S4MGDddNNNykjI0N1dXVWhCdJOnbsmGJjYxUfH68nnnhCX3/9tST7f8abmpr03nvv6be//a1CQkKc7XbK7eW8yWlZWZmam5td+sTGxiohIcEWeT99+rRCQkJcRjNL0vvvv69Bgwbp1ltv1YsvvmjpSOa2zgG75/fEiRP6+OOPNW3aNLd1dsoxAABtCbU6gGBXX1+v8+fPKyoqyqU9KipKtbW1FkUVfIwxys7O1l133aWEhARJcubPU26//fbbgMdod5s2bVJ5ebn279/vto5ceu/rr7/WmjVrlJ2drQULFmjfvn2aNWuWIiIiNHXqVHKJgAu264yn73NJSk1N1WOPPaa4uDhVVlZq0aJFuvfee1VWVqaIiIiAxjhu3DitX79eN910k06cOKHf//73Gj9+vA4fPmz7z/gHH3ygU6dO6dlnn3W22Sm3nniT09raWoWHh6t///5ufaw+z3/88UfNmzdPTz31lK655hpn+9NPP634+HhFR0friy++0Pz58/X55587b+ENpPbOATvnV5LeffddXX311Xr00Udd2u2UYwAA2kOBzU9a/hVZ+ukXjMvb0Lrnn39e//znP7Vnzx63deS2fcePH9fs2bO1fft2RUZGttqPXLbvwoULSkxM1KuvvipJGj16tA4fPqw1a9Zo6tSpzn7kEoEWLOdca9/n6enpztcJCQlKTExUXFycPv74Y7dfqrtaamqq8/Vtt92mpKQkjRgxQu+++67zwfB2zXdBQYFSU1MVGxvrbLNTbtvSmZxanffm5mY98cQTunDhgvLy8lzWZWRkOF8nJCToxhtvVGJiosrLyzVmzJiAxtnZc8Dq/F709ttv6+mnn3b7P4ydcgwAQHu4RdRHgwYNUq9evdz++ldXV+f2l1p4NnPmTH344YfauXOnrr/+emf7xRndyG37ysrKVFdXJ4fDodDQUIWGhqqkpEQrV65UaGioM1/ksn0xMTG65ZZbXNpGjhzpfJg85yUCLZiuM619n3sSExOjuLg4HTt2LEDRta5379667bbbdOzYMVt/xr/99lvt2LFD06dPb7OfnXIrefe9GR0draamJn3//fet9gm05uZmPf7446qsrFRxcbHL6DVPxowZo7CwMFvk/fJzwI75vWj37t06evRou+e1ZK8cAwBwOQpsPgoPD5fD4XAbql5cXKzx48dbFFVwMMbo+eef15YtW/S3v/1N8fHxLusv3hLQMrdNTU0qKSkht5f5xS9+oUOHDungwYPOJTExUU8//bQOHjyo4cOHk0sv3XnnnTp69KhL21dffaW4uDhJnJcIvGC4zrT3fe7JyZMndfz4ccXExAQgwrY1Njbqyy+/VExMjK0/4++8844GDx6sBx54oM1+dsqt5N33psPhUFhYmEufmpoaffHFF5bk/WJx7dixY9qxY4cGDhzY7jaHDx9Wc3OzLfJ++Tlgt/y2VFBQIIfDoVGjRrXb1045BgDAjSVTK3QzmzZtMmFhYaagoMAcOXLEZGVlmd69e5tvvvnG6tBs7Xe/+53p27ev2bVrl6mpqXEuZ8+edfZZtmyZ6du3r9myZYs5dOiQefLJJ01MTIxpaGiwMPLgcPnMW+TSO/v27TOhoaHmD3/4gzl27Jh5//33zVVXXWXee+89Zx9yiUCz+3Wmve/zM2fOmBdeeMHs3bvXVFZWmp07d5qkpCRz3XXXWfK5eeGFF8yuXbvM119/bT777DPz4IMPmquvvtqZTzt+xs+fP2+GDh1q5s6d69Jul9yeOXPGVFRUmIqKCiPJLF++3FRUVDhn3fQmp5mZmeb66683O3bsMOXl5ebee+81o0aNMufOnQtovM3Nzeahhx4y119/vTl48KDLOd3Y2GiMMeZf//qXWbJkidm/f7+prKw0H3/8sbn55pvN6NGjAx6vt+dAIPPbXswXnT592lx11VVmzZo1btsHOscAAPiKApufrF692sTFxZnw8HAzZswYU1JSYnVItifJ4/LOO+84+1y4cMEsXrzYREdHm4iICHP33XebQ4cOWRd0ELm8wEYuvffRRx+ZhIQEExERYW6++Wazdu1al/XkElaw83Wmve/zs2fPmpSUFHPttdeasLAwM3ToUPPMM8+YqqoqS+JNT083MTExJiwszMTGxppHH33UHD582Lnejp/xbdu2GUnm6NGjLu12ye3OnTs9ngPPPPOMMca7nP7P//yPef75582AAQPMlVdeaR588MEuO4624q2srGz1nN65c6cxxpiqqipz9913mwEDBpjw8HAzYsQIM2vWLHPy5MmAx+vtORDI/LYX80VvvvmmufLKK82pU6fctg90jgEA8FWIMcZ00eA4AAAAAAAAoNvjGWwAAAAAAACADyiwAQAAAAAAAD6gwAYAAAAAAAD4gAIbAAAAAAAA4AMKbAAAAAAAAIAPKLABAAAAAAAAPqDABgAAAAAAAPiAAhsAAAAAAADgAwpsAAAAAAAAgA8osAEAAAAAAAA+oMAGAAAAAAAA+IACGwAAAAAAAOCD/w97D4xWkT4TUQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -575,10 +575,10 @@ "start_time": "2023-11-09T18:33:22.284510361Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:39:17.663490Z", - "iopub.status.busy": "2023-11-09T20:39:17.662987Z", - "iopub.status.idle": "2023-11-09T20:39:17.667947Z", - "shell.execute_reply": "2023-11-09T20:39:17.667406Z" + "iopub.execute_input": "2023-11-09T22:28:04.143197Z", + "iopub.status.busy": "2023-11-09T22:28:04.142863Z", + "iopub.status.idle": "2023-11-09T22:28:04.146606Z", + "shell.execute_reply": "2023-11-09T22:28:04.146075Z" } }, "outputs": [], @@ -604,10 +604,10 @@ "start_time": "2023-11-09T18:33:22.327051319Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:39:17.670271Z", - "iopub.status.busy": "2023-11-09T20:39:17.669894Z", - "iopub.status.idle": "2023-11-09T20:39:17.728928Z", - "shell.execute_reply": "2023-11-09T20:39:17.728197Z" + "iopub.execute_input": "2023-11-09T22:28:04.148367Z", + "iopub.status.busy": "2023-11-09T22:28:04.148063Z", + "iopub.status.idle": "2023-11-09T22:28:04.218681Z", + "shell.execute_reply": "2023-11-09T22:28:04.218110Z" } }, "outputs": [ @@ -615,9 +615,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "No reweight KS: 0.5294821734751087\n", - "Bins reweight KS: 0.4183458917059325\n", - "GB Reweight KS: 0.035351037636424554\n" + "No reweight KS: 0.5183323618727957\n", + "Bins reweight KS: 0.40485593940667297\n", + "GB Reweight KS: 0.04263217386448881\n" ] } ], @@ -634,10 +634,10 @@ "start_time": "2023-11-09T18:33:22.415016102Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:39:17.731737Z", - "iopub.status.busy": "2023-11-09T20:39:17.731229Z", - "iopub.status.idle": "2023-11-09T20:39:17.929020Z", - "shell.execute_reply": "2023-11-09T20:39:17.928355Z" + "iopub.execute_input": "2023-11-09T22:28:04.220733Z", + "iopub.status.busy": "2023-11-09T22:28:04.220559Z", + "iopub.status.idle": "2023-11-09T22:28:04.466750Z", + "shell.execute_reply": "2023-11-09T22:28:04.466185Z" } }, "outputs": [ @@ -645,15 +645,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "No reweight KS: 0.10376592762570142\n", - "Bins reweight KS: 0.1294872140311744\n" + "No reweight KS: 0.08981075955998435\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "GB Reweight KS: 0.028320903503070705\n" + "Bins reweight KS: 0.11601056751376654\n", + "GB Reweight KS: 0.02059862120072531\n" ] } ], @@ -670,10 +670,10 @@ "start_time": "2023-11-09T18:33:22.656149470Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:39:17.931617Z", - "iopub.status.busy": "2023-11-09T20:39:17.931103Z", - "iopub.status.idle": "2023-11-09T20:39:18.128808Z", - "shell.execute_reply": "2023-11-09T20:39:18.128089Z" + "iopub.execute_input": "2023-11-09T22:28:04.468678Z", + "iopub.status.busy": "2023-11-09T22:28:04.468503Z", + "iopub.status.idle": "2023-11-09T22:28:04.712793Z", + "shell.execute_reply": "2023-11-09T22:28:04.712217Z" } }, "outputs": [ @@ -681,15 +681,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "No reweight KS: 0.37522112777531247\n" + "No reweight KS: 0.3697511714238894\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Bins reweight KS: 0.3403787310149172\n", - "GB Reweight KS: 0.02463233121785513\n" + "Bins reweight KS: 0.3350555579592387\n", + "GB Reweight KS: 0.031041261174130086\n" ] } ], @@ -706,10 +706,10 @@ "start_time": "2023-11-09T18:33:22.899381940Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:39:18.131797Z", - "iopub.status.busy": "2023-11-09T20:39:18.131254Z", - "iopub.status.idle": "2023-11-09T20:39:18.332854Z", - "shell.execute_reply": "2023-11-09T20:39:18.332125Z" + "iopub.execute_input": "2023-11-09T22:28:04.714805Z", + "iopub.status.busy": "2023-11-09T22:28:04.714627Z", + "iopub.status.idle": "2023-11-09T22:28:04.959497Z", + "shell.execute_reply": "2023-11-09T22:28:04.958924Z" } }, "outputs": [ @@ -717,15 +717,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "No reweight KS: 0.468195888453519\n" + "No reweight KS: 0.4684061037118584\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Bins reweight KS: 0.3753100691069646\n", - "GB Reweight KS: 0.037459516285583416\n" + "Bins reweight KS: 0.3739381551749449\n", + "GB Reweight KS: 0.04966039966873781\n" ] } ], @@ -742,10 +742,10 @@ "start_time": "2023-11-09T18:33:23.155057276Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:39:18.335621Z", - "iopub.status.busy": "2023-11-09T20:39:18.335180Z", - "iopub.status.idle": "2023-11-09T20:39:18.544340Z", - "shell.execute_reply": "2023-11-09T20:39:18.543632Z" + "iopub.execute_input": "2023-11-09T22:28:04.961553Z", + "iopub.status.busy": "2023-11-09T22:28:04.961229Z", + "iopub.status.idle": "2023-11-09T22:28:05.206040Z", + "shell.execute_reply": "2023-11-09T22:28:05.205454Z" } }, "outputs": [ @@ -753,15 +753,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "No reweight KS: 0.4853418186913017\n" + "No reweight KS: 0.4936166666674155\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Bins reweight KS: 0.3938754045974575\n", - "GB Reweight KS: 0.04487154907792107\n" + "Bins reweight KS: 0.40026612246003684\n", + "GB Reweight KS: 0.018026091541758493\n" ] } ], @@ -791,10 +791,10 @@ "start_time": "2023-11-09T18:33:23.345111007Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:39:18.547144Z", - "iopub.status.busy": "2023-11-09T20:39:18.546775Z", - "iopub.status.idle": "2023-11-09T20:39:38.172594Z", - "shell.execute_reply": "2023-11-09T20:39:38.171861Z" + "iopub.execute_input": "2023-11-09T22:28:05.208001Z", + "iopub.status.busy": "2023-11-09T22:28:05.207823Z", + "iopub.status.idle": "2023-11-09T22:28:22.988137Z", + "shell.execute_reply": "2023-11-09T22:28:22.987641Z" } }, "outputs": [ @@ -802,21 +802,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "original 0.9383051166636476\n" + "original 0.9326905282282532\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "bins 0.9119662410317213\n" + "bins 0.9052877741488814\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "gb_weights 0.5315137942416742\n" + "gb_weights 0.5341842227167279\n" ] } ], @@ -872,10 +872,10 @@ "start_time": "2023-11-09T18:33:42.207967134Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:39:38.175381Z", - "iopub.status.busy": "2023-11-09T20:39:38.174863Z", - "iopub.status.idle": "2023-11-09T20:39:38.660705Z", - "shell.execute_reply": "2023-11-09T20:39:38.660123Z" + "iopub.execute_input": "2023-11-09T22:28:22.990164Z", + "iopub.status.busy": "2023-11-09T22:28:22.989835Z", + "iopub.status.idle": "2023-11-09T22:28:23.419390Z", + "shell.execute_reply": "2023-11-09T22:28:23.418860Z" } }, "outputs": [ @@ -891,7 +891,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGxCAYAAAC5hxYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAArl0lEQVR4nO3df3RU9Z3/8dfk10QgiYRIIOQH0fUHKRLqEG1SUFIxbojYgnukahFbsFJDlU1dj8hWBfGEYynCyoCH/pB1iwttRbTCirEiYTd2DSHZgnFd2QYShICgZgAlgfD5/tFlvo5JCAOTzOdmno9z5pzez/3M577nE+q8zr33c8dljDECAACwRFS4CwAAAPgywgkAALAK4QQAAFiFcAIAAKxCOAEAAFYhnAAAAKsQTgAAgFUIJwAAwCqEEwAAYBXCCRBB9uzZI5fLpdWrV/vbnnjiCblcrqDHevHFF7V06dLQFfclw4cP1z333NMjY5+rzuYqGC6XS7Nnz+62X1VVlZ544gl99tln53UcoC8inAARbubMmXrnnXeCfl9PhhMbDB06VO+8845KSkp69DhVVVWaP38+4QT4kphwFwDg3HzxxRe66KKLQj5uenq60tPTQz6u07ndbn3jG98IdxlAROLMCdBLzlw+qa2t1ZQpU5SYmKikpCR973vf08cffxzQd/jw4brlllu0fv16ff3rX1d8fLzmz58vSWpubtZ9992n9PR0xcXFKTs7W/Pnz9epU6cCxti/f79uv/12JSQkKCkpSVOnTlVzc3OXdX3Viy++qPz8fA0YMEADBgzQ6NGj9atf/UqSNH78eG3cuFF79+6Vy+Xyv85oa2vTwoULddVVV8ntduuSSy7R97///Q6f8+TJk3r44Yc1ZMgQ9evXT2PHjtW77757TvOZl5fX4azG1VdfLZfLperqan/b+vXr5XK5tHPnTn/bhx9+qDvvvFODBw+W2+3WiBEj5PV6A8bq6rLOK6+8olGjRsntduvSSy/VsmXLznpp7F/+5V80YsQI9evXT7m5uXrttdf8+5544gn9wz/8gyQpOzvbP49vv/22JOmtt97S+PHjNWjQIF100UXKzMzUbbfdps8///yc5ghwKs6cAL1s8uTJuv322zVr1iy99957+ulPf6r6+nr953/+p2JjY/39duzYoffff1//+I//qOzsbPXv31/Nzc269tprFRUVpccee0yXXXaZ3nnnHS1cuFB79uzR888/L+mvZ1kmTJig/fv3q7y8XFdccYU2btyoqVOnnlONjz32mJ588klNmTJFP/nJT5SUlKRdu3Zp7969kqQVK1bohz/8of73f/9XL7/8csB7T58+rW9/+9vatm2bHn74YRUUFGjv3r16/PHHNX78eG3fvt1/Bujee+/VCy+8oIceekg33XSTdu3apSlTpujo0aPd1jhhwgQtX75cJ0+eVGxsrA4ePKhdu3bpoosuUkVFhfLy8iRJb775plJTU3X11VdLkurr61VQUKDMzEz9/Oc/15AhQ7R582Y98MADOnz4sB5//PEuj/n6669rypQpuv7667Vu3TqdOnVKixcv1sGDBzvtv3HjRlVXV2vBggUaMGCAnn76aU2ePFkffPCBLr30Us2cOVOffPKJnn32Wa1fv15Dhw6VJOXk5GjPnj0qKSnRuHHj9Otf/1oXX3yxPvroI73++utqa2tTv379up0jwLEMgF7x+OOPG0nm7//+7wPa16xZYySZ3/zmN/62rKwsEx0dbT744IOAvvfdd58ZMGCA2bt3b0D74sWLjSTz3nvvGWOMWblypZFkXnnllYB+9957r5Fknn/++Q51nfGXv/zFREdHm7vuuuusn6ekpMRkZWV1aP/Xf/1XI8m89NJLAe3V1dVGklmxYoUxxpj333//rPMxffr0sx7/zTffNJJMZWWlMcaY3/zmNyYhIcHcf//9prCw0N/v8ssvN3feead/++abbzbp6emmpaUlYLzZs2eb+Ph488knnxhjjGloaOgwV3l5eSYjI8O0trb6244ePWoGDRpkvvqfU0kmNTXV+Hw+f1tzc7OJiooy5eXl/raf/exnRpJpaGgIeP/vf/97I8nU1dWddR6AvojLOkAvu+uuuwK2b7/9dsXExGjLli0B7aNGjdIVV1wR0Pbaa6+psLBQaWlpOnXqlP9VXFwsSdq6daskacuWLUpISNCtt94a8P4777yz2/oqKirU3t6u0tLSoD/bmRovvvhiTZo0KaDG0aNHa8iQIf5LFmc+b1fz0Z1vfvObio+P15tvvumve/z48frbv/1bVVVV6fPPP1dTU5M+/PBDTZgwQZJ04sQJ/fGPf9TkyZPVr1+/gPomTpyoEydO6E9/+lOnxzt+/Li2b9+u73znO4qLi/O3DxgwQJMmTer0PYWFhUpISPBvp6amavDgwf4zUGczevRoxcXF6Yc//KH++Z//WX/5y1+6fQ/QVxBOgF42ZMiQgO2YmBgNGjRIR44cCWg/c4r/yw4ePKg//OEPio2NDXh97WtfkyQdPnxYknTkyBGlpqZ2e+zOnLkv5Hxvkj148KA+++wzxcXFdaizubk5oMbOajozH92Jj4/XN7/5TX84+eMf/6ibbrpJ48ePV3t7u7Zt26aKigpJ8oeTI0eO6NSpU3r22Wc71DZx4kRJ/38Ov+rTTz+VMabTee2sTVKnn8PtduuLL77o9vNddtllevPNNzV48GCVlpbqsssu02WXXaZly5Z1+17A6bjnBOhlzc3NGjZsmH/71KlTOnLkSIcvss5usExJSdGoUaP01FNPdTp2WlqapL9+KXZ2Y2lnN8R+1SWXXCJJ2rdvnzIyMrrt31mNgwYN0uuvv97p/jNnEs583q7m41zceOONeuyxx/Tuu+9q3759uummm5SQkKC8vDxVVFRo//79uuKKK/yfY+DAgYqOjta0adO6PDOUnZ3dafvAgQPlcrk6vb/kXOb1fIwbN07jxo1Te3u7tm/frmeffVZz5sxRamqqvvvd7/bIMQEbEE6AXrZmzRp5PB7/9m9/+1udOnVK48eP7/a9t9xyizZt2qTLLrtMAwcO7LJfYWGhfvvb3+rVV18NuLTz4osvdnuMoqIiRUdHa+XKlcrPz++yX1dnAG655RatXbtW7e3tuu6667p8/5nP29V8nIsJEybo0Ucf1U9/+lOlp6frqquu8re/+uqram5u1m233ebv369fPxUWFqq2tlajRo0KuDzTnf79+2vMmDHasGGDFi9e7H/vsWPHAlbgBMvtdkvSWc+mREdH67rrrtNVV12lNWvWaMeOHYQT9GmEE6CXrV+/XjExMbrpppv8q3Vyc3N1++23d/veBQsWqKKiQgUFBXrggQd05ZVX6sSJE9qzZ482bdqk5557Tunp6br77rv1zDPP6O6779ZTTz2lyy+/XJs2bdLmzZu7Pcbw4cP16KOP6sknn9QXX3yhO+64Q0lJSaqvr9fhw4f9S5qvvvpqrV+/XitXrpTH41FUVJTGjBmj7373u1qzZo0mTpyoBx98UNdee61iY2O1b98+bdmyRd/+9rc1efJkjRgxQt/73ve0dOlSxcbGasKECdq1a5cWL16sxMTEc5pLj8ejgQMH6o033tD3v/99f/uECRP05JNP+v/3ly1btkxjx47VuHHj9KMf/UjDhw/X0aNHtXv3bv3hD3/QW2+9ddb5Lykp0c0336wHH3xQ7e3t+tnPfqYBAwbok08+Oaeav+rMKqJly5Zp+vTpio2N1ZVXXqk1a9borbfeUklJiTIzM3XixAn9+te/7vQzAX1OuO/IBSLFmVUxNTU1ZtKkSWbAgAEmISHB3HHHHebgwYMBfbOyskxJSUmn43z88cfmgQceMNnZ2SY2NtYkJycbj8dj5s2bZ44dO+bvt2/fPnPbbbf5j3PbbbeZqqqqblfrnPHCCy+YvLw8Ex8fbwYMGGC+/vWvB7zvk08+MX/3d39nLr74YuNyuQLGOHnypFm8eLHJzc31v/+qq64y9913n/nwww/9/VpbW81PfvITM3jwYBMfH2++8Y1vmHfeecdkZWV1u1rnjMmTJxtJZs2aNf62trY2079/fxMVFWU+/fTTDu9paGgwP/jBD8ywYcNMbGysueSSS0xBQYFZuHBhQJ+vzpUxxrz88svm6quvNnFxcSYzM9MsWrTIPPDAA2bgwIEB/SSZ0tLSDsfu7LPNnTvXpKWlmaioKCPJbNmyxbzzzjtm8uTJJisry7jdbjNo0CBzww03mFdfffWc5gVwMpcxxoQvGgGR44knntD8+fP18ccfKyUlJdzlIEROnjyp0aNHa9iwYXrjjTfCXQ7QJ3BZBwCCMGPGDN10000aOnSompub9dxzz+n9999nFQ0QQoQTAAjC0aNH9dBDD+njjz9WbGysrrnmGm3atIn7QIAQ4rIOAACwCg9hAwAAViGcAAAAqxBOAACAVRx3Q+zp06e1f/9+JSQkdPp4bwAAYB9jjI4ePaq0tDRFRZ393Ijjwsn+/fvP6/c+AABA+DU1NXX7w6KOCydnfjSsqanpnB9xDQAAwsvn8ykjI8P/PX42jgsnZy7lJCYmEk4AAHCYc7klgxtiAQCAVRwTTrxer3JycpSXlxfuUgAAQA9y3BNifT6fkpKS1NLSwmUdAAAcIpjvb8ecOQEAAJGBcAIAAKxCOAEAAFYhnAAAAKsQTgAAgFUcE05YSgwAQGRgKTEAAOhxLCUGAACORTgBAABWIZwAAACrOO5XiXva8Ec2dttnz6KSXqgEAIDIxJkTAABgFcIJAACwCuEEAABYhXACAACsQjgBAABWcUw44fH1AABEBseEk9LSUtXX16u6ujrcpQAAgB7kmHACAAAiA+EEAABYhXACAACsQjgBAABWIZwAAACrEE4AAIBVCCcAAMAqhBMAAGAVwgkAALAK4QQAAFiFcAIAAKxCOAEAAFYJSziJiYnR6NGjNXr0aM2cOTMcJQAAAEvFhOOgF198serq6sJxaAAAYDku6wAAAKsEHU4qKys1adIkpaWlyeVyacOGDR36rFixQtnZ2YqPj5fH49G2bdsC9vt8Pnk8Ho0dO1Zbt2497+IBAEDfE3Q4OX78uHJzc7V8+fJO969bt05z5szRvHnzVFtbq3Hjxqm4uFiNjY3+Pnv27FFNTY2ee+453X333fL5fF0er7W1VT6fL+AFAAD6rqDDSXFxsRYuXKgpU6Z0un/JkiWaMWOGZs6cqREjRmjp0qXKyMjQypUr/X3S0tIkSSNHjlROTo7+53/+p8vjlZeXKykpyf/KyMgItmQAAOAgIb3npK2tTTU1NSoqKgpoLyoqUlVVlSTp008/VWtrqyRp3759qq+v16WXXtrlmHPnzlVLS4v/1dTUFMqSAQCAZUK6Wufw4cNqb29XampqQHtqaqqam5slSe+//77uu+8+RUVFyeVyadmyZUpOTu5yTLfbLbfbHcoyAQCAxXpkKbHL5QrYNsb42woKCrRz586gx/R6vfJ6vWpvbw9JjQAAwE4hvayTkpKi6Oho/1mSMw4dOtThbEqwSktLVV9fr+rq6gsaBwAA2C2k4SQuLk4ej0cVFRUB7RUVFSooKAjloQAAQB8V9GWdY8eOaffu3f7thoYG1dXVKTk5WZmZmSorK9O0adM0ZswY5efna9WqVWpsbNSsWbMuqFAu6wAAEBlcxhgTzBvefvttFRYWdmifPn26Vq9eLemvD2F7+umndeDAAY0cOVLPPPOMrr/++pAU7PP5lJSUpJaWFiUmJoZkzC8b/sjGbvvsWVQS8uMCANCXBfP9HXQ4CTfCCQAAzhPM9ze/rQMAAKzimHDi9XqVk5OjvLy8cJcCAAB6kGPCCUuJAQCIDI4JJwAAIDIQTgAAgFUcE0645wQAgMjgmHDCPScAAEQGx4QTAAAQGQgnAADAKoQTAABgFceEE26IBQAgMjgmnHBDLAAAkcEx4QQAAEQGwgkAALAK4QQAAFiFcAIAAKzimHDCah0AACKDY8IJq3UAAIgMjgknAAAgMhBOAACAVQgnAADAKoQTAABgFcIJAACwCuEEAABYxTHhhOecAAAQGRwTTnjOCQAAkcEx4QQAAEQGwgkAALAK4QQAAFiFcAIAAKxCOAEAAFYhnAAAAKsQTgAAgFUIJwAAwCqEEwAAYBXHhBMeXw8AQGRwTDjh8fUAAEQGx4QTAAAQGQgnAADAKoQTAABgFcIJAACwCuEEAABYhXACAACsQjgBAABWIZwAAACrEE4AAIBVCCcAAMAqhBMAAGCVsIWTzz//XFlZWXrooYfCVQIAALBQ2MLJU089peuuuy5chwcAAJYKSzj58MMP9d///d+aOHFiOA4PAAAsFnQ4qays1KRJk5SWliaXy6UNGzZ06LNixQplZ2crPj5eHo9H27ZtC9j/0EMPqby8/LyLBgAAfVfQ4eT48ePKzc3V8uXLO92/bt06zZkzR/PmzVNtba3GjRun4uJiNTY2SpJeeeUVXXHFFbriiivO6Xitra3y+XwBLwAA0HfFBPuG4uJiFRcXd7l/yZIlmjFjhmbOnClJWrp0qTZv3qyVK1eqvLxcf/rTn7R27Vr97ne/07Fjx3Ty5EklJibqscce63S88vJyzZ8/P9gyAQCAQ4X0npO2tjbV1NSoqKgooL2oqEhVVVWS/ho2mpqatGfPHi1evFj33ntvl8FEkubOnauWlhb/q6mpKZQlAwAAywR95uRsDh8+rPb2dqWmpga0p6amqrm5+bzGdLvdcrvdoSgPAAA4QEjDyRkulytg2xjToU2S7rnnnnMe0+v1yuv1qr29/ULLAwAAFgvpZZ2UlBRFR0d3OEty6NChDmdTglVaWqr6+npVV1df0DgAAMBuIQ0ncXFx8ng8qqioCGivqKhQQUFBKA8FAAD6qKAv6xw7dky7d+/2bzc0NKiurk7JycnKzMxUWVmZpk2bpjFjxig/P1+rVq1SY2OjZs2adUGFclkHAIDI4DLGmGDe8Pbbb6uwsLBD+/Tp07V69WpJf30I29NPP60DBw5o5MiReuaZZ3T99deHpGCfz6ekpCS1tLQoMTExJGN+2fBHNnbbZ8+ikpAfFwCAviyY7++gw0m4EU4AAHCeYL6/w/bDfwAAAJ1xTDjxer3KyclRXl5euEsBAAA9yDHhhKXEAABEBseEEwAAEBkIJwAAwCqOCSfccwIAQGRwTDjhnhMAACKDY8IJAACIDIQTAABgFcIJAACwimPCCTfEAgAQGRwTTrghFgCAyOCYcAIAACID4QQAAFiFcAIAAKxCOAEAAFZxTDhhtQ4AAJHBMeGE1ToAAEQGx4QTAAAQGQgnAADAKoQTAABgFcIJAACwCuEEAABYhXACAACs4phwwnNOAACIDI4JJzznBACAyOCYcAIAACID4QQAAFiFcAIAAKxCOAEAAFYhnAAAAKsQTgAAgFUIJwAAwCqEEwAAYBXCCQAAsIpjwgmPrwcAIDI4Jpzw+HoAACKDY8IJAACIDIQTAABgFcIJAACwCuEEAABYhXACAACsQjgBAABWIZwAAACrEE4AAIBVCCcAAMAqhBMAAGAVwgkAALBKr4eTo0ePKi8vT6NHj9bVV1+tX/ziF71dAgAAsFhMbx+wX79+2rp1q/r166fPP/9cI0eO1JQpUzRo0KDeLgUAAFio18+cREdHq1+/fpKkEydOqL29XcaY3i4DAABYKuhwUllZqUmTJiktLU0ul0sbNmzo0GfFihXKzs5WfHy8PB6Ptm3bFrD/s88+U25urtLT0/Xwww8rJSXlvD8AAADoW4IOJ8ePH1dubq6WL1/e6f5169Zpzpw5mjdvnmprazVu3DgVFxersbHR3+fiiy/Wf/3Xf6mhoUEvvviiDh48eP6fAAAA9ClBh5Pi4mItXLhQU6ZM6XT/kiVLNGPGDM2cOVMjRozQ0qVLlZGRoZUrV3bom5qaqlGjRqmysrLL47W2tsrn8wW8AABA3xXSe07a2tpUU1OjoqKigPaioiJVVVVJkg4ePOgPGD6fT5WVlbryyiu7HLO8vFxJSUn+V0ZGRihLBgAAlglpODl8+LDa29uVmpoa0J6amqrm5mZJ0r59+3T99dcrNzdXY8eO1ezZszVq1Kgux5w7d65aWlr8r6amplCWDAAALNMjS4ldLlfAtjHG3+bxeFRXV3fOY7ndbrnd7lCWBwAALBbSMycpKSmKjo72nyU549ChQx3OpgTL6/UqJydHeXl5FzQOAACwW0jDSVxcnDwejyoqKgLaKyoqVFBQcEFjl5aWqr6+XtXV1Rc0DgAAsFvQl3WOHTum3bt3+7cbGhpUV1en5ORkZWZmqqysTNOmTdOYMWOUn5+vVatWqbGxUbNmzQpp4QAAoG8KOpxs375dhYWF/u2ysjJJ0vTp07V69WpNnTpVR44c0YIFC3TgwAGNHDlSmzZtUlZW1gUV6vV65fV61d7efkHjAAAAu7mMw54d7/P5lJSUpJaWFiUmJoZ8/OGPbOy2z55FJSE/LgAAfVkw39+9/ts6AAAAZ+OYcMJqHQAAIoNjwgmrdQAAiAw98hC2vo77UgAA6DmOOXMCAAAig2PCCfecAAAQGRwTTrjnBACAyOCYcAIAACID4QQAAFiFcAIAAKzimHDCDbEAAEQGx4QTbogFACAyOCacAACAyEA4AQAAViGcAAAAqxBOAACAVRwTTlitAwBAZHBMOGG1DgAAkcEx4QQAAEQGwgkAALAK4QQAAFiFcAIAAKxCOAEAAFYhnAAAAKs4JpzwnBMAACKDY8IJzzkBACAyOCacAACAyEA4AQAAViGcAAAAqxBOAACAVQgnAADAKoQTAABglZhwF9BXDX9kY7d99iwq6YVKAABwFs6cAAAAqxBOAACAVRwTTnh8PQAAkcEx4YTH1wMAEBkcE04AAEBkIJwAAACrEE4AAIBVCCcAAMAqhBMAAGAVwgkAALAK4QQAAFiFcAIAAKxCOAEAAFYhnAAAAKsQTgAAgFV6PZw0NTVp/PjxysnJ0ahRo/S73/2ut0sAAAAWi+n1A8bEaOnSpRo9erQOHTqka665RhMnTlT//v17uxQAAGChXg8nQ4cO1dChQyVJgwcPVnJysj755JOIDCfDH9nYbZ89i0p6oRIAAOwR9GWdyspKTZo0SWlpaXK5XNqwYUOHPitWrFB2drbi4+Pl8Xi0bdu2Tsfavn27Tp8+rYyMjKALBwAAfVPQ4eT48ePKzc3V8uXLO92/bt06zZkzR/PmzVNtba3GjRun4uJiNTY2BvQ7cuSI7r77bq1ater8KgcAAH1S0Jd1iouLVVxc3OX+JUuWaMaMGZo5c6YkaenSpdq8ebNWrlyp8vJySVJra6smT56suXPnqqCg4KzHa21tVWtrq3/b5/MFWzIAAHCQkK7WaWtrU01NjYqKigLai4qKVFVVJUkyxuiee+7Rt771LU2bNq3bMcvLy5WUlOR/cQkIAIC+LaTh5PDhw2pvb1dqampAe2pqqpqbmyVJ//Ef/6F169Zpw4YNGj16tEaPHq2dO3d2OebcuXPV0tLifzU1NYWyZAAAYJkeWa3jcrkCto0x/raxY8fq9OnT5zyW2+2W2+0OaX0AAMBeIT1zkpKSoujoaP9ZkjMOHTrU4WxKsLxer3JycpSXl3dB4wAAALuFNJzExcXJ4/GooqIioL2ioqLbG1+7U1paqvr6elVXV1/QOAAAwG5BX9Y5duyYdu/e7d9uaGhQXV2dkpOTlZmZqbKyMk2bNk1jxoxRfn6+Vq1apcbGRs2aNSukhQMAgL4p6HCyfft2FRYW+rfLysokSdOnT9fq1as1depUHTlyRAsWLNCBAwc0cuRIbdq0SVlZWRdUqNfrldfrVXt7+wWNAwAA7OYyxphwFxEMn8+npKQktbS0KDExMeTjn8sj5XsTj68HAPQFwXx/9/qvEgMAAJwN4QQAAFjFMeGEpcQAAEQGx4QTlhIDABAZHBNOAABAZCCcAAAAqzgmnHDPCQAAkYHnnHyFbc85ORc8CwUAYDuecwIAAByLcAIAAKxCOAEAAFZxTDjhhlgAACKDY8IJD2EDACAyOCacAACAyBAT7gJw4c5l+TPLjQEATsGZEwAAYBXCCQAAsIpjwgmrdQAAiAyOCSes1gEAIDI4JpwAAIDIQDgBAABWIZwAAACrEE4AAIBVCCcAAMAqjnlCrNfrldfrVXt7e7hLcSSeIgsAcArHnDlhKTEAAJHBMeEEAABEBsIJAACwCuEEAABYhXACAACsQjgBAABWIZwAAACrEE4AAIBVCCcAAMAqhBMAAGAVx4QTr9ernJwc5eXlhbsUAADQgxwTTnh8PQAAkcEx4QQAAEQGwgkAALAK4QQAAFiFcAIAAKwSE+4C0PcMf2Rjt332LCrphUoAAE7EmRMAAGAVwgkAALAK4QQAAFiFcAIAAKxCOAEAAFYhnAAAAKsQTgAAgFXC8pyTyZMn6+2339aNN96o3//+9+EoAZ3g+SQAABuE5czJAw88oBdeeCEchwYAAJYLSzgpLCxUQkJCOA4NAAAsF3Q4qays1KRJk5SWliaXy6UNGzZ06LNixQplZ2crPj5eHo9H27ZtC0WtAAAgAgQdTo4fP67c3FwtX7680/3r1q3TnDlzNG/ePNXW1mrcuHEqLi5WY2PjeRXY2toqn88X8AIAAH1X0OGkuLhYCxcu1JQpUzrdv2TJEs2YMUMzZ87UiBEjtHTpUmVkZGjlypXnVWB5ebmSkpL8r4yMjPMaBwAAOENI7zlpa2tTTU2NioqKAtqLiopUVVV1XmPOnTtXLS0t/ldTU1MoSgUAAJYK6VLiw4cPq729XampqQHtqampam5u9m/ffPPN2rFjh44fP6709HS9/PLLysvL63RMt9stt9sdyjIBAIDFeuQ5Jy6XK2DbGBPQtnnz5qDH9Hq98nq9am9vv+D6AACAvUJ6WSclJUXR0dEBZ0kk6dChQx3OpgSrtLRU9fX1qq6uvqBxAACA3UIaTuLi4uTxeFRRURHQXlFRoYKCglAeCgAA9FFBX9Y5duyYdu/e7d9uaGhQXV2dkpOTlZmZqbKyMk2bNk1jxoxRfn6+Vq1apcbGRs2aNeuCCuWyDgAAkSHocLJ9+3YVFhb6t8vKyiRJ06dP1+rVqzV16lQdOXJECxYs0IEDBzRy5Eht2rRJWVlZF1RoaWmpSktL5fP5lJSUdEFjAQAAewUdTsaPHy9jzFn73H///br//vvPuygAABC5wvLbOgAAAF3pkaXEPYF7Tuww/JGNvTbOnkUlvTYOAMAejjlzwlJiAAAig2PCCQAAiAyEEwAAYBXHhBOv16ucnJwuf4MHAAD0DY4JJ9xzAgBAZHBMOAEAAJGBcAIAAKxCOAEAAFbhIWywVqge+AYAcBbHnDnhhlgAACKDY8IJAACIDIQTAABgFcIJAACwCuEEAABYhdU66PPOZdXPnkUljjsWAPRVjjlzwmodAAAig2PCCQAAiAyEEwAAYBXCCQAAsArhBAAAWIVwAgAArEI4AQAAVuE5J0Avi+RnofDZz66vfnYgWI45c8JzTgAAiAyOCScAACAyEE4AAIBVCCcAAMAqhBMAAGAVwgkAALAK4QQAAFiFcAIAAKxCOAEAAFYhnAAAAKvw+HpA5/Zo8d7Eo87PjvkB+jbHnDnh8fUAAEQGx4QTAAAQGQgnAADAKoQTAABgFcIJAACwCuEEAABYhXACAACsQjgBAABWIZwAAACrEE4AAIBVCCcAAMAqhBMAAGCVsIST1157TVdeeaUuv/xy/fKXvwxHCQAAwFK9/qvEp06dUllZmbZs2aLExERdc801mjJlipKTk3u7FAAAYKFeP3Py7rvv6mtf+5qGDRumhIQETZw4UZs3b+7tMgAAgKWCDieVlZWaNGmS0tLS5HK5tGHDhg59VqxYoezsbMXHx8vj8Wjbtm3+ffv379ewYcP82+np6froo4/Or3oAANDnBB1Ojh8/rtzcXC1fvrzT/evWrdOcOXM0b9481dbWaty4cSouLlZjY6MkyRjT4T0ul6vL47W2tsrn8wW8AABA3xX0PSfFxcUqLi7ucv+SJUs0Y8YMzZw5U5K0dOlSbd68WStXrlR5ebmGDRsWcKZk3759uu6667ocr7y8XPPnzw+2TACShj+ysds+exaVhGQcJ+qr8xOqz+VEtv1NbZxnJ/z7COk9J21tbaqpqVFRUVFAe1FRkaqqqiRJ1157rXbt2qWPPvpIR48e1aZNm3TzzTd3OebcuXPV0tLifzU1NYWyZAAAYJmQrtY5fPiw2tvblZqaGtCempqq5ubmvx4wJkY///nPVVhYqNOnT+vhhx/WoEGDuhzT7XbL7XaHskwAAGCxHllK/NV7SIwxAW233nqrbr311qDG9Hq98nq9am9vD0mNAADATiG9rJOSkqLo6Gj/WZIzDh061OFsSrBKS0tVX1+v6urqCxoHAADYLaThJC4uTh6PRxUVFQHtFRUVKigoCOWhAABAHxX0ZZ1jx45p9+7d/u2GhgbV1dUpOTlZmZmZKisr07Rp0zRmzBjl5+dr1apVamxs1KxZs0JaOAAA6JuCDifbt29XYWGhf7usrEySNH36dK1evVpTp07VkSNHtGDBAh04cEAjR47Upk2blJWVdUGFcs8JAACRIehwMn78+E4fpPZl999/v+6///7zLqozpaWlKi0tlc/nU1JSUkjHBgAA9gjLrxIDAAB0xTHhxOv1KicnR3l5eeEuBQAA9CDHhBOWEgMAEBkcE04AAEBkIJwAAACrOCaccM8JAACRwTHhhHtOAACIDD3yw3896cwzVnw+X4+Mf7r18x4ZFwi1c/n/wLn8ew7VOKFi2+fqzfkJ1X/XQvW5nKiv/k1DKVz/Ps6M2d2z0iTJZc6ll0X27dunjIyMcJcBAADOQ1NTk9LT08/ax3Hh5PTp09q/f78SEhLkcrlCOrbP51NGRoaampqUmJgY0rFxdsx9+DD34cPchw9z3/uMMTp69KjS0tIUFXX2u0ocd1knKiqq28R1oRITE/nHGibMffgw9+HD3IcPc9+7zvXnZxxzQywAAIgMhBMAAGAVwsmXuN1uPf7443K73eEuJeIw9+HD3IcPcx8+zL3dHHdDLAAA6Ns4cwIAAKxCOAEAAFYhnAAAAKsQTgAAgFUIJwAAwCqEk/+zYsUKZWdnKz4+Xh6PR9u2bQt3SY5XWVmpSZMmKS0tTS6XSxs2bAjYb4zRE088obS0NF100UUaP3683nvvvYA+ra2t+vGPf6yUlBT1799ft956q/bt29eLn8J5ysvLlZeXp4SEBA0ePFjf+c539MEHHwT0Ye57zsqVKzVq1Cj/k0fz8/P1b//2b/79zH3vKC8vl8vl0pw5c/xtzL2DGJi1a9ea2NhY84tf/MLU19ebBx980PTv39/s3bs33KU52qZNm8y8efPMSy+9ZCSZl19+OWD/okWLTEJCgnnppZfMzp07zdSpU83QoUONz+fz95k1a5YZNmyYqaioMDt27DCFhYUmNzfXnDp1qpc/jXPcfPPN5vnnnze7du0ydXV1pqSkxGRmZppjx475+zD3PefVV181GzduNB988IH54IMPzKOPPmpiY2PNrl27jDHMfW949913zfDhw82oUaPMgw8+6G9n7p2DcGKMufbaa82sWbMC2q666irzyCOPhKmivuer4eT06dNmyJAhZtGiRf62EydOmKSkJPPcc88ZY4z57LPPTGxsrFm7dq2/z0cffWSioqLM66+/3mu1O92hQ4eMJLN161ZjDHMfDgMHDjS//OUvmftecPToUXP55ZebiooKc8MNN/jDCXPvLBF/WaetrU01NTUqKioKaC8qKlJVVVWYqur7Ghoa1NzcHDDvbrdbN9xwg3/ea2pqdPLkyYA+aWlpGjlyJH+bILS0tEiSkpOTJTH3vam9vV1r167V8ePHlZ+fz9z3gtLSUpWUlGjChAkB7cy9szjuV4lD7fDhw2pvb1dqampAe2pqqpqbm8NUVd93Zm47m/e9e/f6+8TFxWngwIEd+vC3OTfGGJWVlWns2LEaOXKkJOa+N+zcuVP5+fk6ceKEBgwYoJdfflk5OTn+LzjmvmesXbtWO3bsUHV1dYd9/Lt3logPJ2e4XK6AbWNMhzaE3vnMO3+bczd79mz9+c9/1r//+7932Mfc95wrr7xSdXV1+uyzz/TSSy9p+vTp2rp1q38/cx96TU1NevDBB/XGG28oPj6+y37MvTNE/GWdlJQURUdHd0jFhw4d6pCwETpDhgyRpLPO+5AhQ9TW1qZPP/20yz7o2o9//GO9+uqr2rJli9LT0/3tzH3Pi4uL09/8zd9ozJgxKi8vV25urpYtW8bc96CamhodOnRIHo9HMTExiomJ0datW/VP//RPiomJ8c8dc+8MER9O4uLi5PF4VFFREdBeUVGhgoKCMFXV92VnZ2vIkCEB897W1qatW7f6593j8Sg2Njagz4EDB7Rr1y7+NmdhjNHs2bO1fv16vfXWW8rOzg7Yz9z3PmOMWltbmfsedOONN2rnzp2qq6vzv8aMGaO77rpLdXV1uvTSS5l7JwnPfbh2ObOU+Fe/+pWpr683c+bMMf379zd79uwJd2mOdvToUVNbW2tqa2uNJLNkyRJTW1vrX6K9aNEik5SUZNavX2927txp7rjjjk6X9aWnp5s333zT7Nixw3zrW99iWV83fvSjH5mkpCTz9ttvmwMHDvhfn3/+ub8Pc99z5s6dayorK01DQ4P585//bB599FETFRVl3njjDWMMc9+bvrxaxxjm3kkIJ//H6/WarKwsExcXZ6655hr/skucvy1bthhJHV7Tp083xvx1ad/jjz9uhgwZYtxut7n++uvNzp07A8b44osvzOzZs01ycrK56KKLzC233GIaGxvD8Gmco7M5l2Sef/55fx/mvuf84Ac/8P+35JJLLjE33nijP5gYw9z3pq+GE+beOVzGGBOeczYAAAAdRfw9JwAAwC6EEwAAYBXCCQAAsArhBAAAWIVwAgAArEI4AQAAViGcAAAAqxBOAACAVQgnAADAKoQTAABgFcIJAACwyv8D2/Q04E9jKNsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGxCAYAAAC5hxYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsa0lEQVR4nO3df3RU5Z3H8c8QkolAEgmRQEiAyIoSgVCHqEkBScW4AbEF94g/itiClRqqbHQ9IlsBxROOpQgrAx76Q+oWF9qKaIUVYwXCbnQNIdmCcV1YAwlCiKBm+CEJhGf/cJl1TEIyZEiey7xf58w53ufeee53HqPzOffe5xmXMcYIAADAEl06uwAAAIBvIpwAAACrEE4AAIBVCCcAAMAqhBMAAGAVwgkAALAK4QQAAFiFcAIAAKxCOAEAAFYhnABhZN++fXK5XFq9erW/bf78+XK5XEH39corr2jp0qWhK+4bBg4cqPvvv/+i9N1WzY1VMFwul2bNmtXqccXFxZo/f76+/PLLCzoPcCkinABhbsaMGXrvvfeCft/FDCc26Nu3r9577z1NmDDhop6nuLhYCxYsIJwA39C1swsA0DZfffWVLrvsspD3m5ycrOTk5JD363Rut1s33nhjZ5cBhCWunAAd5Nztk7KyMk2ePFmxsbGKi4vTD3/4Q3322WcBxw4cOFC33Xab1q9fr+985zuKjo7WggULJEk1NTV68MEHlZycrKioKKWmpmrBggU6c+ZMQB8HDx7UnXfeqZiYGMXFxWnKlCmqqalpsa5ve+WVV5SZmakePXqoR48eGjFihH7zm99IksaOHauNGzdq//79crlc/tc5DQ0NWrhwoa655hq53W5dccUV+tGPftTkc54+fVqPP/64+vTpo27dumnUqFH64IMP2jSeGRkZTa5qDBs2TC6XSyUlJf629evXy+VyadeuXf62PXv26J577lHv3r3ldrs1ZMgQeb3egL5auq3z+uuva/jw4XK73bryyiu1bNmy894a++d//mcNGTJE3bp1U3p6ut58803/vvnz5+sf/uEfJEmpqan+cdy6dask6d1339XYsWPVq1cvXXbZZerfv7/uuOMOnTx5sk1jBDgVV06ADjZp0iTdeeedmjlzpj788EP9/Oc/V0VFhf7jP/5DkZGR/uN27typjz76SP/4j/+o1NRUde/eXTU1Nbr++uvVpUsXPfXUUxo0aJDee+89LVy4UPv27dNLL70k6eurLOPGjdPBgwdVUFCgwYMHa+PGjZoyZUqbanzqqaf0zDPPaPLkyXr00UcVFxen3bt3a//+/ZKkFStW6Cc/+Yn+53/+R6+99lrAe8+ePavvf//72r59ux5//HFlZWVp//79mjdvnsaOHasdO3b4rwA98MADevnll/XYY4/plltu0e7duzV58mQdO3as1RrHjRun5cuX6/Tp04qMjNThw4e1e/duXXbZZSosLFRGRoYk6Z133lFiYqKGDRsmSaqoqFBWVpb69++vX/7yl+rTp482b96shx9+WEeOHNG8efNaPOdbb72lyZMna8yYMVq3bp3OnDmjxYsX6/Dhw80ev3HjRpWUlOjpp59Wjx499Nxzz2nSpEn6+OOPdeWVV2rGjBn6/PPP9cILL2j9+vXq27evJCktLU379u3ThAkTNHr0aP32t7/V5Zdfrk8//VRvvfWWGhoa1K1bt1bHCHAsA6BDzJs3z0gyf//3fx/QvmbNGiPJ/P73v/e3DRgwwERERJiPP/444NgHH3zQ9OjRw+zfvz+gffHixUaS+fDDD40xxqxcudJIMq+//nrAcQ888ICRZF566aUmdZ3zySefmIiICHPvvfee9/NMmDDBDBgwoEn7v/zLvxhJ5tVXXw1oLykpMZLMihUrjDHGfPTRR+cdj2nTpp33/O+8846RZIqKiowxxvz+9783MTEx5qGHHjLZ2dn+46666ipzzz33+LdvvfVWk5ycbOrq6gL6mzVrlomOjjaff/65McaYysrKJmOVkZFhUlJSTH19vb/t2LFjplevXubb/zuVZBITE43P5/O31dTUmC5dupiCggJ/2y9+8QsjyVRWVga8/09/+pORZMrLy887DsCliNs6QAe79957A7bvvPNOde3aVVu2bAloHz58uAYPHhzQ9uabbyo7O1tJSUk6c+aM/5WbmytJ2rZtmyRpy5YtiomJ0e233x7w/nvuuafV+goLC9XY2Ki8vLygP9u5Gi+//HJNnDgxoMYRI0aoT58+/lsW5z5vS+PRmu9+97uKjo7WO++846977Nix+tu//VsVFxfr5MmTqq6u1p49ezRu3DhJ0qlTp/SXv/xFkyZNUrdu3QLqGz9+vE6dOqX333+/2fOdOHFCO3bs0A9+8ANFRUX523v06KGJEyc2+57s7GzFxMT4txMTE9W7d2//FajzGTFihKKiovSTn/xEv/vd7/TJJ5+0+h7gUkE4ATpYnz59Ara7du2qXr166ejRowHt5y7xf9Phw4f15z//WZGRkQGva6+9VpJ05MgRSdLRo0eVmJjY6rmbc+65kAt9SPbw4cP68ssvFRUV1aTOmpqagBqbq+nceLQmOjpa3/3ud/3h5C9/+YtuueUWjR07Vo2Njdq+fbsKCwslyR9Ojh49qjNnzuiFF15oUtv48eMl/f8YftsXX3whY0yz49pcm6RmP4fb7dZXX33V6ucbNGiQ3nnnHfXu3Vt5eXkaNGiQBg0apGXLlrX6XsDpeOYE6GA1NTXq16+ff/vMmTM6evRoky+y5h6wTEhI0PDhw/Xss88223dSUpKkr78Um3uwtLkHYr/tiiuukCQdOHBAKSkprR7fXI29evXSW2+91ez+c1cSzn3elsajLW6++WY99dRT+uCDD3TgwAHdcsstiomJUUZGhgoLC3Xw4EENHjzY/zl69uypiIgITZ06tcUrQ6mpqc229+zZUy6Xq9nnS9oyrhdi9OjRGj16tBobG7Vjxw698MILmj17thITE3XXXXddlHMCNiCcAB1szZo18ng8/u0//OEPOnPmjMaOHdvqe2+77TZt2rRJgwYNUs+ePVs8Ljs7W3/4wx/0xhtvBNzaeeWVV1o9R05OjiIiIrRy5UplZma2eFxLVwBuu+02rV27Vo2NjbrhhhtafP+5z9vSeLTFuHHj9OSTT+rnP/+5kpOTdc011/jb33jjDdXU1OiOO+7wH9+tWzdlZ2errKxMw4cPD7g905ru3btr5MiR2rBhgxYvXux/7/HjxwNm4ATL7XZL0nmvpkREROiGG27QNddcozVr1mjnzp2EE1zSCCdAB1u/fr26du2qW265xT9bJz09XXfeeWer73366adVWFiorKwsPfzww7r66qt16tQp7du3T5s2bdKLL76o5ORk3XfffXr++ed133336dlnn9VVV12lTZs2afPmza2eY+DAgXryySf1zDPP6KuvvtLdd9+tuLg4VVRU6MiRI/4pzcOGDdP69eu1cuVKeTwedenSRSNHjtRdd92lNWvWaPz48XrkkUd0/fXXKzIyUgcOHNCWLVv0/e9/X5MmTdKQIUP0wx/+UEuXLlVkZKTGjRun3bt3a/HixYqNjW3TWHo8HvXs2VNvv/22fvSjH/nbx40bp2eeecb/z9+0bNkyjRo1SqNHj9ZPf/pTDRw4UMeOHdPevXv15z//We++++55x3/ChAm69dZb9cgjj6ixsVG/+MUv1KNHD33++edtqvnbzs0iWrZsmaZNm6bIyEhdffXVWrNmjd59911NmDBB/fv316lTp/Tb3/622c8EXHI6+4lcIFycmxVTWlpqJk6caHr06GFiYmLM3XffbQ4fPhxw7IABA8yECROa7eezzz4zDz/8sElNTTWRkZEmPj7eeDweM3fuXHP8+HH/cQcOHDB33HGH/zx33HGHKS4ubnW2zjkvv/yyycjIMNHR0aZHjx7mO9/5TsD7Pv/8c/N3f/d35vLLLzculyugj9OnT5vFixeb9PR0//uvueYa8+CDD5o9e/b4j6uvrzePPvqo6d27t4mOjjY33nijee+998yAAQNana1zzqRJk4wks2bNGn9bQ0OD6d69u+nSpYv54osvmrynsrLS/PjHPzb9+vUzkZGR5oorrjBZWVlm4cKFAcd8e6yMMea1114zw4YNM1FRUaZ///5m0aJF5uGHHzY9e/YMOE6SycvLa3Lu5j7bnDlzTFJSkunSpYuRZLZs2WLee+89M2nSJDNgwADjdrtNr169zE033WTeeOONNo0L4GQuY4zpvGgEhI/58+drwYIF+uyzz5SQkNDZ5SBETp8+rREjRqhfv356++23O7sc4JLAbR0ACML06dN1yy23qG/fvqqpqdGLL76ojz76iFk0QAgRTgAgCMeOHdNjjz2mzz77TJGRkbruuuu0adMmngMBQojbOgAAwCoswgYAAKxCOAEAAFYhnAAAAKs47oHYs2fP6uDBg4qJiWl2eW8AAGAfY4yOHTumpKQkdely/msjjgsnBw8evKDf+wAAAJ2vurq61R8WdVw4OfejYdXV1W1e4hoAAHQun8+nlJQU//f4+TgunJy7lRMbG0s4AQDAYdrySAYPxAIAAKs4Jpx4vV6lpaUpIyOjs0sBAAAXkeNWiPX5fIqLi1NdXR23dQAAcIhgvr8dc+UEAACEB8IJAACwCuEEAABYhXACAACsQjgBAABWcUw4YSoxAADhganEAADgomMqMQAAcCzCCQAAsArhBAAAWMVxv0p8sQ18YmOrx+xbNKEDKgEAIDxx5QQAAFiFcAIAAKxCOAEAAFYhnAAAAKsQTgAAgFUcE05Yvh4AgPDgmHCSl5eniooKlZSUdHYpAADgInJMOAEAAOGBcAIAAKxCOAEAAFYhnAAAAKsQTgAAgFUIJwAAwCqEEwAAYBXCCQAAsArhBAAAWIVwAgAArEI4AQAAViGcAAAAq3RKOOnatatGjBihESNGaMaMGZ1RAgAAsFTXzjjp5ZdfrvLy8s44NQAAsBy3dQAAgFWCDidFRUWaOHGikpKS5HK5tGHDhibHrFixQqmpqYqOjpbH49H27dsD9vt8Pnk8Ho0aNUrbtm274OIBAMClJ+hwcuLECaWnp2v58uXN7l+3bp1mz56tuXPnqqysTKNHj1Zubq6qqqr8x+zbt0+lpaV68cUXdd9998nn87V4vvr6evl8voAXAAC4dAUdTnJzc7Vw4UJNnjy52f1LlizR9OnTNWPGDA0ZMkRLly5VSkqKVq5c6T8mKSlJkjR06FClpaXpv//7v1s8X0FBgeLi4vyvlJSUYEsGAAAOEtJnThoaGlRaWqqcnJyA9pycHBUXF0uSvvjiC9XX10uSDhw4oIqKCl155ZUt9jlnzhzV1dX5X9XV1aEsGQAAWCaks3WOHDmixsZGJSYmBrQnJiaqpqZGkvTRRx/pwQcfVJcuXeRyubRs2TLFx8e32Kfb7Zbb7Q5lmQAAwGIXZSqxy+UK2DbG+NuysrK0a9euoPv0er3yer1qbGwMSY0AAMBOIb2tk5CQoIiICP9VknNqa2ubXE0JVl5enioqKlRSUtKufgAAgN1CGk6ioqLk8XhUWFgY0F5YWKisrKxQngoAAFyigr6tc/z4ce3du9e/XVlZqfLycsXHx6t///7Kz8/X1KlTNXLkSGVmZmrVqlWqqqrSzJkz21Uot3UAAAgPLmOMCeYNW7duVXZ2dpP2adOmafXq1ZK+XoTtueee06FDhzR06FA9//zzGjNmTEgK9vl8iouLU11dnWJjY0PS5zcNfGJjq8fsWzQh5OcFAOBSFsz3d9DhpLMRTgAAcJ5gvr/5bR0AAGAVx4QTr9ertLQ0ZWRkdHYpAADgInJMOGEqMQAA4cEx4QQAAIQHwgkAALCKY8IJz5wAABAeHBNOeOYEAIDw4JhwAgAAwgPhBAAAWIVwAgAArOKYcMIDsQAAhAfHhBMeiAUAIDw4JpwAAIDwQDgBAABWIZwAAACrEE4AAIBVHBNOmK0DAEB4cEw4YbYOAADhwTHhBAAAhAfCCQAAsArhBAAAWIVwAgAArEI4AQAAViGcAAAAqzgmnLDOCQAA4cEx4YR1TgAACA+OCScAACA8EE4AAIBVCCcAAMAqhBMAAGAVwgkAALAK4QQAAFiFcAIAAKxCOAEAAFYhnAAAAKs4JpywfD0AAOHBMeGE5esBAAgPjgknAAAgPBBOAACAVQgnAADAKoQTAABgFcIJAACwCuEEAABYhXACAACsQjgBAABWIZwAAACrEE4AAIBVCCcAAMAqnRZOTp48qQEDBuixxx7rrBIAAICFOi2cPPvss7rhhhs66/QAAMBSnRJO9uzZo//6r//S+PHjO+P0AADAYkGHk6KiIk2cOFFJSUlyuVzasGFDk2NWrFih1NRURUdHy+PxaPv27QH7H3vsMRUUFFxw0QAA4NIVdDg5ceKE0tPTtXz58mb3r1u3TrNnz9bcuXNVVlam0aNHKzc3V1VVVZKk119/XYMHD9bgwYPbdL76+nr5fL6AFwAAuHR1DfYNubm5ys3NbXH/kiVLNH36dM2YMUOStHTpUm3evFkrV65UQUGB3n//fa1du1Z//OMfdfz4cZ0+fVqxsbF66qmnmu2voKBACxYsCLZMAADgUCF95qShoUGlpaXKyckJaM/JyVFxcbGkr8NGdXW19u3bp8WLF+uBBx5oMZhI0pw5c1RXV+d/VVdXh7JkAABgmaCvnJzPkSNH1NjYqMTExID2xMRE1dTUXFCfbrdbbrc7FOUBAAAHCGk4OcflcgVsG2OatEnS/fff3+Y+vV6vvF6vGhsb21seAACwWEhv6yQkJCgiIqLJVZLa2tomV1OClZeXp4qKCpWUlLSrHwAAYLeQhpOoqCh5PB4VFhYGtBcWFiorKyuUpwIAAJeooG/rHD9+XHv37vVvV1ZWqry8XPHx8erfv7/y8/M1depUjRw5UpmZmVq1apWqqqo0c+bMdhXKbR0AAMKDyxhjgnnD1q1blZ2d3aR92rRpWr16taSvF2F77rnndOjQIQ0dOlTPP/+8xowZE5KCfT6f4uLiVFdXp9jY2JD0+U0Dn9jY6jH7Fk0I+XkBALiUBfP9HXQ46WyEEwAAnCeY7+9O++E/AACA5jgmnHi9XqWlpSkjI6OzSwEAABeRY8IJU4kBAAgPjgknAAAgPBBOAACAVRwTTnjmBACA8OCYcMIzJwAAhAfHhBMAABAeCCcAAMAqhBMAAGAVx4QTHogFACA8OCac8EAsAADhwTHhBAAAhAfCCQAAsArhBAAAWIVwAgAArOKYcMJsHQAAwoNjwgmzdQAACA+OCScAACA8EE4AAIBVCCcAAMAqhBMAAGAVwgkAALAK4QQAAFjFMeGEdU4AAAgPjgknrHMCAEB4cEw4AQAA4YFwAgAArEI4AQAAViGcAAAAqxBOAACAVQgnAADAKoQTAABgFcIJAACwCuEEAABYxTHhhOXrAQAID44JJyxfDwBAeHBMOAEAAOGBcAIAAKxCOAEAAFYhnAAAAKsQTgAAgFUIJwAAwCqEEwAAYBXCCQAAsArhBAAAWIVwAgAArEI4AQAAVunwcHLs2DFlZGRoxIgRGjZsmH71q191dAkAAMBiXTv6hN26ddO2bdvUrVs3nTx5UkOHDtXkyZPVq1evji4FAABYqMOvnERERKhbt26SpFOnTqmxsVHGmI4uAwAAWCrocFJUVKSJEycqKSlJLpdLGzZsaHLMihUrlJqaqujoaHk8Hm3fvj1g/5dffqn09HQlJyfr8ccfV0JCwgV/AAAAcGkJOpycOHFC6enpWr58ebP7161bp9mzZ2vu3LkqKyvT6NGjlZubq6qqKv8xl19+uf7zP/9TlZWVeuWVV3T48OEL/wQAAOCSEnQ4yc3N1cKFCzV58uRm9y9ZskTTp0/XjBkzNGTIEC1dulQpKSlauXJlk2MTExM1fPhwFRUVtXi++vp6+Xy+gBcAALh0hfSZk4aGBpWWlionJyegPScnR8XFxZKkw4cP+wOGz+dTUVGRrr766hb7LCgoUFxcnP+VkpISypIBAIBlQhpOjhw5osbGRiUmJga0JyYmqqamRpJ04MABjRkzRunp6Ro1apRmzZql4cOHt9jnnDlzVFdX539VV1eHsmQAAGCZizKV2OVyBWwbY/xtHo9H5eXlbe7L7XbL7XaHsjwAAGCxkF45SUhIUEREhP8qyTm1tbVNrqYEy+v1Ki0tTRkZGe3qBwAA2C2k4SQqKkoej0eFhYUB7YWFhcrKympX33l5eaqoqFBJSUm7+gEAAHYL+rbO8ePHtXfvXv92ZWWlysvLFR8fr/79+ys/P19Tp07VyJEjlZmZqVWrVqmqqkozZ84MaeEAAODSFHQ42bFjh7Kzs/3b+fn5kqRp06Zp9erVmjJlio4ePaqnn35ahw4d0tChQ7Vp0yYNGDCgXYV6vV55vV41Nja2qx8AAGA3l3HY2vE+n09xcXGqq6tTbGxsyPsf+MTGVo/Zt2hCyM8LAMClLJjv7w7/bR0AAIDzcUw4YbYOAADhwTHhhNk6AACEB8eEEwAAEB4IJwAAwCoXZfn6i8GmqcTM6AEA4OJxzJUTnjkBACA8OCacAACA8EA4AQAAViGcAAAAqzgmnLAIGwAA4cEx4YQHYgEACA+OCScAACA8EE4AAIBVCCcAAMAqhBMAAGAVx4QTZusAABAeHBNOmK0DAEB4cEw4AQAA4YFwAgAArEI4AQAAViGcAAAAqxBOAACAVQgnAADAKo4JJ6xzAgBAeHBMOGGdEwAAwoNjwgkAAAgPhBMAAGAVwgkAALAK4QQAAFiFcAIAAKxCOAEAAFYhnAAAAKsQTgAAgFUIJwAAwCqOCScsXw8AQHhwGWNMZxcRDJ/Pp7i4ONXV1Sk2Njbk/Q98YmPI+2zJvkUTOuxcAAB0pmC+vx1z5QQAAIQHwgkAALAK4QQAAFiFcAIAAKxCOAEAAFYhnAAAAKsQTgAAgFUIJwAAwCqEEwAAYBXCCQAAsArhBAAAWKXDw0l1dbXGjh2rtLQ0DR8+XH/84x87ugQAAGCxrh1+wq5dtXTpUo0YMUK1tbW67rrrNH78eHXv3r2jSwEAABbq8HDSt29f9e3bV5LUu3dvxcfH6/PPPyecAAAASRdwW6eoqEgTJ05UUlKSXC6XNmzY0OSYFStWKDU1VdHR0fJ4PNq+fXuzfe3YsUNnz55VSkpK0IUDAIBLU9Dh5MSJE0pPT9fy5cub3b9u3TrNnj1bc+fOVVlZmUaPHq3c3FxVVVUFHHf06FHdd999WrVq1YVVDgAALklB39bJzc1Vbm5ui/uXLFmi6dOna8aMGZKkpUuXavPmzVq5cqUKCgokSfX19Zo0aZLmzJmjrKys856vvr5e9fX1/m2fzxdsyQAAwEFCOlunoaFBpaWlysnJCWjPyclRcXGxJMkYo/vvv1/f+973NHXq1Fb7LCgoUFxcnP/FLSAAAC5tIQ0nR44cUWNjoxITEwPaExMTVVNTI0n693//d61bt04bNmzQiBEjNGLECO3atavFPufMmaO6ujr/q7q6OpQlAwAAy1yU2Toulytg2xjjbxs1apTOnj3b5r7cbrfcbndI6wMAAPYK6ZWThIQERURE+K+SnFNbW9vkakqwvF6v0tLSlJGR0a5+AACA3UIaTqKiouTxeFRYWBjQXlhY2OqDr63Jy8tTRUWFSkpK2tUPAACwW9C3dY4fP669e/f6tysrK1VeXq74+Hj1799f+fn5mjp1qkaOHKnMzEytWrVKVVVVmjlzZkgLBwAAl6agw8mOHTuUnZ3t387Pz5ckTZs2TatXr9aUKVN09OhRPf300zp06JCGDh2qTZs2acCAAe0q1Ov1yuv1qrGxsV39AAAAu7mMMaaziwiGz+dTXFyc6urqFBsbG/L+Bz6xMeR9tmTfogkddi4AADpTMN/fHf7bOvh/bQlCBBgAQLgJ6QOxAAAA7eWYcMJUYgAAwoNjwglTiQEACA+OCScAACA8EE4AAIBVHBNOeOYEAIDw4JhwwjMnAACEB8eEEwAAEB4IJwAAwCqEEwAAYBXHLF8frj/8xxL3AIBw45grJzwQCwBAeHBMOAEAAOGBcAIAAKxCOAEAAFYhnAAAAKs4JpywfD0AAOHBMeGE2ToAAIQHx4QTAAAQHggnAADAKoQTAABgFcIJAACwCuEEAABYhXACAACs4phwwjonAACEB8eEE9Y5AQAgPHTt7ALQfgOf2NjqMfsWTeiASgAAaD/HXDkBAADhgXACAACsQjgBAABWIZwAAACrEE4AAIBVCCcAAMAqhBMAAGAVx6xz4vV65fV61djY2NmlOBJroQAAnMIxV05YIRYAgPDgmHACAADCA+EEAABYhXACAACsQjgBAABWIZwAAACrEE4AAIBVCCcAAMAqhBMAAGAVwgkAALAK4QQAAFiFcAIAAKxCOAEAAFbplF8lnjRpkrZu3aqbb75Zf/rTnzqjBDSDXy4GANigU66cPPzww3r55Zc749QAAMBynRJOsrOzFRMT0xmnBgAAlgs6nBQVFWnixIlKSkqSy+XShg0bmhyzYsUKpaamKjo6Wh6PR9u3bw9FrQAAIAwEHU5OnDih9PR0LV++vNn969at0+zZszV37lyVlZVp9OjRys3NVVVV1QUVWF9fL5/PF/ACAACXrqDDSW5urhYuXKjJkyc3u3/JkiWaPn26ZsyYoSFDhmjp0qVKSUnRypUrL6jAgoICxcXF+V8pKSkX1A8AAHCGkD5z0tDQoNLSUuXk5AS05+TkqLi4+IL6nDNnjurq6vyv6urqUJQKAAAsFdKpxEeOHFFjY6MSExMD2hMTE1VTU+PfvvXWW7Vz506dOHFCycnJeu2115SRkdFsn263W263O5RlAgAAi12UdU5cLlfAtjEmoG3z5s1B9+n1euX1etXY2Nju+gAAgL1CelsnISFBERERAVdJJKm2trbJ1ZRg5eXlqaKiQiUlJe3qBwAA2C2k4SQqKkoej0eFhYUB7YWFhcrKygrlqQAAwCUq6Ns6x48f1969e/3blZWVKi8vV3x8vPr376/8/HxNnTpVI0eOVGZmplatWqWqqirNnDmzXYVyWwcAgPDgMsaYYN6wdetWZWdnN2mfNm2aVq9eLenrRdiee+45HTp0SEOHDtXzzz+vMWPGhKRgn8+nuLg41dXVKTY2NiR9flNbfl8mnPHbOgCACxHM93fQ4aSzEU46F+EEAHAhgvn+7pTf1gEAAGiJY8KJ1+tVWlpai+uhAACAS4NjwglTiQEACA+OCScAACA8EE4AAIBVHBNOeOYEAIDw4JhwwjMnAACEB8eEEwAAEB4IJwAAwCqEEwAAYJWgf/ivs/DDf87Rlp8AaMsy+KH6KQGW3AcAZ3HMlRMeiAUAIDw4JpwAAIDwQDgBAABWIZwAAACrEE4AAIBVmK0DKHQzjAAA7eeYKyfM1gEAIDw4JpwAAIDwQDgBAABWIZwAAACrEE4AAIBVCCcAAMAqhBMAAGAV1jkBgPNgDRyg4znmygnrnAAAEB4cE04AAEB4IJwAAACrEE4AAIBVCCcAAMAqhBMAAGAVwgkAALAK4QQAAFiFcAIAAKxCOAEAAFZh+XoEpS1LeYezUC11zpLpAMKZY66csHw9AADhwTHhBAAAhAfCCQAAsArhBAAAWIVwAgAArEI4AQAAViGcAAAAqxBOAACAVQgnAADAKoQTAABgFcIJAACwCuEEAABYpVPCyZtvvqmrr75aV111lX796193RgkAAMBSHf6rxGfOnFF+fr62bNmi2NhYXXfddZo8ebLi4+M7uhQAAGChDr9y8sEHH+jaa69Vv379FBMTo/Hjx2vz5s0dXQYAALBU0OGkqKhIEydOVFJSklwulzZs2NDkmBUrVig1NVXR0dHyeDzavn27f9/BgwfVr18//3ZycrI+/fTTC6seAABccoIOJydOnFB6erqWL1/e7P5169Zp9uzZmjt3rsrKyjR69Gjl5uaqqqpKkmSMafIel8vV4vnq6+vl8/kCXgAA4NIV9DMnubm5ys3NbXH/kiVLNH36dM2YMUOStHTpUm3evFkrV65UQUGB+vXrF3Cl5MCBA7rhhhta7K+goEALFiwItkxYbuATGx13ro6suS3aUs++RRM6rJ+2CNUYhqoeJ+rIf19OxN9Y65zwNxTSZ04aGhpUWlqqnJycgPacnBwVFxdLkq6//nrt3r1bn376qY4dO6ZNmzbp1ltvbbHPOXPmqK6uzv+qrq4OZckAAMAyIZ2tc+TIETU2NioxMTGgPTExUTU1NV+fsGtX/fKXv1R2drbOnj2rxx9/XL169WqxT7fbLbfbHcoyAQCAxS7KVOJvP0NijAlou/3223X77bcH1afX65XX61VjY2NIagQAAHYK6W2dhIQERURE+K+SnFNbW9vkakqw8vLyVFFRoZKSknb1AwAA7BbScBIVFSWPx6PCwsKA9sLCQmVlZYXyVAAA4BIV9G2d48ePa+/evf7tyspKlZeXKz4+Xv3791d+fr6mTp2qkSNHKjMzU6tWrVJVVZVmzpwZ0sIBAMClKehwsmPHDmVnZ/u38/PzJUnTpk3T6tWrNWXKFB09elRPP/20Dh06pKFDh2rTpk0aMGBAuwrlmRMAAMJD0OFk7NixzS6k9k0PPfSQHnrooQsuqjl5eXnKy8uTz+dTXFxcSPsGAAD26JRfJQYAAGiJY8KJ1+tVWlqaMjIyOrsUAABwETkmnDCVGACA8OCYcAIAAMID4QQAAFjFMeGEZ04AAAgPjgknPHMCAEB4uCg//HcxnVtjxefzXZT+z9afvCj9Aue05W83VH+HoTpXqP5768jPFSodOT5tYVs9tnHi31hH66y/oXN9trZWmiS5TFuOssiBAweUkpLS2WUAAIALUF1dreTk5PMe47hwcvbsWR08eFAxMTFyuVwh7dvn8yklJUXV1dWKjY0Nad/hgjFsP8aw/RjD0GAc248x/H/GGB07dkxJSUnq0uX8T5U47rZOly5dWk1c7RUbGxv2f0TtxRi2H2PYfoxhaDCO7ccYfq2tPz/jmAdiAQBAeCCcAAAAqxBOvsHtdmvevHlyu92dXYpjMYbtxxi2H2MYGoxj+zGGF8ZxD8QCAIBLG1dOAACAVQgnAADAKoQTAABgFcIJAACwCuEEAABYhXDyf1asWKHU1FRFR0fL4/Fo+/btnV2SNYqKijRx4kQlJSXJ5XJpw4YNAfuNMZo/f76SkpJ02WWXaezYsfrwww8Djqmvr9fPfvYzJSQkqHv37rr99tt14MCBDvwUnaugoEAZGRmKiYlR79699YMf/EAff/xxwDGM4/mtXLlSw4cP96+0mZmZqX/913/172f8gldQUCCXy6XZs2f72xjH85s/f75cLlfAq0+fPv79jF+IGJi1a9eayMhI86tf/cpUVFSYRx55xHTv3t3s37+/s0uzwqZNm8zcuXPNq6++aiSZ1157LWD/okWLTExMjHn11VfNrl27zJQpU0zfvn2Nz+fzHzNz5kzTr18/U1hYaHbu3Gmys7NNenq6OXPmTAd/ms5x6623mpdeesns3r3blJeXmwkTJpj+/fub48eP+49hHM/vjTfeMBs3bjQff/yx+fjjj82TTz5pIiMjze7du40xjF+wPvjgAzNw4EAzfPhw88gjj/jbGcfzmzdvnrn22mvNoUOH/K/a2lr/fsYvNAgnxpjrr7/ezJw5M6DtmmuuMU888UQnVWSvb4eTs2fPmj59+phFixb5206dOmXi4uLMiy++aIwx5ssvvzSRkZFm7dq1/mM+/fRT06VLF/PWW291WO02qa2tNZLMtm3bjDGM44Xq2bOn+fWvf834BenYsWPmqquuMoWFheamm27yhxPGsXXz5s0z6enpze5j/EIn7G/rNDQ0qLS0VDk5OQHtOTk5Ki4u7qSqnKOyslI1NTUB4+d2u3XTTTf5x6+0tFSnT58OOCYpKUlDhw4N2zGuq6uTJMXHx0tiHIPV2NiotWvX6sSJE8rMzGT8gpSXl6cJEyZo3LhxAe2MY9vs2bNHSUlJSk1N1V133aVPPvlEEuMXSo77VeJQO3LkiBobG5WYmBjQnpiYqJqamk6qyjnOjVFz47d//37/MVFRUerZs2eTY8JxjI0xys/P16hRozR06FBJjGNb7dq1S5mZmTp16pR69Oih1157TWlpaf7/qTN+rVu7dq127typkpKSJvv4O2zdDTfcoJdfflmDBw/W4cOHtXDhQmVlZenDDz9k/EIo7MPJOS6XK2DbGNOkDS27kPEL1zGeNWuW/vrXv+rf/u3fmuxjHM/v6quvVnl5ub788ku9+uqrmjZtmrZt2+bfz/idX3V1tR555BG9/fbbio6ObvE4xrFlubm5/n8eNmyYMjMzNWjQIP3ud7/TjTfeKInxC4Wwv62TkJCgiIiIJom1tra2SfpFU+eeUj/f+PXp00cNDQ364osvWjwmXPzsZz/TG2+8oS1btig5Odnfzji2TVRUlP7mb/5GI0eOVEFBgdLT07Vs2TLGr41KS0tVW1srj8ejrl27qmvXrtq2bZv+6Z/+SV27dvWPA+PYdt27d9ewYcO0Z88e/g5DKOzDSVRUlDwejwoLCwPaCwsLlZWV1UlVOUdqaqr69OkTMH4NDQ3atm2bf/w8Ho8iIyMDjjl06JB2794dNmNsjNGsWbO0fv16vfvuu0pNTQ3YzzheGGOM6uvrGb82uvnmm7Vr1y6Vl5f7XyNHjtS9996r8vJyXXnllYxjkOrr6/XRRx+pb9++/B2GUmc8hWubc1OJf/Ob35iKigoze/Zs0717d7Nv377OLs0Kx44dM2VlZaasrMxIMkuWLDFlZWX+qdaLFi0ycXFxZv369WbXrl3m7rvvbnbqXHJysnnnnXfMzp07zfe+972wmjr305/+1MTFxZmtW7cGTEE8efKk/xjG8fzmzJljioqKTGVlpfnrX/9qnnzySdOlSxfz9ttvG2MYvwv1zdk6xjCOrXn00UfN1q1bzSeffGLef/99c9ttt5mYmBj/9wXjFxqEk//j9XrNgAEDTFRUlLnuuuv8UzxhzJYtW4ykJq9p06YZY76ePjdv3jzTp08f43a7zZgxY8yuXbsC+vjqq6/MrFmzTHx8vLnsssvMbbfdZqqqqjrh03SO5sZPknnppZf8xzCO5/fjH//Y/9/oFVdcYW6++WZ/MDGG8btQ3w4njOP5nVu3JDIy0iQlJZnJkyebDz/80L+f8QsNlzHGdM41GwAAgKbC/pkTAABgF8IJAACwCuEEAABYhXACAACsQjgBAABWIZwAAACrEE4AAIBVCCcAAMAqhBMAAGAVwgkAALAK4QQAAFjlfwGRCkfuGyJtfQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -915,17 +915,17 @@ "start_time": "2023-11-09T18:33:43.723035309Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:39:38.663073Z", - "iopub.status.busy": "2023-11-09T20:39:38.662866Z", - "iopub.status.idle": "2023-11-09T20:39:38.668708Z", - "shell.execute_reply": "2023-11-09T20:39:38.668230Z" + "iopub.execute_input": "2023-11-09T22:28:23.421446Z", + "iopub.status.busy": "2023-11-09T22:28:23.421121Z", + "iopub.status.idle": "2023-11-09T22:28:23.424827Z", + "shell.execute_reply": "2023-11-09T22:28:23.424402Z" } }, "outputs": [ { "data": { "text/plain": [ - "(474.30249325344704, 70142.01496046843)" + "(555.188238558999, 66922.97254342238)" ] }, "execution_count": 19, @@ -974,10 +974,10 @@ "start_time": "2023-11-09T18:33:43.728815796Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:39:38.671177Z", - "iopub.status.busy": "2023-11-09T20:39:38.670792Z", - "iopub.status.idle": "2023-11-09T20:44:45.764694Z", - "shell.execute_reply": "2023-11-09T20:44:45.764000Z" + "iopub.execute_input": "2023-11-09T22:28:23.426509Z", + "iopub.status.busy": "2023-11-09T22:28:23.426362Z", + "iopub.status.idle": "2023-11-09T22:32:56.684451Z", + "shell.execute_reply": "2023-11-09T22:32:56.683865Z" } }, "outputs": [ @@ -992,40 +992,40 @@ "name": "stdout", "output_type": "stream", "text": [ - "KS over hSPD = 0.30688085708695023\n" + "KS over hSPD = 0.30781267860583916\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "KS over pt_b = 0.18052275594200184\n" + "KS over pt_b = 0.18064045190795774\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "KS over pt_phi = 0.3079253167194888\n" + "KS over pt_phi = 0.3080389675968616\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "KS over vchi2_b = 0.2991908161695863\n" + "KS over vchi2_b = 0.2987982939810002\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "KS over mu_pt_sum = 0.18052275594200184\n" + "KS over mu_pt_sum = 0.18064045190795774\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNgAAAJbCAYAAAA2QikwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACWBklEQVR4nOzdf1zV9f3///sR5GAlmKL8KEB0WRpqDUzBSGuKw3JWlqRlWujGMBNYWyL6SZ2T6ZwjUzALI2cqW+pqi6W0KWlSKUFz6sq9QzEDGWyC9gMUX98//HrkeACBAxx+3K6Xy+uy83qex+v5er6es/PkPM7z9XqaDMMwBAAAAAAAAKBJuji6AQAAAAAAAEB7RoINAAAAAAAAsAMJNgAAAAAAAMAOJNgAAAAAAAAAO5BgAwAAAAAAAOxAgg0AAAAAAACwAwk2AAAAAAAAwA4k2AAAAAAAAAA7kGADAAAAAAAA7ECCDWglixYtkslkUmlpab1xX3/9tZYvX66hQ4fKzc1N3bt3V//+/TV58mRlZ2db4vbs2SOTyWTZnJyc5OnpqUcffVRHjx61xB0/ftwqrmvXrurVq5eGDRumuLg4HT58uMWuGQDQ9qWkpCg9Pb1Jx/bt21cPPPBA8zYIANDu2DOWNNTl7z9vvvnmNWNnzJihvn37tmh7gKuRYAPakOrqaoWHh+tXv/qVHnnkEf3xj3/Um2++qbi4OJWXl2vv3r02xyxbtkw5OTnavXu3nn/+eWVlZWnkyJE6deqUVdycOXOUk5Oj7Oxs/f73v9eDDz6ot99+W0OHDtVvfvOb1rpEAEAb0xpfigAAHVtbG0sWLlyoHTt2OLoZ6GScHd0AAFe8//772r9/vzZs2KCnnnrKUj5u3Dg988wzunjxos0xt9xyi0aMGCFJuueee9SjRw9FRUUpPT1diYmJljg/Pz9LnCSNHz9e8fHxevjhh/WLX/xCgYGBioiIaMGrAwAAAICW179/f0c3AZ0QM9iAVnb69GlNmTJF7u7u8vT01NNPP63y8nJJUllZmSTJ29u71mO7dLn2f7KXk2gnTpy4Zmy3bt2Ulpamrl27MosNADqYy48myMvL08MPPyw3Nze5u7vriSee0H/+8x9Jl27xPHz4sLKzsy2PEmjKLTU7duzQkCFD5Orqqn79+mn16tXNfDUAAEdojbHk8uMGGjqWnD9/XomJifLx8ZGbm5vGjBmjzz77zCqGW0ThCCTYgFY2adIkDRgwQNu2bdO8efO0efNmxcXFSZKCg4PVtWtXzZ07V2+88YaKiooaXf+///1vSVLv3r0bFO/j46OgoCDt379fFy5caPT5AABt20MPPaTvfe97evPNN7Vo0SL96U9/0rhx43T+/Hnt2LFD/fr105133qmcnBzl5OQ0+paa/Px8xcbGKi4uTjt27FBoaKjmzp2rlStXttAVAQBaW1saS+bPn68TJ07o1Vdf1fr163Xs2DFNmDBB1dXVzXW5QJNwiyjQyqKiovTzn/9ckjRmzBj9+9//1oYNG5SWlqa+fftq3bp1mjt3rp544glJl2azjR07VjNnzlRYWJhNfRcvXtSFCxd0/vx5HTx4UD/72c/k5OSkyMjIBrfJ399fH374of773/+qT58+zXOhAIA24eGHH9aKFSskSeHh4fL09NTjjz+uP/zhD3r88cfVrVs3ubm5WT1GoDG++uor5eXlaejQoZKkiIgIlZSU6Je//KViYmJ03XXXNdu1AAAcoy2NJYMGDdKmTZss+05OTpo8ebIOHDjQ5PMDzYEZbEAr+9GPfmS1P2TIEH333XcqKSmRJD399NP68ssvtXnzZj377LPy9fXVpk2bNGrUqFpv44yMjFTXrl113XXX6Z577lF1dbXefPNNDRkypMFtMgzDvosCALRZjz/+uNX+5MmT5ezsrN27dzdL/bfffrvlC9FlU6dOVUVFhT755JNmOQcAwLHa0lhS2/cpqWGPyAFaEjPYgFbWq1cvq32z2SxJ+vbbby1l7u7umjJliqZMmSJJOnz4sMaMGaPExETNmjVLPXr0sMQuX75c9913n5ycnOTh4SFfX99Gt+nEiRMym83q2bNnE64IANCWeXl5We07OzurV69elud+Nnf9Ncua6xwAAMdqS2NJQ75PAY7ADDagHbj99tv12GOP6fz58/r888+t3uvXr5+Cg4N15513Nim5durUKeXm5uruu++WszM5dwDoaIqLi632L1y4oLKyMpsvKM1Vf82y5joHAMCxGEuAayPBBrQhZWVlqqqqqvW9f/3rX5IuLUrQXL799lvNnDlTFy5c0C9+8YtmqxcA0Ha88cYbVvt/+MMfdOHCBY0ePVrSpV/+7fnV//Dhw/r000+tyjZv3qzu3bvr+9//fpPrBQC0HYwlwLUxXQVoQ3bv3q25c+fq8ccfV2hoqHr16qWSkhJt2bJF7777rp588kndfPPNTaq7sLBQH374oS5evKjy8nLl5eVpw4YNOnHihH77298qPDy8ma8GANAWbN++Xc7Ozho7dqwOHz6shQsXaujQoZo8ebIkafDgwdq6dasyMjLUr18/ubq6avDgwQ2u38fHRz/60Y+0aNEieXt7a9OmTcrKytLy5ctZ4AAAOgjGEuDaSLABbciIESP09NNPa/fu3fr973+v0tJSdevWTYMGDdJLL72kn/70p02u+6WXXtJLL70kJycnubm5qV+/fpowYYJmzZqlQYMGNeNVAADaku3bt2vRokVKTU2VyWTShAkTlJycLBcXF0nS4sWLVVRUpFmzZuns2bPy9/fX8ePHG1z/HXfcoaeeekovvPCCjh07Jh8fH61atUpxcXEtdEUAgNbGWAJcm8lg+UAAAIAOZ9GiRVq8eLH+85//yMPDw9HNAQC0Q60xlvTt21eBgYH6y1/+0iL1A62FZ7ABAAAAAAAAduAWUQAAAFiprq5WfTc5mEwmOTk5tWKLAADtDWMJOhtuEQUAAICVvn376sSJE3W+P2rUKO3Zs6f1GgQAaHcYS9DZMIMNAAAAVv785z+rsrKyzve7d+/eiq0BALRHjCXobJjBBgAAAAAAANiBRQ4AAAAAAAAAO3CLaA0XL17UV199pe7du8tkMjm6OQDQ7hmGobNnz8rHx0dduvCbjsRYAwDNjbHGGuMMADSvho4zJNhq+Oqrr+Tr6+voZgBAh3Py5EndfPPNjm5Gm8BYAwAtg7HmEsYZAGgZ1xpnSLDVcPkhiydPnpSbm5uDWwMA7V9FRYV8fX15iG0NjDUA0LwYa6wxzgBA82roOEOCrYbLU6jd3NwYjACgGXGLyhWMNQDQMhhrLmGcAYCWca1xhocUAAAAAAAAAHYgwQYAAAAAAADYgQQbAAAAAAAAYAcSbAAAAAAAAIAdSLABAAAAAAAAdiDBBgAAAAAAANiBBBsAAAAAAABgBxJsAAAAAAAAgB1IsAEAAAAAAAB2cHZ0A9D2RaUfsLxOmzGsyTHNcQwAoAk2R155PTXDce0AALQ/jCEA0CDMYAMAAAAAAADsQIINAAAAAAAAsAMJNgAAAAAAAMAOTUqwpaSkKCAgQK6urgoKCtLevXvrjc/OzlZQUJBcXV3Vr18/rVu3ziZm27ZtGjRokMxmswYNGqQdO3ZYvZ+amqohQ4bIzc1Nbm5uCgkJ0V//+lerGMMwtGjRIvn4+Khbt24aPXq0Dh8+3JRLBACgY9oceWUDAAAA0CwanWDLyMhQbGysEhMTlZeXp7CwMEVERKiwsLDW+IKCAo0fP15hYWHKy8vT/Pnz9eyzz2rbtm2WmJycHEVGRmratGn69NNPNW3aNE2ePFkfffSRJebmm2/Wr3/9ax08eFAHDx7Ufffdp4kTJ1ol0FasWKFVq1ZpzZo1OnDggLy8vDR27FidPXu2sZcJAAAAAAAANEijE2yrVq1SVFSUZs6cqYEDByo5OVm+vr5KTU2tNX7dunXy8/NTcnKyBg4cqJkzZ+rpp5/WypUrLTHJyckaO3asEhISdNtttykhIUE/+MEPlJycbImZMGGCxo8frwEDBmjAgAH61a9+pRtuuEEffvihpEuz15KTk5WYmKiHH35YgYGBev311/XNN99o8+bNjb1MAAAAAAAAoEEalWCrqqpSbm6uwsPDrcrDw8O1f//+Wo/JycmxiR83bpwOHjyo8+fP1xtTV53V1dXaunWrvv76a4WEhEi6NFOuuLjYqh6z2axRo0bVWU9lZaUqKiqsNgAAAAAAAKAxGpVgKy0tVXV1tTw9Pa3KPT09VVxcXOsxxcXFtcZfuHBBpaWl9cZcXeehQ4d0ww03yGw2Kzo6Wjt27NCgQYMsdVw+rqFtS0pKkru7u2Xz9fWt7/IBAAAAAAAAG01a5MBkMlntG4ZhU3at+KvLG1Lnrbfeqvz8fH344Yf66U9/qunTp+vIkSNNbltCQoLKy8st28mTJ+u8BjRcVPoBywYAAAAAANDROTcm2MPDQ05OTjYzwkpKSmxmjl3m5eVVa7yzs7N69epVb8zVdbq4uOh73/ueJCk4OFgHDhzQiy++qJdfflleXl6SLs1k8/b2blDbzGazzGbztS4bAAAAAAAAqFOjZrC5uLgoKChIWVlZVuVZWVkKDQ2t9ZiQkBCb+F27dik4OFhdu3atN6auOi8zDEOVlZWSpICAAHl5eVnVU1VVpezs7GvWAwAAAAAAADRVo2awSVJ8fLymTZum4OBghYSEaP369SosLFR0dLSkS7ddnjp1Shs3bpQkRUdHa82aNYqPj9esWbOUk5OjtLQ0bdmyxVLn3Llzdc8992j58uWaOHGi3nrrLb333nvat2+fJWb+/PmKiIiQr6+vzp49q61bt2rPnj169913JV26NTQ2NlbLli3TLbfcoltuuUXLli3Tddddp6lTp9rVSQAAdEibI6+8nprhuHYAAAAA7VyjE2yRkZEqKyvTkiVLVFRUpMDAQGVmZsrf31+SVFRUpMLCQkt8QECAMjMzFRcXp7Vr18rHx0erV6/WpEmTLDGhoaHaunWrFixYoIULF6p///7KyMjQ8OHDLTGnT5/WtGnTVFRUJHd3dw0ZMkTvvvuuxo4da4n5xS9+oW+//VYxMTH63//+p+HDh2vXrl3q3r17kzoHAAAAAAAAuBaTcXnFAaiiokLu7u4qLy+Xm5ubo5vTZtRcrCBtxrBrxtSn5vENqRdA+8bnqi2H9EnNmWp1YQYbgHaKscZas/cHs50BdHIN/Vxt0iqiAAA4WkpKigICAuTq6qqgoCDt3bu3ztiioiJNnTpVt956q7p06aLY2FibmPT0dJlMJpvtu+++a/J5AQAAAHQOJNgAAO1ORkaGYmNjlZiYqLy8PIWFhSkiIsLqEQU1VVZWqnfv3kpMTNTQoUPrrNfNzU1FRUVWm6ura5PPCwAAAKBzIMEGAGh3Vq1apaioKM2cOVMDBw5UcnKyfH19lZqaWmt837599eKLL+rJJ5+Uu7t7nfWaTCZ5eXlZbfac16E2R17ZAAAAALQoEmwAgHalqqpKubm5Cg8PtyoPDw/X/v377ar73Llz8vf3180336wHHnhAeXl5rXJeAAAAAO0bCTYAQLtSWlqq6upqeXp6WpV7enqquLi4yfXedtttSk9P19tvv60tW7bI1dVVI0eO1LFjx+w6b2VlpSoqKqw2AAAAAB0LCTYAQLtkMpms9g3DsClrjBEjRuiJJ57Q0KFDFRYWpj/84Q8aMGCAXnrpJbvOm5SUJHd3d8vm6+vb5DYCAAAAaJucHd0AtK6o9ANW+2kzhjmoJQDQNB4eHnJycrKZNVZSUmIzu8weXbp00bBhwywz2Jp63oSEBMXHx1v2KyoqSLIBAAAAHQwz2AAA7YqLi4uCgoKUlZVlVZ6VlaXQ0NBmO49hGMrPz5e3t7dd5zWbzXJzc7PaAAAAAHQszGBDq7p6Bh0ANEV8fLymTZum4OBghYSEaP369SosLFR0dLSkS7PGTp06pY0bN1qOyc/Pl3RpIYP//Oc/ys/Pl4uLiwYNGiRJWrx4sUaMGKFbbrlFFRUVWr16tfLz87V27doGnxcAAABA50SCDU1GsgyAo0RGRqqsrExLlixRUVGRAgMDlZmZKX9/f0lSUVGRCgsLrY658847La9zc3O1efNm+fv76/jx45KkM2fO6Mc//rGKi4vl7u6uO++8U++//77uuuuuBp8XAAAAQOdEgg0A0C7FxMQoJiam1vfS09NtygzDqLe+3/3ud/rd735n13kBAAAAdE4k2NAozFoDAAAAAACwRoINbVrNhB4rngIAAAAAgLaIVUQBAAAAAAAAO5BgAwAAAIAWkpKSooCAALm6uiooKEh79+6tN/6NN97Q0KFDdd1118nb21tPPfWUysrKWqm1AICmIsEGAAAAAC0gIyNDsbGxSkxMVF5ensLCwhQREWGz0vVl+/bt05NPPqmoqCgdPnxYf/zjH3XgwAHNnDmzlVsOAGgsEmwAAAAA0AJWrVqlqKgozZw5UwMHDlRycrJ8fX2Vmppaa/yHH36ovn376tlnn1VAQIDuvvtu/eQnP9HBgwdbueUAgMYiwYY2ISr9gGUDAAAA2ruqqirl5uYqPDzcqjw8PFz79++v9ZjQ0FB9+eWXyszMlGEYOn36tN58803df//9rdFkAIAdSLABAAAAQDMrLS1VdXW1PD09rco9PT1VXFxc6zGhoaF64403FBkZKRcXF3l5ealHjx566aWX6jxPZWWlKioqrDYAQOsjwYZaMaMMAAAAsJ/JZLLaNwzDpuyyI0eO6Nlnn9X/+3//T7m5uXr33XdVUFCg6OjoOutPSkqSu7u7ZfP19W3W9gMAGsbZ0Q1A20EyDQAAAGgeHh4ecnJyspmtVlJSYjOr7bKkpCSNHDlSP//5zyVJQ4YM0fXXX6+wsDAtXbpU3t7eNsckJCQoPj7esl9RUUGSDQAcgBlsAAAAANDMXFxcFBQUpKysLKvyrKwshYaG1nrMN998oy5drL+iOTk5Sbo08602ZrNZbm5uVhsAoPUxg60DqTkDLW3GMAe2BAAAAEB8fLymTZum4OBghYSEaP369SosLLTc8pmQkKBTp05p48aNkqQJEyZo1qxZSk1N1bhx41RUVKTY2Fjddddd8vHxceSlAACugQRbJ8dtoQAAAEDLiIyMVFlZmZYsWaKioiIFBgYqMzNT/v7+kqSioiIVFhZa4mfMmKGzZ89qzZo1+tnPfqYePXrovvvu0/Llyx11CQCABiLBhjaHpB8AAAA6ipiYGMXExNT6Xnp6uk3ZnDlzNGfOnBZuFQCgufEMNgAAAAAAAMAOTUqwpaSkKCAgQK6urgoKCtLevXvrjc/OzlZQUJBcXV3Vr18/rVu3ziZm27ZtGjRokMxmswYNGqQdO3ZYvZ+UlKRhw4ape/fu6tOnjx588EF99tlnVjEzZsyQyWSy2kaMGNGUSwQAAAAAAAAapNEJtoyMDMXGxioxMVF5eXkKCwtTRESE1bMDaiooKND48eMVFhamvLw8zZ8/X88++6y2bdtmicnJyVFkZKSmTZumTz/9VNOmTdPkyZP10UcfWWKys7M1e/Zsffjhh8rKytKFCxcUHh6ur7/+2up8P/zhD1VUVGTZMjMzG3uJAAB0Ppsjr2wAAAAAGqXRz2BbtWqVoqKiNHPmTElScnKydu7cqdTUVCUlJdnEr1u3Tn5+fkpOTpYkDRw4UAcPHtTKlSs1adIkSx1jx45VQkKCpEur6WRnZys5OVlbtmyRJL377rtW9b722mvq06ePcnNzdc8991jKzWazvLy8GntZAAAAAAAAQJM0agZbVVWVcnNzFR4eblUeHh6u/fv313pMTk6OTfy4ceN08OBBnT9/vt6YuuqUpPLycklSz549rcr37NmjPn36aMCAAZo1a5ZKSkoadnEdWFT6AcsGAAAAAACA5tWoGWylpaWqrq6Wp6enVbmnp6eKi4trPaa4uLjW+AsXLqi0tFTe3t51xtRVp2EYio+P1913363AwEBLeUREhB599FH5+/uroKBACxcu1H333afc3FyZzWabeiorK1VZWWnZr6ioqL8DAAAAAAAAgKs0+hZRSTKZTFb7hmHYlF0r/uryxtT5zDPP6B//+If27dtnVR4ZeeW5MYGBgQoODpa/v7/eeecdPfzwwzb1JCUlafHixXW2GwAAAAAAALiWRt0i6uHhIScnJ5uZZSUlJTYz0C7z8vKqNd7Z2Vm9evWqN6a2OufMmaO3335bu3fv1s0331xve729veXv769jx47V+n5CQoLKy8st28mTJ+utDwAAAAAAALhaoxJsLi4uCgoKUlZWllV5VlaWQkNDaz0mJCTEJn7Xrl0KDg5W165d642pWadhGHrmmWe0fft2/f3vf1dAQMA121tWVqaTJ0/K29u71vfNZrPc3NysNgAAAAAAAKAxGn2LaHx8vKZNm6bg4GCFhIRo/fr1KiwsVHR0tKRLs8JOnTqljRs3SpKio6O1Zs0axcfHa9asWcrJyVFaWppldVBJmjt3ru655x4tX75cEydO1FtvvaX33nvP6hbQ2bNna/PmzXrrrbfUvXt3y4w3d3d3devWTefOndOiRYs0adIkeXt76/jx45o/f748PDz00EMP2dVJ7RELGgAAAAAAALSORifYIiMjVVZWpiVLlqioqEiBgYHKzMyUv7+/JKmoqEiFhYWW+ICAAGVmZiouLk5r166Vj4+PVq9erUmTJlliQkNDtXXrVi1YsEALFy5U//79lZGRoeHDh1tiUlNTJUmjR4+2as9rr72mGTNmyMnJSYcOHdLGjRt15swZeXt7695771VGRoa6d+/e2MsEAKDz2nzlmaaamuG4dgAAAADtRKNuEb0sJiZGx48fV2VlpXJzc3XPPfdY3ktPT9eePXus4keNGqVPPvlElZWVKigosMx2q+mRRx7Rv/71L1VVVeno0aM2ixIYhlHrNmPGDElSt27dtHPnTpWUlKiqqkonTpxQenq6fH19m3KJAIA2LiUlRQEBAXJ1dVVQUJD27t1bZ2xRUZGmTp2qW2+9VV26dFFsbKxNzCuvvKKwsDDdeOONuvHGGzVmzBh9/PHHVjGLFi2SyWSy2ry8vJr70gAAAAC0M01KsAEA4EgZGRmKjY1VYmKi8vLyFBYWpoiICKsZ1DVVVlaqd+/eSkxM1NChQ2uN2bNnj6ZMmaLdu3crJydHfn5+Cg8P16lTp6zibr/9dhUVFVm2Q4cONfv1AQAAAGhfGn2LKNCmcVsT0CmsWrVKUVFRmjlzpiQpOTlZO3fuVGpqqpKSkmzi+/btqxdffFGStGHDhlrrfOONN6z2X3nlFb355pv629/+pieffNJS7uzszKw1AEDnxN/aAFAnEmxo0+acXlBjb6fD2gGg7aiqqlJubq7mzZtnVR4eHq79+/c323m++eYbnT9/Xj179rQqP3bsmHx8fGQ2mzV8+HAtW7ZM/fr1q7OeyspKVVZWWvYrKiqarY02an7xAQAAANBquEUUaIjNkVc2AA5VWlqq6upqeXp6WpV7enpaVphuDvPmzdNNN92kMWPGWMqGDx+ujRs3aufOnXrllVdUXFys0NBQlZWV1VlPUlKS3N3dLRvPBgUAAAA6HhJsAIB2yWQyWe0bhmFT1lQrVqzQli1btH37drm6ulrKIyIiNGnSJA0ePFhjxozRO++8I0l6/fXX66wrISFB5eXllu3kyZPN0kYAAAAAbQe3iAIA2hUPDw85OTnZzFYrKSmxmdXWFCtXrtSyZcv03nvvaciQIfXGXn/99Ro8eLCOHTtWZ4zZbJbZbLa7XQAAAADaLmawoXPilk+g3XJxcVFQUJCysrKsyrOyshQaGmpX3b/5zW/0y1/+Uu+++66Cg4OvGV9ZWamjR4/K29vbrvMCAAAAaN+YwQYAaHfi4+M1bdo0BQcHKyQkROvXr1dhYaGio6MlXbot89SpU9q4caPlmPz8fEnSuXPn9J///Ef5+flycXHRoEGDJF26LXThwoXavHmz+vbta5khd8MNN+iGG26QJD333HOaMGGC/Pz8VFJSoqVLl6qiokLTp09vxasHAAAA0NaQYEOHkn/yjOX1HQ5rBYCWFhkZqbKyMi1ZskRFRUUKDAxUZmam/P39JUlFRUUqLCy0OubOO++0vM7NzdXmzZvl7++v48ePS5JSUlJUVVWlRx55xOq4F154QYsWLZIkffnll5oyZYpKS0vVu3dvjRgxQh9++KHlvAAAAAA6JxJs6Liuvv1zaoZj2gGgRcTExCgmJqbW99LT023KDMOot77Libb6bN26tSFNAwAAANDJ8Aw2AAAAAAAAwA7MYEO7EZV+wPI6bcYwB7YEADqRmrOBmQkMAAAA1IoEGxxmzukFltcveS51YEsAAAAAAACajgRbO1dzVhcAAAAAAABaH89gAwAAAAAAAOxAgg0AAAAAAACwAwk2AAAAAAAAwA4k2AAAAAAAAAA7kGADAAAAAAAA7MAqomiXaq6emjZjWKOPzz95xvL6jmZojyRpc6T1/tSM5qoZAAAAAAC0YSTY2qGaySVY98ccB7YDAAAAAAB0TtwiCgAAAAAAANiBGWzoPK6+hRMAAAAAAKAZMIMNAAAAAAAAsAMz2IC6ZraxSAEAWKv5eclnJAAAAGBBgq0Ns3elzM5izukFjm4CAAAAAADoxEiwoVnUTHK95LnUgS0BAAAAAABoXU16BltKSooCAgLk6uqqoKAg7d27t9747OxsBQUFydXVVf369dO6detsYrZt26ZBgwbJbDZr0KBB2rFjh9X7SUlJGjZsmLp3764+ffrowQcf1GeffWYVYxiGFi1aJB8fH3Xr1k2jR4/W4cOHm3KJAAB0Kvknz1g2AEDzaex3p8rKSiUmJsrf319ms1n9+/fXhg0bWqm1AICmavQMtoyMDMXGxiolJUUjR47Uyy+/rIiICB05ckR+fn428QUFBRo/frxmzZqlTZs26YMPPlBMTIx69+6tSZMmSZJycnIUGRmpX/7yl3rooYe0Y8cOTZ48Wfv27dPw4cMlXUrSzZ49W8OGDdOFCxeUmJio8PBwHTlyRNdff70kacWKFVq1apXS09M1YMAALV26VGPHjtVnn32m7t2729NPaGMaclvo1V8S7/Dt0fwNYWVSAO0YyTQAaFmN/e4kSZMnT9bp06eVlpam733veyopKdGFCxdaueUAgMZqdIJt1apVioqK0syZMyVJycnJ2rlzp1JTU5WUlGQTv27dOvn5+Sk5OVmSNHDgQB08eFArV660JNiSk5M1duxYJSQkSJISEhKUnZ2t5ORkbdmyRZL07rvvWtX72muvqU+fPsrNzdU999wjwzCUnJysxMREPfzww5Kk119/XZ6entq8ebN+8pOfNPZSgZbHA8MBAAA6rMZ+d3r33XeVnZ2tL774Qj179pQk9e3btzWbDABookYl2KqqqpSbm6t58+ZZlYeHh2v//v21HpOTk6Pw8HCrsnHjxiktLU3nz59X165dlZOTo7i4OJuYy0m52pSXl0uSZeApKChQcXGx1bnMZrNGjRql/fv315pgq6ysVGVlpWW/oqKizvM5Ws0FDzq6Nr9oAbPWAHRwNWe2tcjsXwDoBJry3entt99WcHCwVqxYod///ve6/vrr9aMf/Ui//OUv1a1bt9ZoNgCgiRqVYCstLVV1dbU8PT2tyj09PVVcXFzrMcXFxbXGX7hwQaWlpfL29q4zpq46DcNQfHy87r77bgUGBlrOc/m4q+s5ceJErfUkJSVp8eLFdVwtWlObT6oBQAfBbaEA0Dqa8t3piy++0L59++Tq6qodO3aotLRUMTEx+u9//1vnc9ja06QBAOjImrTIgclksto3DMOm7FrxV5c3ps5nnnlG//jHPyy3jza1bQkJCSovL7dsJ0+erPMaAAAAAKCxGvP95OLFizKZTHrjjTd01113afz48ZZnTH/77be1HpOUlCR3d3fL5uvr2+zXAAC4tkYl2Dw8POTk5GTzi0tJSYnNLzOXeXl51Rrv7OysXr161RtTW51z5szR22+/rd27d+vmm2+2Oo+kRrXNbDbLzc3NakPHxQp5AAAAaC1N+e7k7e2tm266Se7u7paygQMHyjAMffnll7Uew6QBAGgbGpVgc3FxUVBQkLKysqzKs7KyFBoaWusxISEhNvG7du1ScHCwunbtWm9MzToNw9Azzzyj7du36+9//7sCAgKs4gMCAuTl5WVVT1VVlbKzs+tsGwAAqF/NHyf4oQIAGq4p351Gjhypr776SufOnbOUff755+rSpYvV5IKamDQAAG1Do28RjY+P16uvvqoNGzbo6NGjiouLU2FhoaKjoyVd+gXlySeftMRHR0frxIkTio+P19GjR7VhwwalpaXpueees8TMnTtXu3bt0vLly/Wvf/1Ly5cv13vvvafY2FhLzOzZs7Vp0yZt3rxZ3bt3V3FxsYqLiy1TpU0mk2JjY7Vs2TLt2LFD//znPzVjxgxdd911mjp1alP7BwDQRqWkpCggIECurq4KCgrS3r1764wtKirS1KlTdeutt6pLly5W40tN27Zt06BBg2Q2mzVo0CDt2LHDrvMCADq3xn53mjp1qnr16qWnnnpKR44c0fvvv6+f//znevrpp1nkAADauEYtciBJkZGRKisr05IlS1RUVKTAwEBlZmbK399f0qUvMYWFhZb4gIAAZWZmKi4uTmvXrpWPj49Wr16tSZMmWWJCQ0O1detWLViwQAsXLlT//v2VkZGh4cOHW2JSU1MlSaNHj7Zqz2uvvaYZM2ZIkn7xi1/o22+/VUxMjP73v/9p+PDh2rVrl7p3797Yy0Qb1OoLIbBaKNBmZWRkKDY2VikpKRo5cqRefvllRURE6MiRI/Lz87OJr6ysVO/evZWYmKjf/e53tdaZk5OjyMhI/fKXv9RDDz2kHTt2aPLkydq3b59lPGrseQEAnVtjvzvdcMMNysrK0pw5cxQcHKxevXpp8uTJWrp0qaMuAQDQQCbj8ooDUEVFhdzd3VVeXt4mplZHpR9wdBMarGby6yXPhv0B0FZWDr3Dt0fLVDw149oxNZN4DYkH2pmW+lwdPny4vv/971t+fJEuPaPmwQcfVFJSUr3Hjh49WnfccYeSk5OtyiMjI1VRUaG//vWvlrIf/vCHuvHGGy2L6thz3stadKxpwA8DzXV75x3P72yWegDAXm3tb3hHa/b+qGts4W9XAJ1EQz9Xm7SKKAAAjlJVVaXc3FyFh4dblYeHh2v//v1NrjcnJ8emznHjxlnqbOp5KysrVVFRYbUBAAAA6FgafYsocC1Nmc0GAA1VWlqq6upqmxXYPD09bVZqa4zi4uJ662zqeZOSkrR48eImt6utunqWddqMYQ5qCQAAAOB4zGADWsPmyCsbgGZhMpms9g3DsClriTobe96EhASVl5dbtpMnT9rVRgAAAABtDzPY0OnVfB5RXc9ja0gMgNbh4eEhJycnm1ljJSUlNrPLGsPLy6veOpt6XrPZLLPZ3OR2AQAAAGj7mMEGAGhXXFxcFBQUpKysLKvyrKwshYaGNrnekJAQmzp37dplqbOlzgsAAACg/WMGG9BWsKIo0GDx8fGaNm2agoODFRISovXr16uwsFDR0dGSLt2WeerUKW3cuNFyTH5+viTp3Llz+s9//qP8/Hy5uLho0KBBkqS5c+fqnnvu0fLlyzVx4kS99dZbeu+997Rv374Gn7etaq6VQwEAAADUjgQbAKDdiYyMVFlZmZYsWaKioiIFBgYqMzNT/v7+kqSioiIVFhZaHXPnnXdaXufm5mrz5s3y9/fX8ePHJUmhoaHaunWrFixYoIULF6p///7KyMjQ8OHDG3zezqzmogcseAAAAIDOhgQb0FJY0ABoUTExMYqJian1vfT0dJsywzCuWecjjzyiRx55pMnn7UxqrhgtsWo0AAAAOjeewQYAAAAAAADYgRlsaJSaMxaaMlvh6hkPaKSGPqeN57kBAAAAANBqSLABNdR8EPgdvj0c1g4AAAAAANB+cIsoAAAAAAAAYAdmsKFFcUsoAHQ+rCgKAACAzoYZbAAAAAAAAIAdmMGGa2IWGgAAAAAAQN1IsAGtreYKnwDQwXG7KAAAADoDbhEFAAAAAAAA7ECCDQAAAAAAALADCTYAAAAAAADADjyDDahD/skzjm4CAAAAAABoB0iwtTE1HwYNAEBT8SMBAAAA0HpIsAEAALvNOb3A8volz6UObAkAAADQ+ngGGwAAAAAAAGAHZrABbd3mSEe3AEBbxecDAAAA0CaQYAMAAK2i5nNG02YMc2BLAAB2q/kjz9QMx7UDANoIEmxAR8cfPwAAAAAAtKgmPYMtJSVFAQEBcnV1VVBQkPbu3VtvfHZ2toKCguTq6qp+/fpp3bp1NjHbtm3ToEGDZDabNWjQIO3YscPq/ffff18TJkyQj4+PTCaT/vSnP9nUMWPGDJlMJqttxIgRTblEoNHyT56x2uyyOfLK1pLHAAAAAAAAuzU6wZaRkaHY2FglJiYqLy9PYWFhioiIUGFhYa3xBQUFGj9+vMLCwpSXl6f58+fr2Wef1bZt2ywxOTk5ioyM1LRp0/Tpp59q2rRpmjx5sj766CNLzNdff62hQ4dqzZo19bbvhz/8oYqKiixbZmZmYy8RDTTn9ALLBgAAAAAA0Fk1+hbRVatWKSoqSjNnzpQkJScna+fOnUpNTVVSUpJN/Lp16+Tn56fk5GRJ0sCBA3Xw4EGtXLlSkyZNstQxduxYJSQkSJISEhKUnZ2t5ORkbdmyRZIUERGhiIiIa7bPbDbLy8ursZcFAAAAAAAANEmjZrBVVVUpNzdX4eHhVuXh4eHav39/rcfk5OTYxI8bN04HDx7U+fPn642pq8767NmzR3369NGAAQM0a9YslZSUNLoOoD7NdhsoAAAAAADoEBo1g620tFTV1dXy9PS0Kvf09FRxcXGtxxQXF9caf+HCBZWWlsrb27vOmLrqrEtERIQeffRR+fv7q6CgQAsXLtR9992n3Nxcmc1mm/jKykpVVlZa9isqKhp1PoAkGwAAAAAAaNIqoiaTyWrfMAybsmvFX13e2DprExl55eHugYGBCg4Olr+/v9555x09/PDDNvFJSUlavHhxo84BtBnNuZgBK40CAAAAANBkjbpF1MPDQ05OTjYzy0pKSmxmoF3m5eVVa7yzs7N69epVb0xddTaUt7e3/P39dezYsVrfT0hIUHl5uWU7efKkXedr71i0AEB70twrWo8ePdpmJWqTyaT777/fErNo0SKb93nup62GjCdR6QcsGwAAANDeNSrB5uLioqCgIGVlZVmVZ2VlKTQ0tNZjQkJCbOJ37dql4OBgde3atd6YuupsqLKyMp08eVLe3t61vm82m+Xm5ma1AQDavpZY0Xr79u1Wq1D/85//lJOTkx599FGrum6//XaruEOHDrXotQIAAABo+xp9i2h8fLymTZum4OBghYSEaP369SosLFR0dLSkS7PCTp06pY0bN0qSoqOjtWbNGsXHx2vWrFnKyclRWlqaZXVQSZo7d67uueceLV++XBMnTtRbb72l9957T/v27bPEnDt3Tv/+978t+wUFBcrPz1fPnj3l5+enc+fOadGiRZo0aZK8vb11/PhxzZ8/Xx4eHnrooYea3EEAgLanJVa07tmzp9UxW7du1XXXXWeTYHN2dmbWGgAAAAArjU6wRUZGqqysTEuWLFFRUZECAwOVmZkpf39/SVJRUZHVDIKAgABlZmYqLi5Oa9eulY+Pj1avXm35QiNJoaGh2rp1qxYsWKCFCxeqf//+ysjI0PDhwy0xBw8e1L333mvZj4+PlyRNnz5d6enpcnJy0qFDh7Rx40adOXNG3t7euvfee5WRkaHu3bs3vmdaCbfGAEDjXF7Ret68eVblTVnROi0tTefPn7fMqK4pLS1Njz32mK6//nqr8mPHjsnHx0dms1nDhw/XsmXL1K9fPzuvCgAAAEB71qRFDmJiYhQTE1Pre+np6TZlo0aN0ieffFJvnY888ogeeeSROt8fPXq0ZXGE2nTr1k07d+6s9xwAgPavpVa0runjjz/WP//5T6WlpVmVDx8+XBs3btSAAQN0+vRpLV26VKGhoTp8+LDluaJXY8VqAAAAoONr1DPYAABoK1piRevL0tLSFBgYqLvuusuqPCIiQpMmTdLgwYM1ZswYvfPOO5Kk119/vc7zJiUlyd3d3bL5+vrWf2EAAAAA2h0SbACAdqWlVrS+7JtvvtHWrVstz3erz/XXX6/BgwfXuVq1xIrVAAAAQGdAgg0A0K601IrWl/3hD39QZWWlnnjiiWu2pbKyUkePHq1ztWqJFasBoLNLSUlRQECAXF1dFRQUpL179zbouA8++EDOzs664447WraBAIBmQYIN6Ew2R17ZgHYsPj5er776qjZs2KCjR48qLi7OZkXrJ5980hIfHR2tEydOKD4+XkePHtWGDRuUlpam5557zqbutLQ0Pfjgg7U+U+25555Tdna2CgoK9NFHH+mRRx5RRUWFpk+f3nIXCwBotzIyMhQbG6vExETl5eUpLCxMERERVovC1aa8vFxPPvmkfvCDH7RSSwEA9mrSIgewDyuHAoB9WmJFa0n6/PPPtW/fPu3atavW83755ZeaMmWKSktL1bt3b40YMUIffvih5bxomprjYtqMYQ5sCQA0r1WrVikqKsry2IHk5GTt3LlTqampSkpKqvO4n/zkJ5o6daqcnJz0pz/9qZVaCwCwBwk2AEC71BIrWg8YMKDeFau3bt3aqDYCADqvqqoq5ebmat68eVbl4eHh2r9/f53Hvfbaa/q///s/bdq0SUuXLm3pZgIAmgkJNtRqzukFjm4CAKCR8k+ecXQTAAD/v9LSUlVXV9sswOPp6Wmz8M5lx44d07x587R37145Ozfsq1plZaUqKyst+xUVFU1vNACgyXgGGwAAAAC0EJPJZLVvGIZNmSRVV1dr6tSpWrx4sQYMGNDg+pOSkuTu7m7ZfH197W4zAKDxmMEGtIKas0ru8O3hsHYAAACgdXh4eMjJyclmtlpJSYnNrDZJOnv2rA4ePKi8vDw988wzkqSLFy/KMAw5Oztr165duu+++2yOS0hIUHx8vGW/oqKCJBsAOAAJNgAAAABoZi4uLgoKClJWVpYeeughS3lWVpYmTpxoE+/m5qZDhw5ZlaWkpOjvf/+73nzzTQUEBNR6HrPZLLPZ3LyNBwA0Ggk2AADQYmo+0/MlTx7WDaBziY+P17Rp0xQcHKyQkBCtX79ehYWFio6OlnRp9tmpU6e0ceNGdenSRYGBgVbH9+nTR66urjblAIC2hwRbJ3P14gV82UG9NkdeeT01w3HtANBpRKUfsLxOmzHMgS0BAPtFRkaqrKxMS5YsUVFRkQIDA5WZmSl/f39JUlFRkQoLCx3cSgBAcyDBBrSQDreaX81km0TCDQAAoAFiYmIUExNT63vp6en1Hrto0SItWrSo+RsFAGh2JNgAAAAAAFdc/cMqAOCauji6AQAAAAAAAEB7RoINAAAAAAAAsAMJNgAAAAAAAMAOPIMNcKCaCyHc4dvDYe0AAAAAAABNR4Ktk5tzeoGjm4D2qubDb1lRFEAD1BxzXvJc6sCWAACaos4fh/m7EAC4RRQAAAAAAACwBzPYgM6qruXXWZYdQBsRlX7A8jptxjAHtgQAAACoHwk2oJXVnFoPAAAAAADaPxJsAACg1fE8NgAAAHQkPIMNAAAAAAAAsAMz2AAAAAAAjVLniqIA0Ekxgw0AAAAAAACwAwk2AAAAAAAAwA5NSrClpKQoICBArq6uCgoK0t69e+uNz87OVlBQkFxdXdWvXz+tW7fOJmbbtm0aNGiQzGazBg0apB07dli9//7772vChAny8fGRyWTSn/70J5s6DMPQokWL5OPjo27dumn06NE6fPhwUy4RAAAAANAA+SfPWDYA6KwanWDLyMhQbGysEhMTlZeXp7CwMEVERKiwsLDW+IKCAo0fP15hYWHKy8vT/Pnz9eyzz2rbtm2WmJycHEVGRmratGn69NNPNW3aNE2ePFkfffSRJebrr7/W0KFDtWbNmjrbtmLFCq1atUpr1qzRgQMH5OXlpbFjx+rs2bONvUwAAAAAQCNFpR+wbADQmTR6kYNVq1YpKipKM2fOlCQlJydr586dSk1NVVJSkk38unXr5Ofnp+TkZEnSwIEDdfDgQa1cuVKTJk2y1DF27FglJCRIkhISEpSdna3k5GRt2bJFkhQREaGIiIg622UYhpKTk5WYmKiHH35YkvT666/L09NTmzdv1k9+8pPGXiqAhtoceeX11AzHtQNAh3X1F7W0GcMc1BIAAADAVqNmsFVVVSk3N1fh4eFW5eHh4dq/f3+tx+Tk5NjEjxs3TgcPHtT58+frjamrztoUFBSouLjYqh6z2axRo0bVWU9lZaUqKiqsNgAA2ouat+RwWw4AoCUwzgBAwzQqwVZaWqrq6mp5enpalXt6eqq4uLjWY4qLi2uNv3DhgkpLS+uNqavOus5z+biG1pOUlCR3d3fL5uvr2+DzAQAcq7mfB5qeni6TyWSzfffdd3adFwAAAEDH16RFDkwmk9W+YRg2ZdeKv7q8sXU2R9sSEhJUXl5u2U6ePNno8wEAWl9LPA9Uktzc3FRUVGS1ubq6Nvm8AAAAADqHRj2DzcPDQ05OTjYzwkpKSmxmjl3m5eVVa7yzs7N69epVb0xdddZ1HunSTDZvb+8G1WM2m2U2mxt8DnvwkE8AaD4t8TxQ6dKPNJfHk+Y4LwAAAIDOoVEz2FxcXBQUFKSsrCyr8qysLIWGhtZ6TEhIiE38rl27FBwcrK5du9YbU1edtQkICJCXl5dVPVVVVcrOzm5UPR3RnNMLLBsAtHct9TxQSTp37pz8/f11880364EHHlBeXp5d55V43icAAADQGTR6FdH4+HhNmzZNwcHBCgkJ0fr161VYWKjo6GhJl267PHXqlDZu3ChJio6O1po1axQfH69Zs2YpJydHaWlpltVBJWnu3Lm65557tHz5ck2cOFFvvfWW3nvvPe3bt88Sc+7cOf373/+27BcUFCg/P189e/aUn5+fTCaTYmNjtWzZMt1yyy265ZZbtGzZMl133XWaOnVqkzsIANC2tMTzQL29vXXbbbcpPT1dgwcPVkVFhV588UWNHDlSn376qW655ZYmnVe69LzPxYsXN/FqAQBov2rexcPqzwA6ukYn2CIjI1VWVqYlS5aoqKhIgYGByszMlL+/vySpqKjI6lk0AQEByszMVFxcnNauXSsfHx+tXr3a6pac0NBQbd26VQsWLNDChQvVv39/ZWRkaPjw4ZaYgwcP6t5777Xsx8fHS5KmT5+u9PR0SdIvfvELffvtt4qJidH//vc/DR8+XLt27VL37t0be5kAgDauuZ8HOmLECI0YMcLy/siRI/X9739fL730klavXt3k8yYkJFjGLEmqqKhgUR0AAACgg2l0gk2SYmJiFBMTU+t7l5NdNY0aNUqffPJJvXU+8sgjeuSRR+p8f/To0ZYvQ3UxmUxatGiRFi1aVG8c0BbVtfT5Hb49WrUdQFvXUs8DvVqXLl00bNgwHTt2rMnnlVr3eZ+dCbMiAAAA0JY0aRVRtH08dw1twubIKxvQTFrqeaBXMwxD+fn5loVzmnJeAAAAAJ1Dk2awAQDgSC3xPNDFixdrxIgRuuWWW1RRUaHVq1crPz9fa9eubfB5AQBA7Zh5DKCjI8EGAGh3WuJ5oGfOnNGPf/xjFRcXy93dXXfeeafef/993XXXXQ0+LwAAnV3NO2he8lzqwJYAQOsiwQageXE7KFpJcz8P9He/+51+97vf2XVeAAAAAJ0Tz2ADAAAAAAAA7MAMNqAdqbnSKKuLAugouJ0IAAAA7R0JNgCOVfOW0qkZjmsHgHaLB2cDAADA0UiwAW1czVlrAAAAQHtX84cRiR9HAHQMJNg6kJq32AAAAAAAAKB1kGAD0Dq4FRQAAAAA0EGxiigAAAAAAABgB2awtXPcFgoAwBUseAAAAABHIMEGAADajJo/HL3kudSBLQEAAAAajgQb0AHVXHn0Dt8eDmsHAAAAOq+G/mjC7GMAHQHPYAPaqfyTZ6y2Dmdz5JUNQKc05/QCywYA7VVKSooCAgLk6uqqoKAg7d27t87Y7du3a+zYserdu7fc3NwUEhKinTt3tmJrAQBNRYINQPtD8g0AALQDGRkZio2NVWJiovLy8hQWFqaIiAgVFhbWGv/+++9r7NixyszMVG5uru69915NmDBBeXl5rdxyAEBjcYso0EF0yFlsAAAA7diqVasUFRWlmTNnSpKSk5O1c+dOpaamKikpySY+OTnZan/ZsmV666239Oc//1l33nlnazQZANBEJNgAAAAAoJlVVVUpNzdX8+bNsyoPDw/X/v37G1THxYsXdfbsWfXs2bPOmMrKSlVWVlr2KyoqmtbgNoLnsQFor0iwAWj7mnIraM1jpmY0X1sAOMTVz2FryAqjfEkD4EilpaWqrq6Wp6enVbmnp6eKi4sbVMdvf/tbff3115o8eXKdMUlJSVq8eLFdbQUA2I8EWwuq+Yc9AAAAgM7HZDJZ7RuGYVNWmy1btmjRokV666231KdPnzrjEhISFB8fb9mvqKiQr69v0xsMAGgSEmwAALQnLO4BAO2Ch4eHnJycbGarlZSU2Mxqu1pGRoaioqL0xz/+UWPGjKk31mw2y2w2291eAIB9WEUUAAAAAJqZi4uLgoKClJWVZVWelZWl0NDQOo/bsmWLZsyYoc2bN+v+++9v6Wa2aVHpBywbALR1zGADAADtTs1nsjXkeWwA4Ajx8fGaNm2agoODFRISovXr16uwsFDR0dGSLt3eeerUKW3cuFHSpeTak08+qRdffFEjRoywzH7r1q2b3N3dHXYdAIBrI8EGoPVxixuAVsaCBwAcITIyUmVlZVqyZImKiooUGBiozMxM+fv7S5KKiopUWFhoiX/55Zd14cIFzZ49W7Nnz7aUT58+Xenp6a3d/GbFDyMAOjoSbO3Q1SupAQAAAGibYmJiFBMTU+t7VyfN9uzZ0/INAgC0CBJsQAeXf/KM5fUdvj0c1g4AAAAAADqqJi1ykJKSooCAALm6uiooKEh79+6tNz47O1tBQUFydXVVv379tG7dOpuYbdu2adCgQTKbzRo0aJB27NjR6PPOmDFDJpPJahsxYkRTLhEAAAAA0Eaw4AGAtq7RCbaMjAzFxsYqMTFReXl5CgsLU0REhNWzA2oqKCjQ+PHjFRYWpry8PM2fP1/PPvustm3bZonJyclRZGSkpk2bpk8//VTTpk3T5MmT9dFHHzX6vD/84Q9VVFRk2TIzMxt7iQDak82RVzYAAAAAAByg0Qm2VatWKSoqSjNnztTAgQOVnJwsX19fpaam1hq/bt06+fn5KTk5WQMHDtTMmTP19NNPa+XKlZaY5ORkjR07VgkJCbrtttuUkJCgH/zgB0pOTm70ec1ms7y8vCxbz549G3uJQIeVf/KMZWuT7E2W1XU8SbgOqblnU7/yyisKCwvTjTfeqBtvvFFjxozRxx9/bBWzaNEim5nSXl5ezX5taJw5pxdYNgAAAMARGpVgq6qqUm5ursLDw63Kw8PDtX///lqPycnJsYkfN26cDh48qPPnz9cbc7nOxpx3z5496tOnjwYMGKBZs2appKSkMZcIoKMj2dYhtMRs6j179mjKlCnavXu3cnJy5Ofnp/DwcJ06dcqqrttvv91qpvShQ4da9FrR/LjNCAAAAM2tUYsclJaWqrq6Wp6enlblnp6eKi4urvWY4uLiWuMvXLig0tJSeXt71xlzuc6GnjciIkKPPvqo/P39VVBQoIULF+q+++5Tbm6uzGazTdsqKytVWVlp2a+oqGhALwAAHK3mrGbp0kzonTt3KjU1VUlJSTbxNWdTS9LAgQN18OBBrVy5UpMmTZIkvfHGG1bHvPLKK3rzzTf1t7/9TU8++aSl3NnZmVlrAAAAAKw0aRVRk8lktW8Yhk3ZteKvLm9IndeKiYy8MiMlMDBQwcHB8vf31zvvvKOHH37Ypl1JSUlavHhxne0GALQ9l2c1z5s3z6q8KbOp09LSdP78eXXt2tXmmG+++Ubnz5+3edTAsWPH5OPjI7PZrOHDh2vZsmXq16+fnVcFAEDncfUt/S95Lm3U8TVnIKfNGNYsbQIAezUqwebh4SEnJyeb2WolJSU2s8su8/LyqjXe2dlZvXr1qjfmcp1NOa8keXt7y9/fX8eOHav1/YSEBMXHx1v2Kyoq5OvrW2d9jsRzZdCSaj6T7Q7fHg5rB9AQLTWb+mrz5s3TTTfdpDFjxljKhg8fro0bN2rAgAE6ffq0li5dqtDQUB0+fNgypl2N2dJtG1/SAAAA0Bwa9Qw2FxcXBQUFKSsry6o8KytLoaGhtR4TEhJiE79r1y4FBwdbZgzUFXO5zqacV5LKysp08uTJWr84SZcWRHBzc7PaAKBePMOtzWiJ2dSXrVixQlu2bNH27dvl6upqKY+IiNCkSZM0ePBgjRkzRu+8844k6fXXX6/zvElJSXJ3d7ds9v6Q0+YXKwEAAAA6oUbfIhofH69p06YpODhYISEhWr9+vQoLCxUdHS3p0qywU6dOaePGjZKk6OhorVmzRvHx8Zo1a5ZycnKUlpamLVu2WOqcO3eu7rnnHi1fvlwTJ07UW2+9pffee0/79u1r8HnPnTunRYsWadKkSfL29tbx48c1f/58eXh46KGHHrKrkxyFWWsAYKulZlNftnLlSi1btkzvvfeehgwZUm9brr/+eg0ePLjOmdJS+5otDQCAI9T83sPtogDaq0Yn2CIjI1VWVqYlS5aoqKhIgYGByszMlL+/vySpqKjIahW3gIAAZWZmKi4uTmvXrpWPj49Wr15teai0JIWGhmrr1q1asGCBFi5cqP79+ysjI0PDhw9v8HmdnJx06NAhbdy4UWfOnJG3t7fuvfdeZWRkqHv37k3uIABA21JzVnPNH1CysrI0ceLEWo8JCQnRn//8Z6uyq2dTS9JvfvMbLV26VDt37lRwcPA121JZWamjR48qLCyszhiz2VzrQjsAAAAAOo4mLXIQExOjmJiYWt9LT0+3KRs1apQ++eSTeut85JFH9MgjjzT5vN26ddPOnTvrPR4A6lTzls+pGY5rBxqkJWZTr1ixQgsXLtTmzZvVt29fy4y3G264QTfccIMk6bnnntOECRPk5+enkpISLV26VBUVFZo+fXor9wBaArMgAAAA0FRNSrABQIfAc9TarZaYTZ2SkqKqqiqbH3teeOEFLVq0SJL05ZdfasqUKSotLVXv3r01YsQIffjhh5bzwvHsuc0IAOB43C4KoL0iwdbMan6oAwBaTnPPpj5+/Pg1z7l169aGNg8AAABAJ0KCDeik6lqBsGb5Hb49WqUtHQ63mwLt3tU/mDETAgAAAPUhwQYAV7v61lGSZAAAAO0Kt4sCaG0k2AAAQIfE89gAAADQWro4ugEAAAAAAABAe8YMNgB14nls/z9WGwU6PW41AoDW11wzkXmuJoDWQIINQINcvShCp064AWh3uF0UAAAALYkEGwC0JFYUBQAA7Uxdq807Ej+UAGjrSLC1MTUHDgBtHMkzoFPidlEAaN/4HAfQEkiwAWgSns8GoL1qzlkQfEkDAACARIINAJpHQxZCYMYbAAAAAHRIJNgAAAAAAO0GM5EBtEUk2ADYrSEPwuU20npcPfvNntltzJIDGqWuZ5/yAG0AAAA0Bgk2B2NRAwA26rrdlIQZ0KYxCwIAWh+z2QC0FSTYAMARGvLMtvqOIdkGtGl8SQMAAOhcSLABAAAAANo9ZrMBcCQSbADQHjGbDWhR9T3CobFf2viSBgDtG5/jABqCBJsD8Nw14IqaCySwEAKA9sCeGRJ8SQOA1tGcs9kAoCFIsAFoFSTSAAAA0N7xQwmAupBgayXMWgMAADXxJQ0AWsfV38Waa0Ybn+MAaiLBBqDV1ZzNhmbQlBVJAbQpNb+kSXxRAwAAaG9IsAFok7ilFEB7UNcMdVavA4C2qyWez3b1DyU18TkOdA4k2AC0GcxsA9BRNOeXt7q+tPGFDQDs1xqLIfCjCdA5kGAD0O4wuw1Ae9JSX974wgYAzYtkGwB7kGAD0K6RbAPQnpBsA4D2oaUeAVATn91Ax0KCrQWxcijQPBp66yjJtqvUXPxgaobj2gGgVk35O6EhX+y4pRQA2h8+u4H2r0tTDkpJSVFAQIBcXV0VFBSkvXv31hufnZ2toKAgubq6ql+/flq3bp1NzLZt2zRo0CCZzWYNGjRIO3bsaPR5DcPQokWL5OPjo27dumn06NE6fPhwUy4RQAeSf/KMZUPH0VbHIqC1zDm9wLI1RFT6gQZtAJpXS4xXcJyan711bc2Jz2qg/Wj0DLaMjAzFxsYqJSVFI0eO1Msvv6yIiAgdOXJEfn5+NvEFBQUaP368Zs2apU2bNumDDz5QTEyMevfurUmTJkmScnJyFBkZqV/+8pd66KGHtGPHDk2ePFn79u3T8OHDG3zeFStWaNWqVUpPT9eAAQO0dOlSjR07Vp999pm6d+9uTz8B6CCY5dYxtOWxCGhJDfniZu9tqA354saMCqBhWmK8QttX32d1a6xaWhOf10DrMRmGYTTmgOHDh+v73/++UlNTLWUDBw7Ugw8+qKSkJJv4559/Xm+//baOHj1qKYuOjtann36qnJwcSVJkZKQqKir017/+1RLzwx/+UDfeeKO2bNnSoPMahiEfHx/Fxsbq+eeflyRVVlbK09NTy5cv109+8pNrXltFRYXc3d1VXl4uNze3xnSLRf7ycU06DkDb1VyJOIcm9xx0i2hzfK7Wpq2ORQ1hb58wzqAl1PzC19IP+ebLHppbS401zaElxqtr4TtNx9JSiy3Uhc9owFZDP1cbNYOtqqpKubm5mjdvnlV5eHi49u/fX+sxOTk5Cg8PtyobN26c0tLSdP78eXXt2lU5OTmKi4uziUlOTm7weQsKClRcXGx1LrPZrFGjRmn//v21JtgqKytVWVlp2S8vL5d0qfOa6tx3F5p8LIC2ad+x0lrLh9zkXmv5P06VX7POim/O29WmRrPjc82+0146byN/y6lXWx6LatPcYw3jDFrCUyeu/Ls+V0d5TS/3uZKE+0lJ7V/+asbUNC11d+MbaIe1jwe16vnQ+lpirGkOLTVeXY3vNB1bXZ/DDVXXZ3FdWuMzms9ltDcNHWcalWArLS1VdXW1PD09rco9PT1VXFxc6zHFxcW1xl+4cEGlpaXy9vauM+ZynQ057+X/rS3mxIkTtbYtKSlJixcvtin39fWtNR4A2q1Zts8Sa01nz56Vu3vtCcnGastjUW0Ya9Ax/d3yalMDYhxpU4yjW4DW0pxjTXNoqfHqaowzqF/b+Cyuic9ltFfXGmeatIqoyWSy2jcMw6bsWvFXlzekzuaKuSwhIUHx8fGW/YsXL+q///2vevXqVesxFRUV8vX11cmTJ9vc9PPWRl9cQV9cQV9cQV9cYhiGzp49Kx8fn2avuy2PRTU1dqypD/+uake/2KJPake/2OoIfdKSY01zaInxqqamjDMd4f/31kA/NQz91DD0U8O1tb5q6DjTqASbh4eHnJycbH5xKSkpsfml5TIvL69a452dndWrV696Yy7X2ZDzenl5Sbr0q0/NX3bqa5vZbJbZbLYq69GjR62xNbm5ubWJ/5PbAvriCvriCvriCvpCzT6boC2PRbVp6lhTH/5d1Y5+sUWf1I5+sdXe+6QtzVy7rKXGq6vZM8609//fWwv91DD0U8PQTw3XlvqqIeNMl8ZU6OLioqCgIGVlZVmVZ2VlKTQ0tNZjQkJCbOJ37dql4OBgyzME6oq5XGdDzhsQECAvLy+rmKqqKmVnZ9fZNgBA+9OWxyIAAC5rqfEKANBGGY20detWo2vXrkZaWppx5MgRIzY21rj++uuN48ePG4ZhGPPmzTOmTZtmif/iiy+M6667zoiLizOOHDlipKWlGV27djXefPNNS8wHH3xgODk5Gb/+9a+No0ePGr/+9a8NZ2dn48MPP2zweQ3DMH79618b7u7uxvbt241Dhw4ZU6ZMMby9vY2KiorGXmatysvLDUlGeXl5s9TXntEXV9AXV9AXV9AXLastj0UtiX9XtaNfbNEntaNfbNEnLaslxqvmwP/vDUM/NQz91DD0U8O1175qdILNMAxj7dq1hr+/v+Hi4mJ8//vfN7Kzsy3vTZ8+3Rg1apRV/J49e4w777zTcHFxMfr27Wukpqba1PnHP/7RuPXWW42uXbsat912m7Ft27ZGndcwDOPixYvGCy+8YHh5eRlms9m45557jEOHDjXlEmv13XffGS+88ILx3XffNVud7RV9cQV9cQV9cQV90fLa6ljUkvh3VTv6xRZ9Ujv6xRZ90vJaYryyF/+/Nwz91DD0U8PQTw3XXvvKZBhtbD1rAAAAAAAAoB1p1DPYAAAAAAAAAFgjwQYAAAAAAADYgQQbAAAAAAAAYAcSbAAAAAAAAIAdSLA1UEpKigICAuTq6qqgoCDt3bvX0U1qdklJSRo2bJi6d++uPn366MEHH9Rnn31mFWMYhhYtWiQfHx9169ZNo0eP1uHDh61iKisrNWfOHHl4eOj666/Xj370I3355ZeteSnNKikpSSaTSbGxsZayztYPp06d0hNPPKFevXrpuuuu0x133KHc3FzL+52lPy5cuKAFCxYoICBA3bp1U79+/bRkyRJdvHjREtNZ+gKtrzOMQ/V5//33NWHCBPn4+MhkMulPf/qT1fsN+W+vo2mucbujSU1N1ZAhQ+Tm5iY3NzeFhITor3/9q+X9ztgnV2vq3zboODr7mHItixYtkslkstq8vLwc3SyHYyxumGv104wZM2z+fY0YMcIxjXWgjvh3DAm2BsjIyFBsbKwSExOVl5ensLAwRUREqLCw0NFNa1bZ2dmaPXu2PvzwQ2VlZenChQsKDw/X119/bYlZsWKFVq1apTVr1ujAgQPy8vLS2LFjdfbsWUtMbGysduzYoa1bt2rfvn06d+6cHnjgAVVXVzvisuxy4MABrV+/XkOGDLEq70z98L///U8jR45U165d9de//lVHjhzRb3/7W/Xo0cMS01n6Y/ny5Vq3bp3WrFmjo0ePasWKFfrNb36jl156yRLTWfoCrauzjEP1+frrrzV06FCtWbOm1vcb8t9eR9Nc43ZHc/PNN+vXv/61Dh48qIMHD+q+++7TxIkTLX+Qd8Y+qcmev23QMTCmNMztt9+uoqIiy3bo0CFHN8nhGIsb5lr9JEk//OEPrf59ZWZmtmIL24YO+XeMgWu66667jOjoaKuy2267zZg3b56DWtQ6SkpKDElGdna2YRiGcfHiRcPLy8v49a9/bYn57rvvDHd3d2PdunWGYRjGmTNnjK5duxpbt261xJw6dcro0qWL8e6777buBdjp7Nmzxi233GJkZWUZo0aNMubOnWsYRufrh+eff964++6763y/M/XH/fffbzz99NNWZQ8//LDxxBNPGIbRufoCrauzjkN1kWTs2LHDst+Q//Y6g6aM253FjTfeaLz66qudvk/s+dsGHQdjyrW98MILxtChQx3djDaNsbhhru4nwzCM6dOnGxMnTnRIe9qyjvB3DDPYrqGqqkq5ubkKDw+3Kg8PD9f+/fsd1KrWUV5eLknq2bOnJKmgoEDFxcVWfWE2mzVq1ChLX+Tm5ur8+fNWMT4+PgoMDGx3/TV79mzdf//9GjNmjFV5Z+uHt99+W8HBwXr00UfVp08f3XnnnXrllVcs73em/rj77rv1t7/9TZ9//rkk6dNPP9W+ffs0fvx4SZ2rL9B6OvM41FAN+W+vM2jKuN3RVVdXa+vWrfr6668VEhLS6fvEnr9t0DEwpjTcsWPH5OPjo4CAAD322GP64osvHN2kNo3PkcbZs2eP+vTpowEDBmjWrFkqKSlxdJMcriP8HePs6Aa0daWlpaqurpanp6dVuaenp4qLix3UqpZnGIbi4+N19913KzAwUJIs11tbX5w4ccIS4+LiohtvvNEmpj3119atW/XJJ5/owIEDNu91pn6QpC+++EKpqamKj4/X/Pnz9fHHH+vZZ5+V2WzWk08+2an64/nnn1d5ebluu+02OTk5qbq6Wr/61a80ZcoUSZ3v3wZaR2cdhxqjIf/tdXRNHbc7qkOHDikkJETfffedbrjhBu3YsUODBg2y/EHeGfvE3r9t0DEwpjTM8OHDtXHjRg0YMECnT5/W0qVLFRoaqsOHD6tXr16Obl6bxOdIw0VEROjRRx+Vv7+/CgoKtHDhQt13333Kzc2V2Wx2dPMcoqP8HUOCrYFMJpPVvmEYNmUdyTPPPKN//OMf2rdvn817TemL9tRfJ0+e1Ny5c7Vr1y65urrWGdfR++GyixcvKjg4WMuWLZMk3XnnnTp8+LBSU1P15JNPWuI6Q39kZGRo06ZN2rx5s26//Xbl5+crNjZWPj4+mj59uiWuM/QFWl9nG4eaojP3UXOP2+3drbfeqvz8fJ05c0bbtm3T9OnTlZ2dbXm/s/VJS/5tg/aJ/6/rFxERYXk9ePBghYSEqH///nr99dcVHx/vwJa1ffzburbIyEjL68DAQAUHB8vf31/vvPOOHn74YQe2zHE6yt8x3CJ6DR4eHnJycrL5RaekpMQmk9pRzJkzR2+//bZ2796tm2++2VJ+eeWc+vrCy8tLVVVV+t///ldnTFuXm5urkpISBQUFydnZWc7OzsrOztbq1avl7OxsuY6O3g+XeXt7a9CgQVZlAwcOtDwIt7P8u5Ckn//855o3b54ee+wxDR48WNOmTVNcXJySkpIkda6+QOvpjONQYzXkv72OzJ5xu6NycXHR9773PQUHByspKUlDhw7Viy++2Gn7pDn+tkHHwJjSNNdff70GDx6sY8eOObopbVZn/XxtDt7e3vL39++0/7460t8xJNiuwcXFRUFBQcrKyrIqz8rKUmhoqINa1TIMw9Azzzyj7du36+9//7sCAgKs3g8ICJCXl5dVX1RVVSk7O9vSF0FBQeratatVTFFRkf75z3+2m/76wQ9+oEOHDik/P9+yBQcH6/HHH1d+fr769evXKfrhspEjR9osl/z555/L399fUuf5dyFJ33zzjbp0sf7YdHJy0sWLFyV1rr5A6+lM41BTNeS/vY6oOcbtzsIwDFVWVnbaPmmOv23QMTCmNE1lZaWOHj0qb29vRzelzeqsn6/NoaysTCdPnux0/7465N8xrbeeQvu1detWo2vXrkZaWppx5MgRIzY21rj++uuN48ePO7ppzeqnP/2p4e7ubuzZs8coKiqybN98840l5te//rXh7u5ubN++3Th06JAxZcoUw9vb26ioqLDEREdHGzfffLPx3nvvGZ988olx3333GUOHDjUuXLjgiMtqFjVX2jKMztUPH3/8seHs7Gz86le/Mo4dO2a88cYbxnXXXWds2rTJEtNZ+mP69OnGTTfdZPzlL38xCgoKjO3btxseHh7GL37xC0tMZ+kLtK7OMg7V5+zZs0ZeXp6Rl5dnSDJWrVpl5OXlGSdOnDAMo2H/7XU0zTVudzQJCQnG+++/bxQUFBj/+Mc/jPnz5xtdunQxdu3aZRhG5+yT2jTlbxt0DIwp1/azn/3M2LNnj/HFF18YH374ofHAAw8Y3bt37/R9xFjcMPX109mzZ42f/exnxv79+42CggJj9+7dRkhIiHHTTTd1un7qiH/HkGBroLVr1xr+/v6Gi4uL8f3vf9+ydGxHIqnW7bXXXrPEXLx40XjhhRcMLy8vw2w2G/fcc49x6NAhq3q+/fZb45lnnjF69uxpdOvWzXjggQeMwsLCVr6a5nX1H6GdrR/+/Oc/G4GBgYbZbDZuu+02Y/369Vbvd5b+qKioMObOnWv4+fkZrq6uRr9+/YzExESjsrLSEtNZ+gKtrzOMQ/XZvXt3rWPU9OnTDcNo2H97HU1zjdsdzdNPP235b6V3797GD37wA0tyzTA6Z5/Upil/26Dj6OxjyrVERkYa3t7eRteuXQ0fHx/j4YcfNg4fPuzoZjkcY3HD1NdP33zzjREeHm707t3b6Nq1q+Hn52dMnz69U34X6Ih/x5gMwzBado4cAAAAAAAA0HHxDDYAAAAAAADADiTYAAAAAAAAADuQYAMAAAAAAADsQIINAAAAAAAAsAMJNgAAAAAAAMAOJNgAAAAAAAAAO5BgAwAAAAAAAOxAgg1oIxYtWiSTyaTS0tJrxvbt21czZsyw7H/++ed67rnnFBQUpB49eqhnz54aOXKk3nzzzUa3Y8+ePTKZTE06FgDQMWzevFnJycmObgYAAEC7QYINaId27NihhQsXWvZ37dqld955R5MmTdIf//hHvfHGG7rlllv06KOPasmSJQ5sKQCgPSLBBgAA0DjOjm4AgMa78847rfYfe+wxzZ49WyaTyVIWERGh0tJSLV++XM8//7zMZnNrNxMAAAAAgE6BGWyAHf70pz/JZDLpb3/7m817qampMplM+sc//iFJ+uijjzRhwgT16tVLrq6u6t+/v2JjY22OO336tKZMmSJ3d3d5enrq6aefVnl5uVXM1beIenh4WCXXLrvrrrv0zTff6L///W+jr+27775TfHy8vLy81K1bN40aNUp5eXmNrgcAOrvLjwD4xz/+oUcffVTu7u7q2bOn4uPjdeHCBX322Wf64Q9/qO7du6tv375asWKF5dj09HSZTCYdP37cqs7Lt/Pv2bOnwe24XFdWVpaeeuop9ezZU9dff70mTJigL774whI3evRovfPOOzpx4oRMJpNla6i8vDw98MAD6tOnj8xms3x8fHT//ffryy+/lCQdP35cJpNJ6enpNseaTCYtWrTIsm9P3wEAALQmEmyAHS5/gXjttdds3ktPT9f3v/99DRkyRDt37lRYWJgKCwu1atUq/fWvf9WCBQt0+vRpm+MmTZqkAQMGaNu2bZo3b542b96suLi4JrVv9+7d6t27t/r06dPoY+fPn68vvvhCr776ql599VV99dVXGj16tNWXMABAw02ePFlDhw7Vtm3bNGvWLP3ud79TXFycHnzwQd1///3asWOH7rvvPj3//PPavn17i7UjKipKXbp0sdwG+vHHH2v06NE6c+aMJCklJUUjR46Ul5eXcnJyLFtDfP311xo7dqxOnz6ttWvXKisrS8nJyfLz89PZs2eb3Oa20ncAAAB14RZRwA7Ozs564oknlJqaqvLycrm7u0uSjh49qo8//lgvvfSSJGn27Nny8/PTRx99JFdXV8vxTz31lE2dUVFR+vnPfy5JGjNmjP79739rw4YNSktLa9QMgldffVV79uzRiy++KCcnp0ZfW+/evbVjxw7LOe+++27dcsstSkpK0iuvvNLo+gCgs/vxj3+s+Ph4SZc+33ft2qU1a9Zo+/bteuihhyRdmj32l7/8RW+88YYefvjhFmlHcHCw0tLSLPu33367Ro4cqbVr1yoxMVGDBg1Sjx49ZDabNWLEiEbV/a9//UtlZWVKS0vTxIkTLeWTJ0+2q81tpe8AAADqwgw2wE5PP/20vv32W2VkZFjKXnvtNZnNZk2dOlWff/65/u///k9RUVFWybW6/OhHP7LaHzJkiL777juVlJQ0uE1//etfNXv2bD3yyCOaM2dOwy+mhqlTp1ol9Pz9/RUaGqrdu3c3qT4A6OweeOABq/2BAwfKZDIpIiLCUubs7Kzvfe97OnHiRIu14/HHH7faDw0Nlb+/f7N8vn/ve9/TjTfeqOeff17r1q3TkSNH7K5Tajt9BwAAUBcSbICdbr/9dg0bNsxym2h1dbU2bdqkiRMnqmfPnvrPf/4jSbr55psbVF+vXr2s9i8vTvDtt9826PidO3fq4Ycf1tixY/XGG280atZbTV5eXrWWlZWVNak+AOjsevbsabXv4uKi6667zubHFxcXF3333Xct1o6W/Hx3d3dXdna27rjjDs2fP1+33367fHx89MILL+j8+fNNrret9B0AAEBdSLABzeCpp57Shx9+qKNHj+rdd99VUVGR5fbP3r17S5Ll4c4taefOnXrwwQc1atQobdu2TS4uLk2uq7i4uNayqxOAAICWczmBVFlZaVVeWlra5Dpb+vN98ODB2rp1q8rKypSfn6/IyEgtWbJEv/3tbyXVfU38gAMAANozEmxAM5gyZYpcXV2Vnp6u9PR03XTTTQoPD5ckDRgwQP3799eGDRtsvkw0p127dunBBx/U3XffrT/96U+WmW9NtWXLFhmGYdk/ceKE9u/fr9GjR9vZUgBAQ/Xt21eSLCtSX/b22283uc433njDan///v06ceKE1ee72Wxu8MzpuphMJg0dOlS/+93v1KNHD33yySeSJE9PT7m6utpc01tvvWXX+QAAAByJRQ6AZtCjRw899NBDSk9P15kzZ/Tcc8+pS5cr+eu1a9dqwoQJGjFihOLi4uTn56fCwkLt3LnT5otOU+zbt08PPvigvLy8NH/+fOXn51u9P2jQILm5uTWqzpKSEj300EOaNWuWysvL9cILL8jV1VUJCQl2txcA0DDDhg3Trbfequeee04XLlzQjTfeqB07dmjfvn1NrvPgwYOaOXOmHn30UZ08eVKJiYm66aabFBMTY4kZPHiwtm/frtTUVAUFBalLly4KDg6+Zt1/+ctflJKSogcffFD9+vWTYRjavn27zpw5o7Fjx0q6lHh74okntGHDBvXv319Dhw7Vxx9/rM2bNzf5mgAAAByNBBvQTJ566ilt2bJFkjRjxgyr98aNG6f3339fS5Ys0bPPPqvvvvtON998s82CBk313nvv6dtvv9Xx48d133332by/e/fuRs88W7ZsmQ4cOKCnnnpKFRUVuuuuu7R161b179+/WdoMALg2Jycn/fnPf9Yzzzyj6Ohomc1mPfbYY1qzZo3uv//+JtWZlpam3//+93rsscdUWVmpe++9Vy+++KLVc87mzp2rw4cPa/78+SovL5dhGFazmutyyy23qEePHlqxYoW++uorubi46NZbb1V6erqmT59uibt8u+iKFSt07tw53XffffrLX/5imbEHAADQ3piMhvy1BAAAgHYtPT1dTz31lA4cONCg2WgAAABoOJ7BBgAAAAAAANiBW0SBTsIwDFVXV9cb4+TkJJPJ1EotAgA0h4Z+vtururq63ttETSZTs5wHAACgPWIGG9BJZGdnq2vXrvVur7/+uqObCQBopNdff/2an+/Z2dmaMWOGDMNo8u2hP/jBD+o9B8/oBAAAnRnPYAM6ibNnz+qzzz6rNyYgIEC9evVqpRYBAJpDWVmZCgoK6o259dZb1b17d7vO89lnn+ns2bN1vm82mzV48GC7zgEAANBekWADAAAAAAAA7MAtogAAAAAAAIAdWOSghosXL+qrr75S9+7dedA7ADQDwzB09uxZ+fj4qEsXftORGGsAoLkx1gAA2gISbDV89dVX8vX1dXQzAKDDOXnypG6++WZHN6NNYKwBgJbBWAMAcCQSbDVcfvjvyZMn5ebm5uDWAED7V1FRIV9fX7sfrt6RMNYAQPNirAEAtAUk2Gq4fKuOm5sbX3oAoBlxK+QVjDUA0DIYawAAjsRDCgAAAAAAAAA7kGADAAAAAAAA7ECCDQAAAAAAALADCTYAAAAAAADADiTYAAAAAAAAADuQYAMAAAAAAADsQIINAAAAAAAAsAMJNgAAAAAAAMAOJNgAAAAAAAAAOzg7ugGwFpV+wPI6bcYwB7YEANBhbI688npqhuPaAQAAAHRQzGADAHRYKSkpCggIkKurq4KCgrR3795647OzsxUUFCRXV1f169dP69atqzN269atMplMevDBB5u51QAAAADaGxJsAIAOKSMjQ7GxsUpMTFReXp7CwsIUERGhwsLCWuMLCgo0fvx4hYWFKS8vT/Pnz9ezzz6rbdu22cSeOHFCzz33nMLCwlr6MgAAAAC0AyTYAAAd0qpVqxQVFaWZM2dq4MCBSk5Olq+vr1JTU2uNX7dunfz8/JScnKyBAwdq5syZevrpp7Vy5UqruOrqaj3++ONavHix+vXr1xqXAgAAAKCNI8EGAOhwqqqqlJubq/DwcKvy8PBw7d+/v9ZjcnJybOLHjRungwcP6vz585ayJUuWqHfv3oqKimr+hreGzZFXNgAAAADNgkUOAAAdTmlpqaqrq+Xp6WlV7unpqeLi4lqPKS4urjX+woULKi0tlbe3tz744AOlpaUpPz+/wW2prKxUZWWlZb+ioqLhFwIAAACgXSDB5mA1Vw0FADQvk8lktW8Yhk3ZteIvl589e1ZPPPGEXnnlFXl4eDS4DUlJSVq8eHEjWg0AAACgvSHBBgDocDw8POTk5GQzW62kpMRmltplXl5etcY7OzurV69eOnz4sI4fP64JEyZY3r948aIkydnZWZ999pn69+9vU29CQoLi4+Mt+xUVFfL19W3ytQEAAABoe0iwtWE1Z7elzRjmwJYAQPvi4uKioKAgZWVl6aGHHrKUZ2VlaeLEibUeExISoj//+c9WZbt27VJwcLC6du2q2267TYcOHbJ6f8GCBTp79qxefPHFOpNmZrNZZrPZzisCAAAA0JaRYAMAdEjx8fGaNm2agoODFRISovXr16uwsFDR0dGSLs0sO3XqlDZu3ChJio6O1po1axQfH69Zs2YpJydHaWlp2rJliyTJ1dVVgYGBVufo0aOHJNmUAwAAAOhcSLABADqkyMhIlZWVacmSJSoqKlJgYKAyMzPl7+8vSSoqKlJhYaElPiAgQJmZmYqLi9PatWvl4+Oj1atXa9KkSY66BAAAAADthMm4/ARnqKKiQu7u7iovL5ebm1urnLOhixxwiyiA9sgRn6ttnUP6ZHNk7eVTM1rn/ADQghhrAABtATPYAADorGom3ki2AQAAAE3WxdENAAAAAAAAANozEmwAAAAAAACAHUiwAQAAAAAAAHYgwQYAAAAAAADYgUUOAADoiOpaORQAAABAs2MGGwAAAAAAAGAHEmwAAAAAAACAHUiwAQAAAAAAAHYgwQYAAAAAAADYgUUO2omo9AOW12kzhjmwJQAAAAAAAKiJGWwAAAAAAACAHRyaYEtJSVFAQIBcXV0VFBSkvXv31hufnZ2toKAgubq6ql+/flq3bp1NTHJysm699VZ169ZNvr6+iouL03fffddSlwAAAAAAAIBOzmEJtoyMDMXGxioxMVF5eXkKCwtTRESECgsLa40vKCjQ+PHjFRYWpry8PM2fP1/PPvustm3bZol54403NG/ePL3wwgs6evSo0tLSlJGRoYSEhNa6LAAAAAAAAHQyDnsG26pVqxQVFaWZM2dKujTzbOfOnUpNTVVSUpJN/Lp16+Tn56fk5GRJ0sCBA3Xw4EGtXLlSkyZNkiTl5ORo5MiRmjp1qiSpb9++mjJlij7++OPWuSgAAAAAAAB0Og6ZwVZVVaXc3FyFh4dblYeHh2v//v21HpOTk2MTP27cOB08eFDnz5+XJN19993Kzc21JNS++OILZWZm6v7772+BqwAAAAAAAAAcNIOttLRU1dXV8vT0tCr39PRUcXFxrccUFxfXGn/hwgWVlpbK29tbjz32mP7zn//o7rvvlmEYunDhgn76059q3rx5tdZZWVmpyspKy35FRYWdVwYAAAAAAIDOxqGLHJhMJqt9wzBsyq4VX7N8z549+tWvfqWUlBR98skn2r59u/7yl7/ol7/8Za31JSUlyd3d3bL5+vraczkAAAAAAADohBwyg83Dw0NOTk42s9VKSkpsZqld5uXlVWu8s7OzevXqJUlauHChpk2bZnmu2+DBg/X111/rxz/+sRITE9Wli3U+MSEhQfHx8Zb9iooKkmwAAAAAAABoFIfMYHNxcVFQUJCysrKsyrOyshQaGlrrMSEhITbxu3btUnBwsLp27SpJ+uabb2ySaE5OTjIMwzLbrSaz2Sw3NzerDQAAAAAAAGgMh90iGh8fr1dffVUbNmzQ0aNHFRcXp8LCQkVHR0u6NLvsySeftMRHR0frxIkTio+P19GjR7VhwwalpaXpueees8RMmDBBqamp2rp1qwoKCpSVlaWFCxfqRz/6kZycnFr9GgEAAAAAANDxOeQWUUmKjIxUWVmZlixZoqKiIgUGBiozM1P+/v6SpKKiIhUWFlriAwIClJmZqbi4OK1du1Y+Pj5avXq1Jk2aZIlZsGCBTCaTFixYoFOnTql3796aMGGCfvWrX7X69QEAAAAAAKBzMBm13TvZSVVUVMjd3V3l5eUtertoVPoBu45PmzGsmVoCAC2rtT5X25NW65PNkY2Ln5rRMu0AgBbGWAMAaAscuoooAAAAAAAA0N6RYAMAAAAAAADsQIINAAAAAAAAsAMJNgAAAAAAAMAOJNgAAAAAAAAAO5BgAwAAAAAAAOzg7OgGoPGi0g9YXqfNGObAlgAAAAAAAIAEGwAAkDZHXnk9NcNx7QAAAADaIW4RBQAAAAAAAOxAgg0AAAAAAACwAwk2AAAAAAAAwA4k2AAAAAAAAAA7kGADAAAAAAAA7ECCDQAAAAAAALADCTYAAAAAAADADs6ObgAAAGhjNkdeeT01w3HtAAAAANoJZrABAAAAAAAAdiDBBgAAAAAAANiBBBsAAAAAAABgB57BBgBAR1Hz2WkAAAAAWg0z2AAAAAAAAAA7kGADAAAAAAAA7ECCDQAAAAAAALADCTYAQIeVkpKigIAAubq6KigoSHv37q03Pjs7W0FBQXJ1dVW/fv20bt06q/e3b9+u4OBg9ejRQ9dff73uuOMO/f73v2/JSwAAAADQDrDIQTsXlX7A8jptxjAHtgQA2paMjAzFxsYqJSVFI0eO1Msvv6yIiAgdOXJEfn5+NvEFBQUaP368Zs2apU2bNumDDz5QTEyMevfurUmTJkmSevbsqcTERN12221ycXHRX/7yFz311FPq06ePxo0b19qXCAAAAKCNYAYbAKBDWrVqlaKiojRz5kwNHDhQycnJ8vX1VWpqaq3x69atk5+fn5KTkzVw4EDNnDlTTz/9tFauXGmJGT16tB566CENHDhQ/fv319y5czVkyBDt27evtS4LAAAAQBtEgg0A0OFUVVUpNzdX4eHhVuXh4eHav39/rcfk5OTYxI8bN04HDx7U+fPnbeINw9Df/vY3ffbZZ7rnnnuar/EAAAAA2h1uEQUAdDilpaWqrq6Wp6enVbmnp6eKi4trPaa4uLjW+AsXLqi0tFTe3t6SpPLyct10002qrKyUk5OTUlJSNHbs2DrbUllZqcrKSst+RUVFUy8LAAAAQBtFgg0A0GGZTCarfcMwbMquFX91effu3ZWfn69z587pb3/7m+Lj49WvXz+NHj261jqTkpK0ePHiJl5BG7A58srrqRmOawcAAADQhpFgAwB0OB4eHnJycrKZrVZSUmIzS+0yLy+vWuOdnZ3Vq1cvS1mXLl30ve99T5J0xx136OjRo0pKSqozwZaQkKD4+HjLfkVFhXx9fZtyWQAAAADaKJ7BBgDocFxcXBQUFKSsrCyr8qysLIWGhtZ6TEhIiE38rl27FBwcrK5du9Z5LsMwrG4BvZrZbJabm5vVBgAAAKBjYQYbAKBDio+P17Rp0xQcHKyQkBCtX79ehYWFio6OlnRpZtmpU6e0ceNGSVJ0dLTWrFmj+Ph4zZo1Szk5OUpLS9OWLVssdSYlJSk4OFj9+/dXVVWVMjMztXHjxjpXJgUAAADQOZBgAwB0SJGRkSorK9OSJUtUVFSkwMBAZWZmyt/fX5JUVFSkwsJCS3xAQIAyMzMVFxentWvXysfHR6tXr9akSZMsMV9//bViYmL05Zdfqlu3brrtttu0adMmRUZG2pwfAAAAQOdhMi4/wRmqqKiQu7u7ysvLW/QWnqj0Ay1Sb9qMYS1SLwA0VWt9rrYnLdonm1s40cciBwDaIMYaAEBbwDPYAAAAAAAAADuQYAMAAAAAAADsQIINAAAAAAAAsAMJNgAAAAAAAMAOJNgAAAAAAAAAO5BgAwAAAAAAAOxAgg0AAAAAAACwg0MTbCkpKQoICJCrq6uCgoK0d+/eeuOzs7MVFBQkV1dX9evXT+vWrbOJOXPmjGbPni1vb2+5urpq4MCByszMbKlLAACg89gceWUDAAAAYOHsqBNnZGQoNjZWKSkpGjlypF5++WVFREToyJEj8vPzs4kvKCjQ+PHjNWvWLG3atEkffPCBYmJi1Lt3b02aNEmSVFVVpbFjx6pPnz568803dfPNN+vkyZPq3r17a1+eQ0SlH7C8TpsxzIEtAQAAAAAA6DwclmBbtWqVoqKiNHPmTElScnKydu7cqdTUVCUlJdnEr1u3Tn5+fkpOTpYkDRw4UAcPHtTKlSstCbYNGzbov//9r/bv36+uXbtKkvz9/VvnggAAAAAAANApOeQW0aqqKuXm5io8PNyqPDw8XPv376/1mJycHJv4cePG6eDBgzp//rwk6e2331ZISIhmz54tT09PBQYGatmyZaqurq61zsrKSlVUVFhtAAB0Rvknz1g2AAAAAI3jkBlspaWlqq6ulqenp1W5p6eniouLaz2muLi41vgLFy6otLRU3t7e+uKLL/T3v/9djz/+uDIzM3Xs2DHNnj1bFy5c0P/7f//Pps6kpCQtXry4+S4MAIB2hGQaAAAA0DwcusiByWSy2jcMw6bsWvE1yy9evKg+ffpo/fr1CgoK0mOPPabExESlpqbWWl9CQoLKy8st28mTJ+25HAAAAAAAAHRCDpnB5uHhIScnJ5vZaiUlJTaz1C7z8vKqNd7Z2Vm9evWSJHl7e6tr165ycnKyxAwcOFDFxcWqqqqSi4uL1fFms1lms7k5LgkAgA6j5sy2O3x7OKwdAAAAQHvhkBlsLi4uCgoKUlZWllV5VlaWQkNDaz0mJCTEJn7Xrl0KDg62LGgwcuRI/fvf/9bFixctMZ9//rm8vb1tkmsAAHRGPGsNAAAAaH4Ou0U0Pj5er776qjZs2KCjR48qLi5OhYWFio6OlnTp9s0nn3zSEh8dHa0TJ04oPj5eR48e1YYNG5SWlqbnnnvOEvPTn/5UZWVlmjt3rj7//HO98847WrZsmWbPnt3q1wcAAAAAAIDOwSG3iEpSZGSkysrKtGTJEhUVFSkwMFCZmZny9/eXJBUVFamwsNASHxAQoMzMTMXFxWnt2rXy8fHR6tWrNWnSJEuMr6+vdu3apbi4OA0ZMkQ33XST5s6dq+eff77Vrw8AAAAAAACdg8m4vFIAVFFRIXd3d5WXl8vNza3FzhOVfqDF6r4sbcawFj8HAFxLa32utict2iebI68Z0ly3ht7x/M5mqQcA7MVYAwBoCxw2g62zaY2kGgAAAAAAAFqfw57BBgAAAAAAAHQEJNgAAAAAAAAAO5BgAwAAAAAAAOzAM9gAAECjXf1sURbXAQAAQGfGDDYAAAAAAADADiTYAAAAAAAAADuQYAMAAAAAAADswDPYOqiaz8bhuTgA0Lnlnzzj6CYAAAAAHRoJNgebc3qB1f5Lnksd1BIAAJqOH3YAAADQmZFgAwAAjcYPRAAAAMAVPIMNAAAAAAAAsAMJNgAAAAAAAMAOJNgAAAAAAAAAO5BgAwAAAAAAAOzAIgcAAKBZsaIoAAAAOhtmsAEAAAAAAAB2IMEGAAAAAAAA2IFbRAEAQIvhdlEAAAB0BsxgAwAAAAAAAOxAgg0AAAAAAACwAwk2AAAAAAAAwA4k2AAAAAAAAAA7sMhBOzHn9ALL65c8lzqwJQCA9iD/5BlHNwEAAADoNEiwtWE1k2r2YAU3AEBL44cgAAAAdGbcIgoAAAAAAADYgRlsAAC0V5sjHd0CAAAAACLB1uY0122hAAC0NTyyAAAAAB0Vt4gCADqslJQUBQQEyNXVVUFBQdq7d2+98dnZ2QoKCpKrq6v69eundevWWb3/yiuvKCwsTDfeeKNuvPFGjRkzRh9//HFLXgIAAACAdoAEGwCgQ8rIyFBsbKwSExOVl5ensLAwRUREqLCwsNb4goICjR8/XmFhYcrLy9P8+fP17LPPatu2bZaYPXv2aMqUKdq9e7dycnLk5+en8PBwnTp1qrUuCwAAAEAbRIINANAhrVq1SlFRUZo5c6YGDhyo5ORk+fr6KjU1tdb4devWyc/PT8nJyRo4cKBmzpypp59+WitXrrTEvPHGG4qJidEdd9yh2267Ta+88oouXryov/3tb611WQAAAADaIBJsAIAOp6qqSrm5uQoPD7cqDw8P1/79+2s9JicnxyZ+3LhxOnjwoM6fP1/rMd98843Onz+vnj171tmWyspKVVRUWG0AAAAAOhYSbACADqe0tFTV1dXy9PS0Kvf09FRxcXGtxxQXF9caf+HCBZWWltZ6zLx583TTTTdpzJgxdbYlKSlJ7u7uls3X17eRVwMAAACgrSPBBgDosEwmk9W+YRg2ZdeKr61cklasWKEtW7Zo+/btcnV1rbPOhIQElZeXW7aTJ0825hIAAAAAtAPOjm4AAADNzcPDQ05OTjaz1UpKSmxmqV3m5eVVa7yzs7N69eplVb5y5UotW7ZM7733noYMGVJvW8xms8xmcxOuAgAAAEB7QYINANDhuLi4KCgoSFlZWXrooYcs5VlZWZo4cWKtx4SEhOjPf/6zVdmuXbsUHBysrl27Wsp+85vfaOnSpdq5c6eCg4Nb5gLauTmnF1hev+S5tNaYqPQDltdpM4a1eJsAAACAlsQtogCADik+Pl6vvvqqNmzYoKNHjyouLk6FhYWKjo6WdOnWzSeffNISHx0drRMnTig+Pl5Hjx7Vhg0blJaWpueee84Ss2LFCi1YsEAbNmxQ3759VVxcrOLiYp07d67Vrw8AAABA28EMNgBAhxQZGamysjItWbJERUVFCgwMVGZmpvz9/SVJRUVFKiwstMQHBAQoMzNTcXFxWrt2rXx8fLR69WpNmjTJEpOSkqKqqio98sgjVud64YUXtGjRola5LgAAAABtDwm2dq4ht+EAQGcVExOjmJiYWt9LT0+3KRs1apQ++eSTOus7fvx4M7UMAAAAQEdCgs0BaibFAAAAAAAA0L459BlsKSkpCggIkKurq4KCgrR3795647OzsxUUFCRXV1f169dP69atqzN269atMplMevDBB5u51Y435/QCywYAAAAAAADHctgMtoyMDMXGxiolJUUjR47Uyy+/rIiICB05ckR+fn428QUFBRo/frxmzZqlTZs26YMPPlBMTIx69+5t9XwcSTpx4oSee+45hYWFtdbltBs1V22TWLkNAAAAAADAXg6bwbZq1SpFRUVp5syZGjhwoJKTk+Xr66vU1NRa49etWyc/Pz8lJydr4MCBmjlzpp5++mmtXLnSKq66ulqPP/64Fi9erH79+rXGpQAAAAAAAKATc0iCraqqSrm5uQoPD7cqDw8P1/79+2s9JicnxyZ+3LhxOnjwoM6fP28pW7JkiXr37q2oqKhrtqOyslIVFRVWGwAAAAAAANAYDrlFtLS0VNXV1fL09LQq9/T0VHFxca3HFBcX1xp/4cIFlZaWytvbWx988IHS0tKUn5/foHYkJSVp8eLFTboGAADQPGo+voBHFwAAAKA9cugiByaTyWrfMAybsmvFXy4/e/asnnjiCb3yyivy8PBo0PkTEhJUXl5u2U6ePNnIKwAAAAAAAEBn55AZbB4eHnJycrKZrVZSUmIzS+0yLy+vWuOdnZ3Vq1cvHT58WMePH9eECRMs71+8eFGS5OzsrM8++0z9+/e3Ot5sNstsNjfHJQEA4HD5J884ugkAAABAp+SQGWwuLi4KCgpSVlaWVXlWVpZCQ0NrPSYkJMQmfteuXQoODlbXrl1122236dChQ8rPz7dsP/rRj3TvvfcqPz9fvr6+LXY9AAAAAAAA6LwcMoNNkuLj4zVt2jQFBwcrJCRE69evV2FhoaKjoyVdun3z1KlT2rhxoyQpOjpaa9asUXx8vGbNmqWcnBylpaVpy5YtkiRXV1cFBgZanaNHjx6SZFMOAAAAAAAANBeHJdgiIyNVVlamJUuWqKioSIGBgcrMzJS/v78kqaioSIWFhZb4gIAAZWZmKi4uTmvXrpWPj49Wr16tSZMmOeoSAAAAAAAAAMcl2CQpJiZGMTExtb6Xnp5uUzZq1Ch98sknDa6/tjoAAEDrmXN6geX1S55LHdgSAAAAoOU4NMEGAABQU1T6AcvrtBnDHNgSAAAAoOEcssgBAAAAAAAA0FEwg62D4pYcAAAAAACA1sEMNgAAAAAAAMAOzGDr5HjWDQAAAAAAgH1IsHUgNW8LBQAAAAAAQOvgFlEAAAAAAADADsxgAwAArYIFeAAAANBRMYMNAAAAAAAAsAMz2AAAQJvEQjwAAABoL5jBBgAAAAAAANiBGWwAAKDV8Tw2AAAAdCTMYAMAAAAAAADsQIINAAAAAAAAsAO3iLaSmrfCAAAAAAAAoONgBhsAAAAAAABgB2awwSIq/YDlddqMYQ5sCQAAAAAAQPvBDDYAAAAAAADADsxgAwAAbV7NWdYSM60BAADQtpBgAwCgnco/ecbRTQAAAAAgbhEFAAAAAAAA7EKCDQAAAAAAALADCTYAAAAAAADADiTYAAAAAAAAADuQYAMAAAAAAADswCqincCc0wssr1/yXOrAlgAAAAAAAHQ8JNhQq6j0A5bXaTOGObAlAADYYpwCAABAW0KCrQXV/ON/jgPbAQAAAAAAgJZDgq2TqXm76NW4fRQAAAAAAKDxWOQAAAAAAAAAsAMJtv+vvbsPjqo8/z/+WUmyAQTkQfIgEAKjAxjkIbE0IOBQGkQpqBSDUsGvkvmmPIboDKAyoLWCQBmGL880qAwI/CFYHLAQWpJCiQNNiMXAIA6R0JiQgQpBqUkg9+8Pf2yzySbZZB/Obni/ZnYme5/7nL3OtWf3wLX3OTcAAAAAAADgAQpsAAAAAAAAgAe4BxsAALBUzfuDcj9QAAAABCMKbAAAIKjVnLU746VHLYwEAAAAdysuEQUAtFjr169XbGyswsPDFR8fr6NHjzbYPzs7W/Hx8QoPD1evXr20ceNGp+UFBQWaOHGievbsKZvNptWrV/swegAAAADBggIbGvXKBycdDwAIFrt371ZaWpreeOMNnTp1SsOHD9fYsWNVVFTksn9hYaGefPJJDR8+XKdOndLrr7+uOXPm6OOPP3b0uXnzpnr16qVly5YpMjLSX7sCAAAAIMBRYAMAtEirVq3SK6+8ounTp6tv375avXq1unfvrg0bNrjsv3HjRvXo0UOrV69W3759NX36dL388stauXKlo8+jjz6qFStWaPLkybLb7f7aFQAAAAABjgIbAKDFqaysVG5urpKSkpzak5KSdPz4cZfr5OTk1Ok/ZswY/eMf/1BVVVWzY6moqFB5ebnTAwAAAEDLwiQHcGAWNwAtxZUrV3T79m1FREQ4tUdERKi0tNTlOqWlpS7737p1S1euXFFUVFSzYlm6dKneeuutZq2LpmPCAwAAAFiBAhsAoMWy2WxOz40xddoa6++qvSkWLlyo9PR0x/Py8nJ179692dtr6fixBwAAAMHI0ktEvT2725YtWzR8+HB17NhRHTt21OjRo3XixAlf7kKLNfvym44HAASbLl26qFWrVnVGq5WVldUZpXZHZGSky/4hISHq3Llzs2Ox2+1q37690wMAAABAy2JZgc0Xs7tlZWXp+eef15EjR5STk6MePXooKSlJxcXF/totAEAACAsLU3x8vDIzM53aMzMzNXToUJfrJCYm1ul/6NAhJSQkKDQ01Gexon782AMAAIBgYVmBzRezu+3YsUMzZszQwIED1adPH23ZskXV1dX6y1/+4q/dAgAEiPT0dP3xj3/U1q1bdfbsWc2bN09FRUVKTU2V9NOlm1OnTnX0T01N1cWLF5Wenq6zZ89q69atysjI0GuvveboU1lZqfz8fOXn56uyslLFxcXKz8/X119/7ff9AwAAABA4LLkH253Z3RYsWODU3pzZ3TIyMlRVVeVydMHNmzdVVVWlTp06udxmRUWFKioqHM+Z2Q0AWo7k5GRdvXpVb7/9tkpKShQXF6cDBw4oJiZGklRSUuI0ajo2NlYHDhzQvHnztG7dOkVHR2vNmjWaOHGio8+3336rQYMGOZ6vXLlSK1eu1MiRI5WVleW3fQMAAAAQWCwpsPlrdrcFCxbogQce0OjRo11uk5ndmo7Z2QAEkxkzZmjGjBkul33wwQd12kaOHKm8vLx6t9ezZ0/HxAcAAAAAcIels4j6cna35cuXa+fOncrKylJ4eLjL7TGzGwAAwaH2fdjcmWGUH4UAAADgL5YU2Hw9u9vKlSv17rvv6vDhw3rkkUfqjcNut8tutzdzLwAAAAAAAACLCmw1Z3d75plnHO2ZmZmaMGGCy3USExP16aefOrW5mt1txYoVeuedd3Tw4EElJCT4ZgfuYs4jCA5aFgcA3LU+SrY6AgAAAAC1WHaJaHp6ul588UUlJCQoMTFRmzdvrjO7W3FxsbZt2ybpp9nd1q5dq/T0dKWkpCgnJ0cZGRnauXOnY5vLly/XokWL9NFHH6lnz56OEW/33nuv7r33Xv/vZAuX/94Yx98D51NsAwAAAAAAdyfLCmy+mN1t/fr1qqys1K9//Wun11q8eLGWLFnil/0CAAC+V3NEtTv3YwMAAAB8ydJJDrw9u9s333zjpchQU+0bSwMAEGyY8AAAAAC+dI/VAQAAAAAAAADBzNIRbC0dI78AAAAAAABaPkawAQAAAAAAAB6gwAYAAAAAAAB4gEtE4RX5741x/D1w/kELIwEA3G2YURQAAABWo8AGAADuKswoCgAAAG/jElEAAAAAAADAAxTYAAAAAAAAAA9wiSgAALhrcbkoAAAAvIECG7yO/6wAgO/kX7pmdQgAAAAAaqHABt/6KNn5+Qu7rYkDAAAAAADARyiwwetmX37zv0+632dZHAAAAAAAAP5AgQ0+VftSpoE1R7Qxmg0AEEC4xQEAAACaiwIbrFP78lFXKMIBAJqg5ijq/4t4x8JIAAAAcDehwIbAxog3AAAAAAAQ4Ciwwa9qXjI6kPuzAQACVM3LRSUuGQUAAEDD7rE6AAAAAAAAACCYMYINAAC0SNyPDQAAAP5CgQ2W4XJRAAAAAADQElBgAwAAaETNe7JxPzYAAADURoENwam+2UUbmnU0EGckDfSYavJVfIGYA6uRE8DruFwUAAAAvkSBDcGjvsLP3cTKwktD+fd1LLVfOxCLTu68N8FWOAu2eAEAAADAIhTYEBA8uh9bfYWf5hTk3FknmAsN/iiYNGd0YWPb8SZv5sCdY8+befZWbt3dLgCXuFwUAAAAtVFgQ8Dxy+QH/i401eSt1wukUV2BPrqwqfE1lFt/72ug5xYIQt68XJRiGwAAACQKbID3Chiebsebo5BqCpTRYv54vaa+hrs59yReKwtkjEwDAAAAAL+gwIaA5pfRbE3lq0JYU/t4KphHRvmicGTlyDRfXUbqTjsAAAAAwGMU2ICWLpgKK766b15L5O9Rh0ALVfNy0ZqYaRQAAABNQYENQaPmaLaaLB3ZRjEC3sBxBLQI3I8NAADg7kWBDQAAwMsotgEAANxdKLAh6AXkfdoAAAAAAMBdgwIbWpT6LiOVKL4BANxX373ZpKbfn43RbAAAAC0fBTbcNRjpBgDwhprFN4ptAAAAkCiw4S7V0Eg3VyjIAQAAAACA+lBgAwAAsACj2QAAAFoOCmyAG5pzeSmXpAIA3FWz2CZRcAMAAAg2FNiAJmrq5aW116lZbKMIBwDBrb7JEJp6b7baGN0GAAAQXCiwAX5WX4HOncJdfcW55qxDQQ8AfMeTiRBqqz267Q4KbwAAAIGDAhsQRDwdPefptupTX7GuqUXDQFE77kCMEUDw8GaxrSZGuQEAAAQOCmwAPOZJsa6+dRsaredOQa85o/3c4U687qzrbnwU94CWhWIbAABAy0SBDUBAaqjo5E7BzB9FNU9ez93+nuxHcybkqHdbzY4CQH3qu39bQ9wpynFJKQAAgP/dY+WLr1+/XrGxsQoPD1d8fLyOHj3aYP/s7GzFx8crPDxcvXr10saNG+v0+fjjj9WvXz/Z7Xb169dPe/fu9VX4Lr3ywUnHAwCslH/pmluPlqwlnmeAO2ZfftPxcEfNf6M09AAAAEDTWTaCbffu3UpLS9P69es1bNgwbdq0SWPHjtWZM2fUo0ePOv0LCwv15JNPKiUlRdu3b9ff//53zZgxQ/fff78mTpwoScrJyVFycrJ+97vf6ZlnntHevXv13HPP6dixYxoyZIi/dxEAYCHOM2iJ3CmmeXoZqjtFNkbDAQAAOLMZY4wVLzxkyBANHjxYGzZscLT17dtXTz/9tJYuXVqn//z587Vv3z6dPXvW0ZaamqovvvhCOTk5kqTk5GSVl5frs88+c/R54okn1LFjR+3cubPRmMrLy9WhQwddv35d7du3b9Z+5b83plnrAUAgGzj/YLPW88b3anMF4nlG8jwnnGfgCzULcb66T9wdFOfgbVaeawAAuMOSEWyVlZXKzc3VggULnNqTkpJ0/Phxl+vk5OQoKSnJqW3MmDHKyMhQVVWVQkNDlZOTo3nz5tXps3r1apfbrKioUEVFheP59evXJf10km6u73+81ex1ASBQNfd78c56/v4tJ1DOM5L3zzWcZ+AL/3Pxv5+V7+tpr2lT1/8W4f63zHURrmafml7ccKTpAXpg3ZR4v74e/M+qcw0AADVZUmC7cuWKbt++rYiICKf2iIgIlZaWulyntLTUZf9bt27pypUrioqKqrdPfdtcunSp3nrrrTrt3bt3b8ruAEDLt6SDR6vfuHFDHTp4to2mCJTzjMS5Bi3VXx1/bXejj5W2z7A6AviLv881AADUZOksojabzem5MaZOW2P9a7c3ZZsLFy5Uenq643l1dbX+/e9/q3Pnzg3G0Zjy8nJ1795dly5dYpi6B8ij95BL7yCPTWeM0Y0bNxQdHW3J61t9npG8e64JpmMwmGKVgiveYIpVCq54gylWKbji9WWsVp9rAACQLCqwdenSRa1atarzi39ZWVmdkQF3REZGuuwfEhKizp07N9invm3a7XbZ7Xantvvuu68pu9Kg9u3bB/w/doIBefQecukd5LFprBhNECjnGck355pgOgaDKVYpuOINplil4Io3mGKVgiteX8XKyDUAgNXuseJFw8LCFB8fr8zMTKf2zMxMDR061OU6iYmJdfofOnRICQkJCg0NbbBPfdsEALRMnGcAAAAA+JNll4imp6frxRdfVEJCghITE7V582YVFRUpNTVV0k+X1BQXF2vbtm2SfprJbe3atUpPT1dKSopycnKUkZHhNGvb3LlzNWLECL333nuaMGGC/vSnP+nw4cM6duyYJfsIALAO5xkAAAAA/mJZgS05OVlXr17V22+/rZKSEsXFxenAgQOKiYmRJJWUlKioqMjRPzY2VgcOHNC8efO0bt06RUdHa82aNZo4caKjz9ChQ7Vr1y69+eabWrRokXr37q3du3dryJAhft03u92uxYsX17kkCE1DHr2HXHoHeQwuLfE8E0zHYDDFKgVXvMEUqxRc8QZTrFJwxRtMsQIA0Bw2w3zWAAAAAAAAQLNZcg82AAAAAAAAoKWgwAYAAAAAAAB4gAIbAAAAAAAA4AEKbAAAAAAAAIAHKLB52fr16xUbG6vw8HDFx8fr6NGjVocU0JYuXapHH31U7dq1U9euXfX000/r3LlzTn2MMVqyZImio6PVunVrPf744yooKLAo4uCxdOlS2Ww2paWlOdrIpXuKi4v1m9/8Rp07d1abNm00cOBA5ebmOpaTR1ghUM8v7nyPv/TSS7LZbE6Pn//8536PdcmSJXXiiIyMdCwPtM92z54968Rrs9k0c+ZMSdbm9W9/+5t+9atfKTo6WjabTZ988onTcndyWVFRodmzZ6tLly5q27atxo8fr3/9619+j7eqqkrz589X//791bZtW0VHR2vq1Kn69ttvnbbx+OOP18n35MmT/Rqr5N777q/cNharq+PXZrNpxYoVjj7+yisAAL5Ggc2Ldu/erbS0NL3xxhs6deqUhg8frrFjx6qoqMjq0AJWdna2Zs6cqc8//1yZmZm6deuWkpKS9MMPPzj6LF++XKtWrdLatWt18uRJRUZG6pe//KVu3LhhYeSB7eTJk9q8ebMeeeQRp3Zy2bjvvvtOw4YNU2hoqD777DOdOXNGf/jDH3Tfffc5+pBH+Fsgn1/c+R6XpCeeeEIlJSWOx4EDByyJ9+GHH3aK4/Tp045lgfbZPnnypFOsmZmZkqRJkyY5+liV1x9++EEDBgzQ2rVrXS53J5dpaWnau3evdu3apWPHjun777/XuHHjdPv2bb/Ge/PmTeXl5WnRokXKy8vTnj179NVXX2n8+PF1+qakpDjle9OmTX6N9Y7G3nd/5baxWGvGWFJSoq1bt8pms2nixIlO/fyRVwAAfM7Aa372s5+Z1NRUp7Y+ffqYBQsWWBRR8CkrKzOSTHZ2tjHGmOrqahMZGWmWLVvm6PPjjz+aDh06mI0bN1oVZkC7ceOGefDBB01mZqYZOXKkmTt3rjGGXLpr/vz55rHHHqt3OXmEFYLp/FL7e9wYY6ZNm2YmTJhgXVD/3+LFi82AAQNcLguGz/bcuXNN7969TXV1tTEmcPIqyezdu9fx3J1cXrt2zYSGhppdu3Y5+hQXF5t77rnH/PnPf/ZrvK6cOHHCSDIXL150tNU8p/qLq1gbe9+tyq07eZ0wYYIZNWqUU5sVeQUAwBcYweYllZWVys3NVVJSklN7UlKSjh8/blFUwef69euSpE6dOkmSCgsLVVpa6pRXu92ukSNHktd6zJw5U0899ZRGjx7t1E4u3bNv3z4lJCRo0qRJ6tq1qwYNGqQtW7Y4lpNH+FuwnV9qf4/fkZWVpa5du+qhhx5SSkqKysrKrAhP58+fV3R0tGJjYzV58mRduHBBUuB/tisrK7V9+3a9/PLLstlsjvZAyWtN7uQyNzdXVVVVTn2io6MVFxcXEPm+fv26bDab0+hlSdqxY4e6dOmihx9+WK+99pploxsbet8DNbeXL1/W/v379corr9RZFih5BQDAEyFWB9BSXLlyRbdv31ZERIRTe0REhEpLSy2KKrgYY5Senq7HHntMcXFxkuTInau8Xrx40e8xBrpdu3YpLy9PJ0+erLOMXLrnwoUL2rBhg9LT0/X666/rxIkTmjNnjux2u6ZOnUoe4XfBdH5x9T0uSWPHjtWkSZMUExOjwsJCLVq0SKNGjVJubq7sdrvf4hsyZIi2bdumhx56SJcvX9Y777yjoUOHqqCgIOA/25988omuXbuml156ydEWKHmtzZ1clpaWKiwsTB07dqzTx+rj+scff9SCBQv0wgsvqH379o72KVOmKDY2VpGRkfryyy+1cOFCffHFF45Ld/2lsfc9UHP74Ycfql27dnr22Wed2gMlrwAAeIoCm5fV/FVZ+uk/G7Xb4NqsWbP0z3/+U8eOHauzjLw27tKlS5o7d64OHTqk8PDwevuRy4ZVV1crISFB7777riRp0KBBKigo0IYNGzR16lRHP/IIfwuGY66+7/Hk5GTH33FxcUpISFBMTIz2799f5z/bvjR27FjH3/3791diYqJ69+6tDz/80HGT+EDNc0ZGhsaOHavo6GhHW6DktT7NyaXV+a6qqtLkyZNVXV2t9evXOy1LSUlx/B0XF6cHH3xQCQkJysvL0+DBg/0WY3Pfd6tzu3XrVk2ZMqXOv1ECJa8AAHiKS0S9pEuXLmrVqlWdXwbLysrq/IKLumbPnq19+/bpyJEj6tatm6P9zuxu5LVxubm5KisrU3x8vEJCQhQSEqLs7GytWbNGISEhjnyRy4ZFRUWpX79+Tm19+/Z13EyeYxL+Fiznl/q+x12JiopSTEyMzp8/76foXGvbtq369++v8+fPB/Rn++LFizp8+LCmT5/eYL9Ayas7uYyMjFRlZaW+++67evv4W1VVlZ577jkVFhYqMzPTafSaK4MHD1ZoaKjl+a79vgdibo8ePapz5841egxLgZNXAACaigKbl4SFhSk+Pr7OcPbMzEwNHTrUoqgCnzFGs2bN0p49e/TXv/5VsbGxTsvvXDJQM6+VlZXKzs4mr7X84he/0OnTp5Wfn+94JCQkaMqUKcrPz1evXr3IpRuGDRumc+fOObV99dVXiomJkcQxCf8L9PNLY9/jrly9elWXLl1SVFSUHyKsX0VFhc6ePauoqKiA/my///776tq1q5566qkG+wVKXt3JZXx8vEJDQ536lJSU6Msvv7Qk33eKa+fPn9fhw4fVuXPnRtcpKChQVVWV5fmu/b4HWm6ln0ZgxsfHa8CAAY32DZS8AgDQZJZMrdBC7dq1y4SGhpqMjAxz5swZk5aWZtq2bWu++eYbq0MLWL/97W9Nhw4dTFZWlikpKXE8bt686eizbNky06FDB7Nnzx5z+vRp8/zzz5uoqChTXl5uYeTBofbMXOSycSdOnDAhISHm97//vTl//rzZsWOHadOmjdm+fbujD3mEvwXy+aWx7/EbN26YV1991Rw/ftwUFhaaI0eOmMTERPPAAw/4/TPz6quvmqysLHPhwgXz+eefm3Hjxpl27do58hiIn+3bt2+bHj16mPnz5zu1W53XGzdumFOnTplTp04ZSWbVqlXm1KlTjlk33cllamqq6datmzl8+LDJy8szo0aNMgMGDDC3bt3ya7xVVVVm/Pjxplu3biY/P9/pOK6oqDDGGPP111+bt956y5w8edIUFhaa/fv3mz59+phBgwZ5Pd6GYnX3ffdXbhs7Dowx5vr166ZNmzZmw4YNddb3Z14BAPA1Cmxetm7dOhMTE2PCwsLM4MGDTXZ2ttUhBTRJLh/vv/++o091dbVZvHixiYyMNHa73YwYMcKcPn3auqCDSO0CG7l0z6effmri4uKM3W43ffr0MZs3b3ZaTh5hhUA9vzT2PX7z5k2TlJRk7r//fhMaGmp69Ohhpk2bZoqKivwea3JysomKijKhoaEmOjraPPvss6agoMCxPBA/2wcPHjSSzLlz55zarc7rkSNHXL7v06ZNM8a4l8v//Oc/ZtasWaZTp06mdevWZty4cT6Lv6F4CwsL6z2Ojxw5YowxpqioyIwYMcJ06tTJhIWFmd69e5s5c+aYq1ev+jVWd993f+W2sePAGGM2bdpkWrduba5du1ZnfX/mFQAAX7MZY4yPBscBAAAAAAAALR73YAMAAAAAAAA8QIENAAAAAAAA8AAFNgAAAAAAAMADFNgAAAAAAAAAD1BgAwAAAAAAADxAgQ0AAAAAAADwAAU2AAAAAAAAwAMU2AAAAAAAAAAPUGADAAAAAAAAPECBDQAAAAAAAPAABTYAAAAAAADAAxTYAAAAAAAAAA/8P5Uu3xVw4n4SAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNgAAAJbCAYAAAA2QikwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACXl0lEQVR4nOzdf1zV9f3///sR5GAlmL/4UYjosjD8UeAUjHQtcVhOU5OySBPdGP0QeLslop/UmkznjEzBLIxcqWypq22UUkvSpFKC5ttcuXco5kAGm2C/QPH1/cOvJ47ngMABDj9u18vlddl5Pc/j9Xw9X6/ZeXIe5/l6Pk2GYRgCAAAAAAAA0CzdnN0AAAAAAAAAoCMjwQYAAAAAAAA4gAQbAAAAAAAA4AASbAAAAAAAAIADSLABAAAAAAAADiDBBgAAAAAAADiABBsAAAAAAADgABJsAAAAAAAAgANIsAEAAAAAAAAOIMEGtJFly5bJZDKpvLy8wbivv/5aq1at0ogRI+Th4aGePXtq8ODBmjlzpnJzcy1xe/fulclksmwuLi7y8vLSvffeq6NHj1rijh8/bhXXvXt39enTR6NGjVJCQoKOHDnSatcMAGj/0tLSlJmZ2axjBw4cqLvvvrtlGwQA6HAc6Usa69L3n9dee+2KsXPmzNHAgQNbtT3A5UiwAe1IbW2tIiIi9Otf/1ozZszQH//4R7322mtKSEhQZWWl9u3bZ3PMypUrlZeXp3fffVdPPPGEcnJyNHbsWJ06dcoq7rHHHlNeXp5yc3P1+9//XlOnTtUbb7yhESNG6Le//W1bXSIAoJ1piy9FAIDOrb31JUuXLtWuXbuc3Qx0Ma7ObgCA77333ns6cOCANm/erIcffthSPnHiRD366KO6cOGCzTE33HCDxowZI0m6/fbb1atXL8XExCgzM1PJycmWuAEDBljiJGnSpElKTEzUtGnT9Ktf/UpBQUGKjIxsxasDAAAAgNY3ePBgZzcBXRAj2IA2dvr0ad1///3y9PSUl5eX5s6dq8rKSklSRUWFJMnHx8fusd26Xfk/2UtJtBMnTlwxtkePHsrIyFD37t0ZxQYAncylqQkKCgo0bdo0eXh4yNPTUw8++KD+/e9/S7r4iOeRI0eUm5trmUqgOY/U7Nq1S8OHD5e7u7sGDRqkdevWtfDVAACcoS36kkvTDTS2Lzl37pySk5Pl6+srDw8P3Xnnnfrss8+sYnhEFM5Agg1oY9OnT9eQIUO0Y8cOLVq0SFu3blVCQoIkKSQkRN27d9eCBQv06quvqqSkpMn1//Of/5Qk9evXr1Hxvr6+Cg4O1oEDB3T+/Pkmnw8A0L7dc889+sEPfqDXXntNy5Yt05/+9CdNnDhR586d065duzRo0CDdcsstysvLU15eXpMfqSksLFR8fLwSEhK0a9cuhYWFacGCBVqzZk0rXREAoK21p75k8eLFOnHihF588UVt2rRJx44d0+TJk1VbW9tSlws0C4+IAm0sJiZGv/zlLyVJd955p/75z39q8+bNysjI0MCBA7Vx40YtWLBADz74oKSLo9kmTJigefPmKTw83Ka+Cxcu6Pz58zp37pwOHTqk//mf/5GLi4uioqIa3SZ/f3998MEH+s9//qP+/fu3zIUCANqFadOmafXq1ZKkiIgIeXl56YEHHtAf/vAHPfDAA+rRo4c8PDysphFoin/9618qKCjQiBEjJEmRkZEqKyvTU089pbi4OF111VUtdi0AAOdoT33J0KFD9corr1j2XVxcNHPmTB08eLDZ5wdaAiPYgDb205/+1Gp/+PDh+u6771RWViZJmjt3rr788ktt3bpVjz/+uPz8/PTKK69o3Lhxdh/jjIqKUvfu3XXVVVfp9ttvV21trV577TUNHz680W0yDMOxiwIAtFsPPPCA1f7MmTPl6uqqd999t0Xqv/nmmy1fiC6ZNWuWqqqq9PHHH7fIOQAAztWe+hJ736ekxk2RA7QmRrABbaxPnz5W+2azWZL07bffWso8PT11//336/7775ckHTlyRHfeeaeSk5M1f/589erVyxK7atUq3XHHHXJxcVHfvn3l5+fX5DadOHFCZrNZvXv3bsYVAQDaM29vb6t9V1dX9enTxzLvZ0vXX7espc4BAHCu9tSXNOb7FOAMjGADOoCbb75Z9913n86dO6fPP//c6r1BgwYpJCREt9xyS7OSa6dOnVJ+fr5uu+02ubqScweAzqa0tNRq//z586qoqLD5gtJS9dcta6lzAACci74EuDISbEA7UlFRoZqaGrvv/eMf/5B0cVGClvLtt99q3rx5On/+vH71q1+1WL0AgPbj1Vdftdr/wx/+oPPnz2v8+PGSLv7y78iv/keOHNEnn3xiVbZ161b17NlTt956a7PrBQC0H/QlwJUxXAVoR959910tWLBADzzwgMLCwtSnTx+VlZVp27Zteuutt/TQQw/p+uuvb1bdxcXF+uCDD3ThwgVVVlaqoKBAmzdv1okTJ/S73/1OERERLXw1AID2YOfOnXJ1ddWECRN05MgRLV26VCNGjNDMmTMlScOGDdP27duVlZWlQYMGyd3dXcOGDWt0/b6+vvrpT3+qZcuWycfHR6+88opycnK0atUqFjgAgE6CvgS4MhJsQDsyZswYzZ07V++++65+//vfq7y8XD169NDQoUP13HPP6Re/+EWz637uuef03HPPycXFRR4eHho0aJAmT56s+fPna+jQoS14FQCA9mTnzp1atmyZ0tPTZTKZNHnyZKWmpsrNzU2StHz5cpWUlGj+/Pk6e/as/P39dfz48UbXP3LkSD388MN68skndezYMfn6+mrt2rVKSEhopSsCALQ1+hLgykwGywcCAAB0OsuWLdPy5cv173//W3379nV2cwAAHVBb9CUDBw5UUFCQ/vKXv7RK/UBbYQ42AAAAAAAAwAE8IgoAAAArtbW1aughB5PJJBcXlzZsEQCgo6EvQVfDI6IAAACwMnDgQJ04caLe98eNG6e9e/e2XYMAAB0OfQm6GkawAQAAwMqf//xnVVdX1/t+z54927A1AICOiL4EXQ0j2AAAAAAAAAAHsMgBAAAAAAAA4AAeEa3jwoUL+te//qWePXvKZDI5uzkA0OEZhqGzZ8/K19dX3brxm45EXwMALY2+xhr9DAC0rMb2MyTY6vjXv/4lPz8/ZzcDADqdkydP6vrrr3d2M9oF+hoAaB30NRfRzwBA67hSP0OCrY5LkyyePHlSHh4eTm4NAHR8VVVV8vPzYxLbOuhrAKBl0ddYo58BgJbV2H6GBFsdl4ZQe3h40BkBQAviEZXv0dcAQOugr7mIfgYAWseV+hkmKQAAAAAAAAAcQIINAAAAAAAAcAAJNgAAAAAAAMABJNgAAAAAAAAAB5BgAwAAAAAAABxAgg0AAAAAAABwAAk2AAAAAAAAwAEk2AAAAAAAAAAHkGADAAAAAAAAHODq7Aag/YvJPGh5nTFnVLNjAABOsjXq+9ezspzXDgBAx0MfAgCNwgg2AAAAAAAAwAGMYIPTMOoNAAAAAAB0BoxgAwAAAAAAABzACDYAALoS5tIBAAAAWlyzRrClpaUpICBA7u7uCg4O1r59+xqMz83NVXBwsNzd3TVo0CBt3LjRJmbHjh0aOnSozGazhg4dql27dlm9n56eruHDh8vDw0MeHh4KDQ3Vm2++aRVjGIaWLVsmX19f9ejRQ+PHj9eRI0eac4kAAAAAAABAozQ5wZaVlaX4+HglJyeroKBA4eHhioyMVHFxsd34oqIiTZo0SeHh4SooKNDixYv1+OOPa8eOHZaYvLw8RUVFKTo6Wp988omio6M1c+ZMffjhh5aY66+/Xr/5zW906NAhHTp0SHfccYemTJlilUBbvXq11q5dq/Xr1+vgwYPy9vbWhAkTdPbs2aZeJgAAAAAAANAoTU6wrV27VjExMZo3b54CAwOVmpoqPz8/paen243fuHGjBgwYoNTUVAUGBmrevHmaO3eu1qxZY4lJTU3VhAkTlJSUpJtuuklJSUn68Y9/rNTUVEvM5MmTNWnSJA0ZMkRDhgzRr3/9a11zzTX64IMPJF0cvZaamqrk5GRNmzZNQUFBevnll/XNN99o69atTb1MAAAAAAAAoFGalGCrqalRfn6+IiIirMojIiJ04MABu8fk5eXZxE+cOFGHDh3SuXPnGoypr87a2lpt375dX3/9tUJDQyVdHClXWlpqVY/ZbNa4cePqrQcAAAAAAABwVJMWOSgvL1dtba28vLysyr28vFRaWmr3mNLSUrvx58+fV3l5uXx8fOqNubzOw4cPKzQ0VN99952uueYa7dq1S0OHDrWc59Jxl9dz4sQJu22rrq5WdXW1Zb+qqqq+SwcAAAAAAADsatYiByaTyWrfMAybsivFX17emDpvvPFGFRYW6oMPPtAvfvELzZ49W59++mmz25aSkiJPT0/L5ufnV+81AAAAAAAAAPY0KcHWt29fubi42IwsKysrsxk5dom3t7fdeFdXV/Xp06fBmMvrdHNz0w9+8AOFhIQoJSVFI0aM0LPPPmupQ1KT2paUlKTKykrLdvLkyYYuHwAAAAAAALDRpASbm5ubgoODlZOTY1Wek5OjsLAwu8eEhobaxO/Zs0chISHq3r17gzH11XmJYRiWRzwDAgLk7e1tVU9NTY1yc3PrrcdsNsvDw8Nqg+NiMg9aNgBAO7Y16vsNAAAAQLM1aQ42SUpMTFR0dLRCQkIUGhqqTZs2qbi4WLGxsZIujgo7deqUtmzZIkmKjY3V+vXrlZiYqPnz5ysvL08ZGRnatm2bpc4FCxbo9ttv16pVqzRlyhS9/vrrevvtt7V//35LzOLFixUZGSk/Pz+dPXtW27dv1969e/XWW29JuvhoaHx8vFauXKkbbrhBN9xwg1auXKmrrrpKs2bNcugmAQAAAAAAAPVpcoItKipKFRUVWrFihUpKShQUFKTs7Gz5+/tLkkpKSlRcXGyJDwgIUHZ2thISErRhwwb5+vpq3bp1mj59uiUmLCxM27dv15IlS7R06VINHjxYWVlZGj16tCXm9OnTio6OVklJiTw9PTV8+HC99dZbmjBhgiXmV7/6lb799lvFxcXpv//9r0aPHq09e/aoZ8+ezbo5AAAAAAAAwJU0a5GDuLg4HT9+XNXV1crPz9ftt99ueS8zM1N79+61ih83bpw+/vhjVVdXq6ioyDLara4ZM2boH//4h2pqanT06FFNmzbN6v2MjAzLOcvKyvT2229bJdeki6PYli1bppKSEn333XfKzc1VUFBQcy4RANDOpaWlKSAgQO7u7goODta+ffvqjS0pKdGsWbN04403qlu3boqPj7eJyczMlMlkstm+++67Zp8XAAAAQNfQrAQbAADOlJWVpfj4eCUnJ6ugoEDh4eGKjIy0GkFdV3V1tfr166fk5GSNGDGi3no9PDxUUlJitbm7uzf7vAAAAAC6BhJsAIAOZ+3atYqJidG8efMUGBio1NRU+fn5KT093W78wIED9eyzz+qhhx6Sp6dnvfWaTCZ5e3tbbY6c16lYwAAAAABoMyTYAAAdSk1NjfLz8xUREWFVHhERoQMHDjhU91dffSV/f39df/31uvvuu1VQUNAm5wUAAADQsTV5kQN0bDGZB632M+aMclJLAKB5ysvLVVtbKy8vL6tyLy8vlZaWNrvem266SZmZmRo2bJiqqqr07LPPauzYsfrkk090ww03NPu81dXVqq6utuxXVVU1u40AAAAA2idGsAEAOiSTyWS1bxiGTVlTjBkzRg8++KBGjBih8PBw/eEPf9CQIUP03HPPOXTelJQUeXp6WjY/P79mtxEAAABA+0SCDQDQofTt21cuLi42o8bKyspsRpc5olu3bho1apSOHTvm0HmTkpJUWVlp2U6ePNlibQQAAADQPpBgQ6uKyTxotQGAo9zc3BQcHKycnByr8pycHIWFhbXYeQzDUGFhoXx8fBw6r9lsloeHh9UGAAAAoHNhDjYAQIeTmJio6OhohYSEKDQ0VJs2bVJxcbFiY2MlXRw1durUKW3ZssVyTGFhoaSLCxn8+9//VmFhodzc3DR06FBJ0vLlyzVmzBjdcMMNqqqq0rp161RYWKgNGzY0+rwAAAAAuiYSbGiSuqPQWCABgLNERUWpoqJCK1asUElJiYKCgpSdnS1/f39JUklJiYqLi62OueWWWyyv8/PztXXrVvn7++v48eOSpDNnzuhnP/uZSktL5enpqVtuuUXvvfeefvjDHzb6vAAAAAC6JhJsAIAOKS4uTnFxcXbfy8zMtCkzDKPB+p555hk988wzDp0XAAAAQNdEgg3N1pw51ZiHDQAAAAAAdDYscgAAAAAAAAA4gAQbAAAAAAAA4AASbAAAAADQStLS0hQQECB3d3cFBwdr3759Dca/+uqrGjFihK666ir5+Pjo4YcfVkVFRRu1FgDQXCTY0K7FZB60bAAAAEBHkpWVpfj4eCUnJ6ugoEDh4eGKjIy0Wen6kv379+uhhx5STEyMjhw5oj/+8Y86ePCg5s2b18YtBwA0FQk2AAAAAGgFa9euVUxMjObNm6fAwEClpqbKz89P6enpduM/+OADDRw4UI8//rgCAgJ022236ec//7kOHTrUxi0HADQVCTYAAAAAaGE1NTXKz89XRESEVXlERIQOHDhg95iwsDB9+eWXys7OlmEYOn36tF577TXdddddbdFkAIADSLABAAAAQAsrLy9XbW2tvLy8rMq9vLxUWlpq95iwsDC9+uqrioqKkpubm7y9vdWrVy8999xz9Z6nurpaVVVVVhsAoO2RYAMAAACAVmIymaz2DcOwKbvk008/1eOPP67/9//+n/Lz8/XWW2+pqKhIsbGx9dafkpIiT09Py+bn59ei7QcANI6rsxuA9olFBQAAAIDm69u3r1xcXGxGq5WVldmMarskJSVFY8eO1S9/+UtJ0vDhw3X11VcrPDxcTz/9tHx8fGyOSUpKUmJiomW/qqqKJBsAOAEJNliQVAMAAABahpubm4KDg5WTk6N77rnHUp6Tk6MpU6bYPeabb76Rq6v1VzQXFxdJF0e+2WM2m2U2m1uo1QCA5iLB1onUTZBlzBnV5GOcqTltBwAAANqzxMRERUdHKyQkRKGhodq0aZOKi4stj3wmJSXp1KlT2rJliyRp8uTJmj9/vtLT0zVx4kSVlJQoPj5eP/zhD+Xr6+vMSwEAXAEJNgAAAABoBVFRUaqoqNCKFStUUlKioKAgZWdny9/fX5JUUlKi4uJiS/ycOXN09uxZrV+/Xv/zP/+jXr166Y477tCqVaucdQkAgEYiwQYAAAAArSQuLk5xcXF238vMzLQpe+yxx/TYY4+1cqsAAC2NVUQBAAAAAAAAB5BgAwAAAAAAABzQrARbWlqaAgIC5O7uruDgYO3bt6/B+NzcXAUHB8vd3V2DBg3Sxo0bbWJ27NihoUOHymw2a+jQodq1a5fV+ykpKRo1apR69uyp/v37a+rUqfrss8+sYubMmSOTyWS1jRkzpjmXCABA17I16vsNAAAAQJM0OcGWlZWl+Ph4JScnq6CgQOHh4YqMjLSanLOuoqIiTZo0SeHh4SooKNDixYv1+OOPa8eOHZaYvLw8RUVFKTo6Wp988omio6M1c+ZMffjhh5aY3NxcPfLII/rggw+Uk5Oj8+fPKyIiQl9//bXV+X7yk5+opKTEsmVnZzf1EgEAAAAAAIBGa/IiB2vXrlVMTIzmzZsnSUpNTdXu3buVnp6ulJQUm/iNGzdqwIABSk1NlSQFBgbq0KFDWrNmjaZPn26pY8KECUpKSpJ0cbnq3Nxcpaamatu2bZKkt956y6rel156Sf3791d+fr5uv/12S7nZbJa3t3dTL6tTi8k86OwmAAAAAAAAdFpNGsFWU1Oj/Px8RUREWJVHRETowIEDdo/Jy8uziZ84caIOHTqkc+fONRhTX52SVFlZKUnq3bu3VfnevXvVv39/DRkyRPPnz1dZWVnjLg4AAAAAAABohiaNYCsvL1dtba28vLysyr28vFRaWmr3mNLSUrvx58+fV3l5uXx8fOqNqa9OwzCUmJio2267TUFBQZbyyMhI3XvvvfL391dRUZGWLl2qO+64Q/n5+TKbzTb1VFdXq7q62rJfVVXV8A1Am2DEHQAAAAAA6Eia/IioJJlMJqt9wzBsyq4Uf3l5U+p89NFH9fe//1379++3Ko+K+n5i5qCgIIWEhMjf319//etfNW3aNJt6UlJStHz58nrbDQAAAAAAAFxJkx4R7du3r1xcXGxGlpWVldmMQLvE29vbbryrq6v69OnTYIy9Oh977DG98cYbevfdd3X99dc32F4fHx/5+/vr2LFjdt9PSkpSZWWlZTt58mSD9QEAAAAAAACXa1KCzc3NTcHBwcrJybEqz8nJUVhYmN1jQkNDbeL37NmjkJAQde/evcGYunUahqFHH31UO3fu1N/+9jcFBARcsb0VFRU6efKkfHx87L5vNpvl4eFhtQEAAAAAAABN0eRHRBMTExUdHa2QkBCFhoZq06ZNKi4uVmxsrKSLo8JOnTqlLVu2SJJiY2O1fv16JSYmav78+crLy1NGRoZldVBJWrBggW6//XatWrVKU6ZM0euvv663337b6hHQRx55RFu3btXrr7+unj17Wka8eXp6qkePHvrqq6+0bNkyTZ8+XT4+Pjp+/LgWL16svn376p577nHoJgEA0KVs/X7KBc3Kcl47AAAAgA6iSSPYpIvznKWmpmrFihUaOXKk3nvvPWVnZ8vf31+SVFJSouLiYkt8QECAsrOztXfvXo0cOVJPPfWU1q1bp+nTp1tiwsLCtH37dr300ksaPny4MjMzlZWVpdGjR1ti0tPTVVlZqfHjx8vHx8eyZWVd/MPfxcVFhw8f1pQpUzRkyBDNnj1bQ4YMUV5ennr27NnsG9RRxWQetGwA0BmlpaUpICBA7u7uCg4O1r59++qNLSkp0axZs3TjjTeqW7duio+Pt4l54YUXFB4ermuvvVbXXnut7rzzTn300UdWMcuWLZPJZLLavL29W/rSAAAAAHQwzVrkIC4uTnFxcXbfy8zMtCkbN26cPv744wbrnDFjhmbMmFHv+5cWRqhPjx49tHv37gZjAACdQ1ZWluLj45WWlqaxY8fq+eefV2RkpD799FMNGDDAJr66ulr9+vVTcnKynnnmGbt17t27V/fff7/CwsLk7u6u1atXKyIiQkeOHNF1111nibv55pv19ttvW/ZdXFxa/gIBAAAAdCjNSrABAOBMa9euVUxMjObNmydJSk1N1e7du5Wenq6UlBSb+IEDB+rZZ5+VJG3evNluna+++qrV/gsvvKDXXntN77zzjh566CFLuaurK6PWAABdE1MIAEC9SLABADqUmpoa5efna9GiRVblEREROnDgQIud55tvvtG5c+fUu3dvq/Jjx47J19dXZrNZo0eP1sqVKzVo0KB666murlZ1dbVlv6qqqsXaaKPuFx8AAAAAbYYEG9q1x04vqbPXiEeA+VUN6PTKy8tVW1srLy8vq3IvLy/LAjgtYdGiRbruuut05513WspGjx6tLVu2aMiQITp9+rSefvpphYWF6ciRI+rTp4/delJSUrR8+fIWaxcAAACA9ocEG9AYJO6AdsdkMlntG4ZhU9Zcq1ev1rZt27R37165u7tbyiMjIy2vhw0bptDQUA0ePFgvv/yyEhMT7daVlJRk9V5VVZX8/PxapJ0AAAAA2gcSbACADqVv375ycXGxGa1WVlZmM6qtOdasWaOVK1fq7bff1vDhwxuMvfrqqzVs2DAdO3as3hiz2Syz2exwuwAAAAC0X92c3QAAAJrCzc1NwcHBysnJsSrPyclRWFiYQ3X/9re/1VNPPaW33npLISEhV4yvrq7W0aNH5ePj49B5AQAAAHRsjGBD18Qjn0CHlpiYqOjoaIWEhCg0NFSbNm1ScXGxYmNjJV18LPPUqVPasmWL5ZjCwkJJ0ldffaV///vfKiwslJubm4YOHSrp4mOhS5cu1datWzVw4EDLCLlrrrlG11xzjSRp4cKFmjx5sgYMGKCysjI9/fTTqqqq0uzZs9vw6gEAAAC0NyTYAAAdTlRUlCoqKrRixQqVlJQoKChI2dnZ8vf3lySVlJSouLjY6phbbrnF8jo/P19bt26Vv7+/jh8/LklKS0tTTU2NZsyYYXXck08+qWXLlkmSvvzyS91///0qLy9Xv379NGbMGH3wwQeW8wIAAADomkiwAQA6pLi4OMXFxdl9LzMz06bMMIwG67uUaGvI9u3bG9M0AAAAAF0MCTZ0GDGZBy2vM+aMuvIBdR8DlXgUFAAAAAAAtAoSbAAAoH7MWQkAAABcEauIAgAAAAAAAA5gBFsHV/exyY7msdNLLK+f83q6ReosPHnG8nqkX68WqRMAAAAAAKAhjGADAAAAAAAAHECCDQAAAAAAAHAACTYAAAAAAADAASTYAAAAAAAAAAewyAE6pLqLO2TMGeXElgAAAAAAgK6OBFsH1JFXDm0vrFYbdVorAAAAAABAZ0CCDWgpW6Os92dlOacdAAAAAACgTTEHGwAAAAAAAOAARrChw6v7yOxjTmwHAAAAAADomkiwoeu4/BFOAAAAAACAFkCCDQAANE7dHyqYZxIAAACwIMHWjtV99DFjzigntqSTq29kG18eAQAAAABAI5BgQ4f32Oklzm4CAAAAAADowlhFFC3isdNLLBsAoOMpPHnGsgEAWk5aWpoCAgLk7u6u4OBg7du3r8H46upqJScny9/fX2azWYMHD9bmzZvbqLUAgOZqVoKtqZ1Ebm6ugoOD5e7urkGDBmnjxo02MTt27NDQoUNlNps1dOhQ7dq1y+r9lJQUjRo1Sj179lT//v01depUffbZZ1YxhmFo2bJl8vX1VY8ePTR+/HgdOXKkOZcIAECnR1INAFpXVlaW4uPjlZycrIKCAoWHhysyMlLFxcX1HjNz5ky98847ysjI0GeffaZt27bppptuasNWAwCao8mPiF7qJNLS0jR27Fg9//zzioyM1KeffqoBAwbYxBcVFWnSpEmaP3++XnnlFb3//vuKi4tTv379NH36dElSXl6eoqKi9NRTT+mee+7Rrl27NHPmTO3fv1+jR4+WdDFJ98gjj2jUqFE6f/68kpOTFRERoU8//VRXX321JGn16tVau3atMjMzNWTIED399NOaMGGCPvvsM/Xs2dOR++R0dedjQ/MeC22VL5CsTAoAAIB6rF27VjExMZo3b54kKTU1Vbt371Z6erpSUlJs4t966y3l5ubqiy++UO/evSVJAwcObMsmAwCaqckj2Op2EoGBgUpNTZWfn5/S09Ptxm/cuFEDBgxQamqqAgMDNW/ePM2dO1dr1qyxxKSmpmrChAlKSkrSTTfdpKSkJP34xz9WamqqJeatt97SnDlzdPPNN2vEiBF66aWXVFxcrPz8fEkXR6+lpqYqOTlZ06ZNU1BQkF5++WV988032rp1a1MvE2gbW6O+3wCgnWBkGwA4rqamRvn5+YqIiLAqj4iI0IEDB+we88YbbygkJESrV6/WddddpyFDhmjhwoX69ttv26LJAAAHNGkE26VOYtGiRVblDXUSeXl5Np3KxIkTlZGRoXPnzql79+7Ky8tTQkKCTUzdBNvlKisrJcnyy05RUZFKS0utzmU2mzVu3DgdOHBAP//5z23qqK6uVnV1tWW/qqqq3vOh7bTUPG6t9sWQZBiADoykGQC0jfLyctXW1srLy8uq3MvLS6WlpXaP+eKLL7R//365u7tr165dKi8vV1xcnP7zn//UOw8b32kAoH1oUoKtOZ1EaWmp3fjz58+rvLxcPj4+9cbUV6dhGEpMTNRtt92moKAgy3kuHXd5PSdOnLBbT0pKipYvX17P1aItsTgCAAAAOiOTyWS1bxiGTdklFy5ckMlk0quvvipPT09JF58gmjFjhjZs2KAePXrYHMN3GgBoH5q1yEFTOon64i8vb0qdjz76qP7+979r27ZtDrUtKSlJlZWVlu3kyZP1XgMAAAAANFbfvn3l4uJiM2igrKzMZlDAJT4+PrruuussyTVJCgwMlGEY+vLLL+0ew3caAGgfmjSCrTmdhLe3t914V1dX9enTp8EYe3U+9thjeuONN/Tee+/p+uuvtzqPdHEkm4+PT6PaZjabZTab67tcAAC6vPoeKR3Zpq0AgI7Hzc1NwcHBysnJ0T333GMpz8nJ0ZQpU+weM3bsWP3xj3/UV199pWuuuUaS9Pnnn6tbt25W333q4jsNALQPTRrBVreTqCsnJ0dhYWF2jwkNDbWJ37Nnj0JCQtS9e/cGY+rWaRiGHn30Ue3cuVN/+9vfFBAQYBUfEBAgb29vq3pqamqUm5tbb9sAAB1XWlqaAgIC5O7uruDgYO3bt6/e2JKSEs2aNUs33nijunXrpvj4eLtxO3bs0NChQ2U2mzV06FDt2rXLofMCALq2xMREvfjii9q8ebOOHj2qhIQEFRcXKzY2VtLF0WcPPfSQJX7WrFnq06ePHn74YX366ad677339Mtf/lJz5861+3goAKD9aPIjok3tJGJjY3XixAklJibq6NGj2rx5szIyMrRw4UJLzIIFC7Rnzx6tWrVK//jHP7Rq1Sq9/fbbVl+AHnnkEb3yyivaunWrevbsqdLSUpWWllpW1DGZTIqPj9fKlSu1a9cu/e///q/mzJmjq666SrNmzWru/QEAtENZWVmKj49XcnKyCgoKFB4ersjISBUXF9uNr66uVr9+/ZScnKwRI0bYjcnLy1NUVJSio6P1ySefKDo6WjNnztSHH37Y7PMCALq2qKgopaamasWKFRo5cqTee+89ZWdny9/fX9LFH4Dq9iHXXHONcnJydObMGYWEhOiBBx7Q5MmTtW7dOmddAgCgkUzGpQnRmiAtLU2rV69WSUmJgoKC9Mwzz+j222+XJM2ZM0fHjx/X3r17LfG5ublKSEjQkSNH5OvrqyeeeMKSkLvktdde05IlS/TFF19o8ODB+vWvf61p06Z939B65lF76aWXNGfOHEkXR7ktX75czz//vP773/9q9OjR2rBhg2UhhCupqqqSp6enKisr5eHh0YQ70jpiMg86uwmNVneRgue8nm7yMc400q9X61Q8K+vKMXVXJG1MPNDBtNbn6ujRo3XrrbcqPT3dUhYYGKipU6cqJSWlwWPHjx+vkSNH2qxUHRUVpaqqKr355puWsp/85Ce69tprLXN+OnLeS1q1r2nEKscttYroyCd2t0g9AOCo9vY3vLO1+P2or2/hb1cAXURjP1ebNAfbJXFxcYqLi7P7XmZmpk3ZuHHj9PHHHzdY54wZMzRjxox6329MHtBkMmnZsmVatmzZFWMBAB1TTU2N8vPztWjRIqvyiIgIHThwoNn15uXlKSEhwaps4sSJlkRcc89bXV2t6upqy35VVVWz2wgAAACgfWpWgg0AAGcpLy9XbW2tzQI2Xl5eNgvmNEVpaWmDdTb3vCkpKVq+fHmz29VeXT7KOmPOKCe1BAAAAHA+Emxocc15XBQAmuryqQMMw6h3OoGWrLOp501KSlJiYqJlv6qqSn5+fg61EwAAAED7QoINaAvMtQa0mL59+8rFxcVm1FhZWZnN6LKm8Pb2brDO5p7XbDbLbDY3u10AAAAA2r8mryIKAIAzubm5KTg4WDk5OVblOTk5CgsLa3a9oaGhNnXu2bPHUmdrnRcAAABAx8cINnR5dVfUq29F0cbEAGg7iYmJio6OVkhIiEJDQ7Vp0yYVFxdbVqhOSkrSqVOntGXLFssxhYWFkqSvvvpK//73v1VYWCg3NzcNHTpUkrRgwQLdfvvtWrVqlaZMmaLXX39db7/9tvbv39/o8wIAAADomkiwAe0Fj5ECjRYVFaWKigqtWLFCJSUlCgoKUnZ2tvz9/SVJJSUlKi4utjrmlltusbzOz8/X1q1b5e/vr+PHj0uSwsLCtH37di1ZskRLly7V4MGDlZWVpdGjRzf6vO1V3R8JWkvdRQ9Y8AAAAABdDQk2AECHFBcXp7i4OLvvZWZm2pQZhnHFOmfMmKEZM2Y0+7xdSd0FbSQWtQEAAEDXRoINaC11R6QBAAAAAIBOiwQb2tTlIx4AAAAAAAA6OhJsaJK6CTIeB3KCxs7TxnxuAAAAAAC0mW7ObgAAAAAAAADQkTGCDQAAtChWFAUAAEBXQ4INrYo51wAAAAAAQGdHgg1X1JWSZIUnz1hej/Tr5bR2AAAAAACAjoMEGwAAaDU8LgoAAICugAQb0NbqrvAJAAAAAAA6PFYRBQAAAAAAABxAgg0AAAAAAABwAAk2AAAAAAAAwAHMwdbO1J0MGgCA5qq7KjIAAACA1kWCDQAAOOyx00ssr5/zetqJLQEAAADaHgk2oB6M/gAAAAAAAI1Bgg0AgI5qa5SzWwAAAABAJNiA9o8v0AA6ibrzjGbMGeXElgAAHFb3b9RZWc5rBwC0E6wiCgAAAAAAADiAEWxAZ1HfSDd+XQQAAAAAoFU1awRbWlqaAgIC5O7uruDgYO3bt6/B+NzcXAUHB8vd3V2DBg3Sxo0bbWJ27NihoUOHymw2a+jQodq1a5fV+++9954mT54sX19fmUwm/elPf7KpY86cOTKZTFbbmDFjmnOJQJMVnjxjtTlka9T3GwAAAAAAaNeanGDLyspSfHy8kpOTVVBQoPDwcEVGRqq4uNhufFFRkSZNmqTw8HAVFBRo8eLFevzxx7Vjxw5LTF5enqKiohQdHa1PPvlE0dHRmjlzpj788ENLzNdff60RI0Zo/fr1DbbvJz/5iUpKSixbdnZ2Uy8RjfTY6SWWrStpsSQaAAAAAADoFJr8iOjatWsVExOjefPmSZJSU1O1e/dupaenKyUlxSZ+48aNGjBggFJTUyVJgYGBOnTokNasWaPp06db6pgwYYKSkpIkSUlJScrNzVVqaqq2bdsmSYqMjFRkZOQV22c2m+Xt7d3UywIAAAAAAACapUkj2GpqapSfn6+IiAir8oiICB04cMDuMXl5eTbxEydO1KFDh3Tu3LkGY+qrsyF79+5V//79NWTIEM2fP19lZWX1xlZXV6uqqspqAwAAAAAAAJqiSSPYysvLVVtbKy8vL6tyLy8vlZaW2j2mtLTUbvz58+dVXl4uHx+femPqq7M+kZGRuvfee+Xv76+ioiItXbpUd9xxh/Lz82U2m23iU1JStHz58iadA6jLqY+JMj8bAAAAAADtQrMWOTCZTFb7hmHYlF0p/vLyptZpT1RUlO666y4FBQVp8uTJevPNN/X555/rr3/9q934pKQkVVZWWraTJ0826XydTVedUw1iUQV0SC294M748eNtFsoxmUy66667LDHLli2zeZ9pCWw1pj+JyTxo2QAAAICOrkkj2Pr27SsXFxebkWVlZWU2I9Au8fb2thvv6uqqPn36NBhTX52N5ePjI39/fx07dszu+2az2e7INgBA+3ZpwZ20tDSNHTtWzz//vCIjI/Xpp59qwIABNvGXFtyZP3++XnnlFb3//vuKi4tTv379LPOB7ty5UzU1NZZjKioqNGLECN17771Wdd188816++23LfsuLi6tdJUAAAAAOoomjWBzc3NTcHCwcnJyrMpzcnIUFhZm95jQ0FCb+D179igkJETdu3dvMKa+OhuroqJCJ0+elI+Pj0P1AADal7oL7gQGBio1NVV+fn5KT0+3G193wZ3AwEDNmzdPc+fO1Zo1aywxvXv3lre3t2XLycnRVVddZZNgc3V1tYrr169fq14rAAAAgPavyauIJiYmKjo6WiEhIQoNDdWmTZtUXFys2NhYSRcfuzx16pS2bNkiSYqNjdX69euVmJio+fPnKy8vTxkZGZbVQSVpwYIFuv3227Vq1SpNmTJFr7/+ut5++23t37/fEvPVV1/pn//8p2W/qKhIhYWF6t27twYMGKCvvvpKy5Yt0/Tp0+Xj46Pjx49r8eLF6tu3r+65555m36DWxqMxANA0lxbcWbRokVV5cxbcycjI0Llz5yw/+NSVkZGh++67T1dffbVV+bFjx+Tr6yuz2azRo0dr5cqVGjRokINXBQAAAKAja3KCLSoqShUVFVqxYoVKSkoUFBSk7Oxs+fv7S5JKSkpUXFxsiQ8ICFB2drYSEhK0YcMG+fr6at26dZZHciQpLCxM27dv15IlS7R06VINHjxYWVlZGj16tCXm0KFD+tGPfmTZT0xMlCTNnj1bmZmZcnFx0eHDh7VlyxadOXNGPj4++tGPfqSsrCz17Nmz6XcGANAutdaCO3V99NFH+t///V9lZGRYlY8ePVpbtmzRkCFDdPr0aT399NMKCwvTkSNHLNMeXK66ulrV1dWWfVasBgAAADqfJifYJCkuLk5xcXF238vMzLQpGzdunD7++OMG65wxY4ZmzJhR7/vjx4+3LI5gT48ePbR79+4GzwEA6DxaY8GdSzIyMhQUFKQf/vCHVuWRkZGW18OGDVNoaKgGDx6sl19+2fLDz+VYsRoAAADo/Jq1iigAAM7SWgvuXPLNN99o+/btmjdv3hXbcvXVV2vYsGH1LqYjsWI1AAAA0BWQYAMAdCitteDOJX/4wx9UXV2tBx988Iptqa6u1tGjRxtcTMdsNsvDw8NqAwB0HWlpaQoICJC7u7uCg4O1b9++Rh33/vvvy9XVVSNHjmzdBgIAWgQJNqAr2Rr1/QZ0YImJiXrxxRe1efNmHT16VAkJCTYL7jz00EOW+NjYWJ04cUKJiYk6evSoNm/erIyMDC1cuNCm7oyMDE2dOtXunGoLFy5Ubm6uioqK9OGHH2rGjBmqqqrS7NmzW+9iAQAdVlZWluLj45WcnKyCggKFh4crMjLSas5qeyorK/XQQw/pxz/+cRu1FADgqGbNwQbHsHIoADimNRbckaTPP/9c+/fv1549e+ye98svv9T999+v8vJy9evXT2PGjNEHH3xgOS+ap26/mDFnlBNbAgAta+3atYqJibFMO5Camqrdu3crPT1dKSkp9R7385//XLNmzZKLi4v+9Kc/tVFrAQCOIMEGAOiQWmPBnSFDhjS4oM727dub1EYAQNdVU1Oj/Px8LVq0yKo8IiJCBw4cqPe4l156Sf/3f/+nV155RU8//XRrNxMA0EJIsMGux04vcXYTAABNVHjyjLObAAD4/5WXl6u2ttZmAR4vLy+bhXcuOXbsmBYtWqR9+/bJ1bVxX9Wqq6tVXV1t2a+qqmp+owEAzcYcbAAAAADQSkwmk9W+YRg2ZZJUW1urWbNmafny5RoyZEij609JSZGnp6dl8/Pzc7jNAICmI8EGAAAAAC2sb9++cnFxsRmtVlZWZjOqTZLOnj2rQ4cO6dFHH5Wrq6tcXV21YsUKffLJJ3J1ddXf/vY3u+dJSkpSZWWlZTt58mSrXA8AoGE8IgoAAAAALczNzU3BwcHKycnRPffcYynPycnRlClTbOI9PDx0+PBhq7K0tDT97W9/02uvvaaAgAC75zGbzTKbzS3beABAk5FgA9pA3XmRRvr1clo7AKCt1Z3T8zkvJusG0LUkJiYqOjpaISEhCg0N1aZNm1RcXKzY2FhJF0efnTp1Slu2bFG3bt0UFBRkdXz//v3l7u5uUw4AaH9IsHUxly9ewJcdAEB7EpN50PI6Y84oJ7YEABwXFRWliooKrVixQiUlJQoKClJ2drb8/f0lSSUlJSouLnZyKwEALYEEG9BKOsVqfluj6n9vVlbbtQMAAKCDiouLU1xcnN33MjMzGzx22bJlWrZsWcs3CgDQ4kiwAQAAAAC+19CPrAAAu1hFFAAAAAAAAHAACTYAAAAAAADAASTYAAAAAAAAAAeQYAMAAAAAAAAcwCIHgBPVXWl0pF8vp7UDANrCY6eXWF4/5/W0E1sCAGiOev92rbsoAivNA+iiSLB1cXW/7ABNwh9SAAAAAABIIsEGdF31Lb/OsuwA2omYzIOW1xlzRjmxJQAAAEDDmIMNAAAAAAAAcAAj2AAAQJtjPjYAAAB0JiTYgDZWd3JYAAAAAADQ8fGIKAAAAAAAAOAARrABAAAAAJqk7lMZI/16Oa0dANBeMIINAAAAAAAAcECzEmxpaWkKCAiQu7u7goODtW/fvgbjc3NzFRwcLHd3dw0aNEgbN260idmxY4eGDh0qs9msoUOHateuXVbvv/fee5o8ebJ8fX1lMpn0pz/9yaYOwzC0bNky+fr6qkePHho/fryOHDnSnEsEAAAAADRC4ckzlg0AuqomJ9iysrIUHx+v5ORkFRQUKDw8XJGRkSouLrYbX1RUpEmTJik8PFwFBQVavHixHn/8ce3YscMSk5eXp6ioKEVHR+uTTz5RdHS0Zs6cqQ8//NAS8/XXX2vEiBFav359vW1bvXq11q5dq/Xr1+vgwYPy9vbWhAkTdPbs2aZeJgAAAACgiWIyD1o2AOhKmjwH29q1axUTE6N58+ZJklJTU7V7926lp6crJSXFJn7jxo0aMGCAUlNTJUmBgYE6dOiQ1qxZo+nTp1vqmDBhgpKSkiRJSUlJys3NVWpqqrZt2yZJioyMVGRkZL3tMgxDqampSk5O1rRp0yRJL7/8sry8vLR161b9/Oc/b+qlAmisrVHfv56V5bx2AOi0Lv+iljFnlJNaAgAAANhq0gi2mpoa5efnKyIiwqo8IiJCBw4csHtMXl6eTfzEiRN16NAhnTt3rsGY+uq0p6ioSKWlpVb1mM1mjRs3rkn1AADQUdR9JIfHcgAArYF+BgAap0kJtvLyctXW1srLy8uq3MvLS6WlpXaPKS0ttRt//vx5lZeXNxhTX531nefScY2tp7q6WlVVVVYbAKBjaOn5QDMzM2UymWy27777zqHzAgAAAOj8mrXIgclksto3DMOm7Erxl5c3tc6WaFtKSoo8PT0tm5+fX5PPBwBoe60xH6gkeXh4qKSkxGpzd3dv9nkBAAAAdA1NSrD17dtXLi4uNiPCysrKbEaOXeLt7W033tXVVX369Gkwpr466zuPpCbVk5SUpMrKSst28uTJRp+vqZjsEwBaTt35QAMDA5Wamio/Pz+lp6fbja87H2hgYKDmzZunuXPnas2aNVZxJpNJ3t7eVpsj5wUAAADQNTQpwebm5qbg4GDl5ORYlefk5CgsLMzuMaGhoTbxe/bsUUhIiLp3795gTH112hMQECBvb2+rempqapSbm1tvPWazWR4eHlZbZ/TY6SWWDQA6utaaD1SSvvrqK/n7++v666/X3XffrYKCAofOKzEdAQAAANAVNHkV0cTEREVHRyskJEShoaHatGmTiouLFRsbK+niqLBTp05py5YtkqTY2FitX79eiYmJmj9/vvLy8pSRkWFZHVSSFixYoNtvv12rVq3SlClT9Prrr+vtt9/W/v37LTFfffWV/vnPf1r2i4qKVFhYqN69e2vAgAEymUyKj4/XypUrdcMNN+iGG27QypUrddVVV2nWrFnNvkEAgPalNeYD9fHx0U033aTMzEwNGzZMVVVVevbZZzV27Fh98sknuuGGG5p1XunidATLly9v5tUCANBx1X16h9WfAXR2TU6wRUVFqaKiQitWrFBJSYmCgoKUnZ0tf39/SVJJSYnVXDQBAQHKzs5WQkKCNmzYIF9fX61bt07Tp0+3xISFhWn79u1asmSJli5dqsGDBysrK0ujR4+2xBw6dEg/+tGPLPuJiYmSpNmzZyszM1OS9Ktf/Urffvut4uLi9N///lejR4/Wnj171LNnz6ZeJgCgnWvp+UDHjBmjMWPGWN4fO3asbr31Vj333HNat25ds8+blJRk6bMkqaqqijk/AQAAgE6myQk2SYqLi1NcXJzd9y4lu+oaN26cPv744wbrnDFjhmbMmFHv++PHj7d8GaqPyWTSsmXLtGzZsgbjAAAdV2vNB3q5bt26adSoUTp27FizzytdnI7AbDZf8brQNIyKAAAAQHvSrAQb2j/mW+t4Ck+esVs+0q9Xm7YDaO/qzgd6zz33WMpzcnI0ZcoUu8eEhobqz3/+s1XZ5fOBXs4wDBUWFmrYsGHNPi8AAACAroEEG4DWszXq+9ezspzXDnQ6rTEf6PLlyzVmzBjdcMMNqqqq0rp161RYWKgNGzY0+rwAAMA+Rh4D6OxIsAEAOpzWmA/0zJkz+tnPfqbS0lJ5enrqlltu0Xvvvacf/vCHjT4vAABdXd0naZ7zetqJLQGAtkWCDUDLqjtqDWhFLT0f6DPPPKNnnnnGofMCAAAA6Jq6ObsBAAAAAAAAQEfGCDYAAOBUPE4EAACAjo4EG9CB1F1plNVFAeAiJs4GAACAs5FgA+BcrDQKAADQpdT9YUTixxEAnQMJNqCdqztqDQAAAAAAtD8k2DqRunPYAAAAAAAAoG2QYAPQNngUFAAAAADQSZFg6+AYtQYAwPdY8AAAAADOQIIN6IRYbRRAR1X3h6PnvJ52YksAAACAxiPBBgAAAABocY390YTRxwA6g27ObgCA5ik8ecZq63S2Rn2/AeiSHju9xLIBQEeVlpamgIAAubu7Kzg4WPv27as3dufOnZowYYL69esnDw8PhYaGavfu3W3YWgBAc5FgAwAAAIBWkJWVpfj4eCUnJ6ugoEDh4eGKjIxUcXGx3fj33ntPEyZMUHZ2tvLz8/WjH/1IkydPVkFBQRu3HADQVDwiCqDjYUVSAADQAaxdu1YxMTGaN2+eJCk1NVW7d+9Wenq6UlJSbOJTU1Ot9leuXKnXX39df/7zn3XLLbe0RZMBAM1Egg3oJDrlY6IAAAAdVE1NjfLz87Vo0SKr8oiICB04cKBRdVy4cEFnz55V7969642prq5WdXW1Zb+qqqp5DW4nmI8NQEdFgg1A+8c8bECXd/k8bI1ZYZQvaQCcqby8XLW1tfLy8rIq9/LyUmlpaaPq+N3vfqevv/5aM2fOrDcmJSVFy5cvd6itAADHkWBrRXX/sAfQxniMFAAAtAMmk8lq3zAMmzJ7tm3bpmXLlun1119X//79641LSkpSYmKiZb+qqkp+fn7NbzAAoFlIsAEA0JEwohMAOoS+ffvKxcXFZrRaWVmZzai2y2VlZSkmJkZ//OMfdeeddzYYazabZTabHW4vAMAxrCIKAAAAAC3Mzc1NwcHBysnJsSrPyclRWFhYvcdt27ZNc+bM0datW3XXXXe1djPbtZjMg5YNANo7RrABAIAOp+6cbI2Zjw0AnCExMVHR0dEKCQlRaGioNm3apOLiYsXGxkq6+HjnqVOntGXLFkkXk2sPPfSQnn32WY0ZM8Yy+q1Hjx7y9PR02nUAAK6MBBuAtscjbgDaGAseAHCGqKgoVVRUaMWKFSopKVFQUJCys7Pl7+8vSSopKVFxcbEl/vnnn9f58+f1yCOP6JFHHrGUz549W5mZmW3d/BbFDyMAOjsSbB3Q5SupAQAAAGif4uLiFBcXZ/e9y5Nme/fubf0GAQBaBQk2oJMrPHnG8nqkXy+ntQMAAAAAgM6KBBsAAAAAoF3jUX8A7V2zVhFNS0tTQECA3N3dFRwcrH379jUYn5ubq+DgYLm7u2vQoEHauHGjTcyOHTs0dOhQmc1mDR06VLt27WryeefMmSOTyWS1jRkzpjmXCKCj2Br1/QYAAAAAgBM0OcGWlZWl+Ph4JScnq6CgQOHh4YqMjLSanLOuoqIiTZo0SeHh4SooKNDixYv1+OOPa8eOHZaYvLw8RUVFKTo6Wp988omio6M1c+ZMffjhh00+709+8hOVlJRYtuzs7KZeIoCOqr5kG0m4Tqmlf+x54YUXFB4ermuvvVbXXnut7rzzTn300UdWMcuWLbP5Icfb27vFrw1N89jpJZYNAAAAcIYmJ9jWrl2rmJgYzZs3T4GBgUpNTZWfn5/S09Ptxm/cuFEDBgxQamqqAgMDNW/ePM2dO1dr1qyxxKSmpmrChAlKSkrSTTfdpKSkJP34xz9Wampqk89rNpvl7e1t2Xr37t3USwQ6rcKTZyxbu0QiDI3UGj/27N27V/fff7/effdd5eXlacCAAYqIiNCpU6es6rr55putfsg5fPhwq14rWl5M5kHLBgAAALSEJiXYampqlJ+fr4iICKvyiIgIHThwwO4xeXl5NvETJ07UoUOHdO7cuQZjLtXZlPPu3btX/fv315AhQzR//nyVlZXVez3V1dWqqqqy2gB0ciTxOoXW+LHn1VdfVVxcnEaOHKmbbrpJL7zwgi5cuKB33nnHqi5XV1erH3L69evXqtcKAAAAoP1r0iIH5eXlqq2tlZeXl1W5l5eXSktL7R5TWlpqN/78+fMqLy+Xj49PvTGX6mzseSMjI3XvvffK399fRUVFWrp0qe644w7l5+fLbDbbtC0lJUXLly9v/A0AADjdpR9dFi1aZFXenB97MjIydO7cOXXv3t3mmG+++Ubnzp2zGQl97Ngx+fr6ymw2a/To0Vq5cqUGDRrk4FUBANB1XP5I/3NeTzfpeBY8ANAeNWsVUZPJZLVvGIZN2ZXiLy9vTJ1XiomK+n5ESlBQkEJCQuTv76+//vWvmjZtmk27kpKSlJiYaNmvqqqSn59fvdcBdFZ1Hxkd6dfLae0AGqO1fuy53KJFi3TdddfpzjvvtJSNHj1aW7Zs0ZAhQ3T69Gk9/fTTCgsL05EjR9SnTx+7566urlZ1dbVln9HS7Qtf0gAAANASmpRg69u3r1xcXGy+wJSVldl8cbnE29vbbryrq6vly0h9MZfqbM55JcnHx0f+/v46duyY3ffNZrPdkW3tERM3A+1E3UdLZ2U5rx1olR97Llm9erW2bdumvXv3yt3d3VIeGRlpeT1s2DCFhoZq8ODBevnll61+sKmrpUdLt9s5FAEAAIAurElzsLm5uSk4OFg5OTlW5Tk5OQoLC7N7TGhoqE38nj17FBISYnkkp76YS3U257ySVFFRoZMnT9odmdARsCoaANhqrR97LlmzZo1WrlypPXv2aPjw4Q225eqrr9awYcPq/SFHujhaurKy0rKdPHmywToBAOhqHPnew8I1ANqLJq8impiYqBdffFGbN2/W0aNHlZCQoOLiYsXGxkq6+EXioYcessTHxsbqxIkTSkxM1NGjR7V582ZlZGRo4cKFlpgFCxZoz549WrVqlf7xj39o1apVevvttxUfH9/o83711VdauHCh8vLydPz4ce3du1eTJ09W3759dc899zT3/gAA2pnW+rFHkn7729/qqaee0ltvvaWQkJArtqW6ulpHjx5t8Iccs9ksDw8Pqw0AAABA59LkOdiioqJUUVGhFStWqKSkREFBQcrOzpa/v78kqaSkRMXFxZb4gIAAZWdnKyEhQRs2bJCvr6/WrVun6dOnW2LCwsK0fft2LVmyREuXLtXgwYOVlZWl0aNHN/q8Li4uOnz4sLZs2aIzZ87Ix8dHP/rRj5SVlaWePXs2+wYB6CJ49LNDSUxMVHR0tEJCQhQaGqpNmzbZ/Nhz6tQpbdmyRdLFH3vWr1+vxMREzZ8/X3l5ecrIyNC2bdssda5evVpLly7V1q1bNXDgQMuIt2uuuUbXXHONJGnhwoWaPHmyBgwYoLKyMj399NOqqqrS7Nmz2/gOoDUwHxsAAACay2RcmoQGqqqqkqenpyorK1tkhIGjw5R5NBStqe5iBixycJmGEmwk4pqkpT9X60pLS9Pq1astP7o888wzuv322yVJc+bMsYxmviQ3N1cJCQk6cuSIfH199cQTT1gScpI0cOBAnThxwuY8Tz75pJYtWyZJuu+++/Tee++pvLxc/fr105gxY/TUU09p6NChjW63o/ekcNXEJh/TVTV1Vbq6SLABHUdr9jUdUYvcjzp/7zhz7k8+xwG0B439XG3WKqKoH8/+A0DbiIuLU1xcnN33MjMzbcrGjRunjz/+uN76jh8/fsVzbt++vbHNAwAAANCFkGADuqj6fo1kNFsLYJQb0OFd/oMZIyEAAADQEBJsAAAAAIBOhXk1AbQ1EmwAcLm6I9AkRqEBHVTduUwdmccHAAAAuBISbADqxeOiAAAAAABcGQk2ALiSy0e0AehyeNQIANpeS41EZl5NAG2BBBuARrl8UQRGtAHoSHhcFAAAAK2JBBsAtCZWFAUAAB1MfavNOxM/lABo70iwAWgW5mcD0FXxuCgAdGx8jgNoDSTY2pm6v8wAaOcYnQZ0SC05CoIvaQAAAJBIsAFAy2jMQggk5AAAAACgUyLBBgAAAADoMBiJDKA9IsEGwGGNmQiXedoacPnoN0dGtzFKDmiS+qZmYAJtAAAANAUJNidjzjUANup73JSEGdCuMQoCANoeo9kAtBck2AAAAFoYX9IAAAC6FhJsAOAMjVkUoaFjGM0GAABghdFsAJyJBBsAdEQk24BW1dAUDk390saXNADo2PgcB9AYJNicgHnXgO/VXSCBhRAAdASOjJDgSxoAtI2WHM0GAI1Bgg1AmyCRBgAAgI6OH0oA1IcEWxth1BoAAKiLL2kA0DYu/y7WUiPa+BwHUBcJNgBtru5oNrSA5iyYAKBdqfslTeKLGgAAQEdDgg1Au8QjpQA6gvpGqLN6HQC0X60xP9vlP5TUxec40DWQYAPQbjCyDUBn0ZJf3ur70sYXNgBwXFsshsCPJkDXQIINAACgFbXWlze+sAFAyyLZBsARJNgAdDj1jXTjUVIA7R3JNgDoGFprCoC6+OwGOhcSbK2IlUOBltHYR0eZt+0ydRc/mJXlvHYAsKs5fyc05osdj5QCQMfDZzfQ8XVrzkFpaWkKCAiQu7u7goODtW/fvgbjc3NzFRwcLHd3dw0aNEgbN260idmxY4eGDh0qs9msoUOHateuXU0+r2EYWrZsmXx9fdWjRw+NHz9eR44cac4lAuhECk+esWzoPNprXwS0lcdOL7FsjRGTebBRG4CW1Rr9FZyn7mdvfVtL4rMa6DiaPIItKytL8fHxSktL09ixY/X8888rMjJSn376qQYMGGATX1RUpEmTJmn+/Pl65ZVX9P777ysuLk79+vXT9OnTJUl5eXmKiorSU089pXvuuUe7du3SzJkztX//fo0ePbrR5129erXWrl2rzMxMDRkyRE8//bQmTJigzz77TD179nTkPgHoJBjl1jm0574IaE2N+eLm6GOojfnixogKoHFao79C+9fQZ3VbrFpaF5/XQNsxGYZhNOWA0aNH69Zbb1V6erqlLDAwUFOnTlVKSopN/BNPPKE33nhDR48etZTFxsbqk08+UV5eniQpKipKVVVVevPNNy0xP/nJT3Tttddq27ZtjTqvYRjy9fVVfHy8nnjiCUlSdXW1vLy8tGrVKv385z+/4rVVVVXJ09NTlZWV8vDwaMptsShcNbFZxwFov1oqEefU5J6THhFtic9Ve9prX9QYjt4T+hm0hrpf+Fp7km++7KGltVZf0xJao7+6Er7TdC6ttdhCY/B5DVzU2M/VJo1gq6mpUX5+vhYtWmRVHhERoQMHDtg9Ji8vTxEREVZlEydOVEZGhs6dO6fu3bsrLy9PCQkJNjGpqamNPm9RUZFKS0utzmU2mzVu3DgdOHDAboKturpa1dXVlv3KykpJF29ec3313flmHwugfdp/rNxu+fDrPO2W//1U5RXrrPrmnENtajIHPtccO+3F8zbxt5wGtee+yJ6W7mvoZ9AaHj7x/b/rr+opr+v5/t8n4X5eZv/LX92YuqLT3216Ax2w4YHgNj0f2l5r9DUtobX6q8vxnaZzq+9zuLHq+yxujNb6vOZzGR1NY/uZJiXYysvLVVtbKy8vL6tyLy8vlZaW2j2mtLTUbvz58+dVXl4uHx+femMu1dmY8176X3sxJ06csNu2lJQULV++3Kbcz8/PbjwAdFjzbecSa0tnz56Vp6f9hGRTtee+yB76GnROf7O8eqURMc70SpyzW4C20pJ9TUtorf7qcvQzaFj7+Cyui89ldFRX6meatYqoyWSy2jcMw6bsSvGXlzemzpaKuSQpKUmJiYmW/QsXLug///mP+vTpY/eYqqoq+fn56eTJk+1u+Hlb4158j3vxPe7F97gXFxmGobNnz8rX17fF627PfVFdTe1rGsK/K/u4L7a4J/ZxX2x1hnvSmn1NS2iN/qqu5vQzneH/97bAfWoc7lPjcJ8ar73dq8b2M01KsPXt21cuLi42v7iUlZXZ/NJyibe3t914V1dX9enTp8GYS3U25rze3t6SLv7qU/eXnYbaZjabZTabrcp69eplN7YuDw+PdvF/cnvAvfge9+J73IvvcS/U4qMJ2nNfZE9z+5qG8O/KPu6LLe6JfdwXWx39nrSnkWuXtFZ/dTlH+pmO/v97W+E+NQ73qXG4T43Xnu5VY/qZbk2p0M3NTcHBwcrJybEqz8nJUVhYmN1jQkNDbeL37NmjkJAQyxwC9cVcqrMx5w0ICJC3t7dVTE1NjXJzc+ttGwCg42nPfREAAJe0Vn8FAGinjCbavn270b17dyMjI8P49NNPjfj4eOPqq682jh8/bhiGYSxatMiIjo62xH/xxRfGVVddZSQkJBiffvqpkZGRYXTv3t147bXXLDHvv/++4eLiYvzmN78xjh49avzmN78xXF1djQ8++KDR5zUMw/jNb35jeHp6Gjt37jQOHz5s3H///YaPj49RVVXV1Mu0q7Ky0pBkVFZWtkh9HRn34nvci+9xL77HvWhd7bkvak38u7KP+2KLe2If98UW96R1tUZ/1RL4/71xuE+Nw31qHO5T43XUe9XkBJthGMaGDRsMf39/w83Nzbj11luN3Nxcy3uzZ882xo0bZxW/d+9e45ZbbjHc3NyMgQMHGunp6TZ1/vGPfzRuvPFGo3v37sZNN91k7Nixo0nnNQzDuHDhgvHkk08a3t7ehtlsNm6//Xbj8OHDzblEu7777jvjySefNL777rsWq7Oj4l58j3vxPe7F97gXra+99kWtiX9X9nFfbHFP7OO+2OKetL7W6K8cxf/vjcN9ahzuU+Nwnxqvo94rk2G0s/WsAQAAAAAAgA6kSXOwAQAAAAAAALBGgg0AAAAAAABwAAk2AAAAAAAAwAEk2AAAAAAAAAAHkGBrpLS0NAUEBMjd3V3BwcHat2+fs5vU4lJSUjRq1Cj17NlT/fv319SpU/XZZ59ZxRiGoWXLlsnX11c9evTQ+PHjdeTIEauY6upqPfbYY+rbt6+uvvpq/fSnP9WXX37ZlpfSolJSUmQymRQfH28p62r34dSpU3rwwQfVp08fXXXVVRo5cqTy8/Mt73eV+3H+/HktWbJEAQEB6tGjhwYNGqQVK1bowoULlpiuci/Q9rpCP9SQ9957T5MnT5avr69MJpP+9Kc/Wb3fmP/2OpuW6rc7m/T0dA0fPlweHh7y8PBQaGio3nzzTcv7XfGeXK65f9ug8+jqfcqVLFu2TCaTyWrz9vZ2drOcjr64ca50n+bMmWPz72vMmDHOaawTdca/Y0iwNUJWVpbi4+OVnJysgoIChYeHKzIyUsXFxc5uWovKzc3VI488og8++EA5OTk6f/68IiIi9PXXX1tiVq9erbVr12r9+vU6ePCgvL29NWHCBJ09e9YSEx8fr127dmn79u3av3+/vvrqK919992qra11xmU55ODBg9q0aZOGDx9uVd6V7sN///tfjR07Vt27d9ebb76pTz/9VL/73e/Uq1cvS0xXuR+rVq3Sxo0btX79eh09elSrV6/Wb3/7Wz333HOWmK5yL9C2uko/1JCvv/5aI0aM0Pr16+2+35j/9jqbluq3O5vrr79ev/nNb3To0CEdOnRId9xxh6ZMmWL5g7wr3pO6HPnbBp0DfUrj3HzzzSopKbFshw8fdnaTnI6+uHGudJ8k6Sc/+YnVv6/s7Ow2bGH70Cn/jjFwRT/84Q+N2NhYq7KbbrrJWLRokZNa1DbKysoMSUZubq5hGIZx4cIFw9vb2/jNb35jifnuu+8MT09PY+PGjYZhGMaZM2eM7t27G9u3b7fEnDp1yujWrZvx1ltvte0FOOjs2bPGDTfcYOTk5Bjjxo0zFixYYBhG17sPTzzxhHHbbbfV+35Xuh933XWXMXfuXKuyadOmGQ8++KBhGF3rXqBtddV+qD6SjF27dln2G/PfXlfQnH67q7j22muNF198scvfE0f+tkHnQZ9yZU8++aQxYsQIZzejXaMvbpzL75NhGMbs2bONKVOmOKU97Vln+DuGEWxXUFNTo/z8fEVERFiVR0RE6MCBA05qVduorKyUJPXu3VuSVFRUpNLSUqt7YTabNW7cOMu9yM/P17lz56xifH19FRQU1OHu1yOPPKK77rpLd955p1V5V7sPb7zxhkJCQnTvvfeqf//+uuWWW/TCCy9Y3u9K9+O2227TO++8o88//1yS9Mknn2j//v2aNGmSpK51L9B2unI/1FiN+W+vK2hOv93Z1dbWavv27fr6668VGhra5e+JI3/boHOgT2m8Y8eOydfXVwEBAbrvvvv0xRdfOLtJ7RqfI02zd+9e9e/fX0OGDNH8+fNVVlbm7CY5XWf4O8bV2Q1o78rLy1VbWysvLy+rci8vL5WWljqpVa3PMAwlJibqtttuU1BQkCRZrtfevThx4oQlxs3NTddee61NTEe6X9u3b9fHH3+sgwcP2rzXle6DJH3xxRdKT09XYmKiFi9erI8++kiPP/64zGazHnrooS51P5544glVVlbqpptukouLi2pra/XrX/9a999/v6Su928DbaOr9kNN0Zj/9jq75vbbndXhw4cVGhqq7777Ttdcc4127dqloUOHWv4g74r3xNG/bdA50Kc0zujRo7VlyxYNGTJEp0+f1tNPP62wsDAdOXJEffr0cXbz2iU+RxovMjJS9957r/z9/VVUVKSlS5fqjjvuUH5+vsxms7Ob5xSd5e8YEmyNZDKZrPYNw7Ap60weffRR/f3vf9f+/ftt3mvOvehI9+vkyZNasGCB9uzZI3d393rjOvt9uOTChQsKCQnRypUrJUm33HKLjhw5ovT0dD300EOWuK5wP7KysvTKK69o69atuvnmm1VYWKj4+Hj5+vpq9uzZlriucC/Q9rpaP9QcXfketXS/3dHdeOONKiws1JkzZ7Rjxw7Nnj1bubm5lve72j1pzb9t0DHx/3XDIiMjLa+HDRum0NBQDR48WC+//LISExOd2LL2j39bVxYVFWV5HRQUpJCQEPn7++uvf/2rpk2b5sSWOU9n+TuGR0SvoG/fvnJxcbH5RaesrMwmk9pZPPbYY3rjjTf07rvv6vrrr7eUX1o5p6F74e3trZqaGv33v/+tN6a9y8/PV1lZmYKDg+Xq6ipXV1fl5uZq3bp1cnV1tVxHZ78Pl/j4+Gjo0KFWZYGBgZaJcLvKvwtJ+uUvf6lFixbpvvvu07BhwxQdHa2EhASlpKRI6lr3Am2nK/ZDTdWY//Y6M0f67c7Kzc1NP/jBDxQSEqKUlBSNGDFCzz77bJe9Jy3xtw06B/qU5rn66qs1bNgwHTt2zNlNabe66udrS/Dx8ZG/v3+X/ffVmf6OIcF2BW5ubgoODlZOTo5VeU5OjsLCwpzUqtZhGIYeffRR7dy5U3/7298UEBBg9X5AQIC8vb2t7kVNTY1yc3Mt9yI4OFjdu3e3iikpKdH//u//dpj79eMf/1iHDx9WYWGhZQsJCdEDDzygwsJCDRo0qEvch0vGjh1rs1zy559/Ln9/f0ld59+FJH3zzTfq1s36Y9PFxUUXLlyQ1LXuBdpOV+qHmqsx/+11Ri3Rb3cVhmGourq6y96TlvjbBp0DfUrzVFdX6+jRo/Lx8XF2U9qtrvr52hIqKip08uTJLvfvq1P+HdN26yl0XNu3bze6d+9uZGRkGJ9++qkRHx9vXH311cbx48ed3bQW9Ytf/MLw9PQ09u7da5SUlFi2b775xhLzm9/8xvD09DR27txpHD582Lj//vsNHx8fo6qqyhITGxtrXH/99cbbb79tfPzxx8Ydd9xhjBgxwjh//rwzLqtF1F1pyzC61n346KOPDFdXV+PXv/61cezYMePVV181rrrqKuOVV16xxHSV+zF79mzjuuuuM/7yl78YRUVFxs6dO42+ffsav/rVrywxXeVeoG11lX6oIWfPnjUKCgqMgoICQ5Kxdu1ao6CgwDhx4oRhGI37b6+zaal+u7NJSkoy3nvvPaOoqMj4+9//bixevNjo1q2bsWfPHsMwuuY9sac5f9ugc6BPubL/+Z//Mfbu3Wt88cUXxgcffGDcfffdRs+ePbv8PaIvbpyG7tPZs2eN//mf/zEOHDhgFBUVGe+++64RGhpqXHfddV3uPnXGv2NIsDXShg0bDH9/f8PNzc249dZbLUvHdiaS7G4vvfSSJebChQvGk08+aXh7extms9m4/fbbjcOHD1vV8+233xqPPvqo0bt3b6NHjx7G3XffbRQXF7fx1bSsy/8I7Wr34c9//rMRFBRkmM1m46abbjI2bdpk9X5XuR9VVVXGggULjAEDBhju7u7GoEGDjOTkZKO6utoS01XuBdpeV+iHGvLuu+/a7aNmz55tGEbj/tvrbFqq3+5s5s6da/lvpV+/fsaPf/xjS3LNMLrmPbGnOX/boPPo6n3KlURFRRk+Pj5G9+7dDV9fX2PatGnGkSNHnN0sp6MvbpyG7tM333xjREREGP369TO6d+9uDBgwwJg9e3aX/C7QGf+OMRmGYbTuGDkAAAAAAACg82IONgAAAAAAAMABJNgAAAAAAAAAB5BgAwAAAAAAABxAgg0AAAAAAABwAAk2AAAAAAAAwAEk2AAAAAAAAAAHkGADAAAAAAAAHECCDWgnli1bJpPJpPLy8ivGDhw4UHPmzLHsf/7551q4cKGCg4PVq1cv9e7dW2PHjtVrr73W5Hbs3btXJpOpWccCADqHrVu3KjU11dnNAAAA6DBIsAEd0K5du7R06VLL/p49e/TXv/5V06dP1x//+Ee9+uqruuGGG3TvvfdqxYoVTmwpAKAjIsEGAADQNK7ObgCAprvlllus9u+77z498sgjMplMlrLIyEiVl5dr1apVeuKJJ2Q2m9u6mQAAAAAAdAmMYAMc8Kc//Ukmk0nvvPOOzXvp6ekymUz6+9//Lkn68MMPNXnyZPXp00fu7u4aPHiw4uPjbY47ffq07r//fnl6esrLy0tz585VZWWlVczlj4j27dvXKrl2yQ9/+EN98803+s9//tPka/vuu++UmJgob29v9ejRQ+PGjVNBQUGT6wGAru7SFAB///vfde+998rT01O9e/dWYmKizp8/r88++0w/+clP1LNnTw0cOFCrV6+2HJuZmSmTyaTjx49b1Xnpcf69e/c2uh2X6srJydHDDz+s3r176+qrr9bkyZP1xRdfWOLGjx+vv/71rzpx4oRMJpNla6yCggLdfffd6t+/v8xms3x9fXXXXXfpyy+/lCQdP35cJpNJmZmZNseaTCYtW7bMsu/IvQMAAGhLJNgAB1z6AvHSSy/ZvJeZmalbb71Vw4cP1+7duxUeHq7i4mKtXbtWb775ppYsWaLTp0/bHDd9+nQNGTJEO3bs0KJFi7R161YlJCQ0q33vvvuu+vXrp/79+zf52MWLF+uLL77Qiy++qBdffFH/+te/NH78eKsvYQCAxps5c6ZGjBihHTt2aP78+XrmmWeUkJCgqVOn6q677tKuXbt0xx136IknntDOnTtbrR0xMTHq1q2b5THQjz76SOPHj9eZM2ckSWlpaRo7dqy8vb2Vl5dn2Rrj66+/1oQJE3T69Glt2LBBOTk5Sk1N1YABA3T27Nlmt7m93DsAAID68Igo4ABXV1c9+OCDSk9PV2VlpTw9PSVJR48e1UcffaTnnntOkvTII49owIAB+vDDD+Xu7m45/uGHH7apMyYmRr/85S8lSXfeeaf++c9/avPmzcrIyGjSCIIXX3xRe/fu1bPPPisXF5cmX1u/fv20a9cuyzlvu+023XDDDUpJSdELL7zQ5PoAoKv72c9+psTEREkXP9/37Nmj9evXa+fOnbrnnnskXRw99pe//EWvvvqqpk2b1irtCAkJUUZGhmX/5ptv1tixY7VhwwYlJydr6NCh6tWrl8xms8aMGdOkuv/xj3+ooqJCGRkZmjJliqV85syZDrW5vdw7AACA+jCCDXDQ3Llz9e233yorK8tS9tJLL8lsNmvWrFn6/PPP9X//93+KiYmxSq7V56c//anV/vDhw/Xdd9+prKys0W1688039cgjj2jGjBl67LHHGn8xdcyaNcsqoefv76+wsDC9++67zaoPALq6u+++22o/MDBQJpNJkZGRljJXV1f94Ac/0IkTJ1qtHQ888IDVflhYmPz9/Vvk8/0HP/iBrr32Wj3xxBPauHGjPv30U4frlNrPvQMAAKgPCTbAQTfffLNGjRpleUy0trZWr7zyiqZMmaLevXvr3//+tyTp+uuvb1R9ffr0sdq/tDjBt99+26jjd+/erWnTpmnChAl69dVXmzTqrS5vb2+7ZRUVFc2qDwC6ut69e1vtu7m56aqrrrL58cXNzU3fffddq7WjNT/fPT09lZubq5EjR2rx4sW6+eab5evrqyeffFLnzp1rdr3t5d4BAADUhwQb0AIefvhhffDBBzp69KjeeustlZSUWB7/7NevnyRZJnduTbt379bUqVM1btw47dixQ25ubs2uq7S01G7Z5QlAAEDruZRAqq6utiovLy9vdp2t/fk+bNgwbd++XRUVFSosLFRUVJRWrFih3/3ud5LqvyZ+wAEAAB0ZCTagBdx///1yd3dXZmamMjMzdd111ykiIkKSNGTIEA0ePFibN2+2+TLRkvbs2aOpU6fqtttu05/+9CfLyLfm2rZtmwzDsOyfOHFCBw4c0Pjx4x1sKQCgsQYOHChJlhWpL3njjTeaXeerr75qtX/gwAGdOHHC6vPdbDY3euR0fUwmk0aMGKFnnnlGvXr10scffyxJ8vLykru7u801vf766w6dDwAAwJlY5ABoAb169dI999yjzMxMnTlzRgsXLlS3bt/nrzds2KDJkydrzJgxSkhI0IABA1RcXKzdu3fbfNFpjv3792vq1Kny9vbW4sWLVVhYaPX+0KFD5eHh0aQ6y8rKdM8992j+/PmqrKzUk08+KXd3dyUlJTncXgBA44waNUo33nijFi5cqPPnz+vaa6/Vrl27tH///mbXeejQIc2bN0/33nuvTp48qeTkZF133XWKi4uzxAwbNkw7d+5Uenq6goOD1a1bN4WEhFyx7r/85S9KS0vT1KlTNWjQIBmGoZ07d+rMmTOaMGGCpIuJtwcffFCbN2/W4MGDNWLECH300UfaunVrs68JAADA2UiwAS3k4Ycf1rZt2yRJc+bMsXpv4sSJeu+997RixQo9/vjj+u6773T99dfbLGjQXG+//ba+/fZbHT9+XHfccYfN+++++26TR56tXLlSBw8e1MMPP6yqqir98Ic/1Pbt2zV48OAWaTMA4MpcXFz05z//WY8++qhiY2NlNpt13333af369brrrruaVWdGRoZ+//vf67777lN1dbV+9KMf6dlnn7Wa52zBggU6cuSIFi9erMrKShmGYTWquT433HCDevXqpdWrV+tf//qX3NzcdOONNyozM1OzZ8+2xF16XHT16tX66quvdMcdd+gvf/mLZcQeAABAR2MyGvPXEgAAADq0zMxMPfzwwzp48GCjRqMBAACg8ZiDDQAAAAAAAHAAj4gCXYRhGKqtrW0wxsXFRSaTqY1aBABoCY39fHdUbW1tg4+JmkymFjkPAABAR8QINqCLyM3NVffu3RvcXn75ZWc3EwDQRC+//PIVP99zc3M1Z84cGYbR7MdDf/zjHzd4DuboBAAAXRlzsAFdxNmzZ/XZZ581GBMQEKA+ffq0UYsAAC2hoqJCRUVFDcbceOON6tmzp0Pn+eyzz3T27Nl63zebzRo2bJhD5wAAAOioSLABAAAAAAAADuARUQAAAAAAAMABLHJQx4ULF/Svf/1LPXv2ZKJ3AGgBhmHo7Nmz8vX1Vbdu/KYj0dcAQEujrwEAtAck2Or417/+JT8/P2c3AwA6nZMnT+r66693djPaBfoaAGgd9DUAAGciwVbHpcl/T548KQ8PDye3BgA6vqqqKvn5+Tk8uXpnQl8DAC2LvgYA0B6QYKvj0qM6Hh4efOkBgBbEo5Dfo68BgNZBXwMAcCYmKQAAAAAAAAAcQIINAAAAAAAAcAAJNgAAAAAAAMABJNgAAAAAAAAAB5BgAwAAAAAAABxAgg0AAAAAAABwAAk2AAAAAAAAwAEk2AAAAAAAAAAHkGADAAAAAAAAHODq7AbAWkzmQcvrjDmjnNgSAECnsTXq+9ezspzXDgAAAKCTYgQbAKDTSktLU0BAgNzd3RUcHKx9+/Y1GJ+bm6vg4GC5u7tr0KBB2rhxY72x27dvl8lk0tSpU1u41QAAAAA6GhJsAIBOKSsrS/Hx8UpOTlZBQYHCw8MVGRmp4uJiu/FFRUWaNGmSwsPDVVBQoMWLF+vxxx/Xjh07bGJPnDihhQsXKjw8vLUvAwAAAEAHQIINANAprV27VjExMZo3b54CAwOVmpoqPz8/paen243fuHGjBgwYoNTUVAUGBmrevHmaO3eu1qxZYxVXW1urBx54QMuXL9egQYPa4lIAAAAAtHMk2AAAnU5NTY3y8/MVERFhVR4REaEDBw7YPSYvL88mfuLEiTp06JDOnTtnKVuxYoX69eunmJiYlm94W9ga9f0GAAAAoEWwyAEAoNMpLy9XbW2tvLy8rMq9vLxUWlpq95jS0lK78efPn1d5ebl8fHz0/vvvKyMjQ4WFhY1uS3V1taqrqy37VVVVjb8QAAAAAB0CCTYnq7tqKACgZZlMJqt9wzBsyq4Uf6n87NmzevDBB/XCCy+ob9++jW5DSkqKli9f3oRWAwAAAOhoSLABADqdvn37ysXFxWa0WllZmc0otUu8vb3txru6uqpPnz46cuSIjh8/rsmTJ1vev3DhgiTJ1dVVn332mQYPHmxTb1JSkhITEy37VVVV8vPza/a1AQAAAGh/SLC1Y3VHt2XMGeXElgBAx+Lm5qbg4GDl5OTonnvusZTn5ORoypQpdo8JDQ3Vn//8Z6uyPXv2KCQkRN27d9dNN92kw4cPW72/ZMkSnT17Vs8++2y9STOz2Syz2ezgFQEAAABoz0iwAQA6pcTEREVHRyskJEShoaHatGmTiouLFRsbK+niyLJTp05py5YtkqTY2FitX79eiYmJmj9/vvLy8pSRkaFt27ZJktzd3RUUFGR1jl69ekmSTTkAAACAroUEGwCgU4qKilJFRYVWrFihkpISBQUFKTs7W/7+/pKkkpISFRcXW+IDAgKUnZ2thIQEbdiwQb6+vlq3bp2mT5/urEsAAAAA0EGYjEszOENVVVXy9PRUZWWlPDw82uScjV3kgEdEAXREzvhcbe+cck+2Rtkvn5XVNucHgFZEXwMAaA8YwQYAQFdVN/FGsg0AAABotm7ObgAAAAAAAADQkZFgAwAAAAAAABxAgg0AAAAAAABwAAk2AAAAAAAAwAEscgAAQGdU38qhAAAAAFocI9gAAAAAAAAAB5BgAwAAAAAAABxAgg0AAAAAAABwAAk2AAAAAAAAwAEsctBBxGQetLzOmDPKiS0BAAAAAABAXYxgAwAAAAAAABzg1ARbWlqaAgIC5O7uruDgYO3bt6/B+NzcXAUHB8vd3V2DBg3Sxo0bbWJSU1N14403qkePHvLz81NCQoK+++671roEAAAAAAAAdHFOS7BlZWUpPj5eycnJKigoUHh4uCIjI1VcXGw3vqioSJMmTVJ4eLgKCgq0ePFiPf7449qxY4cl5tVXX9WiRYv05JNP6ujRo8rIyFBWVpaSkpLa6rIAAAAAAADQxThtDra1a9cqJiZG8+bNk3Rx5Nnu3buVnp6ulJQUm/iNGzdqwIABSk1NlSQFBgbq0KFDWrNmjaZPny5JysvL09ixYzVr1ixJ0sCBA3X//ffro48+apuLAgAAAAAAQJfjlBFsNTU1ys/PV0REhFV5RESEDhw4YPeYvLw8m/iJEyfq0KFDOnfunCTptttuU35+viWh9sUXXyg7O1t33XVXK1wFAAAAAAAA4KQRbOXl5aqtrZWXl5dVuZeXl0pLS+0eU1paajf+/PnzKi8vl4+Pj+677z79+9//1m233SbDMHT+/Hn94he/0KJFi+zWWV1drerqast+VVWVg1cGAAAAAACArsapixyYTCarfcMwbMquFF+3fO/evfr1r3+ttLQ0ffzxx9q5c6f+8pe/6KmnnrJbX0pKijw9PS2bn5+fI5cDAAAAAACALsgpI9j69u0rFxcXm9FqZWVlNqPULvH29rYb7+rqqj59+kiSli5dqujoaMu8bsOGDdPXX3+tn/3sZ0pOTla3btb5xKSkJCUmJlr2q6qqSLIBAAAAAACgSZwygs3NzU3BwcHKycmxKs/JyVFYWJjdY0JDQ23i9+zZo5CQEHXv3l2S9M0339gk0VxcXGQYhmW0W11ms1keHh5WGwAAAAAAANAUTntENDExUS+++KI2b96so0ePKiEhQcXFxYqNjZV0cXTZQw89ZImPjY3ViRMnlJiYqKNHj2rz5s3KyMjQwoULLTGTJ09Wenq6tm/frqKiIuXk5Gjp0qX66U9/KhcXlza/RgAAAAAAAHR+TnlEVJKioqJUUVGhFStWqKSkREFBQcrOzpa/v78kqaSkRMXFxZb4gIAAZWdnKyEhQRs2bJCvr6/WrVun6dOnW2KWLFkik8mkJUuW6NSpU+rXr58mT56sX//6121+fQAAAAAAAOgaTIa9Zye7qKqqKnl6eqqysrJVHxeNyTzo0PEZc0a1UEsAoHW11edqR9Jm92RrVNPiZ2W1TjsAoJXR1wAA2gOnriIKAAAAAAAAdHQk2AAAAAAAAAAHkGADAAAAAAAAHECCDQAAAAAAAHAACTYAAAAAAADAASTYAAAAAAAAAAe4OrsBaLqYzIOW1xlzRjmxJQAAAAAAACDBBgAApK1R37+eleW8dgAAAAAdEI+IAgAAAAAAAA4gwQYAAAAAAAA4gAQbAAAAAAAA4AASbAAAAAAAAIADSLABAAAAAAAADiDBBgAAAAAAADiABBsAAAAAAADgAFdnNwAAALQzW6O+fz0ry3ntAAAAADoIRrABAAAAAAAADiDBBgAAAAAAADiABBsAAAAAAADgAOZgAwCgs6g7dxoAAACANsMINgAAAAAAAMABJNgAAAAAAAAAB5BgAwAAAAAAABxAgg0A0GmlpaUpICBA7u7uCg4O1r59+xqMz83NVXBwsNzd3TVo0CBt3LjR6v2dO3cqJCREvXr10tVXX62RI0fq97//fWteAgAAAIAOgAQbAKBTysrKUnx8vJKTk1VQUKDw8HBFRkaquLjYbnxRUZEmTZqk8PBwFRQUaPHixXr88ce1Y8cOS0zv3r2VnJysvLw8/f3vf9fDDz+shx9+WLt3726rywIAAADQDpkMwzCc3Yj2oqqqSp6enqqsrJSHh0ernScm82Cr1JsxZ1Sr1AsAzdVWn6v2jB49WrfeeqvS09MtZYGBgZo6dapSUlJs4p944gm98cYbOnr0qKUsNjZWn3zyifLy8uo9z6233qq77rpLTz31VKPa1ar3pDVWEZ2V1fJ1AkALcmZfAwDAJYxgAwB0OjU1NcrPz1dERIRVeUREhA4cOGD3mLy8PJv4iRMn6tChQzp37pxNvGEYeuedd/TZZ5/p9ttvb7nGAwAAAOhwXJ3dAAAAWlp5eblqa2vl5eVlVe7l5aXS0lK7x5SWltqNP3/+vMrLy+Xj4yNJqqys1HXXXafq6mq5uLgoLS1NEyZMqLct1dXVqq6utuxXVVU197IAAAAAtFMk2AAAnZbJZLLaNwzDpuxK8ZeX9+zZU4WFhfrqq6/0zjvvKDExUYMGDdL48ePt1pmSkqLly5c38wragbqPnfK4KAAAAGAXCTYAQKfTt29fubi42IxWKysrsxmldom3t7fdeFdXV/Xp08dS1q1bN/3gBz+QJI0cOVJHjx5VSkpKvQm2pKQkJSYmWvarqqrk5+fXnMsCAAAA0E4xBxsAoNNxc3NTcHCwcnJyrMpzcnIUFhZm95jQ0FCb+D179igkJETdu3ev91yGYVg9Ano5s9ksDw8Pqw0AAABA58IINgBAp5SYmKjo6GiFhIQoNDRUmzZtUnFxsWJjYyVdHFl26tQpbdmyRdLFFUPXr1+vxMREzZ8/X3l5ecrIyNC2bdssdaakpCgkJESDBw9WTU2NsrOztWXLFquVSgEAAAB0PSTYAACdUlRUlCoqKrRixQqVlJQoKChI2dnZ8vf3lySVlJSouLjYEh8QEKDs7GwlJCRow4YN8vX11bp16zR9+nRLzNdff624uDh9+eWX6tGjh2666Sa98sorioqKsjk/AAAAgK7DZFyawRmqqqqSp6enKisrW/URnpjMg61Sb8acUa1SLwA0V1t9rnYkrXpPtrZyoo9FDgC0Q/Q1AID2gDnYAAAAAAAAAAeQYAMAAAAAAAAcQIINAAAAAAAAcAAJNgAAAAAAAMABJNgAAAAAAAAAB5BgAwAAAAAAABxAgg0AAAAAAABwgFMTbGlpaQoICJC7u7uCg4O1b9++BuNzc3MVHBwsd3d3DRo0SBs3brSJOXPmjB555BH5+PjI3d1dgYGBys7Obq1LAACg69ga9f0GAAAAwMLVWSfOyspSfHy80tLSNHbsWD3//POKjIzUp59+qgEDBtjEFxUVadKkSZo/f75eeeUVvf/++4qLi1O/fv00ffp0SVJNTY0mTJig/v3767XXXtP111+vkydPqmfPnm19eU4Rk3nQ8jpjzigntgQAAAAAAKDrcFqCbe3atYqJidG8efMkSampqdq9e7fS09OVkpJiE79x40YNGDBAqampkqTAwEAdOnRIa9assSTYNm/erP/85z86cOCAunfvLkny9/dvmwsCAAAAAABAl+SUR0RramqUn5+viIgIq/KIiAgdOHDA7jF5eXk28RMnTtShQ4d07tw5SdIbb7yh0NBQPfLII/Ly8lJQUJBWrlyp2tpau3VWV1erqqrKagMAoCsqPHnGsgEAAABoGqeMYCsvL1dtba28vLysyr28vFRaWmr3mNLSUrvx58+fV3l5uXx8fPTFF1/ob3/7mx544AFlZ2fr2LFjeuSRR3T+/Hn9v//3/2zqTElJ0fLly1vuwgAA6EBIpgEAAAAtw6mLHJhMJqt9wzBsyq4UX7f8woUL6t+/vzZt2qTg4GDdd999Sk5OVnp6ut36kpKSVFlZadlOnjzpyOUAAAAAAACgC3LKCLa+ffvKxcXFZrRaWVmZzSi1S7y9ve3Gu7q6qk+fPpIkHx8fde/eXS4uLpaYwMBAlZaWqqamRm5ublbHm81mmc3mlrgkAAA6jboj20b69XJaOwAAAICOwikj2Nzc3BQcHKycnByr8pycHIWFhdk9JjQ01CZ+z549CgkJsSxoMHbsWP3zn//UhQsXLDGff/65fHx8bJJrAAB0Rcy1BgAAALQ8pz0impiYqBdffFGbN2/W0aNHlZCQoOLiYsXGxkq6+PjmQw89ZImPjY3ViRMnlJiYqKNHj2rz5s3KyMjQwoULLTG/+MUvVFFRoQULFujzzz/XX//6V61cuVKPPPJIm18fAAAAAAAAuganPCIqSVFRUaqoqNCKFStUUlKioKAgZWdny9/fX5JUUlKi4uJiS3xAQICys7OVkJCgDRs2yNfXV+vWrdP06dMtMX5+ftqzZ48SEhI0fPhwXXfddVqwYIGeeOKJNr8+AAAAAAAAdA0m49JKAVBVVZU8PT1VWVkpDw+PVjtPTObBVqv7kow5o1r9HABwJW31udqRtOo92Rp1xZCWejR05BO7W6QeAHAUfQ0AoD1w2gi2rqYtkmoAAAAAAABoe06bgw0AAAAAAADoDEiwAQAAAAAAAA4gwQYAAAAAAAA4gDnYAABAk10+tyiL6wAAAKArYwQbAAAAAAAA4AASbAAAAAAAAIADSLABAAAAAAAADmAOtk6q7tw4zIsDAAAAAADQekiwOdljp5dY7T/n9bSTWgIA6KwKT55p9XPwww4AAAC6MhJsAACgyfiBCAAAAPgec7ABAAAAAAAADiDBBgAAAAAAADiABBsAAAAAAADgABJsAAAAAAAAgANY5AAAALQoVhQFAABAV8MINgAAAAAAAMABJNgAAAAAAAAAB/CIKAAAaDU8LgoAAICugBFsAAAAAAAAgANIsAEAAAAAAAAOIMEGAAAAAAAAOIAEGwAAAAAAAOAAFjnoIB47vcTy+jmvp53YEgBAR1B48oyzmwAAAAB0GSTY2rG6STVHsIIbAKC18UMQAAAAujIeEQUAAAAAAAAcwAg2AAA6qq1Rzm4BAAAAAJFga3da6rFQAADaG6YsAAAAQGfFI6IAgE4rLS1NAQEBcnd3V3BwsPbt29dgfG5uroKDg+Xu7q5BgwZp48aNVu+/8MILCg8P17XXXqtrr71Wd955pz766KPWvAQAAAAAHQAJNgBAp5SVlaX4+HglJyeroKBA4eHhioyMVHFxsd34oqIiTZo0SeHh4SooKNDixYv1+OOPa8eOHZaYvXv36v7779e7776rvLw8DRgwQBERETp16lRbXRYAAACAdogEGwCgU1q7dq1iYmI0b948BQYGKjU1VX5+fkpPT7cbv3HjRg0YMECpqakKDAzUvHnzNHfuXK1Zs8YS8+qrryouLk4jR47UTTfdpBdeeEEXLlzQO++801aXBQAAAKAdIsEGAOh0ampqlJ+fr4iICKvyiIgIHThwwO4xeXl5NvETJ07UoUOHdO7cObvHfPPNNzp37px69+5db1uqq6tVVVVltQEAAADoXEiwAQA6nfLyctXW1srLy8uq3MvLS6WlpXaPKS0ttRt//vx5lZeX2z1m0aJFuu6663TnnXfW25aUlBR5enpaNj8/vyZeDQAAAID2jgQbAKDTMplMVvuGYdiUXSneXrkkrV69Wtu2bdPOnTvl7u5eb51JSUmqrKy0bCdPnmzKJQAAAADoAFyd3QAAAFpa37595eLiYjNarayszGaU2iXe3t52411dXdWnTx+r8jVr1mjlypV6++23NXz48AbbYjabZTabm3EVAAAAADoKEmwAgE7Hzc1NwcHBysnJ0T333GMpz8nJ0ZQpU+weExoaqj//+c9WZXv27FFISIi6d+9uKfvtb3+rp59+Wrt371ZISEjrXEAH99jpJZbXz3k9bTcmJvOg5XXGnFGt3iYAAACgNfGIKACgU0pMTNSLL76ozZs36+jRo0pISFBxcbFiY2MlXXx086GHHrLEx8bG6sSJE0pMTNTRo0e1efNmZWRkaOHChZaY1atXa8mSJdq8ebMGDhyo0tJSlZaW6quvvmrz6wMAAADQfjCCDQDQKUVFRamiokIrVqxQSUmJgoKClJ2dLX9/f0lSSUmJiouLLfEBAQHKzs5WQkKCNmzYIF9fX61bt07Tp0+3xKSlpammpkYzZsywOteTTz6pZcuWtcl1AQAAAGh/SLB1cI15DAcAuqq4uDjFxcXZfS8zM9OmbNy4cfr444/rre/48eMt1DIAAAAAnQkJNieomxQDAAAAAABAx+bUOdjS0tIUEBAgd3d3BQcHa9++fQ3G5+bmKjg4WO7u7ho0aJA2btxYb+z27dtlMpk0derUFm618z12eollAwAAAAAAgHM5bQRbVlaW4uPjlZaWprFjx+r5559XZGSkPv30Uw0YMMAmvqioSJMmTdL8+fP1yiuv6P3331dcXJz69etnNT+OJJ04cUILFy5UeHh4W11Oh1F31TaJldsAAAAAAAAc5bQRbGvXrlVMTIzmzZunwMBApaamys/PT+np6XbjN27cqAEDBig1NVWBgYGaN2+e5s6dqzVr1ljF1dbW6oEHHtDy5cs1aNCgtrgUAAAAAAAAdGFOSbDV1NQoPz9fERERVuURERE6cOCA3WPy8vJs4idOnKhDhw7p3LlzlrIVK1aoX79+iomJuWI7qqurVVVVZbUBAAAAAAAATeGUR0TLy8tVW1srLy8vq3IvLy+VlpbaPaa0tNRu/Pnz51VeXi4fHx+9//77ysjIUGFhYaPakZKSouXLlzfrGgAAQMuoO30BUxcAAACgI3LqIgcmk8lq3zAMm7IrxV8qP3v2rB588EG98MIL6tu3b6POn5SUpMrKSst28uTJJl4BAAAAAAAAujqnjGDr27evXFxcbEarlZWV2YxSu8Tb29tuvKurq/r06aMjR47o+PHjmjx5suX9CxcuSJJcXV312WefafDgwVbHm81mmc3mlrgkAACcrvDkGWc3AQAAAOiSnDKCzc3NTcHBwcrJybEqz8nJUVhYmN1jQkNDbeL37NmjkJAQde/eXTfddJMOHz6swsJCy/bTn/5UP/rRj1RYWCg/P79Wux4AAAAAAAB0XU4ZwSZJiYmJio6OVkhIiEJDQ7Vp0yYVFxcrNjZW0sXHN0+dOqUtW7ZIkmJjY7V+/XolJiZq/vz5ysvLU0ZGhrZt2yZJcnd3V1BQkNU5evXqJUk25QAAAAAAAEBLcVqCLSoqShUVFVqxYoVKSkoUFBSk7Oxs+fv7S5JKSkpUXFxsiQ8ICFB2drYSEhK0YcMG+fr6at26dZo+fbqzLgEAAAAAAABwXoJNkuLi4hQXF2f3vczMTJuycePG6eOPP250/fbqAAAAbeex00ssr5/zetqJLQEAAABaj1MTbAAAAHXFZB60vM6YM8qJLQEAAAAazymLHAAAAAAAAACdBSPYOikeyQEAAAAAAGgbjGADAAAAAAAAHMAIti6OuW4AAAAAAAAcQ4KtE6n7WCgAAAAAAADaBo+IAgAAAAAAAA5gBBsAAGgTLMADAACAzooRbAAAAAAAAIADGMEGAADaJRbiAQAAQEfBCDYAAAAAAADAAYxgAwAAbY752AAAANCZMIINAAAAAAAAcAAJNgAAAAAAAMABPCLaRuo+CgMAAAAAAIDOgxFsAAAAAAAAgANIsAH4/9q7/+Ca7vyP469U4gZF/aj8KCJMO2jUj8TaUHSsjWotba1G1xbfYr7Wb2ln0Nag2y3FGmP9ttHWUPxRujp0iV3JstKRjaSrYVRHKlYTGbZEa5uEfL5/9OtubnKT3OT+OOfG8zFzZ+79nM85933e98dJ3vdzzgcAAAAAAHiBU0ThNOX9LOf91Mn9LYwEAAAAAAAgeFBgAwAAtlf5RyCJH4IAAABgLxTYAAAIUrmXb1gdAgAAAABxDTYAAAAAAADAKxTYAAAAAAAAAC9QYAMAAAAAAAC8QIENAAAAAAAA8AIFNgAAAAAAAMALzCJ6H5h99U3n/T9EvG1hJAAAAAAAAI0PBTa4NeX9LOf91Mn9LYwEAIDqOE4BAADATiiw+VHlP/5nWxgHAAAAAAAA/IcC232m8umiVXH6KAAAAAAAQP0xyQEAAAAAAADgBQpsAAAAAAAAgBcosAEAAAAAAABe4BpsAADAUpWvD8r1QAEAABCMKLABAICgVnnW7tTJ/S2MBAAAAPcrThEFADRaGzduVGxsrMLDwxUfH6/jx4/X2j8jI0Px8fEKDw9X165dtXnzZpfleXl5Gjt2rLp06aKQkBCtXbvWj9EDAAAACBYU2FCnKe9nOW8AECz27t2refPm6Y033lBOTo4GDx6skSNHqqCgwG3//Px8PfPMMxo8eLBycnL0+uuva86cOfroo4+cfW7fvq2uXbtqxYoVioyMDNSuAAAAALA5CmwAgEZpzZo1mjJliqZOnaoePXpo7dq16tSpkzZt2uS2/+bNm9W5c2etXbtWPXr00NSpU/XKK69o9erVzj79+/fXqlWrNH78eDkcjkDtCgAAAACbo8AGAGh0ysrKlJ2draSkJJf2pKQknTx50u06mZmZ1fqPGDFC//jHP1ReXt7gWEpLS1VSUuJyAwAAANC4MMkBnJjFDUBjce3aNd29e1cREREu7RERESoqKnK7TlFRkdv+d+7c0bVr1xQVFdWgWJYvX65ly5Y1aF3UHxMeAAAAwAoU2AAAjVZISIjLY2NMtba6+rtrr49FixYpJSXF+bikpESdOnVq8PYaO37sAQAAQDCy9BRRX8/utm3bNg0ePFht2rRRmzZtNHz4cJ06dcqfu9Bozb76pvMGAMGmffv2atKkSbXRasXFxdVGqd0TGRnptn9oaKjatWvX4FgcDodatWrlcgMAAADQuFhWYPPH7G7p6el66aWXdOzYMWVmZqpz585KSkrSlStXArVbAAAbaNq0qeLj45WWlubSnpaWpoEDB7pdJzExsVr/I0eOKCEhQWFhYX6LFTXjxx4AAAAEC8sKbP6Y3W3Xrl2aMWOG+vTpo+7du2vbtm2qqKjQX/7yl0DtFgDAJlJSUvTHP/5R27dv17lz5zR//nwVFBRo+vTpkn48dXPixInO/tOnT9elS5eUkpKic+fOafv27UpNTdVrr73m7FNWVqbc3Fzl5uaqrKxMV65cUW5urr766quA7x8AAAAA+7DkGmz3ZndbuHChS3tDZndLTU1VeXm529EFt2/fVnl5udq2bet2m6WlpSotLXU+ZmY3AGg8kpOTdf36db311lsqLCxUXFycDh06pJiYGElSYWGhy6jp2NhYHTp0SPPnz9eGDRsUHR2tdevWaezYsc4+33zzjfr27et8vHr1aq1evVpDhw5Venp6wPYNAAAAgL1YUmAL1OxuCxcu1COPPKLhw4e73SYzuwFA4zZjxgzNmDHD7bL333+/WtvQoUN1+vTpGrfXpUsX58QHAAAAAHCPpbOI+nN2t5UrV2r37t1KT09XeHi42+0xs1v9TXk/y3k/dXJ/CyMBANxPql6HzZMZRjlmAQAAIFAsKbD5e3a31atX65133tHRo0f1xBNP1BiHw+GQw+Fo4F4AAAAAAAAAFhXYKs/u9vzzzzvb09LSNGbMGLfrJCYm6pNPPnFpcze726pVq/T222/r8OHDSkhI8M8O3MdcRxActiwOALhvfZhsdQQAAAAAqrDsFNGUlBS9/PLLSkhIUGJiorZu3VptdrcrV65ox44dkn6c3W39+vVKSUnRtGnTlJmZqdTUVO3evdu5zZUrV2rx4sX68MMP1aVLF+eItwcffFAPPvhg4Heykct9d4Tzfp8FFNsAAAAAAMD9ybICmz9md9u4caPKysr0y1/+0uW5lixZoqVLlwZkvwAAgP9VHlHtyfXYAAAAAH+ydJIDX8/u9vXXX/soMlRW9cLSAAAEGyY8AAAAgD89YHUAAAAAAAAAQDCzdARbY8fILwAAAAAAgMaPEWwAAAAAAACAFyiwAQAAAAAAAF7gFFH4RO67I5z3+yw4bGEkAID7DTOKAgAAwGoU2AAAwH2FGUUBAADga5wiCgAAAAAAAHiBAhsAAAAAAADgBU4RBQAA9y1OFwUAAIAvUGCDz/HPCgD4T+7lG1aHAAAAAKAKCmzwrw+TXR//aq81cQAAAAAAAPgJBTb43Oyrb/73QaeHLIsDAAAAAAAgECiwwa+qnsrUp/KINkazAQBshEscAAAAoKEosME6VU8fdYciHACgHiqPov5DxNsWRgIAAID7CQU22Bsj3gAAAAAAgM1RYENAVT5ltA/XZwMA2FTl00UlThkFAABA7R6wOgAAAAAAAAAgmDGCDQAANEpcjw0AAACBQoENluF0UQAAAAAA0BhQYAMAAKhD5WuycT02AAAAVEWBDcGpptlFa5t11I4zkto9psr8FZ8dc2A1cgL4HKeLAgAAwJ8osCF41FT4uZ9YWXipLf/+jqXqc9ux6OTJaxNshbNgixcAAAAALEKBDbbg1fXYair8NKQg58k6wVxoCETBpCGjC+vaji/5MgeevPd8mWdf5dbT7QJwi9NFAQAAUBUFNthOQCY/CHShqTJfPZ+dRnXZfXRhfeOrLbeB3le75xYIQr48XZRiGwAAACQKbIDvChjebseXo5Aqs8tosUA8X32fw9OcexOvlQUyRqYBAAAAQEBQYIOtBWQ0W335qxBW3z7eCuaRUf4oHFk5Ms1fp5F60g4AAAAA8BoFNqCxC6bCir+um9cYBXrUIdBIVT5dtDJmGgUAAEB9UGBD0Kg8mq0yS0e2UYyAL/A+AhoFrscGAABw/6LABgAA4GMU2wAAAO4vFNgQ9Gx5nTYAAAAAAHDfoMCGRqWm00glim8AAM/VdG02qf7XZ2M0GwAAQONHgQ33DUa6AQB8oXLxjWIbAAAAJApsuE/VNtLNHQpyAAAAAACgJhTYAAAALMBoNgAAgMaDAhvggZpGvFUe2cb13wAADVW52CZRcAMAAAg2FNgAL3h6qmlN13/junAAENxqmgyhvtdmq4rRbQAAAMGFAhsQYDUV5Twp1nk6Ys6TdSjoAYD/eDMRQlVVR7fdQ+ENAADAPiiwAUGkvpMz1LZOQ7ZVk5qKdfUtGgaaJyMLqy4DgPryZbGtMka5AQAA2AcFNgBe86ZY15Dr23lS0KvvaL+GnO7rSUw1rcv1+4D7E8U2AACAxokCGwBbqq3o5MuCmbexNPT5vC3oecLT4pxHIw0bHAWAmtR0/bbaeFKU45RSAACAwHvAyiffuHGjYmNjFR4ervj4eB0/frzW/hkZGYqPj1d4eLi6du2qzZs3V+vz0UcfqWfPnnI4HOrZs6f279/vr/DdmvJ+lvMGAFbKvXzDo1tj1hiPM8A9s6++6bx5ovLfKLXdAAAAUH+WjWDbu3ev5s2bp40bN2rQoEHasmWLRo4cqbNnz6pz587V+ufn5+uZZ57RtGnTtHPnTv3973/XjBkz9PDDD2vs2LGSpMzMTCUnJ+u3v/2tnn/+ee3fv18vvviiTpw4oQEDBgR6FwEAFuI4g8bIk2Kat6ehelJkYzQcAACAqxBjjLHiiQcMGKB+/fpp06ZNzrYePXroueee0/Lly6v1X7BggQ4cOKBz584526ZPn67PP/9cmZmZkqTk5GSVlJTo008/dfZ5+umn1aZNG+3evbvOmEpKStS6dWvdvHlTrVq1atB+5b47okHrAYCd9VlwuEHr+eJ7taHseJyRvM8Jxxn4Q+VCnL+uE3cPxTn4mpXHGgAA7rFkBFtZWZmys7O1cOFCl/akpCSdPHnS7TqZmZlKSkpyaRsxYoRSU1NVXl6usLAwZWZmav78+dX6rF271u02S0tLVVpa6nx88+ZNST8epBvqux/uNHhdALCrhn4v3lsv0L/l2OU4I/n+WMNxBv7wP5f++1n5rob2yrZ0+G8R7n+L3RfhKvep7OVNx+ofoBc2TIgP6PMh8Kw61gAAUJklBbZr167p7t27ioiIcGmPiIhQUVGR23WKiorc9r9z546uXbumqKioGvvUtM3ly5dr2bJl1do7depUn90BgMZvaWuvVr9165Zat/ZuG/Vhl+OMxLEGjdVfnfd2etDHSjtnWB0BAiXQxxoAACqzdBbRkJAQl8fGmGptdfWv2l6fbS5atEgpKSnOxxUVFfr3v/+tdu3a1RpHXUpKStSpUyddvnyZYepeII++Qy59gzzWnzFGt27dUnR0tCXPb/VxRvLtsSaY3oPBFKsUXPEGU6xScMUbTLFKwRWvP2O1+lgDAIBkUYGtffv2atKkSbVf/IuLi6uNDLgnMjLSbf/Q0FC1a9eu1j41bdPhcMjhcLi0PfTQQ/XZlVq1atXK9n/sBAPy6Dvk0jfIY/1YMZrALscZyT/HmmB6DwZTrFJwxRtMsUrBFW8wxSoFV7z+ipWRawAAqz1gxZM2bdpU8fHxSktLc2lPS0vTwIED3a6TmJhYrf+RI0eUkJCgsLCwWvvUtE0AQOPEcQYAAABAIFl2imhKSopefvllJSQkKDExUVu3blVBQYGmT58u6cdTaq5cuaIdO3ZI+nEmt/Xr1yslJUXTpk1TZmamUlNTXWZtmzt3roYMGaJ3331XY8aM0Z/+9CcdPXpUJ06csGQfAQDW4TgDAAAAIFAsK7AlJyfr+vXreuutt1RYWKi4uDgdOnRIMTExkqTCwkIVFBQ4+8fGxurQoUOaP3++NmzYoOjoaK1bt05jx4519hk4cKD27NmjN998U4sXL1a3bt20d+9eDRgwIKD75nA4tGTJkmqnBKF+yKPvkEvfII/BpTEeZ4LpPRhMsUrBFW8wxSoFV7zBFKsUXPEGU6wAADREiGE+awAAAAAAAKDBLLkGGwAAAAAAANBYUGADAAAAAAAAvECBDQAAAAAAAPACBTYAAAAAAADACxTYfGzjxo2KjY1VeHi44uPjdfz4catDsrXly5erf//+atmypTp06KDnnntO58+fd+ljjNHSpUsVHR2tZs2a6amnnlJeXp5FEQeP5cuXKyQkRPPmzXO2kUvPXLlyRb/+9a/Vrl07NW/eXH369FF2drZzOXmEFex6fPHke3zy5MkKCQlxuf30pz8NeKxLly6tFkdkZKRzud0+2126dKkWb0hIiGbOnCnJ2rz+7W9/0y9+8QtFR0crJCREH3/8sctyT3JZWlqq2bNnq3379mrRooVGjx6tf/3rXwGPt7y8XAsWLFCvXr3UokULRUdHa+LEifrmm29ctvHUU09Vy/f48eMDGqvk2eseqNzWFau7929ISIhWrVrl7BOovAIA4G8U2Hxo7969mjdvnt544w3l5ORo8ODBGjlypAoKCqwOzbYyMjI0c+ZMffbZZ0pLS9OdO3eUlJSk77//3tln5cqVWrNmjdavX6+srCxFRkbq5z//uW7dumVh5PaWlZWlrVu36oknnnBpJ5d1+/bbbzVo0CCFhYXp008/1dmzZ/X73/9eDz30kLMPeUSg2fn44sn3uCQ9/fTTKiwsdN4OHTpkSbyPP/64SxxnzpxxLrPbZzsrK8sl1rS0NEnSuHHjnH2syuv333+v3r17a/369W6Xe5LLefPmaf/+/dqzZ49OnDih7777TqNGjdLdu3cDGu/t27d1+vRpLV68WKdPn9a+ffv05ZdfavTo0dX6Tps2zSXfW7ZsCWis99T1ugcqt3XFWjnGwsJCbd++XSEhIRo7dqxLv0DkFQAAvzPwmZ/85Cdm+vTpLm3du3c3CxcutCii4FNcXGwkmYyMDGOMMRUVFSYyMtKsWLHC2eeHH34wrVu3Nps3b7YqTFu7deuWefTRR01aWpoZOnSomTt3rjGGXHpqwYIF5sknn6xxOXmEFYLp+FL1e9wYYyZNmmTGjBljXVD/b8mSJaZ3795ulwXDZ3vu3LmmW7dupqKiwhhjn7xKMvv373c+9iSXN27cMGFhYWbPnj3OPleuXDEPPPCA+fOf/xzQeN05deqUkWQuXbrkbKt8TA0Ud7HW9bpblVtP8jpmzBgzbNgwlzYr8goAgD8wgs1HysrKlJ2draSkJJf2pKQknTx50qKogs/NmzclSW3btpUk5efnq6ioyCWvDodDQ4cOJa81mDlzpp599lkNHz7cpZ1ceubAgQNKSEjQuHHj1KFDB/Xt21fbtm1zLiePCLRgO75U/R6/Jz09XR06dNBjjz2madOmqbi42IrwdOHCBUVHRys2Nlbjx4/XxYsXJdn/s11WVqadO3fqlVdeUUhIiLPdLnmtzJNcZmdnq7y83KVPdHS04uLibJHvmzdvKiQkxGX0siTt2rVL7du31+OPP67XXnvNstGNtb3uds3t1atXdfDgQU2ZMqXaMrvkFQAAb4RaHUBjce3aNd29e1cREREu7RERESoqKrIoquBijFFKSoqefPJJxcXFSZIzd+7yeunSpYDHaHd79uzR6dOnlZWVVW0ZufTMxYsXtWnTJqWkpOj111/XqVOnNGfOHDkcDk2cOJE8IuCC6fji7ntckkaOHKlx48YpJiZG+fn5Wrx4sYYNG6bs7Gw5HI6AxTdgwADt2LFDjz32mK5evaq3335bAwcOVF5enu0/2x9//LFu3LihyZMnO9vskteqPMllUVGRmjZtqjZt2lTrY/X7+ocfftDChQv1q1/9Sq1atXK2T5gwQbGxsYqMjNQXX3yhRYsW6fPPP3eeuhsodb3uds3tBx98oJYtW+qFF15wabdLXgEA8BYFNh+r/Kuy9OM/G1Xb4N6sWbP0z3/+UydOnKi2jLzW7fLly5o7d66OHDmi8PDwGvuRy9pVVFQoISFB77zzjiSpb9++ysvL06ZNmzRx4kRnP/KIQAuG91xN3+PJycnO+3FxcUpISFBMTIwOHjxY7Z9tfxo5cqTzfq9evZSYmKhu3brpgw8+cF4k3q55Tk1N1ciRIxUdHe1ss0tea9KQXFqd7/Lyco0fP14VFRXauHGjy7Jp06Y578fFxenRRx9VQkKCTp8+rX79+gUsxoa+7lbndvv27ZowYUK1v1HsklcAALzFKaI+0r59ezVp0qTaL4PFxcXVfsFFdbNnz9aBAwd07NgxdezY0dl+b3Y38lq37OxsFRcXKz4+XqGhoQoNDVVGRobWrVun0NBQZ77IZe2ioqLUs2dPl7YePXo4LybPexKBFizHl5q+x92JiopSTEyMLly4EKDo3GvRooV69eqlCxcu2PqzfenSJR09elRTp06ttZ9d8upJLiMjI1VWVqZvv/22xj6BVl5erhdffFH5+flKS0tzGb3mTr9+/RQWFmZ5vqu+7nbM7fHjx3X+/Pk638OSffIKAEB9UWDzkaZNmyo+Pr7acPa0tDQNHDjQoqjszxijWbNmad++ffrrX/+q2NhYl+X3ThmonNeysjJlZGSQ1yp+9rOf6cyZM8rNzXXeEhISNGHCBOXm5qpr167k0gODBg3S+fPnXdq+/PJLxcTESOI9icCz+/Glru9xd65fv67Lly8rKioqABHWrLS0VOfOnVNUVJStP9vvvfeeOnTooGeffbbWfnbJqye5jI+PV1hYmEufwsJCffHFF5bk+15x7cKFCzp69KjatWtX5zp5eXkqLy+3PN9VX3e75Vb6cQRmfHy8evfuXWdfu+QVAIB6s2RqhUZqz549JiwszKSmppqzZ8+aefPmmRYtWpivv/7a6tBs6ze/+Y1p3bq1SU9PN4WFhc7b7du3nX1WrFhhWrdubfbt22fOnDljXnrpJRMVFWVKSkosjDw4VJ2Zi1zW7dSpUyY0NNT87ne/MxcuXDC7du0yzZs3Nzt37nT2IY8INDsfX+r6Hr9165Z59dVXzcmTJ01+fr45duyYSUxMNI888kjAPzOvvvqqSU9PNxcvXjSfffaZGTVqlGnZsqUzj3b8bN+9e9d07tzZLFiwwKXd6rzeunXL5OTkmJycHCPJrFmzxuTk5Dhn3fQkl9OnTzcdO3Y0R48eNadPnzbDhg0zvXv3Nnfu3AlovOXl5Wb06NGmY8eOJjc31+V9XFpaaowx5quvvjLLli0zWVlZJj8/3xw8eNB0797d9O3b1+fx1harp697oHJb1/vAGGNu3rxpmjdvbjZt2lRt/UDmFQAAf6PA5mMbNmwwMTExpmnTpqZfv34mIyPD6pBsTZLb23vvvefsU1FRYZYsWWIiIyONw+EwQ4YMMWfOnLEu6CBStcBGLj3zySefmLi4OONwOEz37t3N1q1bXZaTR1jBrseXur7Hb9++bZKSkszDDz9swsLCTOfOnc2kSZNMQUFBwGNNTk42UVFRJiwszERHR5sXXnjB5OXlOZfb8bN9+PBhI8mcP3/epd3qvB47dszt6z5p0iRjjGe5/M9//mNmzZpl2rZta5o1a2ZGjRrlt/hrizc/P7/G9/GxY8eMMcYUFBSYIUOGmLZt25qmTZuabt26mTlz5pjr168HNFZPX/dA5bau94ExxmzZssU0a9bM3Lhxo9r6gcwrAAD+FmKMMX4aHAcAAAAAAAA0elyDDQAAAAAAAPACBTYAAAAAAADACxTYAAAAAAAAAC9QYAMAAAAAAAC8QIENAAAAAAAA8AIFNgAAAAAAAMALFNgAAAAAAAAAL1BgAwAAAAAAALxAgQ0AAAAAAADwAgU2AAAAAAAAwAsU2AAAAAAAAAAvUGADAAAAAAAAvPB/D2DYX6NRx9MAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1067,10 +1067,10 @@ "start_time": "2023-11-09T18:38:48.738767636Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:44:45.767502Z", - "iopub.status.busy": "2023-11-09T20:44:45.767014Z", - "iopub.status.idle": "2023-11-09T20:45:55.640823Z", - "shell.execute_reply": "2023-11-09T20:45:55.639741Z" + "iopub.execute_input": "2023-11-09T22:32:56.686301Z", + "iopub.status.busy": "2023-11-09T22:32:56.686132Z", + "iopub.status.idle": "2023-11-09T22:33:55.663460Z", + "shell.execute_reply": "2023-11-09T22:33:55.662962Z" } }, "outputs": [ @@ -1078,14 +1078,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "original 0.9365769240507527\n" + "original 0.936850904691507\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2-folding 0.8263863727312772\n" + "2-folding 0.827192520270838\n" ] } ], @@ -1115,10 +1115,10 @@ "start_time": "2023-11-09T18:40:00.647093226Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:45:55.643416Z", - "iopub.status.busy": "2023-11-09T20:45:55.642917Z", - "iopub.status.idle": "2023-11-09T20:45:56.125972Z", - "shell.execute_reply": "2023-11-09T20:45:56.125339Z" + "iopub.execute_input": "2023-11-09T22:33:55.665439Z", + "iopub.status.busy": "2023-11-09T22:33:55.665108Z", + "iopub.status.idle": "2023-11-09T22:33:56.041558Z", + "shell.execute_reply": "2023-11-09T22:33:56.041076Z" } }, "outputs": [ @@ -1134,7 +1134,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGxCAYAAAC5hxYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAt8klEQVR4nO3df3SU5Z3//9cQkolIEgmRQMgPIkeUGAg1iZrU0MSF2AGjJfaItcXYBStLXMqmrkdkK6BoPBQRjwx42N1KbXFLu4tohSMdK5DsBteAZFfFdWENJgghApohURIY7s8ffpmvYxKSIZPMfed+Ps6Zc7yvuee633N7H/I6131d9zgMwzAEAABgEkPCXQAAAMA3EU4AAICpEE4AAICpEE4AAICpEE4AAICpEE4AAICpEE4AAICpEE4AAICpEE4AAICpEE4AGzl8+LAcDoc2btzob1u2bJkcDkfQfb388stas2ZN6Ir7hnHjxum+++7rl757q6tzFQyHw6EHH3ywx/1qamq0bNkyffHFF5d0HGAwIpwANjdv3jzt2bMn6M/1ZzgxgzFjxmjPnj2aOXNmvx6npqZGy5cvJ5wA3zA03AUA6J2vvvpKl112Wcj7TU5OVnJycsj7tTqn06mbbrop3GUAtsTICTBALtw+2b9/v0pLSxUbG6u4uDj95Cc/0WeffRaw77hx43Tbbbdpy5Yt+s53vqPo6GgtX75cktTU1KQHHnhAycnJioqKUnp6upYvX65z584F9HH06FHdddddiomJUVxcnGbPnq2mpqZu6/q2l19+WXl5eRo+fLiGDx+uKVOm6J//+Z8lSYWFhdq2bZs++eQTORwO/+uCjo4OrVixQtdee62cTqeuvPJK/fSnP+30Pc+ePauHH35Yo0eP1rBhw3TzzTfrnXfe6dX5zM3N7TSqMWnSJDkcDtXW1vrbtmzZIofDoffee8/fdvDgQd1zzz0aNWqUnE6nJk6cKLfbHdBXd7d1Xn31VU2ePFlOp1NXXXWVnnvuuYveGvvtb3+riRMnatiwYcrKytLrr7/uf2/ZsmX6+7//e0lSenq6/zzu2rVLkvTWW2+psLBQI0eO1GWXXabU1FTdeeed+vLLL3t1jgCrYuQEGGCzZs3SXXfdpfnz5+uDDz7QL3/5Sx04cED/+Z//qcjISP9+7777rj788EP9wz/8g9LT03X55ZerqalJN9xwg4YMGaLHHntM48eP1549e7RixQodPnxYL774oqSvR1mmTZumo0ePqrKyUhMmTNC2bds0e/bsXtX42GOP6YknnlBpaal+8YtfKC4uTu+//74++eQTSdK6dev0s5/9TP/3f/+nV155JeCz58+f1x133KHq6mo9/PDDys/P1yeffKKlS5eqsLBQe/fu9Y8A3X///XrppZf00EMPafr06Xr//fdVWlqq06dP91jjtGnTtHbtWp09e1aRkZE6fvy43n//fV122WXyeDzKzc2VJL355ptKTEzUpEmTJEkHDhxQfn6+UlNT9cwzz2j06NHasWOHFi5cqBMnTmjp0qXdHvONN95QaWmppk6dqs2bN+vcuXNatWqVjh8/3uX+27ZtU21trR5//HENHz5cK1eu1KxZs/TRRx/pqquu0rx583Tq1Ck9//zz2rJli8aMGSNJysjI0OHDhzVz5kwVFBTo17/+ta644gp9+umneuONN9TR0aFhw4b1eI4AyzIADIilS5cakoy/+7u/C2jftGmTIcn43e9+529LS0szIiIijI8++ihg3wceeMAYPny48cknnwS0r1q1ypBkfPDBB4ZhGMb69esNScarr74asN/9999vSDJefPHFTnVd8PHHHxsRERHGj3/844t+n5kzZxppaWmd2v/lX/7FkGT827/9W0B7bW2tIclYt26dYRiG8eGHH170fJSVlV30+G+++aYhyaiqqjIMwzB+97vfGTExMcaCBQuMoqIi/35XX321cc899/i3b731ViM5OdloaWkJ6O/BBx80oqOjjVOnThmGYRj19fWdzlVubq6RkpJitLe3+9tOnz5tjBw50vj2P6eSjMTERMPr9frbmpqajCFDhhiVlZX+tl/96leGJKO+vj7g8//6r/9qSDLq6uoueh6AwYjbOsAA+/GPfxywfdddd2no0KHauXNnQPvkyZM1YcKEgLbXX39dRUVFSkpK0rlz5/wvl8slSdq9e7ckaefOnYqJidHtt98e8Pl77rmnx/o8Ho98Pp/Ky8uD/m4XarziiitUUlISUOOUKVM0evRo/y2LC9+3u/PRk+9+97uKjo7Wm2++6a+7sLBQ3//+91VTU6Mvv/xSjY2NOnjwoKZNmyZJOnPmjP7yl79o1qxZGjZsWEB9M2bM0JkzZ/T22293eby2tjbt3btXP/jBDxQVFeVvHz58uEpKSrr8TFFRkWJiYvzbiYmJGjVqlH8E6mKmTJmiqKgo/exnP9NvfvMbffzxxz1+BhgsCCfAABs9enTA9tChQzVy5EidPHkyoP3CEP83HT9+XH/6058UGRkZ8LruuuskSSdOnJAknTx5UomJiT0euysX5oVc6iTZ48eP64svvlBUVFSnOpuamgJq7KqmC+ejJ9HR0frud7/rDyd/+ctfNH36dBUWFsrn86m6uloej0eS/OHk5MmTOnfunJ5//vlOtc2YMUPS/38Ov+3zzz+XYRhdnteu2iR1+T2cTqe++uqrHr/f+PHj9eabb2rUqFEqLy/X+PHjNX78eD333HM9fhawOuacAAOsqalJY8eO9W+fO3dOJ0+e7PSHrKsJlgkJCZo8ebKefPLJLvtOSkqS9PUfxa4mlnY1IfbbrrzySknSkSNHlJKS0uP+XdU4cuRIvfHGG12+f2Ek4cL37e589MZf/dVf6bHHHtM777yjI0eOaPr06YqJiVFubq48Ho+OHj2qCRMm+L/HiBEjFBERoTlz5nQ7MpSent5l+4gRI+RwOLqcX9Kb83opCgoKVFBQIJ/Pp7179+r555/XokWLlJiYqLvvvrtfjgmYAeEEGGCbNm1Sdna2f/sPf/iDzp07p8LCwh4/e9ttt2n79u0aP368RowY0e1+RUVF+sMf/qDXXnst4NbOyy+/3OMxiouLFRERofXr1ysvL6/b/bobAbjtttv0+9//Xj6fTzfeeGO3n7/wfbs7H70xbdo0Pfroo/rlL3+p5ORkXXvttf721157TU1NTbrzzjv9+w8bNkxFRUXav3+/Jk+eHHB7pieXX365cnJytHXrVq1atcr/2dbW1oAVOMFyOp2SdNHRlIiICN1444269tprtWnTJr377ruEEwxqhBNggG3ZskVDhw7V9OnT/at1srKydNddd/X42ccff1wej0f5+flauHChrrnmGp05c0aHDx/W9u3b9cILLyg5OVn33nuvnn32Wd1777168skndfXVV2v79u3asWNHj8cYN26cHn30UT3xxBP66quv9KMf/UhxcXE6cOCATpw44V/SPGnSJG3ZskXr169Xdna2hgwZopycHN19993atGmTZsyYoZ///Oe64YYbFBkZqSNHjmjnzp264447NGvWLE2cOFE/+clPtGbNGkVGRmratGl6//33tWrVKsXGxvbqXGZnZ2vEiBH685//rJ/+9Kf+9mnTpumJJ57w//c3Pffcc7r55ptVUFCgv/mbv9G4ceN0+vRpHTp0SH/605/01ltvXfT8z5w5U7feeqt+/vOfy+fz6Ve/+pWGDx+uU6dO9armb7uwiui5555TWVmZIiMjdc0112jTpk166623NHPmTKWmpurMmTP69a9/3eV3AgadcM/IBeziwqqYffv2GSUlJcbw4cONmJgY40c/+pFx/PjxgH3T0tKMmTNndtnPZ599ZixcuNBIT083IiMjjfj4eCM7O9tYsmSJ0dra6t/vyJEjxp133uk/zp133mnU1NT0uFrngpdeesnIzc01oqOjjeHDhxvf+c53Aj536tQp44c//KFxxRVXGA6HI6CPs2fPGqtWrTKysrL8n7/22muNBx54wDh48KB/v/b2duMXv/iFMWrUKCM6Otq46aabjD179hhpaWk9rta5YNasWYYkY9OmTf62jo4O4/LLLzeGDBlifP75550+U19fb/z1X/+1MXbsWCMyMtK48sorjfz8fGPFihUB+3z7XBmGYbzyyivGpEmTjKioKCM1NdV4+umnjYULFxojRowI2E+SUV5e3unYXX23xYsXG0lJScaQIUMMScbOnTuNPXv2GLNmzTLS0tIMp9NpjBw50vje975nvPbaa706L4CVOQzDMMIXjQD7WLZsmZYvX67PPvtMCQkJ4S4HIXL27FlNmTJFY8eO1Z///OdwlwMMCtzWAYAgzJ07V9OnT9eYMWPU1NSkF154QR9++CGraIAQIpwAQBBOnz6thx56SJ999pkiIyN1/fXXa/v27cwDAUKI2zoAAMBUeAgbAAAwFcIJAAAwFcIJAAAwFctNiD1//ryOHj2qmJiYLh/vDQAAzMcwDJ0+fVpJSUkaMuTiYyOWCydHjx69pN/7AAAA4dfY2NjjD4taLpxc+NGwxsbGXj/iGgAAhJfX61VKSor/7/jFWC6cXLiVExsbSzgBAMBiejMlgwmxAADAVAgnAADAVAgnAADAVAgnAADAVAgnAADAVAgnAADAVMISTurr61VUVKSMjAxNmjRJbW1t4SgDAACYUFiec3LfffdpxYoVKigo0KlTp+R0OsNRBgAAMKEBDycffPCBIiMjVVBQIEmKj48f6BIAAICJBX1bp6qqSiUlJUpKSpLD4dDWrVs77bNu3Tqlp6crOjpa2dnZqq6u9r938OBBDR8+XLfffruuv/56PfXUU336AgAAYHAJOpy0tbUpKytLa9eu7fL9zZs3a9GiRVqyZIn279+vgoICuVwuNTQ0SJLOnj2r6upqud1u7dmzRx6PRx6Pp9vjtbe3y+v1BrwAAMDgFXQ4cblcWrFihUpLS7t8f/Xq1Zo7d67mzZuniRMnas2aNUpJSdH69eslScnJycrNzVVKSoqcTqdmzJihurq6bo9XWVmpuLg4/4tfJAYAYHAL6Wqdjo4O7du3T8XFxQHtxcXFqqmpkSTl5ubq+PHj+vzzz3X+/HlVVVVp4sSJ3fa5ePFitbS0+F+NjY2hLBkAAJhMSCfEnjhxQj6fT4mJiQHtiYmJampq+vqAQ4fqqaee0tSpU2UYhoqLi3Xbbbd126fT6RzQ1TzjHtnW4z6Hn545AJUAAGBP/bJa59s/h2wYRkCby+WSy+UKqk+32y232y2fzxeSGgEAgDmF9LZOQkKCIiIi/KMkFzQ3N3caTQlWeXm5Dhw4oNra2j71AwAAzC2k4SQqKkrZ2dmdVt94PB7l5+eH8lAAAGCQCvq2Tmtrqw4dOuTfrq+vV11dneLj45WamqqKigrNmTNHOTk5ysvL04YNG9TQ0KD58+f3qVBu6wAAYA8OwzCMYD6wa9cuFRUVdWovKyvTxo0bJX39ELaVK1fq2LFjyszM1LPPPqupU6eGpGCv16u4uDi1tLQoNjY2JH1+ExNiAQAIvWD+fgcdTsKNcAIAgPUE8/c7LL9KfCncbrcyMjKUm5sb7lIAAEA/skw4YbUOAAD2YJlwAgAA7IFwAgAATMUy4YQ5JwAA2INlwglzTgAAsAfLhBMAAGAPhBMAAGAqlgknzDkBAMAeLBNOmHMCAIA9WCacAAAAeyCcAAAAUyGcAAAAUyGcAAAAU7FMOGG1DgAA9mCZcMJqHQAA7MEy4QQAANgD4QQAAJgK4QQAAJgK4QQAAJgK4QQAAJiKZcIJS4kBALAHy4QTlhIDAGAPlgknAADAHggnAADAVAgnAADAVAgnAADAVAgnAADAVAgnAADAVAgnAADAVAgnAADAVCwTTnhCLAAA9mCZcMITYgEAsAfLhBMAAGAPhBMAAGAqhBMAAGAqhBMAAGAqhBMAAGAqhBMAAGAqhBMAAGAqhBMAAGAqhBMAAGAqYQknQ4cO1ZQpUzRlyhTNmzcvHCUAAACTGhqOg15xxRWqq6sLx6EBAIDJcVsHAACYStDhpKqqSiUlJUpKSpLD4dDWrVs77bNu3Tqlp6crOjpa2dnZqq6uDnjf6/UqOztbN998s3bv3n3JxQMAgMEn6HDS1tamrKwsrV27tsv3N2/erEWLFmnJkiXav3+/CgoK5HK51NDQ4N/n8OHD2rdvn1544QXde++98nq9l/4NAADAoBJ0OHG5XFqxYoVKS0u7fH/16tWaO3eu5s2bp4kTJ2rNmjVKSUnR+vXr/fskJSVJkjIzM5WRkaH//d//7fZ47e3t8nq9AS8AADB4hXTOSUdHh/bt26fi4uKA9uLiYtXU1EiSPv/8c7W3t0uSjhw5ogMHDuiqq67qts/KykrFxcX5XykpKaEsGQAAmExIw8mJEyfk8/mUmJgY0J6YmKimpiZJ0ocffqicnBxlZWXptttu03PPPaf4+Phu+1y8eLFaWlr8r8bGxlCWDAAATKZflhI7HI6AbcMw/G35+fl67733et2X0+mU0+mU2+2W2+2Wz+cLaa0AAMBcQjpykpCQoIiICP8oyQXNzc2dRlOCVV5ergMHDqi2trZP/QAAAHMLaTiJiopSdna2PB5PQLvH41F+fn4oDwUAAAapoG/rtLa26tChQ/7t+vp61dXVKT4+XqmpqaqoqNCcOXOUk5OjvLw8bdiwQQ0NDZo/f36fCuW2DgAA9uAwDMMI5gO7du1SUVFRp/aysjJt3LhR0tcPYVu5cqWOHTumzMxMPfvss5o6dWpICvZ6vYqLi1NLS4tiY2ND0uc3jXtkW4/7HH56ZsiPCwDAYBbM3++gw0m4EU4AALCeYP5+W+a3ddxutzIyMpSbmxvuUgAAQD+yTDhhtQ4AAPZgmXACAADsgXACAABMxTLhhDknAADYg2XCCXNOAACwB8uEEwAAYA+EEwAAYCqEEwAAYCpB/7ZOuJjpt3V4iiwAAP3HMiMnTIgFAMAeLBNOAACAPRBOAACAqRBOAACAqVgmnPCEWAAA7MEy4YQJsQAA2INlwgkAALAHwgkAADAVwgkAADAVwgkAADAVwgkAADAVy4QTlhIDAGAPlgknLCUGAMAeLBNOAACAPRBOAACAqRBOAACAqRBOAACAqRBOAACAqRBOAACAqRBOAACAqRBOAACAqVgmnPCEWAAA7MEy4YQnxAIAYA+WCScAAMAeCCcAAMBUCCcAAMBUCCcAAMBUCCcAAMBUCCcAAMBUCCcAAMBUhoa7gMFq3CPbetzn8NMzB6ASAACshZETAABgKmELJ19++aXS0tL00EMPhasEAABgQmELJ08++aRuvPHGcB0eAACYVFjCycGDB/U///M/mjFjRjgODwAATCzocFJVVaWSkhIlJSXJ4XBo69atnfZZt26d0tPTFR0drezsbFVXVwe8/9BDD6mysvKSiwYAAINX0OGkra1NWVlZWrt2bZfvb968WYsWLdKSJUu0f/9+FRQUyOVyqaGhQZL06quvasKECZowYULfKgcAAINS0EuJXS6XXC5Xt++vXr1ac+fO1bx58yRJa9as0Y4dO7R+/XpVVlbq7bff1u9//3v98Y9/VGtrq86ePavY2Fg99thjXfbX3t6u9vZ2/7bX6w22ZAAAYCEhnXPS0dGhffv2qbi4OKC9uLhYNTU1kqTKyko1Njbq8OHDWrVqle6///5ug8mF/ePi4vyvlJSUUJYMAABMJqTh5MSJE/L5fEpMTAxoT0xMVFNT0yX1uXjxYrW0tPhfjY2NoSgVAACYVL88IdbhcARsG4bRqU2S7rvvvh77cjqdcjqdoSoNAACYXEhHThISEhQREdFplKS5ubnTaEqw3G63MjIylJub26d+AACAuYU0nERFRSk7O1sejyeg3ePxKD8/v099l5eX68CBA6qtre1TPwAAwNyCvq3T2tqqQ4cO+bfr6+tVV1en+Ph4paamqqKiQnPmzFFOTo7y8vK0YcMGNTQ0aP78+X0q1O12y+12y+fz9akfAABgbg7DMIxgPrBr1y4VFRV1ai8rK9PGjRslff0QtpUrV+rYsWPKzMzUs88+q6lTp4akYK/Xq7i4OLW0tCg2NjYkfX5Tb35NOFT4VWIAgF0E8/c76HASboQTAACsJ5i/32H74T8AAICuWCacsFoHAAB7sEw4YbUOAAD2YJlwAgAA7IFwAgAATMUy4YQ5JwAA2INlwglzTgAAsAfLhBMAAGAP/fKrxOid3jzwjQe1AQDsxjIjJ8w5AQDAHiwTTphzAgCAPVgmnAAAAHsgnAAAAFMhnAAAAFOxTDhhQiwAAPZgmXDChFgAAOzBMuEEAADYA+EEAACYCuEEAACYCuEEAACYCuEEAACYimV++M/tdsvtdsvn84W7lAHFjwMCAOzGMiMnLCUGAMAeLBNOAACAPVjmtg76httDAACrYOQEAACYCuEEAACYCrd1BoHe3LIBAMAqCCfwY14KAMAMuK0DAABMhXACAABMxTLhxO12KyMjQ7m5ueEuBQAA9CPLhBOeEAsAgD1YJpwAAAB7IJwAAABTIZwAAABTIZwAAABTIZwAAABTIZwAAABTIZwAAABTIZwAAABTIZwAAABTIZwAAABTGTrQBzx9+rRuueUWnT17Vj6fTwsXLtT9998/0GWgH417ZFuP+xx+euYAVAIAsKIBDyfDhg3T7t27NWzYMH355ZfKzMxUaWmpRo4cOdClAAAAExrwcBIREaFhw4ZJks6cOSOfzyfDMAa6DFyi3oyKAADQF0HPOamqqlJJSYmSkpLkcDi0devWTvusW7dO6enpio6OVnZ2tqqrqwPe/+KLL5SVlaXk5GQ9/PDDSkhIuOQvAAAABpegw0lbW5uysrK0du3aLt/fvHmzFi1apCVLlmj//v0qKCiQy+VSQ0ODf58rrrhC//Vf/6X6+nq9/PLLOn78eLfHa29vl9frDXgBAIDBK+hw4nK5tGLFCpWWlnb5/urVqzV37lzNmzdPEydO1Jo1a5SSkqL169d32jcxMVGTJ09WVVVVt8errKxUXFyc/5WSkhJsyQAAwEJCupS4o6ND+/btU3FxcUB7cXGxampqJEnHjx/3j354vV5VVVXpmmuu6bbPxYsXq6Wlxf9qbGwMZckAAMBkQjoh9sSJE/L5fEpMTAxoT0xMVFNTkyTpyJEjmjt3rgzDkGEYevDBBzV58uRu+3Q6nXI6naEsEwAAmFi/rNZxOBwB24Zh+Nuys7NVV1cXdJ9ut1tut1s+ny8UJQIAAJMK6W2dhIQERURE+EdJLmhubu40mhKs8vJyHThwQLW1tX3qBwAAmFtIw0lUVJSys7Pl8XgC2j0ej/Lz80N5KAAAMEgFfVuntbVVhw4d8m/X19errq5O8fHxSk1NVUVFhebMmaOcnBzl5eVpw4YNamho0Pz58/tUKLd1AACwB4cR5ONZd+3apaKiok7tZWVl2rhxo6SvH8K2cuVKHTt2TJmZmXr22Wc1derUkBTs9XoVFxenlpYWxcbGhqTPb+IJqAOD39YBAHsJ5u930OEk3AgngwPhBADsJZi/3yGdc9Kf3G63MjIylJubG+5SAABAPxrwH/67VOXl5SovL/cnL0Dq3UgXozQAYC2WGTkBAAD2QDgBAACmYpnbOiwlth8mJwOAPVlm5IQnxAIAYA+WCScAAMAeCCcAAMBUmHOCsGA+CQCgO5YZOWHOCQAA9mCZcAIAAOyBcAIAAEyFcAIAAEyFcAIAAEzFMuGEXyUGAMAeLBNOWK0DAIA9WCacAAAAe7DMQ9gAK+jNw+UOPz1zACoBAOti5AQAAJgK4QQAAJgK4QQAAJiKZcIJS4kBALAHy4QTlhIDAGAPrNbBoMcKGgCwFsuMnAAAAHsgnAAAAFMhnAAAAFMhnAAAAFNhQizQS72ZWAsA6DvCCTDAWD0EABfHbR0AAGAqlgknPCEWAAB7sEw44QmxAADYg2XCCQAAsAcmxAImxKRZAHbGyAkAADAVwgkAADAVwgkAADAVwgkAADAVwgkAADAVVusAsubv5phtRY/Z6gFgXYycAAAAUxnwcNLY2KjCwkJlZGRo8uTJ+uMf/zjQJQAAABMb8Ns6Q4cO1Zo1azRlyhQ1Nzfr+uuv14wZM3T55ZcPdCkAAMCEBjycjBkzRmPGjJEkjRo1SvHx8Tp16hThBAAASLqE2zpVVVUqKSlRUlKSHA6Htm7d2mmfdevWKT09XdHR0crOzlZ1dXWXfe3du1fnz59XSkpK0IUDAIDBKehw0tbWpqysLK1du7bL9zdv3qxFixZpyZIl2r9/vwoKCuRyudTQ0BCw38mTJ3Xvvfdqw4YNl1Y5AAAYlIK+reNyueRyubp9f/Xq1Zo7d67mzZsnSVqzZo127Nih9evXq7KyUpLU3t6uWbNmafHixcrPz7/o8drb29Xe3u7f9nq9wZYMAAAsJKRzTjo6OrRv3z498sgjAe3FxcWqqamRJBmGofvuu0+33HKL5syZ02OflZWVWr58eSjLBBAkKz4HBoB1hTScnDhxQj6fT4mJiQHtiYmJampqkiT9x3/8hzZv3qzJkyf756v89re/1aRJk7rsc/HixaqoqPBve71e5qgAFsWD2gD0Rr+s1nE4HAHbhmH4226++WadP3++1305nU45nU653W653W75fL6Q1goAAMwlpA9hS0hIUEREhH+U5ILm5uZOoynBKi8v14EDB1RbW9unfgAAgLmFNJxERUUpOztbHo8noN3j8fQ48RUAAEC6hNs6ra2tOnTokH+7vr5edXV1io+PV2pqqioqKjRnzhzl5OQoLy9PGzZsUENDg+bPn9+nQrmtAwCAPQQdTvbu3auioiL/9oXJqmVlZdq4caNmz56tkydP6vHHH9exY8eUmZmp7du3Ky0trU+FlpeXq7y8XF6vV3FxcX3qCwAAmFfQ4aSwsFCGYVx0nwULFmjBggWXXBQAALCvAf9V4kvldruVkZGh3NzccJcCAAD6kWXCCat1AACwB8uEEwAAYA+EEwAAYCqWCSfMOQEAwB4sE06YcwIAgD1YJpwAAAB7IJwAAABT6ZdfJQaASzXukW097nP46ZkDUAmAcLHMyAkTYgEAsAfLhBMmxAIAYA/c1gFsrje3UQBgIBFOAGAAMJcG6D3L3NYBAAD2YJmRE7fbLbfbLZ/PF+5SAMvglg0AK7LMyAkTYgEAsAfLhBMAAGAPhBMAAGAqhBMAAGAqhBMAAGAqllmtAwChZrZnj5itHiBcLDNywm/rAABgD5YJJywlBgDAHritAwAWwq0f2IFlRk4AAIA9EE4AAICpEE4AAICpMOcEgOUw7wIY3AgnAHARBCFg4HFbBwAAmAojJwAA2IgVRgMtM3LCE2IBALAHy4QTnhALAIA9WCacAAAAeyCcAAAAUyGcAAAAUyGcAAAAUyGcAAAAU+E5JwAwyFjhORbAxTByAgAATIWREwDoo96MVADoPUZOAACAqRBOAACAqYQlnMyaNUsjRozQD3/4w3AcHgAAmFhYwsnChQv10ksvhePQAADA5MISToqKihQTExOOQwMAAJMLOpxUVVWppKRESUlJcjgc2rp1a6d91q1bp/T0dEVHRys7O1vV1dWhqBUAANhA0OGkra1NWVlZWrt2bZfvb968WYsWLdKSJUu0f/9+FRQUyOVyqaGh4ZIKbG9vl9frDXgBAIDBK+hw4nK5tGLFCpWWlnb5/urVqzV37lzNmzdPEydO1Jo1a5SSkqL169dfUoGVlZWKi4vzv1JSUi6pHwAAYA0hnXPS0dGhffv2qbi4OKC9uLhYNTU1l9Tn4sWL1dLS4n81NjaGolQAAGBSIX1C7IkTJ+Tz+ZSYmBjQnpiYqKamJv/2rbfeqnfffVdtbW1KTk7WK6+8otzc3C77dDqdcjqdoSwTAACYWL88vt7hcARsG4YR0LZjx46g+3S73XK73fL5fH2uDwAAmFdIb+skJCQoIiIiYJREkpqbmzuNpgSrvLxcBw4cUG1tbZ/6AQAA5hbScBIVFaXs7Gx5PJ6Ado/Ho/z8/FAeCgAADFJB39ZpbW3VoUOH/Nv19fWqq6tTfHy8UlNTVVFRoTlz5ignJ0d5eXnasGGDGhoaNH/+/D4Vym0dAADsIehwsnfvXhUVFfm3KyoqJEllZWXauHGjZs+erZMnT+rxxx/XsWPHlJmZqe3btystLa1PhZaXl6u8vFxer1dxcXF96gsAAJhX0OGksLBQhmFcdJ8FCxZowYIFl1wUAACwr7D8ts6lcLvdysjI6HbJMQAAGBwsE05YrQMAgD1YJpwAAAB7IJwAAABTsUw4Yc4JAAD2YJlwwpwTAADswTLhBAAA2APhBAAAmIplwglzTgAAsAfLhBPmnAAAYA+WCScAAMAeCCcAAMBUCCcAAMBUCCcAAMBUhoa7gN5yu91yu93y+XzhLgWABYx7ZFu4S8Ag15tr7PDTMwesn8HEMiMnrNYBAMAeLBNOAACAPRBOAACAqRBOAACAqRBOAACAqRBOAACAqbCUGACAb2EpenhZZuSEpcQAANiDZcIJAACwB8IJAAAwFcIJAAAwFcIJAAAwFcIJAAAwFcIJAAAwFcIJAAAwFcIJAAAwFZ4QCwDoUm+eknr46ZkDUIl1DfSTZgfLk20tM3LCE2IBALAHy4QTAABgD4QTAABgKoQTAABgKoQTAABgKoQTAABgKoQTAABgKoQTAABgKoQTAABgKoQTAABgKmEJJ6+//rquueYaXX311fqnf/qncJQAAABMasB/W+fcuXOqqKjQzp07FRsbq+uvv16lpaWKj48f6FIAAIAJDfjIyTvvvKPrrrtOY8eOVUxMjGbMmKEdO3YMdBkAAMCkgg4nVVVVKikpUVJSkhwOh7Zu3dppn3Xr1ik9PV3R0dHKzs5WdXW1/72jR49q7Nix/u3k5GR9+umnl1Y9AAAYdIIOJ21tbcrKytLatWu7fH/z5s1atGiRlixZov3796ugoEAul0sNDQ2SJMMwOn3G4XB0e7z29nZ5vd6AFwAAGLyCnnPicrnkcrm6fX/16tWaO3eu5s2bJ0las2aNduzYofXr16uyslJjx44NGCk5cuSIbrzxxm77q6ys1PLly4MtEwBwEeMe2TZg/Rx+emZIjtUbofpeCK+Qzjnp6OjQvn37VFxcHNBeXFysmpoaSdINN9yg999/X59++qlOnz6t7du369Zbb+22z8WLF6ulpcX/amxsDGXJAADAZEK6WufEiRPy+XxKTEwMaE9MTFRTU9PXBxw6VM8884yKiop0/vx5Pfzwwxo5cmS3fTqdTjmdzlCWCQAATKxflhJ/ew6JYRgBbbfffrtuv/32oPp0u91yu93y+XwhqREAAJhTSG/rJCQkKCIiwj9KckFzc3On0ZRglZeX68CBA6qtre1TPwAAwNxCGk6ioqKUnZ0tj8cT0O7xeJSfnx/KQwEAgEEq6Ns6ra2tOnTokH+7vr5edXV1io+PV2pqqioqKjRnzhzl5OQoLy9PGzZsUENDg+bPn9+nQrmtAwCAPQQdTvbu3auioiL/dkVFhSSprKxMGzdu1OzZs3Xy5Ek9/vjjOnbsmDIzM7V9+3alpaX1qdDy8nKVl5fL6/UqLi6uT30BAADzCjqcFBYWdvkgtW9asGCBFixYcMlFAQAA+wrLrxJfCrfbrYyMDOXm5oa7FAAA0I8sE05YrQMAgD1YJpwAAAB7IJwAAABTsUw4Yc4JAAD2YJlwwpwTAADswTLhBAAA2EO//PBff7rwjBWv19sv/Z9v/7Jf+gUAu+qvf6+7Mlj/De/tOQzV9++P/2cX+uzpWWmS5DB6s5eJHDlyRCkpKeEuAwAAXILGxkYlJydfdB/LhZPz58/r6NGjiomJkcPh6FNfXq9XKSkpamxsVGxsbIgqxLdxngcO53pgcJ4HBud5YAzUeTYMQ6dPn1ZSUpKGDLn4rBLL3dYZMmRIj4krWLGxsVz4A4DzPHA41wOD8zwwOM8DYyDOc29/G48JsQAAwFQIJwAAwFRsHU6cTqeWLl0qp9MZ7lIGNc7zwOFcDwzO88DgPA8MM55ny02IBQAAg5utR04AAID5EE4AAICpEE4AAICpEE4AAICpEE4AAICp2DqcrFu3Tunp6YqOjlZ2draqq6vDXdKgsmzZMjkcjoDX6NGjw12W5VVVVamkpERJSUlyOBzaunVrwPuGYWjZsmVKSkrSZZddpsLCQn3wwQfhKdbCejrP9913X6fr+6abbgpPsRZWWVmp3NxcxcTEaNSoUfrBD36gjz76KGAfrum+6815NtM1bdtwsnnzZi1atEhLlizR/v37VVBQIJfLpYaGhnCXNqhcd911OnbsmP/13nvvhbsky2tra1NWVpbWrl3b5fsrV67U6tWrtXbtWtXW1mr06NGaPn26Tp8+PcCVWltP51mSvv/97wdc39u3bx/ACgeH3bt3q7y8XG+//bY8Ho/OnTun4uJitbW1+ffhmu673pxnyUTXtGFTN9xwgzF//vyAtmuvvdZ45JFHwlTR4LN06VIjKysr3GUMapKMV155xb99/vx5Y/To0cbTTz/tbztz5owRFxdnvPDCC2GocHD49nk2DMMoKysz7rjjjrDUM5g1Nzcbkozdu3cbhsE13V++fZ4Nw1zXtC1HTjo6OrRv3z4VFxcHtBcXF6umpiZMVQ1OBw8eVFJSktLT03X33Xfr448/DndJg1p9fb2ampoCrm2n06nvfe97XNv9YNeuXRo1apQmTJig+++/X83NzeEuyfJaWlokSfHx8ZK4pvvLt8/zBWa5pm0ZTk6cOCGfz6fExMSA9sTERDU1NYWpqsHnxhtv1EsvvaQdO3boH//xH9XU1KT8/HydPHky3KUNWheuX67t/udyubRp0ya99dZbeuaZZ1RbW6tbbrlF7e3t4S7NsgzDUEVFhW6++WZlZmZK4pruD12dZ8lc1/TQAT+iiTgcjoBtwzA6teHSuVwu/39PmjRJeXl5Gj9+vH7zm9+ooqIijJUNflzb/W/27Nn+/87MzFROTo7S0tK0bds2lZaWhrEy63rwwQf13//93/r3f//3Tu9xTYdOd+fZTNe0LUdOEhISFBER0Sl1Nzc3d0rnCJ3LL79ckyZN0sGDB8NdyqB1YTUU1/bAGzNmjNLS0ri+L9Hf/u3f6rXXXtPOnTuVnJzsb+eaDq3uznNXwnlN2zKcREVFKTs7Wx6PJ6Dd4/EoPz8/TFUNfu3t7frwww81ZsyYcJcyaKWnp2v06NEB13ZHR4d2797Ntd3PTp48qcbGRq7vIBmGoQcffFBbtmzRW2+9pfT09ID3uaZDo6fz3JVwXtO2va1TUVGhOXPmKCcnR3l5edqwYYMaGho0f/78cJc2aDz00EMqKSlRamqqmpubtWLFCnm9XpWVlYW7NEtrbW3VoUOH/Nv19fWqq6tTfHy8UlNTtWjRIj311FO6+uqrdfXVV+upp57SsGHDdM8994Sxauu52HmOj4/XsmXLdOedd2rMmDE6fPiwHn30USUkJGjWrFlhrNp6ysvL9fLLL+vVV19VTEyMf4QkLi5Ol112mRwOB9d0CPR0nltbW811TYdxpVDYud1uIy0tzYiKijKuv/76gCVV6LvZs2cbY8aMMSIjI42kpCSjtLTU+OCDD8JdluXt3LnTkNTpVVZWZhjG10svly5daowePdpwOp3G1KlTjffeey+8RVvQxc7zl19+aRQXFxtXXnmlERkZaaSmphplZWVGQ0NDuMu2nK7OsSTjxRdf9O/DNd13PZ1ns13Tjv+vaAAAAFOw5ZwTAABgXoQTAABgKoQTAABgKoQTAABgKoQTAABgKoQTAABgKoQTAABgKoQTAABgKoQTAABgKoQTAABgKoQTAABgKv8PKTY2OlYCsAQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGxCAYAAABMeZ2uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAArv0lEQVR4nO3df3RU9Z3/8dcQkolIMhIigZgfRI4oFAg1RCUaS7oQO2Bqga5YW4wuWFnjWjZ1PSJbQUTjsRTxyARLdyu1xS3tLqItHOlYkbAb3AZKdtW4LqzBhIUQCZohIAkMn+8f/TLbMYnJwCRzb+7zcc6c4/3Mzee+556L8zqf+/nccRljjAAAACxoUKwLAAAA6A5BBQAAWBZBBQAAWBZBBQAAWBZBBQAAWBZBBQAAWBZBBQAAWBZBBQAAWBZBBQAAWBZBBXCQgwcPyuVyacOGDaG25cuXy+VyRdzXyy+/rDVr1kSvuD8zevRo3X333X3Sd291da4i4XK59MADD/S4X3V1tZYvX65PP/30go4DDHQEFcDhFi5cqN27d0f8d30ZVKxg1KhR2r17t2bNmtWnx6murtbjjz9OUAG6MTjWBQDonc8++0yXXHJJ1PvNyMhQRkZG1Pu1O7fbrRtuuCHWZQCOx4gK0E/O32LZt2+f5syZo+TkZHk8Hn3nO9/Rxx9/HLbv6NGjdeutt2rz5s368pe/rMTERD3++OOSpKamJt13333KyMhQQkKCcnJy9Pjjj+vs2bNhfRw+fFi33367kpKS5PF4NG/ePDU1NXVb1+e9/PLLmjp1qoYOHaqhQ4dq8uTJ+sd//EdJ0rRp07R161Z99NFHcrlcodd5HR0dWrlypa655hq53W5dfvnluueeezp9zjNnzujhhx/WyJEjNWTIEN100036wx/+0KvzmZ+f32m0Y+LEiXK5XKqpqQm1bd68WS6XS++8806obf/+/brzzjs1YsQIud1ujRs3Tj6fL6yv7m79vPrqq5o0aZLcbreuvPJKPffcc194++znP/+5xo0bpyFDhig3N1e//e1vQ+8tX75cf/d3fydJysnJCZ3Ht956S5L05ptvatq0aRo+fLguueQSZWVlae7cuTp16lSvzhEwEDCiAvSz2bNn6/bbb9eiRYv03nvv6Qc/+IHq6ur07//+74qPjw/t98c//lHvv/++/v7v/145OTm69NJL1dTUpOuuu06DBg3SY489pjFjxmj37t1auXKlDh48qBdffFHSn0Zfpk+frsOHD6uiokJjx47V1q1bNW/evF7V+Nhjj+mJJ57QnDlz9P3vf18ej0fvvvuuPvroI0lSZWWlvvvd7+p//ud/9Morr4T97blz53Tbbbdp165devjhh1VQUKCPPvpIy5Yt07Rp07Rnz57QyNC9996rl156SQ899JBmzJihd999V3PmzNGJEyd6rHH69Olau3atzpw5o/j4eB09elTvvvuuLrnkEvn9fuXn50uS3njjDaWlpWnixImSpLq6OhUUFCgrK0s/+tGPNHLkSG3fvl0PPvigjh07pmXLlnV7zNdff11z5szRzTffrE2bNuns2bNatWqVjh492uX+W7duVU1NjVasWKGhQ4fqmWee0ezZs/XBBx/oyiuv1MKFC3X8+HE9//zz2rx5s0aNGiVJGj9+vA4ePKhZs2apsLBQP/3pT3XZZZfpf//3f/X666+ro6NDQ4YM6fEcAQOCAdAvli1bZiSZv/3bvw1r37hxo5FkfvGLX4TasrOzTVxcnPnggw/C9r3vvvvM0KFDzUcffRTWvmrVKiPJvPfee8YYY9atW2ckmVdffTVsv3vvvddIMi+++GKnus778MMPTVxcnPn2t7/9hZ9n1qxZJjs7u1P7P/3TPxlJ5l/+5V/C2mtqaowkU1lZaYwx5v333//C81FaWvqFx3/jjTeMJFNVVWWMMeYXv/iFSUpKMvfff78pKioK7XfVVVeZO++8M7R9yy23mIyMDNPa2hrW3wMPPGASExPN8ePHjTHG1NfXdzpX+fn5JjMz07S3t4faTpw4YYYPH24+/79TSSYtLc0EAoFQW1NTkxk0aJCpqKgItf3whz80kkx9fX3Y3//zP/+zkWRqa2u/8DwAAx23foB+9u1vfzts+/bbb9fgwYO1Y8eOsPZJkyZp7NixYW2//e1vVVRUpPT0dJ09ezb08nq9kqSdO3dKknbs2KGkpCR9/etfD/v7O++8s8f6/H6/gsGgysrKIv5s52u87LLLVFJSElbj5MmTNXLkyNBtjfOft7vz0ZMbb7xRiYmJeuONN0J1T5s2TV/72tdUXV2tU6dOqbGxUfv379f06dMlSadPn9bvf/97zZ49W0OGDAmrb+bMmTp9+rTefvvtLo938uRJ7dmzR9/4xjeUkJAQah86dKhKSkq6/JuioiIlJSWFttPS0jRixIjQyNQXmTx5shISEvTd735XP/vZz/Thhx/2+DfAQERQAfrZyJEjw7YHDx6s4cOHq6WlJaz9/G2AP3f06FH95je/UXx8fNjrS1/6kiTp2LFjkqSWlhalpaX1eOyunJ9HcqETbI8ePapPP/1UCQkJnepsamoKq7Grms6fj54kJibqxhtvDAWV3//+95oxY4amTZumYDCoXbt2ye/3S1IoqLS0tOjs2bN6/vnnO9U2c+ZMSf93Dj/vk08+kTGmy/PaVZukLj+H2+3WZ5991uPnGzNmjN544w2NGDFCZWVlGjNmjMaMGaPnnnuux78FBhLmqAD9rKmpSVdccUVo++zZs2ppaen0pdbV5MzU1FRNmjRJTz75ZJd9p6enS/rTF2RXk1K7mkz7eZdffrkk6dChQ8rMzOxx/65qHD58uF5//fUu3z8/wnD+83Z3PnrjL/7iL/TYY4/pD3/4gw4dOqQZM2YoKSlJ+fn58vv9Onz4sMaOHRv6HMOGDVNcXJzmz5/f7YhRTk5Ol+3Dhg2Ty+Xqcj5Kb87rhSgsLFRhYaGCwaD27Nmj559/XosXL1ZaWpruuOOOPjkmYDUEFaCfbdy4UXl5eaHtX/3qVzp79qymTZvW49/eeuut2rZtm8aMGaNhw4Z1u19RUZF+9atf6bXXXgu7/fPyyy/3eIzi4mLFxcVp3bp1mjp1arf7dTcycOutt+qXv/ylgsGgrr/++m7//vzn7e589Mb06dP16KOP6gc/+IEyMjJ0zTXXhNpfe+01NTU1ae7cuaH9hwwZoqKiIu3bt0+TJk0Ku4XTk0svvVRTpkzRli1btGrVqtDftrW1ha3kiZTb7ZakLxxliYuL0/XXX69rrrlGGzdu1B//+EeCChyDoAL0s82bN2vw4MGaMWNGaNVPbm6ubr/99h7/dsWKFfL7/SooKNCDDz6oq6++WqdPn9bBgwe1bds2vfDCC8rIyNBdd92lZ599VnfddZeefPJJXXXVVdq2bZu2b9/e4zFGjx6tRx99VE888YQ+++wzfetb35LH41FdXZ2OHTsWWiY9ceJEbd68WevWrVNeXp4GDRqkKVOm6I477tDGjRs1c+ZMfe9739N1112n+Ph4HTp0SDt27NBtt92m2bNna9y4cfrOd76jNWvWKD4+XtOnT9e7776rVatWKTk5uVfnMi8vT8OGDdPvfvc73XPPPaH26dOn64knngj995977rnndNNNN6mwsFB//dd/rdGjR+vEiRM6cOCAfvOb3+jNN9/8wvM/a9Ys3XLLLfre976nYDCoH/7whxo6dKiOHz/eq5o/7/xqpOeee06lpaWKj4/X1VdfrY0bN+rNN9/UrFmzlJWVpdOnT+unP/1pl58JGNBiPZsXcIrzq2v27t1rSkpKzNChQ01SUpL51re+ZY4ePRq2b3Z2tpk1a1aX/Xz88cfmwQcfNDk5OSY+Pt6kpKSYvLw8s3TpUtPW1hba79ChQ2bu3Lmh48ydO9dUV1f3uOrnvJdeesnk5+ebxMREM3ToUPPlL3857O+OHz9uvvnNb5rLLrvMuFyusD7OnDljVq1aZXJzc0N/f80115j77rvP7N+/P7Rfe3u7+f73v29GjBhhEhMTzQ033GB2795tsrOze1z1c97s2bONJLNx48ZQW0dHh7n00kvNoEGDzCeffNLpb+rr681f/dVfmSuuuMLEx8ebyy+/3BQUFJiVK1eG7fP5c2WMMa+88oqZOHGiSUhIMFlZWebpp582Dz74oBk2bFjYfpJMWVlZp2N39dmWLFli0tPTzaBBg4wks2PHDrN7924ze/Zsk52dbdxutxk+fLj5yle+Yl577bVenRdgoHAZY0zsYhLgHMuXL9fjjz+ujz/+WKmpqbEuB1Fy5swZTZ48WVdccYV+97vfxbocYMDh1g8ARGDBggWaMWOGRo0apaamJr3wwgt6//33WY0D9BGCCgBE4MSJE3rooYf08ccfKz4+Xtdee622bdvGvBGgj3DrBwAAWBYPfAMAAJZFUAEAAJZFUAEAAJZlu8m0586d0+HDh5WUlNTlI8YBAID1GGN04sQJpaena9Cg3o+T2C6oHD58+IJ+fwQAAMReY2NjRD96arugcv4HzRobG3v9mG0AABBbgUBAmZmZoe/x3rJdUDl/uyc5OZmgAgCAzUQ6bYPJtAAAwLIIKgAAwLIIKgAAwLIIKgAAwLIIKgAAwLJiElTq6+tVVFSk8ePHa+LEiTp58mQsygAAABYXk+XJd999t1auXKnCwkIdP35cbrc7FmUAAACL6/eg8t577yk+Pl6FhYWSpJSUlP4uAQAA2ETEt36qqqpUUlKi9PR0uVwubdmypdM+lZWVysnJUWJiovLy8rRr167Qe/v379fQoUP19a9/Xddee62eeuqpi/oAAABg4Io4qJw8eVK5ublau3Ztl+9v2rRJixcv1tKlS7Vv3z4VFhbK6/WqoaFBknTmzBnt2rVLPp9Pu3fvlt/vl9/vv7hPAQAABqSIg4rX69XKlSs1Z86cLt9fvXq1FixYoIULF2rcuHFas2aNMjMztW7dOklSRkaG8vPzlZmZKbfbrZkzZ6q2trbb47W3tysQCIS9AACAM0R11U9HR4f27t2r4uLisPbi4mJVV1dLkvLz83X06FF98sknOnfunKqqqjRu3Lhu+6yoqJDH4wm9+OVkAACcI6pB5dixYwoGg0pLSwtrT0tLU1NTkyRp8ODBeuqpp3TzzTdr0qRJuuqqq3Trrbd22+eSJUvU2toaejU2NkazZAAAYGF9surn87+MaIwJa/N6vfJ6vb3qy+129+vy5dGPbO1xn4NPz+qHSgAAQFRHVFJTUxUXFxcaPTmvubm50yhLpHw+n8aPH6/8/PyL6gcAANhHVINKQkKC8vLyOq3i8fv9KigouKi+y8rKVFdXp5qamovqBwAA2EfEt37a2tp04MCB0HZ9fb1qa2uVkpKirKwslZeXa/78+ZoyZYqmTp2q9evXq6GhQYsWLYpq4QAAYOCLOKjs2bNHRUVFoe3y8nJJUmlpqTZs2KB58+appaVFK1as0JEjRzRhwgRt27ZN2dnZF1Woz+eTz+dTMBi8qH4AAIB9uIwxJtZFRCIQCMjj8ai1tVXJyclR75/JtAAARN+Ffn/H5NeTAQAAesM2QYVVPwAAOI9tggqrfgAAcB7bBBUAAOA8BBUAAGBZtgkqzFEBAMB5bBNUmKMCAIDz2CaoAAAA5yGoAAAAyyKoAAAAy7JNUGEyLQAAzmOboMJkWgAAnMc2QQUAADgPQQUAAFgWQQUAAFgWQQUAAFiWbYIKq34AAHAe2wQVVv0AAOA8tgkqAADAeQgqAADAsggqAADAsggqAADAsggqAADAsmwTVFieDACA89gmqLA8GQAA57FNUAEAAM5DUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJZlm6DCI/QBAHAe2wQVHqEPAIDz2CaoAAAA5yGoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAy4pJUBk8eLAmT56syZMna+HChbEoAQAA2MDgWBz0sssuU21tbSwODQAAbIRbPwAAwLIiDipVVVUqKSlRenq6XC6XtmzZ0mmfyspK5eTkKDExUXl5edq1a1fY+4FAQHl5ebrpppu0c+fOCy4eAAAMbBEHlZMnTyo3N1dr167t8v1NmzZp8eLFWrp0qfbt26fCwkJ5vV41NDSE9jl48KD27t2rF154QXfddZcCgUC3x2tvb1cgEAh7AQAAZ4g4qHi9Xq1cuVJz5szp8v3Vq1drwYIFWrhwocaNG6c1a9YoMzNT69atC+2Tnp4uSZowYYLGjx+v//7v/+72eBUVFfJ4PKFXZmZmpCUDAACbiuoclY6ODu3du1fFxcVh7cXFxaqurpYkffLJJ2pvb5ckHTp0SHV1dbryyiu77XPJkiVqbW0NvRobG6NZMgAAsLCorvo5duyYgsGg0tLSwtrT0tLU1NQkSXr//fd13333adCgQXK5XHruueeUkpLSbZ9ut1tutzuaZQIAAJvok+XJLpcrbNsYE2orKCjQO++8E3GfPp9PPp9PwWAwKjUCAADri+qtn9TUVMXFxYVGT85rbm7uNMoSqbKyMtXV1ammpuai+gEAAPYR1aCSkJCgvLw8+f3+sHa/36+CgoJoHgoAADhAxLd+2tradODAgdB2fX29amtrlZKSoqysLJWXl2v+/PmaMmWKpk6dqvXr16uhoUGLFi26qEK59QMAgPO4jDEmkj946623VFRU1Km9tLRUGzZskPSnB74988wzOnLkiCZMmKBnn31WN998c1QKDgQC8ng8am1tVXJyclT6/HOjH9na4z4Hn54V9eMCADCQXej3d8RBJdYIKgAA2M+Ffn/zWz8AAMCybBNUfD6fxo8fr/z8/FiXAgAA+oltggrLkwEAcB7bBBUAAOA8BBUAAGBZtgkqzFEBAMB5bBNUmKMCAIDz2CaoAAAA5+mTX08e6HgoHAAA/cM2IyrMUQEAwHlsE1SYowIAgPPYJqgAAADnIagAAADLIqgAAADLIqgAAADLsk1QYdUPAADOY5ugwqofAACcxzZBBQAAOA9BBQAAWBZBBQAAWBZBBQAAWBZBBQAAWJZtggrLkwEAcB7bBBWWJwMA4Dy2CSoAAMB5CCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCybBNUeIQ+AADOY5ugwiP0AQBwHtsEFQAA4DwEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFmDY13AQDX6ka097nPw6Vn9UAkAAPbFiAoAALAsggoAALAsggoAALAsggoAALCsmAWVU6dOKTs7Ww899FCsSgAAABYXs6Dy5JNP6vrrr4/V4QEAgA3EJKjs379f//Vf/6WZM2fG4vAAAMAmIg4qVVVVKikpUXp6ulwul7Zs2dJpn8rKSuXk5CgxMVF5eXnatWtX2PsPPfSQKioqLrhoAADgDBEHlZMnTyo3N1dr167t8v1NmzZp8eLFWrp0qfbt26fCwkJ5vV41NDRIkl599VWNHTtWY8eOvbjKAQDAgBfxk2m9Xq+8Xm+3769evVoLFizQwoULJUlr1qzR9u3btW7dOlVUVOjtt9/WL3/5S/36179WW1ubzpw5o+TkZD322GNd9tfe3q729vbQdiAQiLRkAABgU1Gdo9LR0aG9e/equLg4rL24uFjV1dWSpIqKCjU2NurgwYNatWqV7r333m5Dyvn9PR5P6JWZmRnNkgEAgIVFNagcO3ZMwWBQaWlpYe1paWlqamq6oD6XLFmi1tbW0KuxsTEapQIAABvokx8ldLlcYdvGmE5tknT33Xf32Jfb7Zbb7Y5WaQAAwEaiOqKSmpqquLi4TqMnzc3NnUZZIuXz+TR+/Hjl5+dfVD8AAMA+ohpUEhISlJeXJ7/fH9bu9/tVUFBwUX2XlZWprq5ONTU1F9UPAACwj4hv/bS1tenAgQOh7fr6etXW1iolJUVZWVkqLy/X/PnzNWXKFE2dOlXr169XQ0ODFi1aFNXCAQDAwBdxUNmzZ4+KiopC2+Xl5ZKk0tJSbdiwQfPmzVNLS4tWrFihI0eOaMKECdq2bZuys7MvqlCfzyefz6dgMHhR/QAAAPtwGWNMrIuIRCAQkMfjUWtrq5KTk6Pe/+hHtka9z+4cfHpWvx0LAIBYutDv75j9KCEAAEBPbBNUWPUDAIDz2CaosOoHAADnsU1QAQAAzkNQAQAAltUnj9DvCwNxeXJvVhixMggA4GS2GVFhjgoAAM5jm6ACAACch6ACAAAsi6ACAAAsyzZBhQe+AQDgPLYJKkymBQDAeWwTVAAAgPMQVAAAgGURVAAAgGXZJqgwmRYAAOexTVBhMi0AAM5jm6ACAACch6ACAAAsi6ACAAAsi6ACAAAsi6ACAAAsa3CsC8AXG/3I1h73Ofj0rH6oBACA/mebERWeowIAgPPYJqjwHBUAAJyHWz8OwS0kAIAd2WZEBQAAOA9BBQAAWBZBBQAAWBZzVBDCPBYAgNUwogIAACyLoAIAACyLWz8DQG9u2QAAYEe2GVHhybQAADiPbYIKT6YFAMB5bBNUAACA8xBUAACAZRFUAACAZRFUAACAZRFUAACAZfEcFUSEx+wDAPoTIyoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCy+j2onDhxQvn5+Zo8ebImTpyon/zkJ/1dAgAAsIl+X548ZMgQ7dy5U0OGDNGpU6c0YcIEzZkzR8OHD+/vUtBHWMIMAIiWfh9RiYuL05AhQyRJp0+fVjAYlDGmv8sAAAA2EHFQqaqqUklJidLT0+VyubRly5ZO+1RWVionJ0eJiYnKy8vTrl27wt7/9NNPlZubq4yMDD388MNKTU294A8AAAAGroiDysmTJ5Wbm6u1a9d2+f6mTZu0ePFiLV26VPv27VNhYaG8Xq8aGhpC+1x22WX6j//4D9XX1+vll1/W0aNHuz1ee3u7AoFA2AsAADhDxEHF6/Vq5cqVmjNnTpfvr169WgsWLNDChQs1btw4rVmzRpmZmVq3bl2nfdPS0jRp0iRVVVV1e7yKigp5PJ7QKzMzM9KSAQCATUV1jkpHR4f27t2r4uLisPbi4mJVV1dLko4ePRoaFQkEAqqqqtLVV1/dbZ9LlixRa2tr6NXY2BjNkgEAgIVFddXPsWPHFAwGlZaWFtaelpampqYmSdKhQ4e0YMECGWNkjNEDDzygSZMmddun2+2W2+2OZpkAAMAm+mR5ssvlCts2xoTa8vLyVFtbG3GfPp9PPp9PwWAwGiUCAAAbiOqtn9TUVMXFxYVGT85rbm7uNMoSqbKyMtXV1ammpuai+gEAAPYR1aCSkJCgvLw8+f3+sHa/36+CgoJoHgoAADhAxLd+2tradODAgdB2fX29amtrlZKSoqysLJWXl2v+/PmaMmWKpk6dqvXr16uhoUGLFi26qEK59QMAgPO4TISPhX3rrbdUVFTUqb20tFQbNmyQ9KcHvj3zzDM6cuSIJkyYoGeffVY333xzVAoOBALyeDxqbW1VcnJyVPr8c715/DsuHo/QBwBnudDv74iDSqwRVJyDMAMAA8eFfn/3+2/9XCifz6fx48crPz8/1qUAAIB+YpugwqofAACcxzZBBQAAOA9BBQAAWJZtggpzVAAAcJ4+eYR+XygrK1NZWVlo1jAg9W6VFquHAMC+bBNU4DwsFQcA2ObWDwAAcB6CCgAAsCzbBBUm0wIA4Dy2CSo88A0AAOexTVABAADOw6ofQCxzBgCrYkQFAABYFkEFAABYlm2CCqt+AABwHtsEFVb9AADgPLYJKgAAwHkIKgAAwLIIKgAAwLIIKgAAwLIIKgAAwLJsE1RYngwAgPPYJqiwPBkAAOexTVABAADOw48SYsDrzQ8ORqsffrgQAKKLERUAAGBZBBUAAGBZBBUAAGBZzFEBLIj5MADwJ4yoAAAAyyKoAAAAy+LWDxBF3LIBgOiyzYgKj9AHAMB5XMYYE+siIhEIBOTxeNTa2qrk5OSo9x+th4MBfY2RGQB2cqHf37YZUQEAAM5DUAEAAJZFUAEAAJZFUAEAAJZFUAEAAJbFc1QAm+KZLQCcgBEVAABgWQQVAABgWQQVAABgWQQVAABgWf0eVBobGzVt2jSNHz9ekyZN0q9//ev+LgEAANhEv6/6GTx4sNasWaPJkyerublZ1157rWbOnKlLL720v0sBAAAW1+9BZdSoURo1apQkacSIEUpJSdHx48cJKgAAoJOIb/1UVVWppKRE6enpcrlc2rJlS6d9KisrlZOTo8TEROXl5WnXrl1d9rVnzx6dO3dOmZmZERcOAAAGvohHVE6ePKnc3Fzdc889mjt3bqf3N23apMWLF6uyslI33nijfvzjH8vr9aqurk5ZWVmh/VpaWnTXXXfpH/7hHy7uEwDoFg+FA2B3EQcVr9crr9fb7furV6/WggULtHDhQknSmjVrtH37dq1bt04VFRWSpPb2ds2ePVtLlixRQUHBFx6vvb1d7e3toe1AIBBpyQAAwKaiuuqno6NDe/fuVXFxcVh7cXGxqqurJUnGGN1999366le/qvnz5/fYZ0VFhTweT+jFbSIAAJwjqpNpjx07pmAwqLS0tLD2tLQ0NTU1SZL+7d/+TZs2bdKkSZNC81t+/vOfa+LEiV32uWTJEpWXl4e2A4EAYQWwKW5FAYhUn6z6cblcYdvGmFDbTTfdpHPnzvW6L7fbLbfbLZ/PJ5/Pp2AwGNVaAQCAdUX11k9qaqri4uJCoyfnNTc3dxpliVRZWZnq6upUU1NzUf0AAAD7iOqISkJCgvLy8uT3+zV79uxQu9/v12233RbNQwFwMG4hAc4RcVBpa2vTgQMHQtv19fWqra1VSkqKsrKyVF5ervnz52vKlCmaOnWq1q9fr4aGBi1atOiiCuXWD2BtvQkP/dkPgIEh4qCyZ88eFRUVhbbPT3QtLS3Vhg0bNG/ePLW0tGjFihU6cuSIJkyYoG3btik7O/uiCi0rK1NZWZkCgYA8Hs9F9QUAAOwh4qAybdo0GWO+cJ/7779f999//wUXBQAAIMXg15MBAAB6q99/lPBCMUcFiB3mjQCIFZfp6T6OxZyfo9La2qrk5OSo98//kIGBgVU/gLVc6Pc3t34AAIBlEVQAAIBl2Sao+Hw+jR8/Xvn5+bEuBQAA9BPbBBUeoQ8AgPPYJqgAAADnIagAAADLsk1QYY4KAADOY5ugwhwVAACcxzZBBQAAOA9BBQAAWBZBBQAAWBZBBQAAWJZtggqrfgAAcB7bBBVW/QAA4Dy2CSoAAMB5CCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCybBNUeI4KAADOMzjWBfRWWVmZysrKFAgE5PF4Yl0OAIcY/cjWHvc5+PSsfqgEcCbbjKgAAADnIagAAADLss2tHwCIRG9u2QCwPkZUAACAZTGiAgA2YsfJvXasGdbBiAoAALAsggoAALAsggoAALAs28xR8fl88vl8CgaDsS4FAByBuSWwAtsEFZ5MC8Cq+EIH+g63fgAAgGURVAAAgGXZ5tYPACB6eHIv7IIRFQAAYFmMqABAP2DCLXBhGFEBAACWRVABAACWRVABAACWRVABAACWxWRaALAIlgwDncVkRGX27NkaNmyYvvnNb8bi8AAAwCZiElQefPBBvfTSS7E4NAAAsJGYBJWioiIlJSXF4tAAAMBGIg4qVVVVKikpUXp6ulwul7Zs2dJpn8rKSuXk5CgxMVF5eXnatWtXNGoFAAAOE/Fk2pMnTyo3N1f33HOP5s6d2+n9TZs2afHixaqsrNSNN96oH//4x/J6vaqrq1NWVlZUigYAdK8/J+UyARh9LeKg4vV65fV6u31/9erVWrBggRYuXChJWrNmjbZv365169apoqIi4gLb29vV3t4e2g4EAhH3AQAA7Cmqc1Q6Ojq0d+9eFRcXh7UXFxerurr6gvqsqKiQx+MJvTIzM6NRKgAAsIGoBpVjx44pGAwqLS0trD0tLU1NTU2h7VtuuUV/+Zd/qW3btikjI0M1NTXd9rlkyRK1traGXo2NjdEsGQAAWFifPPDN5XKFbRtjwtq2b9/e677cbrfcbnfUagMAAPYR1aCSmpqquLi4sNETSWpubu40yhIpn88nn8+nYDB4Uf0AAOBkvZkAffDpWf1QSe9E9dZPQkKC8vLy5Pf7w9r9fr8KCgouqu+ysjLV1dV94W0iAAAwsEQ8otLW1qYDBw6Etuvr61VbW6uUlBRlZWWpvLxc8+fP15QpUzR16lStX79eDQ0NWrRoUVQLBwAAA1/EQWXPnj0qKioKbZeXl0uSSktLtWHDBs2bN08tLS1asWKFjhw5ogkTJmjbtm3Kzs6+qEK59QMAgPO4jDEm1kVEIhAIyOPxqLW1VcnJyVHvn4cXAUD/s9KciIEuVnNULvT7Oya/9QMAANAbfbI8uS9w6wcABi67rUSJJid/9t6wzYgKq34AAHAe2wQVAADgPAQVAABgWcxRAQDgc5g3Yh22GVFhjgoAAM5jm6ACAACch6ACAAAsi6ACAAAsyzZBxefzafz48crPz491KQAAoJ/YJqgwmRYAAOexTVABAADOQ1ABAACWRVABAACWRVABAACWZZugwqofAACcxzZBhVU/AAA4j22CCgAAcB6CCgAAsCyCCgAAsCyCCgAAsCyCCgAAsKzBsS6gt3w+n3w+n4LBYKxLAQDEwOhHtva4z8GnZ/VDJb3Xm5qj2Y/VPn802GZEheXJAAA4j22CCgAAcB6CCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyeTAsAwAARrSfhWoltRlR4Mi0AAM5jm6ACAACch6ACAAAsi6ACAAAsi6ACAAAsi6ACAAAsi6ACAAAsi6ACAAAsi6ACAAAsi6ACAAAsi6ACAAAsi6ACAAAsi6ACAAAsi6ACAAAsi6ACAAAsa3CsC4iUMUaSFAgE+qT/c+2n+qRfAEDfi9Z3Q2++C3pzLLt+p/TFd+z5Ps9/j/eWy0T6FzF26NAhZWZmxroMAABwARobG5WRkdHr/W0XVM6dO6fDhw8rKSlJLpfrovoKBALKzMxUY2OjkpOTo1QhesJ5jx3OfWxw3mOD8x4b3Z13Y4xOnDih9PR0DRrU+5kntrv1M2jQoIiSWG8kJydzEccA5z12OPexwXmPDc57bHR13j0eT8T9MJkWAABYFkEFAABYlqODitvt1rJly+R2u2NdiqNw3mOHcx8bnPfY4LzHRrTPu+0m0wIAAOdw9IgKAACwNoIKAACwLIIKAACwLIIKAACwLIIKAACwLEcHlcrKSuXk5CgxMVF5eXnatWtXrEsa0JYvXy6XyxX2GjlyZKzLGnCqqqpUUlKi9PR0uVwubdmyJex9Y4yWL1+u9PR0XXLJJZo2bZree++92BQ7wPR07u++++5O/wZuuOGG2BQ7QFRUVCg/P19JSUkaMWKEvvGNb+iDDz4I24drvm/05txH45p3bFDZtGmTFi9erKVLl2rfvn0qLCyU1+tVQ0NDrEsb0L70pS/pyJEjodc777wT65IGnJMnTyo3N1dr167t8v1nnnlGq1ev1tq1a1VTU6ORI0dqxowZOnHiRD9XOvD0dO4l6Wtf+1rYv4Ft27b1Y4UDz86dO1VWVqa3335bfr9fZ8+eVXFxsU6ePBnah2u+b/Tm3EtRuOaNQ1133XVm0aJFYW3XXHONeeSRR2JU0cC3bNkyk5ubG+syHEWSeeWVV0Lb586dMyNHjjRPP/10qO306dPG4/GYF154IQYVDlyfP/fGGFNaWmpuu+22mNTjFM3NzUaS2blzpzGGa74/ff7cGxOda96RIyodHR3au3eviouLw9qLi4tVXV0do6qcYf/+/UpPT1dOTo7uuOMOffjhh7EuyVHq6+vV1NQUdu273W595Stf4drvJ2+99ZZGjBihsWPH6t5771Vzc3OsSxpQWltbJUkpKSmSuOb70+fP/XkXe807MqgcO3ZMwWBQaWlpYe1paWlqamqKUVUD3/XXX6+XXnpJ27dv109+8hM1NTWpoKBALS0tsS7NMc5f31z7seH1erVx40a9+eab+tGPfqSamhp99atfVXt7e6xLGxCMMSovL9dNN92kCRMmSOKa7y9dnXspOtf84L4o2C5cLlfYtjGmUxuix+v1hv574sSJmjp1qsaMGaOf/exnKi8vj2FlzsO1Hxvz5s0L/feECRM0ZcoUZWdna+vWrZozZ04MKxsYHnjgAf3nf/6n/vVf/7XTe1zzfau7cx+Na96RIyqpqamKi4vrlKabm5s7pW70nUsvvVQTJ07U/v37Y12KY5xfZcW1bw2jRo1SdnY2/wai4G/+5m/02muvaceOHcrIyAi1c833ve7OfVcu5Jp3ZFBJSEhQXl6e/H5/WLvf71dBQUGMqnKe9vZ2vf/++xo1alSsS3GMnJwcjRw5Muza7+jo0M6dO7n2Y6ClpUWNjY38G7gIxhg98MAD2rx5s958803l5OSEvc8133d6OvdduZBr3rG3fsrLyzV//nxNmTJFU6dO1fr169XQ0KBFixbFurQB66GHHlJJSYmysrLU3NyslStXKhAIqLS0NNalDShtbW06cOBAaLu+vl61tbVKSUlRVlaWFi9erKeeekpXXXWVrrrqKj311FMaMmSI7rzzzhhWPTB80blPSUnR8uXLNXfuXI0aNUoHDx7Uo48+qtTUVM2ePTuGVdtbWVmZXn75Zb366qtKSkoKjZx4PB5dcsklcrlcXPN9pKdz39bWFp1r/qLWDNmcz+cz2dnZJiEhwVx77bVhS6oQffPmzTOjRo0y8fHxJj093cyZM8e89957sS5rwNmxY4eR1OlVWlpqjPnTcs1ly5aZkSNHGrfbbW6++WbzzjvvxLboAeKLzv2pU6dMcXGxufzyy018fLzJysoypaWlpqGhIdZl21pX51uSefHFF0P7cM33jZ7OfbSuedf/PxgAAIDlOHKOCgAAsAeCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsKz/B/CfW5dmRzw/AAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/advanced-python/50LikelihoodInference.html b/advanced-python/50LikelihoodInference.html index b67eea2b..bc8ac5cb 100644 --- a/advanced-python/50LikelihoodInference.html +++ b/advanced-python/50LikelihoodInference.html @@ -713,7 +713,7 @@

Loss<
 FitResult of
-<UnbinnedNLL model=[<zfit.<class 'zfit.models.dist_tfp.Gauss'>  params=[mu, sigma]] data=[<zfit.core.data.Data object at 0x7f173bae1090>] constraints=[]>
+<UnbinnedNLL model=[<zfit.<class 'zfit.models.dist_tfp.Gauss'>  params=[mu, sigma]] data=[<zfit.core.data.Data object at 0x7efbd7b71310>] constraints=[]>
 with
 <Minuit Minuit tol=0.001>
 
@@ -772,23 +772,23 @@ 

Fixing parameters
 FitResult of
-<ExtendedUnbinnedNLL model=[<zfit.<class 'zfit.models.functor.SumPDF'>  params=[Composed_autoparam_1, Composed_autoparam_2]] data=[<zfit.core.data.Data object at 0x7f173bad71d0>] constraints=[]>
+<ExtendedUnbinnedNLL model=[<zfit.<class 'zfit.models.functor.SumPDF'>  params=[Composed_autoparam_1, Composed_autoparam_2]] data=[<zfit.core.data.Data object at 0x7efbd7b4ce90>] constraints=[]>
 with
 <Minuit Minuit tol=0.001>
 
 ╒═════════╤═════════════╤══════════════════╤═════════╤══════════════════════════════════╕
 │  valid  │  converged  │  param at limit  │   edm   │   approx. fmin (full | internal) │
 ╞═════════╪═════════════╪══════════════════╪═════════╪══════════════════════════════════╡
-│  True   │    True     │      False       │ 2.4e-05 │             -2304.23 |  9829.933 │
+│  True   │    True     │      False       │ 3.5e-05 │             -2294.12 |  9832.347 │
 ╘═════════╧═════════════╧══════════════════╧═════════╧══════════════════════════════════╛
 
 Parameters
 name         value  (rounded)    at limit
 ---------  ------------------  ----------
-bkg_yield             6044.42       False
-sig_yield             107.336       False
-lambda              -0.912186       False
-mu                    3.09891       False
+bkg_yield             6008.52       False
+sig_yield             105.199       False
+lambda              -0.932648       False
+mu                    3.09986       False
 

@@ -822,23 +822,23 @@

Fixing parameters
 FitResult of
-<ExtendedUnbinnedNLL model=[<zfit.<class 'zfit.models.functor.SumPDF'>  params=[Composed_autoparam_1, Composed_autoparam_2]] data=[<zfit.core.data.Data object at 0x7f173bad71d0>] constraints=[]>
+<ExtendedUnbinnedNLL model=[<zfit.<class 'zfit.models.functor.SumPDF'>  params=[Composed_autoparam_1, Composed_autoparam_2]] data=[<zfit.core.data.Data object at 0x7efbd7b4ce90>] constraints=[]>
 with
 <Minuit Minuit tol=0.001>
 
 ╒═════════╤═════════════╤══════════════════╤═════════╤══════════════════════════════════╕
 │  valid  │  converged  │  param at limit  │   edm   │   approx. fmin (full | internal) │
 ╞═════════╪═════════════╪══════════════════╪═════════╪══════════════════════════════════╡
-│  True   │    True     │      False       │ 2.4e-05 │             -2304.23 |  9829.933 │
+│  True   │    True     │      False       │ 3.5e-05 │             -2294.12 |  9832.347 │
 ╘═════════╧═════════════╧══════════════════╧═════════╧══════════════════════════════════╛
 
 Parameters
 name         value  (rounded)        hesse               errors         minuit_minos    at limit
 ---------  ------------------  -----------  -------------------  -------------------  ----------
-bkg_yield             6044.42  +/-      81  -     80   +     82  -     80   +     82       False
-sig_yield             107.336  +/-      25  -     25   +     25  -     25   +     25       False
-lambda              -0.912186  +/-   0.064  -  0.065   +  0.064  -  0.065   +  0.064       False
-mu                    3.09891  +/-  0.0042  - 0.0043   + 0.0042  - 0.0043   + 0.0042       False
+bkg_yield             6008.52  +/-      81  -     80   +     82  -     80   +     82       False
+sig_yield             105.199  +/-      25  -     25   +     25  -     25   +     25       False
+lambda              -0.932648  +/-   0.065  -  0.065   +  0.064  -  0.065   +  0.064       False
+mu                    3.09986  +/-  0.0047  - 0.0049   + 0.0047  - 0.0049   + 0.0047       False
 

Exercise play around! First things first: repeat the fit. The difference we will see is statistical fluctuation from the resampling of the data; we take only a fraction at random.

diff --git a/advanced-python/50LikelihoodInference.ipynb b/advanced-python/50LikelihoodInference.ipynb index f6579a26..7d72bc10 100644 --- a/advanced-python/50LikelihoodInference.ipynb +++ b/advanced-python/50LikelihoodInference.ipynb @@ -47,10 +47,10 @@ "start_time": "2023-11-09T18:41:03.508890856Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:45:58.242185Z", - "iopub.status.busy": "2023-11-09T20:45:58.241946Z", - "iopub.status.idle": "2023-11-09T20:45:59.291573Z", - "shell.execute_reply": "2023-11-09T20:45:59.290054Z" + "iopub.execute_input": "2023-11-09T22:33:57.877733Z", + "iopub.status.busy": "2023-11-09T22:33:57.877562Z", + "iopub.status.idle": "2023-11-09T22:33:58.576773Z", + "shell.execute_reply": "2023-11-09T22:33:58.576248Z" } }, "outputs": [], @@ -69,10 +69,10 @@ "start_time": "2023-11-09T18:41:04.545771470Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:45:59.294590Z", - "iopub.status.busy": "2023-11-09T20:45:59.293981Z", - "iopub.status.idle": "2023-11-09T20:46:04.182176Z", - "shell.execute_reply": "2023-11-09T20:46:04.181554Z" + "iopub.execute_input": "2023-11-09T22:33:58.579010Z", + "iopub.status.busy": "2023-11-09T22:33:58.578785Z", + "iopub.status.idle": "2023-11-09T22:34:01.427104Z", + "shell.execute_reply": "2023-11-09T22:34:01.426597Z" } }, "outputs": [ @@ -102,10 +102,10 @@ "start_time": "2023-11-09T18:41:04.552563192Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:04.186315Z", - "iopub.status.busy": "2023-11-09T20:46:04.184943Z", - "iopub.status.idle": "2023-11-09T20:46:04.237341Z", - "shell.execute_reply": "2023-11-09T20:46:04.236427Z" + "iopub.execute_input": "2023-11-09T22:34:01.429354Z", + "iopub.status.busy": "2023-11-09T22:34:01.429021Z", + "iopub.status.idle": "2023-11-09T22:34:01.465720Z", + "shell.execute_reply": "2023-11-09T22:34:01.465178Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "start_time": "2023-11-09T18:41:04.628270711Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:04.240282Z", - "iopub.status.busy": "2023-11-09T20:46:04.239931Z", - "iopub.status.idle": "2023-11-09T20:46:04.264179Z", - "shell.execute_reply": "2023-11-09T20:46:04.263658Z" + "iopub.execute_input": "2023-11-09T22:34:01.467867Z", + "iopub.status.busy": "2023-11-09T22:34:01.467687Z", + "iopub.status.idle": "2023-11-09T22:34:01.486107Z", + "shell.execute_reply": "2023-11-09T22:34:01.485664Z" } }, "outputs": [], @@ -156,10 +156,10 @@ "start_time": "2023-11-09T18:41:04.636406001Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:04.266983Z", - "iopub.status.busy": "2023-11-09T20:46:04.266746Z", - "iopub.status.idle": "2023-11-09T20:46:04.269186Z", - "shell.execute_reply": "2023-11-09T20:46:04.268722Z" + "iopub.execute_input": "2023-11-09T22:34:01.488173Z", + "iopub.status.busy": "2023-11-09T22:34:01.487852Z", + "iopub.status.idle": "2023-11-09T22:34:01.490126Z", + "shell.execute_reply": "2023-11-09T22:34:01.489744Z" } }, "outputs": [], @@ -179,10 +179,10 @@ "start_time": "2023-11-09T18:41:04.643452582Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:04.271422Z", - "iopub.status.busy": "2023-11-09T20:46:04.271022Z", - "iopub.status.idle": "2023-11-09T20:46:04.539099Z", - "shell.execute_reply": "2023-11-09T20:46:04.537913Z" + "iopub.execute_input": "2023-11-09T22:34:01.491750Z", + "iopub.status.busy": "2023-11-09T22:34:01.491586Z", + "iopub.status.idle": "2023-11-09T22:34:01.695379Z", + "shell.execute_reply": "2023-11-09T22:34:01.694805Z" } }, "outputs": [], @@ -211,10 +211,10 @@ "start_time": "2023-11-09T18:41:04.910984590Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:04.541777Z", - "iopub.status.busy": "2023-11-09T20:46:04.541551Z", - "iopub.status.idle": "2023-11-09T20:46:04.576605Z", - "shell.execute_reply": "2023-11-09T20:46:04.576000Z" + "iopub.execute_input": "2023-11-09T22:34:01.697654Z", + "iopub.status.busy": "2023-11-09T22:34:01.697480Z", + "iopub.status.idle": "2023-11-09T22:34:01.722651Z", + "shell.execute_reply": "2023-11-09T22:34:01.722247Z" } }, "outputs": [], @@ -236,10 +236,10 @@ "start_time": "2023-11-09T18:41:04.959061502Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:04.579514Z", - "iopub.status.busy": "2023-11-09T20:46:04.578977Z", - "iopub.status.idle": "2023-11-09T20:46:04.583752Z", - "shell.execute_reply": "2023-11-09T20:46:04.583236Z" + "iopub.execute_input": "2023-11-09T22:34:01.724367Z", + "iopub.status.busy": "2023-11-09T22:34:01.724201Z", + "iopub.status.idle": "2023-11-09T22:34:01.727260Z", + "shell.execute_reply": "2023-11-09T22:34:01.726845Z" } }, "outputs": [], @@ -257,10 +257,10 @@ "start_time": "2023-11-09T18:41:04.959203182Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:04.586101Z", - "iopub.status.busy": "2023-11-09T20:46:04.585610Z", - "iopub.status.idle": "2023-11-09T20:46:04.589424Z", - "shell.execute_reply": "2023-11-09T20:46:04.588936Z" + "iopub.execute_input": "2023-11-09T22:34:01.728913Z", + "iopub.status.busy": "2023-11-09T22:34:01.728735Z", + "iopub.status.idle": "2023-11-09T22:34:01.731616Z", + "shell.execute_reply": "2023-11-09T22:34:01.731202Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "start_time": "2023-11-09T18:41:04.959353512Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:04.591835Z", - "iopub.status.busy": "2023-11-09T20:46:04.591351Z", - "iopub.status.idle": "2023-11-09T20:46:04.598829Z", - "shell.execute_reply": "2023-11-09T20:46:04.597845Z" + "iopub.execute_input": "2023-11-09T22:34:01.733460Z", + "iopub.status.busy": "2023-11-09T22:34:01.733073Z", + "iopub.status.idle": "2023-11-09T22:34:01.738375Z", + "shell.execute_reply": "2023-11-09T22:34:01.737885Z" } }, "outputs": [], @@ -307,10 +307,10 @@ "start_time": "2023-11-09T18:41:04.959441956Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:04.601342Z", - "iopub.status.busy": "2023-11-09T20:46:04.600843Z", - "iopub.status.idle": "2023-11-09T20:46:04.607225Z", - "shell.execute_reply": "2023-11-09T20:46:04.606734Z" + "iopub.execute_input": "2023-11-09T22:34:01.740244Z", + "iopub.status.busy": "2023-11-09T22:34:01.739927Z", + "iopub.status.idle": "2023-11-09T22:34:01.744586Z", + "shell.execute_reply": "2023-11-09T22:34:01.744162Z" } }, "outputs": [], @@ -354,10 +354,10 @@ "start_time": "2023-11-09T18:41:04.959591758Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:04.609947Z", - "iopub.status.busy": "2023-11-09T20:46:04.608968Z", - "iopub.status.idle": "2023-11-09T20:46:04.978921Z", - "shell.execute_reply": "2023-11-09T20:46:04.978192Z" + "iopub.execute_input": "2023-11-09T22:34:01.746368Z", + "iopub.status.busy": "2023-11-09T22:34:01.746056Z", + "iopub.status.idle": "2023-11-09T22:34:02.046246Z", + "shell.execute_reply": "2023-11-09T22:34:02.045802Z" } }, "outputs": [ @@ -373,7 +373,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHJCAYAAABws7ggAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByhElEQVR4nO3deVxU5eIG8OfMyj7KDoK4gLtpaplmabmUN1FbTcsk8d5Wysq6Zb+b2qI3u2Wrll2VtNRKsyxbNEuztFLSm1uICm6AKOKwz/r+/hhmZGSRgYGZMzzfz+d8hjnbvHMcnIf3vIskhBAgIiIikimFpwtARERE1BQMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzREREJGsMM0RERCRrDDNEREQkawwzROSy9PR0SJKEXbt2uf3cOTk5kCQJ6enpLh0nSRIkSUJKSkqt259//nnHPjk5OU0uJxF5D4YZIvIqMTEx2LFjB2666SaXjw0ODsann36KkpISp/VCCKSnpyMkJMRdxSQiL8IwQ0ReRavV4qqrrkJERITLx44bNw5CCKxevdpp/Q8//IDs7GxMmDDBXcUkIi/CMENETZaSkoKgoCDs378fw4cPR2BgICIiIvDwww+jvLzcad9PP/0UAwcOhE6nQ0BAADp16oSpU6c6tjf2NhMA6HQ63HzzzVi6dKnT+qVLl+Lqq69Gly5dGvX+iMi7McwQkVuYTCb87W9/w/Dhw/H555/j4YcfxnvvvedUG7Jjxw5MmDABnTp1wurVq7FhwwY899xzMJvNbitHamoqfv31Vxw8eBAAcP78eXz22WdITU1122sQkXdReboAROQbjEYjnnjiCTzyyCMAgJEjR0KtVuPZZ5/FL7/8gquvvhrbt2+HEALvvvsudDqd49i6Gu02xnXXXYeOHTti6dKleOWVV7By5UqoVCrcfvvtePfdd932OkTkPVgzQ0Ruc9dddzk9nzRpEgDgxx9/BABcccUVAIA77rgDn3zyCU6dOuX2Mth7NK1YsQJmsxlLlizBHXfcgaCgILe/FhF5B4YZInILlUqFsLAwp3XR0dEAgMLCQgDAtddei88//xxmsxn33HMP4uLi0KtXL6xatcqtZbn33ntx5swZzJ07F3/88QdvMRH5OIYZInILs9nsCC12+fn5AOAUcsaNG4fNmzdDr9djy5YtiIuLw6RJk7Bjxw63lSU+Ph4jRozAnDlz0LVrVwwePNht5yYi78MwQ0Ru89FHHzk9X7lyJQBg2LBhNfbVarUYOnQoXn75ZQDA7t273VqWJ554AsnJyfjXv/7l1vMSkfdhA2AiajRJkhw/azQavPrqqygtLcUVV1yB7du348UXX8To0aMxZMgQAMBzzz2HkydPYvjw4YiLi8P58+fxxhtvQK1WY+jQoW4t26hRozBq1Ci3npOIvBPDDBG5zD52jFardaxTq9X46quv8Mgjj+DFF1+Ev78//v73v+OVV15x7DNw4EDs2rUL//znP3HmzBm0adMGAwYMwA8//ICePXu2+PsgIt8gCSGEpwtBRPLy6KOP4u2338b58+cRHByMlJQUrFmzBqWlpZ4uGhG1QqyZIaIGy8jIwM6dO7F06VKMHTsWwcHBni4SERHDDBE13G233Qa9Xo+xY8fizTffbJHXvNTowAqFAgoF+zIQtWa8zUREXisnJwcdO3asd59Zs2Zh9uzZLVMgIvJKrJkhIq8VGxuLnTt3XnIfImrdWDNDREREssYbzURERCRrsrzNZLVakZubi+DgYKdBu4iIiMh7CSFQUlKC2NhYtzbcl2WYyc3NRXx8vKeLQURERI1w4sQJxMXFue18sgwz9rEtTpw4gZCQEA+XhoiIiBqiuLgY8fHxbh+jSpZhxn5rKSQkhGGGiIhIZtzdRIQNgImIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWZDnODBGRtzCZTLBYLJ4uBpFHKJVKqNVqTxeDYYaIqDGKi4tx9uxZGAwGTxeFyKO0Wi3Cw8M9OogtwwwRkYuKi4tx6tQpBAUFITw8HGq1mpPeUqsjhIDJZIJer8epU6cAwGOBxqUws2jRIixatAg5OTkAgJ49e+K5557D6NGjAdje2Jw5c7B48WIUFRVh4MCBeOedd9CzZ0/HOQwGA2bMmIFVq1ahoqICw4cPx8KFC9064RQRUXM6e/YsgoKCEBcXxxBDrZq/vz+Cg4Nx8uRJnD171mNhxqUGwHFxcfj3v/+NXbt2YdeuXbj++usxbtw47N+/HwAwf/58vPbaa3j77bexc+dOREdHY+TIkSgpKXGcY/r06Vi3bh1Wr16Nn3/+GaWlpRgzZgzvORORLJhMJhgMBuh0OgYZItjmWdLpdDAYDDCZTJ4pgxBCNOUEoaGheOWVVzB16lTExsZi+vTp+Oc//wnAVgsTFRWFl19+Gffddx/0ej0iIiKwYsUKTJgwAQCQm5uL+Ph4fP3117jhhhsa9JrFxcXQ6XTQ6/WcaJKIWlRlZSWys7PRoUMH+Pv7e7o4RF6hoqICOTk56NixI/z8/Orcr7m+vxvdNdtisWD16tUoKyvDoEGDkJ2djfz8fIwaNcqxj1arxdChQ7F9+3YAQEZGBkwmk9M+sbGx6NWrl2MfIiI5YK0M0QWe/n1wuQHw3r17MWjQIFRWViIoKAjr1q1Djx49HGEkKirKaf+oqCgcO3YMAJCfnw+NRoO2bdvW2Cc/P7/O1zQYDE49BoqLi10tNhEREfkol2tmunbtij179uDXX3/FAw88gClTpuDAgQOO7RenMyHEJRPbpfaZN28edDqdY4mPj3e12C7Ly8vD7NmzkZeX1+yvRURERI3ncpjRaDRITEzEgAEDMG/ePPTp0wdvvPEGoqOjAaBGDUtBQYGjtiY6OhpGoxFFRUV17lObZ555Bnq93rGcOHHC1WK7LC8vD3PmzGGYISLyAVu2bIEkSUhJSfF0UagZNHk6AyEEDAYDOnbsiOjoaGzatMmxzWg0YuvWrRg8eDAAoH///lCr1U775OXlYd++fY59aqPVahESEuK0EBGRd8jJyYEkSRg2bJhbzsfgQa5yqc3MzJkzMXr0aMTHx6OkpASrV6/Gli1b8O2330KSJEyfPh1z585FUlISkpKSMHfuXAQEBGDSpEkAAJ1Oh9TUVDzxxBMICwtDaGgoZsyYgd69e2PEiBHN8gaJiIjIt7kUZk6fPo3JkycjLy8POp0Ol112Gb799luMHDkSAPDUU0+hoqICDz74oGPQvI0bNyI4ONhxjgULFkClUuGOO+5wDJqXnp4OpVLp3ndGRERErYJLt5mWLFmCnJwcGAwGFBQU4Pvvv3cEGcDW+NfeaLayshJbt25Fr169nM7h5+eHt956C4WFhSgvL8eXX37ZIg16iYjI/WbPno2OHTsCALZu3QpJkhxL9dtEBw4cwF133YWYmBhoNBq0a9cO99xzDzIzM53Ol5KSguuuuw4A8MEHHzidb/bs2Y79NmzYgKlTp6J79+4ICQlBYGAg+vTpg7lz53K+rFaIczMREVGj9e3bF7feeivWrl2LqKgo3HjjjY5tQ4YMAQBs3rwZycnJqKioQL9+/TBs2DD89ddfWLFiBdatW4evv/4a11xzjeOY/Px8fPfdd+jcubPjHPbXsktNTUVZWRl69uyJ3r17o7i4GL///jueffZZbN68GRs3bmSNfyvCMENERI02fvx49O3bF2vXrkW3bt2Qnp7utL2srAx33XUXKioqsGjRItx///2ObQsWLMDjjz+OSZMm4fDhw9BqtZg2bRoSExPx3XffYciQITXOZ/fuu+9i5MiRCAwMdKwrKSnBpEmT8NVXX+Gjjz7CPffc0xxvmbxQk3szERHRBUIIVBisslmaOKPNJX3yySc4ffo0rrnmGqcgAwCPPfYY+vfvj5MnT2LdunUunXf8+PFOQQYAgoODsWDBAgDAF1980bSCk6ywZoaIyI0qjQI3PXbS08VosA0L4uCvbb6h6Ldt2wYAuOuuu2rdfvfddyMjIwPbtm3DnXfe6dK5s7Ky8PXXX+Pw4cMoKyuD1XohnGVlZTWt4CQrDDNERNRscnNzAQAdOnSodbt9vX2/hhBCYMaMGViwYEGdNUslJSUulZPkjWGGiMiN/DQSNiyI83QxGsxP0zITBF5qWhtXJir8+OOP8dprryEuLg6vv/46Bg0ahIiICKjVahiNRmi12ma/fUbehWGGiMiNJElq1ts2chMbGwsAyM7OrnW7fSLimJiYBp/T3r5m0aJFGDNmjNO2o0ePNqaYJHNsAExERE2i0WgAAGazucY2e5frjz76qNZj7evt+13qfAAc8/vVNkbZJ5980tBikw9hmCEioiYJDw+HWq3GkSNHYLFYnLbdcccdiIqKwrZt27B48WKnbW+++SZ27tyJuLg43HzzzY719tqciwfUs+vSpQsAYPHixU63k7Zt24ZXXnnFLe+J5IVhhoiImkSj0eDGG29Efn4++vTpg3vuuQfTpk3DsmXLEBgYiI8++gj+/v647777MGDAAEyaNAn9+vXDo48+isDAQKxcuRJardZxvg4dOuCyyy7Drl27cOWVV+Lee+/FtGnTsH79egDAI488gsDAQCxcuBC9evXCxIkTce2112Lo0KE1un9T68AwQ0RETfbf//4XkydPRmFhIVauXIklS5Zg69atAIDhw4dj586dmDhxIk6ePIk1a9YgPz/f0S27+i0mu7Vr12L8+PE4evQoli9fjiVLluCPP/4AYKuZ2blzJ5KTk3H27FmsX78epaWleO+991gz00pJQoZNvouLi6HT6aDX6xESEuL282dlZWHu3LlIT09HSkoKZs6ciaSkJLe/DhHJT2VlJbKzs9GxY0f4+fl5ujhEXqGhvxfN9f3NmpmLLFu2DN26dcOKFSsAACtWrKh1iG4iIiLyDgwz1WRlZWHatGmwWq2ORmwWiwVWqxWpqak4fPhwi5YnLy/PMQs5ERER1Y5hppqlS5fWOXCTJElYsmRJi5YnLy8Pc+bMYZghIiKqB8NMNTk5OXWOGimEQE5OTssWiIiIiC6JYaaaDh061FszU9fcIkREROQ5DDPVTJ06td6amdTU1BYuEREREV0Kw0w1SUlJWLJkCRQKBZRKJQBAqVRCoVBgyZIlSExM9HAJiYiI6GIMMxdJSUlBZmYmJk+eDACYPHkyMjMzkZKS4tmCERERUa0YZmqRmJiItLQ0AEBaWhprZIiIiLwYwwwRERHJGsMMUSvCgRiJyBcxzBC1IhyIkYh8EcMMERERyRrDDBEREckawwwRETVZTk4OJEnCsGHDPF0Uh2HDhkGSJE5F00hyGvmeYYaIiIhkjWGGiIiIZI1hxktlZWXhrbfeAgC89dZbyMrK8nCJiIiIvBPDjBdatmwZunXrhhUrVgAAVqxYgW7duiE9Pd2zBSMiaoDi4mI8+uijiI+Ph5+fH7p3744FCxbAarU67bdnzx489dRT6N+/PyIiIqDVatGpUyc8+OCDyM3NrfP8x48fx8MPP4ykpCT4+fkhLCwMV155JebOnYuKiopLlk+v1+Paa6+FJEmYPn260wTDR48exR133IHQ0FAEBQVhyJAh+O6777BlyxZIklRjapuUlBRIkoQtW7bgu+++w3XXXYc2bdpAkiScP38eAGA2m/HWW2+hf//+CAoKQlBQEK688kosWrQIFoulRvk6dOgASZJqLXtDyvHTTz/h+uuvR3BwMEJCQnDTTTfhwIEDtZ6vrKwM//znP9G+fXv4+fmhW7dueO211+qcdNlbMcx4maysLEybNg1Wq9XxIbdYLLBarUhNTcXhw4c9XEIioroZDAZcf/31WL58Oa688kqMHDkSx44dw+OPP47U1FSnff/973/jtddeg8ViwdVXX42//e1vEEJg0aJFGDBgQK2B5qeffsJll12Gd955B1arFePGjcOgQYNw9uxZPPvsszh9+nS95Tt9+jSGDRuGbdu2Yc6cOXj99dcdwSErKwsDBw7Ep59+isjISCQnJ8NiseBvf/sb1q5dW+95V65cidGjR6OsrAyjR4/GFVdcAUmSYLFYMG7cODzyyCM4fPgwRowYgREjRuCvv/7Cgw8+iNtvv71GyGuKL7/8Etdffz3OnTuHG264ATExMfj6669x7bXXIj8/32lfg8GAUaNGYf78+aioqEBycjI6dOiAp59+Gg8//LDbytQihAzp9XoBQOj1+mZ7jYyMDAFAZGRkNNtr1Obpp58WSqVSAKixKJVK8fTTT7doeci3eOpz7UsqKirEgQMHREVFRa3brVarKDOUyWaxWq1uuS7Z2dmO/6suu+wycebMGce2w4cPi9jYWAFAfPHFF471mzdvFrm5uU7nsVgsYs6cOQKAuPfee522nTt3TkRERAgAYsGCBTXKvnXrVnH+/HnH86FDhwoAIjs721HGxMREIUmSeOutt2q8h+HDhwsAIi0tTVgsFsf65cuXO97blClTnI6ZMmWKY9vq1atrnPM///mPACB69+4tTp8+7Vifm5srunbtKgCId955x+mYhIQEUdfX848//lhvORQKhVi5cqVjvdlsFrfeeqsAIP71r385HTN37lwBQFx55ZVO1y0jI0OEhIQIACIhIaHWclzsUr8Xds31/a1qmchEDZWTk1Nn9Z4Qgl0MibxchakCvd/s7eliNNjeR/YiQBPg1nP+5z//QXh4uON5586d8a9//QsPPPAA3nnnHYwdOxYAcP3119c4VqFQ4LnnnsPixYvxxRdfOG17//33cebMGYwZMwbTp0+vcey1115bZ5n279+PUaNGoaCgACtWrMBdd93ltP3w4cPYvHkzQkNDMW/ePCgUF25cTJ48Gf/973/x008/1Xn+m266CRMmTKix/s033wQAvP7664iMjHSsj4mJwSuvvIKxY8fizTffxIMPPljnuV0xadIkTJw40fFcqVRi5syZWLt2bY3yL1q0CACwYMEC6HQ6x/p+/frhoYcewrx589xSppbAMFOHmJgYzJo1CzExMS36uvXdK5VTn38iap1CQ0MxcuTIGusnTZqEBx54ANu3b4cQwvH/XGFhIdavX499+/bh/PnzjtvrJpMJ586dw7lz5xAaGgoA+P777wEA9913n0tl+vXXX/HQQw+hoqICn3/+OW666aYa+2zfvh0A8Le//Q2BgYE1tt9+++31hhl7QKvu+PHjOH78OKKjo2sNbmPGjEGbNm2QmZmJM2fOICIiwpW3VatRo0bVWNelSxcAcJrG5Pjx4zhx4gTatWuHwYMH1zhm4sSJDDO+ICYmBrNnz27x1506dSrmz59f6zYhRI17zkTkXfzV/tj7yF5PF6PB/NX+bj1fQkJCretDQkLQpk0bnD9/HsXFxdDpdFi1ahX+8Y9/oLS0tM7zlZSUOMLMiRMnANhqelwxefJkmM1mfPzxx7UGGQCO9jnx8fG1bm/fvn29r1Hbdvs56/ojVJIkJCQk4Pz588jNzXVLmImLi6uxLigoCICtjczFZavrfV3q/Xobn20ALNfZgZOSkrBkyRIoFAoolUoAtmpChUKBJUuWIDEx0cMllCe5fh5IfiRJQoAmQDZLXTXBzaH6LfRjx44hJSUFBoMBr7/+OrKyslBeXg4hBIQQGDRoUI1jql9jV9hvuzz33HM1GsE29Nx13f638/Pzc/mcru4D4JKNhRt6Hvv7qe9OgJz4dJiR6+zAKSkpyMzMxOTJkwHY/qrIzMys0RWvJfhKCJDz54FITo4fP17r+uLiYuj1egQGBiIkJARff/01jEYjHnnkETz66KNITEyEv/+FWqKjR4/WOIe91sTVXp3PP/88/vnPfyIzMxPDhw9HQUFBjX3sTQrqKr+9VsgVsbGxAIDs7Ow697G/XvUmDRqNBgBqrbFqTDnqK9uxY8dq3V7Xem/ls2FG7hITE5GWlgYASEtL81iNDEOA7+BAjNQSCgsLHW1bqlu1ahUAYPDgwZAkCUVFRQBqv63z008/1drFesSIEQCAxYsXu1yuf//733jyySdx4MABDB8+HGfPnnXabm838vXXX6O8vLzG8WvWrHH5Ndu3b4/27dsjPz8fP/zwQ43tGzZsQFFREbp27ep0i8kebA4dOlTjmI0bN7pcjtokJCQgLi4Op06dwo4dO2psX716tVtep6UwzBC1AhyIkVrSk08+icLCQsfz7OxsvPDCCwDg6LVjb5T64YcfoqyszLHvqVOncP/999d63mnTpiE8PBxffvkl3n777Rq3frZt2wa9Xl9nuebPn4/HH38c+/btw/Dhw53KmJSUhOuuuw7nzp3DzJkznc790UcfYevWrQ19+07sf5Q+9thjOHPmjGN9fn4+nnzySad97IYOHQoAmDdvntOgeh9++KFbQ4a9IfUTTzyB4uJix/o9e/bgnXfecdvrtASGGSIfx4EYqSVdddVVUCgUSEpKwm233YaxY8eiV69eOHXqFO6++26MHz8egK33T8+ePbFr1y4kJibitttuw5gxY9ClSxe0bdu21h42oaGh+OSTTxAcHIy0tDQkJSVhwoQJSE5ORqdOnXDttdc6anzq8uqrr2L69On4888/MWLECKf9Fy1ahNDQULzxxhvo0aMHJk2ahMGDB2Py5MmOEGa/BdRQjz32GEaPHo0///wTSUlJuOWWW3DzzTejS5cuOHjwIMaPH48HHnjA6ZiHHnoIERERWLNmDXr06IHbb78dffv2RUpKCh599FGXXr8+Tz75JAYOHIgdO3agc+fOuOOOOzB69GgMHDgQkyZNctvrtASGGSIft3Tp0nob+S1ZsqSFS0S+TKvV4ocffsDEiROxY8cOfPfdd4iPj8d//vMfp5pAjUaDbdu24YEHHoCfnx+++uorHDx4EGlpadi0aRPUanWt57/uuuuwZ88e/OMf/4DZbMbnn3+OX3/9FZGRkZg3bx6io6MvWcYFCxYgLS0Ne/bswciRIx3TDnTt2hW//fYbbrvtNuTn5zvGufnqq68c4SosLMyl66FUKrF+/Xq88cYb6NSpE7777jts3LgRXbt2xTvvvIM1a9Y4jWkDAFFRUfjpp58wZswY5OXl4ZtvvoFOp8OmTZtq7QLeWFqtFt9//z1mzJgBrVaLL774AkePHsWLL76It99+222v0yLcOgRfC2nICIK+MNKpN7wHbyiDO/jK+2iMO++8UygUilpHlVYoFOLOO+/0dBFlpaEjnZJvuf/+++sc5Zc8PwIwa2Z8nK/0RqLGc/dAjPxMka+qrKzEwYMHa6xfu3Yt/vvf/0Kn09U5Tg15FsOMj2NvJJo6dWq9U2S4OhAjP1Pkq86fP48ePXqge/fuGDt2LG699Vb06NEDt912G6xWKxYuXOgYgI68C8MMkY/jQIxEDaPT6fDEE09Ao9Hg559/xvr161FYWIhx48Zh69atsmsU25pwOgOiViAlJQVDhgzBSy+9hPT0dEyePBnPPvssgwxRNf7+/vjPf/7j6WJQI7BmhqiV8JaBGImI3M2lMDNv3jxcccUVCA4ORmRkJMaPH4/MzEynfVJSUiBJktNy1VVXOe1jMBiQlpaG8PBwBAYGYuzYsTh58mTT3w0RERG1Oi6Fma1bt+Khhx7Cr7/+ik2bNsFsNmPUqFFOozcCwI033oi8vDzH8vXXXzttnz59OtatW4fVq1fj559/RmlpKcaMGeM00iERERFRQ7jUZubbb791er5s2TJERkYiIyMD1157rWO9Vqutc+AivV6PJUuWYMWKFY55Nj788EPEx8fj+++/xw033ODqeyAiIqJWrEltZuxzYISGhjqt37JlCyIjI9GlSxf8/e9/d5qhNCMjAyaTCaNGjXKsi42NRa9evbB9+/ZaX8dgMKC4uNhpISIiIgKaEGaEEHj88ccxZMgQ9OrVy7F+9OjR+Oijj/DDDz/g1Vdfxc6dO3H99dfDYDAAsE2updFo0LZtW6fzRUVFIT8/v9bXmjdvHnQ6nWOpbZbV6jg7sHfx9CBr/DwQEfm2RoeZhx9+GH/++adjWne7CRMm4KabbkKvXr2QnJyMb775BocOHcKGDRvqPZ8Qos5RSp955hno9XrHcuLEiTrP40uzA8fExGDWrFmO6eBbmrtCgCcHWfOlzwMREdWuUWEmLS0N69evx48//oi4uLh6942JiUFCQoLjizA6OhpGo7HGzKYFBQWIioqq9RxarRYhISFOS218bXbgmJgYzJ492yNhxhdCgK99HoiIqHYuhRkhBB5++GF89tln+OGHH9CxY8dLHlNYWIgTJ044vpD79+8PtVqNTZs2OfbJy8vDvn37ap3y3RXeNjuwp2+vNJavhABv+zwQEVHzcCnMPPTQQ/jwww+xcuVKBAcHIz8/H/n5+aioqAAAlJaWYsaMGdixYwdycnKwZcsWJCcnIzw8HDfffDMA23DRqampeOKJJ7B582bs3r0bd999N3r37u3o3dRYOTk59c5Bk5OT06Tzu0quc9j4Sgjwts8DUWuXk5MDSZIwbNgwTxelwbZs2QJJkpCSkuLpolA9XOqavWjRIgCo8UFctmwZUlJSoFQqsXfvXixfvhznz59HTEwMrrvuOnz88ccIDg527L9gwQKoVCrccccdqKiowPDhw5Genu6YN6ax3D07cGvlKyGAnwciotbBpTBT1xecnb+/P7777rtLnsfPzw9vvfWWo3Gpu0ydOhXz58+vdVtjZgdurXwlBPDzQORd2rVrh4MHDyIgIMDTRSEf41NzM3F2YGeN7Y00derUemtm5BICfO3z4A1tsNjNnZpCrVajW7duaN++vaeLQj7Gp8IMYJsbKjMzE5MnTwYATJ48GZmZma3ufmdTeiP5Ugjwpc+Dp9tg+UIPN2o+Bw8exOTJk9G5c2f4+fkhIiICffv2xfTp0x2f2frazJhMJrz00ktITEyEn58fOnXqhNmzZ8NkMtVaW1y9Lcu5c+fwwAMPICYmBlqtFr169cLSpUtrLeeGDRswdepUdO/eHSEhIQgMDESfPn0wd+5cx3hoJENChvR6vQAg9Hp9nftkZGQIACIjI6MFS+YdZTh06JBQKBQCQI1FoVCIrKysBp0nKytLpKSkCAAiJSWlwcddrDX/W7iTO95Dbm6umDVrlsjNzXXpOHd9pnxBRUWFOHDggKioqPB0UbxGRkaG8Pf3F5IkiYEDB4o777xT3HTTTaJ79+4CgPjxxx+FEEJkZ2cLAGLo0KFOx1utVjFu3DgBQAQHB4vx48eLsWPHiqCgIDFu3DiRkJAgLv66+vHHHwUAMW7cONGlSxcRFRUlkpOTxXXXXSeUSqUAIN5///0aZY2KihJBQUFi4MCB4vbbbxc33HCDaNu2rQAgrr/+emE2m2t9nSlTprjzkvmchv5eNOT7uzFcajND8tCQ3kjz5s275HkSExORlpaG9PR0pKWlyapGxt3y8vLw3nvv4b777vPYIIbuYB+7yFXu+ky1BkIIiPJKTxejwaQAvzr/bRvqzTffREVFBdauXYtbbrnFadvBgwfRpk2beo//6KOP8MUXXyAxMRE//fST43fsxIkTuOaaa3Ds2LE6j/3iiy9w66234oMPPkBgYKBj3fjx4/HCCy9g2rRpTvu/++67GDlypGNfACgpKcGkSZPw1Vdf4aOPPsI999zjytsnL8Aw44N8pTeSN7Hf4hk7dmyjw4ycAxE/Uw0nyiuR3WHUpXf0Eh1zNkIK9G/SOezz711//fU1tnXv3v2Sx7/77rsAgBdeeMHpdyM+Ph6zZs3C1KlT6zw2JCQEixcvdgon48aNQ+/evbF3717k5OQ4dVoYP358jXMEBwdjwYIF+Oqrr/DFF18wzMiQz7WZId/pjeRrPN3mpSn4maL69O/fHwBwzz334Pfff4fVam3wsSaTCTt37oRCoahRqwMAt99+e73HDxgwoMZkxwDQpUsXAKj19y0rKwtvvPEG0tLSMHXqVKSkpOCFF15wbCP5Yc2MD2KXZHI3fqYaTgrwQ8ecjZ4uRoNJAX5NPseTTz6Jn3/+GV9++SW+/PJL6HQ6DBw4EGPGjEFKSorTOGMXKywshNFoRExMDDQaTY3tQUFBaNu2bY0pcOzqmlInKCgIAJwa9QohMGPGDCxYsKDOmsaSkpI6y0reizUzPsiXeiORd+BnquEkSYIi0F82S1PbywC2Wz0//PADtm3bhqeeegpdu3bF5s2b8cgjj6Br1644cuRIg65bXeoKHpc67mIff/wxXnvtNbRr1w5r1qzBqVOnYDQaIYRwhJ76Xou8F8OMj/KWLskcl8R3eMtniryTJEkYMmQIXn75Zfz222/Iy8vDxIkTkZeXh5kzZ9Z5XFhYGNRqNfLz82E0GmtsLy0txfnz591SxnXr1gGwjWZ/6623IjY2Fmq1GgBw9OhRt7wGeQbDjA+z90YC4JHeSByXxPd4+jNF8hEREeHoObd3794691Or1bjiiitgtVodYaO6NWvWuK1M9ltV8fHxNbZ98sknbnsdankMM9QsfGXmbSK6tHfffRfZ2dk11n/zzTcAcMkRf++77z4AwHPPPYf8/HzH+pMnT+L55593WzntjYIXL17sdDtp27ZteOWVV9z2OtTyGGaoWfjKzNtEdGnvvvsuOnXqhJ49e+K2227DnXfeicsvvxzTp0+Hv78/Zs2aVe/xkydPRnJyMg4dOoSuXbvilltuwfjx49G9e3f06tUL7du3d9wOaopHHnkEgYGBWLhwIXr16oWJEyfi2muvxdChQ3H//fc3+fzkOQwzzaS1txVx57gk3jAnERHV7YUXXsDUqVMhSRI2b96ML7/8EuXl5fjHP/6BP//8E4MGDar3eEmSsGbNGjz//PMIDw/Hhg0b8L///Q/Tp0/HJ598gtOnTyMsLKzJ5ezSpQt27tyJ5ORknD17FuvXr0dpaSnee+891szIHLtmN4Nly5Zh2rRpjpqJFStWYPny5ViyZEmraSzpznFJ3DFgHRE1n+TkZCQnJ19yvw4dOtT5R45Go8G//vUv/Otf/3Ja/9tvv8FgMKBv375O64cNG1Zvz6P09PRa2+d1794d69evr/WY2s53qdch78CaGTdjWxEbX5l5m4haxt69e2EymZzW5eTk4IEHHgAATJo0yRPFIpnw2TATExODWbNmtfhf8mwrYuNt45J46vPgLq39tiX5vieffBIxMTEYPnw4Jk6ciGuuuQbdu3fH7t278be//Q133323p4tIXsynw8zs2bNb/MvL1+awaUoI8KZxSTz1eXAHdnGn1iAlJQX9+vXDgQMH8Nlnn2HPnj3o3bs3FixYgM8//9wtg/uR7/LZMOMpvjaHTVNDgC+MS+LJWhHetqTW4s4778TGjRuRl5cHg8GAkpIS/P7775g+fbpbejKRb2OYcTO2FfEtnq4V4W3L2rGHGxFVxzDjZt7WVoQaz521Io2t3fG125buIucZyInI/RhmmoE3tRWhxnNXrUhTand87bYlEVFzYJhpJr7QVqS1c0etSFNrd3jbsnnwNhWRb2GY8XFy75LsSe6oFWlq7Y433rb0hc8Ub1MR+RaGGR8n5y7JnuaOWhF31O54221LfqaIyNswzBDVwR21Iu5q88LblkREdWOYIapHU2tF2OaF3IFtfIjqxzBDdAlNqRXxxjYvJD9s40NUP4YZ8mq+MCeRt7V5IWoOkiQ5LWq1GuHh4ejduzdSUlKwdu1amM1mTxeTfBTDDHktT4++605s80KtxZQpUzBlyhRMnDgRV199NcxmM5YvX47bbrsN3bt3x++//+6W10lPT4ckSZg9e7ZbzkfypvJ0AYhqU318Fjv7OC2pqakYMmQIAwGRF6rtj40jR45g5syZ+OSTT3Ddddfhl19+Qd++fVu8bOS7WDNDza4x45JwTiIi39G5c2d8/PHHSE1NRXl5OaZOnerpIpGPYZihZteYcUk4JxGR73n11VcRGBiI3bt34+eff3batmHDBkydOhXdu3dHSEgIAgMD0adPH8ydOxcGg8Fp32HDhuHee+8FAMyZM8eprY69ZkgIgVWrVuHOO+9Ely5dEBgYiODgYFx55ZVYuHChU60vyR9vM5FX4pxERDYXN4KfOXMmkpKSPFyqxtHpdBg9ejTWrFmDH3/8EUOGDHFsS01NRVlZGXr27InevXujuLgYv//+O5599lls3rwZGzdudPQIvPHGG2E2m/HLL7+gT58+Tres7LefDQYDJk2ahLZt26JHjx7o168fzp49ix07duChhx7C77//Lsv2d1QHIUN6vV4AEHq93tNFqVdubq6YNWuWyM3N9XRRZOfQoUNCoVAIADUWhUIhsrKyWrQ8GRkZAoDIyMjw2DncUQZfcOjQIZGSkiIAiJSUFHHo0CGXz9GUa1lRUSEOHDggKioqXD7WVUuXLhUKhUIolUoBQCiVSqFQKMSyZcua/bVdZf/9vJQXX3xRABATJ050Wr9u3TpRWlrqtK64uFiMGTNGABAffPCB07Zly5YJAGLWrFm1vo7JZBJr164VBoPBaX1BQYEYMGCAACC2bt3agHdGDdHQ34vm+v7mbaZmxGHfG4/js1BtfKmHm9FoRG5uLoxGY63bmzpJqbcKDw8HABQVFTmtHz9+PAIDA53WBQcHY8GCBQCAL774wqXXUalUuOWWW6DRaJzWR0REYN68eY06J3kv3mYir5WSkoIhQ4bgpZdeQnp6OiZPnoxnn32WQUbm8vLy8N577+G+++5zKei7q4ebt9y2MZlMyM3NhU6nq/GFCzSsEbz9S1lORFVbuNreW1ZWFr7++mscPnwYZWVlsFqtjv0bO8bUnj17sHHjRhw7dgzl5eUQQqCkpKRJ5yTvwzBDXs0+Pkt6ejrHZ/ER9tFsx44d6/Yebpf6cl+2bBmmTZvmOM+KFSuwfPlyLFmyxOsGMfTVRvBnz54FAISGhjrWCSEwY8YMLFiwoM73bA8gDWU0GpGSkoJVq1bVuY+r5yTvxdtMRDLRmC7uvqSpX+5yu23jq43g9+zZAwDo0aOHY93HH3+M1157De3atcOaNWtw6tQpGI1GCCEcPZnq+revy2uvvYZVq1ahV69e+Oabb3D69GnHOTMzMxt1TvJeDDNEMtHa22A19ctdbmMX+eIkpXq9Ht9++y0A4LrrrnOsX7duHQBg0aJFuPXWWxEbGwu1Wg0AOHr0aKNey37OVatW4cYbb0RkZGSTz0nei2GGqAFae62IN2jql7vcbtv4YiP4J554AmVlZbjiiiswaNAgx3p7Y+D4+Pgax3zyySe1nsvezqiu+Z4ac06SL4YZogZwR60IA1HTNPXLXY63bXxlktKjR49iwoQJWLJkCQIDA2vUgnXp0gUAsHjxYqfAuW3bNrzyyiu1njM2NhYAHLeMLmY/57vvvuu0fs2aNVi+fHnj3gh5L7d29G4hchlnhtyD46v4lqb+e2ZlZTmNM9PQMYfcNXaRu8aZKS0tFTt37qwxtkptmut3wGAwiFOnTtUYi6Ux7NdyypQpYsqUKWLy5Mli3Lhxonv37kKSJAFAJCUliZ07d9Y4NjMzUwQGBgoAokePHuLOO+8U11xzjZAkScyYMUMAEAkJCU7HVFRUiMjISAFADB06VNx7770iNTVV/PLLL0IIIbZu3eoYn6d///5i4sSJjvFl7OccOnRok9832XCcGSIiFzR2BnJfvG3TVPbu4SaTyW3n/OCDD/DBBx9g1apV2LZtG5RKJe655x6sXbsWBw4cwIABA2oc06VLF+zcuRPJyck4e/Ys1q9fj9LSUrz33nt11sz4+flhw4YNGDlyJPbs2YP09HQsWbIEhw4dAgBce+21+Pnnn3H99dfj6NGj+Oqrr6DRaLB27Vo89NBDbnu/5B3YNZuIWg2OXdR8RBN7BnXv3h3r16936dwDBgzAxo0b6zznVVddhc2bN7t0TpIn1swQUavS2JodIvJeDDNEREQkawwzRESNcKm5ldyJPeGI6sc2M0REjWA2m+udW8md7EMDEFHtXKqZmTdvHq644goEBwcjMjIS48ePr9HHXwiB2bNnIzY2Fv7+/hg2bBj279/vtI/BYEBaWhrCw8MRGBiIsWPH4uTJk01/N+ST+Fcp+ZrKykoUFBQAAAoKClBZWenhEhHJm0thZuvWrXjooYfw66+/YtOmTTCbzRg1ahTKysoc+8yfPx+vvfYa3n77bezcuRPR0dEYOXKk04Re06dPx7p167B69Wr8/PPPKC0txZgxYxzzpRBV19qH8fclF89Y3RpnLT579iz27duHwsJCAEBhYSH27dvnmICRiFznUpj59ttvkZKSgp49e6JPnz5YtmwZjh8/joyMDAC2WpnXX38dzz77LG655Rb06tULH3zwAcrLy7Fy5UoAtrk5lixZgldffRUjRozA5Zdfjg8//BB79+7F999/7/53SEReYdmyZejWrRtWrFgBwDZjdbdu3ZCenu7ZgrWgysrKOqdNyMnJYQ0NUSM1qQGwXq8HcGEq9+zsbOTn52PUqFGOfbRaLYYOHYrt27cDADIyMmAymZz2iY2NRa9evRz7XMxgMKC4uNhpISL5kNuM1c3lUrUvrJ0hufL0uD2NDjNCCDz++OMYMmQIevXqBQDIz88HAERFRTntGxUV5diWn58PjUaDtm3b1rnPxebNmwedTudYaps4jIi8l9xmrK6PffTguiY4rM+lej61RM8oouZgH0Xa/vvR0hodZh5++GH8+eefWLVqVY1tF/+nJYSo8z+yhuzzzDPPQK/XO5YTJ040tthE5AFym7G6Pmq1GlqtFqWlpS4fe6leT83dK4qoOQghoNfrodVqoVarPVKGRnXNTktLw/r16/HTTz8hLi7OsT46OhqArfalemPNgoICR21NdHQ0jEYjioqKnGpnCgoKMHjw4FpfT6vVQqvVNqaoROQF3D1jtad7uIWHh+Po0aMQQqCsrAwKheKSf7ABQHBwcJ010PbtLdluxmAwOB499Rc1yZcQAiaTCXq9HqWlpWjXrp3HyuJSmBFCIC0tDevWrcOWLVvQsWNHp+0dO3ZEdHQ0Nm3ahMsvvxyArdp069atePnllwEA/fv3h1qtxqZNm3DHHXcAAPLy8rBv3z7Mnz/fHe+JiLzM1KlT6/z9FkIgNTXVpfN5etyVkJAQWCwWbNmyBSNHjnTpjy0hhKMnU3VhYWHIzc11ZzHrZf8SKisrQ0VFBXQ6nUf+qrZYLCgpKUFwcDADlUxptVq0a9cOISEhHiuDS2HmoYcewsqVK/HFF184/YWh0+ng7+8PSZIwffp0zJ07F0lJSUhKSsLcuXMREBCASZMmOfZNTU3FE088gbCwMISGhmLGjBno3bs3RowY4f53SEQeZ5+xOjU1FZIkwWKxQKlUQgjhkRmr3VGzI0kSnnrqKezatavGH3aXcuzYMbz77rtYt24dbr75Ztx///1ISEhodFlc9dlnn+H//u//avxbvPTSS7j55ptbrBwAsH//fkycOBFr165Fz549W/S1qemUSqXHbi05ES4AUOuybNkyxz5Wq1XMmjVLREdHC61WK6699lqxd+9ep/NUVFSIhx9+WISGhgp/f38xZswYcfz48QaXQ6/XCwBCr9e7Unwi8rCsrCyRkpIiAIiUlBSRlZXl6SI1WkZGhgAgMjIyPHJ8Yx06dEgoFIpa/y9XKBQt/m/iqetAntFc398uNQAWQtS6pKSkOPaRJAmzZ89GXl4eKisrsXXrVkdvJzs/Pz+89dZbKCwsRHl5Ob788kv2UCJqBThjtef5Us8yIjtONElE1Ir4Us8yIjuGGSIiF8l5WgZ39ywj8gYMM0RELpD7tAxTp06tt2bG1Z5lRN6AYYaIqIF8YVoGe88yhULh6AqtVCqhUCg80rOMyB0YZoiIGshXGs+mpKQgMzMTkydPBgBMnjwZmZmZTp05iOSEYYaIqIF8qfEse5aRL2GYISJqIDaeJfJODDNERA3ExrNE3qlRE00SUfMTQqCsQkBfZkFxmdW2lFpRXGZBeaVAhcGKCqNApcH2c6VBVD23wmIFrFbAYhWwWAGLRTieS5IEpQJQKp0fVUoJWrUEf60EP60Ef60C/tUegwMU0AUpEBKkhC5QgZAgBXSBSmjUl55g0Vd427QMRGTDMEPUwswWgXN6Cwr1Fpyteiw8f+Hns+ctOF9iQXG5FVarp0t7af5aCW2CFAhvo0J4WyXCdUpEtFUioo0K4W2UiGijRFgbJZQK3wg9KSkpGDJkCF566SWkp6dj8uTJePbZZ10OMp6e+dsbXDxez8yZM5GUlOThUpEcSaKuOlMvVlxcDJ1OB71e79FZOolqY7YIFBRZkH/WjPxCM/IKzThd9ZhfaMG5Ygtc+a3z00oICVQgJNBWExIcoEBQgK22xE9jqzmx1aRI8NMooNVIUCkBpUKCQmF7VNqfV+UJi1XAbKmqubFceG40VdX4GETVUvVzpRUl5VboS63Ql9lqh/SlDQ9bKiUQHaZCbLgKKhThg/dfwUuzp+OagV0QE66Cn0Z+d7z/+OMP9O/fHxkZGejXr5+ni9MonnwPy5Ytw7Rp02qt4WKvKt/VXN/frJkhagSTWSD3jBknTptw/LQJJwvMyDtrCyxniyywXiKsKBVAWBtbLUZY1RKuUyK8jRJhbVRoG6yoCjDeexvHcRus1IKiEivOnjfjzHlbzdKZIgvOnDfjbNVzswU4WWDGyQIzAH8kXf0c0jcB6ZvyAQCRoUp0iFajfbQaCTFqJFQ9BgfIL+TQpVUfr8fOPm5PamoqhgwZwlt25BKGGaJ66EstOJ5vwonTZhw/bXs8cdqE3LPmemsl1CpbTYR9iQlTITpMiegwFaLCVNAFKqCQ+W0XSZIQFCAhKECBdpEAoK11P4tV4EyRBXlnzcg9a0buGdtj3lkzcs+YUFohUHDOgoJzFvx+oNLp2NAQBdpHq9EhRo3EOA06x6nRMVbjtQGPGqYh4/XMmzevhUtFcsYwQ62e2VK9lqXqMd9W21JcVndi8dNKiI9UoX20GvFRasSG28OLEqEhStmHFXdRKiRHqLu8a83t+lILTpw2IyfPhGP5tmt/LM+EgiILzhVbca7YgD2HDI79FQogPkqNxDg1OrezBZzOcRqEhihb8F1RU/jSeD3kHRhmqNWwf2naw8qJAjOO55uQd9YMSz21LJGhSrSPUiM+SlX1aPs5vI2yzr8uqeF0QUrogpTo1dm5Zqe80moLNvkmHD1lWw6fNEJfasWxPFvg2byz3LF/aIgCifEadEvQoEt7DbomaBGmY8DxRhyvh9yNYYZ8itkikHvWFlhO5F9o03LidMNqWeKjbO027D/HRcmzcaovCPBToFsHLbp1uBByhBAo1Ftw+KQJR08acfikLeCcOmPGuWIrft9fid/3X7hVFd5Gia7tNeiaYFu6tNdAF+Q7AScvLw/vvfce7rvvPln1ipo6dSrmz59f6zaO10ONwTBDsiOEwPlSqy2wVNW02B8bUssSH6lG++iq4MJaFlmRJMnWBbyNClf18nesrzBYkZ1rQtZxI/46ZsSh40YcyzNVNUCuwC9/Vjj2jQlTomuCFl0SbLU4SfEaBPrLM7Dm5eVhzpw5GDt2bKPCjKe6h3O8HnI3hhnyWgajFafOmKsFFtutoZOnbY1G6+KnkRBX7ZZQ+yhbcGkXqYK/Vp5fWlQ/f60CPTpq0aOjFuOq1lVUWnH4pC3cZFYFnJMFZuQVWpBXWI4tf9huUUkS0D5Kha4JWnTrYKvB6dyudTQyjomJwezZsz3y2u4ar4cIYJghDyutsCL3jLlaTxdb7cqpM2YUFNU9HoskAVGhSlv7lapbQva2LGE6Nr4lwN9Pgd6Jfuid6OdYV1puxaHjRmQeNyLzmAF/HTOi4JwFx/LNOJZvxsbfygDYxsXp3E7jCDddEzRoH632mYH/vIV9ssv09HROdklNwjBDzcpkFjhz3oKCc/auuGbkFpodAaa+diwAEOQvOQWV+Cg14iJVaBehgpZtWchFQQEK9Ovmh37dLgScohILMnOM+Ksq3GQeszUyzqwKPXb+Wgld2ttuTXXtoIW5hJ8/Im/BMEONJoRAUYkVBedstSgFRWacKbLgdNXzM0UNG+22bbACMeG20WFjI1SOn+Oi1GgTpGBbFmpWbYOVuKq3P67qbWuDI4RAfqEFmccMOJhTdYvqhBEVBoH/ZRnwvywDgBIAobg6JQNLvgvB3jw9ula1wWkT7DsNjInkgmGGajCaBM4VW1BUbAsjhXpL1XMrCqvW2bebzJc+n1oFRLZV1RpYYsJVCPDjX7jkPSRJQkzVZ3NY/0AAtoH/jueb8NcxI/6qCjhHThqh8Q/HwRPAwRN6x/HRYUp0S9Dawk0HDbrEa+DPzzhRs2KY8WFmi0BZhW1uneKq+XQcsy+XWVFcWvW83HldfY1rLyZJQJhOici2SkS2VSGirRJRoSrb86pHHWtXSOaUCgkdYzXoGKvB6EG2dUaTwJGqBsZ/5RiQecyI46dt82/lV2tgrJCA9tFqR/ub7h206BirhlrF3wkid5F1mDlZYILOYLJNpKcAFI7HCz9fmGwPHv9CFULAYgUslqpHqy1wWCwCJrPtP0eDScBYtRjsz41WGM223j327QajQLlBoLzS6ggsZZVWlFcKlFdYUW6w7ddYahXQNkSJsBDbaLahIUqE6pQIDVE4nrcNsc0lpFLyP2VqfTRqCd07atG9oxZAMABbg/ZDxy+Em79yjDhz3oKcPBNy8kz4doetgbFaBSTGaapqb7TolqBBXKRKlg3X5TrWDfkWWYeZ5A9vgErrD0moIQkNJKEBhLrqudppvSTUkKCGQqihkLRQQA0l1FBKGtvPkgZKaKCUbPsqYDtWgXqe13L5rKLaTMSO0GJ7fqnJB5uLWgWEBCodMy9fWKrWBV2YkTkkUIG2IUoE+UseD39EchPkr0C/rn7o1/VCA+NzeotT4+K/cowoKbfiYI4RB3OMwNZSAECgn4Sk9hp0jtOgUzvbVA0dYtRe30W8qWPdELmDrMOMVVUIs9qD96KFolpgUlcFKY3TOnuIQm3rxYWApJTUUCs0UCs10Ci00Cg1tkWlgValgZ9KC63a9uiv1sBfo0Wwnx+C/TUI9veDzl+LAH8lAv0UCPCTEFDtkTUnRJ4TqlNi8GUBGHxZAABbDW3uWbOj7Y19DJyySoE9h2rOQ9U+Sm2bf6pdVciJ0yA0hLduiaqTdZhZOWElNAEaGC1Gx2IwGVBpNqLSbIDBZITB/rPZCKPZCIPF9rPBYoTRbHA61mgxwmQ1wmR/tBphtBhgspoc66zCcqEAkhVCMkDAUHchm0oAMFUtFfXvqlaooVFqoFVVC0P2QKTUOn62r6+xnxuPVSlU/M+WqBaSJKFdhBrtItQYfkVVA2OLQE6eCVknjDhyyoQjJ404esqE4jKr4xZV9Xmo2gQp0DlOg0BVIGK634mc0yoklVsRHMCGxtQ6yTrM9IzqiZCQkBZ9TbPVDKPZWCMEGS4ORlXByf6z0VL1vPrPDTm2juPtS3UmqwkmqwllprIWvSa1kSA5B6FqYUir1DoFowYFqwYce/FrVQ9hCon/yZP3UioldI6z3WKyE0Lg7HkLjpw04cgpo+PxVIEZ50utyPirEoA/ug17GW9/Cbz95UmEhijQPlqNhBg1EqKrlhg12gazJqe5se2QZ8k6zHiCSqGCSqNCAAI8XRQIIWqEqhrhqJ4gVCNE1Xdsted1HWu2XuinLSBgMBtgMDdjrZULVApVw2ujGhGkXDlWrVDzi4UuSZIkRLRVIaKtyjEGDgBUGq3IyTXhp18PYvnShdi/fy8i4voitPOdADriXLHzrSoACA5QID7KNthku0g12kXYhkiIi1SzNsdN2HbIsxhmZEySJGhVWmhV2kvv3AIsVkvz1E5dIkTVta46s9UMs9WMclN5HaVvWe6+zVc9LF28/6VCmFLBQd7kxE+jwI4fV+KBadMckzSWnN6JI7sW44WX30X/IRNxLM9UNUWDbXqQknIrDmQbcSDbWON8IYEKxEZUBZ0IFWIj1IgNVyEq1NaDsbmncHDHZJesFSGGGXIbpUIJf4U//NX+l965mQkhYLKa3Fs75eqx1UJZ9VorALXeJvQUpaR0b21UPSGszn2qreMtwfplZWVh2rRpsFovTAVisdja8v3rn/cjM/M63HDVhTmODEYrThaYcbLAjFMFJpw6Y3YshXr72FO2XlYXUyrgGDvKttjGj4oKvbCuqdwx2SVrRYhhhnySJEmOL0hoLr1/c7MKa51hqM4aqmYMYQIXxgmwCAsqzBWoMF+ihXkLsd8SrL6oleoaQau2cFSjtqqu/es5R20N6b3ptuDSpUvrLI8kSViyZAnmzZvnWKfVKGq0x7GrMFiRd9YWdHLPmHHqjAmnCszIP2ebmsRiRdUggBagjo4OgX6huOL2b/D+tyHotL8QoTolwnVKhOmUCGtj+7ltCMejai08VUvGMEPUAhSSAn5qP/ip/S69czMTQtgasrvYgN3V2qiLj62r/dXFNVTedksQuNBTsKFBqtHrG3Dc0eyjEHVMeCaEQE5OToPfl79WgU7tNOjUrmbQsVgFzuktOH3ONt/a6UKz7ecis2NdpUGgrFKBoPAeyDwJZJ6svfOBJNl6YIXqlGgTZBsVvE2QArpgpe0xSIk2wQq0qXoe5K+Q5QCCTeErt8o8VUvGMEPUykiSBLVSDbVSjUAEero4td4SrLHUtr6Wtlcmi+nSxzVgvclqciqjN/UUPFdwDlbUPtu8gMCukl247aPbag1FTjVc9QUnlfPPuhgtIuI06FdtvVqhgcGgwq6Mw/j7P57ESy8vQpAuDoV6S43FYgWKSqwoKrHCNs5E/RQKVAUeJYIDFAgOUCCoagkOsIWd6utPFymh8Y+A2XLJU3st3iprGoYZIvIob7slCNhuC9qDUW21UTWCUwPDVlMClqVqjKvgK4Jxfsv5WssthIChlwG783a34NUC2qQB/zk5Dtr8am2gdBqoQ6vCk6SBompgUQg1hFUNYVHDalbDbFbBbFLDZFLBaFDBbLYNKHpeqHG8VA2U1Bxo9MIgpReeD0zdgCeXK6D96ACC/bUI9NMg0E9tGzxUq4B/1WOAvwIBWtuAoo511QYa9ddywFE5YpghIrqIQlI4egoGa4M9XRwAtt6C9gD1QacPMP3B6YAEWC1WKBS2RtPPzH8GI28Z2aTQZA9fDanlMhQYULKzBKYiE9Rt1Qi+IhjqCLXrb06CLci6O8wKBSSDBlKlGtL5i0dpt43ObgtGFwcm++jstpHZVQo11EottNUbr6s08FNpoFVr4K/WoLK0DB1uuAefZJzCb6clBGq1CNRoEaDVIMjPD8H+WgRptdBoFNCoJGjUVYtKgprfxE0mibpuvnqx4uJi6HQ66PX6Fh80j4jIGxw+fBgvvfQS0tPTkZKSgmeffRaJiYmXPtBNli1bhmnVuocrlApAAPPemIexE8a6VjNlNrp8q7F6+6sKYwXKKsug8OT0Ng0lVDVqmezBSlgUUCv9oJa0UCpscwaqFBqoJbXtUWkLVzV6Baq08FNp4Fc15Y1fVcDyU2sRoNHCT62Gv0aLQK0W/hotAjQaBGq0CPTTwl+jhkatcFsX/D/++AP9+/dHRkYG+vXrV2N7c31/M8wQEcnUpb44mktWVha6devm1D3cTqFQIDMzs0WDlf067Nq1C7379m5Yuyj7bcRawlalyYhyowHlRgMqTbbnFaaqqXCqlgu3G21T3VQay6EvPQ+/QC2EZIZFmGCBEQLmS78BT7OqIcF2K1ABtW1CZaiqJl+umohZUkNVFa5UkrqqtkpzYU5BpQYahRqV5ZXY/tN2jLh+BKIjouCnUttqsdS2kAWjGf+4YbTbv79ZuUVERC5xtXt4S/Fk+6u6gmX19lcX9wIsN9hCU5nBiIOHMjH7xRfw2JMzEBYZgQqTEZXGqrkGTcaqEdXt8wpWC1PV5hM0mg0oqyyBSqOEVTLDIoywVoUqK0wQkglWGAHpopbSChMETLAAqLcNtbjUDjbKK4AfSw4BJTW3WStrb7zeVAwzRETkkpycHLd1D/cFWVlZeOuttwAAb731FmbOnImkpCQAzu2v6hNWrkXRzqO4qfPARteyNbSmzmK1wGg2otxoRJnRgHKDAWVGAyqMRlQYDCg3GVFhNKDCZK+ZMsBgNtl+NttCkz1YVQ9qJqsRpeUlOHHqOCJjIiCpALPVaKulEkZYYITRWgEgp1Hvrz4MM0RE5JIOHTrUWzPToUOHli2QB1VvOwQAK1aswPLly7FkyRKkpKR4tnB1UCqU8Nf4w1/jjzA3n9seqD6ur83MLJ2bXxWQQWspIiLyJlOnTq23ZiY1NbXFynJxrUhWVlaLvrZ9agn7lBIWiwVWqxWpqak4fPhwi5WltWOYISIilyQlJWHJkiVQKBRQKm0TlSqVSigUCixZsqTFGv8uW7YM3bp1w4oVKwDYakW6deuG9PT0Fnn9hrQdopbBMENERC5LSUlBZmYmJk+eDACYPHkyMjMzW+zWijfUirDtkDNP1pIxzBARUaMkJiYiLS0NAJCWltai3bG9oVbEXW2HPBkC3MXTtWQMM0REJDveUCvijrZDng4B7uANtWQMM0REJDve0KOqqW2HvCEEuIM31JK5HGZ++uknJCcnIzY2FpIk4fPPP3fanpKSAkmSnJarrrrKaR+DwYC0tDSEh4cjMDAQY8eOxcmTJ5v0RoiIWpuYmBjMmjWrVc6y7C09qprSdsgbQoA7eEMtmcthpqysDH369MHbb79d5z433ngj8vLyHMvXX3/ttH369OlYt24dVq9ejZ9//hmlpaUYM2aMI5kSEdGlxcTEYPbs2a0yzHhLjyqg8W2HvCEEuIM31JK5HGZGjx6NF198Ebfcckud+2i1WkRHRzuW0NBQxza9Xo8lS5bg1VdfxYgRI3D55Zfjww8/xN69e/H999837l0QEVGr4+keVU3lDSHAHbyhlqxZ2sxs2bIFkZGR6NKlC/7+97+joKDAsS0jIwMmkwmjRo1yrIuNjUWvXr2wffv25igOERH5KE/2qGoqd4YAT/aI8oZaMreHmdGjR+Ojjz7CDz/8gFdffRU7d+7E9ddfD4PBAADIz8+HRqNB27ZtnY6LiopCfn5+rec0GAwoLi52WoiIiNwhLy8Ps2fPRl5eXou+rrtCgDf0iPJ0LZnbw8yECRNw0003oVevXkhOTsY333yDQ4cOYcOGDfUeJ4Sos7pt3rx50Ol0jiU+Pt7dxSYiolYqLy8Pc+bMafEwAzQ9BLi7R1RTgp0na8mavWt2TEwMEhISHFVe0dHRMBqNKCoqctqvoKAAUVFRtZ7jmWeegV6vdywnTpxo7mITERG1iKaEAHf3iPJksGuKZg8zhYWFOHHihKO1ff/+/aFWq7Fp0ybHPnl5edi3bx8GDx5c6zm0Wi1CQkKcFiIi8rzW3D3cG/hKj6imUrl6QGlpqVO1VXZ2Nvbs2YPQ0FCEhoZi9uzZuPXWWxETE4OcnBzMnDkT4eHhuPnmmwEAOp0OqampeOKJJxAWFobQ0FDMmDEDvXv3xogRI9z3zoiIqNnZu4eTZ/hKj6imcrlmZteuXbj88stx+eWXAwAef/xxXH755XjuueegVCqxd+9ejBs3Dl26dMGUKVPQpUsX7NixA8HBwY5zLFiwAOPHj8cdd9yBq6++GgEBAfjyyy8dDaCIiIjo0ryhW7Q3cLlmZtiwYXVeOAD47rvvLnkOPz8/vPXWW45uZEREROQ6e4+o1NRUSJIEi8UCpVIJIUSLDx7oSZybiYiIqIk82XbI092ivQHDDBERyZo3NEL29NQSch480B1cvs1ERETkTdgImVgzQ0RERG7hqVoyhhkiImq1PDmnkS/y1O02hhkiImqVvGFOIztvaPcj52Anifr6WXup4uJi6HQ66PV6jgZMREQuy8rKQrdu3WC1WmtsUygUyMzMlF0j2j/++AP9+/dHRkYG+vXr59Kxy5Ytw7Rp02rt3u3OXlHN9f3NmhkiImp13D2nkZy5e7JKT2CYISKiVodzGl3gC8GOYYaIiFodzml0gS8EO4YZIiJqdXxxTqPGNiL2hWDHMENERK2OfU4jhULhmORYqVRCoVDIdk6jxnaL9oVgxzBDREStEuc0svGFYMcwQ0RErVZrn9PITu7BjmGGiIiIZB3sGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiKhVa+w0AOQ9VJ4uABERkSfZpwEg+WLNDBEREQGQby2VJOqaXcqLFRcXQ6fTQa/XIyQkxNPFISIiogZoru9v1swQERGRrDHMEBERkawxzBAREZGsMcwQERGRrDHMEBERkawxzBAREZGsMcwQERGRrDHMEBERkawxzBAREZGsMcwQERGRrDHMEBERkawxzBAREZGsMcwQERGRrDHMEBERkawxzBAREZGsMcwQERGRrDHMEBERkawxzBAREZGsMcwQERGRrDHMEBERkawxzBAREZGsMcwQERGRrDHMEBERkay5HGZ++uknJCcnIzY2FpIk4fPPP3faLoTA7NmzERsbC39/fwwbNgz79+932sdgMCAtLQ3h4eEIDAzE2LFjcfLkySa9ESIiImqdXA4zZWVl6NOnD95+++1at8+fPx+vvfYa3n77bezcuRPR0dEYOXIkSkpKHPtMnz4d69atw+rVq/Hzzz+jtLQUY8aMgcViafw7ISIiolZJEkKIRh8sSVi3bh3Gjx8PwFYrExsbi+nTp+Of//wnAFstTFRUFF5++WXcd9990Ov1iIiIwIoVKzBhwgQAQG5uLuLj4/H111/jhhtuuOTrFhcXQ6fTQa/XIyQkpLHFJyIiohbUXN/fbm0zk52djfz8fIwaNcqxTqvVYujQodi+fTsAICMjAyaTyWmf2NhY9OrVy7HPxQwGA4qLi50WIiIiIsDNYSY/Px8AEBUV5bQ+KirKsS0/Px8ajQZt27atc5+LzZs3DzqdzrHEx8e7s9hEREQkY83Sm0mSJKfnQoga6y5W3z7PPPMM9Hq9Yzlx4oTbykpERETy5tYwEx0dDQA1algKCgoctTXR0dEwGo0oKiqqc5+LabVahISEOC1EREREgJvDTMeOHREdHY1NmzY51hmNRmzduhWDBw8GAPTv3x9qtdppn7y8POzbt8+xDxEREVFDqVw9oLS0FIcPH3Y8z87Oxp49exAaGor27dtj+vTpmDt3LpKSkpCUlIS5c+ciICAAkyZNAgDodDqkpqbiiSeeQFhYGEJDQzFjxgz07t0bI0aMcN87IyIiolbB5TCza9cuXHfddY7njz/+OABgypQpSE9Px1NPPYWKigo8+OCDKCoqwsCBA7Fx40YEBwc7jlmwYAFUKhXuuOMOVFRUYPjw4UhPT4dSqXTDWyIiIqLWpEnjzHgKx5khIiKSH1mMM0NERETU0hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjW3B5mZs+eDUmSnJbo6GjHdiEEZs+ejdjYWPj7+2PYsGHYv3+/u4tBRERErUSz1Mz07NkTeXl5jmXv3r2ObfPnz8drr72Gt99+Gzt37kR0dDRGjhyJkpKS5igKERER+bhmCTMqlQrR0dGOJSIiAoCtVub111/Hs88+i1tuuQW9evXCBx98gPLycqxcubI5ikJEREQ+rlnCTFZWFmJjY9GxY0fceeedOHr0KAAgOzsb+fn5GDVqlGNfrVaLoUOHYvv27XWez2AwoLi42GkhIiIiApohzAwcOBDLly/Hd999h/fffx/5+fkYPHgwCgsLkZ+fDwCIiopyOiYqKsqxrTbz5s2DTqdzLPHx8e4uNhEREcmU28PM6NGjceutt6J3794YMWIENmzYAAD44IMPHPtIkuR0jBCixrrqnnnmGej1esdy4sQJdxebiIiIZKrZu2YHBgaid+/eyMrKcvRqurgWpqCgoEZtTXVarRYhISFOCxERERHQAmHGYDDg4MGDiImJQceOHREdHY1NmzY5thuNRmzduhWDBw9u7qIQERGRD1K5+4QzZsxAcnIy2rdvj4KCArz44osoLi7GlClTIEkSpk+fjrlz5yIpKQlJSUmYO3cuAgICMGnSJHcXhYiIiFoBt4eZkydPYuLEiTh79iwiIiJw1VVX4ddff0VCQgIA4KmnnkJFRQUefPBBFBUVYeDAgdi4cSOCg4PdXRQiIiJqBSQhhPB0IVxVXFwMnU4HvV7P9jNEREQy0Vzf35ybiYiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGRN5ekCEFHzEkJAVBohyitgrTAAZguExQJYLBAWK2Cx2n62WiEplYBaBUmltP2sUkJSq2xLYAAkPw0kSfL0WyIicsIwQyQT1goDLPlnYT5dCOu587CcK4alSA9rUTEs56oeC/WwlpbBWlZpCy9lFRAVBsBqdU8hFAooAv0hBQVAEejv+FnZJhiKUB2UoToow3RQhraxPQ/TQRnWBqrocEhajXvKQER0EYYZIi8gDEaYTubDfCwPpuN5sOSdhTnvDMz5Z20BJu8MrOdLmv5CGjUklQqSUgEoFbaaF4UCUCohKSQIe62N2QJhMttqbMy25wAAqxXWkjKgpAwWF19aEd4GqugIqGLCoYqNhDIm3PY8LgrqhFio2kVCUvO/JCJyHf/nIGohlnN6mA4fh+lYLkzHcmHOyYXpeB5Mx/JgyTsDCHHJc0h+Giijw201IKE6W+1H2xAo2+qgCK16DAmEFOgPRUBVzUmAn+NRUiobVXZhsUCUV8JaVgFrWTlEaUXVzxUQpeWwnK+qHSrUw3JOD0vhedvzc3pYzhRBGIywnj0P49nzMO7Lqv1FlEqo4iJtwSYhFuoO7aBOiIW6QyzUneOhCApoVNmJyPcxzBC5kbBYYD5xGsasYzAdPgZj1nGYso7DmJUDa6G+3mOlAD/bF3n7GKhiI6CKjoAyOgyqmAgoo8OhiomAQhfkkTYrklIJKTgQiuBAl48VQsBaVAxz7hmY887Akmd7NOedsa07eRrm43kQBiPMx/JgPpYHIKPGeZQxEdAktYc6MQGaLglQJ7WHJikByuhwtuMhauUkIRrw56CXKS4uhk6ng16vR0hIiKeLQ62QEALm43kwHjgCw/7DMP6VA9PhYzAdOQFRaazzOFW7SKg6xkHdPsYWXDrEQt0+BqqEWCjD27TaL2VhtcJScA6mnFyYq2quHLVX2adgOXOuzmOlQH9okqrCTbdO0PToDG2PTlDGRLTa60nkrZrr+5thhugSrGUVMP51FMb9R2DYdxjGA0dgPHDE1nakFpJWA3XnOFsNQlJ7qJMSoElsD3VieygC/Vu49L7Boi+B6fBxGA8ds9V0HbY9mrJPAZbaW+8odEHQdO8MTfdO0PToBE33TtD26Nyo2iUicg+GmWoYZqg5CCFgPnkaxv2HbbUt+4/AuP+w7Quztl8TtQqaLh2g6ZkIbY9OttCSlABV++hGt00h1wijCaacU7bbeZk5MB48AsPBozAdPlFnyFHFR9sCTvdO0PTsDG2PzlB3joek4l13oubGMFMNwww1lbW8sqq25TAM+4/YgsuBI7AWl9a6vzIi1PbF1ysRmh6doemZCE1SAnvfeClhMMKYdRzGg7Z/V8OBozAePGpraF0LSauBumsHaO3/tlUhRxnWpmULTuTjGGaqYZihhhJCwHyqAMaqmhZbjcthmI6erKe2JaGqtqXqi61HZ6giQ1u+8OR2lqJiGA/ago3xgK0Wx7j/CER5Ra37K6PDbW1wel74LGgS2zPEEjUSw0w1DDNUG2t5JYyZ2TBWtWsx7Lc9WvV11ba0dXxBOb6skhIgadQtXHLyJGG1wnwsD4YDttuKts/OEZhzTtV+gEZtu714UchRRbRt2YITyRDDTDUMM62bEALmE/m2W0QHLtwiqrO2RaV01LbYvoCqvnyiwlq+8CQb1tJyGA8evRBy9h+B4cARiNLyWve334q036JiOCaqiWGmGoaZ1sNaUnbhC6UquNT3haIIb+P4ItH2TKz6QmnPofTJLZy65B844qgFrLOR+MVBuuqzqYwMZbdxapUYZqphmPE91vJKmLKOwZh1DMbMHNvtogNHqgZQq8XFVf09OrNtC3mMo/t+1S2qSzUorx66HSGnaweGbvJ5DDPVMMzIl7WkDMZDObbAcigHpkPHYDyUA/Px/DqH81fGRkLbo5OjF5GjKy0bYZIXq9H4vOp2lenoydon/lQqoU5qD213Wzd/dWI8NIkJtqkcAvxa/g0QNQOGmWoYZrybMJlhOp4L05GTMB2tWrJPwpiZU2fXWMD216omKQGarh2gTupgq3Hp3gnKUF0Llp6oeVnLK22B3t5QvSrk1DeRqCouCurE9o7BF9VJtp85yjHJDcNMNQwznmeb5fk0TNmnqgLLiarQcgrmE/l1DlgGVHV37drBNgR91w6220VdEqAMZ28Qap2EELDknbGNMH0oxza68eHjMB4+Duu5uuf0kgL8oe4YWzU1RtXEnPZpMuKj2fiYvA7DTDUMM83PWmGA+WQ+zCfyYTphe7QvphP5sJwurHeWZynAD+qO7aDuGAd1pzioO8XbJgfskgClLrgF3wmRvFkKz8N4+DhMh0/YJi89fAKmrGMw5eTW+0cDFArbhKUd2kGdUDUXWLtIqNpFQRUbCVVsBNvoUItjmKmGYabxhBCwni+xzV6cfxbm/LOw5BfaHk+fhTnvLMwnT9c7sZ+d5K+FukO7qrASdyG4dI6HMiqM1d9EzUgYTTAdz7NNzplzynlyzmO5EOWVlzyHMqKtLdi0i4QqNhLKqkdVbCRUkaFQRoZCERTQAu+GWovm+v72aAvKhQsX4pVXXkFeXh569uyJ119/Hddcc40niyRLwmSGpfC802I9ex6Wc3rb87PnYTldCPNpW3ARhrpnda5OCvS3zegcHw1VXDTU7W2PqqrH1jzLM5GnSRo1NFXtaC4mhIDlTJFtBvKqoGPOyYU5twDmUwUw5xZAVBphOVMEy5kiGP6XWffrBPhDGdkWqohQKCPDoIxsC2VkKFSRYVBGtIUyIhSKtiFQhuqg0AVBUiia820T1cpjYebjjz/G9OnTsXDhQlx99dV47733MHr0aBw4cADt29f85fR1wmSGtbgUVn0pLFWPVn2J7bG4FNbiMlj0JY59rEXFF4JLHSPc1kcRqoMqOgzKqHCoosOhiomAMjoMqqgwW2CJj4aiTTDDCpEMSZIEVWQoVJGh8LuiV43tQghYz+kdwcZ86kLIMecW2GpuC85BlFdClFfAnFMBc05uQ14YijbBULYNsQUcx6MOitAQKNuEQKELgiI4EIqgANtjcCAUwbafeduLGstjt5kGDhyIfv36YdGiRY513bt3x/jx4zFv3rx6j22p20zCaoUwmCAMRttivOjnylrWVRhgLa+EKCu3PZZXwlpWbnus+o/BWlZRY5uoMDStsJJk+88irM2FJdz2qAhtA1VUmC2sRIdDGRUGhZ/WPReJiHyWtbQcloJzMJ85B0tB1XLmHMwF52y1OgWFtprfc/o6B7J0iUZtCzZBAVAEVQWdIH9I/n6Q/P2g8NdC8tdW+9kPkr+22s/V9vHTQtKoIalVkLQa26NGDVQ9sgbJM3zqNpPRaERGRgaefvppp/WjRo3C9u3bG3yes/96GwaVGsJsgTBbAEvVo9kCYbEAZnOt62vf1/a8ejiBuZ7Gdc1ECgqAUhdU9ddL1aMuCIqQICh1wY6fFbqgqtCiswWWtiGQlMoWLy8R+S5bqAiAulPcJfcVRhMs50tgLdLDUlT1eK4Y1vPFtlveRcWwniuGtbQM1pIyWEvKqx7LIMqqJvo0mmAt1MNaWHcPLrdRKS+EHY26KuioIWlUkNRVz1VKW+hRKiApFYBSaft/VqmApFICiqp1qqp1CoXtGKVtm6S0Pbdtq7aPBECSbIvC9iih6rkE23ntP0uS8zGQbOeu5RyQJFttugRAcj6HY5vdxZXuTtskF7ZV//HSx5WWl9X/79JIHgkzZ8+ehcViQVRUlNP6qKgo5Ofn19jfYDDAYLhQc6HX2z7ouSvWIUhqubcg+WkgaTS2D7tWY/sF0Kpt69RqSH5qSFoNFAG2vyQUgf62vxAC/CEF+EER4Ff16A8pQAuFYx/boyIkEJKqYe/HWrWY7CvKmucDQkTUYH4qICbMtlRRVC31dRIXFgusZRUQpeWwlpbbgo7959IKCIMB1opKiEojUGGAqLQ/N0BUGm0/VxhhrbQ9CoNtH2Ey2xajqeYfp0YzYGxijTi5rFSYAdhudbqTRxsAX9weQwhRaxuNefPmYc6cOTXWX1O0q9nKRkRERM2jsLAQOp37BkT1SJgJDw+HUqmsUQtTUFBQo7YGAJ555hk8/vjjjufnz59HQkICjh8/7taL4QuKi4sRHx+PEydOsNv6RXht6sZrUzdem7rx2tSO16Vuer0e7du3R2ioe+fR80iY0Wg06N+/PzZt2oSbb77ZsX7Tpk0YN25cjf21Wi202poNVnU6HT8odQgJCeG1qQOvTd14berGa1M3Xpva8brUTeHmBtgeu830+OOPY/LkyRgwYAAGDRqExYsX4/jx47j//vs9VSQiIiKSIY+FmQkTJqCwsBDPP/888vLy0KtXL3z99ddISEjwVJGIiIhIhjzaAPjBBx/Egw8+6PJxWq0Ws2bNqvXWU2vHa1M3Xpu68drUjdembrw2teN1qVtzXRtZzs1EREREZMchEImIiEjWGGaIiIhI1hhmiIiISNYYZoiIiEjWvC7MzJs3D1dccQWCg4MRGRmJ8ePHIzMz85LHffTRR+jTpw8CAgIQExODe++9F4WFhS1Q4pbT2GvzzjvvoHv37vD390fXrl2xfPnyFihty1q0aBEuu+wyxyBVgwYNwjfffFPvMVu3bkX//v3h5+eHTp064d13322h0rYsV69NXl4eJk2ahK5du0KhUGD69OktV9gW5uq1+eyzzzBy5EhEREQ49v/uu+9asMQtx9Vr8/PPP+Pqq69GWFgY/P390a1bNyxYsKAFS9wyGvN/jd0vv/wClUqFvn37Nm8hPcTVa7NlyxZIVRNgVl/++usv119ceJkbbrhBLFu2TOzbt0/s2bNH3HTTTaJ9+/aitLS0zmO2bdsmFAqFeOONN8TRo0fFtm3bRM+ePcX48eNbsOTNrzHXZuHChSI4OFisXr1aHDlyRKxatUoEBQWJ9evXt2DJm9/69evFhg0bRGZmpsjMzBQzZ84UarVa7Nu3r9b9jx49KgICAsSjjz4qDhw4IN5//32hVqvFmjVrWrjkzc/Va5OdnS0eeeQR8cEHH4i+ffuKRx99tGUL3IJcvTaPPvqoePnll8Xvv/8uDh06JJ555hmhVqvFH3/80cIlb36uXps//vhDrFy5Uuzbt09kZ2eLFStWiICAAPHee++1cMmbl6vXxe78+fOiU6dOYtSoUaJPnz4tU9gW5uq1+fHHHwUAkZmZKfLy8hyL2Wx2+bW9LsxcrKCgQAAQW7durXOfV155RXTq1Mlp3Ztvvini4uKau3ge1ZBrM2jQIDFjxgyndY8++qi4+uqrm7t4Hte2bVvx3//+t9ZtTz31lOjWrZvTuvvuu09cddVVLVE0j6vv2lQ3dOhQnw4ztWnotbHr0aOHmDNnTjOWyHu4em1uvvlmcffddzdjibxDQ67LhAkTxP/93/+JWbNm+WyYqU1918YeZoqKipr8Ol53m+lier0eAOqdlGrw4ME4efIkvv76awghcPr0aaxZswY33XRTSxXTIxpybQwGA/z8/JzW+fv74/fff4fJZGrW8nmKxWLB6tWrUVZWhkGDBtW6z44dOzBq1CindTfccAN27drls9cFaNi1aa0ac22sVitKSkrcPmmet2nMtdm9eze2b9+OoUOHNnPpPKeh12XZsmU4cuQIZs2a1YKl8yxXPjOXX345YmJiMHz4cPz444+Ne8Emx6FmZLVaRXJyshgyZMgl9/30009FUFCQUKlUAoAYO3asMBqNLVBKz2jotXnmmWdEdHS02LVrl7BarWLnzp0iMjJSABC5ubktVNqW8eeff4rAwEChVCqFTqcTGzZsqHPfpKQk8dJLLzmt++WXX3zyugjh2rWprjXUzDT22gghxPz580VoaKg4ffp0M5bQcxpzbdq1ayc0Go1QKBTi+eefb4FStjxXrsuhQ4dEZGSkyMzMFEIIn6+ZceXa/PXXX2Lx4sUiIyNDbN++XTzwwANCkqR67zbUxavDzIMPPigSEhLEiRMn6t1v//79IiYmRsyfP1/873//E99++63o3bu3mDp1aguVtOU19NqUl5eLe++9V6hUKqFUKkVsbKx46qmnBACf+w/YYDCIrKwssXPnTvH000+L8PBwsX///lr3TUpKEnPnznVa9/PPPwsAIi8vryWK26JcuTbVtYYw09hrs3LlShEQECA2bdrUAqX0jMZcm6NHj4o///xTLF68WISGhoqVK1e2UGlbTkOvi9lsFgMGDBCLFi1yrPP1MNPY3ye7MWPGiOTkZJdf12vDzMMPPyzi4uLE0aNHL7nv3XffLW677Tanddu2bfPZv7JduTZ2RqNRnDhxQpjNZkejYIvF0oyl9Lzhw4eLf/zjH7Vuu+aaa8QjjzzitO6zzz4TKpXKp2v07Oq7NtW1hjBzsYZcm9WrVwt/f3/x1VdftVCpvENDPzd2L7zwgujSpUszlsg71HVdioqKBAChVCodiyRJjnWbN2/2QGlblqufmRdffLFGe8aG8OhEk7URQiAtLQ3r1q3Dli1b0LFjx0seU15eDpXK+a0olUrH+XxFY66NnVqtRlxcHABg9erVGDNmDBQKr28y1SRCCBgMhlq3DRo0CF9++aXTuo0bN2LAgAFQq9UtUTyPqu/atHaXujarVq3C1KlTsWrVKp9vl3cxVz83reVzVtf7DAkJwd69e53WLVy4ED/88APWrFnj0v/hcuXqZ2D37t2IiYlp1At5lQceeEDodDqxZcsWp65a5eXljn2efvppMXnyZMfzZcuWCZVKJRYuXCiOHDkifv75ZzFgwABx5ZVXeuItNJvGXJvMzEyxYsUKcejQIfHbb7+JCRMmiNDQUJGdne2Bd9B8nnnmGfHTTz+J7Oxs8eeff4qZM2cKhUIhNm7cKISoeV3sXbMfe+wxceDAAbFkyRKf7Zrt6rURQojdu3eL3bt3i/79+4tJkyaJ3bt3u1RVLBeuXpuVK1cKlUol3nnnHaffwfPnz3vqLTQbV6/N22+/LdavXy8OHTokDh06JJYuXSpCQkLEs88+66m30Cwa8/tUnS/fZnL12ixYsECsW7dOHDp0SOzbt088/fTTAoBYu3aty6/tdWEGQK3LsmXLHPtMmTJFDB061Om4N998U/To0UP4+/uLmJgYcdddd4mTJ0+2bOGbWWOuzYEDB0Tfvn2Fv7+/CAkJEePGjRN//fVXyxe+mU2dOlUkJCQIjUYjIiIixPDhwx2/QELU/pnZsmWLuPzyy4VGoxEdOnRwuq/tSxpzbWr7nCUkJLRswVuAq9dm6NChtV6bKVOmtHzhm5mr1+bNN98UPXv2FAEBASIkJERcfvnlYuHChT53O7sxv0/V+XKYcfXavPzyy6Jz587Cz89PtG3bVgwZMsSlBvjVSUL40H0YIiIianV8u9EEERER+TyGGSIiIpI1hhkiIiKSNYYZIiIikjWGGSIiIpI1hhkiIiKSNYYZIiIikjWGGSIiIpI1hhkiIiKSNYYZIvIZw4YNgyRJkCQJe/bs8Vg5UlJSHOX4/PPPPVYOotaCYYbIBw0cOBD/+Mc/nNalpKTg6aef9lCJWs7f//535OXloVevXo51+fn5ePTRR5GYmAg/Pz9ERUVhyJAhePfdd1FeXt7gcycnJ2PEiBG1btuxYwckScIff/yBN954A3l5eU1+L0TUMCpPF4CI3MtisWDv3r1ISUlxrLNardiwYQPWr1/vuYK1kICAAERHRzueHz16FFdffTXatGmDuXPnonfv3jCbzTh06BCWLl2K2NhYjB07tkHnTk1NxS233IJjx44hISHBadvSpUvRt29f9OvXDwCg0+nc96aIqF6smSHyMX/99RcqKiocX6oA8Msvv0ChUGDgwIEAgM8//xwhISEQQuDw4cOQJAmnTp2C1WpFYGAgvv322xrnHTZsGNLS0jB9+nS0bdsWUVFRWLx4McrKynDvvfciODgYnTt3xjfffON03LfffoshQ4agTZs2CAsLw5gxY3DkyBHH9jVr1qB3797w9/dHWFgYRowYgbKysktua6gHH3wQKpUKu3btwh133IHu3bujd+/euPXWW7FhwwYkJyc79hVCYP78+ejUqRP8/f3Rp08frFmzxrF9zJgxiIyMRHp6utNrlJeX4+OPP0ZqaqpLZSMi92CYIfIxu3fvhlKpxGWXXeZYt379eiQnJ0OhsP3K79mzB3369IEkSfjzzz8RFhaGdu3a4dChQygvL0efPn1qPfcHH3yA8PBw/P7770hLS8MDDzyA22+/HYMHD8Yff/yBG264AZMnT3a6dVNWVobHH38cO3fuxObNm6FQKHDzzTfDarUiLy8PEydOxNSpU3Hw4EFs2bIFt9xyC4QQ9W5rqMLCQmzcuBEPPfQQAgMDa91HkiTHz//3f/+HZcuWYdGiRdi/fz8ee+wx3H333di6dSsAQKVS4Z577kF6erpTOT799FMYjUbcddddDS4bEbmRICKf8vjjj4uePXs6revSpYtYv3694/n48ePFww8/LIQQ4rnnnhPDhw8XQgixevVqERERUet5hw4dKoYMGeJ4bjabRWBgoJg8ebJjXV5engAgduzYUWf5CgoKBACxd+9ekZGRIQCInJycGvvVt60uQ4cOFY8++qjj+a+//ioAiM8++8xpv7CwMBEYGCgCAwPFU089JYQQorS0VPj5+Ynt27c77ZuamiomTpzoeH7w4EEBQPzwww+Odddee63TPnYAxLp16xpcfiJqHNbMEPmY3bt3O91iOnjwIE6ePOnUcHXPnj3o27cvAOB///ufoybGXmNTl+q1PUqlEmFhYejdu7djXVRUFACgoKDAse7IkSOYNGkSOnXqhJCQEHTs2BEAcPz4cfTp0wfDhw9H7969cfvtt+P9999HUVERANS7zVXVa18A4Pfff8eePXvQs2dPGAwGAMCBAwdQWVmJkSNHIigoyLEsX77c6bZYt27dMHjwYCxdutTx/rZt24apU6c2qmxE1HQMM0Q+Zs+ePU5hZv369Rg5ciT8/f0BACUlJcjJyXGEkP/973+OYPPHH384fq6NWq12ei5JktM6e2iwWq2OdcnJySgsLMT777+P3377Db/99hsAwGg0QqlUYtOmTfjmm2/Qo0cPvPXWW+jatSuys7Pr3dZQiYmJkCQJf/31l9P6Tp06ITEx0XFNqpd5w4YN2LNnj2M5cOCAU7sZwNYQeO3atSguLsayZcuQkJCA4cOHN7hcROReDDNEPiQnJwdFRUW4/PLLHeu++OILp9469i7DwcHB0Ov1yMnJQd++fXHmzBls3boVI0eOdFt5CgsLcfDgQfzf//0fhg8fju7du9eoXZEkCVdffTXmzJmD3bt3Q6PRYN26dZfc1hBhYWEYOXIk3n777Us2HO7Rowe0Wi2OHz+OxMREpyU+Pt5p3zvuuANKpRIrV67EBx98gHvvvbdG7Q8RtRx2zSbyIbt374YkSY4wU1BQgJ07dzoN3NauXTsEBATgtddew5gxY6BWq1FZWYlbbrkFV155pVvDTNu2bREWFobFixcjJiYGx48fdxrr5rfffsPmzZsxatQoREZG4rfffsOZM2fQvXv3ere5YuHChbj66qsxYMAAzJ49G5dddhkUCgV27tyJv/76C/379wdgC3czZszAY489BqvViiFDhqC4uBjbt29HUFAQpkyZ4jhnUFAQJkyYgJkzZ0Kv1zt1gyeilscwQ+RDMjIykJiYiJCQEADAl19+iYEDByIyMtKxT2BgID799FOkpaXhv//9LwBg9OjRuPfee/Hcc8+5tYZBoVBg9erVeOSRR9CrVy907doVb775JoYNGwYACAkJwU8//YTXX38dxcXFSEhIwKuvvorRo0fj4MGDdW5zRefOnbF7927MnTsXzzzzDE6ePAmtVosePXpgxowZePDBBx37vvDCC4iMjMS8efNw9OhRtGnTBv369cPMmTNrnDc1NRVLlizBqFGj0L59+yZdJyJqGkkIF/o5EpFXGzBgAK688kosXLgQADB27FgMGTIETz31VK37T5o0CQDw0Ucf+cRtkmHDhqFv3754/fXXPV0UALbbZOvWrcP48eM9XRQin8Y2M0QyJ4RATk4OXnjhBezbtw9paWmObUOGDMHEiRPrPDYzMxNXXHGFTwQZu4ULFyIoKAh79+71WBnuv/9+BAUFeez1iVob1swQydyff/6JQYMG4bLLLsO///1vDB06tEHHmc1mBAUFYcOGDT7TE+fUqVOoqKgAALRv3x4ajcYj5SgoKEBxcTEAICYmps4B+4jIPRhmiIiISNZ4m4mIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZI1hhoiIiGSNYYaIiIhkjWGGiIiIZO3/AX7Yal6CnfzdAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHJCAYAAABws7ggAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABysElEQVR4nO3deXhTVcIG8Pdm7R66L7SUnbIJAoIgCsqiKCDKiIJWK2VGRVFExnH5RkFnYEZHUVFQZgoVFFFBFMUFREEQFaigIFAKtEAhpVDadM96vj/ShIY2pWnTZun7e577JLlbTi4tfXPuWSQhhAARERGRj5J5ugBEREREzcEwQ0RERD6NYYaIiIh8GsMMERER+TSGGSIiIvJpDDNERETk0xhmiIiIyKcxzBAREZFPY5ghIiIin8YwQ0Quy8zMhCRJ2LNnj9vPnZeXB0mSkJmZ6dJxkiRBkiSkpaXVu/2FF16w75OXl9fschKR92CYISKvEh8fj59++gm33HKLy8eGhobi448/RllZmcN6IQQyMzMRFhbmrmISkRdhmCEir6JWq3H11VcjOjra5WNvvfVWCCGwZs0ah/XfffcdcnNzceedd7qrmETkRRhmiKjZ0tLSEBISgj/++AOjRo1CcHAwoqOj8cgjj6CystJh348//hhDhgyBRqNBUFAQOnfujOnTp9u3N/U2EwBoNBrcdtttWL58ucP65cuX45prrkH37t2b9PmIyLsxzBCRWxiNRtx8880YNWoUPv30UzzyyCN45513HGpDfvrpJ9x5553o3Lkz1qxZg40bN+K5556DyWRyWznS09Px888/49ChQwCAkpISfPLJJ0hPT3fbexCRd1F4ugBE5B8MBgOeeOIJPProowCAMWPGQKlU4tlnn8WPP/6Ia665Bjt37oQQAm+//TY0Go39WGeNdpvi+uuvR6dOnbB8+XK8/PLLWL16NRQKBe644w68/fbbbnsfIvIerJkhIre5++67HV5PmzYNAPD9998DAK666ioAwJQpU/DRRx/h9OnTbi+DrUfTqlWrYDKZkJGRgSlTpiAkJMTt70VE3oFhhojcQqFQIDIy0mFdXFwcAKCoqAgAcN111+HTTz+FyWTCvffei8TERPTp0wcffPCBW8ty//3349y5c1iwYAF+/fVX3mIi8nMMM0TkFiaTyR5abAoKCgDAIeTceuut2LJlC3Q6HbZu3YrExERMmzYNP/30k9vKkpSUhNGjR2P+/Pno0aMHhg0b5rZzE5H3YZghIrd5//33HV6vXr0aADBy5Mg6+6rVaowYMQL//ve/AQB79+51a1meeOIJTJgwAX//+9/del4i8j5sAExETSZJkv25SqXCK6+8gvLyclx11VXYuXMn/vGPf2DcuHEYPnw4AOC5555Dfn4+Ro0ahcTERJSUlOD111+HUqnEiBEj3Fq2sWPHYuzYsW49JxF5J4YZInKZbewYtVptX6dUKvHFF1/g0UcfxT/+8Q8EBgbiz3/+M15++WX7PkOGDMGePXvwt7/9DefOnUO7du0waNAgfPfdd+jdu3erfw4i8g+SEEJ4uhBE5Fsee+wxvPnmmygpKUFoaCjS0tKwdu1alJeXe7poRNQGsWaGiBotKysLu3fvxvLlyzFx4kSEhoZ6ukhERAwzRNR4f/rTn6DT6TBx4kS88cYbrfKelxsdWCaTQSZjXwaitoy3mYjIa+Xl5aFTp04N7vP8889j3rx5rVMgIvJKrJkhIq+VkJCA3bt3X3YfImrbWDNDREREPo03momIiMin+eRtJovFgjNnziA0NNRh0C4iIiLyXkIIlJWVISEhwa0N930yzJw5cwZJSUmeLgYRERE1walTp5CYmOi28/lkmLGNbXHq1CmEhYV5uDRERETUGKWlpUhKSnL7GFU+GWZst5bCwsIYZoiIiHyMu5uIsAEwERER+TSGGSIiIvJpDDNERETk0xhmiIiIyKcxzBAREZFPY5ghIiIin8YwQ0RERD7NJ8eZISLyFkajEWaz2dPFIPIIuVwOpVLp6WIwzBARNUVpaSnOnz8PvV7v6aIQeZRarUZUVJRHB7FlmCEiclFpaSlOnz6NkJAQREVFQalUctJbanOEEDAajdDpdDh9+jQAeCzQMMwQEbno/PnzCAkJQWJiIkMMtWmBgYEIDQ1Ffn4+zp8/77EwwwbAREQuMBqN0Ov10Gg0DDJEsM6zpNFooNfrYTQaPVIGhhkiIhfYGvt6Q6NHIm9h+33wVGN4hhkioiZgrQzRRZ7+fWCYISIiIp/GMEMN0mq1mDdvHrRaraeLQkREVC+XwszSpUtxxRVXICwsDGFhYRg6dCi++uor+3YhBObNm4eEhAQEBgZi5MiR+OOPPxzOodfrMWvWLERFRSE4OBgTJ05Efn6+ez4NuZ1Wq8X8+fMZZojIp23duhWSJCEtLc3TRaEW4FKYSUxMxL/+9S/s2bMHe/bswQ033IBbb73VHlheeuklvPrqq3jzzTexe/duxMXFYcyYMSgrK7OfY/bs2Vi/fj3WrFmDHTt2oLy8HOPHj+cImkREPiovLw+SJGHkyJFuOR+DB7nKpTAzYcIE3HzzzejevTu6d++Of/7znwgJCcHPP/8MIQRee+01PPvss7j99tvRp08fvPvuu6isrMTq1asBADqdDhkZGXjllVcwevRoXHnllXjvvfewf/9+fPvtty3yAYmIiMi/NbnNjNlsxpo1a1BRUYGhQ4ciNzcXBQUFGDt2rH0ftVqNESNGYOfOnQCArKwsGI1Gh30SEhLQp08f+z710ev1KC0tdViIiIiIgCaEmf379yMkJARqtRoPPvgg1q9fj169eqGgoAAAEBsb67B/bGysfVtBQQFUKhXCw8Od7lOfhQsXQqPR2JekpCRXi01ERC1g3rx56NSpEwBg27ZtkCTJvtS+TXTw4EHcfffdiI+Ph0qlQvv27XHvvfciOzvb4XxpaWm4/vrrAQDvvvuuw/nmzZtn32/jxo2YPn06evbsibCwMAQHB6Nfv35YsGAB58tqg1yezqBHjx7Yt28fSkpKsG7dOtx3333Ytm2bffulfc2FEJftf365fZ5++mnMmTPH/rq0tJSBhojIC/Tv3x+TJ0/GunXrEBsbi5tuusm+bfjw4QCALVu2YMKECaiqqsKAAQMwcuRIHD58GKtWrcL69evx5Zdf4tprr7UfU1BQgG+++QZdunSxn8P2Xjbp6emoqKhA79690bdvX5SWlmLXrl149tlnsWXLFmzatAlyubx1LgJ5nMthRqVSoWvXrgCAQYMGYffu3Xj99dfxt7/9DYC19iU+Pt6+f2Fhob22Ji4uDgaDAcXFxQ61M4WFhRg2bJjT91Sr1VCr1a4WlYiIWtikSZPQv39/rFu3DikpKcjMzHTYXlFRgbvvvhtVVVVYunQpHnzwQfu2RYsWYc6cOZg2bRqOHj0KtVqNGTNmoGvXrvjmm28wfPjwOuezefvttzFmzBgEBwfb15WVlWHatGn44osv8P777+Pee+9tiY9MXqjZ48wIIaDX69GpUyfExcVh8+bN9m0GgwHbtm2zB5WBAwdCqVQ67KPVanHgwIEGwwwRka8QQqBKb/GZRQjRotfjo48+wtmzZ3Httdc6BBkAePzxxzFw4EDk5+dj/fr1Lp130qRJDkEGAEJDQ7Fo0SIAwGeffda8gpNPcalm5plnnsG4ceOQlJSEsrIyrFmzBlu3bsXXX38NSZIwe/ZsLFiwAN26dUO3bt2wYMECBAUFYdq0aQAAjUaD9PR0PPHEE4iMjERERATmzp2Lvn37YvTo0S3yAYmIWlO1QeCWx31n7KyNixIRqG65oei3b98OALj77rvr3X7PPfcgKysL27dvx1133eXSuXNycvDll1/i6NGjqKiogMVyMZzl5OQ0r+DkU1wKM2fPnkVqaiq0Wi00Gg2uuOIKfP311xgzZgwA4Mknn0RVVRVmzpyJ4uJiDBkyBJs2bUJoaKj9HIsWLYJCocCUKVNQVVWFUaNGITMzk/c2iYj80JkzZwAAHTt2rHe7bb1tv8YQQmDu3LlYtGiR05ql2uObkf9zKcxkZGQ0uN3W2rx2i/NLBQQEYPHixVi8eLErb01E5BMCVBI2Lkr0dDEaLUDVOhMEXq4jiCsTFX744Yd49dVXkZiYiNdeew1Dhw5FdHQ0lEolDAYD1Gp1i98+I+/icgNgIiJyTpKkFr1t42sSEhIAALm5ufVuP3HiBAA4dBy5HFv7mqVLl2L8+PEO244fP96UYpKP40STRETULCqVCgBgMpnqbLN1uX7//ffrPda23rbf5c4HAMXFxQBQ7xAdH330UWOLTX6EYYaIiJolKioKSqUSx44dqzPP3pQpUxAbG4vt27dj2bJlDtveeOMN7N69G4mJibjtttvs6221OZcOqGfTvXt3AMCyZcscbidt374dL7/8sls+E/kWhhkiImoWlUqFm266CQUFBejXrx/uvfdezJgxAytWrEBwcDDef/99BAYG4oEHHsCgQYMwbdo0DBgwAI899hiCg4OxevVqh7HEOnbsiCuuuAJ79uzB4MGDcf/992PGjBnYsGEDAODRRx9FcHAwlixZgj59+mDq1Km47rrrMGLEiDrdv6ltYJghp3JycuwNtRcvXsyujkTk1P/+9z+kpqaiqKgIq1evRkZGhn10+FGjRmH37t2YOnUq8vPzsXbtWhQUFNi7Zde+xWSzbt06TJo0CcePH8fKlSuRkZGBX3/9FYC1Zmb37t2YMGECzp8/jw0bNqC8vBzvvPMOa2baKEn4YJPv0tJSaDQa6HQ6hIWFebo4fmnFihWYMWMGJEmC2WyGXC6HEAIZGRkO860QtTXV1dXIzc1Fp06dEBAQ4OniEHmFxv5etNTfb9bMUB05OTmYMWMGLBaL/f632WyGxWJBeno6jh496uESEhERXcQwQ3UsX77c6ZgPkiRddrwhIiKi1sQwQ3Xk5eU5HXBKCIG8vLzWLRAREVEDGGaojo4dOzZYM+NsWHIiIiJPYJihOqZPn95gzUx6enorl4iIiMg5hhmqo1u3bsjIyIBMJrNPACqXyyGTyZCRkYGuXbt6uIREREQXMcxQvdLS0pCdnY3U1FQAQGpqKrKzs9ktm4iIvA7DDDnVtWtXzJo1CwAwa9Ys1sgQEZFXYpghIiIin8YwQ0RERD6NYYaIiIh8GsMMURui1Woxb948aLVaTxeFiMhtGGaI2hCtVov58+czzBCRX2GYISIiIp/GMENERM2Wl5cHSZIwcuRITxfFbuTIkZAkifPJNZEvTV/DMENEREQ+jWGGiIiIfBrDDLUJ7MVDROS/GGaoTWAvHqLWU1paisceewxJSUkICAhAz549sWjRIlgsFof99u3bhyeffBIDBw5EdHQ01Go1OnfujJkzZ+LMmTNOz3/y5Ek88sgj6NatGwICAhAZGYnBgwdjwYIFqKqqumz5dDodrrvuOkiShNmzZ0MIYd92/PhxTJkyBREREQgJCcHw4cPxzTffYOvWrZAkqc78dGlpaZAkCVu3bsU333yD66+/Hu3atYMkSSgpKQEAmEwmLF68GAMHDkRISAhCQkIwePBgLF26FGazuU75OnbsCEmS6i17Y8rxww8/4IYbbkBoaCjCwsJwyy234ODBg/Wer6KiAn/729/QoUMHBAQEICUlBa+++qrDNfEFDDNEROQ2er0eN9xwA1auXInBgwdjzJgxOHHiBObMmYP09HSHff/1r3/h1VdfhdlsxjXXXIObb74ZQggsXboUgwYNqjfQ/PDDD7jiiivw1ltvwWKx4NZbb8XQoUNx/vx5PPvsszh79myD5Tt79ixGjhyJ7du3Y/78+XjttdfswSEnJwdDhgzBxx9/jJiYGEyYMAFmsxk333wz1q1b1+B5V69ejXHjxqGiogLjxo3DVVddBUmSYDabceutt+LRRx/F0aNHMXr0aIwePRqHDx/GzJkzcccdd9QJec3x+eef44YbbsCFCxdw4403Ij4+Hl9++SWuu+46FBQUOOyr1+sxduxYvPTSS6iqqsKECRPQsWNHPPXUU3jkkUfcVqZWIXyQTqcTAIROp/N0UfxeVlaWACCysrI8XZRm8ZfP0Vy8Ds1XVVUlDh48KKqqqurdbrFYRIW+wmcWi8XiluuSm5srAAgA4oorrhDnzp2zbzt69KhISEgQAMRnn31mX79lyxZx5swZh/OYzWYxf/58AUDcf//9DtsuXLggoqOjBQCxaNGiOmXftm2bKCkpsb8eMWKEACByc3PtZezatauQJEksXry4zmcYNWqUACBmzZolzGazff3KlSvtn+2+++5zOOa+++6zb1uzZk2dc/7nP/8RAETfvn3F2bNn7evPnDkjevToIQCIt956y+GY5ORk4ezP8/fff99gOWQymVi9erV9vclkEpMnTxYAxN///neHYxYsWCAAiMGDBztct6ysLBEWFiYAiOTk5HrLcanL/V7YtNTfb0XrxSYiIv9XZaxC3zf6eroYjbb/0f0IUgW59Zz/+c9/EBUVZX/dpUsX/P3vf8dDDz2Et956CxMnTgQA3HDDDXWOlclkeO6557Bs2TJ89tlnDtv++9//4ty5cxg/fjxmz55d59jrrrvOaZn++OMPjB07FoWFhVi1ahXuvvtuh+1Hjx7Fli1bEBERgYULF0Imu3jjIjU1Ff/73//www8/OD3/LbfcgjvvvLPO+jfeeAMA8NprryEmJsa+Pj4+Hi+//DImTpyIN954AzNnznR6bldMmzYNU6dOtb+Wy+V45plnsG7dujrlX7p0KQBg0aJF0Gg09vUDBgzAww8/jIULF7qlTK2BYYYaFB8fj+effx7x8fGeLgoR+YCIiAiMGTOmzvpp06bhoYcews6dOyGEsN/aKSoqwoYNG3DgwAGUlJTY25AYjUZcuHABFy5cQEREBADg22+/BQA88MADLpXp559/xsMPP4yqqip8+umnuOWWW+rss3PnTgDAzTffjODg4Drb77jjjgbDjC2g1Xby5EmcPHkScXFx9Qa38ePHo127dsjOzsa5c+cQHR3tyseq19ixY+us6969OwA4tBk8efIkTp06hfbt22PYsGF1jpk6dSrDDPmP+Ph4zJs3z9PFIPIZgcpA7H90v6eL0WiBykC3ni85Obne9WFhYWjXrh1KSkpQWloKjUaDDz74AH/5y19QXl7u9HxlZWX2MHPq1CkA1poeV6SmpsJkMuHDDz+sN8gAsLfPSUpKqnd7hw4dGnyP+rbbzuls4DlJkpCcnIySkhKcOXPGLWEmMTGxzrqQkBAA1jYyl5bN2ee63Of1NgwzRERuJEmS22/b+AtRq4fMiRMnkJaWBiEEXnvtNdxyyy1o3749AgOt4WrYsGH46aef6u1V46ynjzNTp07FqlWr8Nxzz+G6665DXFyc032dnbu+ctQWEBDg8jld3QfAZRsLN/Y8ts/jbH9Xr7GnsTcTERG5zcmTJ+tdX1paCp1Oh+DgYISFheHLL7+EwWDAo48+isceewxdu3a1BxnA2kX6UrZak6NHj7pUphdeeAF/+9vfkJ2djVGjRqGwsLDOPrZb6c7Kb6sVckVCQgIAIDc31+k+tverfStfpVIBQL01Vk0pR0NlO3HiRL3bna33VgwzRETkNkVFRfa2LbV98MEHAKw1LpIkobi4GED9t3V++OGHertYjx49GgCwbNkyl8v1r3/9C3/9619x8OBBjBo1CufPn3fYbms38uWXX6KysrLO8WvXrnX5PTt06IAOHTqgoKAA3333XZ3tGzduRHFxMXr06OFwi8kWbI4cOVLnmE2bNrlcjvokJycjMTERp0+fxk8//VRn+5o1a9zyPq2FYaYFcdRZ8iY5OTlYvHgxAGDx4sXIycnxcInIX/31r39FUVGR/XVubi5efPFFALD32rE1Sn3vvfdQUVFh3/f06dN48MEH6z3vjBkzEBUVhc8//xxvvvlmnVs/27dvh06nc1qul156CXPmzMGBAwcwatQohzJ269YN119/PS5cuIBnnnnG4dzvv/8+tm3b1tiP72DWrFkAgMcffxznzp2zry8oKMBf//pXh31sRowYAQBYuHChw6B67733nltDhq0h9RNPPIHS0lL7+n379uGtt95y2/u0Crd29G4lvjLODMf08B5t/d9i+fLlQiaTCblcLgAIuVwuZDKZWLFihaeL5nMaO55GW2MbZ+bqq68WAwYMEOHh4WLy5MliwoQJIigoSAAQ99xzj31/vV4vevfuLQCIuLg4MXnyZHHLLbeIoKAgMWzYMDFs2DCHMWJsvvvuOxEaGioAiC5duogpU6aI8ePHi06dOtXZ/9JxZmxmz54tAIj+/fuLCxcu2NcfPnxYRERECAAiJSVFTJ06VQwdOlRIkiRmzpwpAIg///nPDueyje/y/fff13tdTCaTGDdunAAgNBqNuO2228SkSZPsn2HSpEkOY9oIIURBQYF9PJ3u3buLP/3pT6Jfv35CLpeLxx9/vMFxZpyVA/WMGVNdXS2GDBkiAIioqChxxx13iJtuukmoVCrx0EMP+dQ4M6yZ8WKs2aHamvrzkJOTgxkzZsBisdi/5ZnNZlgsFqSnp7vc/oCoIWq1Gt999x2mTp2Kn376Cd988w2SkpLwn//8B5mZmfb9VCoVtm/fjoceeggBAQH44osvcOjQIcyaNQubN2+GUqms9/zXX3899u3bh7/85S8wmUz49NNP8fPPPyMmJgYLFy5ssHGvzaJFizBr1izs27cPY8aMsU870KNHD/zyyy/405/+hIKCAvs4N1988YX9NlRkZKRL10Mul2PDhg14/fXX0blzZ3zzzTfYtGkTevTogbfeegtr1651GNMGAGJjY/HDDz9g/Pjx0Gq1+Oqrr6DRaLB58+Z6u4A3lVqtxrfffou5c+dCrVbjs88+w/Hjx/GPf/wDb775ptvep1W4NRq1krZSM9PWaxPcyR+uZVM/w1NPPWWvkbl0kcvl4qmnnmqhEvsn1sy0TQ8++KDTUX6JNTNE1MLy8vKcdisVQiAvL691C0Tkpaqrq3Ho0KE669etW4f//e9/0Gg0TsepIc/iODNEfq6hGXglSXI6oBdRW1NSUoJevXohJSUF3bp1g1KpxKFDh3Do0CHIZDIsWbLEPgAdeRfWzDjB9ir+o6334pk+fXqDNTOXzmRM1FZpNBo88cQTUKlU2LFjBzZs2ICioiLceuut2LZtG6ZNm+bpIpITDDNOaLVazJ8/n2HGx61YsQIpKSlYtWoVAGDVqlVISUlxaIjo77p164aMjAzIZDLI5XIA1kaJMpkMGRkZ6Nq1q4dLSOQdAgMD8Z///Ae//fYbLly4AKPRiLNnz+LTTz/F8OHDPV08agDDDPkt9uK5KC0tDdnZ2UhNTQVgnasmOzsbaWlpni0YEZEbMMyQ12vqLb/ly5c32FYkIyPDHcXzGV27drUPzjVr1izWyBCR32CYIa/X1Ft+7MVDRNQ2MMyQ32IvHiKitoFhhvwWe/EQEbUNDDPkt9iLh4iobXApzCxcuBBXXXUVQkNDERMTg0mTJiE7O9thn7S0NEiS5LBcffXVDvvo9XrMmjULUVFRCA4OxsSJE5Gfn9/8T0N0CfbicT+OwURE3salMLNt2zY8/PDD+Pnnn7F582aYTCaMHTvWYfp2ALjpppug1Wrty5dffumwffbs2Vi/fj3WrFmDHTt2oLy8HOPHj3eY6tzXtfWB2rwJe/G4F8dgIiJv49J0Bl9//bXD6xUrViAmJgZZWVm47rrr7OvVarXTmUt1Oh0yMjKwatUqjB49GgDw3nvvISkpCd9++y1uvPFGVz+D11mxYgVmzJhhb3y6atUqrFy5EhkZGawRICIicrNmtZnR6XQAgIiICIf1W7duRUxMDLp3744///nPKCwstG/LysqC0WjE2LFj7esSEhLQp08f7Ny5s9730ev1KC0tdVi8FQdqI2d4e4baury8PEiShJEjR3q6KI22detWSJLEL6JerslhRgiBOXPmYPjw4ejTp499/bhx4/D+++/ju+++wyuvvILdu3fjhhtugF6vBwAUFBRApVIhPDzc4XyxsbEoKCio970WLlwIjUZjX5KSki5bPk/94XDXQG28TeV/mnN7hj8PRETONTnMPPLII/j999/xwQcfOKy/8847ccstt6BPnz6YMGECvvrqKxw5cgQbN25s8HxCCKch4Omnn4ZOp7Mvp06dumz5PHVf3x0DtXE+IaqNPw/kL9q3b49Dhw5h5cqVni4K+ZkmhZlZs2Zhw4YN+P7775GYmNjgvvHx8UhOTrZ/k4yLi4PBYEBxcbHDfoWFhYiNja33HGq1GmFhYQ6Lt2ruQG28TUW18eeB/IlSqURKSgo6dOjg6aKQn3EpzAgh8Mgjj+CTTz7Bd999h06dOl32mKKiIpw6dQrx8fEAgIEDB0KpVGLz5s32fbRaLQ4cOIBhw4a5WPyW0Zwq/eYO1Mb5hKg2/jyQrzh06BBSU1PRpUsXBAQEIDo6Gv3798fs2bPtNeQNtZkxGo345z//ia5duyIgIACdO3fGvHnzYDQa6/2SWLsty4ULF/DQQw8hPj4earUaffr0wfLly+st58aNGzF9+nT07NkTYWFhCA4ORr9+/bBgwQJ7cwjyPS71Znr44YexevVqfPbZZwgNDbW3cdFoNAgMDER5eTnmzZuHyZMnIz4+Hnl5eXjmmWcQFRWF2267zb5veno6nnjiCURGRiIiIgJz585F37597b2bPKm5PZFsA7Wlp6dDkiSYzWbI5XIIIRo1UBvnE6La+PNAvuDXX3/F8OHDUV1djcGDB2Pw4MEoKyvD8ePH8frrr2PSpEn2L7T1EULgjjvusP9tGTduHCwWC1555RXs27evwfcuKSnB0KFDodPpMHjwYJSXl+OHH35Aeno6LBYLZsyY4bB/eno6Kioq0Lt3b/Tt2xelpaXYtWsXnn32WWzZsgWbNm2yD7JJvsOlMLN06VIAqJOqV6xYgbS0NMjlcuzfvx8rV65ESUkJ4uPjcf311+PDDz9EaGioff9FixZBoVBgypQpqKqqwqhRo5CZmenxH6DaVfo2tqr99PR0DB8+vFFjlKSlpWH48OH45z//iczMTKSmpuLZZ59t1LGcT4hqc/fPQ3x8PJ5//vkG/7BQ8wghICqrPV2MRpOCApz+jDXWG2+8gaqqKqxbtw633367w7ZDhw6hXbt2DR7//vvv47PPPkPXrl3xww8/2H8+T506hWuvvRYnTpxweuxnn32GyZMn491330VwcLB93aRJk/Diiy/WCTNvv/02xowZY98XAMrKyjBt2jR88cUXeP/993Hvvfe68vHJC7gUZpx9Q7QJDAzEN998c9nzBAQEYPHixfZbOd6iMVX6CxcubNS5bAO1ZWZmujRQ2/Tp0/HSSy/Vu60p8wlptVq88847eOCBB/gHzAe5++chPj4e8+bNc0PJyBlRWY3cjmMvv6OX6JS3CVJwYLPOYRt+44YbbqizrWfPnpc9/u233wYAvPjiiw7/TyUlJeH555/H9OnTnR4bFhaGZcuWOYSTW2+9FX379sX+/fuRl5fnEPonTZpU5xyhoaFYtGgRvvjiC3z22WcMMz6IczPV4g1V+u6eT8gbRmttTjf5tt4lmfNLkS8YOHAgAODee+/Frl27HGq3L8doNGL37t2QyWR1anUA4I477mjw+EGDBtUZ6wwAunfvDgD1/r+Tk5OD119/HbNmzcL06dORlpaGF1980b6NfI9LNTP+zltu8TTnNpU3sgWqiRMnulQ7xJGUrfzt58HfSUEB6JS3ydPFaDQpKKDZ5/jrX/+KHTt24PPPP8fnn38OjUaDIUOGYPz48UhLS3NoZnCpoqIiGAwGxMfHQ6VS1dkeEhKC8PDwOj1gbZz1qA0JCQEAh0a9QgjMnTsXixYtcvrFtayszGlZyXuxZqaW5vZEcqe2Pp8QuyQ7aus/D75EkiTIggN9ZmluexnAeqvnu+++w/bt2/Hkk0+iR48e2LJlCx599FH06NEDx44da9R1c6ahJg6ulP/DDz/Eq6++ivbt22Pt2rU4ffo0DAYDhBD20HO55hTknRhmamGVvvdgl2Qi3yJJEoYPH45///vf+OWXX6DVajF16lRotVo888wzTo+LjIyEUqlEQUEBDAZDne3l5eUoKSlxSxnXr18PwNqZZfLkyUhISIBSqQQAHD9+3C3vQZ7BMHOJtLQ0ZGdnIzU1FQCQmpqK7OzsNnVbwxu4u/0Se/G4R1tvw0SNFx0dbW9svn//fqf7KZVKXHXVVbBYLPawUdvatWvdVibbrar6psT56KOP3PY+1PoYZurBKn3Pa4kuyfPmzWOYaQZOq0DOvP3228jNza2z/quvvgKAy474+8ADDwAAnnvuOYc5+vLz8/HCCy+4rZy2RsHLli1z+LK0fft2vPzyy257H2p9DDPklbyp/ZI7+HqNBtswUUPefvttdO7cGb1798af/vQn3HXXXbjyyisxe/ZsBAYG4vnnn2/w+NTUVEyYMAFHjhxBjx49cPvtt2PSpEno2bMn+vTpgw4dOthvBzXHo48+iuDgYCxZsgR9+vTB1KlTcd1112HEiBF48MEHm31+8hyGGfJK/tR+yR9qNNiGiRry4osvYvr06ZAkCVu2bMHnn3+OyspK/OUvf8Hvv/+OoUOHNni8JElYu3YtXnjhBURFRWHjxo347bffMHv2bHz00Uc4e/YsIiMjm13O7t27Y/fu3ZgwYQLOnz+PDRs2oLy8HO+88w5rZnyd8EE6nU4AEDqdrt7tR44cEWlpaQKASEtLE0eOHHH5PbKysgQAkZWV1eRyNvcc3lAGd2hOGXJychz+LXNyclqghC3nyJEjQiaTCQB1FplM5tLn8eS/5V133dXg57jrrrtavUyeUlVVJQ4ePCiqqqo8XZQ24eeffxYAxE033eTpolADGvt7cbm/303ldzUz/vAtmC7y9fZL/lKj4S1jMJH/2r9/P4xGo8O6vLw8PPTQQwCAadOmeaJY5CP8Kszwvj55G28YVdod/K0NE3mfv/71r4iPj8eoUaMwdepUXHvttejZsyf27t2Lm2++Gffcc4+ni0hezK/CjL98Cyb/4S81Gv7Uhom8U1paGgYMGICDBw/ik08+wb59+9C3b18sWrQIn376qVsG9yP/5Vdhxl++BZP/8KcaDY7BRC3prrvuwqZNm6DVaqHX61FWVoZdu3Zh9uzZbunJRP7Nr8KMt30L9vRAbb7eHdgf+FuNhq+3YSIi/+RXYcbbvgV7cqA2NoT2HqzRICJqWX4VZvztW3BTa3a8qSE0a4es3FGj4emaPiIib+VXYQbwr2/BTa3Z8ZaG0Kwdci9OyUBEVD+/CzMA7+t7Q0Nob6odcgetVot58+ZBq9V6uihERHQJvwwz7uDLVfre0BDaW2qH3EWr1WL+/PkMM0REXohhxglfrtL3hobQ3lA7REREbQPDjB/yhobQ3lA7ROQveJuTqGEMM37K0w2h3Vk75Mu3/Ijcgbc5iRrGMOPHPNkQ2p21Q758y4+orZAkyWFRKpWIiopC3759kZaWhnXr1sFkMnm6mOSnGGaoxXi6doiIWt99992H++67D1OnTsU111wDk8mElStX4k9/+hN69uyJXbt2ueV9MjMzIUkS5s2b55bzkW9jmKEW1da7yZN3YhuUlpOZmYnMzEysXLkSn332GQ4dOoScnBxMmTIFR48exfXXX499+/Z5upjkZxhmiKjNYRuU1tWlSxd8+OGHSE9PR2VlJaZPn+7pIpGfYZghIpewQTY11SuvvILg4GDs3bsXO3bscNi2ceNGTJ8+HT179kRYWBiCg4PRr18/LFiwAHq93mHfkSNH4v777wcAzJ8/36Gtjm2EcSEEPvjgA9x1113o3r07goODERoaisGDB2PJkiWwWCyt8pmpdSg8XQAi8i22BtnUOi6d3+yZZ55Bt27dPFyqptFoNBg3bhzWrl2L77//HsOHD7dvS09PR0VFBXr37o2+ffuitLQUu3btwrPPPostW7Zg06ZN9s4EN910E0wmE3788Uf069cP/fv3t5/Hditbr9dj2rRpCA8PR69evTBgwACcP38eP/30Ex5++GHs2rWLU6v4EYYZolbCGg1y1YoVKzBjxgz7mE2rVq3CypUrkZGR4bMN6fv374+1a9fi0KFDDuvffvttjBkzBsHBwfZ1ZWVlmDZtGr744gu8//77uPfeewEATz31FOLi4vDjjz9i0qRJ9YZrhUKBdevWYfz48VCpVPb1586dw80334x3330X06dPx3XXXdcyH5Rald/eZuIfDvI27GJOrvC3+c1soqKiAADFxcUO6ydNmuQQZAAgNDQUixYtAgB89tlnLr2PQqHA7bff7hBkACA6OhoLFy5s0jnJe/ltzQyrwonIlzVmfjPbH2VfYhtMs77PlpOTgy+//BJHjx5FRUUFLBaLff+cnJwmvd++ffuwadMmnDhxApWVlRBCoKysrFnnJO/jt2GGyF38qc0C+Q5/nd/s/PnzAICIiAj7OiEE5s6di0WLFjn9zLYA0lgGgwFpaWn44IMPnO7j6jnJe/ntbSYid1ixYgVSUlKwatUqANY2CykpKWw4SC3OX+c3s40x06tXL/u6Dz/8EK+++irat2+PtWvX4vTp0zAYDBBC2HsyOQs5zrz66qv44IMP0KdPH3z11Vc4e/as/ZzZ2dlNOid5L4YZIif8tc0C+QZ3zm/mLXQ6Hb7++msAwPXXX29fv379egDA0qVLMXnyZCQkJECpVAIAjh8/3qT3sp3zgw8+wE033YSYmJhmn5O8F8MMkRONabNA1FLcOb+Zt3jiiSdQUVGBq666CkOHDrWvtzUGTkpKqnPMRx99VO+5bA17nc331JRzku9imPFz7NXVdP7aZoF8h7/Mb3b8+HHceeedyMjIQHBwcJ0vAt27dwcALFu2zOF3bvv27Xj55ZfrPWdCQgIA2G8ZXcp2zrffftth/dq1a7Fy5cqmfRDyWmwA7Oe8oVeXrwYqf22zQL7FNr9ZZmam2+c3MxgMOH/+PKKioup0YW4qW9CyWCwoLS3FkSNHcPjwYQgh0K1bN6xevRp9+/Z1OObRRx9FZmYmlixZgq1bt+KKK67A6dOnsWPHDjzxxBP4z3/+U+d9rr76asTExGDt2rUYOXIkOnfuDJlMhunTp2PYsGF48skn8fXXX+Opp57Cxx9/jO7duyMnJwd79uzB3Llz6z0n+TDhg3Q6nQAgdDqdp4tCfuzIkSNCJpMJAHUWmUwmcnJyPF1EaqKsrCwBQGRlZbl8bFVVlTh48KCoqqpqgZLVrznlbUh5ebnYvXu3KC8vb/a5Lv0dUSgUIiIiQvTp00fcd999Yt26dcJoNDo9/uDBg2LChAkiJiZGBAUFiSuvvFIsW7bMfu7k5OQ6x+zevVuMGTNGaDQaIUmSACBWrFhh3/7TTz+JG264QYSHh4vQ0FAxbNgwsW7dOpGbmysAiBEjRjT7c5NVY38vWurvN2tmiJywtVlIT0+HJEkwm82Qy+UQQvhsmwViV/uWIprZM6hnz57YsGGDS+ceNGgQNm3a5PScV199NbZs2eLSOck3sc0MUQP8pc0CWbGrPZF/YpghugxbmwUAbm+zQK2HXe2J/BfDDBG1Cb7c1d5XG9ETtRa2mSGiNsGXu9p7Q69EIm/GmhkialVarRbz5s2DVqtt1fdlV3si/8UwQ0StSqvVYv78+a0eZvxxegAismKYIaI2wR+nBzAYDDhz5gwMBoOni0LkUQwzRNRmuLOrvTeMU2I0GnHmzBkYjUZPF4XaOE//PrgUZhYuXIirrroKoaGhiImJwaRJk+rMiyGEwLx585CQkIDAwECMHDkSf/zxh8M+er0es2bNQlRUFIKDgzFx4kTk5+c3/9MQEV1Gc7va22p1GCCILrL9Pth+P1qbS2Fm27ZtePjhh/Hzzz9j8+bNMJlMGDt2LCoqKuz7vPTSS3j11Vfx5ptvYvfu3YiLi8OYMWNQVlZm32f27NlYv3491qxZgx07dqC8vBzjx4+3j/1AROStlEol1Go1dDqdx7+NEnkDIQR0Oh3UajWUSqVHyuBS1+yvv/7a4fWKFSsQExODrKwsXHfddRBC4LXXXsOzzz6L22+/HQDw7rvvIjY2FqtXr8YDDzwAnU6HjIwMrFq1CqNHjwYAvPfee0hKSsK3336LG2+80U0fjYioZURFReH06dPIz8+HRqOBUql02lOqJen1evujq9+I9Xo9zp07B8DaKDs6OhpqtdrtZST/JYSA0WiETqdDeXk52rdv77GyNGucGZ1OBwCIiIgAAOTm5qKgoABjx46176NWqzFixAjs3LkTDzzwALKysmA0Gh32SUhIQJ8+fbBz5856w4xer7f/0gJAaWlpc4pNRNQsYWFhAIDz58/j9OnTHiuHbdZrpVLp0qzX5eXlKCoqsr8+f/48jh49isjISISEhLREUcmPqdVqtG/f3v574QlNDjNCCMyZMwfDhw9Hnz59AAAFBQUAgNjYWId9Y2NjceLECfs+KpUK4eHhdfaxHX+phQsXYv78+U0tKhGR24WFhSEsLAxGo9Fjt8j/+OMPPPjgg1i3bh169OjRqGPy8vJw5513wmKx1Nkmk8nw1VdfITk52d1FJT8ll8s9dmuptiaHmUceeQS///47duzYUWfbpdWtQojLVsE2tM/TTz+NOXPm2F+XlpYiKSmpCaUmahoOJ0/OKJVKj/1nLkkSTpw4AUmSEBAQ0Khj3n33XZw8ebLeACaXy5GZmYmFCxe6u6hELapJXbNnzZqFDRs24Pvvv0diYqJ9fVxcHADUqWEpLCy019bExcXBYDCguLjY6T6XUqvV9m9BtoWoNdmGk2eYIV/ny9M6EDnjUpgRQuCRRx7BJ598gu+++w6dOnVy2N6pUyfExcVh8+bN9nUGgwHbtm3DsGHDAAADBw6EUql02Eer1eLAgQP2fYiIqGVwWgfyRy6FmYcffhjvvfceVq9ejdDQUBQUFKCgoABVVVUArL8Is2fPxoIFC7B+/XocOHAAaWlpCAoKwrRp0wAAGo0G6enpeOKJJ7Blyxbs3bsX99xzD/r27Wvv3URE1BBPze/kDzitA/kjl8LM0qVLodPpMHLkSMTHx9uXDz/80L7Pk08+idmzZ2PmzJkYNGgQTp8+jU2bNiE0NNS+z6JFizBp0iRMmTIF11xzDYKCgvD55597bLAdImodOTk5WLx4MQBg8eLFyMnJadJ5PDW/kz/wx2kdiFy+zVTfUnsocEmS7N+YqqursW3bNntvJ5uAgAAsXrwYRUVFqKysxOeff84GvUR+bsWKFUhJScGqVasAAKtWrUJKSgoyMzM9W7Am8uXaIXdO60DkDTg3ExG1uJycHMyYMQMWi8Xei8ZsNsNisSA9PR1Hjx5t1fK4o3eap2uHmlvL1dxpHYi8CcMMEbW45cuXN9joNCMjo1XL4+u90/ytlououRhmiKjFsTtwXU29TeVttVxE3oBhhohaHLsD19XU21TeVstF5A0YZoioxbE7sPuwlouoLoYZImpx7A7sPt5Wy+XLvbrIfzDMEFGrYHdg9/C2Wi5P9+oiApox0SQReRchBPRGgWq9gNkCWCzWR7NFwGKBfZ0kAXKZBLnc+qiQA3K5BLkMUMolqFUSZLKGJ4ZtKlt34MzMTHYHbiJbLVd6ejokSYLZbIZcLocQgrVc1GYxzBB5EYNR4EKpGcVlZpRVWFBqX8worbCgrNL6uqLKgmq9QJVBoNpgQZVeQG8QcPKF3SWSBASoJAQFyBColmoWGYICJIQGyaAJkaNdiAxhNY+aEBk0oXKEh8oREig5vQVC7pOWlobhw4fjn//8JzIzM5Gamopnn32WQYbaLIYZolYghEBJuQUFRSacKzajSFf/Ulphcdt7KuSATGatcZHLLj4HAJPZWmNjMgNms7UG52JZgSq9QJXe7PJ7BqgkRLWTIzpcjphwhfV5OzmiwxWIi5QjPor/5bgLa7mILuL/LERuIIRAaYUF2vMmFFwwo6DIhLNFJhQUWV+fLTKh2tC4ahOlAggPlSMsWIbQYBnCgq3Pw4JkCAuRISxYhuAAGQLUEgJU1tqTALWEQJV1nVolQe7ibSIhrLeiDCZRE2QsqKq2PlbqresqqyworbRAV2aGrsKCkjJr+Copt66rqBaoNgjkF5qQX2gCoK/3vcKCwnHlpI+xZlsI/ijQISFagYRoBZJilQgJvHwzvktHvn3mmWfQrVs3lz4vEfkXhhkiF1RWW5BfaMKps0brUmhC/lkj8gtNqNI3HFYkCYjUyBETLkdUOzkiwuSI0sgRaXte8xgWLGv1WzWSZG1DEyiXEKgGANcnfdUbLDhfYsa5EjPOFZtxrsSEcyVmnC82o7DYBO15E8qrBEor5WgXPxh7coA9OTqHc0Rq5OgYr0RynALJ8Up0iFOiY7wSmhBreVasWIEZM2bYr8+qVauwcuVKZGRksCFxE7hjWgcib8AwQ3QJs0WgoMiEU2etoeVieDGhSNfwrZdIjRyxEdbbKXERCsRG1txeiVQgOlwBldJ/25OoVTK0j5GhfYzS6T6lFWZ8t/0PPDDr73jiqX9BKGNw5rwJZ86ZHG63ZR12PK5diAxhilNY+a8ZEOLiPTHbCLjp6ekYPnx4q91q8ZfaIdu0DkS+jmGG2ixdudkaWAqNF4PLWSPOnDfBaHJ+XLsQGRJjlUiKsd4aSYpVIDFGifgo/w4r7hAWLEeHGBMKj27A6Cufx4ABkfZt5ZUWnCgw4mSBEXlao/15QZEZJeUWZP38HgScXV8J//j3O3jt1X+hXajrtUquYO0QkfdhmCG/ZjAKnD5nDSv5NbeFbLUtDTW2VSqAxBhrUEmqeUyMVSIpVonQIA7P1BJCgmTo3VmN3p3VDuur9BacOmvCAzMKcQoC9d3MswiBr7Yewcm/nUakRo5uSUp076BCj2Q1eiSrEBHmnoBTe14km6bUDvlLzQ6Rt2CYIZ9nsQicLzFbbwcV1gouZ404e8EMSwNNWWLC5UiKVSKxVmhJilUiJlzeYmOtkGsC1TJ076DC1QO7Yvt3Esz13OmTJAnRsR0gSbDfqvr5QLV9e3Q7Obonq9Cjgwo9klXo3kFlb4fjisbMi7Rw4cIGz8GaHffTarV455138MADD7D9TxvFMEM+o6zSYr8VdKqmx8yps0acLjRBb3SeWIIDpJpaFcfA0j5GgQAVa1l8xfTp0/HSSy/Vu02CwKeZj6F9YiKOnTYi55QBR04akH3CgBMFRmuj5JIq/Phblf2Y+Eg5eiSr7SGnWwfVZXtTNXdeJHfV7JAj2yjEEydObFKYYRjyfQwz5FUqqqxjsZw+Z0K+rZal0HpbSFfu/LaQXAYkRFvbriTWasuSFKNEeFjr9w4i92vsyLd9uqjRp8vFW1VV1Rbk5FuDjS3g5BeaoC0yQ1tUia2/Vtr3TYxRICXZWnvTI1mNrklKh8Db3HmR3FGzQ+7X3DBkOwcDkecwzFCrMlsEzhWboT1vsi9nii4+byiwAEBUO7m9wW1ijDWsJMYqEB+pgFzOwOILmtMduCkj3wYGyHBF1wBc0TXAvq680oIjp6zBJvuEHkdOGlBQZLaPkfPtbmvAkcmAjvFKe8C5/qZ7nNYONWZeJH+b8Zptfy5yRyCipmOYIbeqNlhQWGxG4QXrSLeFxWacKzbhrG0guQsmmC4zsGy7EBniohT2sGILL+2jFQgM4G0hX9fc7sDuGPk2JEiGAT0CMKDHxYCjKzfXhBsDDteEnAulFhw/bcTx00Z8ubMCQCh63vASDm55EpAkCIsZMpkcQOPmRfK2Ga+bg21/yJswzFCjmM3W4fgvlJqtcweVmnFBZx0g7ewFk32gtMYMx69UALERCiREKRAfZR39NT7S+jw+SoEgBhbyAE2IHIN7B2Jw70AA1pqS8yWOAefISQPQ7Q6ExFwF7aEPUV2Wj4DQRHTqdxf2XeiOpeuKrbU4HdWIj5TXCS4NtftpyozXnhr0zp1tf3h7htyBYaaNMpsFSistKC23Tl6oq7g4sWGxLbCUWezBpaTc0uhJDIMCJESHKxATLq9ZFIgOl9sDS2Q7ucvD7RO1Nkmy/hxHhyswvH8QAGvgOHPehOwTkfhhVyw2bPodMR0Gw2CS8PtRPX4/enEKh7BgWU33cJX9NpW7Z7z21KB37mz7w9sz5A4MMz7GYhEwmKwzJFfpBSqqrDMmV1RbUFVtQUW1QGW1BZX2R+vcOmUVlpqwYq09qah2fXplmQS0C5UhIsw67H54zRD8sRGKmokFrRMKNmZ+HSJfJEkS2kcr0T5aiXayCsx/eAp2785CZEIfhxqc46cNKK2wYM+hauw5dLGLeKRGjh7Jt+Dfy/Zg+1dv4fP1K5GaerfPzXjtb21/yPf5dJhJffttBAaGQSFTQSGpoJApoZSpax5VUMpVUMhUUMmUUMnV9nUqhQoqmQpKmRIKuQSZTIJMZm3s19z6AosAzBbAUjMTsdkiYK6ZodhsAUxmx9e2GYtNZmtAsQUVg0nAYHttFDDULA2NTNsUIYESwkLkCA2SQVMzsWF4qLwmsMgQXiu4aEJkrFEhuoRMBnRKUKFTggo3DbWuM5oEcs8YcThPbw85eVojinRm7Py9CkAkEPMcRj7wHEpDzHh3Swi6HC5Bl0QVuiSq6r1F5U38qe0P+QefDjO/G5ZCJmtmLYBFCQkqSEJ5yaICah4vXS8JZc22mtdwPBZC1bjjLn0/KCG5EKfUSglBgRKC1DIEBUgICpDVLDXP1RKCAq2PoUEyhAZfnIlZEyxDSKCMPYCIWoBSIaF7B+vgfDbVBguOnjLi8AlrwPktuwznS+UoLpfjx98cx8AJCpDQpb0KnROV6NJehS6JSnRKUHrNuEjubvtD1Fw+HWb6RYwG1IDJYoDRYoDJYrQ+CutzszDAZDHAJKzPzcIACy7pSiMzQsBY7xDpnqCQlFDIVBdrkWotasXFJUChQoAywGG7SuG4v1yugpCrYFSoUC5XwSBXodyihqpSBZVeVedYtVxdZ51M8o7/PIl8XYBK5jAGzq+/nsSQodfj/XU7IAtKxrF8I46dNuCE1ojKaoH9x/TYf+xiGxyZBLSPUaBLexU6JSiRHK9Ecpx18EdFK38pcXfbH6Lm8ukws/KeVxAWFubSMWaLGQaz4eJiuvhcb9bXu95gNkBv0js9rsHzXWY/o8XoUD6TMMJkNqLaXAEYnXyIVqSQKWqC1CVBx0mAchqO6tvvknVqufqyx8llLTuJIFFrMhlK0TXBiAEDLv4/ZjILnCww2sPNsXwjjuUbUFJuqZkQ1YStv148h1wGJMYqkRynQMeagJMcr0RijLJFJz5typg/RC3Fp8NMU8hlcgTKAhGoDPR0UQAAFmGB0Wx0CEyNCUGXLg5hq5HHOnuf2kwWE0wWEyqNlU4+QeuSS/I6IadZQau+QOXk2Drvo1BBIWtzv0LUwhRyCZ3bq9C5vQpjEAzAeuvmQqkFx/INOH7aOqO4bWbxar3ACa0RJ7RG/LD34q0qmQxIqBmvqX2MEonRCrSPsY7ZFB3unh6F7hjzp7n8ZeA+dlFvHv5P7GEySQa1Qg21Qo1QdainiwMhROOC0KU1Vc5ClOmSWq9LXzcigNWeJ9kszKgyVaHKVNXAp2g9MknWYIhqbNC6NETZaqlcDWgKmcKrG45S00iShEiNHJGai+PgANbejedKzNYwU2ANNHk1waaiWthHNAaqHc6nVADxkTUhJ0ZhnwokLsLaI7Ela3TcyR0D93lLGGIX9eZhmCEHkiTZw5U3EELAaDG6VOPkrKaqMQGqMbcTLeLiQGEWYUG1qRrVpuoGPkXrkSA1GHjqu63XmFqp5tSEtUS48tRgcd5GJpMQG6FAbITCIeQIIVCkM+NEgXVus9OF1vnOThcaoS0ywWgCTp414eTZut0jJQmICJMjLtI67EJcpAKxEfKaR+tztRc0RHbHwH3uGsXYWwJRW8YwQ15NkiT7H0WoLr9/azBZTC7VVDkLUU25nWgw1a3lMouLjdoFBPQmPfQmfQOfoHXVG3hk9YcfpVxZbzhyWF8TvPpM7oPdJbuhLFVe/ly1QphSrvT7hu2SJCGqnQJR7RQYmBLgsM02P5ot5OTXhJwz56zTjuiN1iBUpDPjj+OGes/fLkSGqHbWcaaEMQQdB83Gz4fVMCirENVOjsh2cmiCZZC14FAOzR24z12jGHNaB+/AMEPkIoVMAYVKgSAEebooABrfqP2y7aoaU1PViBqySxu119cWy9NsDdsbE6Qu3WarwTJUGzDpn5PwbdG32Ltnb6PPZVuK9cWQBcpQba6G0WxstVuEcpmEuEhrjcugno7bhLBOW3K2yISCC+aaRxPOFplQeMGMggsmVFZb9ykpt+BovhFAADpd9TjW7gDW7jh38RrLgQiNHFEa6zhV7UJkaBcqR3iodcyq8FA52oXKUFopQZJcb9jf3IH73DGKsTundaDmYZgh8nHe2Ki9sY3NbY3f6wQiW6P4S2q1HPY3NXCeetbX5raG7Srg999+b/LhHV/oiNRtqcC2y9wirKd2SylrRI3U5c6nqDnPJfu2j1ehU6IKKnmgwx98IQTKqwTOFplwvqb2Zv+hU1ix6lOMvukOGBGMIp0ZJWUWmMxA4QUzCi84n1m2siQX2sMfIbrLLZjywP9wxdBp6NCxGzQhMuvYWDVLiO158MXXCe2TmzVwnztGMXbntA7UPAwzRORWMkmGAGUAApQBl9+5ldTXsL3JQcp0mfPY9rE4r8kymo3Qm/QOjdu98RYhgHrDTu3AZBAGlKb8irNxWYgKj0J7uQodZSoIsxJmswJGoxJmoxxGkxJGgwIGvRIGvRxHd+7CgfUrYR13XaAQEo5lvY0uox9DbK+brYOJ4tJBTGsWyFFZMg5my8v1ltliEVDETcb/PitxHFC01kCiEdFJzR7FmNM6eA+GGSLye97WsB2w9l5Z+s5SpKWnISIqok4wqh2mGh2kbNstzm8HXq5269LbhEaLEUaLERXGCqefJahbEPYW7QWKGvfZjeeMOLX+FKxZzhYGrI/Hvn0NhgHroIxSOj+BkEESSsQYE1C4Lt+Wh+ziJl2BdaULIf126ejstjCkgsFUDnOt20O1mS0W7BOxuOe19QhUqKBWqhCoUiNQqUSQOgCBKhWCVWpUShHWFtP1kCQJ8QkdUKW3QKWUOBVMC5OEs1jpxUpLS6HRaKDT6VweNI+IiJy7dOwrZ70JbfsczjmMJ59+EvNfnI/4xPhGBaltK7Zh3/p9EJZ6/vzIgPZj2iN+QrzDewsn47QbzxtRtqsMxmIjlOFKhA4ObTgI1VK2uwznPj53MQzVPEbfEY3Qqy4/VIbxnBGnXj6FeosmAR3nDIAqIgySUEIGJWRQQS4pIYcKcpnSYcR3YQLO5GvRKbkzwoLDatpnOY78rlaqEKBQI1ClQqDS9qhCkFqNIJUKgSoVglRq66K2Bq4AlRxKhdSijbFd0VJ/v1kzQ0REdq6OfdVO1w4V+ypwfcL1GNB/QKPeY+p7U/Ebfqs3oMggw7Xh1+KDhz+wrxNCWHsROqmR+v2P33Hv/ffirZffQnLn5Hpv+9UXyvT99NCOKcTO9Ttx/NBxJPbogK439IAyKgAGk9Fey2U0G+zT5piFCaaa6XGU0dbg4ywQyeJKYELJ5S+IACAHkAzkYBfgvBLMdUJ2cS7AmkAlgwIy1IQqqSZgSaqacHUxYF2cWufSnoE1QUupglqhRIBCjQBlTQ2WUo1ApQoBKiUCleqL4UqlQlCACpbqlhnGgmGGiIiarClj/rg667YkSVDKlVDKlQiuGRW5tsqwSujz9Ogb0RcDOjcuUNX264BfMXDgQHy49j0MGND4480WM4xmIw49dwgv//tlrFmzBpOnTMZfHv0L4pPjUW3Uo0JvQJXBgEqDHlUGPaoMBlQZ9agyGlBds+hNBpwtOocfftyOQYMHQhWorglttjBltM4zaDFa5x4UBphr5hy0wAiLMFofJSOEdEnPQckCIVVD1Ayc6Lw5Nqyhyny5nZrHUl3/rb3m4m0mIiJqVTk5OUhJSXHo0mwjk8mQnZ3tUpfmX3+1hpGsrCyXwoi7jveWMgAXBxrVm/So1BtQaTCgUq9HpUGPSoPBHqaqjY7Pq00G6GuClfUWo63dltEaqmoebTVURvskzkaYayZ4NtcOVqgJWjBCSEZAsiYkS7UFeX/P420mIiLybZx125E7RxCuPdBoqPe0d4fJbEKV0YiCc+fQ/e/Jbj+/fw+DSUREXiktLQ3Z2dlITU0FAKSmpiI7O7vNjZq7YsUKpKSkYNWqVQCsIwinpKQgMzPTswVzM4VcgdCAQMRq2rXI+RlmiIjII2yzbgPw2KzbnlR7BGHbyMFmsxkWiwXp6ek4evSoS+fTarWYN28etFptSxTXqzHMEBEReUBjRhB2hW3mbYYZIiIiahUcQdh9GGaIiIg8wNUu6uQcwwwREZEHTJ8+vcGamfT09FYuke9yOcz88MMPmDBhAhISEiBJEj799FOH7WlpaZAkyWG5+uqrHfbR6/WYNWsWoqKiEBwcjIkTJyI/P79ZH4SIiNqmpgzc5w1sXdRlMhnkcjkAQC6XQyaTtcku6s3hcpipqKhAv3798Oabbzrd56abboJWq7UvX375pcP22bNnY/369VizZg127NiB8vJyjB8/3t6am4iIqLHi4+Mxb968JocZT4YhdlF3D5cHzRs3bhzGjRvX4D5qtRpxcXH1btPpdMjIyMCqVaswevRoAMB7772HpKQkfPvtt7jxxhtdLRIREVGT2cJQc8/R1EBk66KemZnZJruou0OLtJnZunUrYmJi0L17d/z5z39GYWGhfVtWVhaMRiPGjh1rX5eQkIA+ffpg586dLVEcIiKiFtXc2iFqHrdPZzBu3DjccccdSE5ORm5uLv7+97/jhhtuQFZWFtRqNQoKCqBSqRAeHu5wXGxsLAoKCuo9p16vh16vt78uLS11d7GJiMgDfLW9C3kXt4eZO++80/68T58+GDRoEJKTk7Fx40bcfvvtTo8TQjjtorZw4ULMnz/f3UUlIiIPc8ctHqIW75odHx+P5ORk5OTkAADi4uJgMBhQXFzssF9hYSFiY2PrPcfTTz8NnU5nX06dOtXSxSYiIvIZl05Wafub21a0eJgpKirCqVOn7FWIAwcOhFKpxObNm+37aLVaHDhwAMOGDav3HGq1GmFhYQ4LERERtZ3JKhvi8m2m8vJyh8mvcnNzsW/fPkRERCAiIgLz5s3D5MmTER8fj7y8PDzzzDOIiorCbbfdBgDQaDRIT0/HE088gcjISERERGDu3Lno27evvXcTERERXV7tySptbMOcpKenY/jw4W2id5TLNTN79uzBlVdeiSuvvBIAMGfOHFx55ZV47rnnIJfLsX//ftx6663o3r077rvvPnTv3h0//fQTQkND7edYtGgRJk2ahClTpuCaa65BUFAQPv/8c/ugQURERHR57p6s0le5XDMzcuRIp8MvA8A333xz2XMEBARg8eLF9vt7RERE5DpOVmnFuZmIiIg8rKld1DlZpZUkGqpm8VKlpaXQaDTQ6XRsDExERG1WTk4OUlJSHNrM2MhkMmRnZze6zYxWq8U777yDBx54oMXG/Wmpv9+smSEiIvJR7pysUqvVYv78+dBqtS1V3BbDMENEROTDOFklwwwREZHPs01WCaBNTlbJMENEREQ+jWGGiIiIfBrDDBEREfk0hhkiIiLyaQwzRERE5NMYZoiIiMinMcwQERGRT2OYISIiauNycnLskz8vXrwYOTk5Hi6RaxhmiIiI/EBTJ6tcsWIFUlJSsGrVKgDAqlWrkJKSgszMzBYoZcvgRJNERERtlDsnqmwMTjRJREREbrV8+XJIklTvNkmSkJGR0colahqGGSIiojYqLy8Pzm7QCCGQl5fXugVqIoYZIiKiNqpjx44N1sx07NixdQvURAwzREREbdT06dMbrJlJT09v5RI1DcMMERFRG9WtWzdkZGRAJpNBLpcDAORyOWQyGTIyMtza+LclMcwQERG1YWlpacjOzkZqaioAIDU1FdnZ2UhLS/NswVzAMENERNTGde3aFbNmzQIAzJo1y2dqZGwYZoiIiMinMcwQERGRT2OYISIiIp/GMENEREQ+jWGGiIiIfBrDDBEREfk0hhkiIiLyaQwzREREhPj4eDz//POIj4/3dFFcJglnkzJ4sdLSUmg0Guh0OoSFhXm6OERERNQILfX3mzUzRERE5BZarRbz5s2DVqtt1fdlmCEiIiK30Gq1mD9/PsMMERERkSsYZoiIiMinMcwQERGRT2OYISIiIp/GMENEREQ+jWGGiIiIfBrDDBEREfk0hhkiIiJqtpycHCxevBgAsHjxYuTk5LTaezPMEBERUbOsWLECKSkpWLVqFQBg1apVSElJQWZmZqu8P+dmIiIioibLyclBSkoKLBZLnW0ymQzZ2dno2rUrAM7NRERERF5o+fLlkCSp3m2SJCEjI6PFy8AwQ0RERE2Wl5cHZzd5hBDIy8tr8TIwzBAREVGTdezYscGamY4dO7Z4GRhmiIiIqMmmT5/eYM1Menp6i5fB5TDzww8/YMKECUhISIAkSfj0008dtgshMG/ePCQkJCAwMBAjR47EH3/84bCPXq/HrFmzEBUVheDgYEycOBH5+fnN+iBERETU+rp164aMjAzIZDLI5XIAgFwuh0wmQ0ZGhr3xb0tyOcxUVFSgX79+ePPNN+vd/tJLL+HVV1/Fm2++id27dyMuLg5jxoxBWVmZfZ/Zs2dj/fr1WLNmDXbs2IHy8nKMHz8eZrO56Z+EiIiIPCItLQ3Z2dlITU0FAKSmpiI7OxtpaWmt8v7N6potSRLWr1+PSZMmAbDWyiQkJGD27Nn429/+BsBaCxMbG4t///vfeOCBB6DT6RAdHY1Vq1bhzjvvBACcOXMGSUlJ+PLLL3HjjTde9n3ZNZuIiMj7/Prrrxg4cCCysrIwYMCAOtt9omt2bm4uCgoKMHbsWPs6tVqNESNGYOfOnQCArKwsGI1Gh30SEhLQp08f+z6X0uv1KC0tdViIiIiIADeHmYKCAgBAbGysw/rY2Fj7toKCAqhUKoSHhzvd51ILFy6ERqOxL0lJSe4sNhEREfmwFunNdGkXLSGE025bjdnn6aefhk6nsy+nTp1yW1mJiIjIt7k1zMTFxQFAnRqWwsJCe21NXFwcDAYDiouLne5zKbVajbCwMIeFiIiICHBzmOnUqRPi4uKwefNm+zqDwYBt27Zh2LBhAICBAwdCqVQ67KPVanHgwAH7PkRERESNpXD1gPLychw9etT+Ojc3F/v27UNERAQ6dOiA2bNnY8GCBejWrRu6deuGBQsWICgoCNOmTQMAaDQapKen44knnkBkZCQiIiIwd+5c9O3bF6NHj3bfJyMiIqI2weUws2fPHlx//fX213PmzAEA3HfffcjMzMSTTz6JqqoqzJw5E8XFxRgyZAg2bdqE0NBQ+zGLFi2CQqHAlClTUFVVhVGjRiEzM9M+2A4RERH5nvj4eDz//POIj49v1fdt1jgznsJxZoiIiHyPT4wzQ0RERNTaGGaIiIjIpzHMEBERkU9jmCEiIiKfxjBDREREPo1hhoiIiHwawwwRERH5NIYZIiIi8mkMM0REROTTGGaIiIjIpzHMEBERkU9jmCEiIiKfxjBDREREPo1hhoiIiHwawwwRERH5NIYZIiIi8mkMM0REROTTGGaIiIjIpzHMEBERkU9jmCEiIiKfxjBDREREPo1hhoiIiHwawwwRERH5NIYZIiIi8mkMM0REROTTGGaIiIjIpzHMEBERkU9jmCEiIiKfxjBDREREPo1hhoiIiHwawwwRERH5NIYZIiIi8mkMM0REROTTGGaIiIjIpzHMEBERkU9jmCEiIiKfxjBDREREPo1hhoiIiHwawwwRERH5NIYZIiIi8mkMM0REROTTGGaIiIjIpzHMEBERkU9jmCEiIiKfxjBDREREPo1hhoiIiHwawwwRERH5NLeHmXnz5kGSJIclLi7Ovl0IgXnz5iEhIQGBgYEYOXIk/vjjD3cXg4iIiNqIFqmZ6d27N7RarX3Zv3+/fdtLL72EV199FW+++SZ2796NuLg4jBkzBmVlZS1RFCIiIvJzLRJmFAoF4uLi7Et0dDQAa63Ma6+9hmeffRa33347+vTpg3fffReVlZVYvXp1SxSFiIiI/FyLhJmcnBwkJCSgU6dOuOuuu3D8+HEAQG5uLgoKCjB27Fj7vmq1GiNGjMDOnTudnk+v16O0tNRhISIiIgJaIMwMGTIEK1euxDfffIP//ve/KCgowLBhw1BUVISCggIAQGxsrMMxsbGx9m31WbhwITQajX1JSkpyd7GJiIjIR7k9zIwbNw6TJ09G3759MXr0aGzcuBEA8O6779r3kSTJ4RghRJ11tT399NPQ6XT25dSpU+4uNhEREfmoFu+aHRwcjL59+yInJ8feq+nSWpjCwsI6tTW1qdVqhIWFOSxEREREQCuEGb1ej0OHDiE+Ph6dOnVCXFwcNm/ebN9uMBiwbds2DBs2rKWLQkRERH5I4e4Tzp07FxMmTECHDh1QWFiIf/zjHygtLcV9990HSZIwe/ZsLFiwAN26dUO3bt2wYMECBAUFYdq0ae4uChEREbUBbg8z+fn5mDp1Ks6fP4/o6GhcffXV+Pnnn5GcnAwAePLJJ1FVVYWZM2eiuLgYQ4YMwaZNmxAaGuruohAREVEbIAkhhKcL4arS0lJoNBrodDq2nyEiIvIRLfX3m3MzERERkU9jmCEiIiKfxjBDREREPo1hhoiIiHwawwwRERH5NIYZIiIi8mkMM0REROTTGGaIiIjIpzHMEBERkU9jmCEiIiKfxjBDREREPo1hhoiIiHwawwwRERH5NIYZIiIi8mkMM0REROTTGGaIiIjIpzHMEBERkU9jmCEiIiKfxjBDREREPo1hhoiIiHwawwwRERH5NIYZIiIi8mkMM0REROTTGGaIiIjIpzHMEBERkU9jmCEiIiKfxjBDREREPo1hhoiIiHyawtMFIKKmsVTrYSkpg7m4FJbiUlhKSmG+UAqLrgyWymqIqmpYKqohKqsuvq6sBowmCIsFsFgAi4AwmwGLACwWCCEgKRU1ixKSSgEoFJBUSuu6oADIQoIhCwmELDQYspAgyEKDIYUEQa4JgSxCA3lUOOQRYZAU/O+FiFoH/7ch8jLm0nKYThfCXHAepoLzMJ8tsj4WFMFUWARzwXmYi0ogKqs9XdQGycLDII9sZ12iwiGPi4QiIQaKhGgo4qOhSIiBPD4KsgC1p4tKRD6OYYaolVkqqmA6VQDjyTMwnSyA8aQWppNa+6NFV974k8lkkIWHQt4uzFor0i4UsnahkAUHQgoMgCwowOFRCgqw1rLIJEAuByQJklwOyGWATLKe02SGMJogDEYIkwkw1Dw3mmCprIIor4SlrBKW8kpYyiqsj+WVsOjKYC4qgeVCKSCEtbaouBTGoycb/giRGijiY6BMjoeiYwKUHdtbl+QEKJJiWcNDRJfF/yWIWoAwm2E6WQDD0ZMwHjsJ49FT1uc5J2AuvHDZ42XhYVDERUEeG+n4GBcFRWwk5FHhkEWEWW/xyLyr6Zswm623u4pKYC4qgfl8Cczni2HSnrMuZ87BfKYQpjOFENUGWIp0MBTpYDiQU/dkcjkUSbE1AScByi4doOqeDGX3jlAkRHvdZyciz2CYIWoGS7UexiMnYDh0HIacEzAePWkNLbmnAYPR6XEyTQgUSfHW2ogO8VAmxUGRHA9lhwQoEmMhCwlqxU/hXpJcDkV0OBAd3uB+QghYSspgOl0I05mzMOZpYTpxBsa80zDmnYbphBZCb4Ap7wxMeWdQden7BAVA2dUablRdk6HsnmwNOp0SIamULfcBicjrMMwQNYIQAqbThTAcPArDH8dgOHgM+oPHYDyWD5jN9R4jBaig7JwIZZcO1j+6XZOg7NoBys5JkLcLbeVP4H0kSYI8PAzy8DCo+3Sts11YLDCfLYIx9zSMJ87AeDzfGhZzTsB4PB+ishqG34/A8PsRxwPlcig7J0LVszNUvTpD3asLVD27QNEhjjU5RH5KEkIITxfCVaWlpdBoNNDpdAgLC/N0ccjPWMorYTh0HPqDx+zBxXDoOCyl9bdlkYWHWf9w9uhovQ3StQOU3TpAkRjLP54tRBhN1oCTcwKGI9bFmHMChpwTEOWV9R4jBQda/5162gJOZ6h6dYE8nP+HELWWlvr7zTBDbZYwm2HMPW0NLIesNS2Gg8dgOqGt/wCF3HpLo1cXqHp1gbpXV6h6dYY8LgqSJLVu4aleQgiYC85bb/vZAunB4zAcyXN6208eH10TcDrb/21V3ZJ5q4qoBTDM1MIwQ64yF5VcrGk5dNxa25KdC1Glr3d/eVyUNbD07nLxD1zXDvwD56OE0QTj8VMwHKwJODVhx3SSwZWoNTHM1MIwQ84IvQGGnJPWti2HjkNfc5vIfLao3v2lQDVUKda2FapeXa3hpWdnyCM0rVxy8gRLWYX15+TQcYeg2+AtxV5drLepenWBqncXqHp0giwooJVLTuSbGGZqYZghIQRM+WetNSw137T1h45bxzQx1d8gV9GxveOthF5doOyYYB1nhahGvY29Dx2H8eip+ht7S5K1wXGvLhcbHPfqygbHRPVgmKmFYaZtMevKrO0ebLeHDh6D4XAuLGUV9e4v04RY/7D0rHWbKKWTT3d3Js+zdcO3ta0yHDwG/R9HYTlfUu/+UnCgYy1OTdiRh4W0bsGJvAjDTC0MM/7JUl5p7XZ75AQM2XkwHLLWuJhOF9Z/gFIBVbcO9uBia8QpT4hhuwZqNabCC7XCjbUxuSE7z2mDY0VSnL0nlbom4HBsHGorGGZqYZjxbebzxdbutDknYMzOg6Gme635jJPQAkCRGGvvVmv/ltsliX8AyCvZGhw7dO8/eMx5MJfLrSMcd0uGqluHmsdkKLt1gFzDMYnIfzDM1MIw4/0sldUXBzrLzbc+1gQYywWd0+Pk0RH2kVyt4aULVD078T908gvmkjJ7Gy/bwIuGQ8chKi4d3/gi++9Etw5Qdq157JwERWIM560in8MwUwvDjHewVFRZh57PPX0xtNQ8N2vPNXisokO89Ztnd+s3UFWPjlB2S+YAZtTm2MfGyTkBY07NCMc5J2DIOdnw75FCDkVinLVGp1N7+/xVik6JUCYnsIcVeSWGmVoYZlqefd6cUwUw5RfAeOosTPkFMNU8GvMLYClyXsMCALKwEOtw/p0Trf/RdusAVfeOUHbtwP9oiRrBUl5pn6DUOsrxSRiOnoDpxBmIakODx8pjI6Hs2B6KpFgo2sdCkVj7MYYNkckjGGZqYZhpHmEywXyuGKaC8zAXnIfpbJH1seA8zAVFMJ4+C9Opggarvm1kERrrt8JO7aHsVBNcap7LwsPYEJeoBdjnrTqeD2OedXJOU95p6/PcfFh09Y+TU5ssNNgebBSJsVAkxFhnZY+JhDw2EvKYCMij2rF7ObmVX4aZJUuW4OWXX4ZWq0Xv3r3x2muv4dprr73scQwzjoQQEBVVMBeVwHxBB/P5Elgu6Kyvz5dYHwuLakJLEczni4FG/rPLo8OhSIyDIikOiqRYKG3PE2OhSIrjtzsiL2QuLq0JOGesX07yz1pnJ88/C9OZwgbbrTmQyyGPagd5bCQUNQFHERtlDToRGsgiNJBHaCCPCIMsoh1kgeqW/WDk81rq77fHWo99+OGHmD17NpYsWYJrrrkG77zzDsaNG4eDBw+iQ4cOniqWx9gCiaW0HGZdOSyl5bDYHksrYNGV2Z+bdeWw6MqsIaVIB8uFkstWOdchl1v/g4qLrHmMsv4nFRtp/aaWFAdF+1j+50Tkg2yzkePKnvVut1RUwXSmJtzkn4XpdE3YOVsEc+EFmAuLYD5fApjNMJ8tgvlsERrzP4wUFAB5eFitkKOBLFwDebtQSKFBkIeFQBYaDFlYCGRhwTXPra+l4EDW5FKTeaxmZsiQIRgwYACWLl1qX9ezZ09MmjQJCxcubPDY1qqZEUIARhOEwQihN1gfqw0QBgOE3nhxvW2b3ghRrYelsgqishqWiqpaz6shKqtgqayueV1pfaysWV9eVf/ooi6QAlSQR7az/kcS2e7iEqGxfpOKi4IiLgryuCjIIzWsPiYip4TJZK3ZPVtTq1sTdOyBp1gHS3GpvUbY2cjbjSaTQRYSZA85UqAaUlAgZJc+BgdACgyALMj6KAUFQGZ/VANKBSS1CpJKCUmthKRU1jyvWadSAgo5g5OH+FXNjMFgQFZWFp566imH9WPHjsXOnTsbfZ7zz70FvUIJYTIBJjOE2Wx9tD03WyBMZsBsXXfpPrDUs94WSmoCS2Nvx7iNQg6ZJgSy0BDINSH25zLb87BgyMJCrdsiNNYq4JrAwm82ROQukkJhrbGNi8Ll6meFEBDllTAX6WAu1llrjGsezRd01lrm8gprLbOttrmsHJaySus8WCYzYLHUbLt8e5/mfzjJGnRUKkClgKSqCTpKBSSFHJDLIcll1tAjl9c8yqzrbdsdHmUX91PIAZntUQJkMkBCzZdHybpOkqyvJdRst66XbNtrr5MuHgNJVnOsZN/ucC7UrK/5jBc/r+Nnr++5/W9HI/at97nD2znft7yy/pHbm8sjYeb8+fMwm82IjY11WB8bG4uCgoI6++v1euj1F2c31ums93vPrPwEIVIrfgSFvOaHvib5q5WQlLbX1l8MSa2ELCgQUvDFbwtSYACkQLV1fWBAzTeLQMiCatYFqSELDrJ+GwkKaFQgEQDMNQsAwGICyspa8MMTEV1GRIh16dIeACCrWRoihICo0sNSVmENPGWVsJRXWtdVV0NU6iGqqmGpsj5aFz0sVdZtlprXoqoalmo9YDRbv4wajBAGE4TR+gUVFovjG1cagcrKFrkM5Fy5MAGoufPhRh4dcenSP9pCiHr/kC9cuBDz58+vs/7a4j0tVjYiIiJqGUVFRdBoNG47n0fCTFRUFORyeZ1amMLCwjq1NQDw9NNPY86cOfbXJSUlSE5OxsmTJ916MfxBaWkpkpKScOrUKfb0ugSvjXO8Ns7x2jjHa1M/XhfndDodOnTogIiICLee1yNhRqVSYeDAgdi8eTNuu+02+/rNmzfj1ltvrbO/Wq2GWl33rq1Go+EPihNhYWG8Nk7w2jjHa+Mcr41zvDb143VxTubmDigeu800Z84cpKamYtCgQRg6dCiWLVuGkydP4sEHH/RUkYiIiMgHeSzM3HnnnSgqKsILL7wArVaLPn364Msvv0RycrKnikREREQ+yKMNgGfOnImZM2e6fJxarcbzzz9f762nto7XxjleG+d4bZzjtXGO16Z+vC7OtdS18cm5mYiIiIhsOAQsERER+TSGGSIiIvJpDDNERETk0xhmiIiIyKd5XZhZuHAhrrrqKoSGhiImJgaTJk1Cdnb2ZY97//330a9fPwQFBSE+Ph73338/ioqKWqHEraep1+att95Cz549ERgYiB49emDlypWtUNrWtXTpUlxxxRX2QaqGDh2Kr776qsFjtm3bhoEDByIgIACdO3fG22+/3UqlbV2uXhutVotp06ahR48ekMlkmD17dusVtpW5em0++eQTjBkzBtHR0fb9v/nmm1Yscetx9drs2LED11xzDSIjIxEYGIiUlBQsWrSoFUvcOpryf43Njz/+CIVCgf79+7dsIT3E1WuzdetWSJJUZzl8+LDrby68zI033ihWrFghDhw4IPbt2yduueUW0aFDB1FeXu70mO3btwuZTCZef/11cfz4cbF9+3bRu3dvMWnSpFYsectryrVZsmSJCA0NFWvWrBHHjh0TH3zwgQgJCREbNmxoxZK3vA0bNoiNGzeK7OxskZ2dLZ555hmhVCrFgQMH6t3/+PHjIigoSDz22GPi4MGD4r///a9QKpVi7dq1rVzylufqtcnNzRWPPvqoePfdd0X//v3FY4891roFbkWuXpvHHntM/Pvf/xa7du0SR44cEU8//bRQKpXi119/beWStzxXr82vv/4qVq9eLQ4cOCByc3PFqlWrRFBQkHjnnXdaueQty9XrYlNSUiI6d+4sxo4dK/r169c6hW1lrl6b77//XgAQ2dnZQqvV2heTyeTye3tdmLlUYWGhACC2bdvmdJ+XX35ZdO7c2WHdG2+8IRITE1u6eB7VmGszdOhQMXfuXId1jz32mLjmmmtaungeFx4eLv73v//Vu+3JJ58UKSkpDuseeOABcfXVV7dG0TyuoWtT24gRI/w6zNSnsdfGplevXmL+/PktWCLv4eq1ue2228Q999zTgiXyDo25Lnfeeaf4v//7P/H888/7bZipT0PXxhZmiouLm/0+Xneb6VI6nQ4AGpyUatiwYcjPz8eXX34JIQTOnj2LtWvX4pZbbmmtYnpEY66NXq9HQECAw7rAwEDs2rULRqOxRcvnKWazGWvWrEFFRQWGDh1a7z4//fQTxo4d67DuxhtvxJ49e/z2ugCNuzZtVVOujcViQVlZmdsnzfM2Tbk2e/fuxc6dOzFixIgWLp3nNPa6rFixAseOHcPzzz/fiqXzLFd+Zq688krEx8dj1KhR+P7775v2hs2OQy3IYrGICRMmiOHDh192348//liEhIQIhUIhAIiJEycKg8HQCqX0jMZem6efflrExcWJPXv2CIvFInbv3i1iYmIEAHHmzJlWKm3r+P3330VwcLCQy+VCo9GIjRs3Ot23W7du4p///KfDuh9//NEvr4sQrl2b2tpCzUxTr40QQrz00ksiIiJCnD17tgVL6DlNuTbt27cXKpVKyGQy8cILL7RCKVufK9flyJEjIiYmRmRnZwshhN/XzLhybQ4fPiyWLVsmsrKyxM6dO8VDDz0kJElq8G6DM14dZmbOnCmSk5PFqVOnGtzvjz/+EPHx8eKll14Sv/32m/j6669F3759xfTp01uppK2vsdemsrJS3H///UKhUAi5XC4SEhLEk08+KQD43X/Aer1e5OTkiN27d4unnnpKREVFiT/++KPefbt16yYWLFjgsG7Hjh0CgNBqta1R3FblyrWprS2EmaZem9WrV4ugoCCxefPmViilZzTl2hw/flz8/vvvYtmyZSIiIkKsXr26lUrbehp7XUwmkxg0aJBYunSpfZ2/h5mm/j7ZjB8/XkyYMMHl9/XaMPPII4+IxMREcfz48cvue88994g//elPDuu2b9/ut9+yXbk2NgaDQZw6dUqYTCZ7o2Cz2dyCpfS8UaNGib/85S/1brv22mvFo48+6rDuk08+EQqFwq9r9Gwauja1tYUwc6nGXJs1a9aIwMBA8cUXX7RSqbxDY39ubF588UXRvXv3FiyRd3B2XYqLiwUAIZfL7YskSfZ1W7Zs8UBpW5erPzP/+Mc/6rRnbAyPTjRZHyEEZs2ahfXr12Pr1q3o1KnTZY+prKyEQuH4UeRyuf18/qIp18ZGqVQiMTERALBmzRqMHz8eMpnXN5lqFiEE9Hp9vduGDh2Kzz//3GHdpk2bMGjQICiVytYonkc1dG3austdmw8++ADTp0/HBx984Pft8i7l6s9NW/k5c/Y5w8LCsH//fod1S5YswXfffYe1a9e69H+4r3L1Z2Dv3r2Ij49v0ht5lYceekhoNBqxdetWh65alZWV9n2eeuopkZqaan+9YsUKoVAoxJIlS8SxY8fEjh07xKBBg8TgwYM98RFaTFOuTXZ2tli1apU4cuSI+OWXX8Sdd94pIiIiRG5urgc+Qct5+umnxQ8//CByc3PF77//Lp555hkhk8nEpk2bhBB1r4uta/bjjz8uDh48KDIyMvy2a7ar10YIIfbu3Sv27t0rBg4cKKZNmyb27t3rUlWxr3D12qxevVooFArx1ltvOfwOlpSUeOojtBhXr82bb74pNmzYII4cOSKOHDkili9fLsLCwsSzzz7rqY/QIpry+1SbP99mcvXaLFq0SKxfv14cOXJEHDhwQDz11FMCgFi3bp3L7+11YQZAvcuKFSvs+9x3331ixIgRDse98cYbolevXiIwMFDEx8eLu+++W+Tn57du4VtYU67NwYMHRf/+/UVgYKAICwsTt956qzh8+HDrF76FTZ8+XSQnJwuVSiWio6PFqFGj7L9AQtT/M7N161Zx5ZVXCpVKJTp27OhwX9ufNOXa1Pdzlpyc3LoFbwWuXpsRI0bUe23uu+++1i98C3P12rzxxhuid+/eIigoSISFhYkrr7xSLFmyxO9uZzfl96k2fw4zrl6bf//736JLly4iICBAhIeHi+HDh7vUAL82SQg/ug9DREREbY5/N5ogIiIiv8cwQ0RERD6NYYaIiIh8GsMMERER+TSGGSIiIvJpDDNERETk0xhmiIiIyKcxzBAREZFPY5ghIiIin8YwQ0R+Y+TIkZAkCZIkYd++fR4rR1pamr0cn376qcfKQdRWMMwQ+aEhQ4bgL3/5i8O6tLQ0PPXUUx4qUev585//DK1Wiz59+tjXFRQU4LHHHkPXrl0REBCA2NhYDB8+HG+//TYqKysbfe4JEyZg9OjR9W776aefIEkSfv31V7z++uvQarXN/ixE1DgKTxeAiNzLbDZj//79SEtLs6+zWCzYuHEjNmzY4LmCtZKgoCDExcXZXx8/fhzXXHMN2rVrhwULFqBv374wmUw4cuQIli9fjoSEBEycOLFR505PT8ftt9+OEydOIDk52WHb8uXL0b9/fwwYMAAAoNFo3PehiKhBrJkh8jOHDx9GVVWV/Y8qAPz444+QyWQYMmQIAODTTz9FWFgYhBA4evQoJEnC6dOnYbFYEBwcjK+//rrOeUeOHIlZs2Zh9uzZCA8PR2xsLJYtW4aKigrcf//9CA0NRZcuXfDVV185HPf1119j+PDhaNeuHSIjIzF+/HgcO3bMvn3t2rXo27cvAgMDERkZidGjR6OiouKy2xpr5syZUCgU2LNnD6ZMmYKePXuib9++mDx5MjZu3IgJEybY9xVC4KWXXkLnzp0RGBiIfv36Ye3atfbt48ePR0xMDDIzMx3eo7KyEh9++CHS09NdKhsRuQfDDJGf2bt3L+RyOa644gr7ug0bNmDChAmQyay/8vv27UO/fv0gSRJ+//13REZGon379jhy5AgqKyvRr1+/es/97rvvIioqCrt27cKsWbPw0EMP4Y477sCwYcPw66+/4sYbb0RqaqrDrZuKigrMmTMHu3fvxpYtWyCTyXDbbbfBYrFAq9Vi6tSpmD59Og4dOoStW7fi9ttvhxCiwW2NVVRUhE2bNuHhhx9GcHBwvftIkmR//n//939YsWIFli5dij/++AOPP/447rnnHmzbtg0AoFAocO+99yIzM9OhHB9//DEMBgPuvvvuRpeNiNxIEJFfmTNnjujdu7fDuu7du4sNGzbYX0+aNEk88sgjQgghnnvuOTFq1CghhBBr1qwR0dHR9Z53xIgRYvjw4fbXJpNJBAcHi9TUVPs6rVYrAIiffvrJafkKCwsFALF//36RlZUlAIi8vLw6+zW0zZkRI0aIxx57zP76559/FgDEJ5984rBfZGSkCA4OFsHBweLJJ58UQghRXl4uAgICxM6dOx32TU9PF1OnTrW/PnTokAAgvvvuO/u66667zmEfGwBi/fr1jS4/ETUNa2aI/MzevXsdbjEdOnQI+fn5Dg1X9+3bh/79+wMAfvvtN3tNjK3GxpnatT1yuRyRkZHo27evfV1sbCwAoLCw0L7u2LFjmDZtGjp37oywsDB06tQJAHDy5En069cPo0aNQt++fXHHHXfgv//9L4qLiwGgwW2uql37AgC7du3Cvn370Lt3b+j1egDAwYMHUV1djTFjxiAkJMS+rFy50uG2WEpKCoYNG4bly5fbP9/27dsxffr0JpWNiJqPYYbIz+zbt88hzGzYsAFjxoxBYGAgAKCsrAx5eXn2EPLbb7/Zg82vv/5qf14fpVLp8FqSJId1ttBgsVjs6yZMmICioiL897//xS+//IJffvkFAGAwGCCXy7F582Z89dVX6NWrFxYvXowePXogNze3wW2N1bVrV0iShMOHDzus79y5M7p27Wq/JrXLvHHjRuzbt8++HDx40KHdDGBtCLxu3TqUlpZixYoVSE5OxqhRoxpdLiJyL4YZIj+Sl5eH4uJiXHnllfZ1n332mUNvHVuX4dDQUOh0OuTl5aF///44d+4ctm3bhjFjxritPEVFRTh06BD+7//+D6NGjULPnj3r1K5IkoRrrrkG8+fPx969e6FSqbB+/frLbmuMyMhIjBkzBm+++eZlGw736tULarUaJ0+eRNeuXR2WpKQkh32nTJkCuVyO1atX491338X9999fp/aHiFoPu2YT+ZG9e/dCkiR7mCksLMTu3bsdBm5r3749goKC8Oqrr2L8+PFQKpWorq7G7bffjsGDB7s1zISHhyMyMhLLli1DfHw8Tp486TDWzS+//IItW7Zg7NixiImJwS+//IJz586hZ8+eDW5zxZIlS3DNNddg0KBBmDdvHq644grIZDLs3r0bhw8fxsCBAwFYw93cuXPx+OOPw2KxYPjw4SgtLcXOnTsREhKC++67z37OkJAQ3HnnnXjmmWeg0+kcusETUetjmCHyI1lZWejatSvCwsIAAJ9//jmGDBmCmJgY+z7BwcH4+OOPMWvWLPzvf/8DAIwbNw73338/nnvuObfWMMhkMqxZswaPPvoo+vTpgx49euCNN97AyJEjAQBhYWH44Ycf8Nprr6G0tBTJycl45ZVXMG7cOBw6dMjpNld06dIFe/fuxYIFC/D0008jPz8farUavXr1wty5czFz5kz7vi+++CJiYmKwcOFCHD9+HO3atcOAAQPwzDPP1Dlveno6MjIyMHbsWHTo0KFZ14mImkcSwoV+jkTk1QYNGoTBgwdjyZIlAICJEydi+PDhePLJJ+vdf9q0aQCA999/3y9uk4wcORL9+/fHa6+95umiALDeJlu/fj0mTZrk6aIQ+TW2mSHycUII5OXl4cUXX8SBAwcwa9Ys+7bhw4dj6tSpTo/Nzs7GVVdd5RdBxmbJkiUICQnB/v37PVaGBx98ECEhIR57f6K2hjUzRD7u999/x9ChQ3HFFVfgX//6F0aMGNGo40wmE0JCQrBx40a/6Ylz+vRpVFVVAQA6dOgAlUrlkXIUFhaitLQUABAfH+90wD4icg+GGSIiIvJpvM1EREREPo1hhoiIiHwawwwRERH5NIYZIiIi8mkMM0REROTTGGaIiIjIpzHMEBERkU9jmCEiIiKfxjBDREREPo1hhoiIiHwawwwRERH5tP8HvZDY5BoEFQ8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -404,10 +404,10 @@ "start_time": "2023-11-09T18:41:07.018115082Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:04.982005Z", - "iopub.status.busy": "2023-11-09T20:46:04.981455Z", - "iopub.status.idle": "2023-11-09T20:46:05.197347Z", - "shell.execute_reply": "2023-11-09T20:46:05.196782Z" + "iopub.execute_input": "2023-11-09T22:34:02.048349Z", + "iopub.status.busy": "2023-11-09T22:34:02.048020Z", + "iopub.status.idle": "2023-11-09T22:34:02.200352Z", + "shell.execute_reply": "2023-11-09T22:34:02.199888Z" } }, "outputs": [ @@ -441,10 +441,10 @@ "start_time": "2023-11-09T18:41:07.282948708Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:05.200006Z", - "iopub.status.busy": "2023-11-09T20:46:05.199476Z", - "iopub.status.idle": "2023-11-09T20:46:05.203546Z", - "shell.execute_reply": "2023-11-09T20:46:05.203057Z" + "iopub.execute_input": "2023-11-09T22:34:02.202487Z", + "iopub.status.busy": "2023-11-09T22:34:02.202149Z", + "iopub.status.idle": "2023-11-09T22:34:02.204654Z", + "shell.execute_reply": "2023-11-09T22:34:02.204260Z" } }, "outputs": [], @@ -463,10 +463,10 @@ "start_time": "2023-11-09T18:41:07.283066840Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:05.205755Z", - "iopub.status.busy": "2023-11-09T20:46:05.205381Z", - "iopub.status.idle": "2023-11-09T20:46:05.820374Z", - "shell.execute_reply": "2023-11-09T20:46:05.819856Z" + "iopub.execute_input": "2023-11-09T22:34:02.206520Z", + "iopub.status.busy": "2023-11-09T22:34:02.206205Z", + "iopub.status.idle": "2023-11-09T22:34:02.660582Z", + "shell.execute_reply": "2023-11-09T22:34:02.660040Z" } }, "outputs": [ @@ -474,7 +474,7 @@ "data": { "text/plain": [ "\u001b[1mFitResult\u001b[22m of\n", - " params=[mu, sigma]] data=[] constraints=[]> \n", + " params=[mu, sigma]] data=[] constraints=[]> \n", "with\n", "\n", "\n", @@ -518,10 +518,10 @@ "start_time": "2023-11-09T18:41:08.067454337Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:05.823161Z", - "iopub.status.busy": "2023-11-09T20:46:05.822595Z", - "iopub.status.idle": "2023-11-09T20:46:05.826459Z", - "shell.execute_reply": "2023-11-09T20:46:05.825959Z" + "iopub.execute_input": "2023-11-09T22:34:02.662481Z", + "iopub.status.busy": "2023-11-09T22:34:02.662301Z", + "iopub.status.idle": "2023-11-09T22:34:02.664794Z", + "shell.execute_reply": "2023-11-09T22:34:02.664394Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "start_time": "2023-11-09T18:41:08.071212416Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:05.829595Z", - "iopub.status.busy": "2023-11-09T20:46:05.828602Z", - "iopub.status.idle": "2023-11-09T20:46:06.250110Z", - "shell.execute_reply": "2023-11-09T20:46:06.249474Z" + "iopub.execute_input": "2023-11-09T22:34:02.666555Z", + "iopub.status.busy": "2023-11-09T22:34:02.666390Z", + "iopub.status.idle": "2023-11-09T22:34:02.971571Z", + "shell.execute_reply": "2023-11-09T22:34:02.971060Z" } }, "outputs": [], @@ -558,10 +558,10 @@ "start_time": "2023-11-09T18:41:08.679126453Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:06.253259Z", - "iopub.status.busy": "2023-11-09T20:46:06.252764Z", - "iopub.status.idle": "2023-11-09T20:46:06.938869Z", - "shell.execute_reply": "2023-11-09T20:46:06.936820Z" + "iopub.execute_input": "2023-11-09T22:34:02.973673Z", + "iopub.status.busy": "2023-11-09T22:34:02.973496Z", + "iopub.status.idle": "2023-11-09T22:34:03.436029Z", + "shell.execute_reply": "2023-11-09T22:34:03.435434Z" } }, "outputs": [], @@ -578,10 +578,10 @@ "start_time": "2023-11-09T18:41:09.483882912Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:06.941931Z", - "iopub.status.busy": "2023-11-09T20:46:06.941513Z", - "iopub.status.idle": "2023-11-09T20:46:06.955492Z", - "shell.execute_reply": "2023-11-09T20:46:06.954638Z" + "iopub.execute_input": "2023-11-09T22:34:03.438512Z", + "iopub.status.busy": "2023-11-09T22:34:03.438116Z", + "iopub.status.idle": "2023-11-09T22:34:03.447439Z", + "shell.execute_reply": "2023-11-09T22:34:03.447040Z" } }, "outputs": [ @@ -589,23 +589,23 @@ "data": { "text/plain": [ "\u001b[1mFitResult\u001b[22m of\n", - " params=[Composed_autoparam_1, Composed_autoparam_2]] data=[] constraints=[]> \n", + " params=[Composed_autoparam_1, Composed_autoparam_2]] data=[] constraints=[]> \n", "with\n", "\n", "\n", "╒═════════╤═════════════╤══════════════════╤═════════╤══════════════════════════════════╕\n", "│ valid │ converged │ param at limit │ edm │ approx. fmin (full | internal) │\n", "╞═════════╪═════════════╪══════════════════╪═════════╪══════════════════════════════════╡\n", - "│ \u001b[48;5;10mTrue\u001b[0m │ True\u001b[0m │ False\u001b[0m │ 2.4e-05 │ -2304.23 | 9829.933 │\n", + "│ \u001b[48;5;10mTrue\u001b[0m │ True\u001b[0m │ False\u001b[0m │ 3.5e-05 │ -2294.12 | 9832.347 │\n", "╘═════════╧═════════════╧══════════════════╧═════════╧══════════════════════════════════╛\n", "\n", "\u001b[1mParameters\n", "\u001b[22mname value (rounded) at limit\n", "--------- ------------------ ----------\n", - "bkg_yield 6044.42 False\u001b[0m\n", - "sig_yield 107.336 False\u001b[0m\n", - "lambda -0.912186 False\u001b[0m\n", - "mu 3.09891 False\u001b[0m" + "bkg_yield 6008.52 False\u001b[0m\n", + "sig_yield 105.199 False\u001b[0m\n", + "lambda -0.932648 False\u001b[0m\n", + "mu 3.09986 False\u001b[0m" ] }, "execution_count": 19, @@ -626,10 +626,10 @@ "start_time": "2023-11-09T18:41:09.499282781Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:06.957931Z", - "iopub.status.busy": "2023-11-09T20:46:06.957544Z", - "iopub.status.idle": "2023-11-09T20:46:07.936985Z", - "shell.execute_reply": "2023-11-09T20:46:07.936441Z" + "iopub.execute_input": "2023-11-09T22:34:03.449288Z", + "iopub.status.busy": "2023-11-09T22:34:03.448969Z", + "iopub.status.idle": "2023-11-09T22:34:04.219830Z", + "shell.execute_reply": "2023-11-09T22:34:04.219282Z" } }, "outputs": [ @@ -671,7 +671,7 @@ "output_type": "stream", "text": [ " of\n", - " params=[Composed_autoparam_1, Composed_autoparam_2]] data=[] constraints=[]> \n", + " params=[Composed_autoparam_1, Composed_autoparam_2]] data=[] constraints=[]> \n", "with\n", "\n", "\n", @@ -706,7 +706,7 @@ "name": "stdout", "output_type": "stream", "text": [ - " │ 2.4e-05 │ -2304.23 | 9829.933 │\n", + " │ 3.5e-05 │ -2294.12 | 9832.347 │\n", "╘═════════╧═════════════╧══════════════════╧═════════╧══════════════════════════════════╛\n", "\n" ] @@ -724,7 +724,7 @@ "text": [ "name value (rounded) hesse errors minuit_minos at limit\n", "--------- ------------------ ----------- ------------------- ------------------- ----------\n", - "bkg_yield 6044.42 +/- 81 - 80 + 82 - 80 + 82 False" + "bkg_yield 6008.52 +/- 81 - 80 + 82 - 80 + 82 False" ] }, { @@ -732,7 +732,7 @@ "output_type": "stream", "text": [ "\n", - "sig_yield 107.336 +/- 25 - 25 + 25 - 25 + 25 False" + "sig_yield 105.199 +/- 25 - 25 + 25 - 25 + 25 False" ] }, { @@ -740,7 +740,7 @@ "output_type": "stream", "text": [ "\n", - "lambda -0.912186 +/- 0.064 - 0.065 + 0.064 - 0.065 + 0.064 False" + "lambda -0.932648 +/- 0.065 - 0.065 + 0.064 - 0.065 + 0.064 False" ] }, { @@ -748,7 +748,7 @@ "output_type": "stream", "text": [ "\n", - "mu 3.09891 +/- 0.0042 - 0.0043 + 0.0042 - 0.0043 + 0.0042 False" + "mu 3.09986 +/- 0.0047 - 0.0049 + 0.0047 - 0.0049 + 0.0047 False" ] }, { @@ -774,10 +774,10 @@ "start_time": "2023-11-09T18:41:10.991252129Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:07.940387Z", - "iopub.status.busy": "2023-11-09T20:46:07.939809Z", - "iopub.status.idle": "2023-11-09T20:46:08.191804Z", - "shell.execute_reply": "2023-11-09T20:46:08.190757Z" + "iopub.execute_input": "2023-11-09T22:34:04.221734Z", + "iopub.status.busy": "2023-11-09T22:34:04.221471Z", + "iopub.status.idle": "2023-11-09T22:34:04.436374Z", + "shell.execute_reply": "2023-11-09T22:34:04.435854Z" } }, "outputs": [ @@ -793,7 +793,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHJCAYAAABws7ggAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACGU0lEQVR4nOzdeVxU9f7H8dfMsK+KG6C4IuK+77gvZS6ZpqVlklimSZlpN+13U1u0tLSy1LypqLmVprmW5r4vKO4iKriCK4Lsy3x/fxCTJCDLwDDweT4ePG6ec+acz5w7OG+/57tolFIKIYQQQggzpTV1AUIIIYQQ+SFhRgghhBBmTcKMEEIIIcyahBkhhBBCmDUJM0IIIYQwaxJmhBBCCGHWJMwIIYQQwqxJmBFCCCGEWZMwI4QQQgizJmFGCJFrAQEBaDQajh07ZvRzh4WFodFoCAgIyNXrNBoNGo0GX1/fTPd/8sknhmPCwsLyXacQouiQMCOEKFLc3Nw4ePAgPXv2zPVrHR0d+fXXX3n06FGG7UopAgICcHJyMlaZQogiRMKMEKJIsba2plWrVpQrVy7Xr33++edRSrFy5coM23fs2EFoaCgvvfSSscoUQhQhEmaEEPnm6+uLg4MDZ8+epUuXLtjb21OuXDlGjx5NXFxchmN//fVXWrZsibOzM3Z2dlSvXp1hw4YZ9uf1MROAs7MzL7zwAgsXLsywfeHChbRt2xYvL688vT8hRNEmYUYIYRTJyck899xzdOnShXXr1jF69Gh+/PHHDK0hBw8e5KWXXqJ69eqsXLmSTZs28fHHH5OSkmK0Ovz8/Dh06BDnz58H4OHDh/z222/4+fkZ7RpCiKLFwtQFCCGKh6SkJN5//33eeecdALp164alpSUfffQR+/fvp23bthw4cAClFPPmzcPZ2dnw2qw67eZFp06dqFatGgsXLmTGjBksX74cCwsLBgwYwLx584x2HSFE0SEtM0IIo3nllVcy/Hnw4MEA7Ny5E4DmzZsDMHDgQH755Rdu3rxp9BrSRzQtXbqUlJQUFixYwMCBA3FwcDD6tYQQRYOEGSGEUVhYWFCmTJkM21xdXQG4f/8+AO3bt2fdunWkpKTw2muvUalSJerVq8eKFSuMWsvrr7/O3bt3mTp1KsePH5dHTEIUcxJmhBBGkZKSYggt6SIiIgAyhJznn3+e7du3ExUVxa5du6hUqRKDBw/m4MGDRqvFw8ODrl27MmXKFGrVqkWbNm2Mdm4hRNEjYUYIYTTLli3L8Ofly5cD0LFjxyeOtba2pkOHDnz55ZcAnDhxwqi1vP/++/Tu3Zv//ve/Rj2vEKLokQ7AQog802g0hv+2srLi66+/JiYmhubNm3PgwAE+++wzevTogY+PDwAff/wxN27coEuXLlSqVImHDx/y7bffYmlpSYcOHYxaW/fu3enevbtRzymEKJokzAghci197hhra2vDNktLSzZu3Mg777zDZ599hq2tLW+88QYzZswwHNOyZUuOHTvGf/7zH+7evUupUqVo1qwZO3bsoG7duoX+PoQQxYNGKaVMXYQQwry8++67fP/99zx8+BBHR0d8fX1ZvXo1MTExpi5NCFECScuMECLHAgMDOXr0KAsXLqRPnz44OjqauiQhhJAwI4TIuRdffJGoqCj69OnDd999VyjXfNrswFqtFq1WxjIIUZLJYyYhRJEVFhZGtWrVsj1m0qRJTJ48uXAKEkIUSdIyI4Qostzd3Tl69OhTjxFClGzSMiOEEEIIsyYPmoUQQghh1szyMZNer+fWrVs4OjpmmLRLCCGEEEWXUopHjx7h7u5u1I77Zhlmbt26hYeHh6nLEEIIIUQeXL9+nUqVKhntfGYZZtLntrh+/TpOTk4mrkYIIYQQOREdHY2Hh4fR56gyyzCT/mjJyclJwowQQghhZozdRUQ6AAshhBDCrEmYEUIIIYRZkzAjhBBCCLMmYUYIIYQQZk3CjBBCCCHMmoQZIYQQQpg1CTNCCCGEMGsSZoQQQghh1iTMCCGEEMKsSZgRQgghhFnLVZiZO3cuDRo0MCwj0Lp1a7Zs2WLYr5Ri8uTJuLu7Y2trS8eOHTl79myGcyQmJuLv70/ZsmWxt7enT58+3LhxwzjvRgghhBAlTq7CTKVKlfjiiy84duwYx44do3Pnzjz//POGwDJ9+nRmzpzJ999/z9GjR3F1daVbt248evTIcI4xY8awdu1aVq5cyb59+4iJiaFXr16kpqYa950JIYQQokTQKKVUfk7g4uLCjBkzGDZsGO7u7owZM4b//Oc/QForTIUKFfjyyy8ZMWIEUVFRlCtXjqVLl/LSSy8BcOvWLTw8PNi8eTPPPPNMjq4ZHR2Ns7MzUVFRstCkEEIIYSYK6vs7z31mUlNTWblyJbGxsbRu3ZrQ0FAiIiLo3r274Rhra2s6dOjAgQMHAAgMDCQ5OTnDMe7u7tSrV89wjBBCCCFEbljk9gWnT5+mdevWJCQk4ODgwNq1a6lTp44hjFSoUCHD8RUqVODq1asAREREYGVlRenSpZ84JiIiIstrJiYmkpiYaPhzdHR0bssWQgghRDGV65aZWrVqERQUxKFDhxg5ciRDhw7l3Llzhv0ajSbD8UqpJ7b929OOmTZtGs7OzoYfDw+P3Jada+Hh4UyePJnw8PACv5YQQggh8i7XYcbKygpPT0+aNWvGtGnTaNiwId9++y2urq4AT7Sw3Llzx9Ba4+rqSlJSEpGRkVkek5kJEyYQFRVl+Ll+/Xpuy8618PBwpkyZImFGCCGEKOLyPc+MUorExESqVauGq6sr27ZtM+xLSkpi9+7dtGnTBoCmTZtiaWmZ4Zjw8HDOnDljOCYz1tbWhuHg6T9CCCGEEJDLPjMTJ06kR48eeHh48OjRI1auXMmuXbv4448/0Gg0jBkzhqlTp1KzZk1q1qzJ1KlTsbOzY/DgwQA4Ozvj5+fH+++/T5kyZXBxcWHcuHHUr1+frl27FsgbFEIIIUTxlqswc/v2bYYMGUJ4eDjOzs40aNCAP/74g27dugHwwQcfEB8fz6hRo4iMjKRly5Zs3boVR0dHwzlmzZqFhYUFAwcOJD4+ni5duhAQEIBOpzPuOxNCCCFEiZDveWZMoTDmmTl+/DhNmzYlMDCQJk2aFMg1hBBCiJKkyM0zI4QQQghRFEiYEUIIIYRZkzAjhBBCCLMmYUYIIYQQZk3CjBBCCCHMmoQZIYQQQpg1CTNCCCGEMGsSZoQQQghh1iTMCCGEEMKsSZgRQgghhFmTMCOEEEIIsyZhJhMhISHMnj0bgNmzZxMSEmLiioQQQgiRFQkz/7Jo0SK8vb1ZunQpAEuXLsXb25uAgADTFiaEEEKITEmYeUxISAjDhw9Hr9eTmpoKQGpqKnq9Hj8/Py5dulSo9YSHhzN58mTCw8ML9bpCCCGEOZEw85iFCxei0Wgy3afRaFiwYEGh1hMeHs6UKVMkzAghhBDZkDDzmLCwMJRSme5TShEWFla4BQkhhBDiqSTMPKZq1arZtsxUrVq1cAsSQgghxFNJmHnMsGHDsm2Z8fPzK+SKhBBCCPE0EmYeU7NmTRYsWIBWq0Wn0wGg0+nQarUsWLAAT09PE1cohBBCiH+TMPMvvr6+BAcHM2TIEACGDBlCcHAwvr6+pi1MCCGEEJmSMJMJT09P/P39AfD395cWGSGEEKIIkzAjhBBCCLMmYUaIEiSziRhj4vSk6jPv+C6EEObAwtQFCCEKT/pEjH369CFVV5YvFt/nXGgSTvZa3upXimdbO5i6RCGEyDWzbpl5EBNj6hKEMEsx8RrGf3eHc6FJAETH6pm+9AE7j8WauDIhhMg9sw4zXX7qRv95E9l57qypSxHCrKzZ78DtB6lULGfB8k/d6dfJEYBvVkZyPyrVxNUJIUTumHWY0WvjCIpZxfDNfWj+VT+mbvyFmPgEU5clRJHm7NqM02HWaDUw+Y2yuJax4K1+pajpYcmjOD0r/owydYlCCJErZh1mxjb5Bg+LDqC0POAkCy5MoMnsNgz632QOF/IK10KYi6pN3wGgRxt7alSyAsBCp+HNF0oDsGl/LJGPpHVGCGE+zDrMDPXpxK4xC1k/eBcdy72FZWo5UrVRHIlayuB1z9D660HM/HM98UlJpi5ViCLhbpQWl8od0KAY9Ixzhn1NallTq4oVicmKLfulP5oQwnyYdZhJV7diRRYMHc/JsXsZ0+g7XLWtQWm4o47ww+n3aPyND0MXTePktWumLjXHQkJCmD17NgCzZ88mJCTExBWJ4uDgeVsAvD2ScS+bcTCjRqOhT7u00UxbD8dmuU6ZEEIUNcUizKSztrTEv2tP9o/9mV9e3Ebr0q9joS9NsvY+++7/RL9VXWg3ayjzdv5JUkqKqcvN0qJFi/D29mbp0qUALF26FG9vbwICAkxbmDBrer0i6EraY6VW3pn3LWvf2A5rSw3Xbqdw4aq0aAohzEOxCjOPa1qtGj/7/R/H393PW3VnUFbTBDR6bqXuY0bgKBrO7MCbS2ZyMTzC1KVmEBISwvDhw9Hr9aSmpvVbSE1NRa/X4+fnxyXpCyTy6OyVRKLjdKQkRlOrUuZBxd5WS9uGaa03e0/EFWZ5QgiRZ8U2zKSzt7ZmfI9+HH7/Vxb33kxTp8Ho9I4kaSPYfucHevzcns7fvsni/bvQ6/WmLpeFCxei0Wgy3afRaFiwYEEhVySKi13H08LJ3bCtWOiyPs7n7zCz72R8YZQlhBD5VuzDzON8atXilzc/5ejoAwyt+RmlVD3QpHI1eTufHPSj/ledGb3se0Lv3DVZjWFhYVn2VVBKERYWVrgFiWJBr1fsOZEWTu5e3pTtsc3r2GJpATfupHAtIrkwyhNCiHwpUWEmnbOdHR8/P4jA8b8z95m11Lfvj1ZvR4L2OlvCZ9F1sQ9jd81h0H8nUK5C+UKtrWrVqtm2zFStWrVQ6xHFQ/DVJO5HpWJjqefB9X3ZHmtvq6WRlw0Ah89K64wQougrkWHmcd3rN2DdyOkceusAL1X7GCdVGzQpXNfv5LDTKp5ZNog3l8wk+LGF+QrSsGHDsm2Z8fPzK5Q6RPFy5Fxah1+vSsko/dM79jarnRZmjl+QSSiFEEVfsQ0zma0OnJ0yTo5M7T+UE+M3Mqf7b9S3fxGt3p5E7S223/mB535uT4dvhhX4SKiaNWuyYMECtFotOl1axwadTodWq2XBggV4enoW2LWLs9x+HoqbI3+3sGTV8fffmtRKCzMnLyWSnCJDtIUQRVuxDjNTpkzJ05fXMw0asm7klxwadYBXPT+hNPVBo+dGyu6/R0K14/VFXxbYvDW+vr4EBwczZMgQAIYMGUJwcDC+vr4Fcr3sFJcQkJ/Pg7mLikk1DLOuVSlnfWCquVvi7KAlIVFxISyxIMsTQoh8K7ZhxhjKODgwpe8rHBu3jp+eW08Tp0Ho9E4kae+w5/58+q3qjM/MIXy7dYPRZxn29PTE398fAH9/f5O1yJTkEFBcBF5IQClwsb7O0oXfAk+fiFGr1RhaZwLlUZMQooiTMJNDnerU5dc3PyPQ/yB+3tMoSxPQKML1B/ju1BgafdOWVxd8xrHQUFOXKkQGR88lEH7hF377tn2uJmJs/HeYOREsLTNCiKJNwkwuOdraMLHXQA6P+5Vlff+gZanXsNCXJkX7gIORi3hpTVdaf/0yM7b8RmyifAkI09t3+BwXdv0HpXI3EWNjL2sALlxNJClZ+s0IIYouCTP50MqzJsuHT+L4u/sZVe9rymta/r0m1FHmnR1P429b89L8Sey7GGzqUkUJFXE/hVMHV6Ih9xMxupezoLSjluQUuHhNljYQQhRdEmaMwN7amvef7cvB95ezesBftC3jh6W+LKnaKI5F/8zQ9c/R/Kt+TFq3jPvRj0xdrihBToUkkPDoBpD7iRg1Gg11qqe1zpy5Iq2MQoiiS8KMkTWuWpUlr0/k5Hv7GNPoO9y1bUFpecBJfr70Ma3mtabnD++x5ujhQlk+obiMRhJ5ExSSiI1jpTxPxFjv7zBz9vI/YUY+U0KIokbCTAFJX8F779glrB+8i64VRmOjr4ReG8+F+PV8sHswDb/qyuhl3xMScbvA6pDRSCXbyZBE3LwHkl3LTHYTMdar8XeYuZJomMxRPlNCiKJGwkwhqFuxIj8OeY/T43byadvFeNn0RKO3IU57lS3hs3h2aTs6zHqd7//aTGKyrIUjjOPOgxTC76Xg4FKNOXP/l6eJGGt6WGFpAQ9j9Ny8W3CTRQohRH5ImClEWq2Wwa192DL6O/aPSFs+wVnVAU0qN1L3MCvInwaz2jD4p0+k07DIt5MhaY+GanpYMeLNYXmaiNHKUkOtKn/3m7ks/WaEEEWThBkTqeDszNT+Qzk+fgM/PbeeZk6vYqEvRYr2AYcfLmbo+ufw2zaZir07E5Ugi/2J3DsZkjbZXaOaaWEkrxMx1qtuBUgnYCFE0ZWrMDNt2jSaN2+Oo6Mj5cuXp2/fvgQHZ2xB8PX1RaPRZPhp1apVhmMSExPx9/enbNmy2Nvb06dPH27cuJH/d2OmOtWpy6o3p3D83QP4N/jG0Gk4WncW6/ZhvLHvTXp+P4ZfjxwqlE7DonhIb5lpWNMmX+epm94J+IoMzxZCFE25CjO7d+/m7bff5tChQ2zbto2UlBS6d+9ObGxshuOeffZZwsPDDT+bN2/OsH/MmDGsXbuWlStXsm/fPmJiYujVq5dhQq+Syt7amjHde7N37BI2Dt5FS7uh6BIqoLQJXEjYwId7XqHBV10Y9fN3XAyPMHW5ogi7+zCFm3dT0Gqgnqd1vs5Vu1ra66+GJxMTJ2FaCFH0WOTm4D/++CPDnxctWkT58uUJDAykffv2hu3W1ta4urpmeo6oqCgWLFjA0qVL6dq1KwA///wzHh4e/PXXXzzzzDO5fQ/FUu2KFRnXqhdNm05i+i8r2HH7ICFxfxGvvcafEd/y58+zqWjRln51+/NGh+7YW+fvC0sUL6ce6y/jYJu/p8kuTjrcyugIv5/KhauJ8mxaCFHk5OvvpaioKABcXFwybN+1axfly5fHy8uLN954gzt37hj2BQYGkpycTPfu3Q3b3N3dqVevHgcOHMj0OomJiURHR2f4KUm61PBiy+hv2T/iAC9Xn0QpVQ80em6m7mX2qTE0/rY1/edNZPPJE/IYSgAQdDGtv0yDmsYJuemtM+dD5VGTEKLoyXOYUUoxduxYfHx8qFevnmF7jx49WLZsGTt27ODrr7/m6NGjdO7cmcS/1ymKiIjAysqK0qVLZzhfhQoViIjI/NHJtGnTcHZ2Nvx4eHhkW1tISAizZ88Gnr46sDmp4OzM5/1eI3D87yzotZEWzkOw1JchVRtFUMwq/Le9SKOvnuWdFT8U6Nw1uWXqSdaK6+chO+n9ZRp55a+/TLo66WEmTDoBCyGKnjyHmdGjR3Pq1ClWrFiRYftLL71Ez549qVevHr1792bLli1cvHiRTZs2ZXs+pVSWs5ROmDCBqKgow8/169ezPM+iRYvw9vbO1erARZWbmxuTJk3Czc3tiX0dvWuz4o3JnHxvPx80m0tVy65olCWx2stsujmTZ5f60G7ma6w6cwyNpVWerm+sEGDKSdaK0+chp+5HpXLjTgoaDdSvYayWmbTP0LnQJJSsOSmEKGLyFGb8/f1Zv349O3fupFKlStke6+bmRpUqVQxfhK6uriQlJREZGZnhuDt37lChQoVMz2FtbY2Tk1OGn8yEhIQwfPhw9PrcrQ5cVLm5uTF58uRMw0w6a0tLRnTszvZ3f2S330FerPoRpVRd0Oi5pd/P6jtfUv0TbybuXsyGE4E5fgxVHEJAcfs85FT6IybPSpY42Bmnh4tnpbTJ86Jj9dyPll4zQoiiJVd/KymlGD16NL/99hs7duygWrVqT33N/fv3uX79uuELuWnTplhaWrJt2zbDMeHh4Zw5c4Y2bdrksvyMFi5cmO0aNFmtDlxQCvvxSkWX0nz54jACx69nce/NtCrli2VqWZRFDCGpGxmzfSANv+rG28tmE5xNTcUlBBS1z0NhMfYjJgBLCw01PdJaZ67esTTaeYUQwhhyFWbefvttfv75Z5YvX46joyMRERFEREQQH582qVtMTAzjxo3j4MGDhIWFsWvXLnr37k3ZsmV54YUXAHB2dsbPz4/333+f7du3c+LECV599VXq169vGN2UV2FhYYb1Y/4tu9WBC4opH6/41KrFsuH/ZUnn73m0tgyV6IhGb0WcNow/wr/huZ/b03bmq8zY8huP4hMyvLa4hICi9nkoLOktMw2N1Pk3XXq/mat3czUIUgghClyuwszcuXOJioqiY8eOuLm5GX5WrVoFpK33cvr0aZ5//nm8vLwYOnQoXl5eHDx4EEdHR8N5Zs2aRd++fRk4cCBt27bFzs6ODRs2GNaNyauqVavmeXXg4spCp+PugaPM6vw2e988xEvVPqY0DUCjJ0J/kHlnx9Nkdkuen/sB6wKPoNfri00IKImfh3sPU7hxJ21+mQaexmuZAajzd7+Za3ckzAghipZc/a2U1RdcOltbW/7888+nnsfGxobZs2cbOpcay7Bhw5g+fXqm+562OnBJ4FYqbQmFqQzl0KUQftjzK8fubSBJe4czsWt4f+ca/m97ZSxjdMUiBJTEz0P6IyZPDyuj9ZdJlz48+9Z9C7QWxg1KQgiRH8WqJ1/NmjVZsGBBnlYHLo6yG43UyrMmS4dN5PT7+/i41QI8rXug0VsTr73G/ToXSdVnPhuzOYWA4vZ5yEkfrIJ6xARQvrQOq9SrhBycjs7CrsQMcxdCFH3FKsxA2tpQeVkduLjJ6WgkC52OoT4d+dP/e/aPOMgrNSZToVxzyg0oBxrSPiEaQKtBo9Uwb/58swoBxenzkJM+WAXR+TddQEAAW//XkWtBP5KcEGmWI9yEEMVTsQszkPfVgYuLvI5GquDszCcvDOHouDX8+eURBnz5IWXae2Df0J5SHZypNL4SX92fx4D5/2dWsw2XlM/D3cf6y2Q1v0x2cxdlJ/0zpZQeVCqgzHKEmxCieCqWYaakM8ZopMZVq/LL+Gn8MWMtVqlVad3bF1uXcqRoH3A8egX+216k4VfdeGvpN5y+lvUkhsWFqWcxzolTOegvk5O5izJTXEa4CSGKJwkzxZAxRyNptRoiT5/lsw5DCBpzkPcbf5822/Dfw7y33Z5N31WdaPnVAD5eu5Tbf6/XVdwYY5h9QQei4xcKrr9McRnhJoQoniTMFEMFNSTZ1sqKUV16sP3dH9n75iFeqTGZsjQBjeIex1l2eTJtf2xFl29HMHfHH8QnyaKEjyvIeYeUUhw9nxZmmtU2fn+ZkjjMXQhhPiTMFEPDhg3L9l/RxhiN5FYqrX/N4XG/8tvAnXStMBo7fRWUNomw5L/46vjbNPombTXvA1fD8n09kb2w8GTuPUzFylJDA0/jt8wUxmdKCCHySsJMMVTYQ5IbVq7Mj0Pe4+S4v/iu62oaOw7CQl+aFO1DgmJWMevyeGp+0oYZBzcQdPWqUa8t0hw9988jJmsr4/9aP/6Z0mp1oNGi0ZjvMHchRPEiYaaYMsWQZK1WS89GjVk94jNOvXeQ8U3nUOFhCx5sesit307yx5pv6DOnHc2/6scHvy4g7O7dAqulpEkPM83rFNxkdumfqRdfGkr5Gr2o0vhNzp67YJbD3IUQxYvMS16MpQ9JDggIKPQhydaWlliH3eLwtF9Ao0GfmgpaDQ93PSRhQAJrOMmagC9x07XkOa/ejGjfgzJOjk8/sXhCQpKeU5f+DjO1bQv0Wp6enox//21u/WCBpU0ptLauBXo9IYTICWmZEQXi8blu9H/PdYNegYJ7v97D6m5F0KQSrj/AggsTaDmvFd2+G8mc7Vuk43AunQxJJDkFyrvoqOxa8P8+0Wog+k4QAOdDEwv8ekII8TQSZkSByG5eEq1WS19tWxb33ky7Mm9gra+I0iZwJWkrX58YTcNvWvH83A9YeWg/KamZL6sg/nH4TNqq9c1r22R5z40t+vZxAM5JmBFCFAESZgpIdusilQQ5mZfEp1YtAl7/kDPjdvF155V/dxx2IVUbxZnYNXy07zXqf92OAXP/yxsf/5ebN28W8rso+vR6xb6TaWGmdf2CfcT0uOjbJwA4HyataEII05MwUwByui5ScZabeUm0Wi19mzT/u+PwAf6v5U/UsumNVm9PkvY2x2OXs8NpOc/8/BpvLplJYGhoIb2Loi/4WhL3HqZia62hWQH3l3lc9O0gAG7cSSEqRlrPhBCmJWHGyPK6LlJxk9d5SawtLXm9XSc2j/6GY6MP8Xb9mbiqtqC3JF4XxvY7PzBwTVeafdWXcb/8j8t37hTk2yjy9galtcq0qmeLlWXhPGICSEmKppxzCiCtM0II0yu2YSavC+rll6xhk8YYc90429kx9pnnmd1lDNc/j+DZUv6U0zQDpSGS06y99gXdF7el7cxX+HT9Su5GR2d5LlN9Howls8eWSin2nogDoF2jwmuVSVel/N9hRvrNCCFMrFiHmbwsqJdfxW0Nm/yEAGPOdZMcHYVfk/Ycen8VGwfvplelcTgpb9DoidAfIuDiR7Se15JO37zB13+sIyou7on3YYrPgzFk9djyy5kLuHk3BUsLaFG38MNM5b/DzLlQaZkRQphWsQ0zplLc1rDJbwhIn+sGMNpcN7UrVuTbl0dyYvwmlj6/hQ5lR2Cjr4TSJnEtZQdzzrxPs+9b0P27t/n+r83ExCfk63qm7Myd3WPLieNHEBcVhk8jO+xsCv9XuUr5ZAAuXE1Er888wAshRGGQMGNksoZN4WpT04uFvh9wetxOvu++hpalXsNK74peG8/lpD+YFeRP49kt6fn9GH7a/ReJycm5Or+pO3Nn99gSNISfX8WzrewLpZZ/cy2dio2Vhth4xbXbKYV67YJegVwIYV4kzBhZYa+LJNJotVp6NGjE8uGTODtuLzM6rqCx4yAs9WXQa2O4kLCBaUdH0GBWK/rO/YDlB/Y+dQ4bY3bmzmvrTraPLVGohJs08S64JQyyo9OCd1UrAE6F5K/1K7cKcgVyIYT5kTBTAEyxLpL4h1arpV+zFmlDvcce4NM2AdSz749O70yK9iGnY9fw3wO+1Pu6DQPm/x+/HTuCXq9/4jzG6sydn9ad7B5bgoa6tauh0xbeKKZ/a+yVFqROXJROwEII05EwU0AKoq+IyD0rCwsGt2nH7yOnc/q9w0xo/iPeNr3R6h1I1t7jePQKxu8aRL2v2jH4pylsORVkCDbG6Myd39ad7B5bgmLShBFPraEgNa71d5gJTjCrfjPymEqI4kXCTDFn7kOSjcna0pLhHbqyafQ3nPA/zHuNZlPD6lm0elsStREcfriE0Vv7U/+rzvgu+gKto0O+O3Pnt3Uns8eWGq0ONFr6vf4NrZp5P7UGY3v8M+Vd1Qpbaw3RsXqu3MxdfyRTksdUQhQvEmaKOXMeklyQHGxtGN31Oba+8wNH3j7MqHpfU9miMxq9FQna6+y9/z/2lv6TVH3m/Wpy2pnbGK07jz+21FnaU7nhm7QctJNpk0zTKvP4Z8pCp6GBpzUAJy4Wbr8ZIYRIJ2FGlHil7e15/9m+7BzzPw6+dRg/72m463ywLGtLuQHlQEPab4oGNFpNrjpzG2uofvpjyzpdv6V6qw/p3NYbr8pWOX+TBSi9A/LxCxJmhBCmYWHqAoQoSso5OTGx10AmMpCbDyL5seYmNlRfRdjhfSRHJmNZ2hLHFo7MurOCfYvv49uqNz61vLI837Bhw5g+fXqm+3I7VP/iTUvKVu2GVqN4q3/pXL+3gtLk734zpy4lkpKqsNCZrkOyEKJkkpYZIbJQ0aU0n/R9lRPTNrB80u+UqtyCms92w7KMDTHaS+y8O4ehG3rQYHp3/AK+Ys+F4CceKRlrqH5svJ5f9zoA0KZ2ApUrWBr3zeZDNXdLnB20xCcqWdpACGESEmZEkWbK2XcfV8HRgZvrdzKv64fs8jvIK56TcdW2AqUjVnuZXffm8vrG52gwozvDFs1g57kLhmCT36H6er3iyyX3iYzRER99jWebxT39RYVIq9XQ9O9HTYfOyKMmIUThkzAjiixTz76bFQ+XMnzSdwj7xy5jj98hhnhOxk2XFmzitFfYfX8ewzf3pMH07vgunM6Os+epUaNGnobqp+oV36yMZN/JeHRaxbm/3sXGqugNgW5dP21tqIOn401ciRCiJJI+M6JIenx+lnTp87T4+fnh4+NTJObuqejiwuS+Q5jMEG5GPuCnvVvYdnkL4SlHiNNdYe+DH9m75UdsN1ajumVbyjfpSEJSzvqU3I1M4etlDzhyLgGtBl7u8Ii/fjhewO8ob1rUtUWrhbDwZMLvpeBWVv5qEUIUHvkbRxS4vMx1k5P5WaZNm2asEo2iYmkXJvV5hUm8QvjDSH7au4Wtl7dwK/kI8bpQzupDcRgEw3aMo9r+LrSt+Aw+Nb2pVN6SsqV0WFpoiInXE3ormQOn4vnzUAzJKWBlqeHD11xw0twz9VvMkqOdlgY1rAkKSeTg6Xj6dXI0dUlCiBJEwowocOnzkuSGMeZnMSW3UqX5b+/B/JfB3I6OZMnBP1l/dh23Uo6TbBXGRbWAizcW8POVKtjFdsAutj2WSdXRkDHA1fe05t2XSlO9ohXHi2ajjEHrBrYEhSSy/1SchBkhRKGSMCOKJGPNz1IUVHAqzfhnXqZLOS+at23Ox0u/4njUSc5FHiTZ6ipRVkuIKr0Ei+SKOMS1o7JlJ3xqNKZTM3sae1lnszZT0eLT0I65ax5y8mIiD6JScXHWmbokIUQJIR2AC5AsJZB32a1JlNv5WYoSfYKe3tU78LtfAIGjjzKjxwy61uiKlc6KFMubPHReySm7EfwW04eNN6dz5MaRLGchLmrcylpQp5oVegW7jhfciKuiMsJNCFF0SJgpQLKUQN4Za36WoszJxol+dfvx4ws/cuztY3zX6zt61uqJvaU9EY8iWHx8MYNXDabV3FZM3DqRoPtBUMQbOzo3swdgx7HYAjl/UR3hlhey2KUQxiNhRhRZ+Z2fxZzYW9nT07sn3/X+jqNvH2X+C/PpV7cfzjbOPIh/wKpTq/j85OdU+bgKs8/NZtulbSQkF705XTo2sUOrgXOhSdy6l5LpMXn9Es/vCuSPn6cotOzIYpdCGI+EGVGkpa9JBLmbn8WcWVtY06VGF2b0mMHhkYdZ/OJiBjccjLOVMzo7HXsi9vDWurdoPqc5/uv92XBhAzFJMaYuGwAXZ51hraZN+zKvKa9f4vldgRyKV8uOEOIfEmaEKMIsdZb4VPXh026fsr7/ep6Je4aB3gNxd3QnLjmOzRc3M2bjGJr/0Jw3fnuD1WdWExkfadKae7dLW3Zhy4EYkpKNN8Fffke4GatlRwhR9MhoJiHMRKWKlZjz8Rwg7cv79O3T/HnxT/4I+YOwyDB2XNnBjis70Gl0tKrcimdqPkP3mt0pZ1+uUOtsU9+WsqV03HuYyt6gOLo0tzfKefM7ws0c5y4SQuSMtMwIkQNFbWSaRqOhgWsDxrcfz1/D/mLz0M2MaTOG2uVqk6pS2X91Px//9TGt57Zm4IqB/O/o/wiLDCuU2nQ6DT3bprXOrN7xKMvWlNzK7wg3c5+7SAiRNQkzQuSAMUamFVQg0mg01CpXC/82/mwcupHtftv5T/v/0MitEQpF4M1Avtj9BV0WdOHZRc/y9b6vORVxymghIzO92zlgbakh+GoSR88Zp6Nyfke4Fae5i4QQGUmYEaKQFNZQ/aqlq/JmizdZ88oa9o3Yx+Quk2lbpS0WWgtC7ocw59AcXvj5BXzm+zD5r8nsv7qf5NRko9bg4qSjT/u01pklm6OMFpzyM8KtuM5dlB8yPFwUFxJmhCjG3BzdGNJ4CEsGLOHIqCPMfG4mPbx6YGdpR8SjCJYGLeW1X1+jxZwWjN00lj8u/kFsknHmiHmpqxNWlhrOhSax/6TxVtPO6wi3kjB3UW7J8HBRXEiYEaKEcLZx5vk6z/N9n+859vYxfnrhJwbWH0gZuzJEJ0bz+/nfeXv92zT7oRlv/PYGv5z+hXuxeV/c0sVZx4DOaWs0/bA6koQk/VNeUfBK0txFQpQkMppJiBLI2sKaTjU60alGJ1L1qZwIP8G2kG1svbSVaw+vGUZGadDQtGJTunl2o1vNblQpVSVX1xn8rBPbjsZy+0EqSzdH80bfUgXzhnIhvWUnICCgxMxdJERxJ2FGiBJOp9XRrGIzmlVsxocdPiTkfgjbLm1jW8g2Tt8+zbGbxzh28xjTdk/Dq6xXWrDx7Ea9CvWeugimrbWW0S+W5uP591i5LZqmf0+oJ4QQxiRhRghhoNFo8CrrhVdZL95u9Ta3om+x/fJ2tl3axuHrh7l47yIX713kh0M/4OboRlfPrnTz7EbzSs2x0lllek6fRnY819aezftj+TzgHm8/VzyeboeHh/Pjjz8yYsSIIjNkX4iSSsKMECJL7k7uDGk8hCGNhxCVEMWuK7vYdmkbu0N3E/4onKUnlrL0xFIcrBxoX609XWt0pUO1DpSyLZXhPKMHlOZ8aBKht5KZv8UJS5vSpnlDRpTeebZPnz4SZoQwsVz9E2natGk0b94cR0dHypcvT9++fQkODs5wjFKKyZMn4+7ujq2tLR07duTs2bMZjklMTMTf35+yZctib29Pnz59uHHjRv7fjSiWitqEdSVVVh2Iy9qVJSYphs3Bmxm7eSwt5rRg8MrB/HT0J0IjQwGwsdIydVQ5ypXScSfKgkbPryIypni00ORFUVnsUojiIld/m+zevZu3336bQ4cOsW3bNlJSUujevTuxsf8M5Zw+fTozZ87k+++/5+jRo7i6utKtWzcePXpkOGbMmDGsXbuWlStXsm/fPmJiYujVq5dhvRQhHldY87OInEvvQDztmWkcHHmQNa+sYVSrUdQqW4tUlcrhG4eZtnsaXRd0pdvCbnyx+wuuxZ3gzR4PuBE4jauB3zNy/I+s/eOMqd9KoZPFLoUoACof7ty5owC1e/dupZRSer1eubq6qi+++MJwTEJCgnJ2dlbz5s1TSin18OFDZWlpqVauXGk45ubNm0qr1ao//vgjR9eNiopSgIqKispP+UKIAnD94XUVEBigXvvlNVXr61qq+ozqqvqM6qrcwHIKDUqj1Sg0GoVGp9Bo1SsjZ6tHsam5ukZgYKACVGBgYJ5qzO/r83qOixcvKq1Wq4AnfrRarQoJCclzPXlhjPsgRG4U1Pd3vtp5o6KiAHBxcQEgNDSUiIgIunfvbjjG2tqaDh06cODAAQACAwNJTk7OcIy7uzv16tUzHPNviYmJREdHZ/gRQhRNlZwrMbTJUBYPWMzRt48yu/dsOjh34O6vd0GB0itQClQqKD3L5r1DzzHrWbUtmth4089FU5BystilECL38hxmlFKMHTsWHx8f6tWrB0BERAQAFSpUyHBshQoVDPsiIiKwsrKidOnSWR7zb9OmTcPZ2dnw4+HhkdeyhRCFyNHakedqPUeFKxXQaXWZH6RRnLr0OpOOvEinLz7hv8v2ceVWYuEWWkhksUshCkaeRzONHj2aU6dOsW/fvif2/ftfHkqpp85Hkd0xEyZMYOzYsYY/R0dHS6ARwoxk9yWuURpSIlNItr7MfevLLA9fyqolLlTQtqWrZxf82nekUlnHQq64YMhil0IUjDy1zPj7+7N+/Xp27txJpUqVDNtdXV0BnmhhuXPnjqG1xtXVlaSkJCIjI7M85t+sra1xcnLK8COEMB/ZfYlrtVr8uvgxo8cMWrp2xwI7Ui0ecEu7gSVXxtBxYUtazRjCmOU/cfTyVcB8R7jJYpdCFIxchRmlFKNHj+a3335jx44dVKtWLcP+atWq4erqyrZt2wzbkpKS2L17N23atAGgadOmWFpaZjgmPDycM2fOGI4RQhQvT/sSH/3WaPrV7cfyV+dyaswxfui5EJ/yL2NDBZQ2kbuaA2y4NY2X13am/vRujNv0E3V6dMelXNlCfif5U5QWuywqw8Nl5W5hFLnpLTxy5Ejl7Oysdu3apcLDww0/cXFxhmO++OIL5ezsrH777Td1+vRpNWjQIOXm5qaio6MNx7z11luqUqVK6q+//lLHjx9XnTt3Vg0bNlQpKSk5qkNGMwlhfhYtWqS0Wq3S6XQKUDqdTmm1WrVo0aIsX6PX69XBy2eU/4pvVPOvXlDVp3saRkdVn1Fd1fyyoer63Vvq842r1LX793Jcy61bt9SkSZPUrVu38vx+8jMSKCQkRPn6+ipA+fr6FvoopoULF+b6/4uCIiOqSpaC+v7OVZghk+GEQIZfAL1eryZNmqRcXV2VtbW1at++vTp9+nSG88THx6vRo0crFxcXZWtrq3r16qWuXbuW4zokzAhhnvL7JX79wT01beMq1fXbkarml40yBJvq0z1V0xl91YilM9VfZ06p1NTcDffOraIwPDwvZHi4MKWC+v7WKJVF228RFh0djbOzM1FRUdJ/Rggzc/z4cZo2bUpgYCBNmjTJ83kSkpNZd+wI68/u4MyDvcRqL2fYb6Uvj5ejD8/U6szglu0pZW+f39IzyO/7MNZ9yK0JEyYwY8aMTCcp1el0jB8/nmnTphVaPaa6D8I0Cur7W9ZmEkKYJRtLS15u3ZaXW7cFIOjqNZYf+YsD13cRkXKMJO0dzsT+xpnjvzHzmBWuFk1p7dGBV1p0o1GVqiat3ZRkeLgojiTMCCGKhUZVKtOoyjBgGJGxcaw4tIetwTsJfrSPJF0E4fqD/Hb1IL9d/QJ7fTXqubSnT73OvNC0JdaWlrm61r87z06cOJGaNWsWwLsyPhkeLoqjkrvSmxCi2Cptb8eoLs+ybtSXnB2/l/k91tOtwju40BCUllhtKIcfLuajfUOpN6sZXb4dwaR1ywgOz3zizseZ+9pKMjxcFEfSMiOEKNa0Wi1d6talS926wLtcv/+Anw/tYOflnYQlHCRVG0VY8l+EXfqLny99jKPei/plfOhZryMvNGmRodUmJCSE4cOHo9f/s+xCet8TPz8/fHx8CnV4dV6kDw/38/NDo9GQmpqKTqdDKVXow8OFMBZpmRFClCgeZVyY0PNFtr7zA2fGHmF6x2W0KzMcJ+UNwCPtRQ5ELuSjva9Rb1ZTOn3zBh+vXcr5mzeLzdpKvr6+BAcHM2TIEACGDBlCcHAwvr6+pi1MiDySlhkhRIllZWFB/2at6N+sFQBX7txh2aEd7AnbzdWEQ6Rqo7mWsoNll3ew7PJk7m+JJVWf+WKY5tZ51tPTE39/fwICAvD395cWGWHWJMwIIcTfqpcvz3/7vAy8TFJKCptPHuf3Uzs5eW8fUZxH45IIGpU2K8u/SOdZIUxHwowQQmTCysKCvk1b0LdpC+A/hN65y3dOy/lm13tklmZS9amcdoxl6f5d9G/eGjsr60KvWYiSSsKMEELkQLXy5Zg14l0aWjsbRvzolR40GlCKcgPKcd5qE5MPbuKT/ba4WzWnjUd7BjXvQoPKlU1cvRDFm3QAFkKIXEjvPPvaa6+BAt/XhrLr0GHee20ONa2fw0JfGr02nhspe/gl9DNe+KUT9ad3YeD8j/lp1188jIsDzHflb2MqKotdCvMnyxkIIQpVcZm+Pqv3kZKayp+nT7Hu5A5O3NlHJGdA80+nYY3einK6xjR1bUPfhh3pXKcOWq1p/l1pyv8vFi1axPDhwzMdHi6jqoovWc5ACFEsFPcWCQudjp6NGtOzUWPgfW4+iGT54Z3surKHy7GHSNbe5Y46zJbww2wJn4Xl5jJUs2tF+2rteLl5R6qVL2fqt1DgisN8PaJokTAjhChUbm5uTJ482dRlFJqKLqUZ36Mf4+mHXq9n38Vg1gbt4sitfdxOOUGy9j4XEzZx8fwmfjqnwREv6rm04bnaHXi+aQvsrYtfR+KczNdTmItdCvMnYUYIIQqJVqulvXdt2nvXBkbyKD6B3wIP8ceFXZx7cJAY7SUeEczByGAOHljEx/tscLNsSsuK7ejfpAMtq3ua7JGUMclil8LYJMwIIYSJONraMNSnI0N9OgJwMTycVUd3szdsL1cTDpGifcit1P2svbaftde+wFrviqdDazp5tuelFu1xL1XKpPXnlSx2KYxNwowQQhQRXm5uhkn7UlJT2Xb2NL+f2s2J2/u5pz9FojaCs3FrOXtqLd+f1OKsalMqriKvtevLoA6dsbbI3erfpjJs2DCmT5+e6T5Z7FLkhYQZIYQogix0Ono0aESPBo2Ad7n/KIZfj+5n28XdBEcfIl57lSjNWaIczvLpia18HuhAJavmtKzUln6N29O8evUsWz/Smaoztix2KYxNhmYLIUQemHqIedDVq8zb+hs7grehyt9Cr32UYb91qhvVHVrSvlpbBjRrVyRHSV26dInPP/+cgIAAfH19+eijjyTIFHMF9f0tYUYIIfLA1GHm8RoOHTlCuFax8cxuTt09xH11BjQpGY51VF7ULtWSrl7teLF5a5zt7ExS878VhfsoCo/MMyOEECJTljodfZs0+XsdKbj/6BGrjx1ge8g+Ljw8TKz2Mo80FzkSdZEjR5cy7YglZbQNaFS+Nb3qteOZ+o2wspCvA2G+5NMrhBDFTBlHR0Z0eoYRnZ4B4GJEBKuP7WFv2H5CYw+TrLvLPRXIX7cD+ev29+i2OVLRqhktKrVJ629TrXqxGAIuSg4JM0IIkQfmNJOxl6srE3sNBAai1+s5cCmEdUF7OHrrILeSjpGqfcS1lJ1cC9vJ6rDPsdK7Ut2+BR2q+TCweXuqlit6/W2EeJyEGSGEyANznclYq9Xi41ULH69awBskJiez6eQJNp/by6k7B7mvTpOkjeBC/HounFvPj+fAQdWkTqlWdKnlQ/+mrSltb2/qtyFEBhJmhBCiBLO2tKRfsxb0a5be3yaG1YEH2H5xHxceHiJWe5kYTQhHokI4cmQp0w5bUkZTnwblWvGMdxuauVVk8cKFjBgxwixaqUTxJGFGCCGEQRlHB0Z07M6Ijt0BCAm/zerje9gTup+w2MMk6e5wn+PsvHucnXfnoNHboE2sxKW1lgxq8xzd6tWXzsSi0MknTgghRJZqulVgQs8BTGAAer2eI1cusTZoD0dvHuZGYiCp2ihSy1ziYNwlDv61EO1WB9wtm9LUvRW967elg3dt6UwsCpyEGSGEEDmi1Wpp5elFK08vYDgpqaks3LyBz3+eg3vTstzjNHptDDdSd3Pj+m5+vw4WG13wsGlKi4qt6dvIh2bVqkm4EUYnYUYIIUSeWOh0NKtYmWu/bGPtfwKpW78+W06d4I/zBzh5+zB3U0+Son1AaNI2QkO3sSoUrPQVqGrXnDaVW9OvqY+p34LRhIeH8+OPP0rfIRORMCOEEGYoJCSE2bNnAzB79mwmTpxIzZo1TVqTtaUlfZu2MEzeFxOfwPqgY2y7sJ8z9w/zQJ0lSXubiwkbuXhxIwEXwTq1EjXefo4Vp4/g4uFhtsPAw8PDmTJlCn369JEwYwISZoQQwswsWrSI4cOHGxaSXLp0KUuWLGHBggX4+vqatrjHONjaMLi1D4Nbp7XA3I+JYW3gIXaEHOB85BGiCSZRdwOqwm93L/Db4hnY62tQy7kFHWq0pl/TtriXLvXU60iriJC1mYQQwoyEhITg7e2NXq9/Yp9WqyU4OLhQF2vMz9pKtyIfsubYfnZfOcjFqCPEai9nPEBpcVQ18SrVnPY1WvFCk9ZUzCTcFIX1nYpCDeZA1mYSQgjBwoULDS0y/6bRaFiwYAHTpk0r5Kryxr10Kfy79cSfngBcvn2X3wL3sTfsIJdjjpCgvc4jTTCB0cEEnviZWce1OOKJl3Nz2ldvxQtN22QaboTpmKqVTMKMEEKYkbCwMLJqUFdKERYWVrgFGVGNCuUY/9wLjOcFAM7dvMm6E/s5eO0wV2KOkaC9wSMuEhh9kcCgZcw6ocGRmlS0rINrpzbcjY018TvIu+LyqMxUfYckzAghhBmpWrVqti0zVatWLdyCClCdihWpUzFtTSmAC7dusfbEfg5eTQs38drrPOIiF1IuYvccjDr0Og4HPfEq1Yx21VryQpM2eJQpY9o3kUPSgTh/JMwIIYQZGTZsGNOnT890n1IKPz+/Qq6o8Hi7uzPBfQAwAIDg8HDWHd/P9uBdhMWeINU2ghhNCMejQzh+cgXfBmlwUDXwdG5Gu2qt6Ne0NZXLlDXtmxAFQsKMEEKYkZo1a7JgwQL8/PzQaDSkpqai0+lQSrFgwYJC7fxr6uHhtdzc+E/PF+nmVp2mTZuybvt2LiREcuDqYS4/Oka89ioxmksEPbpE0KmVzD4F9voa1Pw73LzQpDVVyprnUHCRkYQZIYQwM76+vvj4+PD5558TEBDAkCFD+Oijjwo1yBTF4eEepUrxfJPOQH8gbV2pdUEH2B92iMuPjhGnDSNWe5mgR5cJOrXq73BTHU+nZrSp2pK+jdrg6VreJLWL/JEwI4QQZsjT0xN/f38CAgLw9/cv9BaZ4cOHZxgenpqaCoCfnx8+Pj6FWk9WarpVYLzbPx2KL92+w7rj+9kXdpjLjwKJ014hVnuFkzFXOHnmF+aeAVt9ZaraN6GlRzN6N2xDw8qVs+yjJIoOCTNCCCFyxVyHh3tWKM+4Hi8w7u9wc/n2XdYe38+Bq0e4FH2MWO1l4rXXOB9/jfMX1xFwEaxSy+Nh24Qm7s14rl5rfLy8iuzaUsVlRFReSJgRQgiRK8VleHiNCuUY16Mv0BeAGw8e8PuJw+wLPUxwZCBRBJOku8PlpD+4HPYHv4aBTu+Mu1UjGlZoRvfarelatx7XwsKKxNISJXlElIQZIYQQuVJch4dXcnHh7S49eJseQNryCxuDjrEz5BDnHwRyP/UMqdoorqfs5vrN3Wy8CTGfJ3Jnzc0i1XeoJCqabWVCCCGKrGHDhmXbMlOYw8P/PaIqJCTEaOcu4+DAUJ+OBLz+IYff/5WT7wYxvcNynnF9BzdtG1LuWHBnzU1QoPRp9yM1NRW9Xs/rw4Yxdfli7kVHG60ekTUJM0IIIXIlfXi4VqtFp9MBoNPp0Gq1hTo8fNGiRXh7e7N06VIgrVXE29ubgICAArmevbU1/Zu3ZM6r77Jv7FJe0vRFq9VlfrBGMeOnMbT8sSmNZzzHwPn/5dttGwi7e7dAaivpJMwIIYTINV9fX4KDgxkyZAgAQ4YMITg4uNAerTw+oip9JFV6q4ifnx+XLl0q8BquX7sGWa3VrDToH1iARk+0JpjA6OV8d3IMXRa3ov70zvSeM44pv6/g6OUrmS4aao4KspXsaSTMCCGEyJP04eFAoQ8Pz8mIqoKWXd8hnVbLqB7D+f2l3Qyv/QX17Ppjp68GQJz2Kufi1rIk5P94eW03anzYkD7jhmLn4cp/PvuM02fPFnjtxlbYrWT/Jh2AhRBCmJ2iMKIqJ0tLeHpUop7HP0swhN29y/qThzgYFsjFhye4fuQwd1dfAQ2g4K+ba2mwbi3VBjbD55kXaFe9Ob0atsCtlHOBv5+8KgrzDkmYEUIIYXaKwoiqvCwtUbVcOd7p2pt36E1ISAje//EGRdoP//xv6C/HSKl6m/33F/DFEQ0OqjrVHBvTwqMpzzVoSUOPojOZX1GYdyjXj5n27NlD7969cXd3R6PRsG7dugz7fX190Wg0GX5atWqV4ZjExET8/f0pW7Ys9vb29OnThxs3buTrjQghREnj5ubGpEmTStycIlB0RlTlp+9Q9iFAi8Xxcljr3UGjiNFe5nTsahZcmED/XzpTe0Zrunw3gvd/mc8fp4JITEk25tvKlaLQSpbrMBMbG0vDhg35/vvvszzm2WefJTw83PCzefPmDPvHjBnD2rVrWblyJfv27SMmJoZevXoZmqWEEEI8nZubG5MnTy6RYaaojKiCvPcdyi4EaICWZbw498Fetryyj7frz6SJ0yCcVG1QOpK1dwlL+ot1177k7a39qTezMSP+mkrV155lS8g57j96ZKy391RFoZUs14+ZevToQY8ePbI9xtraGldX10z3RUVFsWDBApYuXUrXrl0B+Pnnn/Hw8OCvv/7imWeeyW1JQgghSqCisOBmfuQ0BHi5uTHW7XngeSBtMr/NJwPZfekY5+4f527KafTaWB5wAm19WHh9EgvnTcGRmtRwbESLyk15rn5L6lWqWCCPpnLSd6igFchopl27dlG+fHm8vLx44403uHPnjmFfYGAgycnJdO/e3bDN3d2devXqceDAgYIoRwghRDFlyhFV+ZXXR2VlHBwY0rYDPw19nwNjl3F27HH+z/tbHLZX4c5P8TzclEDyvUQeaYIJilnF/HMf0HdVB2pPb03nb9/knRVzWBt4hJiERKO8j6LQSmb0DsA9evRgwIABVKlShdDQUP773//SuXNnAgMDsba2JiIiAisrK0qXLp3hdRUqVCAiIiLTcyYmJpKY+M9Nj5YZFYUQQhiJqRZozEsH4swsW7qU4cOH/3OOSzoe7lH0e2ck+lpOXH50gkdcIll3l6vJ27l6czubboJmhyWlNN7UcG5Ey8pN6NmgObXy+P5N3Upm9DDz0ksvGf67Xr16NGvWjCpVqrBp0yb69euX5euUUlk2f02bNo0pU6YYu1QhhBDCpAs05jcEZDcs+rfv5hIcHIynpycPYmPYcuo4ey8HcvbuCW4np60zFclpjkWd5tjppfxwGqxSXXFIrEzzKq3o2bA9nevUxdbKKke1pLeSBQQEFHorWYEPzXZzc6NKlSqGmQBdXV1JSkoiMjIyQ+vMnTt3aNOmTabnmDBhAmPHjjX8OTo6Gg8Pj4ItXAghhCgE+QkBOR0W7WLvwCut2/NK6/YA6PV6jly5zJ/njhJ44wRXY04SowklSRfBA7sI/rx7hD//+g7NVmtctLWpWaohras2pVfDFlQtV84o79uYCjzM3L9/n+vXrxvSbtOmTbG0tGTbtm0MHDgQSEvFZ86cybIDkbW1NdbW1gVdqhBCiFwqycPDi4K8DovWarW08qxJK8+awGAA7kRH8b/NG/hpyzLK13XmAefRa2O4TxD3HwZxKGgxs4LARl+RSrYNaOTWmC61mtGhdh2sLSwL5g3mUK7DTExMTIY1L0JDQwkKCsLFxQUXFxcmT55M//79cXNzIywsjIkTJ1K2bFleeOEFAJydnfHz8+P999+nTJkyuLi4MG7cOOrXr28Y3SSEEMI8pA8PF6ZhzGHR5Z2c6eFVh/8b9AdrAgNp0LAhB0JC2Hb+KCduneBq7EnitGEkaG9yKfEml8K2sDoMtFtsKaOrg1fpRlS1ccOqVOmnXsvYch1mjh07RqdOnQx/Tn/8M3ToUObOncvp06dZsmQJDx8+xM3NjU6dOrFq1SocHR0Nr5k1axYWFhYMHDiQ+Ph4unTpQkBAgKEXtBBCCCGeriCHRVvodLT39qa9tzeQNingzciHbD55jP2hgQQ/COJe6ln02ljuqkDuPghkP1Dpo9K8uvU9Ku9vQAPXRnT0akrnOnWxsSy41ptch5mOHTtm2aQF8Oeffz71HDY2NsyePduwuqYQQgghcs9YI6JyqmLpUrzRsStvdEx7kpKUksKeCxfYfuEYQREnuBZ7kgTddRItbhCSeIOQq5tZcxU0f9pQWutNVWsvo9aTTlbNFkIIIfLJlH2H8rOkQn5ZWVjQtV49pr3oy5bR37K020xufP6AIe7/pV2ZN6igbYlWb4/SJvCAII5FrSyQOmShSSGEEGatKHRCNnXfIVMOi/63pIcP6ePdgCZNfAFISU3l4KUQ/jp/jMOXDxNG1ssh5ZWEGSGEEGbN1EFCZM9Cp6NdLW/a1fImOroPzuOMH2bkMZMQQgghjMJUrWQSZoQQQpRYISEhhsEos2fPNkzwKvLGVCu5S5gRQghRIi1atAhvb2+WLl0KwNKlS/H29iYgIKDQaykK/X7MOdhpVHbjrIuo6OhonJ2diYqKwsnJydTlCCGEMDMhISF4e3tnWNMonVarNaxpZE6OHz9O06ZNCQwMpEmTJrl67aJFizIuVvnY8G5jjooqqO9vaZkRQghR4uRkTaOS4vHFKtMXqUxNTUWv1+Pn55dh1v+iSsKMEEKIEievaxoVR8Uh2EmYEUIIUeIYc00jc1ccgp2EGSGEECXOsGHDsv0Cz8+aRqaS107ExSHYSZgRQghR4qSvaaTVag2LHOt0OrRabYGsaVQY8josujgEOwkzQgghSiRTrmlUlBSHYCdhRgghRImVvqYRYPI1jUzJ3IOdhBkhhBBCmHWwkzAjhBBCCLMmYUYIIYQQZk3CjBBCCCHMmoQZIYQQQpg1CTNCCCGEMGsSZoQQQghh1iTMCCGEKNHyugyAKDosTF2AEEIIYUrpywAI8yUtM0IIIYQAzLeVSqOyWl2qCIuOjsbZ2ZmoqCicnJxMXY4QQgghcqCgvr+lZUYIIYQQZk3CjBBCCCHMmoQZIYQQQpg1CTNCCCGEMGsSZoQQQghh1mSeGSGEyIeUlBRSUlJMXYYQJmFhYYGFhemjhOkrEEIIMxQXF8e9e/eIjY01dSlCmJS9vT1ly5bFzs7OZDVImBFCiFxKSkri+vXrWFpa4ubmhrW1NRqNxtRlCVGolFIkJiby4MEDrl+/TrVq1bCysjJJLRJmhBAil+7cuYNOp6NKlSrodDpTlyOEydja2uLo6EhoaCh37tyhUqVKJqlDOgALIUQuKKWIi4vD2dlZgowQgE6nw9nZmbi4OEy1qICEGSGEyIXk5GRSU1OxtbU1dSlCFBm2trakpqaSnJxskutLmBFCiFzQ6/UA0iojxGPSfx/Sfz8Km4QZIYTIA+nwK8Q/TP37IGFGCCGEEGZNwowQQgghzJqEGSGEEMXerl270Gg0+Pr6mroUUQAkzAghhMiXsLAwNBoNHTt2NMr5JHiI3JIwI4QQQgizJmFGCCGEEGZNwowQQog8mzx5MtWqVQNg9+7daDQaw8/jj4nOnTvHK6+8gpubG1ZWVlSsWJHXXnuN4ODgDOfz9fWlU6dOACxevDjD+SZPnmw4btOmTQwbNozatWvj5OSEvb09DRs2ZOrUqSQmJhb4+xZFi6zNJIQQIs8aNWpE//79WbNmDRUqVODZZ5817PPx8QFg+/bt9O7dm/j4eJo0aULHjh25cOECS5cuZe3atWzevJl27doZXhMREcGff/5JjRo1DOdIv1Y6Pz8/YmNjqVu3LvXr1yc6OpojR47w0UcfsX37drZu3SoTG5YgEmaEEMKIlFIkJJlmfZq8sLHS5GvCs759+9KoUSPWrFmDt7c3AQEBGfbHxsbyyiuvEB8fz9y5c3nrrbcM+2bNmsXYsWMZPHgwly5dwtramuHDh+Pp6cmff/6Jj4/PE+dLN2/ePLp164a9vb1h26NHjxg8eDAbN25k2bJlvPbaa3l+X8K8SJgRQggjSkhS9HzvhqnLyLFNsypha11ws7f+8ssv3L59m3bt2mUIMgDvvfcey5YtIzAwkLVr1/Lyyy/n+Lx9+/Z9YpujoyOzZs1i48aN/P777xJmSpBc95nZs2cPvXv3xt3dHY1Gw7p16zLsV0oxefJk3N3dsbW1pWPHjpw9ezbDMYmJifj7+1O2bFns7e3p06cPN26Yzy+/EEKInNm7dy8Ar7zySqb7X3311QzH5UZISAjffvst/v7+DBs2DF9fXz799FPDPlFy5LplJjY2loYNG/L666/Tv3//J/ZPnz6dmTNnEhAQgJeXF5999hndunUjODgYR0dHAMaMGcOGDRtYuXIlZcqU4f3336dXr14EBgbKM04hhFmzsdKwaVYlU5eRYzZWBbumzq1btwCoWrVqpvvTt6cflxNKKcaNG8esWbNQKvNHeo8ePcpVncK85TrM9OjRgx49emS6TynFN998w0cffUS/fv2AtN7oFSpUYPny5YwYMYKoqCgWLFjA0qVL6dq1KwA///wzHh4e/PXXXzzzzDP5eDtCCGFaGo2mQB/bmKun9cvJTb+dVatWMXPmTCpVqsQ333xD69atKVeuHJaWliQlJWFtbZ1lyBHFk1GHZoeGhhIREUH37t0N26ytrenQoQMHDhwAIDAwkOTk5AzHuLu7U69ePcMx/5aYmEh0dHSGHyGEEEWfu7s7kPb9kJmrV68C4ObmluNzrl27FoC5c+fSv39/3N3dsbS0BODKlSv5KVeYKaOGmYiICAAqVKiQYXuFChUM+yIiIrCysqJ06dJZHvNv06ZNw9nZ2fDj4eFhzLKFEELkg5WVFQApKSlP7Esfcr1s2bJMX5u+Pf24p50PIDIyEiDT74Jffvklp2WLYqRAJs37d3OhUuqpTYjZHTNhwgSioqIMP9evXzdarUIIIfKnbNmyWFpacvnyZVJTUzPsGzhwIBUqVGDv3r3Mnz8/w77vvvuOo0ePUqlSJV544QXD9vTWnH9PqJfOy8sLgPnz52d4nLR3715mzJhhlPckzItRw4yrqyvAEy0sd+7cMbTWuLq6kpSUZEjWmR3zb9bW1jg5OWX4EUIIUTRYWVnx7LPPEhERQcOGDXnttdcYPnw4ixYtwt7enmXLlmFra8uIESNo1qwZgwcPpkmTJrz77rvY29uzfPlyrK2tDeerWrUqDRo04NixY7Ro0YLXX3+d4cOHs379egDeeecd7O3tmTNnDvXq1WPQoEG0b9+eDh06PDH8W5QMRg0z1apVw9XVlW3bthm2JSUlsXv3btq0aQNA06ZNsbS0zHBMeHg4Z86cMRwjhBDCvPz0008MGTKE+/fvs3z5chYsWMDu3bsB6NKlC0ePHmXQoEHcuHGD1atXExERwauvvkpgYGCGR0zp1qxZQ9++fbly5QpLlixhwYIFHD9+HEhrmTl69Ci9e/fm3r17rF+/npiYGH788UdpmSmhNCqXXb5jYmK4dOkSAI0bN2bmzJl06tQJFxcXKleuzJdffsm0adNYtGgRNWvWZOrUqezatSvD0OyRI0eyceNGAgICcHFxYdy4cdy/fz/HQ7Ojo6NxdnYmKipKWmmEEIUqISGB0NBQqlWrho2NjanLEaJIyOnvRUF9f+d6aPaxY8cMi4ABjB07FoChQ4cSEBDABx98QHx8PKNGjSIyMpKWLVuydetWQ5CBtCmsLSwsGDhwIPHx8XTp0oWAgACZY0YIIYQQuZbrlpmiQFpmhBCmIi0zQjzJ1C0zBTKaSQghhBCisEiYEUIIIYRZkzAjhBBCCLMmYUYIIYQQZk3CjBBCCCHMmoQZIYQQQpg1CTNCCCGEMGsSZoQQQghh1iTMCCGEEMKsSZgRQgghhFmTMCOEEEIIsyZhRgghRL6FhYWh0Wjo2LGjqUsx6NixIxqNhrCwMFOXYpY0Gg1Vq1Y1dRk5ImFGCCGEEGZNwowQQgghzJqEGSGEEEKYNQkzQgghjCo6Opp3330XDw8PbGxsqF27NrNmzUKv12c4LigoiA8++ICmTZtSrlw5rK2tqV69OqNGjeLWrVtZnv/atWuMHj2amjVrYmNjQ5kyZWjRogVTp04lPj7+qfVFRUXRvn17NBoNY8aMQSll2HflyhUGDhyIi4sLDg4O+Pj48Oeff7Jr1y40Gg2+vr4ZzuXr64tGo2HXrl38+eefdOrUiVKlSqHRaHj48CEAKSkpzJ49m6ZNm+Lg4ICDgwMtWrRg7ty5pKamPlFf1apV0Wg0mdaekzr27NlD586dcXR0xMnJiZ49e3Lu3LlMzxcbG8t//vMfKleujI2NDd7e3sycOTPDPTEHEmaEEEIYTWJiIp07d2bJkiW0aNGCbt26cfXqVcaOHYufn1+GY7/44gtmzpxJamoqbdu25bnnnkMpxdy5c2nWrFmmgWbPnj00aNCAH374Ab1ez/PPP0/r1q25d+8eH330Ebdv3862vtu3b9OxY0f27t3LlClT+OabbwzBISQkhJYtW/Lrr79Svnx5evfuTWpqKs899xxr1qzJ9rzLly+nR48exMbG0qNHD5o3b45GoyE1NZXnn3+ed955h0uXLtG1a1e6du3KhQsXGDVqFAMGDHgi5OXHhg0b6Ny5Mw8ePOCZZ57Bzc2NzZs30759eyIiIjIcm5iYSPfu3Zk+fTrx8fH07t2bqlWr8uGHHzJ69Gij1VQolBmKiopSgIqKijJ1KUKIEiY+Pl6dO3dOxcfHm7qUIiU0NFQBClANGjRQd+/eNey7dOmScnd3V4D6/fffDdu3b9+ubt26leE8qampasqUKQpQr7/+eoZ9Dx48UOXKlVOAmjVrltLr9Rn27969Wz18+NDw5w4dOihAhYaGGmr09PRUGo1GzZ49+4n30KVLFwUof39/lZqaati+ZMkSw3sbOnRohtcMHTrUsG/lypVPnPOrr75SgKpfv766ffu2YfutW7dUrVq1FKB++OGHDK+pUqWKyurreefOndnWodVq1fLlyw3bU1JSVP/+/RWg/vvf/2Z4zdSpUxWgWrRokeG+BQYGKicnJwWoKlWqZFrHv+X096Kgvr8lzAghRC487S9tvV6vYhNjzebn34Egrx4PM1u3bn1i/9y5cxWgunfvnqPzVaxYUbm4uGTY9uWXXypA9erVK0fneDzMnDlzRrm7uysLCwv1888/P3FsSEiIApSLi4uKiYl5Yn/79u2zDRE9e/bMtIbKlSsrQG3fvv2JfevXr1eAqlWrVobt+Qkzr7766hOvCQwMVIDq0KFDhu0eHh4KUPv373/iNRMmTDCrMGNRgI0+QghR4sQnx1P/u/qmLiPHTr9zGjsrO6Odz8XFhW7duj2xffDgwYwcOZIDBw6glDI82rl//z7r16/nzJkzPHz40NCHJDk5mQcPHvDgwQNcXFwA+OuvvwAYMWJErmo6dOgQb7/9NvHx8axbt46ePXs+ccyBAwcAeO6557C3t39i/4ABA9izZ0+W1+jTp88T265du8a1a9dwdXWlc+fOT+zv1asXpUqVIjg4mLt371KuXLncvK1Mde/e/YltXl5eAISHh2eo7fr161SsWJE2bdo88ZpBgwYxbdq0fNdTWCTMCCGEMJoqVapkut3JyYlSpUrx8OFDoqOjcXZ2ZsWKFbz55pvExMRkeb5Hjx4Zwsz169cBqFGjRq5qGjJkCCkpKaxatSrTIAMY+ud4eHhkur9y5crZXiOz/ennzGriOY1GQ5UqVXj48CG3bt0ySpipVKnSE9scHByAtD4y/64tq/f1tPdb1EiYEUIII7K1tOX0O6dNXUaO2VraFtq11GMjZK5evYqvry9KKb755ht69uxJxYoVsbVNq6dNmzYcPHgw01E1WY30ycqgQYNYunQpH3/8Me3bt8fV1TXLY7M6d2Z1PM7GxibX58ztMcBTOwvn9Dzp7yer43N7j01NwowQQhiRRqMx6mMbc3Pt2rVMt0dHRxMVFYW9vT1OTk4sX76cpKQk3n//fd59990njr9y5coT2zw8PLhw4QKXLl3C29s7xzV98sknuLu78+WXX9KlSxd27txJ+fLlMxzj5uaWbf3prUK54e7uDkBoaGiWx6RfL/36AFZWVgDExMQYWlXyU0d2tV29ejXT/VltL6pkaLYQQgijuX//vqFvy+NWrFgBpLW4aDQaIiMjgcwf6+zZsyfTIdZdu3YFYP78+bmu64svvmD8+PGcO3eOLl26cO/evQz70/uNbN68mbi4uCdev3r16lxfs3LlylSuXJmIiAh27NjxxP5NmzYRGRlJrVq1MjxiSg82Fy9efOI1W7duzXUdmalSpQqVKlXi5s2bHDx48In9K1euNMp1CouEGSGEEEY1fvx47t+/b/hzaGgon376KQCjRo0C/umU+vPPPxMbG2s49ubNm7z11luZnnf48OGULVuWDRs28P333z/x6Gfv3r1ERUVlWdf06dMZO3YsZ86coUuXLhlqrFmzJp06deLBgwdMnDgxw7mXLVvG7t27c/r2M/D39wfgvffe4+7du4btERERjB8/PsMx6Tp06ADAtGnTMkyq9/PPPxs1ZKR3pH7//feJjo42bA8KCuKHH34w2nUKhVHHRhUSGZothDAVmWcmc+lDs1u1aqWaNGmiSpcurfr376969+6t7Ozsnhg2nJiYqOrWrasA5erqqvr376969uyp7OzsVJs2bVSbNm0yzBGTbseOHcrR0VEBqkaNGmrgwIGqV69eqlq1ak8c/+95ZtKNGTNGAapRo0bqwYMHhu0XLlxQLi4uClDe3t5q0KBBqnXr1kqj0ahRo0YpQL3xxhsZzpU+JHrnzp2Z3peUlBTVo0cPBShnZ2f1wgsvqL59+xreQ9++fTPMaaOUUhEREYb5dLy8vNSLL76oGjZsqHQ6nXrvvfeyHZqdVR1kMsw6ISFBtWzZUgGqbNmyasCAAerZZ59VVlZWauTIkWY1NFtaZoQQQhiNtbU1O3bsYNCgQRw8eJA///wTDw8PvvrqKwICAgzHWVlZsXfvXkaOHImNjQ0bN27k/Pnz+Pv7s23bNiwtLTM9f6dOnQgKCuLNN98kJSWFdevWcejQIcqXL8+0adOy7dybbtasWfj7+xMUFES3bt0Myw7UqlWLw4cP8+KLLxIREcHvv/8OwMaNGw2PocqUKZOr+6HT6Vi/fj3ffvst1atX588//2Tr1q3UqlWLH374gdWrV6PVZvwqrlChAnv27KFXr16Eh4ezZcsWnJ2d2bZtW6ZDwPPK2tqav/76i3HjxmFtbc3vv//OlStX+Oyzz/j++++Ndp3CoFHKzBZgAMOwvqioKJycnExdjhCiBElISCA0NJRq1aplO4JFFC8jR45k3rx5rFy5kpdeesnU5RQ5Of29KKjvb2mZEUIIIUj7Qj5//vwT29esWcNPP/2Es7NzlvPUCNOSodlCCCEE8PDhQ+rUqYO3tzc1a9bE0tKS8+fPc/78ebRaLXPmzHliqLQoGqRlRgghhACcnZ15//33sbKyYt++faxfv5779+/z/PPPs3v3bgYPHmzqEkUWpGVGiBJM6fUkHDyJ/lEstj5N0DqU3MnehLC1teWrr74ydRkiDyTMCFFC6WPiCB/8AQkHTwKgK++C69Jp2DSpY+LKhBAid+QxkxAlkNLruf3WJyQcPInG3haLiuVJvfOA8Ff+Q+q9SFOXJ4QQuSJhRogSKGbdDuL+3I/G2gr3NbPw2LcUS+9q6O895N7Eb01dnhBC5IqEGSFKGJWUzIOpaWvblB47FJumddE62FHh+49AoyFm7XYSzz+5yJ8QQhRVEmaEKGFiNu0m5Wo4unIuOI8YYNhu3bAW9r07AvDw259NVJ0QQuSehBkhSpjoResAcHq9L1p72wz7Sr/zCgAx63eSev9hIVcmhBB5I2FGiBIk6dK1tNFLOh1Or/Z6Yr91w1pYNfCC5BRifvvLBBUKIUTuSZgRogSJXb8LANsOzbBwK5fpMU4v9wDg0ao/CqssIYTIFwkzQpQgMRt3AeDQq0OWxzi80AU0GhJPBpNy83YhVSaEEHknYUaIEiI57BZJp0NAq8W+h0+Wx+nKlsameT0AYv88UFjlCSFEnkmYEaKEiN20GwCbNo3QlS2d7bF2f4ed2C17C7wuUXKEhYWh0Wjo2LGjqUvJsV27dqHRaPD19TV1KSIbEmaEKCFit6a1sjj0bP/UY+2fTQsz8ftPoH8UW6B1CSFEfsnaTEKUAPqYOBKOngHArnPLpx5v5VkZS8/KJF+6RtzOIzj06VTQJYoSoGLFipw/fx47O1nQVBiXtMwIUQLEHzwJySlYVHbDolrFHL0mPfTE7w0syNJECWJpaYm3tzeVK1c2dSmimJEwI0QJEL/7KJA2JFuj0eToNbbtm6a9do+EGfF058+fZ8iQIdSoUQMbGxvKlStHo0aNGDNmDOHh4UD2fWaSk5P5/PPP8fT0xMbGhurVqzN58mSSk5OpWrXqE5/bx/uyPHjwgJEjR+Lm5oa1tTX16tVj4cKFmda5adMmhg0bRu3atXFycsLe3p6GDRsydepUEhMTjX5fROGQx0xClABxu48BYNeheY5fY9O6IWi1JF+5QcrN21hUrFBQ5Qkzd/z4cXx8fEhISKBFixa0aNGCR48eceXKFb799lv69u2Lm5tblq9XSjFgwAB+//13HB0d6dGjB3q9nq+//pqgoKBsr/3w4UNat25NVFQULVq0ICYmhj179uDn54der2f48OEZjvfz8yM2Npa6detSv359oqOjOXLkCB999BHbt29n69at6HQ6Y9wWUYiMHmYmT57MlClTMmyrUKECERERQNqHdsqUKcyfP5/IyEhatmzJDz/8QN26dY1dihACSIm4R/KFUNBosG3XJMev0zk5YN3Ym8TAc8TtPW6YTE9kTymFikswdRk5prGzyXFrXVa+++474uPjWbNmDf369cuw7/z585QqVSrb1y9btozff/8dT09P9uzZYwg+169fp127dly9ejXL1/7+++/079+fxYsXY29vb9jWt29fPv300yfCzLx58+jWrZvhWIBHjx4xePBgNm7cyLJly3jttddy8/ZFEVAgLTN169blr7/+mQr98ZQ7ffp0Zs6cSUBAAF5eXnz22Wd069aN4OBgHB0dC6IcIUq0hMOnAbCqUwOdi3OuXmvbrimJgeeI3xsoYSaHVFwCoVW7m7qMHKsWthXNv9boyq07d+4A0Llz5yf21a5d+6mvnzdvHgCffvpphhYcDw8PJk2axLBhw7J8rZOTE/Pnz88QTp5//nnq16/P6dOnCQsLo2rVqoZ9ffv2feIcjo6OzJo1i40bN/L7779LmDFDBdJnxsLCAldXV8NPuXJp06Yrpfjmm2/46KOP6NevH/Xq1WPx4sXExcWxfPnygihFiBIv4UhamLFp2SDXr01vyUnYf8KoNYnipWnTtP5Vr732GkeOHEGv1+f4tcnJyRw9ehStVvtEqw7AgAEDMnnVP5o1a4aLi8sT2728vAAM/XUeFxISwrfffou/vz/Dhg3D19eXTz/91LBPmJ8CaZkJCQnB3d0da2trWrZsydSpU6levTqhoaFERETQvfs//2qxtramQ4cOHDhwgBEjRmR6vsTExAwds6KjowuibCGKpX/CTP1cv9amaV3Q6Ui5eYfkG7exrCT9Zp5GY2dDtbCtpi4jxzR2Nvk+x/jx49m3bx8bNmxgw4YNODs707JlS3r16oWvr2+2re73798nKSkJNzc3rKysntjv4OBA6dKliYyMzPT1lSpVynS7g4MDQIbvDqUU48aNY9asWSilMn3do0ePsqxVFF1GDzMtW7ZkyZIleHl5cfv2bT777DPatGnD2bNnDf1mKlTI+BdihQoVsn0mOm3atCf64Qghnk4fG0/i6bR/adrmIcxo7W2xbuBF4onzJBw5LWEmBzQaTb4f25gbJycnduzYwf79+9mwYQO7du0ydKadNm0ae/fupUaNGtmeI7t+O1kFj6e97t9WrVrFzJkzqVSpEt988w2tW7emXLlyWFpakpSUhLW1dbbXEkWX0R8z9ejRg/79+1O/fn26du3Kpk2bAFi8eLHhmH9/+JRS2X4gJ0yYQFRUlOHn+vXrxi5biGIp4fg5SE3FomL5PI9GsmmRtk5TwqFTxixNFDMajQYfHx++/PJLDh8+THh4OIMGDSI8PJyJEydm+boyZcpgaWlJREQESUlJT+yPiYnh4cOHRqlx7dq1AMydO5f+/fvj7u6OpaUlAFeuXDHKNYRpFPg8M/b29tSvX5+QkBBcXV0BDC006e7cufNEa83jrK2tcXJyyvAjhHg6wyOmFrlvlUmX3tcm/VxC5ES5cuWYPHkyAKdPZ/3ZsbS0pHnz5uj1ekPYeNzq1auNVlP6oyoPD48n9v3yyy9Gu44ofAUeZhITEzl//jxubm5Uq1YNV1dXtm3bZtiflJTE7t27adOmTUGXIkSJkz6SKS+df9OlB6Gkc5dJjY4xSl2ieJk3bx6hoaFPbN+yZQvAU2f8Te8v+fHHH2f4x+6NGzf45JNPjFZneqfg+fPnZ3ictHfvXmbMmGG064jCZ/QwM27cOHbv3k1oaCiHDx/mxRdfJDo6mqFDh6LRaBgzZgxTp05l7dq1nDlzBl9fX+zs7Bg8eLCxSxGiRFOpqYb1mPLTMmNRoQwWVSuCUiQePWus8kQxMm/ePKpXr07dunV58cUXefnll2ncuDFjxozB1taWSZMmZfv6IUOG0Lt3by5evEitWrXo168fffv2pXbt2tSrV4/KlSsbHgflxzvvvIO9vT1z5syhXr16DBo0iPbt29OhQwfeeuutfJ9fmI7Rw8yNGzcYNGiQ4QNpZWXFoUOHqFKlCgAffPABY8aMYdSoUTRr1oybN2+ydetWmWNGCCNLOh+KiolD42CHVZ3q+TpXehiSR00iM59++inDhg1Do9Gwfft2NmzYQFxcHG+++SanTp2idevW2b5eo9GwevVqPvnkE8qWLcumTZs4efIkY8aM4ZdffuH27duUKVMm33V6eXlx9OhRevfuzb1791i/fj0xMTH8+OOP0jJj5jTKDLtuR0dH4+zsTFRUlPSfESILUQvXcu8/M7Ht2Bz3X2fm61zRS9dzd+wMbNo2puK674xUoXlKSEggNDSUatWqYWOT/2HNInuHDx+mVatWPPvss4bHVqLoyenvRUF9f8tCk0IUU/mZX+bf0ltmEo+fQyWn5Pt8Qvzb6dOnSU5OzrAtLCyMkSNHAkhXBJEtWWhSiGIq4XDaUOr89JdJZ1mzCtrSTugjo0k8FZw2mZ4QRjR+/HiOHTtGw4YNKV++PDdu3ODYsWMkJCTw3HPP8eqrr5q6RFGESZgRohhKuXWHlBu3QafDpkmdfJ9Po9Vi07wecVsPkHDktIQZYXS+vr7o9XpOnz7Nvn37sLKyon79+gwePJi3334734thiuJNwowQxVD6kGzrep5oHeyMck6blg3SwszhMzDSKKcUwuDll1/m5ZdfNnUZwkxJnxkhiqF4Iz5iSvfPiKZTMuW7EKJIkTAjRDFkjJl//826US2wsiT1biQpoTeNdl4hhMgvCTNCFDP6mDiSzl4GjDOSKZ3WxhrrhrUAiJf5ZoQQRYiEGSGKmYTAc6DXY1HZDQu3ckY9d/rK2zJ5nhCiKJEwI0Qx88+Q7HpGP7eh38xhWUFbCFF0SJgRopgx5vwy/2bTPC0gJV+8SmpktNHPL4QQeSFhRohiRCWnkHDsHAA2rRoa/fy6sqWxrOEBQMJRedQkhCgaJMwIUYwknglBxcWjLeWIVa2qBXINm5YNgH/mshEFLzw8nMmTJxMeHm7qUoQokiTMCFGMPP6ISaMtmF/vf/rNSJgpLOHh4UyZMkXCjBBZkDAjRDGScCh9cckGBXaN9OHeiUEXUIlJBXYdYV40Gk2GH0tLS8qWLUv9+vXx9fVlzZo1pKTIIqWiYEiYEaKYUEoRf/gkYNz5Zf7NsoYH2jLOqMQkEk9dLLDrCPM0dOhQhg4dyqBBg2jbti0pKSksWbKEF198kdq1a3PkyBGjXCcgIACNRsPkyZONcj5h3mRtJiGKieQr19Hfe4jG2gqbRt4Fdh2NRoNNi/rEbdmXtuhkc+MPARfmKyAg4Iltly9fZuLEifzyyy906tSJ/fv306hRo0KvTRRf0jIjRDGRcDCtv4x149porK0K9Frp/WbiZb4ZkQM1atRg1apV+Pn5ERcXx7Bhw0xdkihmJMwIUUwYOv8W4COmdLbpnYCPnpFFJ0WOff3119jb23PixAn27duXYd+mTZsYNmwYtWvXxsnJCXt7exo2bMjUqVNJTEzMcGzHjh15/fXXAZgyZUqGvjrpLUNKKVasWMHLL7+Ml5cX9vb2ODo60qJFC+bMmYNery+U9ywKhzxmEqKYiD/0d5gpgPll/s26YS001lbo7z0k+cp1rGpULvBrllQhISHMnj0bgNmzZzNx4kRq1qxp4qryxtnZmR49erB69Wp27tyJj4+PYZ+fnx+xsbHUrVuX+vXrEx0dzZEjR/joo4/Yvn07W7duRafTAfDss8+SkpLC/v37adiwYYZHVp6engAkJiYyePBgSpcuTZ06dWjSpAn37t3j4MGDvP322xw5ciTTR2LCTCkzFBUVpQAVFRVl6lKEKBKSw++qS2V91KVy7VTKw+hCueaNXm+rS2V9VNTi3wvlekVFfHy8OnfunIqPjy/way1cuFBptVql0+kUoHQ6ndJqtWrRokUFfu3cAlROvlI+++wzBahBgwZl2L527VoVExOTYVt0dLTq1auXAtTixYsz7Fu0aJEC1KRJkzK9TnJyslqzZo1KTEzMsP3OnTuqWbNmClC7d+/OwTsTOZHT34uC+v6Wx0xCFAPxe44BYN3AC52zY6Fc07ZdEwDi9gQWyvVKmpCQEIYPH45eryc1NRWA1NRU9Ho9fn5+XLp0ycQV5k3ZsmUBiIyMzLC9b9++2NvbZ9jm6OjIrFmzAPj9999zdR0LCwv69euHlVXG/mPlypVj2rRpeTqnKLrkMZMQxUD834HCtn2zQrumbftmRM5YRPy+QJReX2CT9JVUCxcuRKPRZLpPo9GwYMECw5eyOVF/97HK7L2FhISwefNmLl26RGxsLHq93nB8SEhInq4XFBTE1q1buXr1KnFxcSilePToUb7OKYoeCTNCmDmllKF1xLZD4YUZmya10djZor8fRdK5K1jX8yy0a5cEYWFhWXauVkoRFhZWuAUZyb179wBwcXExbFNKMW7cOGbNmpXle04PIDmVlJSEr68vK1asyPKY3J5TFF3yTykhzFzypWukht9Nm1+mAFbKzorGyhLbNmmdjdMfcwnjqVq1arYtM1WrVi3cgowkKCgIgDp16hi2rVq1ipkzZ1KxYkVWr17NzZs3SUpKQillGMmUVcjJysyZM1mxYgX16tVjy5Yt3L5923DO4ODgPJ1TFF0SZoQwc/G704KETcv6aG2tC/Xatu2bptUg/WaMbtiwYdm2zPj5+RVyRfkXFRXFH3/8AUCnTp0M29euXQvA3Llz6d+/P+7u7lhaWgJw5cqVPF0r/ZwrVqzg2WefpXz58vk+pyi6JMwIYebi/m4VKcz+MunSrxl/8CQqKbnQr1+c1axZkwULFqDVag1DknU6HVqtlgULFhiGIJuT999/n9jYWJo3b07r1q0N29M7A3t4eDzxml9++SXTc6V37M1qvae8nFOYLwkzQpgxlZJCwv4g4J9WksJkVbs62rKlUHHxJBw7W+jXL+58fX0JDg5myJAhAAwZMoTg4GB8fX1NW1guXblyhZdeeokFCxZgb2/PggULMuz38vICYP78+Rlao/bu3cuMGTMyPae7uzuA4ZHRv6Wfc968eRm2r169miVLluTtjYgiS8KMEGYs4cgZ9NExaEs7Yd3Aq9Cvr9FqsevYHIC4bQcK/folgaenJ/7+/gD4+/sX+RYZX19ffH19ee211+jbty916tTB09OTX375hZo1a7Jr1y7q18/Yt+udd97B3t6eOXPmUK9ePQYNGkT79u3p0KEDb731VqbXadWqFeXLl2f16tV07NiRYcOGMXz4cA4cSPscfvDBB+h0Oj788EOaNWvG4MGDad68OQMGDOC9994r8PsgCpeEGSHMWOyf+wGw69Yazd+PIgqbffe2f9ciYUbA4sWLWbx4MStWrGDv3r3odDpee+011qxZw7lz52jW7MnHoV5eXhw9epTevXtz79491q9fT0xMDD/++GOWLTM2NjZs2rSJbt26ERQUREBAAAsWLODixbSV3Nu3b8++ffvo3LkzV65cYePGjVhZWbFmzRrefvvtAr0HovDJ0GwhzFjc32HG/pm2JqvBtktLsNCRHHKV5Cs3sKxeyWS1CNPJ78ig2rVrs379+lydu1mzZmzdujXLc7Zq1Yrt27fn6pzCPEnLjBBmKunSNZIvXwdLC+w6tTBZHTonB2zbNAIgdut+k9UhhCi5JMwIYaZi/0hbddi2bWO0jvZPObpg2aU/atqy7ylHCiGE8UmYEcJMxa7bAYD9c+1MXAnY92wPQMLBk6SE3zVxNcWPm5sbkyZNws3NzdSlCFEkSZgRwgwlXbpG4slgsNDh0KfT019QwCwrVUibfVgpYtZl3kdB5J2bmxuTJ0+WMCNEFiTMCGGGYtZsA8CuY3N0ZUqZtpi/OfTvBkDMbxJmhBCFS8KMEGZGKUXMmr+AfwJEUeDQpyPodCQGXSDp8jVTlyOEKEEkzAhhZhIOBJEcegONnS32z/qYuhwDXdnS2HVOG1UVvXSDiasRQpQkEmaEMDNRC34DwHFAd7QOdiauJiMn374APFq+GX18ommLKWAyT4kQ/zD174OEGSHMSEr4XWI37wXAadgLJq7mSXZdWmJR2Q19ZDQxv+8wdTkFIn3Rx+RkWVhTiHTpvw86E81ELmFGCDMSteA3SE3FplVDrOvUMHU5T9DodDgNfR6AqHmrUHq9iSsyPktLS6ytrYmKijL5v0aFKAqUUkRFRWFtbY2lpaVJapDlDIQwE6n3HxL1vzUAlBo50MTVZM1pSG8iZy0h6exlYjfvxaFXB1OXZHRly5bl5s2b3LhxA2dnZywtLdFoNKYuS4hCpZQiOTmZqKgoYmJiqFixoslqkTAjhJl4+MMKVFw8Vg28sOth+onysqIr7USpNwcQOXMxkTMWYv9cOzTa4tUI7OTkBMC9e/e4efOmiasRwrSsra2pWLGi4ffCFCTMCGEGkq/eIuqntFYZl//4FflWAOeRLxH1v9UknbvCo+WbcXq1l6lLMjonJyecnJxITk4mNTXV1OUIYRI6nc5kj5YeJ2FGiCJOKcXdcV+h4hOxadsYu26tTV3SU+lKOVJ6nC/3J/3A/SlzsHumLRblSpu6rAJhaWlZJP4yF6IkK15tv0IUQ4+WbSJ+11E01laU+3p8kW+VSef85otY1auJ/uEj7o3/SjrLCiEKjIQZIYqwhGNnufufmQCUHv86VjU8TFxRzmksLCj/zX/A0oLYTXt4+M1SU5ckhCimJMwIUUQlnrlExGsTICkZ++faUcp/sKlLyjXrhrUo9+V7ADyY9hPRS9ebuCIhRHFk0jAzZ84cqlWrho2NDU2bNmXv3r2mLEeIIiNux2Fu9fUn9W4kVvVrUv6H/zPbEUFOQ/rgPGIAKMXdsTN4MGMRSjrMCiGMyGR/O65atYoxY8bw0UcfceLECdq1a0ePHj24dk0WqBMlV0rEPe6+P4Pwl8ahj4rBpkV93Nd+W+SWLcitMp/6G1qWIqcv5Fbv0SQEnjVxVUKI4kKjTNQrr2XLljRp0oS5c+cattWuXZu+ffsybdq0bF8bHR2Ns7MzUVFRJh3XLoQxpNyNJOHQSWI37CJ2815UYhIATsP6UWbyKLS21qYt0IgerfqDux/OQsXEAWDTsgEO/bti264pljU8zKZzsxAibwrq+9skQ7OTkpIIDAzkww8/zLC9e/fuHDhwIMfnidmyF62d/ZM7sstn2UW3bF+XfeZT2Z24IK75tAyax3uQbbbNVz3Z7cvrefN+zQJ5n08rJykJfXQs+ugY9A8fkXw9gpSrt0i5eSfDcTYt6uMy8Q1s2zbO/oRmyPGlZ7Fp25jI6Qt5tOoPEg6fIuHwKQC0pRyxrFYJyypuaF1KoXWyR+vsgNbOFnRaNDodWOjQWOjS/qzRQk7DT04zUo7PJ6FLiLyIiYstkPOaJMzcu3eP1NRUKlSokGF7hQoViIiIeOL4xMREEhP/WYE3KioKgCsjJ+OgkalyhPmzqlUV27aNse/TCesGXiRrNCRHR5u6rILhZIvNZ29jMfolHq3bTvyuYyQGXUA9iIQHkRB42tQVCiEKSIxKAYy/yrZJk8C/m5SVUpk2M0+bNo0pU6Y8sb1d5LECq02IQnXwEBxcCV+ZuhAhhCh49+/fx9nZ2WjnM0mYKVu2LDqd7olWmDt37jzRWgMwYcIExo4da/jzw4cPqVKlCteuXTPqzSgOoqOj8fDw4Pr169Kf6F/k3mRN7k3W5N5kTe5N5uS+ZC0qKorKlSvj4uJi1POaJMxYWVnRtGlTtm3bxgsvvGDYvm3bNp5//vknjre2tsba+slOkM7OzvJByUL6ujHiSXJvsib3Jmtyb7Im9yZzcl+ypjXyVBMme8w0duxYhgwZQrNmzWjdujXz58/n2rVrvPXWW6YqSQghhBBmyGRh5qWXXuL+/ft88sknhIeHU69ePTZv3kyVKlVMVZIQQgghzJBJOwCPGjWKUaNG5fp11tbWTJo0KdNHTyWd3Jusyb3JmtybrMm9yZrcm8zJfclaQd0bk02aJ4QQQghhDOa52IsQQgghxN8kzAghhBDCrEmYEUIIIYRZkzAjhBBCCLNW5MLMtGnTaN68OY6OjpQvX56+ffsSHBz81NctW7aMhg0bYmdnh5ubG6+//jr3798vhIoLT17vzQ8//EDt2rWxtbWlVq1aLFmypBCqLVxz586lQYMGhkmqWrduzZYtW7J9ze7du2natCk2NjZUr16defPmFVK1hSu39yY8PJzBgwdTq1YttFotY8aMKbxiC1lu781vv/1Gt27dKFeunOH4P//8sxArLjy5vTf79u2jbdu2lClTBltbW7y9vZk1a1YhVlw48vJ3Tbr9+/djYWFBo0aNCrZIE8ntvdm1axcajeaJnwsXLuT+4qqIeeaZZ9SiRYvUmTNnVFBQkOrZs6eqXLmyiomJyfI1e/fuVVqtVn377bfqypUrau/evapu3bqqb9++hVh5wcvLvZkzZ45ydHRUK1euVJcvX1YrVqxQDg4Oav369YVYecFbv3692rRpkwoODlbBwcFq4sSJytLSUp05cybT469cuaLs7OzUu+++q86dO6f+97//KUtLS7V69epCrrzg5fbehIaGqnfeeUctXrxYNWrUSL377ruFW3Ahyu29effdd9WXX36pjhw5oi5evKgmTJigLC0t1fHjxwu58oKX23tz/PhxtXz5cnXmzBkVGhqqli5dquzs7NSPP/5YyJUXrNzel3QPHz5U1atXV927d1cNGzYsnGILWW7vzc6dOxWggoODVXh4uOEnJSUl19cucmHm3+7cuaMAtXv37iyPmTFjhqpevXqGbd99952qVKlSQZdnUjm5N61bt1bjxo3LsO3dd99Vbdu2LejyTK506dLqp59+ynTfBx98oLy9vTNsGzFihGrVqlVhlGZy2d2bx3Xo0KFYh5nM5PTepKtTp46aMmVKAVZUdOT23rzwwgvq1VdfLcCKioac3JeXXnpJ/d///Z+aNGlSsQ0zmcnu3qSHmcjIyHxfp8g9Zvq3qKgogGwXpWrTpg03btxg8+bNKKW4ffs2q1evpmfPnoVVpknk5N4kJiZiY2OTYZutrS1HjhwhOTm5QOszldTUVFauXElsbCytW7fO9JiDBw/SvXv3DNueeeYZjh07VmzvC+Ts3pRUebk3er2eR48eGX3RvKImL/fmxIkTHDhwgA4dOhRwdaaT0/uyaNEiLl++zKRJkwqxOtPKzWemcePGuLm50aVLF3bu3Jm3C+Y7DhUgvV6vevfurXx8fJ567K+//qocHByUhYWFAlSfPn1UUlJSIVRpGjm9NxMmTFCurq7q2LFjSq/Xq6NHj6ry5csrQN26dauQqi0cp06dUvb29kqn0ylnZ2e1adOmLI+tWbOm+vzzzzNs279/f7G8L0rl7t48riS0zOT13iil1PTp05WLi4u6fft2AVZoOnm5NxUrVlRWVlZKq9WqTz75pBCqLHy5uS8XL15U5cuXV8HBwUopVexbZnJzby5cuKDmz5+vAgMD1YEDB9TIkSOVRqPJ9mlDVop0mBk1apSqUqWKun79erbHnT17Vrm5uanp06erkydPqj/++EPVr19fDRs2rJAqLXw5vTdxcXHq9ddfVxYWFkqn0yl3d3f1wQcfKKDY/QWcmJioQkJC1NGjR9WHH36oypYtq86ePZvpsTVr1lRTp07NsG3fvn0KUOHh4YVRbqHKzb15XEkIM3m9N8uXL1d2dnZq27ZthVClaeTl3ly5ckWdOnVKzZ8/X7m4uKjly5cXUrWFJ6f3JSUlRTVr1kzNnTvXsK24h5m8/j6l69Wrl+rdu3eur1tkw8zo0aNVpUqV1JUrV5567KuvvqpefPHFDNv27t1bbP+VnZt7ky4pKUldv35dpaSkGDoFp6amFmCVptelSxf15ptvZrqvXbt26p133smw7bffflMWFhbFukUvXXb35nElIcz8W07uzcqVK5Wtra3auHFjIVVVNOT0c5Pu008/VV5eXgVYUdGQ1X2JjIxUgNLpdIYfjUZj2LZ9+3YTVFu4cvuZ+eyzz57oz5gTJl1oMjNKKfz9/Vm7di27du2iWrVqT31NXFwcFhYZ34pOpzOcr7jIy71JZ2lpSaVKlQBYuXIlvXr1Qqst8l2m8kUpRWJiYqb7WrduzYYNGzJs27p1K82aNcPS0rIwyjOp7O5NSfe0e7NixQqGDRvGihUrin2/vH/L7eempHzOsnqfTk5OnD59OsO2OXPmsGPHDlavXp2rv8PNVW4/AydOnMDNzS1PFypSRo4cqZydndWuXbsyDNWKi4szHPPhhx+qIUOGGP68aNEiZWFhoebMmaMuX76s9u3bp5o1a6ZatGhhirdQYPJyb4KDg9XSpUvVxYsX1eHDh9VLL72kXFxcVGhoqAneQcGZMGGC2rNnjwoNDVWnTp1SEydOVFqtVm3dulUp9eR9SR+a/d5776lz586pBQsWFNuh2bm9N0opdeLECXXixAnVtGlTNXjwYHXixIlcNRWbi9zem+XLlysLCwv1ww8/ZPgdfPjwoaneQoHJ7b35/vvv1fr169XFixfVxYsX1cKFC5WTk5P66KOPTPUWCkRefp8eV5wfM+X23syaNUutXbtWXbx4UZ05c0Z9+OGHClBr1qzJ9bWLXJgBMv1ZtGiR4ZihQ4eqDh06ZHjdd999p+rUqaNsbW2Vm5ubeuWVV9SNGzcKt/gClpd7c+7cOdWoUSNla2urnJyc1PPPP68uXLhQ+MUXsGHDhqkqVaooKysrVa5cOdWlSxfDL5BSmX9mdu3apRo3bqysrKxU1apVMzzXLk7ycm8y+5xVqVKlcAsvBLm9Nx06dMj03gwdOrTwiy9gub033333napbt66ys7NTTk5OqnHjxmrOnDnF7nF2Xn6fHlecw0xu782XX36patSooWxsbFTp0qWVj49PrjrgP06jVDF6DiOEEEKIEqd4d5oQQgghRLEnYUYIIYQQZk3CjBBCCCHMmoQZIYQQQpg1CTNCCCGEMGsSZoQQQghh1iTMCCGEEMKsSZgRQgghhFmTMCOEEEIIsyZhRghRbHTs2BGNRoNGoyEoKMhkdfj6+hrqWLduncnqEKKkkDAjRDHUsmVL3nzzzQzbfH19+fDDD01UUeF54403CA8Pp169eoZtERERvPvuu3h6emJjY0OFChXw8fFh3rx5xMXF5fjcvXv3pmvXrpnuO3jwIBqNhuPHj/Ptt98SHh6e7/cihMgZC1MXIIQwrtTUVE6fPo2vr69hm16vZ9OmTaxfv950hRUSOzs7XF1dDX++cuUKbdu2pVSpUkydOpX69euTkpLCxYsXWbhwIe7u7vTp0ydH5/bz86Nfv35cvXqVKlWqZNi3cOFCGjVqRJMmTQBwdnY23psSQmRLWmaEKGYuXLhAfHy84UsVYP/+/Wi1Wlq2bAnAunXrcHJyQinFpUuX0Gg03Lx5E71ej729PX/88ccT5+3YsSP+/v6MGTOG0qVLU6FCBebPn09sbCyvv/46jo6O1KhRgy1btmR43R9//IGPjw+lSpWiTJky9OrVi8uXLxv2r169mvr162Nra0uZMmXo2rUrsbGxT92XU6NGjcLCwoJjx44xcOBAateuTf369enfvz+bNm2id+/ehmOVUkyfPp3q1atja2tLw4YNWb16tWF/r169KF++PAEBARmuERcXx6pVq/Dz88tVbUII45AwI0Qxc+LECXQ6HQ0aNDBsW79+Pb1790arTfuVDwoKomHDhmg0Gk6dOkWZMmWoWLEiFy9eJC4ujoYNG2Z67sWLF1O2bFmOHDmCv78/I0eOZMCAAbRp04bjx4/zzDPPMGTIkAyPbmJjYxk7dixHjx5l+/btaLVaXnjhBfR6PeHh4QwaNIhhw4Zx/vx5du3aRb9+/VBKZbsvp+7fv8/WrVt5++23sbe3z/QYjUZj+O//+7//Y9GiRcydO5ezZ8/y3nvv8eqrr7J7924ALCwseO211wgICMhQx6+//kpSUhKvvPJKjmsTQhiREkIUK2PHjlV169bNsM3Ly0utX7/e8Oe+ffuq0aNHK6WU+vjjj1WXLl2UUkqtXLlSlStXLtPzdujQQfn4+Bj+nJKSouzt7dWQIUMM28LDwxWgDh48mGV9d+7cUYA6ffq0CgwMVIAKCwt74rjs9mWlQ4cO6t133zX8+dChQwpQv/32W4bjypQpo+zt7ZW9vb364IMPlFJKxcTEKBsbG3XgwIEMx/r5+alBgwYZ/nz+/HkFqB07dhi2tW/fPsMx6QC1du3aHNcvhMgbaZkRopg5ceJEhkdM58+f58aNGxk6rgYFBdGoUSMATp48aWiJSW+xycrjrT06nY4yZcpQv359w7YKFSoAcOfOHcO2y5cvM3jwYKpXr46TkxPVqlUD4Nq1azRs2JAuXbpQv359BgwYwP/+9z8iIyMBst2XW4+3vgAcOXKEoKAg6tatS2JiIgDnzp0jISGBbt264eDgYPhZsmRJhsdi3t7etGnThoULFxre3969exk2bFieahNC5J+EGSGKmaCgoAxhZv369XTr1g1bW1sAHj16RFhYmCGEnDx50hBsjh8/bvjvzFhaWmb4s0ajybAtPTTo9XrDtt69e3P//n3+97//cfjwYQ4fPgxAUlISOp2Obdu2sWXLFurUqcPs2bOpVasWoaGh2e7LKU9PTzQaDRcuXMiwvXr16nh6ehruyeM1b9q0iaCgIMPPuXPnMvSbgbSOwGvWrCE6OppFixZRpUoVunTpkuO6hBDGJWFGiGIkLCyMyMhIGjdubNj2+++/Zxitkz5k2NHRkaioKMLCwmjUqBF3795l9+7ddOvWzWj13L9/n/Pnz/N///d/dOnShdq1az/RuqLRaGjbti1TpkzhxIkTWFlZsXbt2qfuy4kyZcrQrVs3vv/++6d2HK5Tpw7W1tZcu3YNT0/PDD8eHh4Zjh04cCA6nY7ly5ezePFiXn/99Sdaf4QQhUeGZgtRjJw4cQKNRmMIM3fu3OHo0aMZJm6rWLEidnZ2zJw5k169emFpaUlCQgL9+vWjRYsWRg0zpUuXpkyZMsyfPx83NzeuXbuWYa6bw4cPs337drp370758uU5fPgwd+/epXbt2tnuy405c+bQtm1bmjVrxuTJk2nQoAFarZajR49y4cIFmjZtCqSFu3HjxvHee++h1+vx8fEhOjqaAwcO4ODgwNChQw3ndHBw4KWXXmLixIlERUVlGAYvhCh8EmaEKEYCAwPx9PTEyckJgA0bNtCyZUvKly9vOMbe3p5ff/0Vf39/fvrpJwB69OjB66+/zscff2zUFgatVsvKlSt55513qFevHrVq1eK7776jY8eOADg5ObFnzx6++eYboqOjqVKlCl9//TU9evTg/PnzWe7LjRo1anDixAmmTp3KhAkTuHHjBtbW1tSpU4dx48YxatQow7Gffvop5cuXZ9q0aVy5coVSpUrRpEkTJk6c+MR5/fz8WLBgAd27d6dy5cr5uk9CiPzRKJWLcY5CiCKtWbNmtGjRgjlz5gDQp08ffHx8+OCDDzI9fvDgwQAsW7asWDwm6dixI40aNeKbb74xdSlA2mOytWvX0rdvX1OXIkSxJn1mhDBzSinCwsL49NNPOXPmDP7+/oZ9Pj4+DBo0KMvXBgcH07x582IRZNLNmTMHBwcHTp8+bbIa3nrrLRwcHEx2fSFKGmmZEcLMnTp1itatW9OgQQO++OILOnTokKPXpaSk4ODgwKZNm4rNSJybN28SHx8PQOXKlbGysjJJHXfu3CE6OhoANze3LCfsE0IYh4QZIYQQ4v/bswMSAAAAAEH/X7cj0BVBrNlMAMCamAEA1sQMALAmZgCANTEDAKyJGQBgTcwAAGtiBgBYEzMAwJqYAQDWxAwAsBaZcuQw8Ac6RwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHJCAYAAABws7ggAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACITElEQVR4nOzdd1xV9f/A8de9lz0VRcGFW9x7b3GWmmZpWiSCDS3M1Po2fpXWNy0tLS01v6Gk5SjNlZp7T0RxizhwghNB9rif3x/ETRSQceFy8f18PO6jOOdzznmf473cN5+pUUophBBCCCHMlNbUAQghhBBCFIQkM0IIIYQwa5LMCCGEEMKsSTIjhBBCCLMmyYwQQgghzJokM0IIIYQwa5LMCCGEEMKsSTIjhBBCCLMmyYwQQgghzJokM0KIPAsMDESj0XD48GGjnzs8PByNRkNgYGCejtNoNGg0Gnx8fLLc//nnnxvKhIeHFzhOIUTxIcmMEKJYcXd3Z//+/Tz77LN5PtbR0ZE//viDBw8eZNqulCIwMBAnJydjhSmEKEYkmRFCFCvW1ta0adMGV1fXPB/73HPPoZRi6dKlmbZv27aNS5cuMWTIEGOFKYQoRiSZEUIUmI+PDw4ODpw6dQovLy/s7e1xdXXl7bffJj4+PlPZP/74g9atW+Ps7IydnR3Vq1fH19fXsD+/zUwAzs7ODBw4kPnz52faPn/+fNq3b0/t2rXzdX9CiOJNkhkhhFGkpKTwzDPP4OXlxapVq3j77bf56aefMtWG7N+/nyFDhlC9enWWLl3KunXr+PTTT0lNTTVaHH5+fhw4cIAzZ84AcP/+ff7880/8/PyMdg0hRPFiYeoAhBAlQ3JyMuPHj2fMmDEA9OjRA0tLSz7++GP27t1L+/bt2bdvH0op5s6di7Ozs+HY7Drt5kfXrl2pVq0a8+fPZ9q0aSxevBgLCwtefPFF5s6da7TrCCGKD6mZEUIYzcsvv5zp52HDhgGwfft2AFq2bAnA4MGD+f3337l+/brRY8gY0bRo0SJSU1MJCAhg8ODBODg4GP1aQojiQZIZIYRRWFhYUKZMmUzb3NzcALh79y4AnTp1YtWqVaSmpvLqq69SqVIlGjRowJIlS4way4gRI7h9+zaTJ0/myJEj0sQkRAknyYwQwihSU1MNSUuGyMhIgExJznPPPcfWrVuJjo5mx44dVKpUiWHDhrF//36jxVK5cmW6d+/OpEmTqFOnDu3atTPauYUQxY8kM0IIo/ntt98y/bx48WIAunTp8lhZa2trOnfuzNdffw3A0aNHjRrL+PHj6devH5988olRzyuEKH6kA7AQIt80Go3h/62srPj222+JjY2lZcuW7Nu3j//+97/06dOHDh06APDpp59y7do1vLy8qFSpEvfv3+f777/H0tKSzp07GzW2nj170rNnT6OeUwhRPEkyI4TIs4y5Y6ytrQ3bLC0t+euvvxgzZgz//e9/sbW15bXXXmPatGmGMq1bt+bw4cP85z//4fbt25QqVYoWLVqwbds26tevX+T3IYQoGTRKKWXqIIQQ5uWdd97hhx9+4P79+zg6OuLj48Py5cuJjY01dWhCiKeQ1MwIIXItODiYoKAg5s+fT//+/XF0dDR1SEIIIcmMECL3XnjhBaKjo+nfvz8zZ84skms+aXZgrVaLVitjGYR4mkkzkxCi2AoPD6datWo5lvnss8+YOHFi0QQkhCiWpGZGCFFsVahQgaCgoCeWEUI83aRmRgghhBBmTRqahRBCCGHWzLKZSa/Xc+PGDRwdHTNN2iWEEEKI4kspxYMHD6hQoYJRO+6bZTJz48YNKleubOowhBBCCJEPV69epVKlSkY7n1kmMxlzW1y9ehUnJycTRyOEEEKI3IiJiaFy5cpGn6PKLJOZjKYlJycnSWaEEEIIM2PsLiLSAVgIIYQQZk2SGSGEEEKYNUlmhBBCCGHWJJkRQgghhFmTZEYIIYQQZk2SGSGEEEKYNUlmhBBCCGHWzHKeGSGEKC5SUlJIS0szdRhCmIROp8PS0tLUYUgyI4QQ+RETE8OdO3dISkoydShCmJS1tTVly5Y16SS2kswIIUQexcTEcP36dRwcHChbtiyWlpay6K146iilSElJITo6muvXrwOYLKGRZEYIIfLozp07ODg4UKlSJUlixFPN1tYWR0dHrl27xp07d0yWzEgHYCGEyIOUlBSSkpJwdnaWREYI0tdZcnZ2JikpiZSUFJPEIMmMEELkQUZn3+LQ6VGI4iLj82CqzvCSzAghRD5IrYwQ/zL150GSGSGEEEKYNUlmRI4iIiKYOHEiERERpg5FCCGEyFKekpk5c+bQqFEjnJyccHJyom3btmzYsMGwXynFxIkTqVChAra2tnTp0oVTp05lOkdSUhL+/v6ULVsWe3t7+vfvz7Vr14xzN8LoIiIimDRpkiQzQgiztmPHDjQaDT4+PqYORRSCPCUzlSpV4quvvuLw4cMcPnyYbt268dxzzxkSlqlTpzJ9+nR++OEHgoKCcHNzo0ePHjx48MBwjrFjx7Jy5UqWLl3Knj17iI2NpW/fvjKDphBCmKnw8HA0Gg1dunQxyvkk8RB5ladkpl+/fjzzzDPUrl2b2rVr8+WXX+Lg4MCBAwdQSvHdd9/x8ccf8/zzz9OgQQN++eUX4uPjWbx4MQDR0dEEBATw7bff0r17d5o2bcqvv/7KiRMn2LJlS6HcoBBCCCFKtnz3mUlLS2Pp0qXExcXRtm1bLl26RGRkJD179jSUsba2pnPnzuzbtw+A4OBgUlJSMpWpUKECDRo0MJTJSlJSEjExMZleQgghhBCQj2TmxIkTODg4YG1tzZtvvsnKlSupV68ekZGRAJQvXz5T+fLlyxv2RUZGYmVlRenSpbMtk5UpU6bg7OxseFWuXDmvYQshhCgEEydOpFq1agDs3LkTjUZjeD3cTHT69Glefvll3N3dsbKyomLFirz66quEhoZmOp+Pjw9du3YF4Jdffsl0vokTJxrKrVu3Dl9fX+rWrYuTkxP29vY0btyYyZMny3pZT6E8L2dQp04dQkJCuH//PitWrGD48OHs3LnTsP/RseZKqSeOP39SmQ8//JBx48YZfo6JiZGERgghioEmTZowaNAgVqxYQfny5endu7dhX4cOHQDYunUr/fr1IyEhgWbNmtGlSxfOnj3LokWLWLlyJevXr6djx46GYyIjI9m4cSM1atQwnCPjWhn8/PyIi4ujfv36NGzYkJiYGA4dOsTHH3/M1q1b2bRpEzqdrmgegjC5PCczVlZW1KxZE4AWLVoQFBTE999/z3/+8x8gvfbF3d3dUP7WrVuG2ho3NzeSk5OJiorKVDtz69Yt2rVrl+01ra2tsba2zmuoQgghCtmAAQNo0qQJK1aswNPTk8DAwEz74+LiePnll0lISGDOnDm8+eabhn0zZsxg3LhxDBs2jPPnz2Ntbc3IkSOpWbMmGzdupEOHDo+dL8PcuXPp0aMH9vb2hm0PHjxg2LBh/PXXX/z222+8+uqrhXHLohgq8DwzSimSkpKoVq0abm5ubN682bAvOTmZnTt3GhKV5s2bY2lpmalMREQEJ0+ezDGZEUIIc6GUIiFJbzYvpVShPo/ff/+dmzdv0rFjx0yJDMC7775L8+bNuXbtGitXrszTeQcMGJApkQFwdHRkxowZAKxevbpggQuzkqeamY8++og+ffpQuXJlHjx4wNKlS9mxYwd///03Go2GsWPHMnnyZGrVqkWtWrWYPHkydnZ2DBs2DABnZ2f8/PwYP348ZcqUwcXFhQkTJtCwYUO6d+9eKDcohBBFKTFZ8ey75jN31roZlbC1Lryp6Hfv3g3Ayy+/nOX+V155heDgYHbv3s1LL72Up3OHhYWxfv16zp8/T1xcHHr9v8lZWFhYwQIXZiVPyczNmzfx9vYmIiICZ2dnGjVqxN9//02PHj0AeP/990lISGD06NFERUXRunVrNm3ahKOjo+EcM2bMwMLCgsGDB5OQkICXlxeBgYHStimEECXQjRs3AKhatWqW+zO2Z5TLDaUUEyZMYMaMGdnWLD08v5ko+fKUzAQEBOS4P6O3+cM9zh9lY2PDrFmzmDVrVl4uLYQQZsHGSsO6GZVMHUau2VgVzQKBTxoIkpeFCpctW8b06dOpVKkS3333HW3btsXV1RVLS0uSk5OxtrYu9OYzUbzkuQOwEEKI7Gk0mkJttjE3FSpUAODSpUtZ7r98+TJApoEjT5LRv2bOnDn07ds3076LFy/mJ0xh5mShSSGEEAViZWUFQGpq6mP7MoZc//bbb1kem7E9o9yTzgcQFRUFkOUUHb///ntuwxYliCQzQgghCqRs2bJYWlpy4cKFx9bZGzx4MOXLl2f37t3Mmzcv076ZM2cSFBREpUqVGDhwoGF7Rm3OoxPqZahduzYA8+bNy9SctHv3bqZNm2aUexLmRZIZIYQQBWJlZUXv3r2JjIykcePGvPrqq4wcOZIFCxZgb2/Pb7/9hq2tLW+88QYtWrRg2LBhNGvWjHfeeQd7e3sWL16caS6xqlWr0qhRIw4fPkyrVq0YMWIEI0eOZM2aNQCMGTMGe3t7Zs+eTYMGDRg6dCidOnWic+fOjw3/Fk8HSWZEtsLCwgwdtWfNmiVDHYUQ2fr555/x9vbm7t27LF68mICAAMPs8F5eXgQFBTF06FCuXbvG8uXLiYyMNAzLfriJKcOKFSsYMGAAFy9eZOHChQQEBHDkyBEgvWYmKCiIfv36cefOHdasWUNsbCw//fST1Mw8pTTKDLt8x8TE4OzsTHR0NE5OTqYOp0RasGABI0eORKPRkJaWhk6nQylFQEBApvVWhHjaJCYmcunSJapVq4aNjY2pwxGiWMjt56Kwvr+lZkY8JiwsjJEjR6LX6w3t32lpaej1evz8/Dh//ryJIxRCCCH+JcmMeMz8+fOznfNBo9E8cb4hIYQQoihJMiMeEx4enu2EU0opwsPDizYgIYQQIgeSzIjHVK1aNceameymJRdCCCFMQZIZ8RhfX98ca2b8/PyKOCIhhBAie5LMiMfUqlWLgIAAtFqtYQFQnU6HVqslICCAmjVrmjhCIYQQ4l+SzIgs+fj4EBoaire3NwDe3t6EhobKsGwhhBDFjiQzIls1a9bE398fAH9/f6mREUIIUSxJMiOEEEIIsybJjBBCCCHMmiQzQgghhDBrkswI8RSJiIhg4sSJREREmDoUIYQwGklmhHiKREREMGnSJElmhBAliiQzQgghhDBrkswIIYQosPDwcDQaDV26dDF1KAZdunRBo9HIenL5ZE7L10gyI4QQQgizJsmMEEIIIcyaJDPiqSCjeIQQouQy62Sm75wxLNq7E71eb+pQRDEno3iEKDoxMTG88847VK5cGRsbG+rWrcuMGTMe+10dEhLC+++/T/PmzXF1dcXa2prq1aszevRobty4ke35r1y5wttvv02tWrWwsbGhTJkytGrVismTJ5OQkPDE+KKjo+nUqRMajYaxY8eilDLsu3jxIoMHD8bFxQUHBwc6dOjAxo0b2bFjBxqN5rH16Xx8fNBoNOzYsYONGzfStWtXSpUqhUaj4f79+wCkpqYya9YsmjdvjoODAw4ODrRq1Yo5c+aQlpb2WHxVq1ZFo9FkGXtu4ti1axfdunXD0dERJycnnn32WU6fPp3l+eLi4vjPf/5DlSpVsLGxwdPTk+nTp2d6JubArJOZqyk7mbjfl0bfePHO0jlcvxdl6pCEMCspqYoth+JYuD6akxeSTB2OKAGSkpLo1q0bCxcupFWrVvTo0YPLly8zbtw4/Pz8MpX96quvmD59OmlpabRv355nnnkGpRRz5syhRYsWWSY0u3btolGjRvz444/o9Xqee+452rZty507d/j444+5efNmjvHdvHmTLl26sHv3biZNmsR3331nSBzCwsJo3bo1f/zxB+XKlaNfv36kpaXxzDPPsGLFihzPu3jxYvr06UNcXBx9+vShZcuWaDQa0tLSeO655xgzZgznz5+ne/fudO/enbNnzzJ69GhefPFFo/5BvnbtWrp168a9e/fo1asX7u7urF+/nk6dOhEZGZmpbFJSEj179mTq1KkkJCTQr18/qlatygcffMDbb79ttJiKhDJD0dHRClB9vh2jan5dX1WfVl1Vn1Zd1fjaU/WeNUatDD6k0tLSTB1miRAcHKwAFRwcbOpQCqSk3EdBPfwc4hLS1LvTI1XXUZcNr59XR5k6xGIvISFBnT59WiUkJGS5X6/Xq7ikOLN56fV6ozyXS5cuKUABqlGjRur27duGfefPn1cVKlRQgFq9erVh+9atW9WNGzcynSctLU1NmjRJAWrEiBGZ9t27d0+5uroqQM2YMeOx2Hfu3Knu379v+Llz584KUJcuXTLEWLNmTaXRaNSsWbMeuwcvLy8FKH9//0zfIQsXLjTc2/DhwzMdM3z4cMO+pUuXPnbOb775RgGqYcOG6ubNm4btN27cUHXq1FGA+vHHHzMd4+HhobL7et6+fXuOcWi1WrV48WLD9tTUVDVo0CAFqE8++STTMZMnT1aAatWqVabnFhwcrJycnBSgPDw8sozjUU/6XGTI+P6Ojo7O1Xlzy6Lo0ibjWzryC5L4gm82LWfDxaXEaS9wLvEvxm/7i4lba/NM9ZcY3+N5yjg5mjpUIYoVpeCrX+4SEpaEnY2GZnVs2HMsgd/+jqFaBUu6tbA3dYhmKyElgYYzG5o6jFw7MeYEdlZ2Rj3nN998Q9myZQ0/16hRg08++YRRo0bx448/0r9/fwC6dev22LFarZZPP/2UefPmsXr16kz7/ve//3H79m369u3L2LFjHzu2U6dO2cZ06tQpevbsya1bt1i0aBEvv/xypv3nz59n69atuLi4MGXKFLTafxsuvL29+fnnn9m1a1e253/22WcZMmTIY9tnzpwJwHfffUe5cuUM293d3Zk2bRr9+/dn5syZjB49Ottz58WwYcMYOnSo4WedTsdHH33EihUrHot/zpw5AMyYMQNnZ2fD9mbNmvHWW28xZcoUo8RUFMy6mQnA1cmJr1/wJWTC30ztvJha1s+gUZY80Jxj2aXPaTO3PQPnfsC20ydNHapZcnd357PPPsPd3d3UoQgjOhluxZ5jCei0MM2/HJ+/4cqwXk4AzFwWRWyC9EMT+ePi4kKPHj0e2z5s2DAA9u3bl6k/xt27d1mwYAHjx4/Hz88PHx8ffHx8SElJ4d69e9y7d89QdsuWLQC88cYbeYrpwIEDdOrUiaioKFatWvVYIpMRF8AzzzyDvf3jyfyLL76Y4zUyErSHXblyhStXruDm5pZl4ta3b19KlSpFaGgot2/fzu3t5Khnz56PbatduzZApj6DV65c4erVq1SsWJF27do9dszDCZE5MOuamYdptVoGtWzNoJatuXznDt9sWsq2a3+QqL3G8dg/eG39H7isb8yAOi/xTvf+ONjamDpks+Du7s7EiRNNHYYwJo2W9YfT/xIf2suJutWsARjR15k9IfFcuZnK8q0x+PQtZcIgzZetpS0nxpwwdRi5Zmtpa9TzeXh4ZLndycmJUqVKcf/+fWJiYnB2dmbJkiW8/vrrxMbGZnu+Bw8e4OLiAsDVq1eB9JqevPD29iY1NZVly5bx7LPPZlkmo39O5cqVs9xfpUqVHK+R1f6Mc2Y38ZxGo8HDw4P79+9z48YNXF1dc7xGblSqVOmxbQ4ODkB6H5lHY8vuvp50v8WN2dfMZMWjbFlmDXubY+O38X+tf6aKRVdQWu5xjPmhH9JsVjuG/m8ihy5cMHWoQhQ512q9uB1tgaOdlpd6OBm263QafPqVAmDljliSkqV2Jj80Gg12VnZm88pu1ExheLhG5vLly/j4+JCUlMR3331HWFgY8fHxKKVQStG2bdvHjnn4GedFRi3Dp59++lgn2NyeO6s4HmZjk/0fyLmJN7f39KTOwrk9T8b9ZFe+KN8XxlAik5kMFjodIzp2ZfvYn/lr2A66uL6JZZoradpoDkUvYujKnrSbPozvN60lKSXF1OEKUSQqNhgOwHOdHbCzyfwroGMTW8q76HgQr2fX0ScPcRXiUVeuXMlye0xMDNHR0djb2+Pk5MT69etJTk5mzJgxvPPOO9SsWRNb239riS5evPjYOTJqTc6fP5+nmD7//HP+85//EBoaipeXF7du3XqsTEZTenbxZ9QK5UWFChUAuHTpUrZlMq73cFO+lZUVQJY1VvmJI6fYLl++nOX+7LYXVyU6mXlY3YoVCRj+HsfG7eadxt/jpm0DSsNN/UFmHh9L4xkd8Q2cyqnr100dqhCF5t4DLaUrtkWDom97h8f267Qanvln+7q92Vf9C5Gdu3fvGvq2PGzJkiUAtGvXDo1GQ1RU+lQaWTXr7Nq1K8sh1t27dwdg3rx5eY7rq6++4r333uP06dN4eXlx586dTPsz+o2sX7+e+Pj4x45fvnx5nq9ZpUoVqlSpQmRkJNu2bXts/7p164iKiqJOnTqZmpgyEptz5849dsymTZvyHEdWPDw8qFSpEtevX2f//v2P7V+6dKlRrlNUnppkJoO1pSVjevRl77jfWPbCZlqXGo5O70yK9jY77/xE/8Vd6DhjOLO3bihwbY3MOiuKk7CwML78+kdObfbn7skpRN/N+q/F3m3SOz8eP5/E7fupRRmiKCHee+897t69a/j50qVLfPHFFwCGUTsZnVJ//fVX4uLiDGWvX7/Om2++meV5R44cSdmyZVm7di0//PDDY00/u3fvJjo6Otu4pk6dyrhx4zh58iReXl6ZYqxVqxZdu3bl3r17fPTRR5nO/dtvv7Fz587c3n4m/v7+ALz77ruZOvlGRkby3nvvZSqToXPnzgBMmTIl06R6v/76q1GTjIyO1OPHjycmJsawPSQkhB9//NFo1ykSRh3oXUSMPU79QXyCmvzX76rFtIGGOWuqT6uu6nzVWg2fP0WFXL6cr/PK3CbFx9P+bzF//nyl1WqVRqNTaLRKq9UprVarFixYkGX5t6dFqK6jLqs/t8cUbaBmILfzaTxtMuaZadOmjWrWrJkqXbq0GjRokOrXr5+ys7NTgHrllVcM5ZOSklT9+vUVoNzc3NSgQYPUs88+q+zs7FS7du1Uu3btMs0Rk2Hbtm3K0dFRAapGjRpq8ODBqm/fvqpatWqPlX90npkMY8eOVYBq0qSJunfvnmH72bNnlYuLiwKUp6enGjp0qGrbtq3SaDRq9OjRClCvvfZapnNlzO+yffv2LJ9Lamqq6tOnjwKUs7OzGjhwoBowYIDhHgYMGPDYvGiRkZGG+XRq166tXnjhBdW4cWOl0+nUu+++m+M8M9nFQRZzxiQmJqrWrVsrQJUtW1a9+OKLqnfv3srKykqNGjXKrOaZeepqZrLiYGvDh8++SNCEP/ml33qaO72cXluju83uu//j+WXd6DDdm+83rSUhObnI4pKaHfGw/L4fwsLCGDlyJHq9HqXSQOnR69PQ6/X4+fll2f+gU9P00U67jj5e3S5ETqytrdm2bRtDhw5l//79bNy4kcqVK/PNN98QGBhoKGdlZcXu3bsZNWoUNjY2/PXXX5w5cwZ/f382b96MpaVllufv2rUrISEhvP7666SmprJq1SoOHDhAuXLlmDJlCm5ubk+MccaMGfj7+xMSEkKPHj0Myw7UqVOHgwcP8sILLxAZGWmY5+avv/4yNEOVKVMmT89Dp9OxZs0avv/+e6pXr87GjRvZtGkTderU4ccff2T58uWZ5rQBKF++PLt27aJv375ERESwYcMGnJ2d2bx5c5ZDwPPL2tqaLVu2MGHCBKytrVm9ejUXL17kv//9Lz/88IPRrlMkjJoaFZHCyuwe9iA+QU356w/V6psXMtfWfN1SvRLwpTp88eITz1HQ2oCnvTbBmErCs8zvPXzwwQdKp9MZZil9+KXT6dQHH3zw2DERd1JU11GXlddbl9WDeJlN+2FSM/N0evPNN7Od5VdIzUyx5WBrwwfPvsDB8X/w24C/aV3qVSz0pUjR3mXfvQAGL+9B22+HMX3j6iKtrREir8LDw7MdVqqUIjw8/LHtbmUsqFTOAr0ejpxNLOQIhSgeEhMTOXPmzGPbV6xYwc8//4yzs3O289QI0yoxk+YVpjY1a9Gm5mfEJX3A7O3r+fPU79ziELfUQX48cZCfjn1Bc5f+vNNlGK1r1jR1uEJkktMKvBqNJtsJvVrVs+HarVgOn0k0NDsJUZLdv3+fevXq4enpSa1atbC0tOTMmTOcOXMGrVbL7NmzDRPQieJFamaykVX/BHtra97rPZD945ewbNAW2pYegYXehVRtFAfv/8KwVb1o8+0Qvl6/gtgE+Wu2uAgLC2PWrFkAzJo1i7CwMBNHVLR8fX3R51Az8+hKxhla1Euf8yPodMITJwwToiRwdnZm/PjxWFlZsWfPHtasWcPdu3d57rnn2Llzp2FJBlH8SDKTjYiICCZNmpRtZ8sW1arxq9//ETJ2L/6NvjPMW3NbHWbe6fdpNqsdn+1egkO1akUcuXjYggUL8PT0ZNGiRQAsWrQIT0/PTB0RS7patWrR95XvQKNFq9UB6Z0StVotAQEB1MymNrFxLWssLeDmvTSu3pQh2qLks7W15ZtvvuHYsWPcu3ePlJQUbt68yapVq+jQoYOpwxM5kGSmgGytrBjbsx97x/3GisFb6VBmJJb6sqRpozmd8iflRmsYuflzPl+9hKiH5lIQhe/hUTwZczWkpeU8iqckSktTqDIDaD10OwNfSJ/919vbm9DQUHx8fLI9ztZaS8Ma6es2HQmVmkYhRPElyYwRNfHw4JcRH3Ls3T2822QWrvrWoLRE607wS9j/0erHtvSf/R5rjhx+4voa4l/5HZI8f/78HPuKBAQEGCO8Yu/clWTiEhXl3KrxwXtvAemTdGVXI/OwxrXS15s5cT7pCSWFEMJ0JJkpBNaWlrzd/Rlmd59AxIw4Wtq8grXeHb02jlPxf/LutiE0+aY37y6dS7iRln0vyZ7U5Jed/IziKYkyalWa1LZBm8dPfMOa6TUzx88nSb8ZIUSxJclMIUuIiOD9ds9xfPxOPm0bQHWrXmiUJXHaC6y5Ng2vwI50+/51ft65heRU6ZdgTPkdxVPSZCQzzTyzX9U3O3WrWmGhg7vRady4I+9PIUTxJMlMEbHQ6Rjevgubx8xmp99+Bnl8iKOqDZoULqdsZUrQGzSe3hGfBV8RnMMKqyL3fH19c6yZyW4UT0mSlKzn5IX0JqJmdfKezFhbaanjkb6CrzQ1CSGKK0lmTKCiS2mmvjiSkPc2MLvnnzR2GIxO70iy9ha77/6PwSu60+bbIfx6/AA6a2tTh2u2atWqRUBAAFqtFp0u96N4SpKTF5NJSYWypXRULp+/aaUa1pR+M0KI4i1PycyUKVNo2bIljo6OlCtXjgEDBhAaGpqpjI+PDxqNJtOrTZs2mcokJSXh7+9P2bJlsbe3p3///ly7dq3gd2OGejVqzJ9vTiHY/wAj636Fq6YFALfVYVbf+Zaqk+rw8c6FbDx+zMSRmicfHx9CQ0Px9vYGcjeKpyTJmL23WR2bbJvcnqTRQ/1mQNYME0IUP3lKZnbu3Mlbb73FgQMH2Lx5M6mpqfTs2TPT8u0AvXv3JiIiwvBav359pv1jx45l5cqVLF26lD179hAbG0vfvn0zLXVu7vI6UZvjP4tdHhi/jOUvbKVjmdewTHNF6WI5l7aW0Zuep8m0Pkz4/X9cvxdVFLdQYtSsWRN/f38g96N4SgpDf5k6+a/ha1DdGo0Grt9O5V50Wr47ZAshRGHJUzLz999/4+PjQ/369WncuDELFizgypUrBAcHZypnbW2Nm5ub4eXi4mLYFx0dTUBAAN9++y3du3enadOm/Prrr5w4cYItW7YY565MrKATtTWtWpXAER+wsNssYleVxV11BGXBA805Vl75is4/t6PHzNH8smcHqSUoARTGFRuvJ+xK+rphTfPR+TeDg52W6hXTVzA+fkGamoQQxU+B+sxER0cDZEpWAHbs2EG5cuWoXbs2r732Grdu3TLsCw4OJiUlhZ49exq2VahQgQYNGrBv374sr5OUlERMTEymV3FlzInaLHQ6bu09xEyvMWz12UPfShOw11dHaZO5mLyRzw/40fDbjgxfMIVDFy4U1i0JIynq5pmQc4noFVQub4FrqYItw9bgn8nzTl2UZEbkX3h4OBqNhi5dupg6lFzbsWMHGo3mqWmaNlf5TmaUUowbN44OHTrQoEEDw/Y+ffrw22+/sW3bNr799luCgoLo1q0bSUnpvwQjIyOxsrKidOnSmc5Xvnx5IiMjs7zWlClTcHZ2NrwqV678xPhM1a5vrInaHm2mSrl/n+9fGkXIhI3M6LaM+nbPo9Xbk6y9yZ67PzN0ZU9afvM8n65cxO1inOw9zQrSPJOf9aX+bWLKf61MhgbVJZkRQhRf+U5m3n77bY4fP86SJUsybR8yZAjPPvssDRo0oF+/fmzYsIFz586xbt26HM+nlMo2Cfjwww+Jjo42vK5evfrE+EzVrm+MidpyaqbSarX0b9aCNaOncfjtA7xW92vKa1uD0nCPY/x2YSJt57al16y3+WWvNEOVBPlttjx6Lj3xaGqEZKb+P8lM2JX00VFC5EfFihU5c+YMCxcuNHUoooTJVzLj7+/PmjVr2L59O5UqVcqxrLu7Ox4eHoa/JN3c3EhOTiYqKnMn1lu3blG+fPksz2FtbY2Tk1OmV3FV0Ina8tJM5WxnxwfPvsC+cYtZM3QHPcr7Y6uvgtImcj5pA5/vl2Yoc5ffZst70WlcjkhBo0lfMLKgyrvoKOOsI00PV+8UrMlKPL0sLS3x9PSkSpUqpg5FlDB5SmaUUrz99tv8+eefbNu2jWq5WBH67t27XL16FXd3dwCaN2+OpaUlmzdvNpSJiIjg5MmTtGvXLo/hF478VOlnKOhEbfltpqpfqRJzvcdyfMJWpnVZIs1QJUR+3w9Hz6U3MdWoZImzg67AcWg0GupXT588L/ymZYHPJ0qeM2fO4O3tTY0aNbCxscHV1ZUmTZowduxYQw15Tn1mUlJS+PLLL6lZsyY2NjZUr16diRMnkpKSkuUfiQ/3Zbl37x6jRo3C3d0da2trGjRowPz587OMc926dfj6+lK3bl2cnJywt7encePGTJ482dAdQpifPP2J9dZbb7F48WJWr16No6OjoY+Ls7Mztra2xMbGMnHiRAYNGoS7uzvh4eF89NFHlC1bloEDBxrK+vn5MX78eMqUKYOLiwsTJkygYcOGdO/e3fh3mEcLFixg5MiRhg/OokWLWLhwIQEBAbnqAJYxUZufnx8ajYa0tDR0Oh1KqVxN1FbQZiqtVsvzLVrxfItWRMdPYs729awJ/ZObaYe4pznGbxeOsTjsK2rYdmVYsxd4uU1HLHQF/7IThSO/74eMZKZp7YI3MWWoX92aXUcTCL8pNTMisyNHjtChQwcSExNp1aoVrVq14sGDB1y8eJHvv/+eAQMGGP6gzYpSihdffNHw3dKnTx/0ej3ffvstISEhOV77/v37tG3blujoaFq1akVsbCy7du3Cz88PvV7PyJEjM5X38/MjLi6O+vXr07BhQ2JiYjh06BAff/wxW7duZdOmTYZJNoX5yNNvpTlz5gA8llUvWLAAHx8fdDodJ06cYOHChdy/fx93d3e6du3KsmXLcHR0NJSfMWMGFhYWDB48mISEBLy8vAgMDDT5G+jhKv0MGVX7fn5+dOjQIVdzlPj4+NChQwe+/PJLAgMD8fb25uOPP87VscZcTyijGeqDZ1/g1LVrzNq+nD0Rq0nQXvmnGWoDX+0tTyvXfrzVaTCtatTI9blF0cjv+yEkm/4y7u7ufPbZZzl+sWQnoxOw1MzkTCmFik80dRi5prHL/4SKGWbOnElCQgIrVqzg+eefz7TvzJkzlCpVKsfjf/vtN1avXk3NmjXZtWuX4f159epVOnbsyOXLl7M9dvXq1QwaNIhffvkFe3t7w7YBAwbwxRdfPJbMzJ07lx49ehjKAjx48IBhw4bx119/8dtvv/Hqq6/m5fZFMZCnZOZJq+ba2tqycePGJ57HxsaGWbNmGZpyiovcVOlPmTIlV+fKmKgtMDAwTxO1+fr6MnXq1Cz35Wc9oYiICH766SfeeOMN5nqPRa8fw6ojhwk89AdnYjcamqH2rPwZFxrTp8ZA/L2ew7UY90t6muTn/RB5N5Ubt1PRav+dvTeDu7s7EydOzFcsNStbYWkB8UlabJ2f3MT8tFLxiVyq2vPJBYuJauGb0NjbFugcGdNvdOvW7bF9devWfeLxc+fOBeCLL77IlGhXrlyZzz77DF9f32yPdXJyYt68eZmSk+eee46GDRty4sQJwsPDMyX9AwYMeOwcjo6OzJgxg7/++ovVq1dLMmOGZG2mhxhjJFJBGXs9oUdHdWU0Q+U8GqoNPWaO4qcdm0hKSSnwPRVkmHxB+i+VBPl5P4T808Tk6WGFnY3xPuKWFho8PdKTI2e35kY7rzB/zZunvx9effVVDh06lKl2+0lSUlIICgpK/930SK0OwIsvvpjj8S1atHhsrjOA2rVrA2T5eycsLIzvv/8ef39/fH198fHx4YsvvjDsE+ZHGr8fYswmnoIoSDNVXuTUDHUxeRNTD29i+iEXGpfqzYg2g+jVoBFabd6/HDMSqv79++epeaOg/ZdKiry+H46GGr+/TIb6Naw5cSFJkpkcaOxsqBa+ydRh5JrGruDvk/fee489e/awdu1a1q5di7OzM61bt6Zv3774+Phk6mbwqLt375KcnIy7uztWVlaP7XdwcKB06dKPjYDNkN2IWgcHB4BMnXqVUkyYMIEZM2Zk+4frgwcPso1VFF9SM/OQgo5EMqaiXk/o4dFQM7oto4nDEHR6Z1K19wiOWczbmwbR+JuejPr1e04VwaKgxpxJuSTI7ftBKWXU+WUelTGiydmthdHPXVJoNBq09rZm8ypofxlIb+rZtm0bu3fv5v3336dOnTps3bqVMWPGUKdOHS7kYmqInOLIqYtDXuJftmwZ06dPp2LFiixfvpzr16+TnJyMUsqQ9DypO4UoniSZeYixm3jMUcakfCvenMyxsQd4t8ksPCy90ChL4rWX2BQ5k/5LutDm2yFMWr240IZ5G2sm5afNtVup3LmfhqXFv4mHMdWvlt7MZO9Sm/ikgn8JipJDo9HQoUMHvv76aw4ePEhERARDhw4lIiKCjz76KNvjypQpg6WlJZGRkSQnJz+2PzY2lvv37xslxpUrVwLpg1kGDRpEhQoVsLRM79B+8eJFo1xDmIYkM4/w8fEhNDQUb29vALy9vQkNDX2qmjUy2FpZ8Xb3Z9j2zjx2jTzAkGqf4kJj0Chuq8MsDPuEtnPb0nPmW/y8cwvJqcabGtbY/ZcKMorHnGQ0MdWvZo21lfE/3rcjLxJxdAqnNvsz9dsfpX+ByJarq6uhs/mJEyeyLWdpaUnLli3R6/WGZONhy5cvN1pMGU1VWS2J8/vvvxvtOqLoSTKThaJu4jEHFUqXYvKg4QRN+JPfB22hq+sobPSVUNpELiT/zZSgN2g4vS1D5n3GphPHC3w9Y/dfyhjFU9KTmeCz//SXKYQmpoxlFUIP/Y9bF/7ir5WBeVoNXpRcc+fO5dKlS49t37BhA8ATZ/x94403APj0008zrdF37do1Pv/8c6PFmdEpeN68eZn+WNq9ezfTpk0z2nVE0ZNkRuRZ82rV+Hn4BE5M2M63XZfQyOFFdHonUrX3OBzzK6M2DqTR1J68/dsPnLl+PV/XKE79l4yhKEZlpaYpjvyTzLSoZ9xk5uE+TEqfBir9v09rHyaR2dy5c6levTr169fnhRde4KWXXqJp06aMHTsWW1tbPvvssxyP9/b2pl+/fpw7d446derw/PPPM2DAAOrWrUuDBg2oUqWKoTmoIMaMGYO9vT2zZ8+mQYMGDB06lE6dOtG5c2fefPPNAp9fmI4kMyLftFotA5q3YuWbX3H0nQO80/h7qlh0BWVJnPYCGyJm0HdxF97YMoWKz3QmOjEh1+cuSf2X8rtQZF6dupBEXKLC2UFLnSrG7S8jfZhETr744gt8fX3RaDRs3bqVtWvXEh8fz+uvv87x48dp27ZtjsdrNBqWL1/O559/TtmyZVm3bh3Hjh1j7Nix/P7779y8eZMyZcoUOM7atWsTFBREv379uHPnDmvWrCE2NpaffvpJambMnTJD0dHRClDR0dFZ7j937pzy8fFRgPLx8VHnzp3L8zWCg4MVoIKDg/MdZ0HPURxiyI9rd++p//wxXzWfNkBVn1bd8KrxdT3V/ftRas62v1V8UlKuzhUWFpbp3zIsLKyQozeuc+fOKa1Wq4DHXlqtNk/386R/y59WRqmuoy6rL+ffNlb4Bi+99FKO9/HSSy8Z/ZrFVUJCgjp9+rRKSEgwdShPhQMHDihA9e7d29ShiBzk9nPxpO/v/CpxNTNF9VewyF5Fl9J89cIIDk9YyZKBm2hmMwxtUjmUNpGLyRuZFjyaxt+1YcCc//DHof05TrBl7v2XirJG49Cp9JqvVvULNptrVorLHEyi5Dpx4gQpj0zSGR4ezqhRowAYNmyYKcISZqJEJTMyN0nx06pGDT5sN5Dz/3cA/+pf08RhCBb60qRpozkRt5wPdr1Cg2868krAf9l++pSpwzW6oppV+vb9VC5eT0GjgZZG7i8DJa8Pkyh+3nvvPdzd3fHy8mLo0KF07NiRunXrcvToUZ555hleeeUVU4coirESlcxIu37x1qlqdVa8OZnj7+7nw5Y/Ucv6GbR6W5K0keyPWsDI9f1pPLUXo3+dyYkrV00drlEUVY1G0Kl/lzBwdjD+gq1Z9WFCowON+fVhEsWTj48PzZo14/Tp0/z555+EhITQsGFDZsyYwapVq4wyuZ8ouUrUcgbFYW0l8WTWlpaM7NydkZ27ExUXx8+7NrL27Bqup+4nVnuejZHfs3HZTMpomtC9Wl86la1u6pDzzdgLh2Zn/4nCa2LK8PCyCr/8sogqTV7Hre5LPDugXaFdUzw9XnrpJV566SVThyHMVImqmSlu7fqmnqjNHBZpLG1vz3t9nmfXu4Hs8N3HkGqfUIamoFHc5SjLLn3BW4deo9b7vVh84hBRcXGmDjlPimJUVnyinkOn05OZDo0LL5mBf/swKZVGx2cnYOdclVMXH5+1VQghilKJSmaKW7u+KSdqM8eO0JXLlGHyIB8OTVjOqsE76OX2Dg76mqBJJc01jJW3p9Hqx9b0nuXPzzu3GGVF76JQ2LNKHzyZQEoqVHS1oHrFgs/FkVse5dOf/6mLSU8oKYQQhatEJTMlaW4SyH/NTnHqCJ3f2qGGVSoz+5UxHHt/Ix95foc6UwerNDf02gTCktYzJegNGs1ox6C5H7Eq+FCOI6KKA2OMysru/bArJL1WplNTuyLtV1C1XPryFZLMCCFMrUQlM1Cy1lbKb81OcekIbazaoaYVKnJp/gYWec3kq06/0dD+BcOK3iGxyxi/fSgNvunEKwH/ZfPJE8U+scmvrN4Picl6Dp7KSGYKt4npUVX/qZkJu5JMUnLJfOZCCPNQ4pIZMP+5SQqqOHSELozaIa1Ww4ut2rBq1NccG3uA95rPpoZVbzR6G5K0EeyPWsCbfw+g8Tfd8ftlGnvOhRrtfiIiIpg4cSIRERFGO6cx7D6aQGKSwr2sBbWNPOvvk5R20FPGWUeaHkKvSL8ZIYTplMhkxhhM3Xm3IIpDR+jCrh2ytbLiza692DTmRw6OPsib9adR2aIzGmVJvPYyO27PZfiaZ2gyrQ+jf53J0QImcBEREUyaNKnYJTMbD8QC0KuNfZEPXdVooH719ATq5AVpahJCmI4kM9kw51WWi0NH6KKsHSrj4MB7fZ5nx9j57HntIMNr/xd3bTtQOh5ozrEx8nteWO5F82n9eXfp3HwvflncRN5N5ei59CSiZ2t7k8RQv7o1gIxoEkKYlCQzJVBx6Ahtqtoht1LOfNp/KHvGLWLbiH0MqfYpZTXNQWm4rznFmmvT6Lu4M62/eZEPli8g/PbtQomjKGw8EIdS0LSONW5lTDNlVANDMpOUbfIqCq64NnMKUVxIMlNCmbojtDFrh/Lb5OdRtiyTBw3n4PjfWf/Kbp6r/B9K0xA0ijsc4Y/w/+IV2I72019m0urFRNyPztP5TSk5RbFm1wMAnmnnYLI4ala2wspSQ0ycnqu3Uk0WR0lXXJs5hSguJJkpwUzZEdqYtUPGaPKr4+7O9CGvc3jCKla8uI3e7mNxVLVBoydSf4CFYZ/Q4X+t6fydL1+vX8Hd2Nh8X6sobDkUR9QDPeVK6+jczM5kcVhaaKhbNb3fTEhoosniEKan0WgyvSwtLSlbtiwNGzbEx8eHFStWkJoqCa8oHJLMiEJj6tqh7DTx8ODHl/0JeW8Dvw7YQFfXUdjpq4ImhWupO5l3+n1az26N1/dv8P2mtTxIKF5f0nq94o+tMQAM6uaIhc60a9Y090xf2PLwmeL1nIRpDB8+nOHDhzN06FDat29PamoqCxcu5IUXXqBu3bocOnTIKNcJDAxEo9EwceJEo5xPmLcStTaTKH4yaocCAwOL5TD5tjVr07bmBJQaz7Yzpwg8sIbgOxtI0t4gPGULM49v4YcQOypoW+HWrT1xyabv6LrpYByXI1Oxt9WYtIkpQ4u6NsxfG83R0ERS05TJk6vciIiI4KeffuKNN94wy07+xVlW80hduHCBjz76iN9//52uXbuyd+9emjRpUuSxiZJLamaEIL2K3KteAxb5fsTJCTv5zut3mju9jJW+HHptPNfYgV2fCHx3vUaPmaP5btNaYuITijzOhCQ9AWvS+/a80tsZe1vTf4RrVbHCyV5LXKLibLjpk73ckD4oRatGjRosW7YMPz8/4uPj8fX1NXVIooQx/W9CIYoZrVZLv6bN+f31zzkxfg/TuiyhrsUAtMll0GvjuZi8kVnHx9L8h1aGxCa6iBKb3/6O4W50Gu5ldAzs4lgk13zUox2ydVoNzeumNzUFnS76BE+Yj2+//RZ7e3uOHj3Knj17Mu1bt24dvr6+1K1bFycnJ+zt7WncuDGTJ08mKSnzPEZdunRhxIgRAEyaNClTX52MmiGlFEuWLOGll16idu3a2Nvb4+joSKtWrZg9e3aJnSn8aSXNTELkwEKn4/kWraiqtaB5i+nMWP47++4c58T9LSRrb/2T2GzkxxA7PKw78qxnH3w7dsfZzvhLC5y8kMTSTel9Zd4cVBorS9M052R0yH5Yi7o2bD8cT9CZREb0M0lYJdaj65t99NFH1KpVy8RR5Y+zszN9+vRh+fLlbN++nQ4dOhj2+fn5ERcXR/369WnYsCExMTEcOnSIjz/+mK1bt7Jp0ybDYILevXuTmprK3r17ady4caYmq4ym7KSkJIYNG0bp0qWpV68ezZo1486dO+zfv5+33nqLQ4cOFeuFd0XeSDIjRG4p6FS1BmOff5E0/UTWHA1myZG1nIhKT2wupWzkhxMbmX0sPbF5xrMPvh26U8o+PbEpyKzSt+6lMvF/t9Er6N7Sjo5NTDeCKSst/qmZCb2cTExcGk72OhNHVDIsWLCAkSNHGuZsWrRoEQsXLiQgIMDkHenzq0mTJixfvpwzZ85k2j537lx69OiBvf2/E0A+ePCAYcOG8ddff/Hbb7/x6quvAvDBBx/g5ubG3r17GTBgQJadgC0sLFixYgV9+/bFyurfpT5u377NM888wy+//IKvry+dOnUqnBsVRarENjOZ83IEovjTaXUMbN6K31/7gpMT9vBt1yW0cP63j82llI38eGIsLX9shdf3o5i2bi06W+d8DTGPuJPKu9/d4l6MnuoVLBk71KWQ7ir/XEtZUK2CJUrBoVMyqskYCmN9s+KgbNmyAERFRWXaPmDAgEyJDICjoyMzZswAYPXq1Xm6joWFBc8//3ymRAbA1dWVKVOm5OucovgqsTUzWVWFC1EYdFodA5q3YkDzVqTpP+OvkGCWBP/FsajNJGtvEZ6yiblnNvHTKTvcNO3pVKU3w1p5Uc/DAa02+6aitDTF3wfi+OnPKGIT0heT/HK0K3Y2xfNvkPaNbbl0I4XdIfF0b2Wa5RVKktysb5bxpWxOMibTzOrewsLCWL9+PefPnycuLg69Xm8oHxYWlq/rhYSEsGnTJi5fvkx8fDxKKR48eFCgc4rip8QmM0IYS176LOi0Op5r1ornmv2T2BwLZuk/iU2S9hYRbGbZ1c38ftkWx8R21HHsRgePzlQt50gZZx0aDcTEphF2LYU9IfHcvJf+F3ndqlZMfL0srqWK70e2YxM7ft0Qw6FTiSQm67GxKp5Jl7koyvXNitKdO3cAcHH5t4ZRKcWECROYMWNGtveckYDkVnJyMj4+PixZsiTbMnk9pyi+iu9vRiGKgYL0WdBpdTzXtBXPNW2FXk1k57kj/Hr4Lw5FbiJee5MYu60EpW3l8HlrbE+0wjauI3ZxbdGqf+eOcbLX8kofJ57r5IilRfGev6VmJUvcyuiIvJtG0OnEYtevx9yYan2zwhYSEgJAvXr1DNuWLVvG9OnTqVSpEt999x1t27bF1dUVS0tLkpOTsba2zvPaX9OnT2fJkiU0aNCAadOm0axZM0qXLo2lpSXnzp2jTp06sp5YCSLJjBDZeLjPQoaMvgt+fn506NAh15MAajVautZpQdc6LdCrTzl6PYTfQzaw/dJG7iZdJ95+N/H2u7mnLCmnbUF95+4MaNgDr6buZlPDodFo6NjEjj+2PmD30XhJZgrI19eXqVOnZrkvr+ubFRfR0dH8/fffAHTt2tWwfeXKlQDMmTOHvn37Zjrm4sWL+bpWxjkzEhpjnFMUX+bxW1IIE8hNn4X80Gq0NK/UjK/7fszBt3eyxnsNb7V5i5ouNVGaFG6q/Wy7/wXv7unKyFWv8uvRX7kVe6sgt1JkOjVNT2D2HE8gIVHm8SgIY65vVlyMHz+euLg4WrZsSdu2bQ3bMzoDV65c+bFjfv/99yzPldGxN7v1nvJzTmG+JJkp4WRUV/4VRZ8FjUZD/fL1GddhHBt9N7JxxEbebf8u9cvVJ02lsf/Kfj7b+hnt5rbjxcUvEnA4gGvR1wp83cJSr5oVlcpZkJik2BUSb+pwzF5xXd8sry5evMiQIUMICAjA3t7+sT8EateuDcC8efMyfeZ2797NtGnTsjxnhQoVAAgNDc1yf8Y5586dm2n78uXLWbhwYf5uRBRbGmWGjYYxMTE4OzsTHR2Nk5OTqcMRT2Cu6+B8+OGHTJs2zdC09DCdTsd7771XqKNJrty/wsawjWw8t5GjEUcz7atfvj69a/Wmd+3eVHepXmgx5MevG6KZvzaaJrWsmf5ueVOHk6UjR47QvHlzgoODadasWZ6OTUxM5NKlS1SrVg0bG5tCijCzgsSbk+TkZO7cuUPZsmUfG8KcVxm1mMOHDwdAr9cTExPDuXPnOHv2LEopatWqxeLFi2nRokWmY8+dO0ezZs2Ii4ujXr16NGrUiOvXr7Nnzx7Gjx/PN998g4eHR6Y/IBITE/Hw8ODWrVt07tyZ6tWro9Vq8fX1pV27duzatYtu3bqRlpZG8+bNqV27NmFhYRw+fJgJEybwzTff0LlzZ3bs2FGg+xbpcvu5KLTvb2WGoqOjFaCio6NNHYoowc6dO6e0Wq0CHntptVoVFhZWZLFExESoX4J/UUOXDlU1v6mpqk+rbnj1mt9LTd89XZ2+eVrp9foiiyk7kXdTVLfRl1XXUZfVjdsppg4nS8HBwQpQwcHBeT42ISFBnT59WiUkJBRCZFkrSLw5iY2NVUFBQSo2NrbA53r0M2JhYaFcXFxUgwYN1PDhw9WKFStUSkr274fTp0+rfv36qXLlyik7OzvVtGlTNW/ePMO5PTw8HjsmKChI9ejRQzk7OyuNRqMAtWDBAsP+/fv3q27duqnSpUsrR0dH1a5dO7VixQp16dIlBajOnTsX+L5Futx+Lgrr+1s6AAuRjYw+C35+fmg0GtLS0tDpdCilirzPgpujG682e5VXm73Knbg7bL2wlb/P/c3+K/sJuxtG2N0wfjjwA1VKVaF3rd70qt2LRm6N0GqKviW5vIsFzerYEHw2kVU7HzBqUOkijyEnJWl5gOJEFbCSv27duqxZsyZP527RogWbNm3K9pxt2rRh69ateTqnME/SZ0aIHBTHPgtl7csypNEQFrywgEOjD/FNn2/oUbMH1hbWXLl/hXlB8xj02yA6/tSRz7Z8xp7wPSSnFe1q1oO6pS+CuX5vLPHFqCPwggUL8PT0ZNGiRUD6UHtPT09Zo0cIMyfJjBBPULNmTfz9/QHw9/cvVqNInGycGFh/IHMHzCVodBCz+s2ir2df7C3tiYyN5NeQXxm+fDitZrdi3LpxbAjdQFxyXKHH1aqeDZXLWxCXqFi/L7bQr5cbJXV5ACGEJDNClBj2VvY8U+cZvu/7PUFvBRHwfABDGg2hjF0ZHiQ9YPWZ1by99m1a/NiCkX+OZNnxZdyJu1MosWi1Gl74p3Zm2eYHJCWbvnamsIbaFwUZlShEzqTPjBAlkLWFNV2qd6FL9S580f0LQiJC2Hx+M5vCNnH5/mW2X9zO9ovb0aChecXm9KjZgx61euBRysNoMfRq48BvG2O4dS+NlTtjeamHaUcemvPyALLWnBA5k5oZIUo4nVZH84rN+aDzB2z128oGnw2M6zCOhuUbolAcvn6YKTun0O3nbvQJ7MOMPTM4efNkgTtIWllqGNHXGYAlG2OIiUtv2omIiGDixIlEREQU+N7yoqQuDyCEkGRGiKeKRqOhdtnavNXmLVZ5r2L367v5rNtntKvSDp1Gx7k75/jhwA88t+g5Os7ryKStk9h/ZT+p+qxnWX2S7q3sqVbBkgfxeuasuA+kJzOTJk0q8mTG19c3x5oZc1weQAiRTpIZIZ5iFZwq8GqzV1k0eJFhZFSvWr2wtbAl4kEEC48u5JXfX6H17NZMWD+BjWEbiU/O/cy+Oq2Gd4e6oNHAxgNxBJ1OKMS7yVlJXB4gOTmZGzdukJxctKPVhChuJJkRQgBQyrYUA+sPZPZzszn81mHmDZzHCw1eoLRtae4n3mfl6ZWMXj2alrNb8sbKN/jjxB+56kDcoIY1AzunrwT+1S93uR9nul87xhxqXxzmKUlJSeHGjRukpKSYOhTxlDP15yFPv1WmTJlCy5YtcXR0pFy5cgwYMOCxdTGUUkycOJEKFSpga2tLly5dOHXqVKYySUlJ+Pv7U7ZsWezt7enfvz/XrhXf9WaEeNrYWNrgVcOLr3t/zYFRB1gyZAm+zX2p5FSJxNREtlzYwgcbP6DNnDa88NsLzDk4h3N3zmX7C83vuVJUr2hJ1AM9v2xxRGtRNMsAZKWgQ+0zanUkgRDiXxmfh4zPR1HLUzKzc+dO3nrrLQ4cOMDmzZtJTU2lZ8+exMX9O2/F1KlTmT59Oj/88ANBQUG4ubnRo0cPHjx4YCgzduxYVq5cydKlS9mzZw+xsbH07ds3yzVwhBCmZaG1oFXlVnzc9WN2vLaDv179i7Htxho6EB+NOMo3u7+hT2Afuv7clS+2fcG+K/tISfv3y97WWsvnb7jiaKfl6m1LGvWZT3L+uuGYnKWlJdbW1kRHR5v8r1EhigOlFNHR0VhbW2NpaWmSGAq00OTt27cpV64cO3fupFOnTiilqFChAmPHjuU///kPkF4LU758eb7++mveeOMNoqOjcXV1ZdGiRQwZMgSAGzduULlyZdavX0+vXr2eeF1ZaFIUtcJa6M/cRT6IZNvFbWw9v5V9V/ZlmmnY0dqRLtW60K1GN7pU64KTjROnLiYx4fsIklK0VC2XwjfjquLiVPR/yRX03zMmJobr16/j4OCAs7MzlpaW2Y6UKkzx8fFcvHiR6tWrY2dnl6djk5KSuH37Nvfv36dUqVK4urpibW1dSJGKkkgpRUpKCtHR0cTGxlKxYsUnficX1vd3geaZiY6OBsDFxQWAS5cuERkZSc+ePQ1lrK2t6dy5M/v27eONN94gODiYlJSUTGUqVKhAgwYN2LdvX5bJTFJSEklJSYafY2JiChK2EMJI3BzdGNZ4GMMaDyMuOY69l/ey9cJWtl3Yxr2Ee6w9u5a1Z9diobWgZaWWeNXwYmDXiixa6074LWdGfRXJhFdcaFnP1tS3kicZv4Tv3LnD9evXTRZHxqrXlpaWeVr1OjY2lrt37xp+vnPnDufPn6dMmTI4ODgURqiiBLO2ts5VIlOY8p3MKKUYN24cHTp0oEGDBgBERkYCUL58+Uxly5cvz+XLlw1lrKysKF269GNlMo5/1JQpU5g0aVJ+QxVCFAF7K3t61upJz1o9SdOnERIRwrYL29h6YSthd8PYf2U/+6/sByCljKKyw1CuRXXk/R886dXaEd9+zpRzMZ95PJ2cnHByciIlJcVkTeSnTp3izTffZMWKFdSpUydXx4SHhzNkyBD0+sdnZdZqtWzYsAEPD+NNnihKNp1OZ7KmpYfl+zfH22+/zfHjx9mzZ89j+x6tblVKPbEKNqcyH374IePGjTP8HBMTQ+XKlfMRtRD5I9PJ503GRH3NKzbnvU7vER4VzrYL29hyYQtB14KwLKcnkqVgtxRtWmkWX2jD2q/b8XyTzgzxKkelcqb/5ZhblpaWpusnoNFw+fJlNBoNNja561T9yy+/cOXKlSwTMJ1OR2BgIFOmTDF2qEIUqnyNkfT392fNmjVs376dSpUqGba7ubkBPFbDcuvWLUNtjZubG8nJyURFRWVb5lHW1taGv4IyXkIUpYzp5CWZyZ+qpavi28KXxUMWE9AhgJu/3aRduXY4WDmg10UR57SBSNdPmHO1O73njODF7+bx596LJBaDNZ1KGnNe1kGI7OQpmVFK8fbbb/Pnn3+ybds2qlWrlml/tWrVcHNzY/PmzYZtycnJ7Ny5k3bt2gHQvHlzLC0tM5WJiIjg5MmThjJCiJLLwdKBuJA43m3wLkFvBbHwxYUMbzocV9uKKG0yCfb7OZL6Ne/t70Gzb/rw/I//ZeHu/SQkmenwp2JGlnUQJVGempneeustFi9ezOrVq3F0dDTUwDg7O2Nra4tGo2Hs2LFMnjyZWrVqUatWLSZPnoydnR3Dhg0zlPXz82P8+PGUKVMGFxcXJkyYQMOGDenevbvx71AIUWxZ6axo79Ge9h7t+aTbJ5y7c46Vxzex7sxWbiScJMnqPMcSznPs4AL+u88ZD5t2dK3Rld41GrBm2RLeeOMNqS3LI19fX6ZOnZrlPlnWQZirPCUzc+bMAaBLly6Zti9YsMAwg+b7779PQkICo0ePJioqitatW7Np0yYcHR0N5WfMmIGFhQWDBw8mISEBLy8vAgMDTTbZjhCiaISFhTFr1iwAZs2axUcffUStWrWA9FqBOq51+MCrDh94+XMn7g5Lg7az7vQWLsQeIE0XzcWUDVw8u4GAM1p0aR6cX2nBm91foH2tOiYZGm2OMpZ18PPzQ6PRkJaWhk6nQylltss6CFGgeWZMReaZEcL8LFiwgJEjR2b5Bfqk5QSSUpJZE3KIVce3cPzubuK14Zn2W+vdqVeqI894ejG4VQccntAZ1hjzBkVERPDTTz+ZtHaoIPdx/vx5vvzySwIDA/Hx8eHjjz+WREYUusL6/pZkRghR6MLCwvD09Mx2OHBoaGievkiXbtrI+//7FrcWpbirPQ6af2cb1uhtqGjVkg5VujKsdXfqV6z42PHGSERMPZFiWFgYkydPNiQjD9dy5Zap70E8fQrr+1sWmhRCFLr58+fn2Ok0ICAgT+erXdaVq8s3M7fHB+x/4zD+DWfiaTsAy7SyKG0i11J3s/Ti5/Rf0onGU3vz6vzJrAg6RHJqeidicx+dtmDBAjw9PVm0aBEAixYtwtPTk8DAQNMGJoSJmM8MVUIIs1WYw4HLOTkwttezjO31LGlpejadPMGKkC0cubWTaE4Tqw1j770w9u4M4MPtzlS1aUfX6t14pW0XKpdxyfd1Cyq/tUNhYWGMHDkyUy1Xxpwxfn5+dOjQQZqLxFNHkhkhRKErquHAOp2WPo0b06dxY2A8l27d5tcDW9gRvoMriQdI00ZzIXkDF85u4OczWkrTgKblOjCwSTd6NmiERREOQoiIiGDSpEn0798/T8lMbmq5ZNI78bSRZEYIUehMNRy4WjlXPuk/lE8YSmJyMiuPHGTtya2ciNpNvCacKI6z7fZxtm2ejcVGF6rbtaVbzS4Ma92FiqVNV2uTE5n0TojHSTIjhCh0xWE4sI2VFUPbdGRom44AHL9ymSVB29h3dRfXkw+Rqr3HucR1nDu5jrkntLho6tOsfEcGNE6vtdFpi8fUEcVt0rviMKpLCOkALIQoEj4+PoSGhuLt7Q2At7c3oaGhTxyWXVgaVfFgyqAR7By7gJAxR/i0TQAtnLyx01cDjZ57nGDLzdm8vekF6n3Tmt4/vM3X6//gyt07Jok3g6+vb441M0U96V1Gc1lERESRXleIh0nNjBCiyNSsWRN/f38CAwPx9/cvNh1VHWysGd6hC8M7dAHgyMXLLD28jQPXd3EjJYhUbRRhiRsIO72Beae0lKIuNWybULphfVKzGG5emIpDLZcQxY0kM0II8Yhm1T1oVn0EMILYxCRWHD7AhjM7OB21lzjtBe5ziuDEU5R+FV7Z+gZV97WhU7XODGvdlerlXAs9Ph8fHzp06GCY9M7b21smvRNPNUlmhBAiB+m1Np0Z3qEzACeuXmNp0DZ2XNjCTf0R0nT3uZD8NxdC/2bBWQ1Oqi6Ny3akb4Mu9GvaDGvLwvk1W1xruYQwBUlmhBBmJaf1nYpCw8qVaFj5VY4caUCL1q35avEvHI85z4l7e4jVXCBGc5rd906ze9dPfLTDiUpWLWlXpSMvtexKg8qViixOIZ4mkswIIczGw+s7QfrMtwsXLszV+k6FQaWm0r2GJ+83GwbA2YjrLDm0jT2Xd3IlMYg0bQyXU7dy+eJWllyciJ2+KnVLtaWXZ2dqWToUebyPcnd357PPPpNRSMLsSTIjhDALxWnm2+xqhzzdKzLpOW/Am6TUFNaFBPPXyZ0cu72X+5whXhtOcEw4wYeWoFGW1PrQi+8OrsfHxoounvXQaot2gGnGsg5CmDtJZoQQZqG4zHyb29ohawtLnm/RhudbtAHg2r17LD24k+0X93Axdj/JupukuVxib9wl9q5fgOVfLlSza0Onah15qVUXqrmWK/R7EaKkkGRGCGEWisPMtwWpHark4sKEPgOZwEBCQ0N59+NP2Bm0B6fqpbBsmQzl7nEucT3nzqzn5zPgqOrQwCW9SWpg89Y42FgX+v0JYa5k0jwhhFkoDjPfGmP17wULFlCvXj02rfqT+CsR3N59juvfXqLL3Rdp5TwcB316Z+YHmlD2RwUycf8ImsxsRofprzJu6Tx2h57LlEyJ9In7Jk6cKBP3PcWkZkYIYRZMtb7TwwpaO5RTzU7g1GmEhoZSs+anhEZE8vvhnewO38XlhIOkaqOI0O9l9bW9rL72NVZpbtRwaEtdhzpYlSpjtPszV/ldtPPh42VJBvMmNTNCCLOQMfOtVqtF98/q1jqdDq1WW2Qz3xa0dii3NTt13N34pN8QNvn/yOkJB5nT6096u7+Dq6Y5GmVJsi6SMwkr+fP2V1T6qDQjNn2Cd8BkFu3dRWxCYoHu8WlkjCUZpHbItCSZEUIUqYIMBzb1+k4FXRcpPzU7Oq2Ong0b8+PLYzgw/neCRh/mg5azae40FNu0yqDRE2txln1RAelNUrOa0W76MPwX/8CWU8dJ06fl+T5z69FRXWFhYYV2reJO1qgyLUlmhBBFKmM4cH6r8zNmvgWKfObbgtYOGaPfT2l7B17r3IvfX/8vC3tMJ+KbWJ51eYea1n2w0LugtEnc1B9k/Y0ZvLFhIPW+aUXPWaP4bNVCTly7kud7zs6CBQvw9PRk0aJFQPqoLk9PTwIDA412DSFyS5IZIYTIg4LUDhl7xWt3d3fef3MUH/Z5kY3+P3BmwkHm9VnNsxUm4KZth0ZvQ6r2PheSNvHr+UkMWNqVBlM7M2DO+3y3aQ037kXl6XoZHu77k9HnJy0tDb1ej5+fH+fPn8/1uaR5RhiDJDNCCJFH+a0dMna/n0drubRaLV71GzBz2Cj2jltEyJgjTGq7kPalX6OUaghKS4L2GifiVjDr+Lt0DGhFs2n98A74koV7d+a6v40xRnVlkOYZYQwymkkIIYpQUa547WBjzSvt2/NK+/YA3IiKZvnhPey4sJdzMQdI0F4mmtPsizrNvv3z+XyvNa66JjQt35ZnG3SkZ8OGWP6TdD2sOMz5I8TDJJkRQogiZqoVryuUdmZMj2cZ0+NZAE5du8by4F3su7KX8IRDpGrvcUsdZGPkQTZGfoduozOVrFvSulI7nmvSkVbVq6LVaovFnD9CPEySGSGEeErVr1SJ+pWGAcPQ6/XsCj3D6mO7OByxn4iUYNJ00VxO3cLl8C38Hg5WaW5UtW9JnapVjdr3R4iCkmRGCCEEWq2WLnXr06VufWAUCclJ/HXsMBtO7+bE7UPcUydJ1kVyLnEt5xKhzAtluP3HbTQaDUqvDItkFtWcP0I8TJIZIYQQj7G1subFlu15sWV6f5u7sQ9YeeQg287t40zUQWgRik01Gx4cekBKVAqWpS1xa9mADSkXSNy+gUHN2+Hq5GziuxBPC0lmhBBCPFEZB0dGdurOyE7dgfRVwJcf3sfG8lu5EBtMmu11krnB4ejFHA5ezLTDWpzxpL5La7rVbs+AZq0obW9v9Lgenbjvo48+olatWka/TmGTJRUKRoZmCyGEyLNKLi6M7dmXLzt7E/bpbr5tGoCf51Q8bQZinVYRNHqiNafZF7WA/x4cSYvZzWn1zQv4Bk5l6f69xCYmFTgGY0zcV1xmMZYh6gUjNTNCCLNTkCURROGoUtqJAV5dgEEAHA2/wqqQPRy4up/L8UGk6G5zl6PsvHOUnXd+4v922+Cqa0w1m7q4NGpMSlrell3IadFOPz8/OnTo8MS+OwsWLGDkyJGGkVmLFi1i4cKFBAQE5GmJjJJSO2TOJJkRQpidjMniRPHVtGoVmlb9d6TUwQsXWH1sD0HXD3At6TCp2vvcUge5lXCQUt7wynY/yu9uSpPyrehVrx29GjTEyjL7r6jcTNw3ZcqUbI83RjIExkuIRMFIMiOEEPkgtUO5p9VqaVurFm1r1QJGkKZPY+fZM/x1Yg8Hruzmlv44el0cEfo9RETsYUPEdLSb7XGzbEqT8i3pU789Peo3xNLi36+sgk7cV9BkCIyXEImCk2RGCCHyQWqH8k+n1dGtXgMqW1oT9fdB9geepMegAZRv15BwTTiRKSHotXHcSNvDjRt7WH9jBtqN9rhZNqGpWyv61G9H5SqVCzRxnzFmMTZGQiSMQ5IZIYQQRe7R5pltq9aiVq4hICCAoa8EsPnkCf4+tY+Qm4e4mZqR3OzlxvW9rLs+g1RlQZo+6342uZm4zxizGMuyDsWHJDNCCGECT3MzVW6aZ/o2aUbfJs0ASEpJZeOJ42w8vY+Qm0HcSjuKRbk4XF905fYft0EDKECjQaPgrU/+j8oeHjnG4Ovry9SpU7Pcl9tZjGVZh+JDkhkhhDCBp7mZKq/NM9aWFvRv1oz+zR5Obk6wyX0f+2ts4eL+vaTcj8eytCWOrRxZ5/ArG2b8STmLxjRybUkPz3b0adwEWytLwzkzVjD38/NDo9GQlpaGTqdDKZXrWYyNkRAJ45B5ZoQQQhSpgjbPpCc3Tfnh5bcInrySv6euwyrFg/4vvkfV8t3Q6h3Qa+OJ1O9n082ZvLfzJRp+15S2377M6wu/5/cDB4lLTMbHx4fQ0FC8vb0B8Pb2JjQ0NNejkDISIq1Wi+6f1cV1Oh1arVaWdShiUjMjhBAi3/LTXGbs5hlLnY6oU6d5p3VvmjX7iJTUVLafOcWGU/s4EnmIiOSjpGkfcEsdYOutA2y9NZOPdtlQRtuAemWaU6t3D3TLluVrBXMfHx86dOjAl19+SWBgIN7e3nz88ceSyBQxjcouPS7GYmJicHZ2Jjo6GicnJ1OHI4QQIg/CwsLw9PTM1Gcmg1arJTQ0NE/JwJEjR2jevDnBwcE0+6cp6mFp+rT05ObkPoIjDnIjOYQ0bUzmQsoCJ31t6pVtSacarRjQtA3lnUsZLYbCPt5cFNb3t9TMCCGEKFLG6K+SFzqtju71G9G9fiPgTdL0aewJC2XDiQME3wjiasIRUnR3iNGd5kDUaQ4c/oWpQRocqUFN52a082jFc03bUqOcm1HjyiAzCBec1MwIIYQwifPnzxuaZ3x8fPLdPFPQWo3Dh4Pp8vxAfD6bwMWES1yOO0Ki7tpj5Wz1lahq34yWlVvSr1FbmlTxQKvVFiiGh4eoP5rUlcQZhKVmRgghRIlSs2ZN/P39CQwMzFd/FWPRajXEXb2Kb9MONGs2BoDT1yJYe+wAB64EceFBMHGaCyRor3Em4Rpnzq1h4Tmw1LtSyaYpzdxbUNumHGTTDyg7xp5B+GleeVuSGSGEEOIR9Sq5U6/SQGAgANfuRrE65CB7Lh7k3P0j3OcMKdrbXErexKXLmwCoObkRb22ZTvMzbfGq05rejRpnGg7+KGPPIJyx8nb//v0lmRFCCCFEZpXKlOYtr9685dUbgKi4OP4KOcz28wc5fSeYO2kn0Fs84Bb72RCxnw0R8N42W8poG1C3TDM61WhBv8YtcXV2NJxTZhA2HklmhBBCiDwqbW+Pd/vOeLfvDMD+Qwd59jVf+r45lPDEc0SmHCNNG8sdgth9N4jdd3/iy4NaHKlJDcemtPFogWPZMjKDsJFIMiOEEEIUkLWFJVHHTzO29TM0a/Z/pOnT2HXuDBtPHeLIjcNcTThGsjaSB5wjJPYcIaeWkWKXUqD1pcS/8jwD8K5du+jXrx8VKlRAo9GwatWqTPt9fHzQaDSZXm3atMlUJikpCX9/f8qWLYu9vT39+/fn2rXHe44LIYQQT1Ic17nSaXV09WzAV4N82eQ/mzPv72XN0J28Xm8qjRwG46CvjWVZa1xfdE1fW0pLpv929HuRoDsRRMfHm/ZGzESea2bi4uJo3LgxI0aMYNCgQVmW6d27NwsWLDD8bGVllWn/2LFjWbt2LUuXLqVMmTKMHz+evn37EhwcbJgSWgghhMiNgq5zVVTJUP2KlahfsRKQ/t15834Ma1oGsa7x3xzYvJa4qAgsXLQ4tnLkatkg/m+PD/+3W4czdajpnN401a9xa2q5lS/UOM1RnpOZPn360KdPnxzLWFtb4+aW9eRC0dHRBAQEsGjRIrp37w7Ar7/+SuXKldmyZQu9evXKa0hCCCFEvhlj0c/8JETlSznxWhcvXuvixZHeQ2nRug3f/76MC4k3OX7rCDcSj5Giu0M0pwmOOU3wid/48QTYpFWisl1jmlVoTs96relYuzY63dO91GKh9JnZsWMH5cqVo1SpUnTu3Jkvv/yScuXKARAcHExKSgo9e/Y0lK9QoQINGjRg3759kswIIYQwO8ZIiFRqCu09PPBvlj4cXK/Xc/TyFTacPETQtcNcehBCnOYiibprhCVdI+zSOpZdAt1aJ8pZNKKydU3KtmzBg8QkI9yReTF6MtOnTx9efPFFPDw8uHTpEp988gndunUjODgYa2trIiMjsbKyonTp0pmOK1++PJGRkVmeMykpiaSkf/9xYmJisiwnhBDCvBTH/i7FhVarpXm1qjSvVhUYDMCN+/f5K+QQey4GERp1lLtpp0nTxhCh30NEwh6cBoPv3uE47alFdafGtKrcjN4NW9KocpVsR06VBEZPZoYMGWL4/wYNGtCiRQs8PDxYt24dzz//fLbHKaWyfdBTpkxh0qRJxg5VCCGEiRmjRuNpUqFUKV7v0pPXu6S3biQkJ7Hl9HG2nD1E8LVD3Ew5id7yPjGas4TEniXkzDLmnQFLfVkqWDekYfmmdKvdgh71G2NnbWPiuzGeQh+a7e7ujoeHB2FhYQC4ubmRnJxMVFRUptqZW7du0a5duyzP8eGHHzJu3DjDzzExMVSuXLlwAxdCCCGKOVsra/o1aYmnfSkmbzzM3sAjDHhpCDW6tuOSPpKLD44RQxgp2jtcTtnO5Wvb+esaaLZa4qypTU3nxrSp0pw+DVviWaGiqW8n3wo9mbl79y5Xr141VCE2b94cS0tLNm/ezODB6dVmERERnDx5kqlTp2Z5Dmtra6ytrQs7VCGEEMLsPLxYJcDaP5ajfv8jfbHKNydz70EcG04cZdf5YE7fCeFmynHSdPe5zykOR5/i8InF/HACrPTlqGDTiEblmtK5dnN61G+EvZl89+Z51ezY2FjOnz8PQNOmTZk+fTpdu3bFxcUFFxcXJk6cyKBBg3B3dyc8PJyPPvqIK1eucObMGRwd06dxHjVqFH/99ReBgYG4uLgwYcIE7t69m+uh2bJqthBCiJIkv6tuh4WF4enpmWmxygxarZbQ0NDHFqtMS9Nz6OIlNp0OIvj6ES7HHidWcwE0mc+h0VtRSluXms6NaF2lOX0atsCzQsH6NhWbVbMPHz5M165dDT9nNP8MHz6cOXPmcOLECRYuXMj9+/dxd3ena9euLFu2zJDIAMyYMQMLCwsGDx5MQkICXl5eBAYGyhwzQgghRB7kZ7FKnU5L21o1aFurBvASALejH7D+RDB7LgZz5k4It1JPkqaNIYpjBEUfI+jEIn44AdZp7um1N+Wb0qVWC7zq18fexiqLqxetPNfMFAdSMyOEEKIkyW/NzNChQ/n999+zrZkZPHgwS5YsyXM8er2eAxfC2Hz6MIf/qb2J01wCTeaUQaO3ppSmDtWdG9OqchN6N2hJ/UoVsk2wik3NjBBCCCGMK79D1KtWrVooi1VqtVra1apDu1p1gJcBuBUdzYYTwey+eJgzd49xO+UkadpYojhOcMxxgk8tYs4psExzxd26AfVdm9CxZlN6NWhCKXv7fMWRW1IzI4QQQpip/PSZyU5ERAQ//fQTb7zxRq6SqjR9GgcvnmfL6WCOXA8hPPY4D3i87w1KiyO1qOrQkPql6zB5qJ/Rv78lmRFCCCHMWGBgIH5+fmg0GtLS0tDpdCil0kcz+fjk+jz5bep62N3YB2w8GcKe80c5fSeEiOQTpGrvGfbrE/WEfxIuzUxCCCGE+JePjw8dOnTgyy+/JDAwEG9vbz7++ONc18gYUxkHR4a16ciwNh2B9L43x69eY/PpYIKuHiUsMRgIN/p1pWZGCCGEKAEKWrNijJqZJyms7++ne5lNIYQQQpg9SWaEEEIIYdYkmRFCCCGEWZNkRgghhBBmTZIZIYQQQpg1SWaEEEIIYdYkmRFCCCGEWZNkRgghhHjKhYWFMWvWLABmzZpFWFiYiSPKG0lmhBBCiBIgv4tVLliwAE9PTxYtWgTAokWL8PT0JDAwsBCiLBwyA7AQQgjxlDLmQpW5ITMACyGEEMKo5s+fj0ajyXKfRqMhICCgiCPKH0lmhBBCiKdUeHg42TXQKKUIDw8v2oDySZIZIYQQ4ilVtWrVHGtmqlatWrQB5ZMkM0IIIcRTytfXN8eaGT8/vyKOKH8kmRFCCCGeUrVq1SIgIACtVotOpwNAp9Oh1WoJCAgwauffwiTJjBBCCPEU8/HxITQ0FG9vbwC8vb0JDQ3Fx8fHtIHlgSQzQgghxFOuZs2a+Pv7A+Dv7282NTIZJJkRQgghhFmTZEYIIYQQZk2SGSGEEEKYNUlmhBBCCGHWJJkRQgghhFmTZEYIIYQQZk2SGSGEEEKYNUlmhBBCCIG7uzufffYZ7u7upg4lzzQqu0UZirGYmBicnZ2Jjo7GycnJ1OEIIYQQIhcK6/tbamaEEEIIYRQRERFMnDiRiIiIIr2uJDNCCCGEMIqIiAgmTZokyYwQQgghRF5IMiOEEEIIsybJjBBCCCHMmiQzQgghhDBrkswIIYQQwqxJMiOEEEIIsybJjBBCCCHMmiQzQgghhCiwsLAwZs2aBcCsWbMICwsrsmtLMiOEEEKIAlmwYAGenp4sWrQIgEWLFuHp6UlgYGCRXF/WZhJCCCFEvoWFheHp6Yler39sn1arJTQ0lJo1awKyNpMQQgghiqH58+ej0Wiy3KfRaAgICCj0GCSZEUIIIUS+hYeHk10jj1KK8PDwQo9BkhkhhBBC5FvVqlVzrJmpWrVqoccgyYwQQggh8s3X1zfHmhk/P79CjyHPycyuXbvo168fFSpUQKPRsGrVqkz7lVJMnDiRChUqYGtrS5cuXTh16lSmMklJSfj7+1O2bFns7e3p378/165dK9CNCCGEEKLo1apVi4CAALRaLTqdDgCdTodWqyUgIMDQ+bcw5TmZiYuLo3Hjxvzwww9Z7p86dSrTp0/nhx9+ICgoCDc3N3r06MGDBw8MZcaOHcvKlStZunQpe/bsITY2lr59+5KWlpb/OxFCCCGESfj4+BAaGoq3tzcA3t7ehIaG4uPjUyTXL9DQbI1Gw8qVKxkwYACQXitToUIFxo4dy3/+8x8gvRamfPnyfP3117zxxhtER0fj6urKokWLGDJkCAA3btygcuXKrF+/nl69ej3xujI0WwghhCh+jhw5QvPmzQkODqZZs2aP7TeLodmXLl0iMjKSnj17GrZZW1vTuXNn9u3bB0BwcDApKSmZylSoUIEGDRoYyjwqKSmJmJiYTC8hhBBCCDByMhMZGQlA+fLlM20vX768YV9kZCRWVlaULl062zKPmjJlCs7OzoZX5cqVjRm2EEIIIcxYoYxmenSIllIq22FbuSnz4YcfEh0dbXhdvXrVaLEKIYQQwrwZNZlxc3MDeKyG5datW4baGjc3N5KTk4mKisq2zKOsra1xcnLK9BJCCCGEACMnM9WqVcPNzY3NmzcbtiUnJ7Nz507atWsHQPPmzbG0tMxUJiIigpMnTxrKCCGEEELklkVeD4iNjeX8+fOGny9dukRISAguLi5UqVKFsWPHMnnyZGrVqkWtWrWYPHkydnZ2DBs2DABnZ2f8/PwYP348ZcqUwcXFhQkTJtCwYUO6d+9uvDsTQgghxFMhz8nM4cOH6dq1q+HncePGATB8+HACAwN5//33SUhIYPTo0URFRdG6dWs2bdqEo6Oj4ZgZM2ZgYWHB4MGDSUhIwMvLi8DAQMNkO0IIIYQwP+7u7nz22We4u7sX6XULNM+Mqcg8M0IIIYT5MYt5ZoQQQgghipokM0IIIYQwa5LMCCGEEMKsSTIjhBBCCLMmyYwQQgghzJokM0IIIYQwa5LMCCGEEMKsSTIjhBBCCLMmyYwQQgghzJokM0IIIYQwa5LMCCGEEMKsSTIjhBBCCLMmyYwQQgghzJokM0IIIYQwa5LMCCGEEMKsSTIjhBBCCLMmyYwQQgghzJokM0IIIYQwa5LMCCGEEMKsSTIjhBBCCLMmyYwQQgghzJokM0IIIYQwa5LMCCGEEMKsSTIjhBBCCLMmyYwQQgghzJokM0IIIYQwa5LMCCGEEMKsSTIjhBBCCLMmyYwQQgghzJokM0IIIYQwa5LMCCGEEMKsSTIjhBBCCLNmYeoAhBCmlXzhCnEb9qAr7YzDgG5o7W1NHZIQQuSJJDNCPMUe/LmFW2/9F1LTALj//a9UWPkdFhXLmzgyIYTIPWlmEuIplXQslNtjpkBqGjZtG6OrUI6US9eI9PsUlZxi6vCEECLXJJkR4imk9Hpujf0alZSMXe8OVFg1k4prf0Dr7EBS8Gnuz/vD1CEKIUSuSTIjxFModvU2kk+GoXW0p9x3/0Gj1WJZxZ0yn78NwP2Zv6F/EGfiKIUQInckmRHiKaOU4v7MxQA4v/USujKlDPscB/fCspYH+qgYYhatNVGEQgiRN5LMCPGUSQo+TfLJMDQ2VjiPGJhpn8bCglJvDgYg5pfVKKVMEaIQQuSJJDNCPGUyalwcnuuGzsX5sf0Oz3dH42BHysVrJO49WtThCSFEnkkyI8RTRCWnELduJwCOQ5/JsozWwQ6HAd0AiF21rchiE0KI/JJkRoinSMKeI+ijY9G5umDTplG25Rz6dQEgbv0uVFpaEUUnhBD5I8mMEE+R2LU7ALDv2wmNTpdtOduOzdGWciTtdhSJB08UTXBCCJFPkswI8ZRQKanErd8NgP0/NS/Z0VhaYN+rPQBxa3cUbmBCCFFAkswI8ZRIDDqJ/l40WhdnbNs2fmL5jIQn7u89MqpJCFGsSTIjxFMifkcQAHZdWqKxePKybLYdm4OVJanXbpJy4WphhyeEEPkmyYwQT4mE7YcAsO3aKlfltXY22P7TSTh+26FCi0sIIQrK6MnMxIkT0Wg0mV5ubm6G/UopJk6cSIUKFbC1taVLly6cOnXK2GEIIR6Sdvc+ScdCgfSamdyy/adswg5JZoQQxVeh1MzUr1+fiIgIw+vEiX9HQ0ydOpXp06fzww8/EBQUhJubGz169ODBgweFEYoQAojfdRiUwqpedSzcyub6OLsu6bU4CXuPopKSCys8IYQokEJJZiwsLHBzczO8XF1dgfRame+++46PP/6Y559/ngYNGvDLL78QHx/P4sWLCyMUIQSQsOMwALZdctfElMGqfg10ri6o+EQSD0sNqhCieCqUZCYsLIwKFSpQrVo1XnrpJS5evAjApUuXiIyMpGfPnoay1tbWdO7cmX379mV7vqSkJGJiYjK9hBC5l7j/GAC2HZrl6TiNVottx/RjEmRpAyFEMWX0ZKZ169YsXLiQjRs38r///Y/IyEjatWvH3bt3iYyMBKB8+fKZjilfvrxhX1amTJmCs7Oz4VW5cmVjhy1EiZUaeYeUS9dAo8GmVYM8H2/TrgkACf8kREIIUdwYPZnp06cPgwYNomHDhnTv3p1169YB8MsvvxjKaDSaTMcopR7b9rAPP/yQ6Ohow+vqVRkmKkRuJR44DoBV/ZronB3zfHzGnDRJh0+iklOMGpsQQhhDoQ/Ntre3p2HDhoSFhRlGNT1aC3Pr1q3HamseZm1tjZOTU6aXECJ3MmpUbHNYiyknlrU80JYthUpMJvHoGWOGJoQQRlHoyUxSUhJnzpzB3d2datWq4ebmxubNmw37k5OT2blzJ+3atSvsUIR4KiUeTE9mbHIx629WNBoNtm3Sj02UpiYhRDFk9GRmwoQJ7Ny5k0uXLnHw4EFeeOEFYmJiGD58OBqNhrFjxzJ58mRWrlzJyZMn8fHxwc7OjmHDhhk7FCGeemn3H5B8Or0Dvk2b/CUzADZtmwDSb0YIUTw9eU7zPLp27RpDhw7lzp07uLq60qZNGw4cOICHhwcA77//PgkJCYwePZqoqChat27Npk2bcHTMe1u+ECJniYeOg1JY1qiMRTmXfJ8no99M4qETqNTUXC2HIIQQRcXov5GWLl2a436NRsPEiROZOHGisS8thHhERrOQTT77y2SwqlcdrbMD+uhYkk9dwLpxHWOEJ4QQRiFrMwlRgiX8M5LJ9p9movzS6HTYtE5PiBL2yXwzQojiRZIZIUoofXwiSSFngYLXzMC/HYgT9km/GSFE8SLJjBAlVGLwKUhNQ+fuikUV9wKfz9Bv5uBxlF5f4PMJIYSxSDIjRAmVaGhiapzjpJS5Zd2oDho7G/RRMaScu1zg8wkhhLFIMiNECZW4PwQwThMTgMbSApsW9QFIOCBNTUKI4kOSGSFKIJWcYljluqCdfx9mI5PnCSGKIUlmhCiBko6fQyUkoS3thGVtD6OdN6OWJ+HAcZRSRjuvEEIUhCQzQpRAGc1ANm0aodEa72Nu07w+WOhIu3GL1KvZr3QvhBBFSZIZIUqgRMPikvlfwiArWjsbw4R5idJvRghRTEgyI0QJo/R6Eg+mj2TK7+KSOckYoi3rNAkhigtJZoQoYZLPXEQfHYvGzhbrhrWMfn5DJ+B/hn4LIYSpSTIjRAljWI+pVYNCWRDSplVDAFLOXyH1dpTRzy+EEHklyYwQJUxG848xh2Q/TFfaCau61QEMzVlCCGFKkswIUYIopf6tmSmE/jIZZL4ZIURxIsmMECVIysWrpN2+h8baCuumnoV2HZu2GfPNSDIjhDA9SWaEKEES/1nR2rpZXbQ21oV2nYwh38knz6N/EFdo1xFCiNyQZEaIEiSjpqSw+stksHB3xcLDHfR6EoNOFuq1hBDiSSSZEaIEKYr+MhkyamdkvhkhhKlJMiNECZFyJSJ9iQGdzrC6dWGSTsBCiOJCkhkhSoiEnUEA2DSri9bBrtCvZ9uhGQCJwafQx8YX+vWEECI7kswIUULE7zgMgG2XlkVyPcuqFbCoWgFS00jYd7RIrimEEFmRZEaIEkClpZGwOxgA284tiuy6dp3TE6eE7UFFdk0hhHiUJDNClABJJ8LQR8WgcbDDplm9IrtuRi1Q/M7DRXZNIYR4lCQzQpQACTvSa0ZsOzRDY2n89ZiyY9uxGWi1pIRdJvX6zSK7rhBCPEySGSFKgIyaEbsibGIC0Dk7GmYazuizI4QQRU2SGSHMnD4ugcRDJ4Ci6/z7MEO/mR2HivzaQggBkswIYfYSdgZBcgoWVdyxrFG5yK9v27UVAPHbD6FSUov8+kIIIcmMEGYu7u+9ANj37oBGoyny69u0rI+2jDP66FhZeFIIYRKSzAhhxlRaGnGb9wFg17u9SWLQ6HTY92gHQPw/iZUQQhQlSWaEMGOJh0+hv3MfrbODYa0kU7Dv0wGAuL/3oJQyWRxCiKeTJDNCmLG4DbsBsOvetkiHZD/KtnNLNDZWpF6JIPnUBZPFIYR4OkkyI4SZUno9sSu3AWDft7NJY9Ha22LXrTUAsX9uMWksQoinjyQzQpipxP3HSLtxC62TA3bd25g6HBye7wFA7MotKL3exNEIIZ4mkswIYaYyakDs+3ZGa2Nt4mjArmc7NA52pF67SeLBE6YORwjxFJFkRggzpE9MInbNdgAcXuhh4mjSaW2tcfinuSt2+SYTRyOEeJpIMiOEGYpbsx39/QfoKpTDtl0TU4dj4DC4FwAPVmxG/yDOxNEIIZ4WkswIYYai568EwHn4c2h0OhNH8y/bDs2wrFkFFZfAg983mjocIcRTQpIZIcxM0rFQkoJPg6UFjq/0NXU4mWg0Gpx9BwIQPf9PmXNGCFEkJJkRwszc/3EJAA79u2JRzsXE0TzO8aU+aOxtSTl3mfitB00djhDiKSDJjBBmJPnsJWJXpc8tU+qtoSaOJmtaR3uchj8HQNTXAVI7I4QodJLMCGFG7n0TCEph/2xnrBvWMnU42Sr19jA0drYkhZwlftM+U4cjhCjhJJkRwkwk7D9G3Or0WpnS748wcTQ5s3AtjfPI5wG4O2kOKinZxBEJIUoySWaEMAMqKZnbE6YB4OjdD+t6NUwc0ZOV8n8ZnasLKWGXifr+V1OHI4QowSSZEcIM3Ps6gJRzl9G5ulDm01GmDidXdKUcKTv5HQCivltEYshZE0ckhCipJJkRopiLXbWN+7MWA1B26jh0pRxNHFHu2T/XFftnO0FKKpHDPyb11j1ThySEKIEkmRGiGIvbvJ9bb38JQCn/YYblAsyFRqPBdeaHWNasQtqNW0QMmUDanShThyWEKGFMmszMnj2batWqYWNjQ/Pmzdm9e7cpwxGi2FBKEbNwDZHDP0IlJWP/TEdcPn7d1GHli87JAbdfp6BzLU3yyTCu93ubpDMXTR2WEKIEMVkys2zZMsaOHcvHH3/M0aNH6dixI3369OHKlSumCkmIYiE59BKRr3zA7fHTICUVh4FelP/582K1bEFeWdWoQoW1P2BRsRwp569wvcdr3Ps2EH1svKlDE0KUABplohmtWrduTbNmzZgzZ45hW926dRkwYABTpkzJ8diYmBicnZ2Jjo7GycmpsEMVotClXIkgYc8RYldtI2FHECgFlhaU+b83cH5zMBptyWgRTr11j9vvTCF+ywEAtKUccRjohV3P9ti2bojW0d7EEQohClNhfX9bGO1MeZCcnExwcDAffPBBpu09e/Zk377cT7AVu2E3WrtHfvnllJvllLZld1wO51M5nTC7XTnGl499+bzfHHNYI18rX+fLx7PN1z09cZ9xz6eSU9BHx5IW/QB9VAwpVyJIuXQN/d3oTOXsn+2Ey4cjsapTLfvrmCGLci64LZ5K7KqtRH09n5QLV4lZsIqYBatAq8WiihuWVStiUaEcWmeH9JejAxorCzQ6Leh0aCx06f/V6UCjyd2Fc1ks9+fL7QmFEA+LjY8rlPOaJJm5c+cOaWlplC9fPtP28uXLExkZ+Vj5pKQkkpKSDD9HR6f/4r84aiIOGpPcghDGZaHDulEdbDs2w3GAF5ZVK5AIJMbEmDqywuHVCucuzUnYF0Lc2p0kHDpO6uUIuHgl/SWEKJFiVSrwhD8+88GkmYDmkb9ulFKPbQOYMmUKkyZNemx7x6jDhRabEEVuy17YMh8+M3UgQghRuO7evYuzs7PRzmeSZKZs2bLodLrHamFu3br1WG0NwIcffsi4ceMMP9+/fx8PDw+uXLli1IdREsTExFC5cmWuXr0q/YkeIc8me/JssifPJnvybLImzyV70dHRVKlSBRcXF6Oe1yTJjJWVFc2bN2fz5s0MHDjQsH3z5s0899xzj5W3trbG2tr6se3Ozs7yRsmGk5OTPJtsyLPJnjyb7MmzyZ48m6zJc8me1siDGkzWzDRu3Di8vb1p0aIFbdu2Zd68eVy5coU333zTVCEJIYQQwgyZLJkZMmQId+/e5fPPPyciIoIGDRqwfv16PDw8TBWSEEIIIcyQSTsAjx49mtGjR+f5OGtraz777LMsm56edvJssifPJnvybLInzyZ78myyJs8le4X1bEw2aZ4QQgghhDGUjGlFhRBCCPHUkmRGCCGEEGZNkhkhhBBCmDVJZoQQQghh1opdMjNlyhRatmyJo6Mj5cqVY8CAAYSGhj7xuN9++43GjRtjZ2eHu7s7I0aM4O7du0UQcdHJ77P58ccfqVu3Lra2ttSpU4eFCxcWQbRFa86cOTRq1MgwSVXbtm3ZsGFDjsfs3LmT5s2bY2NjQ/Xq1Zk7d24RRVu08vpsIiIiGDZsGHXq1EGr1TJ27NiiC7aI5fXZ/Pnnn/To0QNXV1dD+Y0bNxZhxEUnr89mz549tG/fnjJlymBra4unpyczZswowoiLRn5+12TYu3cvFhYWNGnSpHCDNJG8PpsdO3ag0Wgee509ezbvF1fFTK9evdSCBQvUyZMnVUhIiHr22WdVlSpVVGxsbLbH7N69W2m1WvX999+rixcvqt27d6v69eurAQMGFGHkhS8/z2b27NnK0dFRLV26VF24cEEtWbJEOTg4qDVr1hRh5IVvzZo1at26dSo0NFSFhoaqjz76SFlaWqqTJ09mWf7ixYvKzs5OvfPOO+r06dPqf//7n7K0tFTLly8v4sgLX16fzaVLl9SYMWPUL7/8opo0aaLeeeedog24COX12bzzzjvq66+/VocOHVLnzp1TH374obK0tFRHjhwp4sgLX16fzZEjR9TixYvVyZMn1aVLl9SiRYuUnZ2d+umnn4o48sKV1+eS4f79+6p69eqqZ8+eqnHjxkUTbBHL67PZvn27AlRoaKiKiIgwvFJTU/N87WKXzDzq1q1bClA7d+7Mtsy0adNU9erVM22bOXOmqlSpUmGHZ1K5eTZt27ZVEyZMyLTtnXfeUe3bty/s8EyudOnS6ueff85y3/vvv688PT0zbXvjjTdUmzZtiiI0k8vp2Tysc+fOJTqZyUpun02GevXqqUmTJhViRMVHXp/NwIED1SuvvFKIERUPuXkuQ4YMUf/3f/+nPvvssxKbzGQlp2eTkcxERUUV+DrFrpnpUdHR0QA5LkrVrl07rl27xvr161FKcfPmTZYvX86zzz5bVGGaRG6eTVJSEjY2Npm22dracujQIVJSUgo1PlNJS0tj6dKlxMXF0bZt2yzL7N+/n549e2ba1qtXLw4fPlxinwvk7tk8rfLzbPR6PQ8ePDD6onnFTX6ezdGjR9m3bx+dO3cu5OhMJ7fPZcGCBVy4cIHPPvusCKMzrby8Z5o2bYq7uzteXl5s3749fxcscDpUiPR6verXr5/q0KHDE8v+8ccfysHBQVlYWChA9e/fXyUnJxdBlKaR22fz4YcfKjc3N3X48GGl1+tVUFCQKleunALUjRs3iijaonH8+HFlb2+vdDqdcnZ2VuvWrcu2bK1atdSXX36ZadvevXtL5HNRKm/P5mFPQ81Mfp+NUkpNnTpVubi4qJs3bxZihKaTn2dTsWJFZWVlpbRarfr888+LIMqil5fncu7cOVWuXDkVGhqqlFIlvmYmL8/m7Nmzat68eSo4OFjt27dPjRo1Smk0mhxbG7JTrJOZ0aNHKw8PD3X16tUcy506dUq5u7urqVOnqmPHjqm///5bNWzYUPn6+hZRpEUvt88mPj5ejRgxQllYWCidTqcqVKig3n//fQWUuF/ASUlJKiwsTAUFBakPPvhAlS1bVp06dSrLsrVq1VKTJ0/OtG3Pnj0KUBEREUURbpHKy7N52NOQzOT32SxevFjZ2dmpzZs3F0GUppGfZ3Px4kV1/PhxNW/ePOXi4qIWL15cRNEWndw+l9TUVNWiRQs1Z84cw7aSnszk9/OUoW/fvqpfv355vm6xTWbefvttValSJXXx4sUnln3llVfUCy+8kGnb7t27S+xf2Xl5NhmSk5PV1atXVWpqqqFTcFpaWiFGaXpeXl7q9ddfz3Jfx44d1ZgxYzJt+/PPP5WFhUWJrtHLkNOzedjTkMw8KjfPZunSpcrW1lb99ddfRRRV8ZDb902GL774QtWuXbsQIyoesnsuUVFRClA6nc7w0mg0hm1bt241QbRFK6/vmf/+97+P9WfMDZMuNJkVpRT+/v6sXLmSHTt2UK1atSceEx8fj4VF5lvR6XSG85UU+Xk2GSwtLalUqRIAS5cupW/fvmi1xb7LVIEopUhKSspyX9u2bVm7dm2mbZs2baJFixZYWloWRXgmldOzedo96dksWbIEX19flixZUuL75T0qr++bp+V9lt19Ojk5ceLEiUzbZs+ezbZt21i+fHmefoebq7y+B44ePYq7u3u+LlSsjBo1Sjk7O6sdO3ZkGqoVHx9vKPPBBx8ob29vw88LFixQFhYWavbs2erChQtqz549qkWLFqpVq1amuIVCk59nExoaqhYtWqTOnTunDh48qIYMGaJcXFzUpUuXTHAHhefDDz9Uu3btUpcuXVLHjx9XH330kdJqtWrTpk1KqcefS8bQ7HfffVedPn1aBQQElNih2Xl9NkopdfToUXX06FHVvHlzNWzYMHX06NE8VRWbi7w+m8WLFysLCwv1448/ZvoM3r9/31S3UGjy+mx++OEHtWbNGnXu3Dl17tw5NX/+fOXk5KQ+/vhjU91CocjP5+lhJbmZKa/PZsaMGWrlypXq3Llz6uTJk+qDDz5QgFqxYkWer13skhkgy9eCBQsMZYYPH646d+6c6biZM2eqevXqKVtbW+Xu7q5efvllde3ataINvpDl59mcPn1aNWnSRNna2ionJyf13HPPqbNnzxZ98IXM19dXeXh4KCsrK+Xq6qq8vLwMHyClsn7P7NixQzVt2lRZWVmpqlWrZmrXLkny82yyep95eHgUbeBFIK/PpnPnzlk+m+HDhxd98IUsr89m5syZqn79+srOzk45OTmppk2bqtmzZ5e45uz8fJ4eVpKTmbw+m6+//lrVqFFD2djYqNKlS6sOHTrkqQP+wzRKlaB2GCGEEEI8dUp2pwkhhBBClHiSzAghhBDCrEkyI4QQQgizJsmMEEIIIcyaJDNCCCGEMGuSzAghhBDCrEkyI4QQQgizJsmMEEIIIcyaJDNCCCGEMGuSzAghSowuXbqg0WjQaDSEhISYLA4fHx9DHKtWrTJZHEI8LSSZEaIEat26Na+//nqmbT4+PnzwwQcmiqjovPbaa0RERNCgQQPDtsjISN555x1q1qyJjY0N5cuXp0OHDsydO5f4+Phcn7tfv3507949y3379+9Ho9Fw5MgRvv/+eyIiIgp8L0KI3LEwdQBCCONKS0vjxIkT+Pj4GLbp9XrWrVvHmjVrTBdYEbGzs8PNzc3w88WLF2nfvj2lSpVi8uTJNGzYkNTUVM6dO8f8+fOpUKEC/fv3z9W5/fz8eP7557l8+TIeHh6Z9s2fP58mTZrQrFkzAJydnY13U0KIHEnNjBAlzNmzZ0lISDB8qQLs3bsXrVZL69atAVi1ahVOTk4opTh//jwajYbr16+j1+uxt7fn77//fuy8Xbp0wd/fn7Fjx1K6dGnKly/PvHnziIuLY8SIETg6OlKjRg02bNiQ6bi///6bDh06UKpUKcqUKUPfvn25cOGCYf/y5ctp2LAhtra2lClThu7duxMXF/fEfbk1evRoLCwsOHz4MIMHD6Zu3bo0bNiQQYMGsW7dOvr162coq5Ri6tSpVK9eHVtbWxo3bszy5csN+/v27Uu5cuUIDAzMdI34+HiWLVuGn59fnmITQhiHJDNClDBHjx5Fp9PRqFEjw7Y1a9bQr18/tNr0j3xISAiNGzdGo9Fw/PhxypQpQ8WKFTl37hzx8fE0btw4y3P/8ssvlC1blkOHDuHv78+oUaN48cUXadeuHUeOHKFXr154e3tnarqJi4tj3LhxBAUFsXXrVrRaLQMHDkSv1xMREcHQoUPx9fXlzJkz7Nixg+effx6lVI77cuvu3bts2rSJt956C3t7+yzLaDQaw///3//9HwsWLGDOnDmcOnWKd999l1deeYWdO3cCYGFhwauvvkpgYGCmOP744w+Sk5N5+eWXcx2bEMKIlBCiRBk3bpyqX79+pm21a9dWa9asMfw8YMAA9fbbbyullPr000+Vl5eXUkqppUuXKldX1yzP27lzZ9WhQwfDz6mpqcre3l55e3sbtkVERChA7d+/P9v4bt26pQB14sQJFRwcrAAVHh7+WLmc9mWnc+fO6p133jH8fODAAQWoP//8M1O5MmXKKHt7e2Vvb6/ef/99pZRSsbGxysbGRu3bty9TWT8/PzV06FDDz2fOnFGA2rZtm2Fbp06dMpXJAKiVK1fmOn4hRP5IzYwQJczRo0czNTGdOXOGa9euZeq4GhISQpMmTQA4duyYoSYmo8YmOw/X9uh0OsqUKUPDhg0N28qXLw/ArVu3DNsuXLjAsGHDqF69Ok5OTlSrVg2AK1eu0LhxY7y8vGjYsCEvvvgi//vf/4iKigLIcV9ePVz7AnDo0CFCQkKoX78+SUlJAJw+fZrExER69OiBg4OD4bVw4cJMzWKenp60a9eO+fPnG+5v9+7d+Pr65is2IUTBSTIjRAkTEhKSKZlZs2YNPXr0wNbWFoAHDx4QHh5uSEKOHTtmSGyOHDli+P+sWFpaZvpZo9Fk2paRNOj1esO2fv36cffuXf73v/9x8OBBDh48CEBycjI6nY7NmzezYcMG6tWrx6xZs6hTpw6XLl3KcV9u1axZE41Gw9mzZzNtr169OjVr1jQ8k4djXrduHSEhIYbX6dOnM/WbgfSOwCtWrCAmJoYFCxbg4eGBl5dXruMSQhiXJDNClCDh4eFERUXRtGlTw7bVq1dnGq2TMWTY0dGR6OhowsPDadKkCbdv32bnzp306NHDaPHcvXuXM2fO8H//9394eXlRt27dx2pXNBoN7du3Z9KkSRw9ehQrKytWrlz5xH25UaZMGXr06MEPP/zwxI7D9erVw9ramitXrlCzZs1Mr8qVK2cqO3jwYHQ6HYsXL+aXX35hxIgRj9X+CCGKjgzNFqIEOXr0KBqNxpDM3Lp1i6CgoEwTt1WsWBE7OzumT59O3759sbS0JDExkeeff55WrVoZNZkpXbo0ZcqUYd68ebi7u3PlypVMc90cPHiQrVu30rNnT8qVK8fBgwe5ffs2devWzXFfXsyePZv27dvTokULJk6cSKNGjdBqtQQFBXH27FmaN28OpCd3EyZM4N1330Wv19OhQwdiYmLYt28fDg4ODB8+3HBOBwcHhgwZwkcffUR0dHSmYfBCiKInyYwQJUhwcDA1a9bEyckJgLVr19K6dWvKlStnKGNvb88ff/yBv78/P//8MwB9+vRhxIgRfPrpp0atYdBqtSxdupQxY8bQoEED6tSpw8yZ/9/O/boqEoVhHH+2aBnEJFjGYDOIiArCgJMEi1i1WkSwiXCtA2oRhg3TjGaT/4D/gKCCWMSgxWixCN6w7C27wl7ugnvc76eeH/My6WHec+a7XNeVJEUiES0WC/m+r8vlokQiofF4rEqlou12+3DsM5LJpJbLpQaDgd7e3nQ8HhUOh5VKpdTtdtVutz/mep6nWCym4XCo/X6vaDSqbDarfr//y77NZlOTyUTlclm2bX/pPQH4mm/3+yfuOQL4p+VyORUKBQVBIEmqVqtyHEe9Xu+38xuNhiRpOp2+RJvEdV1lMhn5vv/sUiT9aJPNZjPVarVnlwK8NM7MAIa73+86HA7yPE+bzUadTudjzHEc1ev1h2t3u53y+fxLBJmfgiCQZVlar9dPq6HVasmyrKc9H/jf8GUGMNxqtVKxWFQ6ndZoNFKpVPqjdbfbTZZlaT6fv8xNnNPppOv1KkmybVuhUOgpdZzPZ10uF0lSPB5/+MM+AH8HYQYAABiNNhMAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjPYO50ewJsW7oD4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -822,10 +822,10 @@ "start_time": "2023-11-09T18:41:11.293166815Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:08.194361Z", - "iopub.status.busy": "2023-11-09T20:46:08.193946Z", - "iopub.status.idle": "2023-11-09T20:46:08.342262Z", - "shell.execute_reply": "2023-11-09T20:46:08.341462Z" + "iopub.execute_input": "2023-11-09T22:34:04.438442Z", + "iopub.status.busy": "2023-11-09T22:34:04.438112Z", + "iopub.status.idle": "2023-11-09T22:34:04.525580Z", + "shell.execute_reply": "2023-11-09T22:34:04.525007Z" } }, "outputs": [ @@ -869,10 +869,10 @@ "start_time": "2023-11-09T18:41:11.474037243Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:08.345076Z", - "iopub.status.busy": "2023-11-09T20:46:08.344844Z", - "iopub.status.idle": "2023-11-09T20:46:09.557793Z", - "shell.execute_reply": "2023-11-09T20:46:09.557263Z" + "iopub.execute_input": "2023-11-09T22:34:04.527938Z", + "iopub.status.busy": "2023-11-09T22:34:04.527596Z", + "iopub.status.idle": "2023-11-09T22:34:05.391239Z", + "shell.execute_reply": "2023-11-09T22:34:05.390802Z" } }, "outputs": [ @@ -881,7 +881,7 @@ "output_type": "stream", "text": [ "\n", - "p_value for the Null hypothesis = 2.655763928660626e-06" + "p_value for the Null hypothesis = 3.953901831055262e-06" ] }, { @@ -895,7 +895,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Significance (in units of sigma) = 4.552091284639857" + "Significance (in units of sigma) = 4.46766493596919" ] }, { @@ -908,7 +908,7 @@ { "data": { "text/plain": [ - "(2.655763928660626e-06, 4.552091284639857)" + "(3.953901831055262e-06, 4.46766493596919)" ] }, "execution_count": 23, diff --git a/advanced-python/60sPlot.html b/advanced-python/60sPlot.html index b85cf038..27b280a3 100644 --- a/advanced-python/60sPlot.html +++ b/advanced-python/60sPlot.html @@ -524,7 +524,7 @@

Simple sPlot example
-<matplotlib.legend.Legend at 0x7fc48918c310>
+<matplotlib.legend.Legend at 0x7f84bcb8f190>
 
@@ -785,10 +785,10 @@

Splot
 name         value  (rounded)    at limit
 ---------  ------------------  ----------
-bkg_yield              118098       False
-sig_yield             20092.8       False
-lambda            -0.00202754       False
-mu                    5278.98       False
+bkg_yield              118148       False
+sig_yield             19908.6       False
+lambda            -0.00199236       False
+mu                     5279.2       False
 

@@ -878,9 +878,9 @@

Splot
-{<zfit.Parameter 'bkg_yield' floating=True value=1.181e+05>: array([ 0.0065188 ,  0.19334121, -0.18956193, ...,  1.12188645,
-       -0.19607437,  1.12192696]), <zfit.Parameter 'sig_yield' floating=True value=2.009e+04>: array([ 0.99348316,  0.80666203,  1.18956254, ..., -0.12187685,
-        1.19607494, -0.12191737])}
+{<zfit.Parameter 'bkg_yield' floating=True value=1.181e+05>: array([-0.2011732 , -0.02308674, -0.0095058 , ...,  1.1215446 ,
+        1.1215446 ,  1.1215446 ]), <zfit.Parameter 'sig_yield' floating=True value=1.991e+04>: array([ 1.20116739,  1.02308259,  1.00950177, ..., -0.12153816,
+       -0.12153816, -0.12153816])}
 

@@ -897,8 +897,8 @@

Splot
-Sum of signal sWeights:  20092.832164835945
-Sum of background sWeights:  118098.24026987074
+Sum of signal sWeights:  19908.623283345947
+Sum of background sWeights:  118147.92618294565
 

Now we can apply the signal sWeights on the lifetime distribution and retrieve its signal components.

@@ -947,7 +947,7 @@

Splot
-Correlation between m and t: 0.031706619360597356
+Correlation between m and t: 0.03810736484190183
 

Let’s apply to signal sWeights on the mass distribution to see how bad the results of sPlot is when applied on a variable that is correlated with the discrimant variable.

@@ -1083,7 +1083,7 @@

We have no information about real labels
-<matplotlib.legend.Legend at 0x7fc47c1f0590>
+<matplotlib.legend.Legend at 0x7f84aab4c150>
 
@@ -1219,7 +1219,7 @@

An important requirement of sPlot
--0.34495151496553955
+-0.3342216663824436
 

But within each class there is no correlation, so the requirement is satisfied:

@@ -1237,8 +1237,8 @@

An important requirement of sPlot
-0.00038079437364165185
--0.0015770204104652037
+0.006467750252848808
+0.010045672889273587
 

as a demonstration why this is important let’s use sweights to reconstruct mass (obviously mass is correlated with mass):

diff --git a/advanced-python/60sPlot.ipynb b/advanced-python/60sPlot.ipynb index 7f1c01f8..b5ef4c94 100644 --- a/advanced-python/60sPlot.ipynb +++ b/advanced-python/60sPlot.ipynb @@ -21,10 +21,10 @@ "start_time": "2023-11-09T18:41:33.174962617Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:12.523027Z", - "iopub.status.busy": "2023-11-09T20:46:12.522681Z", - "iopub.status.idle": "2023-11-09T20:46:16.481368Z", - "shell.execute_reply": "2023-11-09T20:46:16.480522Z" + "iopub.execute_input": "2023-11-09T22:34:07.800347Z", + "iopub.status.busy": "2023-11-09T22:34:07.800184Z", + "iopub.status.idle": "2023-11-09T22:34:11.000222Z", + "shell.execute_reply": "2023-11-09T22:34:10.999683Z" } }, "outputs": [ @@ -53,10 +53,10 @@ "start_time": "2023-11-09T18:41:33.175105562Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:16.484723Z", - "iopub.status.busy": "2023-11-09T20:46:16.483871Z", - "iopub.status.idle": "2023-11-09T20:46:16.488929Z", - "shell.execute_reply": "2023-11-09T20:46:16.487716Z" + "iopub.execute_input": "2023-11-09T22:34:11.002672Z", + "iopub.status.busy": "2023-11-09T22:34:11.002167Z", + "iopub.status.idle": "2023-11-09T22:34:11.005783Z", + "shell.execute_reply": "2023-11-09T22:34:11.005286Z" } }, "outputs": [], @@ -87,17 +87,17 @@ "start_time": "2023-11-09T18:41:33.175205312Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:16.491298Z", - "iopub.status.busy": "2023-11-09T20:46:16.490818Z", - "iopub.status.idle": "2023-11-09T20:46:16.772263Z", - "shell.execute_reply": "2023-11-09T20:46:16.771580Z" + "iopub.execute_input": "2023-11-09T22:34:11.007772Z", + "iopub.status.busy": "2023-11-09T22:34:11.007474Z", + "iopub.status.idle": "2023-11-09T22:34:11.262990Z", + "shell.execute_reply": "2023-11-09T22:34:11.262534Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 3, @@ -106,7 +106,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGxCAYAAACTN+exAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsMklEQVR4nO3df1yUdb7//+fIL8FgEFwYsTGpyEw0E3Y5YiUdf/XDynU362ilZaWpGIuuZVaitfDJjuIWq2XHVTYz62xZnbNuq9ZC62plKGWmZkX+hNCWHURZULi+f3S8vo2ohQ3OvOFxv93mdnPe87pmXsMo8/R9va/rcliWZQkAAMAw7fzdAAAAwNkgxAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGCnY3w20lMbGRh04cECRkZFyOBz+bgcAAPwAlmXp8OHDSkhIULt2Z55rabUh5sCBA3K73f5uAwAAnIW9e/fq/PPPP2NNqw0xkZGRkr79IURFRfm5GwAA8ENUV1fL7Xbb3+Nn0mpDzIldSFFRUYQYAAAM80OWgrCwFwAAGIkQAwAAjESIAQAARmq1a2IAAG1XY2Oj6uvr/d0GTiEkJERBQUE+eS5CDACgVamvr1dZWZkaGxv93QpOIzo6Wi6X60efx40QAwBoNSzLUnl5uYKCguR2u7/3ZGk4tyzL0tGjR1VZWSlJ6ty58496PkIMAKDVOH78uI4ePaqEhARFRET4ux2cQnh4uCSpsrJScXFxP2rXEhEVANBqNDQ0SJJCQ0P93AnO5ETAPHbs2I96HkIMAKDV4Zp5gc1Xnw8hBgAAGIkQAwAAjMTCXgBAq5eTY/brFRUV6ZprrlFVVZWio6N9++QGYyYGAIA2pqioSA6HQ//85z/93cqPQogBAACnFOhnPSbEAAAQACzL0ty5c3XhhRcqPDxcl19+uf74xz+etn7Dhg26+uqrFR4eLrfbrSlTpujIkSP243V1dZo+fbrcbrfCwsKUlJSkJUuW6KuvvtI111wjSerYsaMcDofGjh0rScrIyNDkyZOVnZ2tTp06afDgwZKk4uJi/exnP1NYWJg6d+6shx56SMePH7dfKyMjQ1OmTNH06dMVExMjl8ulnHOwD481MYDhmvt74lyvDQDwwzzyyCN67bXXtGjRIiUlJendd9/V7bffrp/85CdNardu3aqhQ4fq8ccf15IlS3Tw4EFNnjxZkydP1tKlSyVJd955pzZu3Kinn35al19+ucrKynTo0CG53W69+uqr+sUvfqGdO3cqKirKPgGdJBUWFur+++/X3//+d1mWpf379+v666/X2LFj9Yc//EE7duzQvffeq/bt23sFlcLCQmVnZ+v999/Xxo0bNXbsWPXv398OQi2BEAMAgJ8dOXJE8+fP1zvvvKN+/fpJki688EKtX79ezz33nO677z6v+qeeekqjRo1SVlaWJCkpKUlPP/20BgwYoEWLFmnPnj165ZVXtHbtWg0aNMh+vhNiYmIkSXFxcU0WCl988cWaO3eufX/mzJlyu90qKCiQw+HQpZdeqgMHDujBBx/UY489Zl/aoXfv3po1a5bdT0FBgd5++21CDAAArdmnn36qf/3rX02+8Ovr63XFFVc0qS8pKdHnn3+uF1980R6zLEuNjY0qKyvT1q1bFRQUpAEDBjS7l9TUVK/727dvV79+/bxOUNe/f3/V1NRo37596tq1q6RvQ8x3de7c2b5GUkshxAAA4Gcnrrj9pz/9SV26dPF6LCwsTF988UWT+vHjx2vKlClNnqtr1676/PPPz7qXDh06eN23LKvJGXYty5LkfebdkJAQrxqHw9HiVxJv9sLed999VzfeeKMSEhLkcDj0+uuvez1uWZZycnKUkJCg8PBwZWRkaNu2bV41dXV1yszMVKdOndShQwfddNNN2rdvn1dNVVWV7rjjDjmdTjmdTt1xxx3GHwoGAMCpXHbZZQoLC9OePXt08cUXe93cbneT+r59+2rbtm1Nai+++GKFhoaqV69eamxsVHFx8Slf78S1pU5ca+r7etuwYYMdXKRvFxVHRkY2CVznWrNDzJEjR3T55ZeroKDglI/PnTtX8+fPV0FBgTZt2iSXy6XBgwfr8OHDdk1WVpZWrVqllStXav369aqpqdGwYcO8fpijRo1SaWmp3nrrLb311lsqLS3VHXfccRZvEQCAwBYZGalp06bpV7/6lQoLC/XFF19oy5Yt+t3vfqfCwsIm9Q8++KA2btyoSZMmqbS0VLt27dKbb76pzMxMSVK3bt00ZswY3X333Xr99ddVVlamoqIivfLKK5KkCy64QA6HQ//7v/+rgwcPqqam5rS9TZw4UXv37lVmZqZ27NihN954Q7NmzVJ2dra9HsZfmr076brrrtN11113yscsy9KCBQs0c+ZMjRgxQtK3q5Xj4+O1YsUKjR8/Xh6PR0uWLNELL7xgLzZavny53G631q1bp6FDh2r79u1666239N577yktLU2S9Pzzz6tfv37auXOnunfvfrbvFwACB4eWnTMm/Ogef/xxxcXFKS8vT19++aWio6PVt29fPfzww012y/Tu3VvFxcWaOXOmrrrqKlmWpYsuuki33nqrXbNo0SI9/PDDmjhxor755ht17dpVDz/8sCSpS5cumj17th566CHddddduvPOO7Vs2bJT9tWlSxetXr1av/71r3X55ZcrJiZG48aN0yOPPNJiP4sfymF9d36ouRs7HFq1apWGDx8uSfryyy910UUXafPmzV4LkW6++WZFR0ersLBQ77zzjgYOHKh//OMf6tixo11z+eWXa/jw4Zo9e7Z+//vfKzs7u8nuo+joaOXn5+uuu+5q0ktdXZ3q6urs+9XV1XK73fJ4PIqKijrbtwgEPL4HDcaH53P/+te/VFZWpsTERLVv397f7eA0zvQ5VVdXy+l0/qDvb58u7K2oqJAkxcfHe43Hx8dr9+7ddk1oaKhXgDlRc2L7iooKxcXFNXn+uLg4u+ZkeXl5mj179o9+D0Brdzbfg3x3AghELbIz61SrmE8eO9nJNaeqP9PzzJgxQx6Px77t3bv3LDoHAACm8GmIcblcktRktqSystKenXG5XKqvr1dVVdUZa77++usmz3/w4MEmszwnhIWFKSoqyusGAABaL5+GmMTERLlcLq1du9Yeq6+vV3FxsdLT0yVJKSkpCgkJ8aopLy/XJ598Ytf069dPHo9HH3zwgV3z/vvvy+Px2DUAAKBta/aamJqaGq+T6JSVlam0tFQxMTHq2rWrsrKylJubq6SkJCUlJSk3N1cREREaNWqUJMnpdGrcuHGaOnWqYmNjFRMTo2nTpqlXr1720Uo9evTQtddeq3vvvVfPPfecJOm+++7TsGHDODIJAABIOosQ8+GHH9pXv5Sk7OxsSdKYMWO0bNkyTZ8+XbW1tZo4caKqqqqUlpamNWvWKDIy0t4mPz9fwcHBGjlypGprazVw4EAtW7ZMQUFBds2LL76oKVOmaMiQIZKkm2666bTnpgEAAG3PjzrEOpA15xAtwGTn4sghjk5qIRxi7XMcYm2GgDzEGkDrxHctgEDk3/MFAwCAFlVUVCSHw9Eqrz/ITAwAoPU719ODATQdmZ6ervLycjmdTknSsmXLlJWV1SpCDTMxAAC0YqGhoXK5XN970tmT1dfXt1BHvkOIAQDAzzIyMjR58mRNnjxZ0dHRio2N1SOPPKITx95UVVXpzjvvVMeOHRUREaHrrrtOu3btsrffvXu3brzxRnXs2FEdOnRQz549tXr1akneu5OKiop01113yePxyOFwyOFwKOf/Zo26deumJ554QmPHjpXT6dS9994rSXr11VfVs2dPhYWFqVu3bpo3b55X7926dVNubq7uvvtuRUZGqmvXrlq8ePE5+KkRYgAACAiFhYUKDg7W+++/r6efflr5+fn6r//6L0nS2LFj9eGHH+rNN9/Uxo0bZVmWrr/+eh07dkySNGnSJNXV1endd9/V1q1b9eSTT+q8885r8hrp6elasGCBoqKiVF5ervLyck2bNs1+/KmnnlJycrJKSkr06KOPqqSkRCNHjtRtt92mrVu3KicnR48++miTK17PmzdPqamp2rJliyZOnKj7779fO3bsaLkf1v9hTQwAAAHA7XYrPz9fDodD3bt319atW5Wfn6+MjAy9+eab+vvf/26ftf7FF1+U2+3W66+/rltuuUV79uzRL37xC/Xq1UuSdOGFF57yNUJDQ+V0OuVwOOxLBX3Xv//7v3uFmtGjR2vgwIF69NFHJUmXXHKJPv30Uz311FMaO3asXXf99ddr4sSJkqQHH3xQ+fn5Kioq0qWXXuqTn83pMBMDAEAA+Ld/+zevdSv9+vXTrl279Omnnyo4OFhpaWn2Y7Gxserevbu2b98uSZoyZYqeeOIJ9e/fX7NmzdLHH398Vj2kpqZ63d++fbv69+/vNda/f3/t2rVLDQ0N9ljv3r3tP58ISJWVlWfVQ3MwEwMEkAA6oAFAgLMsyw4999xzj4YOHao//elPWrNmjfLy8jRv3jxlZmY26zk7dOhw2tf47tjJQkJCvO47HA41NjY267XPBjMxAAAEgPfee6/J/aSkJF122WU6fvy43n//ffuxb775Rp999pl69Ohhj7ndbk2YMEGvvfaapk6dqueff/6UrxMaGuo1i3Iml112mdavX+81tmHDBl1yySVelwryF0IMAAABYO/evcrOztbOnTv10ksv6ZlnntEDDzygpKQk3Xzzzbr33nu1fv16ffTRR7r99tvVpUsX3XzzzZKkrKws/eUvf1FZWZk2b96sd955xyvgfFe3bt1UU1Ojt99+W4cOHdLRo0dP29PUqVP19ttv6/HHH9dnn32mwsJCFRQUeK2b8SdCDAAAAeDOO+9UbW2tfvazn2nSpEnKzMzUfffdJ0launSpUlJSNGzYMPXr10+WZWn16tX2bpyGhgZNmjRJPXr00LXXXqvu3btr4cKFp3yd9PR0TZgwQbfeeqt+8pOfaO7cuaftqW/fvnrllVe0cuVKJScn67HHHtOcOXO8FvX6ExeABAJIa1kT01reR4vjolQ+Z+oFIDMyMtSnTx8tWLDA362cE766ACQzMQAAwEiEGAAAYCQOsQYAwM+Kior83YKRmIkBAABGIsQAAFqdVnrMSqvhq8+HEAMAaDVOnICtvr7ez53gTE6cm+bkM/02F2tiAOB0OATaOMHBwYqIiNDBgwcVEhKidu34v3ogsSxLR48eVWVlpaKjo3/0WX8JMQCAVsPhcKhz584qKyvT7t27/d0OTiM6OvqUV9FuLkIMAKBVCQ0NVVJSEruUAlRISIjPrrtEiAEAU5zN7qo2uourXbt2Rp2xF2eHnYUAAMBIhBgAAGAkQgwAADASa2IAwFfa6PoTwF+YiQEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIwU7O8GALQ+OTnnZhsAbRszMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARvJ5iDl+/LgeeeQRJSYmKjw8XBdeeKHmzJmjxsZGu8ayLOXk5CghIUHh4eHKyMjQtm3bvJ6nrq5OmZmZ6tSpkzp06KCbbrpJ+/bt83W7AADAUD4PMU8++aSeffZZFRQUaPv27Zo7d66eeuopPfPMM3bN3LlzNX/+fBUUFGjTpk1yuVwaPHiwDh8+bNdkZWVp1apVWrlypdavX6+amhoNGzZMDQ0Nvm4ZAAAYyOcnu9u4caNuvvlm3XDDDZKkbt266aWXXtKHH34o6dtZmAULFmjmzJkaMWKEJKmwsFDx8fFasWKFxo8fL4/HoyVLluiFF17QoEGDJEnLly+X2+3WunXrNHTo0CavW1dXp7q6Ovt+dXW1r98aAAAIID4PMVdeeaWeffZZffbZZ7rkkkv00Ucfaf369VqwYIEkqaysTBUVFRoyZIi9TVhYmAYMGKANGzZo/PjxKikp0bFjx7xqEhISlJycrA0bNpwyxOTl5Wn27Nm+fjsAYLbmngqZUyfDID4PMQ8++KA8Ho8uvfRSBQUFqaGhQb/5zW/0H//xH5KkiooKSVJ8fLzXdvHx8dq9e7ddExoaqo4dOzapObH9yWbMmKHs7Gz7fnV1tdxut8/eFwAACCw+DzEvv/yyli9frhUrVqhnz54qLS1VVlaWEhISNGbMGLvO4XB4bWdZVpOxk52pJiwsTGFhYT/+DQAAACP4PMT8+te/1kMPPaTbbrtNktSrVy/t3r1beXl5GjNmjFwul6RvZ1s6d+5sb1dZWWnPzrhcLtXX16uqqsprNqayslLp6em+bhkAABjI50cnHT16VO3aeT9tUFCQfYh1YmKiXC6X1q5daz9eX1+v4uJiO6CkpKQoJCTEq6a8vFyffPIJIQYAAEhqgZmYG2+8Ub/5zW/UtWtX9ezZU1u2bNH8+fN19913S/p2N1JWVpZyc3OVlJSkpKQk5ebmKiIiQqNGjZIkOZ1OjRs3TlOnTlVsbKxiYmI0bdo09erVyz5aCQh0rI8EgJbl8xDzzDPP6NFHH9XEiRNVWVmphIQEjR8/Xo899phdM336dNXW1mrixImqqqpSWlqa1qxZo8jISLsmPz9fwcHBGjlypGprazVw4EAtW7ZMQUFBvm4ZAAAYyGFZluXvJlpCdXW1nE6nPB6PoqKi/N0O2iBmYponIH9eAdlUC2uL7xkBpTnf31w7CQAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACM5PNrJwEADNbcyw5wmQL4ETMxAADASIQYAABgJHYnAWgb2O0BtDrMxAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjBfu7AQCQpJyclq0H0PowEwMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCQOsQZ+IA7pBYDAwkwMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGCnY3w0AwFnJyfF3BwD8rEVmYvbv36/bb79dsbGxioiIUJ8+fVRSUmI/blmWcnJylJCQoPDwcGVkZGjbtm1ez1FXV6fMzEx16tRJHTp00E033aR9+/a1RLsAAMBAPg8xVVVV6t+/v0JCQvTnP/9Zn376qebNm6fo6Gi7Zu7cuZo/f74KCgq0adMmuVwuDR48WIcPH7ZrsrKytGrVKq1cuVLr169XTU2Nhg0bpoaGBl+3DAAADOTz3UlPPvmk3G63li5dao9169bN/rNlWVqwYIFmzpypESNGSJIKCwsVHx+vFStWaPz48fJ4PFqyZIleeOEFDRo0SJK0fPlyud1urVu3TkOHDm3yunV1daqrq7PvV1dX+/qtAQCAAOLzmZg333xTqampuuWWWxQXF6crrrhCzz//vP14WVmZKioqNGTIEHssLCxMAwYM0IYNGyRJJSUlOnbsmFdNQkKCkpOT7ZqT5eXlyel02je32+3rtwYAAAKIz0PMl19+qUWLFikpKUl/+ctfNGHCBE2ZMkV/+MMfJEkVFRWSpPj4eK/t4uPj7ccqKioUGhqqjh07nrbmZDNmzJDH47Fve/fu9fVbAwAAAcTnu5MaGxuVmpqq3NxcSdIVV1yhbdu2adGiRbrzzjvtOofD4bWdZVlNxk52ppqwsDCFhYX9yO4BAIApfD4T07lzZ1122WVeYz169NCePXskSS6XS5KazKhUVlbaszMul0v19fWqqqo6bQ0AAGjbfB5i+vfvr507d3qNffbZZ7rgggskSYmJiXK5XFq7dq39eH19vYqLi5Weni5JSklJUUhIiFdNeXm5PvnkE7sGAAC0bT7fnfSrX/1K6enpys3N1ciRI/XBBx9o8eLFWrx4saRvdyNlZWUpNzdXSUlJSkpKUm5uriIiIjRq1ChJktPp1Lhx4zR16lTFxsYqJiZG06ZNU69eveyjlQAAQNvm8xDz05/+VKtWrdKMGTM0Z84cJSYmasGCBRo9erRdM336dNXW1mrixImqqqpSWlqa1qxZo8jISLsmPz9fwcHBGjlypGprazVw4EAtW7ZMQUFBvm4ZAAAYyGFZluXvJlpCdXW1nE6nPB6PoqKi/N0OWgHOch9YcpTj7xYg8Q8DPtec728uAAkAAIxEiAEAAEbiKtYAgLN3NruT2AUFH2EmBgAAGIkQAwAAjESIAQAARmJNDICAkFGU08wNWqILACZhJgYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARuLaSWiTcnL83QEA4MdiJgYAABiJEAMAAIxEiAEAAEZiTQwAIxUVNX+bjAxfdwHAn5iJAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASMH+bgAA0Mbk5LRsPdoMZmIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABipxUNMXl6eHA6HsrKy7DHLspSTk6OEhASFh4crIyND27Zt89qurq5OmZmZ6tSpkzp06KCbbrpJ+/bta+l2AQCAIVo0xGzatEmLFy9W7969vcbnzp2r+fPnq6CgQJs2bZLL5dLgwYN1+PBhuyYrK0urVq3SypUrtX79etXU1GjYsGFqaGhoyZYBAIAhWizE1NTUaPTo0Xr++efVsWNHe9yyLC1YsEAzZ87UiBEjlJycrMLCQh09elQrVqyQJHk8Hi1ZskTz5s3ToEGDdMUVV2j58uXaunWr1q1b11ItAwAAg7RYiJk0aZJuuOEGDRo0yGu8rKxMFRUVGjJkiD0WFhamAQMGaMOGDZKkkpISHTt2zKsmISFBycnJds3J6urqVF1d7XUDAACtV4ucsXflypXavHmzNm3a1OSxiooKSVJ8fLzXeHx8vHbv3m3XhIaGes3gnKg5sf3J8vLyNHv2bF+0DwAADODzELN371498MADWrNmjdq3b3/aOofD4XXfsqwmYyc7U82MGTOUnZ1t36+urpbb7W5G5wB8KaMox98tAGjlfL47qaSkRJWVlUpJSVFwcLCCg4NVXFysp59+WsHBwfYMzMkzKpWVlfZjLpdL9fX1qqqqOm3NycLCwhQVFeV1AwAArZfPQ8zAgQO1detWlZaW2rfU1FSNHj1apaWluvDCC+VyubR27Vp7m/r6ehUXFys9PV2SlJKSopCQEK+a8vJyffLJJ3YNAABo23y+OykyMlLJycleYx06dFBsbKw9npWVpdzcXCUlJSkpKUm5ubmKiIjQqFGjJElOp1Pjxo3T1KlTFRsbq5iYGE2bNk29evVqslAYAAC0TS2ysPf7TJ8+XbW1tZo4caKqqqqUlpamNWvWKDIy0q7Jz89XcHCwRo4cqdraWg0cOFDLli1TUFCQP1oGAAABxmFZluXvJlpCdXW1nE6nPB4P62PQRE6Ovzto/QJxYW9Ghr87wFnhH2yb0pzvb66dBAAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJL+cJwYA/KGoqPnbcFg2ELiYiQEAAEYixAAAACOxOwmtAif0BIC2h5kYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASMH+bgAAgDPKyWnZehiLmRgAAGAkQgwAADASIQYAABiJEAMAAIzEwl4EHNbkAQB+CEIMAJxBUVHz6jMyWqILAKfC7iQAAGAkZmIAfK+Mohx/twAATTATAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADBSsK+fMC8vT6+99pp27Nih8PBwpaen68knn1T37t3tGsuyNHv2bC1evFhVVVVKS0vT7373O/Xs2dOuqaur07Rp0/TSSy+ptrZWAwcO1MKFC3X++ef7umUAQGuSk9Oy9QgYPp+JKS4u1qRJk/Tee+9p7dq1On78uIYMGaIjR47YNXPnztX8+fNVUFCgTZs2yeVyafDgwTp8+LBdk5WVpVWrVmnlypVav369ampqNGzYMDU0NPi6ZQAAYCCfz8S89dZbXveXLl2quLg4lZSU6Oqrr5ZlWVqwYIFmzpypESNGSJIKCwsVHx+vFStWaPz48fJ4PFqyZIleeOEFDRo0SJK0fPlyud1urVu3TkOHDvV12wAAwDAtvibG4/FIkmJiYiRJZWVlqqio0JAhQ+yasLAwDRgwQBs2bJAklZSU6NixY141CQkJSk5OtmtOVldXp+rqaq8bAABovVo0xFiWpezsbF155ZVKTk6WJFVUVEiS4uPjvWrj4+PtxyoqKhQaGqqOHTuetuZkeXl5cjqd9s3tdvv67QAAgADSoiFm8uTJ+vjjj/XSSy81eczhcHjdtyyrydjJzlQzY8YMeTwe+7Z3796zbxwAAAS8FgsxmZmZevPNN/XXv/7V64gil8slSU1mVCorK+3ZGZfLpfr6elVVVZ225mRhYWGKioryugEAgNbL5yHGsixNnjxZr732mt555x0lJiZ6PZ6YmCiXy6W1a9faY/X19SouLlZ6erokKSUlRSEhIV415eXl+uSTT+waAADQtvn86KRJkyZpxYoVeuONNxQZGWnPuDidToWHh8vhcCgrK0u5ublKSkpSUlKScnNzFRERoVGjRtm148aN09SpUxUbG6uYmBhNmzZNvXr1so9WAgAAbZvPQ8yiRYskSRkZGV7jS5cu1dixYyVJ06dPV21trSZOnGif7G7NmjWKjIy06/Pz8xUcHKyRI0faJ7tbtmyZgoKCfN0yAAAwkMOyLMvfTbSE6upqOZ1OeTwe1scYhpNnBp6Mohx/t2CMk/7/BhPwSyegNOf7m2snAQAAIxFiAACAkQgxAADASD5f2AsAbVlRUfO3YR0NcHaYiQEAAEZiJgZogzjaCEBrQIhBi+PoRQBAS2B3EgAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjcRVrAPCzoqLm1WdktEQXgHmYiQEAAEZiJgYA0Lbl5JybbeBzzMQAAAAjMRMDtAIZRTn+bgEAzjlmYgAAgJEIMQAAwEiEGAAAYCTWxKBZWJAPAAgUzMQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEbiZHcAADRXc8/8yZlCWwQzMQAAwEiEGAAAYCRCDAAAMBJrYtowdtECAExGiAECUEZRjr9bAICAx+4kAABgJGZiAMAwRUXN3yYjw9ddAP7HTAwAADASIQYAABiJEAMAAIxEiAEAAEZiYS8AAC2Nay21CGZiAACAkZiJAVoYJ64DgJZBiGlFmH0EcDrNPbcM55WBCdidBAAAjMRMDAAAgYaFwD8IISZAtdG/jwACBJc2gAkIMUAzsVAXAAIDa2IAAICRAj7ELFy4UImJiWrfvr1SUlL0t7/9zd8tAQCAABDQu5NefvllZWVlaeHCherfv7+ee+45XXfddfr000/VtWtXf7eHVoLdQwBgJodlWZa/mzidtLQ09e3bV4sWLbLHevTooeHDhysvL++M21ZXV8vpdMrj8SgqKqqlW/1eLNQ9O80NGEUZzas/m9cA4D8sHvahlj4C6iy/+Jrz/R2wMzH19fUqKSnRQw895DU+ZMgQbdiwoUl9XV2d6urq7Psej0fStz+M7/M9eQh+dOR43fcXfcdP181o/ms0ewsA/vKndc3f5qqrfN9HqzCj+b8vm+UHfP+eerNvt/shcywBG2IOHTqkhoYGxcfHe43Hx8eroqKiSX1eXp5mz57dZNztdrdYjwAAA/zd3w20Uf/v//2ozQ8fPiyn03nGmoANMSc4HA6v+5ZlNRmTpBkzZig7O9u+39jYqH/84x+KjY09Zb0pqqur5Xa7tXfv3oDYLdaW8VkEDj6LwMFnEVhaw+dhWZYOHz6shISE760N2BDTqVMnBQUFNZl1qaysbDI7I0lhYWEKCwvzGouOjm7JFs+pqKgoY/9CtjZ8FoGDzyJw8FkEFtM/j++bgTkhYA+xDg0NVUpKitauXes1vnbtWqWnp/upKwAAECgCdiZGkrKzs3XHHXcoNTVV/fr10+LFi7Vnzx5NmDDB360BAAA/C+gQc+utt+qbb77RnDlzVF5eruTkZK1evVoXXHCBv1s7Z8LCwjRr1qwmu8pw7vFZBA4+i8DBZxFY2trnEdDniQEAADidgF0TAwAAcCaEGAAAYCRCDAAAMBIhBgAAGIkQY6C6ujr16dNHDodDpaWl/m6nzfnqq680btw4JSYmKjw8XBdddJFmzZql+vp6f7fWZixcuFCJiYlq3769UlJS9Le//c3fLbU5eXl5+ulPf6rIyEjFxcVp+PDh2rlzp7/bgr79bBwOh7KysvzdSosjxBho+vTpP+h0zGgZO3bsUGNjo5577jlt27ZN+fn5evbZZ/Xwww/7u7U24eWXX1ZWVpZmzpypLVu26KqrrtJ1112nPXv2+Lu1NqW4uFiTJk3Se++9p7Vr1+r48eMaMmSIjhzhkqr+tGnTJi1evFi9e/f2dyvnBIdYG+bPf/6zsrOz9eqrr6pnz57asmWL+vTp4++22rynnnpKixYt0pdffunvVlq9tLQ09e3bV4sWLbLHevTooeHDhyuPS9L7zcGDBxUXF6fi4mJdffXV/m6nTaqpqVHfvn21cOFCPfHEE+rTp48WLFjg77ZaFDMxBvn6669177336oUXXlBERIS/28F3eDwexcTE+LuNVq++vl4lJSUaMmSI1/iQIUO0YcMGP3UF6dt/A5L4d+BHkyZN0g033KBBgwb5u5VzJqDP2Iv/n2VZGjt2rCZMmKDU1FR99dVX/m4J/+eLL77QM888o3nz5vm7lVbv0KFDamhoaHIR2Pj4+CYXi8W5Y1mWsrOzdeWVVyo5Odnf7bRJK1eu1ObNm7Vp0yZ/t3JOMRPjZzk5OXI4HGe8ffjhh3rmmWdUXV2tGTNm+LvlVuuHfhbfdeDAAV177bW65ZZbdM899/ip87bH4XB43bcsq8kYzp3Jkyfr448/1ksvveTvVtqkvXv36oEHHtDy5cvVvn17f7dzTrEmxs8OHTqkQ4cOnbGmW7duuu222/Q///M/Xr+oGxoaFBQUpNGjR6uwsLClW231fuhnceKXxIEDB3TNNdcoLS1Ny5YtU7t2/J+gpdXX1ysiIkL//d//rZ///Of2+AMPPKDS0lIVFxf7sbu2KTMzU6+//rreffddJSYm+rudNun111/Xz3/+cwUFBdljDQ0Ncjgcateunerq6rwea00IMYbYs2ePqqur7fsHDhzQ0KFD9cc//lFpaWk6//zz/dhd27N//35dc801SklJ0fLly1vtL4hAlJaWppSUFC1cuNAeu+yyy3TzzTezsPccsixLmZmZWrVqlYqKipSUlOTvltqsw4cPa/fu3V5jd911ly699FI9+OCDrXoXH2tiDNG1a1ev++edd54k6aKLLiLAnGMHDhxQRkaGunbtqv/8z//UwYMH7cdcLpcfO2sbsrOzdccddyg1NVX9+vXT4sWLtWfPHk2YMMHfrbUpkyZN0ooVK/TGG28oMjLSXpPkdDoVHh7u5+7alsjIyCZBpUOHDoqNjW3VAUYixADNtmbNGn3++ef6/PPPmwRIJjZb3q233qpvvvlGc+bMUXl5uZKTk7V69WpdcMEF/m6tTTlxiHtGRobX+NKlSzV27Nhz3xDaJHYnAQAAI7ESEQAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBENC+/vprORwO/fa3v9UVV1yh9u3bq2fPnlq/fr2/WwPgZ4QYAAFty5YtkqSFCxcqPz9fH330kbp166bRo0ersbHRz90B8CeuYg0goH300UcKCQnRW2+9pcTEREnSnDlzlJqaqv3798vtdvu5QwD+wkwMgIBWWlqqESNG2AFGksLCwvzYEYBAQYgBENBKS0vVp08fr7HNmzerU6dO6tKli9LS0vThhx9KksaMGaNFixb5oUsA/sDuJAABq7a2Vrt27VJDQ4M91tjYqN/+9rcaM2aM2rVrp0cffVS5ubnq37+/zjvvPN1///1+7BjAueSwLMvydxMAcCoffPCB+vfvr4svvli///3vFR0drccee0ybN29WSUmJoqOjJUl9+vRRXFycVq9ereBg/m8GtBXsTgIQsEpLS3XppZfqkUce0S9/+UulpqaqXbt22rhxox1gPvjgA/3zn/9UdHQ0AQZoYwgxAALWRx99pF69emn06NHav3+/jhw5opdffllxcXGSpP379+uee+7RX//6V+3atUvbt2/3c8cAziVCDICAVVpaqt69e5/ysdraWv3yl79UQUGBEhMTNX36dD3xxBPnuEMA/sSaGAABybIsOZ1OrVy5Utdff72/2wEQgAgxAADASOxOAgAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAj/X8meaHMu5yFCgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGxCAYAAACTN+exAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsc0lEQVR4nO3df1jUZb7/8dfIj/FHMIoujNSYVGxaaCq2rFpJx19lbrW2WUezbK00FWPR1cwsql24wk3YZHWz41HKzNptrfZs24rtQstqZSiuqVkWqSmEdmgQJVD4fP/o+Pk2oiY2MHPD83Fdc13N/bln5j1MMi/u+/58bodlWZYAAAAM0y7QBQAAAJwLQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJFCA11Ac2loaNCBAwcUEREhh8MR6HIAAMBZsCxLhw8fVmxsrNq1O/NYS6sNMQcOHJDH4wl0GQAA4Bzs27dPF1xwwRn7tNoQExERIembH0JkZGSAqwEAAGejqqpKHo/H/h4/k1YbYk5MIUVGRhJiAAAwzNksBWFhLwAAMBIhBgAAGIkQAwAAjNRq18QAANquhoYG1dXVBboMnEJYWJhCQkL88lyEGABAq1JXV6fS0lI1NDQEuhScRufOneV2u7/3ddwIMQCAVsOyLJWVlSkkJEQej+c7L5aGlmVZlo4ePaqKigpJUvfu3b/X8xFiAACtxvHjx3X06FHFxsaqY8eOgS4Hp9ChQwdJUkVFhaKjo7/X1BIRFQDQatTX10uSwsPDA1wJzuREwDx27Nj3eh5CDACg1WHPvODmr8+HEAMAAIxEiAEAAEZiYS8AoNVLTzf79QoKCnTttdeqsrJSnTt39u+TG4yRGAAA2piCggI5HA599dVXgS7leyHEAACAUwr2qx4TYgAACAKWZSkrK0sXXXSROnTooCuuuEJ//OMfT9t/w4YNuuaaa9ShQwd5PB7NnDlTR44csY/X1tZqzpw58ng8cjqdio+P1/Lly/XZZ5/p2muvlSR16dJFDodDkyZNkiQlJydrxowZSktLU7du3TRixAhJUmFhoX70ox/J6XSqe/fuevDBB3X8+HH7tZKTkzVz5kzNmTNHUVFRcrvdSm+BOTzWxACAv53LL++WXrSBoPPwww/rT3/6k5YuXar4+Hi9/fbbuuOOO/SDH/ygUd9t27Zp1KhReuKJJ7R8+XIdPHhQM2bM0IwZM7RixQpJ0p133qmNGzfq6aef1hVXXKHS0lIdOnRIHo9Hr7zyim655Rbt2rVLkZGR9gXoJCkvL0/333+//vWvf8myLO3fv1+jR4/WpEmT9Nxzz+nDDz/Uvffeq/bt2/sElby8PKWlpendd9/Vxo0bNWnSJA0ZMsQOQs2BEAMAQIAdOXJEixYt0t///ncNGjRIknTRRRepqKhIzzzzjO677z6f/gsXLtT48eOVmpoqSYqPj9fTTz+toUOHaunSpdq7d69efvll5efna/jw4fbznRAVFSVJio6ObrRQ+JJLLlFWVpZ9f/78+fJ4PMrNzZXD4VCvXr104MABzZ07V4888oi9tUPfvn316KOP2vXk5ubqrbfeatYQ0+TppLfffls/+clPFBsbK4fDoVdffdXnuGVZSk9PV2xsrDp06KDk5GRt377dp09tba1SUlLUrVs3derUSTfeeKM+//xznz6VlZWaOHGiXC6XXC6XJk6caPwCJAAATmXHjh36+uuvNWLECJ133nn27bnnntMnn3zSqH9xcbFWrlzp03fUqFFqaGhQaWmpSkpKFBISoqFDhza5loEDB/rc37lzpwYNGuRzgbohQ4aourra57u7b9++Po/r3r27vUdSc2lyiDly5IiuuOIK5ebmnvJ4VlaWFi1apNzcXG3atElut1sjRozQ4cOH7T6pqalau3at1qxZo6KiIlVXV2vMmDH25aIlafz48SopKdGbb76pN998UyUlJZo4ceI5vEUAAILbiR23//KXv6ikpMS+7dix45TrYhoaGjRlyhSfvlu3btXHH3+siy++2Gd6qKk6derkc9+yrEZX2LUsS5LvlXfDwsJ8+jgcjmbfSbzJ00nXX3+9rr/++lMesyxLOTk5mj9/vsaOHSvpmzmymJgYrV69WlOmTJHX69Xy5cv1/PPP20Ncq1atksfj0fr16zVq1Cjt3LlTb775pt555x0lJSVJkp599lkNGjRIu3bt0qWXXtrotWtra1VbW2vfr6qqaupbAwAgIC677DI5nU7t3bv3lKMnJ4/GDBgwQNu3b9cll1xyyufr06ePGhoaVFhYaH/XftuJvaW+PXhwptpeeeUVnzCzYcMGRURE6Pzzz//Oxzcnv56dVFpaqvLyco0cOdJuczqdGjp0qDZs2CDpmyGwY8eO+fSJjY1VQkKC3Wfjxo1yuVx2gJGkH//4x3K5XHafk2VmZtpTTy6XSx6Px59vDQCAZhMREaHZs2frF7/4hfLy8vTJJ59oy5Yt+t3vfqe8vLxG/efOnauNGzdq+vTpKikp0ccff6zXX39dKSkpkqSePXvqrrvu0s9//nO9+uqrKi0tVUFBgV5++WVJ0oUXXiiHw6H/+Z//0cGDB1VdXX3a2qZNm6Z9+/YpJSVFH374oV577TU9+uijSktLs9fDBIpfF/aWl5dLkmJiYnzaY2JitGfPHrtPeHi4unTp0qjPiceXl5crOjq60fNHR0fbfU42b948paWl2ferqqoIMgAASWac/PXEE08oOjpamZmZ+vTTT9W5c2cNGDBADz30UKNpmb59+6qwsFDz58/X1VdfLcuydPHFF+u2226z+yxdulQPPfSQpk2bpi+//FI9evTQQw89JEk6//zz9dhjj+nBBx/U3XffrTvvvFMrV648ZV3nn3++3njjDf3yl7/UFVdcoaioKE2ePFkPP/xws/0szlaznJ10qrmz79qx8uQ+p+p/pudxOp1yOp3nUC0ABIGmfsua8K2MJnE4HJo5c6Zmzpx5yuMn1qGccOWVV2rdunWnfb727dtr0aJFWrRo0SmPL1iwQAsWLPBpKygoOGXfoUOH6r333jvta53qcSef+NMc/DoO5Ha7JanRaElFRYU9OuN2u1VXV6fKysoz9vniiy8aPf/BgwcbjfIAAIC2ya8hJi4uTm63W/n5+XZbXV2dCgsLNXjwYElSYmKiwsLCfPqUlZXpgw8+sPsMGjRIXq/XJ/W9++678nq9dh8AANC2NXk6qbq6Wrt377bvnzgfPSoqSj169FBqaqoyMjIUHx+v+Ph4ZWRkqGPHjho/frwkyeVyafLkyZo1a5a6du2qqKgozZ49W3369LFXUPfu3VvXXXed7r33Xj3zzDOSpPvuu09jxow55ZlJAACg7WlyiHn//fftPRck2Ytp77rrLq1cuVJz5sxRTU2Npk2bpsrKSiUlJWndunWKiIiwH5Odna3Q0FCNGzdONTU1GjZsmFauXKmQkBC7zwsvvKCZM2faZzHdeOONp702DQAAaHsc1skrhVqJqqoquVwueb1eRUZGBrocAG1JSyy6ZWHvKX399dcqLS1VXFyc2rdvH+hycBpn+pya8v3NLtYAAMBIhBgAAGAkQgwAADASIQYAgFasoKBADodDX331VaBL8btmuWIvAABBpaUXQgfRwuvBgwerrKxMLpdLkrRy5Uqlpqa2ilDDSAwAAK1YeHi43G73d27/c7K6urpmqsh/GIkBgO8SRH9Vo3VKTk5WQkKCJGnVqlUKCQnR/fffryeeeEIOh0OVlZV64IEH9Oc//1m1tbUaOnSonn76acXHx0uS9uzZoxkzZqioqEh1dXXq2bOnFi5cqNGjR6ugoEDXXnutKisrVVJSorvvvlvS/9+j8NFHH1V6erp69uype+65R7t379batWt18803Ky8vT6+88ooeeeQR7d69W927d1dKSopmzZpl196zZ0/dd9992r17t/7whz+oS5cuevjhh3Xfffc1+8+NkRgAAIJAXl6eQkND9e677+rpp59Wdna2/uu//kuSNGnSJL3//vt6/fXXtXHjRlmWpdGjR+vYsWOSpOnTp6u2tlZvv/22tm3bpieffFLnnXdeo9cYPHiwcnJyFBkZqbKyMpWVlWn27Nn28YULFyohIUHFxcVasGCBiouLNW7cON1+++3atm2b0tPTtWDBgkY7Xj/11FMaOHCgtmzZomnTpun+++/Xhx9+2Hw/rP/DSAwAAEHA4/EoOztbDodDl156qbZt26bs7GwlJyfr9ddf17/+9S97/8AXXnhBHo9Hr776qm699Vbt3btXt9xyi/r06SNJuuiii075GuHh4XK5XHI4HPamzd/2H//xHz6hZsKECRo2bJi92/UPf/hD7dixQwsXLtSkSZPsfqNHj9a0adMkSXPnzlV2drYKCgrUq1cvv/xsTocQAwAmOpcpLqbFgtqPf/xjn3UrgwYN0lNPPaUdO3YoNDRUSUlJ9rGuXbvq0ksv1c6dOyVJM2fO1P33369169Zp+PDhuuWWW9S3b98m1zBw4ECf+zt37tRNN93k0zZkyBDl5OSovr7e3i7o2691IiBVVFQ0+fWbiukkAAAMZFmWHXruueceffrpp5o4caK2bdumgQMHavHixU1+zk6dOp32Nb7ddrKwsDCf+w6HQw0NDU1+/aYixAAAEATeeeedRvfj4+N12WWX6fjx43r33XftY19++aU++ugj9e7d227zeDyaOnWq/vSnP2nWrFl69tlnT/k64eHhqq+vP6uaLrvsMhUVFfm0bdiwQT/84Q99Nm0OFEIMAABBYN++fUpLS9OuXbv04osvavHixXrggQcUHx+vm266Sffee6+Kioq0detW3XHHHTr//PPtqZ7U1FT97W9/U2lpqTZv3qy///3vPgHn23r27Knq6mq99dZbOnTokI4ePXrammbNmqW33npLTzzxhD766CPl5eUpNzfXZ91MIBFiAAAIAnfeeadqamr0ox/9SNOnT1dKSop9mvKKFSuUmJioMWPGaNCgQbIsS2+88YY9jVNfX6/p06erd+/euu6663TppZdqyZIlp3ydwYMHa+rUqbrtttv0gx/8QFlZWaetacCAAXr55Ze1Zs0aJSQk6JFHHtHjjz/us6g3kBzWqSa3WoGmbOUNAGfUWhbEtpb3cQZff/21SktLFRcXp/bt2we6nLOWnJysfv36KScnJ9CltIgzfU5N+f5mJAYAABiJEAMAAIzEdWIAAAiwgoKCQJdgJEZiAACAkRiJAdqgpq7vbAPrQdHKtNJzVloNf30+jMQAAFqNExdgq6urC3AlOJMT16Y5+Uq/TcVIDACg1QgNDVXHjh118OBBhYWFqV07/lYPJpZl6ejRo6qoqFDnzp2/91V/CTEAgFbD4XCoe/fuKi0t1Z49ewJdDk6jc+fOp9xFu6kIMQCAViU8PFzx8fFMKQWpsLAwv+27RIgBALQ67dq1M+qKvTg3TBYCAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJU6yBVoC9jQC0RYzEAAAAIxFiAACAkQgxAADASKyJAfCdmrLmhvU5AFoKIQZA20LKAloNppMAAICRCDEAAMBITCcBQYpZDwA4M0ZiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEih/n7C48ePKz09XS+88ILKy8vVvXt3TZo0SQ8//LDatfsmM1mWpccee0zLli1TZWWlkpKS9Lvf/U6XX365/Ty1tbWaPXu2XnzxRdXU1GjYsGFasmSJLrjgAn+XDLSI9PRAVwAArYvfR2KefPJJ/f73v1dubq527typrKwsLVy4UIsXL7b7ZGVladGiRcrNzdWmTZvkdrs1YsQIHT582O6TmpqqtWvXas2aNSoqKlJ1dbXGjBmj+vp6f5cMAAAM5PeRmI0bN+qmm27SDTfcIEnq2bOnXnzxRb3//vuSvhmFycnJ0fz58zV27FhJUl5enmJiYrR69WpNmTJFXq9Xy5cv1/PPP6/hw4dLklatWiWPx6P169dr1KhR/i4bAAAYxu8jMVdddZXeeustffTRR5KkrVu3qqioSKNHj5YklZaWqry8XCNHjrQf43Q6NXToUG3YsEGSVFxcrGPHjvn0iY2NVUJCgt3nZLW1taqqqvK5AQCA1svvIzFz586V1+tVr169FBISovr6ev3617/Wf/7nf0qSysvLJUkxMTE+j4uJidGePXvsPuHh4erSpUujPicef7LMzEw99thj/n47AAAgSPl9JOall17SqlWrtHr1am3evFl5eXn6zW9+o7y8PJ9+DofD575lWY3aTnamPvPmzZPX67Vv+/bt+35vBAAABDW/j8T88pe/1IMPPqjbb79dktSnTx/t2bNHmZmZuuuuu+R2uyXJPnPphIqKCnt0xu12q66uTpWVlT6jMRUVFRo8ePApX9fpdMrpdPr77QAAgCDl95GYo0eP2qdSnxASEqKGhgZJUlxcnNxut/Lz8+3jdXV1KiwstANKYmKiwsLCfPqUlZXpgw8+OG2IAQAAbYvfR2J+8pOf6Ne//rV69Oihyy+/XFu2bNGiRYv085//XNI300ipqanKyMhQfHy84uPjlZGRoY4dO2r8+PGSJJfLpcmTJ2vWrFnq2rWroqKiNHv2bPXp08c+WwkAALRtfg8xixcv1oIFCzRt2jRVVFQoNjZWU6ZM0SOPPGL3mTNnjmpqajRt2jT7Ynfr1q1TRESE3Sc7O1uhoaEaN26cfbG7lStXKiQkxN8lAwAAAzksy7ICXURzqKqqksvlktfrVWRkZKDLAdrMFXuD/n0GfYHNqC2/dxijKd/f7J0EAACM5PfpJABAkDqXkRhGbxDEGIkBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCR2sQbgV03d9JhNkgGcK0ZiAACAkQgxAADASEwnATAb81FAm8VIDAAAMBIjMQACioXAAM4VIzEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgpNBAFwCYKj090BUAQNvGSAwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjMTeSQCA02vqJmFsKoYWxEgMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRmiXE7N+/X3fccYe6du2qjh07ql+/fiouLraPW5al9PR0xcbGqkOHDkpOTtb27dt9nqO2tlYpKSnq1q2bOnXqpBtvvFGff/55c5QLAAAM5PcQU1lZqSFDhigsLEx//etftWPHDj311FPq3Lmz3ScrK0uLFi1Sbm6uNm3aJLfbrREjRujw4cN2n9TUVK1du1Zr1qxRUVGRqqurNWbMGNXX1/u7ZAAAYCC/X+zuySeflMfj0YoVK+y2nj172v9tWZZycnI0f/58jR07VpKUl5enmJgYrV69WlOmTJHX69Xy5cv1/PPPa/jw4ZKkVatWyePxaP369Ro1apS/ywYAAIbx+0jM66+/roEDB+rWW29VdHS0+vfvr2effdY+XlpaqvLyco0cOdJuczqdGjp0qDZs2CBJKi4u1rFjx3z6xMbGKiEhwe5zstraWlVVVfncAABA6+X3EPPpp59q6dKlio+P19/+9jdNnTpVM2fO1HPPPSdJKi8vlyTFxMT4PC4mJsY+Vl5ervDwcHXp0uW0fU6WmZkpl8tl3zwej7/fGgAACCJ+DzENDQ0aMGCAMjIy1L9/f02ZMkX33nuvli5d6tPP4XD43Lcsq1Hbyc7UZ968efJ6vfZt37593++NAACAoOb3ENO9e3dddtllPm29e/fW3r17JUlut1uSGo2oVFRU2KMzbrdbdXV1qqysPG2fkzmdTkVGRvrcAABA6+X3EDNkyBDt2rXLp+2jjz7ShRdeKEmKi4uT2+1Wfn6+fbyurk6FhYUaPHiwJCkxMVFhYWE+fcrKyvTBBx/YfQAAQNvm97OTfvGLX2jw4MHKyMjQuHHj9N5772nZsmVatmyZpG+mkVJTU5WRkaH4+HjFx8crIyNDHTt21Pjx4yVJLpdLkydP1qxZs9S1a1dFRUVp9uzZ6tOnj322EgAAaNv8HmKuvPJKrV27VvPmzdPjjz+uuLg45eTkaMKECXafOXPmqKamRtOmTVNlZaWSkpK0bt06RURE2H2ys7MVGhqqcePGqaamRsOGDdPKlSsVEhLi75IBAICBHJZlWYEuojlUVVXJ5XLJ6/WyPgbNIj090BW0TY1+7nwQwYXPA99TU76/2TsJAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIzk972TAOBcJRekf3ens+gCoG1gJAYAABiJEAMAAIxEiAEAAEYixAAAACOxsBf4lvT0QFcAADhbjMQAAAAjEWIAAICRCDEAAMBIhBgAAGAkFvYCMEpBQdP6Jyc3RxUAggEjMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARuIUawCA/5zLBmRsWoZzxEgMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMFJooAsAmlN6eqArAAA0F0ZiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASG0ACaBbJBemBLgFAK9fsIzGZmZlyOBxKTU212yzLUnp6umJjY9WhQwclJydr+/btPo+rra1VSkqKunXrpk6dOunGG2/U559/3tzlAgAAQzRriNm0aZOWLVumvn37+rRnZWVp0aJFys3N1aZNm+R2uzVixAgdPnzY7pOamqq1a9dqzZo1KioqUnV1tcaMGaP6+vrmLBkAABii2UJMdXW1JkyYoGeffVZdunSx2y3LUk5OjubPn6+xY8cqISFBeXl5Onr0qFavXi1J8nq9Wr58uZ566ikNHz5c/fv316pVq7Rt2zatX7/+lK9XW1urqqoqnxsAAGi9mi3ETJ8+XTfccIOGDx/u015aWqry8nKNHDnSbnM6nRo6dKg2bNggSSouLtaxY8d8+sTGxiohIcHuc7LMzEy5XC775vF4muFdAQCAYNEsIWbNmjXavHmzMjMzGx0rLy+XJMXExPi0x8TE2MfKy8sVHh7uM4Jzcp+TzZs3T16v177t27fPH28FAAAEKb+fnbRv3z498MADWrdundq3b3/afg6Hw+e+ZVmN2k52pj5Op1NOp7PpBQMAACP5fSSmuLhYFRUVSkxMVGhoqEJDQ1VYWKinn35aoaGh9gjMySMqFRUV9jG32626ujpVVlaetg8AAGjb/D4SM2zYMG3bts2n7e6771avXr00d+5cXXTRRXK73crPz1f//v0lSXV1dSosLNSTTz4pSUpMTFRYWJjy8/M1btw4SVJZWZk++OADZWVl+btkAK1YQcHZ901Obq4qADQHv4eYiIgIJSQk+LR16tRJXbt2tdtTU1OVkZGh+Ph4xcfHKyMjQx07dtT48eMlSS6XS5MnT9asWbPUtWtXRUVFafbs2erTp0+jhcIAAKBtCsgVe+fMmaOamhpNmzZNlZWVSkpK0rp16xQREWH3yc7OVmhoqMaNG6eamhoNGzZMK1euVEhISCBKBgA0l/T05u2PVsthWZYV6CKaQ1VVlVwul7xeryIjIwNdDgKE33WBY+K2A0wnGYJ/2K1aU76/2QASAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJFCA10A0BRsXgsAOIGRGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIwUGugCACBYFBQ0rX9ycnNUAeBsMRIDAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJi90BOCvJBemBLgEAfDASAwAAjESIAQAARiLEAAAAI7EmBgBglvT0lnkMgh4jMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJL+HmMzMTF155ZWKiIhQdHS0br75Zu3atcunj2VZSk9PV2xsrDp06KDk5GRt377dp09tba1SUlLUrVs3derUSTfeeKM+//xzf5cLAOesoKBpNwD+5fcQU1hYqOnTp+udd95Rfn6+jh8/rpEjR+rIkSN2n6ysLC1atEi5ubnatGmT3G63RowYocOHD9t9UlNTtXbtWq1Zs0ZFRUWqrq7WmDFjVF9f7++SAQCAgfy+AeSbb77pc3/FihWKjo5WcXGxrrnmGlmWpZycHM2fP19jx46VJOXl5SkmJkarV6/WlClT5PV6tXz5cj3//PMaPny4JGnVqlXyeDxav369Ro0a1eh1a2trVVtba9+vqqry91sDAABBpNnXxHi9XklSVFSUJKm0tFTl5eUaOXKk3cfpdGro0KHasGGDJKm4uFjHjh3z6RMbG6uEhAS7z8kyMzPlcrnsm8fjaa63BAAAgkCzhhjLspSWlqarrrpKCQkJkqTy8nJJUkxMjE/fmJgY+1h5ebnCw8PVpUuX0/Y52bx58+T1eu3bvn37/P12AABAEPH7dNK3zZgxQ//+979VVFTU6JjD4fC5b1lWo7aTnamP0+mU0+k892IBAIBRmm0kJiUlRa+//rr+8Y9/6IILLrDb3W63JDUaUamoqLBHZ9xut+rq6lRZWXnaPgAAoG3z+0iMZVlKSUnR2rVrVVBQoLi4OJ/jcXFxcrvdys/PV//+/SVJdXV1Kiws1JNPPilJSkxMVFhYmPLz8zVu3DhJUllZmT744ANlZWX5u2QEWHp6oCsAAJjI7yFm+vTpWr16tV577TVFRETYIy4ul0sdOnSQw+FQamqqMjIyFB8fr/j4eGVkZKhjx44aP3683Xfy5MmaNWuWunbtqqioKM2ePVt9+vSxz1YCAABtm99DzNKlSyVJycnJPu0rVqzQpEmTJElz5sxRTU2Npk2bpsrKSiUlJWndunWKiIiw+2dnZys0NFTjxo1TTU2Nhg0bppUrVyokJMTfJQMAAAM5LMuyAl1Ec6iqqpLL5ZLX61VkZGSgy8EZMJ1khuSC9ECXYLyT/rZDS+IXjTGa8v3N3kkAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJGadRdrAMGJC9cBaA0YiQEAAEYixAAAACMRYgAAgJEIMQAAwEgs7IXfsVksgKDT1F9M/CIzAiEGAFpIQcHZ901Obq4qgNaD6SQAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJG4TgzQCrArNYC2iJEYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJvZMAADhZenrLPAbfCyMxAADASIQYAABgJKaT8J0YIQUABCNCDAAEoYKCpvVPTm6OKoDgxnQSAAAwEiMxQJBJLkgPdAkAYARGYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBILewGgFeCU7CDAVgUtjpEYAABgJEIMAAAwEiEGAAAYiTUxbRBTsAAQJJr6C5lf4D4IMUAz4wq8ANA8mE4CAABGIsQAAAAjMZ3USjBN2jKYGgKA4EGIAYA2qCkXx+PCeAhWTCcBAAAjMRITpJgeAgDgzBiJAQAARgr6kZglS5Zo4cKFKisr0+WXX66cnBxdffXVgS4LANoMNpcMImwy6SOoQ8xLL72k1NRULVmyREOGDNEzzzyj66+/Xjt27FCPHj0CXR4Mx5lGAGA2h2VZVqCLOJ2kpCQNGDBAS5cutdt69+6tm2++WZmZmWd8bFVVlVwul7xeryIjI5ulvlYcbtsEQgwQHBi5aWaGfVk15fs7aEdi6urqVFxcrAcffNCnfeTIkdqwYUOj/rW1taqtrbXve71eSd/8MJrLt14OQeCqf5452J7sSDPVAaBp/rL+7PuymuAczJsX6AqapOr/vlzPZowlaEPMoUOHVF9fr5iYGJ/2mJgYlZeXN+qfmZmpxx57rFG7x+NpthoBAC3sX4EuAC3l8OHDcrlcZ+wTtCHmBIfD4XPfsqxGbZI0b948paWl2fcbGhr0v//7v+ratesp+5uiqqpKHo9H+/bta7ZpMZwdPovgwWcRPPgsgktr+Dwsy9Lhw4cVGxv7nX2DNsR069ZNISEhjUZdKioqGo3OSJLT6ZTT6fRp69y5c3OW2KIiIyON/R+yteGzCB58FsGDzyK4mP55fNcIzAlBe52Y8PBwJSYmKj8/36c9Pz9fgwcPDlBVAAAgWATtSIwkpaWlaeLEiRo4cKAGDRqkZcuWae/evZo6dWqgSwMAAAEW1CHmtttu05dffqnHH39cZWVlSkhI0BtvvKELL7ww0KW1GKfTqUcffbTRVBlaHp9F8OCzCB58FsGlrX0eQX2dGAAAgNMJ2jUxAAAAZ0KIAQAARiLEAAAAIxFiAACAkQgxBqqtrVW/fv3kcDhUUlIS6HLanM8++0yTJ09WXFycOnTooIsvvliPPvqo6urqAl1am7FkyRLFxcWpffv2SkxM1D//+c9Al9TmZGZm6sorr1RERISio6N18803a9euXYEuC/rms3E4HEpNTQ10Kc2OEGOgOXPmnNXlmNE8PvzwQzU0NOiZZ57R9u3blZ2drd///vd66KGHAl1am/DSSy8pNTVV8+fP15YtW3T11Vfr+uuv1969ewNdWptSWFio6dOn65133lF+fr6OHz+ukSNH6sgRtlYNpE2bNmnZsmXq27dvoEtpEZxibZi//vWvSktL0yuvvKLLL79cW7ZsUb9+/QJdVpu3cOFCLV26VJ9++mmgS2n1kpKSNGDAAC1dutRu6927t26++WZlZjZtJ3P4z8GDBxUdHa3CwkJdc801gS6nTaqurtaAAQO0ZMkS/epXv1K/fv2Uk5MT6LKaFSMxBvniiy9077336vnnn1fHjh0DXQ6+xev1KioqKtBltHp1dXUqLi7WyJEjfdpHjhypDRs2BKgqSN/8G5DEv4MAmj59um644QYNHz480KW0mKC+Yi/+P8uyNGnSJE2dOlUDBw7UZ599FuiS8H8++eQTLV68WE899VSgS2n1Dh06pPr6+kabwMbExDTaLBYtx7IspaWl6aqrrlJCQkKgy2mT1qxZo82bN2vTpk2BLqVFMRITYOnp6XI4HGe8vf/++1q8eLGqqqo0b968QJfcap3tZ/FtBw4c0HXXXadbb71V99xzT4Aqb3scDofPfcuyGrWh5cyYMUP//ve/9eKLLwa6lDZp3759euCBB7Rq1Sq1b98+0OW0KNbEBNihQ4d06NChM/bp2bOnbr/9dv35z3/2+UVdX1+vkJAQTZgwQXl5ec1daqt3tp/FiV8SBw4c0LXXXqukpCStXLlS7drxN0Fzq6urU8eOHfWHP/xBP/3pT+32Bx54QCUlJSosLAxgdW1TSkqKXn31Vb399tuKi4sLdDlt0quvvqqf/vSnCgkJsdvq6+vlcDjUrl071dbW+hxrTQgxhti7d6+qqqrs+wcOHNCoUaP0xz/+UUlJSbrgggsCWF3bs3//fl177bVKTEzUqlWrWu0viGCUlJSkxMRELVmyxG677LLLdNNNN7GwtwVZlqWUlBStXbtWBQUFio+PD3RJbdbhw4e1Z88en7a7775bvXr10ty5c1v1FB9rYgzRo0cPn/vnnXeeJOniiy8mwLSwAwcOKDk5WT169NBvfvMbHTx40D7mdrsDWFnbkJaWpokTJ2rgwIEaNGiQli1bpr1792rq1KmBLq1NmT59ulavXq3XXntNERER9pokl8ulDh06BLi6tiUiIqJRUOnUqZO6du3aqgOMRIgBmmzdunXavXu3du/e3ShAMrDZ/G677TZ9+eWXevzxx1VWVqaEhAS98cYbuvDCCwNdWpty4hT35ORkn/YVK1Zo0qRJLV8Q2iSmkwAAgJFYiQgAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAhqX3zxhRwOh37729+qf//+at++vS6//HIVFRUFujQAAUaIARDUtmzZIklasmSJsrOztXXrVvXs2VMTJkxQQ0NDgKsDEEjsYg0gqG3dulVhYWF68803FRcXJ0l6/PHHNXDgQO3fv18ejyfAFQIIFEZiAAS1kpISjR071g4wkuR0OgNYEYBgQYgBENRKSkrUr18/n7bNmzerW7duOv/885WUlKT3339fknTXXXdp6dKlAagSQCAwnQQgaNXU1Ojjjz9WfX293dbQ0KDf/va3uuuuu9SuXTstWLBAGRkZGjJkiM477zzdf//9AawYQEtyWJZlBboIADiV9957T0OGDNEll1yi//7v/1bnzp31yCOPaPPmzSouLlbnzp0lSf369VN0dLTeeOMNhYbytxnQVjCdBCBolZSUqFevXnr44Yf1s5/9TAMHDlS7du20ceNGO8C89957+uqrr9S5c2cCDNDGEGIABK2tW7eqT58+mjBhgvbv368jR47opZdeUnR0tCRp//79uueee/SPf/xDH3/8sXbu3BngigG0JEIMgKBVUlKivn37nvJYTU2Nfvaznyk3N1dxcXGaM2eOfvWrX7VwhQACiTUxAIKSZVlyuVxas2aNRo8eHehyAAQhQgwAADAS00kAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYKT/B1JOxUA0kfUtAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -146,10 +146,10 @@ "start_time": "2023-11-09T18:41:35.114998403Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:16.774906Z", - "iopub.status.busy": "2023-11-09T20:46:16.774693Z", - "iopub.status.idle": "2023-11-09T20:46:16.779715Z", - "shell.execute_reply": "2023-11-09T20:46:16.778372Z" + "iopub.execute_input": "2023-11-09T22:34:11.264938Z", + "iopub.status.busy": "2023-11-09T22:34:11.264738Z", + "iopub.status.idle": "2023-11-09T22:34:11.268012Z", + "shell.execute_reply": "2023-11-09T22:34:11.267491Z" } }, "outputs": [], @@ -169,16 +169,16 @@ "start_time": "2023-11-09T18:41:35.159083078Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:16.782049Z", - "iopub.status.busy": "2023-11-09T20:46:16.781662Z", - "iopub.status.idle": "2023-11-09T20:46:17.091013Z", - "shell.execute_reply": "2023-11-09T20:46:17.090409Z" + "iopub.execute_input": "2023-11-09T22:34:11.269806Z", + "iopub.status.busy": "2023-11-09T22:34:11.269642Z", + "iopub.status.idle": "2023-11-09T22:34:11.514097Z", + "shell.execute_reply": "2023-11-09T22:34:11.513520Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAIiCAYAAACJywLeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABruklEQVR4nO3deZyN5f/H8feZfTE7s1nGYEKGbJGtGdmyflWS+ApRypZUlihDoigJkS2URJsi+95CZWeQsu9GjLGNGWbu3x++c35zzI7bMbyej8d5PJz7vu7r/tz3OXOcec91X7fFMAxDAAAAAAAAwG3mYO8CAAAAAAAAcG8ieAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeMrHZsyYIYvFYn04OTmpSJEi6tSpk44dO2bv8m7arl27FBMTo4MHD2ZY17FjRxUvXvyO15QXZ8+eVZs2bRQYGCiLxaKWLVvau6RbMnz4cP3www+3rb+09+3GjRtve5+ZvWfuBmvWrJHFYtGaNWvsVkN0dLSio6Ntlh08eFBNmzaVv7+/LBaLevfurYMHD8pisWjGjBm3bd93w/EDAHAn3fg93c3NTcHBwapbt65GjBihuLg4m/YxMTGyWCx52sfly5cVExOT5/9fM9tX8eLF1axZszz1k5PZs2drzJgxma6zWCyKiYm5rfsDcPdysncBuHXTp09XmTJllJiYqJ9//lkjRozQ2rVrtWPHDnl6etq7vDzbtWuXhgwZoujo6Awh01tvvaVXXnnFPoXl0jvvvKN58+bps88+U8mSJeXv72/vkm7J8OHD1apVq7s6QGvatKnWr1+vkJAQe5dy15owYUKGZa+++qr++OMPffbZZwoODlZISIiCg4O1fv16lSxZ0g5VAgBwb0n7nn716lXFxcXp119/1fvvv68PPvhAc+fOVf369SVJXbp00eOPP56nvi9fvqwhQ4ZIUoY/LmXnZvZ1M2bPnq3Y2Fj17t07w7r169erSJEiptcA4O5A8HQPiIyMVNWqVSVJdevWVUpKit555x398MMPateuXabbXL58WR4eHneyzBxdvXo1x7/05IdfhmNjY1WyZMkszz1uv0KFCqlQoUL2LuOu9uCDD2ZYFhsbq2rVqmUIFR955JE7VBUAAPe29N/TJempp57Sq6++qtq1a+vJJ5/UP//8o6CgIBUpUsT0ICbt+/+d2FdO+K4B3F+41O4elPZBfujQIUnXL08rUKCAduzYoYYNG8rLy0v16tWTdP2ysG7duqlw4cJycXFRiRIlNHDgQCUlJdn0abFY1KNHD02aNEkPPPCAXF1d9eCDD2rOnDkZ9h8bG6v//Oc/8vPzk5ubmypWrKiZM2fatEm79OaLL77Qa6+9psKFC8vV1VVTp07V008/Lel6iJY2PDntsp/MLrW7cuWKBgwYoPDwcLm4uKhw4cLq3r27zp07Z9MubQjxkiVLVLlyZbm7u6tMmTL67LPPcnVeczpXaZcorVixQrt377bWntPw57lz56pGjRry9PRUgQIF1KhRI23ZssW6fsyYMbJYLNq7d2+Gbfv16ycXFxf9+++/1mUrVqxQvXr15O3tLQ8PD9WqVUsrV6602S5tiPXOnTv17LPPysfHR0FBQXr++eeVkJBgbWexWHTp0iXNnDnTejxpf1G7fPmyXn/9dYWHh8vNzU3+/v6qWrWqvvrqq1ydz/j4eHXq1En+/v7y9PRU8+bNtX///gztcnM8mV1qFx0drcjISG3YsEF16tSRh4eHSpQooffee0+pqak22+/cuVMNGzaUh4eHChUqpO7du2vhwoW5vjzsr7/+0rPPPqugoCC5urqqWLFieu655zL8HKW3ceNGtWnTRsWLF5e7u7uKFy+uZ5991vpzmyY353n//v1q06aNQkND5erqqqCgINWrV09bt261OR9pr13az9/evXu1ePFi62t78ODBLC+1++eff9S2bVsFBgbK1dVVZcuW1SeffJLpuXj88cfl4eGhggUL6qWXXtKFCxdyPIeStHfvXnXq1EkRERHy8PBQ4cKF1bx5c+3YscOmXWpqqoYNG6bSpUvL3d1dvr6+qlChgj7++ONc7QcAAHsqVqyYPvzwQ124cEGTJk2SlPnlb6tWrVJ0dLQCAgLk7u6uYsWK6amnntLly5d18OBB6x/dhgwZYv2/vGPHjjb9bd68Wa1atZKfn5/1D7jZXdY3b948VahQQW5ubipRooTGjh1rsz6r6Q1uvKw+OjpaCxcu1KFDh2wuOUyT2aV2efkd4quvvtLAgQMVGhoqb29v1a9fX3v27LFpu2XLFjVr1sz63SU0NFRNmzbV0aNHMz12AOZhxNM9KC2gSD8CJDk5WS1atFDXrl3Vv39/Xbt2TVeuXFHdunW1b98+DRkyRBUqVNAvv/yiESNGaOvWrVq4cKFNv/Pnz9fq1as1dOhQeXp6asKECXr22Wfl5OSkVq1aSZL27NmjmjVrKjAwUGPHjlVAQIBmzZqljh076tSpU+rbt69NnwMGDFCNGjX06aefysHBQVWrVlV8fLzefPNNffLJJ6pcubKkrEc6GYahli1bauXKlRowYIDq1Kmj7du3a/DgwVq/fr3Wr18vV1dXa/tt27bptddeU//+/RUUFKSpU6eqc+fOKlWqlB599NEsz2luzlVISIjWr1+vbt26KSEhQV9++aWkzEeapBk+fLgGDRqkTp06adCgQUpOTtaoUaNUp04d/fnnn3rwwQf13//+V/369dOMGTM0bNgw67YpKSmaNWuWmjdvroIFC0qSZs2apeeee07/+c9/NHPmTDk7O2vSpElq1KiRli5dag0c0zz11FN65pln1LlzZ+3YsUMDBgyQJGsYt379ej322GOqW7eu3nrrLUmSt7e3JKlPnz764osvNGzYMFWqVEmXLl1SbGyszpw5k+Xxpte5c2c1aNBAs2fP1pEjRzRo0CBFR0dr+/bt8vX1vanjudHJkyfVrl07vfbaaxo8eLDmzZunAQMGKDQ0VM8995wk6cSJE4qKipKnp6cmTpyowMBAffXVV+rRo0eujmPbtm2qXbu2ChYsqKFDhyoiIkInTpzQ/PnzlZycbPP+S+/gwYMqXbq02rRpI39/f504cUITJ07Uww8/rF27dllf09yc5yZNmiglJUUjR45UsWLF9O+//2rdunUZwtc0lStX1vr16/XEE0+oZMmS+uCDDyRJISEhOnHiRIb2u3btUs2aNa1flIODg7V06VL16tVL//77rwYPHixJOnXqlKKiouTs7KwJEyYoKChIX375Za7P5fHjxxUQEKD33ntPhQoV0tmzZzVz5kxVr15dW7ZsUenSpSVJI0eOVExMjAYNGqRHH31UV69e1V9//ZXl8QIAcLdp0qSJHB0d9fPPP2e6Pm0exjp16uizzz6Tr6+vjh07piVLlig5OVkhISFasmSJHn/8cXXu3FldunSRpAwjwJ988km1adNGL730ki5dupRtTVu3blXv3r0VExOj4OBgffnll3rllVeUnJys119/PU/HN2HCBL344ovat2+f5s2bl2P7vP4O8eabb6pWrVqaOnWqzp8/r379+ql58+bavXu3HB0ddenSJTVo0EDh4eH65JNPFBQUpJMnT2r16tW5/oMYgNvIQL41ffp0Q5Lx+++/G1evXjUuXLhg/PTTT0ahQoUMLy8v4+TJk4ZhGEaHDh0MScZnn31ms/2nn35qSDK+/vprm+Xvv/++IclYtmyZdZkkw93d3dqnYRjGtWvXjDJlyhilSpWyLmvTpo3h6upqHD582KbPxo0bGx4eHsa5c+cMwzCM1atXG5KMRx99NMNxffPNN4YkY/Xq1RnWdejQwQgLC7M+X7JkiSHJGDlypE27uXPnGpKMyZMnW5eFhYUZbm5uxqFDh6zLEhMTDX9/f6Nr164Z9pVeXs5VVFSUUa5cuWz7MwzDOHz4sOHk5GT07NnTZvmFCxeM4OBgo3Xr1tZlTz75pFGkSBEjJSXFumzRokWGJGPBggWGYRjGpUuXDH9/f6N58+Y2/aWkpBgPPfSQUa1aNeuywYMHZ3reunXrZri5uRmpqanWZZ6enkaHDh0y1B8ZGWm0bNkyx+O8Udr79oknnrBZ/ttvvxmSjGHDhuX5eNL6PHDggHVZVFSUIcn4448/bLZ/8MEHjUaNGlmfv/HGG4bFYjF27txp065Ro0ZZvg/Te+yxxwxfX18jLi4uyzZp7/fs+rp27Zpx8eJFw9PT0/j444+ty3M6z//++68hyRgzZky2dUZFRRlRUVE2y8LCwoymTZvaLDtw4IAhyZg+fbp1WaNGjYwiRYoYCQkJNm179OhhuLm5GWfPnjUMwzD69etnWCwWY+vWrTbtGjRokKtzeaNr164ZycnJRkREhPHqq69alzdr1syoWLFinvoCAOBOSvtusmHDhizbBAUFGWXLljUM4/+/m6X59ttvDUkZ/k9N7/Tp04YkY/DgwRnWpfX39ttvZ7kuvbCwsCz/D/f29jYuXbpkc1zpv3MZRubfdZo2bWrzvT29G+vO6+8QTZo0sWn39ddfG5KM9evXG4ZhGBs3bjQkGT/88EOm+wdwZ3Gp3T3gkUcekbOzs7y8vNSsWTMFBwdr8eLFCgoKsmn31FNP2TxftWqVPD09raOV0qQN0b3xcqZ69erZ9Ono6KhnnnlGe/futQ5ZXbVqlerVq6eiRYtm6PPy5ctav359tjXl1apVq2xqTvP000/L09MzwzFUrFhRxYoVsz53c3PTAw88kOHypsz2k5dzlRtLly7VtWvX9Nxzz+natWvWh5ubm6Kiomwu8erUqZOOHj2qFStWWJdNnz5dwcHBaty4sSRp3bp1Onv2rDp06GDTX2pqqh5//HFt2LAhw1+6WrRoYfO8QoUKunLlSoY7rWSmWrVqWrx4sfr37681a9YoMTExT8d/4xxYNWvWVFhYmFavXn3Tx3Oj4OBgVatWLcMxpn+9165dq8jIyAwj05599tkcj+Hy5ctau3atWrdunec5pi5evKh+/fqpVKlScnJykpOTkwoUKKBLly5p9+7d1nY5nWd/f3+VLFlSo0aN0ujRo7Vly5YMlxLeiitXrmjlypV64okn5OHhYfNaNGnSRFeuXNHvv/8uSVq9erXKlSunhx56yKaPtm3b5mpf165d0/Dhw/Xggw/KxcVFTk5OcnFx0T///JPhnGzbtk3dunXT0qVLdf78+dt2vAAA3CmGYWS5rmLFinJxcdGLL76omTNnZjodQW7k5bt2Vv+Hnz9/Xps3b76p/edWXn+HyOw7rPT/U42UKlVKfn5+6tevnz799FPt2rXLxOoB5ITg6R7w+eefa8OGDdqyZYuOHz+u7du3q1atWjZtPDw8rJdIpTlz5oyCg4MzXOMdGBgoJyenDJdMBQcHZ9h32rK0tmfOnMn0zmKhoaE27dLc6l3Izpw5Iycnpwy/9FssFgUHB2fYX0BAQIY+XF1dcwxN8nqucuPUqVOSpIcffljOzs42j7lz59rM29S4cWOFhIRo+vTpkq7PjzR//nw999xzcnR0tOmvVatWGfp7//33ZRiGzp49a1PDjecj7bKw3IRIY8eOVb9+/fTDDz+obt268vf3V8uWLfXPP//k6vizej+lncubOZ4b5eb1PnPmTIaQVlKmy24UHx+vlJSUm5qgs23btho/fry6dOmipUuX6s8//9SGDRtUqFAhm/pyOs8Wi0UrV65Uo0aNNHLkSFWuXFmFChVSr169bstQ8jNnzujatWsaN25chtehSZMmkmR9r6b9nNwos2WZ6dOnj9566y21bNlSCxYs0B9//KENGzbooYcesjknAwYM0AcffKDff/9djRs3VkBAgOrVq6eNGzfe8vECAHAnXLp0SWfOnLF+R75RyZIltWLFCgUGBqp79+4qWbKkSpYsmef5DPPyXTs33/XNktffIXL6Duvj46O1a9eqYsWKevPNN1WuXDmFhoZq8ODBunr1qhmHACAbzPF0DyhbtqzN3TIyk9kEggEBAfrjjz9kGIbN+ri4OF27ds06x0yakydPZugjbVnah39AQECmc8QcP35ckjL0mdNd7HISEBCga9eu6fTp0zbhk2EYOnnypB5++OFb6j/9fvJyrnIjbZtvv/1WYWFh2bZ1dHRU+/btNXbsWJ07d06zZ89WUlKSOnXqlKG/cePGZXmnkNyEKbnl6empIUOGaMiQITp16pR1VE7z5s31119/5bh9Vu+nUqVKSbpzxxMQEGANuXKq70b+/v5ydHTM8ySVCQkJ+umnnzR48GD179/fujwpKSlDmJab8xwWFqZp06ZJkv7++299/fXXiomJUXJysj799NM81XYjPz8/6/uve/fumbYJDw+XdP1cZvc5kZO0Ob2GDx9us/zff/+1zvslSU5OTurTp4/69Omjc+fOacWKFXrzzTfVqFEjHTly5K67YycAADdauHChUlJSrDf+yEydOnVUp04dpaSkaOPGjRo3bpx69+6toKAgtWnTJlf7yct37dx813dzc5OkDDdQSf8H05uR198hcqN8+fKaM2eODMPQ9u3bNWPGDA0dOlTu7u42378AmI8RT/exevXq6eLFi/rhhx9sln/++efW9emtXLnS5hf0lJQUzZ07VyVLlrSO+KhXr55WrVpl/U8ifZ8eHh65unVqXkbdpNU4a9Ysm+XfffedLl26lOPk07mV13OVG40aNZKTk5P27dunqlWrZvpIr1OnTrpy5Yq++uorzZgxQzVq1FCZMmWs62vVqiVfX1/t2rUry/5cXFzyXGduRoQFBQWpY8eOevbZZ7Vnzx5dvnw5x37TJl9Ps27dOh06dMj6Bcys47lRVFSUYmNjMwzBzuyOjTdyd3dXVFSUvvnmmzx94bJYLDIMI8PE41OnTlVKSkqW2+XmPD/wwAMaNGiQypcvf1uGxXt4eKhu3brasmWLKlSokOnrkPZltG7dutq5c6e2bdtm08fs2bNztS+LxZLhnCxcuFDHjh3LchtfX1+1atVK3bt319mzZzPcZQcAgLvN4cOH9frrr8vHx0ddu3bNsb2jo6OqV69uvZts2v/vefnOnBtZ/R/u5eVlveFP2t2lt2/fbtNu/vz5GfrLzXfINLfjd4isWCwWPfTQQ/roo4/k6+tr+mWDADJixNN97LnnntMnn3yiDh066ODBgypfvrx+/fVXDR8+XE2aNFH9+vVt2hcsWFCPPfaY3nrrLetd7f766y+bX9AHDx6sn376SXXr1tXbb78tf39/ffnll1q4cKFGjhwpHx+fHOuKjIyUJE2ePFleXl5yc3NTeHh4ppdNNWjQQI0aNVK/fv10/vx51apVy3pXu0qVKql9+/a3eJauy+u5yo3ixYtr6NChGjhwoPbv36/HH39cfn5+OnXqlP7880/rSJc0ZcqUUY0aNTRixAgdOXJEkydPtumvQIECGjdunDp06KCzZ8+qVatWCgwM1OnTp7Vt2zadPn1aEydOzHOd5cuX15o1a7RgwQKFhITIy8tLpUuXVvXq1dWsWTNVqFBBfn5+2r17t7744gvVqFEjVyNONm7cqC5duujpp5/WkSNHNHDgQBUuXFjdunUz9Xhu1Lt3b3322Wdq3Lixhg4dqqCgIM2ePds6msjBIft8fvTo0apdu7aqV6+u/v37q1SpUjp16pTmz5+vSZMmycvLK8M23t7eevTRRzVq1CgVLFhQxYsX19q1azVt2jSbkT2ScjzP27dvV48ePfT0008rIiJCLi4uWrVqlbZv337b/pr38ccfq3bt2qpTp45efvllFS9eXBcuXNDevXu1YMEC61xraeeyadOmGjZsmPWudrkZASdJzZo104wZM1SmTBlVqFBBmzZt0qhRozJcyti8eXNFRkaqatWqKlSokA4dOqQxY8YoLCxMERERt+WYAQC4HWJjY61zI8bFxemXX37R9OnT5ejoqHnz5mU5R+Snn36qVatWqWnTpipWrJiuXLlivetw2vdOLy8vhYWF6ccff1S9evXk7+9v/V5xM0JDQ9WiRQvFxMQoJCREs2bN0vLly/X+++9bv9s9/PDDKl26tF5//XVdu3ZNfn5+mjdvnn799dcM/ZUvX17ff/+9Jk6cqCpVqljvYJ2Z2/E7RHo//fSTJkyYoJYtW6pEiRIyDEPff/+9zp07pwYNGuT95AC4NXab1hy3LDd3yzCM63eC8/T0zHTdmTNnjJdeeskICQkxnJycjLCwMGPAgAHGlStXbNpJMrp3725MmDDBKFmypOHs7GyUKVPG+PLLLzP0uWPHDqN58+aGj4+P4eLiYjz00EM2d8gyjP+/I8U333yTaV1jxowxwsPDDUdHR5s7bN14VzvDuH5nun79+hlhYWGGs7OzERISYrz88stGfHy8TbvM7uBlGJnf7SszuT1Xub2rXZoffvjBqFu3ruHt7W24uroaYWFhRqtWrYwVK1ZkaDt58mTrHQZvvMNYmrVr1xpNmzY1/P39DWdnZ6Nw4cJG06ZNbc512t1MTp8+bbNtZncq2bp1q1GrVi3Dw8PDkGQ9V/379zeqVq1q+Pn5Ga6urkaJEiWMV1991fj333+zPd60fSxbtsxo37694evra7i7uxtNmjQx/vnnn5s6nqzuapfZ65DZeyg2NtaoX7++4ebmZvj7+xudO3c2Zs6caUgytm3blu3xGIZh7Nq1y3j66aeNgIAAw8XFxShWrJjRsWNH63sjszu9HD161HjqqacMPz8/w8vLy3j88ceN2NhYIywszOYugjmd51OnThkdO3Y0ypQpY3h6ehoFChQwKlSoYHz00UfGtWvXbM7Hzd7VLm35888/bxQuXNhwdnY2ChUqZNSsWdN6F8L056JBgwY25/LHH3/M1V3t4uPjjc6dOxuBgYGGh4eHUbt2beOXX37JUPuHH35o1KxZ0yhYsKD1fHfu3Nk4ePBgtv0DAHCnpH03SXu4uLgYgYGBRlRUlDF8+PAMd8O98U5z69evN5544gkjLCzMcHV1NQICAoyoqChj/vz5NtutWLHCqFSpkuHq6mpIsn6HyOq7Xmb7Moz//07w7bffGuXKlTNcXFyM4sWLG6NHj86w/d9//200bNjQ8Pb2NgoVKmT07NnTWLhwYYb/68+ePWu0atXK8PX1NSwWi80+lcnd+G7ld4gbv7/89ddfxrPPPmuULFnScHd3N3x8fIxq1aoZM2bMyHA8AMxnMYxsbqcA/I/FYlH37t01fvx4e5cC3BEvvviivvrqK505c+a2XNIHAAAAAPcjLrUDcN8bOnSoQkNDVaJECV28eFE//fSTpk6dqkGDBhE6AQAAAMAtIHgCcN9zdnbWqFGjdPToUV27dk0REREaPXq0XnnlFXuXBgAAAAD5GpfaAQAAAAAAwBTZ364JAAAAAAAAuEkETwAAAAAAADAFwRMAAAAAAABMweTiAAAA97HU1FQdP35cXl5eslgs9i4HAADkA4Zh6MKFCwoNDZWDQ/ZjmgieAAAA7mPHjx9X0aJF7V0GAADIh44cOaIiRYpk24bgCQAA4D7m5eUl6foXR29vbztXAwAA8oPz58+raNGi1u8R2SF4AgAAuI+lXV7n7e1N8AQAAPIkN5fpM7k4AAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUzPEEAAAAAAAkSSkpKbp69aq9y8BdwNHRUU5OTrmaxyk7BE8AAAAAAEAXL17U0aNHZRiGvUvBXcLDw0MhISFycXG56T4IngAAAAAAuM+lpKTo6NGj8vDwUKFChW55lAvyN8MwlJycrNOnT+vAgQOKiIiQg8PNzdZE8AQAAAAAwH3u6tWrMgxDhQoVkru7u73LwV3A3d1dzs7OOnTokJKTk+Xm5nZT/TC5OAAAAAAAkCRGOsHGzY5ysunjNtQBAAAAAAAAZEDwBAAAAAAAAFMwxxMAAAAAAMjU1JjYO7q/LjGRd3R/eXXw4EGFh4dry5Ytqlixor3LyRcY8QQAAAAAAGAHBw8elMVi0datW+1dimkIngAAAAAAAO5iycnJ9i7hphE8AQAAAACAfGnJkiWqXbu2fH19FRAQoGbNmmnfvn3W9cnJyerRo4dCQkLk5uam4sWLa8SIEdn2OX36dJUtW1Zubm4qU6aMJkyYkG37Xbt2qUmTJipQoICCgoLUvn17/fvvv9b1qampev/991WqVCm5urqqWLFievfddyVJ4eHhkqRKlSrJYrEoOjpaktSxY0e1bNlSI0aMUGhoqB544AFJ0o4dO/TYY4/J3d1dAQEBevHFF3Xx4kXrvtK2++CDDxQSEqKAgAB1795dV69etbaZMGGCIiIi5ObmpqCgILVq1SoXZ/rmETwBAAAAAIB86dKlS+rTp482bNiglStXysHBQU888YRSU1MlSWPHjtX8+fP19ddfa8+ePZo1a5aKFy+eZX9TpkzRwIED9e6772r37t0aPny43nrrLc2cOTPT9idOnFBUVJQqVqyojRs3asmSJTp16pRat25tbTNgwAC9//77euutt7Rr1y7Nnj1bQUFBkqQ///xTkrRixQqdOHFC33//vXW7lStXavfu3Vq+fLl++uknXb58WY8//rj8/Py0YcMGffPNN1qxYoV69OhhU9Pq1au1b98+rV69WjNnztSMGTM0Y8YMSdLGjRvVq1cvDR06VHv27NGSJUv06KOP5vm85wWTiwMAAAAAgHzpqaeesnk+bdo0BQYGateuXYqMjNThw4cVERGh2rVry2KxKCwsLNv+3nnnHX344Yd68sknJV0fkbRr1y5NmjRJHTp0yNB+4sSJqly5soYPH25d9tlnn6lo0aL6+++/FRISoo8//ljjx4+3bl+yZEnVrl1bklSoUCFJUkBAgIKDg2369vT01NSpU+Xi4iLpeiiWmJiozz//XJ6enpKk8ePHq3nz5nr//fetYZafn5/Gjx8vR0dHlSlTRk2bNtXKlSv1wgsv6PDhw/L09FSzZs3k5eWlsLAwVapUKXcn+yYx4gkAAAAAAORL+/btU9u2bVWiRAl5e3tbL107fPiwpOuXnm3dulWlS5dWr169tGzZsiz7On36tI4cOaLOnTurQIEC1sewYcNsLt9Lb9OmTVq9erVN+zJlylhr2717t5KSklSvXr08H1v58uWtoZMk7d69Ww899JA1dJKkWrVqKTU1VXv27LEuK1eunBwdHa3PQ0JCFBcXJ0lq0KCBwsLCVKJECbVv315ffvmlLl++nOfa8oIRTwAAAAAAIF9q3ry5ihYtqilTpig0NFSpqamKjIy0TsZduXJlHThwQIsXL9aKFSvUunVr1a9fX99++22GvtIuz5syZYqqV69usy59kHPjNmkjjm4UEhKi/fv33/SxpQ+YJMkwDFkslkzbpl/u7OycYV3asXl5eWnz5s1as2aNli1bprffflsxMTHasGGDfH19b7rW7DDiCQAAAAAA5DtnzpzR7t27NWjQINWrV09ly5ZVfHx8hnbe3t565plnNGXKFM2dO1ffffedzp49m6FdUFCQChcurP3796tUqVI2j7SRVDeqXLmydu7cqeLFi2fYxtPTUxEREXJ3d9fKlSsz3T5tRFNKSkqOx/vggw9q69atunTpknXZb7/9JgcHB+vk47nh5OSk+vXra+TIkdq+fbsOHjyoVatW5Xr7vMr9iKeYGNOKQD7E+wHp8X5AerwfAADAXSo2ZuotbR8Z0+U2VYLbwc/PTwEBAZo8ebJCQkJ0+PBh9e/f36bNRx99pJCQEFWsWFEODg765ptvFBwcnOXonpiYGPXq1Uve3t5q3LixkpKStHHjRsXHx6tPnz4Z2nfv3l1TpkzRs88+qzfeeEMFCxbU3r17NWfOHE2ZMkVubm7q16+f+vbtKxcXF9WqVUunT5/Wzp071blzZwUGBsrd3V1LlixRkSJF5ObmJh8fn0xra9eunQYPHqwOHTooJiZGp0+fVs+ePdW+fXvr/E45+emnn7R//349+uij8vPz06JFi5SamqrSpUvnavubwaV2AAAAAAAgU11iIu1dQpYcHBw0Z84c9erVS5GRkSpdurTGjh2r6Ohoa5sCBQro/fff1z///CNHR0c9/PDDWrRokRwcMr8ArEuXLvLw8NCoUaPUt29feXp6qnz58urdu3em7UNDQ/Xbb7+pX79+atSokZKSkhQWFqbHH3/cuo+33npLTk5Oevvtt3X8+HGFhITopZdeknR99NHYsWM1dOhQvf3226pTp47WrFmT6b48PDy0dOlSvfLKK3r44Yfl4eGhp556SqNHj871OfP19dX333+vmJgYXblyRREREfrqq69Urly5XPeRVxbDMIxcteQv2EiP9wPS4/2A9Hg/APnK+fPn5ePjo4SEBHl7e9u7HAAwFSOesnblyhUdOHBA4eHhcnNzs3c5uEtk9b7Iy/cH5ngCAAAAAACAKbjUDgAAAABuwdSY2Fva/m6+lAkAbhUjngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApmCOJwAAAAD3rVudnwkAkD1GPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATMEcTwAAAAAAIFOxMVPv6P4iY7rc0f3daQcPHlR4eLi2bNmiihUr2rucO4IRTwAAAAAAAHdA0aJFdeLECUVGRkqS1qxZI4vFonPnztm3MBMRPAEAANxmP//8s5o3b67Q0FBZLBb98MMPNusNw1BMTIxCQ0Pl7u6u6Oho7dy506ZNUlKSevbsqYIFC8rT01MtWrTQ0aNHbdrEx8erffv28vHxkY+Pj9q3b39Pf3EFACC/c3R0VHBwsJyc8nYBWnJyskkVmY/gCQAA4Da7dOmSHnroIY0fPz7T9SNHjtTo0aM1fvx4bdiwQcHBwWrQoIEuXLhgbdO7d2/NmzdPc+bM0a+//qqLFy+qWbNmSklJsbZp27attm7dqiVLlmjJkiXaunWr2rdvb/rxAQBwt1iyZIlq164tX19fBQQEqFmzZtq3b591fXJysnr06KGQkBC5ubmpePHiGjFiRJb9dezYUS1bttSQIUMUGBgob29vde3a1Sb4SUpKUq9evRQYGCg3NzfVrl1bGzZssK6Pj49Xu3btVKhQIbm7uysiIkLTp0+XdP1SO4vFoq1bt+rgwYOqW7euJMnPz08Wi0UdO3aUJEVHR6tHjx7q06ePChYsqAYNGkiS1q5dq2rVqsnV1VUhISHq37+/rl27Zt13dHS0evXqpb59+8rf31/BwcGKiYmxOcaYmBgVK1ZMrq6uCg0NVa9evW7u5OcSczwBAADcZo0bN1bjxo0zXWcYhsaMGaOBAwfqySeflCTNnDlTQUFBmj17trp27aqEhARNmzZNX3zxherXry9JmjVrlooWLaoVK1aoUaNG2r17t5YsWaLff/9d1atXlyRNmTJFNWrU0J49e1S6dOk7c7AAANjRpUuX1KdPH5UvX16XLl3S22+/rSeeeEJbt26Vg4ODxo4dq/nz5+vrr79WsWLFdOTIER05ciTbPleuXCk3NzetXr1aBw8eVKdOnVSwYEG9++67kqS+ffvqu+++08yZMxUWFqaRI0eqUaNG2rt3r/z9/fXWW29p165dWrx4sQoWLKi9e/cqMTExw36KFi2q7777Tk899ZT27Nkjb29vubu7W9fPnDlTL7/8sn777TcZhqFjx46pSZMm6tixoz7//HP99ddfeuGFF+Tm5mYTLs2cOVN9+vTRH3/8ofXr16tjx46qVauWGjRooG+//VYfffSR5syZo3LlyunkyZPatm3b7XkxskDwBAAAcAcdOHBAJ0+eVMOGDa3LXF1dFRUVpXXr1qlr167atGmTrl69atMmNDRUkZGRWrdunRo1aqT169fLx8fHGjpJ0iOPPCIfHx+tW7cuy+ApKSlJSUlJ1ufnz5834SgBALgznnrqKZvn06ZNU2BgoHbt2qXIyEgdPnxYERERql27tiwWi8LCwnLs08XFRZ999pk8PDxUrlw5DR06VG+88YbeeecdJSYmauLEiZoxY4b1j0xTpkzR8uXLNW3aNL3xxhs6fPiwKlWqpKpVq0qSihcvnul+HB0d5e/vL0kKDAyUr6+vzfpSpUpp5MiR1ucDBw5U0aJFNX78eFksFpUpU0bHjx9Xv3799Pbbb8vB4fpFbRUqVNDgwYMlSRERERo/frxWrlypBg0a6PDhwwoODlb9+vXl7OysYsWKqVq1ajmf6FvApXYAAAB30MmTJyVJQUFBNsuDgoKs606ePCkXFxf5+fll2yYwMDBD/4GBgdY2mRkxYoR1TigfHx8VLVr0lo4HAAB72rdvn9q2basSJUrI29tb4eHhkqTDhw9Lun7p3NatW1W6dGn16tVLy5Yty7HPhx56SB4eHtbnNWrU0MWLF3XkyBHt27dPV69eVa1atazrnZ2dVa1aNe3evVuS9PLLL2vOnDmqWLGi+vbtq3Xr1t3UsaUFV2l2796tGjVqyGKxWJfVqlVLFy9etJkHskKFCjbbhYSEKC4uTpL09NNPKzExUSVKlNALL7ygefPm2VyqZwZGPAEAANhB+i+N0vVL8G5cdqMb22TWPqd+BgwYoD59+lifnz9/nvAJsLOpMbG33EeXmMjbUAmQ/zRv3lxFixbVlClTFBoaqtTUVEVGRlrnZKpcubIOHDigxYsXa8WKFWrdurXq16+vb7/9Ns/7slgsMgzD+u/00v//27hxYx06dEgLFy7UihUrVK9ePXXv3l0ffPBBnvbn6emZ5T7SL7uxHmdn5wx1p6amSrp+ed+ePXu0fPlyrVixQt26ddOoUaO0du3aDNvdLox4AgAAuIOCg4MlKcOopLi4OOsoqODgYCUnJys+Pj7bNqdOncrQ/+nTpzOMpkrP1dVV3t7eNg8AAPKjM2fOaPfu3Ro0aJDq1aunsmXLZvi/U5K8vb31zDPPaMqUKZo7d66+++47nT17Nst+t23bZjMn0++//64CBQqoSJEiKlWqlFxcXPTrr79a11+9elUbN25U2bJlrcsKFSqkjh07atasWRozZowmT56c6b5cXFwkyebmIVl58MEHtW7dOmvYJEnr1q2Tl5eXChcunOP2adzd3dWiRQuNHTtWa9as0fr167Vjx45cb59XBE8AAAB3UHh4uIKDg7V8+XLrsuTkZK1du1Y1a9aUJFWpUkXOzs42bU6cOKHY2Fhrmxo1aighIUF//vmntc0ff/yhhIQEaxsAAO5lfn5+CggI0OTJk7V3716tWrXKZlSvJOtE2n/99Zf+/vtvffPNNwoODs4wn1J6ycnJ6ty5s3WC8MGDB6tHjx5ycHCQp6enXn75Zb3xxhtasmSJdu3apRdeeEGXL19W586dJUlvv/22fvzxR+3du1c7d+7UTz/9ZBNKpRcWFiaLxaKffvpJp0+f1sWLF7Osq1u3bjpy5Ih69uypv/76Sz/++KMGDx6sPn36WOd3ysmMGTM0bdo0xcbGav/+/friiy/k7u6eq7mvbhaX2gEAANxmFy9e1N69e63PDxw4oK1bt8rf31/FihVT7969NXz4cEVERCgiIkLDhw+Xh4eH2rZtK0ny8fFR586d9dprrykgIED+/v56/fXXVb58eetd7sqWLavHH39cL7zwgiZNmiRJevHFF9WsWTPuaAcAuG0iY7rYu4QsOTg4aM6cOerVq5ciIyNVunRpjR07VtHR0dY2BQoU0Pvvv69//vlHjo6Oevjhh7Vo0aJsg5p69eopIiJCjz76qJKSktSmTRubu8a99957Sk1NVfv27XXhwgVVrVpVS5cutc7N6OLiogEDBujgwYNyd3dXnTp1NGfOnEz3VbhwYQ0ZMkT9+/dXp06d9Nxzz2nGjBlZtl20aJHeeOMNPfTQQ/L391fnzp01aNCgXJ8zX19fvffee+rTp49SUlJUvnx5LViwQAEBAbnuI68sRvoxWtlJd5IB3g+wwfsB6fF+ALRmzRrVrVs3w/IOHTpoxowZMgxDQ4YM0aRJkxQfH6/q1avrk08+UWTk/8/RcuXKFb3xxhuaPXu2EhMTVa9ePU2YMMFmPqazZ8+qV69emj9/viSpRYsWGj9+fLZ/xb3R+fPn5ePjo4SEBC67w33pdsyvdDdgjqfciY2Zekvb380hzK26cuWKDhw4oPDwcLm5udm7HLvp2LGjzp07px9++MHepdwVsnpf5OX7AyOeAAAAbrPo6Ghl97c9i8WimJgYm7+e3sjNzU3jxo3TuHHjsmzj7++vWbNm3UqpAAAApmKOJwAAAAAAAJiCEU8AAAAAAABSlvMr4eYx4gkAAAAAAACmIHgCAAAAAACSlO0chbj/3I73A8ETAAAAAAD3OUdHR0lScnKynSvB3eTy5cuSJGdn55vugzmeAAAAAAC4zzk5OcnDw0OnT5+Ws7OzHBwYp3I/MwxDly9fVlxcnHx9fa3B5M0geAIAAAAA4D5nsVgUEhKiAwcO6NChQ/YuB3cJX19fBQcH31IfBE8AAAAAAEAuLi6KiIjgcjtIun553a2MdEpD8AQAAAAAACRJDg4OcnNzs3cZuIdw0SYAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMwV3tAAAAAAB3vdiYqfYuAcBNYMQTAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATOFk7wIAAAAAAPe+2Jip9i4BgB0w4gkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJjCyd4FAAAAAACQH8TGTL2l7SNjutymSoD8gxFPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFE72LgAAAAAAcGumxsTe0vZdYiJvUyUAYIsRTwAAAAAAADAFwRMAAAAAAABMwaV2AAAAAPKtW73EDABgLkY8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBROuW0YoxgTy0B+E2PvAgAAAAAAwF2PEU8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAACAHVy7dk2DBg1SeHi43N3dVaJECQ0dOlSpqanWNoZhKCYmRqGhoXJ3d1d0dLR27txp009SUpJ69uypggULytPTUy1atNDRo0fv9OEAAABkiuAJAADADt5//319+umnGj9+vHbv3q2RI0dq1KhRGjdunLXNyJEjNXr0aI0fP14bNmxQcHCwGjRooAsXLljb9O7dW/PmzdOcOXP066+/6uLFi2rWrJlSUlLscVgAAAA2nOxdAAAAwP1o/fr1+s9//qOmTZtKkooXL66vvvpKGzdulHR9tNOYMWM0cOBAPfnkk5KkmTNnKigoSLNnz1bXrl2VkJCgadOm6YsvvlD9+vUlSbNmzVLRokW1YsUKNWrUyD4HBwAA8D+MeAIAALCD2rVra+XKlfr7778lSdu2bdOvv/6qJk2aSJIOHDigkydPqmHDhtZtXF1dFRUVpXXr1kmSNm3apKtXr9q0CQ0NVWRkpLXNjZKSknT+/HmbBwAAgFkY8QQAAGAH/fr1U0JCgsqUKSNHR0elpKTo3Xff1bPPPitJOnnypCQpKCjIZrugoCAdOnTI2sbFxUV+fn4Z2qRtf6MRI0ZoyJAht/twAAAAMsWIJwAAADuYO3euZs2apdmzZ2vz5s2aOXOmPvjgA82cOdOmncVisXluGEaGZTfKrs2AAQOUkJBgfRw5cuTWDgQAACAbjHgCAACwgzfeeEP9+/dXmzZtJEnly5fXoUOHNGLECHXo0EHBwcGSro9qCgkJsW4XFxdnHQUVHBys5ORkxcfH24x6iouLU82aNTPdr6urq1xdXc06LAAAABuMeAIAALCDy5cvy8HB9quYo6OjUlNTJUnh4eEKDg7W8uXLreuTk5O1du1aa6hUpUoVOTs727Q5ceKEYmNjswyeAAAA7iRGPAEAANhB8+bN9e6776pYsWIqV66ctmzZotGjR+v555+XdP0Su969e2v48OGKiIhQRESEhg8fLg8PD7Vt21aS5OPjo86dO+u1115TQECA/P399frrr6t8+fLWu9wBAADYE8ETAACAHYwbN05vvfWWunXrpri4OIWGhqpr1656++23rW369u2rxMREdevWTfHx8apevbqWLVsmLy8va5uPPvpITk5Oat26tRITE1WvXj3NmDFDjo6O9jgsAAAAGwRPAAAAduDl5aUxY8ZozJgxWbaxWCyKiYlRTExMlm3c3Nw0btw4jRs37vYXCQAAcIuY4wkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACm4K52AAAAAIBsxcZMtXcJAPIpRjwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFE72LgAAAAAAgPtBbMzUW+4jMqbLbagEuHMY8QQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTONm7AAAAAACAuVzWzM92fWzM73eoEgD3G0Y8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMwRxPAAAAAHCf27wm7pb7qBwdeBsqAXCvYcQTAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFM42bsAAAAAAPenqTGx9i4BAGAyRjwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTONm7AAAAAAAAkDuxMVNvafvImC63qRIgdxjxBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBXM8AQAAAMBdzGXNfHuXAAA3jRFPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAdnLs2DH997//VUBAgDw8PFSxYkVt2rTJut4wDMXExCg0NFTu7u6Kjo7Wzp07bfpISkpSz549VbBgQXl6eqpFixY6evTonT4UAACATBE8AQAA2EF8fLxq1aolZ2dnLV68WLt27dKHH34oX19fa5uRI0dq9OjRGj9+vDZs2KDg4GA1aNBAFy5csLbp3bu35s2bpzlz5ujXX3/VxYsX1axZM6WkpNjhqAAAAGw52bsAAACA+9H777+vokWLavr06dZlxYsXt/7bMAyNGTNGAwcO1JNPPilJmjlzpoKCgjR79mx17dpVCQkJmjZtmr744gvVr19fkjRr1iwVLVpUK1asUKNGje7oMQEAANyIEU8AAAB2MH/+fFWtWlVPP/20AgMDValSJU2ZMsW6/sCBAzp58qQaNmxoXebq6qqoqCitW7dOkrRp0yZdvXrVpk1oaKgiIyOtbW6UlJSk8+fP2zwAAADMQvAEAABgB/v379fEiRMVERGhpUuX6qWXXlKvXr30+eefS5JOnjwpSQoKCrLZLigoyLru5MmTcnFxkZ+fX5ZtbjRixAj5+PhYH0WLFr3dhwYAAGBF8AQAAGAHqampqly5soYPH65KlSqpa9eueuGFFzRx4kSbdhaLxea5YRgZlt0ouzYDBgxQQkKC9XHkyJFbOxAAAIBsEDwBAADYQUhIiB588EGbZWXLltXhw4clScHBwZKUYeRSXFycdRRUcHCwkpOTFR8fn2WbG7m6usrb29vmAQAAYBaCJwAAADuoVauW9uzZY7Ps77//VlhYmCQpPDxcwcHBWr58uXV9cnKy1q5dq5o1a0qSqlSpImdnZ5s2J06cUGxsrLUNAACAPXFXOwAAADt49dVXVbNmTQ0fPlytW7fWn3/+qcmTJ2vy5MmSrl9i17t3bw0fPlwRERGKiIjQ8OHD5eHhobZt20qSfHx81LlzZ7322msKCAiQv7+/Xn/9dZUvX956lzsAAAB7IngCAACwg4cffljz5s3TgAEDNHToUIWHh2vMmDFq166dtU3fvn2VmJiobt26KT4+XtWrV9eyZcvk5eVlbfPRRx/JyclJrVu3VmJiourVq6cZM2bI0dHRHocFAABgg+AJAADATpo1a6ZmzZplud5isSgmJkYxMTFZtnFzc9O4ceM0btw4EyoEAAC4NczxBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFM42bsAAAAAAED+t3lN3C33UTk68DZUAuBuwognAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApnOxdAAAAAID8aWpMrL1LAADc5RjxBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATOFk7wIAAAAAAJCkzWvibmn7ytGBt6kSALcLI54AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmMLJ3gUAAAAAwL3MZc18e5cAAHbDiCcAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCmc7F0AAAAAAAC4M2Jjpt5yH5ExXW5DJbhfMOIJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAA7GzFihCwWi3r37m1dZhiGYmJiFBoaKnd3d0VHR2vnzp022yUlJalnz54qWLCgPD091aJFCx09evQOVw8AAJA1JhcHAACwow0bNmjy5MmqUKGCzfKRI0dq9OjRmjFjhh544AENGzZMDRo00J49e+Tl5SVJ6t27txYsWKA5c+YoICBAr732mpo1a6ZNmzbJ0dHRHocDAHa1eU3cLfdROTrwNlQCIA0jngAAAOzk4sWLateunaZMmSI/Pz/rcsMwNGbMGA0cOFBPPvmkIiMjNXPmTF2+fFmzZ8+WJCUkJGjatGn68MMPVb9+fVWqVEmzZs3Sjh07tGLFCnsdEgAAgA2CJwAAADvp3r27mjZtqvr169ssP3DggE6ePKmGDRtal7m6uioqKkrr1q2TJG3atElXr161aRMaGqrIyEhrm8wkJSXp/PnzNg8AAACzcKkdAACAHcyZM0ebN2/Whg0bMqw7efKkJCkoKMhmeVBQkA4dOmRt4+LiYjNSKq1N2vaZGTFihIYMGXKr5QMAAOQKI54AAADusCNHjuiVV17RrFmz5ObmlmU7i8Vi89wwjAzLbpRTmwEDBighIcH6OHLkSN6KBwAAyAOCJwAAgDts06ZNiouLU5UqVeTk5CQnJyetXbtWY8eOlZOTk3Wk040jl+Li4qzrgoODlZycrPj4+CzbZMbV1VXe3t42DwAAALMQPAEAANxh9erV044dO7R161bro2rVqmrXrp22bt2qEiVKKDg4WMuXL7duk5ycrLVr16pmzZqSpCpVqsjZ2dmmzYkTJxQbG2ttAwAAYG/M8QQAAHCHeXl5KTIy0maZp6enAgICrMt79+6t4cOHKyIiQhERERo+fLg8PDzUtm1bSZKPj486d+6s1157TQEBAfL399frr7+u8uXLZ5isHAAAwF4IngAAAO5Cffv2VWJiorp166b4+HhVr15dy5Ytk5eXl7XNRx99JCcnJ7Vu3VqJiYmqV6+eZsyYIUdHRztWDgAA8P8IngAAAO4Ca9assXlusVgUExOjmJiYLLdxc3PTuHHjNG7cOHOLA+5zLmvm27sEAMi3mOMJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCmc7F0AAAAAgDtvakysvUsAANwHGPEEAAAAAAAAUzDiCQAAAACA/9m8Ju6Wtq8cHXibKgHuDYx4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApnCydwEAAAAAYBaXNfPtXQIA3NcY8QQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTONm7AAAAAAAA7hWb18Tdch+VowNvQyXA3YERTwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUzjZuwAAAAAAAJB/xMZMvaXtI2O63KZKkB8w4gkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKZzsXQAAAAAAZMVlzXx7lwAAuAWMeAIAAAAAAIApGPEEAAAA5DNTY2LtXQIAALnCiCcAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAA7GDFihB5++GF5eXkpMDBQLVu21J49e2zaGIahmJgYhYaGyt3dXdHR0dq5c6dNm6SkJPXs2VMFCxaUp6enWrRooaNHj97JQwEAAMgSd7UDcMtiFGPvEnAXibF3AUA+sXbtWnXv3l0PP/ywrl27poEDB6phw4batWuXPD09JUkjR47U6NGjNWPGDD3wwAMaNmyYGjRooD179sjLy0uS1Lt3by1YsEBz5sxRQECAXnvtNTVr1kybNm2So6OjPQ8RAACA4AkAAMAelixZYvN8+vTpCgwM1KZNm/Too4/KMAyNGTNGAwcO1JNPPilJmjlzpoKCgjR79mx17dpVCQkJmjZtmr744gvVr19fkjRr1iwVLVpUK1asUKNGje74cQEAAKTHpXYAAAB3gYSEBEmSv7+/JOnAgQM6efKkGjZsaG3j6uqqqKgorVu3TpK0adMmXb161aZNaGioIiMjrW1ulJSUpPPnz9s8AAAAzELwBAAAYGeGYahPnz6qXbu2IiMjJUknT56UJAUFBdm0DQoKsq47efKkXFxc5Ofnl2WbG40YMUI+Pj7WR9GiRW/34QAAAFgRPAEAANhZjx49tH37dn311VcZ1lksFpvnhmFkWHaj7NoMGDBACQkJ1seRI0duvnAAAIAcEDwBAADYUc+ePTV//nytXr1aRYoUsS4PDg6WpAwjl+Li4qyjoIKDg5WcnKz4+Pgs29zI1dVV3t7eNg8AAACzEDwBAADYgWEY6tGjh77//nutWrVK4eHhNuvDw8MVHBys5cuXW5clJydr7dq1qlmzpiSpSpUqcnZ2tmlz4sQJxcbGWtsAAADYE3e1AwAAsIPu3btr9uzZ+vHHH+Xl5WUd2eTj4yN3d3dZLBb17t1bw4cPV0REhCIiIjR8+HB5eHiobdu21radO3fWa6+9poCAAPn7++v1119X+fLlrXe5AwAAsCeCJwAAADuYOHGiJCk6Otpm+fTp09WxY0dJUt++fZWYmKhu3bopPj5e1atX17Jly+Tl5WVt/9FHH8nJyUmtW7dWYmKi6tWrpxkzZsjR0fFOHQoAAECWCJ4AAADswDCMHNtYLBbFxMQoJiYmyzZubm4aN26cxo0bdxurAwAAuD2Y4wkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYArmeAIAAAAA4C6yeU3cLW1fOTrwNlUC3DpGPAEAAAAAAMAUBE8AAAAAAAAwBZfaAQAAADCFy5r59i4BAGBnjHgCAAAAAACAKQieAAAAAAAAYAoutQMAAAAAAHdMbMzUW9o+MqbLbaoEdwIjngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApnCydwEAAAAAAOD22bwm7pb7qBwdeBsqARjxBAAAAAAAAJMQPAEAAAAAAMAUXGoHAAAA3GFTY2LtXQIAAHcEI54AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKZwsncBAAAAAO5OLmvm27sEAEA+x4gnAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApmOMJAAAAAADY2Lwm7pa2rxwdeJsqQX7HiCcAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCmY4wkAAAC4R7msmW/vEgDgtouNmXrLfUTGdLkNlSA3GPEEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUzjZuwAAAAAgP5kaE2vvEgAAyDcIngAAAAAAwG21eU3cLfdROTrwNlQCe+NSOwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmcLJ3AQAAAAAAAHdSbMzUW9o+MqbLbark3seIJwAAAAAAAJiCEU8AAAC4r0yNibV3CQAA3DcIngAAAIC7kMua+fYuAQCAW8aldgAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUzDHEwAAAGAC5mgCAIDgCQAAAAAA3IU2r4m7pe0rRwfepkpwK7jUDgAAAAAAAKYgeAIAAAAAAIApuNQOAAAA+cbUmFh7lwAAAPKA4AkAACCfmzBhgkaNGqUTJ06oXLlyGjNmjOrUqWPvsvI1JgYHgPzvVueIyrbv6OG5bpvVXFORMV1uVzl3NS61AwAAyMfmzp2r3r17a+DAgdqyZYvq1Kmjxo0b6/Dhw/YuDQAAgBFPAAAA+dno0aPVuXNndely/a+mY8aM0dKlSzVx4kSNGDHCztXZDyOWAAB3i6xGXv2ey8vHu8REZro8NmbqTdeU5k6MuiJ4AgAAyKeSk5O1adMm9e/f32Z5w4YNtW7duky3SUpKUlJSkvV5QkKCJOn8+fM57m/miF25qsvll0W5amemRHsXAABATlZ8natmk3LZLjsP1SmU6fLc/P+f3XaGYeTYNtfBU0zMTdUC4D7A5wMA2Me///6rlJQUBQUF2SwPCgrSyZMnM91mxIgRGjJkSIblRYsWNaVGAABwF/gti+Xv9bqlbi9cuCAfH59s2zDiCQAAIJ+zWCw2zw3DyLAszYABA9SnTx/r89TUVJ09e1YBAQFZbpPfnD9/XkWLFtWRI0fk7e1t73KQBV6nux+vUf7A65Q/3Guvk2EYunDhgkJDQ3NsS/AEAACQTxUsWFCOjo4ZRjfFxcVlGAWVxtXVVa6urjbLfH19zSrRrry9ve+JL/f3Ol6nux+vUf7A65Q/3EuvU04jndJwVzsAAIB8ysXFRVWqVNHy5cttli9fvlw1a9a0U1UAAAD/jxFPAAAA+VifPn3Uvn17Va1aVTVq1NDkyZN1+PBhvfTSS/YuDQAAgOAJAAAgP3vmmWd05swZDR06VCdOnFBkZKQWLVqksLAwe5dmN66urho8eHCGSwpxd+F1uvvxGuUPvE75w/38OlmM3Nz7DgAAAAAAAMgj5ngCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAADAPS8pKUkVK1aUxWLR1q1b7V0O0jl48KA6d+6s8PBwubu7q2TJkho8eLCSk5PtXdp9b8KECQoPD5ebm5uqVKmiX375xd4lIZ0RI0bo4YcflpeXlwIDA9WyZUvt2bPH3mUhGyNGjJDFYlHv3r3tXcodRfAEAACAe17fvn0VGhpq7zKQib/++kupqamaNGmSdu7cqY8++kiffvqp3nzzTXuXdl+bO3euevfurYEDB2rLli2qU6eOGjdurMOHD9u7NPzP2rVr1b17d/3+++9avny5rl27poYNG+rSpUv2Lg2Z2LBhgyZPnqwKFSrYu5Q7zmIYhmHvIgAAAACzLF68WH369NF3332ncuXKacuWLapYsaK9y0I2Ro0apYkTJ2r//v32LuW+Vb16dVWuXFkTJ060LitbtqxatmypESNG2LEyZOX06dMKDAzU2rVr9eijj9q7HKRz8eJFVa5cWRMmTNCwYcNUsWJFjRkzxt5l3TGMeLoPFS9eXBaLRR07drR3KQCQgcVikcViUUxMjL1LAXAPOHXqlF544QV98cUX8vDwsHc5yKWEhAT5+/vbu4z7VnJysjZt2qSGDRvaLG/YsKHWrVtnp6qQk4SEBEniZ+cu1L17dzVt2lT169e3dyl24WTvAgAAAAAzGIahjh076qWXXlLVqlV18OBBe5eEXNi3b5/GjRunDz/80N6l3Lf+/fdfpaSkKCgoyGZ5UFCQTp48aaeqkB3DMNSnTx/Vrl1bkZGR9i4H6cyZM0ebN2/Whg0b7F2K3TDiCXed6OhoWSwWRUdH27sUAHeZNWvWWEdErVmzxt7lALCTmJgY62dBVo+NGzdq3LhxOn/+vAYMGGDvku9LuX2d0jt+/Lgef/xxPf300+rSpYudKkcai8Vi89wwjAzLcHfo0aOHtm/frq+++srepSCdI0eO6JVXXtGsWbPk5uZm73LshhFPAIC7ClMPAshJjx491KZNm2zbFC9eXMOGDdPvv/8uV1dXm3VVq1ZVu3btNHPmTDPLvO/l9nVKc/z4cdWtW1c1atTQ5MmTTa4O2SlYsKAcHR0zjG6Ki4vLMAoK9tezZ0/Nnz9fP//8s4oUKWLvcpDOpk2bFBcXpypVqliXpaSk6Oeff9b48eOVlJQkR0dHO1Z4ZxA8AQAAIF8pWLCgChYsmGO7sWPHatiwYdbnx48fV6NGjTR37lxVr17dzBKh3L9OknTs2DHVrVtXVapU0fTp0+XgwIUZ9uTi4qIqVapo+fLleuKJJ6zLly9frv/85z92rAzpGYahnj17at68eVqzZo3Cw8PtXRJuUK9ePe3YscNmWadOnVSmTBn169fvvgidJIInAAAA3KOKFStm87xAgQKSpJIlSzIq4C5y/PhxRUdHq1ixYvrggw90+vRp67rg4GA7VnZ/69Onj9q3b6+qVataR6EdPnxYL730kr1Lw/90795ds2fP1o8//igvLy/rCDUfHx+5u7vbuTpIkpeXV4Y5tzw9PRUQEHBfzcXFnxJuEBsbq2HDhqlRo0YqUqSIXF1dVaBAAUVERKhDhw76/fffc+zj+PHj6t+/vypXriwfHx+5uLgoODhY5cuX17PPPqsZM2bo/Pnzt1RnfHy8hg0bpho1aqhgwYJydXVVaGio/vOf/+j777+/pb7THD16VAMGDFDlypXl5+cnNzc3FStWTM8884xWr16dqz5Onz6toUOHqlatWgoMDJSrq6uKFi2qWrVqaejQodqzZ4+1bceOHWWxWLR27VpJ0tq1azPMA5B+OLaU8e5Xq1at0tNPP62iRYvK2dk5Q3tJ+vXXX9W+fXsVL15cbm5u8vX1VaVKlTRo0CCbLzo3ymxuma+//lr16tVToUKF5O7urtKlS6tv3746e/Zsrs4P8p+7+TPi4MGD1vfojBkzJEnffPON6tevr8DAQLm7u6tMmTLq37+/4uPjc+wvOTlZEyZMUN26dVWoUCFrnU2aNNGsWbOUmpqa7fZ///23evbsqcjISBUoUEAuLi4KDQ1VxYoV9fzzz2vu3LlKSkrKsF1md7VLO7a6detal9WtWzfDZ0TacUu2c4tI1+/08s4776hSpUry9fXN0F66fqvb9957TzVq1JC/v79cXV1VpEgRtWrVSj/99FO2x3vj/HTHjh1Tnz59VKpUKbm7uysgIECNGjXS4sWLs+0HAO43y5Yt0969e7Vq1SoVKVJEISEh1gfs55lnntGYMWM0dOhQVaxYUT///LMWLVqksLAwe5eG/5k4caISEhIUHR1t83Mzd+5ce5cG2DJgtXr1akNSjo/+/ftn2cfPP/9seHt759jHggULbrrOhQsXGr6+vtn237RpU+PChQuZbh8WFmZIMjp06JDlPqZOnWq4u7tnu4/OnTsbV69ezbKPWbNmGZ6entn2ERYWZm3foUOHHM9b+vaGYViXDx482HjzzTezbZ+SkmJ079492/59fHyMZcuWZXo86d8fK1asMNq2bZtlP6VKlTJOnDiR5blB/nS3f0YcOHDAuv306dON559/Psv+Q0JCjJ07d2bZ18GDB42yZctmW2Pt2rWNM2fOZLr9119/bbi4uOR4nDt27Miwbfqf68yOLbvH9OnTrdsMHjzYuvzvv/82ihcvnm37zZs3G6Ghodn2/+STTxqJiYmZHnNUVJQhyYiKijJ++eUXIyAgIMt+Ro0alf2LCQAAANwjuNQunWvXrsnT01NNmzbVY489pjJlysjb21txcXHauXOnxo4dq0OHDum9997TAw88oE6dOtlsn5SUpDZt2uj8+fPy8vLSyy+/rLp16yowMFBXr17VoUOHtH79en333Xc3XePy5cvVokULpaSkqHjx4nr55ZdVvXp1eXt769ixY5o7d65mzZqlhQsXqkOHDje1r88++8x6F5HIyEh17dpVlSpVkoeHhw4cOKBp06Zp0aJFmjZtmnx8fDK91e3nn3+uDh06SJLc3Nz0wgsvqHHjxgoODtbFixe1fft2LViwQP/88491m3fffVevv/66OnXqpI0bN6pq1aqaPn26Tb8uLi6Z1jxv3jxt375d5cuX16uvvqrIyEglJiZq69at1jb9+/fXJ598IkkKDw9Xv379VLlyZV26dEnz58/X+PHjlZCQoGbNmunPP//UQw89lOU5evvtt7Vu3Tq1bNlSzz33nMLCwnTq1Cl98sknWrhwofbu3atXX32Vu0rcY/LDZ0SaCRMmaMOGDapWrZpeffVVRUREKC4uTjNnztTcuXN14sQJNWrUSDt37pS3t7fNthcvXtRjjz2m/fv3S5Jatmyp559/XqGhoTpw4IDGjx+vtWvX6tdff1WzZs30yy+/2FyffurUKXXq1EnJyckKDAxUjx499Mgjj6hgwYK6cuWK9u/fr59//jlPozMLFy6sHTt2aMOGDXr++eclXf+sevjhh23aZXXpTKtWrXTs2DH17NlTLVq0kJ+fn/755x/rX22PHTumevXqKT4+XhaLRR07dlSbNm0UEBCgXbt26cMPP9S2bdv0/fffq0OHDtn+JfHEiRN64okn5OjoqPfee0+1a9eWi4uLfv31Vw0dOlTnzp3TgAED1LhxY5UrVy7X5wAAAADIl+ydfN1NTp8+bcTHx2e5PikpyWjQoIF1JM21a9ds1q9cuTJXoxWuXr1qJCQk5Lm+ixcvGkFBQYYko2HDhsalS5cybTd58mSbkTk3ym7E0+HDhw0PDw/r+qxGNKWNLnJwcDD27Nljs+7YsWPWPgIDAzMd0ZDmyJEjGZalHzWQE6UbQVCvXj3jypUrmbbbvn274eDgYEgyIiMjM32dFy9ebG1TrVq1DOtvHO0ybNiwDG1SU1ONhg0bGpIMJycnIy4uLsdjQP5xt39G3DgqqEmTJpn+DA8dOtTa5vXXX8+w/vXXX7euHzRoUIb1qampRrt27axtJkyYYLN+2rRp2Y5oSpOYmGhcvnw5w/K0bdOPeEqT/udw9erVWfZtGLYjnhwcHLIczWgYhtGqVStr26lTp2ZYf+XKFaNu3brWNosWLcrQJu2zK+31P3r0aIY2v/zyi2GxWAxJRq9evbKtHwAAALgXMMdTOgULFpSvr2+W611cXDRq1ChJ0qFDh2xG00iyud3oo48+mmU/Tk5OGUYY5Mb06dN16tQpubm56YsvvpCHh0em7V544QVVq1bNuk1efPzxx7p8+bJCQ0P16aefyskp80FxQ4YMUeHChZWamqrPP//cZt24ceN0+fJlSdKkSZOynTTtdk3s6eDgoKlTp2a4XXKaiRMnWuejmTJlSqav8+OPP24dSfHnn39qw4YNWe6vSpUqevPNNzMst1gs6tOnj6Tro2PWr1+f10PBXexu/4xIz9XVVVOmTMn0Z3jgwIHWn8tp06bZzLOUlJSkqVOnSpIefPBBm3mW0lgsFk2YMEEBAQGSpPHjx9usTztOPz+/bH/+3dzc7tjElx07dlSDBg0yXXfixAnNmzdPktSoUSN17tw5QxtXV1d99tln1vN54zHfaNy4cSpcuHCG5bVr17beSeuXX37J0zEAAAAA+RHBUzaSkpJ0+PBh7dq1S7GxsYqNjZVhGNb127Zts2mffgLEvAY+ufHjjz9KkqKiohQYGJht27RfavMafKTto3nz5nJzc8uynZOTk2rUqJHpPhYuXCjp+uVsd+p2q7Vq1cp0IvE0K1askHT9F+lHHnkky3YvvPBChm0y07ZtW+uExTeqUqWK9d9plyrh3nS3fUak17BhQ4WGhma6zsHBwXopbHx8vDZv3mxdt2nTJp07d07S9bAmq1u8ent7q3Xr1pKkXbt26cSJE9Z1accZHx9v/Uyxt3bt2mW5bvXq1UpJSZGkTEOnNMWLF7eGV2vWrLFucyNfX181bdo0y37SPiP4fAAAAMD9gODpBpcuXdKIESP00EMPydPTU2FhYSpXrpzKly+v8uXLq1KlSta2//77r822tWvXVokSJSRJvXv3VrVq1TRixAitW7dOycnJt1zbxo0bJUlLly7NcCenGx8ffPCBJNsRFjlJSEjQ3r17JV0fqZTTPr799tsM+7h69apiY2MlSXXq1MkynLndKlSokOW6pKQk61xSaSMNslKpUiU5OztLkvU4MlOmTJks1/n7+1v/feHChWz3h/znbv6MSO/GuY9ulDYqUrJ9r6f/d04/L+nXp9+uRYsW1pFhTzzxhB577DF99NFH2rRpU5Zhjdmy+4y4mWO+fPlylsFRRESEHByy/u817TOCzwcAAADcD5hcPJ2DBw/qscce04EDB3LVPjEx0ea5s7OzFixYoFatWmn37t3asGGD9XItd3d3RUVFqX379nrmmWeyHEWQlatXr1pHIeRF2iVvuREXF5fn/m/cx9mzZ60jPu7kLXD9/PyyXJf+tvFBQUHZ9uPs7KyAgACdPHlSZ8+ezbJdVpc5SrL5hdNev2TDHHfzZ8SNchoVmf5nIf17Pf2/c/p5CQ4OznS7gIAAzZ8/X88++6yOHTum1atXa/Xq1ZKuj5SqX7++OnXqpGbNmuXuYG6D7D4jbscxp5fd54P0/58RaZf/AgAAAPcygqd02rdvrwMHDshisahTp05q06aNypYtq0KFClnnDkpNTbX+Qpj+kpo0Dz74oHbs2KEFCxZowYIFWrt2rfbt26fExEQtWbJES5Ys0ejRo7Vo0aIcfzFML32A0bp1a7311lu3eLTZ76N3797ZXnKSXlZ3mrtTo50k5fqX9NzUlNnrCkh392fEjXJ6r+fmfX4rfdSpU0d79+7Vd999p0WLFunnn3/W0aNHdf78eX3//ff6/vvv1ahRI33//fc5BjW3w60GeWn4fAAAAADyhuDpf/766y/9+uuvkqQBAwbo3XffzbRd+tEzWXF0dFTLli3VsmVLSdcnrl28eLEmTJigTZs2adOmTeratat1MtvccHNzk4eHhy5fvqxz585lO2HvzUqbKFi6PorpZvbh7+8vBwcHpaam6vjx47ezvJuWfqRDTpceXrt2zTqKIf0lc8Dd/hlxo1OnTmW7Pv0Ix/Tv9fT/PnnypB544IFc7SOznxc3Nze1a9fOOr/S/v37tXDhQo0fP15///23li5dqoEDB+qjjz7K+YBMlL72U6dOqVixYlm2zemYAQAAANhijqf/2blzp/Xfbdq0ybJd2jxLeRESEqLnn39e69evV+XKlSVJP/30U4bLcHKSNnfMb7/9lqdL6HKrUKFC1rswrVix4qb+su/s7GwNrH755Zeb6uN2j5RydXVVRESEJOmPP/7Itu2WLVt09epVSTIl3EP+lR8+I9LL7q6MN65P/15P/++cfl7+/PPPTLfLSokSJdSzZ09t2LDBekfLr7/+Osft0jNjJOXNHLOHh4fCw8Nvey0AAADAvYbg6X+uXbtm/Xd2oc6nn3560/twdnZWVFSUdX95nbOpRYsWkq5PbvzJJ5/cdB252cf+/futk4fnVfPmzSVJBw4cuKk7WqXdTS/9Ld5vVf369SVdv/vW77//nmW7tNvIp98GkPLHZ0R6y5Yts7nTXHqpqamaOXOmpOsjAtPCLun6HdfSJgafOXNmlvOUXbhwwRoaPfjgg3ma083b29s6+fmNE7DnJP3dNm/XZ0R0dLT1Urxp06Zl2e7w4cNavny5dRsnJwYNAwAAADkhePqftBExkqy/kN1o4sSJ+uGHH7Ls45dffrHeFS4zycnJWrt2rSSpQIECKlSoUJ5qfOmll1SwYEFJ0ltvvaXFixdn2/63337Tzz//nKd9vPHGG9a5al566aUcR28sWrRI27dvt1nWo0cPeXp6SpK6du2a7d3hjh49mmFZ2i+w+/fvv23zqbz88svWCX1ffPFFJSQkZGizbNky6y+d1apVy/GuYLi/5IfPiPSSkpLUtWvXTIOj9957Tzt27JAkPf/889afeen6CMEuXbpIuj7Ka8iQIRm2NwxDPXr0sIZGPXr0sFm/dOnSLEMv6fodNNNGDuV11FD6gGvfvn152jYroaGheuKJJyRdr/2zzz7L0CY5OVnPP/+8dUTkjccMAEB+d+rUKVksFn388ceqVKmS3NzcVK5cOetUAwBws/hz7f9UqlRJkZGRio2N1cSJE3Xu3Dm1a9dOISEhOnLkiGbNmqVvv/1WtWrV0m+//ZZpHytXrtQ777yjOnXqqGnTpqpQoYIKFSqkxMRE/f333/r000+1efNmSVKXLl3y/Ndyb29vffXVV2rcuLGSkpLUrFkzPfXUU3rqqadUsmRJSdfnitm0aZPmzZun7du3a9y4cXr00UdzvY/w8HB9+umn6tSpk86ePatatWqpffv2atasmYoVK6Zr167p6NGj+vPPP/Xtt99q3759WrBggc2tyoODgzVx4kQ999xziouLU7Vq1fTCCy+ocePGCg4O1sWLFxUbG6v58+drz549GX55rFmzpqZPn664uDj16dNH//3vf+Xj4yPp+oiQsLCwPJ03SSpfvrxee+01jRo1Sjt27FDlypXVr18/VapUSZcvX9aCBQs0duxYpaSkyMXFRZMmTcrzPnBvyw+fEelVrVpVCxYsUK1atfTqq68qIiJCcXFxmjlzpubMmSNJKlKkSKY3Knj77bf1/fffa//+/XrnnXcUGxur559/XqGhoTpw4IDGjx+vNWvWSJJq1KihF1980Wb7r776Ss2bN1eDBg3UsGFDRUZGyt/fXxcuXFBsbKzGjx+vY8eOSboeCudFsWLFVKRIER09elQffPCBChcurNKlS1vPVVBQkLy8vPJ6uvTRRx9p5cqVio+PV5cuXfTbb7+pTZs28vf3119//aUPPvhAW7dulXT9Bg+NGzfO8z4AALibbdmyRZI0YcIETZo0SSEhIerTp4/atWunAwcO2Ny5GQDyxIDVli1bDD8/P0NSpo/y5csbx48ftz4fPHiwzfaDBw/Octv0jyeffNJITEy86TpXrlxpBAcH52pfM2fOzLB9WFiYIcno0KFDlvuYM2eO4e3tnWP/Dg4OxqpVqzLtY8aMGYa7u3u224eFhWXY7sKFC0aJEiVy1T6r1yIzKSkpRrdu3bKtx8fHx1i6dGmm269evdrabvXq1dnuKy91If+42z8jDhw4YO1j+vTpRseOHbPcR0hIiLFz585s+ypTpky2ddaqVcs4c+ZMhm07dOiQq+Ps3r27kZKSkmH7nH5+JkyYkGWf06dPz/R858bmzZuN0NDQm35toqKiDElGVFRUtvvJa10AANwJ7733nuHs7Gzs37/fumzjxo2GJOPw4cN2rAxAfseIp3QqVqyorVu3asSIEVq8eLGOHz8uLy8vlSpVSq1bt1b37t1t5he5Ud++fVW9enUtX75c69ev1/Hjx613jgoODlb16tX13HPPqUmTJrdU52OPPaZ9+/Zp+vTp+umnn7Rt2zadOXNGDg4OKlSokMqWLauoqCg99dRTKl269E3t45lnnlHDhg01efJkLVmyRLt27VJ8fLycnZ0VHByscuXKqW7dumrVqpWKFi2aaR8dOnRQw4YN9cknn2jJkiXat2+fLl++rODgYBUrVkyNGzfWs88+m2G7AgUKaN26dRoxYoSWLVumQ4cO3ZbJ1B0cHPTJJ5+oTZs2mjRpkn755RedOnVKrq6uKlGihJo0aaLevXvf0uVNuLfll8+INNOnT7f+HO/YsUMXL15UWFiYWrZsqf79+9vc8fFGxYsX17Zt2zRlyhR98803io2N1fnz5+Xv769KlSqpXbt2atu2baZ//RwzZoxatGih5cuXa+PGjTpx4oROnz4tR0dHFS1aVDVr1lSXLl1Uq1atmzqul19+WUFBQZo0aZK2bt2qs2fP2szBdbMqVaqkPXv2aPz48frhhx+0Z88eXb58WQULFtQjjzyijh07WuewAwDgXrN161Y9+eSTNpfBp78cHwBulsUwbtMkOgAAuzp48KD1y+L06dPVsWNH+xYEAADyjbJly6pDhw7q37+/ddnnn3+u1157TadOnVKNGjX0ySefqGrVqurQoYMeeeSRPF8yD+D+xIgnAAAAALiPJSYm6p9//rG5KUlqaqo+/vhjdejQQQ4ODnrrrbc0fPhw1apVSwUKFCB0ApBrzBAHAAAAAPexHTt2yGKxaNasWVq/fr12796tZ555RufOndOgQYMkSc2aNdP+/fu1dOlSffzxx3auGEB+QvAEAAAAAPexrVu3qkyZMho0aJBatWqlqlWrysHBQevXr5evr68k6c8//9S5c+fk6+t7S3feBXD/IXgCAAAAgPvYtm3bVL58ebVr107Hjh3TpUuXNHfuXAUGBkqSjh07pi5dumj16tX6559/tHv3bjtXDCA/IXgCAAAAgPvY1q1bVaFChUzXJSYmqlWrVho/frzCw8PVt29fDRs27A5XCCA/4652AAAAAHCfMgxDPj4+mjNnjpo0aWLvcgDcgwieAAAAAAAAYAoutQMAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgiv8DbL3aW2UzfGkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAIiCAYAAACJywLeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABryElEQVR4nO3deZyNdf/H8feZfTE7s1nGYEKGbJGtGdmy3ipJ3EKUsjVJlihDotSNENlCSbTppmQNLVR2Bqns+4gxtjHDzPX7wz3nN8fszOUYXs/H4zweznV9r+/1ua5z5jjznu/1vSyGYRgCAAAAAAAACpiDvQsAAAAAAADA3YngCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgqRCbM2eOLBaL9eHk5KQSJUqoW7duOnbsmL3Lu2m7d+9WbGysDh48mGld165dVbp06dteU36cPXtWHTp0UGBgoCwWi9q2bWvvkm7J6NGj9c033xRYf+nv202bNhV4n1m9Z+4Ea9eulcVi0dq1a+1WQ3R0tKKjo22WHTx4UC1btpS/v78sFotiYmJ08OBBWSwWzZkzp8D2fSccPwAAt9ON39Pd3NwUHByshg0basyYMYqPj7dpHxsbK4vFkq99XL58WbGxsfn+/zWrfZUuXVqtWrXKVz+5mT9/viZMmJDlOovFotjY2ALdH4A7l5O9C8Ctmz17tipUqKCkpCT9+OOPGjNmjNatW6edO3fK09PT3uXl2+7duzVixAhFR0dnCplef/11vfTSS/YpLI/efPNNLVq0SB999JHKli0rf39/e5d0S0aPHq127drd0QFay5YttWHDBoWEhNi7lDvWlClTMi17+eWX9dtvv+mjjz5ScHCwQkJCFBwcrA0bNqhs2bJ2qBIAgLtL+vf0q1evKj4+Xj///LPeeecdvffee1q4cKEaN24sSerRo4ceffTRfPV9+fJljRgxQpIy/XEpJzezr5sxf/58xcXFKSYmJtO6DRs2qESJEqbXAODOQPB0F4iMjFTNmjUlSQ0bNlRqaqrefPNNffPNN+rUqVOW21y+fFkeHh63s8xcXb16Nde/9BSGX4bj4uJUtmzZbM89Cl6xYsVUrFgxe5dxR7v//vszLYuLi1OtWrUyhYoPPfTQbaoKAIC7W8bv6ZL0xBNP6OWXX1b9+vX1+OOP66+//lJQUJBKlChhehCT/v3/duwrN3zXAO4tXGp3F0r/ID906JCk65enFSlSRDt37lTTpk3l5eWlRo0aSbp+WVivXr1UvHhxubi4qEyZMho6dKiSk5Nt+rRYLOrTp4+mTZum++67T66urrr//vu1YMGCTPuPi4vTv/71L/n5+cnNzU1Vq1bV3LlzbdqkX3rzySef6JVXXlHx4sXl6uqqmTNn6sknn5R0PURLH56cftlPVpfaXblyRUOGDFF4eLhcXFxUvHhx9e7dW+fOnbNplz6EeNmyZapevbrc3d1VoUIFffTRR3k6r7mdq/RLlFatWqU9e/ZYa89t+PPChQtVp04deXp6qkiRImrWrJm2bt1qXT9hwgRZLBb9/fffmbYdNGiQXFxc9M8//1iXrVq1So0aNZK3t7c8PDxUr149rV692ma79CHWu3bt0tNPPy0fHx8FBQXp2WefVWJiorWdxWLRpUuXNHfuXOvxpP9F7fLlyxowYIDCw8Pl5uYmf39/1axZU5999lmezmdCQoK6desmf39/eXp6qnXr1tq/f3+mdnk5nqwutYuOjlZkZKQ2btyoBg0ayMPDQ2XKlNHbb7+ttLQ0m+137dqlpk2bysPDQ8WKFVPv3r313Xff5fnysD/++ENPP/20goKC5OrqqlKlSumZZ57J9HOU0aZNm9ShQweVLl1a7u7uKl26tJ5++mnrz226vJzn/fv3q0OHDgoNDZWrq6uCgoLUqFEjbdu2zeZ8pL926T9/f//9t77//nvra3vw4MFsL7X766+/1LFjRwUGBsrV1VUVK1bUBx98kOW5ePTRR+Xh4aGiRYvqhRde0IULF3I9h5L0999/q1u3boqIiJCHh4eKFy+u1q1ba+fOnTbt0tLSNGrUKJUvX17u7u7y9fVVlSpV9P777+dpPwAA2FOpUqX0n//8RxcuXNC0adMkZX352w8//KDo6GgFBATI3d1dpUqV0hNPPKHLly/r4MGD1j+6jRgxwvp/edeuXW3627Jli9q1ayc/Pz/rH3Bzuqxv0aJFqlKlitzc3FSmTBlNnDjRZn120xvceFl9dHS0vvvuOx06dMjmksN0WV1ql5/fIT777DMNHTpUoaGh8vb2VuPGjbV3716btlu3blWrVq2s311CQ0PVsmVLHT16NMtjB2AeRjzdhdIDiowjQFJSUtSmTRv17NlTgwcP1rVr13TlyhU1bNhQ+/bt04gRI1SlShX99NNPGjNmjLZt26bvvvvOpt/FixdrzZo1GjlypDw9PTVlyhQ9/fTTcnJyUrt27SRJe/fuVd26dRUYGKiJEycqICBA8+bNU9euXXXq1CkNHDjQps8hQ4aoTp06+vDDD+Xg4KCaNWsqISFBr732mj744ANVr15dUvYjnQzDUNu2bbV69WoNGTJEDRo00I4dOzR8+HBt2LBBGzZskKurq7X99u3b9corr2jw4MEKCgrSzJkz1b17d5UrV04PP/xwtuc0L+cqJCREGzZsUK9evZSYmKhPP/1UUtYjTdKNHj1aw4YNU7du3TRs2DClpKTo3XffVYMGDfT777/r/vvv17///W8NGjRIc+bM0ahRo6zbpqamat68eWrdurWKFi0qSZo3b56eeeYZ/etf/9LcuXPl7OysadOmqVmzZlq+fLk1cEz3xBNP6KmnnlL37t21c+dODRkyRJKsYdyGDRv0yCOPqGHDhnr99dclSd7e3pKk/v3765NPPtGoUaNUrVo1Xbp0SXFxcTpz5ky2x5tR9+7d1aRJE82fP19HjhzRsGHDFB0drR07dsjX1/emjudGJ0+eVKdOnfTKK69o+PDhWrRokYYMGaLQ0FA988wzkqQTJ04oKipKnp6emjp1qgIDA/XZZ5+pT58+eTqO7du3q379+ipatKhGjhypiIgInThxQosXL1ZKSorN+y+jgwcPqnz58urQoYP8/f114sQJTZ06VQ8++KB2795tfU3zcp5btGih1NRUjR07VqVKldI///yj9evXZwpf01WvXl0bNmzQY489prJly+q9996TJIWEhOjEiROZ2u/evVt169a1flEODg7W8uXL1a9fP/3zzz8aPny4JOnUqVOKioqSs7OzpkyZoqCgIH366ad5PpfHjx9XQECA3n77bRUrVkxnz57V3LlzVbt2bW3dulXly5eXJI0dO1axsbEaNmyYHn74YV29elV//PFHtscLAMCdpkWLFnJ0dNSPP/6Y5fr0eRgbNGigjz76SL6+vjp27JiWLVumlJQUhYSEaNmyZXr00UfVvXt39ejRQ5IyjQB//PHH1aFDB73wwgu6dOlSjjVt27ZNMTExio2NVXBwsD799FO99NJLSklJ0YABA/J1fFOmTNHzzz+vffv2adGiRbm2z+/vEK+99prq1aunmTNn6vz58xo0aJBat26tPXv2yNHRUZcuXVKTJk0UHh6uDz74QEFBQTp58qTWrFmT5z+IAShABgqt2bNnG5KMX3/91bh69apx4cIF49tvvzWKFStmeHl5GSdPnjQMwzC6dOliSDI++ugjm+0//PBDQ5Lx+eef2yx/5513DEnGihUrrMskGe7u7tY+DcMwrl27ZlSoUMEoV66cdVmHDh0MV1dX4/DhwzZ9Nm/e3PDw8DDOnTtnGIZhrFmzxpBkPPzww5mO64svvjAkGWvWrMm0rkuXLkZYWJj1+bJlywxJxtixY23aLVy40JBkTJ8+3bosLCzMcHNzMw4dOmRdlpSUZPj7+xs9e/bMtK+M8nOuoqKijEqVKuXYn2EYxuHDhw0nJyejb9++NssvXLhgBAcHG+3bt7cue/zxx40SJUoYqamp1mVLly41JBlLliwxDMMwLl26ZPj7+xutW7e26S81NdV44IEHjFq1almXDR8+PMvz1qtXL8PNzc1IS0uzLvP09DS6dOmSqf7IyEijbdu2uR7njdLft4899pjN8l9++cWQZIwaNSrfx5Pe54EDB6zLoqKiDEnGb7/9ZrP9/fffbzRr1sz6/NVXXzUsFouxa9cum3bNmjXL9n2Y0SOPPGL4+voa8fHx2bZJf7/n1Ne1a9eMixcvGp6ensb7779vXZ7bef7nn38MScaECRNyrDMqKsqIioqyWRYWFma0bNnSZtmBAwcMScbs2bOty5o1a2aUKFHCSExMtGnbp08fw83NzTh79qxhGIYxaNAgw2KxGNu2bbNp16RJkzydyxtdu3bNSElJMSIiIoyXX37ZurxVq1ZG1apV89UXAAC3U/p3k40bN2bbJigoyKhYsaJhGP//3Szdl19+aUjK9H9qRqdPnzYkGcOHD8+0Lr2/N954I9t1GYWFhWX7f7i3t7dx6dIlm+PK+J3LMLL+rtOyZUub7+0Z3Vh3fn+HaNGihU27zz//3JBkbNiwwTAMw9i0aZMhyfjmm2+y3D+A24tL7e4CDz30kJydneXl5aVWrVopODhY33//vYKCgmzaPfHEEzbPf/jhB3l6elpHK6VLH6J74+VMjRo1sunT0dFRTz31lP7++2/rkNUffvhBjRo1UsmSJTP1efnyZW3YsCHHmvLrhx9+sKk53ZNPPilPT89Mx1C1alWVKlXK+tzNzU333XdfpsubstpPfs5VXixfvlzXrl3TM888o2vXrlkfbm5uioqKsrnEq1u3bjp69KhWrVplXTZ79mwFBwerefPmkqT169fr7Nmz6tKli01/aWlpevTRR7Vx48ZMf+lq06aNzfMqVaroypUrme60kpVatWrp+++/1+DBg7V27VolJSXl6/hvnAOrbt26CgsL05o1a276eG4UHBysWrVqZTrGjK/3unXrFBkZmWlk2tNPP53rMVy+fFnr1q1T+/bt8z3H1MWLFzVo0CCVK1dOTk5OcnJyUpEiRXTp0iXt2bPH2i638+zv76+yZcvq3Xff1bhx47R169ZMlxLeiitXrmj16tV67LHH5OHhYfNatGjRQleuXNGvv/4qSVqzZo0qVaqkBx54wKaPjh075mlf165d0+jRo3X//ffLxcVFTk5OcnFx0V9//ZXpnGzfvl29evXS8uXLdf78+QI7XgAAbhfDMLJdV7VqVbm4uOj555/X3Llzs5yOIC/y8107u//Dz58/ry1bttzU/vMqv79DZPUdVvr/qUbKlSsnPz8/DRo0SB9++KF2795tYvUAckPwdBf4+OOPtXHjRm3dulXHjx/Xjh07VK9ePZs2Hh4e1kuk0p05c0bBwcGZrvEODAyUk5NTpkumgoODM+07fVl62zNnzmR5Z7HQ0FCbdulu9S5kZ86ckZOTU6Zf+i0Wi4KDgzPtLyAgIFMfrq6uuYYm+T1XeXHq1ClJ0oMPPihnZ2ebx8KFC23mbWrevLlCQkI0e/ZsSdfnR1q8eLGeeeYZOTo62vTXrl27TP298847MgxDZ8+etanhxvORfllYXkKkiRMnatCgQfrmm2/UsGFD+fv7q23btvrrr7/ydPzZvZ/Sz+XNHM+N8vJ6nzlzJlNIKynLZTdKSEhQamrqTU3Q2bFjR02ePFk9evTQ8uXL9fvvv2vjxo0qVqyYTX25nWeLxaLVq1erWbNmGjt2rKpXr65ixYqpX79+BTKU/MyZM7p27ZomTZqU6XVo0aKFJFnfq+k/JzfKallW+vfvr9dff11t27bVkiVL9Ntvv2njxo164IEHbM7JkCFD9N577+nXX39V8+bNFRAQoEaNGmnTpk23fLwAANwOly5d0pkzZ6zfkW9UtmxZrVq1SoGBgerdu7fKli2rsmXL5ns+w/x8187Ld32z5Pd3iNy+w/r4+GjdunWqWrWqXnvtNVWqVEmhoaEaPny4rl69asYhAMgBczzdBSpWrGhzt4ysZDWBYEBAgH777TcZhmGzPj4+XteuXbPOMZPu5MmTmfpIX5b+4R8QEJDlHDHHjx+XpEx95nYXu9wEBATo2rVrOn36tE34ZBiGTp48qQcffPCW+s+4n/ycq7xI3+bLL79UWFhYjm0dHR3VuXNnTZw4UefOndP8+fOVnJysbt26Zepv0qRJ2d4pJC9hSl55enpqxIgRGjFihE6dOmUdldO6dWv98ccfuW6f3fupXLlykm7f8QQEBFhDrtzqu5G/v78cHR3zPUllYmKivv32Ww0fPlyDBw+2Lk9OTs4UpuXlPIeFhWnWrFmSpD///FOff/65YmNjlZKSog8//DBftd3Iz8/P+v7r3bt3lm3Cw8MlXT+XOX1O5CZ9Tq/Ro0fbLP/nn3+s835JkpOTk/r376/+/fvr3LlzWrVqlV577TU1a9ZMR44cuePu2AkAwI2+++47paamWm/8kZUGDRqoQYMGSk1N1aZNmzRp0iTFxMQoKChIHTp0yNN+8vNdOy/f9d3c3CQp0w1UMv7B9Gbk93eIvKhcubIWLFggwzC0Y8cOzZkzRyNHjpS7u7vN9y8A5mPE0z2sUaNGunjxor755hub5R9//LF1fUarV6+2+QU9NTVVCxcuVNmyZa0jPho1aqQffvjB+p9Exj49PDzydOvU/Iy6Sa9x3rx5Nsu/+uorXbp0KdfJp/Mqv+cqL5o1ayYnJyft27dPNWvWzPKRUbdu3XTlyhV99tlnmjNnjurUqaMKFSpY19erV0++vr7avXt3tv25uLjku868jAgLCgpS165d9fTTT2vv3r26fPlyrv2mT76ebv369Tp06JD1C5hZx3OjqKgoxcXFZRqCndUdG2/k7u6uqKgoffHFF/n6wmWxWGQYRqaJx2fOnKnU1NRst8vLeb7vvvs0bNgwVa5cuUCGxXt4eKhhw4baunWrqlSpkuXrkP5ltGHDhtq1a5e2b99u08f8+fPztC+LxZLpnHz33Xc6duxYttv4+vqqXbt26t27t86ePZvpLjsAANxpDh8+rAEDBsjHx0c9e/bMtb2jo6Nq165tvZts+v/v+fnOnBfZ/R/u5eVlveFP+t2ld+zYYdNu8eLFmfrLy3fIdAXxO0R2LBaLHnjgAY0fP16+vr6mXzYIIDNGPN3DnnnmGX3wwQfq0qWLDh48qMqVK+vnn3/W6NGj1aJFCzVu3NimfdGiRfXII4/o9ddft97V7o8//rD5BX348OH69ttv1bBhQ73xxhvy9/fXp59+qu+++05jx46Vj49PrnVFRkZKkqZPny4vLy+5ubkpPDw8y8ummjRpombNmmnQoEE6f/686tWrZ72rXbVq1dS5c+dbPEvX5fdc5UXp0qU1cuRIDR06VPv379ejjz4qPz8/nTp1Sr///rt1pEu6ChUqqE6dOhozZoyOHDmi6dOn2/RXpEgRTZo0SV26dNHZs2fVrl07BQYG6vTp09q+fbtOnz6tqVOn5rvOypUra+3atVqyZIlCQkLk5eWl8uXLq3bt2mrVqpWqVKkiPz8/7dmzR5988onq1KmTpxEnmzZtUo8ePfTkk0/qyJEjGjp0qIoXL65evXqZejw3iomJ0UcffaTmzZtr5MiRCgoK0vz5862jiRwccs7nx40bp/r166t27doaPHiwypUrp1OnTmnx4sWaNm2avLy8Mm3j7e2thx9+WO+++66KFi2q0qVLa926dZo1a5bNyB5JuZ7nHTt2qE+fPnryyScVEREhFxcX/fDDD9qxY0eB/TXv/fffV/369dWgQQO9+OKLKl26tC5cuKC///5bS5Yssc61ln4uW7ZsqVGjRlnvapeXEXCS1KpVK82ZM0cVKlRQlSpVtHnzZr377ruZLmVs3bq1IiMjVbNmTRUrVkyHDh3ShAkTFBYWpoiIiAI5ZgAACkJcXJx1bsT4+Hj99NNPmj17thwdHbVo0aJs54j88MMP9cMPP6hly5YqVaqUrly5Yr3rcPr3Ti8vL4WFhem///2vGjVqJH9/f+v3ipsRGhqqNm3aKDY2ViEhIZo3b55Wrlypd955x/rd7sEHH1T58uU1YMAAXbt2TX5+flq0aJF+/vnnTP1VrlxZX3/9taZOnaoaNWpY72CdlYL4HSKjb7/9VlOmTFHbtm1VpkwZGYahr7/+WufOnVOTJk3yf3IA3Bq7TWuOW5aXu2UYxvU7wXl6ema57syZM8YLL7xghISEGE5OTkZYWJgxZMgQ48qVKzbtJBm9e/c2pkyZYpQtW9ZwdnY2KlSoYHz66aeZ+ty5c6fRunVrw8fHx3BxcTEeeOABmztkGcb/35Hiiy++yLKuCRMmGOHh4Yajo6PNHbZuvKudYVy/M92gQYOMsLAww9nZ2QgJCTFefPFFIyEhwaZdVnfwMoys7/aVlbyeq7ze1S7dN998YzRs2NDw9vY2XF1djbCwMKNdu3bGqlWrMrWdPn269Q6DN95hLN26deuMli1bGv7+/oazs7NRvHhxo2XLljbnOv1uJqdPn7bZNqs7lWzbts2oV6+e4eHhYUiynqvBgwcbNWvWNPz8/AxXV1ejTJkyxssvv2z8888/OR5v+j5WrFhhdO7c2fD19TXc3d2NFi1aGH/99ddNHU92d7XL6nXI6j0UFxdnNG7c2HBzczP8/f2N7t27G3PnzjUkGdu3b8/xeAzDMHbv3m08+eSTRkBAgOHi4mKUKlXK6Nq1q/W9kdWdXo4ePWo88cQThp+fn+Hl5WU8+uijRlxcnBEWFmZzF8HczvOpU6eMrl27GhUqVDA8PT2NIkWKGFWqVDHGjx9vXLt2zeZ83Oxd7dKXP/vss0bx4sUNZ2dno1ixYkbdunWtdyHMeC6aNGlicy7/+9//5umudgkJCUb37t2NwMBAw8PDw6hfv77x008/Zar9P//5j1G3bl2jaNGi1vPdvXt34+DBgzn2DwDA7ZL+3ST94eLiYgQGBhpRUVHG6NGjM90N98Y7zW3YsMF47LHHjLCwMMPV1dUICAgwoqKijMWLF9tst2rVKqNatWqGq6urIcn6HSK773pZ7csw/v87wZdffmlUqlTJcHFxMUqXLm2MGzcu0/Z//vmn0bRpU8Pb29soVqyY0bdvX+O7777L9H/92bNnjXbt2hm+vr6GxWKx2aeyuBvfrfwOceP3lz/++MN4+umnjbJlyxru7u6Gj4+PUatWLWPOnDmZjgeA+SyGkcPtFID/sVgs6t27tyZPnmzvUoDb4vnnn9dnn32mM2fOFMglfQAAAABwL+JSOwD3vJEjRyo0NFRlypTRxYsX9e2332rmzJkaNmwYoRMAAAAA3AKCJwD3PGdnZ7377rs6evSorl27poiICI0bN04vvfSSvUsDAAAAgEKNS+0AAAAAAABgipxv1wQAAAAAAADcJIInAAAAAAAAmILgCQAAAAAAAKZgcnEAAIB7WFpamo4fPy4vLy9ZLBZ7lwMAAAoBwzB04cIFhYaGysEh5zFNBE8AAAD3sOPHj6tkyZL2LgMAABRCR44cUYkSJXJsQ/AEAABwD/Py8pJ0/Yujt7e3nasBAACFwfnz51WyZEnr94icEDwBAADcw9Ivr/P29iZ4AgAA+ZKXy/SZXBwAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYArmeAIAAAAAAJKk1NRUXb161d5l4A7g6OgoJyenPM3jlBOCJwAAAAAAoIsXL+ro0aMyDMPepeAO4eHhoZCQELm4uNx0HwRPAAAAAADc41JTU3X06FF5eHioWLFitzzKBYWbYRhKSUnR6dOndeDAAUVERMjB4eZmayJ4AgAAAADgHnf16lUZhqFixYrJ3d3d3uXgDuDu7i5nZ2cdOnRIKSkpcnNzu6l+mFwcAAAAAABIEiOdYONmRznZ9FEAdQAAAAAAAACZEDwBAAAAAADAFMzxBAAAAAAAsjQzNu627q9HbORt3V9+HTx4UOHh4dq6dauqVq1q73IKBUY8AQAAAAAA2MHBgwdlsVi0bds2e5diGoInAAAAAACAO1hKSoq9S7hpBE8AAAAAAKBQWrZsmerXry9fX18FBASoVatW2rdvn3V9SkqK+vTpo5CQELm5ual06dIaM2ZMjn3Onj1bFStWlJubmypUqKApU6bk2H737t1q0aKFihQpoqCgIHXu3Fn//POPdX1aWpreeecdlStXTq6uripVqpTeeustSVJ4eLgkqVq1arJYLIqOjpYkde3aVW3bttWYMWMUGhqq++67T5K0c+dOPfLII3J3d1dAQICef/55Xbx40bqv9O3ee+89hYSEKCAgQL1799bVq1etbaZMmaKIiAi5ubkpKChI7dq1y8OZvnkETwAAAAAAoFC6dOmS+vfvr40bN2r16tVycHDQY489prS0NEnSxIkTtXjxYn3++efau3ev5s2bp9KlS2fb34wZMzR06FC99dZb2rNnj0aPHq3XX39dc+fOzbL9iRMnFBUVpapVq2rTpk1atmyZTp06pfbt21vbDBkyRO+8845ef/117d69W/Pnz1dQUJAk6ffff5ckrVq1SidOnNDXX39t3W716tXas2ePVq5cqW+//VaXL1/Wo48+Kj8/P23cuFFffPGFVq1apT59+tjUtGbNGu3bt09r1qzR3LlzNWfOHM2ZM0eStGnTJvXr108jR47U3r17tWzZMj388MP5Pu/5weTiAAAAAACgUHriiSdsns+aNUuBgYHavXu3IiMjdfjwYUVERKh+/fqyWCwKCwvLsb8333xT//nPf/T4449Luj4iaffu3Zo2bZq6dOmSqf3UqVNVvXp1jR492rrso48+UsmSJfXnn38qJCRE77//viZPnmzdvmzZsqpfv74kqVixYpKkgIAABQcH2/Tt6empmTNnysXFRdL1UCwpKUkff/yxPD09JUmTJ09W69at9c4771jDLD8/P02ePFmOjo6qUKGCWrZsqdWrV+u5557T4cOH5enpqVatWsnLy0thYWGqVq1a3k72TWLEEwAAAAAAKJT27dunjh07qkyZMvL29rZeunb48GFJ1y8927Ztm8qXL69+/fppxYoV2fZ1+vRpHTlyRN27d1eRIkWsj1GjRtlcvpfR5s2btWbNGpv2FSpUsNa2Z88eJScnq1GjRvk+tsqVK1tDJ0nas2ePHnjgAWvoJEn16tVTWlqa9u7da11WqVIlOTo6Wp+HhIQoPj5ektSkSROFhYWpTJky6ty5sz799FNdvnw537XlByOeAAAAAABAodS6dWuVLFlSM2bMUGhoqNLS0hQZGWmdjLt69eo6cOCAvv/+e61atUrt27dX48aN9eWXX2bqK/3yvBkzZqh27do26zIGOTdukz7i6EYhISHav3//TR9bxoBJkgzDkMViybJtxuXOzs6Z1qUfm5eXl7Zs2aK1a9dqxYoVeuONNxQbG6uNGzfK19f3pmvNCSOeAAAAAABAoXPmzBnt2bNHw4YNU6NGjVSxYkUlJCRkauft7a2nnnpKM2bM0MKFC/XVV1/p7NmzmdoFBQWpePHi2r9/v8qVK2fzSB9JdaPq1atr165dKl26dKZtPD09FRERIXd3d61evTrL7dNHNKWmpuZ6vPfff7+2bdumS5cuWZf98ssvcnBwsE4+nhdOTk5q3Lixxo4dqx07dujgwYP64Ycf8rx9fuV9xFNsrGlFoBDi/YCMeD8gI94PAADARHGxM2+5j8jYHgVQCezNz89PAQEBmj59ukJCQnT48GENHjzYps348eMVEhKiqlWrysHBQV988YWCg4OzHd0TGxurfv36ydvbW82bN1dycrI2bdqkhIQE9e/fP1P73r17a8aMGXr66af16quvqmjRovr777+1YMECzZgxQ25ubho0aJAGDhwoFxcX1atXT6dPn9auXbvUvXt3BQYGyt3dXcuWLVOJEiXk5uYmHx+fLGvr1KmThg8fri5duig2NlanT59W37591blzZ+v8Trn59ttvtX//fj388MPy8/PT0qVLlZaWpvLly+dp+5vBpXYAAAAAACBLPWIj7V1CthwcHLRgwQL169dPkZGRKl++vCZOnKjo6GhrmyJFiuidd97RX3/9JUdHRz344INaunSpHByyvgCsR48e8vDw0LvvvquBAwfK09NTlStXVkxMTJbtQ0ND9csvv2jQoEFq1qyZkpOTFRYWpkcffdS6j9dff11OTk564403dPz4cYWEhOiFF16QdH300cSJEzVy5Ei98cYbatCggdauXZvlvjw8PLR8+XK99NJLevDBB+Xh4aEnnnhC48aNy/M58/X11ddff63Y2FhduXJFERER+uyzz1SpUqU895FfFsMwjDy15C/YyIj3AzLi/YCMeD8Ahcr58+fl4+OjxMREeXt727scAMgVI57MceXKFR04cEDh4eFyc3Ozdzm4Q2T3vsjP9wfmeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKbgrnYAAAAAgHvKrU5QzuTkQN4x4gkAAAAAAACmIHgCAAAoYD/++KNat26t0NBQWSwWffPNNzbrDcNQbGysQkND5e7urujoaO3atcumTXJysvr27auiRYvK09NTbdq00dGjR23aJCQkqHPnzvLx8ZGPj486d+6sc+fOmXx0AAAAeceldgAAAAXs0qVLeuCBB9StWzc98cQTmdaPHTtW48aN05w5c3Tfffdp1KhRatKkifbu3SsvLy9JUkxMjJYsWaIFCxYoICBAr7zyilq1aqXNmzfL0dFRktSxY0cdPXpUy5YtkyQ9//zz6ty5s5YsWXL7DhaAJGlmbNwt99EjNrIAKgGAOwvBEwAAQAFr3ry5mjdvnuU6wzA0YcIEDR06VI8//rgkae7cuQoKCtL8+fPVs2dPJSYmatasWfrkk0/UuHFjSdK8efNUsmRJrVq1Ss2aNdOePXu0bNky/frrr6pdu7YkacaMGapTp4727t2r8uXL356DBQAAyAHBEwAAwG104MABnTx5Uk2bNrUuc3V1VVRUlNavX6+ePXtq8+bNunr1qk2b0NBQRUZGav369WrWrJk2bNggHx8fa+gkSQ899JB8fHy0fv36bIOn5ORkJScnW5+fP3/ehKMEANwtbnUi9vy62yduP3jwoMLDw7V161ZVrVrV3uXcFszxBAAAcBudPHlSkhQUFGSzPCgoyLru5MmTcnFxkZ+fX45tAgMDM/UfGBhobZOVMWPGWOeE8vHxUcmSJW/peAAAQN6VLFlSJ06cUGTk9Utr165dK4vFclfP0ciIJwAAADuwWCw2zw3DyLTsRje2yap9bv0MGTJE/fv3tz4/f/484ROA2+Z2j54B7jSOjo4KDg7O93YpKSlycXExoSLzMeIJAADgNkr/snnjqKT4+HjrKKjg4GClpKQoISEhxzanTp3K1P/p06czjabKyNXVVd7e3jYPAAAKq2XLlql+/fry9fVVQECAWrVqpX379lnXp6SkqE+fPgoJCZGbm5tKly6tMWPGZNtf165d1bZtW40YMUKBgYHy9vZWz549lZKSYm2TnJysfv36KTAwUG5ubqpfv742btxoXZ+QkKBOnTqpWLFicnd3V0REhGbPni3p+qV2FotF27Zt08GDB9WwYUNJkp+fnywWi7p27SpJio6OVp8+fdS/f38VLVpUTZo0kSStW7dOtWrVkqurq0JCQjR48GBdu3bNuu/o6Gj169dPAwcOlL+/v4KDgxUbG2tzjLGxsSpVqpRcXV0VGhqqfv363dzJzyOCJwAAgNsoPDxcwcHBWrlypXVZSkqK1q1bp7p160qSatSoIWdnZ5s2J06cUFxcnLVNnTp1lJiYqN9//93a5rffflNiYqK1DQAAd7tLly6pf//+2rhxo1avXi0HBwc99thjSktLkyRNnDhRixcv1ueff669e/dq3rx5Kl26dI59rl69Wnv27NGaNWv02WefadGiRRoxYoR1/cCBA/XVV19p7ty52rJli8qVK6dmzZrp7NmzkqTXX39du3fv1vfff689e/Zo6tSpKlq0aKb9lCxZUl999ZUkae/evTpx4oTef/996/q5c+fKyclJv/zyi6ZNm6Zjx46pRYsWevDBB7V9+3ZNnTpVs2bN0qhRo2z6nTt3rjw9PfXbb79p7NixGjlypPU7xZdffqnx48dr2rRp+uuvv/TNN9+ocuXK+T/x+cCldgAAAAXs4sWL+vvvv63PDxw4oG3btsnf31+lSpVSTEyMRo8erYiICEVERGj06NHy8PBQx44dJUk+Pj7q3r27XnnlFQUEBMjf318DBgxQ5cqVrXe5q1ixoh599FE999xzmjZtmiTp+eefV6tWrbijHZBPM2Pj7F0CgJv0xBNP2DyfNWuWAgMDtXv3bkVGRurw4cOKiIhQ/fr1ZbFYFBYWlmufLi4u+uijj+Th4aFKlSpp5MiRevXVV/Xmm28qKSlJU6dO1Zw5c6x3sJ0xY4ZWrlypWbNm6dVXX9Xhw4dVrVo11axZU5KyDbocHR3l7+8v6focjb6+vjbry5Urp7Fjx1qfDx06VCVLltTkyZNlsVhUoUIFHT9+XIMGDdIbb7whB4frY4uqVKmi4cOHS5IiIiI0efJkrV69Wk2aNNHhw4cVHBysxo0by9nZWaVKlVKtWrVyP9G3gBFPAAAABWzTpk2qVq2aqlWrJknq37+/qlWrpjfeeEPS9b+UxsTEqFevXqpZs6aOHTumFStWyMvLy9rH+PHj1bZtW7Vv31716tWTh4eHlixZIkdHR2ubTz/9VJUrV1bTpk3VtGlTValSRZ988sntPVgAAOxo37596tixo8qUKSNvb2+Fh4dLkg4fPizp+qVz27ZtU/ny5dWvXz+tWLEi1z4feOABeXh4WJ/XqVNHFy9e1JEjR7Rv3z5dvXpV9erVs653dnZWrVq1tGfPHknSiy++qAULFqhq1aoaOHCg1q9ff1PHlh5cpduzZ4/q1KljM5djvXr1dPHiRR09etS6rEqVKjbbhYSEKD4+XpL05JNPKikpSWXKlNFzzz2nRYsW2VyqZwaCJwAAgAIWHR0twzAyPebMmSPp+qTgsbGxOnHihK5cuaJ169ZZ726Tzs3NTZMmTdKZM2d0+fJlLVmyJNMk4P7+/po3b57Onz+v8+fPa968eZn+WgoAwN2sdevWOnPmjGbMmKHffvtNv/32myRZ52SqXr26Dhw4YB2t1L59e7Vr1+6m9mWxWGQYhvXfGWW8uUfz5s116NAhxcTE6Pjx42rUqJEGDBiQ7/15enpmu4+My26sx9nZOVPd6ZcelixZUnv37tUHH3wgd3d39erVSw8//LCuXr2a7/ryiuAJAAAAAAAUOmfOnNGePXs0bNgwNWrUSBUrVsx0Yw5J8vb21lNPPaUZM2Zo4cKF+uqrr6zzMWVl+/btSkpKsj7/9ddfVaRIEZUoUULlypWTi4uLfv75Z+v6q1evatOmTapYsaJ1WbFixdS1a1fNmzdPEyZM0PTp07PcV/qd6lJTU3M93vvvv1/r16+3hk2StH79enl5eal48eK5bp/O3d1dbdq00cSJE7V27Vpt2LBBO3fuzPP2+cUcTwAAAAAAoNDx8/NTQECApk+frpCQEB0+fFiDBw+2aTN+/HiFhISoatWqcnBw0BdffKHg4OAcRwinpKSoe/fuGjZsmA4dOqThw4erT58+cnBwkKenp1588UW9+uqr1rkbx44dq8uXL6t79+6SpDfeeEM1atRQpUqVlJycrG+//dYmlMooLCxMFotF3377rVq0aCF3d3cVKVIky7a9evXShAkT1LdvX/Xp00d79+7V8OHD1b9/f+v8TrmZM2eOUlNTVbt2bXl4eOiTTz6Ru7t7nua+ulkETwAAAAAAIEuRsT3sXUK2HBwctGDBAvXr10+RkZEqX768Jk6cqOjoaGubIkWK6J133tFff/0lR0dHPfjgg1q6dGmOQU2jRo0UERGhhx9+WMnJyerQoYNiY2Ot699++22lpaWpc+fOunDhgmrWrKnly5fLz89P0vVRTEOGDNHBgwfl7u6uBg0aaMGCBVnuq3jx4hoxYoQGDx6sbt266ZlnnrFemp9V26VLl+rVV1/VAw88IH9/f2tAlle+vr56++231b9/f6Wmpqpy5cpasmSJAgIC8txHflmMjGO0cpLhJAO8H2CD9wMy4v0AFCrnz5+Xj4+PEhMT5e3tbe9yALu4U+5q1yM2MvdGhVxc7Ex7l1Ag7uQw5mZduXJFBw4cUHh4uNzc3Oxdjt107dpV586d0zfffGPvUu4I2b0v8vP9gTmeAAAAAAAAYAqCJwAAAAAAAJiCOZ4AAAAAAACkbOdXws1jxBMAAAAAAABMQfAEAAAAAAAkSXm9/xjuDQXxfiB4AgAAAADgHufo6ChJSklJsXMluJNcvnxZkuTs7HzTfTDHEwAAAAAA9zgnJyd5eHjo9OnTcnZ2loMD41TuZYZh6PLly4qPj5evr681mLwZBE8AAAAAANzjLBaLQkJCdODAAR06dMje5eAO4evrq+Dg4Fvqg+AJAAAAAO4AM2PjbrmPHrGRBVAJ7lUuLi6KiIjgcjtIun553a2MdEpH8AQAAAAAACRJDg4OcnNzs3cZuItw0SYAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUzjZuwAAAAAAuBUzY+PsXQIAIBuMeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCid7FwAAAAAAKBgzY+NuuY8esZEFUAkAXMeIJwAAAAAAAJiCEU8AAAAAgDyJi51p7xIAFDIETwAAAAAA5ENBBHCRsT0KoBLgzseldgAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADCFU14bxirWxDJQ2MTauwAAAAAAAHDHY8QTAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAYAfXrl3TsGHDFB4eLnd3d5UpU0YjR45UWlqatY1hGIqNjVVoaKjc3d0VHR2tXbt22fSTnJysvn37qmjRovL09FSbNm109OjR2304AAAAWSJ4AgAAsIN33nlHH374oSZPnqw9e/Zo7NixevfddzVp0iRrm7Fjx2rcuHGaPHmyNm7cqODgYDVp0kQXLlywtomJidGiRYu0YMEC/fzzz7p48aJatWql1NRUexwWAACADSd7FwAAAHAv2rBhg/71r3+pZcuWkqTSpUvrs88+06ZNmyRdH+00YcIEDR06VI8//rgkae7cuQoKCtL8+fPVs2dPJSYmatasWfrkk0/UuHFjSdK8efNUsmRJrVq1Ss2aNbPPwQEAAPwPI54AAADsoH79+lq9erX+/PNPSdL27dv1888/q0WLFpKkAwcO6OTJk2ratKl1G1dXV0VFRWn9+vWSpM2bN+vq1as2bUJDQxUZGWltc6Pk5GSdP3/e5gEAAGAWRjwBAADYwaBBg5SYmKgKFSrI0dFRqampeuutt/T0009Lkk6ePClJCgoKstkuKChIhw4dsrZxcXGRn59fpjbp299ozJgxGjFiREEfDgAAQJYY8QQAAGAHCxcu1Lx58zR//nxt2bJFc+fO1Xvvvae5c+fatLNYLDbPDcPItOxGObUZMmSIEhMTrY8jR47c2oEAAADkgBFPAAAAdvDqq69q8ODB6tChgySpcuXKOnTokMaMGaMuXbooODhY0vVRTSEhIdbt4uPjraOggoODlZKSooSEBJtRT/Hx8apbt26W+3V1dZWrq6tZhwUAAGCDEU8AAAB2cPnyZTk42H4Vc3R0VFpamiQpPDxcwcHBWrlypXV9SkqK1q1bZw2VatSoIWdnZ5s2J06cUFxcXLbBEwAAwO3EiCcAAAA7aN26td566y2VKlVKlSpV0tatWzVu3Dg9++yzkq5fYhcTE6PRo0crIiJCERERGj16tDw8PNSxY0dJko+Pj7p3765XXnlFAQEB8vf314ABA1S5cmXrXe4AAADsieAJAADADiZNmqTXX39dvXr1Unx8vEJDQ9WzZ0+98cYb1jYDBw5UUlKSevXqpYSEBNWuXVsrVqyQl5eXtc348ePl5OSk9u3bKykpSY0aNdKcOXPk6Ohoj8MCAACwQfAEAABgB15eXpowYYImTJiQbRuLxaLY2FjFxsZm28bNzU2TJk3SpEmTCr5IAACAW8QcTwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUzjZuwAAAAAAwJ1jZmxctutc1sbnun316MCCLAdAIceIJwAAAAAAAJiC4AkAAAAAAACm4FI7AAAAALgHuKxdbO8SANyDCJ4AAAAA2E1O8wkBAAo/LrUDAAAAAACAKQieAAAAAAAAYAoutQMAAAAA4DaLi515S9tHxvYooEoAczHiCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAwE6OHTumf//73woICJCHh4eqVq2qzZs3W9cbhqHY2FiFhobK3d1d0dHR2rVrl00fycnJ6tu3r4oWLSpPT0+1adNGR48evd2HAgAAkCUnexcAAABwL0pISFC9evXUsGFDff/99woMDNS+ffvk6+trbTN27FiNGzdOc+bM0X333adRo0apSZMm2rt3r7y8vCRJMTExWrJkiRYsWKCAgAC98soratWqlTZv3ixHR0c7HR0AM7isXWzvEgAg3wieAAAA7OCdd95RyZIlNXv2bOuy0qVLW/9tGIYmTJigoUOH6vHHH5ckzZ07V0FBQZo/f7569uypxMREzZo1S5988okaN24sSZo3b55KliypVatWqVmzZrf1mAAAAG7EpXYAAAB2sHjxYtWsWVNPPvmkAgMDVa1aNc2YMcO6/sCBAzp58qSaNm1qXebq6qqoqCitX79ekrR582ZdvXrVpk1oaKgiIyOtbW6UnJys8+fP2zwAAADMQvAEAABgB/v379fUqVMVERGh5cuX64UXXlC/fv308ccfS5JOnjwpSQoKCrLZLigoyLru5MmTcnFxkZ+fX7ZtbjRmzBj5+PhYHyVLlizoQwMAALAieAIAALCDtLQ0Va9eXaNHj1a1atXUs2dPPffcc5o6dapNO4vFYvPcMIxMy26UU5shQ4YoMTHR+jhy5MitHQgAAEAOCJ4AAADsICQkRPfff7/NsooVK+rw4cOSpODgYEnKNHIpPj7eOgoqODhYKSkpSkhIyLbNjVxdXeXt7W3zAAAAMAvBEwAAgB3Uq1dPe/futVn2559/KiwsTJIUHh6u4OBgrVy50ro+JSVF69atU926dSVJNWrUkLOzs02bEydOKC4uztoGAADAnrirHQAAgB28/PLLqlu3rkaPHq327dvr999/1/Tp0zV9+nRJ1y+xi4mJ0ejRoxUREaGIiAiNHj1aHh4e6tixoyTJx8dH3bt31yuvvKKAgAD5+/trwIABqly5svUudwAAAPZE8AQAAGAHDz74oBYtWqQhQ4Zo5MiRCg8P14QJE9SpUydrm4EDByopKUm9evVSQkKCateurRUrVsjLy8vaZvz48XJyclL79u2VlJSkRo0aac6cOXJ0dLTHYQEAANggeAIAALCTVq1aqVWrVtmut1gsio2NVWxsbLZt3NzcNGnSJE2aNMmECgEAAG4NczwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTMLk4AAAAAKDAbFkbf8t9VI8OLIBKANwJGPEEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBRO9i4AAAAAAADkT1zszFvuIzK2RwFUAuSMEU8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFM42bsAAAAAAIXTzNg4e5cAALjDMeIJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCmc7F0AAAAAAAAZbVkbf8t9VI8OLIBKANwqRjwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFE72LgAAAAAA7nYuaxfbuwQAsAtGPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATOFk7wIAAAAAAChoW9bG33If1aMDC6AS4N7GiCcAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAADAzsaMGSOLxaKYmBjrMsMwFBsbq9DQULm7uys6Olq7du2y2S45OVl9+/ZV0aJF5enpqTZt2ujo0aO3uXoAAIDsETwBAADY0caNGzV9+nRVqVLFZvnYsWM1btw4TZ48WRs3blRwcLCaNGmiCxcuWNvExMRo0aJFWrBggX7++WddvHhRrVq1Umpq6u0+DAAAgCw52bsAAACAe9XFixfVqVMnzZgxQ6NGjbIuNwxDEyZM0NChQ/X4449LkubOnaugoCDNnz9fPXv2VGJiombNmqVPPvlEjRs3liTNmzdPJUuW1KpVq9SsWTO7HBMKj5mxcfYuAQBwD2DEEwAAgJ307t1bLVu2tAZH6Q4cOKCTJ0+qadOm1mWurq6KiorS+vXrJUmbN2/W1atXbdqEhoYqMjLS2iYrycnJOn/+vM0DAADALIx4AgAAsIMFCxZoy5Yt2rhxY6Z1J0+elCQFBQXZLA8KCtKhQ4esbVxcXOTn55epTfr2WRkzZoxGjBhxq+UDAADkCSOeAAAAbrMjR47opZde0rx58+Tm5pZtO4vFYvPcMIxMy26UW5shQ4YoMTHR+jhy5Ej+igcAAMgHgicAAIDbbPPmzYqPj1eNGjXk5OQkJycnrVu3ThMnTpSTk5N1pNONI5fi4+Ot64KDg5WSkqKEhIRs22TF1dVV3t7eNg8AAACzEDwBAADcZo0aNdLOnTu1bds266NmzZrq1KmTtm3bpjJlyig4OFgrV660bpOSkqJ169apbt26kqQaNWrI2dnZps2JEycUFxdnbQMAAGBvzPEEAABwm3l5eSkyMtJmmaenpwICAqzLY2JiNHr0aEVERCgiIkKjR4+Wh4eHOnbsKEny8fFR9+7d9corryggIED+/v4aMGCAKleunGmycgAAAHsheAIAALgDDRw4UElJSerVq5cSEhJUu3ZtrVixQl5eXtY248ePl5OTk9q3b6+kpCQ1atRIc+bMkaOjox0rBwAA+H8ETwAAAHeAtWvX2jy3WCyKjY1VbGxsttu4ublp0qRJmjRpkrnFAQAA3CTmeAIAAAAAAIApCJ4AAAAAAABgCi61AwAAAADgHhQXO/OW+4iM7VEAleBuxognAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCiYXBwAAAIAcuKxdbO8SAKDQYsQTAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUTvYuAAAAAADM5LJ2sb1LAIB7FiOeAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmYI4nAAAAAACysGVt/C33UT06sAAqAQovRjwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAEzhZO8CAAAAAAC4W21ZG39L21ePDiygSgD7YMQTAAAAAAAATMGIJwAAAAB3LJe1i+1dAgDgFjDiCQAAAAAAAKZgxBMAAAAAALgpcbEzb2n7yNgeBVQJ7lSMeAIAAAAAAIApCJ4AAAAAAABgCi61AwAAAAqZmbFx9i4BAIA8YcQTAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAB2MGbMGD344IPy8vJSYGCg2rZtq71799q0MQxDsbGxCg0Nlbu7u6Kjo7Vr1y6bNsnJyerbt6+KFi0qT09PtWnTRkePHr2dhwIAAJAtgicAAAA7WLdunXr37q1ff/1VK1eu1LVr19S0aVNdunTJ2mbs2LEaN26cJk+erI0bNyo4OFhNmjTRhQsXrG1iYmK0aNEiLViwQD///LMuXryoVq1aKTU11R6HBQAAYIO72gG4ZbGKtXcJuIPE2rsAoJBYtmyZzfPZs2crMDBQmzdv1sMPPyzDMDRhwgQNHTpUjz/+uCRp7ty5CgoK0vz589WzZ08lJiZq1qxZ+uSTT9S4cWNJ0rx581SyZEmtWrVKzZo1u+3HBQAAkBEjngAAAO4AiYmJkiR/f39J0oEDB3Ty5Ek1bdrU2sbV1VVRUVFav369JGnz5s26evWqTZvQ0FBFRkZa29woOTlZ58+ft3kAAACYheAJAADAzgzDUP/+/VW/fn1FRkZKkk6ePClJCgoKsmkbFBRkXXfy5Em5uLjIz88v2zY3GjNmjHx8fKyPkiVLFvThAAAAWBE8AQAA2FmfPn20Y8cOffbZZ5nWWSwWm+eGYWRadqOc2gwZMkSJiYnWx5EjR26+cAAAgFwQPAEAANhR3759tXjxYq1Zs0YlSpSwLg8ODpakTCOX4uPjraOggoODlZKSooSEhGzb3MjV1VXe3t42DwAAALMQPAEAANiBYRjq06ePvv76a/3www8KDw+3WR8eHq7g4GCtXLnSuiwlJUXr1q1T3bp1JUk1atSQs7OzTZsTJ04oLi7O2gYAAMCeuKsdAACAHfTu3Vvz58/Xf//7X3l5eVlHNvn4+Mjd3V0Wi0UxMTEaPXq0IiIiFBERodGjR8vDw0MdO3a0tu3evbteeeUVBQQEyN/fXwMGDFDlypWtd7kDAACwJ4InAAAAO5g6daokKTo62mb57Nmz1bVrV0nSwIEDlZSUpF69eikhIUG1a9fWihUr5OXlZW0/fvx4OTk5qX379kpKSlKjRo00Z84cOTo63q5DAQAAyBbBEwAAgB0YhpFrG4vFotjYWMXGxmbbxs3NTZMmTdKkSZMKsDoAAICCQfAEAAAAwDQuaxfbuwQAgB0xuTgAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABM4WTvAgAAAAAAQNa2rI2/5T6qRwcWQCXAzWHEEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTONm7AAAAAAB3Jpe1i+1dAgCgkGPEEwAAAAAAAEzBiCcAAADgNpoZG2fvEgAAuG0IngAAAAAAuIttWRt/y31Ujw4sgEpwL+JSOwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmcLJ3AQAAAAAA4N4UFzvzlvuIjO1RAJXALIx4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApnCydwEAAAAACp7L2sX2LgHAXWTL2vhb7qN6dGABVILChhFPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAV3tQMAAAAAAIVWXOzMW9o+MrZHAVWCrDDiCQAAAAAAAKYgeAIAAAAAAIApuNQOAAAAyIeZsXH2LgEAgEKDEU8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATOFk7wIAAAAAAMDdb8va+Fvuo3p0YAFUgtuJEU8AAAAAAAAwBSOeAAAAgDuQy9rF9i4BAO4JcbEzb7mPyNgeBVDJ3YkRTwAAAAAAADAFI54AAABwz5gZG2fvEgAAuKcw4gkAAAAAAACmYMQTAAAAAAAoFLgzXuFD8AQAAAAUMCYGBwDgOi61AwAAAAAAgCkY8QQAAAAAAO4Zt3q5Hpfq5Q/BEwAAAAqFvN6RLqfL3FzyuK+U6DZ5bAkAAHJC8AQAAFDITZkyRe+++65OnDihSpUqacKECWrQoIG9ywIA4J4RFzvzlvuIjO1RAJXceQieAAAACrGFCxcqJiZGU6ZMUb169TRt2jQ1b95cu3fvVqlSpexdXqHF5OAAABQMgicAAIBCbNy4cerevbt69Lj+V9IJEyZo+fLlmjp1qsaMGWPn6v5fXi+TAwDgTnerc0RJWc8Tdaujpu7UEVMETwAAAIVUSkqKNm/erMGDB9ssb9q0qdavX5/lNsnJyUpOTrY+T0xMlCSdP3/evEIlJSVfzFM7l5+W3vq+brkHAADMdTG54P+3+nXIpHxvs/2n0ze1r6Rr179LGIaRa9s8B0+xsTdVC4B7AJ8PAGAf//zzj1JTUxUUFGSzPCgoSCdPnsxymzFjxmjEiBGZlpcsWdKUGgEAQBZ+sXcBBePChQvy8fHJsQ0jngAAAAo5i8Vi89wwjEzL0g0ZMkT9+/e3Pk9LS9PZs2cVEBCQ7TaFzfnz51WyZEkdOXJE3t7e9i4H2eB1uvPxGhUOvE6Fw932OhmGoQsXLig0NDTXtgRPAAAAhVTRokXl6OiYaXRTfHx8plFQ6VxdXeXq6mqzzNfX16wS7crb2/uu+HJ/t+N1uvPxGhUOvE6Fw930OuU20imdg8l1AAAAwCQuLi6qUaOGVq5cabN85cqVqlu3rp2qAgAA+H+MeAIAACjE+vfvr86dO6tmzZqqU6eOpk+frsOHD+uFF16wd2kAAAAETwAAAIXZU089pTNnzmjkyJE6ceKEIiMjtXTpUoWFhdm7NLtxdXXV8OHDM11SiDsLr9Odj9eocOB1Khzu5dfJYuTl3ncAAAAAAABAPjHHEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAO56ycnJqlq1qiwWi7Zt22bvcpDBwYMH1b17d4WHh8vd3V1ly5bV8OHDlZKSYu/S7nlTpkxReHi43NzcVKNGDf3000/2LgkZjBkzRg8++KC8vLwUGBiotm3bau/evfYuCzkYM2aMLBaLYmJi7F3KbUXwBAAAgLvewIEDFRoaau8ykIU//vhDaWlpmjZtmnbt2qXx48frww8/1GuvvWbv0u5pCxcuVExMjIYOHaqtW7eqQYMGat68uQ4fPmzv0vA/69atU+/evfXrr79q5cqVunbtmpo2bapLly7ZuzRkYePGjZo+fbqqVKli71JuO4thGIa9iwAAAADM8v3336t///766quvVKlSJW3dulVVq1a1d1nIwbvvvqupU6dq//799i7lnlW7dm1Vr15dU6dOtS6rWLGi2rZtqzFjxtixMmTn9OnTCgwM1Lp16/Twww/buxxkcPHiRVWvXl1TpkzRqFGjVLVqVU2YMMHeZd02jHi6B5UuXVoWi0Vdu3a1dykAkInFYpHFYlFsbKy9SwFwFzh16pSee+45ffLJJ/Lw8LB3OcijxMRE+fv727uMe1ZKSoo2b96spk2b2ixv2rSp1q9fb6eqkJvExERJ4mfnDtS7d2+1bNlSjRs3tncpduFk7wIAAAAAMxiGoa5du+qFF15QzZo1dfDgQXuXhDzYt2+fJk2apP/85z/2LuWe9c8//yg1NVVBQUE2y4OCgnTy5Ek7VYWcGIah/v37q379+oqMjLR3OchgwYIF2rJlizZu3GjvUuyGEU+440RHR8tisSg6OtrepQC4w6xdu9Y6Imrt2rX2LgeAncTGxlo/C7J7bNq0SZMmTdL58+c1ZMgQe5d8T8rr65TR8ePH9eijj+rJJ59Ujx497FQ50lksFpvnhmFkWoY7Q58+fbRjxw599tln9i4FGRw5ckQvvfSS5s2bJzc3N3uXYzeMeAIA3FGYehBAbvr06aMOHTrk2KZ06dIaNWqUfv31V7m6utqsq1mzpjp16qS5c+eaWeY9L6+vU7rjx4+rYcOGqlOnjqZPn25ydchJ0aJF5ejomGl0U3x8fKZRULC/vn37avHixfrxxx9VokQJe5eDDDZv3qz4+HjVqFHDuiw1NVU//vijJk+erOTkZDk6OtqxwtuD4AkAAACFStGiRVW0aNFc202cOFGjRo2yPj9+/LiaNWumhQsXqnbt2maWCOX9dZKkY8eOqWHDhqpRo4Zmz54tBwcuzLAnFxcX1ahRQytXrtRjjz1mXb5y5Ur961//smNlyMgwDPXt21eLFi3S2rVrFR4ebu+ScINGjRpp586dNsu6deumChUqaNCgQfdE6CQRPAEAAOAuVapUKZvnRYoUkSSVLVuWUQF3kOPHjys6OlqlSpXSe++9p9OnT1vXBQcH27Gye1v//v3VuXNn1axZ0zoK7fDhw3rhhRfsXRr+p3fv3po/f77++9//ysvLyzpCzcfHR+7u7nauDpLk5eWVac4tT09PBQQE3FNzcfGnhBvExcVp1KhRatasmUqUKCFXV1cVKVJEERER6tKli3799ddc+zh+/LgGDx6s6tWry8fHRy4uLgoODlblypX19NNPa86cOTp//vwt1ZmQkKBRo0apTp06Klq0qFxdXRUaGqp//etf+vrrr2+p73RHjx7VkCFDVL16dfn5+cnNzU2lSpXSU089pTVr1uSpj9OnT2vkyJGqV6+eAgMD5erqqpIlS6pevXoaOXKk9u7da23btWtXWSwWrVu3TpK0bt26TPMAZByOLWW++9UPP/ygJ598UiVLlpSzs3Om9pL0888/q3PnzipdurTc3Nzk6+uratWqadiwYTZfdG6U1dwyn3/+uRo1aqRixYrJ3d1d5cuX18CBA3X27Nk8nR8UPnfyZ8TBgwet79E5c+ZIkr744gs1btxYgYGBcnd3V4UKFTR48GAlJCTk2l9KSoqmTJmihg0bqlixYtY6W7RooXnz5iktLS3H7f/880/17dtXkZGRKlKkiFxcXBQaGqqqVavq2Wef1cKFC5WcnJxpu6zuapd+bA0bNrQua9iwYabPiPTjlmznFpGu3+nlzTffVLVq1eTr65upvXT9Vrdvv/226tSpI39/f7m6uqpEiRJq166dvv322xyP98b56Y4dO6b+/furXLlycnd3V0BAgJo1a6bvv/8+x34A4F6zYsUK/f333/rhhx9UokQJhYSEWB+wn6eeekoTJkzQyJEjVbVqVf34449aunSpwsLC7F0a/mfq1KlKTExUdHS0zc/NwoUL7V0aYMuA1Zo1awxJuT4GDx6cbR8//vij4e3tnWsfS5Ysuek6v/vuO8PX1zfH/lu2bGlcuHAhy+3DwsIMSUaXLl2y3cfMmTMNd3f3HPfRvXt34+rVq9n2MW/ePMPT0zPHPsLCwqztu3Tpkut5y9jeMAzr8uHDhxuvvfZaju1TU1ON3r1759i/j4+PsWLFiiyPJ+P7Y9WqVUbHjh2z7adcuXLGiRMnsj03KJzu9M+IAwcOWLefPXu28eyzz2bbf0hIiLFr165s+zp48KBRsWLFHGusX7++cebMmSy3//zzzw0XF5dcj3Pnzp2Zts34c53VseX0mD17tnWb4cOHW5f/+eefRunSpXNsv2XLFiM0NDTH/h9//HEjKSkpy2OOiooyJBlRUVHGTz/9ZAQEBGTbz7vvvpvziwkAAADcJbjULoNr167J09NTLVu21COPPKIKFSrI29tb8fHx2rVrlyZOnKhDhw7p7bff1n333adu3brZbJ+cnKwOHTro/Pnz8vLy0osvvqiGDRsqMDBQV69e1aFDh7RhwwZ99dVXN13jypUr1aZNG6Wmpqp06dJ68cUXVbt2bXl7e+vYsWNauHCh5s2bp++++05dunS5qX199NFH1ruIREZGqmfPnqpWrZo8PDx04MABzZo1S0uXLtWsWbPk4+OT5a1uP/74Y3Xp0kWS5Obmpueee07NmzdXcHCwLl68qB07dmjJkiX666+/rNu89dZbGjBggLp166ZNmzapZs2amj17tk2/Li4uWda8aNEi7dixQ5UrV9bLL7+syMhIJSUladu2bdY2gwcP1gcffCBJCg8P16BBg1S9enVdunRJixcv1uTJk5WYmKhWrVrp999/1wMPPJDtOXrjjTe0fv16tW3bVs8884zCwsJ06tQpffDBB/ruu+/0999/6+WXX+auEneZwvAZkW7KlCnauHGjatWqpZdfflkRERGKj4/X3LlztXDhQp04cULNmjXTrl275O3tbbPtxYsX9cgjj2j//v2SpLZt2+rZZ59VaGioDhw4oMmTJ2vdunX6+eef1apVK/30008216efOnVK3bp1U0pKigIDA9WnTx899NBDKlq0qK5cuaL9+/frxx9/zNfozOLFi2vnzp3auHGjnn32WUnXP6sefPBBm3bZXTrTrl07HTt2TH379lWbNm3k5+env/76y/pX22PHjqlRo0ZKSEiQxWJR165d1aFDBwUEBGj37t36z3/+o+3bt+vrr79Wly5dcvxL4okTJ/TYY4/J0dFRb7/9turXry8XFxf9/PPPGjlypM6dO6chQ4aoefPmqlSpUp7PAQAAAFAo2Tv5upOcPn3aSEhIyHZ9cnKy0aRJE+tImmvXrtmsX716dZ5GK1y9etVITEzMd30XL140goKCDElG06ZNjUuXLmXZbvr06TYjc26U04inw4cPGx4eHtb12Y1oSh9d5ODgYOzdu9dm3bFjx6x9BAYGZjmiId2RI0cyLcs4aiA3yjCCoFGjRsaVK1eybLdjxw7DwcHBkGRERkZm+Tp///331ja1atXKtP7G0S6jRo3K1CYtLc1o2rSpIclwcnIy4uPjcz0GFB53+mfEjaOCWrRokeXP8MiRI61tBgwYkGn9gAEDrOuHDRuWaX1aWprRqVMna5spU6bYrJ81a1aOI5rSJSUlGZcvX860PH3bjCOe0mX8OVyzZk22fRuG7YgnBweHbEczGoZhtGvXztp25syZmdZfuXLFaNiwobXN0qVLM7VJ/+xKf/2PHj2aqc1PP/1kWCwWQ5LRr1+/HOsHAAAA7gbM8ZRB0aJF5evrm+16FxcXvfvuu5KkQ4cO2YymkWRzu9GHH344236cnJwyjTDIi9mzZ+vUqVNyc3PTJ598Ig8PjyzbPffcc6pVq5Z1m/x4//33dfnyZYWGhurDDz+Uk1PWg+JGjBih4sWLKy0tTR9//LHNukmTJuny5cuSpGnTpuU4aVpBTezp4OCgmTNnZrpdcrqpU6da56OZMWNGlq/zo48+ah1J8fvvv2vjxo3Z7q9GjRp67bXXMi23WCzq37+/pOujYzZs2JDfQ8Ed7E7/jMjI1dVVM2bMyPJneOjQodafy1mzZtnMs5ScnKyZM2dKku6//36beZbSWSwWTZkyRQEBAZKkyZMn26xPP04/P78cf/7d3Nxu28SXXbt2VZMmTbJcd+LECS1atEiS1KxZM3Xv3j1TG1dXV3300UfW83njMd9o0qRJKl68eKbl9evXt95J66effsrXMQAAAACFEcFTDpKTk3X48GHt3r1bcXFxiouLk2EY1vXbt2+3aZ9xAsT8Bj558d///leSFBUVpcDAwBzbpv9Sm9/gI30frVu3lpubW7btnJycVKdOnSz38d1330m6fjnb7brdar169bKcSDzdqlWrJF3/Rfqhhx7Ktt1zzz2XaZusdOzY0Tph8Y1q1Khh/Xf6pUq4O91pnxEZNW3aVKGhoVmuc3BwsF4Km5CQoC1btljXbd68WefOnZN0PazJ7hav3t7eat++vSRp9+7dOnHihHVd+nEmJCRYP1PsrVOnTtmuW7NmjVJTUyUpy9ApXenSpa3h1dq1a63b3MjX11ctW7bMtp/0zwg+HwAAAHAvIHi6waVLlzRmzBg98MAD8vT0VFhYmCpVqqTKlSurcuXKqlatmrXtP//8Y7Nt/fr1VaZMGUlSTEyMatWqpTFjxmj9+vVKSUm55do2bdokSVq+fHmmOznd+Hjvvfck2Y6wyE1iYqL+/vtvSddHKuW2jy+//DLTPq5evaq4uDhJUoMGDbINZwpalSpVsl2XnJxsnUsqfaRBdqpVqyZnZ2dJsh5HVipUqJDtOn9/f+u/L1y4kOP+UPjcyZ8RGd0499GN0kdFSrbv9Yz/zu3nJeP6jNu1adPGOjLsscce0yOPPKLx48dr8+bN2YY1ZsvpM+Jmjvny5cvZBkcRERFycMj+v9f0zwg+HwAAAHAvYHLxDA4ePKhHHnlEBw4cyFP7pKQkm+fOzs5asmSJ2rVrpz179mjjxo3Wy7Xc3d0VFRWlzp0766mnnsp2FEF2rl69ah2FkB/pl7zlRXx8fL77v3EfZ8+etY74uJ23wPXz88t2XcbbxgcFBeXYj7OzswICAnTy5EmdPXs223bZXeYoyeYXTnv9kg1z3MmfETfKbVRkxp+FjO/1jP/O7eclODg4y+0CAgK0ePFiPf300zp27JjWrFmjNWvWSLo+Uqpx48bq1q2bWrVqlbeDKQA5fUYUxDFnlNPng/T/nxHpl/8CAAAAdzOCpww6d+6sAwcOyGKxqFu3burQoYMqVqyoYsWKWecOSktLs/5CmPGSmnT333+/du7cqSVLlmjJkiVat26d9u3bp6SkJC1btkzLli3TuHHjtHTp0lx/McwoY4DRvn17vf7667d4tDnvIyYmJsdLTjLK7k5zt2u0k6Q8/5Kel5qyel0B6c7+jLhRbu/1vLzPb6WPBg0a6O+//9ZXX32lpUuX6scff9TRo0d1/vx5ff311/r666/VrFkzff3117kGNQXhVoO8dHw+AAAAAPlD8PQ/f/zxh37++WdJ0pAhQ/TWW29l2S7j6JnsODo6qm3btmrbtq2k6xPXfv/995oyZYo2b96szZs3q2fPntbJbPPCzc1NHh4eunz5ss6dO5fjhL03K32iYOn6KKab2Ye/v78cHByUlpam48ePF2R5Ny3jSIfcLj28du2adRRDxkvmgDv9M+JGp06dynF9xhGOGd/rGf998uRJ3XfffXnaR1Y/L25uburUqZN1fqX9+/fru+++0+TJk/Xnn39q+fLlGjp0qMaPH5/7AZkoY+2nTp1SqVKlsm2b2zEDAAAAsMUcT/+za9cu6787dOiQbbv0eZbyIyQkRM8++6w2bNig6tWrS5K+/fbbTJfh5CZ97phffvklX5fQ5VWxYsWsd2FatWrVTf1l39nZ2RpY/fTTTzfVR0GPlHJ1dVVERIQk6bfffsux7datW3X16lVJMiXcQ+FVGD4jMsrprow3rs/4Xs/479x+Xn7//fcst8tOmTJl1LdvX23cuNF6R8vPP/881+0yMmMk5c0cs4eHh8LDwwu8FgAAAOBuQ/D0P9euXbP+O6dQ58MPP7zpfTg7OysqKsq6v/zO2dSmTRtJ1yc3/uCDD266jrzsY//+/dbJw/OrdevWkqQDBw7c1B2t0u+ml/EW77eqcePGkq7ffevXX3/Ntl36beQzbgNIheMzIqMVK1bY3Gkuo7S0NM2dO1fS9RGB6WGXdP2Oa+kTg8+dOzfbecouXLhgDY3uv//+fM3p5u3tbZ38/MYJ2HOT8W6bBfUZER0dbb0Ub9asWdm2O3z4sFauXGndxsmJQcMAAABAbgie/id9RIwk6y9kN5o6daq++eabbPv46aefrHeFy0pKSorWrVsnSSpSpIiKFSuWrxpfeOEFFS1aVJL0+uuv6/vvv8+x/S+//KIff/wxX/t49dVXrXPVvPDCC7mO3li6dKl27Nhhs6xPnz7y9PSUJPXs2TPHu8MdPXo007L0X2D3799fYPOpvPjii9YJfZ9//nklJiZmarNixQrrL521atXK9a5guLcUhs+IjJKTk9WzZ88sg6O3335bO3fulCQ9++yz1p956foIwR49eki6PsprxIgRmbY3DEN9+vSxhkZ9+vSxWb98+fJsQy/p+h0000cO5XfUUMaAa9++ffnaNjuhoaF67LHHJF2v/aOPPsrUJiUlRc8++6x1ROSNxwwAQGF36tQpWSwWvf/++6pWrZrc3NxUqVIl61QDAHCz+HPt/1SrVk2RkZGKi4vT1KlTde7cOXXq1EkhISE6cuSI5s2bpy+//FL16tXTL7/8kmUfq1ev1ptvvqkGDRqoZcuWqlKliooVK6akpCT9+eef+vDDD7VlyxZJUo8ePfL913Jvb2999tlnat68uZKTk9WqVSs98cQTeuKJJ1S2bFlJ1+eK2bx5sxYtWqQdO3Zo0qRJevjhh/O8j/DwcH344Yfq1q2bzp49q3r16qlz585q1aqVSpUqpWvXruno0aP6/fff9eWXX2rfvn1asmSJza3Kg4ODNXXqVD3zzDOKj49XrVq19Nxzz6l58+YKDg7WxYsXFRcXp8WLF2vv3r2ZfnmsW7euZs+erfj4ePXv31///ve/5ePjI+n6iJCwsLB8nTdJqly5sl555RW9++672rlzp6pXr65BgwapWrVqunz5spYsWaKJEycqNTVVLi4umjZtWr73gbtbYfiMyKhmzZpasmSJ6tWrp5dfflkRERGKj4/X3LlztWDBAklSiRIlsrxRwRtvvKGvv/5a+/fv15tvvqm4uDg9++yzCg0N1YEDBzR58mStXbtWklSnTh09//zzNtt/9tlnat26tZo0aaKmTZsqMjJS/v7+unDhguLi4jR58mQdO3ZM0vVQOD9KlSqlEiVK6OjRo3rvvfdUvHhxlS9f3nqugoKC5OXlld/TpfHjx2v16tVKSEhQjx499Msvv6hDhw7y9/fXH3/8offee0/btm2TdP0GD82bN8/3PgAAuJNt3bpVkjRlyhRNmzZNISEh6t+/vzp16qQDBw7Y3LkZAPLFgNXWrVsNPz8/Q1KWj8qVKxvHjx+3Ph8+fLjN9sOHD89224yPxx9/3EhKSrrpOlevXm0EBwfnaV9z587NtH1YWJghyejSpUu2+1iwYIHh7e2da/8ODg7GDz/8kGUfc+bMMdzd3XPcPiwsLNN2Fy5cMMqUKZOn9tm9FllJTU01evXqlWM9Pj4+xvLly7Pcfs2aNdZ2a9asyXFf+akLhced/hlx4MABax+zZ882unbtmu0+QkJCjF27duXYV4UKFXKss169esaZM2cybdulS5c8HWfv3r2N1NTUTNvn9vMzZcqUbPucPXt2luc7L7Zs2WKEhobe9GsTFRVlSDKioqJy3E9+6wIA4HZ4++23DWdnZ2P//v3WZZs2bTIkGYcPH7ZjZQAKO0Y8ZVC1alVt27ZNY8aM0ffff6/jx4/Ly8tL5cqVU/v27dW7d2+b+UVuNHDgQNWuXVsrV67Uhg0bdPz4ceudo4KDg1W7dm0988wzatGixS3V+cgjj2jfvn2aPXu2vv32W23fvl1nzpyRg4ODihUrpooVKyoqKkpPPPGEypcvf1P7eOqpp9S0aVNNnz5dy5Yt0+7du5WQkCBnZ2cFBwerUqVKatiwodq1a6eSJUtm2UeXLl3UtGlTffDBB1q2bJn27duny5cvKzg4WKVKlVLz5s319NNPZ9quSJEiWr9+vcaMGaMVK1bo0KFDBTKZuoODgz744AN16NBB06ZN008//aRTp07J1dVVZcqUUYsWLRQTE3NLlzfh7lZYPiPSzZ492/pzvHPnTl28eFFhYWFq27atBg8ebHPHxxuVLl1a27dv14wZM/TFF18oLi5O58+fl7+/v6pVq6ZOnTqpY8eOWf71c8KECWrTpo1WrlypTZs26cSJEzp9+rQcHR1VsmRJ1a1bVz169FC9evVu6rhefPFFBQUFadq0adq2bZvOnj1rMwfXzapWrZr27t2ryZMn65tvvtHevXt1+fJlFS1aVA899JC6du1qncMOAIC7zbZt2/T444/bXAaf8XJ8ALhZFsMooEl0AAB2dfDgQeuXxdmzZ6tr1672LQgAABQaFStWVJcuXTR48GDrso8//livvPKKTp06pTp16uiDDz5QzZo11aVLFz300EP5vmQewL2JEU8AAAAAcA9LSkrSX3/9ZXNTkrS0NL3//vvq0qWLHBwc9Prrr2v06NGqV6+eihQpQugEIM+YIQ4AAAAA7mE7d+6UxWLRvHnztGHDBu3Zs0dPPfWUzp07p2HDhkmSWrVqpf3792v58uV6//337VwxgMKE4AkAAAAA7mHbtm1ThQoVNGzYMLVr1041a9aUg4ODNmzYIF9fX0nS77//rnPnzsnX1/eW7rwL4N5D8AQAAAAA97Dt27ercuXK6tSpk44dO6ZLly5p4cKFCgwMlCQdO3ZMPXr00Jo1a/TXX39pz549dq4YQGFC8AQAAAAA97Bt27apSpUqWa5LSkpSu3btNHnyZIWHh2vgwIEaNWrUba4QQGHGXe0AAAAA4B5lGIZ8fHy0YMECtWjRwt7lALgLETwBAAAAAADAFFxqBwAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAU/wcYwdmJBektYQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -242,10 +242,10 @@ "start_time": "2023-11-09T18:41:35.641363489Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:17.093946Z", - "iopub.status.busy": "2023-11-09T20:46:17.093509Z", - "iopub.status.idle": "2023-11-09T20:46:17.099048Z", - "shell.execute_reply": "2023-11-09T20:46:17.098063Z" + "iopub.execute_input": "2023-11-09T22:34:11.516182Z", + "iopub.status.busy": "2023-11-09T22:34:11.515859Z", + "iopub.status.idle": "2023-11-09T22:34:11.519284Z", + "shell.execute_reply": "2023-11-09T22:34:11.518845Z" } }, "outputs": [], @@ -266,16 +266,16 @@ "start_time": "2023-11-09T18:41:35.682988823Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:17.101385Z", - "iopub.status.busy": "2023-11-09T20:46:17.101067Z", - "iopub.status.idle": "2023-11-09T20:46:17.529614Z", - "shell.execute_reply": "2023-11-09T20:46:17.528628Z" + "iopub.execute_input": "2023-11-09T22:34:11.520990Z", + "iopub.status.busy": "2023-11-09T22:34:11.520823Z", + "iopub.status.idle": "2023-11-09T22:34:11.864475Z", + "shell.execute_reply": "2023-11-09T22:34:11.863977Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGwCAYAAACKOz5MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCMklEQVR4nO3de1hVZd7/8c8GhI0HyNRQR0QyFdFUhBJ0PNQoatlPrRl5qkEtDzGpiUyPyXhCmyLLFDUxbUqkSeNptONFKZanFE8EdtDUMQ1HQcMe2WoKCev3hz/3rx2obDT3YvN+Xde+Lve973Wv771Q94d7rb22xTAMQwAAACbm4eoCAAAAroXAAgAATI/AAgAATI/AAgAATI/AAgAATI/AAgAATI/AAgAATM/L1QXcKOXl5Tp+/LgaNGggi8Xi6nIAAEAVGIahM2fOqHnz5vLwuPI6itsEluPHjyswMNDVZQAAgGo4evSoWrRoccXX3SawNGjQQNKlCfv5+bm4GgAAUBU2m02BgYH29/ErcZvAcvk0kJ+fH4EFAIAa5lqXc3DRLQAAMD0CCwAAMD0CCwAAMD23uYalKsrLy1VaWurqMoAaw9vb+6ofMwSAm6XWBJbS0lIdPnxY5eXlri4FqDE8PDwUHBwsb29vV5cCoJarFYHFMAwVFBTI09NTgYGB/MYIVMHlmzEWFBSoZcuW3JARgEvVisBy8eJF/fTTT2revLnq1q3r6nKAGqNJkyY6fvy4Ll68qDp16ri6HAC1WK1YaigrK5MklrUBJ13+N3P53xAAuEqtCCyXsaQNOId/MwDMolYFFgAAUDMRWAAAgOnViotur2R+1oGbur9J/dre1P3BOUeOHFFwcLByc3PVpUuXao2Rlpam+Ph4nT59+obWBgC1XbVWWFJTUxUcHCyr1arw8HBt2bKlSttt3bpVXl5elb4ZrF69WqGhofLx8VFoaKjefffd6pQGE+jTp4/i4+Nvyr6OHDkii8WivLy8m7K/my0tLU233HKLq8sAAJdzOrBkZGQoPj5eU6dOVW5urnr27KmBAwcqPz//qtsVFxdr+PDh+sMf/lDhtezsbMXExCg2NlZ79uxRbGyshg0bph07djhbnltzp7v0GoahixcvuroMt+FOfzcAoDJOB5Z58+Zp1KhRGj16tNq3b6+UlBQFBgZqyZIlV93uiSee0COPPKKoqKgKr6WkpKhfv35KTExUSEiIEhMT9Yc//EEpKSnOludW+vTpo/HjxyshIUGNGzdWv379JEl79+7Vfffdp/r16ysgIECxsbEqKiqyb1deXq45c+bojjvukI+Pj1q2bKnnnnvO/vpXX32le++9V76+vmrUqJHGjh2rs2fP2l8fOXKkhgwZorlz56pZs2Zq1KiRxo0bp59//tneJzU1VW3atJHValVAQID++Mc/2rfdtGmTFixYIIvFIovFoiNHjmjjxo2yWCxau3atIiIi5OPjoy1bttj39Uvx8fHq06dPleYTHBwsSQoLC5PFYnHYbvny5Wrfvr2sVqtCQkKUmprqsJ+dO3cqLCxMVqtVERERys3NvebPpLS0VJMnT9bvfvc71atXT926ddPGjRuvus2HH36o8PBwWa1W3X777Zo1a5ZDWDt9+rTGjh2rgIAAWa1WdezYUR999JE2btyoxx57TMXFxfZjmZSUJElq1aqVpkxPUsyjsfLz99efRz6uE7YLev3NVWrX/tJKZWBQkJKee0EnbBfsj8CgIP1txmw9/vjjatCggVq2bKlly5Zdc94A4GpOBZbS0lLl5OQoOjraoT06Olrbtm274nbLly/XoUOHNHPmzEpfz87OrjBm//79rzpmSUmJbDabw8MdrVixQl5eXtq6dauWLl2qgoIC9e7dW126dNHu3bv1ySef6MSJExo2bJh9m8TERM2ZM0fTp0/X3r17tXLlSgUEBEiSfvrpJw0YMEANGzbUrl279M4772j9+vUaP368w343bNigQ4cOacOGDVqxYoXS0tKUlpYmSdq9e7eeeuopzZ49W/v379cnn3yiXr16SZIWLFigqKgojRkzRgUFBSooKFBgYKB93MmTJys5OVn79u1Tp06dqnQMrjafnTt3SpLWr1+vgoICrVmzRpL02muvaerUqXruuee0b98+Pf/885o+fbpWrFghSTp37pwGDRqkdu3aKScnR0lJSXr66aevWctjjz2mrVu36u2339aXX36pP/3pTxowYIAOHjxYaf+1a9fqz3/+s5566int3btXS5cuVVpamj1wlZeXa+DAgdq2bZv++c9/au/evXrhhRfk6emp7t27KyUlRX5+fvZj+csaUxfOV0j7UK3buE0J/52oPblfaOzIP2vIQ3/ShuzdenrKNL343Gy9/dabDjW9+soCe0B78skn9Ze//EXffvttlX4WAOAqTl10W1RUpLKyMvubxWUBAQEqLCysdJuDBw9qypQp2rJli7y8Kt9dYWGhU2NKUnJysmbNmuVM+TXSHXfcoRdffNH+fMaMGeratauef/55e9sbb7yhwMBAHThwQM2aNdOCBQv0yiuvaMSIEZKk1q1b6/e//70k6a233tL58+eVnp6uevXqSZJeeeUVPfDAA5ozZ47959CwYUO98sor8vT0VEhIiO6//359+umnGjNmjPLz81WvXj0NGjRIDRo0UFBQkMLCwiRJ/v7+8vb2Vt26ddW0adMK85k9e7Z9pagqzpw5c9X5NGnSRJLUqFEjh/09++yzevnll/Xggw9KurQSczkwjBgxQm+99ZbKysr0xhtvqG7duurQoYP+85//6C9/+csVazl06JBWrVql//znP2revLkk6emnn9Ynn3yi5cuXO/xMLnvuuec0ZcoUe+233367nn32WU2ePFkzZ87U+vXrtXPnTu3bt09t27a197nM399fFoul0mP5+1699eRTk+zPnxw9Uj1736OEyYmXjtMdbXTg231KXThf//VorL3fH6L768knn5QkPfPMM5o/f742btyokJCQK84dAFytWp8S+vXNpAzDqPQGU2VlZXrkkUc0a9Ys+3/G1zvmZYmJiUpISLA/t9lsDr/Ju4uIiAiH5zk5OdqwYYPq169foe+hQ4d0+vRplZSUVHqtkCTt27dPnTt3tocVSerRo4fKy8u1f/9+e2Dp0KGDPD097X2aNWumr776SpLUr18/BQUF6fbbb9eAAQM0YMAADR06tEpfe/Dr+VzLvn37rjqfyvzwww86evSoRo0apTFjxtjbL168KH9/f/u4nTt3dqi5stOVv/TFF1/IMIwKf5dLSkrUqFGjSrfJycnRrl27HE7JlZWV6cKFC/rpp5+Ul5enFi1aXPPfR2U6dwl3eH5w/371v3+QQ9vdkVF6bckrKisrs/8823foaH/9chg6efKk0/sHgJvJqcDSuHFjeXp6Vlj5OHnyZIUVEunSb8e7d+9Wbm6u/ZRDeXm5DMOQl5eX1q1bp3vvvVdNmzat8piX+fj4yMfHx5nya6RfBgvp0vG7vBrya82aNdN333131fGuFgR/2f7r742xWCz2b7pu0KCBvvjiC23cuFHr1q3TjBkzlJSUpF27dl3zEy2/no+Hh4cMw3Bo++W1Mr6+vlcdrzKX63zttdfUrVs3h9cuv2n/ep9VHdfT01M5OTkOYU5SpQHy8jazZs2yr/T8ktVqrdb8LqtbzzEgVvazrWyeV/vZAoBZORVYvL29FR4erqysLA0dOtTenpWVpcGDB1fo7+fnZ/+t/LLU1FR99tln+te//mW/YDIqKkpZWVmaNOn/L2+vW7dO3bt3d2oytUHXrl21evVqtWrVqtJTbG3atJGvr68+/fRTjR49usLroaGhWrFihc6dO2cPD1u3bpWHh4dTv+V7eXmpb9++6tu3r2bOnKlbbrlFn332mR588EF5e3tX+btnmjRpoq+//tqhLS8vz/6meq35VPZdNwEBAfrd736n7777To8++mil+w0NDdWbb76p8+fP20PD9u3br1prWFiYysrKdPLkSfXs2bNK8+vatav279+vO+64o9LXO3XqpP/85z86cOBApcffmWPZNiREO7Mdr/vatWO7br+jTYWAdcJ2wf7ni+WGzpZcdGi77OfSEtnO/6y0rYd1vvzSGNxPCIArOP0poYSEBP3jH//QG2+8oX379mnSpEnKz89XXFycpEunaoYPH35pcA8PdezY0eFx22232T8JcfkNc+LEiVq3bp3mzJmjb7/9VnPmzNH69etv2r08apJx48bpxx9/1MMPP6ydO3fqu+++07p16/T444+rrKxMVqtVzzzzjCZPnqz09HQdOnRI27dv1+uvvy5JevTRR2W1WjVixAh9/fXX2rBhgyZMmKDY2Nirrmj90kcffaSFCxcqLy9P33//vdLT01VeXq527dpJuvQJlh07dujIkSMqKiq66m/v9957r3bv3q309HQdPHhQM2fOdAgw15rPbbfdJl9fX/vFx8XFxZKkpKQkJScna8GCBTpw4IC++uorLV++XPPmzZMkPfLII/Lw8NCoUaO0d+9eZWZmau7cuVedd9u2bfXoo49q+PDhWrNmjQ4fPqxdu3Zpzpw5yszMrHSbGTNmKD09XUlJSfrmm2+0b98+ZWRkaNq0aZKk3r17q1evXnrooYeUlZWlw4cP6+OPP9Ynn3xiP5Znz57Vp59+qqKiIv30009XrC9u/ERt2bRB815M1qF/H1TGyn9q+Wuv6i8T4q86LwCoEYxqWLx4sREUFGR4e3sbXbt2NTZt2mR/bcSIEUbv3r2vuO3MmTONzp07V2h/5513jHbt2hl16tQxQkJCjNWrVztVU3FxsSHJKC4urvDa+fPnjb179xrnz593akxX6927tzFx4sQK7QcOHDCGDh1q3HLLLYavr68REhJixMfHG+Xl5YZhGEZZWZnx97//3QgKCjLq1KljtGzZ0nj++eft23/55ZfGPffcY1itVuPWW281xowZY5w5c8b++ogRI4zBgwc77HPixIn2n+uWLVuM3r17Gw0bNjR8fX2NTp06GRkZGfa++/fvNyIjIw1fX19DknH48GFjw4YNhiTjf//3fyvMZ8aMGUZAQIDh7+9vTJo0yRg/frzD36Frzee1114zAgMDDQ8PD4ft3nrrLaNLly6Gt7e30bBhQ6NXr17GmjVr7K9nZ2cbnTt3Nry9vY0uXboYq1evNiQZubm5V/yZlJaWGjNmzDBatWpl1KlTx2jatKkxdOhQ48svvzQMwzCWL19u+Pv7O2zzySefGN27dzd8fX0NPz8/4+677zaWLVtmf/3UqVPGY489ZjRq1MiwWq1Gx44djY8++sj+elxcnNGoUSNDkjFz5kzDMAwjKCjImJ38olFYfN7h8Y/0lUbbkPZGnTp1jN8FBhoznn3e4fUWLVtW2K7DnZ2Mv06ZWmGswuLzxtEfThvbc/YYS9bvNeat22/MW7f/iscGAKrjau/fv2QxjGqczDchm80mf39/FRcXy8/Pz+G1Cxcu6PDhw/a78wLuoLJTODfaz6UlOpb/vXL/tw6nhAD8Jq72/v1Ltfq7hADgN/X/bvR307cF3BDf1gwAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAL8P0eOHJHFYlFeXp7LakhLS7vmF0gCQG1Uu28cd7NvzFRLbgTVp08fdenSRSkpKb/5vo4cOaLg4GDl5uaqS5cuv/n+fmsxMTG677777M+TkpL03nvvuTREAYAZsMJSg5SWlrq6hBvGMAxdvHjR1WWYjq+vr2677Tant/v5559/g2oAwDwILCbWp08fjR8/XgkJCWrcuLH69esnSdq7d6/uu+8+1a9fXwEBAYqNjVVRUZF9u/Lycs2ZM0d33HGHfHx81LJlSz333HP217/66ivde++98vX1VaNGjTR27FidPXvW/vrIkSM1ZMgQzZ07V82aNVOjRo00btw4hzfF1NRUtWnTRlarVQEBAfrjH/9o33bTpk1asGCBLBaLLBaLjhw5oo0bN8pisWjt2rWKiIiQj4+PtmzZYt/XL8XHx6tPnz5Vmk9wcLAkKSwsTBaLxWG75cuXq3379rJarQoJCVFqaqrDfnbu3KmwsDBZrVZFREQoNzf3mj+TVq1a6dlnn9Ujjzyi+vXrq3nz5lq0aJFDn/z8fA0ePFj169eXn5+fhg0bphMnTthf37Nnj+655x41aNBAfn5+Cg8P1+7duyU5nhJKS0vTrFmztGfPHvuxTEtLkyRZLBateP01jXj4Twpu1kjzX3rh0jb/WKZunUMV2NhPPcI76Z23VzrU1tTfV2+tWK7HHh2m4Ka3Kiqso9ZmfnTNeQOAqxFYTG7FihXy8vLS1q1btXTpUhUUFKh3797q0qWLdu/erU8++UQnTpzQsGHD7NskJiZqzpw5mj59uvbu3auVK1cqICBAkvTTTz9pwIABatiwoXbt2qV33nlH69ev1/jx4x32u2HDBh06dEgbNmzQihUrlJaWZn+z3L17t5566inNnj1b+/fv1yeffKJevXpJkhYsWKCoqCiNGTNGBQUFKigoUGBgoH3cyZMnKzk5Wfv27VOnTp2qdAyuNp+dO3dKktavX6+CggKtWbNGkvTaa69p6tSpeu6557Rv3z49//zzmj59ulasWCFJOnfunAYNGqR27dopJydHSUlJevrpp6tUz0svvaROnTrpiy++UGJioiZNmqSsrCxJl1aOhgwZoh9//FGbNm1SVlaWDh06pJiYGPv2jz76qFq0aKFdu3YpJydHU6ZMUZ06dSrsJyYmRn/961/VoUMH+7H85TgvJf9d/e8bpI3bduvhPw9X5ofva/qUpxU3fqI2bs9R7GOjFP/kWH2+eZPDuC/PeU7/Z+hD+mzrLv0hur+eHPOY/vfHH6s0dwBwldp9DUsNcMcdd+jFF1+0P58xY4a6du2q559/3t72xhtvKDAwUAcOHFCzZs20YMECvfLKKxoxYoQkqXXr1vr9738vSXrrrbd0/vx5paenq169epKkV155RQ888IDmzJljDwINGzbUK6+8Ik9PT4WEhOj+++/Xp59+qjFjxig/P1/16tXToEGD1KBBAwUFBSksLEyS5O/vL29vb9WtW1dNmzatMJ/Zs2fbV4qq4syZM1edT5MmTSRJjRo1ctjfs88+q5dfflkPPvigpEsrMXv37tXSpUs1YsQIvfXWWyorK9Mbb7yhunXrqkOHDvrPf/6jv/zlL9esqUePHpoyZYokqW3bttq6davmz5+vfv36af369fryyy91+PBhe1B788031aFDB+3atUt33XWX8vPz9d///d8KCQmRJLVp06bS/fj6+qp+/fry8vKq9Fg++KdheiR2hP35k6NHKuaRWD025olLx2n8ROXs2qkli1L0+1697f1iHonV0D9eCj6JM2br9aVLlPvFbt3bN/qacwcAV2GFxeQiIiIcnufk5GjDhg2qX7++/XH5je/QoUPat2+fSkpK9Ic//KHS8fbt26fOnTvbw4p06Q24vLxc+/fvt7d16NBBnp6e9ufNmjXTyZMnJUn9+vVTUFCQbr/9dsXGxuqtt97STz/9VK35XMu15lOZH374QUePHtWoUaMcjtPf//53HTp0yD5u586dVbduXft2UVFRVRr/1/2ioqK0b98++7iBgYEOq0qhoaG65ZZb7H0SEhI0evRo9e3bVy+88IK9Jmd1Duvq8Pzg/v26K9Kxtrsjo3Rw/7cObe07dLT/uV69eqrfoIGKfvihWjUAwM1CYDG5XwYL6dL1HA888IDy8vIcHgcPHlSvXr3k6+t71fEMw5DFYqn0tV+2//oUhcViUXl5uSSpQYMG+uKLL7Rq1So1a9ZMM2bMUOfOnXX69Gmn5+Ph4SHDMBzafnmtzLXmU5nLdb722msOx+jrr7/W9u3bJanCPq/X5WN3peP7y/akpCR98803uv/++/XZZ58pNDRU7777rtP7rFu3XoW2X++7snqu9rMFALMisNQwXbt21TfffKNWrVrpjjvucHjUq1dPbdq0ka+vrz799NNKtw8NDVVeXp7OnTtnb9u6das8PDzUtm3bKtfh5eWlvn376sUXX9SXX36pI0eO6LPPPpMkeXt7q6ysrErjNGnSRAUFBQ5tv/wI77Xm4+3tLUkO+wsICNDvfvc7fffddxWO0eWLdENDQ7Vnzx6dP3/evt3lMHMtv+63fft2+ypXaGio8vPzdfToUfvre/fuVXFxsdq3b29va9u2rSZNmqR169bpwQcf1PLly684v6oeyzbt2mln9jaHtl07tqtNu5AqbQ8AZkZgqWHGjRunH3/8UQ8//LB27typ7777TuvWrdPjjz+usrIyWa1WPfPMM5o8ebLS09N16NAhbd++Xa+//rqkSxd8Wq1WjRgxQl9//bU2bNigCRMmKDY21n79yrV89NFHWrhwofLy8vT9998rPT1d5eXlateunaRLn6TZsWOHjhw5oqKioqv+9n7vvfdq9+7dSk9P18GDBzVz5kx9/fXX9tevNZ/bbrtNvr6+9ouPi4uLJV1axUhOTtaCBQt04MABffXVV1q+fLnmzZsnSXrkkUfk4eGhUaNGae/evcrMzNTcuXOrNP+tW7fqxRdf1IEDB7R48WK98847mjhxoiSpb9++6tSpkx599FF98cUX2rlzp4YPH67evXsrIiJC58+f1/jx47Vx40Z9//332rp1q3bt2uUQZn6pVatWOnz4sPLy8lRUVKSSkpIr1vXkU5OUsfJNrXj9NX136N969ZUFyvzwff1lQnyV5gUAZsZFtzVM8+bNtXXrVj3zzDPq37+/SkpKFBQUpAEDBsjD41L+nD59ury8vDRjxgwdP35czZo1U1xcnCSpbt26Wrt2rSZOnKi77rpLdevW1UMPPWR/I6+KW265RWvWrFFSUpIuXLigNm3aaNWqVerQoYMk6emnn9aIESMUGhqq8+fP6/Dhw1ccq3///po+fbomT56sCxcu6PHHH9fw4cP11Vdf2ftcbT5eXl5auHChZs+erRkzZqhnz57auHGjRo8erbp16+qll17S5MmTVa9ePd15552Kj4+XJNWvX18ffvih4uLiFBYWptDQUM2ZM0cPPfTQNef/17/+VTk5OZo1a5YaNGigl19+Wf3795d06fTKe++9pwkTJqhXr17y8PDQgAED7B999vT01KlTpzR8+HCdOHFCjRs31oMPPqhZs2ZVuq+HHnpIa9as0T333KPTp09r+fLlGjlyZKV9Bw76P3r2hblKXThf0575q1oGtVJK6jL16NnrmnPCVdSSGz4CZmcxbvTJfBex2Wzy9/dXcXGx/Pz8HF67cOGCDh8+rODgYFmtVhdVCHfQqlUrxcfH24OPK52wXfjN9/FzaYmO5X+v3P+to/Plly7CntSv6qcO3YKrAgtBCbXE1d6/f4lTQgAAwPQILAAAwPS4hgVwwpEjR1xdAgDUSqywAAAA06tVgcVNri8Gbh77v5nKbzYIADdLrQgsl28xX1pa6uJKgJql7OJFlRuGLpL1AbhYrbiGxcvLS3Xr1tUPP/ygOnXq2O9XAtRkP5de+SZyN4JhlOv0j0X6scSinw1WWG666/lYMx+JhhuqFYHFYrGoWbNmOnz4sL7//ntXlwPcELbzP1+703UwJJVcNHTkJx9xSgiAq9WKwCJd+k6WNm3acFoIbiNt65XvIHwjGLKopNwig7ACwARqTWCRLn0zMHe6hbu4fOdZAKgNqnUxR2pqqv029+Hh4dqyZcsV+37++efq0aOHGjVqJF9fX4WEhGj+/PkOfdLS0mSxWCo8Llz47W89DgAAzM/pFZaMjAzFx8crNTVVPXr00NKlSzVw4EDt3btXLVu2rNC/Xr16Gj9+vDp16qR69erp888/1xNPPKF69epp7Nix9n5+fn7av3+/w7ashsDdzc864OoSAKBGcDqwzJs3T6NGjdLo0aMlSSkpKVq7dq2WLFmi5OTkCv3DwsIUFhZmf96qVSutWbNGW7ZscQgsFotFTZs2rc4cAACAm3PqlFBpaalycnIUHR3t0B4dHa1t27ZVaYzc3Fxt27ZNvXv3dmg/e/asgoKC1KJFCw0aNEi5ublXHaekpEQ2m83hAQAA3JNTgaWoqEhlZWUKCAhwaA8ICFBhYeFVt23RooV8fHwUERGhcePG2VdoJCkkJERpaWn64IMPtGrVKlmtVvXo0UMHDx684njJycny9/e3PwIDA52ZCgAAqEGq9Skhi8XxY46GYVRo+7UtW7bo7Nmz2r59u6ZMmaI77rhDDz/8sCQpMjJSkZGR9r49evRQ165dtWjRIi1cuLDS8RITE5WQkGB/brPZCC0AALgppwJL48aN5enpWWE15eTJkxVWXX4tODhYknTnnXfqxIkTSkpKsgeWX/Pw8NBdd9111RUWHx8f+fj4OFM+AACooZwKLN7e3goPD1dWVpaGDh1qb8/KytLgwYOrPI5hGCopufJtxQ3DUF5enu68805nygNwE1zPJ5sm9Wt7AysBUJs4fUooISFBsbGxioiIUFRUlJYtW6b8/HzFxcVJunSq5tixY0pPT5ckLV68WC1btlRISIikS/dlmTt3riZMmGAfc9asWYqMjFSbNm1ks9m0cOFC5eXlafHixTdijgAAoIZzOrDExMTo1KlTmj17tgoKCtSxY0dlZmYqKChIklRQUKD8/Hx7//LyciUmJurw4cPy8vJS69at9cILL+iJJ56w9zl9+rTGjh2rwsJC+fv7KywsTJs3b9bdd999A6YIAABqOothGG7xxfE2m03+/v4qLi6Wn5+fq8sBqqS23TiuRp4SqonffFwTa0atVdX372rdmh8AAOBmIrAAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADT83J1AQDwm0tKcnUFAK4TKywAAMD0CCwAAMD0CCwAAMD0CCwAAMD0uOgWANzN9VxkzAXKMClWWAAAgOlVK7CkpqYqODhYVqtV4eHh2rJlyxX7fv755+rRo4caNWokX19fhYSEaP78+RX6rV69WqGhofLx8VFoaKjefffd6pQGAADckNOBJSMjQ/Hx8Zo6dapyc3PVs2dPDRw4UPn5+ZX2r1evnsaPH6/Nmzdr3759mjZtmqZNm6Zly5bZ+2RnZysmJkaxsbHas2ePYmNjNWzYMO3YsaP6MwMAAG7DYhiG4cwG3bp1U9euXbVkyRJ7W/v27TVkyBAlJydXaYwHH3xQ9erV05tvvilJiomJkc1m08cff2zvM2DAADVs2FCrVq2q0pg2m03+/v4qLi6Wn5+fEzMCXGd+1gFXl3BTTerX1jU75rqMquNY4Sar6vu3UysspaWlysnJUXR0tEN7dHS0tm3bVqUxcnNztW3bNvXu3dvelp2dXWHM/v37X3XMkpIS2Ww2hwcAAHBPTgWWoqIilZWVKSAgwKE9ICBAhYWFV922RYsW8vHxUUREhMaNG6fRo0fbXyssLHR6zOTkZPn7+9sfgYGBzkwFAADUINW66NZisTg8NwyjQtuvbdmyRbt379arr76qlJSUCqd6nB0zMTFRxcXF9sfRo0ednAUAAKgpnLoPS+PGjeXp6Vlh5ePkyZMVVkh+LTg4WJJ055136sSJE0pKStLDDz8sSWratKnTY/r4+MjHx8eZ8gEAQA3l1AqLt7e3wsPDlZWV5dCelZWl7t27V3kcwzBUUlJifx4VFVVhzHXr1jk1JgAAcF9O3+k2ISFBsbGxioiIUFRUlJYtW6b8/HzFxcVJunSq5tixY0pPT5ckLV68WC1btlRISIikS/dlmTt3riZMmGAfc+LEierVq5fmzJmjwYMH6/3339f69ev1+eef34g5AgCAGs7pwBITE6NTp05p9uzZKigoUMeOHZWZmamgoCBJUkFBgcM9WcrLy5WYmKjDhw/Ly8tLrVu31gsvvKAnnnjC3qd79+56++23NW3aNE2fPl2tW7dWRkaGunXrdgOmCAAAajqn78NiVtyHBTUR92G5Sbi3SNVxrHCT/Sb3YQEAAHAFAgsAADA9AgsAADA9py+6BYDqup5rdlx2/QsAU2CFBQAAmB6BBQAAmB6BBQAAmB7XsADXqbbdSwUAXIEVFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHp8SggA8P9dz7c1803P+A2xwgIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyvWoElNTVVwcHBslqtCg8P15YtW67Yd82aNerXr5+aNGkiPz8/RUVFae3atQ590tLSZLFYKjwuXLhQnfIAAICbcTqwZGRkKD4+XlOnTlVubq569uypgQMHKj8/v9L+mzdvVr9+/ZSZmamcnBzdc889euCBB5Sbm+vQz8/PTwUFBQ4Pq9VavVkBAAC34uXsBvPmzdOoUaM0evRoSVJKSorWrl2rJUuWKDk5uUL/lJQUh+fPP/+83n//fX344YcKCwuzt1ssFjVt2tTZcgAAQC3g1ApLaWmpcnJyFB0d7dAeHR2tbdu2VWmM8vJynTlzRrfeeqtD+9mzZxUUFKQWLVpo0KBBFVZgfq2kpEQ2m83hAQAA3JNTKyxFRUUqKytTQECAQ3tAQIAKCwurNMbLL7+sc+fOadiwYfa2kJAQpaWl6c4775TNZtOCBQvUo0cP7dmzR23atKl0nOTkZM2aNcuZ8gHUZElJrq4AgAtV66Jbi8Xi8NwwjAptlVm1apWSkpKUkZGh2267zd4eGRmpP//5z+rcubN69uyp//mf/1Hbtm21aNGiK46VmJio4uJi++Po0aPVmQoAAKgBnFphady4sTw9PSusppw8ebLCqsuvZWRkaNSoUXrnnXfUt2/fq/b18PDQXXfdpYMHD16xj4+Pj3x8fKpePAAAqLGcWmHx9vZWeHi4srKyHNqzsrLUvXv3K263atUqjRw5UitXrtT9999/zf0YhqG8vDw1a9bMmfIAAICbcvpTQgkJCYqNjVVERISioqK0bNky5efnKy4uTtKlUzXHjh1Tenq6pEthZfjw4VqwYIEiIyPtqzO+vr7y9/eXJM2aNUuRkZFq06aNbDabFi5cqLy8PC1evPhGzRMAANRgTgeWmJgYnTp1SrNnz1ZBQYE6duyozMxMBQUFSZIKCgoc7smydOlSXbx4UePGjdO4cePs7SNGjFBaWpok6fTp0xo7dqwKCwvl7++vsLAwbd68WXffffd1Tg8AALgDi2EYhquLuBFsNpv8/f1VXFwsPz8/V5eDWmR+1gFXl1ArTNq60tUl4Fr4JBeqoarv33yXEAAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0vVxcAmMH8rAOuLgEAcBWssAAAANMjsAAAANPjlBCAmyYyfVH1N27d6MYVAqDGYYUFAACYHissAGqE7EOnqr1tFKszQI3HCgsAADA9AgsAADA9AgsAADC9agWW1NRUBQcHy2q1Kjw8XFu2bLli3zVr1qhfv35q0qSJ/Pz8FBUVpbVr11bot3r1aoWGhsrHx0ehoaF69913q1MaAABwQ04HloyMDMXHx2vq1KnKzc1Vz549NXDgQOXn51faf/PmzerXr58yMzOVk5Oje+65Rw888IByc3PtfbKzsxUTE6PY2Fjt2bNHsbGxGjZsmHbs2FH9mQEAALdhMQzDcGaDbt26qWvXrlqyZIm9rX379hoyZIiSk5OrNEaHDh0UExOjGTNmSJJiYmJks9n08ccf2/sMGDBADRs21KpVq6o0ps1mk7+/v4qLi+Xn5+fEjABuzX+zXNd9WK4DnxK6SZKSXF0BaqCqvn87tcJSWlqqnJwcRUdHO7RHR0dr27ZtVRqjvLxcZ86c0a233mpvy87OrjBm//79rzpmSUmJbDabwwMAALgnpwJLUVGRysrKFBAQ4NAeEBCgwsLCKo3x8ssv69y5cxo2bJi9rbCw0Okxk5OT5e/vb38EBgY6MRMAAFCTVOuiW4vF4vDcMIwKbZVZtWqVkpKSlJGRodtuu+26xkxMTFRxcbH9cfToUSdmAAAAahKn7nTbuHFjeXp6Vlj5OHnyZIUVkl/LyMjQqFGj9M4776hv374OrzVt2tTpMX18fOTj4+NM+QAAoIZyaoXF29tb4eHhysrKcmjPyspS9+7dr7jdqlWrNHLkSK1cuVL3339/hdejoqIqjLlu3bqrjgkAAGoPp79LKCEhQbGxsYqIiFBUVJSWLVum/Px8xcXFSbp0qubYsWNKT0+XdCmsDB8+XAsWLFBkZKR9JcXX11f+/v6SpIkTJ6pXr16aM2eOBg8erPfff1/r16/X559/fqPmCQAAajCnr2GJiYlRSkqKZs+erS5dumjz5s3KzMxUUFCQJKmgoMDhnixLly7VxYsXNW7cODVr1sz+mDhxor1P9+7d9fbbb2v58uXq1KmT0tLSlJGRoW7dut2AKQIAgJrO6fuwmBX3YcH14D4sNwf3YXFz3IcF1fCb3IcFAADAFQgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9Jz+8kMAACp1Pbfm57b+uAZWWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOlVK7CkpqYqODhYVqtV4eHh2rJlyxX7FhQU6JFHHlG7du3k4eGh+Pj4Cn3S0tJksVgqPC5cuFCd8gAAgJtxOrBkZGQoPj5eU6dOVW5urnr27KmBAwcqPz+/0v4lJSVq0qSJpk6dqs6dO19xXD8/PxUUFDg8rFars+UBAAA35HRgmTdvnkaNGqXRo0erffv2SklJUWBgoJYsWVJp/1atWmnBggUaPny4/P39rziuxWJR06ZNHR5XU1JSIpvN5vAAAADuyanAUlpaqpycHEVHRzu0R0dHa9u2bddVyNmzZxUUFKQWLVpo0KBBys3NvWr/5ORk+fv72x+BgYHXtX8AAGBeTgWWoqIilZWVKSAgwKE9ICBAhYWF1S4iJCREaWlp+uCDD7Rq1SpZrVb16NFDBw8evOI2iYmJKi4utj+OHj1a7f0DAABz86rORhaLxeG5YRgV2pwRGRmpyMhI+/MePXqoa9euWrRokRYuXFjpNj4+PvLx8an2PgEAQM3h1ApL48aN5enpWWE15eTJkxVWXa6rKA8P3XXXXVddYQEAALWHU4HF29tb4eHhysrKcmjPyspS9+7db1hRhmEoLy9PzZo1u2FjAgCAmsvpU0IJCQmKjY1VRESEoqKitGzZMuXn5ysuLk7SpWtLjh07pvT0dPs2eXl5ki5dWPvDDz8oLy9P3t7eCg0NlSTNmjVLkZGRatOmjWw2mxYuXKi8vDwtXrz4BkwRAADUdE4HlpiYGJ06dUqzZ89WQUGBOnbsqMzMTAUFBUm6dKO4X9+TJSwszP7nnJwcrVy5UkFBQTpy5Igk6fTp0xo7dqwKCwvl7++vsLAwbd68WXffffd1TA0AALgLi2EYhquLuBFsNpv8/f1VXFwsPz8/V5eDGmZ+1gFXl1ArRKYvcsl+o1o3csl+4YSkJFdXABep6vt3tT4lBAA1SfahU9XelrADmANffggAAEyPFRa4BU7pAIB7I7AAcIqrrkMBULtxSggAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJgegQUAAJhetQJLamqqgoODZbVaFR4eri1btlyxb0FBgR555BG1a9dOHh4eio+Pr7Tf6tWrFRoaKh8fH4WGhurdd9+tTmkAAMANOR1YMjIyFB8fr6lTpyo3N1c9e/bUwIEDlZ+fX2n/kpISNWnSRFOnTlXnzp0r7ZOdna2YmBjFxsZqz549io2N1bBhw7Rjxw5nywMAAG7IYhiG4cwG3bp1U9euXbVkyRJ7W/v27TVkyBAlJydfdds+ffqoS5cuSklJcWiPiYmRzWbTxx9/bG8bMGCAGjZsqFWrVlU6VklJiUpKSuzPbTabAgMDVVxcLD8/P2emBDcwP+uAq0uoNSLTF7m6hJsqqnUjV5dQOyQluboCuIjNZpO/v/8137+dWmEpLS1VTk6OoqOjHdqjo6O1bdu26lWqSyssvx6zf//+Vx0zOTlZ/v7+9kdgYGC19w8AAMzNqcBSVFSksrIyBQQEOLQHBASosLCw2kUUFhY6PWZiYqKKi4vtj6NHj1Z7/wAAwNy8qrORxWJxeG4YRoW233pMHx8f+fj4XNc+AQBAzeBUYGncuLE8PT0rrHycPHmywgqJM5o2bXrDxwQA1CDXcw0L17/UCk6dEvL29lZ4eLiysrIc2rOystS9e/dqFxEVFVVhzHXr1l3XmAAAwH04fUooISFBsbGxioiIUFRUlJYtW6b8/HzFxcVJunRtybFjx5Senm7fJi8vT5J09uxZ/fDDD8rLy5O3t7dCQ0MlSRMnTlSvXr00Z84cDR48WO+//77Wr1+vzz///AZMEQAA1HROB5aYmBidOnVKs2fPVkFBgTp27KjMzEwFBQVJunSjuF/fkyUsLMz+55ycHK1cuVJBQUE6cuSIJKl79+56++23NW3aNE2fPl2tW7dWRkaGunXrdh1TAwAA7sLp+7CYVVU/xw33xH1Ybh7uwwLT4RqWGq2q79/V+pQQANQW2YdOVXtbwg5w4/DlhwAAwPQILAAAwPQ4JQTT4DoUAMCVsMICAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMj1vzA7VQZPoiV5cAAE5hhQUAAJgeKywAgJotKck12+KmYoUFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHoEFAACYHt8lBAC/kexDp6q9bVTrRjewEqDmY4UFAACYXrUCS2pqqoKDg2W1WhUeHq4tW7Zctf+mTZsUHh4uq9Wq22+/Xa+++qrD62lpabJYLBUeFy5cqE55AADAzTgdWDIyMhQfH6+pU6cqNzdXPXv21MCBA5Wfn19p/8OHD+u+++5Tz549lZubq7/97W966qmntHr1aod+fn5+KigocHhYrdbqzQoAALgVp69hmTdvnkaNGqXRo0dLklJSUrR27VotWbJEycnJFfq/+uqratmypVJSUiRJ7du31+7duzV37lw99NBD9n4Wi0VNmzatch0lJSUqKSmxP7fZbM5OBQAA1BBOBZbS0lLl5ORoypQpDu3R0dHatm1bpdtkZ2crOjraoa1///56/fXX9fPPP6tOnTqSpLNnzyooKEhlZWXq0qWLnn32WYWFhV2xluTkZM2aNcuZ8nETzM864OoSAABuyKlTQkVFRSorK1NAQIBDe0BAgAoLCyvdprCwsNL+Fy9eVFFRkSQpJCREaWlp+uCDD7Rq1SpZrVb16NFDBw8evGItiYmJKi4utj+OHj3qzFQAAEANUq2PNVssFofnhmFUaLtW/1+2R0ZGKjIy0v56jx491LVrVy1atEgLFy6sdEwfHx/5+PhUp3wAAFDDOLXC0rhxY3l6elZYTTl58mSFVZTLmjZtWml/Ly8vNWpU+X0GPDw8dNddd111hQUAANQeTgUWb29vhYeHKysry6E9KytL3bt3r3SbqKioCv3XrVuniIgI+/Urv2YYhvLy8tSsWTNnygMAAG7K6Y81JyQk6B//+IfeeOMN7du3T5MmTVJ+fr7i4uIkXbq2ZPjw4fb+cXFx+v7775WQkKB9+/bpjTfe0Ouvv66nn37a3mfWrFlau3atvvvuO+Xl5WnUqFHKy8uzjwkAAGo3p69hiYmJ0alTpzR79mwVFBSoY8eOyszMVFBQkCSpoKDA4Z4swcHByszM1KRJk7R48WI1b95cCxcudPhI8+nTpzV27FgVFhbK399fYWFh2rx5s+6+++4bMEUAAFDTWYzLV8DWcDabTf7+/iouLpafn5+ry6m1+FhzzRCZvsjVJeAa+C6hmyQpydUV1HpVff/mu4QAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpVevW/AAAuIXr+ZQQnzC6qVhhAQAApscKC1BDcS8VALUJKywAAMD0WGEBABPKPnSq2ttyl1y4I1ZYAACA6RFYAACA6RFYAACA6RFYAACA6XHRLSqYn3XA1SUAAOCAFRYAAGB6rLAAgJvhI9FwR6ywAAAA0yOwAAAA0+OUEOBCfB8QAFQNgQW4ToQOAPjtEVgAAKiOpCTXbFtLEVjcFPdSAQC4Ey66BQAApkdgAQAApscpIQCAy3GzO1wLKywAAMD0CCwAAMD0CCwAAMD0CCwAAMD0qnXRbWpqql566SUVFBSoQ4cOSklJUc+ePa/Yf9OmTUpISNA333yj5s2ba/LkyYqLi3Pos3r1ak2fPl2HDh1S69at9dxzz2no0KHVKc9t1LZ7qVzPHWO3D59wAysBgN8YN51zmtMrLBkZGYqPj9fUqVOVm5urnj17auDAgcrPz6+0/+HDh3XfffepZ8+eys3N1d/+9jc99dRTWr16tb1Pdna2YmJiFBsbqz179ig2NlbDhg3Tjh07qj8zAADgNiyGYRjObNCtWzd17dpVS5Yssbe1b99eQ4YMUXJycoX+zzzzjD744APt27fP3hYXF6c9e/YoOztbkhQTEyObzaaPP/7Y3mfAgAFq2LChVq1aVWkdJSUlKikpsT+32WwKDAxUcXGx/Pz8nJmSabHCUnWuXGHhu4TgTlz1EeHa9rHm65rvm9fxf44JV3ZsNpv8/f2v+f7t1Cmh0tJS5eTkaMqUKQ7t0dHR2rZtW6XbZGdnKzo62qGtf//+ev311/Xzzz+rTp06ys7O1qRJkyr0SUlJuWItycnJmjVrljPl1ziTtq50dQk313X8I4xy5RLp9fznAZiMq35RmpTUttrb1sRf7q5nvtelBp9OciqwFBUVqaysTAEBAQ7tAQEBKiwsrHSbwsLCSvtfvHhRRUVFatas2RX7XGlMSUpMTFRCQoL9+eUVFrfiqiRswgT+m6updQMmMqmfi96EXaS2zdfVqnXRrcVicXhuGEaFtmv1/3W7s2P6+PjIx8enyjXXOq56A65t+wXgcgSH2sGpi24bN24sT0/PCisfJ0+erLBCclnTpk0r7e/l5aVGjRpdtc+VxgQAALWLU4HF29tb4eHhysrKcmjPyspS9+7dK90mKiqqQv9169YpIiJCderUuWqfK40JAABqF6dPCSUkJCg2NlYRERGKiorSsmXLlJ+fb7+vSmJioo4dO6b09HRJlz4R9MorryghIUFjxoxRdna2Xn/9dYdP/0ycOFG9evXSnDlzNHjwYL3//vtav369Pv/88xs0TQAAUJM5HVhiYmJ06tQpzZ49WwUFBerYsaMyMzMVFBQkSSooKHC4J0twcLAyMzM1adIkLV68WM2bN9fChQv10EMP2ft0795db7/9tqZNm6bp06erdevWysjIULdu3W7AFAEAVcX1IDArp+/DYlZV/Rw3AAAwj6q+f/NdQgAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPS8XF3AjWIYhqRLX1MNAABqhsvv25ffx6/EbQLLmTNnJEmBgYEurgQAADjrzJkz8vf3v+LrFuNakaaGKC8v1/Hjx9WgQQNZLBZXl3NT2Gw2BQYG6ujRo/Lz83N1ObUKx941OO6uw7F3HXc/9oZh6MyZM2revLk8PK58pYrbrLB4eHioRYsWri7DJfz8/NzyL3FNwLF3DY6763DsXcedj/3VVlYu46JbAABgegQWAABgegSWGszHx0czZ86Uj4+Pq0updTj2rsFxdx2Ovetw7C9xm4tuAQCA+2KFBQAAmB6BBQAAmB6BBQAAmB6BBQAAmB6Bxc2UlJSoS5cuslgsysvLc3U5bu/IkSMaNWqUgoOD5evrq9atW2vmzJkqLS11dWluKTU1VcHBwbJarQoPD9eWLVtcXZLbS05O1l133aUGDRrotttu05AhQ7R//35Xl1XrJCcny2KxKD4+3tWluAyBxc1MnjxZzZs3d3UZtca3336r8vJyLV26VN98843mz5+vV199VX/7299cXZrbycjIUHx8vKZOnarc3Fz17NlTAwcOVH5+vqtLc2ubNm3SuHHjtH37dmVlZenixYuKjo7WuXPnXF1arbFr1y4tW7ZMnTp1cnUpLsXHmt3Ixx9/rISEBK1evVodOnRQbm6uunTp4uqyap2XXnpJS5Ys0XfffefqUtxKt27d1LVrVy1ZssTe1r59ew0ZMkTJyckurKx2+eGHH3Tbbbdp06ZN6tWrl6vLcXtnz55V165dlZqaqr///e/q0qWLUlJSXF2WS7DC4iZOnDihMWPG6M0331TdunVdXU6tVlxcrFtvvdXVZbiV0tJS5eTkKDo62qE9Ojpa27Ztc1FVtVNxcbEk8Xf8Jhk3bpzuv/9+9e3b19WluJzbfPlhbWYYhkaOHKm4uDhFREToyJEjri6p1jp06JAWLVqkl19+2dWluJWioiKVlZUpICDAoT0gIECFhYUuqqr2MQxDCQkJ+v3vf6+OHTu6uhy39/bbb+uLL77Qrl27XF2KKbDCYmJJSUmyWCxXfezevVuLFi2SzWZTYmKiq0t2G1U99r90/PhxDRgwQH/60580evRoF1Xu3iwWi8NzwzAqtOG3M378eH355ZdatWqVq0txe0ePHtXEiRP1z3/+U1ar1dXlmALXsJhYUVGRioqKrtqnVatW+q//+i99+OGHDv9xl5WVydPTU48++qhWrFjxW5fqdqp67C//R3L8+HHdc8896tatm9LS0uThwe8CN1Jpaanq1q2rd955R0OHDrW3T5w4UXl5edq0aZMLq6sdJkyYoPfee0+bN29WcHCwq8txe++9956GDh0qT09Pe1tZWZksFos8PDxUUlLi8FptQGBxA/n5+bLZbPbnx48fV//+/fWvf/1L3bp1U4sWLVxYnfs7duyY7rnnHoWHh+uf//xnrftP5Gbp1q2bwsPDlZqaam8LDQ3V4MGDuej2N2QYhiZMmKB3331XGzduVJs2bVxdUq1w5swZff/99w5tjz32mEJCQvTMM8/UylNyXMPiBlq2bOnwvH79+pKk1q1bE1Z+Y8ePH1efPn3UsmVLzZ07Vz/88IP9taZNm7qwMveTkJCg2NhYRUREKCoqSsuWLVN+fr7i4uJcXZpbGzdunFauXKn3339fDRo0sF8z5O/vL19fXxdX574aNGhQIZTUq1dPjRo1qpVhRSKwANdl3bp1+ve//61///vfFcIhi5c3VkxMjE6dOqXZs2eroKBAHTt2VGZmpoKCglxdmlu7/DHyPn36OLQvX75cI0eOvPkFodbilBAAADA9rgwEAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABAACmR2ABYAp9+vTR+PHjNX78eN1yyy1q1KiRpk2bJsMw9O2336pu3bpauXKlvf+aNWtktVr11VdfubBqADcLgQWAaaxYsUJeXl7asWOHFi5cqPnz5+sf//iHQkJCNHfuXD355JP6/vvvdfz4cY0ZM0YvvPCC7rzzTleXDeAm4NuaAZhCnz59dPLkSX3zzTeyWCySpClTpuiDDz7Q3r17JUmDBg2SzWaTt7e3PDw8tHbtWntfAO7Ny9UFAMBlkZGRDgEkKipKL7/8ssrKyuTp6ak33nhDbdu2lYeHh77++mvCClCLcEoIQI2xZ88enTt3TufOnVNhYaGrywFwE7HCAsA0tm/fXuF5mzZt5OnpqR9//FEjR47U1KlTVVhYqEcffVRffPGFfH19XVQtgJuJFRYApnH06FElJCRo//79WrVqlRYtWqSJEydKkuLi4hQYGKhp06Zp3rx5MgxDTz/9tIsrBnCzsMICwDSGDx+u8+fP6+6775anp6cmTJigsWPHKj09XZmZmcrNzZWXl5e8vLz01ltvqXv37rr//vt13333ubp0AL8xPiUEwBT69OmjLl26KCUlxdWlADAhTgkBAADTI7AAAADT45QQAAAwPVZYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6RFYAACA6f1f8l2O7i6AlXQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGwCAYAAACKOz5MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCBklEQVR4nO3de1hVdd7//9cGhI0Hdo4H1EQkDyE6KkIpMB46iNrhUmfmlqluzDIdJ21E6ja9PaFWZGriIUw7iDRJ3E12mLkoxcbynEpgByi9TcPRTYZ9ZasZJKzfH97un1tA2XjYC3g+rmtf1+zP/qzPfq9F0371WWt9lsUwDEMAAAAm5uXpAgAAAK6EwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEzPx9MFXCsVFRU6duyYmjVrJovF4ulyAABADRiGoVOnTqldu3by8qp+HqXeBJZjx44pKCjI02UAAIBaOHLkiNq3b1/t5/UmsDRr1kzS+R0OCAjwcDUAAKAmHA6HgoKCnL/j1ak3geXCaaCAgAACCwAAdcyVLufgolsAAGB6BBYAAGB6BBYAAGB69eYaFgC4UcrLy/Xrr796ugygTmjUqJG8vb2vepxaBZbU1FQtXLhQdrtd3bt3V0pKivr373/F7bZv366BAweqR48eysvLc/nsnXfe0axZs3Tw4EF16tRJzz77rEaOHFmb8gDgujAMQ0VFRTp58qSnSwHqlJtuuklt2rS5qnXS3A4smZmZSkhIUGpqqmJiYrRq1SoNGzZM+fn56tChQ7XblZSUaPTo0brrrrv0ww8/uHy2c+dOxcXFaf78+Ro5cqTeffddjRo1Stu2bVPfvn3d3ysAuA4uhJXWrVurcePGLFIJXIFhGPr55591/PhxSVLbtm1rPZbFMAzDnQ369u2rPn36aOXKlc62bt26acSIEUpOTq52uz/96U/q0qWLvL299d5777nMsMTFxcnhcOjDDz90tg0dOlTNmzdXRkZGjepyOByy2WwqKSnhtmYA11x5ebn279+v1q1bq0WLFp4uB6hTTpw4oePHj6tr166VTg/V9PfbrYtuy8rKlJOTo9jYWJf22NhY7dixo9rt1qxZo4MHD2rOnDlVfr5z585KYw4ZMuSyY5aWlsrhcLi8AOB6uXDNSuPGjT1cCVD3XPj/zdVc++VWYCkuLlZ5ebkCAwNd2gMDA1VUVFTlNgcOHNC0adP05ptvysen6jNQRUVFbo0pScnJybLZbM4Xy/IDuBE4DQS471r8/6ZWtzVf+sWGYVRZTHl5uR588EHNnTtXXbt2vSZjXjB9+nSVlJQ4X0eOHHFjDwAAQF3i1kW3LVu2lLe3d6WZj+PHj1eaIZGkU6dOae/evcrNzdWkSZMknX+qsmEY8vHx0caNG3XnnXeqTZs2NR7zAj8/P/n5+blTPgAAqKPcCiy+vr6KiIhQdna2yy3H2dnZGj58eKX+AQEB+vLLL13aUlNT9a9//Ut///vfFRISIkmKiopSdna2pkyZ4uy3ceNGRUdHu7UzAOAJS7L337DvmjL48rPV8LzDhw8rJCREubm56t27d63GSEtLU0JCArfQX8TtU0KJiYl69dVX9frrr6ugoEBTpkxRYWGhJkyYIOn8qZrRo0efH9zLSz169HB5tW7dWlarVT169FCTJk0kSZMnT9bGjRu1YMECffPNN1qwYIE2bdqkhISEa7enAIA6ZdCgQTfsd+Dw4cOyWCyV1girL9LS0nTTTTd5uoyr4vY6LHFxcTpx4oTmzZsnu92uHj16KCsrS8HBwZIku92uwsJCt8aMjo7WW2+9pZkzZ2rWrFnq1KmTMjMzWYMFAK6DsrIy+fr6erqMa8IwDJWXl1d7UwfcY+Z/Nmp10e3jjz+uw4cPq7S0VDk5ORowYIDzs7S0NH3yySfVbpuUlFRlgv3jH/+ob775RmVlZSooKNDvf//72pQGANdWUtL514oV0smT0vHj0rFjrq9Tp6p+mcSgQYM0adIkJSYmqmXLlho8eLAkKT8/X/fcc4+aNm2qwMBAxcfHq7i42LldRUWFFixYoM6dO8vPz08dOnTQs88+6/z8yy+/1J133il/f3+1aNFC48eP1+nTp52fjxkzRiNGjNCiRYvUtm1btWjRQhMnTnS5tTU1NVVdunSR1WpVYGCg/vjHPzq3/fTTT7V06VJZLBZZLBYdPnxYn3zyiSwWizZs2KDIyEj5+flp69atzu+6WEJCggYNGlSj/blwiUJ4eLgsFovLdmvWrFG3bt1ktVoVGhqq1NRUl+/ZvXu3wsPDZbVaFRkZqdzc3Cv+TcrKyjR16lTdfPPNatKkifr27XvZ305J+sc//qGIiAhZrVbdcsstmjt3rs6dO+f8/OTJkxo/frwCAwOdZzL++c9/6pNPPtEjjzyikpIS57FMSkqSJHXs2FHPPPOMxowZI5vNpnHjxkk6v/p89+7d5efnp44dO2rx4sUutXTs2FHPPfecHn30UTVr1kwdOnTQ6tWrr7jfV4OHHwJAA7B27Vr5+Pho+/btWrVqlex2uwYOHKjevXtr7969+uijj/TDDz9o1KhRzm2mT5+uBQsWaNasWcrPz9e6deucN0P8/PPPzgU+9+zZo7ffflubNm1y3mBxwebNm3Xw4EFt3rxZa9euVVpamtLS0iRJe/fu1V//+lfNmzdP3377rT766CPnfwAvXbpUUVFRGjdunOx2u+x2u8vyFVOnTlVycrIKCgrUs2fPGh2Dy+3P7t27JUmbNm2S3W7X+vXrJUmvvPKKZsyYoWeffVYFBQV67rnnNGvWLK1du1aSdObMGd1333269dZblZOTo6SkJD311FNXrOWRRx7R9u3b9dZbb+mLL77Qf/zHf2jo0KE6cOBAlf03bNig//zP/9Rf//pX5efna9WqVUpLS3MGroqKCg0bNkw7duzQ3/72N+Xn5+v555+Xt7e3oqOjlZKSooCAAOexvLjGhQsXqkePHsrJydGsWbOUk5OjUaNG6U9/+pO+/PJLJSUladasWc6/2wWLFy92BrTHH39cf/nLX/TNN9/U6G9RG8yhAUAD0LlzZ73wwgvO97Nnz1afPn303HPPOdtef/11BQUFaf/+/Wrbtq2WLl2qFStW6OGHH5YkderUSb/73e8kSW+++abOnj2r9PR05/WIK1as0P33368FCxY4g0Dz5s21YsUKeXt7KzQ0VPfee68+/vhjjRs3ToWFhWrSpInuu+8+NWvWTMHBwQoPD5ck2Ww2+fr6qnHjxmrTpk2l/Zk3b55zpqgmTp06ddn9adWqlSSpRYsWLt83f/58LV682DnrHxIS4gwMDz/8sN58802Vl5fr9ddfV+PGjdW9e3f9+9//1l/+8pdqazl48KAyMjL073//W+3atZMkPfXUU/roo4+0Zs0al7/JBc8++6ymTZvmrP2WW27R/PnzNXXqVM2ZM0ebNm3S7t27VVBQ4FxG5JZbbnFub7PZZLFYqjyWd955p0uAeeihh3TXXXdp1qxZkqSuXbsqPz9fCxcu1JgxY5z97rnnHj3++OOSpKefflpLlizRJ598otDQ0Gr3/WoQWACgAYiMjHR5n5OTo82bN6tp06aV+h48eFAnT55UaWmp7rrrrirHKygoUK9evZxhRZJiYmJUUVGhb7/91hlYunfv7rIUe9u2bZ13jw4ePFjBwcG65ZZbNHToUA0dOlQjR46s0WrCl+7PlRQUFFx2f6ry448/6siRIxo7dqzzVIkknTt3TjabzTlur169XGqOioq67Liff/65DMOotD5ZaWlptY99yMnJ0Z49e1xOyZWXl+uXX37Rzz//rLy8PLVv3/6Ka55V5dJjWVBQUOnO35iYGKWkpKi8vNz597x4ZutCGLrwzKDrgcACAA3AxcFCOn8K4cJsyKXatm2r77777rLjXW5xz4vbGzVqVOmziooKSVKzZs30+eef65NPPtHGjRs1e/ZsJSUlac+ePVe8o+XS/fHy8tKlj8a7+FoZf3//y45XlQt1vvLKK5VuArnwo+3m4/ic43p7eysnJ6fSc3WqCpAXtpk7d26V13dardZa7d8Flx7Lqv62Ve3n5f621wPXsABAA9SnTx99/fXX6tixozp37uzyatKkibp06SJ/f399/PHHVW4fFhamvLw8nTlzxtm2fft2eXl5ufVf+T4+Prr77rv1wgsv6IsvvtDhw4f1r3/9S9L5tb/Ky8trNE6rVq1kt9td2i6+weNK+3PhzpiLvy8wMFA333yzvvvuu0rH6MJFumFhYdq3b5/Onj3r3G7Xrl2XrTU8PFzl5eU6fvx4pXGrOmUjnf97ffvtt5X6d+7cWV5eXurZs6f+/e9/a//+qtcEcudYhoWFadu2bS5tO3bsqPLBhTcSgQUAGqCJEyfqp59+0gMPPKDdu3fru+++08aNG/Xoo4+qvLxcVqtVTz/9tKZOnar09HQdPHhQu3bt0muvvSbp/HUOVqtVDz/8sL766itt3rxZTzzxhOLj4y+7SvnF/vnPf2rZsmXKy8vT999/r/T0dFVUVOjWW2+VdP5OlM8++0yHDx9WcXHxZf/r/c4779TevXuVnp6uAwcOaM6cOfrqq6+cn19pf1q3bi1/f3/nxcclJSWSzt/ZmpycrKVLl2r//v368ssvtWbNGr344ouSpAcffFBeXl4aO3as8vPzlZWVpUWLFl12v7t27aqHHnpIo0eP1vr163Xo0CHt2bNHCxYsUFZWVpXbzJ49W+np6UpKStLXX3+tgoICZWZmaubMmZKkgQMHasCAAfrDH/6g7OxsHTp0SB9++KE++ugj57E8ffq0Pv74YxUXF+vnn3+utr4nn3xSH3/8sebPn6/9+/dr7dq1WrFiRY0uJr6ujHqipKTEkGSUlJR4uhQA9cmcOYYxZ45xduFCI3/HDuPs998bxtGjNXuZxMCBA43JkydXat+/f78xcuRI46abbjL8/f2N0NBQIyEhwaioqDAMwzDKy8uNZ555xggODjYaNWpkdOjQwXjuueec23/xxRfGHXfcYVitVuM3v/mNMW7cOOPUqVPOzx9++GFj+PDhLt85efJkY+DAgYZhGMbWrVuNgQMHGs2bNzf8/f2Nnj17GpmZmc6+3377rdGvXz/D39/fkGQcOnTI2Lx5syHJ+H//7/9V2p/Zs2cbgYGBhs1mM6ZMmWJMmjTJ+V012Z9XXnnFCAoKMry8vFy2e/PNN43evXsbvr6+RvPmzY0BAwYY69evd36+c+dOo1evXoavr6/Ru3dv45133jEkGbm5udX+TcrKyozZs2cbHTt2NBo1amS0adPGGDlypPHFF18YhmEYa9asMWw2m8s2H330kREdHW34+/sbAQEBxu23326sXr3a+fmJEyeMRx55xGjRooVhtVqNHj16GP/85z+dn0+YMMFo0aKFIcmYM2eOYRiGERwcbCxZsqRSfX//+9+NsLAw53FauHChy+dVbderVy/nuJc6e/askZ+fb5w9e7bSZzX9/bYYRi1OwJmQw+GQzWZTSUmJAgICPF0OUCNXs6Q7S7S74f/WnLgavzRtqkMxMQq5+WZZa7pI2f/dAQI0dL/88osOHTqkkJAQWa1Wl89q+vvNKSEAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6LM0P1FHcEg2gIWGGBQAAmB6BBQCAa+jw4cOyWCwuzzK60dLS0q74AMm6hlNCAHC1Fi++9mM2a1Z1+zVYtbeuGDRokHr37q2UlJTr/l2HDx9WSEiIcnNz1bt37+v+fddbXFyc7rnnHuf7pKQkvffeex4NUVeLGRYAaGDKyso8XcI1YxiGzp075+kyTMff31+tW7d2e7tff/31OlRzbRBYAKCeGzRokCZNmqTExES1bNlSgwcPliTl5+frnnvuUdOmTRUYGKj4+HgVFxc7t6uoqNCCBQvUuXNn+fn5qUOHDnr22Wedn3/55Ze688475e/vrxYtWmj8+PE6ffq08/MxY8ZoxIgRWrRokdq2basWLVpo4sSJLj+Kqamp6tKli6xWqwIDA/XHP/7Rue2nn36qpUuXymKxyGKx6PDhw/rkk09ksVi0YcMGRUZGys/PT1u3bnV+18USEhI0aNCgGu1PSEiIJCk8PFwWi8VluzVr1qhbt26yWq0KDQ1Vamqqy/fs3r1b4eHhslqtioyMVG5u7hX/Jh07dtT8+fP14IMPqmnTpmrXrp2WL1/u0qewsFDDhw9X06ZNFRAQoFGjRumHH35wfr5v3z7dcccdatasmQICAhQREaG9e/dKcj0llJaWprlz52rfvn3OY5mWliZJslgsevnllzV8+HA1adJEzzzzjCRp5cqV6tSpk3x9fXXrrbfqjTfecKnNYrHo1Vdf1ciRI9W4cWN16dJFH3zwwRX3+2oQWACgAVi7dq18fHy0fft2rVq1Sna7XQMHDlTv3r21d+9effTRR/rhhx80atQo5zbTp0/XggULNGvWLOXn52vdunUKDAyUJP38888aOnSomjdvrj179ujtt9/Wpk2bNGnSJJfv3bx5sw4ePKjNmzdr7dq1SktLc/5Y7t27V3/96181b948ffvtt/roo480YMAASdLSpUsVFRWlcePGyW63y263KygoyDnu1KlTlZycrIKCAvXs2bNGx+By+7N7925J0qZNm2S327V+/XpJ0iuvvKIZM2bo2WefVUFBgZ577jnNmjVLa9eulSSdOXNG9913n2699Vbl5OQoKSlJTz31VI3qWbhwoXr27KnPP/9c06dP15QpU5SdnS3p/MzRiBEj9NNPP+nTTz9Vdna2Dh48qLi4OOf2Dz30kNq3b689e/YoJydH06ZNU6NGjSp9T1xcnJ588kl1797deSwvHmfOnDkaPny4vvzySz366KN69913NXnyZD355JP66quv9Oc//1mPPPKINm/e7DLu3LlzNWrUKH3xxRe655579NBDD+mnn36q0b7XBtewAEAD0LlzZ73wwgvO97Nnz1afPn303HPPOdtef/11BQUFaf/+/Wrbtq2WLl2qFStW6OGHH5YkderUSb/73e8kSW+++abOnj2r9PR0NWnSRJK0YsUK3X///VqwYIEzCDRv3lwrVqyQt7e3QkNDde+99+rjjz/WuHHjVFhYqCZNmui+++5Ts2bNFBwcrPDwcEmSzWaTr6+vGjdurDZt2lTan3nz5jlnimri1KlTl92fVq1aSZJatGjh8n3z58/X4sWL9fvf/17S+ZmY/Px8rVq1Sg8//LDefPNNlZeX6/XXX1fjxo3VvXt3/fvf/9Zf/vKXK9YUExOjadOmSZK6du2q7du3a8mSJRo8eLA2bdqkL774QocOHXIGtTfeeEPdu3fXnj17dNttt6mwsFD/9V//pdDQUElSly5dqvwef39/NW3aVD4+PlUeywcffFCPPvqoy/sxY8bo8ccflyQlJiZq165dWrRoke644w5nvzFjxuiBBx6QJD333HNavny5du/eraFDh15x32uDGRYAaAAiIyNd3ufk5Gjz5s1q2rSp83Xhh+/gwYMqKChQaWmp7rrrrirHKygoUK9evZxhRTr/A1xRUaFvv/3W2da9e3d5e3s737dt21bHjx+XJA0ePFjBwcG65ZZbFB8frzfffFM///xzrfbnSq60P1X58ccfdeTIEY0dO9blOD3zzDM6ePCgc9xevXqpcePGzu2ioqJqNP6l/aKiolRQUOAcNygoyGVWKSwsTDfddJOzT2Jioh577DHdfffdev755501uevSY1lQUKCYmBiXtpiYGOf3XnDxzFaTJk3UrFkz59/2eiCwAEADcHGwkM5fz3H//fcrLy/P5XXgwAENGDBA/v7+lx3PMAxZLJYqP7u4/dJTFBaLRRUVFZKkZs2a6fPPP1dGRobatm2r2bNnq1evXjp58qTb++Pl5SXDMFzaLr5W5kr7U5ULdb7yyisux+irr77Srl27JKnSd16tC8euuuN7cXtSUpK+/vpr3XvvvfrXv/6lsLAwvfvuu25/56XH8uI6qvreCy73t70eCCwA0AD16dNHX3/9tTp27KjOnTu7vJo0aaIuXbrI399fH3/8cZXbh4WFKS8vT2fOnHG2bd++XV5eXurateYrKfv4+Ojuu+/WCy+8oC+++EKHDx/Wv/71L0mSr6+vysvLazROq1atZLfbXdouvoX3Svvj6+srSS7fFxgYqJtvvlnfffddpWN04SLdsLAw7du3T2fPnnVudyHMXMml/Xbt2uWc5QoLC1NhYaGOHDni/Dw/P18lJSXq1q2bs61r166aMmWKNm7cqN///vdas2ZNtftX02PZrVs3bdu2zaVtx44dLt/rCQQWAGiAJk6cqJ9++kkPPPCAdu/ere+++04bN27Uo48+qvLyclmtVj399NOaOnWq0tPTdfDgQe3atUuvvfaapPMXfFqtVj388MP66quvtHnzZj3xxBOKj493Xr9yJf/85z+1bNky5eXl6fvvv1d6eroqKip06623Sjp/J81nn32mw4cPq7i4+LL/9X7nnXdq7969Sk9P14EDBzRnzhx99dVXzs+vtD+tW7eWv7+/8+LjkpISSednMZKTk7V06VLt379fX375pdasWaMXX3xR0vnrPby8vDR27Fjl5+crKytLixYtqtH+b9++XS+88IL279+vl156SW+//bYmT54sSbr77rvVs2dPPfTQQ/r888+1e/dujR49WgMHDlRkZKTOnj2rSZMm6ZNPPtH333+v7du3a8+ePdWGio4dO+rQoUPKy8tTcXGxSktLq63rv/7rv5SWlqaXX35ZBw4c0Isvvqj169fX+GLi64XAAgANULt27bR9+3aVl5dryJAh6tGjhyZPniybzSYvr/M/DbNmzdKTTz6p2bNnq1u3boqLi3Neo9C4cWNt2LBBP/30k2677Tb98Y9/1F133aUVK1bUuIabbrpJ69ev15133qlu3brp5ZdfVkZGhrp37y5Jeuqpp+Tt7a2wsDC1atVKhYWF1Y41ZMgQzZo1S1OnTtVtt92mU6dOafTo0S59Lrc/Pj4+WrZsmVatWqV27dpp+PDhkqTHHntMr776qtLS0vTb3/5WAwcOVFpamnOGpWnTpvrHP/6h/Px8hYeHa8aMGVqwYEGN9v/JJ59UTk6OwsPDnRf3DhkyRNL50yvvvfeemjdvrgEDBujuu+/WLbfcoszMTEmSt7e3Tpw4odGjR6tr164aNWqUhg0bprlz51b5XX/4wx80dOhQ3XHHHWrVqpUyMjKqrWvEiBFaunSpFi5cqO7du2vVqlVas2aNy63enmAxrvUJOA9xOByy2WwqKSlRQECAp8sBauRqHmB4NRrcww+vweqwvzRtqkMxMQq5+WZZfW7ADZbt2l3/74DHdOzYUQkJCUpISPB0KTfEL7/8okOHDikkJERWq9Xls5r+fjPDAgAATI/AAgAATI+F4wAAuMEOHz7s6RLqHGZYAACA6dUqsKSmpjovnImIiNDWrVur7btt2zbFxMSoRYsW8vf3V2hoqJYsWeLSJy0tzflApotfv/zyS23KA4Br7//uT6gn9ykAN9S1+P+N26eEMjMzlZCQoNTUVMXExGjVqlUaNmyY8vPz1aFDh0r9mzRpokmTJqlnz55q0qSJtm3bpj//+c9q0qSJxo8f7+wXEBDgspyzpEpXEgNm5Kk7fXBjNSotlcrL9fOvv8q/igfMAajehUcuVPVwxppyO7C8+OKLGjt2rB577DFJUkpKijZs2KCVK1cqOTm5Uv/w8HDnw6yk87dyrV+/Xlu3bnUJLBaLpcqHMlWntLTUZeEbh8Ph7q4AqEuuwa3JV8P73Dnd9P33Ov5/K6I2btSo2qXprwlmmFEPGIahn3/+WcePH9dNN93k8lwpd7kVWMrKypyPsL5YbGysduzYUaMxcnNztWPHDj3zzDMu7adPn1ZwcLDKy8vVu3dvzZ8/3yXoXCo5ObnaBXIA4Hpoc+CAJOl4cLB0Ff/irZGLlrwH6rqbbrrJrUmJqrgVWIqLi1VeXl5p2eXAwEAVFRVddtv27dvrxx9/1Llz55SUlOScoZGk0NBQ5yqCDodDS5cuVUxMjPbt21ft47KnT5+uxMRE53uHw+HyVEsAuNYsktoeOKDW332nX61W6XrOsEyadP3GBm6gRo0aXdXMygW1uq25Jk9xvNTWrVt1+vRp7dq1S9OmTVPnzp31wAMPSJL69eunfv36OfvGxMSoT58+Wr58uZYtW1bleH5+fvLz86tN+QBwVbzLy+V9vWdAuIYPcOFWYGnZsqW8vb0rzaYcP378ig+7uvDchd/+9rf64YcflJSU5Awsl/Ly8tJtt92mA/83/QoAABo2t25r9vX1VUREhLKzs13as7OzFR0dXeNxDMO47JMiDcNQXl6e2rZt6055AACgnnL7lFBiYqLi4+MVGRmpqKgorV69WoWFhZowYYKk89eWHD16VOnp6ZKkl156SR06dFBoaKik8+uyLFq0SE888YRzzLlz56pfv37q0qWLHA6H83HjL7300rXYRwAAUMe5HVji4uJ04sQJzZs3T3a7XT169FBWVpaCg4MlSXa73eUR4BUVFZo+fboOHTokHx8fderUSc8//7z+/Oc/O/ucPHlS48ePV1FRkWw2m8LDw7Vlyxbdfvvt12AXAQBAXWcx6smyjTV9PDVwrdXFheOmDO7q6RLc5+F1WG64hra/aLBq+vvNww+BBuhqQladDDsA6jwefggAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyvVoElNTVVISEhslqtioiI0NatW6vtu23bNsXExKhFixby9/dXaGiolixZUqnfO++8o7CwMPn5+SksLEzvvvtubUoDAAD1kNuBJTMzUwkJCZoxY4Zyc3PVv39/DRs2TIWFhVX2b9KkiSZNmqQtW7aooKBAM2fO1MyZM7V69Wpnn507dyouLk7x8fHat2+f4uPjNWrUKH322We13zMAAFBvWAzDMNzZoG/fvurTp49WrlzpbOvWrZtGjBih5OTkGo3x+9//Xk2aNNEbb7whSYqLi5PD4dCHH37o7DN06FA1b95cGRkZNRrT4XDIZrOppKREAQEBbuwRcHWWZO/3dAk31JTBXT3zxUlJnvleT2lo+4sGq6a/327NsJSVlSknJ0exsbEu7bGxsdqxY0eNxsjNzdWOHTs0cOBAZ9vOnTsrjTlkyJDLjllaWiqHw+HyAgAA9ZNbgaW4uFjl5eUKDAx0aQ8MDFRRUdFlt23fvr38/PwUGRmpiRMn6rHHHnN+VlRU5PaYycnJstlszldQUJA7uwIAAOoQn9psZLFYXN4bhlGp7VJbt27V6dOntWvXLk2bNk2dO3fWAw88UOsxp0+frsTEROd7h8NBaAFugKs5Beax00kA6jy3AkvLli3l7e1daebj+PHjlWZILhUSEiJJ+u1vf6sffvhBSUlJzsDSpk0bt8f08/OTn5+fO+UDAIA6yq3A4uvrq4iICGVnZ2vkyJHO9uzsbA0fPrzG4xiGodLSUuf7qKgoZWdna8qUKc62jRs3Kjo62p3yAKD+uJqLbrlgF/WQ26eEEhMTFR8fr8jISEVFRWn16tUqLCzUhAkTJJ0/VXP06FGlp6dLkl566SV16NBBoaGhks6vy7Jo0SI98cQTzjEnT56sAQMGaMGCBRo+fLjef/99bdq0Sdu2bbsW+wgAAOo4twNLXFycTpw4oXnz5slut6tHjx7KyspScHCwJMlut7usyVJRUaHp06fr0KFD8vHxUadOnfT888/rz3/+s7NPdHS03nrrLc2cOVOzZs1Sp06dlJmZqb59+16DXQQAAHWd2+uwmBXrsMBTGto6LFfjqi665TRHzXGsUIdcl3VYAAAAPIHAAgAATI/AAgAATI/AAgAATI/AAgAATI/AAgAATI/AAgAATI/AAgAATK9WT2sG6hsWf7tBWNAMQC0xwwIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyPwAIAAEyvVoElNTVVISEhslqtioiI0NatW6vtu379eg0ePFitWrVSQECAoqKitGHDBpc+aWlpslgslV6//PJLbcoDAAD1jNuBJTMzUwkJCZoxY4Zyc3PVv39/DRs2TIWFhVX237JliwYPHqysrCzl5OTojjvu0P3336/c3FyXfgEBAbLb7S4vq9Vau70CAAD1io+7G7z44osaO3asHnvsMUlSSkqKNmzYoJUrVyo5OblS/5SUFJf3zz33nN5//3394x//UHh4uLPdYrGoTZs2Na6jtLRUpaWlzvcOh8PNPQEAAHWFWzMsZWVlysnJUWxsrEt7bGysduzYUaMxKioqdOrUKf3mN79xaT99+rSCg4PVvn173XfffZVmYC6VnJwsm83mfAUFBbmzKwAAoA5xK7AUFxervLxcgYGBLu2BgYEqKiqq0RiLFy/WmTNnNGrUKGdbaGio0tLS9MEHHygjI0NWq1UxMTE6cOBAteNMnz5dJSUlzteRI0fc2RUAAFCHuH1KSDp/+uZihmFUaqtKRkaGkpKS9P7776t169bO9n79+qlfv37O9zExMerTp4+WL1+uZcuWVTmWn5+f/Pz8alM+AACoY9wKLC1btpS3t3el2ZTjx49XmnW5VGZmpsaOHau3335bd99992X7enl56bbbbrvsDAsAAGg43Dol5Ovrq4iICGVnZ7u0Z2dnKzo6utrtMjIyNGbMGK1bt0733nvvFb/HMAzl5eWpbdu27pQHAADqKbdPCSUmJio+Pl6RkZGKiorS6tWrVVhYqAkTJkg6f23J0aNHlZ6eLul8WBk9erSWLl2qfv36OWdn/P39ZbPZJElz585Vv3791KVLFzkcDi1btkx5eXl66aWXrtV+AgCAOsztwBIXF6cTJ05o3rx5stvt6tGjh7KyshQcHCxJstvtLmuyrFq1SufOndPEiRM1ceJEZ/vDDz+stLQ0SdLJkyc1fvx4FRUVyWazKTw8XFu2bNHtt99+lbsHAADqA4thGIani7gWHA6HbDabSkpKFBAQ4OlyUMcsyd7v6RIahCnb13m6hIYhKcnTFQA1VtPfb54lBAAATI/AAgAATI/AAgAATI/AAgAATI/AAgAATI/AAgAATI/AAgAATI/AAgAATI/AAgAATI/AAgAATI/AAgAATI/AAgAATM/tpzUDAEzuah5+yIMTYVLMsAAAANMjsAAAANMjsAAAANMjsAAAANMjsAAAANMjsAAAANMjsAAAANMjsAAAANMjsAAAANMjsAAAANMjsAAAANMjsAAAANMjsAAAANPjac2oF5Zk7/d0CQCA64gZFgAAYHoEFgAAYHoEFgAAYHoEFgAAYHq1CiypqakKCQmR1WpVRESEtm7dWm3f9evXa/DgwWrVqpUCAgIUFRWlDRs2VOr3zjvvKCwsTH5+fgoLC9O7775bm9IAAEA95HZgyczMVEJCgmbMmKHc3Fz1799fw4YNU2FhYZX9t2zZosGDBysrK0s5OTm64447dP/99ys3N9fZZ+fOnYqLi1N8fLz27dun+Ph4jRo1Sp999lnt9wwAANQbFsMwDHc26Nu3r/r06aOVK1c627p166YRI0YoOTm5RmN0795dcXFxmj17tiQpLi5ODodDH374obPP0KFD1bx5c2VkZNRoTIfDIZvNppKSEgUEBLixR6gPuK25bpiyfZ2nS8CVJCV5ugI0MDX9/XZrHZaysjLl5ORo2rRpLu2xsbHasWNHjcaoqKjQqVOn9Jvf/MbZtnPnTk2ZMsWl35AhQ5SSklLtOKWlpSotLXW+dzgcNfp+AJ6z8+CJWm8b1anFNawEQF3j1imh4uJilZeXKzAw0KU9MDBQRUVFNRpj8eLFOnPmjEaNGuVsKyoqcnvM5ORk2Ww25ysoKMiNPQEAAHVJrS66tVgsLu8Nw6jUVpWMjAwlJSUpMzNTrVu3vqoxp0+frpKSEufryJEjbuwBAACoS9w6JdSyZUt5e3tXmvk4fvx4pRmSS2VmZmrs2LF6++23dffdd7t81qZNG7fH9PPzk5+fnzvlAwCAOsqtGRZfX19FREQoOzvbpT07O1vR0dHVbpeRkaExY8Zo3bp1uvfeeyt9HhUVVWnMjRs3XnZMAADQcLj98MPExETFx8crMjJSUVFRWr16tQoLCzVhwgRJ50/VHD16VOnp6ZLOh5XRo0dr6dKl6tevn3Mmxd/fXzabTZI0efJkDRgwQAsWLNDw4cP1/vvva9OmTdq2bdu12k8AAFCHuX0NS1xcnFJSUjRv3jz17t1bW7ZsUVZWloKDgyVJdrvdZU2WVatW6dy5c5o4caLatm3rfE2ePNnZJzo6Wm+99ZbWrFmjnj17Ki0tTZmZmerbt+812EUAAFDXub0Oi1mxDkvDxjosdUO/9OW13pbbmm8Q1mHBDVbT32+eJQQAAEyPwAIAAEyPwAIAAEzP7buEADRsV3MdCgDUFjMsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9Hw8XQBwwZLs/Z4uAQBgUsywAAAA0yOwAAAA0yOwAAAA0+MaFgDA/y8pyTPbAldQqxmW1NRUhYSEyGq1KiIiQlu3bq22r91u14MPPqhbb71VXl5eSkhIqNQnLS1NFoul0uuXX36pTXkAAKCecTuwZGZmKiEhQTNmzFBubq769++vYcOGqbCwsMr+paWlatWqlWbMmKFevXpVO25AQIDsdrvLy2q1ulseAACoh9wOLC+++KLGjh2rxx57TN26dVNKSoqCgoK0cuXKKvt37NhRS5cu1ejRo2Wz2aod12KxqE2bNi4vAAAAyc3AUlZWppycHMXGxrq0x8bGaseOHVdVyOnTpxUcHKz27dvrvvvuU25u7mX7l5aWyuFwuLwAAED95FZgKS4uVnl5uQIDA13aAwMDVVRUVOsiQkNDlZaWpg8++EAZGRmyWq2KiYnRgQMHqt0mOTlZNpvN+QoKCqr19wMAAHOr1UW3FovF5b1hGJXa3NGvXz/953/+p3r16qX+/fvrf/7nf9S1a1ctX7682m2mT5+ukpIS5+vIkSO1/n4AAGBubt3W3LJlS3l7e1eaTTl+/HilWZer4eXlpdtuu+2yMyx+fn7y8/O7Zt8JAADMy60ZFl9fX0VERCg7O9ulPTs7W9HR0desKMMwlJeXp7Zt216zMQEAQN3l9sJxiYmJio+PV2RkpKKiorR69WoVFhZqwoQJks6fqjl69KjS09Od2+Tl5Uk6f2Htjz/+qLy8PPn6+iosLEySNHfuXPXr109dunSRw+HQsmXLlJeXp5deeuka7CIAAKjr3A4scXFxOnHihObNmye73a4ePXooKytLwcHBks4vFHfpmizh4eHO/52Tk6N169YpODhYhw8fliSdPHlS48ePV1FRkWw2m8LDw7VlyxbdfvvtV7FrAACgvrAYhmF4uohrweFwyGazqaSkRAEBAZ4uB7WwJHu/p0tADfRLr/5i+OspqlMLj3wv3MDS/KiFmv5+8/BDAABgejz8EGiAPDVLAgC1xQwLAAAwPQILAAAwPU4JAagTdh48UettuWAXqPuYYQEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZXq8CSmpqqkJAQWa1WRUREaOvWrdX2tdvtevDBB3XrrbfKy8tLCQkJVfZ75513FBYWJj8/P4WFhendd9+tTWkAAKAecjuwZGZmKiEhQTNmzFBubq769++vYcOGqbCwsMr+paWlatWqlWbMmKFevXpV2Wfnzp2Ki4tTfHy89u3bp/j4eI0aNUqfffaZu+UBAIB6yGIYhuHOBn379lWfPn20cuVKZ1u3bt00YsQIJScnX3bbQYMGqXfv3kpJSXFpj4uLk8Ph0IcffuhsGzp0qJo3b66MjIwa1eVwOGSz2VRSUqKAgICa7xBMY0n2fk+X0GD0S1/u6RJuqKhOLTxdQsOQlOTpClAH1fT3260ZlrKyMuXk5Cg2NtalPTY2Vjt27KhdpTo/w3LpmEOGDLnsmKWlpXI4HC4vAABQP7kVWIqLi1VeXq7AwECX9sDAQBUVFdW6iKKiIrfHTE5Ols1mc76CgoJq/f0AAMDcfGqzkcVicXlvGEaltus95vTp05WYmOh873A4CC0A4ElXc0qI00m4ArcCS8uWLeXt7V1p5uP48eOVZkjc0aZNG7fH9PPzk5+fX62/E0DDsfPgiVpvy/UvgDm4dUrI19dXERERys7OdmnPzs5WdHR0rYuIioqqNObGjRuvakwAAFB/uH1KKDExUfHx8YqMjFRUVJRWr16twsJCTZgwQdL5UzVHjx5Venq6c5u8vDxJ0unTp/Xjjz8qLy9Pvr6+CgsLkyRNnjxZAwYM0IIFCzR8+HC9//772rRpk7Zt23YNdhEAANR1bgeWuLg4nThxQvPmzZPdblePHj2UlZWl4OBgSecXirt0TZbw8HDn/87JydG6desUHBysw4cPS5Kio6P11ltvaebMmZo1a5Y6deqkzMxM9e3b9yp2DQAA1Bdur8NiVqzDUvexDsuN09DWYbkaXMNyg3DRbYNV09/vWt0lBFSH0AEAuB54+CEAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9H08XAKB2+qUv93QJAHDDMMMCAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMj8ACAABMj4XjAOAydh48Uettozq1uIaVAA0bMywAAMD0CCwAAMD0ahVYUlNTFRISIqvVqoiICG3duvWy/T/99FNFRETIarXqlltu0csvv+zyeVpamiwWS6XXL7/8UpvyAABAPeN2YMnMzFRCQoJmzJih3Nxc9e/fX8OGDVNhYWGV/Q8dOqR77rlH/fv3V25urv77v/9bf/3rX/XOO++49AsICJDdbnd5Wa3W2u0VAACoV9y+6PbFF1/U2LFj9dhjj0mSUlJStGHDBq1cuVLJycmV+r/88svq0KGDUlJSJEndunXT3r17tWjRIv3hD39w9rNYLGrTpk0tdwMAANRnbgWWsrIy5eTkaNq0aS7tsbGx2rFjR5Xb7Ny5U7GxsS5tQ4YM0WuvvaZff/1VjRo1kiSdPn1awcHBKi8vV+/evTV//nyFh4dXW0tpaalKS0ud7x0Ohzu7gstYkr3f0yUAAODCrVNCxcXFKi8vV2BgoEt7YGCgioqKqtymqKioyv7nzp1TcXGxJCk0NFRpaWn64IMPlJGRIavVqpiYGB04cKDaWpKTk2Wz2ZyvoKAgd3YFAADUIbVah8Visbi8NwyjUtuV+l/c3q9fP/Xr18/5eUxMjPr06aPly5dr2bJlVY45ffp0JSYmOt87HA5CCwDUVUlJntkWdYZbgaVly5by9vauNJty/PjxSrMoF7Rp06bK/j4+PmrRoupFlby8vHTbbbdddobFz89Pfn5+7pQPAADqKLdOCfn6+ioiIkLZ2dku7dnZ2YqOjq5ym6ioqEr9N27cqMjISOf1K5cyDEN5eXlq27atO+UBAIB6yu3bmhMTE/Xqq6/q9ddfV0FBgaZMmaLCwkJNmDBB0vlTNaNHj3b2nzBhgr7//nslJiaqoKBAr7/+ul577TU99dRTzj5z587Vhg0b9N133ykvL09jx45VXl6ec0wAANCwuX0NS1xcnE6cOKF58+bJbrerR48eysrKUnBwsCTJbre7rMkSEhKirKwsTZkyRS+99JLatWunZcuWudzSfPLkSY0fP15FRUWy2WwKDw/Xli1bdPvtt1+DXQQAAHWdxbhwBWwd53A4ZLPZVFJSooCAAE+XU6dxW3Pd0C99uadLwBXw8MMbhItu67Sa/n7zLCEAAGB6BBYAAGB6BBYAAGB6tVo4DsC1wXUoAFAzzLAAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADTI7AAAADT41lCAIC6LSnJM9vihiKwAFeJBxgCwPXHKSEAAGB6zLAAwHWy8+CJWm8b1anFNawEqPsILPXUkuz9ni4BAIBrhlNCAADA9AgsAADA9DglBIg7fQDA7JhhAQAApkdgAQAApscpIQAwIW6JvkFYJbfOILCYGLcmAwBwHqeEAACA6RFYAACA6RFYAACA6RFYAACA6XHRLQDUM9xhhPqoVoElNTVVCxculN1uV/fu3ZWSkqL+/ftX2//TTz9VYmKivv76a7Vr105Tp07VhAkTXPq88847mjVrlg4ePKhOnTrp2Wef1ciRI2tTnqlwp8+NwUq1AG44bom+odwOLJmZmUpISFBqaqpiYmK0atUqDRs2TPn5+erQoUOl/ocOHdI999yjcePG6W9/+5u2b9+uxx9/XK1atdIf/vAHSdLOnTsVFxen+fPna+TIkXr33Xc1atQobdu2TX379r36vQQAoArMRtUdFsMwDHc26Nu3r/r06aOVK1c627p166YRI0YoOTm5Uv+nn35aH3zwgQoKCpxtEyZM0L59+7Rz505JUlxcnBwOhz788ENnn6FDh6p58+bKyMioso7S0lKVlpY63zscDgUFBamkpEQBAQHu7NIVMUtifsywAJ5XF3/A62RgqWezMw6HQzab7Yq/327NsJSVlSknJ0fTpk1zaY+NjdWOHTuq3Gbnzp2KjY11aRsyZIhee+01/frrr2rUqJF27typKVOmVOqTkpJSbS3JycmaO3euO+XX2pTBXWu/saemDOvZP9BX9AaBBWioruY/KqckXcW/36/CVf2H8NXs79X8nnmYW4GluLhY5eXlCgwMdGkPDAxUUVFRldsUFRVV2f/cuXMqLi5W27Ztq+1T3ZiSNH36dCUmJjrfX5hhMR1PBQfCDoAGoi7+CNfFmj2tVhfdWiwWl/eGYVRqu1L/S9vdHdPPz09+fn41rhk3CEEJAHAduBVYWrZsKW9v70ozH8ePH680Q3JBmzZtquzv4+OjFi1aXLZPdWPiOquLs0IAgHrNrYXjfH19FRERoezsbJf27OxsRUdHV7lNVFRUpf4bN25UZGSkGjVqdNk+1Y0JAAAaFrdPCSUmJio+Pl6RkZGKiorS6tWrVVhY6FxXZfr06Tp69KjS09Mlnb8jaMWKFUpMTNS4ceO0c+dOvfbaay53/0yePFkDBgzQggULNHz4cL3//vvatGmTtm3bdo12EwAA1GVuB5a4uDidOHFC8+bNk91uV48ePZSVlaXg4GBJkt1uV2FhobN/SEiIsrKyNGXKFL300ktq166dli1b5lyDRZKio6P11ltvaebMmZo1a5Y6deqkzMxM1mABAACSarEOi1nV9D5uAABgHjX9/ebhhwAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPTcfvihWV14JJLD4fBwJQAAoKYu/G5f6dGG9SawnDp1SpIUFBTk4UoAAIC7Tp06JZvNVu3n9eZpzRUVFTp27JiaNWsmi8Xi6XLc4nA4FBQUpCNHjvCk6RuI437jccw9g+PuGRz3mjEMQ6dOnVK7du3k5VX9lSr1ZobFy8tL7du393QZVyUgIIB/qD2A437jccw9g+PuGRz3K7vczMoFXHQLAABMj8ACAABMj8BiAn5+fpozZ478/Pw8XUqDwnG/8TjmnsFx9wyO+7VVby66BQAA9RczLAAAwPQILAAAwPQILAAAwPQILAAAwPQILCZVWlqq3r17y2KxKC8vz9Pl1GuHDx/W2LFjFRISIn9/f3Xq1Elz5sxRWVmZp0urd1JTUxUSEiKr1aqIiAht3brV0yXVa8nJybrtttvUrFkztW7dWiNGjNC3337r6bIalOTkZFksFiUkJHi6lDqPwGJSU6dOVbt27TxdRoPwzTffqKKiQqtWrdLXX3+tJUuW6OWXX9Z///d/e7q0eiUzM1MJCQmaMWOGcnNz1b9/fw0bNkyFhYWeLq3e+vTTTzVx4kTt2rVL2dnZOnfunGJjY3XmzBlPl9Yg7NmzR6tXr1bPnj09XUq9wG3NJvThhx8qMTFR77zzjrp3767c3Fz17t3b02U1KAsXLtTKlSv13XffebqUeqNv377q06ePVq5c6Wzr1q2bRowYoeTkZA9W1nD8+OOPat26tT799FMNGDDA0+XUa6dPn1afPn2UmpqqZ555Rr1791ZKSoqny6rTmGExmR9++EHjxo3TG2+8ocaNG3u6nAarpKREv/nNbzxdRr1RVlamnJwcxcbGurTHxsZqx44dHqqq4SkpKZEk/tm+ASZOnKh7771Xd999t6dLqTfqzcMP6wPDMDRmzBhNmDBBkZGROnz4sKdLapAOHjyo5cuXa/HixZ4upd4oLi5WeXm5AgMDXdoDAwNVVFTkoaoaFsMwlJiYqN/97nfq0aOHp8up19566y19/vnn2rNnj6dLqVeYYbkBkpKSZLFYLvvau3evli9fLofDoenTp3u65Hqhpsf9YseOHdPQoUP1H//xH3rsscc8VHn9ZbFYXN4bhlGpDdfHpEmT9MUXXygjI8PTpdRrR44c0eTJk/W3v/1NVqvV0+XUK1zDcgMUFxeruLj4sn06duyoP/3pT/rHP/7h8i/w8vJyeXt766GHHtLatWuvd6n1Sk2P+4V/qRw7dkx33HGH+vbtq7S0NHl5keevlbKyMjVu3Fhvv/22Ro4c6WyfPHmy8vLy9Omnn3qwuvrviSee0HvvvactW7YoJCTE0+XUa++9955Gjhwpb29vZ1t5ebksFou8vLxUWlrq8hlqjsBiIoWFhXI4HM73x44d05AhQ/T3v/9dffv2Vfv27T1YXf129OhR3XHHHYqIiNDf/vY3/oVyHfTt21cRERFKTU11toWFhWn48OFcdHudGIahJ554Qu+++64++eQTdenSxdMl1XunTp3S999/79L2yCOPKDQ0VE8//TSn464C17CYSIcOHVzeN23aVJLUqVMnwsp1dOzYMQ0aNEgdOnTQokWL9OOPPzo/a9OmjQcrq18SExMVHx+vyMhIRUVFafXq1SosLNSECRM8XVq9NXHiRK1bt07vv/++mjVr5rxeyGazyd/f38PV1U/NmjWrFEqaNGmiFi1aEFauEoEFDd7GjRv1v//7v/rf//3fSsGQCchrJy4uTidOnNC8efNkt9vVo0cPZWVlKTg42NOl1VsXbiEfNGiQS/uaNWs0ZsyYG18QcBU4JQQAAEyPqwoBAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAmMKgQYM0adIkTZo0STfddJNatGihmTNnyjAMffPNN2rcuLHWrVvn7L9+/XpZrVZ9+eWXHqwawI1CYAFgGmvXrpWPj48+++wzLVu2TEuWLNGrr76q0NBQLVq0SI8//ri+//57HTt2TOPGjdPzzz+v3/72t54uG8ANwNOaAZjCoEGDdPz4cX399deyWCySpGnTpumDDz5Qfn6+JOm+++6Tw+GQr6+vvLy8tGHDBmdfAPWbj6cLAIAL+vXr5xJAoqKitHjxYpWXl8vb21uvv/66unbtKi8vL3311VeEFaAB4ZQQgDpj3759OnPmjM6cOaOioiJPlwPgBmKGBYBp7Nq1q9L7Ll26yNvbWz/99JPGjBmjGTNmqKioSA899JA+//xz+fv7e6haADcSMywATOPIkSNKTEzUt99+q4yMDC1fvlyTJ0+WJE2YMEFBQUGaOXOmXnzxRRmGoaeeesrDFQO4UZhhAWAao0eP1tmzZ3X77bfL29tbTzzxhMaPH6/09HRlZWUpNzdXPj4+8vHx0Ztvvqno6Gjde++9uueeezxdOoDrjLuEAJjCoEGD1Lt3b6WkpHi6FAAmxCkhAABgegQWAABgepwSAgAApscMCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAMD0CCwAAML3/D4QDxrjtTwnmAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -309,16 +309,16 @@ "start_time": "2023-11-09T18:41:35.973225726Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:17.532407Z", - "iopub.status.busy": "2023-11-09T20:46:17.531856Z", - "iopub.status.idle": "2023-11-09T20:46:17.732001Z", - "shell.execute_reply": "2023-11-09T20:46:17.731364Z" + "iopub.execute_input": "2023-11-09T22:34:11.866475Z", + "iopub.status.busy": "2023-11-09T22:34:11.866283Z", + "iopub.status.idle": "2023-11-09T22:34:12.036126Z", + "shell.execute_reply": "2023-11-09T22:34:12.035624Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvaElEQVR4nO3de1SVVf7H8c8R5CpioSEaIKbmLVOhFM3UmcRLNdn0M6caL6UWeY8cjHFUpAtpllgOpP0MtIu5KsemFqNSPzUDTSVIS1JT9HjBFCvwUiBwfn+4PNMJUA6iW+D9WuusxdlnP8/5Pg/F+bif/exjsdlsNgEAABjSwHQBAACgfiOMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADDK1XQBVVFWVqajR4/Kx8dHFovFdDkAAKAKbDabTp06pRYtWqhBg8rHP2pFGDl69KgCAwNNlwEAAKrh0KFDuvHGGyt9vVaEER8fH0nnD6Zx48aGqwEAAFVRWFiowMBA++d4ZWpFGLlwaaZx48aEEQAAaplLTbFgAisAADCKMAIAAIwijAAAAKNqxZwRALjSSktLde7cOdNlALWKi4uLXF1dL3vZDcIIgHrv9OnTOnz4sGw2m+lSgFrHy8tLAQEBcnNzq/Y+CCMA6rXS0lIdPnxYXl5eatasGQsrAlVks9lUXFysEydOKDc3V23btr3owmYXQxgBUK+dO3dONptNzZo1k6enp+lygFrF09NTDRs21MGDB1VcXCwPD49q7YcJrACgS6+DAKBi1R0NcdhHDdQBAABQbYQRAABgFHNGAKACC9L2XNX3e2pAu6v6fnDOgQMHFBISoqysLHXt2rVa+0hJSdHUqVP1888/12htdQEjIwCAq6Zfv36aOnXqVXmvAwcOyGKxKDs7+6q839WWkpKiJk2amC6jRlQrjCQmJiokJEQeHh4KDQ3Vpk2bqrRdenq6XF1dq50qAQAVKy4uNl1CjbHZbCopKTFdBq4ip8PIypUrNXXqVM2YMUNZWVnq06ePBg8eLKvVetHtCgoKNHLkSP3xj3+sdrFAvbQ+3rkH6oV+/fpp4sSJioqKUtOmTTVgwABJ0q5duzRkyBA1atRI/v7+GjFihPLz8+3blZWVae7cuWrTpo3c3d0VFBSk559/3v76zp079Yc//EGenp7y8/PT448/rtOnT9tfHz16tIYOHar58+crICBAfn5+mjBhgsPqtYmJiWrbtq08PDzk7++v//mf/7Fvu3HjRi1cuFAWi0UWi0UHDhzQhg0bZLFYtHbtWoWFhcnd3V2bNm2yv9dvTZ06Vf369avS8YSEhEiSunXrJovF4rBdcnKyOnToIA8PD7Vv316JiYkO77N161Z169ZNHh4eCgsLU1ZW1iV/J8XFxYqOjlbLli3l7e2tHj16aMOGDRfd5uOPP1ZoaKg8PDzUunVrzZkzxyGI/fzzz3r88cfl7+8vDw8Pde7cWZ988ok2bNigRx99VAUFBfZzGRsbK0n66aefNHLkSF133XXy8vLS4MGDtXfvXvs+L4yorF27Vh06dFCjRo00aNAg5eXl2fts2LBBt99+u7y9vdWkSRP17t1bBw8evOQ5qC6nw8grr7yiMWPGaOzYserQoYMSEhIUGBiopKSki273xBNP6OGHH1Z4eHi1iwUA/NeyZcvk6uqq9PR0LV68WHl5eerbt6+6du2q7du3a82aNfrhhx/04IMP2reJiYnR3LlzNXPmTO3atUvvvvuu/P39JUlnz57VoEGDdN1112nbtm16//339emnn2rixIkO77t+/Xrt27dP69ev17Jly5SSkqKUlBRJ0vbt2zV58mTFxcVp9+7dWrNmje68805J0sKFCxUeHq5x48YpLy9PeXl5CgwMtO83Ojpa8fHxysnJUZcuXap0Di52PFu3bpUkffrpp8rLy9OqVaskSW+88YZmzJih559/Xjk5OXrhhRc0c+ZMLVu2TJJ05swZ3XPPPbr55puVmZmp2NhYTZs27ZK1PProo0pPT9d7772nHTt2aNiwYRo0aJBDEPittWvX6q9//asmT56sXbt2afHixUpJSbGHqbKyMg0ePFgZGRl6++23tWvXLr344otycXFRr169lJCQoMaNG9vP5YUaR48ere3bt+vf//63Nm/eLJvNpiFDhjgExrNnz2r+/Pl666239Pnnn8tqtdq3Lykp0dChQ9W3b1/t2LFDmzdv1uOPP35Fb393agJrcXGxMjMz9cwzzzi0R0REKCMjo9LtkpOTtW/fPr399tt67rnnqlcpUI/8dvJkT+tJp7YN71/T1eBa1aZNG82bN8/+fNasWerevbteeOEFe9ubb76pwMBA7dmzRwEBAVq4cKEWLVqkUaNGSZJuuukm3XHHHZKkd955R7/88ouWL18ub29vSdKiRYt07733au7cufYP+euuu06LFi2Si4uL2rdvr7vvvlufffaZxo0bJ6vVKm9vb91zzz3y8fFRcHCwunXrJkny9fWVm5ubvLy81Lx583LHExcXZx/hqYpTp05d9HiaNWsmSfLz83N4v2effVYvv/yy/vznP0s6P4JyIQyMGjVK77zzjkpLS/Xmm2/Ky8tLnTp10uHDh/Xkk09WWsu+ffu0YsUKHT58WC1atJAkTZs2TWvWrFFycrLD7+SC559/Xs8884y99tatW+vZZ59VdHS0Zs+erU8//VRbt25VTk6O2rVrZ+9zga+vrywWi8Ox7d27V//+97+Vnp6uXr16STr/ew0MDNTq1as1bNgwSecX+3v99dd10003SZImTpyouLg4SVJhYaEKCgp0zz332F/v0KFDFX4j1edUGMnPz1dpaan9P8gL/P39dezYsQq32bt3r5555hlt2rRJrq5Ve7uioiIVFRXZnxcWFjpTJgDUC2FhYQ7PMzMztX79ejVq1Khc33379unnn39WUVFRpZfLc3JydOutt9qDiCT17t1bZWVl2r17t/1vf6dOneTi4mLvExAQoJ07d0qSBgwYoODgYLVu3VqDBg3SoEGDdP/998vLy8vp47mUnJycix5PRU6cOKFDhw5pzJgxGjdunL29pKREvr6+9v3eeuutDjVfalT/q6++ks1ms4eGC4qKiuTn51fhNpmZmdq2bZvDZbLS0lL9+uuvOnv2rLKzs3XjjTeW2+fF5OTkyNXVVT169LC3+fn56eabb1ZOTo69zcvLyx40pPO/w+PHj0uSrr/+eo0ePVoDBw7UgAEDdNddd+nBBx9UQEBAletwVrVu7f39UI3NZqtw+Ka0tFQPP/yw5syZ49TJjI+P15w5c6pTGgDUG78NDdL5Yf0Loxi/FxAQoP379190f5X9LZcc/+43bNiw3GtlZWWSJB8fH3311VfasGGD1q1bp1mzZik2Nlbbtm275J0fvz+eBg0alPvywt9eaqjO8v0X6nzjjTccPrAl2QNWdb4wsaysTC4uLsrMzHQIapIqDIcXtpkzZ459hOa3PDw8qnV8ldX++99tRb/D326bnJysyZMna82aNVq5cqX+8Y9/KC0tTT179nS6pqpwas5I06ZN5eLiUm4U5Pjx4+VGS6TzQ2jbt2/XxIkT5erqKldXV8XFxenrr7+Wq6ur/u///q/C94mJiVFBQYH9cejQIWfKBIB6qXv37vr222/VqlUrtWnTxuHh7e2ttm3bytPTU5999lmF23fs2FHZ2dk6c+aMvS09PV0NGjRw6h+Urq6uuuuuuzRv3jzt2LFDBw4csP+9d3NzU2lpaZX206xZM4dJlZIcbtO91PFc+BbZ376fv7+/WrZsqf3795c7RxcmvHbs2FFff/21fvnlF/t2W7ZsuWit3bp1U2lpqY4fP15uvxVdkpLO/752795drn+bNm3UoEEDdenSRYcPH9aePRWveVPRuezYsaNKSkr05Zdf2ttOnjypPXv2OH2ppVu3boqJiVFGRoY6d+6sd99916ntneFUGHFzc1NoaKjS0tIc2tPS0uzXpn6rcePG2rlzp7Kzs+2PyMhI3XzzzcrOzi6XSi9wd3dX48aNHR4AgIubMGGCfvzxRz300EPaunWr9u/fr3Xr1umxxx5TaWmpPDw8NH36dEVHR2v58uXat2+ftmzZoqVLl0qSHnnkEXl4eGjUqFH65ptvtH79ek2aNEkjRoyo8B+cFfnkk0/06quvKjs7WwcPHtTy5ctVVlamm2++WZLUqlUrffnllzpw4IDy8/PtIxUV+cMf/qDt27dr+fLl2rt3r2bPnq1vvvnG/vqljueGG26Qp6enfSJvQUGBJCk2Nlbx8fFauHCh9uzZo507dyo5OVmvvPKKJOnhhx9WgwYNNGbMGO3atUupqamaP3/+RY+7Xbt2euSRRzRy5EitWrVKubm52rZtm+bOnavU1NQKt5k1a5aWL1+u2NhYffvtt8rJybGPQkhS3759deedd+qBBx5QWlqacnNz9Z///Edr1qyxn8vTp0/rs88+U35+vs6ePau2bdvqvvvu07hx4/TFF1/o66+/1l//+le1bNlS9913X1V+hcrNzVVMTIw2b96sgwcPat26ddUKM85w+jJNVFSURowYobCwMIWHh2vJkiWyWq2KjIyUdH5U48iRI1q+fLkaNGigzp07O2x/ww032G9PAlDzLmflUFYB/a/aeC5atGih9PR0TZ8+XQMHDlRRUZGCg4M1aNAg+5eZzZw5U66urpo1a5aOHj2qgIAA+99vLy8vrV27VlOmTNFtt90mLy8vPfDAA/YP6apo0qSJVq1apdjYWP36669q27atVqxYoU6dOkk6P6lz1KhR6tixo3755Rfl5uZWuq+BAwdq5syZio6O1q+//qrHHntMI0eOtM9PudTxuLq66tVXX1VcXJxmzZqlPn36aMOGDRo7dqy8vLz00ksvKTo6Wt7e3rrlllvsi7E1atRIH3/8sSIjI9WtWzd17NhRc+fO1QMPPHDRY09OTtZzzz2np59+WkeOHJGfn5/Cw8M1ZMiQSo/vk08+UVxcnObNm6eGDRuqffv2Gjt2rL3Phx9+qGnTpumhhx7SmTNn1KZNG7344ouSpF69eikyMlLDhw/XyZMnNXv2bMXGxio5OVlTpkzRPffco+LiYt15551KTU0td2mmMl5eXvruu++0bNkynTx5UgEBAZo4caKeeOKJKm1fHRZbNS6OJSYmat68ecrLy1Pnzp21YMEC+61bo0ePtt83XpHY2FitXr3aqRXxCgsL5evrq4KCAkZJUC843k2z5Iq+15agx+0/18YP4Mv166+/Kjc3176QIwDnXOz/oap+flcrjFxthBHUN4SRq4cwAlyemggjfDcNAAAwijACAACMIowAAACjCCMAAMCoaq3ACqDucJggu77iZasd9I+5csUAqJcYGQEAAEYRRgAAgFGEEQCoR2JjY9W1a1entunXr599dVKTdfzelagLZjBnBAAqsj7+6r7fVZqLM23aNE2aNMmpbVatWlXlpcRrs379+qlr165KSEgwXUq9QxgBgHrAZrOptLRUjRo1qvQr7Stz/fXXX6GqgPO4TAMAtVBRUZEmT55s//LRO+64Q9u2bbO/vmHDBlksFq1du1ZhYWFyd3fXpk2byl0eKSkp0eTJk9WkSRP5+flp+vTpGjVqlIYOHWrv8/vLIa1atdILL7ygxx57TD4+PgoKCtKSJY5fWzB9+nS1a9dOXl5eat26tWbOnKlz5845dYy7du3SkCFD1KhRI/n7+2vEiBHKz8+vtH9xcbGio6PVsmVLeXt7q0ePHuW+Jy09PV19+/aVl5eXrrvuOg0cOFA//fSTRo8erY0bN2rhwoWyWCyyWCw6cOCAJGnjxo26/fbb5e7uroCAAD3zzDMqKSlxOD+TJ09WdHS0rr/+ejVv3lyxsbEO7xsbG6ugoCC5u7urRYsWmjx5slPnoq4jjABALRQdHa0PP/xQy5Yt01dffaU2bdpo4MCB+vHHH8v1i4+PV05Ojrp06VJuP3PnztU777yj5ORkpaenq7CwUKtXr77k+7/88ssKCwtTVlaWxo8fryeffFLfffed/XUfHx+lpKRo165dWrhwod544w0tWLCgyseXl5envn37qmvXrtq+fbvWrFmjH374QQ8++GCl2zz66KNKT0/Xe++9px07dmjYsGEaNGiQ9u7dK0nKzs7WH//4R3Xq1EmbN2/WF198oXvvvVelpaVauHChwsPDNW7cOOXl5SkvL0+BgYE6cuSIhgwZottuu01ff/21kpKStHTpUj333HMO771s2TJ5e3vryy+/1Lx58xQXF6e0tDRJ0gcffKAFCxZo8eLF2rt3r1avXq1bbrmlyueiPuAyDXC1VWEuQk/ryatQCGqrM2fOKCkpSSkpKRo8eLAk6Y033lBaWpqWLl2qv/3tb/a+cXFxGjBgQKX7eu211xQTE6P7779fkrRo0SKlpqZesoYhQ4Zo/Pjxks6PgixYsEAbNmxQ+/btJUn/+Mc/7H1btWqlp59+WitXrlR0dHSVjjEpKUndu3fXCy+8YG978803FRgYqD179qhdO8cvddy3b59WrFihw4cPq0WLFpLOz49Zs2aNkpOT9cILL2jevHkKCwtTYmKifbtOnTrZf3Zzc5OXl5eaN29ub0tMTFRgYKAWLVoki8Wi9u3b6+jRo5o+fbpmzZqlBg3O/5u+S5cumj17tiSpbdu2WrRokT777DMNGDBAVqtVzZs311133aWGDRsqKChIt99+e5XOQ31BGAGAWmbfvn06d+6cevfubW9r2LChbr/9duXk5Dj0DQsLq3Q/BQUF+uGHHxw+GF1cXBQaGqqysrKL1vDbURaLxaLmzZvr+PHj9rYPPvhACQkJ+v7773X69GmVlJQ49a3rmZmZWr9+fYXzW/bt21cujHz11Vey2Wzl2ouKiuTnd34xv+zsbA0bNqzKNUhSTk6OwsPDZbFY7G29e/fW6dOndfjwYQUFBUlSuVGngIAA+/kYNmyYEhIS1Lp1aw0aNEhDhgzRvffeK1dXPoIv4EwAQC1js9kkyeED8kL779u8vb0vub+K9nMpv7+7xmKx2APMli1b9Je//EVz5szRwIED5evrq/fee08vv/zyJfd7QVlZme69917NnTu33GsBAQEV9ndxcVFmZqZcXFwcXrsQaDw9Pav8/hdUdE4rOv8XOx+BgYHavXu30tLS9Omnn2r8+PF66aWXtHHjxnpxl1JVMGcEAGqZNm3ayM3NTV988YW97dy5c9q+fbs6dOhQ5f34+vrK399fW7dutbeVlpYqKyvrsupLT09XcHCwZsyYobCwMLVt21YHDx50ah/du3fXt99+q1atWqlNmzYOj4oCVrdu3VRaWqrjx4+X63/hskuXLl302WefVfqebm5uKi0tdWjr2LGjMjIyHAJaRkaGfHx81LJlyyofj6enp/70pz/p1Vdf1YYNG7R582bt3LmzytvXdYQRAKhlvL299eSTT+pvf/ub1qxZo127dmncuHE6e/asxowZ49S+Jk2apPj4eH300UfavXu3pkyZop9++qncaIAz2rRpI6vVqvfee0/79u3Tq6++qn/9619O7WPChAn68ccf9dBDD2nr1q3av3+/1q1bp8cee6xcYJCkdu3a6ZFHHtHIkSO1atUq5ebmatu2bZo7d659DkxMTIy2bdum8ePHa8eOHfruu++UlJRkv0OnVatW+vLLL3XgwAHl5+errKxM48eP16FDhzRp0iR99913+uijjzR79mxFRUXZ54tcSkpKipYuXapvvvlG+/fv11tvvSVPT08FBwc7dU7qMsIIANRCL774oh544AGNGDFC3bt31/fff6+1a9fquuuuc2o/06dP10MPPaSRI0cqPDxcjRo10sCBA+Xh4VHt2u677z499dRTmjhxorp27aqMjAzNnDnTqX20aNFC6enpKi0t1cCBA9W5c2dNmTJFvr6+lYaA5ORkjRw5Uk8//bRuvvlm/elPf9KXX36pwMBASecDy7p16/T111/r9ttvV3h4uD766CP73I1p06bJxcVFHTt2VLNmzWS1WtWyZUulpqZq69atuvXWWxUZGakxY8Y4TNC9lCZNmuiNN95Q79697aMzH3/8sX0uCySLrSoXBw0rLCyUr6+vCgoKnJoABVyTqnA3zeb9Zu6mCW9d/76199dff1Vubq5CQkIu6wO4rigrK1OHDh304IMP6tlnnzVdDmqBi/0/VNXPbyawAkA9dvDgQa1bt059+/ZVUVGRFi1apNzcXD388MOmS0M9wmUaAKjHGjRooJSUFN12223q3bu3du7cqU8//dSpibDA5WJkBADqscDAQKWnp5suA/UcIyMAAMAowggAADCKMAIAqtqqowDKq4n/dwgjAOq1C0uHFxcXG64EqJ3Onj0rqfyS+M5gAiuAes3V1VVeXl46ceKEGjZsWOVVNYH6zmaz6ezZszp+/LiaNGlS7juBnEEYAVCvWSwWBQQEKDc31+nvTwFwfoXZC9//U12EEQD1npubm9q2bculGsBJDRs2vKwRkQsIIwCg84t/sRw8YAYXRwEAgFGEEQAAYBSXaYArZEHangrbe1rNfCMvAFyrGBkBAABGEUYAAIBRhBEAAGAUYQQAABjFBFYAdpv3X3py7ZaSiifmPjWgXU2XA6CeYGQEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRrqYLAFC79LQuqfiF9X4Vt/ePuXLFAKgTGBkBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYxRflAZdrfXyFzT2tJ69yIQBQOzEyAgAAjCKMAAAAowgjAADAKMIIAAAwqlphJDExUSEhIfLw8FBoaKg2bdpUad8vvvhCvXv3lp+fnzw9PdW+fXstWLCg2gUDAIC6xem7aVauXKmpU6cqMTFRvXv31uLFizV48GDt2rVLQUFB5fp7e3tr4sSJ6tKli7y9vfXFF1/oiSeekLe3tx5//PEaOQgAAFB7WWw2m82ZDXr06KHu3bsrKSnJ3tahQwcNHTpU8fEV3+L4e3/+85/l7e2tt956q0r9CwsL5evrq4KCAjVu3NiZcoErr5Jbezfvr1+39oa39qv4hf4xV7cQANeMqn5+O3WZpri4WJmZmYqIiHBoj4iIUEZGRpX2kZWVpYyMDPXt27fSPkVFRSosLHR4AACAusmpMJKfn6/S0lL5+/s7tPv7++vYsWMX3fbGG2+Uu7u7wsLCNGHCBI0dO7bSvvHx8fL19bU/AgMDnSkTAADUItWawGqxWBye22y2cm2/t2nTJm3fvl2vv/66EhIStGLFikr7xsTEqKCgwP44dOhQdcoEAAC1gFMTWJs2bSoXF5dyoyDHjx8vN1ryeyEhIZKkW265RT/88INiY2P10EMPVdjX3d1d7u7uzpQGAABqKadGRtzc3BQaGqq0tDSH9rS0NPXq1avK+7HZbCoqKnLmrQEAQB3l9K29UVFRGjFihMLCwhQeHq4lS5bIarUqMjJS0vlLLEeOHNHy5cslSf/85z8VFBSk9u3bSzq/7sj8+fM1adKkGjwMAABQWzkdRoYPH66TJ08qLi5OeXl56ty5s1JTUxUcHCxJysvLk9VqtfcvKytTTEyMcnNz5erqqptuukkvvviinnjiiZo7CgAAUGs5vc6ICawzgmsa64xIYp0RAOVdkXVGAAAAahphBAAAGEUYAQAARhFGAACAUU7fTQMAFalswu6Wkj2X3PapAe1quhwAtQgjIwAAwCjCCAAAMIrLNMBFLEi79CWGntb6tZ4IANQ0RkYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUazACuCK6mldculO6/3++3P/mCtXDIBrEiMjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAo7qYBfm99vP3HntaTBgsBgPqBkREAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABjlaroA4EpbkLbHqf49rSevUCUAgIowMgIAAIwijAAAAKMIIwAAwCjCCAAAMIoJrACM27z/v5OGt5Q4N+H4qQHtarocAFcZIyMAAMAowggAADCKyzSo83pal5guAQBwEdUaGUlMTFRISIg8PDwUGhqqTZs2Vdp31apVGjBggJo1a6bGjRsrPDxca9eurXbBAACgbnE6jKxcuVJTp07VjBkzlJWVpT59+mjw4MGyWq0V9v/88881YMAApaamKjMzU/3799e9996rrKysyy4eAADUfhabzWZzZoMePXqoe/fuSkpKsrd16NBBQ4cOVXx8fJX20alTJw0fPlyzZs2qUv/CwkL5+vqqoKBAjRs3dqZcQJuXTjNdAq6g8DHzTZcAoBJV/fx2amSkuLhYmZmZioiIcGiPiIhQRkZGlfZRVlamU6dO6frrr6+0T1FRkQoLCx0eAACgbnIqjOTn56u0tFT+/v4O7f7+/jp27FiV9vHyyy/rzJkzevDBByvtEx8fL19fX/sjMDDQmTIBAEAtUq0JrBaLxeG5zWYr11aRFStWKDY2VitXrtQNN9xQab+YmBgVFBTYH4cOHapOmQAAoBZw6tbepk2bysXFpdwoyPHjx8uNlvzeypUrNWbMGL3//vu66667LtrX3d1d7u7uzpQGAABqKadGRtzc3BQaGqq0tDSH9rS0NPXq1avS7VasWKHRo0fr3Xff1d133129SgEAQJ3k9KJnUVFRGjFihMLCwhQeHq4lS5bIarUqMjJS0vlLLEeOHNHy5cslnQ8iI0eO1MKFC9WzZ0/7qIqnp6d8fX1r8FAAAEBt5HQYGT58uE6ePKm4uDjl5eWpc+fOSk1NVXBwsCQpLy/PYc2RxYsXq6SkRBMmTNCECRPs7aNGjVJKSsrlHwEAAKjVnF5nxATWGcHlYJ2Ruo11RoBr1xVZZwQAAKCmEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABjlaroAALgs6+Od698/5srUAaDaGBkBAABGMTKC2sfZfwmjTtu8/6RT/beU7LH//NSAdjVdDoBqYGQEAAAYxcgIaoUFaf/912xPq3P/EgYAXNsYGQEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGu1dkoMTFRL730kvLy8tSpUyclJCSoT58+FfbNy8vT008/rczMTO3du1eTJ09WQkLC5dSMumZ9/CW79LSevAqFAABMcDqMrFy5UlOnTlViYqJ69+6txYsXa/Dgwdq1a5eCgoLK9S8qKlKzZs00Y8YMLViwoEaKBoDq6mld8t8n6/0uvUH/mCtXDABJ1bhM88orr2jMmDEaO3asOnTooISEBAUGBiopKanC/q1atdLChQs1cuRI+fr6XnbBAACgbnEqjBQXFyszM1MREREO7REREcrIyKixooqKilRYWOjwAAAAdZNTYSQ/P1+lpaXy9/d3aPf399exY8dqrKj4+Hj5+vraH4GBgTW2bwAAcG2p1t00FovF4bnNZivXdjliYmJUUFBgfxw6dKjG9g0AAK4tTk1gbdq0qVxcXMqNghw/frzcaMnlcHd3l7u7e43tDwAAXLucGhlxc3NTaGio0tLSHNrT0tLUq1evGi0MAADUD07f2hsVFaURI0YoLCxM4eHhWrJkiaxWqyIjIyWdv8Ry5MgRLV++3L5Ndna2JOn06dM6ceKEsrOz5ebmpo4dO9bMUQAAgFrL6TAyfPhwnTx5UnFxccrLy1Pnzp2Vmpqq4OBgSecXObNarQ7bdOvWzf5zZmam3n33XQUHB+vAgQOXVz0AAKj1qrUC6/jx4zV+/PgKX0tJSSnXZrPZqvM2AACgHuC7aQAAgFHVGhkBgLpg8/5Lf+fRlpI9FbY/NaBdTZcD1FuMjAAAAKMIIwAAwCgu0+CqWZBW8XB3T+ulh8oBAHUXIyMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIxyNV0AAFzLelqXVPzCer+K2/vHXLligDqKkREAAGAUYQQAABjFZRrUrPXxlb7U03ryKhYCAKgtGBkBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEZxNw0AVMPm/RXfHbalZM8lt31qQLuaLgeo1RgZAQAARhFGAACAUYQRAABgFGEEAAAYxQRWOGVB2sUn57HkOwDAWYyMAAAAoxgZAYAa1NO65NKd1vv99+f+MVeuGKCWYGQEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEZxay8ubn28w1MWNQMA1DRGRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYxTojAHCVbd7/3/V6tpTscWrbpwa0q+lyAOMYGQEAAEYRRgAAgFGEEQAAYBRzRuqb9fEO16sBADCNkREAAGAUIyMAUIssSHPu7pvf4k4cXKsYGQEAAEYxMgIABvW0LnGq/5agx69QJYA5jIwAAACjCCMAAMAowggAADCKMAIAAIxiAmstdDm39vW0suAZAODawsgIAAAwipGRWs7Z2wIB1G7cCoy6iDACALiiWDUWl8JlGgAAYBQjI9ea9fGX7MIkVABV5XBZZ73fpTfoH3PligEqwcgIAAAwqlojI4mJiXrppZeUl5enTp06KSEhQX369Km0/8aNGxUVFaVvv/1WLVq0UHR0tCIjI6tddF1Q2TVURj0AAPWN0yMjK1eu1NSpUzVjxgxlZWWpT58+Gjx4sKxWa4X9c3NzNWTIEPXp00dZWVn6+9//rsmTJ+vDDz+87OIBAEDt5/TIyCuvvKIxY8Zo7NixkqSEhAStXbtWSUlJio8vP9/h9ddfV1BQkBISEiRJHTp00Pbt2zV//nw98MADl1d9bVDJHBBGQACgbuLuIec5FUaKi4uVmZmpZ555xqE9IiJCGRkZFW6zefNmRUREOLQNHDhQS5cu1blz59SwYcNy2xQVFamoqMj+vLCw0JkynbJ56bQrtm8AqHWqMIneWb/9xxfrnlxcfQ0yToWR/Px8lZaWyt/f36Hd399fx44dq3CbY8eOVdi/pKRE+fn5CggIKLdNfHy85syZ40xp1RY+Zv5VeR8AMM3UB114/9/87OS2l1OzKbU5FJhSrQmsFovF4bnNZivXdqn+FbVfEBMTo6ioKPvzwsJCBQYGVqdUAEA9RSioPZwKI02bNpWLi0u5UZDjx4+XG/24oHnz5hX2d3V1lZ9fxfe8u7u7y93d3ZnSAAB1EIGifnDqbho3NzeFhoYqLS3NoT0tLU29evWqcJvw8PBy/detW6ewsLAK54sAAID6xelbe6OiovS///u/evPNN5WTk6OnnnpKVqvVvm5ITEyMRo4cae8fGRmpgwcPKioqSjk5OXrzzTe1dOlSTZvGxFEAAFCNOSPDhw/XyZMnFRcXp7y8PHXu3FmpqakKDg6WJOXl5TmsORISEqLU1FQ99dRT+uc//6kWLVro1VdfrR+39QLANYRLHrhWWWwXZpNewwoLC+Xr66uCggI1btzYdDkAAKAKqvr5zXfTAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKFfTBVSFzWaTdP6riAEAQO1w4XP7wud4ZWpFGDl16pQkKTAw0HAlAADAWadOnZKvr2+lr1tsl4or14CysjIdPXpUPj4+slgspsu5KgoLCxUYGKhDhw6pcePGpsupVzj35nDuzeC8m1PXz73NZtOpU6fUokULNWhQ+cyQWjEy0qBBA914442myzCicePGdfI/0NqAc28O594Mzrs5dfncX2xE5AImsAIAAKMIIwAAwCjCyDXK3d1ds2fPlru7u+lS6h3OvTmcezM47+Zw7s+rFRNYAQBA3cXICAAAMIowAgAAjCKMAAAAowgjAADAKMJILVJUVKSuXbvKYrEoOzvbdDl13oEDBzRmzBiFhITI09NTN910k2bPnq3i4mLTpdVJiYmJCgkJkYeHh0JDQ7Vp0ybTJdV58fHxuu222+Tj46MbbrhBQ4cO1e7du02XVe/Ex8fLYrFo6tSppksxhjBSi0RHR6tFixamy6g3vvvuO5WVlWnx4sX69ttvtWDBAr3++uv6+9//brq0OmflypWaOnWqZsyYoaysLPXp00eDBw+W1Wo1XVqdtnHjRk2YMEFbtmxRWlqaSkpKFBERoTNnzpgurd7Ytm2blixZoi5dupguxShu7a0l/vOf/ygqKkoffvihOnXqpKysLHXt2tV0WfXOSy+9pKSkJO3fv990KXVKjx491L17dyUlJdnbOnTooKFDhyo+Pt5gZfXLiRMndMMNN2jjxo268847TZdT550+fVrdu3dXYmKinnvuOXXt2lUJCQmmyzKCkZFa4IcfftC4ceP01ltvycvLy3Q59VpBQYGuv/5602XUKcXFxcrMzFRERIRDe0REhDIyMgxVVT8VFBRIEv+NXyUTJkzQ3Xffrbvuust0KcbVii/Kq89sNptGjx6tyMhIhYWF6cCBA6ZLqrf27dun1157TS+//LLpUuqU/Px8lZaWyt/f36Hd399fx44dM1RV/WOz2RQVFaU77rhDnTt3Nl1Onffee+/pq6++0rZt20yXck1gZMSQ2NhYWSyWiz62b9+u1157TYWFhYqJiTFdcp1R1XP/W0ePHtWgQYM0bNgwjR071lDldZvFYnF4brPZyrXhypk4caJ27NihFStWmC6lzjt06JCmTJmit99+Wx4eHqbLuSYwZ8SQ/Px85efnX7RPq1at9Je//EUff/yxwx/l0tJSubi46JFHHtGyZcuudKl1TlXP/YU/EkePHlX//v3Vo0cPpaSkqEEDMnxNKi4ulpeXl95//33df//99vYpU6YoOztbGzduNFhd/TBp0iStXr1an3/+uUJCQkyXU+etXr1a999/v1xcXOxtpaWlslgsatCggYqKihxeqw8II9c4q9WqwsJC+/OjR49q4MCB+uCDD9SjRw/deOONBqur+44cOaL+/fsrNDRUb7/9dr37A3G19OjRQ6GhoUpMTLS3dezYUffddx8TWK8gm82mSZMm6V//+pc2bNigtm3bmi6pXjh16pQOHjzo0Pboo4+qffv2mj59er28TMackWtcUFCQw/NGjRpJkm666SaCyBV29OhR9evXT0FBQZo/f75OnDhhf6158+YGK6t7oqKiNGLECIWFhSk8PFxLliyR1WpVZGSk6dLqtAkTJujdd9/VRx99JB8fH/scHV9fX3l6ehquru7y8fEpFzi8vb3l5+dXL4OIRBgBKrVu3Tp9//33+v7778sFPwYUa9bw4cN18uRJxcXFKS8vT507d1ZqaqqCg4NNl1anXbiVul+/fg7tycnJGj169NUvCPUWl2kAAIBRzMQDAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAY9f8U2G0Ml4LBoQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+S0lEQVR4nO3de1yUdf7//+cAAoJChoaYiKiYopkICkiatYmHbLVtk+2AWR6iPCHbR2PNE7WRZYlmWPYpyQ7I7ppZe6MU+3gGTwTWpqV5whRSbGO0EhLm94c/59vEQQYPczE+7rfb3HLe877e87qGdJ68r+t6XyaLxWIRAACAgbk4ugAAAICLIbAAAADDI7AAAADDI7AAAADDI7AAAADDI7AAAADDI7AAAADDI7AAAADDc3N0AZdLVVWVjh8/rubNm8tkMjm6HAAAUA8Wi0WnT59WmzZt5OJS+zyK0wSW48ePKzAw0NFlAACABjh69Kjatm1b6+tOE1iaN28u6fwO+/j4OLgaAABQH2azWYGBgdbv8do4TWC5cBjIx8eHwAIAQCNzsdM5OOkWAAAYHoEFAAAYXoMCS3p6uoKDg+Xp6anw8HBt3ry5Xttt3bpVbm5u6tmzZ7XXVq5cqdDQUHl4eCg0NFSrVq1qSGkAAMAJ2X0OS1ZWlhITE5Wenq6YmBi9/vrrGjJkiPbs2aN27drVul1ZWZlGjRqlP/zhD/r+++9tXsvLy1NcXJyeeeYZ3XPPPVq1apVGjhypLVu2KDIy0v69AoAroLKyUr/++qujywAaFVdXV7m5uV3ykiMmi8VisWeDyMhI9erVS0uWLLG2de3aVSNGjFBqamqt2/3lL39RSEiIXF1d9eGHH6qwsND6WlxcnMxmsz755BNr2+DBg9WiRQtlZmbWqy6z2SxfX1+VlZVx0i2Ay+7MmTP67rvvZOc/mQAkeXl5KSAgQO7u7tVeq+/3t10zLBUVFcrPz9dTTz1l0x4bG6vc3Nxat1u2bJkOHDigd999V88++2y11/Py8jR16lSbtkGDBiktLa3WMcvLy1VeXm59bjab67kXAGCfyspKfffdd/Ly8lKrVq1YnBKoJ4vFooqKCp08eVKHDh1SSEhInYvD1cWuwFJaWqrKykr5+/vbtPv7+6ukpKTGbfbv36+nnnpKmzdvlptbzW9XUlJi15iSlJqaqrlz59pTPgA0yK+//iqLxaJWrVqpadOmji4HaFSaNm2qJk2a6MiRI6qoqJCnp2eDxmlQzPn9bxcWi6XG3zgqKyv1wAMPaO7cuercufNlGfOC5ORklZWVWR9Hjx61Yw8AwH7MrAAN09BZld+ya4alZcuWcnV1rTbzceLEiWozJJJ0+vRp7dq1SwUFBZo4caKk8/f8sVgscnNz09q1a3XHHXeodevW9R7zAg8PD3l4eNhTPgAAaKTsijzu7u4KDw9XTk6OTXtOTo769u1brb+Pj4++/PJLFRYWWh8JCQm66aabVFhYaL0CKDo6utqYa9eurXFMAABw7bH7suakpCTFx8crIiJC0dHRWrp0qYqKipSQkCDp/KGaY8eOafny5XJxcVH37t1ttr/hhhvk6elp0z5lyhT1799f8+bN0/Dhw7V69WqtW7dOW7ZsucTdA4ArZ0HOvqv6flMH1n1oHY51+PBhBQcHq6CgoMb1xuojIyNDiYmJ+vHHHy9rbc7A7oNKcXFxSktLU0pKinr27KlNmzYpOztbQUFBkqTi4mIVFRXZNWbfvn21YsUKLVu2TD169FBGRoaysrJYgwUArkEDBgxQYmLiVXmvw4cPy2Qy2Sy14UwyMjJ03XXXObqMy6JBNz984okn9MQTT9T4WkZGRp3bzpkzR3PmzKnW/uc//1l//vOfG1IOAKAeKioqalwHozGyWCyqrKys9epTOB/uJQQ0VutT6//ANWnAgAGaOHGikpKS1LJlSw0cOFCStGfPHg0dOlTNmjWTv7+/4uPjVVpaat2uqqpK8+bNU6dOneTh4aF27drp73//u/X1L7/8UnfccYeaNm0qPz8/jR8/XmfOnLG+Pnr0aI0YMULz589XQECA/Pz8NGHCBJtVgtPT0xUSEiJPT0/5+/tbf2EdPXq0Nm7cqIULF8pkMslkMunw4cPasGGDTCaT1qxZo4iICHl4eGjz5s3W9/qtxMREDRgwoF77ExwcLEkKCwuTyWSy2W7ZsmXq2rWrPD091aVLF6Wnp9u8z44dOxQWFiZPT09FRESooKDgoj+TiooKTZs2TTfeeKO8vb0VGRmpDRs21LnNxx9/rPDwcHl6eqpDhw6aO3euzp07Z339xx9/1Pjx4+Xv72895eLf//63NmzYoEceeURlZWXWz/LChMF///tfjRo1Si1atJCXl5eGDBmi/fv3W8e8MDOzZs0ade3aVc2aNdPgwYNVXFxs7bNhwwb16dNH3t7euu666xQTE6MjR45c9DNoKKIpADixt99+W48//ri2bt0qi8Wi4uJi3XbbbRo3bpxefvll/fLLL5o+fbpGjhyp//u//5N0/lzEN954QwsWLNCtt96q4uJiff3115Kkn3/+WYMHD1ZUVJR27typEydOaOzYsZo4caLNDPv69esVEBCg9evX69tvv1VcXJx69uypcePGadeuXZo8ebLeeecd9e3bVz/88IP1nnQLFy7Uvn371L17d6WkpEiSWrVqpcOHD0uSpk2bpvnz56tDhw71PtRR1/7s2LFDffr00bp169StWzfrDNQbb7yh2bNna/HixQoLC1NBQYHGjRsnb29vPfzww/rpp580bNgw3XHHHXr33Xd16NAhTZky5aK1PPLIIzp8+LBWrFihNm3aaNWqVRo8eLC+/PJLhYSEVOu/Zs0aPfTQQ1q0aJH69eunAwcOaPz48ZKk2bNnq6qqSkOGDNHp06f17rvvqmPHjtqzZ49cXV3Vt29fpaWladasWfrmm28kSc2aNZN0Phju379fH330kXx8fDR9+nQNHTpUe/bsUZMmTaw/6/nz5+udd96Ri4uLHnroIT355JN67733dO7cOY0YMULjxo1TZmamKioqtGPHjit66T+BBQCcWKdOnfTCCy9Yn8+aNUu9evXSc889Z2176623FBgYqH379ikgIEALFy7U4sWL9fDDD0uSOnbsqFtvvVWS9N577+mXX37R8uXL5e3tLUlavHix7r77bs2bN8+6HEWLFi20ePFiubq6qkuXLrrrrrv02Wefady4cSoqKpK3t7eGDRum5s2bKygoSGFhYZIkX19fubu7y8vLS61bt662PykpKdaZovo4ffp0nfvTqlUrSZKfn5/N+z3zzDN66aWX9Kc//UnS+ZmYPXv26PXXX9fDDz+s9957T5WVlXrrrbfk5eWlbt266bvvvtPjjz9eay0HDhxQZmamvvvuO7Vp00aS9OSTT+rTTz/VsmXLbH4mF/z973/XU089Za29Q4cOeuaZZzRt2jTNnj1b69at044dO7R3717remcdOnSwbu/r6yuTyWSzbxeCytatW61X47733nsKDAzUhx9+qPvuu0/S+QUTX3vtNXXs2FGSNHHiRGuINJvNKisr07Bhw6yvd+3atR4/kYYjsACAE4uIiLB5np+fr/Xr11t/0/6tAwcO6Mcff1R5ebn+8Ic/1Dje3r17dcstt1jDiiTFxMSoqqpK33zzjTWwdOvWTa6urtY+AQEB+vLLLyVJAwcOVFBQkDp06KDBgwdr8ODBuueee+Tl5WX3/lzM3r1769yfmpw8eVJHjx7VmDFjNG7cOGv7uXPn5Ovrax33lltusak5Ojq6znE///xzWSyWaguplpeXy8/Pr8Zt8vPztXPnTptDcpWVlTp79qx+/vlnFRYWqm3bthddnPW39u7dKzc3N5sLW/z8/HTTTTdp79691jYvLy9rGJHO/wxPnDghSbr++us1evRoDRo0SAMHDtSdd96pkSNHKiAgoN512IvAAgBO7LfBQjp/PseF2ZDfCwgI0MGDB+scr65VyH/bfuGwwm9fq6qqkiQ1b95cn3/+uTZs2KC1a9dq1qxZmjNnjnbu3HnRwzy/3x8XF5dqN6T87bkyDbmVwoU633jjjWpXq14IYQ25CWZVVZVcXV2Vn59vE+Yk1RggL2wzd+5c60zPb3l6ejZo/2qr/fc/25p+hr/ddtmyZZo8ebI+/fRTZWVl6emnn1ZOTo6ioqLsrqk+OOkWAK4hvXr10ldffaX27durU6dONg9vb2+FhISoadOm+uyzz2rcPjQ0VIWFhfrpp5+sbVu3bpWLi4tdv+W7ubnpzjvv1AsvvKAvvvhChw8ftp5D4+7ursrKynqN06pVK5sTQSXZXKJ8sf25cM7Kb9/P399fN954ow4ePFjtM7pwkm5oaKh2796tX375xbrdtm3b6qw1LCxMlZWVOnHiRLVxazr8JZ3/eX3zzTfV+nfq1EkuLi7q0aOHvvvuO+3bV/OaQDV9lqGhoTp37py2b99ubTt16pT27dtn92GdsLAwJScnKzc3V927d9f7779v1/b2ILAAwDVkwoQJ+uGHH3T//fdrx44dOnjwoNauXatHH31UlZWV8vT01PTp0zVt2jQtX75cBw4c0LZt2/Tmm29Kkh588EF5enrq4Ycf1n/+8x+tX79ekyZNUnx8fJ23U/mtf//731q0aJEKCwt15MgRLV++XFVVVbrpppskSe3bt9f27dt1+PBhlZaWWmc8anLHHXdo165dWr58ufbv36/Zs2frP//5j/X1i+3PDTfcoKZNm+rTTz/V999/r7KyMknnl+BITU21ngT85ZdfatmyZXr55ZclSQ888IBcXFw0ZswY7dmzR9nZ2Zo/f36d+925c2c9+OCDGjVqlD744AMdOnRIO3fu1Lx585SdnV3jNrNmzdLy5cs1Z84cffXVV9q7d691NkOSbrvtNvXv31/33nuvcnJydOjQIX3yySf69NNPrZ/lmTNn9Nlnn6m0tFQ///yzQkJCNHz4cI0bN05btmzR7t279dBDD+nGG2/U8OHD6/Mj1KFDh5ScnKy8vDwdOXJEa9eubVDgsQeHhAAHupSVUqfyt9fhGuPKs23atNHWrVs1ffp0DRo0SOXl5QoKCtLgwYOtN6ibOXOm3NzcNGvWLB0/flwBAQHW1cy9vLy0Zs0aTZkyRb1795aXl5fuvfde6xd5fVx33XX64IMPNGfOHJ09e1YhISHKzMxUt27dJJ0/EfXhhx9WaGiofvnlFx06dKjWsQYNGqSZM2dq2rRpOnv2rB599FGNGjXKer7MxfbHzc1NixYtUkpKimbNmqV+/fppw4YNGjt2rLy8vPTiiy9q2rRp8vb21s0332xd0K5Zs2b6+OOPlZCQoLCwMIWGhmrevHm6995769z3ZcuW6dlnn9Vf//pXHTt2TH5+foqOjtbQoUNr3b9///vfSklJ0QsvvKAmTZqoS5cuGjt2rLXPypUr9eSTT+r+++/XTz/9pE6dOun555+XdH5h1oSEBMXFxenUqVOaPXu25syZo2XLlmnKlCkaNmyYKioq1L9/f2VnZ1c7DFQbLy8vff3113r77bd16tQpBQQEaOLEiXrsscfqtX1DmCwNORBnQGazWb6+viorK5OPj4+jywHq5dICy8r6d749ucHvA+ns2bM6dOiQgoOD5enp6ehygEanrr9D9f3+5pAQAAAwPAILAAAwPAILAAAwPE7bAwwkqmhp/Tt3qHmhKQBwRsywAAAAw2OGBWik8g6eqnffbedsr0ZqjJfjAri2McMCAAAMjxkW4BpQ7dyY9XWc/8KaLQAMiBkWAICNOXPmqGfPnnZtM2DAAOsqsI6s4/euRF1wDGZYAKCh1qde3fe7SrNfTz75pCZNmmTXNh988EG9l3VvzAYMGKCePXsqLS3N0aVccwgsAABJksViUWVlpZo1a6ZmzZrZte31119/haoCzuOQEAA4qfLyck2ePFk33HCDPD09deutt2rnzp3W1zds2CCTyaQ1a9YoIiJCHh4e2rx5c7VDMefOndPkyZN13XXXyc/PT9OnT9fDDz+sESNGWPv8/tBL+/bt9dxzz+nRRx9V8+bN1a5dOy1dansu1fTp09W5c2d5eXmpQ4cOmjlzpn799Ve79nHPnj0aOnSomjVrJn9/f8XHx6u0tLTW/hUVFZo2bZpuvPFGeXt7KzIyUhs2bLDps3XrVt12223y8vJSixYtNGjQIP33v//V6NGjtXHjRi1cuFAmk0kmk0mHDx+WJG3cuFF9+vSRh4eHAgIC9NRTT+ncuXM2n8/kyZM1bdo0XX/99WrdurXmzJlj875z5sxRu3bt5OHhoTZt2mjy5Ml2fRbOjsACAE5q2rRpWrlypd5++219/vnn6tSpkwYNGqQffvihWr/U1FTt3btXPXr0qDbOvHnz9N5772nZsmXaunWrzGazPvzww4u+/0svvaSIiAgVFBToiSee0OOPP66vv/7a+nrz5s2VkZGhPXv2aOHChXrjjTe0YMGCeu9fcXGxbrvtNvXs2VO7du3Sp59+qu+//14jR46sdZtHHnlEW7du1YoVK/TFF1/ovvvu0+DBg7V//35JUmFhof7whz+oW7duysvL05YtW3T33XersrJSCxcuVHR0tMaNG6fi4mIVFxcrMDBQx44d09ChQ9W7d2/t3r1bS5Ys0Ztvvqlnn33W5r3ffvtteXt7a/v27XrhhReUkpKinJwcSdK//vUvLViwQK+//rr279+vDz/8UDfffHO9P4trAYeEgCutjvMcoorqv5YKYI+ffvpJS5YsUUZGhoYMGSJJeuONN5STk6M333xT//M//2Ptm5KSooEDB9Y61iuvvKLk5GTdc889kqTFixcrOzv7ojUMHTpUTzzxhKTzsykLFizQhg0b1KVLF0nS008/be3bvn17/fWvf1VWVpamTZtWr31csmSJevXqpeeee87a9tZbbykwMFD79u1T58626w0dOHBAmZmZ+u6779SmTRtJ58/X+fTTT7Vs2TI999xzeuGFFxQREaH09HTrdt26dbP+2d3dXV5eXmrdurW1LT09XYGBgVq8eLFMJpO6dOmi48ePa/r06Zo1a5ZcXM7PDfTo0UOzZ8+WJIWEhGjx4sX67LPPNHDgQBUVFal169a688471aRJE7Vr1059+vSp1+dwrSCwAIATOnDggH799VfFxMRY25o0aaI+ffpo7969Nn0jIiJqHaesrEzff/+9zZenq6urwsPDVVVVVWcNv52tMZlMat26tU6cOGFt+9e//qW0tDR9++23OnPmjM6dOycfH59672N+fr7Wr19f4/k2Bw4cqBZYPv/8c1kslmrt5eXl8vM7f6l/YWGh7rvvvnrXIEl79+5VdHS0TCaTtS0mJkZnzpzRd999p3bt2klStdmrgIAA6+dx3333KS0tTR06dNDgwYM1dOhQ3X333XJz42v6Aj4JAHBCFotFkmy+RC+0/77N29v7ouPVNM7F/P6qIZPJZA0527Zt01/+8hfNnTtXgwYNkq+vr1asWKGXXnrpouNeUFVVpbvvvlvz5s2r9lpAQECN/V1dXZWfny9XV1eb1y6EnqZNm9b7/S+o6TOt6fOv6/MIDAzUN998o5ycHK1bt05PPPGEXnzxRW3cuPGauPqqPjiHBQCcUKdOneTu7q4tW7ZY23799Vft2rVLXbt2rfc4vr6+8vf3144dO6xtlZWVKigouKT6tm7dqqCgIM2YMUMREREKCQnRkSNH7BqjV69e+uqrr9S+fXt16tTJ5lFTCAsLC1NlZaVOnDhRrf+FQzw9evTQZ599Vut7uru7q7Ky0qYtNDRUubm5NiEuNzdXzZs314033ljv/WnatKn++Mc/atGiRdqwYYPy8vL05Zdf1nt7Z0dgAQAn5O3trccff1z/8z//o08//VR79uzRuHHj9PPPP2vMmDF2jTVp0iSlpqZq9erV+uabbzRlyhT997//rTarYI9OnTqpqKhIK1as0IEDB7Ro0SKtWrXKrjEmTJigH374Qffff7927NihgwcPau3atXr00UerhQpJ6ty5sx588EGNGjVKH3zwgQ4dOqSdO3dq3rx51nNykpOTtXPnTj3xxBP64osv9PXXX2vJkiXWK4/at2+v7du36/DhwyotLVVVVZWeeOIJHT16VJMmTdLXX3+t1atXa/bs2UpKSrKev3IxGRkZevPNN/Wf//xHBw8e1DvvvKOmTZsqKCjIrs/EmRFYAMBJPf/887r33nsVHx+vXr166dtvv9WaNWvUokULu8aZPn267r//fo0aNUrR0dFq1qyZBg0aJE9PzwbXNnz4cE2dOlUTJ05Uz549lZubq5kzZ9o1Rps2bbR161ZVVlZq0KBB6t69u6ZMmSJfX99ag8KyZcs0atQo/fWvf9VNN92kP/7xj9q+fbsCAwMlnQ81a9eu1e7du9WnTx9FR0dr9erV1nNJnnzySbm6uio0NFStWrVSUVGRbrzxRmVnZ2vHjh265ZZblJCQoDFjxticVHwx1113nd544w3FxMRYZ3k+/vhj67k1kEyW+hyIbATMZrN8fX1VVlZm10lbwBVXx1VC9txx+XKK7sC9hOxx9uxZHTp0SMHBwZf0Je0sqqqq1LVrV40cOVLPPPOMo8tBI1DX36H6fn9z0i0AoE5HjhzR2rVrddttt6m8vFyLFy/WoUOH9MADDzi6NFxDOCQEAKiTi4uLMjIy1Lt3b8XExOjLL7/UunXr7Dp5F7hUzLAAAOoUGBiorVu3OroMXOMaNMOSnp5uPQ4VHh6uzZs319p3y5YtiomJkZ+fn5o2baouXbpUW3o5IyPDel+G3z7Onj3bkPIAAICTsXuGJSsrS4mJiUpPT1dMTIxef/11DRkyRHv27LGu5vdb3t7emjhxonr06CFvb29t2bJFjz32mLy9vTV+/HhrPx8fH33zzTc223JyGwAAkBoQWF5++WWNGTNGY8eOlSSlpaVpzZo1WrJkiVJTq18NERYWprCwMOvz9u3b64MPPtDmzZttAsuFZZuBxmZBzr46X+d+Qc7DSS6qBK66y/F3x65DQhUVFcrPz1dsbKxNe2xsrHJzc+s1RkFBgXJzc3XbbbfZtJ85c0ZBQUFq27athg0bdtFVFMvLy2U2m20eAHAlXFjGvaKiwsGVAI3Tzz//LKn67QnsYdcMS2lpqSorK+Xv72/T7u/vr5KSkjq3bdu2rU6ePKlz585pzpw51hkaSerSpYsyMjJ08803y2w2a+HChYqJidHu3bsVEhJS43ipqamaO3euPeUDQIO4ubnJy8tLJ0+eVJMmTeq9eilwrbNYLPr555914sQJXXfdddXu4WSPBl0lVJ+baf3e5s2bdebMGW3btk1PPfWUOnXqpPvvv1+SFBUVpaioKGvfmJgY9erVS6+88ooWLVpU43jJyclKSkqyPjebzdaVCgHgcjKZTAoICNChQ4fsvt8NgPMr+V7qaR92BZaWLVvK1dW12mzKiRMnqs26/F5wcLAk6eabb9b333+vOXPmWAPL77m4uKh3797av39/reN5eHjIw8PDnvIBoMHc3d0VEhLCYSHATk2aNLmkmZUL7Aos7u7uCg8PV05Oju655x5re05OjoYPH17vcSwWi8rLy+t8vbCwUDfffLM95QHAFeXi4sLVi4CD2H1IKCkpSfHx8YqIiFB0dLSWLl2qoqIiJSQkSDp/qObYsWNavny5JOnVV19Vu3bt1KVLF0nn12WZP3++Jk2aZB1z7ty5ioqKUkhIiMxmsxYtWqTCwkK9+uqrl2MfAQBAI2d3YImLi9OpU6eUkpKi4uJide/eXdnZ2dZbYBcXF6uoqMjav6qqSsnJyTp06JDc3NzUsWNHPf/883rsscesfX788UeNHz9eJSUl8vX1VVhYmDZt2qQ+ffpchl0EAACNHXdrBhriN3dgdtQdly8Fd2sGYBT1/f7m2jwAAGB43PwQuAbVNSu07VzdK/dOHdj5cpcDABfFDAsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8N0cXAMBYooqW1t1hvd//+/PtyVe2GAD4/zHDAgAADI/AAgAADI/AAgAADI/AAgAADI+TbgE03PrU+vflBF0Al6BBMyzp6ekKDg6Wp6enwsPDtXnz5lr7btmyRTExMfLz81PTpk3VpUsXLViwoFq/lStXKjQ0VB4eHgoNDdWqVasaUhoAAHBCdgeWrKwsJSYmasaMGSooKFC/fv00ZMgQFRUV1djf29tbEydO1KZNm7R37149/fTTevrpp7V06f+7dDIvL09xcXGKj4/X7t27FR8fr5EjR2r79u0N3zMAAOA0TBaLxWLPBpGRkerVq5eWLFlibevatatGjBih1NT6TQ//6U9/kre3t9555x1JUlxcnMxmsz755BNrn8GDB6tFixbKzMys15hms1m+vr4qKyuTj4+PHXsENMBvDoXkHTzlwEKuvugOfhfvVBMOCQGoQX2/v+2aYamoqFB+fr5iY2Nt2mNjY5Wbm1uvMQoKCpSbm6vbbrvN2paXl1dtzEGDBtU5Znl5ucxms80DAAA4J7sCS2lpqSorK+Xv72/T7u/vr5KSkjq3bdu2rTw8PBQREaEJEyZo7Nix1tdKSkrsHjM1NVW+vr7WR2BgoD27AgAAGpEGXSVkMplsnlsslmptv7d582adOXNG27Zt01NPPaVOnTrp/vvvb/CYycnJSkpKsj43m82EFuAqaOghsG3n9mnqwM6XuRoA1wq7AkvLli3l6upabebjxIkT1WZIfi84OFiSdPPNN+v777/XnDlzrIGldevWdo/p4eEhDw8Pe8oHAACNlF2HhNzd3RUeHq6cnByb9pycHPXt27fe41gsFpWXl1ufR0dHVxtz7dq1do0JAACcl92HhJKSkhQfH6+IiAhFR0dr6dKlKioqUkJCgqTzh2qOHTum5cuXS5JeffVVtWvXTl26dJF0fl2W+fPna9KkSdYxp0yZov79+2vevHkaPny4Vq9erXXr1mnLli2XYx8BAEAjZ3dgiYuL06lTp5SSkqLi4mJ1795d2dnZCgoKkiQVFxfbrMlSVVWl5ORkHTp0SG5uburYsaOef/55PfbYY9Y+ffv21YoVK/T0009r5syZ6tixo7KyshQZGXkZdhEAADR2dq/DYlSsw4Kr6hpeh6WhtrUbz0m3AKq5IuuwAAAAOAKBBQAAGB6BBQAAGB6BBQAAGB6BBQAAGB6BBQAAGB6BBQAAGB6BBQAAGF6D7tYMOJsFOfsUVbTU0WUAAGrBDAsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADC8BgWW9PR0BQcHy9PTU+Hh4dq8eXOtfT/44AMNHDhQrVq1ko+Pj6Kjo7VmzRqbPhkZGTKZTNUeZ8+ebUh5AADAydgdWLKyspSYmKgZM2aooKBA/fr105AhQ1RUVFRj/02bNmngwIHKzs5Wfn6+br/9dt19990qKCiw6efj46Pi4mKbh6enZ8P2CgAAOBU3ezd4+eWXNWbMGI0dO1aSlJaWpjVr1mjJkiVKTU2t1j8tLc3m+XPPPafVq1fr448/VlhYmLXdZDKpdevW9pYDAACuAXbNsFRUVCg/P1+xsbE27bGxscrNza3XGFVVVTp9+rSuv/56m/YzZ84oKChIbdu21bBhw6rNwAAAgGuXXYGltLRUlZWV8vf3t2n39/dXSUlJvcZ46aWX9NNPP2nkyJHWti5duigjI0MfffSRMjMz5enpqZiYGO3fv7/WccrLy2U2m20eAADAOdl9SEg6f/jmtywWS7W2mmRmZmrOnDlavXq1brjhBmt7VFSUoqKirM9jYmLUq1cvvfLKK1q0aFGNY6Wmpmru3LkNKR8AADQyds2wtGzZUq6urtVmU06cOFFt1uX3srKyNGbMGP3jH//QnXfeWXdRLi7q3bt3nTMsycnJKisrsz6OHj1a/x0BAACNil2Bxd3dXeHh4crJybFpz8nJUd++fWvdLjMzU6NHj9b777+vu+6666LvY7FYVFhYqICAgFr7eHh4yMfHx+YBAACck92HhJKSkhQfH6+IiAhFR0dr6dKlKioqUkJCgqTzMx/Hjh3T8uXLJZ0PK6NGjdLChQsVFRVlnZ1p2rSpfH19JUlz585VVFSUQkJCZDabtWjRIhUWFurVV1+9XPsJAAAaMbsDS1xcnE6dOqWUlBQVFxere/fuys7OVlBQkCSpuLjYZk2W119/XefOndOECRM0YcIEa/vDDz+sjIwMSdKPP/6o8ePHq6SkRL6+vgoLC9OmTZvUp0+fS9w9AADgDEwWi8Xi6CIuB7PZLF9fX5WVlXF4CHZbkLNPUUVLHV2GU9vWbrymDuzs6DIAGEx9v7+5lxAAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8N0cXAFxR61Pr1S2q6NQVLgQAcCmYYQEAAIZHYAEAAIZHYAEAAIZHYAEAAIbHSbcAroqooqXSer/6db49+coWA6DRYYYFAAAYHoEFAAAYHoEFAAAYHoEFAAAYHoEFAAAYHoEFAAAYHoEFAAAYHoEFAAAYHoEFAAAYHivdwiksyNlXY3tU0amrXAkA4EpghgUAABgegQUAABgegQUAABhegwJLenq6goOD5enpqfDwcG3evLnWvh988IEGDhyoVq1aycfHR9HR0VqzZk21fitXrlRoaKg8PDwUGhqqVatWNaQ0AADghOwOLFlZWUpMTNSMGTNUUFCgfv36aciQISoqKqqx/6ZNmzRw4EBlZ2crPz9ft99+u+6++24VFBRY++Tl5SkuLk7x8fHavXu34uPjNXLkSG3fvr3hewYAAJyGyWKxWOzZIDIyUr169dKSJUusbV27dtWIESOUmpparzG6deumuLg4zZo1S5IUFxcns9msTz75xNpn8ODBatGihTIzM+s1ptlslq+vr8rKyuTj42PHHsEZ1H6V0NKrXAnqEt3Br34db0++soUAMIz6fn/bNcNSUVGh/Px8xcbG2rTHxsYqNze3XmNUVVXp9OnTuv76661teXl51cYcNGhQnWOWl5fLbDbbPAAAgHOyax2W0tJSVVZWyt/f36bd399fJSUl9RrjpZde0k8//aSRI0da20pKSuweMzU1VXPnzrWjegCOlnewfuvibDtXfcZs6sDOl7scAI1Ig066NZlMNs8tFku1tppkZmZqzpw5ysrK0g033HBJYyYnJ6usrMz6OHr0qB17AAAAGhO7ZlhatmwpV1fXajMfJ06cqDZD8ntZWVkaM2aM/vnPf+rOO++0ea1169Z2j+nh4SEPDw97ygcAAI2UXTMs7u7uCg8PV05Ojk17Tk6O+vbtW+t2mZmZGj16tN5//33ddddd1V6Pjo6uNubatWvrHBMAAFw77L6XUFJSkuLj4xUREaHo6GgtXbpURUVFSkhIkHT+UM2xY8e0fPlySefDyqhRo7Rw4UJFRUVZZ1KaNm0qX19fSdKUKVPUv39/zZs3T8OHD9fq1au1bt06bdmy5XLtJwAAaMTsPoclLi5OaWlpSklJUc+ePbVp0yZlZ2crKChIklRcXGyzJsvrr7+uc+fOacKECQoICLA+pkyZYu3Tt29frVixQsuWLVOPHj2UkZGhrKwsRUZGXoZdBAAAjZ3d67AYFeuwXNtYh8W5bGs3vlobVwkBzumKrMMCAADgCAQWAABgeHafdAs43Prqt4CIKqrfgmQAgMaJGRYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4bo4uAAB+L6poafXG9X41d749+coWA8AQmGEBAACGR2ABAACGR2ABAACGxzksMIwFOfvq1S+q6NQVrgQAYDTMsAAAAMMjsAAAAMMjsAAAAMMjsAAAAMNrUGBJT09XcHCwPD09FR4ers2bN9fat7i4WA888IBuuukmubi4KDExsVqfjIwMmUymao+zZ882pDwAAOBk7A4sWVlZSkxM1IwZM1RQUKB+/fppyJAhKioqqrF/eXm5WrVqpRkzZuiWW26pdVwfHx8VFxfbPDw9Pe0tDwAAOCG7A8vLL7+sMWPGaOzYseratavS0tIUGBioJUuW1Ni/ffv2WrhwoUaNGiVfX99axzWZTGrdurXNAwAAQLIzsFRUVCg/P1+xsbE27bGxscrNzb2kQs6cOaOgoCC1bdtWw4YNU0FBQZ39y8vLZTabbR4AAMA52RVYSktLVVlZKX9/f5t2f39/lZSUNLiILl26KCMjQx999JEyMzPl6empmJgY7d+/v9ZtUlNT5evra30EBgY2+P0BAICxNeikW5PJZPPcYrFUa7NHVFSUHnroId1yyy3q16+f/vGPf6hz58565ZVXat0mOTlZZWVl1sfRo0cb/P4AAMDY7Fqav2XLlnJ1da02m3LixIlqsy6XwsXFRb17965zhsXDw0MeHh6X7T0BAIBx2TXD4u7urvDwcOXk5Ni05+TkqG/fvpetKIvFosLCQgUEBFy2MQEAQONl980Pk5KSFB8fr4iICEVHR2vp0qUqKipSQkKCpPOHao4dO6bly5dbtyksLJR0/sTakydPqrCwUO7u7goNDZUkzZ07V1FRUQoJCZHZbNaiRYtUWFioV1999TLsIgAAaOzsDixxcXE6deqUUlJSVFxcrO7duys7O1tBQUGSzi8U9/s1WcLCwqx/zs/P1/vvv6+goCAdPnxYkvTjjz9q/PjxKikpka+vr8LCwrRp0yb16dPnEnYNjcr6VO7CDAColclisVgcXcTlYDab5evrq7KyMvn4+Di6HNhrfaryDhJYULvoDn41v3B78tUtBMBlVd/vb+4lBAAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADM/uy5oBwBFqu4ps27l9F9126sDOl7scAFcZMywAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDw3BxdAABciqiipRfvtN7v/H9vT76yxQC4YphhAQAAhkdgAQAAhkdgAQAAhkdgAQAAhkdgAQAAhkdgAQAAhkdgAQAAhkdgAQAAhkdgAQAAhkdgAQAAhkdgAQAAhtegwJKenq7g4GB5enoqPDxcmzdvrrVvcXGxHnjgAd10001ycXFRYmJijf1Wrlyp0NBQeXh4KDQ0VKtWrWpIaQAAwAnZHViysrKUmJioGTNmqKCgQP369dOQIUNUVFRUY//y8nK1atVKM2bM0C233FJjn7y8PMXFxSk+Pl67d+9WfHy8Ro4cqe3bt9tbHgAAcEImi8VisWeDyMhI9erVS0uWLLG2de3aVSNGjFBqamqd2w4YMEA9e/ZUWlqaTXtcXJzMZrM++eQTa9vgwYPVokULZWZm1qsus9ksX19flZWVycfHp/47BGNYn6q8g6ccXQWcVHQH7tYMGFV9v7/tmmGpqKhQfn6+YmNjbdpjY2OVm5vbsEp1fobl92MOGjSozjHLy8tlNpttHgAAwDnZFVhKS0tVWVkpf39/m3Z/f3+VlJQ0uIiSkhK7x0xNTZWvr6/1ERgY2OD3BwAAxtagk25NJpPNc4vFUq3tSo+ZnJyssrIy6+Po0aOX9P4AAMC43Ozp3LJlS7m6ulab+Thx4kS1GRJ7tG7d2u4xPTw85OHh0eD3BHDtuHB+1LZz++zedurAzpe7HAANYNcMi7u7u8LDw5WTk2PTnpOTo759+za4iOjo6Gpjrl279pLGBAAAzsOuGRZJSkpKUnx8vCIiIhQdHa2lS5eqqKhICQkJks4fqjl27JiWL19u3aawsFCSdObMGZ08eVKFhYVyd3dXaGioJGnKlCnq37+/5s2bp+HDh2v16tVat26dtmzZchl2EQAANHZ2B5a4uDidOnVKKSkpKi4uVvfu3ZWdna2goCBJ5xeK+/2aLGFhYdY/5+fn6/3331dQUJAOHz4sSerbt69WrFihp59+WjNnzlTHjh2VlZWlyMjIS9g1AADgLOxeh8WoWIelkWMdFlwF29qNt3sbzmEBrqz6fn/bPcMC1GVBjv0nNUpSVBFhBQBQO25+CAAADI8ZFgDXjKiipfXu25DDRwCuHGZYAACA4RFYAACA4RFYAACA4RFYAACA4RFYAACA4RFYAACA4RFYAACA4bEOC64Ye9a8AACgLsywAAAAwyOwAAAAwyOwAAAAwyOwAAAAwyOwAAAAwyOwAAAAwyOwAAAAwyOwAAAAwyOwAAAAwyOwAAAAwyOwAAAAwyOwAAAAwyOwAAAAwyOwAAAAwyOwAAAAwyOwAAAAwyOwAAAAw3NzdAFoZNan1vlyVNGpq1QIcGVFFS09/4f1fhfvfHvylS0GAIEFAOqSd/DiIXzbuX01tk8d2PlylwNcszgkBAAADI/AAgAADK9BgSU9PV3BwcHy9PRUeHi4Nm/eXGf/jRs3Kjw8XJ6enurQoYNee+01m9czMjJkMpmqPc6ePduQ8gAAgJOxO7BkZWUpMTFRM2bMUEFBgfr166chQ4aoqKioxv6HDh3S0KFD1a9fPxUUFOhvf/ubJk+erJUrV9r08/HxUXFxsc3D09OzYXsFAACcit0n3b788ssaM2aMxo4dK0lKS0vTmjVrtGTJEqWmVr+C5LXXXlO7du2UlpYmSeratat27dql+fPn695777X2M5lMat26dQN3AwAAODO7ZlgqKiqUn5+v2NhYm/bY2Fjl5ubWuE1eXl61/oMGDdKuXbv066+/WtvOnDmjoKAgtW3bVsOGDVNBQUGdtZSXl8tsNts8AACAc7JrhqW0tFSVlZXy9/e3aff391dJSUmN25SUlNTY/9y5cyotLVVAQIC6dOmijIwM3XzzzTKbzVq4cKFiYmK0e/duhYSE1Dhuamqq5s6da0/5qKcFOTVfoimxzgoAwDEadNKtyWSyeW6xWKq1Xaz/b9ujoqL00EMP6ZZbblG/fv30j3/8Q507d9Yrr7xS65jJyckqKyuzPo4ePdqQXQEAAI2AXTMsLVu2lKura7XZlBMnTlSbRbmgdevWNfZ3c3OTn1/NK0i6uLiod+/e2r9/f621eHh4yMPDw57yAQBAI2XXDIu7u7vCw8OVk5Nj056Tk6O+ffvWuE10dHS1/mvXrlVERISaNGlS4zYWi0WFhYUKCAiwpzwAAOCk7D4klJSUpP/93//VW2+9pb1792rq1KkqKipSQkKCpPOHakaNGmXtn5CQoCNHjigpKUl79+7VW2+9pTfffFNPPvmktc/cuXO1Zs0aHTx4UIWFhRozZowKCwutYwIAgGub3Zc1x8XF6dSpU0pJSVFxcbG6d++u7OxsBQUFSZKKi4tt1mQJDg5Wdna2pk6dqldffVVt2rTRokWLbC5p/vHHHzV+/HiVlJTI19dXYWFh2rRpk/r06XMZdhEAADR2JsuFM2AbObPZLF9fX5WVlcnHx8fR5TRqdV8ltPQqVgI0Dtvaja+xnZsfAhdX3+9v7iUEAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMz+57CcHJrE+t1hRVdMoBhQAAUDsCCwBcolrvsbXer3rb7clXthjASXFICAAAGB6BBQAAGB6BBQAAGB6BBQAAGB6BBQAAGB6BBQAAGB6XNQPAFZJ3sPqaRtvO7avXtlMHdr7c5QCNGoHFSS3Iqd8/iiwSB1xdta7Z8nvr/VizBfgNDgkBAADDI7AAAADDI7AAAADD4xwWZ7Q+lXNTAABOhRkWAABgeAQWAABgeBwSAgADyjt4qt5rtvwea7jAGRFYDOy3a6nUe+0GAACcEIEFAAzKnl9UtrUbfwUrARyPc1gAAIDhMcPiSOtT63yZS5MBADiPwAIATqa+9xKrCSfswqgaFFjS09P14osvqri4WN26dVNaWpr69etXa/+NGzcqKSlJX331ldq0aaNp06YpISHBps/KlSs1c+ZMHThwQB07dtTf//533XPPPQ0pz1Dq+oeDGRQAl4u9J+ZzzgsaG7vPYcnKylJiYqJmzJihgoIC9evXT0OGDFFRUVGN/Q8dOqShQ4eqX79+Kigo0N/+9jdNnjxZK1eutPbJy8tTXFyc4uPjtXv3bsXHx2vkyJHavn17w/cMAAA4DZPFYrHYs0FkZKR69eqlJUuWWNu6du2qESNGKDW1+jkZ06dP10cffaS9e/da2xISErR7927l5eVJkuLi4mQ2m/XJJ59Y+wwePFgtWrRQZmZmveoym83y9fVVWVmZfHx87Nmli7vIuSY2fnc7+LpnWLhUGYDx1Xc2pjEeTuLwmePV9/vbrkNCFRUVys/P11NPPWXTHhsbq9zc3Bq3ycvLU2xsrE3boEGD9Oabb+rXX39VkyZNlJeXp6lTp1brk5aWVmst5eXlKi8vtz43m8327Ipd8g7acejm4JM2T6Mucy0AcLXV+5er9X7VfmmrL4IDLsauwFJaWqrKykr5+/vbtPv7+6ukpKTGbUpKSmrsf+7cOZWWliogIKDWPrWNKUmpqamaO3euPeU3WPSY+VflfQDgWuWo0EHYaTwatA6LyWSyeW6xWKq1Xaz/79vtHTM5OVllZWXWx9GjR+tdPwAAaFzsmmFp2bKlXF1dq818nDhxotoMyQWtW7eusb+bm5v8/Pzq7FPbmJLk4eEhDw8Pe8oHAACNlF0zLO7u7goPD1dOTo5Ne05Ojvr27VvjNtHR0dX6r127VhEREWrSpEmdfWobEwAAXFvsXoclKSlJ8fHxioiIUHR0tJYuXaqioiLruirJyck6duyYli9fLun8FUGLFy9WUlKSxo0bp7y8PL355ps2V/9MmTJF/fv317x58zR8+HCtXr1a69at05YtWy7TbgIAgMbM7sASFxenU6dOKSUlRcXFxerevbuys7MVFBQkSSouLrZZkyU4OFjZ2dmaOnWqXn31VbVp00aLFi3Svffea+3Tt29frVixQk8//bRmzpypjh07KisrS5GRkZdhFwEAQGNn9zosRnVF12EBAABXRH2/v7lbMwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDy7l+Y3qgsL9prNZgdXAgAA6uvC9/bFFt53msBy+vRpSVJgYKCDKwEAAPY6ffq0fH19a33dae4lVFVVpePHj6t58+YymUyOLscuZrNZgYGBOnr0KPdBuor43K8+PnPH4HN3DD73+rFYLDp9+rTatGkjF5faz1RxmhkWFxcXtW3b1tFlXBIfHx/+p3YAPverj8/cMfjcHYPP/eLqmlm5gJNuAQCA4RFYAACA4RFYDMDDw0OzZ8+Wh4eHo0u5pvC5X3185o7B5+4YfO6Xl9OcdAsAAJwXMywAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwGVV5erp49e8pkMqmwsNDR5Ti1w4cPa8yYMQoODlbTpk3VsWNHzZ49WxUVFY4uzemkp6crODhYnp6eCg8P1+bNmx1dklNLTU1V79691bx5c91www0aMWKEvvnmG0eXdU1JTU2VyWRSYmKio0tp9AgsBjVt2jS1adPG0WVcE77++mtVVVXp9ddf11dffaUFCxbotdde09/+9jdHl+ZUsrKylJiYqBkzZqigoED9+vXTkCFDVFRU5OjSnNbGjRs1YcIEbdu2TTk5OTp37pxiY2P1008/Obq0a8LOnTu1dOlS9ejRw9GlOAUuazagTz75RElJSVq5cqW6deumgoIC9ezZ09FlXVNefPFFLVmyRAcPHnR0KU4jMjJSvXr10pIlS6xtXbt21YgRI5SamurAyq4dJ0+e1A033KCNGzeqf//+ji7HqZ05c0a9evVSenq6nn32WfXs2VNpaWmOLqtRY4bFYL7//nuNGzdO77zzjry8vBxdzjWrrKxM119/vaPLcBoVFRXKz89XbGysTXtsbKxyc3MdVNW1p6ysTJL4f/sqmDBhgu666y7deeedji7FaTjNzQ+dgcVi0ejRo5WQkKCIiAgdPnzY0SVdkw4cOKBXXnlFL730kqNLcRqlpaWqrKyUv7+/Tbu/v79KSkocVNW1xWKxKCkpSbfeequ6d+/u6HKc2ooVK/T5559r586dji7FqTDDchXMmTNHJpOpzseuXbv0yiuvyGw2Kzk52dElO4X6fu6/dfz4cQ0ePFj33Xefxo4d66DKnZfJZLJ5brFYqrXhypg4caK++OILZWZmOroUp3b06FFNmTJF7777rjw9PR1djlPhHJaroLS0VKWlpXX2ad++vf7yl7/o448/tvkHvLKyUq6urnrwwQf19ttvX+lSnUp9P/cL/6gcP35ct99+uyIjI5WRkSEXF/L85VJRUSEvLy/985//1D333GNtnzJligoLC7Vx40YHVuf8Jk2apA8//FCbNm1ScHCwo8txah9++KHuueceubq6WtsqKytlMpnk4uKi8vJym9dQfwQWAykqKpLZbLY+P378uAYNGqR//etfioyMVNu2bR1YnXM7duyYbr/9doWHh+vdd9/lH5QrIDIyUuHh4UpPT7e2hYaGavjw4Zx0e4VYLBZNmjRJq1at0oYNGxQSEuLokpze6dOndeTIEZu2Rx55RF26dNH06dM5HHcJOIfFQNq1a2fzvFmzZpKkjh07ElauoOPHj2vAgAFq166d5s+fr5MnT1pfa926tQMrcy5JSUmKj49XRESEoqOjtXTpUhUVFSkhIcHRpTmtCRMm6P3339fq1avVvHlz6/lCvr6+atq0qYOrc07NmzevFkq8vb3l5+dHWLlEBBZc89auXatvv/1W3377bbVgyATk5RMXF6dTp04pJSVFxcXF6t69u7KzsxUUFOTo0pzWhUvIBwwYYNO+bNkyjR49+uoXBFwCDgkBAADD46xCAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeP8ffH5QBq/6oAcAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -351,10 +351,10 @@ "start_time": "2023-11-09T18:41:36.281084677Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:17.734884Z", - "iopub.status.busy": "2023-11-09T20:46:17.734341Z", - "iopub.status.idle": "2023-11-09T20:46:17.780354Z", - "shell.execute_reply": "2023-11-09T20:46:17.779799Z" + "iopub.execute_input": "2023-11-09T22:34:12.038119Z", + "iopub.status.busy": "2023-11-09T22:34:12.037948Z", + "iopub.status.idle": "2023-11-09T22:34:12.077555Z", + "shell.execute_reply": "2023-11-09T22:34:12.077069Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "start_time": "2023-11-09T18:41:36.367032133Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:17.783210Z", - "iopub.status.busy": "2023-11-09T20:46:17.783004Z", - "iopub.status.idle": "2023-11-09T20:46:17.833236Z", - "shell.execute_reply": "2023-11-09T20:46:17.832715Z" + "iopub.execute_input": "2023-11-09T22:34:12.079954Z", + "iopub.status.busy": "2023-11-09T22:34:12.079521Z", + "iopub.status.idle": "2023-11-09T22:34:12.126641Z", + "shell.execute_reply": "2023-11-09T22:34:12.126066Z" } }, "outputs": [], @@ -439,10 +439,10 @@ "start_time": "2023-11-09T18:41:36.420048637Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:17.836806Z", - "iopub.status.busy": "2023-11-09T20:46:17.835902Z", - "iopub.status.idle": "2023-11-09T20:46:17.857669Z", - "shell.execute_reply": "2023-11-09T20:46:17.857193Z" + "iopub.execute_input": "2023-11-09T22:34:12.129454Z", + "iopub.status.busy": "2023-11-09T22:34:12.129214Z", + "iopub.status.idle": "2023-11-09T22:34:12.149275Z", + "shell.execute_reply": "2023-11-09T22:34:12.148749Z" } }, "outputs": [], @@ -473,16 +473,16 @@ "start_time": "2023-11-09T18:41:36.467019213Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:17.861110Z", - "iopub.status.busy": "2023-11-09T20:46:17.860226Z", - "iopub.status.idle": "2023-11-09T20:46:19.772921Z", - "shell.execute_reply": "2023-11-09T20:46:19.771648Z" + "iopub.execute_input": "2023-11-09T22:34:12.151523Z", + "iopub.status.busy": "2023-11-09T22:34:12.151337Z", + "iopub.status.idle": "2023-11-09T22:34:13.594159Z", + "shell.execute_reply": "2023-11-09T22:34:13.593632Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABSIAAAINCAYAAAAqdQFKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABeo0lEQVR4nO3de1hVdfr//9eOk2iwFQyQxKSGTIXKQUPUT1oeS6TGmdQoysmPWp4iT2U2pU7BaKVOksfxkxaSzncmy5oitSnMy2MYk5pjzWSeAtHCjQcCgvX7o5+rNihuYi82h+fjuvZ1DWvda+177bfEPfd+r/W2GYZhCAAAAAAAAAAsdIWnEwAAAAAAAADQ+NGIBAAAAAAAAGA5GpEAAAAAAAAALEcjEgAAAAAAAIDlaEQCAAAAAAAAsByNSAAAAAAAAACWoxEJAAAAAAAAwHI0IgEAAAAAAABYztvTCXhSRUWFvvnmGwUEBMhms3k6HQAAgBozDENnzpxReHi4rriC75gbGupRAADQ0NWkHm3SjchvvvlGERERnk4DAACg1o4ePaq2bdt6Og3UEPUoAABoLFypR5t0IzIgIEDSjx9UYGCgh7MBAACouaKiIkVERJh1DRoW6lEAANDQ1aQebdKNyAu3vwQGBlL4AQCABo3behsm6lEAANBYuFKP8iAhAAAAAAAAAJajEQkAAAAAAADAcjQiAQAAAAAAAFiORiQAAAAAAAAAy9GIBAAAAAAAAGA5GpEAAAAAAAAALOft6QQAAKisrKxM5eXlnk4DqHNeXl7y8fHxdBoAADR51KNoyqysSWlEAgDqjaKiIp06dUolJSWeTgXwGD8/P7Vu3VqBgYGeTgUAgCaHehT4kVU1KY1IAEC9UFRUpOPHj+vKK69U69at5ePjI5vN5um0gDpjGIbKysrkcDh0/PhxSaIZCQBAHaIeBayvSWlEAgDqhVOnTunKK69U27ZtKfjQZPn7+ysgIEDHjh3TqVOnaEQCAFCHqEeBH1lZk7JYDQDA48rKylRSUiK73U7RhybPZrPJbrerpKREZWVlnk4HAIAmgXoUcGZVTUojEgDgcRceBM4iHcCPLvwu8JB8AADqBvUoUJUVNSmNSABAvcG3z8CP+F0AAMAz+BsM/MSK3wcakQAAAAAAAAAsRyMSAAAAAAAAgOVoRAIAAAAAAACwHI1IAADqoa+//lo2m019+vTxdCqmPn36yGaz6euvv/Z0Kg2SzWZT+/btPZ0GAACAS6hHG5/6UI96e/TdAQBw0ahVuz2dgktWjuzm6RQAAABgAepRoPaYEQkAAAAAAADAcsyIBDwlc7hrcUnrrM0DAAA0DdQeAADAw5gRCQBAPVdUVKRHH31UERERatasmTp27KgFCxaooqLCKS43N1fTp09XbGysrrrqKvn5+enaa6/VuHHj9M0331zy/EeOHNGECRMUFRWlZs2aKTg4WLfccotSU1NVXFx82fwcDoduvfVW2Ww2paSkyDAMc99XX32lYcOGKSgoSFdeeaV69eql999/Xx999JFsNptGjhzpdK6RI0fKZrPpo48+0vvvv6/bbrtNLVu2lM1m0+nTpyVJP/zwgxYtWqTY2FhdeeWVuvLKK3XLLbdoyZIlKi8vr5Jf+/btZbPZLpq7K3ls2bJFt99+uwICAhQYGKjBgwfr888/v+j5zp07p8cff1zt2rVTs2bNdMMNN2j+/PlOnwkAAEBDQz1KPeouNCIBAKjHSkpKdPvtt+vVV1/VLbfcov79++vw4cOaPHmyRo0a5RT7pz/9SfPnz1d5ebl69uypO++8U4ZhaMmSJeratetFi78tW7boxhtv1Msvv6yKigrdddddio+P16lTpzRz5kydOHGi2vxOnDihPn366OOPP9bs2bO1cOFCs8j68ssvFRcXp//3//6fQkJCNGTIEJWXl+vOO+/U3//+92rPm5mZqTvuuEPnzp3THXfcoW7duslms6m8vFx33XWXJk2apP/85z/q16+f+vXrp3//+98aN26c7rnnnioFcW28/fbbuv322/Xdd99p4MCBatOmjd59913deuutys/Pd4otKSnRgAEDNG/ePBUXF2vIkCFq3769nnjiCU2YMMFtOQEAANQl6lHqUXfi1mwAAOqxHTt26MYbb9SXX36p1q1bS5L++9//6tZbb9WqVav0m9/8RomJiZKkMWPGaMGCBWrTpo15fEVFhZ599lk988wzeuqpp/R///d/5r7CwkL97ne/k8Ph0IIFC/Too486fVO7ZcsWtWrV6pK5ff311+rfv7/++9//atGiRVWKm0ceeUSnTp3SxIkTtXDhQl1xxY/ff7722mt64IEHqr3uFStWaO3atRo+3PlW0hdffFHvvvuuYmJitHnzZoWEhEiS8vLydNttt2n9+vVaunSpxo0bV+35XbVw4UJlZGTo3nvvlSSVl5dr+PDh+vvf/67Fixdrzpw5Zuz8+fO1bds23XLLLdq4caPsdrskac+ePbrtttvckg8AAEBdox6lHnUnZkQCAFDPvfDCC2bRJ0nXXXed/vCHP0iSXn75ZXP77bff7lT0SdIVV1yhp59+WldffbXeeustp30rVqzQyZMnlZCQoJSUlCq3i9x6661m8VLZ/v371bNnT3399dd67bXXqhR9//nPf/TBBx8oKChIaWlpZtEnScnJybr11lurvebBgwdXKfok6aWXXpL0Y0F2oeiTpDZt2uj55593inGHpKQks+iTJC8vLz355JOSfiyMf27JkiWSpAULFjh9br/+9a81fvx4t+UEAABQ16hHf0I9WjvMiAQAoB4LCgpS//79q2xPSkrSI488om3btskwDLNo+/bbb7Vhwwbt27dPp0+fNp9RU1ZWpu+++07fffedgoKCJEmbN2+WJI0dO7ZGOe3YsUPjx49XcXGx3nzzTQ0ePLhKzLZt2yRJd955p1q0aFFl/z333FOlcPq5C9+q/9yRI0d05MgRhYWF6fbbb6+yPyEhQS1bttTBgwd18uRJXXXVVTW5rIsaMGBAlW3XX3+9pB+/9f55bkePHtXVV1+tHj16VDnm3nvvVVpaWq3zAQAAqGvUoz+hHq09GpEAANRj11xzzUW3BwYGqmXLljp9+rSKiopkt9v1+uuva8yYMTp79uwlz3fmzBmz8Dt69KikH7/Rronk5GT98MMPWrdu3UWLPknm838iIiIuur9du3bVvsfF9l84Z/v27S96jM1m0zXXXKPTp0/rm2++cUvh17Zt2yrbrrzySkk/PoOncm6Xuq7LXS8AAEB9RT1a9ZzUo78ct2YDANBA/Xzlu8OHD2vkyJEqKSnRwoUL9eWXX+r8+fMyDEOGYSg+Pr7KMRdcagW/S7lwa8jTTz9d5QHZrp77cqv2NWvWrMbnrGmMpMs+SNzV81y4nkvF1/QzBgAAaAioR2v+vpU1tXq0xo3ILVu2aMiQIQoPD5fNZtObb77ptN8wDM2aNUvh4eHy9/dXnz59tH//fqeYkpISTZw4Ua1bt1aLFi2UmJioY8eOOcUUFhYqOTlZdrtddrtdycnJ5jLpFxw5ckRDhgxRixYt1Lp1a02aNEmlpaU1vSQAAOqtI0eOXHR7UVGRHA6HWrRoocDAQL377rsqLS3VpEmT9Oijj+pXv/qV/P39zfivvvqqyjkufDv8n//8p0Y5zZkzR48//rgOHjyovn37qqCgoErMhWcDXSr/C99+10R4eLgk6dChQ5eMufB+P382ka+vryRd9Jv5X5JHdbkdPnz4ovsvtR0AAKC+ox79CfVo7dW4EXnu3DnddNNNSk9Pv+j+efPmaf78+UpPT9fu3bsVFham/v3768yZM2ZMSkqK1q9fr7Vr12rr1q06e/asEhISzOcGSD8+ayA3N1dZWVnKyspSbm6ukpOTzf3l5eUaPHiwzp07p61bt2rt2rX6+9//rilTptT0kgAAqLe+/fZb89k5P/f6669Lknr06CGbzabCwkJJF7/1ZMuWLTpx4kSV7f369ZMkLV++vMZ5/elPf9K0adP0+eefq2/fvjp16pTT/gvPpXn33Xd1/vz5Ksf/7W9/q/F7tmvXTu3atVN+fr7++c9/Vtn/j3/8Q4WFherQoYPTbTAXisAvvviiyjEbN26scR4Xc80116ht27Y6fvy4tm/fXmX/2rVr3fI+AAAAdY169CfUo7VX40bkHXfcoWeffVZDhw6tss8wDC1cuFAzZ87U0KFDFR0drdWrV+v8+fPKzMyUJDkcDq1cuVIvvvii+vXrpy5duigjI0N79+41/2EfOHBAWVlZ+stf/qL4+HjFx8drxYoVeuedd3Tw4EFJPw7U559/royMDHXp0kX9+vXTiy++qBUrVqioqKg2nwkAAPXKtGnT9O2335o/Hzp0SH/84x8lSePGjZP00wOrMzIydO7cOTP2+PHjevjhhy963v/93/9V69at9fbbbys9Pb3K7Skff/yxHA7HJfOaN2+eJk+erH379qlv375OOUZFRem2227Td999pyeffNLp3GvWrFF2drarl+9k4sSJkqTHHntMJ0+eNLfn5+dr2rRpTjEX9O7dW5KUlpbm9KVnRkaGWwuyCw9ZnzJlilMtkpub67SaJAAAQENDPfoT6tHaceszIg8dOqT8/HynFX38/PzUu3dvc7WinJwclZWVOcWEh4crOjrajNm+fbvsdrvi4uLMmO7du8tutzvFREdHm1NPJWngwIEqKSlRTk7ORfMrKSlRUVGR0wsAgPqse/fuuuKKKxQVFaXf/e53SkxMVHR0tI4fP677779fd999t6QfV/Xr3LmzPvnkE/3qV7/S7373OyUkJOj6669Xq1atLrpyXlBQkP76178qICBAEydOVFRUlIYPH64hQ4bo2muv1a233mp+s30pL774olJSUvTZZ5+pX79+TvFLlixRUFCQ/vznP6tTp05KSkpSjx49lJycbBasF25TcdVjjz2mO+64Q5999pmioqI0dOhQ/eY3v9H111+vAwcO6O6779YjjzzidMz48eN11VVX6W9/+5s6deqke+65RzfffLNGjhypRx99tEbvX51p06YpLi5O27dv13XXXadhw4bpjjvuUFxcnJKSktz2PgAAAHWJetQZ9WjtuHXV7AsPCA0NDXXaHhoaat6Lnp+fL19fX7Vq1apKzIXj8/PzFRISUuX8ISEhTjGV36dVq1by9fW95INK09LSNHv27F9wZQAAT1s5spunU/AIPz8/ZWVl6cknn9Sbb76pU6dOKTIyUqNHj1ZKSooZ5+vrq48//lgzZ87Ue++9p3feeUdXX321Jk6cqKefflp33nnnRc9/2223KTc3V3PnztX777+vN998U4GBgbruuus0ZswYhYWFXTbHBQsWqLy8XIsWLVL//v21efNmtWzZUh06dNDOnTs1Y8YMbd68WW+99ZZuuukmvfPOOyosLNTixYsVHBxco8/Dy8tLGzZs0OLFi7Vq1Sq9//77kqROnTrp97//vcaOHasrrnD+njU0NFRbtmzRtGnTlJ2drePHjys2NlabNm2SzWbTggULapTDpfj5+Wnz5s2aPXu2Xn/9db311ltq3769nn32WU2ZMkVLlixxy/sAAADPoB6lHpWoR2vLZlxumaDqDrbZtH79erP7vW3bNvXs2VPffPON00M5R48eraNHjyorK0uZmZn6/e9/77TEuCT1799f1113nZYuXarU1FStXr3avA37gqioKI0aNUpPPPGExowZo8OHD5sDfoGvr69effVVjRgxokq+JSUlTu9bVFSkiIgIORwOBQYG/tKPAfhlMoe7Fpe0zto8gHrg+++/16FDhxQZGVnt6nRoPB555BEtXbpUa9eu1fDhLv73sAmpye9EUVGR7HY79UwDVafjR+0BAJdEPdr0UI9enqu/FzWpZ9x6a/aFLnXlGYkFBQXm7MWwsDCVlpZWmVpbOeZiDzE9efKkU0zl9yksLFRZWVmVmZIX+Pn5KTAw0OkFAACs8f333+vAgQNVtv/973/XX/7yF9ntdg0ePNgDmQEAAKApoB6tf9zaiIyMjFRYWJg2bdpkbistLVV2drb5LIDY2Fj5+Pg4xeTl5Wnfvn1mTHx8vBwOh3bt2mXG7Ny5Uw6Hwylm3759ysvLM2M2btwoPz8/xcbGuvOyAADAL3D69Gl16tRJHTt2VGJion7729+qU6dO+t3vfqeKigotXrxYV155pafTBAAAQCNFPVr/1PgZkWfPntV//vMf8+dDhw4pNzdXQUFBateunVJSUpSamqqoqChFRUUpNTVVzZs3Nx+KabfbNWrUKE2ZMkXBwcEKCgrS1KlTFRMTYy7b3rFjRw0aNEijR4/WsmXLJEljxoxRQkKCOnToIEkaMGCAOnXqpOTkZD3//PP67rvvNHXqVI0ePZqZjgAA1AN2u11TpkzRpk2btHXrVp05c0ZBQUG66667NHXqVPXq1cvTKQIAAKARox6tf2rciPzkk0902223mT9PnjxZkvTggw9q1apVmj59uoqLizVu3DgVFhYqLi5OGzduVEBAgHnMggUL5O3trWHDhqm4uFh9+/bVqlWr5OXlZcasWbNGkyZNMlfXTkxMVHp6urnfy8tL//jHPzRu3Dj17NlT/v7+SkpK0gsvvFDzTwEAALidv78/f5cBAADgMdSj9U+NG5F9+vRRdevb2Gw2zZo1S7NmzbpkTLNmzbRo0SItWrTokjFBQUHKyMioNpd27drpnXfeuWzOAAAAAAAAADzLrc+IBAAAAAAAAICLoREJAAAAAAAAwHI0IgEAAAAAAABYrsbPiARQxzKHuxaXtM7aPAAAAAAAAGqBGZEAAAAAAAAALEcjEgAAAAAAAIDlaEQCAAAAAAAAsByNSAAAAAAAAACWoxEJAEAD9fXXX8tms6lPnz6eTsVlH330kWw2m0aOHOnpVAAAAOAG1KSoCVbNBgA0DK6uIO9prGAPAADQOFGPArVGIxIAgAbq6quv1oEDB9S8eXNPpwIAAIAmipoUNUEjEgCABsrHx0c33HCDp9MAAABAE0ZNiprgGZEAANRDBw4cUHJysq677jo1a9ZMV111lW6++WalpKQoLy9PUvXP4ykrK9Nzzz2nX/3qV2rWrJmuvfZazZo1S2VlZWrfvr1sNptT/M+fk/Pdd9/pkUceUZs2beTn56fo6Gj93//930Xz/Mc//qGHHnpIHTt2VGBgoFq0aKGbbrpJqampKikpcfvnAgAAgLpDTQp3Y0YkAAD1zJ49e9SrVy99//33uuWWW3TLLbfozJkz+uqrr/TnP/9Zd999t9q0aXPJ4w3D0D333KO33npLAQEBuuOOO1RRUaEXX3xRubm51b736dOnFR8fL4fDoVtuuUVnz57Vli1bNGrUKFVUVOh///d/neJHjRqlc+fOqXPnzoqJiVFRUZF27dqlmTNn6oMPPtDGjRvl5eXljo8FAAAAdYiaFFagEQkAQD3z0ksvqbi4WH//+981dOhQp30HDhxQy5Ytqz1+zZo1euutt/SrX/1KW7ZsMQvEo0eP6n/+5390+PDhSx771ltv6be//a1Wr16tFi1amNvuvvtu/fGPf6xS9C1dulT9+/c3YyXpzJkzSkpK0jvvvKM1a9bogQceqMnlAwAAoB6gJoUVuDUbAIB6pqCgQJJ0++23V9nXsWPHar95ln4sxCTpj3/8o1NsRESEnnnmmWqPDQwM1PLly52KuLvuuksxMTE6cuSIvv76a6f4u+++2ylWkgICArRgwQJJPxaMAAAAaHioSWEFZkQCAFDPxMbG6r333tMDDzygp556Sl27dtUVV7j23WFZWZl2796tK664oso315J0zz336KGHHrrk8V27dlVQUFCV7ddff7327t2rvLw8tW/f3mnfl19+qXfffVf/+c9/dO7cOVVUVMgwDHMfAAAAGh5qUliBRiQAAPXMtGnTtHXrVr399tt6++23ZbfbFRcXp4SEBI0cOVIBAQGXPPbbb79VaWmp2rRpI19f3yr7r7zySrVq1UqFhYUXPb5t27YX3X7llVdKktPDvg3D0NSpU7VgwQKzyKvszJkzl8wVAAAA9Rc1KazArdkAANQzgYGB+uc//6mPP/5Y06dPV4cOHfTBBx9o0qRJ6tChg/773/9e9hyVVyD8uUsVaJc7rrJ169Zp/vz5uvrqq/W3v/1Nx48fV2lpqQzDMIvD6t4LAAAA9Rc1KaxAIxIAgHrIZrOpV69emjt3rnbu3Km8vDzde++9ysvL05NPPnnJ44KDg+Xj46P8/HyVlpZW2X/27FmdPn3aLTmuX79ekrRkyRL99re/VXh4uHx8fCRJX331lVveAwAAAJ5DTQp3oxEJAEADcNVVV2nWrFmSpL17914yzsfHR926dVNFRYVZlP3c3/72N7fldOFWmoiIiCr7/vrXv7rtfQAAAFA/UJOitmhEAgBQzyxdulSHDh2qsv29996TJLVr167a48eOHStJevrpp5Wfn29uP3bsmObMmeO2PK+//npJ0vLly51ud/n444/1/PPPu+19AAAAUPeoSWEFGpEAANQzS5cu1bXXXqvOnTvrd7/7nUaMGKEuXbooJSVF/v7+euaZZ6o9Pjk5WUOGDNEXX3yhDh06aOjQobr77rvVsWNHRUdHq127dubtKrUxadIktWjRQosXL1Z0dLTuvfde3Xrrrerdu7cefvjhWp8fAAAAnkNNCivQiAQAoJ754x//qIceekg2m00ffPCB3n77bZ0/f15jxozRZ599pvj4+GqPt9ls+tvf/qY5c+aodevW+sc//qF//etfSklJ0V//+ledOHFCwcHBtc7z+uuv1+7duzVkyBCdOnVKGzZs0NmzZ7Vs2TK+fQYasszhrr8AAI0WNSmsYDOa8NJBRUVFstvtcjgcCgwM9HQ6aGrcXbwnrXPv+YA69P333+vQoUOKjIxUs2bNPJ1Oo7Zz5051795dgwYNMm+rQf1Tk98J6pmGrU7Hz4rGIfUHgEaCerRuUZM2DK7+XtSknmFGJAAAjdDevXtVVlbmtO3rr7/WI488IklKSkryRFoAAABoQqhJUZm3pxMAAADuN23aNH3yySe66aabFBISomPHjumTTz7R999/rzvvvFP333+/p1MEAABAI0dNispoRAIA0AiNHDlSFRUV2rt3r7Zu3SpfX1/FxMQoKSlJ48ePl81m83SKAAAAaOSoSVEZjUgAABqhESNGaMSIEZ5OAwAAAE0YNSkq4xmRAAAAAAAAACxHIxIAAAAAAACA5WhEAgAAAAAAALAcjUgAQL1hGIanUwDqBX4XAADwDP4GAz+x4veBRiQAwOO8vLwkSWVlZR7OBKgfLvwuXPjdAAAA1qIeBaqyoialEQkA8DgfHx/5+fnJ4XDwLTSaPMMw5HA45OfnJx8fH0+nAwBAk0A9Cjizqib1dtuZAACohdatW+v48eM6duyY7Ha7fHx8ZLPZPJ0WUGcMw1BZWZkcDofOnj2rq6++2tMpAQDQpFCPAtbXpDQiAQD1QmBgoCTp1KlTOn78uIezATzHz89PV199tfk7AQAA6gb1KPATq2pSGpEAgHojMDBQgYGBKisrU3l5uafTAeqcl5cXt2MDAOBB1KOAtTUpjUgAQL3j4+NDMwYAAAAeQz0KWIPFagAAANCo/PDDD3rqqacUGRkpf39/XXvttZozZ44qKirMGMMwNGvWLIWHh8vf3199+vTR/v37nc5TUlKiiRMnqnXr1mrRooUSExN17Ngxp5jCwkIlJyfLbrfLbrcrOTlZp0+frovLBAAAaHBoRAIAAKBRmTt3rpYuXar09HQdOHBA8+bN0/PPP69FixaZMfPmzdP8+fOVnp6u3bt3KywsTP3799eZM2fMmJSUFK1fv15r167V1q1bdfbsWSUkJDjdqpeUlKTc3FxlZWUpKytLubm5Sk5OrtPrBQAAaCi4NRsAAACNyvbt23XXXXdp8ODBkqT27dvr9ddf1yeffCLpx9mQCxcu1MyZMzV06FBJ0urVqxUaGqrMzEyNHTtWDodDK1eu1GuvvaZ+/fpJkjIyMhQREaHNmzdr4MCBOnDggLKysrRjxw7FxcVJklasWKH4+HgdPHhQHTp08MDVAwAA1F/MiAQAAECj0qtXL33wwQf64osvJEn/+te/tHXrVt15552SpEOHDik/P18DBgwwj/Hz81Pv3r21bds2SVJOTo7KysqcYsLDwxUdHW3GbN++XXa73WxCSlL37t1lt9vNmMpKSkpUVFTk9AIAAGgqmBEJAACARuXxxx+Xw+HQDTfcIC8vL5WXl+u5557TvffeK0nKz8+XJIWGhjodFxoaqsOHD5sxvr6+atWqVZWYC8fn5+crJCSkyvuHhISYMZWlpaVp9uzZtbtAAACABopGJAAAABqVdevWKSMjQ5mZmercubNyc3OVkpKi8PBwPfjgg2aczWZzOs4wjCrbKqscc7H46s4zY8YMTZ482fy5qKhIERERLl1XvZQ53LW4pHXW5gEAABoEGpEAAABoVKZNm6YnnnhCI0aMkCTFxMTo8OHDSktL04MPPqiwsDBJP85obNOmjXlcQUGBOUsyLCxMpaWlKiwsdJoVWVBQoB49epgxJ06cqPL+J0+erDLb8gI/Pz/5+fm550IBAAAaGJ4RCQAAgEbl/PnzuuIK5zLXy8tLFRUVkqTIyEiFhYVp06ZN5v7S0lJlZ2ebTcbY2Fj5+Pg4xeTl5Wnfvn1mTHx8vBwOh3bt2mXG7Ny5Uw6Hw4wBAADAT5gRCQAAgEZlyJAheu6559SuXTt17txZn376qebPn6+HHnpI0o+3U6ekpCg1NVVRUVGKiopSamqqmjdvrqSkJEmS3W7XqFGjNGXKFAUHBysoKEhTp05VTEyMuYp2x44dNWjQII0ePVrLli2TJI0ZM0YJCQmsmA0AAHARNCIBAADQqCxatEh/+MMfNG7cOBUUFCg8PFxjx47V008/bcZMnz5dxcXFGjdunAoLCxUXF6eNGzcqICDAjFmwYIG8vb01bNgwFRcXq2/fvlq1apW8vLzMmDVr1mjSpEnm6tqJiYlKT0+vu4sFAABoQGyGYRieTsJTioqKZLfb5XA4FBgY6Ol00NS4+nB3V/EQeABokqhnGrY6HT931x41QZ0CAECjVZN6hmdEAgAAAAAAALAcjUgAAAAAAAAAlqMRCQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADL0YgEAAAAAAAAYDkakQAAAAAAAAAsRyMSAAAAAAAAgOVoRAIAAAAAAACwHI1IAAAAAAAAAJajEQkAAAAAAADAcjQiAQAAAAAAAFiORiQAAAAAAAAAy9GIBAAAAAAAAGA5b08nAAAAAKCRyxzuWlzSOmvzAAAAHkUjEgAAAED9QMMSAIBGjVuzAQAAAAAAAFiORiQAAAAAAAAAy9GIBAAAAAAAAGA5GpEAAAAAAAAALEcjEgAAAAAAAIDlaEQCAAAAAAAAsByNSAAAAAAAAACWoxEJAAAAAAAAwHI0IgEAAAAAAABYzu2NyB9++EFPPfWUIiMj5e/vr2uvvVZz5sxRRUWFGWMYhmbNmqXw8HD5+/urT58+2r9/v9N5SkpKNHHiRLVu3VotWrRQYmKijh075hRTWFio5ORk2e122e12JScn6/Tp0+6+JAAAAAAAAAC15PZG5Ny5c7V06VKlp6frwIEDmjdvnp5//nktWrTIjJk3b57mz5+v9PR07d69W2FhYerfv7/OnDljxqSkpGj9+vVau3attm7dqrNnzyohIUHl5eVmTFJSknJzc5WVlaWsrCzl5uYqOTnZ3ZcEAAAAAAAAoJa83X3C7du366677tLgwYMlSe3bt9frr7+uTz75RNKPsyEXLlyomTNnaujQoZKk1atXKzQ0VJmZmRo7dqwcDodWrlyp1157Tf369ZMkZWRkKCIiQps3b9bAgQN14MABZWVlaceOHYqLi5MkrVixQvHx8Tp48KA6dOjg7ksDAAAAUB9kDnc9NmmddXkAAIAacfuMyF69eumDDz7QF198IUn617/+pa1bt+rOO++UJB06dEj5+fkaMGCAeYyfn5969+6tbdu2SZJycnJUVlbmFBMeHq7o6GgzZvv27bLb7WYTUpK6d+8uu91uxlRWUlKioqIipxcAAAAAAAAA67l9RuTjjz8uh8OhG264QV5eXiovL9dzzz2ne++9V5KUn58vSQoNDXU6LjQ0VIcPHzZjfH191apVqyoxF47Pz89XSEhIlfcPCQkxYypLS0vT7Nmza3eBAAAAAAAAAGrM7TMi161bp4yMDGVmZmrPnj1avXq1XnjhBa1evdopzmazOf1sGEaVbZVVjrlYfHXnmTFjhhwOh/k6evSoq5cFAAAAAAAAoBbcPiNy2rRpeuKJJzRixAhJUkxMjA4fPqy0tDQ9+OCDCgsLk/TjjMY2bdqYxxUUFJizJMPCwlRaWqrCwkKnWZEFBQXq0aOHGXPixIkq73/y5Mkqsy0v8PPzk5+fn3suFAAAAAAAAIDL3D4j8vz587riCufTenl5qaKiQpIUGRmpsLAwbdq0ydxfWlqq7Oxss8kYGxsrHx8fp5i8vDzt27fPjImPj5fD4dCuXbvMmJ07d8rhcJgxAAAAAAAAAOoHt8+IHDJkiJ577jm1a9dOnTt31qeffqr58+froYcekvTj7dQpKSlKTU1VVFSUoqKilJqaqubNmyspKUmSZLfbNWrUKE2ZMkXBwcEKCgrS1KlTFRMTY66i3bFjRw0aNEijR4/WsmXLJEljxoxRQkICK2YDAAAAAAAA9YzbG5GLFi3SH/7wB40bN04FBQUKDw/X2LFj9fTTT5sx06dPV3FxscaNG6fCwkLFxcVp48aNCggIMGMWLFggb29vDRs2TMXFxerbt69WrVolLy8vM2bNmjWaNGmSubp2YmKi0tPT3X1JAAAAAAAAAGrJZhiG4ekkPKWoqEh2u10Oh0OBgYGeTgdNTeZw954vaZ17zwcAaBCoZxq2Oh0/d9ceDQU1EgAAlqpJPeP2Z0QCAAAAAAAAQGU0IgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgObevmg0AAAAA9Yari/SwqA0AAJZjRiQAAAAAAAAAy9GIBAAAAAAAAGA5GpEAAAAAAAAALEcjEgAAAAAAAIDlaEQCAAAAAAAAsByNSAAAAAAAAACWoxEJAAAAAAAAwHI0IgEAAAAAAABYztvTCQAAAACAx2UOdy0uaZ21eQAA0IgxIxIAAAAAAACA5WhEAgAAAAAAALAcjUgAAAAAAAAAlqMRCQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADL0YgEAAAAAAAAYDkakQAAAAAAAAAs5+3pBAAAAACgwcgc7lpc0jpr8wAAoAFiRiQAAAAAAAAAy9GIBAAAAAAAAGA5GpEAAAAAAAAALEcjEgAAAAAAAIDlaEQCAAAAAAAAsByNSAAAAAAAAACWoxEJAAAAAAAAwHLenk4AAAAAABqdzOGuxyatsy4PAADqEWZEAgAAAAAAALAcjUgAAAAAAAAAlqMRCQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADL0YgEAAAAAAAAYDkakQAAAAAAAAAs5+3pBAAAAACgScsc7lpc0jpr8wAAwGLMiAQAAAAAAABgORqRAAAAAAAAACxHIxIAAAAAAACA5WhEAgAAAAAAALAcjUgAAAAAAAAAlmPVbAAAAABoCFhdGwDQwDEjEgAAAAAAAIDlmBEJAAAAoMkbVTrVpbiVvi9YnAkAAI0XMyIBAADQ6Bw/flz333+/goOD1bx5c918883Kyckx9xuGoVmzZik8PFz+/v7q06eP9u/f73SOkpISTZw4Ua1bt1aLFi2UmJioY8eOOcUUFhYqOTlZdrtddrtdycnJOn36dF1cIlw0qnSqSy8AAGA9GpEAAABoVAoLC9WzZ0/5+Pjovffe0+eff64XX3xRLVu2NGPmzZun+fPnKz09Xbt371ZYWJj69++vM2fOmDEpKSlav3691q5dq61bt+rs2bNKSEhQeXm5GZOUlKTc3FxlZWUpKytLubm5Sk5OrsvLBQAAaDC4NRsAAACNyty5cxUREaFXXnnF3Na+fXvzfxuGoYULF2rmzJkaOnSoJGn16tUKDQ1VZmamxo4dK4fDoZUrV+q1115Tv379JEkZGRmKiIjQ5s2bNXDgQB04cEBZWVnasWOH4uLiJEkrVqxQfHy8Dh48qA4dOtTdRTcxnpzBaMV7c7s3AKCpYEYkAAAAGpUNGzaoa9euuueeexQSEqIuXbpoxYoV5v5Dhw4pPz9fAwYMMLf5+fmpd+/e2rZtmyQpJydHZWVlTjHh4eGKjo42Y7Zv3y673W42ISWpe/fustvtZgwAAAB+QiMSAAAAjcpXX32lJUuWKCoqSu+//74efvhhTZo0Sa+++qokKT8/X5IUGhrqdFxoaKi5Lz8/X76+vmrVqlW1MSEhIVXePyQkxIyprKSkREVFRU4vAACApoJbswEAANCoVFRUqGvXrkpNTZUkdenSRfv379eSJUv0wAMPmHE2m83pOMMwqmyrrHLMxeKrO09aWppmz57t8rUAAAA0JsyIBAAAQKPSpk0bderUyWlbx44ddeTIEUlSWFiYJFWZtVhQUGDOkgwLC1NpaakKCwurjTlx4kSV9z958mSV2ZYXzJgxQw6Hw3wdPXr0F1whAABAw0QjEgAAAI1Kz549dfDgQadtX3zxha655hpJUmRkpMLCwrRp0yZzf2lpqbKzs9WjRw9JUmxsrHx8fJxi8vLytG/fPjMmPj5eDodDu3btMmN27twph8NhxlTm5+enwMBApxcAAEBTwa3ZAAAAaFQee+wx9ejRQ6mpqRo2bJh27dql5cuXa/ny5ZJ+vJ06JSVFqampioqKUlRUlFJTU9W8eXMlJSVJkux2u0aNGqUpU6YoODhYQUFBmjp1qmJiYsxVtDt27KhBgwZp9OjRWrZsmSRpzJgxSkhIYMVs1IirK3GzujYAoKGjEQkAAIBGpVu3blq/fr1mzJihOXPmKDIyUgsXLtR9991nxkyfPl3FxcUaN26cCgsLFRcXp40bNyogIMCMWbBggby9vTVs2DAVFxerb9++WrVqlby8vMyYNWvWaNKkSebq2omJiUpPT6+7iwUAAGhAbIZhGJ5OwlOKiopkt9vlcDi4LQZ1L3O4e8+XtM695wMANAjUMw1bnY6fu2sPD3J1BmFj4/KMSOpCAEAdqkk9w4xIAAAAAPVCU20wusrlW7gtzgMAgF+KxWoAAAAAAAAAWI5GJAAAAAAAAADL0YgEAAAAAAAAYDkakQAAAAAAAAAsRyMSAAAAAAAAgOVoRAIAAAAAAACwHI1IAAAAAAAAAJajEQkAAAAAAADAcjQiAQAAAAAAAFiORiQAAAAAAAAAy9GIBAAAAAAAAGA5GpEAAAAAAAAALEcjEgAAAAAAAIDlvD2dANDoZA73dAYAAABoylytR5PWWZsHAACVMCMSAAAAAAAAgOUsaUQeP35c999/v4KDg9W8eXPdfPPNysnJMfcbhqFZs2YpPDxc/v7+6tOnj/bv3+90jpKSEk2cOFGtW7dWixYtlJiYqGPHjjnFFBYWKjk5WXa7XXa7XcnJyTp9+rQVlwQAAAAAAACgFtzeiCwsLFTPnj3l4+Oj9957T59//rlefPFFtWzZ0oyZN2+e5s+fr/T0dO3evVthYWHq37+/zpw5Y8akpKRo/fr1Wrt2rbZu3aqzZ88qISFB5eXlZkxSUpJyc3OVlZWlrKws5ebmKjk52d2XBAAAAAAAAKCW3P6MyLlz5yoiIkKvvPKKua19+/bm/zYMQwsXLtTMmTM1dOhQSdLq1asVGhqqzMxMjR07Vg6HQytXrtRrr72mfv36SZIyMjIUERGhzZs3a+DAgTpw4ICysrK0Y8cOxcXFSZJWrFih+Ph4HTx4UB06dHD3pQEAAAAAAAD4hdw+I3LDhg3q2rWr7rnnHoWEhKhLly5asWKFuf/QoUPKz8/XgAEDzG1+fn7q3bu3tm3bJknKyclRWVmZU0x4eLiio6PNmO3bt8tut5tNSEnq3r277Ha7GVNZSUmJioqKnF4AAAAAAAAArOf2GZFfffWVlixZosmTJ+vJJ5/Url27NGnSJPn5+emBBx5Qfn6+JCk0NNTpuNDQUB0+fFiSlJ+fL19fX7Vq1apKzIXj8/PzFRISUuX9Q0JCzJjK0tLSNHv27FpfIwAAAADXjSqd6ukUAABAPeD2GZEVFRX69a9/rdTUVHXp0kVjx47V6NGjtWTJEqc4m83m9LNhGFW2VVY55mLx1Z1nxowZcjgc5uvo0aOuXhYAAAAAAACAWnB7I7JNmzbq1KmT07aOHTvqyJEjkqSwsDBJqjJrsaCgwJwlGRYWptLSUhUWFlYbc+LEiSrvf/LkySqzLS/w8/NTYGCg0wsAAAAAAACA9dx+a3bPnj118OBBp21ffPGFrrnmGklSZGSkwsLCtGnTJnXp0kWSVFpaquzsbM2dO1eSFBsbKx8fH23atEnDhg2TJOXl5Wnfvn2aN2+eJCk+Pl4Oh0O7du3SLbfcIknauXOnHA6HevTo4e7LAgAAAIDGJXO467FJ66zLAwDQZLi9EfnYY4+pR48eSk1N1bBhw7Rr1y4tX75cy5cvl/Tj7dQpKSlKTU1VVFSUoqKilJqaqubNmyspKUmSZLfbNWrUKE2ZMkXBwcEKCgrS1KlTFRMTY66i3bFjRw0aNEijR4/WsmXLJEljxoxRQkICK2YDAAAAaLJcfSbnSt8XLM4EAABnbm9EduvWTevXr9eMGTM0Z84cRUZGauHChbrvvvvMmOnTp6u4uFjjxo1TYWGh4uLitHHjRgUEBJgxCxYskLe3t4YNG6bi4mL17dtXq1atkpeXlxmzZs0aTZo0yVxdOzExUenp6e6+JAAAAAAAAAC1ZDMMw/B0Ep5SVFQku90uh8PB8yLhPjW5xcWduF0GAJok6pmGrU7Hz1M1ilg1u76q0YxIak0AwCXUpJ5x+2I1AAAAAAAAAFCZ22/NBgAAANA0MNMRAADUBDMiAQAAAAAAAFiOGZEAAAAA0ATVZEbrSgvzAAA0HcyIBAAAAAAAAGA5GpEAAAAAAAAALEcjEgAAAAAAAIDlaEQCAAAAAAAAsByNSAAAAAAAAACWoxEJAAAAAAAAwHI0IgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORqRAAAAAAAAACxHIxIAAAAAAACA5WhEAgAAAAAAALAcjUgAAAAAAAAAlvP2dAIAAAAA6o9RpVM9nQIAAGikaETWkVGrdrsUt3JkN4szAQAAAIAayhzuWlzSOmvzAAA0aDQigcbC1eJQokAEAAAAAAB1jmdEAgAAAAAAALAcjUgAAAAAAAAAlqMRCQAAAAAAAMByNCIBAAAAAAAAWI7FagAAAAAA1RpVOtWluJUW5wEAaNiYEQkAAAAAAADAcsyIrGdGrdrtUtzKkd0szgQAAAAAAABwH2ZEAgAAAAAAALAcMyIBAACAJsDVZ/wBAABYhRmRAAAAAAAAACxHIxIAAAAAAACA5WhEAgAAAAAAALAcz4gEAAAAALhH5nDX4pLWWZsHAKBeYkYkAAAAAAAAAMvRiAQAAAAAAABgORqRAAAAAAAAACxHIxIAAAAAAACA5WhEAgAAAAAAALAcq2Y3UKNW7XYpbuXIbhZnAgAAAAA/GlU61aW4lRbnAQCon5gRCQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADL0YgEAAAAAAAAYDkakQAAAAAAAAAsRyMSAAAAAAAAgOVoRAIAAAAAAACwnLenE4C1Rq3a7XLsypHdLMwEAAAAAAAATRkzIgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORqRAAAAAAAAACzHYjUwubqwDYvaAAAAAAAAoKaYEQkAAAAAAADAcsyIBAAAAADUrczhrsUlrbM2DwBAnWJGJAAAAAAAAADL0YgEAAAAAAAAYDkakQAAAAAAAAAsRyMSAAAAjVpaWppsNptSUlLMbYZhaNasWQoPD5e/v7/69Omj/fv3Ox1XUlKiiRMnqnXr1mrRooUSExN17Ngxp5jCwkIlJyfLbrfLbrcrOTlZp0+froOrAhq2UaVTXXoBABoXGpEAAABotHbv3q3ly5frxhtvdNo+b948zZ8/X+np6dq9e7fCwsLUv39/nTlzxoxJSUnR+vXrtXbtWm3dulVnz55VQkKCysvLzZikpCTl5uYqKytLWVlZys3NVXJycp1dHwAAQEPCqtmosVGrdrsUt3JkN4szAQAAuLSzZ8/qvvvu04oVK/Tss8+a2w3D0MKFCzVz5kwNHTpUkrR69WqFhoYqMzNTY8eOlcPh0MqVK/Xaa6+pX79+kqSMjAxFRERo8+bNGjhwoA4cOKCsrCzt2LFDcXFxkqQVK1YoPj5eBw8eVIcOHer+ogEAAOoxZkQCAACgURo/frwGDx5sNhIvOHTokPLz8zVgwABzm5+fn3r37q1t27ZJknJyclRWVuYUEx4erujoaDNm+/btstvtZhNSkrp37y673W7GVFZSUqKioiKnFwAAQFPBjEgAAAA0OmvXrtWePXu0e3fVOzny8/MlSaGhoU7bQ0NDdfjwYTPG19dXrVq1qhJz4fj8/HyFhIRUOX9ISIgZU1laWppmz55d8wsCAABoBJgRCQAAgEbl6NGjevTRR5WRkaFmzZpdMs5mszn9bBhGlW2VVY65WHx155kxY4YcDof5Onr0aLXvBwAA0JjQiAQAAECjkpOTo4KCAsXGxsrb21ve3t7Kzs7WSy+9JG9vb3MmZOVZiwUFBea+sLAwlZaWqrCwsNqYEydOVHn/kydPVplteYGfn58CAwOdXgAAAE0FjUgAAAA0Kn379tXevXuVm5trvrp27ar77rtPubm5uvbaaxUWFqZNmzaZx5SWlio7O1s9evSQJMXGxsrHx8cpJi8vT/v27TNj4uPj5XA4tGvXLjNm586dcjgcZgwAAAB+wjMiAQAA0KgEBAQoOjraaVuLFi0UHBxsbk9JSVFqaqqioqIUFRWl1NRUNW/eXElJSZIku92uUaNGacqUKQoODlZQUJCmTp2qmJgYc/Gbjh07atCgQRo9erSWLVsmSRozZowSEhJYMRsAAOAiaEQCAACgyZk+fbqKi4s1btw4FRYWKi4uThs3blRAQIAZs2DBAnl7e2vYsGEqLi5W3759tWrVKnl5eZkxa9as0aRJk8zVtRMTE5Wenl7n1wMAANAQ0IgEAABAo/fRRx85/Wyz2TRr1izNmjXrksc0a9ZMixYt0qJFiy4ZExQUpIyMDDdlCQAA0LjxjEgAAAAAAAAAlqMRCQAAAAAAAMByNCIBAAAAAAAAWI5nRAIAAAAA6qfM4a7HJq2zLg8AgFvQiIRlRq3a7VLcypHdLM4EAAAAAAAAnkYjEgAAAABQL40qnepy7EoL8wAAuAfPiAQAAAAAAABgOcsbkWlpabLZbEpJSTG3GYahWbNmKTw8XP7+/urTp4/279/vdFxJSYkmTpyo1q1bq0WLFkpMTNSxY8ecYgoLC5WcnCy73S673a7k5GSdPn3a6ksCAAAAAAAAUEOW3pq9e/duLV++XDfeeKPT9nnz5mn+/PlatWqVrr/+ej377LPq37+/Dh48qICAAElSSkqK3n77ba1du1bBwcGaMmWKEhISlJOTIy8vL0lSUlKSjh07pqysLEnSmDFjlJycrLffftvKy4KbufosSYnnSQIAAAAAADRUls2IPHv2rO677z6tWLFCrVq1MrcbhqGFCxdq5syZGjp0qKKjo7V69WqdP39emZmZkiSHw6GVK1fqxRdfVL9+/dSlSxdlZGRo79692rx5syTpwIEDysrK0l/+8hfFx8crPj5eK1as0DvvvKODBw9adVkAAAAAAAAAfgHLGpHjx4/X4MGD1a9fP6fthw4dUn5+vgYMGGBu8/PzU+/evbVt2zZJUk5OjsrKypxiwsPDFR0dbcZs375ddrtdcXFxZkz37t1lt9vNmMpKSkpUVFTk9AIAAAAAAABgPUtuzV67dq327Nmj3bur3nKbn58vSQoNDXXaHhoaqsOHD5sxvr6+TjMpL8RcOD4/P18hISFVzh8SEmLGVJaWlqbZs2fX/IIAAAAAAAAA1IrbG5FHjx7Vo48+qo0bN6pZs2aXjLPZbE4/G4ZRZVtllWMuFl/deWbMmKHJkyebPxcVFSkiIqLa90T94urzJHmWJAAAAAAAQP3i9luzc3JyVFBQoNjYWHl7e8vb21vZ2dl66aWX5O3tbc6ErDxrsaCgwNwXFham0tJSFRYWVhtz4sSJKu9/8uTJKrMtL/Dz81NgYKDTCwAAAAAAAID13N6I7Nu3r/bu3avc3Fzz1bVrV913333Kzc3Vtddeq7CwMG3atMk8prS0VNnZ2erRo4ckKTY2Vj4+Pk4xeXl52rdvnxkTHx8vh8OhXbt2mTE7d+6Uw+EwYwAAAAAAAADUD26/NTsgIEDR0dFO21q0aKHg4GBze0pKilJTUxUVFaWoqCilpqaqefPmSkpKkiTZ7XaNGjVKU6ZMUXBwsIKCgjR16lTFxMSYi9907NhRgwYN0ujRo7Vs2TJJ0pgxY5SQkKAOHTq4+7IAAAAAAAAA1IIli9VczvTp01VcXKxx48apsLBQcXFx2rhxowICAsyYBQsWyNvbW8OGDVNxcbH69u2rVatWycvLy4xZs2aNJk2aZK6unZiYqPT09Dq/HgAAAAAAAADVsxmGYXg6CU8pKiqS3W6Xw+Gw/HmRri6yAvdw+2I1mcPdez5PS1rn6QwAAG5Sl/UM3I96FHAfFqwEAM+oST3j9mdEAgAAAAAAAEBlHrk1G7CcqzMYmRkIAAAAAABQJ2hEolEaVTrVpbiVFucBAAAAAACAH3FrNgAAAAAAAADL0YgEAAAAAAAAYDkakQAAAAAAAAAsRyMSAAAAAAAAgOVYrAYAAAAA0PBlDnctLmmdtXkAAC6JRiQAAAAAoMEbVTrVpbiVFucBALg0bs0GAAAAAAAAYDkakQAAAAAAAAAsRyMSAAAAAAAAgOV4RiSaNlcfaA0AAAAAAIBaoRGJJs3lB1r7vmBxJgAAAAAAAI0bt2YDAAAAAAAAsByNSAAAAAAAAACWoxEJAAAAAAAAwHI0IgEAAAAAAABYjkYkAAAAAAAAAMuxajbgAldX15ZYYRsAAAAAAOBimBEJAAAAAAAAwHI0IgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORqRAAAAAAAAACzHqtmAm9VkhW1XsAo3AAAA4EaZw12LS1pnbR4A0AQxIxIAAAAAAACA5ZgRCTRFfAsMAACAJsrVO5hWWpwHADRFzIgEAAAAAAAAYDkakQAAAAAAAAAsRyMSAAAAAAAAgOVoRAIAAAAAAACwHIvVAPWcyw/T9n3B4kwAAAAAAAB+OWZEAgAAAAAAALAcjUgAAAAAAAAAlqMRCQAAAAAAAMByPCMSAAAAAIDKMoe7Fpe0zto8AKARoREJAAAAAEAlLi8aaXEeANCYcGs2AAAAAAAAAMsxIxJoJFz9xlaSVvq+YGEmAAAAAAAAVTEjEgAAAAAAAIDlaEQCAAAAAAAAsByNSAAAAAAAAACW4xmRQBPECoAAAAAAAKCuMSMSAAAAAAAAgOWYEQng0jKHuxaXtM7aPAAAAAAAQINHIxLAJXELNwAAAAAAcBduzQYAAAAAAABgORqRAAAAAAAAACxHIxIAAAAAAACA5WhEAgAAAAAAALAcjUgAAAAAAAAAlqMRCQAAAAAAAMBy3p5OAEDDN2rVbpfiVo7sZnEmAAAAQB3LHO56bNI66/IAgAaARiQAAAAAAL/QqNKpLseutDAPAGgIuDUbAAAAAAAAgOWYEQmgzrh6C7fEbdwAAAAAADQ2zIgEAAAAAAAAYDkakQAAAAAAAAAsRyMSAAAAAAAAgOVoRAIAAAAAAACwHIvVAKiXXF3YhkVtAAAAAABoGJgRCQAAAAAAAMByNCIBAAAAAAAAWI5bswEAAAAAqAuZw12LS1pnbR4A4CE0IgE0aDxLEgBQWVpamt544w39+9//lr+/v3r06KG5c+eqQ4cOZoxhGJo9e7aWL1+uwsJCxcXF6eWXX1bnzp3NmJKSEk2dOlWvv/66iouL1bdvXy1evFht27Y1YwoLCzVp0iRt2LBBkpSYmKhFixapZcuWdXa9ABqOUaVTXYpbaXEeAOAp3JoNAACARiU7O1vjx4/Xjh07tGnTJv3www8aMGCAzp07Z8bMmzdP8+fPV3p6unbv3q2wsDD1799fZ86cMWNSUlK0fv16rV27Vlu3btXZs2eVkJCg8vJyMyYpKUm5ubnKyspSVlaWcnNzlZycXKfXCwAA0FAwIxIAAACNSlZWltPPr7zyikJCQpSTk6Nbb71VhmFo4cKFmjlzpoYOHSpJWr16tUJDQ5WZmamxY8fK4XBo5cqVeu2119SvXz9JUkZGhiIiIrR582YNHDhQBw4cUFZWlnbs2KG4uDhJ0ooVKxQfH6+DBw86zcAEAAAAMyIBAADQyDkcDklSUFCQJOnQoUPKz8/XgAEDzBg/Pz/17t1b27ZtkyTl5OSorKzMKSY8PFzR0dFmzPbt22W3280mpCR1795ddrvdjKmspKRERUVFTi8AAICmghmRAJoEniUJAE2TYRiaPHmyevXqpejoaElSfn6+JCk0NNQpNjQ0VIcPHzZjfH191apVqyoxF47Pz89XSEhIlfcMCQkxYypLS0vT7Nmza3dRAAAADRQzIgEAANBoTZgwQZ999plef/31KvtsNpvTz4ZhVNlWWeWYi8VXd54ZM2bI4XCYr6NHj7pyGQAAAI0CMyIB4GdcnTkpMXsSAOq7iRMnasOGDdqyZYvTStdhYWGSfpzR2KZNG3N7QUGBOUsyLCxMpaWlKiwsdJoVWVBQoB49epgxJ06cqPK+J0+erDLb8gI/Pz/5+fnV/uIAAAAaIGZEAgAAoFExDEMTJkzQG2+8oX/+85+KjIx02h8ZGamwsDBt2rTJ3FZaWqrs7GyzyRgbGysfHx+nmLy8PO3bt8+MiY+Pl8Ph0K5du8yYnTt3yuFwmDEAAAD4CTMiAQAA0KiMHz9emZmZeuuttxQQEGA+r9Fut8vf3182m00pKSlKTU1VVFSUoqKilJqaqubNmyspKcmMHTVqlKZMmaLg4GAFBQVp6tSpiomJMVfR7tixowYNGqTRo0dr2bJlkqQxY8YoISGBFbMBAAAuwu2NyLS0NL3xxhv697//LX9/f/Xo0UNz5851KsYMw9Ds2bO1fPlyFRYWKi4uTi+//LI6d+5sxpSUlGjq1Kl6/fXXVVxcrL59+2rx4sVOt9UUFhZq0qRJ2rBhgyQpMTFRixYtUsuWLd19WQBQBQvgAED9tGTJEklSnz59nLa/8sorGjlypCRp+vTpKi4u1rhx48x6dOPGjQoICDDjFyxYIG9vbw0bNsysR1etWiUvLy8zZs2aNZo0aZK5unZiYqLS09OtvUAAAIAGymYYhuHOEw4aNEgjRoxQt27d9MMPP2jmzJnau3evPv/8c7Vo0UKSNHfuXD333HNatWqVrr/+ej377LPasmWLDh48aBZ/jzzyiN5++22tWrVKwcHBmjJlir777jvl5OSYxd8dd9yhY8eOafny5ZJ+/Aa6ffv2evvtt13KtaioSHa7XQ6HQ4GBge78GKqoyXPnADQuNCIBWKku6xm4H/UogIuhfgTQkNSknnH7jMisrCynn1955RWFhIQoJydHt956qwzD0MKFCzVz5kwNHTpUkrR69WqFhoYqMzNTY8eOlcPh0MqVK/Xaa6+Zt75kZGQoIiJCmzdv1sCBA3XgwAFlZWVpx44diouLkyStWLFC8fHxOnjwILfDAAAAAAAAAPWI5YvVOBwOSVJQUJAk6dChQ8rPzzdvX5F+XD2wd+/e2rZtmyQpJydHZWVlTjHh4eGKjo42Y7Zv3y673W42ISWpe/fustvtZkxlJSUlKioqcnoBAAAAAAAAsJ6ljUjDMDR58mT16tVL0dHRkmQ+LDw0NNQpNjQ01NyXn58vX19ftWrVqtqYkJCQKu8ZEhJixlSWlpYmu91uviIiImp3gQAAAAAAAABcYumq2RMmTNBnn32mrVu3Vtlns9mcfjYMo8q2yirHXCy+uvPMmDFDkydPNn8uKiqiGQnAcixqAwAAAACAhTMiJ06cqA0bNujDDz90Wuk6LCxMkqrMWiwoKDBnSYaFham0tFSFhYXVxpw4caLK+548ebLKbMsL/Pz8FBgY6PQCAAAAAAAAYD23NyINw9CECRP0xhtv6J///KciIyOd9kdGRiosLEybNm0yt5WWlio7O1s9evSQJMXGxsrHx8cpJi8vT/v27TNj4uPj5XA4tGvXLjNm586dcjgcZgwAAAAAAACA+sHtt2aPHz9emZmZeuuttxQQEGDOfLTb7fL395fNZlNKSopSU1MVFRWlqKgopaamqnnz5kpKSjJjR40apSlTpig4OFhBQUGaOnWqYmJizFW0O3bsqEGDBmn06NFatmyZJGnMmDFKSEhgxWwADRK3cAMAAAAAGjO3NyKXLFkiSerTp4/T9ldeeUUjR46UJE2fPl3FxcUaN26cCgsLFRcXp40bNyogIMCMX7Bggby9vTVs2DAVFxerb9++WrVqlby8vMyYNWvWaNKkSebq2omJiUpPT3f3JQEAAAAAAACoJZthGIank/CUoqIi2e12ORwOy58X6epMJwC4HGZEAvi5uqxn4H7UowAuhnoPQENSk3rG0lWzAQAAAABAzfDIHgCNlWWrZgMAAAAAAADABTQiAQAAAAAAAFiORiQAAAAAAAAAy/GMSABoYKxYbIDnCwEAAAAArEYjEgDAA9EBAAAAAJbj1mwAAAAAAAAAlqMRCQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADL0YgEAAAAAAAAYDlWzQYAuIzVtQEAAAAAvxSNSAAAAAAAGqLM4a7FJa2zNg8AcBGNSACA27k6c1Ji9iQAAMAvNap0qktxKy3OAwBcxTMiAQAAAAAAAFiORiQAAAAAAAAAy9GIBAAAAAAAAGA5nhEJAPAoVuIGAAAAgKaBRiQAoEGgYQkAAAAADRu3ZgMAAAAAAACwHI1IAAAAAAAAAJajEQkAAAAAAADAcjwjEgDQqPAsSQAAAACon2hEAgCaJFcblhJNSwAAAABwB27NBgAAAAAAAGA5ZkQCAHAZ3O4NAAAAALVHIxIAAAAAgEaMR9IAqC9oRAIA4CY1KfJdwf8RAAAAANCY8IxIAAAAAAAAAJajEQkAAAAAAADAcjQiAQAAAAAAAFiORiQAAAAAAAAAy7FYDQAA9ZS7F7+RWAAHAABUz9X6g5oCwC/BjEgAAAAAAAAAlqMRCQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADLsVgNAABNCA+gBwAAAOApNCIBAEAVNCwBAAAAuBuNSAAA8Iu52rCsCZqbAADUf3xpCeCX4BmRAAAAAAAAACxHIxIAAAAAAACA5bg1GwAA1Cvuvt2bW8IAAACA+oEZkQAAAAAAAAAsRyMSAAAAAAAAgOW4NRsAADRqNbnVm9u4AQAAAOvQiAQAAPj/udq0pGEJAAAA1ByNSAAAgBqiYQkAAADUHI1IAAAAAABgCb68A/BzLFYDAAAAAAAAwHI0IgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORqRAAAAAAAAACxHIxIAAAAAAACA5bw9nQAAAAAAAGjaRq3a7XLsypHdLMwEgJWYEQkAAAAAAADAcjQiAQAAAAAAAFiORiQAAAAAAAAAy9GIBAAAAAAAAGA5FqsBAAAAAAANhqsL27CoDVD/MCMSAAAAAAAAgOVoRAIAAAAAAACwHLdmAwAAAACARodbuIH6hxmRAAAAAAAAACxHIxIAAAAAAACA5WhEAgAAAAAAALAcz4gEAAAAAABNFs+SBOoOMyIBAAAAAAAAWI5GJAAAAAAAAADLcWs2AAAAAADAZbh6C7fEbdzApTAjEgAAAAAAAIDlmBEJAAAAAADgRiyAA1wcMyIBAAAAAAAAWI4ZkQAAAAAAAB7AzEk0NQ2+Ebl48WI9//zzysvLU+fOnbVw4UL9z//8j6fTAgAAQBNCTQoAsBINSzQWDboRuW7dOqWkpGjx4sXq2bOnli1bpjvuuEOff/652rVr5+n0AAAA0ARQkwIA6gtW9kZ9ZzMMw/B0Er9UXFycfv3rX2vJkiXmto4dO+ruu+9WWlraZY8vKiqS3W6Xw+FQYGCglanW6D8GAACgcaiLAr8u6xlcXG1qUupRAEBjQWOz6apJPdNgZ0SWlpYqJydHTzzxhNP2AQMGaNu2bRc9pqSkRCUlJebPDodD0o8fmNVKi89a/h4AAKB+qYsa48J7NODvlhu0mtak1KMAgMYqecmHnk7BbV6+L9bTKTQoNalHG2wj8tSpUyovL1doaKjT9tDQUOXn51/0mLS0NM2ePbvK9oiICEtyBAAATVvGuLp7rzNnzshut9fdG0JSzWtS6lEAAOq/uqzhGhNX6tEG24i8wGazOf1sGEaVbRfMmDFDkydPNn+uqKjQd999p+Dg4Ese4w5FRUWKiIjQ0aNHuWWqHmFc6i/Gpn5iXOovxqZ+qqtxMQxDZ86cUXh4uGXvgctztSalHm2Y+Pxqh8+vdvj8aofPr3b4/GqnqXx+NalHG2wjsnXr1vLy8qryTXNBQUGVb6Qv8PPzk5+fn9O2li1bWpViFYGBgY36H15DxbjUX4xN/cS41F+MTf1UF+PCTEjPqWlNSj3asPH51Q6fX+3w+dUOn1/t8PnVTlP4/FytR6+wOA/L+Pr6KjY2Vps2bXLavmnTJvXo0cNDWQEAAKApoSYFAABwXYOdESlJkydPVnJysrp27ar4+HgtX75cR44c0cMPP+zp1AAAANBEUJMCAAC4pkE3IocPH65vv/1Wc+bMUV5enqKjo/Xuu+/qmmuu8XRqTvz8/PTMM89UuQ0HnsW41F+MTf3EuNRfjE39xLg0HQ2hJuXfY+3w+dUOn1/t8PnVDp9f7fD51Q6fX1U2w5W1tQEAAAAAAACgFhrsMyIBAAAAAAAANBw0IgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORqRLpg1a5ZsNpvTKywszNxvGIZmzZql8PBw+fv7q0+fPtq/f7/TOUpKSjRx4kS1bt1aLVq0UGJioo4dO+YUU1hYqOTkZNntdtntdiUnJ+v06dN1cYkNVnVjU1ZWpscff1wxMTFq0aKFwsPD9cADD+ibb75xOgdj436X+535ubFjx8pms2nhwoVO2xkX93NlXA4cOKDExETZ7XYFBASoe/fuOnLkiLmfcbHG5cbm7NmzmjBhgtq2bSt/f3917NhRS5YscToHY2ON48eP6/7771dwcLCaN2+um2++WTk5OeZ+agA0FIsXL1ZkZKSaNWum2NhYffzxx55OqUFIS0tTt27dFBAQoJCQEN199906ePCgp9NqkNLS0mSz2ZSSkuLpVBqUy/0dwsX98MMPeuqppxQZGSl/f39de+21mjNnjioqKjydWr21ZcsWDRkyROHh4bLZbHrzzTed9rtS8zRl1X1+rvYmmgoakS7q3Lmz8vLyzNfevXvNffPmzdP8+fOVnp6u3bt3KywsTP3799eZM2fMmJSUFK1fv15r167V1q1bdfbsWSUkJKi8vNyMSUpKUm5urrKyspSVlaXc3FwlJyfX6XU2RJcam/Pnz2vPnj36wx/+oD179uiNN97QF198ocTERKfjGRtrVPc7c8Gbb76pnTt3Kjw8vMo+xsUa1Y3Lf//7X/Xq1Us33HCDPvroI/3rX//SH/7wBzVr1syMYVysU93YPPbYY8rKylJGRoYOHDigxx57TBMnTtRbb71lxjA27ldYWKiePXvKx8dH7733nj7//HO9+OKLatmypRlDDYCGYN26dUpJSdHMmTP16aef6n/+5390xx13OH3RhIvLzs7W+PHjtWPHDm3atEk//PCDBgwYoHPnznk6tQZl9+7dWr58uW688UZPp9KguPJ3CBc3d+5cLV26VOnp6Tpw4IDmzZun559/XosWLfJ0avXWuXPndNNNNyk9Pf2i+12peZqy6j4/V3sTTYaBy3rmmWeMm2666aL7KioqjLCwMONPf/qTue3777837Ha7sXTpUsMwDOP06dOGj4+PsXbtWjPm+PHjxhVXXGFkZWUZhmEYn3/+uSHJ2LFjhxmzfft2Q5Lx73//24KrahyqG5uL2bVrlyHJOHz4sGEYjI1VXBmXY8eOGVdffbWxb98+45prrjEWLFhg7mNcrHG5cRk+fLhx//33X3I/42Kdy41N586djTlz5jht+/Wvf2089dRThmEwNlZ5/PHHjV69el1yPzUAGopbbrnFePjhh5223XDDDcYTTzzhoYwaroKCAkOSkZ2d7elUGowzZ84YUVFRxqZNm4zevXsbjz76qKdTajAu93cIlzZ48GDjoYcecto2dOjQamtd/ESSsX79evNnV2oe/KTy53cxlXsTTQkzIl305ZdfKjw8XJGRkRoxYoS++uorSdKhQ4eUn5+vAQMGmLF+fn7q3bu3tm3bJknKyclRWVmZU0x4eLiio6PNmO3bt8tutysuLs6M6d69u+x2uxmDi7vU2FyMw+GQzWYzv0VkbKxT3bhUVFQoOTlZ06ZNU+fOnascy7hY51LjUlFRoX/84x+6/vrrNXDgQIWEhCguLs7plgLGxVrV/c706tVLGzZs0PHjx2UYhj788EN98cUXGjhwoCTGxiobNmxQ165ddc899ygkJERdunTRihUrzP3UAGgISktLlZOT4/RvUJIGDBjAv69fwOFwSJKCgoI8nEnDMX78eA0ePFj9+vXzdCoNzuX+DuHSevXqpQ8++EBffPGFJOlf//qXtm7dqjvvvNPDmTVMrtQ8qJnKvYmmhEakC+Li4vTqq6/q/fff14oVK5Sfn68ePXro22+/VX5+viQpNDTU6ZjQ0FBzX35+vnx9fdWqVatqY0JCQqq8d0hIiBmDqqobm8q+//57PfHEE0pKSlJgYKAkxsYqlxuXuXPnytvbW5MmTbro8YyLNaobl4KCAp09e1Z/+tOfNGjQIG3cuFG/+c1vNHToUGVnZ0tiXKx0ud+Zl156SZ06dVLbtm3l6+urQYMGafHixerVq5ckxsYqX331lZYsWaKoqCi9//77evjhhzVp0iS9+uqrkkQNgAbh1KlTKi8vr/bfKVxjGIYmT56sXr16KTo62tPpNAhr167Vnj17lJaW5ulUGqTL/R3CpT3++OO69957dcMNN8jHx0ddunRRSkqK7r33Xk+n1iC5UvPAdRfrTTQl3p5OoCG44447zP8dExOj+Ph4XXfddVq9erW6d+8uSbLZbE7HGIZRZVtllWMuFu/KeZqy6sZm8uTJ5r6ysjKNGDFCFRUVWrx48WXPy9jUTnXj0rt3b/35z3/Wnj17avz5MS61U924jBgxQpJ011136bHHHpMk3Xzzzdq2bZuWLl2q3r17X/K8jEvtXe6/ZS+99JJ27NihDRs26JprrtGWLVs0btw4tWnTptoZJoxN7VRUVKhr165KTU2VJHXp0kX79+/XkiVL9MADD5hx1ABoCH7Jv1M4mzBhgj777DNt3brV06k0CEePHtWjjz6qjRs3Oj1vGq5z9e8Qqlq3bp0yMjKUmZmpzp07Kzc3VykpKQoPD9eDDz7o6fQaLP6W1F5NexONETMif4EWLVooJiZGX375pbmqaeVvAQoKCsxvC8LCwlRaWqrCwsJqY06cOFHlvU6ePFnlWwdc2s/H5oKysjINGzZMhw4d0qZNm5y+cWBs6sbPx+Xjjz9WQUGB2rVrJ29vb3l7e+vw4cOaMmWK2rdvL4lxqSs/H5fWrVvL29tbnTp1corp2LGjuZgB41J3fj42xcXFevLJJzV//nwNGTJEN954oyZMmKDhw4frhRdekMTYWKVNmzaX/Z2QqAFQv7Vu3VpeXl7V/jvF5U2cOFEbNmzQhx9+qLZt23o6nQYhJydHBQUFio2NNWu+7OxsvfTSS/L29nZasAsXd7m/Q7i0adOm6YknntCIESMUExOj5ORkPfbYY8zO/YVcqXlwedX1JpoSGpG/QElJiQ4cOKA2bdooMjJSYWFh2rRpk7m/tLRU2dnZ6tGjhyQpNjZWPj4+TjF5eXnat2+fGRMfHy+Hw6Fdu3aZMTt37pTD4TBjcHk/Hxvpp1/0L7/8Ups3b1ZwcLBTPGNTN34+LsnJyfrss8+Um5trvsLDwzVt2jS9//77khiXuvLzcfH19VW3bt108OBBp5gvvvhC11xzjSTGpS79fGzKyspUVlamK65w/pPt5eWliooKSYyNVXr27Fnt7wQ1ABoCX19fxcbGOv0blKRNmzbx78sFhmFowoQJeuONN/TPf/5TkZGRnk6pwejbt6/27t3rVPN17dpV9913n3Jzc+Xl5eXpFOu9y/0dwqWdP3++2toJNeNKzYPqXa430aTU8eI4DdKUKVOMjz76yPjqq6+MHTt2GAkJCUZAQIDx9ddfG4ZhGH/6058Mu91uvPHGG8bevXuNe++912jTpo1RVFRknuPhhx822rZta2zevNnYs2ePcfvttxs33XST8cMPP5gxgwYNMm688UZj+/btxvbt242YmBgjISGhzq+3IalubMrKyozExESjbdu2Rm5urpGXl2e+SkpKzHMwNu53ud+Zyiqvmm0YjIsVLjcub7zxhuHj42MsX77c+PLLL41FixYZXl5exscff2yeg3GxxuXGpnfv3kbnzp2NDz/80Pjqq6+MV155xWjWrJmxePFi8xyMjfvt2rXL8Pb2Np577jnjyy+/NNasWWM0b97cyMjIMGOoAdAQrF271vDx8TFWrlxpfP7550ZKSorRokWLS/5dxk8eeeQRw263Gx999JFTLXn+/HlPp9YgsWp2zbjydwgX9+CDDxpXX3218c477xiHDh0y3njjDaN169bG9OnTPZ1avXXmzBnj008/NT799FNDkjF//nzj008/NVd1dqXmacqq+/xc7U00FTQiXTB8+HCjTZs2ho+PjxEeHm4MHTrU2L9/v7m/oqLCeOaZZ4ywsDDDz8/PuPXWW429e/c6naO4uNiYMGGCERQUZPj7+xsJCQnGkSNHnGK+/fZb47777jMCAgKMgIAA47777jMKCwvr4hIbrOrG5tChQ4aki74+/PBD8xyMjftd7nemsos1IhkX93NlXFauXGn86le/Mpo1a2bcdNNNxptvvum0n3GxxuXGJi8vzxg5cqQRHh5uNGvWzOjQoYPx4osvGhUVFWYMY2ONt99+24iOjjb8/PyMG264wVi+fLnTfmoANBQvv/yycc011xi+vr7Gr3/9ayM7O9vTKTUIl6olX3nlFU+n1iDRiKy5y/0dwsUVFRUZjz76qNGuXTujWbNmxrXXXmvMnDmzSTZ9XPXhhx9e9L93Dz74oGEYrtU8TVl1n5+rvYmmwmYYhlEXMy8BAAAAAAAANF08IxIAAAAAAACA5WhEAgAAAAAAALAcjUgAAAAAAAAAlqMRCQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADL0YgEAAAAAAAAYDkakQAAAAAAAAAsRyMSAAAAAIBGqk+fPkpJSfF0GgAgiUYkAAAAAAAAgDpAIxIA3KRPnz6aOHGiUlJS1KpVK4WGhmr58uU6d+6cfv/73ysgIEDXXXed3nvvPU+nCgAAgCZg5MiRys7O1p///GfZbDbZbDZ9/fXXnk4LQBNGIxIA3Gj16tVq3bq1du3apYkTJ+qRRx7RPffcox49emjPnj0aOHCgkpOTdf78eU+nCgAAgEbuz3/+s+Lj4zV69Gjl5eUpLy9PERERnk4LQBNmMwzD8HQSANAY9OnTR+Xl5fr4448lSeXl5bLb7Ro6dKheffVVSVJ+fr7atGmj7du3q3v37p5MFwAAAE1Anz59dPPNN2vhwoWeTgUAmBEJAO504403mv/by8tLwcHBiomJMbeFhoZKkgoKCuo8NwAAAAAAPIlGJAC4kY+Pj9PPNpvNaZvNZpMkVVRU1GleAAAAAAB4Go1IAAAAAAAaKV9fX5WXl3s6DQCQRCMSAAAAAIBGq3379tq5c6e+/vprnTp1ijtzAHgUjUgAAAAAABqpqVOnysvLS506ddJVV12lI0eOeDolAE0Yq2YDAAAAAAAAsBwzIgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORqRAAAAAAAAACxHIxIAAAAAAACA5WhEAgAAAAAAALAcjUgAAAAAAAAAlqMRCQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADL0YgEAAAAAAAAYDkakQAAAAAAAAAs9/8B0uw+UbDkVA0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSIAAAINCAYAAAAqdQFKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfIUlEQVR4nO3de1RVdf7/8deRm0hwEgyQxKSGvEHloCLqNy3vSeT4nbQoGie/anmLvJXZlDkFo5U66Wjq1286Kun8ZrK0KRK7YC6vYUxqjDWTeQtECw9aBiT790fLPR1QPMTZHA48H2uxVmfv99n7vc9Hhve8z2fvj80wDEMAAAAAAAAAYKFmnk4AAAAAAAAAQONHIxIAAAAAAACA5WhEAgAAAAAAALAcjUgAAAAAAAAAlqMRCQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADL0YgEAAAAAAAAYDlfTyfgSZWVlfrqq68UHBwsm83m6XQAAABqzTAMnT17VlFRUWrWjO+YvQ31KAAA8Ha1qUebdCPyq6++UnR0tKfTAAAAqLNjx46pTZs2nk4DtUQ9CgAAGgtX6tEm3YgMDg6W9OMHFRIS4uFsAAAAaq+0tFTR0dFmXQPvQj0KAAC8XW3q0SbdiLx4+0tISAiFHwAA8Grc1uudqEcBAEBj4Uo9yoOEAAAAAAAAAFiORiQAAAAAAAAAy9GIBAAAAAAAAGA5GpEAAAAAAAAALEcjEgAAAAAAAIDlaEQCAAAAAAAAsJyvpxMAAKCqiooKXbhwwdNpAPXOx8dHfn5+nk4DAIAmj3oUTZmVNSmNSABAg1FaWqrTp0+rrKzM06kAHhMQEKBWrVopJCTE06kAANDkUI8CP7KqJqURCQBoEEpLS3XixAldddVVatWqlfz8/GSz2TydFlBvDMNQRUWFHA6HTpw4IUk0IwEAqEfUo4D1NSmNSABAg3D69GldddVVatOmDQUfmqzAwEAFBwfr+PHjOn36NI1IAADqEfUo8CMra1IWqwEAeFxFRYXKyspkt9sp+tDk2Ww22e12lZWVqaKiwtPpAADQJFCPAs6sqklpRAIAPO7ig8BZpAP40cXfBR6SDwBA/aAeBaqzoialEQkAaDD49hn4Eb8LAAB4Bn+Dgf+w4veBRiQAAAAAAAAAy9GIBAAAAAAAAGA5GpEAAAAAAAAALEcjEgCABujLL7+UzWZT3759PZ2KqW/fvrLZbPryyy89nYpXstlsateunafTAAAAcAn1aOPTEOpR39q+Ydu2bXr++eeVl5enwsJCbdy4UcOGDTP3G4ahZ555RsuXL1dJSYkSExP1pz/9SZ07dzZjysrKNG3aNL366qs6f/68+vXrpyVLlqhNmzZmTElJiSZPnqxNmzZJklJSUrRo0SJdffXVZszRo0c1YcIEvffeewoMDFRqaqpeeOEF+fv7/4yPAgDQkI1etdfTKbhk5ahunk4BAAAAFqAeBequ1jMiv/32W918881avHjxJffPmzdP8+fP1+LFi7V3715FRkZqwIABOnv2rBmTnp6ujRs3av369dq+fbvOnTun5ORkp+XAU1NTlZ+fr+zsbGVnZys/P19paWnm/gsXLmjo0KH69ttvtX37dq1fv15/+9vfNHXq1NpeEgAAAAAAAACL1XpG5JAhQzRkyJBL7jMMQwsXLtSsWbM0fPhwSdLq1asVERGhrKwsjRs3Tg6HQytXrtSaNWvUv39/SdLatWsVHR2trVu3atCgQSooKFB2drZ27dqlxMRESdKKFSuUlJSkQ4cOqX379tqyZYs+/fRTHTt2TFFRUZKkF198UaNGjdJzzz2nkJCQn/WBAPUma6RrcakbrM0DAAA0DdQeAADAw9z6jMjDhw+rqKhIAwcONLcFBASoT58+2rFjhyQpLy9PFRUVTjFRUVGKi4szY3bu3Cm73W42ISWpR48estvtTjFxcXFmE1KSBg0apLKyMuXl5V0yv7KyMpWWljr9AADQ0JWWluqRRx5RdHS0mjdvro4dO2rBggWqrKx0isvPz9eMGTOUkJCga665RgEBAbr++us1fvx4ffXVV5c9/tGjRzVx4kTFxsaqefPmCgsLU/fu3ZWRkaHz589fMT+Hw6Fbb71VNptN6enpMgzD3PfFF19oxIgRCg0N1VVXXaXevXvrnXfe0QcffCCbzaZRo0Y5HWvUqFGy2Wz64IMP9M477+i2227T1VdfLZvNpjNnzkiSfvjhBy1atEgJCQm66qqrdNVVV6l79+5aunSp090VF7Vr1042m+2SubuSx7Zt23T77bcrODhYISEhGjp0qD799NNLHu/bb7/VY489prZt26p58+bq0KGD5s+f7/SZAAAAeBvqUepRd3FrI7KoqEiSFBER4bQ9IiLC3FdUVCR/f3+1bNmyxpjw8PBqxw8PD3eKqXqeli1byt/f34ypKjMzU3a73fyJjo7+GVcJAED9KSsr0+23364///nP6t69uwYMGKAjR45oypQpGj16tFPsH/7wB82fP18XLlxQr169dMcdd8gwDC1dulRdu3a9ZPG3bds23XTTTfrTn/6kyspK3XXXXUpKStLp06c1a9YsnTx5ssb8Tp48qb59++rDDz/UM888o4ULF5pF1ueff67ExET9v//3/xQeHq4777xTFy5c0B133KG//e1vNR43KytLQ4YM0bfffqshQ4aoW7dustlsunDhgu666y5NnjxZ//rXv9S/f3/1799f//znPzV+/Hjdfffd1Qriuti8ebNuv/12ffPNNxo0aJBat26tt956S7feemu1eqOsrEwDBw7UvHnzdP78ed15551q166dHn/8cU2cONFtOQEAANQn6lHqUXeq9a3Zrqja5TUM47Kd38vFXCr+58T81MyZMzVlyhTzdWlpKc1IAECDtmvXLt100036/PPP1apVK0nSv//9b916661atWqVfvWrXyklJUWSNHbsWC1YsECtW7c2319ZWalnn31WTz/9tJ588kn93//9n7mvpKREv/71r+VwOLRgwQI98sgjTn9Dt23bVu2Lw5/68ssvNWDAAP373//WokWLqhU3Dz/8sE6fPq1JkyZp4cKFatbsx+8/16xZowceeKDG616xYoXWr1+vkSOdbyV98cUX9dZbbyk+Pl5bt241v7gsLCzUbbfdpo0bN+rll1/W+PHjazy+qxYuXKi1a9fq3nvvlfTjM6pHjhypv/3tb1qyZInmzJljxs6fP187duxQ9+7dtWXLFtntdknSvn37dNttt7klHwAAgPpGPUo96k5unREZGRkpSdU6ssXFxebsxcjISJWXl6ukpKTGmEt1vE+dOuUUU/U8JSUlqqioqDZT8qKAgACFhIQ4/QAA0NC98MILZtEnSTfccIN+97vfSZL+9Kc/mdtvv/12p6JPkpo1a6annnpK1157rd544w2nfStWrNCpU6eUnJys9PT0al/k3XrrrWbxUtXBgwfVq1cvffnll1qzZk21ou9f//qX3n33XYWGhiozM9Ms+iQpLS1Nt956a43XPHTo0GpFnyS99NJLkn4syH5690Tr1q31/PPPO8W4Q2pqqln0SZKPj4+eeOIJST8Wxj+1dOlSSdKCBQucPrdf/vKXmjBhgttyAgAAqG/Uo/9BPVo3bm1ExsTEKDIyUjk5Oea28vJy5ebmqmfPnpKkhIQE+fn5OcUUFhbqwIEDZkxSUpIcDof27NljxuzevVsOh8Mp5sCBAyosLDRjtmzZooCAACUkJLjzsgAA8JjQ0FANGDCg2vbU1FRJ0o4dO5ye9/L111/rlVde0dSpUzV69GiNGjVKo0aNUkVFhb755ht98803ZuzWrVslSePGjatVTrt27dKtt96qkpISvf7667rvvvuqxVx8pvMdd9yhoKCgavvvvvvuGs9x8Vv1nzp69KiOHj2qyMhI3X777dX2Jycn6+qrr9ahQ4d06tQpVy+nRj99pvVFN954oyQ51SBHjx7VsWPHdO2115q1yk/9tHgEAADwJtSj/0E9Wne1vjX73Llz+te//mW+Pnz4sPLz8xUaGqq2bdsqPT1dGRkZio2NVWxsrDIyMtSiRQvzH6jdbtfo0aM1depUhYWFKTQ0VNOmTVN8fLy5inbHjh01ePBgjRkzRsuWLZP04/Te5ORktW/fXtKPA9GpUyelpaXp+eef1zfffKNp06ZpzJgxzHQEADQa11133SW3h4SE6Oqrr9aZM2dUWloqu92uV199VWPHjtW5c+cue7yzZ88qNDRUknTs2DFJP36jXRtpaWn64YcftGHDBg0dOvSSMRef/3O5R6C0bdu2xnNcav/FY7Zr1+6S77HZbLruuut05swZffXVV7rmmmtqPIcr2rRpU23bVVddJenHZ/BUze1y13Wl6wUAAGioqEerH5N69Oer9YzIjz76SF26dFGXLl0kSVOmTFGXLl301FNPSZJmzJih9PR0jR8/Xl27dtWJEye0ZcsWBQcHm8dYsGCBhg0bphEjRqhXr15q0aKFNm/eLB8fHzNm3bp1io+P18CBAzVw4EDddNNNWrNmjbnfx8dHf//739W8eXP16tVLI0aM0LBhw/TCCy/87A8DAABv8tNvno8cOaJRo0aprKxMCxcu1Oeff67vvvtOhmHIMAwlJSVVe89FV3qOc1UXv0196qmnLrtA3JWOfaVV+5o3b17rY9Y2RtIVHyTu6nEuXs/l4mv7GQMAAHgD6tHan7eqplaP1npGZN++fWscLJvNptmzZ2v27NmXjWnevLkWLVqkRYsWXTYmNDRUa9eurTGXtm3b6s0337xizgAAeKujR49ecntpaakcDoeCgoIUEhKirKwslZeXa+rUqXrkkUeqxX/xxRfVtkVHR+uf//yn/vWvf6lDhw4u5zRnzhxFRUVp7ty56tevn95//32n5+NIMp8NdLn8L377XRtRUVGSfrwb43Iunu+nzyby9/eX9ONdHRe/Pa5LHjXlduTIkUvuv9x2AACAho569D+oR+vOrc+IBGCBrJGu/QBolL7++mvz2Tk/9eqrr0qSevbsKZvNZi4Cd6lbT7Zt23bJReAuPhJl+fLltc7rD3/4g6ZPn65PP/1U/fr10+nTp532X3wuzVtvvaXvvvuu2vv/+te/1vqcbdu2Vdu2bVVUVKT33nuv2v6///3vKikpUfv27Z1ug7lYBH722WfV3rNly5Za53Ep1113ndq0aaMTJ05o586d1favX7/eLecBAACob9Sj/0E9Wnc0IgEAaOCmT5+ur7/+2nx9+PBh/f73v5ckjR8/XtJ/Hli9du1affvtt2bsiRMn9NBDD13yuP/zP/+jVq1aafPmzVq8eHG1Ox4+/PBDORyOy+Y1b948TZkyRQcOHFC/fv2ccoyNjdVtt92mb775Rk888YTTsdetW6fc3FxXL9/JpEmTJEmPPvqo0wPAi4qKNH36dKeYi/r06SNJyszM1IULF8zta9eudWtBdvEh61OnTlVpaam5PT8/32k1SQAAAG9DPfof1KN1QyMSAIAGrEePHmrWrJliY2P161//WikpKYqLi9OJEyd0//33a9iwYZJ+XNWvc+fO+uijj/SLX/xCv/71r5WcnKwbb7xRLVu2vOTKeaGhofrLX/6i4OBgTZo0SbGxsRo5cqTuvPNOXX/99eZKhDV58cUXlZ6erk8++UT9+/d3il+6dKlCQ0P1xz/+UZ06dVJqaqp69uyptLQ0s2C9eJuKqx599FENGTJEn3zyiWJjYzV8+HD96le/0o033qiCggINGzZMDz/8sNN7JkyYoGuuuUZ//etf1alTJ91999265ZZbNGrUqEveNvRzTZ8+XYmJidq5c6duuOEGjRgxQkOGDFFiYqK5aB8AAIC3oR51Rj1aN7V+RiQAAJ6wclQ3T6fgEQEBAcrOztYTTzyh119/XadPn1ZMTIzGjBmj9PR0M87f318ffvihZs2apbfffltvvvmmrr32Wk2aNElPPfWU7rjjjkse/7bbblN+fr7mzp2rd955R6+//rpCQkJ0ww03aOzYsYqMjLxijgsWLNCFCxe0aNEiDRgwQFu3btXVV1+t9u3ba/fu3Zo5c6a2bt2qN954QzfffLPefPNNlZSUaMmSJQoLC6vV5+Hj46NNmzZpyZIlWrVqld555x1JUqdOnfTb3/5W48aNU7Nmzt+zRkREaNu2bZo+fbpyc3N14sQJJSQkKCcnRzabTQsWLKhVDpcTEBCgrVu36plnntGrr76qN954Q+3atdOzzz6rqVOnaunSpW45DwAA8AzqUepRiXq0rmzGlZYJasQuLi/vcDgUEhLi6XTQ1Lj7uY6pG9x7PKAeff/99zp8+LBiYmJqXJ0OjcfDDz+sl19+WevXr9fIkTzntqra/E5Qz3i3eh0/V2sPagoATRD1aNNDPXplrv5e1Kae4dZsAABgie+//14FBQXVtv/tb3/T//7v/8put2vo0KEeyAwAAABNAfVow8Ot2QAAwBJnzpxRp06d1KFDB8XGxsrPz08FBQUqKChQs2bNtGTJEl111VWeThMAAACNFPVow8OMSAAAYAm73a6pU6fK399f27dv16ZNm/T111/rrrvuUm5uboN5YDYAAAAaJ+rRhocZkQAAwBKBgYF64YUXPJ0GAAAAmijq0YaHGZEAAAAAAAAALEcjEgAAAAAAAIDlaEQCAAAAAAAAsByNSAAAAAAAAACWoxEJAAAAAAAAwHI0IgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORqRAAAAAAAAACxHIxIAAC/15ZdfymazqW/fvp5OxWUffPCBbDabRo0a5elUAAAA4AbUpKgNX08nAACAS7JGejoD16Ru8HQGAAAAsAL1KFBnNCIBAPBS1157rQoKCtSiRQtPpwIAAIAmipoUtUEjEgAAL+Xn56cOHTp4Og0AAAA0YdSkqA2eEQkAQANUUFCgtLQ03XDDDWrevLmuueYa3XLLLUpPT1dhYaGkmp/HU1FRoeeee06/+MUv1Lx5c11//fWaPXu2Kioq1K5dO9lsNqf4nz4n55tvvtHDDz+s1q1bKyAgQHFxcfq///u/S+b597//XQ8++KA6duyokJAQBQUF6eabb1ZGRobKysrc/rkAAACg/lCTwt2YEQkAQAOzb98+9e7dW99//726d++u7t276+zZs/riiy/0xz/+UcOGDVPr1q0v+37DMHT33XfrjTfeUHBwsIYMGaLKykq9+OKLys/Pr/HcZ86cUVJSkhwOh7p3765z585p27ZtGj16tCorK/U///M/TvGjR4/Wt99+q86dOys+Pl6lpaXas2ePZs2apXfffVdbtmyRj4+POz4WAAAA1CNqUliBRiQAAA3MSy+9pPPnz+tvf/ubhg8f7rSvoKBAV199dY3vX7dund544w394he/0LZt28wC8dixY/qv//ovHTly5LLvfeONN/Tf//3fWr16tYKCgsxtw4YN0+9///tqRd/LL7+sAQMGmLGSdPbsWaWmpurNN9/UunXr9MADD9Tm8gEAANAAUJPCCtyaDQBAA1NcXCxJuv3226vt69ixY43fPEs/FmKS9Pvf/94pNjo6Wk8//XSN7w0JCdHy5cudiri77rpL8fHxOnr0qL788kun+GHDhjnFSlJwcLAWLFgg6ceCEQAAAN6HmhRWYEYkAAANTEJCgt5++2098MADevLJJ9W1a1c1a+bad4cVFRXau3evmjVrVu2ba0m6++679eCDD172/V27dlVoaGi17TfeeKP279+vwsJCtWvXzmnf559/rrfeekv/+te/9O2336qyslKGYZj7AAAA4H2oSWEFGpEAADQw06dP1/bt27V582Zt3rxZdrtdiYmJSk5O1qhRoxQcHHzZ93799dcqLy9X69at5e/vX23/VVddpZYtW6qkpOSS72/Tps0lt1911VWS5PSwb8MwNG3aNC1YsMAs8qo6e/bsZXMFAABAw0VNCitwazYAAA1MSEiI3nvvPX344YeaMWOG2rdvr3fffVeTJ09W+/bt9e9///uKx6i6AuFPXa5Au9L7qtqwYYPmz5+va6+9Vn/961914sQJlZeXyzAMszis6VwAAABouKhJYQUakQAANEA2m029e/fW3LlztXv3bhUWFuree+9VYWGhnnjiicu+LywsTH5+fioqKlJ5eXm1/efOndOZM2fckuPGjRslSUuXLtV///d/KyoqSn5+fpKkL774wi3nAAAAgOdQk8LdaEQCAOAFrrnmGs2ePVuStH///svG+fn5qVu3bqqsrDSLsp/661//6racLt5KEx0dXW3fX/7yF7edBwAAAA0DNSnqikYkAAANzMsvv6zDhw9X2/72229Lktq2bVvj+8eNGydJeuqpp1RUVGRuP378uObMmeO2PG+88UZJ0vLly51ud/nwww/1/PPPu+08AAAAqH/UpLACjUgAABqYl19+Wddff706d+6sX//617rnnnvUpUsXpaenKzAwUE8//XSN709LS9Odd96pzz77TO3bt9fw4cM1bNgwdezYUXFxcWrbtq15u0pdTJ48WUFBQVqyZIni4uJ077336tZbb1WfPn300EMP1fn4AAAA8BxqUliBRiQAAA3M73//ez344IOy2Wx69913tXnzZn333XcaO3asPvnkEyUlJdX4fpvNpr/+9a+aM2eOWrVqpb///e/6xz/+ofT0dP3lL3/RyZMnFRYWVuc8b7zxRu3du1d33nmnTp8+rU2bNuncuXNatmwZ3z4D3ixrpOs/AIBGi5oUVrAZTXjpoNLSUtntdjkcDoWEhHg6HTQ17i7eUze493hAPfr+++91+PBhxcTEqHnz5p5Op1HbvXu3evToocGDB5u31aDhqc3vBPWMd6vX8bOicUj9AaCRoB6tX9Sk3sHV34va1DPMiAQAoBHav3+/KioqnLZ9+eWXevjhhyVJqampnkgLAAAATQg1Kary9XQCAADA/aZPn66PPvpIN998s8LDw3X8+HF99NFH+v7773XHHXfo/vvv93SKAAAAaOSoSVEVjUgAABqhUaNGqbKyUvv379f27dvl7++v+Ph4paamasKECbLZbJ5OEQAAAI0cNSmqohEJAEAjdM899+iee+7xdBoAAABowqhJURXPiAQAAECj8sMPP+jJJ59UTEyMAgMDdf3112vOnDmqrKw0YwzD0OzZsxUVFaXAwED17dtXBw8edDpOWVmZJk2apFatWikoKEgpKSk6fvy4U0xJSYnS0tJkt9tlt9uVlpamM2fO1MdlAgAAeB0akQAAAGhU5s6dq5dfflmLFy9WQUGB5s2bp+eff16LFi0yY+bNm6f58+dr8eLF2rt3ryIjIzVgwACdPXvWjElPT9fGjRu1fv16bd++XefOnVNycrIuXLhgxqSmpio/P1/Z2dnKzs5Wfn6+0tLS6vV6AQAAvAW3ZgMAAKBR2blzp+666y4NHTpUktSuXTu9+uqr+uijjyT9OBty4cKFmjVrloYPHy5JWr16tSIiIpSVlaVx48bJ4XBo5cqVWrNmjfr37y9JWrt2raKjo7V161YNGjRIBQUFys7O1q5du5SYmChJWrFihZKSknTo0CG1b9/eA1cPAADQcDEjEgDQYBiG4ekUgAaB34W66d27t95991199tlnkqR//OMf2r59u+644w5J0uHDh1VUVKSBAwea7wkICFCfPn20Y8cOSVJeXp4qKiqcYqKiohQXF2fG7Ny5U3a73WxCSlKPHj1kt9vNGACAd+FvMPAfVvw+MCMSAOBxPj4+kqSKigoFBgZ6OBvA8yoqKiT953cDtfPYY4/J4XCoQ4cO8vHx0YULF/Tcc8/p3nvvlSQVFRVJkiIiIpzeFxERoSNHjpgx/v7+atmyZbWYi+8vKipSeHh4tfOHh4ebMVWVlZWprKzMfF1aWvozrxIA4E7Uo0B1VtSkzIgEAHicn5+fAgIC5HA4+BYaTZ5hGHI4HAoICJCfn5+n0/FKGzZs0Nq1a5WVlaV9+/Zp9erVeuGFF7R69WqnOJvN5vTaMIxq26qqGnOp+JqOk5mZaS5sY7fbFR0d7eplAQAsRD0KOLOqJmVGJACgQWjVqpVOnDih48ePy263y8/P74oNAaAxMQxDFRUVcjgcOnfunK699lpPp+S1pk+frscff1z33HOPJCk+Pl5HjhxRZmamfvOb3ygyMlLSjzMaW7dubb6vuLjYnCUZGRmp8vJylZSUOM2KLC4uVs+ePc2YkydPVjv/qVOnqs22vGjmzJmaMmWK+bq0tJRmJAA0ENSjgPU1KY1IAECDEBISIkk6ffq0Tpw44eFsAM8JCAjQtddea/5OoPa+++47NWvmfOOPj4+PKisrJUkxMTGKjIxUTk6OunTpIkkqLy9Xbm6u5s6dK0lKSEiQn5+fcnJyNGLECElSYWGhDhw4oHnz5kmSkpKS5HA4tGfPHnXv3l2StHv3bjkcDrNZWVVAQIACAgLcf9EAgDqjHgX+w6qalEYkAKDBCAkJUUhIiCoqKnThwgVPpwPUOx8fH27HdoM777xTzz33nNq2bavOnTvr448/1vz58/Xggw9K+vF26vT0dGVkZCg2NlaxsbHKyMhQixYtlJqaKkmy2+0aPXq0pk6dqrCwMIWGhmratGmKj483V9Hu2LGjBg8erDFjxmjZsmWSpLFjxyo5OZkVswHAS1GPAtbWpDQiAQANjp+fH80YAD/bokWL9Lvf/U7jx49XcXGxoqKiNG7cOD311FNmzIwZM3T+/HmNHz9eJSUlSkxM1JYtWxQcHGzGLFiwQL6+vhoxYoTOnz+vfv36adWqVU4PbF+3bp0mT55srq6dkpKixYsX19/FelrWSNfiUjdYmwcAuBn1KGANm9GEn8JaWloqu90uh8PB7U+of64W7q6iwAeAJol6xrvV6/i5u/aoDeoUAAAardrUM6yaDQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADL0YgEAAAAAAAAYDkakQAAAAAAAAAsRyMSAAAAAAAAgOVoRAIAAAAAAACwHI1IAAAAAAAAAJajEQkAAAAAAADAcjQiAQAAAAAAAFiORiQAAAAAAAAAy9GIBAAAAAAAAGA5GpEAAAAAAAAALEcjEgAAAAAAAIDlfD2dAAAAAIBGLmuka3GpG6zNAwAAeBQzIgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORqRAAAAAAAAACxHIxIAAAAAAACA5WhEAgAAAAAAALAcjUgAAAAAAAAAlqMRCQAAAAAAAMByNCIBAAAAAAAAWM7X0wkAAAAAgCQpa6RrcakbrM0DAABYghmRAAAAAAAAACzn9kbkDz/8oCeffFIxMTEKDAzU9ddfrzlz5qiystKMMQxDs2fPVlRUlAIDA9W3b18dPHjQ6ThlZWWaNGmSWrVqpaCgIKWkpOj48eNOMSUlJUpLS5PdbpfdbldaWprOnDnj7ksCAAAAAAAAUEdub0TOnTtXL7/8shYvXqyCggLNmzdPzz//vBYtWmTGzJs3T/Pnz9fixYu1d+9eRUZGasCAATp79qwZk56ero0bN2r9+vXavn27zp07p+TkZF24cMGMSU1NVX5+vrKzs5Wdna38/HylpaW5+5IAAAAAAAAA1JHbnxG5c+dO3XXXXRo6dKgkqV27dnr11Vf10UcfSfpxNuTChQs1a9YsDR8+XJK0evVqRUREKCsrS+PGjZPD4dDKlSu1Zs0a9e/fX5K0du1aRUdHa+vWrRo0aJAKCgqUnZ2tXbt2KTExUZK0YsUKJSUl6dChQ2rfvr27Lw0AAAAAAADAz+T2GZG9e/fWu+++q88++0yS9I9//EPbt2/XHXfcIUk6fPiwioqKNHDgQPM9AQEB6tOnj3bs2CFJysvLU0VFhVNMVFSU4uLizJidO3fKbrebTUhJ6tGjh+x2uxkDAAAAAAAAoGFw+4zIxx57TA6HQx06dJCPj48uXLig5557Tvfee68kqaioSJIUERHh9L6IiAgdOXLEjPH391fLli2rxVx8f1FRkcLDw6udPzw83IypqqysTGVlZebr0tLSn3mVAAAAAAAAAGrD7TMiN2zYoLVr1yorK0v79u3T6tWr9cILL2j16tVOcTabzem1YRjVtlVVNeZS8TUdJzMz01zYxm63Kzo62tXLAgAAAAAAAFAHbm9ETp8+XY8//rjuuecexcfHKy0tTY8++qgyMzMlSZGRkZJUbdZicXGxOUsyMjJS5eXlKikpqTHm5MmT1c5/6tSparMtL5o5c6YcDof5c+zYsbpdLAAAAAAAAACXuL0R+d1336lZM+fD+vj4qLKyUpIUExOjyMhI5eTkmPvLy8uVm5urnj17SpISEhLk5+fnFFNYWKgDBw6YMUlJSXI4HNqzZ48Zs3v3bjkcDjOmqoCAAIWEhDj9AAAAAAAAALCe258Reeedd+q5555T27Zt1blzZ3388ceaP3++HnzwQUk/3k6dnp6ujIwMxcbGKjY2VhkZGWrRooVSU1MlSXa7XaNHj9bUqVMVFham0NBQTZs2TfHx8eYq2h07dtTgwYM1ZswYLVu2TJI0duxYJScns2I2AAAA0JhljXQ9NnWDdXkAAIBacXsjctGiRfrd736n8ePHq7i4WFFRURo3bpyeeuopM2bGjBk6f/68xo8fr5KSEiUmJmrLli0KDg42YxYsWCBfX1+NGDFC58+fV79+/bRq1Sr5+PiYMevWrdPkyZPN1bVTUlK0ePFid18SAAAAAAAAgDqyGYZheDoJTyktLZXdbpfD4eA2bdS/2nyT7wq+7QeAJol6xrvV6/i5u/bwFtRIAABYqjb1jNufEQkAAAAAAAAAVdGIBAAAAAAAAGA5GpEAAAAAAAAALOf2xWoAAAAAoMFw9dmYPEsSAADLMSMSAAAAAAAAgOVoRAIAAAAAAACwHI1IAAAAAAAAAJajEQkAAAAAAADAcjQiAQAAAAAAAFiOVbMBAAAAgNW1AQCwHDMiAQAAAAAAAFiORiQAAAAAAAAAy9GIBAAAAAAAAGA5GpEAAAAAAAAALEcjEgAAAAAAAIDlaEQCAAAAAAAAsByNSAAAAAAAAACWoxEJAAAAAAAAwHI0IgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORqRAAAAAAAAACxHIxIAAAAAAACA5WhEAgAAAAAAALAcjUgAAAAAAAAAlqMRCQAAAAAAAMByvp5OAAAAAAC8RtZI1+JSN1ibBwAAXogZkQAAAAAAAAAsx4xIAAAAAHA3V2dOSsyeBAA0GcyIBAAAAAAAAGA5GpEAAAAAAAAALEcjEgAAAAAAAIDlaEQCAAAAAAAAsByNSAAAAAAAAACWoxEJAAAAAAAAwHI0IgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORqRAAAAAAAAACxHIxIAAAAAAACA5WhEAgAAAAAAALAcjUgAAAAAAAAAlqMRCQAAAAAAAMByvp5OAAAAAACatKyRrsWlbrA2DwAALMaMSAAAAAAAAACWoxEJAAAAAAAAwHI0IgEAAAAAAABYjmdEAgAAAGjyRpdPcylupf8LFmcCAEDjxYxIAAAAAAAAAJajEQkAAIBG58SJE7r//vsVFhamFi1a6JZbblFeXp653zAMzZ49W1FRUQoMDFTfvn118OBBp2OUlZVp0qRJatWqlYKCgpSSkqLjx487xZSUlCgtLU12u112u11paWk6c+ZMfVwiAACA1+HWbAAAADQqJSUl6tWrl2677Ta9/fbbCg8P17///W9dffXVZsy8efM0f/58rVq1SjfeeKOeffZZDRgwQIcOHVJwcLAkKT09XZs3b9b69esVFhamqVOnKjk5WXl5efLx8ZEkpaam6vjx48rOzpYkjR07Vmlpadq8eXO9XzcuzdVbrj15Xm73BgA0FTQiAQAA0KjMnTtX0dHReuWVV8xt7dq1M//bMAwtXLhQs2bN0vDhwyVJq1evVkREhLKysjRu3Dg5HA6tXLlSa9asUf/+/SVJa9euVXR0tLZu3apBgwapoKBA2dnZ2rVrlxITEyVJK1asUFJSkg4dOqT27dvX30UDAAB4AW7NBgAAQKOyadMmde3aVXfffbfCw8PVpUsXrVixwtx/+PBhFRUVaeDAgea2gIAA9enTRzt27JAk5eXlqaKiwikmKipKcXFxZszOnTtlt9vNJqQk9ejRQ3a73YypqqysTKWlpU4/AAAATQWNSAAAADQqX3zxhZYuXarY2Fi98847euihhzR58mT9+c9/liQVFRVJkiIiIpzeFxERYe4rKiqSv7+/WrZsWWNMeHh4tfOHh4ebMVVlZmaaz5O02+2Kjo6u28UCAAB4EW7NBgAAQKNSWVmprl27KiMjQ5LUpUsXHTx4UEuXLtUDDzxgxtlsNqf3GYZRbVtVVWMuFV/TcWbOnKkpU6aYr0tLS2lGwnVZI12LS91gbR4AAPxMzIgEAABAo9K6dWt16tTJaVvHjh119OhRSVJkZKQkVZu1WFxcbM6SjIyMVHl5uUpKSmqMOXnyZLXznzp1qtpsy4sCAgIUEhLi9AMAANBUMCMSAAAAjUqvXr106NAhp22fffaZrrvuOklSTEyMIiMjlZOToy5dukiSysvLlZubq7lz50qSEhIS5Ofnp5ycHI0YMUKSVFhYqAMHDmjevHmSpKSkJDkcDu3Zs0fdu3eXJO3evVsOh0M9e/asl2tF/fPUKtwAADQGNCIBAADQqDz66KPq2bOnMjIyNGLECO3Zs0fLly/X8uXLJf14O3V6eroyMjIUGxur2NhYZWRkqEWLFkpNTZUk2e12jR49WlOnTlVYWJhCQ0M1bdo0xcfHm6tod+zYUYMHD9aYMWO0bNkySdLYsWOVnJzMitkAAACXQCMSAAAAjUq3bt20ceNGzZw5U3PmzFFMTIwWLlyo++67z4yZMWOGzp8/r/Hjx6ukpESJiYnasmWLgoODzZgFCxbI19dXI0aM0Pnz59WvXz+tWrVKPj4+Zsy6des0efJkc3XtlJQULV68uP4uFgAAwIvYDMMwPJ2Ep5SWlsput8vhcPB8HtQ/Vx827ioeSg4ATRL1jHer1/Fzd+3hJbzhVuqV/i+494DUhQCAelSbeoYZkQAAAADgQa42S93esAQAoJ7RiAQAAADgVbxhliMAAKiumacTAAAAAAAAAND40YgEAAAAAAAAYDkakQAAAAAAAAAsRyMSAAAAAAAAgOVoRAIAAAAAAACwHKtmAwAAAGgQWA0bAIDGjUYkAAAAAHgBVxu1Ky3OAwCAn4tbswEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORqRAAAAAAAAACzHYjUAAAAA0JhkjXQtLnWDtXkAAFAFMyIBAAAAAAAAWI4ZkYC7ufoNNAAAAAAAQBPCjEgAAAAAAAAAlrOkEXnixAndf//9CgsLU4sWLXTLLbcoLy/P3G8YhmbPnq2oqCgFBgaqb9++OnjwoNMxysrKNGnSJLVq1UpBQUFKSUnR8ePHnWJKSkqUlpYmu90uu92utLQ0nTlzxopLAgAAAAAAAFAHbm9ElpSUqFevXvLz89Pbb7+tTz/9VC+++KKuvvpqM2bevHmaP3++Fi9erL179yoyMlIDBgzQ2bNnzZj09HRt3LhR69ev1/bt23Xu3DklJyfrwoULZkxqaqry8/OVnZ2t7Oxs5efnKy0tzd2XBAAAAAAAAKCO3P6MyLlz5yo6OlqvvPKKua1du3bmfxuGoYULF2rWrFkaPny4JGn16tWKiIhQVlaWxo0bJ4fDoZUrV2rNmjXq37+/JGnt2rWKjo7W1q1bNWjQIBUUFCg7O1u7du1SYmKiJGnFihVKSkrSoUOH1L59e3dfGgAAAAAAAICfye0zIjdt2qSuXbvq7rvvVnh4uLp06aIVK1aY+w8fPqyioiINHDjQ3BYQEKA+ffpox44dkqS8vDxVVFQ4xURFRSkuLs6M2blzp+x2u9mElKQePXrIbrebMVWVlZWptLTU6QcAAAAAAACA9dw+I/KLL77Q0qVLNWXKFD3xxBPas2ePJk+erICAAD3wwAMqKiqSJEVERDi9LyIiQkeOHJEkFRUVyd/fXy1btqwWc/H9RUVFCg8Pr3b+8PBwM6aqzMxMPfPMM3W+RgAAAACuG10+zdMpAACABsDtMyIrKyv1y1/+UhkZGerSpYvGjRunMWPGaOnSpU5xNpvN6bVhGNW2VVU15lLxNR1n5syZcjgc5s+xY8dcvSwAAAAAAAAAdeD2RmTr1q3VqVMnp20dO3bU0aNHJUmRkZGSVG3WYnFxsTlLMjIyUuXl5SopKakx5uTJk9XOf+rUqWqzLS8KCAhQSEiI0w8AAAAAAAAA67n91uxevXrp0KFDTts+++wzXXfddZKkmJgYRUZGKicnR126dJEklZeXKzc3V3PnzpUkJSQkyM/PTzk5ORoxYoQkqbCwUAcOHNC8efMkSUlJSXI4HNqzZ4+6d+8uSdq9e7ccDod69uzp7ssCAAAAAK/g6q3wKy3OAwCAqtzeiHz00UfVs2dPZWRkaMSIEdqzZ4+WL1+u5cuXS/rxdur09HRlZGQoNjZWsbGxysjIUIsWLZSamipJstvtGj16tKZOnaqwsDCFhoZq2rRpio+PN1fR7tixowYPHqwxY8Zo2bJlkqSxY8cqOTmZFbMBAAAAAACABsbtjchu3bpp48aNmjlzpubMmaOYmBgtXLhQ9913nxkzY8YMnT9/XuPHj1dJSYkSExO1ZcsWBQcHmzELFiyQr6+vRowYofPnz6tfv35atWqVfHx8zJh169Zp8uTJ5uraKSkpWrx4sbsvCQAAAAAAAEAd2QzDMDydhKeUlpbKbrfL4XDwvEi4T9ZIz5w3dYNnzgsA8CjqGe9Wr+PnqRpFrJrdUK30f8H1YGpNAMBl1KaecftiNQAAAAAAAABQFY1IAAAAAAAAAJajEQkAAAAAAADAcm5frAYAAABA08CzHwEAQG0wIxIAAAAAAACA5WhEAgAAAAAAALAcjUgAAAAAAAAAluMZkQAAAADQBNXmGZ8rLcwDANB0MCMSAAAAAAAAgOVoRAIAAAAAAACwHI1IAAAAAAAAAJajEQkAAAAAAADAcjQiAQAAAAAAAFiORiQAAAAAAAAAy9GIBAAAAAAAAGA5GpEAAAAAAAAALEcjEgAAAAAAAIDlaEQCAAAAAAAAsJyvpxMA4CZZI12PTd1gXR4AAABofFytNakzAQA1oBEJAAAAwDS6fJqnUwAAAI0Ut2YDAAAAAAAAsByNSAAAAAAAAACW49bsejJ61V6X4laO6mZxJgAAAAAAAED9Y0YkAAAAAAAAAMvRiAQAAAAAAABgOW7NBgAAAADUyNXV1FdanAcAwLsxIxIAAAAAAACA5ZgR2cCwqA0AAAAAAAAaI2ZEAgAAAAAAALAcjUgAAAAAAAAAlqMRCQAAAAAAAMByNCIBAAAAAAAAWI7FagAAAIAmYHT5NE+nAAAAmjhmRAIAAAAAAACwHDMiAQAAAADukTXStbjUDdbmAQBokJgRCQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADL0YgEAAAAAAAAYDkWqwEAAAAAuMXo8mkuxa20OA8AQMPEjEgAAAAAAAAAlmNGpJcavWqvS3ErR3WzOBMAAAAAAADgypgRCQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADL0YgEAAAAAAAAYDkakQAAAAAAAAAsRyMSAAAAAAAAgOVoRAIAAAAAAACwnK+nE4C1Rq/a63LsylHdLMwEAAAAAAAATRkzIgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORqRAAAAAAAAACzHYjUwubqwDYvaAAAAAAAAoLaYEQkAAAAAAADAcsyIBAAAAADUr6yRrsWlbrA2DwBAvWJGJAAAAAAAAADL0YgEAABAo5aZmSmbzab09HRzm2EYmj17tqKiohQYGKi+ffvq4MGDTu8rKyvTpEmT1KpVKwUFBSklJUXHjx93iikpKVFaWprsdrvsdrvS0tJ05syZergqAAAA70MjEgAAAI3W3r17tXz5ct10001O2+fNm6f58+dr8eLF2rt3ryIjIzVgwACdPXvWjElPT9fGjRu1fv16bd++XefOnVNycrIuXLhgxqSmpio/P1/Z2dnKzs5Wfn6+0tLS6u36AAAAvAnPiAQAAECjdO7cOd13331asWKFnn32WXO7YRhauHChZs2apeHDh0uSVq9erYiICGVlZWncuHFyOBxauXKl1qxZo/79+0uS1q5dq+joaG3dulWDBg1SQUGBsrOztWvXLiUmJkqSVqxYoaSkJB06dEjt27ev/4sGvMTo8mkuxa20OA8AQP1iRiQAAAAapQkTJmjo0KFmI/Giw4cPq6ioSAMHDjS3BQQEqE+fPtqxY4ckKS8vTxUVFU4xUVFRiouLM2N27twpu91uNiElqUePHrLb7WZMVWVlZSotLXX6AQAAaCqYEQkAAIBGZ/369dq3b5/27t1bbV9RUZEkKSIiwml7RESEjhw5Ysb4+/urZcuW1WIuvr+oqEjh4eHVjh8eHm7GVJWZmalnnnmm9hcEAADQCDAjEgAAAI3KsWPH9Mgjj2jt2rVq3rz5ZeNsNpvTa8Mwqm2rqmrMpeJrOs7MmTPlcDjMn2PHjtV4PgAAgMaERiQAAAAalby8PBUXFyshIUG+vr7y9fVVbm6uXnrpJfn6+pozIavOWiwuLjb3RUZGqry8XCUlJTXGnDx5str5T506VW225UUBAQEKCQlx+gEAAGgquDUbAAAAjUq/fv20f/9+p22//e1v1aFDBz322GO6/vrrFRkZqZycHHXp0kWSVF5ertzcXM2dO1eSlJCQID8/P+Xk5GjEiBGSpMLCQh04cEDz5s2TJCUlJcnhcGjPnj3q3r27JGn37t1yOBzq2bNnfV0u0LhljXQ9NnWDdXkAANyCRiQAAAAaleDgYMXFxTltCwoKUlhYmLk9PT1dGRkZio2NVWxsrDIyMtSiRQulpqZKkux2u0aPHq2pU6cqLCxMoaGhmjZtmuLj483Fbzp27KjBgwdrzJgxWrZsmSRp7NixSk5OZsVsAACAS6ARiVobvar6Q98vZeWobhZnAgAA8PPMmDFD58+f1/jx41VSUqLExERt2bJFwcHBZsyCBQvk6+urESNG6Pz58+rXr59WrVolHx8fM2bdunWaPHmyubp2SkqKFi9eXO/XAwAA4A1shmEYnk7CU0pLS2W32+VwOCx/Po+rzbvGpMk2Imtz+4incNsKADQa9VnPwP2oRwH3abL//wMAPKw29QyL1QAAAAAAAACwHI1IAAAAAAAAAJbjGZGwDM+SBAAAAAAAwEXMiAQAAAAAAABgORqRAAAAAAAAACxHIxIAAAAAAACA5XhGJDzO1WdJSjxPEgAAAAAAwFtZPiMyMzNTNptN6enp5jbDMDR79mxFRUUpMDBQffv21cGDB53eV1ZWpkmTJqlVq1YKCgpSSkqKjh8/7hRTUlKitLQ02e122e12paWl6cyZM1ZfEgAAAAAAAIBasrQRuXfvXi1fvlw33XST0/Z58+Zp/vz5Wrx4sfbu3avIyEgNGDBAZ8+eNWPS09O1ceNGrV+/Xtu3b9e5c+eUnJysCxcumDGpqanKz89Xdna2srOzlZ+fr7S0NCsvCQAAAAAAAMDPYFkj8ty5c7rvvvu0YsUKtWzZ0txuGIYWLlyoWbNmafjw4YqLi9Pq1av13XffKSsrS5LkcDi0cuVKvfjii+rfv7+6dOmitWvXav/+/dq6daskqaCgQNnZ2frf//1fJSUlKSkpSStWrNCbb76pQ4cOWXVZAAAAAAAAAH4GyxqREyZM0NChQ9W/f3+n7YcPH1ZRUZEGDhxobgsICFCfPn20Y8cOSVJeXp4qKiqcYqKiohQXF2fG7Ny5U3a7XYmJiWZMjx49ZLfbzRgAAAAAAAAADYMli9WsX79e+/bt09691RchKSoqkiRFREQ4bY+IiNCRI0fMGH9/f6eZlBdjLr6/qKhI4eHh1Y4fHh5uxlRVVlamsrIy83VpaWktrgoAAAAAAADAz+X2GZHHjh3TI488orVr16p58+aXjbPZbE6vDcOotq2qqjGXiq/pOJmZmebCNna7XdHR0TWeDwAAAAAAAIB7uL0RmZeXp+LiYiUkJMjX11e+vr7Kzc3VSy+9JF9fX3MmZNVZi8XFxea+yMhIlZeXq6SkpMaYkydPVjv/qVOnqs22vGjmzJlyOBzmz7Fjx+p8vQAAAAAAAACuzO23Zvfr10/79+932vbb3/5WHTp00GOPPabrr79ekZGRysnJUZcuXSRJ5eXlys3N1dy5cyVJCQkJ8vPzU05OjkaMGCFJKiws1IEDBzRv3jxJUlJSkhwOh/bs2aPu3btLknbv3i2Hw6GePXteMreAgAAFBAS4+5JRj0avqn67/6WsHNXNvSfOGune4wEAAAAAADQxbm9EBgcHKy4uzmlbUFCQwsLCzO3p6enKyMhQbGysYmNjlZGRoRYtWig1NVWSZLfbNXr0aE2dOlVhYWEKDQ3VtGnTFB8fby5+07FjRw0ePFhjxozRsmXLJEljx45VcnKy2rdv7+7LAgAAAAAAAFAHlixWcyUzZszQ+fPnNX78eJWUlCgxMVFbtmxRcHCwGbNgwQL5+vpqxIgROn/+vPr166dVq1bJx8fHjFm3bp0mT55srq6dkpKixYsX1/v1AAAAAAAAAKhZvTQiP/jgA6fXNptNs2fP1uzZsy/7nubNm2vRokVatGjRZWNCQ0O1du1aN2UJAAAAAAAAwCpuX6wGAAAAAAAAAKqiEQkAAAAAAADAcjQiAQAAAAAAAFjOI4vVAAAAAADgVlkjXYtL3WBtHgCAy2JGJAAAAAAAAADLMSMSAAAAAOD1RpdPcylupcV5AAAujxmRAAAAAAAAACzHjEg0SqNX7XUpbuWobhZnAgAAAAAAAIkZkQAAAAAAAADqAY1IAAAAAAAAAJajEQkAAAAAAADAcjQiAQAAAAAAAFiORiQAAAAAAAAAy9GIBAAAAAAAAGA5X08nAHhU1khPZwAAAAAAANAk0IhEkza6fJpLcSv9X7A4EwAAAAAAgMaNW7MBAAAAAAAAWI5GJAAAAAAAAADLcWs24AJXb+GWuI0bAAAAAADgUpgRCQAAAAAAAMByzIgEAAAAADQdWSNdi0vdYG0eANAEMSMSAAAAAAAAgOWYEQkAAAAAaDJcff77SovzAICmiBmRAAAAAAAAACxHIxIAAAAAAACA5WhEAgAAAAAAALAcjUgAAAAAAAAAlmOxGsDNXH74tf8LFmcCAAAAAADQcDAjEgAAAAAAAIDlaEQCAAAAAAAAsByNSAAAAAAAAACW4xmRQFOUNdK1uNQN1uYBAAAAAACaDGZEAgAAAAAAALAcMyIBD3F1dW1XsQo3AAAAAABoyJgRCQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADL8YxIAAAAAACqyhrpWlzqBmvzAIBGhEYkAAAAAABVuLq45EqL8wCAxoRbswEAAAAAAABYjhmRQCPh6je2krTS/wULMwEAAAAAAKiOGZEAAAAAAAAALEcjEgAAAAAAAIDlaEQCAAAAAAAAsByNSAAAAAAAAACWoxEJAAAAAAAAwHI0IgEAAAAAAABYztfTCQCof6PLp7kUt9LiPAAAAAAAQNPBjEgAAAAAAAAAlqMRCQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADLsVgNgMsavWqvS3ErR3WzOBMAAAAAAODtmBEJAAAAAAAAwHI0IgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORarAVBnLGoDAACAJitrpOuxqRusywMAvACNSAAAAAAAfqbR5dNcjl1pYR4A4A1oRAKoN67OnJSYPQkAAAAAQGPDMyIBAAAAAAAAWI5GJAAAAAAAAADLcWs2gAaJBXAAAAAAAGhcmBEJAAAAAAAAwHI0IgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORqRAAAAAAAAACxHIxIAAACNSmZmprp166bg4GCFh4dr2LBhOnTokFOMYRiaPXu2oqKiFBgYqL59++rgwYNOMWVlZZo0aZJatWqloKAgpaSk6Pjx404xJSUlSktLk91ul91uV1pams6cOWP1JQIAAHglX08nAAB1MXrVXpfiVo7qZnEmAICGIjc3VxMmTFC3bt30ww8/aNasWRo4cKA+/fRTBQUFSZLmzZun+fPna9WqVbrxxhv17LPPasCAATp06JCCg4MlSenp6dq8ebPWr1+vsLAwTZ06VcnJycrLy5OPj48kKTU1VcePH1d2drYkaezYsUpLS9PmzZs9c/EAAAANmM0wDMPTSXhKaWmp7Ha7HA6HQkJCLD2Xq80SAJ5FwxKAt6nPesZbnTp1SuHh4crNzdWtt94qwzAUFRWl9PR0PfbYY5J+nP0YERGhuXPnaty4cXI4HLrmmmu0Zs0ajRw5UpL01VdfKTo6Wm+99ZYGDRqkgoICderUSbt27VJiYqIkadeuXUpKStI///lPtW/f/oq5UY8CTctK/xdcC0zdYG0iAOBGtalnmBEJAACARs3hcEiSQkNDJUmHDx9WUVGRBg4caMYEBASoT58+2rFjh8aNG6e8vDxVVFQ4xURFRSkuLk47duzQoEGDtHPnTtntdrMJKUk9evSQ3W7Xjh07LtmILCsrU1lZmfm6tLTU7dcLoOEaXT7NpbiVFucBAJ7CMyIBAADQaBmGoSlTpqh3796Ki4uTJBUVFUmSIiIinGIjIiLMfUVFRfL391fLli1rjAkPD692zvDwcDOmqszMTPN5kna7XdHR0XW7QAAAAC/CjEgA+Ina3LbGbdwA0PBNnDhRn3zyibZv315tn81mc3ptGEa1bVVVjblUfE3HmTlzpqZMmWK+Li0tpRkJAACaDGZEAgAAoFGaNGmSNm3apPfff19t2rQxt0dGRkpStVmLxcXF5izJyMhIlZeXq6SkpMaYkydPVjvvqVOnqs22vCggIEAhISFOPwAAAE0FjUgAAAA0KoZhaOLEiXrttdf03nvvKSYmxml/TEyMIiMjlZOTY24rLy9Xbm6uevbsKUlKSEiQn5+fU0xhYaEOHDhgxiQlJcnhcGjPnj1mzO7du+VwOMwYAAAA/Ae3ZgMAAKBRmTBhgrKysvTGG28oODjYnPlot9sVGBgom82m9PR0ZWRkKDY2VrGxscrIyFCLFi2Umppqxo4ePVpTp05VWFiYQkNDNW3aNMXHx6t///6SpI4dO2rw4MEaM2aMli1bJkkaO3askpOTXVoxGwAAoKlx+4zIzMxMdevWTcHBwQoPD9ewYcN06NAhpxjDMDR79mxFRUUpMDBQffv21cGDB51iysrKNGnSJLVq1UpBQUFKSUnR8ePHnWJKSkqUlpZmPuw7LS1NZ86ccfclAQAAwIssXbpUDodDffv2VevWrc2fDRs2mDEzZsxQenq6xo8fr65du+rEiRPasmWLgoODzZgFCxZo2LBhGjFihHr16qUWLVpo8+bN8vHxMWPWrVun+Ph4DRw4UAMHDtRNN92kNWvW1Ov1AgAAeAubYRiGOw84ePBg3XPPPerWrZt++OEHzZo1S/v379enn36qoKAgSdLcuXP13HPPadWqVbrxxhv17LPPatu2bTp06JBZ/D388MPavHmzVq1apbCwME2dOlXffPON8vLyzOJvyJAhOn78uJYvXy7px2+g27Vrp82bN7uUa2lpqex2uxwOh+XP56nNAhgAvAOL1QBoCOqznoH7UY8CuBTqTADepDb1jNtvzc7OznZ6/corryg8PFx5eXm69dZbZRiGFi5cqFmzZmn48OGSpNWrVysiIkJZWVkaN26cHA6HVq5cqTVr1pi3vqxdu1bR0dHaunWrBg0apIKCAmVnZ2vXrl1KTEyUJK1YsUJJSUk6dOgQt8MAAAAAAAAADYjlz4h0OBySpNDQUEnS4cOHVVRUpIEDB5oxAQEB6tOnj3bs2KFx48YpLy9PFRUVTjFRUVGKi4vTjh07NGjQIO3cuVN2u91sQkpSjx49ZLfbtWPHjks2IsvKylRWVma+Li0tdfv1Amg6XJ1ZwjfaAAAAAABYvGq2YRiaMmWKevfurbi4OEkyHxYeERHhFBsREWHuKyoqkr+/v1q2bFljTHh4eLVzhoeHmzFVZWZmms+TtNvtio6OrtsFAgAAAAAAAHCJpTMiJ06cqE8++UTbt2+vts9mszm9Ngyj2raqqsZcKr6m48ycOVNTpkwxX5eWltKMBAAAAAA0LFkjXYtL3XDlGABoQCxrRE6aNEmbNm3Stm3b1KZNG3N7ZGSkpB9nNLZu3drcXlxcbM6SjIyMVHl5uUpKSpxmRRYXF6tnz55mzMmTJ6ud99SpU9VmW14UEBCggICAul8cANQCt3ADAACgNkaXT3MpbqXFeQCAu7n91mzDMDRx4kS99tpreu+99xQTE+O0PyYmRpGRkcrJyTG3lZeXKzc312wyJiQkyM/PzymmsLBQBw4cMGOSkpLkcDi0Z88eM2b37t1yOBxmDAAAAAAAAICGwe0zIidMmKCsrCy98cYbCg4ONp/XaLfbFRgYKJvNpvT0dGVkZCg2NlaxsbHKyMhQixYtlJqaasaOHj1aU6dOVVhYmEJDQzVt2jTFx8ebq2h37NhRgwcP1pgxY7Rs2TJJ0tixY5WcnMyK2QAAAAAAAEAD4/ZG5NKlSyVJffv2ddr+yiuvaNSoUZKkGTNm6Pz58xo/frxKSkqUmJioLVu2KDg42IxfsGCBfH19NWLECJ0/f179+vXTqlWr5OPjY8asW7dOkydPNlfXTklJ0eLFi919SQAAAAAAAADqyGYYhuHpJDyltLRUdrtdDodDISEhlp7L1WfEAcCV8CxJAD9Vn/UM3I96FEBdUBcCaAhqU8+4/RmRAAAAAAAAAFAVjUgAAAAAAAAAlnP7MyIBANaqza113K4DAAAAAGgoaEQCQCPmatOShiUAAAAAwGrcmg0AAAAAAADAcjQiAQAAAAAAAFiORiQAAAAAAAAAy/GMSACAy3jmJAAAAADg52JGJAAAAAAAAADLMSMSAODyTEcAAAA0HNytAsDbMCMSAAAAAAAAgOVoRAIAAAAAAACwHI1IAAAAAAAAAJajEQkAAAAAAADAcixWAwBwu9osfsPD0wEAAACgaWBGJAAAAAAAAADL0YgEAAAAAAAAYDluzQYAeJSrt3FzCzcAAAAAeDcakQAAr0DDEgAAAAC8G7dmAwAAAAAAALAcjUgAAAAAAAAAlqMRCQAAAAAAAMByPCMSANCo8CxJAAAAZ67WRxI1EgBr0YgEAOAKaG4CAAAAQN3RiAQANEm1mRkAAAAAAKg7GpEAALgJMycBAAAA4PJYrAYAAAAAAACA5WhEAgAAAAAAALAcjUgAAAAAAAAAluMZkQAANFC1WVCH504CAAAAaOhoRAIAUM9YsRsAAABAU0QjEgCARoAVuwEAAAA0dDwjEgAAAAAAAIDlmBEJAEATwsxJAAAAAJ5CIxIAAAAAAEjiS0sA1uLWbAAAAAAAAACWoxEJAAAAAAAAwHLcmg0AAAAAAGona6RrcakbrM0DgFehEQkAAKpx9flQtcGzpAAAaDxGl09zKW6lxXkA8C7cmg0AAAAAAADAcsyIBAAA9YJVOAEAAICmjUYkAABoUGhYAgAAAI0Tt2YDAAAAAAAAsBwzIgEAQKNWm4V3mGUJAAAAWIcZkQAAAAAAAAAsRyMSAAAAAAAAgOW4NRsAAHil2txy7e5jcgs3AAAAUHs0IgEAAAAAgCX4kg/AT3FrNgAAAAAAAADLMSMSAACglpjdAQAAANQeMyIBAAAAAAAAWI5GJAAAAAAAAADLcWs2AAAAAADwKFcfeyLx6BPAmzEjEgAAAAAAAIDlaEQCAAAAAAAAsByNSAAAAAAAAACWoxEJAAAAAAAAwHI0IgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgOV9PJwAAAAAAAOCq0av2uhS3clQ3izMBUFvMiAQAAAAAAABgORqRAAAAAAAAACxHIxIAAAAAAACA5WhEAgAAAAAAALAci9UAAAAAAIBGh0VtgIaHGZEAAAAAAAAALMeMSAAAAAAA0GQxcxKoP8yIBAAAAAAAAGA5GpEAAAAAAAAALEcjEgAAAAAAAIDleEYkAAAAAADAFbj6LEmJ50kCl8OMSAAAAAAAAACWY0YkAAAAAACAG7ESN3BpzIgEAAAAAAAAYDlmRAIAAAAAAHgAMyfR1DAjEgAAAAAAAIDlvH5G5JIlS/T888+rsLBQnTt31sKFC/Vf//Vfnk4LAAAATQg1KQDASsycRGPh1Y3IDRs2KD09XUuWLFGvXr20bNkyDRkyRJ9++qnatm3r6fQAAADQBFCTAgAaClcblrVBcxPuZDMMw/B0Ej9XYmKifvnLX2rp0qXmto4dO2rYsGHKzMy84vtLS0tlt9vlcDgUEhJiZaqW/I8BAABo2OqjcK/PegaXVpealHoUANBY0LBsumpTz3jtjMjy8nLl5eXp8ccfd9o+cOBA7dix45LvKSsrU1lZmfna4XBI+vEDs1r5+XOWnwMAADQs9VFjXDyHF3+37NVqW5NSjwIAGqu0pe97OoUr+tN9CS7FTViX57Fze6Pa1KNe24g8ffq0Lly4oIiICKftERERKioquuR7MjMz9cwzz1TbHh0dbUmOAACgaVs7vv7OdfbsWdnt9vo7ISTVvialHgUAwHPqszZrSOeuL67Uo17biLzIZrM5vTYMo9q2i2bOnKkpU6aYrysrK/XNN98oLCzssu9xh9LSUkVHR+vYsWPcMtWAMC4NF2PTMDEuDRdj0zDV17gYhqGzZ88qKirKsnPgylytSalHvRefYd3xGdYdn2Hd8PnVHZ9h3TXGz7A29ajXNiJbtWolHx+fat80FxcXV/tG+qKAgAAFBAQ4bbv66qutSrGakJCQRvOPrDFhXBouxqZhYlwaLsamYaqPcWEmpOfUtialHvV+fIZ1x2dYd3yGdcPnV3d8hnXX2D5DV+vRZhbnYRl/f38lJCQoJyfHaXtOTo569uzpoawAAADQlFCTAgAAuM5rZ0RK0pQpU5SWlqauXbsqKSlJy5cv19GjR/XQQw95OjUAAAA0EdSkAAAArvHqRuTIkSP19ddfa86cOSosLFRcXJzeeustXXfddZ5OzUlAQICefvrparfhwLMYl4aLsWmYGJeGi7FpmBiXpsMbalL+PdYdn2Hd8RnWHZ9h3fD51R2fYd019c/QZriytjYAAAAAAAAA1IHXPiMSAAAAAAAAgPegEQkAAAAAAADAcjQiAQAAAAAAAFiORiQAAAAAAAAAy9GIdMHs2bNls9mcfiIjI839hmFo9uzZioqKUmBgoPr27auDBw86HaOsrEyTJk1Sq1atFBQUpJSUFB0/ftwppqSkRGlpabLb7bLb7UpLS9OZM2fq4xK9Vk1jU1FRoccee0zx8fEKCgpSVFSUHnjgAX311VdOx2Bs3O9KvzM/NW7cONlsNi1cuNBpO+Pifq6MS0FBgVJSUmS32xUcHKwePXro6NGj5n7GxRpXGptz585p4sSJatOmjQIDA9WxY0ctXbrU6RiMjTVOnDih+++/X2FhYWrRooVuueUW5eXlmfupAeAtlixZopiYGDVv3lwJCQn68MMPPZ2SV8jMzFS3bt0UHBys8PBwDRs2TIcOHfJ0Wl4tMzNTNptN6enpnk7Fq1zp7xFq9sMPP+jJJ59UTEyMAgMDdf3112vOnDmqrKz0dGoN1rZt23TnnXcqKipKNptNr7/+utN+V2qgpq6mz9DVfkVjRCPSRZ07d1ZhYaH5s3//fnPfvHnzNH/+fC1evFh79+5VZGSkBgwYoLNnz5ox6enp2rhxo9avX6/t27fr3LlzSk5O1oULF8yY1NRU5efnKzs7W9nZ2crPz1daWlq9Xqc3utzYfPfdd9q3b59+97vfad++fXrttdf02WefKSUlxen9jI01avqduej111/X7t27FRUVVW0f42KNmsbl3//+t3r37q0OHTrogw8+0D/+8Q/97ne/U/Pmzc0YxsU6NY3No48+quzsbK1du1YFBQV69NFHNWnSJL3xxhtmDGPjfiUlJerVq5f8/Pz09ttv69NPP9WLL76oq6++2oyhBoA32LBhg9LT0zVr1ix9/PHH+q//+i8NGTLE6YsmXFpubq4mTJigXbt2KScnRz/88IMGDhyob7/91tOpeaW9e/dq+fLluummmzydildx5e8RajZ37ly9/PLLWrx4sQoKCjRv3jw9//zzWrRokadTa7C+/fZb3XzzzVq8ePEl97tSAzV1NX2GrvYrGiUDV/T0008bN9988yX3VVZWGpGRkcYf/vAHc9v3339v2O124+WXXzYMwzDOnDlj+Pn5GevXrzdjTpw4YTRr1szIzs42DMMwPv30U0OSsWvXLjNm586dhiTjn//8pwVX1TjUNDaXsmfPHkOSceTIEcMwGBuruDIux48fN6699lrjwIEDxnXXXWcsWLDA3Me4WONK4zJy5Ejj/vvvv+x+xsU6Vxqbzp07G3PmzHHa9stf/tJ48sknDcNgbKzy2GOPGb17977sfmoAeIvu3bsbDz30kNO2Dh06GI8//riHMvJexcXFhiQjNzfX06l4nbNnzxqxsbFGTk6O0adPH+ORRx7xdEpe40p/j3BlQ4cONR588EGnbcOHD6+x9sV/SDI2btxovnalBoKzqp/hpVTtVzRWzIh00eeff66oqCjFxMTonnvu0RdffCFJOnz4sIqKijRw4EAzNiAgQH369NGOHTskSXl5eaqoqHCKiYqKUlxcnBmzc+dO2e12JSYmmjE9evSQ3W43Y3BplxubS3E4HLLZbOa3h4yNdWoal8rKSqWlpWn69Onq3LlztfcyLta53LhUVlbq73//u2688UYNGjRI4eHhSkxMdLp9gHGxVk2/M71799amTZt04sQJGYah999/X5999pkGDRokibGxyqZNm9S1a1fdfffdCg8PV5cuXbRixQpzPzUAvEF5ebny8vKc/g1K0sCBA/n39TM4HA5JUmhoqIcz8T4TJkzQ0KFD1b9/f0+n4nWu9PcIV9a7d2+9++67+uyzzyRJ//jHP7R9+3bdcccdHs7MO7lSA6H2qvYrGisakS5ITEzUn//8Z73zzjtasWKFioqK1LNnT3399dcqKiqSJEVERDi9JyIiwtxXVFQkf39/tWzZssaY8PDwaucODw83Y1BdTWNT1ffff6/HH39cqampCgkJkcTYWOVK4zJ37lz5+vpq8uTJl3w/42KNmsaluLhY586d0x/+8AcNHjxYW7Zs0a9+9SsNHz5cubm5khgXK13pd+all15Sp06d1KZNG/n7+2vw4MFasmSJevfuLYmxscoXX3yhpUuXKjY2Vu+8844eeughTZ48WX/+858liRoAXuH06dO6cOFCjf9O4RrDMDRlyhT17t1bcXFxnk7Hq6xfv1779u1TZmamp1PxSlf6e4Qre+yxx3TvvfeqQ4cO8vPzU5cuXZSenq57773X06l5JVdqINTOpfoVjZWvpxPwBkOGDDH/Oz4+XklJSbrhhhu0evVq9ejRQ5Jks9mc3mMYRrVtVVWNuVS8K8dpymoamylTppj7KioqdM8996iyslJLliy54nEZm7qpaVz69OmjP/7xj9q3b1+tPz/GpW5qGpd77rlHknTXXXfp0UcflSTdcsst2rFjh15++WX16dPnssdlXOruSv9b9tJLL2nXrl3atGmTrrvuOm3btk3jx49X69ata5xZwtjUTWVlpbp27aqMjAxJUpcuXXTw4EEtXbpUDzzwgBlHDQBv8HP+ncLZxIkT9cknn2j79u2eTsWrHDt2TI888oi2bNni9NxpuM7Vv0e4vA0bNmjt2rXKyspS586dlZ+fr/T0dEVFRek3v/mNp9PzWvxtcY/a9iu8HTMif4agoCDFx8fr888/N1c1rdr1Ly4uNr8diIyMVHl5uUpKSmqMOXnyZLVznTp1qtq3DLi8n47NRRUVFRoxYoQOHz6snJwcp28XGJv68dNx+fDDD1VcXKy2bdvK19dXvr6+OnLkiKZOnap27dpJYlzqy0/HpVWrVvL19VWnTp2cYjp27GguZsC41J+fjs358+f1xBNPaP78+brzzjt10003aeLEiRo5cqReeOEFSYyNVVq3bn3F3wmJGgANW6tWreTj41Pjv1Nc2aRJk7Rp0ya9//77atOmjafT8Sp5eXkqLi5WQkKCWfvl5ubqpZdekq+vr9PCXbi0K/09wpVNnz5djz/+uO655x7Fx8crLS1Njz76KLN0fyZXaiC4pqZ+RWNFI/JnKCsrU0FBgVq3bq2YmBhFRkYqJyfH3F9eXq7c3Fz17NlTkpSQkCA/Pz+nmMLCQh04cMCMSUpKksPh0J49e8yY3bt3y+FwmDG4sp+OjfSfX+rPP/9cW7duVVhYmFM8Y1M/fjouaWlp+uSTT5Sfn2/+REVFafr06XrnnXckMS715afj4u/vr27duunQoUNOMZ999pmuu+46SYxLffrp2FRUVKiiokLNmjn/yfbx8VFlZaUkxsYqvXr1qvF3ghoA3sDf318JCQlO/wYlKScnh39fLjAMQxMnTtRrr72m9957TzExMZ5Oyev069dP+/fvd6r9unbtqvvuu0/5+fny8fHxdIoN3pX+HuHKvvvuuxprKdSOKzUQruxK/YpGq54Xx/FKU6dONT744APjiy++MHbt2mUkJycbwcHBxpdffmkYhmH84Q9/MOx2u/Haa68Z+/fvN+69916jdevWRmlpqXmMhx56yGjTpo2xdetWY9++fcbtt99u3HzzzcYPP/xgxgwePNi46aabjJ07dxo7d+404uPjjeTk5Hq/Xm9S09hUVFQYKSkpRps2bYz8/HyjsLDQ/CkrKzOPwdi435V+Z6qqumq2YTAuVrjSuLz22muGn5+fsXz5cuPzzz83Fi1aZPj4+BgffviheQzGxRpXGps+ffoYnTt3Nt5//33jiy++MF555RWjefPmxpIlS8xjMDbut2fPHsPX19d47rnnjM8//9xYt26d0aJFC2Pt2rVmDDUAvMH69esNPz8/Y+XKlcann35qpKenG0FBQZf9u4z/ePjhhw273W588MEHTrXkd9995+nUvBqrZteOK3+PULPf/OY3xrXXXmu8+eabxuHDh43XXnvNaNWqlTFjxgxPp9ZgnT171vj444+Njz/+2JBkzJ8/3/j444/NFZ1dqYGaupo+Q1f7FY0RjUgXjBw50mjdurXh5+dnREVFGcOHDzcOHjxo7q+srDSefvppIzIy0ggICDBuvfVWY//+/U7HOH/+vDFx4kQjNDTUCAwMNJKTk42jR486xXz99dfGfffdZwQHBxvBwcHGfffdZ5SUlNTHJXqtmsbm8OHDhqRL/rz//vvmMRgb97vS70xVl2pEMi7u58q4rFy50vjFL35hNG/e3Lj55puN119/3Wk/42KNK41NYWGhMWrUKCMqKspo3ry50b59e+PFF180KisrzRjGxhqbN2824uLijICAAKNDhw7G8uXLnfZTA8Bb/OlPfzKuu+46w9/f3/jlL39p5Obmejolr3C5WvKVV17xdGpejUZk7V3p7xFqVlpaajzyyCNG27ZtjebNmxvXX3+9MWvWrEbf8KmL999//5L/+/eb3/zGMAzXaqCmrqbP0NV+RWNkMwzDqI+ZlwAAAAAAAACaLp4RCQAAAAAAAMByNCIBAAAAAAAAWI5GJAAAAAAAAADL0YgEAAAAAAAAYDkakQAAAAAAAAAsRyMSAAAAAAAAgOVoRAIAAAAAAACwHI1IAAAAAAAAAJajEQkAAAAAQCPVt29fpaenezoNAJBEIxIAAAAAAABAPaARCQBu0rdvX02aNEnp6elq2bKlIiIitHz5cn377bf67W9/q+DgYN1www16++23PZ0qAAAAmoBRo0YpNzdXf/zjH2Wz2WSz2fTll196Oi0ATRiNSABwo9WrV6tVq1bas2ePJk2apIcfflh33323evbsqX379mnQoEFKS0vTd9995+lUAQAA0Mj98Y9/VFJSksaMGaPCwkIVFhYqOjra02kBaMJshmEYnk4CABqDvn376sKFC/rwww8lSRcuXJDdbtfw4cP15z//WZJUVFSk1q1ba+fOnerRo4cn0wUAAEAT0LdvX91yyy1auHChp1MBAGZEAoA73XTTTeZ/+/j4KCwsTPHx8ea2iIgISVJxcXG95wYAAAAAgCfRiAQAN/Lz83N6bbPZnLbZbDZJUmVlZb3mBQAAAACAp9GIBAAAAACgkfL399eFCxc8nQYASKIRCQAAAABAo9WuXTvt3r1bX375pU6fPs2dOQA8ikYkAAAAAACN1LRp0+Tj46NOnTrpmmuu0dGjRz2dEoAmjFWzAQAAAAAAAFiOGZEAAAAAAAAALEcjEgAAAAAAAIDlaEQCAAAAAAAAsByNSAAAAAAAAACWoxEJAAAAAAAAwHI0IgEAAAAAAABYjkYkAAAAAAAAAMvRiAQAAAAAAABgORqRAAAAAAAAACxHIxIAAAAAAACA5WhEAgAAAAAAALAcjUgAAAAAAAAAlvv/uczUiVxl9x4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -539,10 +539,10 @@ "start_time": "2023-11-09T18:41:39.708082190Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:19.775922Z", - "iopub.status.busy": "2023-11-09T20:46:19.775388Z", - "iopub.status.idle": "2023-11-09T20:46:21.303390Z", - "shell.execute_reply": "2023-11-09T20:46:21.302356Z" + "iopub.execute_input": "2023-11-09T22:34:13.596142Z", + "iopub.status.busy": "2023-11-09T22:34:13.595831Z", + "iopub.status.idle": "2023-11-09T22:34:14.652266Z", + "shell.execute_reply": "2023-11-09T22:34:14.651730Z" } }, "outputs": [ @@ -552,7 +552,7 @@ "text": [ "name value (rounded) at limit\n", "--------- ------------------ ----------\n", - "bkg_yield 118098 False" + "bkg_yield 118148 False" ] }, { @@ -560,7 +560,7 @@ "output_type": "stream", "text": [ "\n", - "sig_yield 20092.8 False" + "sig_yield 19908.6 False" ] }, { @@ -568,7 +568,7 @@ "output_type": "stream", "text": [ "\n", - "lambda -0.00202754 False" + "lambda -0.00199236 False" ] }, { @@ -576,7 +576,7 @@ "output_type": "stream", "text": [ "\n", - "mu 5278.98 False" + "mu 5279.2 False" ] }, { @@ -610,10 +610,10 @@ "start_time": "2023-11-09T18:41:41.690949558Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:21.305840Z", - "iopub.status.busy": "2023-11-09T20:46:21.305438Z", - "iopub.status.idle": "2023-11-09T20:46:21.312386Z", - "shell.execute_reply": "2023-11-09T20:46:21.311442Z" + "iopub.execute_input": "2023-11-09T22:34:14.654272Z", + "iopub.status.busy": "2023-11-09T22:34:14.653956Z", + "iopub.status.idle": "2023-11-09T22:34:14.658808Z", + "shell.execute_reply": "2023-11-09T22:34:14.658327Z" } }, "outputs": [], @@ -656,10 +656,10 @@ "start_time": "2023-11-09T18:41:41.695055246Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:21.314856Z", - "iopub.status.busy": "2023-11-09T20:46:21.314363Z", - "iopub.status.idle": "2023-11-09T20:46:21.572143Z", - "shell.execute_reply": "2023-11-09T20:46:21.571035Z" + "iopub.execute_input": "2023-11-09T22:34:14.660680Z", + "iopub.status.busy": "2023-11-09T22:34:14.660392Z", + "iopub.status.idle": "2023-11-09T22:34:14.857716Z", + "shell.execute_reply": "2023-11-09T22:34:14.857137Z" } }, "outputs": [ @@ -675,7 +675,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGxCAYAAACOSdkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACCNUlEQVR4nO3deVxUVf8H8M+dYUcYRETADRVccqs0FbPUXNJC89HKpSgC2yzNx6Uyf8+TbWpa2vakWahlpvVkpraYtqk9ippmuQsJKiriAoMg69zz+2O4VwZmBgYGZuHzfr14FfeeufeMV5wv3/M950hCCAEiIiKiBkjj6A4QEREROQoDISIiImqwGAgRERFRg8VAiIiIiBosBkJERETUYDEQIiIiogaLgRARERE1WAyEiIiIqMFiIEREREQNFgMhIiIiarAYCBEREVGDxUCIiIiIGiwGQkRUL+bMmQNJkvDXX3/hvvvug06nQ3BwMKZNm4bS0lIcP34cw4YNQ0BAACIjI7FgwQL1tYWFhZg+fTpuvPFG9XUxMTHYsGFDpfv897//Re/evaHT6eDn54e2bdsiISFBPS/LMl599VV06NABvr6+CAoKQrdu3fD222/Xy58DETkXD0d3gIgalvvvvx8PPvggHn/8cWzduhULFixASUkJfvzxR0yaNAkzZszAZ599hueeew5RUVEYPXo0ioqKcOXKFcyYMQPNmzdHcXExfvzxR4wePRorVqzAQw89BADYtWsXxo4di7Fjx2LOnDnw8fHBqVOn8PPPP6v3X7BgAebMmYP/+7//w+23346SkhIcO3YMOTk5DvoTISJHkoQQwtGdICL3N2fOHLz00kt48803MW3aNPX4TTfdhAMHDuCrr77CP/7xDwBAaWkpIiIicNttt2HdunWVrmUwGCCEwBNPPIH9+/dj//79AIA333wTM2bMQE5ODnQ6ndl+jBgxAhkZGfjjjz/q4F0Skavh0BgR1avY2FiT7zt16gRJkjB8+HD1mIeHB6KionDq1Cn12H//+1/ceuutaNSoETw8PODp6YmkpCQcPXpUbXPLLbcAMGadvvjiC5w9e7bS/Xv16oU///wTkyZNwg8//IDc3Fx7v0UiciEMhIioXgUHB5t87+XlBT8/P/j4+FQ6XlhYCAD46quvcP/996N58+b49NNPsWvXLuzduxcJCQlqGwC4/fbb8fXXX6O0tBQPPfQQWrRogS5dumDNmjVqm1mzZuGNN95AcnIyhg8fjiZNmmDQoEH4/fff6/BdE5GzYiBERE7v008/RZs2bfD5559j1KhR6NOnD3r27ImioqJKbe+55x789NNP0Ov1+PXXX9GiRQtMmDABu3btAmDMNk2bNg379+/HlStXsGbNGpw5cwZ33nknrl27Vt9vjYgcjIEQETk9SZLg5eUFSZLUY5mZmWZnjSm8vb3Rv39/vP766wBgtiYoKCgI9957L5566ilcuXIF6enpdu87ETk3zhojIqcXGxuLr776CpMmTcK9996LM2fO4JVXXkF4eDhSUlLUdv/+97+RkZGBQYMGoUWLFsjJycHbb78NT09P9O/fH4CxWLpLly7o2bMnmjZtilOnTuGtt95C69atER0d7ai3SEQOwkCIiJzeI488gqysLCxduhTLly9H27Zt8fzzzyMjIwMvvfSS2q537974/fff8dxzz+HixYsICgpCz5498fPPP6Nz584AgIEDB2LdunX46KOPkJubi7CwMAwZMgT/+te/4Onp6ai3SEQOwunzRERE1GCxRoiIiIgaLAZCRERE1GAxECIiIqIGi4EQERERNVgMhIiIiKjBYiBEREREDZbbriMkyzLOnTuHgIAAk9VoiYiIyHkJIXD16lVERERAo6n7fI3bBkLnzp1Dy5YtHd0NIiIiqoEzZ86gRYsWdX4ftw2EAgICABj/IAMDAx3cGyIiIqqO3NxctGzZUv0cr2tuGwgpw2GBgYEMhIiIiFxMfZW1sFiaiIiIGiwGQkRERNRgMRAiIiKiBouBEBERETVYDISIiIiowWIgRERERA2W206fJyJyFiUlJTAYDI7uBpFDaLVaeHp6OrobFjEQIiKqI7m5ubh06RKKiooc3RUih/L29kZISIhTruvHQIiIqA7k5ubi7NmzaNSoEUJCQuDp6cl9D6nBEUKgpKQEer0eZ8+eBQCnC4YYCBER1YFLly6hUaNGaNGiBQMgatB8fX0REBCAjIwMXLp0yekCIRZLExHZWUlJCYqKiqDT6RgEEcG4XYZOp0NRURFKSkoc3R0TDISIiOxMKYx25gJRovqm/Dw428QBBkJERHWE2SCi65z154GBEBERETVYDISowTp//jzmzJmD8+fPO7orRETkIAyEqEFKSUnBCy+8gJdeegkvvPACUlJSHN0lIiJyAAZC1OCsWLECHTt2xKpVqwAAq1atQseOHbFy5UrHdoyIHOrXX3+FJEmIj493dFeoHjEQogYlJSUFEydOhCzL6swFg8EAWZaRmJiI1NRUB/eQyD2lp6dDkiQMGDDALtdj0EL2wkCIGpTly5dbnLkgSRKSkpLquUdERORIDISoQUlPT4cQwuw5WRZIT0+v3w4REZFDMRCiBiUyMtLKWhYSWrduXa/9IWoI5syZgzZt2gAAtm3bBkmS1K/yQ1tHjhzBAw88gPDwcHh5eaF58+Z46KGHcPz4cZPrxcfHY+DAgQCAjz/+2OR6c+bMUdt9++23SEhIQKdOnRAYGAh/f390794dc+fO5Ua4pOJeY9SgJCQkYMGCBWbPCQgMufuheu4Rkfu78cYbMWbMGKxbtw7NmjXDsGHD1HP9+vUDAPz0008YMWIECgoKcPPNN2PAgAE4duwYVq1ahfXr1+O7777Dbbfdpr4mMzMTP/zwA9q1a6deQ7mXIjExEfn5+ejcuTO6du2K3Nxc7NmzB7Nnz8ZPP/2ELVu2QKvV1s8fAjktBkLUoERHRyMpKQkJCYkQkAAhQ6vVQJYFOgxYgAKplaO7SG5OCIHCYvPDs87Kx0uq1arAo0aNwo033oh169aZnaGZn5+PBx54AAUFBViyZAmeeOIJ9dzixYsxbdo0TJgwAampqfD29sbEiRMRFRWFH374Af369bM443Pp0qUYMmQI/P391WNXr17FhAkT8M0332D16tV46CH+8tPQMRCiBic+Ph47Ujvix+9WIevvbzBu9B1o12syfj4YgpQzxY7uHrm5wmKBu/+Z4ehu2OTbxS3g61132yN88cUXuHDhAm677TaTIAgA/vnPf2L16tXYt28f1q9fj3HjxlX7uqNGjap0LCAgAIsXL8Y333yDDRs2MBAiBkLUMOUaWqJdn+cwZngnzHx6DI6dDcQ3O37Hx0u/wPK52zFgwABMmTIF0dHRju4qkdvbsWMHAOCBBx4we/7BBx/Evn37sGPHDpsCIcC4ZMZ3332H1NRU5OfnQ5ZldcIEF1IlgIEQNUD5BTIu641rCL38f5PQyFeDTz77ELvXPgEJEoQw4OjRo3j//feRlJTEdUrIrny8JHy7uIWju2ETH6+63Szz3LlzAIyTGcxRjivtqkMIgRkzZmDx4sUWZ4pevXrVpn6Se2IgRA3OmQslAIDgQA0a+WqM2208+wQgZCj/XCqLLSYmJqJfv36IiopyUG/J3UiSVKfDTK6sqjokW+qUPv/8cyxatAgtWrTAW2+9hZiYGDRt2hSenp4oLi6Gt7e3xQCJGhZOn6cG58yFUgBAy2aeALjIIpGjRUREAADS0tLMnj916hQAIDw8vNrXXL9+PQBgyZIlGDNmDCIiIuDpafyZP3nyZG26S26GgRA1OKfLMkKtygIha4ssCsFFFonswcvLCwBQWlpa6ZwyLX716tVmX6scV9pVdT0AyM7OBgC0bNmy0rkvvviiut2mBoCBEDU4ytBYi2bGkWFriyxKkmSxboGIqi8kJASenp74+++/1aFnxf33349mzZphx44dWLZsmcm5d955B3v37kWLFi3wj3/8Qz2uZJEqLraoaN++PQBg2bJlJr/o7NixAwsXLrTLeyL3wECIGpxzF8uGxkKNGaGEhASrGaHExMR66xuRu/Ly8sKwYcOQmZmJ7t2746GHHsLEiROxYsUK+Pv7Y/Xq1fD19cXjjz+Onj17YsKECbj55pvxzDPPwN/fH5999hm8vb3V60VGRqJbt274/fff0atXLzzyyCOYOHEiNm7cCACYMmUK/P398f7776NLly4YP348br/9dvTv37/SFH1q2BgIUYOTlW38bbRZE+OKssoiixqNBpC0ADTQarXQaDRISkpioTSRnXz00UeIi4vD5cuX8dlnnyEpKQnbtm0DAAwaNAh79+7F+PHjkZGRgS+//BKZmZnq1Pnyw2KKdevWYdSoUTh58iQ++eQTJCUlYf/+/QCMGaG9e/dixIgRuHTpEjZu3Ii8vDx88MEHzAiRCUm4adl8bm4udDod9Ho9AgMDHd0dchIFRbK6mN3GN1ugke/13wW2bj+CiVP/g2vZqYgdEIHZs2czCKIaKSwsRFpaGtq0aQMfHx9Hd4fIKVT356K+P785fZ4alItl2SB/H8kkCAKAnjd1QLs+zwEQePkFT7RsEeGAHhIRUX3i0Bg1KBeuGOuDQoMr/w6g89fA0wMAJHj6htZvx4iIyCEYCFGDomSEQhtX3nFao5EQEuRR1s78lFwiInIvDISoQckqC3BCG5sfFW4aZAyQLuYYzJ4nIiL3wkCIGpQLV8oyQsGVM0IA0LQsU6RkjoiIyL0xEKIGRRnyamopI9SYQ2NERA0JAyFqUJRd50OCLGSEODRGRNSgMBCiBkUJhJoEmg+EQhgIERE1KAyEqMEoLhHIKzCuHxqsMx8IBZcFSNm5DISIiBoCBkLUYFwpC248PYBGvuY3WVUDoauyxf3HiIjIfTAQogZDCYSCA7UWd5tvHGj8kSguEbhWyECIiMjdMRCiBuOKUh9kYVgMAHy8NPD1NgZJVzg8RkTk9hgIUYNxuSywaWyhUFpxfXiMgRARkbtjIEQNhlIAbWnGmKKxWjAt13mfiBqS9PR0SJKEAQMGOLorqgEDBkCSJKSnpzu6Ky5JkiRERkY6uhu1wkCIGgxl6rylGWOK4LI6IQ6NERG5PwZC1GBcKcvwBFeVEQrg0BgRUUPBQIgajCtqjZD1v/ZcS4iIqOGwKRCaM2cOJEky+QoLC1PPCyEwZ84cREREwNfXFwMGDMDhw4dNrlFUVITJkycjJCQE/v7+GDlyJDIyMkzaZGdnIy4uDjqdDjqdDnFxccjJyan5uyQCkJtnDGyCGlWvRugKa4SI6kxubi6eeeYZtGzZEj4+PujUqRMWL14MWTb9uTtw4ACeffZZ9OjRA02bNoW3tzfatm2LSZMm4dy5cxavf/r0aTz99NOIjo6Gj48PmjRpgl69emHu3LkoKCiosn96vR633347JEnC1KlTTdYVO3nyJO6//34EBwejUaNG6NevH3744Qf8+uuvkCQJ8fHxJteKj4+HJEn49ddf8cMPP2DgwIEICgqCJEnqZ1tpaSneffdd9OjRA40aNUKjRo3Qq1cvLFmyBAZD5V/KIiMjLS4DUp1+bN++HXfccQcCAgIQGBiIu+++G0eOHDF7vfz8fDz33HNo1aoVfHx80LFjRyxatMht1lqzOSPUuXNnnD9/Xv06ePCgem7BggVYtGgR3nvvPezduxdhYWEYMmQIrl69qraZOnUq1q9fj7Vr1+K3335DXl4eYmNjTR70hAkTcODAAWzevBmbN2/GgQMHEBcXV8u3Sg1dTp7xH9igRtb/2jcOMJ7P4dAYUZ0oKirCHXfcgU8++QS9evXCkCFDcOrUKUybNg2JiYkmbefPn49FixbBYDDg1ltvxV133QUhBJYsWYKePXuaDYa2b9+Obt264T//+Q9kWcY999yDmJgYXLp0CbNnz8aFCxes9u/ChQsYMGAAduzYgZdeeglvvfWWGnSkpKSgd+/e+O9//4vQ0FCMGDECBoMBd911F9atW2f1up999hmGDx+O/Px8DB8+HLfccgskSYLBYMA999yDKVOmIDU1FYMHD8bgwYNx7NgxTJo0Cffdd1+lALE2Nm3ahDvuuANXrlzBnXfeifDwcHz33Xe4/fbbkZmZadK2qKgIQ4cOxYIFC1BQUIARI0YgMjISzz//PJ5++mm79cmhhA1efPFF0b17d7PnZFkWYWFhYv78+eqxwsJCodPpxNKlS4UQQuTk5AhPT0+xdu1atc3Zs2eFRqMRmzdvFkIIceTIEQFAJCcnq2127dolAIhjx45Vu696vV4AEHq93pa3SG6qqFgWA588JQY+eUpczTdYbXswtVAMfPKUePDfZ+upd+RuCgoKxJEjR0RBQYGju+JU0tLSBAABQHTr1k1cvHhRPZeamioiIiIEALFhwwb1+E8//STOnTtnch2DwSBeeuklAUA88sgjJueuXLkimjZtKgCIxYsXC1mWTc5v27ZN5OTkqN/3799fABBpaWlqH6OiooQkSeLdd9+t9B4GDRokAIjJkycLg+H6vyWffPKJ+t4efvhhk9c8/PDD6rnyn3+KN954QwAQXbt2FRcuXFCPnzt3TnTo0EEAEP/5z39MXtO6dWth6SP8l19+sdoPjUYjPvvsM/V4aWmpGDNmjAAg/vWvf5m8Zu7cuQKA6NWrl8mf2759+0RgYKAAIFq3bm22HxVV9+eivj+/bc4IpaSkICIiAm3atMG4ceNw8uRJAEBaWhoyMzMxdOhQta23tzf69++PnTt3AgD27duHkpISkzYRERHo0qWL2mbXrl3Q6XTo3bu32qZPnz7Q6XRqG3OKioqQm5tr8kWkULI7HlrA38L2GorAsoyRPo8ZIbI/IQSuFV9zqS9RB0Mgb7zxBkJCQtTv27Vrh3/9618AgP/85z/q8TvuuAPh4eEmr9VoNPj3v/+N5s2bY8OGDSbnPvzwQ1y8eBGxsbGYOnVqpeGj22+/HTqdzmyfDh8+jFtvvRXp6elYtWpVpYxHamoqfvrpJwQHB2PevHnQaK5/hMbFxeH222+3+p7vvvtujB07ttLxd955BwDw1ltvITQ0VD0eHh6OhQsXmrSxhwkTJmD8+PHq91qtFi+88AIAYzatvCVLlgAAFi9ebPLndvPNN+Opp56yW58cycOWxr1798Ynn3yC9u3b48KFC3j11VfRt29fHD58WE2nNWvWzOQ1zZo1w6lTpwAAmZmZ8PLyQuPGjSu1UV6fmZlp8hdBERoaWillV968efPw0ksv2fJ2qAHR5xvTyrpGlrfXUOj8jf+45RUIlBoEPLTW2xPZoqCkAF3f6erobtjk4JSD8PPys9v1goODMWTIkErHJ0yYgCeffBI7d+6EEEL9Wb18+TI2btyIQ4cOIScnRy2lKCkpwZUrV3DlyhUEBwcDAH788UcAwOOPP25Tn5KTk/HUU0+hoKAAX3/9Ne6+++5KbZRfxu+66y74+/tXOn/fffdVCiTKGzlyZKVjp0+fxunTpxEWFoY77rij0vnY2FgEBQXh+PHjuHjxIpo2bWrL2zKrfDJC0b59ewDA+fPnTfp25swZNG/eHH379q30mvHjx2PevHm17o+j2RQIDR8+XP3/rl27IiYmBu3atcPHH3+MPn36AEClD5nyf5ktqdjGXPuqrjNr1ixMmzZN/T43NxctW7a0/oaowVAyQkqQY00jPw0kCRACyM2Xq5xuT0S2ad26tdnjgYGBCAoKQk5ODnJzc6HT6bBmzRo89thjyMvLs3i9q1evqoHQmTNnABgzTLaIi4tDaWkpPv/8c7NBEAC1HsnSZ0urVq2s3sPceeWalhYllCQJrVu3Rk5ODs6dO2eXQKhFixaVjjVq1AiAcXSlYt8sva+q3q+rsCkQqsjf3x9du3ZFSkoKRo0aBcCY0SmfxszKylKzRGFhYSguLkZ2drZJVigrK0uNNsPCwswWsl28eLFStqk8b29veHt71+btkBvTlxVK6wKqDoS0GgkBfhrk5svQ5xkYCJFd+Xr64uCUg1U3dCK+nr71dq/yw3CnTp1CfHw8hBB46623cPfdd6N58+bw9TX2p2/fvti1a5fZobuqfgGvaPz48Vi1ahX+/e9/4/bbbzeZEV3da1c1hOjj42PzNW1tA6DKwurqXkd5P5ba2/pn7KxqtY5QUVERjh49ivDwcLRp0wZhYWHYunWrer64uBjbtm1Tg5wePXrA09PTpM358+dx6NAhtU1MTAz0ej327Nmjttm9ezf0er3Z1BxRdeRUc+q8QldWJ5Sbxyn0ZF+SJMHPy8+lvuz9gXf69Gmzx3Nzc6HX6+Hv74/AwEB89913KC4uxpQpU/DMM88gKipKDYIAqDWq5SnZmtTUVJv69PLLL+O5557D8ePHMWjQIGRlZVVqo/ySb6n/SjbKFhEREQCMdbaWKPcrn2Tw8vICALOZspr0w1rflPKWiiwddzU2BUIzZszAtm3bkJaWht27d+Pee+9Fbm4uHn74YXWthblz52L9+vU4dOgQ4uPj4efnhwkTJgAAdDodEhMTMX36dPz000/4448/8OCDD6Jr164YPHgwAKBTp04YNmwYHn30USQnJyM5ORmPPvooYmNj0aFDB/v/CVCDoGaEqpg6r9CVBUxKbRER2c/ly5fVWp7y1qxZA8CY6ZEkCdnZ2QDMD0Vt377d7OiB8lmybNkym/s1f/58zJw5E0eOHMGgQYNw6dIlk/PKL+Pfffcdrl27Vun1X375pc33bNWqFVq1aoXMzEz8/PPPlc5/++23yM7ORocOHUyGxZSg6MSJE5Ves2XLFpv7YU7r1q3RokULnD17Frt27ap0fu3atXa5j6PZFAhlZGRg/Pjx6NChA0aPHg0vLy8kJyer473PPvsspk6dikmTJqFnz544e/YstmzZgoCAAPUaixcvxqhRo3D//ffj1ltvhZ+fHzZt2gSt9vpv6qtXr0bXrl0xdOhQDB06FN26dcOqVavs9JapIboeCFUzI+TPmWNEdWnmzJm4fPmy+n1aWhpeeeUVAMCkSZMAXC/g/fTTT5Gfn6+2PXv2LJ544gmz1504cSJCQkKwadMmvPfee5WGq3bs2AG9Xm+xXwsWLMC0adNw6NAhDBo0yKSP0dHRGDhwIK5cuYIXXnjB5NqrV6/Gtm3bqvv2TUyePBkA8M9//hMXL15Uj2dmZmLmzJkmbRT9+/cHYJwoVH4dvk8//dSuAYpSdD59+nST2dgHDhwwmd3n0uplkr4DcB0hKu9fS7PEwCdPia9/za1W+4WrLomBT54Sn36fU3Vjogq4jpB5yjpCffr0ETfffLNo3LixGDNmjBgxYoTw8/MTAMSDDz6oti8qKhKdO3cWAERYWJgYM2aMuPvuu4Wfn5/o27ev6Nu3r8kaQIqff/5ZBAQECACiXbt24v777xexsbGiTZs2ldpXXEdIMXXqVAFA3HjjjeLKlSvq8WPHjong4GABQHTs2FGMHz9exMTECEmSxKRJkwQA8eijj5pcS1m/55dffjH751JaWiqGDx8uAAidTif+8Y9/iFGjRqnvYdSoUSZrFgkhRGZmprpeUvv27cW9994runfvLrRarfjnP/9pdR0hS/2AmTWBCgsLRe/evQUAERISIu677z4xbNgw4eXlJZ588smGuY4QkSu6XixdvYxQoJoR4tAYkb15e3vj559/xvjx47Fr1y788MMPaNmyJd544w2sXLlSbefl5YUdO3bgySefhI+PD7755hscPXoUkydPxtatW+Hp6Wn2+gMHDsSBAwfw2GOPobS0FF9//TWSk5MRGhqKefPmWS2EVixevBiTJ0/GgQMHMGTIEHUrjA4dOqilIZmZmeo6Rt988406dNakSROb/jy0Wi02btyIt99+G23btsUPP/yALVu2oEOHDvjPf/6DL7/80mTNIsC47Mz27dsRGxuL8+fP4/vvv4dOp8PWrVvNTtOvKW9vb/z444+YMWMGvL29sWHDBpw8eRKvvvoq3nvvPbvdx5EkIdxks5AKlKmXer0egYGBju4OOVj8S+dw+kIpFk0NxY3tLc/cUKzdmotl63MwpJcfZsWHVNmeqLzCwkKkpaWhTZs2VmcKkXt58sknsXTpUqxdu9bswokNXXV/Lur785sZIWoQcmwuli7LCLFYmojKKSwsxNGjRysdX7duHT766CPodDqL6xCRc6rVOkJErsAgC1y9VtNiaQZCRHRdTk4ObrjhBnTs2BHR0dHw9PTE0aNHcfToUWg0Grz//vvq4oTkGpgRIreXmy9DGQCuzsrSwPWAKZezxoioHJ1Oh+nTp8PLywu//fYbNm7ciMuXL+Oee+7Btm3b1OViyHUwI0Ru78Bfx/F38n9QdPUUpk5tgylTpiA6Otrqazg0RkTm+Pr64o033nB0N8iOmBEit7ZixQoMvr0rTh/4ABdSv8eSJUvQsWNHk5kp5igZoWuFAsUlbjmfgIiIwECI3FhKSgomTpxo3HdHGADIMBgMkGUZiYmJVpfg9/eRoCnbVSA3n8NjRETuioEQua3ly5db3SwwKSnJ4ms1GkldSyiXw2NERG6LgRC5rfT0dIu7QQshkJ6ebvX1ap0QZ44REbktBkLktiIjI61mhCIjI62+vpGf8cdDmXpPRETuh4EQua2EhASrGaHExESrrw9gIERE5PYYCJHbio6ORlJSEiRJA0haABK0Wi00Gg2SkpIQFRVl9fUMhIiI3B8DIXJr8fHxSJi9E61ufBzejZojLi4Ox48fR3x8fJWvVQKhPAZCRERuiwsqktvT+rVCuz7P4Z47b8KsKXcjPDy8Wq9Ta4Q4a4yIyG0xECK3pwxtPfFYHMLDvav9ukB/rcnriYjI/XBojNyektFRMjzVxVljRPUvPT0dkiRhwIABju5Ktf3666+QJKlaQ+7kfBgIkVszGATyC40zxwJtDIRYLE1E5P44NEZuLa/gehATwECIyOk1b94cR48ehZ+fn6O7Qg0EAyFya8r2GP4+ErRa84srWsJZY0T1z9PTEx07dnR0N6gB4dAYuTUlm2NrfRBQLhAqkCHL3IGeqLaOHj2KuLg4tGvXDj4+PmjatCluvPFGTJ06FefPnwdgvUaopKQEr732GqKiouDj44O2bdtizpw5KCkpMbuSfPnanStXruDJJ59EeHg4vL290aVLFyxfvtxsP7/99lskJCSgU6dOCAwMhL+/P7p37465c+eiqKjI7n8u5FjMCJFbUwKhAH/bAyEleBICyC8UCPCzLaNERNft378f/fr1Q2FhIXr16oVevXrh6tWrOHnyJN5++22MGjXK6tIWQgjcd9992LBhAwICAjB8+HDIsow333wTBw4csHrvnJwcxMTEQK/Xo1evXsjLy8P27duRmJgIWZYxceJEk/aJiYnIz89H586d0bVrV+Tm5mLPnj2YPXs2fvrpJ2zZsgVardYefyzkBBgIkVtTZozZWigNAF6eEny8JBQWC1y9JttcY0RkjhAC4lqho7thE8nPx+K+fdX1zjvvoKCgAOvWrcPo0aNNzh09ehRBQUFWX7969Wps2LABUVFR2L59uxo0nTlzBrfddhtOnTpl8bUbNmzAmDFj8PHHH8Pf3189NmrUKLzyyiuVAqGlS5diyJAhalsAuHr1KiZMmIBvvvkGq1evxkMPPWTL2ycnxkCI3JpSIxTgX7Pf3hr5aVBYbMDVfAMQwh8Xqj1xrRBpkUMd3Q2btEnfAsnft1bXyMrKAgDccccdlc516tSpytcvXboUAPDKK6+YZI5atmyJF198EQkJCRZfGxgYiGXLlpkENvfccw+6du2KgwcPIj093WQT5lGjRlW6RkBAABYvXoxvvvkGGzZsYCDkRvgvO7k1dWishtmcQD8NLuUYOHOMqJZ69OiB77//Hg899BD+7//+Dz179oRGU72fy5KSEuzduxcajaZSNgkA7rvvPquBUM+ePREcHFzpePv27XHw4EGcP3/eJBACgJSUFHz33XdITU1Ffn4+ZFlWN3FOSUmpVr/JNTAQIrdW20CoEWeOkZ1Jfj5ok77F0d2wieTnU+trzJw5E7/99hs2bdqETZs2QafToXfv3oiNjUV8fDwCAgIsvvby5csoLi5GeHg4vLy8Kp1v1KgRGjdujOzsbLOvb9GihdnjjRo1AgCTAmghBGbMmIHFixergU9FV69etdhXcj0MhMitXc03AKhZsTRwPYDK5X5jZCeSJNV6mMkVBQYG4ueff8b//vc/bNq0Cb/++qtaeDxv3jzs2LED7dq1s3oNa3VKloKWql5X0eeff45FixahRYsWeOuttxATE4OmTZvC09MTxcXF8Pb2tnovcj2s/iS3pmSEalIsDVwPoJgRIqo9SZLQr18/vP7669i9ezfOnz+P8ePH4/z583jhhRcsvq5Jkybw9PREZmYmiouLK53Py8tDTk6OXfq4fv16AMCSJUswZswYREREwNPTEwBw8uRJu9yDnAsDIXJruTXcZ0xRoE/D38mvY/bUkZg8eTJrA4jsqGnTppgzZw4A4ODBgxbbeXp64pZbboEsy2qgUt6XX35ptz4pw2stW7asdO6LL76w233IeTAQIremZHICazA0tmLFCrw0pTdOH/gA6cd3YMmSJejYsSNWrlxp514Sub+lS5ciLS2t0vHvv/8eANCqVSurr3/88ccBAP/+97+RmZmpHs/IyMDLL79st362b98eALBs2TKTIbAdO3Zg4cKFdrsPOQ8GQuTWalosnZKSgokTJ0IIGRAGAAIGgwGyLCMxMRGpqal10Fsi97V06VK0bdsWnTt3xr333otx48bhpptuwtSpU+Hr64sXX3zR6uvj4uIwYsQInDhxAh06dMDo0aMxatQodOrUCV26dEGrVq3UIazamDJlCvz9/fH++++jS5cuGD9+PG6//Xb0798fTzzxRK2vT86HgRC5LSGEOjRma0Zo+fLlFgssJUlCUlJSrftH1JC88sorSEhIgCRJ+Omnn7Bp0yZcu3YNjz32GP766y/ExMRYfb0kSfjyyy/x8ssvIyQkBN9++y3+/PNPTJ06FV988QUuXLiAJk2a1Lqf7du3x969ezFixAhcunQJGzduRF5eHj744ANmhNyUJNy0/D03Nxc6nQ56vR6BgYGO7g45wLVCGbHTMgAA3y5uAV/v6gdD48ePxxdffAFZrlwkrdFocP/992PNmjV26yu5l8LCQqSlpaFNmzbw8an91HOybvfu3ejTpw+GDRumDrWR86nuz0V9f34zI0RuSxkW8/QAfLxs2x7A3AaOCkmSKi2+RkR17+DBgygpKTE5lp6ejieffBIAMGHCBEd0i1wc1xEit6XsMxbgp7F5n6SEhAQsWLDA7DkhBBITE2vdPyKyzcyZM/H777+je/fuCA0NRUZGBn7//XcUFhbirrvuwoMPPujoLpILYiBEbiv3Ws33GYuOjkZSUpJxd2ohARDQaiQIIZCUlISoqCg795aIqhIfHw9ZlnHw4EH89ttv8PLyQteuXTFhwgQ89dRTtd4YlhomBkLktspnhGoiPj4eMX1vxdBxb6HwagbuGdQKz854hkEQkYOMGzcO48aNc3Q3yM0wECK3Vdt9xgCgQ/todBvwPPILBf71YjhaNqv99FwiInIeLJYmt3W1FosplqesSs0d6ImI3A8DIXJb6oartcgIlX89AyEiIvfDQIjcVq4dhsaA6xkhbrxKROR+GAiR21KLpWs5NBbAQIiIyG0xECK3ZY9i6fKv59AYEZH7YSBEbovF0kREVBUGQuS2lKGxRnbKCHFojJzZ+fPnMWfOHJw/f97RXSFyKQyEyG0pxdKBtS2W9mVGiJzf+fPn8dJLLzEQIrIRF1Qkt1RSKlBYJADUvlhanTVWwECIqDYqboHh4eEBnU6H8PBw9OjRAyNGjMA999wDDw9+NFH9YUaI3FL57I2/L4fGiJzJww8/jIcffhjjx4/HrbfeitLSUnzyySe499570alTJ+zZs8cu91m5ciUkScKcOXPscj1yTwy7yS2p9UG+ErSa2m3EyFljRPa1cuXKSsf+/vtvvPDCC/jiiy8wcOBA/O9//8ONN95Y732jhocZIXJLV2ux83xFXFCRqO61a9cOn3/+ORITE3Ht2jUkJCQ4ukvUQDAQIrd01U6F0sD1QCi/UMAgi1pfj8jeUlJS8O677wIA3n33XaSkpDi4RzX35ptvwt/fH3/88Qd+++03k3PffvstEhIS0KlTJwQGBsLf3x/du3fH3LlzUVRUZNJ2wIABeOSRRwAAL730EiRJUr+UjJQQAmvWrMG4cePQvn17+Pv7IyAgAL169cL7778PWeYvPw1BrT4l5s2bB0mSMHXqVPWYEAJz5sxBREQEfH19MWDAABw+fNjkdUVFRZg8eTJCQkLg7++PkSNHIiMjw6RNdnY24uLioNPpoNPpEBcXh5ycnNp0lxoQZZ+x2k6dB0wXZMxnwTQ5mRUrVqBjx45YtWoVAGDVqlXo2LGj2eEnV6DT6TB8+HAAwC+//GJyLjExEf/973+h0+kwbNgw3HbbbThz5gxmz56Nu+66CwaDQW07bNgw3HrrrQCA7t27q3VJDz/8MKKiogAYP4smTJiALVu2IDQ0FCNGjEDv3r1x+PBhPPXUU8xKNRSihvbs2SMiIyNFt27dxDPPPKMenz9/vggICBDr1q0TBw8eFGPHjhXh4eEiNzdXbfPEE0+I5s2bi61bt4r9+/eLgQMHiu7du4vS0lK1zbBhw0SXLl3Ezp07xc6dO0WXLl1EbGxstfun1+sFAKHX62v6FsmF/fcnvRj45Cnx8kcX7XK94VNPi4FPnhIZWcV2uR65t4KCAnHkyBFRUFBQp/c5ceKE0Gg0AkClL41GI1JSUur0/rZS+laVV199VQAQ48ePNzm+fv16kZeXZ3IsNzdXxMbGCgDi448/Njm3YsUKAUC8+OKLZu9TUlIi1q1bJ4qKikyOZ2VliZ49ewoAYtu2bdV4Z1Qd1f25qO/P7xr9upyXl4cHHngAH374IRo3blw+qMJbb72F2bNnY/To0ejSpQs+/vhjXLt2DZ999hkAQK/XIykpCW+++SYGDx6Mm266CZ9++ikOHjyIH3/8EQBw9OhRbN68GR999BFiYmIQExODDz/8EN988w2OHz9es4iPGhR1n7EqMkJCCBT/fQaiqNhquwBf1gmR81m+fHmlKekKSZKQlJRUzz2yj5CQEADGkYHyRo0aBX9/f5NjAQEBWLx4MQBgw4YNNt3Hw8MDo0ePhpeXl8nxpk2bYt68eTW6JrmeGs0ae+qpp3D33Xdj8ODBePXVV9XjaWlpyMzMxNChQ9Vj3t7e6N+/P3bu3InHH38c+/btQ0lJiUmbiIgIdOnSBTt37sSdd96JXbt2QafToXfv3mqbPn36QKfTYefOnejQoUOlPhUVFZmMEefm5tbkrZGbuF4sbTkQEkIga9IryPtyK7y6tUfzDe9C08jPbNsAPw0u5hg4c4ycSnp6OoQwX7cmhEB6enr9dshOlPdkLshLSUnBd999h9TUVOTn50OWZbV9TWujDhw4gC1btuDUqVO4du0ahBC4evVqra5JrsPmQGjt2rXYv38/9u7dW+lcZmYmAKBZs2Ymx5s1a4ZTp06pbby8vEwySUob5fWZmZkIDQ2tdP3Q0FC1TUXz5s3DSy+9ZOvbITdVnQ1XC7b9jrwvtwIAiv86gdxPNiJo0jizbf05c4ycUGRkpNWMUGRkZP12yE4uXboEAAgODlaPCSEwY8YMLF682GLwpwQv1VVcXIz4+HisWbPGYhtbr0mux6ahsTNnzuCZZ57Bp59+Ch8fH4vtKv5gCiEs/rBaamOuvbXrzJo1C3q9Xv06c+aM1fuRe6vO0NjVz783/o+XJwAgd813FtuqiyoWcNYYOY+EhASrGaHExMR67pF9HDhwAABwww03qMc+//xzLFq0CM2bN8eXX36Js2fPori4GEIIdTTA0p+FJYsWLcKaNWvQpUsXfP/997hw4YJ6TaUMw9ZrkuuxKRDat28fsrKy0KNHD3h4eMDDwwPbtm3DO++8Aw8PDzUTVDFrk5WVpZ4LCwtDcXFxpbHfim0uXLhQ6f4XL16slG1SeHt7IzAw0OSLGq7cKnaeF7KMaz8bV68NS3oZ0GhQciwNJRmV/94BXFSRnFN0dDSSkpKg0Wig1RrXzNJqtdBoNEhKSlJnR7kSvV6PzZs3AwAGDhyoHl+/fj0AYMmSJRgzZgwiIiLg6Wn8JebkyZM1updyzTVr1mDYsGEIDQ2t9TXJ9dgUCA0aNAgHDx7EgQMH1K+ePXvigQcewIEDB9C2bVuEhYVh69at6muKi4uxbds29O3bFwDQo0cPeHp6mrQ5f/48Dh06pLaJiYmBXq83WWZ99+7d0Ov1ahsia/KqqBEqPpYG+Yoekp8P/Ab1gfdNHQEAhbsOmG3fiIEQOan4+HgcP34ccXFxAIC4uDgcP34c8fHxju1YDU2fPh35+fm45ZZbEBMTox5Xfnlu2bJlpdd88cUXZq+lFEGXlpaaPV+Ta5L7sSkQCggIQJcuXUy+/P390aRJE3Tp0kVdU2ju3LlYv349Dh06hPj4ePj5+WHChAkAjGtEJCYmYvr06fjpp5/wxx9/4MEHH0TXrl0xePBgAECnTp0wbNgwPProo0hOTkZycjIeffRRxMbGmi2UJqoot4qhsaJ9RwAAPj1ugOTpAZ+enY3H9x812577jZEzi4qKwuTJkwEAkydPdslM0MmTJzF27FgkJSXB39+/0oy39u3bAwCWLVtmMly1Y8cOLFy40Ow1IyIiAMDibGPlmkuXLjU5/uWXX+KTTz6p2Rshl2P3vcaeffZZFBQUYNKkScjOzkbv3r2xZcsWBAQEqG0WL14MDw8P3H///SgoKMCgQYOwcuVKNbULAKtXr8aUKVPU2WUjR47Ee++9Z+/ukhuSZXE9I2QpEDponAni1c34D6H3zcZahMI/zf+D2ciXGSEie1GyVbIsIzc3FydOnMCxY8cghEB0dDQ+++wzdO3a1eQ1U6ZMwcqVK/H+++/j119/Rbdu3XD27Fn89ttvmD59Ot54441K9+nTpw9CQ0Px5ZdfYsCAAWjbti00Gg0SEhLQt29fPPvss9i8eTOef/55/Pe//0X79u2RkpKC33//HTNmzDB7TXJD9bJakQNwQcWG6+o1gxj45Ckx8MlTorDIYLZNxvAnRGpIP5H75RYhhBCFh1JEakg/cTJquJBluVL7H5LzxMAnT4kZb1+o076Te6ivBRXL27dvnwAg9u3bV2/3tBUqLPro4eEhgoODRZcuXcTDDz8s1q1bJ0pKSiy+/siRI2LEiBEiNDRU+Pn5iZtuukksW7ZMvXbr1q0rvWbv3r1iyJAhQqfTCUmSBACxYsUK9fyuXbvEHXfcIRo3biwCAgJE3759xbp160RaWpoAIPr372/nP4WGy1kXVOTu8+R2lBljXp4SvL0s1Aj9bZxV6NU+EgDg2bYlIEmQc65CvpwDbYjp8g4cGiOqPVHLGVidOnXCxo0bbbp2z549sWXLFovX7NOnD3766SebrknuhZuuktupag0hQ85VyFf0AADPNs0BABpfb3i0DAMAFKecrvQaddYY9xojInIrDITI7eSWbbhqaep8yUljNkjbrInJStKeUa2M51NPVXpNI2aEiIjcEgMhcjtVFUqXnMwAAHi2bWFy3KssELKWEcq7JkOWmS4n5xMeHo4XX3wR4eHhju4KkUthjRC5naqmzlsKhDyjyzJCKWYyQr7GFc1lAVwrEur3RM4iPDwcc+bMcXQ3iFwOM0LkdqracPV6IGS6iJpnG2NgVHKm8n523l4aeJb92sDhMSIi98FAiNxOVcXSJelnAVwvlFZ4NDdu9FuaccHsbBHOHCMicj8MhMjtKNPnLRVLl57NAgB1lpjCI8IYCIn8Asj6vEqv435jRETuh4EQuR1lw9VGZjJCoqQUhguXAVwPfBQaPx9omugAGLNCFXG/MbIV16Ehus5Zfx4YCJHbUYauAs0EQqUXLgNCAJ4e0IYEVTqvBEel5yoHQhwao+pStgsqKSlxcE+InIfy81B+Oy1nwECI3I4yNGauWNpwrmxYLLwpJE3l8x4tmgEASjOyKp3jfmNUXZ6envD29oZer3fa34KJ6pMQAnq9Ht7e3vD09HR0d0xw+jy5nVwrxdJqfVCFYTGFZ3MlELI8NJbH1aWpGkJCQnD27FlkZGRAp9PB09MTksRlF6hhEUKgpKQEer0eeXl5aN68edUvqmcMhMjtqAsq+ldOv5aevwgA8Ihoava1WmXm2LnKGSEOjZEtAgMDAQCXLl3C2bNnHdwbIsfy9vZG8+bN1Z8LZ8JAiNxKcYlAYbFxKMJsjZAyNGYhEFKn0J81MzTGYmmyUWBgIAIDA1FSUgKDweDo7hA5hFardbrhsPIYCJFbUYIUjQT4+VQehqhqaMyjWQgAqDPLymNGiGrK09PTqT8IiBoyFkuTW1E2XG3kp4FGYyYQyrwEANCGWxgaaxZsbJdVORBisTQRkfthRojcyuEjJ/B38hKU5J3E5MIoTJkyBdHR0ep5Q9YVAIBHsyZmX69khER+AeS8aya70wewWJqIyO0wI0RuY8WKFbjnzu44feADnE/5AUuWLEHHjh2xcuVKAMbZC4aLxkBI2zTY7DUkf19Ifj4AAMPFbJNzjTg0RkTkdhgIkVtISUnBxIkTIcsyIAwABAwGA2RZRmJiIlJTUyHyrkEUFAEAtE0bm72OJEnQhpYNj1WoEyq/xQbXhiEicg8MhMgtLF++3OIaLZIkISkpCaVlw2KSvy80/r4Wr+URahw2M2SZD4RKDVBnphERkWtjIERuIT093WKWRgiB9PT06/VBoebrgxRKRkhpr/DxlqAsRs3hMSIi98BAiNxCZGSk1YxQZGRkufog88NiCm1ZoFRaIRCSJIk70BMRuRkGQuQWEhISrGaEEhMT1QyPkvGxRJlRZnUtIc4cIyJyCwyEyC1ER0cjKSkJkqQBJOPWGlqtFhqNBklJSYiKilJngVmaMaZQh8bMBEJcXZqIyL1wHSFyG/Hx8dhyuAP+99On8C78HXcO6oVnnnkGUVFRAK4vkqgsmmiJNtQ4dGa4nFPpHFeXJiJyLwyEyK1o/FqjXZ/n8Pa0UHSN8jE5p2SEPKoYGtMGBxnbX9FXOseMEBGRe+HQGLkVazvPGy6VDY2FVFEs3SSorH1OpXPKNhvMCBERuQcGQuQ2ZFmomRpzO88bLhszPEqgY4mmiQ4AIK4VQC5bgFHBoTEiIvfCQIjcRn6hgDJxrJGZQEguq/lRAh1LNAH+gKdx1Fi+kmNyjkNjRETuhYEQuQ0lOPHxkuDlabqmkCgugXw1H8D1GiBLJEmCNtgYLClZJAXXESIici8MhMhtXM03ADCfDVILnzUaaHSNqryWNiTI+LoKM8euryPELTaIiNwBAyFyG/o8Y5ZG18hyIKQJDoSkqfqvvZoRqjBzTCmWZkaIiMg9MBAit5GbXxYI+ZupDyoLaJQApyqWZo41YrE0EZFbYSBEbkOfZxwa0zUyM3VemTFWRX2QQlPWTr5ivkaIgRARkXtgIERuQ1+WEQo0OzSWAwDQVjFjTKG0s1QjVFQiUFzCOiEiIlfHQIjchlojZGZo7HqNkI1DYxUCIT8fCcom98wKERG5PgZC5DaUobFAM6tKy5dtrBEKNp8R0mgkFkwTEbkRBkLkNtRiaSuzxqo7NKaxMH0eABr5GlNCDISIiFwfAyFyG7nWps+XBTTVLZa2NH0eKDdzrICBEBGRq2MgRG5Dr2aEzMwaq2GNkHwlF0I2DXg4c4yIyH14OLoDRPYghLg+fd7cOkJKRqhsyKsqai2RLEPOuWpSW1R0NR1/J3+Cl45fwE+9opGQkIDo6Oha9Z+IiByDGSFyCwVFAqXGOMjC9HnbiqUlL09oAo1bcZSvE1qxYgX+8+++OH3gA/zvl6+wcOFCdOzYEStXrqxV/4mIyDEYCJFbUKbOe3tK8PEy/WstXyuEKCgCcH3Iqzo0FTZeTUlJwcSJEyGEDAgDhBAwGAyQZRmJiYlITU21wzshIqL6xECI3ML1VaWtbLjq5QnJ37fa19QGBwIA5JxcAMDy5cshSZLZtpIkISkpyZYuExGRE2AgRG7B2qrSan1QsM5iIGOOJsgYCBmyjYFQeno6hDC/mrQQAunp6Tb0mIiInAEDIXIL6tR5M4spKoGMkuGpLm1QAABA1l8FAERGRlrNCEVGRtp0fSIicjwGQuQW9Pllq0qbywiVBUIaXYBN11QyQnK2MRBKSEiwmhFKTEy06fpEROR4DITILVjdZ6wso6NtbGNGqLExcFIyStHR0UhKSoJGowEkLSBpoNVqodFokJSUhKioqNq8BSIicgCuI0Ru4fqq0mb2GcsxBkI1zgiVFUsDQHx8PNp16o0Hn3wPRVdP475hkXjmmWcYBBERuSgGQuQWlKExc7PGlBofTZBtgZCSQVIyQopundujXZ/nAABvvdUSWm31C7CJiMi5cGiM3EKutaExpVja5oyQUiydZ3Jc2X0e4H5jRESujoEQuYXr0+fNDY0ZAxmNjTVCSiBUMSOk1Urw8+EO9ERE7sCmQGjJkiXo1q0bAgMDERgYiJiYGHz//ffqeSEE5syZg4iICPj6+mLAgAE4fPiwyTWKioowefJkhISEwN/fHyNHjkRGRoZJm+zsbMTFxUGn00Gn0yEuLg45OTk1f5fk9qztM2ao5dBY+RohhbID/dV8BkJERK7MpkCoRYsWmD9/Pn7//Xf8/vvvuOOOO3DPPfeowc6CBQuwaNEivPfee9i7dy/CwsIwZMgQXL16Vb3G1KlTsX79eqxduxa//fYb8vLyEBsbC4PBoLaZMGECDhw4gM2bN2Pz5s04cOAA4uLi7PSWyd0YN1xViqUtT5+3fWisLBDS50GU+/sJXA+49AyEiIhcmk3F0iNGjDD5/rXXXsOSJUuQnJyMG264AW+99RZmz56N0aNHAwA+/vhjNGvWDJ999hkef/xx6PV6JCUlYdWqVRg8eDAA4NNPP0XLli3x448/4s4778TRo0exefNmJCcno3fv3gCADz/8EDExMTh+/Dg6dOhgj/dNbuRaoYChLB4JNLfzvJoRamTTdZUFFSEE5Nx8k+n3xtlpJcjNM5h/MRERuYQa1wgZDAasXbsW+fn5iImJQVpaGjIzMzF06FC1jbe3N/r374+dO3cCAPbt24eSkhKTNhEREejSpYvaZteuXdDpdGoQBAB9+vSBTqdT25hTVFSE3Nxcky9qGJSsjI+XBG8vM0NjOTUbGpPK7U2mTMFXKJknZoSIiFybzYHQwYMH0ahRI3h7e+OJJ57A+vXrccMNNyAzMxMA0KxZM5P2zZo1U89lZmbCy8sLjRs3ttomNDS00n1DQ0PVNubMmzdPrSnS6XRo2bKlrW+NXJT+quVVpUVJKUTeNQCANsi2Ymnja8oKpivUCSmZJ2VIjoiIXJPNgVCHDh1w4MABJCcn48knn8TDDz+MI0eOqOcr7sUkhKhyo8uKbcy1r+o6s2bNgl6vV7/OnDlT3bdELu5KWSDUOMDMjDH99UyORmfb0BhQfpsN00BIWbgxlxkhIiKXZnMg5OXlhaioKPTs2RPz5s1D9+7d8fbbbyMsLAwAKmVtsrKy1CxRWFgYiouLkZ2dbbXNhQsXKt334sWLlbJN5Xl7e6uz2ZQvahiyc43BSOMAyzPGpEZ+kDxsXz9UmXJvqDg0pmaEWCNEROTKar2OkBACRUVFaNOmDcLCwrB161b1XHFxMbZt24a+ffsCAHr06AFPT0+TNufPn8ehQ4fUNjExMdDr9dizZ4/aZvfu3dDr9WobovKyyzJCwYGWt9fQ2lgfpFB3oM/m0BgRkTuy6VfkF154AcOHD0fLli1x9epVrF27Fr/++is2b94MSZIwdepUzJ07F9HR0YiOjsbcuXPh5+eHCRMmAAB0Oh0SExMxffp0NGnSBMHBwZgxYwa6du2qziLr1KkThg0bhkcffRQffPABAOCxxx5DbGwsZ4yRWTllgVCQuaExZTHFGtQHAdczQpWLpTk0RkTkDmwKhC5cuIC4uDicP38eOp0O3bp1w+bNmzFkyBAAwLPPPouCggJMmjQJ2dnZ6N27N7Zs2YKAgOu/jS9evBgeHh64//77UVBQgEGDBmHlypXQaq9/iK1evRpTpkxRZ5eNHDkS7733nj3eL7khq0NjZUXOts4YU1gqlr4+a4xDY0RErsymQCgpKcnqeUmSMGfOHMyZM8diGx8fH7z77rt49913LbYJDg7Gp59+akvXqAFThsYaWxsas3ExRYWlYmllhpo+T67WhAAiInJO3GuMXF52rpVZYzk1W0xRoW2sZIQqFksb7yXLQH6BqNG1iYjI8RgIkcvLvlo2NGYmI6TMGtPauOGqwlJGyMtTgo+3MQvE4TEiItfFQIhcWkmpUHeAN1cjpAQwmhoOjSkBlEF/tdI5ZQp9LmeOERG5LAZC5NJyytbx0WiAAD/77TyvUAKoihkh4PrMMU6hJyJyXQyEyKVdnzGmhUZTuWC51sXS5RZUFMK0FkhdS4hDY0RELsvtA6G///4bkydPRteuXTF58mSkpKQ4uktkR+qMMTPDYkC5nedrWCOkLsRYXAJxrdDknDKFnmsJERG5Ltv3HHAxPXr0gEajgcFgwNGjR/H+++8jKSkJ8fHxju4a2YEyY8zcYooAYMiu3dCY5O8LeHoAJaWQc3KhKduNHii/zQYDISIiV+X2GSEhBAwG44elwWCALMtITExEamqqg3tG9pBz1XKhNHA9I1TToTFJktRd6ytOoQ9Ua4Q4NEZE5KrcPhAyR5KkKheHJNdgbTFFUVSsDmfVNCNU/rWVdqBnRoiIyOU1yEBIlmWsW7eOdUNuwNpiimoGR5KgCfSv8T00QRYWVWSNEBGRy2uQgZAQAqmpqTh06BCWLFmCjh07YuXKlY7uFtXA5VwrO88rhdKB/pC05muIqkPdgd7S0BgDISIil+X2xdKWKFOhlfqhhIQEJCcnQ6/XIzIyEgkJCYiOjnZkF6kaLuUYn19IkLXtNWo+LFb+9bK+4jYbyoKKrBEiInJVbh8ISZIEjUYDWZYrrQNTnhACy5YtAwBoNBosWLCAs8tcgLVASBnKqumq0gql0LpysbSyjhA3XiUiclVuPzS2b98+zJw5E2PHjkWnTp2g0Vh+y0IIdZYZZ5c5v/wCGQVFxuA2RGcuI2Qsbq7pPmMKNSOUU7FYmhuvEhG5OrcPhNq1a4d58+ZhzZo1uOeee2z6rZ2zy5zbZb0xG+TvI8HXx8z2Gjl5AGqfEVI3Xq2QESq/8WoOh8eIiFyS2wdC5SUkJFgdHqtIlmVs2LAB48ePx6xZszi7zMlYGxYDyq0hVMsaIa2FWWMAEFQ2PKasZ0RERK6lQQVC0dHRSEpKgkajgVarhSRJVjNEQggcO3YMn3/+ORYuXMjZZU7mz4PH8Hfy6/hx9cNml0GQ7VQjdL1YOq/SOWXavrKeERERuZYGFQgBQHx8PI4fP67WDT366KOsG3JBK1asQOLYHjh94ANknPjJ7DIIhrKaHk3jWgZCSrG0mR3olYUclfWMiIjItTS4QAgAoqKi1LqhDz74oFKWyBrWDTleSkoKJk6cCCFkQBgAmA9U1Z3nazs01tj89Hng+tYe2RwaIyJySQ0yEKqoYpYoukMHwEJAJIRAenq6ybGUlBTMmjWLtUT1ZPny5RYD1vKBqt2GxnTXh8aEbBrwMCNEROTa3H4doepSskQAMGvWLCxcuFBdbLE8SZIQGRmpfr9ixQpMnDgRkiRBlmWuQVQP0tPTLRa9lw9UDXr7LqgIWYacdw3awEbqOdYIERG5NmaEzLA2u8wgG+DRoQ2A60M0sizDYDCwlqieREZGWs0IKYGqskmqsnt8TWl8vCH5eJlcU6FmhDg0RkTkkhgImWFudplGowEkoOl9TfHZpdcx8K2JWPjOO9UaoiH7shaoCiGQmJgI4Posr9pmhIzXML+WkFojxKExIiKXxEDIgop1Q88++yz2//kXhgyZDAgNTpf+gjU7VkGWzWcCzNUSkX1ER0fjrXeXAZIGkmQMVLVaLTQaDZKSkhAVFQW5oAiiqBiAvQKhspljFQqmr2eEGAgREbki1ghZUb5uSDHHxwf/ej0dP/y+GSXZhRAwn5moWEtE9jX4rgfRe3w09Glf4MbWlxEZGYnExERERUUBKDfDS6OBppFfre+n1QWgBJUzQsFlNULXCgWKimV4e/F3CyIiV8JAyAYVC6MFAAtxkMkQDdlf5qVS+Oki0WvMv/DO9GaVzitr/miCAiBZWSequq7vN2YaCPn7SvD0AEpKjXVCYU0YCBERuRL+q11N5gqjUb5ORSr70gBSuSEaqhuZV4xDUWFNLGyvoawhVMup8wpL22xIknR95hjrhIiIXA4zQtVkbe0ajUaD5tHtkONzCdpgAZ8oH7z62fv4auNGdO7QAQkJCYiOjq7nHru3zMulAICwJub/Cst2mjqvsJQRAoxT6LOyDbjCOiEiIpfDQKiarK1dAwC33tQDC957D3c/Mw4HP/oRkDLxt9iLbyTjukKvvfYa9Ho90tPTERkZyeColpRAKNxCIKQOjekamT1vq+v7jZkJhAKVmWOcQk9E5GoYCFVTddauKbxyBYfX/GysGyqLmYQw1hLNmjULWq2Wiy7aiRIINasiI6RtXLs1hBRaa/uNcVFFIiKXxRqhaqrO2jXWhs8AcNFFO5FlUWVGSN1ew15DY2UBlfmMEGuEiIhcFTNC1aQsspiYmGiynYYQQi2Mrmr4zJy4uDhERkaqw2WAsR6JQ2iWZV+VUVIKaCSgaWPzxdIGO+0zplB3oDdbI2T8feIKAyEiIpfDQMgG8fHx6NevH5KSktRApfzaNdaGz8yRZRm7d+/G7t27odFo8PrrrwMwFl9zCM2y85eM2aCmjbXw0Jr/87bXzvMKrZUaoSZBxh+jy3oGQkREroaBkI3MLbKoSEhIwIIFC2y6npJBKr/Bq/L/yn8TExPRr18/Tscvc+GK9RljgP12nleoxdLZlQOhEJ0xK3Uph4EQEZGrYY2QHVnco6yWuG+ZqaqmzgPldp63U7G0utdYbh6EwTTgCQkyBkKX9QbIsm1Do0RE5FjMCNmZueGzoKAgvPDCC2ptEQCbaolkWcaGDRtYN1TmfDUCoboaGgMAOTffZDZaE50WkgSUGgB9vqzOIiMiIufHQKgOmBs+GzNmjBocpaenY+/evSbDYdYIIXDs2DEcO3aMdUMAzmYZA6GIECuBkN6+Q2OSpwckP1+IawWQc66aBEKeHhKCAjTIzpVxKcfAQIiIyIUwEKon5YOjlJQUdOzY0abXV6wlash1Q2culAAAWjYz/9dXCKGu96NtbJ9ACDDWCRmuFcCQkwtPNFePp6Sk4GTyOzh39jReKW6Pfz33WIPO2BERuRLWCDmAuVoi5b+SJBnnhVcx+ayh1g3lFci4UraCc8tmnmbbiPwC4zgV7JcRAq4HVeW32VixYgU6duyIP3csQdbf32D1isXo2LEjVq5cabf7EhFR3WFGyEEsTcUHgA+WLcM3/9uGv1P/RMnFIrM73DfUuiElG9REp4W/r/k4Xp3i7qGF5O9rt3srQZUSCJXfiFe9d9mzasgZOyIiV8JAyIEsTcVfuGABFgKY9MwzWPreu2YLqxtq3dCZC8b6oJahVmaMlVtV2pZ1naqi7kBfFmhZW0lcydhZWmqBiIicA4fGnNg/n34akpUxMiFEg9uy43p9kPlhMaDcjDE7DosB5TJCZfVH1lYSF0IgPT3drvcnIiL7YyDkxMzVElUlLi4O48ePx6xZs5CSklIPvaxfpzONgVALC4XSQLmMkJ3WEFIo11MyQtXZiJeIiJwbAyEnFx8fj+PHj2PmzJkYO3YsOnbsaPHDV9my44svvsDChQvdsmj35FljINSuuZfFNnWVEdJWqBGqzka8RETk3BgIuQCllmjNmjUYNWqU1dWqhRCQZdnthstSUlIwc+bz2PLZk/g7+XWIgnSLbdU1hOy0mKJC3WYjJw9A5YwdJA0gaaHRaNSNeImIyLkxEHIx1rIQ5rjDNHtlivrixW8g6+9vcObAB+jVs7PFbJe9d55XKIGQISdXPaZk7GbMmIHw6Fi0uvFx/LrzkNsXrRMRuQsGQi7GXN2QtdohVy/aLT9F3WAwAEKGENazXerQmB0XUwTK7UCfY7rxalRUFObPn487H1iCdn2eg5+ujV3vS0REdYeBkAuqWDfUu3dv49CMGTJkZJRcQ3Fpqc33SUlJwaxZsxxafF2dKeoVyWUZmzobGtNX3oEeuL732flLtv9ZExGRY3AdIRdV7S07BHAq6g/0XDQcT/acjscHDDVbY5SSkoLly5erCzTqdDrMnj0bkiRBCAFJkhyyVlFNpqjX2dCYThkasxAIle19lnmZgRARkatgIOQGlOGyxMREdYd7jUYDIQT6J47DmeBDyNecxBv7n8Ly/d3xfP/nMOaW3urrV6xYgYkTJ6pBDwCT1ZLLq+8Vk2syRV3J2Nhr53mFcj2Rdw2ipBSSp+mPT3gTBkJERK6GQ2NuouJw2cyZM3H8+HH8vGw1fp34K3oHPQRJ9sIV/Ilnt01A/7cSsP3YsUo1OLIsWwyCgPovvq7JFHW5zjJCja7fw8zwWBgDISIil2NTIDRv3jzccsstCAgIQGhoKEaNGoXjx4+btBFCYM6cOYiIiICvry8GDBiAw4cPm7QpKirC5MmTERISAn9/f4wcORIZGRkmbbKzsxEXFwedTgedToe4uDjk5OTU7F02EOWn2c+bNw9RUVFISUnBewsXQPx0DANOD0Krq7ejJKsUf21cj7vG3YJbht5m0z3qu/hayXZJGuPUdEjGInFrU9SVBQ/tvaCi5OEBTYC/yT3KU2uEGAgREbkMm4bGtm3bhqeeegq33HILSktLMXv2bAwdOhRHjhyBv7/xA2LBggVYtGgRVq5cifbt2+PVV1/FkCFDcPz4cQQEGH9Dnzp1KjZt2oS1a9eiSZMmmD59OmJjY7Fv3z616HfChAnIyMjA5s2bAQCPPfYY4uLisGnTJnu+f7dWfshLGS5Tsj1CAiAEIPJsuqYjVkyOj4/HgXM3YP2XHyMi4AIG9I1GYmKi2SBICKGu82PvoTHAWDAtX82vNHMMAMLLaoSyc2UUFsvw8WLClYjI6YlayMrKEgDEtm3bhBBCyLIswsLCxPz589U2hYWFQqfTiaVLlwohhMjJyRGenp5i7dq1apuzZ88KjUYjNm/eLIQQ4siRIwKASE5OVtvs2rVLABDHjh2rVt/0er0AIPR6fW3eoss6ceKE0Gg0Asa96+32pdFoREpKSqV7Pf/882LcuHHi+eefFydOnLDrezEYZPGPmWfEwCdPiT9TCqy3zc0TqSH9RGpIP2HIt962Jk4PeESkhvQTeVt3mT0fO+20GPjkKZF2rtju9yYiagjq+/O7Vr+y6vV6AEBwcDAAIC0tDZmZmRg6dKjaxtvbG/3798fOnTsBAPv27UNJSYlJm4iICHTp0kVts2vXLuh0OvTufb2gt0+fPtDpdGqbioqKipCbm2vy1ZBZm3ZuC2WtIkvDUcpihwsXLqyzrT3SzpUgJ0+Gj7eETpHeVtuqM7q8PCH5Wm9bE9WdQp/JKfRERC6hxrPGhBCYNm0a+vXrhy5dugAAMjMzAQDNmjUzadusWTOcOnVKbePl5YXGjRtXaqO8PjMzE6GhoZXuGRoaqrapaN68eXjppZdq+nbcjrVp51ZJZV8CCB4WijB0QJRPCG7o0KHScFT5QuuK7Dm7bP/xQgBAtyhveHpYD+7K7zNmj0CwIkuLKirCmnjg74wSZF5hIERE5ApqHAg9/fTT+Ouvv/Dbb79VOlfxA0iUrUNjTcU25tpbu86sWbMwbdo09fvc3Fy0bNnS6j3dmbVp5+ZoNBr06tULrVu3hl4LnGqRiaKmZ1CIszgi5yC4aW/4BjcxeU11FjtU1jqqjeRDBQCAHh19qmyr7jNm51WlFZoqAqFwLqpIRORSahQITZ48GRs3bsT27dvRokUL9XhYWBgAY0YnPDxcPZ6VlaVmicLCwlBcXIzs7GyTrFBWVhb69u2rtrlw4UKl+168eLFStknh7e0Nb2/7D4W4qoSEBCxYsMCm16xatUrN4MiyjPd++g4f/fEO8jV/Y/vlZRjw0Wp0NgxGRKYB2VlZ+PPPP21e7NBWOVcN+PNEEQDg1u5+VbY3ZBuHRO2987xCa2a/sfKUgulzFxkIERG5AptqhIQQePrpp/HVV1/h559/Rps2pnsqtWnTBmFhYdi6dat6rLi4GNu2bVODnB49esDT09Okzfnz53Ho0CG1TUxMDPR6Pfbs2aO22b17N/R6vdqGrKu4J1nFvcmqqv3RaDSYMiQW+6d/jyc6L4S/3Bb6fZnYMHsxlrz3DtZ+/jmOHTtmcc0he80u++3PAsgCiG7piYiQquN2dQ2hOpgxBlxfm8hSRqhlM2MfT18oqZP7ExGRfdmUEXrqqafw2WefYcOGDQgICFDrdXQ6HXx9fSFJEqZOnYq5c+ciOjoa0dHRmDt3Lvz8/DBhwgS1bWJiIqZPn44mTZogODgYM2bMQNeuXTF48GAAQKdOnTBs2DA8+uij+OCDDwAYp8/HxsaiQ4cO9nz/bi0+Ph79+vVDUlKSunWGsgBhxWOWank8tFrMHD4asW1uQOfnb7g+fwwC1iqQhIXFDm21ZXc+AKD/TVVng4ByawjVVSBUtjaRuXWEAKB1mCcA4OzFUpSUiiprmoiIyLFsCoSWLFkCABgwYIDJ8RUrVqj7Tz377LMoKCjApEmTkJ2djd69e2PLli3qGkIAsHjxYnh4eOD+++9HQUEBBg0ahJUrV5psHLp69WpMmTJFnV02cuRIvPfeezV5jw1a+T3JyrO1dueTjz+GRqMx7gBvjgRIkNStPSwtdmiLvzOKcejvImg1wNA+/tV6jVosHWTfxRQV2ioyQiFBWvh6SygoEjh3sRStwz3rpB9ERGQfNgVC1ZmFJEkS5syZgzlz5lhs4+Pjg3fffRfvvvuuxTbBwcH49NNPbeke1aGqZqF5NvWEV7gPwpvdgDdmLcA9A26v9T2//NkYbPS70Q8hQdX7qyrXdUaoimJpSZLQqpknjp8uxqnMEgZCREROjpuuUrVYm4Wm0WjQpHMb+N1VChkXMW3vRCz8sQ9aZnoD+XmIjIxEQkICoqOjq32/tHPF2Fo2LHb/oOoHNYbsutlnTKEJsr4DPQC0CvPA8dPFOJ3JOiEiImfHPQCoWqxtfgoAO5Z9i1f6rkRTqQeu/p6D/81dhbUrPsLaz9diwYIFNi2yaJAF3lqbDVkAt93oi05tqj8bsK52nlcoQ26WFlQEgFZldUIsmCYicn4MhKhaKs5CMzfjbELf27Bq5Gu49OVlY0G1DEBA3dE+ISEBfx48bvU+Qgh88FUODqYWwc9HwuOjG1ttX1Gdzxoru664VghRVGy2jRoIZXIKPRGRs+PQGFWbpVlo5Yuily9fDo0kwVxJtYBAn7t7o3nYDejTNQbPTXsMPl4aLF++HOnp6WgW3gqa0NE4cNq4BtU/xwdXa8p8eYa6DoQC/QFJAoSAIecqPJo1qdSmdbmMkCwLaDScOUZE5KwYCJFNLM1CU1gtqhZA4Rk9/s7Yhb/37cLq5YsASJDKZppJkCDwBjoNXIB5Lz6GQbdUb6ZYeXU9NCZpNNAE+kPW5xnvZSYQimjqAa0GKCwSyMo2qPuPERGR8+G/0GRX1draQ12LyPiNkA3qYQA49stMfB+dgrVL9DYVWgtZvj40VkfF0oBxLSFZn2dx5piHVkLrME+cPFeCvzOKGQgRETkx1giRXVVVVF0dQggsW7YMn3/+uU272ctX84Gye9fV0BhwfS0hazPHGnudwd/Jr2P6lDjMmjULKSkpddYfIiKqOQZCZFfmiqprsgu8EAJCCBgMBsiyjMTERKSmplp9jZKhkXy9ofGpu33nrq8lZH6/sRUrVuDNWTE4feAD7NnxtU3BHBER1S8GQmR38fHxOH78OGbOnImxY8eid+/eJquG14Sym7019TEsVv76hpy8SudSUlIwceJECFkGhAFCyDYFc0REVL8YCFGdUIqq16xZg08++aTWw2WykJHyt/XhJXXn+cZ1s72GQrm+ubWEli9fbjEDVp1gjoiI6hcDIapzltYgUobNqjOEJiCw/cp2vPLzK0jPTjfbxpCtBwBognV18TZUGl0jAOa32bA2a04IgfT09LrsGhER2YjTWaheWFqDCIB6LDAwEB999BFkWa58AQH49PTByv0r8fH+j9G/TX88dPNDuC3yNmgkYzwvX6mfjND1bTYq1whZmzUnSRIiIyPrsmtERGQjBkJUbyytQVT+WExMDBITEyFJEmRZVnez/+ijj9B2QFt8sv8T/Jr2q/rVpnEbxN0Uh9GdR6sZIW0dZ4S0VjZeTUhIwIIFC8y+TgihBn9EROQcGAiRU6lq9er+bfojLTsNn/7xKb489CXSstPw8s8v480db2Len53REcZ1fuqSRtlvzEwgpAwDKsGcQRYAJGgkoW5FQkREzkMSta1idVK5ubnQ6XTQ6/UIDKzbD0ZyjLziPKw/vB6r/liFv6/8jec3BeGOI37YOqYJOsx8Bv3b9leHzezp2o59OD96Kjw7RKLVb6vMtklNTcVHH32E1RuPQuPTAu++Pgkjh3S2e1+IiNxNfX9+MyNELquRVyPE3RSHB298EP879T8UfPMqgHwcKEjFwvUT0SqoFR688UGM7jwajX1t27zVGmVBRTnb/DpCgHEYcP78+QjseAk/7rmGrGsMxomInBFnjZHLkyQJ/SL7oZNnSwBA766DEeAdgNM5pzH317nou7QvZnw3A/vP7a/1NH6g3IKK+srrCFXUs5MvAOD3o4W1vi8REdkfAyFyG0qx9Pj+E7Hz8Z14Zcgr6NS0E4oNxVh/ZD3u++w+xH4Si9UHVuNqkeXtMaqizEoTRcWQC4qstu3R0QcAkHKmGFdyDTW+JxER1Q0GQuQ2lOnzmuBA+Hn5YUL3Cdj00Case2AdxnQeA28Pbxy7eAz//vHf6Lu0L2ZvmY3DFw7bfB+pkR9QtlK2uUUVy2ui06JDKy8IAfzvz2u2vykiIqpTDITILYiSUuOmqwC0ja9Pn5ckCTeG34gFwxdg1xO78K87/oWo4ChcK7mGtX+txchVIzH609H48uCXKCgpqNa9JElSF1U0WKkTUtx+sx8AYPsf1bs+ERHVHwZC5BYMV4zDYigXpFSk89Eh/uZ4bH5kM9aMXYPYjrHw1Hjiz8w/8dwPzyFmaQzm/DinWlkidZsN5b5W3H6TsU7ojxOFHB4jInIyDITILSgzuDRBAZCq2OBVkiT0atkLb8e+jd8e/w3P3vYsWupa4mrRVaw6sAojV43EyFUj8ekfnyK30HzGR9skCEC5AMyK5k090SnSC7IMbEnOt+2NERFRnWIgRG5BCUhsXVU6xD8Ej/d+HD9P/Bkr712JuzrcBS+tFw5fOIwXf3oRfZb2wbRvp2HX6V2QxfWtPzRNjPcxXM6p1n1i+xmzVN/+Lw+y7JZLdxERuSSuI0RuQanVqemGqxpJg9sib8NtkbfhyrUr2HB0A/578L84fuk4NhzdgA1HN6CVrhXu7XovxnQeowZc8uWqM0IAMKCHHxZ8uB/bN32OoXuycMuNUUhISEB0dHSN+ktERPbBjBC5BaVWxx4brgb7BeORHo/g24e/xfoH1mN89/Fo5NUIp/Wnsei3Rbht2W344dJOAEDx5SvVuubazz7Gto8H4vSBD/DTD19h4cKF6NixI1auXFnr/hIRUc0xECK3oGSE7LnzvCRJ6BbeDa8OeRXJTyZj4fCFuKXFLZCFjIPF6QCAzcn/xSs/v4JDFw5ZXKwxJSUFEydOhBAyIAyAkGEwGCDLMhITE5Gammq3PhMRkW04NEZuQS5bTLGmQ2NV8fX0xejOozG682ikXUnD7vxFwC8H4HO1BCv3r8TK/SsR3SQa/+j8D9zT6R6EBYSpr12+fDkkSbJ47bi4OERGRiIyMpLDZURE9YwZIXILhsv2GxqrSpvgNhjRdwIAoJt3G9zd4W54ab2QcjkFC7YvQL8P+uHh/z6Mr498jWvF15Cenm4xWyTLMnbv3o0vvviCw2VERA7AjBC5BXVorGxae13Tls0a88sz4J0R7yC3MBffn/ge64+sx96Mvfjt1G/47dRv8PP0g5/Bz2pGSAhhEiglJCQgOTkZer2eWSIiojrGQIjcglIsramHjBAAaIODAFyfth/oE4ix3cZibLexOJ1zGhuObMBXR77C6ZzT0LfRwyBXfyFFIQSWLVsGSZIgSRIWLFiApKQkxMfH18E7ISJq2Dg0Rm5BzQjVUY1QRdqQIACAKCiCfM10Z/lWQa0wue9k/Jz4M74Y/wUeGvwQWk5oCUgw/sRZTg6phBCQZRZVExHVNQZC5BaUnefrKyMk+fsCXp7Ge1tYVFGSJPRo3gOvDnkVKStT8NHmj9B9VHcEdA+AdyvvagVE5a+VlJRkh54TEVF5HBojlyeEgJxt3AW+vjJCkiRBG6yDIfOScViuZZjV9t4e3kgcmojEoYnIKcjByh9X4p/3/LPa95NlGRs2bEB6errVuqGUlBQsX768ynZERGQkCUvTWVxcbm4udDod9Ho9AgPrJ0tAjmHQX0V61F0AgLYZP0Hy9qqX+54Z8AiKD6ci/PM34HdHb5tfv3LlSiQmJgKSMdBBFT+JSs2QJEkQQlSqG1qxYgUmTpyonrfUjojImdX35zczQuTylG0uJH/feguCgOszx6q731hF8fHx6NevH5KSkpCeng7JW8LaT9ZanGpvbXZZYGAgPvroI2NAVUFiYiL69euHqKioGvWTiMidMRAil6fUB9XXsJhCuZ+hmvuNmRMVFYV58+ap3w8dMLQsSySVZYksp4nKzy6rGCSVp9QXlb8PEREZMRAil2e4lAMA0IY0rtf7aipMobeHilmiP//8E8eOHat2lshSm/T0dLv1kYjInTAQIpdnuJgN4PqU9vqi3E+u4dCYJeWzRLNmzcKJEydgMFR/HaKKJElCZGSknXpHROReOH2eXJ7hkhII1W9GyB5DY1VJSEioMuNTFSGEcbiNiIgqYUaIXJ7DA6ErOXV2j+joaCQlJSExMdGkFqjK4Egq+xJA82Fd8eDMZ9BEeKJbp05ISEgAAE6zJyICAyFyA2qNUNOger2vpmxorKazxqqrYt2QtRlikiRh+JjROHL6BPL8cmHwzcWZ7//EGelPQADfbdqI+fPnQ5IkaDQadZr9ggUL8Nprr0Gv1zM4IqIGhYEQuTzHZ4TqbmhMUXF2WUxMjEmWyNyaQSkpKejYsaNxfSIlgVSWSRJCVKo7mjVrFrRaLWRZhkajsbjHGRdtJCJ3wkCIXJ7DAqGyne7lK7kQsgxJU38ldxWzRJGRkUhMTDRZK2j58uVWd703RwmOlP9WXIPI3KKN3BSWiFwZAyFyeddnjTkmIwRZhpxztd7XMaqYJaooPT291oXWABAXF4fIyEgu2khEbomBELk0IcvqrC1t0/oNhCQvT2gC/CFfzYfhck69B0JViYyMtDkjVJEsy0hOTsbu3buNo2tWAislYOJwGRG5Eu41Ri7NcEWP9A6xAIC2Z3+GVLYjfH053Ws8StIyELHhXfj2vbFe710VpUbIXAanLlTcC81c8TXA2WpEZB33GiOygVIfpAkKqPcgCAC0ocEoSctQh+ecibmp95KydQcAjUYDWZZNjtVGxWn9SvG1ct/XX39dvS/ri4jIWTAQIpfmqPoghTY02NiPrMsOuX9VLBVVAzA5FhQUhBdeeMG2tYqqwdyK2BWPsb6IiByJgRC5NEftM6ZQAqHSrCsOuX91WCqqrnhszJgxanCUnp6OvXv3WtzaQxkCs9ewW8X6IoBDaERUPxgIkUu7PnU+yCH392halhG66LyBUHWVD5jUNYjMkCQJjz32mFr/Yy1gqg5ZlrF7927s2bOn0hBaVWsaERHVFgMhcmlqIFTPM8YU14fGXD8QKs9SfZHFRRtrydxQXMU1jRISEpCcnAy9Xs/MERHZDQMhcmmOWkxRoW3mnoEQUL1FG80FTADqZKaaEALLli1Th+VYfE1E9mDzUrjbt2/HiBEjEBERAUmS8PXXX5ucF0Jgzpw5iIiIgK+vLwYMGIDDhw+btCkqKsLkyZMREhICf39/jBw5EhkZGSZtsrOzERcXB51OB51Oh7i4OOTk5Nj8Bsm9qcXSZas81zdtaBMAzl0jVBvKcNmaNWswb948swXN8fHxOH78OGbOnIn7778fzz77LObPnw+NRgOtVgtJktT/qv+vqdn6RkIIyLIMg8GgZpEMBoN6TJZlJCYmIjU1tbZvnYgaCJszQvn5+ejevTseeeQRjBkzptL5BQsWYNGiRVi5ciXat2+PV199FUOGDMHx48cREBAAAJg6dSo2bdqEtWvXokmTJpg+fTpiY2Oxb98+aLVaAMCECROQkZGBzZs3AwAee+wxxMXFYdOmTbV5v+RmSi8YZ2tpmzVxyP09yobkDJey632bDWdiriC7fPG1udlq9qgvMkeSJCQlJVlddZuISCVqAYBYv369+r0syyIsLEzMnz9fPVZYWCh0Op1YunSpEEKInJwc4enpKdauXau2OXv2rNBoNGLz5s1CCCGOHDkiAIjk5GS1za5duwQAcezYsWr1Ta/XCwBCr9fX5i2Sk0u/6V6RGtJPFOw95JD7y4VFIjWkn0gN6SdKL+c4pA+u6sSJE0Kj0ShbwtrtS6PRiHHjxlW61/PPPy/GjRsnnn/+eXHixAkHvWsiqkp9f37btUYoLS0NmZmZGDp0qHrM29sb/fv3x86dO/H4449j3759KCkpMWkTERGBLl26YOfOnbjzzjuxa9cu6HQ69O7dW23Tp08f6HQ67Ny5Ex06dKh076KiIhQVFanf5+bm2vOtkRMSQqA08xIAQBsW4pA+SN5e0DQOhJydC0PWFafbZsOZVWfBR1E2FGar9PR0jB8/HpGRkdDpdJg9e3aljWLNrXzNQmuihseugVBmZiYAoFmzZibHmzVrhlOnTqltvLy80Lhx40ptlNdnZmYiNDS00vVDQ0PVNhXNmzcPL730Uq3fA7kO+YoeKCkFAHiUzd5yBG1oMOTsXJRevAKvjm0c1g9XVJ0FH61t9mqOLMvYvWc3du/ZAwmWC7crrnzNQmuihqlOZo1V3OhR+YfGmoptzLW3dp1Zs2Zh2rRp6ve5ublo2bKlLd0mF6PUB2ma6ByyvYbCIzQYJcfT3XLmWH2ozoKPMTExFjNHUGerCePgGAAhG7+vam1srnJNRHYNhMLCwgAYMzrh4eHq8aysLDVLFBYWhuLiYmRnZ5tkhbKystC3b1+1zYULFypd/+LFi5WyTQpvb294e3vb7b2Q8zOUDYt5OKhQWqFt6tzbbLiD6mSO0tPTsWfPnlpN3WehNVHDY9cpLm3atEFYWBi2bt2qHisuLsa2bdvUIKdHjx7w9PQ0aXP+/HkcOnRIbRMTEwO9Xo89e/aobXbv3g29Xq+2Ibo+Y8wx9UEKd11U0dmYm8pf/lhkZGSt7yHLMjZs2IDx48dj1qxZSElJqX3Hicip2ZwRysvLM1mjIy0tDQcOHEBwcDBatWqFqVOnYu7cuYiOjkZ0dDTmzp0LPz8/TJgwAQCg0+mQmJiI6dOno0mTJggODsaMGTPQtWtXDB48GADQqVMnDBs2DI8++ig++OADAMbp87GxsWYLpalhUjNCDiqUVrjCfmMNQWRkZJVD8FURQuDo0aM4euwYJEnC/Ndfx7BhwxCk01ldzdrcMXOF1ykpKVwJm8jZ2DrN7JdffjE7ZfXhhx8WQhin0L/44osiLCxMeHt7i9tvv10cPHjQ5BoFBQXi6aefFsHBwcLX11fExsaK06dPm7S5fPmyeOCBB0RAQIAICAgQDzzwgMjOzq52Pzl93v1lPbtIpIb0E5de/cCh/cj9YrNIDeknzo5+xqH9aOiqmo6v1WqFRqOp2ZR9CULSaAQkSUiSpF5Lq9UKycwxjUYj5s2bZzJlf968eSbnlf+uWLHC0X90RE6lvj+/JSFEVfWELik3Nxc6nQ56vR6BgYGO7g7Vgcz4/0P+t9sQMv+f0CWOdlg/Cv73B86NmgLPqFZotWu1w/pBwMqVK83ujzZ37lzk5OSomZigoCC88MIL6nlhZq8ze1BmpQGWZ69pNBocP36cBdpEZer785t7jZHLKr3g2DWEFB7hTQEApecuVmuGJNWd6uyPpii/8vWff/6J48eP232PtOqsms0CbSLHYiBELstpZo2VBULiWgFkfR60QQEO7U9DZ2k6vrV2s2bNwsKFC+u6a2YJIZCenm5yjLVERPWHgRC5JCHE9VljDs4IaXy9oWmig3xZj9JzWQyEXFBCQgIWLFjgkHtLkmQy423FihWYOHEiV8ImqiesESKXZLicg/SOIwAAbc/+7NAFFQHgzMAEFB9KQdiahfAf3MehfaGaKV9fJMtyndQMWRLd/xYESD5o17wV1q1ZY3GIrvxK2EIIroRNbok1QkTVoOwx5uhVpRUeEU1RfCgFhvNZju4K1VDF+qLc3Fxs3rzZ6j5o5o4BlgujAWMGSEDAuP+H8VjKjr2AAPZXEXtVZyVsDqsR2YaBELmk0gzjyuMezc2vNF7fPCKuF0yT66pYX5Sammp1NWtLxyrOSjM3e82vkT9WJC03Bk+1qNGOi4tDZGSk1Q1mmTkisoyBELmk0jPGzXc9W4Y5uCdGHuHGTYJLzzIj5E6qsw+apWPlZ6WZm702a9YsaDSaas0ss0SWZSQnJ2P3nt2QIFnMRHEPNSLLGAiRSyrJMAZCHi2cJCPUvCwQOs+MEBlVNXstPT3dbnVIQhZWt5g1N0Xf3BAaUL0VsoncCQMhckmlZ8qGxlo4R0ZIqw6NMSNE1VPVliCSJKnna7u+kcFgwHsrP8TGHb/ihvadcEPrNnj15TkmQ2ivv/46ANP6Jw6rUUPAQIhcUulZJRBykowQa4TIRtam7EuShMceewx6vd5uK2HnZV7GkQuXcWRnMqwkj1iQTQ0OAyFySU5XIxRWtqhi3jXIV/OhCfB3cI/I2UVHRyMpKcnsliDmsjDla47S09Oxd+9e2+uLajASV3FYzdI6R8wckaviOkLkcuTCIqS1HAwAiDy2CdomQY7tUJm09ndDzs5Fi20r4X1DO0d3h1yEuZlpVRU1p6SkoGPHjlWuN2SvPdS8Qn2hax6GxoFNkbJ9r9lrVsxiWao5MneM2SQqr74/vxkIkcsp/vsMzvSZAMnPB23StzjN3l4Zgyei6M/jCFs1D/7D+jm6O+TmqrPBrF33UJNQZUZJqWuq7ppL1jJgHH5ruLigIlEV1DWEWjRzmiAIADwim6Poz+MoST/r6K5QA1CdDWbtuodaNX5lNpeBMjd8V/FYQkICkpOT1WxSbddDYhBFtmBGiFxO7qff4OI/X4fvwF6I+OJNR3dHdfmVpch5ZzUCE0ej6fx/Oro7RNUeQjOXrbHXsFp1VWeWnEajwfHjx60WbpsLorgdiWthRoioCsqMMWcplFZ4RkYAAEpPnXNwT4iMrBVklx9CM7dCtl2H1aqhuoGXtZW0ActBFBeVJEsYCJHLUWaMOcvUeYVHZHMAQEk6AyFyHtUZQitPmR1W1bCaksGpz8yRLMvYvXs39uzZo35fXdVZVPKOO+7Azz//zCG1BoZDY+RyzsY+hcLdfyH0gxcRMHqwo7ujKjl9Hqd73A94eaLtmR8haTSO7hJRjVkbVis/QywwMBAfffRRvWWOakqSJHTs2BHdu3c3m01SvjRlP7ccUnMcDo0RVaHkZAYAwLNtCwf3xJRHRFPAQwsUl8CQeQkeEaGO7hJRjdmyzlFMTEyldtWZNVaf2SQhBI4dO4bjx48DsJxNqni8YiE3s0Tuhxkhciny1XyktR0GAIj8+3toAxs5uEemTvcaj5K0DER8/Q58b73J0d0hqrXqrnNkrh0Aq8eqyibZez2kmiq/LACzRHWP6wjZCQMh91T01wlkDEqEJiQIbY5ucnR3Kjl33zQU/LoXTd9+HoET7nZ0d4icXnXWQ6rJStqSRoIQAOrgI87c4pH2zhI15CUAODRGZIUyLObVxrmGxRSekREoAFB66ryju0LkEqpTzK3UK1lSfhmAOl1UsowQAsuWLVOzRAsWLMBrr70GvV5fZeBSnQCH25jUL2aEyKVkL/oEV+Z9iEb3D0Oz/8x2dHcqyfnPGlye8z4ajboDzT58ydHdIXIb1ckcWVtU0uZ92WpCkiCV/RcApj8/C1pDKU6dOlXtNY6qW6TuzluWcGjMThgIuaesp1/D1c83I/j5iWg8/WFHd6eS/C07kfnAc/C6oS1abvvY0d0hciv1sS+bMmvMbnVJ5Re/t3C58gtFVhW4VbWNiRCi2tkpZ8VAyE4YCLmnjDsfQ9H+o2iW9DIajRzo6O5Uok6h9/RA21NbIXly9JnI0aqbTRo8eDB+/PHHahVy25UENGrVBIEhIbh2Phv68xdrHYRVHC50pf3cGAjZCQMh9yOEQFqbOyHyC9Dyf6vg1T7S0V2qRMgy0toOc+o+EjVENckmVQyg6nz2WjU2tq2pituTmKtDsiWbVJdBFAMhO2Eg5H5KzmTi9M33OX22xdmzVkRUfeUDKFdZPNIcrVaLmTNnYt68eTbtQWcum2QpiLJXMTdnjRFZUHwsDQDg2a6l0wZBAODVoQ2K9h9F8fF0R3eFiGopKirKZFuOiotHArZt9WELtRZIyLXOFBkMBixe/g4++mENSnOKIaxcsGJ9UvlFJa0Fg+b2czOXOQKcq8DbeT9NiCooPm4MhLw6tHFwT6zz6mjsX/HRkw7uCRHZm7np/kFBQXjhhReqHRxVZ6HI8luC2CsTVZR1DUUXT9kcVJVfLqCq4UFrm+JKkoTXX38dgGmBt6OXBmAgRC6jpCwj5NUx0rEdqYISqCmBGxG5l4pZIgAYM2aM1eDI1oUiNRoN7rnnHvU+1dnGBKhGdqqGmaXq1EfJsozkam6Kay3rFB4eXrNO1hBrhMhlnOn/MIqPnETYJ3PhP/w2R3fHotJzWTjVfQzgoTXWMnl5OrpLROQAVRVoW6vVqVjcbOl6AKwGYI7ensQWylAgYAyiWCxdSwyE3ItcUIS0NncCBgNa/7nOqTc0FUIgPeouyLl5aPHzcnh3dfx0VCJyTpam9tdmqKh8wFTVytoVgw9nwmJponKKj6QCBgM0IUHQhjd1dHeskiQJ3jd2QMH2fSg6cJSBEBFZVJ0tRmxVfuhOWaDRHI1Gg169eqk1PbZmk8pvROvKORUGQuQSiv48AQDw7tZB/e3FmXnf2BEF2/eh8I9jCIwb6ejuEJETM1dzZC8JCQlYsGCBxfOrVq0yCbrK1zpZK9Iuv91HTTbFdSYMhMglFB04BgDw7tbewT2pHu+bOgEAivYfdXBPiKghi46ORlJSksXht4qZp6qWC7C2P5ol5dclqljg7QzZJNYIkUs43WcCSv4+g7BP58P/zlsd3Z0qqQXTWi3anNwMjZ+Po7tERA1YTVbWtuW1tmyKC6BaWScWS9cSAyH3UXoxG6duMA4vRZ74FtrGzv88hRA41W00DJmXELH+bfj2u9nRXSIiqlM1DbYqBlFA/c4a49AYOb3CPQcBAF6d2rpEEAQYx899b70Jeeu2ouB/fzAQIiK3V9Nap4oF4+Hh4Vi8eHEd9NA8BkLk9AqT/wQA+PTu6uCe2Mb31hvVQIiIiCwrH0Tl5ubWayCkqbc7EdXQtV+Mq5T69r3JwT2xjU9Zfwv3HYF8rdDBvSEiInMYCJFTKzmTiZLj6YBGA9+BvRzdHZt4tm0Bj+ahQHEJCn7b7+juEBGRGQyEyKld+ykZAODTszO0QQEO7o1tJEmC31DjDLdrP/zPwb0hIiJzGAiRU8v/bgcAwG9QHwf3pGb8hxkDofwtOyGcbPl6IiJiIEROrPRiNgq27wMA+N8zwLGdqSHfW2+C1MgPhsxLKEz+y9HdISKiChgIkdPK3/gLYDDA+8aO8GrXytHdqRHJ2wuNRg4EAFz9fLODe0NERBUxECKnJIRA7icbAACNxgx2cG9qJ2DccABA3oafIeddc3BviIioPAZC5JQK//cHio+chOTng4Bxdzm6O7Xi06cbPKNaQeQXIPfTTY7uDhERlcNAiJyOEALZiz8BAASMHeZys8UqkiQJQZPGAgBylnwBubDIwT0iIiIFAyFyOgW/7DEWSXt5IujpCY7ujl0E3D8M2vCmMJzLgn7pF47uDhERlWEgRE5FvpqPizPfBADoEkfDs1W4g3tkH5K3F5r863EAQPbiT1D892kH94iIiAAGQuREhMGArCnzUHr6PDxahSN45iOO7pJdNbp3KHz63QxxrRAXEl+EfDXf0V0iImrwnD4Qev/999GmTRv4+PigR48e2LFjh6O7RHVAFJcga8p85H+zDfDyROj7/wdNgL+ju2VXkiSh2ZJ/QRMShOLDqTg//lkYLuc4ultERA2aUwdCn3/+OaZOnYrZs2fjjz/+wG233Ybhw4fj9GkOK7gLIQQK/vcHMoY9jrwvNgNaLZq9Nxu+vbs5umt1wiMsBBFr34AmsBEKd/+FMwMTcPWrH7nqNBGRg0hCCOHoTljSu3dv3HzzzViyZIl6rFOnThg1ahTmzZtn9bW5ubnQ6XTQ6/UIDAys665SNYmiYpRmXUHxsTQU/XEU+d//huJDKQAATeNAhL7/L/gPds3tNGxRdPQkLjw8GyVpGQAAjxbN4B/bHz63dIHXDe3gERYCTSM/B/eSiKj+1ffnt0ed36GGiouLsW/fPjz//PMmx4cOHYqdO3dWal9UVISiouvTkvV6PQDgxKin0cjDC6gQ71n7zqRtxThRWGhX4ftK8aUt10H17m/1HlYuWbmttftXfJkw366q+xsMMOTkQVwrQEWStxcC7h0C3ZQHYQgNRm5ubqU2bqd5CAI3vQN90lfQf/gl5NNnkf3+ZyZNJH9faPx8IPl4Q/L2guTtCUmjASSprIEESDD9Hsb/l1DuOBGRC8krLQZg5jOujjhtIHTp0iUYDAY0a9bM5HizZs2QmZlZqf28efPw0ksvVTp+yy+r6qyPZEfvbgfe/Zeje+Fcrji6A0REjnP58mXodLo6v4/TBkIKqcJvtUKISscAYNasWZg2bZr6fU5ODlq3bo3Tp0/Xyx8kWZabm4uWLVvizJkzHKZ0AnwezoPPwnnwWTgPvV6PVq1aITg4uF7u57SBUEhICLRabaXsT1ZWVqUsEQB4e3vD29u70nGdTse/1E4iMDCQz8KJ8Hk4Dz4L58Fn4Tw0mvqZz+W0s8a8vLzQo0cPbN261eT41q1b0bdvXwf1ioiIiNyJ02aEAGDatGmIi4tDz549ERMTg2XLluH06dN44oknHN01IiIicgNOHQiNHTsWly9fxssvv4zz58+jS5cu+O6779C6desqX+vt7Y0XX3zR7HAZ1S8+C+fC5+E8+CycB5+F86jvZ+HU6wgRERER1SWnrREiIiIiqmsMhIiIiKjBYiBEREREDRYDISIiImqwGAgRERFRg+XUgdCcOXMgSZLJV1hYmHpeCIE5c+YgIiICvr6+GDBgAA4fPmxyjaKiIkyePBkhISHw9/fHyJEjkZGRYdImOzsbcXFx0Ol00Ol0iIuLQ05OTn28RZdh7VmUlJTgueeeQ9euXeHv74+IiAg89NBDOHfunMk1+Czso6qfi/Ief/xxSJKEt956y+Q4n4V9VOdZHD16FCNHjoROp0NAQAD69OmD06dPq+f5LOyjqmeRl5eHp59+Gi1atICvry86deqEJUuWmFyDz8J+zp49iwcffBBNmjSBn58fbrzxRuzbt08971Sf38KJvfjii6Jz587i/Pnz6ldWVpZ6fv78+SIgIECsW7dOHDx4UIwdO1aEh4eL3Nxctc0TTzwhmjdvLrZu3Sr2798vBg4cKLp37y5KS0vVNsOGDRNdunQRO3fuFDt37hRdunQRsbGx9fpenZ21Z5GTkyMGDx4sPv/8c3Hs2DGxa9cu0bt3b9GjRw+Ta/BZ2EdVPxeK9evXi+7du4uIiAixePFik3N8FvZR1bNITU0VwcHBYubMmWL//v3i77//Ft988424cOGC2obPwj6qehYTJ04U7dq1E7/88otIS0sTH3zwgdBqteLrr79W2/BZ2MeVK1dE69atRXx8vNi9e7dIS0sTP/74o0hNTVXbONPnt9MHQt27dzd7TpZlERYWJubPn68eKywsFDqdTixdulQIYfyA9vT0FGvXrlXbnD17Vmg0GrF582YhhBBHjhwRAERycrLaZteuXQKAOHbsWB28K9dk7VmYs2fPHgFAnDp1SgjBZ2FP1XkWGRkZonnz5uLQoUOidevWJoEQn4X9VPUsxo4dKx588EGL5/ks7KeqZ9G5c2fx8ssvmxy7+eabxf/93/8JIfgs7Om5554T/fr1s3je2T6/nXpoDABSUlIQERGBNm3aYNy4cTh58iQAIC0tDZmZmRg6dKja1tvbG/3798fOnTsBAPv27UNJSYlJm4iICHTp0kVts2vXLuh0OvTu3Vtt06dPH+h0OrUNGVl6Fubo9XpIkoSgoCAAfBb2Zu1ZyLKMuLg4zJw5E507d670Wj4L+7L0LGRZxrfffov27dvjzjvvRGhoKHr37o2vv/5afS2fhX1Z+7no168fNm7ciLNnz0IIgV9++QUnTpzAnXfeCYDPwp42btyInj174r777kNoaChuuukmfPjhh+p5Z/v8dupAqHfv3vjkk0/www8/4MMPP0RmZib69u2Ly5cvq7vSV9yJvlmzZuq5zMxMeHl5oXHjxlbbhIaGVrp3aGio2oasP4uKCgsL8fzzz2PChAnqLs58FvZT1bN4/fXX4eHhgSlTpph9PZ+F/Vh7FllZWcjLy8P8+fMxbNgwbNmyBf/4xz8wevRobNu2DQCfhT1V9XPxzjvv4IYbbkCLFi3g5eWFYcOG4f3330e/fv0A8FnY08mTJ7FkyRJER0fjhx9+wBNPPIEpU6bgk08+AQCn+/x26r3Ghg8frv5/165dERMTg3bt2uHjjz9Gnz59AACSJJm8RghR6VhFFduYa1+d6zQk1p7FtGnT1HMlJSUYN24cZFnG+++/X+V1+SxsZ+1Z9O/fH2+//Tb2799v858Zn4XtrD2LcePGAQDuuece/POf/wQA3Hjjjdi5cyeWLl2K/v37W7wun4Xtqvo36p133kFycjI2btyI1q1bY/v27Zg0aRLCw8MxePBgi9fls7CdLMvo2bMn5s6dCwC46aabcPjwYSxZsgQPPfSQ2s5ZPr+dOiNUkb+/P7p27YqUlBR1NkDFqC8rK0uNMsPCwlBcXIzs7GyrbS5cuFDpXhcvXqwUrdJ15Z+FoqSkBPfffz/S0tKwdetWNRsE8FnUpfLPYseOHcjKykKrVq3g4eEBDw8PnDp1CtOnT0dkZCQAPou6VP5ZhISEwMPDAzfccINJm06dOqmzxvgs6k75Z1FQUIAXXngBixYtwogRI9CtWzc8/fTTGDt2LN544w0AfBb2FB4eXuXfe8B5Pr9dKhAqKirC0aNHER4ejjZt2iAsLAxbt25VzxcXF2Pbtm3o27cvAKBHjx7w9PQ0aXP+/HkcOnRIbRMTEwO9Xo89e/aobXbv3g29Xq+2ocrKPwvgehCUkpKCH3/8EU2aNDFpz2dRd8o/i7i4OPz11184cOCA+hUREYGZM2fihx9+AMBnUZfKPwsvLy/ccsstOH78uEmbEydOoHXr1gD4LOpS+WdRUlKCkpISaDSmH3larRayLAPgs7CnW2+91erfe6f7/K52WbUDTJ8+Xfz666/i5MmTIjk5WcTGxoqAgACRnp4uhDBOv9PpdOKrr74SBw8eFOPHjzc7/a5Fixbixx9/FPv37xd33HGH2el33bp1E7t27RK7du0SXbt25XTICqw9i5KSEjFy5EjRokULceDAAZPpq0VFReo1+Czso6qfi4oqzhoTgs/CXqp6Fl999ZXw9PQUy5YtEykpKeLdd98VWq1W7NixQ70Gn4V9VPUs+vfvLzp37ix++eUXcfLkSbFixQrh4+Mj3n//ffUafBb2sWfPHuHh4SFee+01kZKSIlavXi38/PzEp59+qrZxps9vpw6ElHUFPD09RUREhBg9erQ4fPiwel6WZfHiiy+KsLAw4e3tLW6//XZx8OBBk2sUFBSIp59+WgQHBwtfX18RGxsrTp8+bdLm8uXL4oEHHhABAQEiICBAPPDAAyI7O7s+3qLLsPYs0tLSBACzX7/88ot6DT4L+6jq56Iic4EQn4V9VOdZJCUliaioKOHj4yO6d+9usm6NEHwW9lLVszh//ryIj48XERERwsfHR3To0EG8+eabQpZltQ2fhf1s2rRJdOnSRXh7e4uOHTuKZcuWmZx3ps9vSQghbMh4EREREbkNl6oRIiIiIrInBkJERETUYDEQIiIiogaLgRARERE1WAyEiIiIqMFiIEREREQNFgMhIiIiarAYCBEREVGDxUCIiIiIGiwGQkRERNRgMRAiIiKiBuv/AXC2XsC/Qlz9AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGxCAYAAACOSdkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACCdUlEQVR4nO3deVxU1fsH8M+dYVhkGURFQFRMcN9KEzFzySUtMrNyK4zANkszl9L69c02NSutrDQLNXMtzbTNpUXT3DVKTRFSVFDEBYZF1pnz+2OYK8MMwzYwC5/368X3G/eeufeMV5yHc57zHEkIIUBERERUDyls3QEiIiIiW2EgRERERPUWAyEiIiKqtxgIERERUb3FQIiIiIjqLQZCREREVG8xECIiIqJ6i4EQERER1VsMhIiIiKjeYiBERERE9RYDISIiIqq3GAgRERFRvcVAiIjqxOzZsyFJEv755x88/PDDUKvV8PPzw9SpU1FcXIyEhAQMHToU3t7eCAkJwfz58+XX5ufnY9q0aejWrZv8uoiICGzevNnkPt988w3Cw8OhVqvRoEED3HLLLYiJiZHP63Q6vPXWW2jbti08PDzg6+uLLl264MMPP6yTPwcisi8utu4AEdUvo0aNwqOPPoqnnnoKO3bswPz581FUVIRffvkFEydOxPTp07FmzRq89NJLCA0NxciRI1FQUIDr169j+vTpaNasGQoLC/HLL79g5MiRWL58OcaPHw8A2LdvH0aPHo3Ro0dj9uzZcHd3x7lz5/Dbb7/J958/fz5mz56N//u//0Pfvn1RVFSEU6dOITMz00Z/IkRkS5IQQti6E0Tk/GbPno3XX38d77//PqZOnSofv/XWWxEfH49vv/0WDzzwAACguLgYQUFBuPPOO7Fx40aTa2m1Wggh8PTTT+Po0aM4evQoAOD999/H9OnTkZmZCbVabbYf9913H1JSUvDXX3/VwrskIkfDqTEiqlORkZFG37dv3x6SJGHYsGHyMRcXF4SGhuLcuXPysW+++QZ33HEHvLy84OLiApVKhbi4OJw8eVJuc/vttwPQjzp9/fXXSE1NNbl/z5498ffff2PixInYtm0bsrKyrP0WiciBMBAiojrl5+dn9L2rqysaNGgAd3d3k+P5+fkAgG+//RajRo1Cs2bNsGrVKuzbtw+HDh1CTEyM3AYA+vbti++++w7FxcUYP348goOD0alTJ6xdu1ZuM2vWLLz33nvYv38/hg0bhkaNGmHgwIE4fPhwLb5rIrJXDISIyO6tWrUKrVq1wvr16zFixAj06tULPXr0QEFBgUnb+++/H7/++is0Gg127tyJ4OBgjBs3Dvv27QOgH22aOnUqjh49iuvXr2Pt2rW4cOEC7r77bty4caOu3xoR2RgDISKye5IkwdXVFZIkycfS0tLMrhozcHNzQ79+/fDOO+8AgNmcIF9fXzz00EN49tlncf36dSQnJ1u970Rk37hqjIjsXmRkJL799ltMnDgRDz30EC5cuIA333wTgYGBSExMlNv973//Q0pKCgYOHIjg4GBkZmbiww8/hEqlQr9+/QDok6U7deqEHj16oEmTJjh37hw++OADtGzZEmFhYbZ6i0RkIwyEiMjuPf7440hPT8eSJUuwbNky3HLLLZg5cyZSUlLw+uuvy+3Cw8Nx+PBhvPTSS7hy5Qp8fX3Ro0cP/Pbbb+jYsSMAYMCAAdi4cSO++OILZGVlISAgAIMHD8arr74KlUplq7dIRDbC5fNERERUbzFHiIiIiOotBkJERERUbzEQIiIionqLgRARERHVWwyEiIiIqN5iIERERET1ltPWEdLpdLh48SK8vb2NqtESERGR/RJCIDs7G0FBQVAoan+8xmkDoYsXL6J58+a27gYRERFVw4ULFxAcHFzr93HaQMjb2xuA/g/Sx8fHxr0hIiKiysjKykLz5s3lz/Ha5rSBkGE6zMfHh4EQERGRg6mrtBYmSxMREVG9xUCIiIiI6i0GQkRERFRvMRAiIiKieouBEBEREdVbDISIiIio3nLa5fNERPaiqKgIWq3W1t0gsgmlUgmVSmXrbpSLgRARUS3JysrC1atXUVBQYOuuENmUm5sbGjdubJd1/RgIERHVgqysLKSmpsLLywuNGzeGSqXivodU7wghUFRUBI1Gg9TUVACwu2CIgRARUS24evUqvLy8EBwczACI6jUPDw94e3sjJSUFV69etbtAiMnSRERWVlRUhIKCAqjVagZBRNBvl6FWq1FQUICioiJbd8cIAyEiIiszJEbbc4IoUV0z/DzY28IBBkJERLWEo0FEN9nrzwMDIarX9h/Pw0sfp+PnvTm27goREdkAk6Wp3kq9UoTXll5BUTFw6N98hASp0D7EzdbdIiKiOsQRIaq3fvwzF0XFN7/ftDPbdp0hIiKbYCBE9dbvh7MAAMN66X8M9h/Lg1YnbNklIrKhnTt3QpIkREdH27orVIcYCFG9tO/QSez96R0c3/4s/t7xPyA/GTl5AqfPF9q6a0ROKTk5GZIkoX///la5HoMWshbmCFG9s3z5ckyYMAE6IQFCh3XJCuh0X6Jt//nY//dorF/xBZ566ikEBgbauqtERFTLGAhRvZKYmKgPgnQ6+ZihpsWp32fgg/xD+Gffepw7dw4vv/wywsLCbNVVIiKqA5wao3pl2bJlFmpZCPyz72sAwFdffYV27dphxYoVddY3Imc1e/ZstGrVCgCwa9cuSJIkf5We2vr333/xyCOPIDAwEK6urmjWrBnGjx+PhIQEo+tFR0djwIABAIAvv/zS6HqzZ8+W2/3444+IiYlB+/bt4ePjA09PT3Tt2hVz5szhRrgk44gQ1SvJyckQwlJCtP6cYZQoNjYWffr0QWhoaB30jsg5devWDQ8++CA2btyIpk2bYujQofK5Pn36AAB+/fVX3HfffcjLy8Ntt92G/v3749SpU/jqq6+wadMm/PTTT7jzzjvl16SlpWHbtm1o3bq1fA3DvQxiY2ORm5uLjh07onPnzsjKysLBgwfxyiuv4Ndff8X27duhVCrr5g+B7BYDIapXQkJCqlTdVJIkxMXFYe7cubXYK6pPhBDIL3Ss1YnurlKNqgKPGDEC3bp1w8aNG82OtObm5uKRRx5BXl4eFi9ejKefflo+t3DhQkydOhXjxo1DUlIS3NzcMGHCBISGhmLbtm3o06dPuSO3S5YsweDBg+Hp6Skfy87Oxrhx4/DDDz9g9erVGD9+fLXfFzkHBkJUr8TExGD+/PmVbi+EQHJycu11iOqd/EKBe19IsXU3quTHhcHwcKu97RG+/vprXL58GXfeeadREAQAL7zwAlavXo0jR45g06ZNGDNmTKWvO2LECJNj3t7eWLhwIX744Qds3ryZgRAxEKL6JSwsDDNe/RTvvDEREiQIoYUkSeVOl0mShJCQkLrtJFE9s3v3bgDAI488Yvb8o48+iiNHjmD37t1VCoQA/QKJn376CUlJScjNzYVOp5N/3hMTE2vWcXIKDISo3ukUPgbhY9vD5dp6aFL/QLdu3bBmzRqjlWQGQgjExsbaoJfkrNxdJfy4MNjW3agSd9fa3Szz4sWLAFDuLx2G44Z2lSGEwPTp07Fw4cJyf9HJzmY1eWIgRPVQ6pViNFCHIObROXh0mBoAMHDgQMTExkKU1BZSKhUQQiAuLo6J0mRVkiTV6jSTI6soD6kqeUrr16/HggULEBwcjA8++AARERFo0qQJVCoVCgsL4ebmVsHCCaovGAhRvZOSXgQACPa/+dc/OjoaDYNux+SZn6Io5wwevDsUzz//PIMgojoQFBQEADh79qzZ8+fOnQOAKhU53bRpEwBg8eLFiIyMNDp35syZ6nSTnBTrCFG9k35dvzS+qZ/x7wHdu7VB614vods9S/HRRx8xCCKyIldXVwBAcXGxyTnDsvjVq1ebfa3huKFdRdcDgIyMDABA8+bNTc59/fXXle021QMMhKhe0WoFrmXpA6EmDY3rhzTx1X+fXyiQfcM0X4iIqq9x48ZQqVT477//5DpdBqNGjULTpk2xe/duLF261OjcRx99hEOHDiE4OBgPPPCAfNwwilS22KJBmzZtAABLly41mgLbvXs33n33Xau8J3IODISoXrmepYVOBygVQEMf40DIzVUBtZf+R+JKhtbcy4momlxdXTF06FCkpaWha9euGD9+PCZMmIDly5fD09MTq1evhoeHB5566in06NED48aNw2233Ybnn38enp6eWLNmDdzc3OTrhYSEoEuXLjh8+DB69uyJxx9/HBMmTMCWLVsAAJMnT4anpyc+/fRTdOrUCWPHjkXfvn3Rr18/kyX6VL8xEKJ6Jb0kwGnkq4RSYZp4aRglSmcgRGR1X3zxBaKionDt2jWsWbMGcXFx2LVrFwD9goVDhw5h7NixSElJwYYNG5CWliYvnS89LWawceNGjBgxAmfOnMHKlSsRFxeHo0ePAtCPCB06dAj33Xcfrl69ii1btiAnJwefffYZR4TICJOlqV65kqkPcPwbmv+r79/QBUkXinAlw3zeARFVn7+/P1auXFnu+Y4dO2LNmjWVvl5oaKicFG1O+/bt5RGissytGOvfvz9XktVDHBGiesUQ4JTNDzIw5AlxaoyIqH5gIET1imHKyxDwlHVzaowjQkRE9QEDIapXDCNClqbG9O04IkREVB8wEKJ65WpJjlDjckaEGqn1x69nMRAiIqoPGAhRvWIIcAwBT1mGJfUZ2awjRERUHzAQonpDCIHrWfoAx8/HfCDk56P/kci+oUNhEVePEBE5OwZCVG/cyBdycNPQx/xffe8GCriUxEgZ2ZweIyJydgyEqN4wTIs1cJfg7mr+r74kSWjoXTI9xjwhIiKnx0CI6g1DIFTetJiB4TwTpomInB8DIao3DCM8ZfcYK8swbWbIJyIiIufFQIjqjYoSpQ385JVjHBEiInJ2VQqEZs+eDUmSjL4CAgLk80IIzJ49G0FBQfDw8ED//v1x4sQJo2sUFBRg0qRJaNy4MTw9PTF8+HCkpKQYtcnIyEBUVBTUajXUajWioqKQmZlZ/XdJhFIjQt6W/9o35NQYEVG9UeURoY4dO+LSpUvy17Fjx+Rz8+fPx4IFC/Dxxx/j0KFDCAgIwODBg5GdnS23mTJlCjZt2oR169Zhz549yMnJQWRkJLTamx8648aNQ3x8PLZu3YqtW7ciPj4eUVFRNXyrVN9VNUeIydJERM6vyoGQi4sLAgIC5K8mTZoA0I8GffDBB3jllVcwcuRIdOrUCV9++SVu3Lgh7yas0WgQFxeH999/H4MGDcKtt96KVatW4dixY/jll18AACdPnsTWrVvxxRdfICIiAhEREfj888/xww8/ICEhwYpvneqbygZCclFF5ggRWVVycjIkSUL//v1t3RVZ//79IUkSkpOTbd0VhyRJEkJCQmzdjRqpciCUmJiIoKAgtGrVCmPGjMGZM2cAAGfPnkVaWhqGDBkit3Vzc0O/fv2wd+9eAMCRI0dQVFRk1CYoKAidOnWS2+zbtw9qtRrh4eFym169ekGtVsttzCkoKEBWVpbRF1FpmSXVon0rmBrz9dKfz8rliBARkbOrUiAUHh6OlStXYtu2bfj888+RlpaG3r1749q1a0hLSwMANG3a1Og1TZs2lc+lpaXB1dUVDRs2tNjG39/f5N7+/v5yG3Pmzp0r5xSp1Wo0b968Km+N6gFNSWDj6215REhdEghpcjgiRETk7KoUCA0bNgwPPvggOnfujEGDBuHHH38EAHz55ZdyG0mSjF4jhDA5VlbZNubaV3SdWbNmQaPRyF8XLlyo1Hui+sMQ2Kg9Lf+19/HUB0pZuTrodNxmg4jImdVo+bynpyc6d+6MxMREefVY2VGb9PR0eZQoICAAhYWFyMjIsNjm8uXLJve6cuWKyWhTaW5ubvDx8TH6IjIoLBLIK9AHNeoKRoR8SgIlnQBy8jgqRFQbsrKy8Pzzz6N58+Zwd3dH+/btsXDhQuh0xj9z8fHxePHFF9G9e3c0adIEbm5uuOWWWzBx4kRcvHix3OufP38ezz33HMLCwuDu7o5GjRqhZ8+emDNnDvLy8irsn0ajQd++fSFJEqZMmQIhbv5SdObMGYwaNQp+fn7w8vJCnz59sG3bNuzcuROSJCE6OtroWtHR0ZAkCTt37sS2bdswYMAA+Pr6QpIkeUV0cXExFi1ahO7du8PLywteXl7o2bMnFi9ebLSYyCAkJKTcwYHK9OOPP/7AXXfdBW9vb/j4+ODee+/Fv//+a/Z6ubm5eOmll9CiRQu4u7ujXbt2WLBggdGfiSOrUSBUUFCAkydPIjAwEK1atUJAQAB27Nghny8sLMSuXbvQu3dvAED37t2hUqmM2ly6dAnHjx+X20RERECj0eDgwYNymwMHDkCj0chtiKpKk6P/h0SpADzdLY9QqlwkuQ2nx4isr6CgAHfddRdWrlyJnj17YvDgwTh37hymTp2K2NhYo7bz5s3DggULoNVqcccdd+Cee+6BEAKLFy9Gjx49zAZDf/zxB7p06YJPPvkEOp0O999/PyIiInD16lW88sorZn/ZLu3y5cvo378/du/ejddffx0ffPCBHHQkJiYiPDwc33zzDfz9/XHfffdBq9XinnvuwcaNGy1ed82aNRg2bBhyc3MxbNgw3H777ZAkCVqtFvfffz8mT56MpKQkDBo0CIMGDcKpU6cwceJEPPzwwyYBYk18//33uOuuu3D9+nXcfffdCAwMxE8//YS+ffuaDGYUFBRgyJAhmD9/PvLy8nDfffchJCQEM2fOxHPPPWe1PtmUqIJp06aJnTt3ijNnzoj9+/eLyMhI4e3tLZKTk4UQQsybN0+o1Wrx7bffimPHjomxY8eKwMBAkZWVJV/j6aefFsHBweKXX34RR48eFXfddZfo2rWrKC4ultsMHTpUdOnSRezbt0/s27dPdO7cWURGRlalq0Kj0QgAQqPRVOl15JwSzxeIAc+cEw++dKFS7ce9mioGPHNOHEvKr+WekTPKy8sT//77r8jLy7N1V+zK2bNnBQABQHTp0kVcuXJFPpeUlCSCgoIEALF582b5+K+//iouXrxodB2tVitef/11AUA8/vjjRueuX78umjRpIgCIhQsXCp1OZ3R+165dIjMzU/6+X79+AoA4e/as3MfQ0FAhSZJYtGiRyXsYOHCgACAmTZoktFqtfHzlypXye3vssceMXvPYY4/J59atW2dyzffee08AEJ07dxaXL1+Wj1+8eFG0bdtWABCffPKJ0WtatmwpyvsI//333y32Q6FQiDVr1sjHi4uLxYMPPigAiFdffdXoNXPmzBEARM+ePY3+3I4cOSJ8fHwEANGyZUuz/Sirsj8Xdf35XaVAaPTo0SIwMFCoVCoRFBQkRo4cKU6cOCGf1+l04rXXXhMBAQHCzc1N9O3bVxw7dszoGnl5eeK5554Tfn5+wsPDQ0RGRorz588btbl27Zp45JFHhLe3t/D29haPPPKIyMjIqNIbYyBEpR3694YY8Mw5EfvmxYobCyGeeeeSGPDMObHn79xa7hk5I0v/4Ot0OpFbkOtQX2WDieoqHQht377d5PzixYsFADFkyJBKXa9Zs2bCz8/P6Ng777wjAFT6l+fSgdDx48dFUFCQcHFxEatWrTJpm5iYKAAIPz8/kZOTY3K+b9++FgOQe++912wfWrRoIQCIX3/91eTcli1bBADRtm1bo+M1CYQeffRRk9ccOXJEABD9+vUzOt68eXMBQPz5558mr5k1a5ZTBEIuVRk9WrduncXzkiRh9uzZmD17drlt3N3dsWjRIixatKjcNn5+fli1alVVukZkkWGKy8ercrPBhoTqLE6NkZXlFeWh80edbd2NKjk2+RgauDaw2vX8/PwwePBgk+Pjxo3DM888g7179xotkLl27Rq2bNmC48ePIzMzU86ZKSoqwvXr13H9+nX4+fkBgFyT7qmnnqpSn/bv349nn30WeXl5+O6773DvvfeatDGUcLnnnnvg6elpcv7hhx/GH3/8Ue49hg8fbnLs/PnzOH/+PAICAnDXXXeZnI+MjISvry8SEhJw5coVuXZfTZQuYWPQpk0bAPp0ldJ9u3DhApo1a2Y2NWXs2LGYO3dujftja1UKhIgclbxizMtyorSBoR1zhIisr2XLlmaP+/j4wNfXF5mZmcjKyoJarcbatWvx5JNPIicnp9zrZWdny4GQYcVw69atq9SnqKgoFBcXY/369WaDIAByPlJ55VlatGhh8R7mzhuuWV5RQkmS0LJlS2RmZuLixYtWCYSCg4NNjnl5eQHQ5wSV7Vt576ui9+soGAhRvWBIlvat7IiQXEuIRRXJujxUHjg2+VjFDe2Ih8qjzu4lSq1EOnfuHKKjo+WdC+699140a9YMHh76/vTu3Rv79u0zu3qporItZY0dOxZfffUV/ve//6Fv375G+2hW9trm+lGau7t7la9Z1TYAKkysrux1DO+nvPZV/TO2VwyEqF64OSJUtakxTS5HhMi6JEmy6jSTIzp//rzZ41lZWdBoNPD09ISPjw/WrFmDwsJCTJs2Dc8//7xJe8POBqU1b94cp06dQlJSEtq1a1fpPr3xxhsICgrCO++8g4EDB+L33383Ke4bGBhosf/VqV8XFBQEQL87Q3kM9zPcHwBcXV0BADk5OfJoTk36Yalv586dM3u+vOOOpkbL54kchSGgMRRLrIgPp8aIas21a9fkXJ7S1q5dC0A/0iNJklxzztxU1B9//GF2GfygQYMAAEuXLq1yv+bNm4cZM2bg33//xcCBA3H16lWj84Y8mZ9++gk3btwwef2GDRuqfM8WLVqgRYsWSEtLw2+//WZy/scff0RGRgbatm1rNC1mCIpOnz5t8prt27dXuR/mtGzZEsHBwUhNTcW+fftMzleUN+woGAhRvaDJ1k9xVXpEiFNjRLVqxowZuHbtmvz92bNn8eabbwIAJk6cCOBmAu+qVauQm5srt01NTcXTTz9t9roTJkxA48aN8f333+Pjjz82ma7avXs3NBpNuf2aP38+pk6diuPHj2PgwIFGfQwLC8OAAQNw/fp1vPzyy0bXXr16NXbt2lXZt29k0qRJAIAXXngBV65ckY+npaVhxowZRm0M+vXrB0C/vVTpgourVq2yaoBiSDqfNm2a0R6e8fHx+OSTT6x2H1tiIET1gmFEqKJ9xgzU8sarHBEisrZevXpBoVAgLCwMDz30EIYPH45OnTohNTUVjz76KEaMGAFAv8qqY8eOOHz4MEJDQ/HQQw8hMjISbdq0QcOGDc2uZPLz88PXX38Nb29vTJo0CWFhYRg9ejTuu+8+3HLLLejbt6/J7gZlvf/++5gyZQr++ecfDBo0yKj94sWL4efnhw8//BAdOnTAuHHj0Lt3b0RFRckBnGHaqrJeeOEFDBs2DP/88w/CwsIwcuRIPPDAA2jTpg1OnjyJESNG4JlnnjF6zbPPPosmTZpgw4YN6NChAx5++GF069YN0dHRZqcRq2vGjBkIDw/Hvn370Lp1a4waNQrDhg1DeHg4xo0bZ7X72BIDIaoXDCM7Fe0zZqD25NQYUW1xc3PDb7/9hrFjx2Lfvn3Ytm0bmjdvjvfeew8rVqyQ27m6umL37t145pln4O7ujh9++AEnT57EpEmTsGPHDqhUKrPXHzBgAOLj4/Hkk0+iuLgY3333Hfbv3w9/f3/MnTvXYiK0wcKFCzFp0iTEx8dj8ODB8lYYbdu2xYEDB/DQQw8hLS0NmzdvBgD88MMPcmDWqFGjKv15KJVKbNmyBR9++CFuueUWbNu2Ddu3b0fbtm3xySefYMOGDVAojP/tatq0Kf744w9ERkbi0qVL+Pnnn6FWq7Fjxw6zy/Sry83NDb/88gumT58ONzc3bN68GWfOnMFbb72Fjz/+2Gr3sSVJVJTm7qAMSy81Gg33HavnhBAYMukCtDpg/dtBaNKw4jUCmdlajHwpFQCwY1FzKJXOsTqC6kZ+fj7Onj2LVq1aWVwpRM7lmWeewZIlS7Bu3TqMHj3a1t2xO5X9uajrz2+OCJHTy80T0JYM7FS2jpB3AwUMK0OzbnBUiIj08vPzcfLkSZPjGzduxBdffAG1Wl1uHSKyT1w+T07PMC3m4SbBVVW5kR2lUoJ3AwWycnXQ5OjQsJK5RUTk3DIzM9GhQwe0a9cOYWFhUKlUOHnyJE6ePAmFQoFPP/3UZDk72TeOCJHTy6xiDSEDH0+uHCMiY2q1GtOmTYOrqyv27NmDLVu24Nq1a7j//vuxa9cup0kgrk84IkROL7uKNYQMvBvoA6EcTo0RUQkPDw+89957tu4GWRFHhMjpGXJ8DIFNZRnaZzMQIiJyWhwRIqd3OuE0/tv/BZJ+PYX8xA6YPHkywsLCKnydFwMhIiKnxxEhcmrLly/H5OgeOB//GS6c/h2LFy9Gu3btjGqVlMfbk4EQEZGzYyBETisxMRETJkyAEDpAaAEIaLVa6HQ6xMbGIikpyeLrOTVGROT8GAiR01q2bBkkyfxyeUmSEBcXZ/H1ciDEbTaIiJwWAyFyWsnJySYbLhoIIZCcnGzx9Vw1RkTk/BgIkdMKCQmxOCIUEhJi8fWcGiMicn4MhMhpxcTEWBwRio2Ntfh6rhojInJ+DITIaYWFhenzgCQFIOmLKSqVSigUCsTFxSE0NNTi6324aoyIyOkxECKn9thjjyFi3O9o0e0pKJRuiIqKQkJCAqKjoyt8bekRofJGloiIyLExECKndiNfwN0nBK17vYSXX3kFc+bMqXAkyMCQI6TTAXkFDISI6kJycjIkSUL//v1t3ZVK27lzJyRJqtQvWGR/WFmanJphWstVJeHN11+t0mvdVBJULkBRMZCVq0MDd/7eQETkbBgIkVPLyq3ePmOAfmWZdwMFrmfp9EvoG1m7d0RUVrNmzXDy5Ek0aNDA1l2heoK/4pJTM9QAMiQ+V5XIS8Z/+9/BvXffgUmTJiExMdGa3SOiMlQqFdq1a4cWLVrYuitUTzAQIqdm2HneqxojQsuXL8emRf1wPv4znD55uEr7lBGRqZMnTyIqKgqtW7eGu7s7mjRpgm7dumHKlCm4dOkSAMs5QkVFRXj77bcRGhoKd3d33HLLLZg9ezaKiorM1g0rnbtz/fp1PPPMMwgMDISbmxs6deqEZcuWme3njz/+iJiYGLRv3x4+Pj7w9PRE165dMWfOHBQUFFj9z4Vsi1Nj5NSyc7UAAJ8qBkJG+5SV0Gr114qNjUWfPn0qnXRNRMDRo0fRp08f5Ofno2fPnujZsyeys7Nx5swZfPjhhxgxYgQCAwPLfb0QAg8//DA2b94Mb29vDBs2DDqdDu+//z7i4+Mt3jszMxMRERHQaDTo2bMncnJy8McffyA2NhY6nQ4TJkwwah8bG4vc3Fx07NgRnTt3RlZWFg4ePIhXXnkFv/76K7Zv3w6lUmmNPxayAwyEyKkZ9gnzruLUWGX2KZs7d26N+0f1jxAC4ka+rbtRJVID93J/Hirro48+Ql5eHjZu3IiRI0canTt58iR8fX0tvn716tXYvHkzQkND8ccff8hB04ULF3DnnXfi3Llz5b528+bNePDBB/Hll1/C09NTPjZixAi8+eabJoHQkiVLMHjwYLktAGRnZ2PcuHH44YcfsHr1aowfP74qb5/sGAMhcmqGVWNVTZau6T5lROURN/JxNmSIrbtRJa2St0Py9KjRNdLT0wEAd911l8m59u3bV/j6JUuWAADefPNNo5Gj5s2b47XXXkNMTEy5r/Xx8cHSpUuNApv7778fnTt3xrFjx5CcnGy05c6IESNMruHt7Y2FCxfihx9+wObNmxkIOREGQuTUqhsI1XSfMiIy1r17d/z8888YP348/u///g89evSAQlG5n8uioiIcOnQICoXCZDQJAB5++GGLgVCPHj3g5+dncrxNmzY4duwYLl26ZPIznZiYiJ9++glJSUnIzc2FTnezsCoXTTgXBkLk1LKqOTUWExOD+fPnmz1XmX3KiMojNXBHq+Tttu5GlUgN3Gt8jRkzZmDPnj34/vvv8f3330OtViM8PByRkZGIjo6Gt7d3ua+9du0aCgsLERgYCFdXV5PzXl5eaNiwITIyMsy+Pjg42OxxLy8vADBKgBZCYPr06Vi4cGG5o8LZ2dnl9pUcDwMhcmqGEaGqJksb9imLiY2FEBIgdFAqFRBCVGqfMqLySJJU42kmR+Tj44PffvsNf/75J77//nvs3LlTTjyeO3cudu/ejdatW1u8hqU8JUvb4FQlv2n9+vVYsGABgoOD8cEHHyAiIgJNmjSBSqVCYWEh3NzcuOWOk2EgRE4tuwbL56Ojo+HZpAemv7oYxTn/YeTdYXj++ecZBBFVkyRJ6NOnD/r06QMAuHLlCp5//nmsXbsWL7/8MtavX2/2dY0aNYJKpUJaWhoKCwtNRoVycnKQmZlplT5u2rQJALB48WJERkYanTtz5oxV7kH2hXWEyKkZVo1Vt6Bi+3ZhaN3rJfQfswyLFi1iEERkRU2aNMHs2bMBAMeOHSu3nUqlwu233w6dTicHKqVt2LDBan0yTK81b97c5NzXX39ttfuQ/WAgRE5NTpb2rF7ND0OStaFCNRFVz5IlS3D27FmT4z///DMAVFhJ+qmnngIA/O9//0NaWpp8PCUlBW+88YbV+tmmTRsAwNKlS42mwHbv3o13333Xavch+8FAiJxWYZFAfqH+H7Kq5ggZyIFQng46HfMCiKpryZIluOWWW9CxY0c89NBDGDNmDG699VZMmTIFHh4eeO211yy+PioqCvfddx9Onz6Ntm3bYuTIkRgxYgTat2+PTp06oUWLFlCpVDXu5+TJk+Hp6YlPP/0UnTp1wtixY9G3b1/069cPTz/9dI2vT/aHgRA5LcMojiQBDdyrVwzOkFskBJCbz0CIqLrefPNNxMTEQJIk/Prrr/j+++9x48YNPPnkk/jnn38QERFh8fWSJGHDhg1444030LhxY/z444/4+++/MWXKFHz99de4fPkyGjWq+c7Ibdq0waFDh3Dffffh6tWr2LJlC3JycvDZZ59xRMhJScJJ09+zsrKgVquh0Wjg4+Nj6+6QDSRfKkLMm5fg46nAd++aXz5bGfdMuYD8QoFVbwQhqDHXF1DF8vPzcfbsWbRq1Qru7jVfek6WHThwAL169cLQoUPlqTayP5X9uajrz2+OCJHTMuwzVtViimUZRoUM1yMi2zh27BiKioqMjiUnJ+OZZ54BAIwbN84W3SIHx19vyWndTJSuWSDk3UCBq5la5OQ55eApkcOYMWMGDh8+jK5du8Lf3x8pKSk4fPgw8vPzcc899+DRRx+1dRfJATEQIqdV3e01ypJHhLhyjMimoqOjodPpcOzYMezZsweurq7o3Lkzxo0bh2effbbGG8NS/cRAiJyWvL1GDQMhLqEnsg9jxozBmDFjbN0NcjLMESKnlWOlqTEvDwZCRETOioEQOa0sTo0REVEFGAiR08q29tRYHgMhIiJnw0CInJbVkqU99AmYnBojInI+DITIaVlz+Xzp6xERkfNgIEROy1pTY56cGiMicloMhMhpWWtqjMvniYicFwMhcko6nbi5fN5KgRCnxsieXbp0CbNnz8alS5ds3RUih8JAiJzSjQIBXcmOGDVPlr45IuSkexSTE7h06RJef/11BkJEVcRAiJySYTTIVSXBzdU6dYS0OiC/gIEQUXVJkmT0pVKp0LhxY3Tu3BnR0dHYuHEjiouLbd1Nqmdq9Akxd+5cSJKEKVOmyMeEEJg9ezaCgoLg4eGB/v3748SJE0avKygowKRJk9C4cWN4enpi+PDhSElJMWqTkZGBqKgoqNVqqNVqREVFITMzsybdpXrEWvlBAODuKsFFaXxdIqq+xx57DI899hjGjh2LO+64A8XFxVi5ciUeeughtG/fHgcPHrTKfVasWAFJkjB79myrXI+cU7U/JQ4dOoSlS5eiS5cuRsfnz5+PBQsW4OOPP8ahQ4cQEBCAwYMHIzs7W24zZcoUbNq0CevWrcOePXuQk5ODyMhIaLVauc24ceMQHx+PrVu3YuvWrYiPj0dUVFR1u0v1jGHFmJcVAiFJkm5Oj3HlGFGNrVixAitWrMDKlSuxefNmnDx5EomJiRg1ahSSkpIwYMAAxMfH27qbVE9U61MiJycHjzzyCD7//HM0bNhQPi6EwAcffIBXXnkFI0eORKdOnfDll1/ixo0bWLNmDQBAo9EgLi4O77//PgYNGoRbb70Vq1atwrFjx/DLL78AAE6ePImtW7fiiy++QEREBCIiIvD555/jhx9+QEJCghXeNjk7w8iNjxUCIYDbbBDVttatW2P9+vWIjY3FjRs3EBMTY+suUT1RrU+JZ599Fvfeey8GDRpkdPzs2bNIS0vDkCFD5GNubm7o168f9u7dCwA4cuQIioqKjNoEBQWhU6dOcpt9+/ZBrVYjPDxcbtOrVy+o1Wq5TVkFBQXIysoy+qL6yxCwWGNECOASerJviYmJWLRoEQBg0aJFSExMtHGPqu/999+Hp6cn/vrrL+zZs8fo3I8//oiYmBi0b98ePj4+8PT0RNeuXTFnzhwUFBQYte3fvz8ef/xxAMDrr79ulJu0YsUKAPpf3teuXYsxY8agTZs28PT0hLe3N3r27IlPP/0UOh1/3usDl6q+YN26dTh69CgOHTpkci4tLQ0A0LRpU6PjTZs2xblz5+Q2rq6uRiNJhjaG16elpcHf39/k+v7+/nKbsubOnYvXX3+9qm+HnFRlc4REcTFu7DwMt46t4RLYpNx2XiyqSHZq+fLlmDBhAiRJvxXMV199hZUrVyIuLg7R0dG27Vw1qNVqDBs2DBs2bMDvv/+OPn36yOdiY2ORm5uLjh07onPnzsjKysLBgwfxyiuv4Ndff8X27duhVOoT+oYOHYri4mL8+eef6Nq1K7p16yZfJzQ0FID+F+hx48ahYcOG6NChA2677TZcvXoV+/btw7PPPouDBw/KQRM5ryoFQhcuXMDzzz+P7du3w93dvdx2hh9IAyGEybGyyrYx197SdWbNmoWpU6fK32dlZaF58+YW70nOq7Lba1x++k3kbv4NCh8vBO/4HKpbgs2249QY2aPExERMmDDBaOTCkGsZGxuLPn36yB/6jqRbt27YsGEDTp48aXR8yZIlGDx4MDw9PeVj2dnZGDduHH744QesXr0a48ePBwDMnDkTAQEB+PPPPzFixAizCdMuLi7YuHEjIiMj4erqKh+/cuUK7rnnHnz55ZeIiYlB3759a+eNkl2o0rzBkSNHkJ6eju7du8PFxQUuLi7YtWsXPvroI7i4uMgjQWVHbdLT0+VzAQEBKCwsREZGhsU2ly9fNrn/lStXTEabDNzc3ODj42P0RfVXZYop5h8+gdzNvwEAdFk5yFjwZbltvT04NUb2Z9myZeX+cihJEuLi4uq4R9bRuHFjADD5nBgxYoRREAQA3t7eWLhwIQBg8+bNVbqPi4sLRo4caRQEAUCTJk0wd+7cal2THE+VRoQGDhyIY8eOGR17/PHH0a5dO7z00ku45ZZbEBAQgB07duDWW28FABQWFmLXrl145513AADdu3eHSqXCjh07MGrUKAD6QmDHjx/H/PnzAQARERHQaDQ4ePAgevbsCQA4cOAANBoNevfuXbN3TPVCVq7+t2LDai9zcjb9CgBwCQlCcfJF5PywC03enwHJzdWkrRdzhMgOJScnl1vkUwiB5OTkuu2QlRjek7kgLzExET/99BOSkpKQm5sLne5modPq5kbFx8dj+/btOHfuHG7cuAEhhLzS2ZHzrahyqhQIeXt7o1OnTkbHPD090ahRI/n4lClTMGfOHISFhSEsLAxz5sxBgwYNMG7cOAD6+d/Y2FhMmzYNjRo1gp+fH6ZPn47OnTvLydft27fH0KFD8cQTT+Czzz4DADz55JOIjIxE27Zta/ymyfkZAhYfC1NjN37X1ypp9NpEXJ25ENrL15C3/x806NfDpC2nxsgehYSEWBwRCgkJqdsOWcnVq1cBAH5+fvIxIQSmT5+OhQsXlhv8lS7TUhmFhYWIjo7G2rVry21T1WuS47F6ZekXX3wRU6ZMwcSJE9GjRw+kpqZi+/bt8Pb2ltssXLgQI0aMwKhRo3DHHXegQYMG+P777+UkNwBYvXo1OnfujCFDhmDIkCHo0qULvvrqK2t3l5xURavGdNm5KEo6DwBwD+8Cjz63AQDyDx0z2/5mHSFWlib7ERMTY3FEKDY2to57ZB2GGkIdOnSQj61fvx4LFixAs2bNsGHDBqSmpqKwsBBCCHnFWFW3wFmwYAHWrl2LTp064eeff8bly5flaxpKtXBbHedX5VVjZe3cudPoe0MVT0uVPN3d3bFo0SJ5uac5fn5+WLVqVU27R/VURTlCBf+cBoSAS3BTuDRpCPceHZGzcQcKDv9rtj2Xz5M9CgsLQ1xcHGJjYyFJErRaLZRKJYQQiIuLc8hEaY1Gg61btwIABgwYIB/ftGkTAGDx4sWIjIw0es2ZM2eqdS/DNQ3BkDWuSY6He42RU8qqYNVYQfwpAIBb13b6/+/SRn/8pPl//LgDPdmr6OhoJCQkyJX3o6KikJCQ4JBL5wFg2rRpyM3Nxe23346IiAj5uCFx2txq4K+//trstQxJ0OXtX1ada5LzYSBETkerE8gtmcIqd0TIEAh10+ecqdqE6F97MR26nBsm7VlHiOxZaGgoJk2aBACYNGmSQ44EnTlzBqNHj0ZcXBw8PT1NVry1aaP/ZWXp0qVG01W7d+/Gu+++a/aaQUFBAFDujgSGay5ZssTo+IYNG7By5crqvRFyODWeGiOyN7mlgpVyA6GSkR+3zvp/CJW+3lA28YP2ynUUJp2He7d2Ru25aozIegyjVTqdDllZWTh9+jROnToFIQTCwsKwZs0adO7c2eg1kydPxooVK/Dpp59i586d6NKlC1JTU7Fnzx5MmzYN7733nsl9evXqBX9/f2zYsAH9+/fHLbfcAoVCgZiYGPTu3Rsvvvgitm7dipkzZ+Kbb75BmzZtkJiYiMOHD2P69Olmr0nOhyNC5HQMG656uElwUZopzKnTofjcRQAwKqCoatMSAFB0OtnkNYaAKr9QoKiYyZNENfHll1/iyy+/xNq1a7F7924olUqMHz8eGzduxL///osePUxXbrZp0waHDh3Cfffdh6tXr2LLli3IycnBZ599Vu6IkLu7O3788UcMHjwY8fHxWLFiBeLi4nD69GkAQN++fbFnzx7cddddOHPmDH744Qe4urpi48aNePbZZ2v1z4DsB0eEyOlUtL2GNu0qRH4h4KKES/ObBTpdw1og/8+/UHj6nMlrGrjfDKhy8nRo6K00aUNEltV0BVb79u2xZcuWKl27R48e2L59e7nX7NWrF3799dcqXZOcC0eEyOlUtHS+6GwqAMAlOACSy83fBVRhIfrziaaBkFIhwdNDMro+ERE5PgZC5HQMgYpPBYGQKiTI6Lhra/3KkaLkVLOv4xJ6IiLnw0CInE6FI0IlgY6qlfEGq4ZpsuKUdLOv8+J+Y2THAgMD8dprryEwMNDWXSFyKMwRIqdTUTFFeUSolfGIkEuQPwD9BqzarBwofbyMznObDbJngYGBFgvZEpF5HBEip5OVa7mYYvH5SwAAVUvjQEjh1QCKhj76NimXTV7nzVpCREROh4EQOZ2KRoSKL+qnvlyaNTU55xJsmB4zDYQ4NUZE5HwYCJHTsZQjJIqKob2iL6uvDGxicl4OhFLNBEKcGiMicjoMhMjpWFo1Vnz5GiAEoHKBsrGvyXlVyShR8YXyAyFOjVFlsQ4N0U32+vPAQIicjqURIe2lKwAAl4DGkBSm5y2NCHH5PFWWUqkvuFlUVGTjnhDZD8PPg+Hnw14wECKnYylHqPjizUDIHEPekKVkaU6NUUVUKhXc3Nyg0Wjs9rdgorokhIBGo4GbmxtUKpWtu2OEy+fJ6WTdKH/VWHHJiJCyZKl8WcqmjfTt0q+bnPNksjRVQePGjZGamoqUlBSo1WqoVCpIkuned0TOTAiBoqIiaDQa5OTkoFmzZrbukgkGQuRUirUC+QX638DNjggZpsYCyxkRKgmEtOnXIIQw+uDi1BhVhY+PvhTD1atXkZpqvlo5UX3h5uaGZs2ayT8X9oSBEDmV0tNWhhGc0uQcoSDTFWMAoPT3AwCIG/kQuXmQvBrI5zg1RlXl4+MDHx8fFBUVQavV2ro7RDahVCrtbjqsNAZC5FSyS4openpIUCpMpyGKL10FALgEmA+EFF4NIHl6QOTmofjyVbh6tZDPGeoI5eYL6HQCCjPXJzJHpVLZ9QcBUX3GZGlyKhVtuKpNvwbg5siPOfL02GXjPCHDKjQhgBv5TIAlInIGDITIqfx78jT+2/8Odq6PxaRJk5CYmGh0Xi6maCEQUvobAqFrRsddVRLcVPpRIE6PERE5BwZC5DSWL1+O0cO74Xz8Z7iYuB2LFy9Gu3btsGLFCgCALr8AuuxcAICyiYVAyMLKMRZVJCJyLgyEyCkkJiZiwoQJEDodILQABLRaLXQ6HWJjY5GUlATt1Ux9Y1cVFGqvcq91c2rsmsk5brNBRORcGAiRU1i2bFm5NVokSUJcXBy0V/QjPMrGDS3WczFMmxnyiUrz8tC/jkvoiYicAwMhcgrJycnlVvAVQiA5OVkOhFyaNLR4LXlqzMyIEGsJERE5FwZC5BRCQkIsjgiFhIRAm16SKF1RINRYf157LdPkHKfGiIicCwMhcgoxMTEWR4RiY2NvTo1ZSJQGIO9Kr72mMTlnqCXEZGkiIufAQIicQlhYGOLi4iBJCkDS72ysVCqhUCgQFxeH0NDQm0vnKxoR8lMDAHTXMk2CK06NERE5F1aWJqcRHR2NzUfDcHTPGrjnH8SQgb3w/PPPIzQ0FAAqPyLUyBcAIAoKTbbZ4NQYEZFzYSBEzsW9JVr3eglx/xeAVkGuRqeKS5bPVzQiJDVwh+TuCpFfCO21TCjMBEKcGiMicg6cGiOnodMJea8xH0+l6fnrmQBuJkOXR5IkeVRIe904T8jbg1NjRETOhIEQOY2cPB10JSk9Pp5mdp4vSX5WNvSp8FqKkjwhuQhjCe5AT0TkXBgIkdPIKhkN8nCToHIxXkovhJBHd5SN1BVeSx4RKrOEnlNjRETOhYEQOY0seVrM9K+1yM0DiooBAIqGlQiESpbQ68pMjXmVWjVW3nJ9IiJyHAyEyGlk5ZQfCBlGdiQPNygauFd4LaWfr/515UyNFRUDBUUMhIiIHB0DIXIaWblaAOYTpeVpMb+KR4OAUlNjJQnWBh5uEhQlPzVMmCYicnwMhMhpaEqmxtRe5SdKKyoZCClK8ojKVpeWJEmuLs2EaSIix8dAiJyGpRwhXUY1R4Qs7DfGESEiIsfHQIichqVASF46X9lAqNQ2G2XJtYTymCNEROToGAiR08iyUEzRkCNU2amxmxuvZpqc4zYbRETOg4EQOQ1Njj5Z2lyOUHWnxnSaHIiSZfcGBdln8d/+d/BM9BBMmjQJiYmJNeg1ERHZEgMhchrWnBpT+HoDkr4oY+ltNpYvX46PX+2N8/Gf4cypfVi8eDHatWuHFStW1LD3RERkCwyEyGlYDIQMU2OVqCoNAJJSCYWffisOw/RYYmIiJkyYACF0gNACENBqtdDpdIiNjUVSUlLN3wQREdUpBkLkNLLk5fNmNlw1TI1Voqq0gaGooqG69LJlyyBJktm2kiQhLi6uKt0lIiI7wECInEJ+oQ6FJZWerTE1BgBKX2/9azOzAQDJycnlbqshhEBycnJVukxERHaAgRA5BcP2Gi5KffXn0qq64aqBomSXel1GFgAgJCTE4ohQSEhIVbtNREQ2xkCInELp/KCywUpVN1w1UPiW5Ahl6gOhmJgYiyNCsbGxVe43ERHZFgMhcgoWawhVccNVA8PUmK5kaiwsLAxxcXFQKBSApAQkBZRKJRQKBeLi4hAaGlrDd0FERHXNxdYdILKGmxuulr9irCr5QQCgaGgcCAFAdHQ0QtuH45FnPkZRbgoeG9kBsbGxDIKIiBwUAyFyChpL+4xd109tGaa6KktpmBoryREy6NyxDVr3egkA8NZbzaFUms8bIiIi+8epMXIKhmRpH3M7z2v0IzqKkqmuypKTpTONAyHD7vMAkJPHbTaIiBwZAyFyCoYRIbWZHCHD1JayioGQPCJUamoMAJRKSV6Zxv3GiIgcGwMhcgqWcoQMgZBCXcURIV8vo9eX5u3JjVeJiJxBlQKhxYsXo0uXLvDx8YGPjw8iIiLw888/y+eFEJg9ezaCgoLg4eGB/v3748SJE0bXKCgowKRJk9C4cWN4enpi+PDhSElJMWqTkZGBqKgoqNVqqNVqREVFITMzs/rvkpyevGrMmlNj5eQIATcDLsN9iYjIMVUpEAoODsa8efNw+PBhHD58GHfddRfuv/9+OdiZP38+FixYgI8//hiHDh1CQEAABg8ejOzsm79RT5kyBZs2bcK6deuwZ88e5OTkIDIyElqtVm4zbtw4xMfHY+vWrdi6dSvi4+MRFRVlpbdMzigzWx+QNDS3vYZhaqyKI0LKkhwhkXPDZAd6wxScJoeBEBGRI6vSqrH77rvP6Pu3334bixcvxv79+9GhQwd88MEHeOWVVzBy5EgAwJdffommTZtizZo1eOqpp6DRaBAXF4evvvoKgwYNAgCsWrUKzZs3xy+//IK7774bJ0+exNatW7F//36Eh4cDAD7//HNEREQgISEBbdu2Ndu3goICFBQUyN9nZZn+Fk/OKzNbH0j7epuZGqvuiJDaS/5vbWY2XJo0lL83jDwZpuSIiMgxVTtHSKvVYt26dcjNzUVERATOnj2LtLQ0DBkyRG7j5uaGfv36Ye/evQCAI0eOoKioyKhNUFAQOnXqJLfZt28f1Gq1HAQBQK9evaBWq+U25sydO1eeSlOr1WjevHl13xo5GCEEMuRAyExBxczqBUKSUgmFT0mekMY4T8gwNcYRISIix1blQOjYsWPw8vKCm5sbnn76aWzatAkdOnRAWloaAKBp06ZG7Zs2bSqfS0tLg6urKxo2bGixjb+/v8l9/f395TbmzJo1CxqNRv66cOFCVd8aOai8AmHYQcP8iFA1p8aAUkUVy+QJqZkjRETkFKpcULFt27aIj49HZmYmNm7ciMceewy7du2Sz5vs8yREuRtVltfGXPuKruPm5gY3N7fKvg1yIobRIHc3Ce6uFqbGGlY9EFL6+qD43CWThGnDVh4MhIiIHFuVR4RcXV0RGhqKHj16YO7cuejatSs+/PBDBAQEAIDJqE16ero8ShQQEIDCwkJkZGRYbHP58mWT+165csVktIkIKJ0obf6vs7aay+eB8osqqr0MU2PMESIicmQ1riMkhEBBQQFatWqFgIAA7NixQz5XWFiIXbt2oXfv3gCA7t27Q6VSGbW5dOkSjh8/LreJiIiARqPBwYMH5TYHDhyARqOR2xCVlmkhP0gUF0Pk3ABQ9YKKpV+jzcwxOs7l80REzqFKU2Mvv/wyhg0bhubNmyM7Oxvr1q3Dzp07sXXrVkiShClTpmDOnDkICwtDWFgY5syZgwYNGmDcuHEAALVajdjYWEybNg2NGjWCn58fpk+fjs6dO8uryNq3b4+hQ4fiiSeewGeffQYAePLJJxEZGVnuijGq3zJKRoTMBUI6zc0ApvQqsMpSyDvQlx0R4vJ5IiJnUKVA6PLly4iKisKlS5egVqvRpUsXbN26FYMHDwYAvPjii8jLy8PEiRORkZGB8PBwbN++Hd7eN38TX7hwIVxcXDBq1Cjk5eVh4MCBWLFiBZTKmx9iq1evxuTJk+XVZcOHD8fHH39sjfdLTsgwPeVrrphiybSY5NUAkkvV9xg2FFUsmyx9c0RIW6k8OCIisk9V+mSIi4uzeF6SJMyePRuzZ88ut427uzsWLVqERYsWldvGz88Pq1atqkrXqB6zPCJUvX3GDAxFFbVlR4RKAqGiYiC/QMDDnYEQEZEj4l5j5PAsFlPMqH6iNFB6asy4jpC7mwRVya8RGuYJERE5LAZC5PAMgVBDc8UUq1lV2uBmsrRxICRJEpfQExE5AQZC5PAy5akxC8UUqxkIlZcjBNycHuMSeiIix8VAiBxehpwsXf6Gq9WeGisnRwjgEnoiImfAQIgcmk4n5CXs5kaEajw1JhdUzIEQwuicj1xUkYEQEZGjYiBEDi37hg66kjhEbWFEqDr7jAGlRpK0Wrkwo4FazhHi1BgRkaNiIEQOzZAf5OUhQeViuoRdV8MRIYWHGyR3VwAw3W/Mi1NjRESOjoEQObRrWfrRGD8f09EgoNQ+Y9UMhPSvtVxUkcvniYgcFwMhcmjXNfpAqJGv+UCoplNjwM0gypBvZGBYNZbFHCEiIodV9T0HHEzUwlfRJtcNKRcuICQkBDExMQCAZcuWITk5WT4WFhZm455SdVw1BELljAjdnBqr+j5jBkq1N4pwszijgY9hvzHmCBEROSynD4S2zP4IUEiQBKBQKPDOO+8A0P+3TqeDQqHA/PnzERcXh+joaNt2lqrMMCLkp67NqbGS6tLljQhxaoyIyGHVj6kxnYAQAlqtfoPM0v+t1Wqh0+kQExODqKgodO7cGZMmTUJiYqKte02VYMgRamQmEBLFxfJKrxpNjanNV5dmsjQRkeOrH4FQJQghsHr1ahw/fhyLFy9Gu3btsGLFClt3iyxITEzEppWv4cSOSVj7+csmwatOkyP/d3ULKgI3q1KX3W/MsHw+v0CgsEiYvI6IiOwfA6FSDAXzDKNEsbGxSEpKsnGvyJzly5ejXbt2iP/jM6T/9wM2f7PEJHg1jOBInh6QVNWfBS5vaszTQ4Ki5CeIeUJERI6JgZAFkiQhLi7O1t2gMhITEzFhwgTodDoIoQWEDjqdafBqCFyqu8+YQXlTY5Ik3dxvLJvTY0REjoiBkAU6nQ4bN25k3pCdWbZsGSTJtHgiYBy86qyQKA0AyobmR4QAwLdkx/uMbI4IERE5IqcPhCRJglKp/7BSKpWQJAmSJEGhUADmP0tlQggkJSUxb8jOJCcnm+z7ZSCEQHJyMoDS+4z51Oh+hhGhsjlCANCwZH+zTI4IERE5JKcPhI4cOYJnnnkGnTp1wjPPPIPTp0/j9OnTmDhxIjp06IjWd/awGBAxb8j+hISEWBwRCgkJAXCz7k9Np8aU5RRUBDgiRETk6Jw+EGrdujUWLVqEY8eOYdGiRQgNDUVoaCgWLVqEE8ePI+mPQ5jx5pv6YEiBCkeJmDdkezExMRZHhGJjYwGUmhqrwYoxoFSytLkRoZJCjpkMhIiIHJLTB0KVMf+V/8OJE//i1nsGwauLN1T+qnIDotJTL2QbYWFhiIuLg6RQAJISkqSAUqmEQqFAXFwcQkNDAZSeGrNOsrROkwOhM54Ca1hSSyiDU2NERA7J6StLV1aH9u1x9Psd2HM6AQ8/fR/SdiUCZgYdSk+9kO1ER0fjXE5nLFu2DP4N0jDozjaIjY2VgyDAOvuMAaWm1oSALjvX6HqGESFOjREROSYGQmX0adMWv3yyGZ07doQwEwmVnnoh23LxbInWvV7CUw/4YvRg04RonZVGhCQ3V0gebhB5BdBlZhsFQnKOUBYDISIiR8SpMTM6tm+PZcuW6VeWKSSj/KHpb7xhNOpAtpOeoQ8+/BvW3j5jBuWtHOOqMSIix8YRoXJER0ejT58++OKLL7Blz05cUv0H73APrNV8gR/v3Y52DfwRFhrKnett6PL1YgBA00bm/xpba2oM0AdT2rSrJivH5GTpHP3edeWtZiMiIvvEQMiC0NBQzJs3D/MAnEhJwcgZY3F6/R5ASsYJASgk/c71b7/9NlJTU7Fz5070798fw4cPx2+//Ybk5GSEhIQwWKoFWq3A1UzLI0I3p8a8anw/pdobRbi5JN+gYcnUWFExkJsn4NWAgRARkSNhIFRJrnl5SPp6rz6BuiR1SCf00yGzZs2CQqGATqfDiRMn8PHHH0OhUEAIAYVCHyzFxcUhOjraZv13Nlc1Wuh0gIsS8POpg6mxcvYbc1VJ8HSXkJsvcD1bC68GnG0mInIk/Fe7kixt6wDot+MAbhZg1O+DJViIsZYYpsWaNHSBQmH6XERxMUTODQBWmhorZ78x4GbCNGsJERE5HgZClWRpW4fKYCFG60q/rg86mvqVNy2WI/93TQsqAjeX0FsqqpiRxYRpIiJHw0Cokixt61AZLMRoXXKitJ/52V3DyI3k6QFJVfMZ4PKmxgDA18uwcowjQkREjoaBUCVZ2tahMswVYkxMTMSkSZO4u301VDwiZJ19xgwsTY2xqCIRkeNiIFRJhm0dFAqFvIu9QlH5P76yhRiXL1+Odu3aYfHixdzdvhoMI0L+DS0vnbdGojQAKBuWPyJkqCXEqTEiIsfDVWNVYKgtFBcXJy+N9/X1xcsvvwxJkowTpiUJgNAXYxTAXU+MQ7MWLQDoR4ImTJggtwf0u9sDQGxsLPr06cOijRW4XFJMsbwaQvI+Y1bIDyp9HUs5QtdZXZqIyOEwEKqi0NBQzJ071+jYgw8+aBQcDRo0CL/88gv2xv+FhIL/4NqzAGca70X4B/di5p2v4diWH8vNNzIkVZe9B90khCg1IlTO1FimdafGDNcpW1ARABqr9X24xkCIiMjhMBCyAnPB0cCBAwEAxVotXt+8GuuTPkCu4gxe/fMx5G5XlJtvxKTqimXl6pBfoP/zqygQstqIkIVVY41KAiFDgUciInIczBGqZS5KJd4cOR5f9F8CxY7GuLwqHZlXL8jFGMvi7vYVu1ySKN3QRwE3V/N/ha1ZTBEoNTWmyYHQGT+7xr43p8a0uuon1BMRUd3jiFAdWL58OSZMmCDnEQkImNnYHgB3t6+M1PQiAECzJqpy21hznzGg1BSbENBl5xpdt6G3EgoJ0On0m68aRoiIiMj+cUSolpVOjNZq9RtzGgVBUsmXQr8KLS4ujonSFUi5os8Patak/Dj+5j5j1gmEJDdXSB5u+muXmR5TKiU5YfqahtNjRESOhCNCtczS1hwKhQLqlk1R6JMNlZ8LfHr4YXPaMcRPm4bLFy9yw9ZyXKxEIGTtqTFAPz2mzSvQB0Itbx5PTEzEf/s+QmrqebxZEIb/zXyKz4yIyEFwRKiWVbQ1x93h/bBp1V60uWcQ8s5l47uXF+DDDxZg3fr1ePfdd1lbyIwUeWrMwoiQvGrMx2r3VZhZOWaoBxW/ezHS//sBa1Z8wGdGRORAGAjVMktbcxgSowd36oyV972Fq99c1U+b6QBww9ZyySNC/hZyhOSpMS+r3deQF6TL0F+79LSn0GkBoYNOx2dGRORIGAjVMktbc5ROjF6xYkW5lap1QoeHR4/B2LFjMWvWrHq9FUdung4Z2fpVW3U+NVZmvzFL057cZJeIyDEwEKpl5rbmUCqVJonRFqfQBBB/9Ainy3BzWqyhtwKeHub/+oriYoicGwCst2oMMN1vzNIzYz0oIiLHwGTpOmBua47Y2Fij1WGV2t2+ZLoMML8VR2JiIpYtWybfwxkTrZMv6QOhloGWpsVy5P+2VkFF4OYSekP+UWWmPYmIyL4xEKoj5qpPlxYTE4P58+dX+no6ocOwEfejR+cuCAkJgVqtxiuvvCLXKlIoFJg/fz7i4uIQHR1thXdgH5Iv6gOhEAuBkGHERvL0gKSy3l/xslNjlp4Z60ERETkGBkJ2wjCFFhsba7qBqzkCSDrxL5L+/ReSpDCpduysm7hWbkTIuvuMGZSdGiv7zPRVpSUoJMF6UEREDoI5QnYkOjoaCQkJmDFjBkaPHo3w8HAolRVUKRYwCYJKc7akXUMgZGlEyLCqS2HFpfMAoCxZgaYrtXze8MymT5+OgLBItOj2FP7Yd8KpRuGIiJwZR4TsTOkptMTERLRr165G16ts0q4j5Bfl5evkfcYsTo1Zuaq0gSGwKltZOjQ0FPPmzcNF94tISS+Gp6+/Ve9LRES1hyNCdszcirMKE6rNSE5Otrj03lAU8N1338V6O16ZdqYkP8jPRwG1V/kjZTeLKVo3EFKaKahYWkAj/e8VadeKrXpfIiKqPQyE7Fy1pstK0el0OHToULkBjrm90Oy1kOPp84UAgLDmrhbbGQIha64YA0olS2cyECIichYMhByAYbps7dq1WLlypcUtOxQKBSBJ+o1cS1gKcBylKGBiYiI+eu9VnNgxCf/8PtdiUclamxozVJbW5JjNywrw0weohuk7IiKyf8wRcjDmVpcpFAoIITBnzhxkZmYiOTkZp5P+w19HD0PozAdNUVFRCAkJwd9//233RQGXL1+OCRMmQAgJAgJbz0hot+mjcksDyFNjVh4RkqfahIAuO9fk+k05IkRE5HAYCDmgyhRoHDt2LOKPHoGAaZCj0+mw/8ABHDhwAED5S/TtoShg6ak7A0NsV15pAF0tjQhJbq6QPNwgSnagLxsIcWqMiMjxVGlqbO7cubj99tvh7e0Nf39/jBgxAgkJCUZthBCYPXs2goKC4OHhgf79++PEiRNGbQoKCjBp0iQ0btwYnp6eGD58OFJSUozaZGRkICoqCmq1Gmq1GlFRUcjMzKzeu3RCpafL5s6daxIMVFipWgiIkq/ym5gWBUxMTMSsWbPqbN+z6kzd1cY+Ywby9JiZPCFDIHQlUwuttvw/VyIish9VCoR27dqFZ599Fvv378eOHTtQXFyMIUOGIDc3V24zf/58LFiwAB9//DEOHTqEgIAADB48GNnZNz84pkyZgk2bNmHdunXYs2cPcnJyEBkZKRcBBIBx48YhPj4eW7duxdatWxEfH4+oqCgrvOX6wdJmr+UxrEoztxcaYJvVZdXZz6u2Vo0BN4MrcyvHGnoroHIBdDp9MERERA5A1EB6eroAIHbt2iWEEEKn04mAgAAxb948uU1+fr5Qq9ViyZIlQgghMjMzhUqlEuvWrZPbpKamCoVCIbZu3SqEEOLff/8VAMT+/fvlNvv27RMAxKlTpyrVN41GIwAIjUZTk7fo0JYvXy4UCoVQKpVCkiQhSZIAUO6XT0BjETniATFz5kyRmJhodK3Tp08LhUJh9nUKhcKkvbXMnDlTKJVKs/dVKpVi5syZJq9J7jpSJDXuI/KOnLB6f1LunSiSGvcR2d/9ZvZ81GupYsAz58RfCXlWvzcRUX1Q15/fNVo1ptFoAAB+fn4AgLNnzyItLQ1DhgyR27i5uaFfv37Yu3cvAODIkSMoKioyahMUFIROnTrJbfbt2we1Wo3w8HC5Ta9evaBWq+U2ZRUUFCArK8voq76r0tJ7BaBoX4yTEQm4EOoJla+v0WlbrS6zNLIlytnPS1tLy+cB0/3GymKeEBGRY6l2srQQAlOnTkWfPn3QqVMnAEBaWhoAoGnTpkZtmzZtinPnzsltXF1d0bBhQ5M2htenpaXB39+0Oq+/v7/cpqy5c+fi9ddfr+7bcVqVrVQtQULg7V1RoLiAfRnLMWjZenTW3Y1ml7W4mpZms9VlYWFheH3OErw662lIkADcXCVnbj8vUVQMkZsHoJamxsrsN1YWAyEiIsdS7UDoueeewz///IM9e/aYnCs7ciCEqLAictk25tpbus6sWbMwdepU+fusrCw0b97c4j3rG0tL7+Pi4jB+/Hh88tvP+OLoR7h05C9s+uZ9QAIkof8zLy8Qqu3VZf5tH0b42LZwy9yIIJ90s6vkDEqP1CjUXlbvi7KioooltYTSrjFHiIjIEVQrEJo0aRK2bNmCP/74A8HBwfLxgIAAAPoRncDAQPl4enq6PEoUEBCAwsJCZGRkGI0Kpaeno3fv3nKby5cvm9z3ypUrJqNNBm5ubnBzc6vO26lXKlp6P2nQvRgU3BodZ3aQs3HMLcEvrbwpKmvZfywPDdQheGXKHAy83dNiW0MSs+TVAJKL9atDVDQ11sxfvwdaSnqR1e9NRETWV6VPCiEEJk2ahE2bNmHnzp1o1aqV0flWrVohICAAO3bswK233goAKCwsxK5du/DOO+8AALp37w6VSoUdO3Zg1KhRAIBLly7h+PHjmD9/PgAgIiICGo0GBw8eRM+ePQEABw4cgEajkYMlqr7S02XmrPzySygUCqNVfEYkQCEpIElSuVNUNVF6A9hGTZrj36v3wsuvFW7v4F7ha2tzxRhQ8dRY86b6H6nzaUWVGgklIiLbqlIg9Oyzz2LNmjXYvHkzvL295XwdtVoNDw8PSJKEKVOmYM6cOQgLC0NYWBjmzJmDBg0aYNy4cXLb2NhYTJs2DY0aNYKfnx+mT5+Ozp07Y9CgQQCA9u3bY+jQoXjiiSfw2WefAQCefPJJREZGom3bttZ8/2SGpSXrAKBqooJboAeaB3XBotfew8BSSe01ZagibZi6kyQFdOJ9DBu3ED6ekyt8vS4zB0DtJEoDgNJXP91W3ohQsL8KkgTk5AlkZOvg51P5feGIiKjuVSkQWrx4MQCgf//+RseXL18ub3Xw4osvIi8vDxMnTkRGRgbCw8Oxfft2eHvf/GBauHAhXFxcMGrUKOTl5WHgwIFYsWKF0Yqm1atXY/LkyfLqsuHDh+Pjjz+uznukKrJUjFGhUMC3QzC875VQgIt4atfjCN3eH80vK5Bz7RpCQkIQExODsLCwKt/XXBVpIfSjUtvWvoCk2fdUOPIk7zPW0KfK968Mha/+uuXlCLmqJAT4KXHpmhYXLhcxECIisnOSsPSrvwPLysqCWq2GRqOBj0/tfCg6K8PqMp2ZjUUVCgVOnjyJ7eeTEPfXp0g9fBBXvrmi3+RVSFCWJF+//fbb0Gg0ch5SZYKjWbNm4d133zU7JadUKjFjxgyLU3oAoFm2CVdfWgDPe/shYMVbVXrflZF/8BhS750Il5AgtDy03mybmZ+k4+CJfEwd54fIPtZP2CYicmZ1/fnNvcbIREWry9q0aYM2bdpgcPPWaD+z/c0ShxByEDNr1iwolUo5T2b+/PnlbpJqUJ0q0mXpMvT1oxS+tROAKCpYNQYALZqqcPBEPs6nMWGaiMjeMRAisyqzseuKFSugkBTQwnxSddmRnfI2STWwNCVX2SX62lracNVA3mtMkwOh00FSmNYkNSRMX7jMQIiIyN4xEKJyVbS6rKKkanOioqIQEhJidrosJiZGXjlYVmWX6MurxmotWdrb0CHosnPN3qdFU/0S+vOXWVSRiMje1WiLDarfKtzhvgydTof9+/fj66+/Nrtha1hYGN77YCkgKQBJCUiKcjeALfcetTwiJLm5QvLQ16sqb3qseUkglHatGIVFTpmCR0TkNDgiRNVmaQTHktJJ2LGxsfBv3hONAlohPiEfv5wZgvCxvyPr7NdoF3gVbdu0KreKtDnyPmO1FAgB+ukxbV6BPhBqaXq+oY8CXh4ScvIEzqcVIbS5a631hYiIaoaBEFWbuaRqw/9Xlk6nw5hHxsHDuyXcvYMR2G4Ubr+tLf73yQdo4lv1v56GESGlb+2tNFD4ekObdlXORypLkiS0DnbF34kFSEopZCBERGTHGAhRjZhLqvb19cXLL79sFBRZyiXKvvw3stP/gSQpkPL3Ejw56As08X28Wv3R1cGIkFLtjSIAuozyV46FNjcEQkyYJiKyZwyEqMbMJVU/+OCDcnCUnJyMQ4cOlb9lBwAIASG0EACeeGIC+va9s1rbdmhrOVkaqHi/MQAIDdbnCSVdKKy1fhARUc0xWZpqhSE4Wrt2LVauXFml1WU66BA5NRI/JfyEYl3lV16JomKI3DwAtZ8jBJS/3xgAhAbrp8P+Syms8so6IiKqOwyEqNYZcokUCv0qMEmSLK82E0DKhRRM+n4S7vriLsQdjkN2QflBh0HpwEShrr2KzspKFFUszElG8sF3cPD75zDp+ZeQmJhYa/0hIqLqYyBEdSI6OhoJCQmYMWMGRo8ejfDwcKO95UpTKpTo1akX/Dz8kJqVijk756DPZ33w1u9v4ULmhXLvIS+d9/aEVM61raGiqbHly5ejU8f2SP7rM6T/9wMWf7rApFQAERHZB+41RjZR0X5mCQkJCG4ZjO9Ofoflh5cj6XqS/pykwODQwRh/63iENw83GlnKP3wCqcOehkvzALQ8+k2t9T1z6QZce+VDeA4fgIC4N6r8vqqT+0REVF/U9ec3R4TIJsxNl5UtnuiucseYLmPw8+M/Y9mDy9CnZR/ohA7bErfhka8fwT1f3oM1f6/BjcIbAADtdQ0AQOmnrtW+K0v2MTM3IrRs2TKL24TExcXVat+IiKhquGqMbKYy+5kB+lGgfq36oV+rfki4koCv4r/Cdye+w+mrp/Hqjlfx7h/v4uFOD2Nsagt9+4a1+xuEoqRGkbkcIWtsHEtERHWHgRDZVEX7mZXVtklbvDX4Lbx454vYcHwDvor/CuczzyPuSBwyDnnhafjgmmsBAoQOCql2BjwNydLmCipaY+NYIiKqO5waI4fk4+6DmB4x+DX2V3wx8gv0a9UPPnn6AGT71b0YvGwwlh9ZXqnVZlWlsLBqLCYmxuKIUGU2jiUiorrDQIgcmkJSYMAtA7DswWUY13I4AKDAS4XkjGS89ftb6L2kN17d8Sr+Tf/XevdUG1aN5UCUSYo2l/sESQlJqvzGsUREVHc4NUZOwzNXIBfAhMFTENILWPnXSiReS8Sav9dgzd9r0C2wG8Z2GYt7290LD5VHte9jmBqDENBl55pUsS6d+3Q68SwOn2mEwPajMfyBO2rw7oiIqDZw+Tw5jdQHnkf+nqPwX/I/eD84GEIIHLhwAGv+XoPtidtRpNPv++Xt5o0HOjyAsV3Hok3jNtW615kWgyDyCtDi8HqoWgZZbPvMO2lIOFeIqeP8ENmn9go9EhE5Ay6fJ6omXYbx8nlJktCrRS98dN9H2PPUHrx454tooW6B7IJsrPxrJYatGIbRa0fju3+/Q0FxQZXuJU+PWagubXBnN/3o0+74G1W6BxER1T4GQuQ0tNezAJivI9TYszGeCn8Kv074FSseWoG7w+6GUlLicOphTPtpGnov6Y05v8/B2etnK3UvZSN1yT01Fbbt060BAOCvhHxk5VrYeJaIiOocAyFyGoYRIUt1hBSSAneG3IlP7/8Uu5/ajRfueAGB3oHIzM9E3JE4DFo2COPWjcOmE5uQV5RX7nUMwVZlAqEWTVVoHaxCsRb49RBHhYiI7AkDIXIKuhv5EPmFACpfWbqpV1M8F/Ecdj2xC1888AXuuuUuKCQFDqQcwPSfp6PX4l74vx3/h78v/W2yJF7h5wsA0F6rOBACgGER+tygn/fmVPIdERFRXeCqMXIK8siMygWSZ9VWhCkVSgxoPQADWg/AxayL+PbEt9hwfAMuaC5g7d9rsfbvtWjTuA0e7vQw7u9wPxo1aCQHW7rrmZW6x6CeDbBg+VFs2/A1hu29gm6dWyMmJgZhYWFV6isREVkXV42RUyj45zRSBsZC6e+HkBOba3w9ndDhwIUD2HB8A34+/bOcTK1SqDCw9UDE7vODOm4nfB4fgSbzp1V4veXLlyM2dgIEJEgQUCgkCCEQFxeH6OjoGveXiMhZcNUYUTVoM/SJ0gorbbiqkBSIaBGB9+95H/uf3o83B72Jzk07o0hXhK2JW7HqnD7Y+jfhIJIzki1eKzExERMmTIAQOkBoIYQOWq0WOp0OsbGxSEpKskqfiYio6hgIkVPQ1eLO8z7uPhjXbRy+i/oOPz72I6Jvi0axWj/9djXlLAbGDcSotaOw5u810OSb5gxxR3oiIvvFHCFyCoYRIWVD6wdCpbVr0g6v3vUqNGIgrm58CYFabyikDBxJPYIjqUfw5m9vYmDrgRjRYQT6tuoLV6Urd6QnIrJjDITIKWgNS+f96iYfzL1JYwBAULE39jy1B1tObsGmE5uQcDUBP5/+GT+f/hl+Hn6IbBeJBo0bcEd6IiI7xUCInILOUEzRQg0haypdUNHf0x9P3P4Enrj9CZxMP4lNJzZhy6ktuJJ7BSv/WomiBkXQ6swXUtTqBO4aFlUnfSYiIlMMhMgpaDNqL0fIHIVhCq6oGCLnBiRvTwBAe//2aO/fHi/2exF/nvsTm05swg6XHWjycBNc+eYKIAEQ+mRsIYC2/edj0WZv+DbOw+0d9HlHiYmJWLZsGZKTkxESEsJl9kREtYiBEDkFQ2FDS1WlrUnRwB1SA3eIG/nQXtNAURIIGbgoXNCvVT/0a9UP2QXZ2DZwG1b2Xondm3ejKKMIqoYqNOzVEA39juHy5UZ48dPeGHNXE+Dqt5j4zJOQJP3yekmSMH/+fLz99tvQaDQMjoiIrIx1hMgppAx5EgV/nUTAqnnwvPuOOrnnuVsfQnHKZTTb9hncb+tQqddczLqI7/79DltObkHitUQUXSlC9qFsFF/XQaUMQsZfCUA5P5JKpVIOjliDiIicFesIEVWDPDVWRyNCwM2aRZXdZgMAgnyCMLHXRGx9fCtiXWOR8l4KMndlIuefLGQcPVVuEARArj3EGkRERNbDQIicgiFZ2loFFSvj5jYblQ+EDBITE/HqC69C6ASgA1CNcVnWICIiqjnmCJHDE8XF0GXpNzOtyxEhZSNfAIC2kvuNlWapyGJlmatBxERrIqKqYSBEDk+bka3/D0mCwte7zu6rrMbUmIGlIouVJSBQ6O4KrU4LpUKJ5cuXY8KECSaJ1swlIiIqHwMhcng6QzFFtRckpbLO7qsoVUuoqkJCQiyOCEmSJJ/X6XRm2wghcKjp7+j03h1oWXAbts/+DMJM29jYWPTp0wehoaHyMY4cERHpMRAih6e9mgmg7moIGdQkRygmJgbz5883e06SJDz55JPQaDQICQmBr68vXn75ZaORHp1Oh/ZjB6DQLx2Fiis48PtaCJgPmAAgKioKISEhCAkJgVqtxiuvvCJfR6FQcOSIiOotBkLk8LRXMwAAyiZ+dXpfpZ+v/v7VmBoLCwtDXFwcYmNjjQKS8pbFP/jgg4iLi5NHcGJjYyGEwKefLcUfRw7i8smMchOudTodDhw4gAMHDsj3Kk2r1Ve9NjdyRETk7BgIkcOTR4QaN6zT+97cZiOzWq+Pjo5Gnz59TAIcc4FIaGgo5s6dK39fNh9ICGFx5ZkhH6mivKTSI0ecLiOi+oCBEDm8myNCvnV6X0MV6+rkCBmUDXAqIzExERMmTCg3d6i6DCNHBw8eZKI1EdUbDITI4cmBUJ2PCPkC0NcwEjodJEXdlOWqaOm9IdFaHimqgrKvYaI1ETk7FlQkh6e9YqNAyFCzSKeDTpNTZ/e1tPRekiS0a9cOo0aNQnh4OJQ1XEVXtmjj8uXL0a5dO7z77rtYv3493n33XbRr1w4rVqyo0X2IiGyFI0Lk8GyVIyS5uULyagCRcwPaa5l1VszR0tJ7hUKB+++/H3PnzkViYiLatWtX7nUMe5dZmmLT6nT4ed9uPK/JRHb6FZMpOUOidUxMDPbv3y+vdOMoERE5Cm66Sg7vfMQjKEo6j6DvPoLHHbfW6b3P3T4GxcmpCPr+E3j06lIn9zQEOOYCGIVCgYSEBHkqa8WKFfLKtNIbts6ZMweZmZlITk5GcnIyDh06JAc1RiTArbkbXBqqgExX3LiQod8WxAzDlJzhHm+//TY0Gg2n0IioSur685sjQuTwbiZL1+2IEAC4NGmI4uRUaNOv1dk9yy69L7sjfel8nsqsTLM4ciSAggsFKLhQUOF+aGXzi2bNmiWPOhmSrxkcEZG94YgQOTRRWIQzze4CAIQk/FDnRRXTol9B7o9/oPG8F6COHVmn905KSqrU0vvKKDtyBJRf0bqmSgdHHDkiorLq+vObgRA5tOK0qzjX+QFAqcQtF3+rs5VbBldefB9Zy79Dw2mPwW/mhDq9t7WVDqwsTpfVgrLBEZftE9Vfdf35zVVj5NDkFWON1HUeBAE3q1kXp1+v83tbm6Gm0dq1axESEmJx6b0kSVAoFBaX8VeFVquFTqeT/z82NhZJSUlWuTYRkSUMhMih2TI/qPR9DQGZs6hoZVp4eDhGjRqFJ554AopaCEDLLtsnIqotTJYmh2arYooGLv76ESHtFccfESrN0qawAPDVV1/J+UgRERFWzy8SQiA5ObnCdizuSEQ1xUCIHJqtAyHD1JjWCabGSqvpyjRfX1+8/PLLNQqOkpOTMXbsWDnAAWAU9KjVarzyyitG/eO2IERUVVVOlv7jjz/w7rvv4siRI7h06RI2bdqEESNGyOeFEHj99dexdOlSZGRkIDw8HJ988gk6duwotykoKMD06dOxdu1a5OXlYeDAgfj0008RHBwst8nIyMDkyZOxZcsWAMDw4cOxaNEi+Pr6VqqfTJauH669sQSZi1ZD/dTDaPzW5Dq/f1HyRZy/fTQkd1e0Ov+L1XJm7EVNVqaVfW2VgyNJ/z+KUu0VCkWFry1bS4mIHIvd1xHKzc1F165d8fjjj+PBBx80OT9//nwsWLAAK1asQJs2bfDWW29h8ODBSEhIgLe3NwBgypQp+P7777Fu3To0atQI06ZNQ2RkJI4cOSJvCTBu3DikpKRg69atAIAnn3wSUVFR+P7772vyfsnJ2H5ESH9fkV8IkXMDkrenTfpRW6qzKayl1z744IPlBkc6Qx0iw+9mQv8/ulK/q1VmFZshv6i6/SaiekbUAACxadMm+XudTicCAgLEvHnz5GP5+flCrVaLJUuWCCGEyMzMFCqVSqxbt05uk5qaKhQKhdi6dasQQoh///1XABD79++X2+zbt08AEKdOnapU3zQajQAgNBpNTd4i2bmLo6eLpMZ9hOar723Wh/9aDhZJjfuIgqTzNuuDI0tMTBQzZ84UY8aMEb169RJKpVJAHwZV60uhUIgxY8bY+m0RUTXV9ee3VZd7nD17FmlpaRgyZIh8zM3NDf369cPevXsBAEeOHEFRUZFRm6CgIHTq1Elus2/fPqjVaoSHh8ttevXqBbVaLbcpq6CgAFlZWUZf5PyKL+srOisDGtusD86aJ1RXqrJsv7KCSk2zA/qk6lmzZmHs2LGYNWsWEhMTa3wPInIOVk2WTktLAwA0bdrU6HjTpk1x7tw5uY2rqysaNmxo0sbw+rS0NPj7+5tc39/fX25T1ty5c/H666/X+D2QY9FevgoAcLFhIOTi76ffZsPJVo7ZgqVl+5Wl0+nwxe7PseLWdQgKao12zdvg28/jTJKqzVW0BsBVaET1TK2sGiv7D5nhHx9LyrYx197SdWbNmoWpU6fK32dlZaF58+ZV6TY5GFFULNfvcQloZLN+yCNCTlZLyBYqWrZvjqEqtQAgShKosw5pAKHB9b9TcFzsMvu6snuhvfPOOwBuJmRzFRpR/WDVQCggIACAfkQnMDBQPp6eni6PEgUEBKCwsBAZGRlGo0Lp6eno3bu33Oby5csm179y5YrJaJOBm5sb3NzcrPZeyP7JIzAuSijqeI+x0pT+JUUVOTVWY+Ut2zesECsdpAghMGfOHGRmZiI5ORk+Pj744osv9G0ruVLfXPJ12WOxsbHo06ePxVVorGdE5LisGgi1atUKAQEB2LFjB2699VYAQGFhIXbt2iX/ttW9e3eoVCrs2LEDo0aNAgBcunQJx48fl38TjIiIgEajwcGDB9GzZ08AwIEDB6DRaORgiag4rWRarGkjm2yvYSBvs8GpMaswV5coNjYWACwu5Z81a1atlC8ouwqtbNDDekZEjq3KgVBOTo7RHkBnz55FfHw8/Pz80KJFC0yZMgVz5sxBWFgYwsLCMGfOHDRo0ADjxo0DAKjVasTGxmLatGlo1KgR/Pz8MH36dHTu3BmDBg0CALRv3x5Dhw7FE088gc8++wyAfvl8ZGQk2rZta433TU5AWxII2TJRGgCUhurSJYnbVHPlLdu3tCQ+OTnZKonWZWm1WsStWIFirRaN/PyMgh6g/HpGlRlJIiLbq3IgdPjwYQwYMED+3pCX89hjj2HFihV48cUXkZeXh4kTJ8oFFbdv3y7XEAKAhQsXwsXFBaNGjZILKq5YsUKuIQQAq1evxuTJk+XVZcOHD8fHH39c7TdKzqc4TR942DJRGgBcApsAAIovXbFpP+o7ayRal+dKWhree+/dktpGlcN6RkSOocqVpR0FK0s7v2tzPkfmwpXwefwBNJk/teIX1JKC40lIGfA4FI190eokC37aSmJiItq1a1fuCI0hMRqo+V5olSFJEtq1a4euXbtazBsyl18EcPUa1V91/fnNQIgcVvrz85C95kf4zXoCDaeOt1k/tNcykdzuPgDALSm/QnJztVlf6rsVK1aY3R+tdFK1ue0+yiZkV6aCdWVIkiR/CSFMluybyy8qLzGcOUdUX9j9FhtE9qJYzhGy3dJ5AFD4qSG5uUIUFKI47SpULYNs2p/6rLxEa3N5OmW3+yidkL1mzRpcuHChxjlHwrBtSInSS/YByyNT1Vm9RkRVx0CIHJY9FFME9L/1KwMbozj5IoovMRCytcruj1ZRQva7775bpZEhQ4BT0bRbdUebmHNEVDsYCJHDkkeEmtp2RAjQJ0zrA6F0W3eFrKCiwo6lCzGWnXr7+++/kZCQYPU8JJ1Oh82bN1eYN8SaRkRVw0CIHJIoLILumgaA7UeEgJsrx7SXrtq4J2QN5RV2NJdvZK6e0bvvvmv1PgkhcOrUKSQkJJS7TQhrGhFVHZOlySEVpVzG+VsfAlQuuCX1t1pbNl1Z117/FJkfr4X6qYfR+K3JNu0LWU9SUlKl8o1Kq2j1mrVVJudIoVAgISGB+UXkEJgsTVQJxan6LVhcApvYPAgCAGWAoZYQR4ScSWXzjUozN5oEWE6MLj3VZmgnKRQQOl2FCduVyTkyl1/EKTQiPQZC5JCKU0oCoWDze8/VNZcgFlWkm8ytXjO3ZL+8qTbg5nYi1sg5EkLg7Nmz8vfLly/HhAkTTKbQyk61saYR1QecGiOHlPHBV7j+9lJ4jRqKpp+8YuvuIP/ICaQOfRouwU3R8q8Ntu4O2anqTLUZco5qVNtIAtyae8DTrzHUXo2R/Gd8uSNN5kanWNOI6hILKloJAyHndmX6e8j6cjMaTnsMfjMn2Lo7KL6YjnNdHwRclPqcJRtuAkvOxWo5R4YZZCv8i8+cI6pNdf35zX+tySEVXUgDALgEB9i4J3pKfz9AoQCKtdBeybB1d8iJGHKOFAoFlEolFAoFFBUE2mbbCVglCAJu5hyVlpiYiFmzZmHs2LGYNWsWEhMTK329mryWqKaYI0QOqTilJBBqbh+BkOTiAmVAY2gvpqM4JQ0udlDbiJxHdXOOkpOTcejQIattGWKg0+mw48A+jDmXgk7BQVi58kuzOUfmptDKJmlzyT/ZGgMhcjhCCLtLlgYAVYtAaC+mo+j8Jbh372jr7pCTMbeCzdw2IaWnq8aOHYuDBw9avS9CEvgPf2PkN/1QnO6K8++dMjvaFBMTg/3790Oj0ZgNeoDyV9OVfS0Tt6m2MBAih6O7roG4kQ8AcGnmb+Pe3KRqGYj8/X+jOPmirbtC9URFy/tDQkIslpcwbAgLWF7eb0IHSDca4PKqdBRnFJXbTAiBz5Z+BgkSIAFCV/m5OSEEli5dKvfxnXfeAWCcuM2RI7IGBkLkcAyjQUp/Pyjc3Wzcm5tcSvYYKzp/ycY9IdKztFWIJEl48skn5REXc1Nt5laNGY5lHb6s31tNCMu5RwIQqKBNeS8ts2ktULnNaFkjiaqCgRA5HDlR2k7ygwxULQMBAMXnOCJE9sHSViHmRlLMTbUBN2sa+fj44IsvvoBOp7N63lF1lS0WWZMaSXfddRd+++03BlD1DJfPk8PJXLIe1179GJ7334WAL163dXdkefv/wcX7noVLi0C0PPK1rbtDJKtO/SJzrFLTyMoUCgVGjRqFtWvXVlhqwFKNJMOXYaWdpYCRI061i1tsEFWg+IJ+akzV3H4SpQFAFaKfGitOTYcoKoak4o8X2YfqbBViTnJyssUtPwz5POamtCqiUCggIKqURwQAOggcvn4Wz69dgoTvd1rMiTIXwJU9VjaIqijhm7lKjo//UpPDMeTg2EsNIQOlvx8kN1eIgkIUp6bLgRGRs7CUfK1QKNCzZ0+EhIQYTaGZU3pkpuyS/4pea0IncDnrX8TNn47Ci4XQ6qw7WlU6aRsoP6ncXK4SOQYGQuRwis5cAACoWjWzcU+MSQoFXFoEoijxHIrOX2QgRE7HUvI1AHz11VdyIBAREWE2N8nc3mplgwdzrzWXuK0tOZZzMAdCAKilTI/KjHCZ29iWHAMDIXIoQqtFUcnydNUtzW3cG1OqkkCICdPkjCpKvi4d0JgrAlnZ3KTyXguYT9y2h0xXnU6HzZs3V5g3xPwi+8NkaXIoRecv4Xz3UYDKBbdc+AWSUmnrLhm58tJCZC37Fr6TH0GjV5+2dXeIaoW1kq9roqLE7WrXSKoBwz3LS7Q2t6KNCdmmmCxNZEHRmRQAgCqkmd0FQQCgCtEvoS9iUUVyYtZKvq4JS4nbkiShXbt26Nq1a6VrJBm+DMFTdcYIyk6hxcTGomloKAZHRODsmTOYMGGC2aCMCdm2xUCIHErR2ZJA6JZgG/fEPFVYCACgKPGcbTtC5OQqSty+//77jYK1imokhYSEYNCgQfjll18ql7QtSUAFhSKF0OGBRwZB1dAV2gxJX3zSbLvKJWRXdtsRc8fqy2hSdXBqjBzK1VcXQbPka6ifGY3Gbzxn6+6YKLqQhvO3Payfuju/A5ILf9cgqg2WagYpFAokJCTUeLpuxYoVFSZ8//3330hISLA8/VYSM1lD6ek3S5W/Sx8rb/qtsup6mo5TY0QWFCWeB2C/I0IuzfwhNfCAuJGHouSLcA1tYesuETmlqiRuV1dlEr4NuUoWWXG4oTLbjpg7Zm40qTLBTFUqdTvqqBNHhMihnLv1IRSnXEbQ95/Ao1cXW3fHrJTBT6Ag/hSarngbXvf2tXV3iJyarRO3K6pmbU8qSuYGjEd/qloPylo5THX9+c1AiByGLjsXZ28ZCgAISfwJSl9vG/fIvMvPvo2cr7fCb9YTaDh1vK27Q0S1rOwUWkV1h2pSgdvaet87FC5agfZhbdA8IAD/e/XVSr+Psspu5FvdfCUGQlbCQMj55B8+gdRhT0PZtBFCjn9n6+6UK+Oj1bj+5hJ4PTgYTZf8z9bdIaI6UHpkKjk5GYcOHTI7ZVWdCty1HjAZcs6tcIuKcpgqM3LEHCGichSeOgsAcG1/i417Yplr2xAAQGFCsk37QUR1p3RJAcN0WXmqWoG7ytuOVFUd5zCZ246k9JRcYGCg9TpUCQyEyGEUJpQEQiWBhr1ybRMCAChKOgeh1dplvSMiqj21UYG7stuOlFcfyZ4IITD8wQcR2ro1OrRpA19fX6O6SXWNU2PkMFIfeB75e46iyQcz4fPIvbbuTrmEVouzre6GyCtA8/2r4dqaK8eI6iNrJ3Kbux6ASm9FUhO1Uqm7gik55gjVEAMh5yKEQHLoPdBl5SD49+Vw62TfOzynDHsaBYdPwP+z1+A9cpCtu0NE9VhVk7nLKpsEXbZSd22NOjFHiKiU4rOp0GXlQHJztfupMQBw69oWBYdPoCD+FAMhIrKpstNv1lgWX7pSd63nMNUyBkLkEAr+TgAAuHZsDUll/39t3bq2BQAUxJ+ycU+IiEz3h6tMkral6bzKXM8R8pUABkLkIAr+0QdChgDD3rl1068YKfjnNBOmicjuVDZJu6bXA1CpsgK2xBwhcgipkc8i/8A/aPLhTPiMs99EaQNRXIyzrYdB3MhH8K4VcOvQ2tZdIiKyqYqqcBum5AB9QnZdfX4rav0ORDWkyy9A/l8nAQAevbrauDeVI7m4wL1HRwBA/v5/bNwbIiLbM5QVUCgUUCqVRv8/b948zJgxA6NGjcLzzz9fp/3i1BjZvYKjJ4HCIij9/eDSqpmtu1Np7r27Ie+PI8jfFw91zAO27g4Rkc1VZkouKysLCxcurLM+MRAiu5e/728AgHtEN7mOhSPw6NUVGQDy9v0tJw8SEdV3ZROtbY1TY2T3bvxxGADgEeEY02IGbrd1AFxV0F6+hqKk87buDhERmcFAiOyaNisH+QeOAQAaDOxl495UjcLDDR69uwEAbuzYZ9vOEBGRWQyEyK7l7TwEaLVQhbWEKiTI1t2psgaDIgAAuQyEiIjsEgMhsmu52/4EADQY5FijQQaeQ3oDAPL3/w1tZraNe0NERGUxECK7pbuRj9wf/wAAeEX2s3FvqkfVqhlcO9wCFGuR+/3vtu4OERGVwUCI7Fbutj0QuXlwaRkIt9s72bo71eb10BAAQPY3223cEyIiKouBENmt7K++BwB4jRzs0EvPvR8cDEgS8vf9jcL/uHqMiMieMBAiu1RwPAl5u48CSiV8xg+3dXdqxCXIHw1KcoU0n31j494QEVFpDITILmV+tAoA4BnZD6rgpjbuTc35PjMaAJC97mcUp121cW+IiMiAgRDZnfy/TiJn06+AJKHh5Eds3R2rcO/dDW63d4LIK8D1eV/YujtERFSCgRDZFVFQiCsvzAcAeD18N9y6tLFxj6xDkiQ0fuM5AED2mp+Qt+eojXtEREQAAyGyI0IIXH35QxSeSIKikRqN/ve0rbtkVe49OsI76j5ACFx+5k0Up162dZeIiOo9uw+EPv30U7Rq1Qru7u7o3r07du/ebesuUS0QWi2u/e9jZK3cAkgS/D+aBZemjWzdLatr/OYkqNqGQJt2FRcffAFFyRdt3SUionrNrgOh9evXY8qUKXjllVfw119/4c4778SwYcNw/jyXIDuT/PhTuDjieWiWfA0AaDzvBXgOucPGvaodCk8PBK57Dy7N/FH03wWkDIyF5vMNEIVFtu4aEVG9JAkhhK07UZ7w8HDcdtttWLx4sXysffv2GDFiBObOnWvxtVlZWVCr1dBoNPDx8antrlIlicIiaK9cR+HpcyiIP4Xc7XtRcPgEAEBq4IEmH7wI7wcG2biXta/40hWkPf5/KDjyLwBA0dgXXpH94B7eBa4dQ+HSzB8Kb0+Hrp9ERFQddf357VLrd6imwsJCHDlyBDNnzjQ6PmTIEOzdu9ekfUFBAQoKCuTvNRoNAOD0iOfg5eIKlIn3TKO/UkfKxoYm31s6V+Y+wtJ1y3ZBlH/SwmtNYtkK72OprYXGJk0ttS1zTquDVpMDkXMDJlyU8BreH75TxkM0D0BWVpZpG2fj6QbvtfMg1v2MzI9WQ5t+FZplG4FlG+UmUgN3KBq4Q3J3g+TmBslNBSgkfXBk+AIACaW+lyABN88RETmYnOJCAOY+Y2qH3QZCV69ehVarRdOmxjVkmjZtirS0NJP2c+fOxeuvv25y/Pbfv6q1PpIVffEn8MXbtu6Ffblu6w4QEdnOtWvXoFara/0+dhsIGZSdGhBCmJ0umDVrFqZOnSp/n5mZiZYtW+L8+fN18gdJ5cvKykLz5s1x4cIFTlPaAT4P+8FnYT/4LOyHRqNBixYt4OfnVyf3s9tAqHHjxlAqlSajP+np6SajRADg5uYGNzc3k+NqtZp/qe2Ej48Pn4Ud4fOwH3wW9oPPwn4oFHWznstuV425urqie/fu2LFjh9HxHTt2oHfv3jbqFRERETkTux0RAoCpU6ciKioKPXr0QEREBJYuXYrz58/j6aedq9AeERER2YZdB0KjR4/GtWvX8MYbb+DSpUvo1KkTfvrpJ7Rs2bLC17q5ueG1114zO11GdYvPwr7wedgPPgv7wWdhP+r6Wdh1HSEiIiKi2mS3OUJEREREtY2BEBEREdVbDISIiIio3mIgRERERPUWAyEiIiKqt+w6EJo9ezYkSTL6CggIkM8LITB79mwEBQXBw8MD/fv3x4kTJ4yuUVBQgEmTJqFx48bw9PTE8OHDkZKSYtQmIyMDUVFRUKvVUKvViIqKQmZmZl28RYdh6VkUFRXhpZdeQufOneHp6YmgoCCMHz8eFy9eNLoGn4V1VPRzUdpTTz0FSZLwwQcfGB3ns7COyjyLkydPYvjw4VCr1fD29kavXr1w/vx5+TyfhXVU9CxycnLw3HPPITg4GB4eHmjfvj0WL15sdA0+C+tJTU3Fo48+ikaNGqFBgwbo1q0bjhw5Ip+3q89vYcdee+010bFjR3Hp0iX5Kz09XT4/b9484e3tLTZu3CiOHTsmRo8eLQIDA0VWVpbc5umnnxbNmjUTO3bsEEePHhUDBgwQXbt2FcXFxXKboUOHik6dOom9e/eKvXv3ik6dOonIyMg6fa/2ztKzyMzMFIMGDRLr168Xp06dEvv27RPh4eGie/fuRtfgs7COin4uDDZt2iS6du0qgoKCxMKFC43O8VlYR0XPIikpSfj5+YkZM2aIo0ePiv/++0/88MMP4vLly3IbPgvrqOhZTJgwQbRu3Vr8/vvv4uzZs+Kzzz4TSqVSfPfdd3IbPgvruH79umjZsqWIjo4WBw4cEGfPnhW//PKLSEpKktvY0+e33QdCXbt2NXtOp9OJgIAAMW/ePPlYfn6+UKvVYsmSJUII/Qe0SqUS69atk9ukpqYKhUIhtm7dKoQQ4t9//xUAxP79++U2+/btEwDEqVOnauFdOSZLz8KcgwcPCgDi3LlzQgg+C2uqzLNISUkRzZo1E8ePHxctW7Y0CoT4LKynomcxevRo8eijj5Z7ns/Ceip6Fh07dhRvvPGG0bHbbrtN/N///Z8Qgs/Cml566SXRp0+fcs/b2+e3XU+NAUBiYiKCgoLQqlUrjBkzBmfOnAEAnD17FmlpaRgyZIjc1s3NDf369cPevXsBAEeOHEFRUZFRm6CgIHTq1Elus2/fPqjVaoSHh8ttevXqBbVaLbchvfKehTkajQaSJMHX1xcAn4W1WXoWOp0OUVFRmDFjBjp27GjyWj4L6yrvWeh0Ovz4449o06YN7r77bvj7+yM8PBzfffed/Fo+C+uy9HPRp08fbNmyBampqRBC4Pfff8fp06dx9913A+CzsKYtW7agR48eePjhh+Hv749bb70Vn3/+uXze3j6/7ToQCg8Px8qVK7Ft2zZ8/vnnSEtLQ+/evXHt2jV5V/qyO9E3bdpUPpeWlgZXV1c0bNjQYht/f3+Te/v7+8ttyPKzKCs/Px8zZ87EuHHj5F2c+Sysp6Jn8c4778DFxQWTJ082+3o+C+ux9CzS09ORk5ODefPmYejQodi+fTseeOABjBw5Ert27QLAZ2FNFf1cfPTRR+jQoQOCg4Ph6uqKoUOH4tNPP0WfPn0A8FlY05kzZ7B48WKEhYVh27ZtePrppzF58mSsXLkSAOzu89uu9xobNmyY/N+dO3dGREQEWrdujS+//BK9evUCAEiSZPQaIYTJsbLKtjHXvjLXqU8sPYupU6fK54qKijBmzBjodDp8+umnFV6Xz6LqLD2Lfv364cMPP8TRo0er/GfGZ1F1lp7FmDFjAAD3338/XnjhBQBAt27dsHfvXixZsgT9+vUr97p8FlVX0b9RH330Efbv348tW7agZcuW+OOPPzBx4kQEBgZi0KBB5V6Xz6LqdDodevTogTlz5gAAbr31Vpw4cQKLFy/G+PHj5Xb28vlt1yNCZXl6eqJz585ITEyUVwOUjfrS09PlKDMgIACFhYXIyMiw2Oby5csm97py5YpJtEo3lX4WBkVFRRg1ahTOnj2LHTt2yKNBAJ9FbSr9LHbv3o309HS0aNECLi4ucHFxwblz5zBt2jSEhIQA4LOoTaWfRePGjeHi4oIOHToYtWnfvr28aozPovaUfhZ5eXl4+eWXsWDBAtx3333o0qULnnvuOYwePRrvvfceAD4LawoMDKzw7z1gP5/fDhUIFRQU4OTJkwgMDESrVq0QEBCAHTt2yOcLCwuxa9cu9O7dGwDQvXt3qFQqozaXLl3C8ePH5TYRERHQaDQ4ePCg3ObAgQPQaDRyGzJV+lkAN4OgxMRE/PLLL2jUqJFRez6L2lP6WURFReGff/5BfHy8/BUUFIQZM2Zg27ZtAPgsalPpZ+Hq6orbb78dCQkJRm1Onz6Nli1bAuCzqE2ln0VRURGKioqgUBh/5CmVSuh0OgB8FtZ0xx13WPx7b3ef35VOq7aBadOmiZ07d4ozZ86I/fv3i8jISOHt7S2Sk5OFEPrld2q1Wnz77bfi2LFjYuzYsWaX3wUHB4tffvlFHD16VNx1111ml9916dJF7Nu3T+zbt0907tyZyyHLsPQsioqKxPDhw0VwcLCIj483Wr5aUFAgX4PPwjoq+rkoq+yqMSH4LKylomfx7bffCpVKJZYuXSoSExPFokWLhFKpFLt375avwWdhHRU9i379+omOHTuK33//XZw5c0YsX75cuLu7i08//VS+Bp+FdRw8eFC4uLiIt99+WyQmJorVq1eLBg0aiFWrVslt7Onz264DIUNdAZVKJYKCgsTIkSPFiRMn5PM6nU689tprIiAgQLi5uYm+ffuKY8eOGV0jLy9PPPfcc8LPz094eHiIyMhIcf78eaM2165dE4888ojw9vYW3t7e4pFHHhEZGRl18RYdhqVncfbsWQHA7Nfvv/8uX4PPwjoq+rkoy1wgxGdhHZV5FnFxcSI0NFS4u7uLrl27GtWtEYLPwloqehaXLl0S0dHRIigoSLi7u4u2bduK999/X+h0OrkNn4X1fP/996JTp07Czc1NtGvXTixdutTovD19fktCCFGFES8iIiIip+FQOUJERERE1sRAiIiIiOotBkJERERUbzEQIiIionqLgRARERHVWwyEiIiIqN5iIERERET1FgMhIiIiqrcYCBEREVG9xUCIiIiI6i0GQkRERFRv/T8trDmlJoE45gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -721,10 +721,10 @@ "start_time": "2023-11-09T18:41:42.047242018Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:21.574850Z", - "iopub.status.busy": "2023-11-09T20:46:21.574260Z", - "iopub.status.idle": "2023-11-09T20:46:21.722086Z", - "shell.execute_reply": "2023-11-09T20:46:21.721584Z" + "iopub.execute_input": "2023-11-09T22:34:14.859838Z", + "iopub.status.busy": "2023-11-09T22:34:14.859429Z", + "iopub.status.idle": "2023-11-09T22:34:14.969569Z", + "shell.execute_reply": "2023-11-09T22:34:14.969021Z" }, "scrolled": true }, @@ -733,9 +733,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "{: array([ 0.0065188 , 0.19334121, -0.18956193, ..., 1.12188645,\n", - " -0.19607437, 1.12192696]), : array([ 0.99348316, 0.80666203, 1.18956254, ..., -0.12187685,\n", - " 1.19607494, -0.12191737])}" + "{: array([-0.2011732 , -0.02308674, -0.0095058 , ..., 1.1215446 ,\n", + " 1.1215446 , 1.1215446 ]), : array([ 1.20116739, 1.02308259, 1.00950177, ..., -0.12153816,\n", + " -0.12153816, -0.12153816])}" ] }, { @@ -763,10 +763,10 @@ "start_time": "2023-11-09T18:41:42.255058309Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:21.724624Z", - "iopub.status.busy": "2023-11-09T20:46:21.724242Z", - "iopub.status.idle": "2023-11-09T20:46:21.731440Z", - "shell.execute_reply": "2023-11-09T20:46:21.730886Z" + "iopub.execute_input": "2023-11-09T22:34:14.971987Z", + "iopub.status.busy": "2023-11-09T22:34:14.971755Z", + "iopub.status.idle": "2023-11-09T22:34:14.979066Z", + "shell.execute_reply": "2023-11-09T22:34:14.978504Z" } }, "outputs": [ @@ -788,7 +788,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "20092.832164835945" + "19908.623283345947" ] }, { @@ -816,7 +816,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "118098.24026987074" + "118147.92618294565" ] }, { @@ -848,16 +848,16 @@ "start_time": "2023-11-09T18:41:42.302977717Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:21.733925Z", - "iopub.status.busy": "2023-11-09T20:46:21.733729Z", - "iopub.status.idle": "2023-11-09T20:46:22.889863Z", - "shell.execute_reply": "2023-11-09T20:46:22.889178Z" + "iopub.execute_input": "2023-11-09T22:34:14.981949Z", + "iopub.status.busy": "2023-11-09T22:34:14.981618Z", + "iopub.status.idle": "2023-11-09T22:34:16.164115Z", + "shell.execute_reply": "2023-11-09T22:34:16.163525Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABRcAAAINCAYAAACkr0g2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7EElEQVR4nOzdeXiTZfr28TNN071NN1padpBNAWVYBEYBBVlGRFzGBQVRUPjBgIqoo8744sqMOIKi4IIjroij4sqAKLIJqFQYFRVQWQsFWkr3Nl3y/pE+gdCFpk2apv1+jqNH0ifPcj+plvbsdd+XyW632wUAAAAAAAAAbgrw9QAAAAAAAAAA+CfCRQAAAAAAAAC1QrgIAAAAAAAAoFYIFwEAAAAAAADUCuEiAAAAAAAAgFohXAQAAAAAAABQK4SLAAAAAAAAAGqFcBEAAAAAAABArQT6egCeVlZWpkOHDikyMlImk8nXwwEAAHCb3W5XTk6OkpOTFRDA34L9ET+TAgAAf+bOz6ONLlw8dOiQWrVq5ethAAAA1NmBAwfUsmVLXw8DtcDPpAAAoDGoyc+jjS5cjIyMlOS4+aioKB+PBgAAwH3Z2dlq1aqV8+ca+B9+JgUAAP7MnZ9HG124aEw7iYqK4gc5AADg15hO67/4mRQAADQGNfl5lEV8AAAAAAAAANQK4SIAAAAAAACAWiFcBAAAAAAAAFArhIsAAAAAAAAAaoVwEQAAAAAAAECtEC4CAAAAAAAAqJVAXw8AAAAAAAC4Ki4uVmlpqa+HAaCRMJvNslgsXjk34SIAAAAAAA1Edna20tPTVVRU5OuhAGhkgoODFR8fr6ioKI+el3ARAAAAAIAGIDs7W6mpqYqIiFB8fLwsFotMJpOvhwXAz9ntdhUXFysrK0upqamS5NGAkXARAAAAAIAGID09XREREWrZsiWhIgCPCg0NVWRkpA4ePKj09HSPhos0dAEAAAAAwMeKi4tVVFQkq9VKsAjAK0wmk6xWq4qKilRcXOyx8xIuAgAAAADgY0bzFm81XAAA6eT3GE82jCJcBAAAAACggaBqEYA3eeN7DOEiAAAAAAAAgFrxari4fv16XXbZZUpOTpbJZNIHH3xQ7f7vv/++LrnkEjVr1kxRUVHq37+/Vq1a5c0hAgAAAAAAAKglr4aLeXl5Ovfcc/Xss8/WaP/169frkksu0YoVK5SSkqKLLrpIl112mbZt2+bNYQIAAAAAAACoBa+GiyNHjtSjjz6qK6+8skb7z58/X/fcc4/69Omjjh076vHHH1fHjh318ccfe3OYABq54tIybdufqS9/OaoDx/N9PRwAAAAADdjatWtlMpk0YcKEOp9ryZIlMplMmj17dp3P5U1t27Z1ay2+CRMmyGQyae3atTU+xl/eC7gv0NcDqE5ZWZlycnIUGxtb5T5FRUUqKipyfp6dnV0fQwPgJz79/rAe+/QnHcoqdG67qHMzPXx5N7WKDfPhyAAAqAO7XSquwx/MLGESTSMAvzNv9S5fD6FG7rykk6+H4NfWrl2riy66SDfddJOWLFni6+E0KIMHD9a6deu0Z88etW3b1tfDQbkGHS7+61//Ul5enq655poq95kzZ44eeuihehwVAH/x9Oe7Ne9zxw9g0WEWNY8K0a4jOfpy5zGNee4rvTaxr85Jtvp4lAAA1EJxvvR4cu2Pv/+QFBTuufEAQCPSt29f/fzzz7Ja+V3Bk6644gr169dP8fHxvh4KPKzBdoteunSpZs+erWXLlikhIaHK/e677z5lZWU5Pw4cOFCPowTQUL2xZZ8zWPy/wR205b4hWnnHQH1x12CdkxyljDybbn7lWx3JLjzDmQAAAAA0JWFhYerSpYuSkpJ8PZRGxWq1qkuXLoSLjVCDDBeXLVumiRMn6p133tHQoUOr3Tc4OFhRUVEuHwCatl1HcvTwJz9Jku4c2kn3juiiEItZktQuPlxLb+unTokROppTpDve3i673e7L4QIAUDezfnVUIp7pY9avvh4pANRYYWGhQkJC1K5duwqvjRo1SiaTSRdddFGF17p166bAwMAKS6bt3btXkydPVtu2bRUcHKxmzZrp6quv1vfff1/hHNWtuZibm6tZs2apVatWCg0N1dlnn61nnnlGdrtdJpOp2qm6+/fv19ixY9WsWTOFhoaqd+/eFXpMTJgwwXlfr776qkwmk/Pj9LUK3bknSSopKdGcOXPUsWNHhYSEqH379vr73/8um81W5ZhrYv369br44osVGRmpqKgoXXrppfrpp58q7FfVmovFxcV64YUX1LdvX8XHxyssLExt27bVqFGj9Pbbbzvv1WQyad26dZKkdu3aubw3p8rPz9cjjzyibt26KTQ0VFarVQMHDnSeqzLbtm3TyJEjZbVaZbVaNXz4cH377bdVjnnw4MEymUzau3ev3nrrLfXr10+RkZGKjo527vPpp5/qlltuUdeuXRUVFaXw8HCde+65evzxx12W96vs/fntt990zTXXKD4+XlFRURo5cqTzPS0pKdHjjz+uTp06KSQkRGeddZYWLlxY5b3VhwY3LXrp0qW65ZZbtHTpUl166aW+Hg4AP2O323XPu9/LVlKmQZ2aacaQsyrsExVi0Qvjemvk0+u1+fcM/WfrQV3Tp5UPRgsAQN0t2HhIJebQM+4XWFqg6fUwHgDwhJCQEJ1//vlav3699u7d6wztSktLtXHjRknS5s2bnSGkJKWnp+unn37SH/7wB5fCo40bN+rSSy9Vdna2zjnnHI0ePVqpqal6//33tWLFCn366aeVBpWnKyws1JAhQ/TNN9+oWbNmGjVqlHJzc3X33Xfrt99+q/bYvXv3qk+fPgoJCdEFF1ygI0eOaPPmzRozZoz++9//atiwYZKkCy64QGlpaVq1apU6dOigCy64wHmO8847r073dP311+vdd99VRESERowYIbvdrqeeekrbtm2rdcHFxx9/rKefflrdunXT8OHD9cMPP2jFihX6+uuv9eOPP6p58+ZnPMe4ceO0bNkyxcfHa8CAAQoLC1Nqaqo2bNig3NxcXXfddYqIiNBNN92klStX6siRI7rqqqsUERFR4Vw5OTm66KKLlJKS4vwa5eXlac2aNdqwYYO2bNmi+fPnuxyzadMmDR06VAUFBerZs6c6d+6sn376SRdccIFuvvnmasc+Z84cLV68WH/84x81atQol9m0EydOVF5ens455xx1795d2dnZ+uabb/TAAw/oiy++0GeffSaz2VzhnHv27FHfvn0VHR2tQYMGaffu3Vq5cqVSUlL0/fffa8qUKVqzZo369++v9u3b68svv9S0adNksVh06623nvH99gavhou5ubn69deTfyHds2ePtm/frtjYWLVu3Vr33XefUlNT9dprr0lyBIvjx4/X008/rX79+iktLU2SnEkzAJzJJ98f1vYDJxQWZNYTV/eosuNZu/hw3Tm0k+b89xc9seoXjTo3SWFBDe7vLQAAAECTNXjwYK1fv15r1651VhFu27ZNWVlZOuecc7Rjxw5t2bJFgwcPluSoOLTb7c7PJUfT1z//+c8qKCjQf/7zH1199dXO1z7//HNdeumlGjdunH7//XcFBQVVO54nn3xS33zzjfr376+VK1c6A8zvv//e5ZqVefXVVzV9+nQ99dRTCgx0/N7x9NNP64477tCjjz7qDBcnTZqks846S6tWrdIFF1xQaUOX2tzT0qVL9e6776p9+/Zav369WrRoIcmR0wwcOFAHDx6sdvxVmT9/vt544w1df/31khzh77XXXqv33ntPCxcu1MMPP1zt8Xv37tWyZcvUp08frV+/3hkUS1JBQYG2b98uSYqPj9eSJUs0ePBgHTlyRE8++WSlVaL333+/UlJSNHToUC1fvtwZQP7yyy8aNGiQnn76aQ0bNkx/+tOfJDkaCd98880qKCjQE088obvvvtt5rkceeUQPPvhgteN/7bXXtGbNGg0aNKjCa88//7wuueQShYefXOM4JydHY8eO1SeffKI333xT48ePr/ScM2fO1Ny5cxUQECC73a5bbrlFS5Ys0ZAhQxQQEKCffvpJLVu2lCR98cUXGjp0qB577DGfhYtenRa9detW9ezZUz179pQkzZw5Uz179nR+cQ4fPqz9+/c793/hhRdUUlKiadOmKSkpyflx++23e3OYABqJktIyzV21U5I0eWAHJUaFVLv/LRe0U+vYMKXn2vTa5n31MUQAAAAANWQENmvXrnVuM6bFGrlCZa+dGvT9+9//VlpammbNmuUSwknS0KFDNXXqVKWmpuqTTz4543heeOEFSdJTTz3lUhnZo0cPTZ9efW14+/bt9a9//csZLErStGnTFBMToy1btrg1Nbk297Ro0SJJjsDMCBYlx/Tiv//97zW+9unGjh3rDBYlyWw26/7775fkmC59JkePHpUkDRgwwCVYlByFZv3796/xWPLy8vTyyy8rICBACxcudKls7NKli/72t79Jkp555hnn9jVr1mjXrl3q0qWLZs2a5XK++++/v9Jp+aeaOHFipcGiJI0ZM8YlWJSkyMhIzZs3T5L04YcfVnpchw4d9M9//lMBAY7IzmQyaebMmZKkn376Sc8884wzWJSkIUOGqGfPntq3b5/27t1b7Xi9xavh4uDBg2W32yt8GMn7kiVLXL4RGH9lqGp/AKjOyh1p2n88X7HhQZp0YfX/CEiSxRyg24d0lCS9sO43FRaXenuIAAAAAGpowIABCg4OrpAbREdH6+qrr1bLli0rvBYQEOAylXj16tWSHEFPZYx9v/3222rHsn//fh08eFAtW7ZUv379Krz+5z//udrjBw8eLIvF4rItMDBQ7du3V3FxsTIyMqo9/lTu3lNxcbG+/vprBQQEVAgjJbmEg+4yKi5P1alTJ0mOgrIz6dKli8LDw/XKK6/opZdecut9OF1KSooKCgrUt29fdezYscLr48aNkyR99dVXzmngmzZtkiRdffXVFWa9mc1mXXnlldVec/To0dW+vnv3bj399NOaPn26brnlFk2YMEGPPPKI87XKDB482CWElhzhtCQFBQVVGmZ26NBBUs3ec29gDiCARmPxhj2SpHH92ig8uGbf3sb0bKGnVu9S6okCfbT9EGsvAgAAAA1ESEiI+vbtqw0bNmjv3r1q3bq1Nm7cqIEDByogIECDBg3Su+++q8LCQuXm5mrHjh3q2bOnS1MNo5Lr/PPPr/Za6enp1b5+6NAhSVKrVpX/vtC6detqjz+10uxURnVdZQ0+quLuPWVkZMhmsykpKanSqd9GI5ITJ07UeAyGyu7LnXuKiorSSy+9pNtuu0233XabJk+erM6dO+uiiy7S+PHjKw1yq2J8japqqhMdHS2r1aqsrCxlZ2fLarXW+eta1et2u12zZs3SvHnzqlzPMicnp9Ltp1aWGowKyObNmzsrGit73Z3/jjyJcBFAo7Btf6a2HzihIHOAbuzXpsbHmQNMGte/jf7x31+0ZNNe/bl3yyrXaQQAAABQvwYNGqQNGzZo7dq16tGjh06cOOGc9jx48GC9+eab2rJli44fP15hvUXJsQag5KgsDAsLq/I6ZwrqDLX9XcGTv2O4e09GuOWN33M8cc7rr79eQ4cO1YcffqjPPvtM69at06JFi7Ro0SLdfffdeuKJJzw+ptP3qeqYMzW6OX0qt2HZsmV66qmn1LJlS82fP1/9+/dXs2bNZLFYZLPZFBwcXOW5qxt/Q/1dlXARQKPwnxTHAsSjeiSpWWSwW8de27uV5q3epZ8OZ+t/B7N0XqtoL4wQAAAAgLsGDx6sRx99VGvXrtXx48ed2059PPW106eMtmzZUjt37tTf/vY39ejRo9bjSEpKkiSXvhGnqmq7N7h7T/Hx8QoKClJaWppsNluF6sWcnJxaVS16UrNmzTRp0iRNmjRJdrtdq1at0rXXXqu5c+dqwoQJOvvss894juTkZEmOJjWVycrKUlZWlsLDwxUZGSnpzF/XU7s/u2P58uWSHGtdjho1yuW133//vVbnbMi8uuYiANSHwuJSffI/Rzn71b0qn25QnZjwII3o1lyS9MG2VI+ODQAAAEDtDRgwQEFBQVq7dq3Wrl2rmJgYnXvuuZKks846y7nuorHe4sCBA12OHzp0qCTpgw8+qNM42rRpo+TkZB08eFBff/11hdfffffdOp3/VEb4V1JSUunr7t6TxWJR3759VVZWpvfee6/C62+//XbtBuolJpNJI0aM0KWXXipJ+vHHH52vVffe9OrVS6Ghofrmm28qXc/wjTfekORYk9KoABwwYIAk6b333qtQSVhWVuYMCd2VmZkpqfLp1u+8806tztmQES4C8Htrfjmq7MISJVtD1K99XK3OMeY8x7oWn3x/SCWlZZ4cHgAAAIBaCg0NVZ8+fbRv3z6tXr3aud6iYdCgQdq8ebN+/PFHnXvuuS7rLUrS5MmT1axZMz3++ON65ZVXKgRIeXl5eu2113Tw4MEzjmXy5MmSpLvuustlvbwff/xRCxYsqMNdujIq8Hbu3FnlONy9J2PsDz74oEvTj3379jkbjPjCtm3b9P7776u4uNhle2ZmpjPEPXVdw+rem/DwcN1yyy0qKyvTtGnTlJeX53xt165devTRRyXJpbP3xRdfrLPOOks///yzs4uz4R//+EetqwyNpjYvvviiy9dnw4YNmjt3bq3O2ZARLgLwe8vLqw3H9GyhgIDarUFxQcd4xYUHKT3Xpg2/Vr+YMwAAAID6Y0x/LiwsrLCm4uDBg2Wz2WS32yvtohsTE6Ply5c7g6d27dpp1KhRuuqqq9SnTx8lJibqpptuOmNDF0m6++671bt3b3311Vfq0KGDrrnmGv3pT39S7969NXbsWEmqtGGKu9q2basePXpo69at6tu3r26++WZNmjRJH330Ua3v6YYbbtAVV1yhX3/9VZ07d9YVV1yhMWPG6JxzzlH37t3P2LjEW/bt26errrpKzZo109ChQ3XjjTdq1KhRatu2rX7//XddccUVLk1djO7MY8eO1Z///GfnVGrDnDlz1KtXL61evVrt27fXNddco0svvVTnnnuu0tLSNGPGDGdFpOToCP3KK68oJCREd911l3r16qWxY8fqvPPO00MPPaRbb71Vkvtf1xkzZig8PFwLFy5Ut27ddP3112vgwIEaNGiQpkyZUpe3rEFizUUAfi3fVqL1u45Jkkb1SK71eSzmAF3aI0mvbd6nlT+k6aLOCZ4aIgAAAOARd17SyddD8InBgwfrsccecz4//bXKnp/qj3/8o3744Qc99dRT+vTTT7VmzRqZzWYlJydr1KhRuvLKK2u0pl9oaKi++OILzZ49W++8844+/PBDtWvXTo8//riuueYaPfvss4qLq91MqtO99957uvvuu7VhwwalpKSorKxMLVu2dIZr7t6TyWTSsmXLNHfuXL388stasWKFkpKSNH36dM2ePVudO3f2yLjd1a9fPz366KNas2aNdu7cqQ0bNigmJkY9evTQrbfe6gxtDVdeeaXmzZunl156SR9//LGzO/LixYslOTpfr1u3Tv/617+0bNkyffTRRwoKClLv3r01depUXX/99RXGcMEFF2jjxo164IEHtGnTJu3evVt9+/bVunXr9MUXX0iS21/XTp066dtvv9W9996rr7/+Wh999JE6d+6sF154QbfeequefPLJ2rxdDZbJfqbWN37GaCeelZWlqKgoXw8HgJet2pGmya+nqEV0qDbee1Gdumd99Wu6blj8teIjgvTN/UNrXQUJAHXFzzP+z+tfQ1ue9Ljjj2oL+q1XiTn0jIcElhZo+pbytcjuPyQFhXt+XABqrbCwUHv27FG7du2q7ECLhmvZsmW67rrrNGXKFC1atMjXw4GHjBw5UitXrtSWLVtq3FG8oavp9xp3fpZhWjQAv7b6pyOSpEvOTqxTsChJfdvFKjIkUOm5Nm0/eMIDowMAAADQmGzfvl1lZa5rtP/www+65557JKlCpR0avuPHj2vfvn0u2+x2uxYsWKCVK1fqrLPOUt++fX00Ov/AtGgAfqu0zK41vxyVJA07O7HO57OYAzS4c4I+/t8hff7TEf2hdUydzwkAAACg8bjuuuuUnZ2t7t27KyYmRnv37tXWrVtVWlqqKVOm6MILL/T1EOGmXbt2acCAAerRo4fat2+v0tJS/fjjj/r9998VGhqql156qc6FLI0dlYsA/Nb2Ayd0PM+mqJBA9WkX65FzDu3qWGvx85+PeOR8AAAAABqP6dOnq0OHDtq+fbvef/99/fLLLxowYICWLFnCdGg/1b59e02ZMkVFRUX64osv9N///ldFRUUaO3asvv766yrX8sRJVC4C8FtflXd1vqBjvCxmz/ytZFCnZjKZpF1HcnU0u1AJUax3AwAAAMBh2rRpmjZtmq+HAQ9KSEjQwoULfT0Mv0blIgC/ZYSLAzrEe+yc0WFBOifZsVjtpt8yPHZeAAAAAAAaI8JFAH4p31ai7/ZnSpL+eJbnwkVJ+mN5WGmElwAAAAAAoHKEiwD80rd7M1VcaleyNURt48I8eu4B5WHlpt8yZLfbPXpuAAAAAAAak8a75uJLQ6XQSm6vyg4/VWyvtiFQVce4e43qLsI13LuOt69RH/dRyXaTSbKESkERUlD4yY+weCmqhRSVLEW3lkKiqr5eI7PJmBJ9VrzHO3f1aRsji9mk1BMF2peRr7bx4R49f4Nlt0s5adLx36XcI1LeMcdHUa5UnCcVF5R/5EtlpZK9zPHhfF56yvPahLK1DHIJgNEYFZT4egQAAABAjTTecDH9FymYVuFoYmLaSUk9pDYXSJ2GSzFtfD0ir9n8u2M9xD+eFefxc4cFBapnqxh9s/e4Nv+e0XjDxdISad9Gac96ad8m6chPUlGWr0cFQJKKCM0BAADgHxpvuHjdUinytECgyuqWKrZXWw1T1THu7l+ba9THfTT2a1R3Kk+Nq5pru32NMkfFmC1PsuU6HotyHFVl2alS9iEpP0PK3OP4+OlD6b93S8k9pb63Sd2ukgKDqx6PnymwleqnQ9mSpD5tY71yjT7tHOHid/sydX3f1l65hs+cOCBtWST98I7jv6FTmQKk6DZSZJIU0UwKT3BUxFpCJUuY4zEwVAoIdFTUBpgdx5jKHwPM5c+lM5R+V67WVaj8MQmNTE6e9I/LfD0KAAAA4Iwab7jY7kIpqulMEQWUf1xK+15KTZF+/ULav0U6tE364P+ktXOkSx6Rzr68DuFNw/H9wRMqKbMrITJYLaJDvXKNP7SOkSSllDeNaRQKs6U1j0hbX5HKih3bwuKljpdIbS+Qkv8gxXVoVEE04Leys309AgAAAKBGGm+4CDQ1YbFS+8GOjwvvkvLSpe9elb5+UTqxX/rPTdI5V0iXPS2FWH092joxAr9ebWI8vt6ioWd5uPj7sTxl5tkUEx7klevUm71fSe/f6qh0laS2F0r9/yKdNUQyW3w7NgAAAACA3yJcBBqr8HhHyHj+FOmrp6UN/5J2LJfSfpTGfyBZW/p6hLX23b4TkhzhorfEhgepfbNw/X4sT9sOZOriLoleu5bXbXtD+vgOR7ViTFtp1Hypw0U+HhQAAABqzG53NNXzJ5awRjFrCsCZES4CjV1QuHTR/VLHYdI7N0kZu6V/j5AmfOqXDV/sdru+K69cNKoLvaVX6xj9fixPKfv8OFxMWSJ9fLvj+TlXSJc/5/hvAgAAAP6jOF96PNnXo3DP/Yf4ubNc27ZttW/fPtnd6AkwYcIEvfrqq/ryyy81ePBg7w0O8IAAXw8AQD1p2VuauEqK6yhlHZDeukYq9L/OwPsy8nU8z6Ygc4C6tfDuuqpGZWTKPj9dd/HnTxwVi5JjCvTVr/ADHgAAAPzG3r17ZTKZCNdqyWQyqW3btr4eBpoAKheBpsTaUhr/obR4iHTsF+n9ydL1S/1quoJRtdi9pVXBgWavXusP5eHi9wezVFpmlznAf94nZfzmaOYju9TrZmnYo371dQYAAEAVZv0qBYX5ehSVs+VLT57l61E0CnPmzNFf//pXtW7d2tdDAc6IcBFoaqwtpOvfll6+RNr1X8e02d43+3pUNfZDqqPaskdL7zel6dAsQqEWs/JtpdqTnquzEiK9fk2PKC2R3r1FKsqWWveX/jSXYBEAAKCxCApjNkoTkJSUpKSkJF8PA6gRpkUDTVHyedKQ/+d4vuoBKfuQT4fjjh2p2ZKk7i28Hy6aA0w6O9kx9frH8uv6hW9elA5vl0Kipav/TTdoAAAA+J3Zs2erXbt2kqR169bJZDI5PyZMmODcz5j6a7PZ9PDDD6tLly4KDg7WmDFjnOcxmUxasmRJpddp27atTFX8If6HH37QDTfcoBYtWig4OFjJycm6+eabtXfv3lrf1+LFi9WjRw+FhoaqefPmmjx5sk6cOFFhvwkTJshkMmnt2rUu2zMyMnT//ffrnHPOUUREhKxWqzp16qTx48frm2++kSQtWbLEeU/79u1zee9On2J+4MABTZ48WW3atFFwcLASEhJ05ZVX6ttvv63yHt555x316dNHoaGhSkxM1M0336wjR45UOeYzfY0KCwv18ssv6/LLL1f79u0VGhqq6OhoDRw4UG+//XalYzj1Wp9//rkGDRqkyMhIJSQk6NZbb1VWlqMo5ejRo5o8ebKSk5MVEhKivn37Vhgf6o7KRaCp6jdV+vkj6cDX0uezpStf9PWIzqiszK4dhxz/SHSrh3BRcoSYKfsy9UNqlsb0bFEv16yT7EPSmkcdzy95WIrys4W/AQAAAEnnnXeerrrqKr333ntKTEzUiBEjnK9dcMEFLvuWlZVpzJgxWr9+vQYNGqQePXooLi6uTtd/7733NHbsWNlsNvXq1UsDBgzQb7/9piVLlujjjz/WunXrdM4557h1znvuuUdPP/20+vTpoxEjRmjTpk168cUX9fPPPzsD1Ork5uaqX79++vXXX9WxY0cNHz5ckrR//34tXbpU7du3V9++fXXWWWfppptu0quvvqrw8HBdffXVznN06dLF+fyHH37QxRdfrPT0dHXp0kVXXnml9u/fr+XLl+vjjz/WW2+9pT//+c8uY5g/f77uvPNOmc1mDR48WPHx8Vq9erXWrl2rHj16VDn26r5Ge/fu1aRJk5SYmKguXbqob9++SktL06ZNm7Rhwwb98ssvmj17dqXnXb58uZ599ln17NlTw4YN0zfffKPFixdr9+7devfdd9W/f38VFhbq/PPP1+HDh/X1119rxIgR+vbbb9W9e/dq32/UHOEi0FQFBEgj/ym9eJH0/TKp72SpZS9fj6paezPylGcrVYglQO3j62cqyDnOykU/aX6z/kmpOE9q2VfqOc7XowEAAABqZcyYMTrvvPP03nvvqUuXLlVWHkqO6rvg4GDt3LlTLVrUvSBgz549Gj9+vEJDQ7V69WoNHDjQ+dprr72mm266STfffLOzUrCm3njjDX399dc677zzJEnp6enq37+/NmzYoC+//FIXX3xxtce/++67+vXXXzV9+nQ988wzLq8dPXpUR48eleQIXy+44AK9+uqrio+Pr/S9s9vtuuGGG5Senq777rtPjz32mDPcfPfdd3Xttddq4sSJGjhwoBITEyVJv//+u+69916FhITos88+04UXXijJUXl49dVX66OPPqpy7NV9jZo1a6ZVq1Zp6NChCgg4OcF2z549uvjii/XII49owoQJlTanee655/TOO+/oqquukiTl5ORowIABWrdunQYNGqQ+ffpoyZIlCgkJkST9/e9/16OPPqonn3xSr776anVvN9zAtGigKUvuKZ17veP5+id8O5Ya+PGQY2pyl+ZRCjTXz7ev7uVrO+44lK2yMnu9XLPWMvdJ373meD50tiNABgAAAJqAOXPmeCRYlKSnn35a+fn5euKJJ1yCRUkaP368xowZo2+//VbfffedW+d95JFHnMGiJMXHx+v//u//JEnr168/4/FGeFhZCJmQkKBu3brVeCxr167VDz/8oHbt2umRRx5xqZq8+uqrNWbMGOXk5OiVV15xbv/3v/8tm82mm266yRksSlJISIiefvppl2CwMlV9jeLi4jRs2LAKx7dr104PPPCAysrK9PHHH1d6zhtuuMEZLEpSZGSkbrvtNklSamqqnn/+eWewKEmzZs2SyWTSunXrqh0r3MNvnkBTN3CWZAqQdq2U0n7w9WiqtSPVmBIdVW/XPKtZhIIDA5RbVKK9GXn1dt1a2ThPKiuW2g+W2v7R16MBAAAA6oXJZNJll13msfOtXr1aknT55ZdX+roxLbu6dQkrM2zYsArbOnXqJEk6fPjwGY/v1csx0+z+++/XJ598osLCQreuf6oNGzZIkq699lqZzeYKr48bN85lP0natGmTJFWYKi1JHTp0UM+ePau8Xk2+Rhs3btSjjz6q//u//9PNN9+sCRMm6D//+Y8kaffu3ZUec8kll1TY1r59e0lS7969FR0d7fKa1WpVXFxcjd5v1BzTooGmLq6DdM4V0o/vSV89LV212NcjqtKPxnqLyfWz3qIkBZoD1DUpStsPnNCPh7LVvllEvV3bLfnHpf+VL3Y88G7fjgUAAACoRwkJCQoODvbY+YyGLc2bN692v/T0dLfO27JlywrbIiIcv18UFRWd8fghQ4bozjvv1Pz583XZZZcpKChI5513noYNG6aJEydWOm24KocOOZp6VnWMsd3Y79TnrVq1qvSY1q1bKyUlpdLXqvsaZWVl6corr9SaNWuqHG9OTk6l2yurhAwPD6/yNeN1d792qB7hIgBpwHRHuPjTh9KIf0rhdVv82BvsdruzY3N9NXMxdG9h1fYDJ7QjNUujz22gDVK2vymVFEiJ3aQ2VC0CAACg6Th12qu7ysrKKmwrLS2VyWTS+PHjqz3W3YYuZ2rYUhNPPfWUJk+erA8//FBffPGFvvrqK33zzTd64okntGzZMmcHZk+NqbLXqzrGbq96Ganqvkb33nuv1qxZo4EDB+rhhx9Wt27dFB0dLbPZrM8++0zDhw+v8tzVjd8T7zdqhnARgGPtxaTzpMPbHSHVH2f4ekQVpJ4oUFZBsSxmkzom1m/1YJekSEnSziOV/7XM58rKpG/LK0773ibxjygAAAAgSQoKCpLk6LR8utLSUqWlpVXY3rJlS/3222965plnFBVVf0sy1VTnzp11zz336J577lFhYaGee+45zZo1S5MnT65xuJic7Cia2LNnT6Wv79u3T5KUlJTk3JaUlKSdO3dq//796tixY4VjDhw44OadOCxfvlxms1kfffSRrFbXQpLff/+9VudE/WLNRQAOvW9xPKYskar5i5Ov7CoP9jo0i1BwYMU1Qbypc6IjXNyV1kDDxf2bpcy9UnCU1L3i+icAAACAPzKCwZKSklqfwwjHdu3aVeG1NWvWqLi4uML2oUOHSpI++OCDWl+3voSEhOiuu+5SUlKSS8doSbJYLFW+d0ZDlmXLlqm0tLTC62+88YbLfpI0YMAASY5u0qf7/ffftW3btlrdQ2ZmpiIjIysEi5L0zjvv1OqcqF+EiwAcul0lWcKk479Jh9zrelYfdqY5/tLYsTzoq0/GNQ9lFSqroOIPHz73g2ORY3UdLQWF+XYsAAAAgIfEx8fLYrHot99+qzQAq4lBgwZJcoRlxlqKkiMMmz59eqXH3HXXXQoNDdWdd95ZaZfi48ePa+HChSooKKjVmGrrgw8+0JYtWyps37Ztm44cOaLIyEjFxMQ4tycnJ+vIkSM6ceJEhWMGDx6s7t27a8+ePXrwwQddph1/8MEHev/99xUREaEJEyY4t998882yWCxasmSJs7mLJBUWFuqOO+6odIp5TXTq1EknTpzQsmXLXLbPmzdPX375Za3OifpFuAjAIThC6jTC8fzH9307lkrsLq9c7FzPU6IlyRpqUbI1xGUcDUaJTfrpA8fzHlQtAgAANHq2fMmW10A/8j16q0FBQRoxYoTS0tJ07rnnavz48Zo0aZJeeeWVGp+jffv2Gj9+vDIzM3Xeeedp9OjRGjJkiLp3764ePXqoTZs2FY7p2LGj3njjDRUUFGj06NHq0qWLrrjiCo0ZM0Y9e/ZUUlKSpk2bVqMmLJ60du1a9e/fXy1bttRll12mG264QRdddJH69u2rsrIyPfLII7JYLM79R48erZKSEv3hD3/QjTfeqEmTJmnu3LmSHOsRvvnmm4qLi9Pjjz+uc845R2PHjtUFF1ygK664QgEBAfr3v//t0tTmrLPO0uOPP67CwkINHDhQl1xyia677jp17NhR//vf/5zdoI2K05q67777JEnXXXedBg4cqLFjx+qcc87RrFmzdOedd9b1bUM9YM1FACd1u1La8b604wPpkkekgIbz9wdjvUNfVC5KUqfmkTqUVaidR3LUu22sT8ZQqd++kAoypYjmUtsLz7w/AAAA/NuTZ/l6BPVq8eLFmjVrllavXq233npLpaWlKikp0c0331zjc7z00ktKTk7Wm2++qVWrVqlVq1a6//779de//lUdOnSo9Jgrr7xS//vf//Svf/1Lq1ev1n//+1+FhIQoOTlZN9xwg6666qpKp/F604QJExQYGKj169frm2++UVZWlpo3b64//elPuvPOOzV48GCX/efMmSO73a4PP/xQy5YtU0lJiQYNGqS7775bktS9e3d99913evTRR7Vy5Uq9++67slqtGjNmjO677z717du3whhmzZqlli1bau7cudqwYYOioqI0YsQI/fOf/3Q2wImLc69B6A033KCYmBg98sgj2r59u3744Qf17t1bCxculN1u17x582r3hqHemOzVtfPxQ9nZ2bJarcrKymqQC68CDVpxoTT3LMmWI01cLbWq+I+JL5SW2XX2gytVVFKmtbMGq218eL2PYc5/f9YL637X+P5t9PDl3er9+lX68C/SttelvpOlPz3h69EA8BB+nvF/Xv8a2vKkxx2L8S/ot14l5tAzHhJYWqDpWwY6Prn/kBRU//+eAqhaYWGh9uzZo3bt2lXsrHvK//N+g+8zTUpeXp7atm2rgoICZWVlyWyu33XyUXPVfq85hTs/y1C5COAkS4jUaZj043vSrlUNJlzcfzxfRSVlCg4MUKtY36wpaDR12dmQmrqUlTm+TpLUeaRvxwIAAADvsYQ5wjp/YmEt8Mbo999/V1xcnEvVZm5urv7v//5P6enpuuWWWwgWmyDCRQCuOg53hIu7P5OG/N3Xo5F0slN0x8QImQNMPhlDJyNcPJIju90uk8k343BxeJuUd1QKipTa/NHXowEAAIC3mExUAaJBeOeddzR79mz16tVLLVu2VGZmprZt26b09HS1bdtWjz/+uK+HCB8gXATg6qwhkkxS2vdS9mEpKsnXI9Ku8mrBTgm+WW9Rks5KiFCASTqRX6xjOUVKiKq6fLzeGFWLZ10sBbq3aDIAAAAAuGvIkCHavn27tmzZom3btslut6t169a66aabdO+996pZs2a+HiJ8gHARgKvweKlFLyl1q/TraukP4309Imczl07NfRcuhljMahsXrt/T87TrSG7DCheNLt8AAAAA4EV9+vTR22+/7ethoIFpOK1gATQcHS9xPP76uW/HUW73kVxJUqfECJ+Oo30zx/V/T8/16TgkOTpEH/6f43mHi307FgAAAABAk0W4CKCidoMcj/s2ST5uKF9aZtee9DxJUkcfTouWpA7NHOvc/H4sz6fjkCTt2yzJLsV1lCKb+3o0AAAAAIAminARQEUt/iAFhkh5x6T0XT4dSmpmgWylZQoKDFCL6FCfjqV9ebj427EGULm4d6Pjse0Fvh0HANSjOXPmqE+fPoqMjFRCQoLGjBmjnTt3uuwzYcIEmUwml49+/fq57FNUVKTp06crPj5e4eHhGj16tA4ePOiyT2ZmpsaNGyer1Sqr1apx48bpxIkT3r5FAAAAv0O4CKCiwGCpZR/HcyPE8pHfyqcgt4sLV4CPOkUbnNOiG0Ll4t71jsd2F/p2HABQj9atW6dp06Zpy5YtWr16tUpKSjRs2DDl5bl+Xx4xYoQOHz7s/FixYoXL63fccYeWL1+ut99+Wxs3blRubq5GjRql0tJS5z5jx47V9u3btXLlSq1cuVLbt2/XuHHj6uU+ATRtdh/PHALQuHnjewwNXQBUru0F0t4NjnCxz0SfDWNPeZDXLj7cZ2MwdCgPF1NPFKjAVqrQILNvBpJ/XEr70fG8DZWLAJqOlStXunz+yiuvKCEhQSkpKRo4cKBze3BwsJo3r3zJiKysLL388st6/fXXNXToUEnSG2+8oVatWunzzz/X8OHD9fPPP2vlypXasmWLzj//fEnSSy+9pP79+2vnzp3q3Lmzl+4QQFNmNjt+tiwuLlZoqG9n7ABovIqLiyWd/J7jCVQuAqicMd1231c+XXfRWG+xXTPfh4ux4UGKDrNIOjkun9i/RSfXW0z03TgAwMeysrIkSbGxsS7b165dq4SEBHXq1Em33nqrjh496nwtJSVFxcXFGjZsmHNbcnKyunXrpk2bNkmSNm/eLKvV6gwWJalfv36yWq3OfQDA0ywWi4KDg5WVlUX1IgCvsNvtysrKUnBwsCwWi8fOS+UigMq16C0FWKTcI9KJfVJMW58Mwwjx2jeAykXJMY7v9p/Q7+m5Ojs5yjeDSN3qeGx9fvX7AUAjZrfbNXPmTF1wwQXq1q2bc/vIkSP15z//WW3atNGePXv097//XRdffLFSUlIUHBystLQ0BQUFKSYmxuV8iYmJSktLkySlpaUpISGhwjUTEhKc+5yuqKhIRUVFzs+zs7M9cZsAmpj4+Hilpqbq4MGDslqtslgsMpl8uzQQAP9nt9tVXFysrKws5ebmqkWLFh49v1fDxfXr12vu3LlKSUnR4cOHtXz5co0ZM6baY9atW6eZM2dqx44dSk5O1j333KMpU6Z4c5gAKmMJkZp3lw59J6Wm+Cxc/L28eUr7BlC5KDnWXfxu/wnfrrt4sDxcbNHbd2MAAB/7y1/+ou+//14bN7quDXzttdc6n3fr1k29e/dWmzZt9Omnn+rKK6+s8nx2u93lF/jKfpk/fZ9TzZkzRw899JC7twEALqKiHH+8Tk9PV2pqqo9HA6CxCQ4OVosWLZzfazzFq+FiXl6ezj33XN1888266qqrzrj/nj179Kc//Um33nqr3njjDX311VeaOnWqmjVrVqPjAXhYi17l4eJ3Urf6/3+wwFaqQ1mFkqR28RH1fv3K+LxjdFmZdGib43mLXr4ZAwD42PTp0/XRRx9p/fr1atmyZbX7JiUlqU2bNtq9e7ckqXnz5rLZbMrMzHSpXjx69KgGDBjg3OfIkSMVznXs2DElJla+HMV9992nmTNnOj/Pzs5Wq1at3L43AIiKilJUVJSKi4tdGk0BQF2YzWaPToU+lVfDxZEjR2rkyJE13v/5559X69atNX/+fElS165dtXXrVj355JNuh4vr1q1TeHjDqHQC/FZqiLSnRMr7TLIMqffL78vIU8G+HxQRHKjtXzeMRa1z9h5Xwb5d+ibvV61JyKz/AZw4IP1yXDIHSz8ekX5eU/9jAOB1p3c/hoPdbtf06dO1fPlyrV27Vu3atTvjMRkZGTpw4ICSkpIkSb169ZLFYtHq1at1zTXXSJIOHz6sH3/8UU888YQkqX///srKytI333yjvn37SpK+/vprZWVlOQPI0wUHBys4ONgTtwkAkhxrMHorCAAAT2pQay5u3rzZZXFtSRo+fLhefvllFRcXV/qNtar1bUaPHu3dwQJNylbpyfoPFw1HJQ151WeXr9RRSUOe9eUI8qVXhp15NwBoRKZNm6a33npLH374oSIjI53rH1qtVoWGhio3N1ezZ8/WVVddpaSkJO3du1f333+/4uPjdcUVVzj3nThxou666y7FxcUpNjZWs2bNUvfu3Z3do7t27aoRI0bo1ltv1QsvvCBJuu222zRq1Cg6RQMAAJymQYWLaWlpFaaaJCYmqqSkROnp6c6/OJ+qqvVtunbt6tG22kCTdewXyV4mxbaXAkPq9dIZeTal5xQpKtSiJGv9Xrsqdru062iOZJfOSoiQOaCeF9jOOSwVZEphcVIEnaKBxqq0tFQ///yzr4fR4CxatEiSNHjwYJftr7zyiiZMmCCz2awffvhBr732mk6cOKGkpCRddNFFWrZsmSIjI537z5s3T4GBgbrmmmtUUFCgIUOGaMmSJS4/O7755puaMWOG8w/fo0eP1rPP+vSvSgAAAA1SgwoXpYqLZ9vt9kq3G6pa32bLli0eX6ASaJJeHS3tWSdd9oDUa0K9XnrmO9v1/nepunt4Z0276Kx6vXZ1Bsz5QoeyCvX6/w1QrzYxZz7Ak14YJB3eLl39vNSt6sYEAPxbdna2rFarr4fR4Bg/F1YlNDRUq1atOuN5QkJCtGDBAi1YsKDKfWJjY/XGG2+4PUYAAICmJsDXAzhV8+bNndNbDEePHlVgYKDi4uIqPSY4ONi54K3xAcCDks9zPB7+vt4vvSfdseZY27iGtX5q67gwSdL+4/W8JlppiXS0vJLJ+LoAAAAAAOBDDSpc7N+/v1avXu2y7bPPPlPv3r1ZyBbwlcTujscjP9b7pfdn5EuS2saH1fu1q9Mm1hF27isfX73J+FUqLZKCIqTotvV7bQAAAAAAKuHVcDE3N1fbt2/X9u3bJUl79uzR9u3btX//fkmOKc3jx4937j9lyhTt27dPM2fO1M8//6x///vfevnllzVr1ixvDhNAdZp3czwe+UkqK6u3y+YVlSgjzyZJahXbsMJFZ+VifYeLRsCbcLYU0KD+NgQAAAAAaKK8uubi1q1bddFFFzk/N9ZGvOmmm7RkyRIdPnzYGTRKUrt27bRixQrdeeedeu6555ScnKxnnnlGV111lTeHCaA6cWdJ5iDJliOd2CfFtquXyx7IdAR30WEWRYU0rMrlNuXh4r7j9Rwupv3geDQCXwAAastWi3/DLGFSFeugAwCApsur4eLgwYOrXXh7yZIlFbYNGjRI3333nRdHBcAtZovUrIuU9r2jcq6ewkWjKrB1A6talHw4LdqoXEwkXAQA1NGTtWiUdv8hKahhrYMMAAB8j3l1AM6sefm6i2n1t+7i/vKqwIY2JVo6OS06PbdIeUUl9XfhIzscj8bXAwAAAAAAH/Nq5SKARiLxHMdjPTZ1OXC84VYuWkMtsoZalFVQrP3H89U1qR661OdlSDmHHc8Tunr/egCARqckIEQL+q3X9IvdqFq05deuyhEAADQZhIsAzsyYhluf4WJmgSSpVUzDCxclx7qL3x/M0r6MegoXj5SvtxjTTgqO9P71AACNj8mkEnOo5q1LrfEhgaUFmu7FIQEAAP/HtGgAZ2ZULmburd0C8LWwvwFXLkonx3Wgvpq6HP3Z8Wh8LQAAAAAAaAAIFwGcWXi8FBrreJ6x2+uXKyuzN+hp0dKpHaPz6ueCx3Y6Hpt1rp/rAQAAAABQA4SLAGrGCLXSvR8uHsstUlFJmcwBJiVFh3j9erVR7x2jjfc9nnARAAAAANBwEC4CqJn4jo5Ho4LOi4wp0cnRIbKYG+a3KaNjdL1Ni07f5Xg0vg4AAAAAADQADfO3dgANj1ExZ4RcXmQEdg21mYsktYgOlSQdOlGosjK7dy9WkCnlHXU8J1wEAAAAADQghIsAaia+k+OxHsLFht7MRZKaW0MUYJJspWVKzy3y7sWMKdGRyXSKBgAAAAA0KISLAGqmWXm4mPGrVFbq1UsZ4WKrBhwuWswBah7lWA/y4IkC717MCHSNrwEAAAAAAA0E4SKAmrG2lgJDpFKblLnXq5c64AfhoiS1iHFMjT6YWU/hYjzhIgAAAACgYSFcBFAzAQFSXPl6f16eGp1aHta1Kg/vGqqW5WtCpno9XDQ6RRMuAgAAAAAaFsJFADVnTMv1YsfoktIypWUXSjrZNKWhMsaXesLLHaON95tmLgAAAACABoZwEUDNxZ3leDz+u9cucSSnSGV2yWI2KT4i2GvX8QRjWrRXKxdLTpmGTuUiAAAAAKCBIVwEUHOx7R2PmXu8dolD5c1RkqyhCggwee06nnCyctGL4eKJ/ZK9VLKES5FJ3rsOAAAAAAC1QLgIoOZi2jkej3s/XEyODvHaNTzl1IYudrvdOxcxgtyYtpKpYYetAAAAAICmh3ARQM0ZlYtZB6WSIq9cItUZLjbs9Ralk5WL+bZSncgv9s5FjCA3tp13zg8AAAAAQB0QLgKoufB4KShCkl3K3OeVSxiViw29mYskhVjMznUhvTY1+tTKRQAAAAAAGhjCRQA1ZzKdrKDz0rqLh044OkX7Q+Wi5Do12iuoXAQAAAAANGCEiwDcY0yN9lLHaH+qXJSklt5u6uKsXCRcBAAAAAA0PISLANzj5aYuqZn+s+aidLJyMdUblYtlZVLmXsdzKhcBAAAAAA0Q4SIA93ixcjG7sFg5RSWS/KNbtHSywvJgZr7nT56bJpUUSiazZG3l+fMDAAAAAFBHhIsA3OPFNReNKdExYRaFBQV6/PzeYISLh7K8ULloVIdGt5LMFs+fHwAAAACAOiJcBOAeo3Ixc59UVurRUxvhor9MiZakpPIKy7SsQs+fnPUWAQAAAAANHOEiAPdEJkvmYKmsWMo66NFTp/pZp2hJSrI6xpqea1NRiWfDVjpFAwAAAAAaOsJFAO4JCHBM05WkE/s9emp/6xQtOaZwBwU6vpUezS7y7MmpXAQAAAAANHCEiwDcZzQXyTrg0dOenBbtH81cJMlkMinJ6hjvYU9PjTY6Rce09ex5AQAAAADwEMJFAO7zcuWiP02LlqTmUUa46OGmLsb7G9PGs+cFAAAAAMBDCBcBuM/a2vF4wrOVi6mZ/hkuGuP1aFOX4gIp75jjuVEpCgAAAABAA0O4CMB90eXhYpbnKhdLy+w6kuNYszDZ6l/hYnNvTIvOSnU8WsKl0BjPnRcAAAAAAA8iXATgPi9Mi87ILVJpmV0BJik+Ishj560PxpqLHq1cNNazjG4lmUyeOy8AAAAAAB5EuAjAfc6GLqlSWZlHTpmW7QjmmkUGK9DsX9+anGsuZnshXLS29Nw5AQAAAADwMP/6DR5AwxCZJAUESmXFUm6aR05pVP0ZQZ0/SSqfxn34hAcbuhjrWbLeIgAAAACgASNcBOA+c6AUlex47qGp0UfKq/4S/TBcNNZcPJZbpOJSz1RyKuug4zGacBEAAAAA0HARLgKoHQ93jDamRRtBnT+JCw+SxWyS3S4dLW9KU2dZVC4CAAAAABo+wkUAtWN0jD6xzyOnS8tyhHL+WLkYEGByjjsty0NTowkXAQAAAAB+gHARQO0Y03WzPFO5aEyL9sc1F6WTHaMPe6JjdFmZo1mOREMXAAAAAECDRrgIoHaMijqmRUs62dQlzRPhYm6ao1mOyexongMAAAAAQANFuAigdozKRU81dMny34YukocrF41mLlEtHM1zAAAAAABooAgXAdSOUbmYnSrZ7XU6VV5RiXKKSiT5b+WiMW6PVC4agS1TogEAAAAADRzhIoDaiUp2PBbnS4VZdTqVMSU6IjhQEcH+Wal3snLRAw1djHUso2nmAgAAAABo2AgXAdSOJVQKjXU8zz5Up1OdnBIdXNdR+UxzT665aEyLpnIRAAAAANDAES4CqL2oFo7HOoaL/t7MRZISIh3B6LHcIpWV1W2aOOEiAAAAAMBfEC4CqL2o8k7G2al1Oo0RLvprMxdJalYeLhaX2pWZb6vbyYz3M4pwEQAAAADQsBEuAqg9Y91FD02Lbu7H4aLFHKC48CBJ0pHsorqdLPuw49EIbwEAAAAAaKAIFwHUnnNatGcqF/15WrQkJZSHo0dz6rDuYkmRlJ/ueB6Z7IFRAQAAAADgPYSLAGrPQ5WLaeWVfv48LVo62ZDmaF0qF3PKqxbNwVJYrAdGBQAAAACA9xAuAqg9pkW7MJq61Kly0ZgSHdlcMpk8MCoAAAAAALyHcBFA7XmgW3RJaZkzjPP3adFG5WWd1lzMKX8vjfcWAAAAAIAGrF7CxYULF6pdu3YKCQlRr169tGHDhmr3f/PNN3XuuecqLCxMSUlJuvnmm5WRkVEfQwXgDqNysShLKsqp1SnSc20qs0vmAJPiI4I9OLj659HKRZq5AAAAAAD8gNfDxWXLlumOO+7QAw88oG3btunCCy/UyJEjtX///kr337hxo8aPH6+JEydqx44d+s9//qNvv/1WkyZN8vZQAbgrOFIKjnI8N0IxNx0pb+bSLCJY5gD/ngac4JHKRWNaNOEiAAAAAKDh83q4+NRTT2nixImaNGmSunbtqvnz56tVq1ZatGhRpftv2bJFbdu21YwZM9SuXTtdcMEFmjx5srZu3ertoQKoDee6i7XrGH00x2jm4t9Vi9IplYvZdalcNKZF0ykaAAAAANDweTVctNlsSklJ0bBhw1y2Dxs2TJs2bar0mAEDBujgwYNasWKF7Ha7jhw5onfffVeXXnpppfsXFRUpOzvb5QNAPapjUxdjCnGzSP8PF401F4/lFqmszF67k1C5CAAAAADwI14NF9PT01VaWqrExESX7YmJiUpLS6v0mAEDBujNN9/Utddeq6CgIDVv3lzR0dFasGBBpfvPmTNHVqvV+dGqVSuP3weAatQxXDxWXrnYLNK/m7lIcq4ZWVxqV2a+rXYnMSpAqVwEAAAAAPiBemnoYjK5rqNmt9srbDP89NNPmjFjhh588EGlpKRo5cqV2rNnj6ZMmVLp/vfdd5+ysrKcHwcOHPD4+AFUw9kxum7TohtD5WJQYIDiwoMknbwvt9jtUk75H16oXAQAAAAA+IFAb548Pj5eZrO5QpXi0aNHK1QzGubMmaM//vGPuvvuuyVJPXr0UHh4uC688EI9+uijSkpy/YU7ODhYwcH+H0oAfstDlYsJjSBclBwhaUaeTUeyC9U1Kcq9g/MzpNLyikfCRQAAAACAH/Bq5WJQUJB69eql1atXu2xfvXq1BgwYUOkx+fn5CghwHZbZbJbkqHgE0MBE1nXNxcZTuSidXHexVpWLxnsY3kwKDPLgqAAAAAAA8A6vT4ueOXOmFi9erH//+9/6+eefdeedd2r//v3Oac733Xefxo8f79z/sssu0/vvv69Fixbp999/11dffaUZM2aob9++Sk5mDTKgwYls7njMrXwd1TNJb2SVi0bX61p1jKaZCwAAAADAz3h1WrQkXXvttcrIyNDDDz+sw4cPq1u3blqxYoXatGkjSTp8+LD279/v3H/ChAnKycnRs88+q7vuukvR0dG6+OKL9c9//tPbQwVQG0a4mJculZZI5pp/W7Hb7ac0dGkc4WJCpAcqF2nmAgAAAADwE14PFyVp6tSpmjp1aqWvLVmypMK26dOna/r06V4eFQCPCIuXTGbJXirlHXUrGMsqKJattExS4wkXjcrFI1QuAgAaG1u++8dYwqQqGjkCAIDGoV7CRQCNWECAFJHgCMZy0twKF43qPmuoRcGBZm+NsF41K69cPJJdm8rF8o7bVC4CABqiJ89y/5j7D0lB4Z4fCwAAaDC8vuYigCbAmBqd4966i42tU7R0snLxWK2mRVO5CADVmTNnjvr06aPIyEglJCRozJgx2rlzp8s+drtds2fPVnJyskJDQzV48GDt2LHDZZ+ioiJNnz5d8fHxCg8P1+jRo3Xw4EGXfTIzMzVu3DhZrVZZrVaNGzdOJ06c8PYtAgAA+B0qFwHUXUTtmroczXFMHU6IajzhYoKzW3Sh7Ha7TO5MBTOmRUcRLgJAZdatW6dp06apT58+Kikp0QMPPKBhw4bpp59+Uni4ozruiSee0FNPPaUlS5aoU6dOevTRR3XJJZdo586dioyMlCTdcccd+vjjj/X2228rLi5Od911l0aNGqWUlBSZzY5K+rFjx+rgwYNauXKlJOm2227TuHHj9PHHH/vm5n2kJCBEC/qtd+sYS2mBpnw73EsjAgAADQ3hIoC6i0x0POYcceswZzOXiMYTLhr3UlxqV2Z+sWLDg2p+cG75+0flIgBUygj6DK+88ooSEhKUkpKigQMHym63a/78+XrggQd05ZVXSpJeffVVJSYm6q233tLkyZOVlZWll19+Wa+//rqGDh0qSXrjjTfUqlUrff755xo+fLh+/vlnrVy5Ulu2bNH5558vSXrppZfUv39/7dy5U507d67fG/clk0kl5lBfjwIAADRgTIsGUHe1rVwsX5fQqPZrDIICA5yBoltNXUpsUn6G43lEohdGBgCNT1ZWliQpNjZWkrRnzx6lpaVp2LBhzn2Cg4M1aNAgbdq0SZKUkpKi4uJil32Sk5PVrVs35z6bN2+W1Wp1BouS1K9fP1mtVuc+AAAAcKByEUDd1XbNxdzGV7koOe7neJ5N6blurLuYd8zxGBAohcZ6Z2AA0IjY7XbNnDlTF1xwgbp16yZJSktz/DuUmOj6R5rExETt27fPuU9QUJBiYmIq7GMcn5aWpoSEhArXTEhIcO5zuqKiIhUVnfy+n52dXcs7AwAA8C9ULgKou1qGiycrFxtZuBhZi6YuRtVneIKjAzcAoFp/+ctf9P3332vp0qUVXjt9vduarIF7+j6V7V/deebMmeNs/mK1WtWqVaua3AYAAIDf4zdYAHVnTOPNdXPNxUZauRgf4ZgW7VblYu5Rx2MkU6IB4EymT5+ujz76SF9++aVatmzp3N68ueOPXadXFx49etRZzdi8eXPZbDZlZmZWu8+RIxX/TTt27FiFqkjDfffdp6ysLOfHgQMHan+DAAAAfoRwEUDdGZWLuUelstIaH3Y0u/F1i5ZqW7lY/kss6y0CQJXsdrv+8pe/6P3339eaNWvUrl07l9fbtWun5s2ba/Xq1c5tNptN69at04ABAyRJvXr1ksVicdnn8OHD+vHHH5379O/fX1lZWfrmm2+c+3z99dfKyspy7nO64OBgRUVFuXwAAAA0Bay5CKDuwhMkmSR7qaMpSUTFdapOV1hcquzCEklSs4jG09BFkuLLKzHTc201P8jotF2D9w4Amqpp06bprbfe0ocffqjIyEhnhaLValVoaKhMJpPuuOMOPf744+rYsaM6duyoxx9/XGFhYRo7dqxz34kTJ+quu+5SXFycYmNjNWvWLHXv3t3ZPbpr164aMWKEbr31Vr3wwguSpNtuu02jRo1qWp2iAQAAaoBwEUDdmQOl8GZS3lEp53CNAjKjqi8oMEBRoY3rW1HdKhebe2FEANA4LFq0SJI0ePBgl+2vvPKKJkyYIEm65557VFBQoKlTpyozM1Pnn3++PvvsM0VGRjr3nzdvngIDA3XNNdeooKBAQ4YM0ZIlS2Q2m537vPnmm5oxY4azq/To0aP17LPPevcGAQAA/FDj+o0egO9EJpaHi0ekpDPvfup6i2daZN/fnKxcrE24SOUiAFTFbrefcR+TyaTZs2dr9uzZVe4TEhKiBQsWaMGCBVXuExsbqzfeeKM2wwQAAGhSWHMRgGcYFXe5NesY3Vg7RUt1rFyMpHIRAAAAAOA/CBcBeIbR5TinZh2jj+U4mrk0tk7R0snKxeP5NpWUltXsIBq6AAAAAAD8EOEiAM+ILJ8LXcPKRaOqrzFWLsaGBynAJNnt0vG8GjR1sdtp6AIAAAAA8EuEiwA8w6i4y6nhtOgcY83FxtUpWpLMASbFhpdPja7JuouFWVJp+X5ULgIAAAAA/AjhIgDPMNYKrGG42JgrFyU3113MPep4DLZKllAvjgoAAAAAAM8iXATgGc6GLjVbc/Fk5WLjDBfjI4IkSem5NZgWbUwlj6RqEQAAAADgXwgXAXjGqZWLdvsZdzcq+owKv8amVpWLTIkGAAAAAPgZwkUAnhHezPFYViwVnqh2V7vdroy8Rh4ulldkptdkzUVjKjnNXAAAAAAAfoZwEYBnWEIcawZKUu6xanfNLihRcamjujE2PMjbI/MJ9yoXjU7Rzb04IgAAAAAAPI9wEYDnRJRXL+YdrXY3o4NyZEigQixmb4/KJ+LdqVx0ToumchEAAAAA4F8IFwF4Tnh5OHaGpi4Z5YFbfCNt5iK5W7loNHShchEAAAAA4F8IFwF4jlG5eIZp0UYHZaOjcmNE5SIAAAAAoCkgXATgOUbl4hmmRRvNXOLCG3/lYmZ+sYpLy6rf2dnQhW7RAAAAAAD/QrgIwHOMcCy3+nAxvXyqcHxk461cjA61yBxgkiRllFdqVqrEJhUcdzynoQsAAAAAwM8E+noAABoRZ0OXM0yLznOEbY25cjEgwKT4iCAdyS7SsZwiNbeGVL6j8V4FBEqhMfU3QD9SXFys0tJSXw8DqBOz2SyLxeLrYQAAAAAeR7gIwHOcDV1qWrnYeMNFybHu4pHsourXXcw9ZUp0AMXkp8rOzlZ6erqKimqwbiXgB4KDgxUfH6+oqChfDwUAAADwGMJFAJ5jNCQ5Q+ViRnnlYnx4450WLdWwYzTNXCqVnZ2t1NRURUREKD4+XhaLRSaTydfDAmrFbreruLhYWVlZSk1NlSQCRgAAADQahIsAPCfc6BZ9VLLbpSrCIKOSrylULkrSsWorF484Hmnm4iI9PV0RERFq2bIloSIahdDQUEVGRurgwYNKT08nXAQAAECjwRw8AJ5jVN+VFkmFWVXuZjQ4iaNy8WSVpxHMQsXFxSoqKpLVaiVYRKNiMplktVpVVFSk4uJiXw8HAAAA8AjCRQCeYwmVgiIdz6uYGl1YXKrcohJJTadysfo1FwkXT2c0b6H5BRoj479rmhQBAACgsSBcBOBZEdU3dTGCtiBzgCKDG/fKDEblYrXhIpWLVaJqEY0R/10DAACgsWncv9kDqH8RCdLx36S8ysNFY0p0fERQo/8lOz7CMe27RtOiaegCAGiMbPnuH2MJq3LdZgAA0PAQLgLwLGdTl8qnRRtVfHERjXtKtCQ1K79Hozt2pfLSHY/h8fUwIgAA6tmTZ7l/zP2HpKBwz48FAAB4BdOiAXiWUYFXg8rFxs4IUE/kF6u4tKzynZgWDQAAAADwY1QuAvCs8OrXXDzWhCoXo0MtCjBJZXYpM8+mhKgQ1x1KS6T8DMdzwkUAQCNREhCiBf3Wa/rFblQt2vJrV+UIAAB8jnARgGdFlIdkVXSLPlm52PjDxYAAk2LDg5WeW6T03ErCxYLjkuySTFJorC+GCACA55lMKjGHMrUZAIAmgmnRADzLWbl4pNKXjTUXm8K0aOnkfWbkVdLUxQhgw2IlM3/rAQAAAAD4H36bBeBZEYmOxyoauhghW1OoXJSkOCNczK2kqYtzvUU6RePMtm7dqj59+mjs2LF68803ndvLysrUpUsX7d69W7NmzdLcuXOdr504cUItWrRQmzZttGPHjkbfoR1AwzJv9a4a7xtYWqDpXhwLAADwHioXAXiWc1r0Uclur/Byeo4jZItrIpWLceGOENWo2HRBp2i4ISYmRpKUk5Pjsv2TTz7R7t27JUmZmZkury1ZskT5+fmaMWMGwSIAAAAAr6ByEYBnGVV4JYVSUY4UEuXycpOtXMyrpHLRaHpDMxfUQHR0tCQpNzfXZfu8efOUnJysgIAAl3DRbrdr0aJFio6O1rhx4+pzqAAAAACaEMJFAJ4VFCYFRUi2XMe031PCxdIyu47nNa3KRSNETc+pZs1FwsUas9vtKigu9fUw3BJqMXukajA6Olomk8mlcnH79u1au3atHnvsMf3nP/9xCRdXr16tXbt26e6771Z4OE0VAAAAAHgH4SIAzwtv5ggXc49KcR2cmzPzbSqzSyaTFBvWNMLFuPBqKhcJF91WUFyqsx9c5ethuOWnh4crLKju/9yazWZFRka6VC7OmzdPoaGhmjx5slatWuUSLj733HMym82aNm1ajc4/YcIE7d27V2vXrq3zWAEAAAA0HYSLADwvIkHK3ONYd/EUxrqDMWFBCjQ3jSVf48orFzOqW3MxgnARNRMdHe2sXExLS9Pbb7+tCRMmKC4uTlarVfv27ZMk7du3T59++qnGjBmjNm3a1OjcTz/9tEpL/asqFAAAAIDvES4C8DyjEi/XNVw0OibHN5Ep0dLJ6d/p1XaLJlysqVCLWT89PNzXw3BLqMXssXPFxMRo7969khyViTabTbfffrskKSoqylm5+Pzzz6u0tNT5Wk1YrVaPjRMAAABA00G4CMDzIhIdj7mVVy4aHZSbgvjye83IK5Ldbnddey+Phi7uMplMHpli7K9iYmL0448/qqCgQM8//7yGDRums88+W5IjHMzOzlZ+fr5efvll9ezZUxdeeKHL8Rs3btS9996r77//XpLUvn17PfHEExo+fHiFadEFBQWaMWOG3nnnHQUEBOj666+X1WrV0qVLnQEnAAAAADSNeYkA6ldEecfoCtOiyysXI5tOuGhULhYWlynfdtqUU2NadHh8PY8K/io6OlqlpaV66aWXlJ6erjvvvNP5WlSUo3nSiy++qGPHjlWoWiwtLdXo0aPVu3dvpaSk6LvvvtNDDz2ksLCwSq81a9Ysffjhh3rttde0ZcsWWa1WLVy40Hs3BwAAAMAvNd3yDwDeY4RlRnhW7mTlYtOZFh0WZFaIJUCFxWXKyLUpPLj8264tTyrOdzynchE1FBMTI0l64okn1KVLFw0ffnKKuDGtee7cuUpISNB1113ncmxWVpYyMzN11VVXqVOnTpKkjh07Vnqd3NxcLV68WM8884wuv/xySdKcOXP05ZdfKi0tzeP3BQAAAMB/1Uvl4sKFC9WuXTuFhISoV69e2rBhQ7X7FxUV6YEHHlCbNm0UHBysDh066N///nd9DBWAJxhh2WnhotHUpFkTqlw0mUzOaeDpeac0dTHWWwwMlYIifDAy+CMjXExNTdXtt9/uMs3eqFw8dOiQpkyZouBg1//PYmNjNXHiRA0bNkwjRozQP/7xD+3cubPS6/z222+y2Wzq16+fy/b+/ft78nYAAAAANAJeDxeXLVumO+64Qw888IC2bdumCy+8UCNHjtT+/furPOaaa67RF198oZdfflk7d+7U0qVL1aVLF28PFYCnOMPFYy6bjWnRTalyUTrZwCbj1KYuzinRzaRT12EEqmGEi7GxsRo/frzLa0blosVi0ZQpUyo9fvHixdq6dauGDRumdevWqVu3bnr++eervJ6J/zYBAAAAnIHXw8WnnnpKEydO1KRJk9S1a1fNnz9frVq10qJFiyrdf+XKlVq3bp1WrFihoUOHqm3bturbt68GDBjg7aEC8JQzVC7GRzSdykXp5P0a9y/pZLMb1luEG/72t7/JbrcrIyOjwlqJN9xwg+x2u2w2m5KSkqo8R7du3TRz5kz997//1cSJEyv997hDhw4KCgrS5s2bXbZv2bLFMzcCAAAAoNHwarhos9mUkpKiYcOGuWwfNmyYNm3aVOkxH330kXr37q0nnnhCLVq0UKdOnTRr1iwVFBRUun9RUZGys7NdPgD4mBGYFWVJJScDNWflYkTTqlw07jcj79TKxfKqTtZbRD359ddfde+992rjxo3at2+fNm/erA0bNji7TZ8qIiJCkyZN0oMPPqiPPvpIu3bt0gMPPKCff/6ZakYAAAAALrza0CU9PV2lpaVKTEx02Z6YmFjlgvC///67Nm7cqJCQEC1fvlzp6emaOnWqjh8/Xum6i3PmzNFDDz3klfEDqKWQaCkgUCorcVQvWlvIbrc7G7o0tcrFuPL7Tc+tZM1FwkXUk/DwcO3evVvXXXedjh07pri4OI0cOVJPPvlkpfvPnTtXRUVFuvHGGxUQEKCxY8dqwoQJWrVqVT2PHAAAAEBDVi/dok+vcrDb7VVWPpSVlclkMunNN990rh/11FNP6eqrr9Zzzz2n0NBQl/3vu+8+zZw50/l5dna2WrVq5eE7AOAWk8kRmuUcdoRo1hbKLSpRUUmZpCYYLoZXt+Yi06JRP5KSkvT+++9X+fqSJUtcPg8LC9PixYu1ePFi57aLL77Y2WkaAAAAACQvh4vx8fEym80VqhSPHj1aoZrRkJSUpBYtWjiDRUnq2rWr7Ha7Dh48qI4dO7rsHxwcXKEjJoAGICy+PFx0hGhGsBYeZFZokNmXI6t3zjUXK+sWHZHggxEBZ7Zjxw59++23GjBggGw2m15//XV9+eWX+vjjj309NAAAAAANiFfXXAwKClKvXr20evVql+2rV6+uskHLH//4Rx06dEi5ubnObbt27VJAQIBatmzpzeEC8CSjIi/fES4aU4LjmljVonTKmosulYtGQxemRaNhCggI0AsvvKA+ffqof//++uKLL/Tee+9p1KhRvh4aAAAAgAbE69OiZ86cqXHjxql3797q37+/XnzxRe3fv19TpkyR5JjWnJqaqtdee02SNHbsWD3yyCO6+eab9dBDDyk9PV133323brnllgpTogE0YM6O0Y4KPaOZS3wTa+YiSXHhxpqLTIuG/+jatWuFbtEAAAAAcDqvh4vXXnutMjIy9PDDD+vw4cPq1q2bVqxYoTZt2kiSDh8+rP379zv3j4iI0OrVqzV9+nT17t1bcXFxuuaaa/Too496e6gAPKlCuNh0KxeNQPV4XpHKyuwKCDDR0AUAAAAA0CjUS0OXqVOnaurUqZW+dvoC8pLUpUuXClOpAfgZoyLvtDUXm1ozF0mKKW/oUmaXThQUKzbULOVnOF4kXAQAAAAA+DGvrrkIoAmronKxKU6LtpgDFB1mkSRl5BZJBZmS3dE5W2FMiwYAAAAA+C/CRQDecVq4aHRKboqVi5IUV169eCy3SMotb+YSGiuZ66WAHAAAAAAAryBcBOAdznDR6BbtmBYdG970Khelk2tNZuTaWG8RAAAAANBoUDIDwDucay4ek+x2x3RgNd3KRWM6eEZukRRAuAgAAAAAaBwIFwF4hxEulhRKtlxl5BkNXZpo5WJ4eeVink0yO6o5ne8RAAAAAAB+imnRALwjKFyyhEmSinOO6UR+saST04ObmrjyUDX91GnREQk+HBEAAAAAAHVHuAjAe8or83LSD0mSAkxSdKjFlyPymZNrLhZJeeUNXZgWDQAAAADwc4SLALynPDzLPZ4mSYoND1ZAgMmXI/KZ+PJGNhl5NmeTG6ZFAwAAAAD8HeEiAO8pDxcLsxzhYlNdb1E6vXKRhi4AAAAAgMaBcBGA95RX5pVkO6YBx4Y35XDR6BZtI1wEAAAAADQahIsAvKc8PCvLdYRpTbWZiyTFl3eLzikqkd05LZpwEQAAAADg3wJ9PQAAjVh5eBaQ7wjT4ppw5WJUaKACA0wKLCuUyZbr2Ei4CAAAAADwc1QuAvCe8vDMUpghqWmvuWgymRQXEaR4U7ZjgzlYCo707aAAAAAAAKgjKhcBeE9YnCQppDhTUtOeFi1JceHBsuRkOT4JbyaZmmbnbAAAAABA40HlIgDvKa9cDC8pDxeb8LRoydHUJc6oXCxvdgPU1NatW2UymXTDDTe4bC8rK1OnTp1kMpl09913u7x24sQJhYeH6+yzz5bdbq/P4QIAAABoIqhcBOA95eFiVFmWTCpr8pWL8RHBCnSGi6y3CPfExMRIknJycly2f/LJJ9q9e7ckKTMz0+W1JUuWKD8/XzNmzJCJSlkAAAAAXkC4CMB7yqdFB6pMVuU16TUXJUflZpDKp0VHJPh2MPA70dHRkqTc3FyX7fPmzVNycrICAgJcwkW73a5FixYpOjpa48aNq8+hAgAAAGhCCBcBeE9gkOwh0TIVnlCcKbvJVy7GRQQriGnRdWO3S8X5vh6FeyxhHllfMzo6WiaTyaVycfv27Vq7dq0ee+wx/ec//3EJF1evXq1du3bp7rvvVnh4eJ2vDwAAAACVIVwE4FUloXGyFJ5Qc3OOwoPMvh6OT8VFBCnIdEpDF7ivOF96PNnXo3DP/YekoLqHe2azWZGRkS6Vi/PmzVNoaKgmT56sVatWuYSLzz33nMxms6ZNm+bcNmHCBO3du1dr166t8jo12QfwlfXr12vu3LlKSUnR4cOHtXz5co0ZM8b5+oQJE/Tqq6+6HHP++edry5Ytzs+Lioo0a9YsLV26VAUFBRoyZIgWLlyoli1bOvfJzMzUjBkz9NFHH0mSRo8erQULFjgriAEAAHASDV0AeFVRkGNqdNuQ/Ca/5luziGDFiTUXUXvR0dHOysW0tDS9/fbbGjdunOLi4mS1Wp3h4r59+/Tpp59qzJgxatOmjS+HDHhUXl6ezj33XD377LNV7jNixAgdPnzY+bFixQqX1++44w4tX75cb7/9tjZu3Kjc3FyNGjVKpaWlzn3Gjh2r7du3a+XKlVq5cqW2b9/O8gL1yZYv2fLc+6BpFQAAPkPlIgCvyrfEKEJSy+A8Xw/F5+IigmRhWnTdWMIclYD+xBLmsVPFxMRo7969khyViTabTbfffrskKSoqyhkuPv/88yotLXW+BjQWI0eO1MiRI6vdJzg4WM2bN6/0taysLL388st6/fXXNXToUEnSG2+8oVatWunzzz/X8OHD9fPPP2vlypXasmWLzj//fEnSSy+9pP79+2vnzp3q3LmzZ28KFT15lvvHeKhKHAAAuI/KRQBelW22SpKSAnPOsGfjFxcRrPjyadF2Khdrx2Ry/PLoTx8erNiNiYlRbm6uCgoK9Pzzz2vYsGE6++yzJUlWq1XZ2dnKz8/Xyy+/rJ49e+rCCy+s9DzPPfecWrdurZCQEI0YMUL79u2r8pppaWnq1auXhg8frpycHBUUFOjWW2+V1WpVTEyMpk6dqvvuu09t27b12H0CdbF27VolJCSoU6dOuvXWW3X06FHnaykpKSouLtawYcOc25KTk9WtWzdt2rRJkrR582ZZrVZnsChJ/fr1k9Vqde4DAACAk6hcBOBVJ+QIF5sF5J5hz8YvLixQlvJp0TnmGEX5eDzwP9HR0SotLdVLL72k9PR03Xnnnc7XoqIc/0W9+OKLOnbsmObOnVvpOb777juFhIToo48+UkFBgaZOnaorrrhCKSkpFZYu+OWXXzRy5EgNGjRIL730kiwWi6ZNm6YPP/xQr732mrp06aIlS5Zo4cKFiomJ8d6NAzU0cuRI/fnPf1abNm20Z88e/f3vf9fFF1+slJQUBQcHKy0tTUFBQRX+e01MTFRaWpokR6CekJBQ4dwJCQnOfSpTVFSkoqIi5+fZ2dkeuqumoSQgRAv6rXfrGEtpgaZ8O9xLIwIAADVFuAjAq47ZHYFHnLJ8PBLfCynOlkyONaGOlUUQLsJtRiDyxBNPqEuXLho+/OQv1VarI8ifO3euEhISdN1111V6jpKSEr355puKi3Osh/r666+re/fuWrNmjYYMGeLcb+PGjbr88ss1ZcoUPfbYY5Kk3NxcLV68WM8884wuv/xySdKcOXP05ZdfVhu6APXl2muvdT7v1q2bevfurTZt2ujTTz/VlVdeWeVxdrvdJVyvbI3g0/c53Zw5c/TQQw/VcuSQyaQSc6ivRwEAAGqBadEAvOpIaaQkyVp2wrcDaQjyjkmSTtjDlVHg47HALxnhYmpqqm6//XaXoMOoXDx06JCmTJmi4ODgSs/RuXNnZ7AoOQIYq9WqHTt2OLf99NNPGjp0qP761786g0VJ+u2332Sz2dSvXz+Xc/bv37/uNwd4QVJSktq0aaPdu3dLkpo3by6bzebSWV2Sjh49qsTEROc+R44cqXCuY8eOOfepzH333aesrCznx4EDBzx4JwAAAA0X4SIAr0q1RUiSIkpO+HYgDUF5uJhhj1JGbtEZdgYqMsLF2NhYjR8/3uU1o3LRYrFoypQpVZ6jqsqrU7e3atVKvXr10tKlS5Wenl7jcwANTUZGhg4cOKCkpCRJUq9evWSxWLR69WrnPocPH9aPP/6oAQMGSHKE5VlZWfrmm2+c+3z99dfKyspy7lOZ4OBgRUVFuXwAAAA0BYSLALxqf5Gjc2NI8XEfj6QByHM0FUiXVel5Nh8PBv7ob3/7m+x2uzIyMhQW5tqF+oYbbpDdbpfNZnMGKZX55ZdfdPz4yf8fd+zYoaysLHXt2tW5LTIyUp999pmio6M1ePBg55TnDh06KCgoSJs3b3Y555YtWzxxe8AZ5ebmavv27dq+fbskac+ePdq+fbv279+v3NxczZo1S5s3b9bevXu1du1aXXbZZYqPj9cVV1whyRHCT5w4UXfddZe++OILbdu2TTfeeKO6d+/u7B7dtWtXjRgxQrfeequ2bNmiLVu26NZbb9WoUaPoFA0AAFAJwkUAXrWnwBGAWGxZUkkTD9TyHBVgVC7ClwIDA3XjjTfqf//7n7Zs2aLx48fr3HPPdVlvUZLCw8O1YsUKtW7dWoMGDdLBgwcVERGhSZMm6cEHH9RHH32kXbt26YEHHtDPP/9MNSPqxdatW9WzZ0/17NlTkjRz5kz17NlTDz74oMxms3744Qddfvnl6tSpk2666SZ16tRJmzdvVmRkpPMc8+bN05gxY3TNNdfoj3/8o8LCwvTxxx/LbDY793nzzTfVvXt3DRs2TMOGDVOPHj30+uuv1/v9AgAA+AMaugDwGrvdrr35gSoJDFCgqUzKz5Ciqq6oavTKp0Wn261KJ1yEj/zhD3/Q8OHDdemllyo9PV0DBw7UCy+8UGk4GBISog8++EDXXnutBg4cqDVr1mju3LkqKirSjTfeqICAAI0dO1YTJkzQqlWrfHA3aGoGDx4su91e5es1+e8wJCRECxYs0IIFC6rcJzY2Vm+88UatxggAANDUEC4C8JrswhLZSk06HhilBJ1whGuEi+WVi028ihM+sWTJEufz22+//Yz7SFJQUJCWL1/usm3x4sVavHix8/OLL75YnTp18tg4AQAAAPgPwkUAXmNM/T2h8nAxv2JjiCbFmBYtwkX4rx07dujbb7/VgAEDZLPZ9Prrr+vLL7/Uxx9/7OuhAQAAAPABwkUAXpNR3rQkxxwtle13hmtN1qnTovOYFg3/FBAQoBdeeEG33367ysrK1LlzZ7333nsaNWqUr4cGAAAAwAcIFwF4jVG5mB8UKxXKGa41WUyLRiPQtWvXCt2iAQAAADRddIsG4DXp5QFaUVCsY0OTDxdPTovOKiiWraTMxwMCAAAAAKBuCBcBeI1RnVcaFu/Y0JTDxeJCqShbkpRpskqSjudRvQgAAAAA8G+EiwC85rixrqAzXGzCay4azWwCAhUYFiNJSs9l3UUAAAAAgH8jXATgNenllXnmyATHhqZcuWjce3gzxUUESzrZ8AYAAAAAAH9FuAjAa4yGLsHRiY4NTTpcLK9cDI9XvBEuUrkIAAAAAPBzdIsG4DXGmothznCxCU+LPqVyMd4SJEl0jAYAAAAA+D0qFwF4jTHtNzIu2bGhOF+y5flwRD5UybRo1lwEAAAAAPg7wkUAXlFSWqbMfEe4GBsTIwWGOF5oqtWLLuGio3IxncpFAAAAAICfI1wE4BWZ+cWy2yWTSYoJD5bCmzleaLLhorHmYjPFhxsNXahcBAAAAAD4N8JFAF5hBGexYUEyB5ik8HjHC3lHfTgqH6qkcpE1FwEAAAAA/o6GLgC8wgjOYsMdQdrJysUm2jH61IYuoXSLBgAAAAA0DlQuAvAKo5mLUaVHuGhMi453WXPRbrf7cFAAAAAAANQNlYsAvMKoyjM6IzfpNRftdtdp0WGO98RWWqacohJFhVh8ODgAABoBW757+1vCHAtDAwCAOiNcBOAVxrTo+NOnRec2wTUXi7Kl0vL1FcPjFWoxKzzIrDxbqTJybYSLAADU1ZNnubf//YekoHDvjAUAgCaGadEAvMJo6OKsXIxIcDw2xWnRRrVmUKRkCZV08n1h3UUAAAAAgD+rl3Bx4cKFateunUJCQtSrVy9t2LChRsd99dVXCgwM1HnnnefdAQLwuPTc09dcNLpFN8Fw0ajWNN4DSfGnrLsINAV79+6VyWTShAkTfD0UAI1ESUCIFvRb76hCrMnHrF99PWQAABolr4eLy5Yt0x133KEHHnhA27Zt04UXXqiRI0dq//791R6XlZWl8ePHa8iQId4eIgAvcK65GG6sudiUKxdPrrdoMCoX06lcRA1t3bpVJpNJN9xwg8v2srIyderUSSaTSXfffbfLaydOnFB4eLjOPvtsv28e1NTvH0AlTCaVmEMd05tr9BHm6xEDANAoeT1cfOqppzRx4kRNmjRJXbt21fz589WqVSstWrSo2uMmT56ssWPHqn///t4eIgAvMLpFx5/eLTo/Qyor9dGofKSScNF4XzKoXEQNxcTESJJycnJctn/yySfavXu3JCkzM9PltSVLlig/P18zZsyQyc8bFzT1+wcAAAAaKq+GizabTSkpKRo2bJjL9mHDhmnTpk1VHvfKK6/ot99+0//7f//Pm8MD4EVGaBZrNHQJi5NkkuxlUv5x3w3MF4w1F0+ZFm1UdBprUwJnEh0dLUnKzc112T5v3jwlJyerZcuWLuGa3W7XokWLFB0drXHjxtXnUL2iqd8/AAAA0FB5tVt0enq6SktLlZiY6LI9MTFRaWlplR6ze/du/fWvf9WGDRsUGHjm4RUVFamo6OQv59nZ2XUbNIA6KywuVW5RiaRTGrqYA6WwWEflYt5RKaJZNWdoZCqdFk3lYm3Y7Xbl5+f7ehhuCQsL80jVXHR0tEwmk0vl3vbt27V27Vo99thj+s9//uMSrq1evVq7du3S3XffrfBw/++I2tTvH0DV5q3eVaP9AksLNN3LYwEAoCnyarhoOP2XKrvdXukvWqWlpRo7dqweeughderUqUbnnjNnjh566CGPjBOAZxwvnxJtMZsUFXLKt5nwhPJwsYmtu1jptGjWXKyN/Px8RURE+HoYbsnNzfVIuGU2mxUZGelSuTdv3jyFhoZq8uTJWrVqlUu49txzz8lsNmvatGk1Ov+ECRO0d+9erV27ts5j/cc//qFffvnFZZsx7o0bN1ba1OWvf/2runTpUuU5PXH/NblHT74PAAAAQFPg1XAxPj5eZrO5QpXi0aNHK1QzSo51lLZu3apt27bpL3/5iyTHQu12u12BgYH67LPPdPHFF7scc99992nmzJnOz7Ozs9WqVSsv3A2AmjKq8eLCg13/kBAeLx2TlNvUwsVKpkUblYt5VC6i5qKjo52Ve2lpaXr77bc1YcIExcXFyWq1at++fZKkffv26dNPP9WYMWPUpk2bGp376aefVmmpZ9ZDXblypdatW1fpa7/99pt+++23CtsnTJhQbbgoeff+AQAAANSOV8PFoKAg9erVS6tXr9YVV1zh3L569WpdfvnlFfaPiorSDz/84LJt4cKFWrNmjd599121a9euwjHBwcEKDg72/OAB1Fp6+TqCRoDmFNFEO0ZTuegxYWFhFdbca+jCwjzXnTQmJkZ79+6V5KjMs9lsuv322yU5/g01Kveef/55lZaWOl+rCavV6rFxVlb1t3fvXrVr10433XSTlixZUqvzevP+AQAAANSO16dFz5w5U+PGjVPv3r3Vv39/vfjii9q/f7+mTJkiyVF5mJqaqtdee00BAQHq1q2by/EJCQkKCQmpsB1Aw+WsXIw4Lfg3wrW8o/U8Ih+rbM3F8kY3J/KLVVxaJovZq/21Gg2TydSk18+LiYnRjz/+qIKCAj3//PMaNmyYzj77bEmOcDA7O1v5+fl6+eWX1bNnT1144YUux2/cuFH33nuvvv/+e0lS+/bt9cQTT2j48OEVpgMXFBRoxowZeueddxQQEKDrr79eVqtVS5cudQZ89a2u92947rnn9M9//lNHjx7V4MGD9cILL1RZ4ZiWlqZLL71U8fHxevfddxUYGNjg3hcAAADAl7z+2+y1116r+fPn6+GHH9Z5552n9evXa8WKFc4f4g8fPqz9+/d7exgA6lFGeTWeEaA5OcPFJlS5WFoiFZR3xz4lXIwOC1JA+YzxTKZGo4aio6NVWlqql156Senp6brzzjudr0VFRUmSXnzxRR07dqxC1V5paalGjx6t3r17KyUlRd99950eeuihKisrZ82apQ8//FCvvfaatmzZIqvVqoULF3rv5mqgLvdv+O677/Txxx/ro48+0pdffqkjR47oiiuukN1ur7DvL7/8ov79+6t79+765JNPFBkZ2SDfFwAAAMCX6qWhy9SpUzV16tRKXzvT1KjZs2dr9uzZnh8UAK8xpvrGnz4t2gjXmtKai/kZjkdTgKNbdjlzgEmx4cFKzy1Seq5NCVEhPhog/ElMTIwk6YknnlCXLl00fPhw52vGtOa5c+cqISFB1113ncuxWVlZyszM1FVXXeVsmtaxY8dKr5Obm6vFixfrmWeecS5jMmfOHH355ZcV1lGuT3W5f0NJSYnefPNNxcXFSZJef/11de/eXWvWrNGQIUOc+23cuFGXX365pkyZoscee0xSw31fAAAAAF9iHh4Aj0svnxYdf/q06Ka45qJxr2FxUoDZ5aV4Z1MX1l1EzRjhWmpqqm6//XaXhklG5d6hQ4c0ZcqUCusRx8bGauLEiRo2bJhGjBihf/zjH9q5c2el1/ntt99ks9nUr18/l+39+/f35O24rS73b+jcubMzWJSkbt26yWq1aseOHc5tP/30k4YOHaq//vWvzmBRarjvCwAAAOBLhIsAPO5YjlG5WNWai00wXDxlSrTBaHhDUxfUlBGuxcbGavz48S6vGZV7FovFua7x6RYvXqytW7dq2LBhWrdunbp166bnn3++yuu5dHtvAOp6/1LV93Tq9latWqlXr15aunSp0tPTa3wOAAAAoCkiXATgcUZY1iyymnCxkvXNGqW88mAiPL7CS3HhjvfHaIADnMnf/vY32e12ZWRkVFgr8YYbbpDdbpfNZlNSUlKV5+jWrZtmzpyp//73v5o4caIWLVpUYZ8OHTooKChImzdvdtm+ZcuWWo+9bdu2stvtte4ULXnm/n/55RcdP37c+fmOHTuUlZWlrl27OrdFRkbqs88+U3R0tAYPHuyc8uyN9wUAAADwd/Wy5iKApuXkmotVhIslhVJRjhQSVc8j84EaVS4SLsL7fv31V7300ku67LLL1KpVKx06dEgbNmxQjx49KuwbERGhSZMm6cEHH1RSUpK6dOmiV199VT///LOzetBfBQYG6sYbb9ScOXNUUFCgadOm6dxzz3VZb1GSwsPDtWLFCl155ZUaNGiQvvjiC7Vs2bLRvi8AAABAbVG5CMCjSsvsOl7e/Tg+8rSGLkFhUlCE43lTmRpdTbhohK8ZTItGPQgPD9fu3bt13XXXqVOnTrrqqqvUr1+/Kjsdz507V5dddpluvPFG9e3bV5mZmZowYYJCQvy7+dAf/vAHDR8+XJdeeqkGDx6suLg4LV++vNKpziEhIfrggw909tlna+DAgdq7d2+jfV8AAACA2qJyEYBHHc+zqcwumUxSbFhQxR3C4yVbriN0i+tQ/wOsb85wseK06JMNXahchPclJSXp/fffr/L106crh4WFafHixVq8eLFz28UXX+zsNO2PTr3H22+//Yz7SFJQUJCWL1/usq2xvS8AAABAXRAuAvAoY0p0bFiQAs2VFEeHJ0iZe5tQ5aKx5mIl06LL11ykoQsaoh07dujbb7/VgAEDZLPZ9Prrr+vLL7/Uxx9/7Ouh+RTvCwAAAOCKcBGAR1W53qLBCNlyj9bTiHysBmsu0tAFDVFAQIBeeOEF3X777SorK1Pnzp313nvvadSoUb4emk/xvgAAAACuCBcBeNSxnPJw8fT1Fg0RRsfo9HoakY/VYM3F9Nwi2e32Std8A3yla9euFboig/cFAAAAOB0NXQB4VI0rF/OaSuWiMS264pqLRuViUUmZ8myl9TkqAAAAAAA8gnARgEell0/xbVZluJjgeGwKay7a8qTiPMfzSioXw4ICFRZklkTHaAAAAACAfyJcBOBR6c5p0VWFi+UVfLlNIFw0qhYDQ6SgiEp3MaoX01l3EQAAAADghwgXAXjUsTNNi45oQpWLp663WMV6inSMBgAAAAD4M8JFAB5lVODFR1TR0KUprblodMSuZEq0IZ6O0QAAAAAAP0a4CMCjatzQpTBLKmnkgZoRoEYkVrmL8T6x5iIAAAAAwB8RLgLwmNIyu47nlTd0qWrNxZBoKSDQ8byxT402Khcjqq5cNNZczMhr5EFrLdjtdl8PAfA4/rsGAABAY0O4CMBjMvNtKi1z/OIcG17FtOiAgFOmRjeVcLHqykVjzcVjVC46mc2ODtrFxcU+HgngecZ/18Z/5wAAAIC/C/T1AAA0HsaU6Jgwiyzmav52ER4v5RxuAuHiEcdjeEKVuxhdtY0u25AsFouCg4OVlZWlyMhImapohgP4G7vdrqysLAUHB8tisfh6OECTtmDNryoxh9Z4/zsv6eTF0QAA4N8IFwF4THrOGaZEG8KbSMdo4/4iqg4XE8rfq2OEiy7i4+OVmpqqgwcPymq1ymKxEDLCb9ntdhUXFysrK0u5ublq0aKFr4cENHmW0gL3DrDlSZYwiX+LAACogHARgMecsZmLwZgWndvIO0YblYvVhIvNCBcrFRUVJUlKT09Xamqqj0cDeEZwcLBatGjh/O8bgO9M+Xa4ewdskXT/ISko3CvjAQDAnxEuAvCYGoeLEay5aDDCxZyiEhXYShUaxDpshqioKEVFRam4uFilpaW+Hg5QJ2azmanQAAAAaJQIFwF4zDF3Kxcbc7hoy5NsuY7n4VV3i44MDlSIJUCFxWU6llOk1nFh9TRA/2GxWAhlAAB1VhIQogX91rt1jKW0wP0qRwAAmhjCRQAeY6y5GB9ZRadoQ1MIF42qxcBQKTiyyt1MJpOaRQbrwPECHcstJFwEAMBbTCa3mrgAAICaqaadKwC4p+aVi+VrEOY24nDR2cyl2RkXf29W/n4dzWbdRQAAAACAfyFcBOAx6eVNSZqdMVyMdzw26spFo5lL1estGhIiQySdDGcBAAAAAPAXhIsAPMZo6GI0KamS0T0575hUVublUfmIMS06vOpO0QY6RgMAAAAA/BXhIgCPKCuzKyOvfM3FM1UuhpVXLtpLpcIT3h2Yrzg7RZ85XEyIZFo0AAAAAMA/ES4C8IgTBcUqLbNLkuIiztDQJTBICol2PDdCuMYmr+bhorNykWnRAAAAAAA/Q7gIwCOMKb0xYRZZzDX41mKsRWisTdjYuFG5aISLR3MKvTkiAAAAAAA8jnARgEccyXYEY0ZzkjMyQrfGWrnoxpqLzoYurLkIAAAAAPAzhIsAPOJoeTCWEHWG9RYNkc0dj7lpXhqRj7nRLdqoXEzPtamsfGo5AAAAAAD+gHARgEcYU3rP2Cna0JinRdvtjk7YkhTR7Iy7x0UEyWSSSsvsOp5v8/LgAAAAAADwHMJFAB5hdDpOjKrptOjycDGnEYaLtlypON/xvAbToi3mAMWGOZrgMDUaAAAAAOBPCBcBeIRRuZhA5eLJ9RYt4VJwRI0OOdnUhXARAAAAAOA/CBcBeIRRuVjjhi6RTSBcrMGUaIMRLlK5CAAAAADwJ4SLADzC7YYujblyMc8IF8/czMVAuAgAAAAA8EeBvh4AAP9nt9trPy26IFMqKZICa3icPzAqF8Pdr1w03kcAQEXr16/X3LlzlZKSosOHD2v58uUaM2aM83W73a6HHnpIL774ojIzM3X++efrueee0znnnOPcp6ioSLNmzdLSpUtVUFCgIUOGaOHChWrZsqVzn8zMTM2YMUMfffSRJGn06NFasGCBoqOj6+tW0QAtWPOrSsyhNd7/zks6eXE0AAA0HFQuAqiz7MISFRaXSXJjWnRojGR2NDFxhnGNRa77lYvG+0blIgBULS8vT+eee66effbZSl9/4okn9NRTT+nZZ5/Vt99+q+bNm+uSSy5RTk6Oc5877rhDy5cv19tvv62NGzcqNzdXo0aNUmlpqXOfsWPHavv27Vq5cqVWrlyp7du3a9y4cV6/PzRsltICBbrxIVueZLf7etgAAHgdlYsA6uxYebVdZEigQoPMNTvIZHKEb1kHHFOjo1t5cYT1zJjqHXHmTtEGGroAwJmNHDlSI0eOrPQ1u92u+fPn64EHHtCVV14pSXr11VeVmJiot956S5MnT1ZWVpZefvllvf766xo6dKgk6Y033lCrVq30+eefa/jw4fr555+1cuVKbdmyReeff74k6aWXXlL//v21c+dOde7cuX5uFg3OlG+Hu3fAFkn3H5KCwr0yHgAAGgoqFwHU2clmLm5ObTbCt5w0D4/Ix/KOOR7dCBeN9y6dcBEAamXPnj1KS0vTsGHDnNuCg4M1aNAgbdq0SZKUkpKi4uJil32Sk5PVrVs35z6bN2+W1Wp1BouS1K9fP1mtVuc+AAAAOInKRQB15mzmUtMp0YaI5o7HxtbUxbifcPcrF5kWDQC1k5bm+ENVYqLrkhSJiYnat2+fc5+goCDFxMRU2Mc4Pi0tTQkJFb9/JyQkOPepTFFRkYqKTn4Pz87Ort2NoEEpCQjRgn7r3TrGUlrgfpUjAAB+jHARQJ0dyS5v5lLTTtEGo7Kv0YWLRuWi+92ic4pKVGArrfn0cgCAC5PJ5PK53W6vsO10p+9T2f5nOs+cOXP00EMPuTlaNHgmk1tNXAAAaIqYFg2gzozKxcQoNysXIxth5aLdLuWWV7a4MS06MjhQIRbHt2SqFwHAfc2bO/5NOb268OjRo85qxubNm8tmsykzM7PafY4cqfjv0rFjxypURZ7qvvvuU1ZWlvPjwIEDdbofAAAAf0G4CKDOTk6Lru2ai40oXCzIlEptjudGeFoDJpPplKYuhd4YGQA0au3atVPz5s21evVq5zabzaZ169ZpwIABkqRevXrJYrG47HP48GH9+OOPzn369++vrKwsffPNN859vv76a2VlZTn3qUxwcLCioqJcPgAAAJoCpkUDqLOj5dOim7kdLjbCykWjOU1orBTo3vuRGBmiA8cLlJZNuAgAlcnNzdWvv/7q/HzPnj3avn27YmNj1bp1a91xxx16/PHH1bFjR3Xs2FGPP/64wsLCNHbsWEmS1WrVxIkTdddddykuLk6xsbGaNWuWunfv7uwe3bVrV40YMUK33nqrXnjhBUnSbbfdplGjRtEpGgAAoBKEiwDq7FitG7qUTy9rVOHiYcejG1WLhkSr4/1LyyJcBIDKbN26VRdddJHz85kzZ0qSbrrpJi1ZskT33HOPCgoKNHXqVGVmZur888/XZ599psjISOcx8+bNU2BgoK655hoVFBRoyJAhWrJkiczmk2vdvvnmm5oxY4azq/To0aP17LPP1tNdAgAA+BfCRQB1ZjR0SXS3oUukES4elcrKpIBGsFKDEZTWIlxMKl+z8giViwBQqcGDB8tut1f5uslk0uzZszV79uwq9wkJCdGCBQu0YMGCKveJjY3VG2+8UZehAgAANBmN4Dd5AL6UV1SiPFupJCnB3YYu4eVrLpYVO9YqbAyMysUI98PF5kblYjYNXQAAAAAA/oFwEUCdGM1cwoLMigh2sxg6MMixNqHUeKZG59S+ctHotn2EadEAAAAAAD9RL+HiwoUL1a5dO4WEhKhXr17asGFDlfu+//77uuSSS9SsWTNFRUWpf//+WrVqVX0ME0AtGM1c3O4UbXCuu5jmoRH5WB3WXDxZuUi4CAAAAADwD14PF5ctW6Y77rhDDzzwgLZt26YLL7xQI0eO1P79+yvdf/369brkkku0YsUKpaSk6KKLLtJll12mbdu2eXuoAGrBCMLcnhJtOHXdxcagDmsuNo86GS5Wt6YYAAAAAAANhdfDxaeeekoTJ07UpEmT1LVrV82fP1+tWrXSokWLKt1//vz5uueee9SnTx917NhRjz/+uDp27KiPP/7Y20MFUAtGZ+Nkay3DRaNyMaexVS4muX1oQnlDHFtJmTLziz05KgAAAAAAvMKr4aLNZlNKSoqGDRvmsn3YsGHatGlTjc5RVlamnJwcxcbGemOIAOrocHm42NwaWrsTRDSiykW7/eSai8Z9uSE40KzY8CBJJ0NbAAAAAAAaMq+Gi+np6SotLVViousv2YmJiUpLq1mV0r/+9S/l5eXpmmuuqfT1oqIiZWdnu3wAqD9GCJZU18rFxrDmYkGmVFre6bkW06Klk1Ojj7DuIgAAAADAD9RLQxeTyeTyud1ur7CtMkuXLtXs2bO1bNkyJSQkVLrPnDlzZLVanR+tWrXyyJgB1MzhbKNysbZrLpaHcI2hctFYbzE0RgqsXYMbmroAAAAAAPyJV8PF+Ph4mc3mClWKR48erVDNeLply5Zp4sSJeueddzR06NAq97vvvvuUlZXl/Dhw4IBHxg6gZtKyCiTVpXKx/A8HxlqF/qwO6y0aEo2mLkyLBgAAAAD4Aa+Gi0FBQerVq5dWr17tsn316tUaMGBAlcctXbpUEyZM0FtvvaVLL7202msEBwcrKirK5QNA/SgpLdOxHMc04NpXLpYHcY2hoUsd1ls0MC0aAAAAAOBPAr19gZkzZ2rcuHHq3bu3+vfvrxdffFH79+/XlClTJDkqD1NTU/Xaa69JcgSL48eP19NPP61+/fo5qx5DQ0NltVq9PVwAbjiWW6QyuxQYYFJ8eO2mATvDRVuuVJgthfjxHwg8ULnY3Op4H5kWDQAAAADwB14PF6+99lplZGTo4Ycf1uHDh9WtWzetWLFCbdq0kSQdPnxY+/fvd+7/wgsvqKSkRNOmTdO0adOc22+66SYtWbLE28MF4AajU3RiVIgCAs68jmqlgiOk4CipKNsRzvl1uFhefRlZ+8pFpkUDAAAAAPyJ18NFSZo6daqmTp1a6WunB4Zr1671/oAAeIQRgNV6SrQhKlk6li1lH5KadfbAyHzE6Hhdp8pFGroAAAAAAPxHvXSLBtA4HfZUuOhcd9HPm7o4Kxeb1/oUSVGhkqQT+cUqLC71xKgAAAAAAPAawkUAtebsFB3lgcpFyVG56M+McDGi9uFiVGigQiyOb800dQEAAAAANHSEiwBqjcrFU9jtHqlcNJlMzo7RrLsIAAAAAGjoCBcB1JoRfiVZQ+t2oqjycDHbj8PFwhNSaZHjeUTtG7pIpzR1oXIRAAAAANDA1UtDFwCNk+cqF8unRef48bRoo2oxNEay1O39SI52hLWHThAuAgDgzxas+VUl5pr/EfbOSzp5cTQAAHgH4SKAWikrszvXBEyqc7foRlC5aKwXWYdO0YYW5eFi6on8Op8LAAD4jqW0wL0DbHmSJUwymbwzIAAAvIBwEUCtpOcVqaTMrgCT1CwyuG4nMyoX845KpSWS2Q+/NRnhYlSLOp+qRQyViwAANAZTvh3u3gFbJN1/SAoK98p4AADwBtZcBFArh8uDr2aRwbKY6/itJLyZFBAo2cuk3CMeGJ0POMPF5DqfypgWnZrpZrUDAAAAAAD1zA/LgwA0BKknHMGXMYW3TgICpIjmUvZBR8doa92r/+pddqrj0ROVi85p0QWy2+0yMTUKAAC/URIQogX91rt1jKW0wP0qRwAAGgjCRQC1YlTVtYgJ88wJo5Ic4WK2nzZ18WjlomMNy9yiEmUXlsgaaqnzOQEAQD0xmdxq4gIAgL9jWjSAWjmY6Wg20jLGQz88G41Qcvy0qYsHw8WwoEDFhgdJYmo0AAAAAKBhI1wEUCsenRYtnQzl/LZy0XPToqWT7+uhE4SLAAAAAICGi3ARQK0cdE6LpnJRtjyp8ITjuQcqF6WTU6NTCRcBAAAAAA0Y4SKAWjFCr1aeChf9uXIxuzwQDYqUQqI8csoW0Y61LAkXAQAAAAANGeEiALdlFRQrp7BEkpTsqWnR/ly5mH3Q8eihqkWJykUAAAAAgH+gWzQAtxlNRmLDgxQW5KFvI87KxcOS3S6ZTJ45b33wYDMXg9Eoh4YuAAA0LQvW/OpWt+k7L+nkxdEAAHBmVC4CcJtRTeexTtHSycrF4jypKNtz560PHm7mIp2cFk1DFwAAAABAQ0a4CMBtBzPzJXmwU7QkBYVJIdGO5/627qIXKheNadFHc4pUVFLqsfMCAAAAAOBJhIsA3GZM1fVo5aIkWVs6HrNSPXteb/NCuBgbHqQQi+Nb9OEThR47LwAAAAAAnkS4CMBtxrRoj1YuSqeEiwc8e15vM6ZFG+P3AJPJ5GyWQ1MXAAAAAEBDRbgIwG0HyysXW8SEefbEfhsuer5yUZJaxzre3/3H8z16XgAAAAAAPIVwEYDbvFe52MrxmHXQs+f1puJCKT/D8dzD4WKb8nBxXwbhIgAAAACgYQr09QAA+JecwmIdz7NJklrHeaty0Y/CxZzyqkXLKQ1pPKR1XLgkaf/xPI+eFwAANFyWUjeXQ7HlOX4OMZm8MyAAAM6AcBGAW4wquviIIEUEe/hbiLNy0Y+mRRvNZ6KSPf5DPZWLAAA0PVO+He7eAVsk3X9ICgr3yngAADgTpkUDcIsRdBnrAXqUUbmYfUgqK/X8+b3BqLL08JRoSWpTXhm6PyNfdrvd4+cHAAAAAKCuqFwE4JZ95VN028Z54a/jkc0lk1kqK5Fyj3glsPM4o8oyurXHT92qPMDNKSpRZn6xYsODPH4NAADgeyUBIVrQb71bx1hKC9yvcgQAwAsIFwG4ZV+6o3KxjTfCxQCzFNVCytrvqAj0h3DxxH7Ho9Xz4WKIxazEqGAdyS7Svow8wkUAABork0klZg83ygMAoJ4wLRqAW4zKxTaebuZicDZ18ZN1F52Vi628cvo2sUZTF9ZdBAAAAAA0PISLANxirLno/XDRTzpGnygPF/9/e/ceH2V17v3/O8lkEhKS4ZCEJHIGEYQAFpSAWhQVRCke6laroj7brbKtWop2K/rzEfvqNuy2ii2IFMvT6tZdfPYu+njWWCFqOUMoRzlIOCeEhJCEEHJcvz8mMxJymhkyc89MPu/Xa16TzKz7XlcuB7y5cq17OQNTXHTvyM2mLgAAAACAUERxEYDXztTWq6DsjKQALYuWvu8ADIfiYkNDEDoXKS4CAAAAAEIXxUUAXjvUuDQ3Mc6u7vExgZnE3bl4MgyWRVcWSfU1ki3Kda/IAHB3Lh5sXI4OAAAAAEAoobgIwGtnL4m22WyBmcQZRp2L7gJoYoYUHZhiq7tDlM5FAAAAAEAoorgIwGv7S9ybuQRoSbQUXhu6lDXuFB2gJdGS1L+xc7Goolqna+oCNg8AAAAAAP6guAjAa57OxR4B2sxF+n558ZmTUnVF4ObpCAHezEWSusU71CPBIUnad5yl0QAAAACA0EJxEYDX9hadkiQNSukauEnikqQ4p+vrsiOBm6cjBHgzF7dBKa5O0e+OnwroPAAAAAAA+IriIgCvuYtbg1IDWFyUzrrvYogvjT7ZuCw6gJ2L0vfF3O/oXAQAAAAAhBiKiwC8Un6mVkUV1ZK+76QLmG79XM+l+wM7z/lyL4vu1jeg03iKi0V0LgIAAAAAQgvFRQBecS+J7pUUq8S4wOyM7NG9v+s5lIuLxpy1LDqwxcXBqe7ORYqLAAAAAIDQQnERgFfcXXODA70kWgqP4mJVqVTTWOxz73AdIO7OxX3FlapvMAGdCwAAAAAAX1BcBOCVvceDsJmLW/fGZdEnDwR+Ln+5uxYTUqSYLgGd6oLuXeSwR6mmrkFHSqsCOhcAAAAAAL6guAjAK98VuTYTCW7n4gHX8uNQVNpY+AzwkmhJio6yaWCy6z6Xe49XBHw+AAAAAAC8RXERgFe+C2bnortgV13uWn4cikrzXc/dBwRlOvcO3e4iLwAAAAAAoYDiIoB2VdfV60BJEDsXY7pIiemur91FvFBzojGuHkEqLjYWdfeyYzQAAAAAIIRQXATQrvziSjUYKTHWrtTE2OBMGuqbugS5c/HCxqLu7iKWRQMAAAAAQgfFRQDt2llQLkkamp4om80WnEm7NW7qUhqim7oEuXNxWHqiJGlXYYUa2DEaAAAAABAiKC4CaNfOAle33LD0pOBNGsqdi/W1Utlh19dB6lzs3zNBsfYona6p14ETp4MyJwAAAAAA7bFbHQCA0OfuXKS42OjkQcnUS/Y4KTEtKFPao6N0UVqithwu086Ccg1o3D0aAABANT7+4jEmXgrWahQAQMSjuAigXe7OxaFpicGbNJSLi577LfYP6oX50Mbi4rcF5bohMz1o8wIAgBD328G+jX/mqOTgF5UAgI7BsmgAbTpeUa3iU9Wy2aSLglpcbLznYtlhqb4uePN640RwN3Nxc3eO7ihgUxcAAAAAQGgISnFx0aJFGjBggOLi4jRmzBh9/fXXbY7Pzc3VmDFjFBcXp4EDB2rx4sXBCBNAC74tdC2JHtAzQfGOIDY7d02TomNdy4/LDwdvXm+4uymDtJmLm7u46F6mDgAAOq+6qDgtyPrK1YXozePJvVaHDACIUAEvLr7zzjuaNWuWnn32WeXl5enKK6/U1KlTdfDgwRbH5+fn64YbbtCVV16pvLw8PfPMM3r88cf117/+NdChAmjB2TtFB1VU1Pfdi+5OwVDhLi4Gu3MxzVVcPHKySuVnaoM6NwAACDE2m+qiu7iWN3v1iLc6YgBAhAp4G9LLL7+sBx54QP/yL/8iSXrllVf02Wef6bXXXlN2dnaz8YsXL1bfvn31yiuvSJKGDRumDRs26Le//a1+/OMfBzpcAOfYcbRxM5e0IG7m4tZjkFS8WzrxnTTo6uDP3xp3sTPInYvO+BhlOON0tOyMdh4t17iBPYM6PwAACD3zc3Z7Nc5eX6XHAhwLAKBzCmhxsaamRhs3btTTTz/d5PXJkydr1apVLR6zevVqTZ48uclrU6ZM0dKlS1VbW6uYmBiv566pqfEvcAAeWw+dkF31Gp6eEPw/U90GSbJLx/ZKofLn2RjpxGFJdqlrn6DHNTIjQUVllco7UKxLege5mxRA0HANAwAAgHAR0OJicXGx6uvr1atXryav9+rVS4WFhS0eU1hY2OL4uro6FRcXKz296Q6p1dXVqq6u9nxfXu7qsnrppZcUFxfXET8G0Kn9UJK6SF//d57avltqIDgk2+PSRkkbm3c6W+cBySZpyTtBnzld0owu0rGv8pT9VdCnBxAkZ86csTqEsDV37ly98MILTV47+9rTGKMXXnhBS5YsUWlpqcaNG6dXX31Vw4cP94yvrq7Wk08+qb/85S+qqqrSNddco0WLFql3795B/VmAQFnw5V7Xkmov/fy6IQGMBgAQ7oKyoYvNZmvyvTGm2WvtjW/pdUnKzs6W0+n0PPr06dMBEQMAACBcDR8+XAUFBZ7H1q1bPe/9+te/1ssvv6yFCxdq/fr1SktL03XXXaeKigrPmFmzZundd9/VsmXL9M033+jUqVOaNm2a6uvrrfhxgA4XU18luw8P1VS6Vm8AANCCgHYuJicnKzo6ulmXYlFRUbPuRLe0tLQWx9vtdvXs2fz+YnPmzNHs2bM935eXl6tPnz564oknlJRkwT3igAiyeOV3+v2Xe3TjyHT95rZRwQ/g1DHp96MlW5T0i32SPTb4MZxr039Kn/6bNHCSdOfbQZ++srpOl734hYyRcv/tKqV0pUMbiETl5eWaN2+e1WGELbvdrrS0tGavG2P0yiuv6Nlnn9Wtt94qSXrjjTfUq1cv/dd//ZcefvhhlZWVaenSpfrP//xPXXvttZKkt956S3369NEXX3yhKVOmBPVnAQJh5nofP8dr5Npx2pEQkHgAAOEtoMVFh8OhMWPGKCcnR7fccovn9ZycHN10000tHjN+/Hh98MEHTV77/PPPNXbs2BbvtxgbG6vY2OYFB4fDIYfDcZ4/AdC5bSk4pTpFa1TfZGv+PHXvLTnipJpTUuVRKeWi4MdwrrJ9kuqk1MGSBTlxOBwakOrU7mOntKOwStddzC9RgEjENcz52bNnjzIyMhQbG6tx48bpxRdf1MCBA5Wfn6/CwsIm9/eOjY3VxIkTtWrVKj388MPauHGjamtrm4zJyMjQiBEjtGrVKoqLAAAA5wj4btGzZ8/WjBkzNHbsWI0fP15LlizRwYMHNXPmTEmuzsMjR47ozTfflCTNnDlTCxcu1OzZs/Xggw9q9erVWrp0qf7yl78EOlQAZzHGaPOhMknSqD7drAnCZpN6DpYKNksle0OjuFjcuCNjz8GWhTC6TzftPnZKmw+V6rqLW+4CB4DOaty4cXrzzTc1ZMgQHTt2TL/61a80YcIEbd++3bM6pqX7ex84cECS6/7fDodD3bt3bzamtXuGS63fBxwIFXVRcVqQ5dsNm2Pqq3zvcgQAdDoBLy7ecccdKikp0S9/+UsVFBRoxIgR+vjjj9WvXz9JUkFBgQ4ePOgZP2DAAH388cf6+c9/rldffVUZGRn6/e9/rx//+MeBDhXAWQ6eOK3iU9WKibZpeIaF3XFnFxdDQfEe13OydTc2H9Wnm/7vhsPKO3jSshgAIFRNnTrV83VmZqbGjx+vQYMG6Y033lBWVpYk3+8H7s2Y7OzsZhvJACHFZvNpExcAALwV8OKiJD3yyCN65JFHWnzvz3/+c7PXJk6cqE2bNgU4KgBtWbOvRJKrSy4uJtq6QNwdgu6inpXqqqWTrs4WJV9oWRiX9u8hSdp0sFQ1dQ1y2IOyNxcAhKWEhARlZmZqz549uvnmmyW5uhPT09M9Y86+H3haWppqampUWlrapHuxqKhIEyZMaHWe1u4DDgAAEOn4FymAFq3dd0KSNG5A842UgspdXCz5zto4JOlEvmQaJEei1NW65cgXpnZVjwSHztQ2aMvhk5bFAQDhoLq6Wjt37lR6eroGDBigtLQ05eTkeN6vqalRbm6up3A4ZswYxcTENBlTUFCgbdu2tVlcjI2NVVJSUpMHAABAZ0BxEUCL1uY3FhcH9rA2kGR3cTEElkW777eYPNh1P0iL2Gw2ZTX+d3F3mAIAXJ588knl5uYqPz9fa9eu1W233aby8nLdd999stlsmjVrll588UW9++672rZtm+6//37Fx8frrrvukiQ5nU498MADeuKJJ/S3v/1NeXl5uueee5SZmenZPRoAAADfC8qyaADh5dCJ0zpyskr2KJvG9Ove/gGB1GOQ67mySDpTJsU5rYulxPr7LbqNH9hTH28t1Jp9J/ToJKujAYDQcfjwYf3kJz9RcXGxUlJSlJWVpTVr1nju9/1v//Zvqqqq0iOPPKLS0lKNGzdOn3/+uRITEz3nmD9/vux2u26//XZVVVXpmmuu0Z///GdFR1t4mxAAAIAQRXERQDPubrjM3k7FOyz+ayIuSeqaJp0qlI7vlvpcal0sxY3dkz2tu9+iW9ZA13L1DQdOqLquXrF2/sELAJK0bNmyNt+32WyaO3eu5s6d2+qYuLg4LViwQAsWLOjg6AAAACIPy6IBNJO7+7gk6fJByRZH0ih1qOv5+E5r4/B0Lg62Ng5Jg1O7Krmr676L7BoNAAAAALAKxUUATdTVN+irxuLi1UNTLY6mUerFrueib62LwRhX56QUEsuibTabrrwwRZK04tsii6MBAAAAAHRWLIsG0MTmQydVfqZO3eJjNLpPN6vDcUlp7Fws2mFdDOVHpOoyKcoeEsuiJemaYal6N++I/vZtkebcMMzqcAAAQARbnLNVtdFdvB7/2KTBUky8pZvgAQCCg+IigCZW7HJ1wU0ckqLoqBC5GHR3Lh63sHOxqHFJds8LJbvDujjOcuWFKbJH2bS36JQOlFSqX88Eq0MCAAARaub6Kb4dsEbSM0clB9cnABDpWBYNoIkvdriKi1ddlGJxJGdJucj1XFEgnT5hTQzHtrueU0OnQ9DZJUaX9u8hSfqSpdEAAAAAAAvQuQjAY/exCu06ViFHdJQmDe1ldTjfi0uSnH2kskOu7sV+E4Ifg7tzsdfFwZ+7DdcMS9XqfSX6ZFuh/tflA6wOBwAARJC6qDgtyPrKp2Ni6qt873IEAIQ1OhcBeHz4j6OSpB8OSZazS4zF0ZzDc99Fi3aMdt/vMTW0ios3ZKbLZpPW5Z/Q0ZNVVocDAAAiic2muuguPj18uS8jACAyUFwEIEkyxujDLQWSpGkjMyyOpgXu5chWFBfr66TjuxrjCK3iYka3LrqscWn0+43FYQAAAAAAgoXiIgBJrl2i9xVXKtYepWsvDqEl0W7u4qIVm7qU5kv11a4dD7v1C/787bhp9AWSpP+3meIiAAAAACC4KC4CkCT919qDkqQbM9PVNTYEb8fqLi4e2y4ZE9y53Zu5pAyVokLvr80bMtPkiI7SzoJybTl80upwAAAAAACdSOj9KxlA0JVV1eqDLa6ut7vG9bU4mlakDJVs0VLVCak8yB16IbqZi1u3eIduHJkuSfrzqv3WBgMAAAAA6FQoLgLQf284pDO1DbqoV6LG9OtudTgti+ny/aYuBf8I7tyFW1zPvUYEd14f3DvetVz7w38UqPhUtcXRAAAASKo5LdVU+vYI9goVAMB5C8G1jwCCqbquXq9/vU+SdP/l/WWz2SyOqA3po6Si7a7i4tAbgjfv0c2N848O3pw+uqRvd43q7dQ/DpfpzVX7NXvyRVaHBAAAOrvfDvb9mGeOSo6Ejo8FABAwdC4Cndz/bDysY+XVSnfG6dYfXGB1OG1LH+V6Dmbn4qkiqeKoJJuUlhm8ef3w8MRBkqT/8/f9Kq2ssTgaAAAAAEBnQOci0IlVVtfp93/bI0l66IcDFWuPtjiidriLi+5lysHgLmQmXyjFdg3evH64fniaLk5P0o6Cci3+6jvNmTrM6pAAAEAnUxcVpwVZX/l0TEx9lWaunxKgiAAAgUbnItCJvbbyOx0rr1bfHvH6yWUhupHL2dJGSLJJ5UekU8eDM2cYLIl2i4qyafZ1QyRJf/pmv/YdP2VxRAAAoNOx2VQX3cWnR210F6ujBgCcB4qLQCe1q7BCSxrvtfjsjcMUFxPiXYuSFJso9Wy8d09hkJZGF2x2Pbu7JkPcNcNSNXFIimrqG/Tsu9tkuCk6AAAAACCAWBYNdELVdfX62bI81dQ1aNLQVE2+uJfVIXkvfZRUsse1XHnwtYGfz70sOmN04OfqADabTb+6eYSum5+r1ftK9H/+vl8PXDHA6rAAAAC8sjhnq0+djI9NGizFxEuhvCkhAEQ4iotAJ2OM0TPLt+nbwgr1SHBo3o8zQ3uH6HOlj5K2/Y90NC/wc1WWSGWHXF+H+GYuZ+vTI17P3DBM//v/bVf2xzuVeYFTlw3oYXVYAAAA7fL53otrxA7TAGAxlkUDnYgxRi/n7NZfNx1WdJRN8+8YrdTEOKvD8s0FY1zPhzdIgV7ye2SD67nnYCnOGdi5OtiMrH760agM1TUYPfDGem0/WmZ1SAAAAACACETnItBJ1DcYvfjxTi39Jl+S9ML04Zo4JMXiqPyQcYkUZZcqClxdhd0CuBHNoXWu5z7jAjdHgNhsNv3HjzNVWFal9ftLdfcf12rxPWOUNbCn1aEBAAA0wQ7TABDe6FwEOoGCsird88e1nsLi/552se7J6mdxVH5yxH+/RNld/AuUQ2tdz30uC+w8ARLvsGvp/ZdqdJ9uOnm6Vvf8ca0W536nuvoGq0MDAAD4HjtMA0BYo7gIRLDSyhq98sVuTfqta3OPeEe0fnfnaP1zuG/w4e4kDGRxsb5OOrKx6XxhKCkuRsseytK0kemqazCa98m3+tHCvytnxzF2kgYAAAAAnDeWRQMRprK6Tt/sLdbn24/pwy1HVV3n6lIb06+7fn3bSA1K6WpxhB2g96XS2sXfdxYGwrFtUu1pKdYpJV8UuHmCIC4mWgt+col+OCRFv/pwh3YWlOvBNzdoQHKCbh59ga4Zlqph6UmKjgqjjX0AAADcak77Np7dpQGgQ1FcBMJITV2DKqvrVFlTp8rqehWfqlZB2RkVllVpX3Glth8p197jp1Tf8H1H2sXpSXrk6kG6MTM9vHaFbou7k7Bwq1RTGZjdAd1dkb3HSlHh3+Rts9l0+9g+unZYL73+9T69uWq/8osrNf+L3Zr/xW4lxdmV2dupwSldNTClq3olxSq5q+uRGGdXF0e04uzRiqIACQAAQs1vB/s2nt2lAaBDRWxx8ZZX/y57XNP/YRi1vASwtZWBbS0YbG05YavHBGGO1n+O1mdp9RgfV0u2tbyyo+JtKyZf52gr875+Hnz+LLQ1R2vnMtKZunrV1nv3H6Zvj3hdMyxVN2ama0y/7pFTVHRz9pYSM6SKo9KRTdKAKzt+jkNrXM9hvCS6JT0SHHrq+qF69OrB+mx7oT7cUqB1+SdUfqZOf99bor/vLWnz+LiYKMXFRMseZZPNZlO0zaYomxQVZVOUzaboKNf3NptN/nzq/P2o+jNbpP2xQGSpO1NpdQgAAACAVyK2uLin6JSiYtm0AJEp1h6leEe0enaNVbozTmlJcerdPV7DM5I0/IIkpSXFRV5B8Ww2m9Q3S9q+XNr/dccXF42R9n/j+rpvVseeO0QkxNp16w9669Yf9FZdfYN2FJTr28IKfVd0SvtLKnW8olrFp2pUfKpap2vqPcedqW3QmVr+bgUCraHaxyV+ANDJ+LrDNLtLA0DgRGxxcem9Y5WQmNj8jVbqLa11vbRVn2ntrdaKOq2dq60SUOvzd+QcrZzLx5ja6hzytc7Vdt59/Nk7MF5fc9JW5n2dI95hV3xstOJjomWPDv9luudt4ERXcXFfrnT1Mx177uO7pFPHJHtcxHUutsQeHaWRvbtpZO9uLb7f0GB0pq5eVTX1qqqt15naetU3SPUNRg3G/Tjr+wbX975qq8u6nQODcQgQVJUVFZryitVRAEAIa9xhGgBgvYgtLo4b1FNJSUlWhwEgUAZe5Xo+skGqPiXFduBGNfm5ruc+46SYuI47b5iKirK5ituOiP1fBhByyssdVocAAAAAeIX2JwDhqXt/qVs/qaFOOrCqY8+d37jEZuDEjj0vAAAAAAARhuIigPDlLv65Ow07QkO96z6OkjTgqo47LwAAAAAAEYjiIoDwNaCxuPjdio4755FN0pkyKdYppY/quPMCAAAAABCBKC4CCF8Dr5ZsUVLRdqn0QMecc/cnrufB10jR3GMQAAAAAIC2UFwEEL4Sekp9slxf7/qkY87pPs9FN3TM+QAAAAAAiGC05QAIb0NvkA6uknZ9JGXNPL9zle6XinZItmjpwms7JDwAAACElgVf7lVddJf2Bxoje8MZPTZpsH8TxcRLNpt/xwJAGKG4CCC8XXSD9Pn/J+3/u1RVKnXp7v+53F2L/Sac33kAAAAQsmLqq7weN3P9FGmNnxM9c1RyJPh5MACED4qLAMJbz0FSylDp+LfSrk+l0T/x/1zblrueWRINAAAQsWaun2J1CAAQUSguAgh/w2+VVr4obXnH/+LiiXzp8DrXBjEjbu3Y+AAAABDentwrOeLbH1dzWvqtn8uoASBMUVwEEP5G3u4qLu5bKZUflZIyfD/H1v9xPQ+YKCWmdWh4AAAAsFZdVJwWZH3l17GPTRrM/RMBoA0UFwGEvx4DpL4TXBu7bPm/0hWzfDu+oUHassz19cjbOzw8AAAAWMxm824TlxbMzz3i9Vh7fZUea/x6cc5W1fowJ0VMAOGK4iKAyDDqTldxcdMb0oTHpago74/NXymV7JUcidKwHwUsRAAAAHQePt/bcY3YBAZAWPLhX98AEMJG/FiKc0on9km7P/Xt2LVLXM+j75JiEzs+NgAAAMAbNaelmkrfHsZYHTWATo7ORQCRIbarNOZ/SX9/RVr9qjTUyx2fi/d8X4y87KGAhQcAAIDI58+9HWPqq77vcvRnMxi6HQFYjM5FAJHjsoekKLt04Bsp/2vvjlmZLclIF90gJbOzHwAAAM5D470dfXn4cl9GAAhFdC4CiBzOC6Qx90vr/yjlPCf9y5dt33ux4B/StuWur69+JighAgAAAGdzdzs+NsmHX3TXnPavyxEAAiCgnYulpaWaMWOGnE6nnE6nZsyYoZMnT7Y6vra2Vk899ZQyMzOVkJCgjIwM3XvvvTp69GggwwQQSSY+LTm6SkfzpI1/an1cfZ30/uOSjDTiNiktM2ghAgAAAB7unawdCT484q2OGgA8Atq5eNddd+nw4cP69FPX/cweeughzZgxQx988EGL40+fPq1Nmzbpueee06hRo1RaWqpZs2Zp+vTp2rBhQyBDBRApuqZIVz8rfTZH+uxZqd/lUurQ5uNWvigVbJZindKUF4MeJgAAAHC2+Tm7vR5rr6/SYwGMBQB8EbDi4s6dO/Xpp59qzZo1GjdunCTp9ddf1/jx47Vr1y5ddNFFzY5xOp3Kyclp8tqCBQt02WWX6eDBg+rbt2+gwgUQScbNlHZ/IuV/Jb11q3TfB1LPQd+/v+516euXXF/f+JKU2MuaOAEAAAAACHMBKy6uXr1aTqfTU1iUpKysLDmdTq1atarF4mJLysrKZLPZ1K1btwBFCiDiREVJt/1Z+tP1UvFuaclV0riHpR4DpZ0fSLs+do274ufSyH+yMlIAAAAAAMJawIqLhYWFSk1NbfZ6amqqCgsLvTrHmTNn9PTTT+uuu+5SUlJSi2Oqq6tVXV3t+b68vNy/gAFEloSero7F/75fOrha+uo3379ni5auniNd+aRl4QEAAABBY4xUe9r/42PiJZut4+IBEFF8Li7OnTtXL7zwQptj1q9fL0mytfCXjzGmxdfPVVtbqzvvvFMNDQ1atGhRq+Oys7PbjQdAJ5WYJt33obTjPenbD6WqUillqGtH6dRhVkcHAAAAnL8aL4qG57u79DNHXRvJAEALfC4uPvroo7rzzjvbHNO/f39t2bJFx44da/be8ePH1atX2/c3q62t1e233678/Hx9+eWXrXYtStKcOXM0e/Zsz/fl5eXq06dPOz8FgE4j2i5l3uZ6AAAAAJHmfIqGANABfC4uJicnKzk5ud1x48ePV1lZmdatW6fLLrtMkrR27VqVlZVpwoQJrR7nLizu2bNHK1asUM+ePducJzY2VrGxsb79EAAAAAAAdEKLL/1MtdFd2h0XU1+lmeunBCEiAOEuYPdcHDZsmK6//no9+OCD+sMf/iBJeuihhzRt2rQmm7kMHTpU2dnZuuWWW1RXV6fbbrtNmzZt0ocffqj6+nrP/Rl79Oghh8MRqHABAAAAAAgLdVFxWpD1ld/H+nz/RG+WXp+L+zQCnUbAiouS9Pbbb+vxxx/X5MmTJUnTp0/XwoULm4zZtWuXysrKJEmHDx/W+++/L0kaPXp0k3ErVqzQVVddFchwAQAAAAAIfTab6rzoPuww/iy99vE+jfNzdvs8xc+vG+LzMQA6XkCLiz169NBbb73V5hhjjOfr/v37N/keAAAAAABEsMadrO31Vb4fW1NJhyQQAgJaXAQAAAAAAOHHvfT6sUk+dC36syt17WnpxQw95ttRLmvETtZACKC4CAAAAAAAmmpcej0/94jXh9jrq74vEnp7n0Z/7ud4Hnxdfs3Sa6B9FBcBAAAAAEDH8uM+jQHdydrf5dcsvQbaRXERAAAAAABYrja6i+8b1fjSIfnbwb4vv2bpNdAuiosAAAAAAOC8ue/TeD7H+8yfnax95c/Sbbod0YlQXAQAAAAAAOev8T6Noc6b5ddNll77U8B8cq/kiPftGAqSCFMUFwEAAAAAQNjwayfrRgu+3OvqkAx0Ec+fgiTLrxGmKC4CAAAAAIDw4e6Q9KMQ521npT9LvP3aaAaIABQXAQAAAABA2JmfsztwJ/djifd5FyS5tyPCFMVFAAAAAACA83W+95wM93s7GiPV+lEgdQtkofR8YqOA2y6KiwAAAAAAAOEowAXJBV/u9fq0570s3J9CqbdqTvu/s3goFXBDFMVFAAAAoAWLFi3Sb37zGxUUFGj48OF65ZVXdOWVV1odFgAgglhyb0cfimyP+T+L7/wt/gVauHeUBgHFRQAAAOAc77zzjmbNmqVFixbp8ssv1x/+8AdNnTpVO3bsUN++fa0ODwAQKc7j3o4+7ZZ9Pp17flh86Weq9eLnsmITHG9iC2YB183bnLk9NmlwyBQkbcYYY3UQHam8vFxOp1NlZWVKSkqyOhwAAACfcT1jvXHjxukHP/iBXnvtNc9rw4YN080336zs7Ox2jw/4f8OaSunFDEnSgqyvzu8eXwCAyGeM7A1nfCtIyrdl0Weri4rzrujVGFcweRWbH3FZslv4M0f92jXdG75cy0Rc56K7VlpeXm5xJAAAAP5xX8dE2O+Aw0ZNTY02btyop59+usnrkydP1qpVq1o8prq6WtXV1Z7vy8rKJAXwmrSmUqp2fT6qKk+pPro+MPMAACJK9se7gjRTZZDm8UeAYjMx+nXmxz4dEtNwRg9susX/OcvLJUdgrgF8uR6NuOJiSUmJJKlPnz4WRwIAAHB+SkpK5HQ6rQ6j0ykuLlZ9fb169erV5PVevXqpsLCwxWOys7P1wgsvNHs9ONekVwRhDgAAEAizz+fgeRkdFUarKioq2r0ejbjiYo8ePSRJBw8e5GI8iMrLy9WnTx8dOnSI5VtBRN6tQd6tQd6tQd6tUVZWpr59+3qua2AN2zlLpowxzV5zmzNnjmbP/v6fBw0NDTpx4oR69uzZ6jHniz+fgUFeOx45DQzy2vHIaccjp4ERjLwaY1RRUaGMjPYLmBFXXIyKipIkOZ1OPrgWSEpKIu8WIO/WIO/WIO/WIO/WcF/XILiSk5MVHR3drEuxqKioWTejW2xsrGJjY5u81q1bt0CF2AR/PgODvHY8choY5LXjkdOOR04DI9B59bZpjytWAAAA4CwOh0NjxoxRTk5Ok9dzcnI0YcIEi6ICAAAITRHXuQgAAACcr9mzZ2vGjBkaO3asxo8fryVLlujgwYOaOXOm1aEBAACElIgrLsbGxur5559vtiwFgUXerUHerUHerUHerUHerUHerXfHHXeopKREv/zlL1VQUKARI0bo448/Vr9+/awOzYPPSWCQ145HTgODvHY8ctrxyGlghFpebcabPaUBAAAAAAAA4BzccxEAAAAAAACAXyguAgAAAAAAAPALxUUAAAAAAAAAfqG4CAAAAAAAAMAvIVlcnDt3rmw2W5NHWlqa531jjObOnauMjAx16dJFV111lbZv397kHNXV1XrssceUnJyshIQETZ8+XYcPH24yprS0VDNmzJDT6ZTT6dSMGTN08uTJYPyIIam9vC9fvlxTpkxRcnKybDabNm/e3Owc5N13beW9trZWTz31lDIzM5WQkKCMjAzde++9Onr0aJNzkHfftfd5nzt3roYOHaqEhAR1795d1157rdauXdvkHOTdd+3l/WwPP/ywbDabXnnllSavk3fftJfz+++/v9n7WVlZTc5Bzn3nzWd9586dmj59upxOpxITE5WVlaWDBw963ifvaM+iRYs0YMAAxcXFacyYMfr666+tDimsffXVV/rRj36kjIwM2Ww2vffee1aHFPays7N16aWXKjExUampqbr55pu1a9cuq8MKa6+99ppGjhyppKQkJSUlafz48frkk0+sDiuiZGdny2azadasWVaHEtZ8ue6H944cOaJ77rlHPXv2VHx8vEaPHq2NGzdaHVZoFhclafjw4SooKPA8tm7d6nnv17/+tV5++WUtXLhQ69evV1pamq677jpVVFR4xsyaNUvvvvuuli1bpm+++UanTp3StGnTVF9f7xlz1113afPmzfr000/16aefavPmzZoxY0ZQf85Q01beKysrdfnll2vevHmtHk/e/dNa3k+fPq1Nmzbpueee06ZNm7R8+XLt3r1b06dPb3I8efdPW5/3IUOGaOHChdq6dau++eYb9e/fX5MnT9bx48c9Y8i7f9rKu9t7772ntWvXKiMjo9l75N137eX8+uuvb/L+xx9/3OR9cu6ftvL+3Xff6YorrtDQoUO1cuVK/eMf/9Bzzz2nuLg4zxjyjra88847mjVrlp599lnl5eXpyiuv1NSpU5sUqOGbyspKjRo1SgsXLrQ6lIiRm5urn/70p1qzZo1ycnJUV1enyZMnq7Ky0urQwlbv3r01b948bdiwQRs2bNCkSZN00003NWu2gX/Wr1+vJUuWaOTIkVaHEhG8ue6H90pLS3X55ZcrJiZGn3zyiXbs2KGXXnpJ3bp1szo0yYSg559/3owaNarF9xoaGkxaWpqZN2+e57UzZ84Yp9NpFi9ebIwx5uTJkyYmJsYsW7bMM+bIkSMmKirKfPrpp8YYY3bs2GEkmTVr1njGrF692kgy3377bQB+qtDXVt7Plp+fbySZvLy8Jq+Td/94m3e3devWGUnmwIEDxhjy7i9f815WVmYkmS+++MIYQ9795U3eDx8+bC644AKzbds2069fPzN//nzPe+Tdd+3l/L777jM33XRTq++Tc/+0l/c77rjD3HPPPa2+T97Rnssuu8zMnDmzyWtDhw41Tz/9tEURRRZJ5t1337U6jIhTVFRkJJnc3FyrQ4ko3bt3N3/84x+tDiPsVVRUmAsvvNDk5OSYiRMnmp/97GdWhxTWfP33Ftr31FNPmSuuuMLqMFoUsp2Le/bsUUZGhgYMGKA777xT+/btkyTl5+ersLBQkydP9oyNjY3VxIkTtWrVKknSxo0bVVtb22RMRkaGRowY4RmzevVqOZ1OjRs3zjMmKytLTqfTM6Yzai3v3iDv/vMl72VlZbLZbJ7fTpB3/3mb95qaGi1ZskROp1OjRo2SRN7PR1t5b2ho0IwZM/SLX/xCw4cPb3YsefdPe5/1lStXKjU1VUOGDNGDDz6ooqIiz3vk3H+t5b2hoUEfffSRhgwZoilTpig1NVXjxo1rsgSTvKMtNTU12rhxY5PPhyRNnjyZ//YIaWVlZZKkHj16WBxJZKivr9eyZctUWVmp8ePHWx1O2PvpT3+qG2+8Uddee63VoUSM86kvoLn3339fY8eO1T/90z8pNTVVl1xyiV5//XWrw5IUosuix40bpzfffFOfffaZXn/9dRUWFmrChAkqKSlRYWGhJKlXr15NjunVq5fnvcLCQjkcDnXv3r3NMampqc3mTk1N9YzpbNrKuzfIu398yfuZM2f09NNP66677lJSUpIk8u4vb/L+4YcfqmvXroqLi9P8+fOVk5Oj5ORkSeTdX+3l/T/+4z9kt9v1+OOPt3g8efddezmfOnWq3n77bX355Zd66aWXtH79ek2aNEnV1dWSyLm/2sp7UVGRTp06pXnz5un666/X559/rltuuUW33nqrcnNzJZF3tK24uFj19fVtXg8DocYYo9mzZ+uKK67QiBEjrA4nrG3dulVdu3ZVbGysZs6cqXfffVcXX3yx1WGFtWXLlmnTpk3Kzs62OpSIcb71BTS3b98+vfbaa7rwwgv12WefaebMmXr88cf15ptvWh2a7FYH0JKpU6d6vs7MzNT48eM1aNAgvfHGG56bzNtstibHGGOavXauc8e0NN6b80SqtvI+e/Zsv89L3tvmbd5ra2t15513qqGhQYsWLWr3vOS9bd7k/eqrr9bmzZtVXFys119/XbfffrvWrl3b4j/m3ch729rK+8SJE/W73/1OmzZt8jk/5L117X3W77jjDs/7I0aM0NixY9WvXz999NFHuvXWW1s9LzlvW1t5v/POOyVJN910k37+859LkkaPHq1Vq1Zp8eLFmjhxYqvnJe84mz/Xw4BVHn30UW3ZskXffPON1aGEvYsuukibN2/WyZMn9de//lX33XefcnNzKTD66dChQ/rZz36mzz//vMm9j3F+AlVf6MwaGho0duxYvfjii5KkSy65RNu3b9drr72me++919LYQrJz8VwJCQnKzMzUnj17PLsLnftb2aKiIs9vb9PS0lRTU6PS0tI2xxw7dqzZXMePH2/2W+DO6uy8e4O8d4yW8l5bW6vbb79d+fn5ysnJ8XQtSuS9o7SU94SEBA0ePFhZWVlaunSp7Ha7li5dKom8d5Sz8/7111+rqKhIffv2ld1ul91u14EDB/TEE0+of//+ksh7R2jv7/b09HT169fP8z457xhn5z05OVl2u73ZPwKHDRvm2YyDvKMtycnJio6ObvN6GAgljz32mN5//32tWLFCvXv3tjqcsOdwODR48GCNHTtW2dnZGjVqlH73u99ZHVbY2rhxo4qKijRmzBjPNWhubq5+//vfy263N9lIDf7ztb6A5tLT09u8frRSWBQXq6urtXPnTqWnp2vAgAFKS0tTTk6O5/2amhrl5uZqwoQJkqQxY8YoJiamyZiCggJt27bNM2b8+PEqKyvTunXrPGPWrl2rsrIyz5jO7uy8e4O8d4xz8+4uLO7Zs0dffPGFevbs2WQ8ee8Y3nzejTGepaLkvWOcnfcZM2Zoy5Yt2rx5s+eRkZGhX/ziF/rss88kkfeO0N5nvaSkRIcOHfK8T847xtl5dzgcuvTSS7Vr164mY3bv3q1+/fpJIu9om8Ph0JgxY5p8PiQpJyeH//YIKcYYPfroo1q+fLm+/PJLDRgwwOqQItLZ16jw3TXXXKOtW7c2uQYdO3as7r77bm3evFnR0dFWhxgRfK0voLnLL7+8zetHSwV3/xjvPPHEE2blypVm3759Zs2aNWbatGkmMTHR7N+/3xhjzLx584zT6TTLly83W7duNT/5yU9Menq6KS8v95xj5syZpnfv3uaLL74wmzZtMpMmTTKjRo0ydXV1njHXX3+9GTlypFm9erVZvXq1yczMNNOmTQv6zxsq2st7SUmJycvLMx999JGRZJYtW2by8vJMQUGB5xzk3Xdt5b22ttZMnz7d9O7d22zevNkUFBR4HtXV1Z5zkHfftZX3U6dOmTlz5pjVq1eb/fv3m40bN5oHHnjAxMbGmm3btnnOQd59197fM+c6d7doY8i7r9rKeUVFhXniiSfMqlWrTH5+vlmxYoUZP368ueCCC/h/6nlq77O+fPlyExMTY5YsWWL27NljFixYYKKjo83XX3/tOQd5R1uWLVtmYmJizNKlS82OHTvMrFmzTEJCQqt/n6J9FRUVJi8vz+Tl5RlJ5uWXXzZ5eXnmwIEDVocWtv71X//VOJ1Os3LlyibXsadPn7Y6tLA1Z84c89VXX5n8/HyzZcsW88wzz5ioqCjz+eefWx1aRGG36PPn63U/2rdu3Tpjt9vNv//7v5s9e/aYt99+28THx5u33nrL6tBMSBYX77jjDpOenm5iYmJMRkaGufXWW8327ds97zc0NJjnn3/epKWlmdjYWPPDH/7QbN26tck5qqqqzKOPPmp69OhhunTpYqZNm2YOHjzYZExJSYm5++67TWJioklMTDR33323KS0tDcaPGJLay/uf/vQnI6nZ4/nnn/eMIe++ayvv+fn5LeZcklmxYoXnHOTdd23lvaqqytxyyy0mIyPDOBwOk56ebqZPn27WrVvX5Bzk3Xft/T1zrpaKi+TdN23l/PTp02by5MkmJSXFxMTEmL59+5r77ruvWT7Jue+8+awvXbrUDB482MTFxZlRo0aZ9957r8n75B3tefXVV02/fv2Mw+EwP/jBD0xubq7VIYW1FStWtHjNdd9991kdWthq7Tr2T3/6k9Whha1//ud/9vy5T0lJMddccw2FxQCguHj+fL3uh3c++OADM2LECBMbG2uGDh1qlixZYnVIxhhjbMYYE7w+SQAAAAAAAACRIizuuQgAAAAAAAAg9FBcBAAAAAAAAOAXiosAAAAAAAAA/EJxEQAAAAAAAIBfKC4CAAAAAAAA8AvFRQAAAAAAAAB+obgIAAAAAAAAwC8UFwEAAAAAAAD4heIiAAAAAABh5KqrrtKsWbOsDgMAJFFcBAAAAAAAAOAnmzHGWB0EAAAAAABo3/3336833nijyWv5+fnq37+/NQEB6PQoLgIAAAAAECbKyso0depUjRgxQr/85S8lSSkpKYqOjrY4MgCdld3qAAAAAAAAgHecTqccDofi4+OVlpZmdTgAwD0XAQAAAAAAAPiH4iIAAAAAAAAAv1BcBAAAAAAgjDgcDtXX11sdBgBIorgIAAAAAEBY6d+/v9auXav9+/eruLhYDQ0NVocEoBOjuAgAAAAAQBh58sknFR0drYsvvlgpKSk6ePCg1SEB6MRsxhhjdRAAAAAAAAAAwg+diwAAAAAAAAD8QnERAAAAAAAAgF8oLgIAAAAAAADwC8VFAAAAAAAAAH6huAgAAAAAAADALxQXAQAAAAAAAPiF4iIAAAAAAAAAv1BcBAAAAAAAAOAXiosAAAAAAAAA/EJxEQAAAAAAAIBfKC4CAAAAAAAA8AvFRQAAAAAAAAB++f8BqubFRd67bWsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRcAAAINCAYAAACkr0g2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC6RElEQVR4nOzdd3iUZfr28XMy6W3SSEjoIE1BdCkSVEDFACsqiqsuCkZB4QeLBdFddHdfbLBrA0XBgisWVGyoKAuiSBMQQVgBFZEqJUBCSK+Tef+YPANDCplkJpNJvp/jyDGTZ55yPxOMyZnrvi+TzWazCQAAAAAAAABc5OftAQAAAAAAAADwTYSLAAAAAAAAAGqFcBEAAAAAAABArRAuAgAAAAAAAKgVwkUAAAAAAAAAtUK4CAAAAAAAAKBWCBcBAAAAAAAA1ArhIgAAAAAAAIBa8ff2ANytrKxMhw8fVkREhEwmk7eHAwAA4DKbzaacnBwlJSXJz4+/BfsifiYFAAC+zJWfRxtduHj48GG1atXK28MAAACos99//10tW7b09jBQC/xMCgAAGoOa/Dza6MLFiIgISfabj4yM9PJoAAAAXJedna1WrVo5fq6B7+FnUgAA4Mtc+Xm00YWLxrSTyMhIfpADAAA+jem0voufSQEAQGNQk59HWcQHAAAAAAAAQK0QLgIAAAAAAACoFcJFAAAAAAAAALVCuAgAAAAAAACgVggXAQAAAAAAANQK4SIAAAAAAACAWvH39gAAAAAAAICzkpISWa1Wbw8DQCNhNpsVEBDgkXMTLgIAAAAA0EBkZ2crPT1dRUVF3h4KgEYmKChIcXFxioyMdOt5CRcBAAAAAGgAsrOzdejQIYWHhysuLk4BAQEymUzeHhYAH2ez2VRSUqKsrCwdOnRIktwaMBIuAgAAAADQAKSnpys8PFwtW7YkVATgViEhIYqIiNDBgweVnp7u1nCRhi4AAAAAAHhZSUmJioqKZLFYCBYBeITJZJLFYlFRUZFKSkrcdl7CRQAAAAAAvMxo3uKphgsAIJ36HuPOhlGEiwAAAAAANBBULQLwJE98jyFcBAAAAAAAAFArHg0XV69erauvvlpJSUkymUz65JNPqt3/448/1pVXXqlmzZopMjJSycnJWrZsmSeHCAAAAAAAAKCWPBou5uXlqUePHnrhhRdqtP/q1at15ZVXasmSJdq8ebMuu+wyXX311dqyZYsnhwkAAAAAAACgFjwaLg4dOlSPP/64rr/++hrtP2vWLD344IPq3bu3OnbsqOnTp6tjx45avHixJ4cJoJGz2WzamZajr38+ql/SsmWz2bw9JAAAAAAN1MqVK2UymZSamlrnc82fP18mk0nTpk2r87k8qW3bti6txZeamiqTyaSVK1fW+BhfeS/gOn9vD6A6ZWVlysnJUUxMTJX7FBUVqaioyPF5dnZ2fQwNgI/43+8n9dCibdpx+NT3hnMTI/XEdd10YetoL44MAIA6sNmkkvzaHx8QKtE0AvA5M5f/6u0h1Mh9V3by9hB82sqVK3XZZZfptttu0/z58709nAZl4MCBWrVqlfbu3au2bdt6ezgo16DDxWeeeUZ5eXm68cYbq9xnxowZeuSRR+pxVAB8xbIdafrLOz+oxGpTcICf2seFa/fxXP10JFs3vbxBz//5Ag3plujtYQIA4LqSfGl6Uu2Pf+iwFBjmvvEAQCPSp08f/fzzz7JYLN4eSqNy3XXXqW/fvoqLi/P2UOBmDbZb9Lvvvqtp06Zp4cKFio+Pr3K/qVOnKisry/Hx+++/1+MoATRUm/ef0KR3tqjEalPKuQla97crtOSeS7V+6hVKOTdBxdYy3f3uVv1wINPbQwUAAADQgISGhqpLly5KTKQQwZ0sFou6dOlCuNgINchwceHChRozZozef/99DRo0qNp9g4KCFBkZ6fQBoGnLKSzRPe9tVbG1TCnnJmjOLX9QTFigJCkmLFBzb+2pwefZA8aJC35QTmGJl0cMAEDtvdR7mWb3XX3Wj5d6L/P2UAGgxgoLCxUcHKx27dpVeG3YsGEymUy67LLLKrzWrVs3+fv7V1gybd++fRo3bpzatm2roKAgNWvWTDfccIN+/PHHCueobs3F3NxcTZkyRa1atVJISIjOPfdcPf/887LZbDKZTNVO1T1w4IBGjhypZs2aKSQkRL169arQYyI1NdVxX2+88YZMJpPj48y1Cl25J0kqLS3VjBkz1LFjRwUHB6t9+/b6xz/+oeLi4irHXBOrV6/W5ZdfroiICEVGRuqqq67STz/9VGG/qtZcLCkp0csvv6w+ffooLi5OoaGhatu2rYYNG6b33nvPca8mk0mrVq2SJLVr187pvTldfn6+HnvsMXXr1k0hISGyWCzq37+/41yV2bJli4YOHSqLxSKLxaLBgwfr+++/r3LMAwcOlMlk0r59+/TOO++ob9++ioiIUFRUlGOfL774QnfccYe6du2qyMhIhYWFqUePHpo+fbrT8n6VvT+7d+/WjTfeqLi4OEVGRmro0KGO97S0tFTTp09Xp06dFBwcrHPOOUdz5syp8t7qQ4ObFv3uu+/qjjvu0LvvvqurrrrK28MB4IOe+fJXHcwsUMvoED1zYw/5m53/jmL2M+mZGy/QL8+v0f6MfD29bKceubabl0YLAEDdlJhDVGoO8fYwAMCtgoODddFFF2n16tXat2+fI7SzWq1au3atJGn9+vWOEFKS0tPT9dNPP+kPf/iDU+HR2rVrddVVVyk7O1vnnXeerrnmGh06dEgff/yxlixZoi+++KLSoPJMhYWFuuKKK7Rx40Y1a9ZMw4YNU25urh544AHt3r272mP37dun3r17Kzg4WJdccomOHj2q9evXa/jw4frvf/+rlJQUSdIll1yitLQ0LVu2TB06dNAll1ziOMcFF1xQp3v685//rA8//FDh4eEaMmSIbDabnn32WW3ZsqXWTS8XL16s5557Tt26ddPgwYO1bds2LVmyRN999522b9+u5s2bn/Uco0aN0sKFCxUXF6d+/fopNDRUhw4d0po1a5Sbm6ubb75Z4eHhuu2227R06VIdPXpUI0aMUHh4eIVz5eTk6LLLLtPmzZsdX6O8vDytWLFCa9as0YYNGzRr1iynY9atW6dBgwapoKBAF154oTp37qyffvpJl1xyiW6//fZqxz5jxgzNmzdPF198sYYNG+Y0m3bMmDHKy8vTeeedp+7duys7O1sbN27Uww8/rK+//lpffvmlzGZzhXPu3btXffr0UVRUlAYMGKBdu3Zp6dKl2rx5s3788UeNHz9eK1asUHJystq3b69vvvlGEydOVEBAgO68886zvt+e4NFwMTc3V7/99pvj871792rr1q2KiYlR69atNXXqVB06dEhvvvmmJHuwOHr0aD333HPq27ev0tLSJMmRNAPA2ew5nqu3N+yXJP17xPmKCA6odL/wIH89Mby7bn3tO721Yb9G92urDs0q/s8JAAAAgHcMHDhQq1ev1sqVKx1VhFu2bFFWVpbOO+887dixQxs2bNDAgQMl2SsObTab43PJ3vT1T3/6kwoKCvTBBx/ohhtucLz21Vdf6aqrrtKoUaO0Z88eBQYGVjuep59+Whs3blRycrKWLl3qCDB//PFHp2tW5o033tCkSZP07LPPyt/fHsU899xzuvfee/X44487wsWxY8fqnHPO0bJly3TJJZdU2tClNvf07rvv6sMPP1T79u21evVqtWjRQpI9p+nfv78OHjxY7firMmvWLL399tv685//LMke/t5000366KOPNGfOHD366KPVHr9v3z4tXLhQvXv31urVqx1BsSQVFBRo69atkqS4uDjNnz9fAwcO1NGjR/X0009XWiX60EMPafPmzRo0aJAWLVrkCCB/+eUXDRgwQM8995xSUlL0xz/+UZK9kfDtt9+ugoICPfnkk3rggQcc53rsscf0z3/+s9rxv/nmm1qxYoUGDBhQ4bWXXnpJV155pcLCTq1xnJOTo5EjR+rzzz/XggULNHr06ErPOXnyZD311FPy8/OTzWbTHXfcofnz5+uKK66Qn5+ffvrpJ7Vs2VKS9PXXX2vQoEF64oknvBYuenRa9KZNm3ThhRfqwgsvlCRNnjxZF154oeOLc+TIER04cMCx/8svv6zS0lJNnDhRiYmJjo977rnHk8ME0Ig8s/xXlZbZdHmXeF18TvVreVzSMU6DuiaozCY999WuehohAAAAgJowApuVK1c6thnTYo1cobLXTg/6/vOf/ygtLU1TpkxxCuEkadCgQZowYYIOHTqkzz///KzjefnllyVJzz77rFNl5Pnnn69JkyZVe2z79u31zDPPOIJFSZo4caKio6O1YcMGl6Ym1+ae5s6dK8kemBnBomSfXvyPf/yjxtc+08iRIx3BoiSZzWY99NBDkuzTpc/m2LFjkqR+/fo5BYuSvdAsOTm5xmPJy8vTa6+9Jj8/P82ZM8epsrFLly76+9//Lkl6/vnnHdtXrFihX3/9VV26dNGUKVOczvfQQw9VOi3/dGPGjKk0WJSk4cOHOwWLkhQREaGZM2dKkj799NNKj+vQoYP+/e9/y8/PHtmZTCZNnjxZkvTTTz/p+eefdwSLknTFFVfowgsv1P79+7Vv375qx+spHg0XBw4cKJvNVuHDSN7nz5/v9I3A+CtDVfsDQHX2Z+RpybYjkqQHBneu0TH3XdlRkrT4x8PaczzXY2MDAAAA4Jp+/fopKCioQm4QFRWlG264QS1btqzwmp+fn9NU4uXLl0uyBz2VMfb9/vvvqx3LgQMHdPDgQbVs2VJ9+/at8Pqf/vSnao8fOHCgAgKcZ1X5+/urffv2KikpUUZGRrXHn87VeyopKdF3330nPz+/CmGkJKdw0FVGxeXpOnXqJMleUHY2Xbp0UVhYmF5//XW9+uqrLr0PZ9q8ebMKCgrUp08fdezYscLro0aNkiR9++23jmng69atkyTdcMMNFdZuNJvNuv7666u95jXXXFPt67t27dJzzz2nSZMm6Y477lBqaqoee+wxx2uVGThwoFMILdnDaUkKDAysNMzs0KGDpJq9557Q4NZcBIDaev3bfbLZpP6dmqlrYs2aO52XZNEVXeL19S/H9Ob6/Zp2zXkeHiUAAACAmggODlafPn20Zs0a7du3T61bt9batWvVv39/+fn5acCAAfrwww9VWFio3Nxc7dixQxdeeKFTUw2jkuuiiy6q9lrp6enVvn748GFJUqtWrSp9vXXr1tUef3ql2emM6rrKGnxUxdV7ysjIUHFxsRITEyud+m00Ijl58mSNx2Co7L5cuafIyEi9+uqruuuuu3TXXXdp3Lhx6ty5sy677DKNHj260iC3KsbXqKqmOlFRUbJYLMrKylJ2drYsFkudv65VvW6z2TRlyhTNnDmzyvUsc3JyKt1+emWpwaiAbN68uaOisbLXXfl35E6EiwAahZzCEn2wyb547thLqi9dP9Nt/drq61+O6aPNBzVlcGeFB/GtEQAAAGgIBgwYoDVr1mjlypU6//zzdfLkSce054EDB2rBggXasGGDTpw4UWG9Rcm+BqBkrywMDQ2t8jpnC+oMZ1a31VRtj6uMq/dkhFvuHIPBHef885//rEGDBunTTz/Vl19+qVWrVmnu3LmaO3euHnjgAT355JNuH9OZ+1R1zNka3Zw5lduwcOFCPfvss2rZsqVmzZql5ORkNWvWTAEBASouLlZQUFCV565u/J74GroDv0EDaBT+uy1NecVWtW8Wpks7Vr/W4pkuOSdO7ePCtCc9T4v/d1h/7lP9X6cAAAAA1I+BAwfq8ccf18qVK3XixAnHttMfT3/tzCmjLVu21M6dO/X3v/9d559/fq3HkZiYKElOfSNOV9V2T3D1nuLi4hQYGKi0tDQVFxdXqF7MycmpVdWiOzVr1kxjx47V2LFjZbPZtGzZMt1000166qmnlJqaqnPPPfes50hKSpJkb1JTmaysLGVlZSksLEwRERGSzv51Pb37sysWLVokyb7W5bBhw5xe27NnT63O2ZB5dM1FAKgvH2+xdzcb8YeWLv81x8/PpBt728vgF2055PaxAQAAAKidfv36KTAwUCtXrtTKlSsVHR2tHj16SJLOOeccx7qLxnqL/fv3dzp+0KBBkqRPPvmkTuNo06aNkpKSdPDgQX333XcVXv/www/rdP7TGeFfaWlppa+7ek8BAQHq06ePysrK9NFHH1V4/b333qvdQD3EZDJpyJAhuuqqqyRJ27dvd7xW3XvTs2dPhYSEaOPGjZWuZ/j2229Lsq9JafzO2K9fP0nSRx99VKGSsKyszBESuiozM1NS5dOt33///VqdsyEjXATg8w5m5mvDHvtfKodfWHF9ipq4pkeSTCZp494TOnSywJ3DAwAAAFBLISEh6t27t/bv36/ly5c71ls0DBgwQOvXr9f27dvVo0cPp/UWJWncuHFq1qyZpk+frtdff71CgJSXl6c333xTBw8ePOtYxo0bJ0m6//77ndbL2759u2bPnl2Hu3RmVODt3LmzynG4ek/G2P/5z386Nf3Yv3+/o8GIN2zZskUff/yxSkpKnLZnZmY6QtzT1zWs7r0JCwvTHXfcobKyMk2cOFF5eXmO13799Vc9/vjjkuTU2fvyyy/XOeeco59//tnRxdnwr3/9q9ZVhkZTm1deecXp67NmzRo99dRTtTpnQ0a4CMDnfbrVvghvcvtYtYgKqdU5kqJC1KdtjCTps/LzAQAAAPA+Y/pzYWFhhTUVBw4cqOLiYtlstkq76EZHR2vRokWO4Kldu3YaNmyYRowYod69eyshIUG33XbbWRu6SNIDDzygXr166dtvv1WHDh1044036o9//KN69eqlkSNHSlKlDVNc1bZtW51//vnatGmT+vTpo9tvv11jx47VZ599Vut7uuWWW3Tdddfpt99+U+fOnXXddddp+PDhOu+889S9e/ezNi7xlP3792vEiBFq1qyZBg0apFtvvVXDhg1T27ZttWfPHl133XVOTV2M7swjR47Un/70J8dUasOMGTPUs2dPLV++XO3bt9eNN96oq666Sj169FBaWpruvvtuR0WkZO8I/frrrys4OFj333+/evbsqZEjR+qCCy7QI488ojvvvFOS61/Xu+++W2FhYZozZ466deumP//5z+rfv78GDBig8ePH1+Uta5BYcxGAz/vyp6OSpKt7JNXpPMMvbKHv9p7QF9sO6/8GdnDH0AAAAAC3ue/KTt4eglcMHDhQTzzxhOP5ma9V9vx0F198sbZt26Znn31WX3zxhVasWCGz2aykpCQNGzZM119/fY3W9AsJCdHXX3+tadOm6f3339enn36qdu3aafr06brxxhv1wgsvKDY2tra36eSjjz7SAw88oDVr1mjz5s0qKytTy5YtHeGaq/dkMpm0cOFCPfXUU3rttde0ZMkSJSYmatKkSZo2bZo6d+7slnG7qm/fvnr88ce1YsUK7dy5U2vWrFF0dLTOP/983XnnnY7Q1nD99ddr5syZevXVV7V48WJHd+R58+ZJsne+XrVqlZ555hktXLhQn332mQIDA9WrVy9NmDBBf/7znyuM4ZJLLtHatWv18MMPa926ddq1a5f69OmjVatW6euvv5Ykl7+unTp10vfff6+//vWv+u677/TZZ5+pc+fOevnll3XnnXfq6aefrs3b1WCZbGdrfeNjjHbiWVlZioyM9PZwAHjY0exCXTTd/g1/40NXKD6y8m5dNXE8p0h9pn8lm03aMPUKNbfU/lwAUBf8POP7PP41LM6Tptv/qDa772qVms9eue9vLdCkDeVrkT10WAoMc/+4ANRaYWGh9u7dq3bt2lXZgRYN18KFC3XzzTdr/Pjxmjt3rreHAzcZOnSoli5dqg0bNtS4o3hDV9PvNa78LMO0aAA+7auf7VWLF7SKqlOwKEnNIoJ0QasoSdLXvxyt69AAAAAANDJbt25VWVmZ07Zt27bpwQcflKQKlXZo+E6cOKH9+/c7bbPZbJo9e7aWLl2qc845R3369PHS6HwD06IB+LSvyqdEX3luglvON6hrgrYcOKmvfjqqWy5q45ZzAgAAAGgcbr75ZmVnZ6t79+6Kjo7Wvn37tGnTJlmtVo0fP16XXnqpt4cIF/3666/q16+fzj//fLVv315Wq1Xbt2/Xnj17FBISoldffdXRXRqVo3IRgM8qKLbq290ZktwbLkrSt7szlF9c6pZzAgAAAGgcJk2apA4dOmjr1q36+OOP9csvv6hfv36aP38+06F9VPv27TV+/HgVFRXp66+/1n//+18VFRVp5MiR+u6776pcyxOnULkIwGdt2n9CxaVlSrQEq2N8uFvO2SkhXEmWYB3OKtT3+zI1oFMzt5wXAAAAgO+bOHGiJk6c6O1hwI3i4+M1Z84cbw/Dp1G5CMBnffubvWqxX4c4t5Wpm0wm9TsnTpK0bne6W84JAAAAAEBjRbgIwGcZ4V+/DrFuPe/F59jPt648vAQAAAAAAJUjXATgk7LyS7TtUJYk6eLySkN36dfBfr7th7OUlV/i1nMDAAAAANCYNN41F9fNlsKCK3mhiqmT1U6p5JjaHVPVqRrC2HzwGP8gKTBcCgyTgsLtz0Oi7R9NsHPV+j0Zstmk9s3C1NxS2X/rtZcQGawOzcK0+3ie1u/J0JBuzd16fp9gs0mFWVLecakoWyrOl0oKpJI8+2OZVbJZyx/L7B/GNuNzV6/n+iBrcQzgI/IKvT0CAAAAoEYab7i46t9SUNMLXNAE+QdLkUmSpaWU0E1qfr7Uqo8U28HbI/OoDXvsU5Yv7uDeqkVDvw5x2n08TxuaQriYuU/at1ZK2y4d/0XK2C3lpknWYm+PDGi6igjPAQAA4Bsab7h4/s1SaOAZG6v4Qb3Kn9+r+cG+yiqbqq7h4v4+d43aHFOba1R1qgZ4H7U5prr9S4uk4lypOM/+UZQrFedIpYXSiT32j72rTx0S21HqcpXUM1WKaVf1GH3UDwcyJUm928V45Py928XorQ37tXl/pkfO73UZu6Wt70jbP7SHi1UJipSCo6SAEPtHYJg90DYHSCa/Ux9+5vLnZvtzmWpYUVvDPwLVaDf+oIRGJL9Y0qveHgUAAABwVo03XLzqaSky0tujADyrpFDKOSJlH7YHRGnbpCNbpYObpIxd0rezpG+fk7peLQ2a1miqGQuKrfrpcLYk6Q+tozxyjZ5toiVJPx3JVn5xqUIDG8m3y/Rd0jfTpR2L5Ai5/fylFj2lFr2k+C5SXCd7NWxYvBTg3innAGooO1uEiwAAAPAFjeS3ZaCJCgi2VyXGtJPaXnxqe2G29NtX0pa3pd1fSz9/Ju38rzTgr9Klk8sry3zXjwdPqrTMpoTIILWICvHINZIswWoeGay07EL9eDBLfdu7tyN1vbOWSt/OlFY9eWq68zlXShf8Weo42L6OJwAAAAAALiJcBBqj4Eip2/X2j2M/S1/+3R42fvO4tG+NdNNbUrDF26Ostc3lU6J7tomWyUPNbEwmk3q2idYX245o8/5M3w4XC7OkD1Kl3Svsn59zpb2StXk3b44KAAAANWWzSSX53h6FawJCm2TjSaApIlwEGrv4rtKtH0lb35W+uF/au0qaP0watUgK80wzFE/7oXwdxD+0jvbodS5sHaUvth1xXM8n5Z+Q3rhaOrrd/gPesJnS+Tfxgx4AAIAvKcmXpid5exSueeiwfb1uqG3bttq/f79sLvQXSE1N1RtvvKFvvvlGAwcO9NzgADfw8/YAANSTC/4s3bFUCmsmpf0oLfiTVOxjf/2UZLPZ9MOBk5KkP7TxbLhorLv4w4FMl34QaDCKcqUFN9iDxfAE6fb/Sj1uJlgEAACAT9i3b59MJhPhWi2ZTCa1bdvW28NAE0DlItCUJJ4vpS6R/pMiHf5B+mS89Kc3fCps2p+RrxN5xQr099N5SZ5t2nRekkWB/n7KzC/R/ox8tY3zob+82mzS4rulQ5ulkGhp9Kf2KlYAAAD4tim/SYGh3h5F5YrzpafP8fYoGoUZM2bob3/7m1q3bu3toQBnRbgINDXNOkk3vyO9cY3006fSD29KPW/z9qhqbNuhLElS18RIBfl7tjFNoL+fujaP0P8OZmn74SzfChc3vy5t/0gymaWb3yVYBAAAaCwCQ5lu3AQkJiYqMTHR28MAaoRp0UBT1KafdMU/7M+XTpUy93l1OK7YftgeLnZv4dmqRUO3FvbGN0ao6ROyDklfln99r3xEapPs3fEAAAAALpo2bZratWsnSVq1apVMJpPjIzU11bGfMfW3uLhYjz76qLp06aKgoCANHz7ccR6TyaT58+dXep22bdtW2SRy27ZtuuWWW9SiRQsFBQUpKSlJt99+u/bt21fr+5o3b57OP/98hYSEqHnz5ho3bpxOnjxZYb/U1FSZTCatXLnSaXtGRoYeeughnXfeeQoPD5fFYlGnTp00evRobdy4UZI0f/58xz3t37/f6b07c4r577//rnHjxqlNmzYKCgpSfHy8rr/+en3//fdV3sP777+v3r17KyQkRAkJCbr99tt19OjRKsd8tq9RYWGhXnvtNV177bVq3769QkJCFBUVpf79++u9996rdAynX+urr77SgAEDFBERofj4eN15553KyrL//nbs2DGNGzdOSUlJCg4OVp8+fSqMD3VH5SLQVCX/Rfp1mbT/W3sQddNb3h5Rjew4lC3JPmW5PhjhonFdn/DfB6XiXKlVX6nvRG+PBgAAAHDZBRdcoBEjRuijjz5SQkKChgwZ4njtkksucdq3rKxMw4cP1+rVqzVgwACdf/75io2NrdP1P/roI40cOVLFxcXq2bOn+vXrp927d2v+/PlavHixVq1apfPOO8+lcz744IN67rnn1Lt3bw0ZMkTr1q3TK6+8op9//tkRoFYnNzdXffv21W+//aaOHTtq8ODBkqQDBw7o3XffVfv27dWnTx+dc845uu222/TGG28oLCxMN9xwg+McXbp0cTzftm2bLr/8cqWnp6tLly66/vrrdeDAAS1atEiLFy/WO++8oz/96U9OY5g1a5buu+8+mc1mDRw4UHFxcVq+fLlWrlyp888/v8qxV/c12rdvn8aOHauEhAR16dJFffr0UVpamtatW6c1a9bol19+0bRp0yo976JFi/TCCy/owgsvVEpKijZu3Kh58+Zp165d+vDDD5WcnKzCwkJddNFFOnLkiL777jsNGTJE33//vbp3717t+42aI1wEmio/s/THp6WXLpZ+/kzau1pq19/bo6qWzWZzVC52q6dwsXt5uLj9cJZsNttZ/4fvdfvWSr98Lvn5S8OelfwoUAcAAIDvGT58uC644AJ99NFH6tKlS5WVh5K9+i4oKEg7d+5UixYt6nztvXv3avTo0QoJCdHy5cvVv/+p35PefPNN3Xbbbbr99tsdlYI19fbbb+u7777TBRdcIElKT09XcnKy1qxZo2+++UaXX355tcd/+OGH+u233zRp0iQ9//zzTq8dO3ZMx44dk2QPXy+55BK98cYbiouLq/S9s9lsuuWWW5Senq6pU6fqiSeecPyu8+GHH+qmm27SmDFj1L9/fyUkJEiS9uzZo7/+9a8KDg7Wl19+qUsvvVSSvfLwhhtu0GeffVbl2Kv7GjVr1kzLli3ToEGD5Hfa7y979+7V5Zdfrscee0ypqamVNqd58cUX9f7772vEiBGSpJycHPXr10+rVq3SgAED1Lt3b82fP1/BwcGSpH/84x96/PHH9fTTT+uNN96o7u2GC/itE2jKEs6Vet1hf77icXsTkAbs0MkCncwvkb+fSZ2ah9fLNTsmhCvAbNLJ/BIdzCyol2vWms0mrXjC/vwPt0kJrv0lFQAAAPBVM2bMcEuwKEnPPfec8vPz9eSTTzoFi5I0evRoDR8+XN9//71++OEHl8772GOPOYJFSYqLi9P//d//SZJWr1591uON8LCyEDI+Pl7dunWr8VhWrlypbdu2qV27dnrssceciihuuOEGDR8+XDk5OXr99dcd2//zn/+ouLhYt912myNYlKTg4GA999xzTsFgZar6GsXGxiolJaXC8e3atdPDDz+ssrIyLV68uNJz3nLLLY5gUZIiIiJ01113SZIOHTqkl156yREsStKUKVNkMpm0atWqascK1xAuAk1d/wckc5D0+3f2qrcGbMdh+9TkTgkRHm/mYgjyN6tz84jy6zfwdRf3rJQOrLN/PftP8fZoAAAAgHphMpl09dVXu+18y5cvlyRde+21lb5uTMuubl3CyqSkpFTY1qlTJ0nSkSNHznp8z549JUkPPfSQPv/8cxUWFrp0/dOtWbNGknTTTTfJbK74u9WoUaOc9pOkdevWSVKFqdKS1KFDB1144YVVXq8mX6O1a9fq8ccf1//93//p9ttvV2pqqj744ANJ0q5duyo95sorr6ywrX379pKkXr16KSoqyuk1i8Wi2NjYGr3fqDmmRQNNXURz6Q+jpO/nSWuekdpdevZjvGRHeVOVbvXUzMXQLcmi7Yeyte1QloZ0a8Ad29a/YH/smSpFJnl1KAAAAEB9iY+PV1BQkNvOZzRsad68ebX7paenu3Teli1bVtgWHm6fkVVUVHTW46+44grdd999mjVrlq6++moFBgbqggsuUEpKisaMGVPptOGqHD58WJKqPMbYbux3+vNWrVpVekzr1q21efPmSl+r7muUlZWl66+/XitWrKhyvDk5OZVur6wSMiwsrMrXjNdd/dqheoSLAKR+d0ub/iPt+UZK3yXFdfT2iCq1/XD9NnMxnNfCIn3/u7Y35KYuGbul376SZJL6jvf2aAAAAIB6c/q0V1eVlZVV2Ga1WmUymTR69Ohqj3W1oYs71m9/9tlnNW7cOH366af6+uuv9e2332rjxo168skntXDhQkcHZneNqbLXqzrGVs0yW9V9jf76179qxYoV6t+/vx599FF169ZNUVFRMpvN+vLLLzV48OAqz13d+Bv8evmNCOEiACm6jdQxRfp1qbR5vjT4CW+PqFLGtOTzkuq3cvHcRPu06F+PVv7Xsgbh+3n2x44pUkx7744FAAAAaCACAwMl2Tstn8lqtSotLa3C9pYtW2r37t16/vnnFRlZv7971ETnzp314IMP6sEHH1RhYaFefPFFTZkyRePGjatxuJiUZJ/ptHfv3kpf379/vyQpMfHUzK3ExETt3LlTBw4cUMeOFQtSfv/9dxfvxG7RokUym8367LPPZLE4F5Ls2bOnVudE/WLNRQB2RmOXrQukktqv3eEpJ/OLdTTbPlXAWAOxvnRMsF/vSFahsgpK6vXaNVJaJG19x/68z13eHQsAAADgJkYwWFpaWutzGOHYr7/+WuG1FStWqKSk4s/3gwYNkiR98skntb5ufQkODtb999+vxMREp47RkhQQEFDle2c0ZFm4cKGsVmuF199++22n/SSpX79+kuzdpM+0Z88ebdmypVb3kJmZqYiIiArBoiS9//77tTon6hfhIgC7cwZJkS2lgkxp1zJvj6aCX4/a/9LYIipEEcEB9XrtyOAAJVmCy8fRAKsXf/tKKjwpRSRKHS7z9mgAAAAAt4iLi1NAQIB2795daQBWEwMGDJBkD8uMtRQlexg2adKkSo+5//77FRISovvuu6/SLsUnTpzQnDlzVFBQUKsx1dYnn3yiDRs2VNi+ZcsWHT16VBEREYqOjnZsT0pK0tGjR3Xy5MkKxwwcOFDdu3fX3r179c9//tNp2vEnn3yijz/+WOHh4UpNTXVsv/322xUQEKD58+c7mrtIUmFhoe69995Kp5jXRKdOnXTy5EktXLjQafvMmTP1zTff1OqcqF+EiwDs/MxSt+vtz7d/7N2xVMII9TolhHvl+p3KqyV3pjXAcPHH8r/mdRth/zoCQCM1Y8YM9e7dWxEREYqPj9fw4cO1c+dOp31SU1NlMpmcPvr27eu0T1FRkSZNmqS4uDiFhYXpmmuu0cGDB532yczM1KhRo2SxWGSxWDRq1KhKfzkDgHpXnC8V5zXQj3y33mpgYKCGDBmitLQ09ejRQ6NHj9bYsWP1+uuv1/gc7du31+jRo5WZmakLLrhA11xzja644gp1795d559/vtq0aVPhmI4dO+rtt99WQUGBrrnmGnXp0kXXXXedhg8frgsvvFCJiYmaOHFijZqwuNPKlSuVnJysli1b6uqrr9Ytt9yiyy67TH369FFZWZkee+wxBQScKsS45pprVFpaqj/84Q+69dZbNXbsWD311FOS7OsRLliwQLGxsZo+fbrOO+88jRw5Updccomuu+46+fn56T//+Y9TU5tzzjlH06dPV2Fhofr3768rr7xSN998szp27Kj//e9/jm7QRsVpTU2dOlWSdPPNN6t///4aOXKkzjvvPE2ZMkX33XdfXd821APWXARwSrfrpXXPS78uk4pypSDvBHmVORUu1u+UaEPn5hFaufN4w6tcLMy2r5UpSd3/5N2xAICHrVq1ShMnTlTv3r1VWlqqhx9+WCkpKfrpp58cnSElaciQIU6/eJ75S869996rxYsX67333lNsbKzuv/9+DRs2TJs3b5bZbP8jzciRI3Xw4EEtXWr/HnvXXXdp1KhRlVawAEC9evocb4+gXs2bN09TpkzR8uXL9c4778hqtaq0tFS33357jc/x6quvKikpSQsWLNCyZcvUqlUrPfTQQ/rb3/6mDh06VHrM9ddfr//973965plntHz5cv33v/9VcHCwkpKSdMstt2jEiBGVTuP1pNTUVPn7+2v16tXauHGjsrKy1Lx5c/3xj3/Ufffdp4EDBzrtP2PGDNlsNn366adauHChSktLNWDAAD3wwAOSpO7du+uHH37Q448/rqVLl+rDDz+UxWLR8OHDNXXqVPXp06fCGKZMmaKWLVvqqaee0po1axQZGakhQ4bo3//+t6MBTmxsrEv3dcsttyg6OlqPPfaYtm7dqm3btqlXr16aM2eObDabZs6cWbs3DPXGZKuunY8Pys7OlsViUVZWVoNceBVo0Gw26fkLpcy90ojXpO43eHtEDje/sl4b9pzQM3/qoRE9W9b79T/+4aAmv/8/9WkXo/fHJdf79au07UPpozFS7DnSXzZJdEQDGgV+nqmZ48ePKz4+XqtWrVL//v0l2X/xOnnyZJXrZGVlZalZs2Z66623dNNNN0mSDh8+rFatWmnJkiUaPHiwfv75Z5177rnasGGDLrroIknShg0blJycrF9++UWdO3c+69g8/jUszpOm2xfjn913tUrNIWc9xN9aoEkb7O+THjosBYZVfwCAelVYWKi9e/eqXbt2FTvrnvbfvM/g+0yTkpeXp7Zt26qgoEBZWVmOP9ah4an2e81pXPlZhspFAKeYTNJ510lrn5V++aLBhIs2m80xHdlblYvGdX89miObzSZTQwnxjKrFLsMIFgE0OVlZWZKkmJgYp+0rV65UfHy8oqKiNGDAAD3xxBOKj4+XJG3evFklJSVKSUlx7J+UlKRu3bpp3bp1Gjx4sNavXy+LxeIIFiWpb9++slgsWrduXaXhYlFRkdP0uOzsbLfeK4AmLiDUHtb5koBQb48AHrBnzx7FxsY6VW3m5ubq//7v/5Senq477riDYLEJIlwE4KzzUHu4uPtryVoqmb3/bSI9t1iZ+SUymaRz4r0zVfuc+HD5maST+SU6nlOk+Miq/8JTb6yl0q7l9uedhnh3LABQz2w2myZPnqxLLrlE3bp1c2wfOnSo/vSnP6lNmzbau3ev/vGPf+jyyy/X5s2bFRQUpLS0NAUGBjoteC9JCQkJSktLkySlpaU5wsjTxcfHO/Y504wZM/TII4+48Q4B4DQmE1WAaBDef/99TZs2TT179lTLli2VmZmpLVu2KD09XW3bttX06dO9PUR4gfdTAwANS4ueUki0vWv0we+lNt6fAryrfJ3D1jGhCgn0zl/BggPMahsXpj3H8/RLWk7DCBcPbrR3iQ6Jllr29vZoAKBe/eUvf9GPP/6otWvXOm03pjpLUrdu3dSrVy+1adNGX3zxha6//voqz3dmVXplFerVVa5PnTpVkydPdnyenZ2tVq1a1fh+AADwBVdccYW2bt2qDRs2aMuWLbLZbGrdurVuu+02/fWvf1WzZs28PUR4AeEiAGd+ZumcQdK2D6RdXzaIcHGnl5u5GDrFR2jP8Tz9ejRH/Ts1gP9pGlOiz7myQVSYAkB9mTRpkj777DOtXr1aLVtWvw5vYmKi2rRpo127dkmSmjdvruLiYmVmZjpVLx47dkz9+vVz7HP06NEK5zp+/LgSEhIqvU5QUJCCgoJqe0sAAPiE3r1767333vP2MNDA+Hl7AAAaoI7l61Dt+tK74yj369FcSVKnBO92r+4Qb5+Ksic9z6vjcNi9wv7YMaX6/QCgkbDZbPrLX/6ijz/+WCtWrFC7du3OekxGRoZ+//13JSYmSpJ69uypgIAALV++3LHPkSNHtH37dke4mJycrKysLG3cuNGxz3fffaesrCzHPgAAALCj1AVARe0vsz8e3S7lZUhhsV4dzu5j9nCxY7x3Kxfbx9nDzT3Hc706DklS/gkpbbv9ebtLvTsWAKgnEydO1DvvvKNPP/1UERERjvUPLRaLQkJClJubq2nTpmnEiBFKTEzUvn379NBDDykuLk7XXXedY98xY8bo/vvvV2xsrGJiYjRlyhR1795dgwYNkiR17dpVQ4YM0Z133qmXX35ZknTXXXdp2LBhNeoUDQAA0JRQuQigovBmUlz5L08H1nl3LDpVKdi+mXcXsTauv+d4A6hcPLBekk2K6yRFNPf2aACgXsydO1dZWVkaOHCgEhMTHR8LFy6UJJnNZm3btk3XXnutOnXqpNtuu02dOnXS+vXrFRFx6g9UM2fO1PDhw3XjjTfq4osvVmhoqBYvXuzU3XLBggXq3r27UlJSlJKSovPPP19vvfVWvd8zAABAQ0flIoDKtb1YSt8p7ftW6nq114aRXVii9NwiSVK7OG+Hi/bKxWM5RcopLFFEcID3BrOvvIFB20u8NwYAqGc2m63a10NCQrRs2bKznic4OFizZ8/W7Nmzq9wnJiZGb7/9tstjBIC6Otv3OgCoC098j6FyEUDljNBq/9rq9/OwfeVVi80igrwb5kmyhAQoLty+WP9eb6+7uG+N/ZFwEQAAoFEwqqdLSkq8PBIAjZnxPeb0GRt1RbgIoHJtykOrtO1SQabXhmFMQfZ21aKhQUyNLsg8td5iG8JFAACAxiAgIEBBQUHKysqiehGAR9hsNmVlZSkoKEgBAe4r3mFaNIDKRSRIsedIGb9Jv2+UOg32yjAc6y02kHCxQ7Mwbdx7wrtNXQ5ukmSzf30iErw3DgAAALhVXFycDh06pIMHD8pisSggIEAmk8nbwwLg42w2m0pKSpSVlaXc3Fy1aNHCref3aLi4evVqPfXUU9q8ebOOHDmiRYsWafjw4dUes2rVKk2ePFk7duxQUlKSHnzwQY0fP96TwwRQlZZ97OHioc1eCxeN6ccNpnKxvGP0bm9Oiz64yf7Ysrf3xgAAAAC3i4yMlCSlp6fr0KFDXh4NgMYmKChILVq0cHyvcRePhot5eXnq0aOHbr/9do0YMeKs++/du1d//OMfdeedd+rtt9/Wt99+qwkTJqhZs2Y1Oh6Am7X4g/S/d+zhopfsTbdXCBrNVLytQ3wDmBZtfD1a9PTeGAAAAOARkZGRioyMVElJiaxWq7eHA6CRMJvNbp0KfTqPhotDhw7V0KFDa7z/Sy+9pNatW2vWrFmSpK5du2rTpk16+umnXQ4XT5w4odLSUpeOAXCG0HOkApu0a6OUkSHV85QMm82m3w6kyVpsVbS5SCdOnKjX61cmxlwsa0GOfvs9T+npGfLzq+dpKrbyr0ehzf71aQDvCQD3y87O9vYQAABeFhAQ4LEgAADcqUGtubh+/XqlpKQ4bRs8eLBee+01lZSUVPqNtaioSEVFRY7PjR/G27Vr59nBAk1KjvRonFdH0Pt5r16+Us2e8fIAnrzcywMAAAAAADR1DapbdFpamhISnJsTJCQkqLS0VOnp6ZUeM2PGDFksFsdHq1at6mOoAAAAAAAAQJPXoCoXJVXohGWz2Srdbpg6daomT57s+Dw7O1utWrXSiRMn3L5AJdAk/fdv0saXpT7jpaEz6vXS7353QA9/sk0DOzfTf1L71Ou1q3PH/I1aufO4pl/XXTf3aV2/F//vVGnjS1KfcdLQf9XvtQHUm+zsbMXExHh7GAAAAMBZNahwsXnz5kpLS3PaduzYMfn7+ys2NrbSY4KCghQUFFRhu9lsltls9sg4gSalVS9p0yvS0f9J9fzf1P7MApn8zGofH9mg/ntu1yxSq3ad0O8ni+p/XEf/J/mZ7F+XBvSeAHCvhvQ9DwAAAKhOg5oWnZycrOXLlztt+/LLL9WrVy8WsgW8pXl3++PRHfZmIvVof0a+JKldXFi9XvdsWsWESpIOnKjnjtE2m/3rIJ36ugAAAAAA4EUeDRdzc3O1detWbd26VZK0d+9ebd26VQcOHJBkn9I8evRox/7jx4/X/v37NXnyZP3888/6z3/+o9dee01Tpkzx5DABVCeuo2QOlIpzpJP76/XSv2cWSJJaRYfW63XPpk15uGiEn/Xm5H7718EcaP+6AAAAAADgZR6dFr1p0yZddtlljs+NtRFvu+02zZ8/X0eOHHEEjZK9w/OSJUt033336cUXX1RSUpKef/55jRgxwpPDBFAdc4DUrIuU9qOUtl2Kblsvl7XZbPr9hD28MyoFG4o2seWVixn5stlsVa4J63ZG1WKzzvavCwAAtVVciz+QBYRK9fX/PAAA4DM8Gi4OHDjQ0ZClMvPnz6+wbcCAAfrhhx88OCoALkvoZg8Xj26Xug6rl0tm5pcot6hUktQyOqRerllTRtiZU1Sqk/klig4LrJ8Lp223PyYwJRoAUEdPn+P6MQ8dlgIb1lIlAADA+xrUmosAGqjm3eyPR7fX2yUPlFctNo8MVnBAw2psEBxgVkKkvZHU/hP1ODX66Db7Y8J59XdNAAAAAACq0aC6RQNooBLKw8W0+gsXT02JblhVi4Y2MWE6ml2k/Rl5uqBVVP1c1NHMpVv9XA8A0KiU+gVrdt/VmnS5C1WLxfm1q3IEAABNBuEigLMzwsXMvVJRjhQU4fFLHmig6y0aWseGauO+EzpQX01dinKlE3vtzxMIFwEAtWAyqdQcwtRmAADgVoSLAM4uLFaKSJRyjkjHfpFa9fb4JY3KxdYNNFx0dIyur2nRx36WZJPCm0thcfVzTQBAozRz+a813tffWqBJHhwLAADwfay5CKBmmnW2P6bvrJfLHWjg4WJro2N0fYWLx3+xP8Z3qZ/rAQAAAABQA4SLAGomrpP9Mb3m1Q510eDDxfJx1du0aON9j+tcP9cDAAAAAKAGCBcB1IwRLh73fLhYYi3TkaxCSQ13zcU2sfb1qtKyC1VYYvX8BdN32R/jOnr+WgAAAAAA1BDhIoCacVQuen5a9JGThbKW2RTk76dm4UEev15tRIcGKDTQLEk6fLLA8xd0VC528vy1AAAAAACoIcJFADVjrLmYuU8qLfLopU7vFO3nZ/LotWrLZDKpRVSIJOmQp8PF0iL7+y6d+joAAAAAANAAEC4CqJnwBCkoUrKVSRm7PXqphr7eoqFFdHm4mOnhcPHEXslmtb//4QmevRYAAAAAAC4gXARQMyZTvU2N/j2zvHKxPLxrqOqtctExJbqj/esAAAAAAEADQbgIoOaMKbkebupiVAK2jKZyUdKpMJf1FgEAAAAADQzhIoCaMzoVp3s2XDQapCRF+Ubl4kGPVy7SKRoAAAAA0DARLgKoOaNyLmOXRy9zKlwM9uh16qplvVUu0ikaAAAAANAwES4CqLmY9vbHE/skm80jlyi1liktu1DSqWnHDVWLKPu07bTsQpVayzxzEZvtVAOdWCoXAQAAAAANC+EigJqLbmt/LMqSCjI9com07EKV2aRAs5/iwoI8cg13iY8IUoDZJGuZzRGIul1+hlSULcl06v0HAAAAAKCBIFwEUHMBIVJEkv35iT0eucThk/aQLjEqWH5+Dbszsp+fybEupMemRp/Ya3+MTJICGvY0cQAAAABA00O4CMA1Me3sj0bo5WaO9RYtDXtKtMFo6nLIU01dMvfZH6Pbeeb8AAAAAADUAeEiANc4wkXPVC4e8pFO0YYWnq5czCwPcWPaeub8AAAAAADUAeEiANcYFXSZnq1cbNHAO0UbjKYzHqtcNCpEqVwEAAAAADRAhIsAXOPoGO2pNRd9s3LxoKcrF2nmAgAAAABogAgXAbjGw9OijYYuPhMu1lflYgyViwAAAACAhodwEYBrjOm5ecelohy3n97XKhdbRoVKsoeLNpvNvScvzpdy0+zPmRYNAAAAAGiACBcBuCYkSgqJsT93c8fo7MIS5RSVSpKSfGTNxeYW+ziLS8uUmV/i3pMbnaKDLVJojHvPDQAAAACAGxAuAnCdh9ZdNKoWo0MDFBro79Zze0qgv5/iwoMkSUey3Dw1OpNmLgAAAACAho1wEYDrjOYiJw+49bSHypuiGOsY+orE8urFI+XrRboN6y0CAAAAABo4wkUArotqZX/M+t2tp3Wst2jxrXDRmBp9JNvN4SKViwAAAACABo5wEYDrolrbH91duehjnaINRuVimtunRe+3P0a3ce95AQAAAABwE8JFAK6zGOGihyoXfaSZi8FRuZjl5spFozLUCHMBAAAAAGhgCBcBuM4Iu7J+l2w2t502rTycS/SxadGnKhfdGC7abFLWQftzC+EiAAAAAKBhIlwE4DpLS/tjUbZUeNJtp00rX7PQqAT0Fc0j7WGoW8PFgkypONf+3NLCfecFAAAAAMCNCBcBuC4wVAqNsz9309Rom812KlyM9K1wMfG0adE2d1VyGlOiw5pJAb5VyQkAAAAAaDoIFwHUzulTo93gZH6JikvLJEnxkUFuOWd9MSotC0qsyi4odc9JHVOiW7nnfAAAAAAAeADhIoDaiSoPvdzUMdqoWowJC1SQv9kt56wvwQFmRYcGSJKOZLupY7RREWpMQQcAAAAAoAEiXARQO1Hu7RhthIsJPjYl2tC8vAmN2zpG0ykaAAAAAOADCBcB1I7Rwfjkfrec7miWsd6ib02JNri9Y3QWlYsAAAAAgIaPcBFA7bh5zUWj4s/XOkUbTm/q4haOadGsuQgAAAAAaLgIFwHUjmPNRfeEi0d9fFr0qcpFN6256JgWTbgIAAAAAGi4CBcB1I5RUVdwQirKrfPpjDUXm/touOjWNRdLCqS84/bnVC4CAAAAABowwkUAtRMcKQVb7M+zDtb5dMZahQk+Pi3aLWsuZh2yPwaESSHRdT8fAAAAAAAeQrgIoPYiy5uN5Byu86mO+nzlojvDxdOmRJtMdT8fAAAAAAAeQrgIoPYik+yP2XULFwtLrMrML5Hku+GiUbmYU1SqnMKSup2MTtEAAAAAAB9BuAig9twULh7LLpIkBfr7KSo0oK6j8orQQH9FBPlLko7lFNXtZHSKBgAAAAD4CMJFALXnCBcP1ek0pzdzMfnwNOD4yCBJp6Z415rxflpa1HFEAAAAAAB4FuEigNpzU+Wir3eKNsRH2Md/vK6Vi8b7GUm4CAAAAABo2AgXAdSem8LFo+VNUJr7aKdoQ4K7KhdzjtgfIxLrOCIAAAAAADyLcBFA7RmVde6aFu3j4WJ8eeWlsYZkrWWXh4tGeAsAAAAAQANFuAig9ozwqyBTKs6v9WmMcDHB56dFl1cu1mVadHGeVJRlf07lIgAAAACggSNcBFB7QZFSYLj9uTGVtxYc06J9PVwsH3+dpkUbVYuB4VJwpBtGBQAAAACA59RLuDhnzhy1a9dOwcHB6tmzp9asWVPt/gsWLFCPHj0UGhqqxMRE3X777crIyKiPoQJwhcnklo7Rp6ZFB7ljVF6TUF65WKeGLsb7SNUiAAAAAMAHeDxcXLhwoe699149/PDD2rJliy699FINHTpUBw4cqHT/tWvXavTo0RozZox27NihDz74QN9//73Gjh3r6aECqI06NnWx2WyONQp9flq0OyoXjQrQSMJFADjTjBkz1Lt3b0VERCg+Pl7Dhw/Xzp07nfax2WyaNm2akpKSFBISooEDB2rHjh1O+xQVFWnSpEmKi4tTWFiYrrnmGh08eNBpn8zMTI0aNUoWi0UWi0WjRo3SyZMnPX2LAAAAPsfj4eKzzz6rMWPGaOzYseratatmzZqlVq1aae7cuZXuv2HDBrVt21Z333232rVrp0suuUTjxo3Tpk2bPD1UALVRx6YuJ/NLVGwtkyQ1i/DtykVjzcX8Yqtyi0prdxIjpI2gmQsAnGnVqlWaOHGiNmzYoOXLl6u0tFQpKSnKy8tz7PPkk0/q2Wef1QsvvKDvv/9ezZs315VXXqmcnBzHPvfee68WLVqk9957T2vXrlVubq6GDRsmq9Xq2GfkyJHaunWrli5dqqVLl2rr1q0aNWpUvd4vAACAL/BouFhcXKzNmzcrJSXFaXtKSorWrVtX6TH9+vXTwYMHtWTJEtlsNh09elQffvihrrrqqkr3LyoqUnZ2ttMHgHpUx8rFY+VTiKNCAxTkb3bXqLwiLMhf4UH+kupQvUjlIgBUaenSpUpNTdV5552nHj166PXXX9eBAwe0efNmSfaqxVmzZunhhx/W9ddfr27duumNN95Qfn6+3nnnHUlSVlaWXnvtNT3zzDMaNGiQLrzwQr399tvatm2bvvrqK0nSzz//rKVLl2revHlKTk5WcnKyXn31VX3++ecVKiUBAACaOo+Gi+np6bJarUpISHDanpCQoLS0tEqP6devnxYsWKCbbrpJgYGBat68uaKiojR79uxK958xY4ZjuorFYlGrVq3cfh8AqlHHcNFYnzDex6sWDfGR9vswpnq7zHgfjYpQAECVsrKyJEkxMTGSpL179yotLc3pD9tBQUEaMGCA4w/bmzdvVklJidM+SUlJ6tatm2Of9evXy2Kx6KKLLnLs07dvX1kslir/QM4fvAEAQFNVLw1dTCaT0+c2m63CNsNPP/2ku+++W//85z+1efNmLV26VHv37tX48eMr3X/q1KnKyspyfPz+++9uHz+AatRxWvSxHHuFn69PiTYYIalxXy4zKhdp6AIA1bLZbJo8ebIuueQSdevWTZIcf7yu7g/baWlpCgwMVHR0dLX7xMfHV7hmfHx8lX8g5w/eAACgqfL35Mnj4uJkNpsr/BB27NixCj/0GWbMmKGLL75YDzzwgCTp/PPPV1hYmC699FI9/vjjSkx0/oU7KChIQUGNI5QAfJLbKhd9u5mLwWhKU/vKRaZFA0BN/OUvf9GPP/6otWvXVnjNlT9sV7VPZftXd56pU6dq8uTJjs+zs7MJGAEAQJPg0crFwMBA9ezZU8uXL3favnz5cvXr16/SY/Lz8+Xn5zwss9m+DpvNZvPMQAHUnlG5mHdcKnU9UDPWXGxslYu1WnOxzCrlHrU/p6ELAFRp0qRJ+uyzz/TNN9+oZcuWju3NmzeXpGr/sN28eXMVFxcrMzOz2n2OHj1a4brHjx+v8g/kQUFBioyMdPoAAABoCjw+LXry5MmaN2+e/vOf/+jnn3/WfffdpwMHDjimOU+dOlWjR4927H/11Vfr448/1ty5c7Vnzx59++23uvvuu9WnTx8lJfHLNtDghERL5kD789yKv4idTWNbc9FRuZhTi8rF3GOSzSqZzFJ4xel4ANDU2Ww2/eUvf9HHH3+sFStWqF27dk6vt2vXTs2bN3f6w3ZxcbFWrVrl+MN2z549FRAQ4LTPkSNHtH37dsc+ycnJysrK0saNGx37fPfdd8rKyqryD+QAAABNlUenRUvSTTfdpIyMDD366KM6cuSIunXrpiVLlqhNmzaS7D/MHThwwLF/amqqcnJy9MILL+j+++9XVFSULr/8cv373//29FAB1IbJJIU3l7IOSDlHpajWLh3e2NZcbFaXysWc8qnl4QmSn293zgYAT5g4caLeeecdffrpp4qIiHBUKFosFoWEhMhkMunee+/V9OnT1bFjR3Xs2FHTp09XaGioRo4c6dh3zJgxuv/++xUbG6uYmBhNmTJF3bt316BBgyRJXbt21ZAhQ3TnnXfq5ZdfliTdddddGjZsmDp37uydmwcAAGigPB4uStKECRM0YcKESl+bP39+hW2TJk3SpEmTPDwqAG4TkWAPF3MrX+S+Oscb2bRoo3LxeG0qFx2dollvEQAqM3fuXEnSwIEDnba//vrrSk1NlSQ9+OCDKigo0IQJE5SZmamLLrpIX375pSIiIhz7z5w5U/7+/rrxxhtVUFCgK664QvPnz3csxSNJCxYs0N133+3oKn3NNdfohRde8OwNNnAvLd+mEnNIjfefdPk5UkCo/Q+RAACg0aqXcBFAIxdevv5Ujuvh4rFGNi26TmsuZtMpGgCqU5P1t00mk6ZNm6Zp06ZVuU9wcLBmz56t2bNnV7lPTEyM3n777doMs9Ea//1g1w7YIOmhw1JgmEfGAwAAGgaPr7kIoAkwwjAXw8XCEqtyCkslSc0aSbfo+PLKxbxiq3KLSl072JgWHcn6sgAAAAAA30DlIoC6iyivXHRxWrQxdTjQ30+RwY3j21F4kL/CAs3KK7bqWHahwpuF1/xgKhcBAA1MqV+wZvdd7dIxAdYC16scAQCAz2ocv80D8K7w5vZHFysXT58SbWpE6zElRAZrT3qejuUUqb0r4WJOebhI5SIAoKEwmVTqwjqLAACg6WFaNIC6c0yLPurSYccbWadoQ607Rucesz8aa1gCAAAAANDAES4CqLs6TotuLM1cDPG17RhtvH+EiwAAAAAAH0G4CKDujGnReemStaTGhxnTohtd5WK4/X6O57oQLpYWSQWZ9ucRzT0wKgAAAAAA3I9wEUDdhcZKfv6SbKem9tbAqcrFxtEp2hAXEShJSs8prvlBecftj34BUnCU+wcFAAAAAIAHEC4CqDs/v1NTeV2YGk3l4mmM9SrD4+3vJwAAAAAAPoDfYAG4hxEuutDUpbGuuRhXfj/prqy5mGuEi6y3CAAAAADwHYSLANzDWCcw50iNDznWWLtF16ZykWYuAAAAAAAfRLgIwD0c06JrVrlYVmZTeq59TcLGtuaiEZaeyCuWtcxWs4OMtSojCBcBAAAAAL6DcBGAe0Qk2h9zarbm4ol8e/BmMkmx4YEeHFj9iwmz34+1zKbM/Bo2dWFaNAAAAADABxEuAnCPCNcqF431FmNCAxVgblzfigLMfo6AMb2mU6NPb+gCAAAAAICPaFy/0QPwnnDX1lw83kg7RRviyqsxj9e0qYujcrG5h0YEAAAAAID7ES4CcI8I17pFH2vk4aJxXzWuXGRaNAAAAADABxEuAnAPY83FvGNSmfWsuzf+ysXyjtE1qVy02U6FizR0AQAAAAD4EMJFAO4R1kwy+Um2Minv+Fl3P5ZTKKnxdYo2GOGi0RG7WoUnJWv5fmGsuQgAAAAA8B2EiwDcw89sDxilGnWMbuyVi45p0TWpXDSmkgdHSQGNM2wFAAAAADROhIsA3MfodFyDykVjLcLGGi46pkXXZM1F1lsEAAAAAPgowkUA7mNM6c09dtZdjenCcWGBnhyR1xihaY3WXHSEi0yJBgAAAAD4FsJFAO7jqFw8e7iYUV7RF9doKxftoWmNukU7mrk09+CIAAAAAABwP8JFAO5jrLl4lsrFEmuZMvNLJEmxjbxy8UResaxltup3Zlo0AAAAAMBHES4CcJ/wmk2LzsyzT4n2M0nRoY0zXIwJDZTJJJXZpIy8s1Qv5hAuAgAAAAB8E+EiAPcxwrGzTIs2mpzEhAXJz8/k6VF5hb/Zz1GVmZ5TXP3OVC4CAAAAAHwU4SIA93FMi66+W3SG0cwlvHFWLRpq3DHaqPSkoQsAAAAAwMf4e3sAABqRGjZ0MZqcGOFbY2W/vxyln61jdG6a/ZGGLpUqKSmR1Wr19jCAOjGbzQoICPD2MAAAAAC3I1wE4D5h5eFi/gnJWiKZK/9FuqlULhpNXaqtXCwtkgoy7c+ZFu0kOztb6enpKiqqQcdtwAcEBQUpLi5OkZGR3h4KAAAA4DaEiwDcJzRGMvlJtjIpL12KTKx0N6NyMbbRVy4aay5WE44ZU6L9AqSQ6HoYlW/Izs7WoUOHFB4erri4OAUEBMhkapzrc6Lxs9lsKikpUVZWlg4dOiRJBIwAAABoNAgXAbiPn1kKjbNPi847Vk24aFQuNu5wsUaVi471FhMkwjOH9PR0hYeHq2XLloSKaBRCQkIUERGhgwcPKj09nXARAAAAjQbhIgD3Ck+wB4vVNHU5VbnYuKdFG+FpenXhorE+ZXizehiRbygpKVFRUZHi4uIIFtGomEwmWSwWHTp0SCUlJazBiCZh9orfVGoOqfH+913ZyYOjAQAAnkC3aADuZYRk1TR1ycizh23NmkjlYnpOcdU7GZWLYXSKNhjNWwhe0BgZ/65pUgQAAIDGgspFAO5lhGS5VYeLRtjWVCoXq50WnVde4RlG5eKZqFpEY8S/azQ1AdYC1w4ozpMCQlkqBAAAH0K4CMC9HJWLlU+LttlsjsrFprLmYmZ+sUqsZQowV1Isnpduf2RaNACgERr//WDXDtgg6aHDUmCYR8YDAADcj2nRANzLUbl4tNKXswtKVWK1SZJiwhp35WJ0aKD8TJLNJp3Iq2JqNJWLAAAAAAAfRuUiAPcKT7A/VjEtOr28ajEi2F/BAeb6GpVXmP1MigkLUnpukdJzi5QQGVxxJ2NtSsJFAEAjUeoXrNl9V7t0TIC1wPUqRwAA0CAQLgJwr7NMi07PaRpTog1x4YFKzy1SRm5VlYvl06LD4upvUAAAeJLJ5FKHaAAA4NuYFg3Avc7S0CWjfHpwXCNv5mIwmtYY60xW4JgWTbdoAAAAAIDvIVwE4F7h5SFZfoZkLa3wcnp55+TYsKZRuWjcZ6WVi2VW+/skMS0aAAAAAOCTCBcBuFdorGTyk2Q7FZydJr08ZIuLaFqVi+mVhYv5JyRbmf15aGw9jgq+aNOmTTKZTLrllluctpeVlalTp04ymUx64IEHnF47efKkwsLCdO6558pms9XncAEAAAA0EYSLANzLz3wqKKukY3RTq1w01pbMyK1kWrQxJTokRjKzBC6qFx0dLUnKyclx2v75559r165dkqTMzEyn1+bPn6/8/HzdfffdMplM9TNQAAAAAE0Kv80CcL/wBHtwlldx3UUjZIuLaBrhYmyYseZiJZWLRrgYznqLOLuoqChJUm5urtP2mTNnKikpSX5+fk7hos1m09y5cxUVFaVRo0bV51ABAAAANCGEiwDcz1g/MLdix2jHtOiwpjItugaVi6y3WGM2m00FJVZvD8MlIQFmt1QNRkVFyWQyOVUubt26VStXrtQTTzyhDz74wClcXL58uX799Vc98MADCgsLq/P1AQAAAKAyhIsA3M+oxKNysfo1Fx3hYlw9jsi3FZRYde4/l3l7GC756dHBCg2s+/9uzWazIiIinCoXZ86cqZCQEI0bN07Lli1zChdffPFFmc1mTZw4sUbnT01N1b59+7Ry5co6jxUAAABA00G4CMD9HJWLFcNFI2SLbSKVi3FGt+i8ItlsNucKNioX4aKoqChH5WJaWpree+89paamKjY2VhaLRfv375ck7d+/X1988YWGDx+uNm3a1Ojczz33nKxW36oKBQAAAOB9hIsA3M9Rueg8LbqwxKrcolJJTa9ysbCkTPnFVoUFnfZtl3DRZSEBZv306GBvD8MlIQFmt50rOjpa+/btk2SvTCwuLtY999wjSYqMjHRULr700kuyWq2O12rCYrG4bZwAAAAAmg66RQNwv7DycPGMbtFGp+hAs58igprG3zZCA80KDrB/q804c2p0Xrr9kXCxxkwmk0ID/X3qw51dmqOjo5Wbm6uCggK99NJLSklJ0bnnnivJHg5mZ2crPz9fr732mi688EJdeumlTsevXbtWF198sSIiIhQREaEePXpo2TL7NPPU1FQNHDjQsW9BQYHuvPNOWSwWRUdHa8KECZo6daratm3rtvsBAAAA4PsIFwG4n1G5eEZDFyNciwsPdGvg0pCZTCbFlk+NTs87o6mLMW2ccBE1FBUVJavVqldffVXp6em67777HK9FRkZKkl555RUdP368QtWi1WrVNddco169emnz5s364Ycf9Mgjjyg0NLTSa02ZMkWffvqp3nzzTW3YsEEWi0Vz5szx3M0BAAAA8ElNo3QIQP2qYlq0UblodFBuKuLCA3XoZEEllYtMi4ZroqOjJUlPPvmkunTposGDT00RN6Y1P/XUU4qPj9fNN9/sdGxWVpYyMzM1YsQIderUSZLUsWPHSq+Tm5urefPm6fnnn9e1114rSZoxY4a++eYbpaWluf2+AAAAAPiueqlcnDNnjtq1a6fg4GD17NlTa9asqXb/oqIiPfzww2rTpo2CgoLUoUMH/ec//6mPoQJwh9Dy7sf5GVJZmWPz6ZWLTYkRphqdsh0c06LpFo2aMcLFQ4cO6Z577nGqADYqFw8fPqzx48crKMg5xI+JidGYMWOUkpKiIUOG6F//+pd27txZ6XV2796t4uJi9e3b12l7cnKyO28HAAAAQCPg8XBx4cKFuvfee/Xwww9ry5YtuvTSSzV06FAdOHCgymNuvPFGff3113rttde0c+dOvfvuu+rSpYunhwrAXUJj7Y82q1R40rH5eBOtXDQ6Y2fknVa5WJwnleTZnxuVnsBZGOFiTEyMRo8e7fSaUbkYEBCg8ePHV3r8vHnztGnTJqWkpGjVqlXq1q2bXnrppSqv11SWLwAAAABQex4PF5999lmNGTNGY8eOVdeuXTVr1iy1atVKc+fOrXT/pUuXatWqVVqyZIkGDRqktm3bqk+fPurXr5+nhwrAXfwDpeAo+/PTpkafqlxsYuFi+f2mn165aLwv/sFSYLgXRgVf9Pe//102m00ZGRkV1kq85ZZbZLPZVFxcrMTExCrP0a1bN02ePFn//e9/NWbMmEr/f9yhQwcFBgZq/fr1Tts3bNjgnhsBAAAA0Gh4NFwsLi7W5s2blZKS4rQ9JSVF69atq/SYzz77TL169dKTTz6pFi1aqFOnTpoyZYoKCgoq3b+oqEjZ2dlOHwAaAGMdwdPCRSNca2rToo37dVpz8fRO0VSHoR789ttv+utf/6q1a9dq//79Wr9+vdasWePoNn268PBwjR07Vv/85z/12Wef6ddff9XDDz+sn3/+mWpGAAAAAE482tAlPT1dVqtVCQkJTtsTEhKqXBB+z549Wrt2rYKDg7Vo0SKlp6drwoQJOnHiRKXrLs6YMUOPPPKIR8YPoA7CmkkZu5wrF/OMcLGpVS4a06IrqVxkvUXUk7CwMO3atUs333yzjh8/rtjYWA0dOlRPP/10pfs/9dRTKioq0q233io/Pz+NHDlSqampWrZsWT2PHAAAAEBDVi/dos+scrDZbFVWPpSVlclkMmnBggWO9aOeffZZ3XDDDXrxxRcVEhLitP/UqVM1efJkx+fZ2dlq1aqVm+8AgMuM0Myo0JOUnmOv3IttYpWLsWFGQ5fTKxeNcJH1FlE/EhMT9fHHH1f5+vz5850+Dw0N1bx58zRv3jzHtssvv9zRaRoAAAAAJA+Hi3FxcTKbzRWqFI8dO1ahmtGQmJioFi1aOIJFSeratatsNpsOHjyojh07Ou0fFBRUoSMmgAagkmnRTb1yMf30cDH3mP3ReJ+ABmbHjh36/vvv1a9fPxUXF+utt97SN998o8WLF3t7aAAAAAAaEI+uuRgYGKiePXtq+fLlTtuXL19eZYOWiy++WIcPH1Zubq5j26+//io/Pz+1bNnSk8MF4E5nhIvWMptO5DXNykUjTD2RVyRrmc2+0bHmItOi0TD5+fnp5ZdfVu/evZWcnKyvv/5aH330kYYNG+btoQEAAABoQDw+LXry5MkaNWqUevXqpeTkZL3yyis6cOCAxo8fL8k+rfnQoUN68803JUkjR47UY489pttvv12PPPKI0tPT9cADD+iOO+6oMCUaQAPmmBZtDxcz84tVZrP3LokJbVrhYkyY/X7LbNLJ/GJ792jHtGgqF9Ewde3atUK3aAAAAAA4k8fDxZtuukkZGRl69NFHdeTIEXXr1k1LlixRmzZtJElHjhzRgQMHHPuHh4dr+fLlmjRpknr16qXY2FjdeOONevzxxz09VADu5KhctFfoGZ2io0MD5W/2aNF0gxNg9lNUaIBO5pcoI49wEQAAAADQeNRLQ5cJEyZowoQJlb525gLyktSlS5cKU6kB+JgzpkUbzUzimtiUaENsWKBO5pcoPbdInRIiToWL4YSLAAAAAADf1bTKhwDUnzOmRRuVi0bn5KYmNvyMjtFULgIAAAAAGgHCRQCeYYRmhVlSabGjU3JTa+ZiMCo2M3KLpDKrlJ9hf4FwEQAAAADgwwgXAXhGcJRkMtuf52c4KheNzslNjVGxmZFXLBVkSrYy+wuhsV4cFQAAAAAAdVMvay4CaIL8/OxTo3OPSnnHlZFrk9SE11wsv+/03GIp95h9Y0iMZA7w4qgAAGiAivNdPyYgVDKZ3D8WAABwVlQuAvCc05q6nMgzpkU30cpFx5qLRay3CAC1tHr1al199dVKSkqSyWTSJ5984vR6amqqTCaT00ffvn2d9ikqKtKkSZMUFxensLAwXXPNNTp48KDTPpmZmRo1apQsFossFotGjRqlkydPevju4PD0OdL0JNc+SmoRSAIAALcgXATgOY6mLumn1lwMa5qVi3Hl952RV0y4CAC1lJeXpx49euiFF16ocp8hQ4boyJEjjo8lS5Y4vX7vvfdq0aJFeu+997R27Vrl5uZq2LBhslqtjn1GjhyprVu3aunSpVq6dKm2bt2qUaNGeey+AAAAfBnTogF4zmmVixl59udULhZJeen2jUb4CgCokaFDh2ro0KHV7hMUFKTmzZtX+lpWVpZee+01vfXWWxo0aJAk6e2331arVq301VdfafDgwfr555+1dOlSbdiwQRdddJEk6dVXX1VycrJ27typzp07u/emIEkq9QvW7L6rNenyc2p+UHG+vcoRAAB4FZWLADzn9HCxvHKxqa+5mJFbLOWVr7kYHu/FEQFA47Ry5UrFx8erU6dOuvPOO3Xs2DHHa5s3b1ZJSYlSUlIc25KSktStWzetW7dOkrR+/XpZLBZHsChJffv2lcVicexTmaKiImVnZzt9wAUmk0rNIVJgmAsfod4eNQAAEJWLADypvDKvNOeY8ovt082aauViXHm36JyiUpXmHLN/82VaNAC41dChQ/WnP/1Jbdq00d69e/WPf/xDl19+uTZv3qygoCClpaUpMDBQ0dHRTsclJCQoLS1NkpSWlqb4+Ip//ImPj3fsU5kZM2bokUcece8NNUEzl/9a4339rQWa5MGxAACAmiFcBOA55eFZSba9aiTI309hgWZvjshrIkP85e9nUmmZTSXZRrjItGgAcKebbrrJ8bxbt27q1auX2rRpoy+++ELXX399lcfZbDaZTus0bKqk6/CZ+5xp6tSpmjx5suPz7OxstWrVytVbAAAA8DlMiwbgOeXhYlmuvYFJXHhQtb+YNWYmk8kxNdqWS0MXAKgPiYmJatOmjXbt2iVJat68uYqLi5WZmem037Fjx5SQkODY5+jRoxXOdfz4ccc+lQkKClJkZKTTBwAAQFNAuAjAc0LtlXl++fYGJrFNdL1FQ2z51GiTseZiGGsuAoAnZWRk6Pfff1diYqIkqWfPngoICNDy5csd+xw5ckTbt29Xv379JEnJycnKysrSxo0bHft89913ysrKcuwDAACAU5gWDcBzyqf9BhSdkCTFhjXxcLE8XA0ozLBvYFo0ALgkNzdXv/32m+PzvXv3auvWrYqJiVFMTIymTZumESNGKDExUfv27dNDDz2kuLg4XXfddZIki8WiMWPG6P7771dsbKxiYmI0ZcoUde/e3dE9umvXrhoyZIjuvPNOvfzyy5Kku+66S8OGDaNTNAAAQCUIFwF4Tvm0X39rgUJU2GSbuRjiwoMUokL5WwvsG5gWDQAu2bRpky677DLH58Yah7fddpvmzp2rbdu26c0339TJkyeVmJioyy67TAsXLlRERITjmJkzZ8rf31833nijCgoKdMUVV2j+/Pkym0+tCbxgwQLdfffdjq7S11xzjV544YV6uksAAADfQrgIwHMCwyT/EKm0QLGmbKZFhwUq1pRj/8QcJAVFVH8AcJpNmzapd+/eGjlypBYsWODYXlZWpi5dumjXrl2aMmWKnnrqKcdrJ0+eVIsWLdSmTRvt2LGjya55isZj4MCBstlsVb6+bNmys54jODhYs2fP1uzZs6vcJyYmRm+//XatxggAANDUsOYiAM8xmRzVeXHKZlp0eJDilGX/JKyZ/f0Baig6OlqSlJOT47T9888/dzSrOLNJxfz585Wfn6+7776bYBEAAACAR1C5CMCzwuKkrAOKNWU5Gpo0VbHhgYo1lYeL4UyJhmuioqIk2decO93MmTOVlJQkPz8/p3DRZrNp7ty5ioqK0qhRo+pzqAAAAACaEMJFAJ5VXrnItGgpLjxQsaZs+yest1g7NptUku/tUbgmINQtVapRUVEymUxOlYtbt27VypUr9cQTT+iDDz5wCheXL1+uX3/9VQ888IDCwsLqfH0AAAAAqAzhIgDPOm1adFwTb+gSGxakOBEu1klJvjQ9ydujcM1Dh+3rj9aR2WxWRESEU+XizJkzFRISonHjxmnZsmVO4eKLL74os9msiRMnOralpqZq3759WrlyZZXXqck+AAAAAGBgzUUAHmULi5NE5aJkTIu2h4u20Dgvjwa+KCoqylG5mJaWpvfee0+jRo1SbGysLBaLI1zcv3+/vvjiCw0fPlxt2rTx5pABAAAANHJULgLwqMLAGIVIijVlKaaJN3SJCw9SXPmai4VBsQrx8nh8UkCovRLQlwSEuu1U0dHR2rdvnyR7ZWJxcbHuueceSVJkZKQjXHzppZdktVodrwEAAACAp1C5CMCjss1RkqQEc46C/M3eHYyXBQeYFe9nrzrLKX9f4CKTyT7F2Jc+3NilOTo6Wrm5uSooKNBLL72klJQUnXvuuZIki8Wi7Oxs5efn67XXXtOFF16oSy+9tNLzvPjii2rdurWCg4M1ZMgQ7d+/v8prpqWlqWfPnho8eLBycnJUUFCgO++8UxaLRdHR0ZowYYKmTp2qtm3buu0+AQAAAPgOwkUAHnVSkZLkCNWaung/+7ToTJPFyyOBL4qKipLVatWrr76q9PR03XfffY7XIiPt/6298sorOn78eJVViz/88IMWL16szz77TN98842OHj2q6667TjabrcK+v/zyi5KTk9W9e3d9/vnnioiI0JQpU/Tpp5/qzTff1IYNG2SxWDRnzhzP3DAAAACABo9wEYBHpdvsgUe00cikiYspX3PReF8AV0RHR0uSnnzySXXp0kWDBw92vGax2APrp556SvHx8br55psrPUdpaakWLFigCy64QMnJyXrrrbe0ZcsWrVixwmm/tWvX6uKLL9bIkSM1f/58BQQEKDc3V/PmzdNjjz2ma6+9Vp07d9aMGTPUtWtXD90xAAAAgIaOcBGARx2xRkiSLGVZUlmZl0fjZWVW+/sg6Ugp4SJcZ4SLhw4d0j333CPTaVOujcrFw4cPa/z48QoKqrw7e+fOnRUbG+v4vFu3brJYLNqxY4dj208//aRBgwbpb3/7m5544gnH9t27d6u4uFh9+/Z1OmdycnLdbw4AAACATyJcBOBRh4vDJElmWaXCk94djLcVZMpP9oD1cLH7mnyg6TDCxZiYGI0ePdrpNaNyMSAgQOPHj6/yHKYq1oA8fXurVq3Us2dPvfvuu0pPT6/xOQAAAAA0PYSLADwqvcCmLFt5kJZXMaRoUvKOS5IybeE6nt/EqzhRK3//+99ls9mUkZGh0FDngPqWW26RzWZTcXGxEhMTqzzHL7/8ohMnTjg+37Fjh7KyspymNkdEROjLL79UVFSUBg4cqLS0NElShw4dFBgYqPXr1zudc8OGDe64PQAAAAA+iHARgEdl5BYr3VbevKQ8XGuyyu8/wxapjLwiLw8GTZW/v79uvfVW/e9//9OGDRs0evRo9ejRQ1dccYXTfmFhYVqyZIlat26tAQMG6ODBgwoPD9fYsWP1z3/+U5999pl+/fVXPfzww/r555+pZgQAAACaKMJFAB6VnlukjPKO0YSL5eGiIpWeU+zlwaCp+sMf/qDBgwfrqquu0sCBAxUbG6tFixZVGg4GBwfrk08+0bnnnqv+/ftr3759euqpp3T11Vfr1ltvVZ8+fZSZmanU1FQFBwd74W4AAAAAeJu/twcAoHHLyCtWho1wUZJjWni6LVLpVC7CC+bPn+94fs8995x1H0kKDAzUokWLnLbNmzdP8+bNc3x++eWXq1OnTm4bJwAAAADfQbgIwKMycotOCxdZc1GSMmwWZeRSuQjftGPHDn3//ffq16+fiouL9dZbb+mbb77R4sWLvT00AAAAAF5AuAjAY0qtZcrML1GGP2suSnJaczGroETFpWUK9Gd1CvgWPz8/vfzyy7rnnntUVlamzp0766OPPtKwYcO8PTQAAAAAXkC4CMBjTuTbq/NOMC3arrxy84TJHrZm5hcrIZJ16uBbunbtWqFbNAAAAICmi5IZAB5jTP0tCoqxb2BatKRT78fxHNZdBAAAAAD4NioXAXiMES5aQ+KkPEn5hIvSqfcjI491FwEAcIvifNf2DwiVTCbPjAUAgCaGcBGAx2QYHZHDysNFpkVLkvzCmknp9mY3AADADZ4+x7X9HzosBYZ5ZiwAADQxTIsG4DHp5ZWL5oh4+4aCTMla4sUReVFJoVSULUkyR9rfDzpGAwAAAAB8HZWLADzGqMwLiYyTTH6SrUzKz5Aimnt5ZF5gTAn381dYZKykHKVTuQgAQK2V+gVrdt/VNd4/wFqg8d8P9uCIAABomggXAXjMifI1BWPCg6XQOCnvmH1qdFMMF40p4WHNFBsRJOlUZScAAKgFk0ml5hBvjwIAgCaPadEAPMYIz2LDg6SwZvaNTXXdRaNTdlic4sLs4aJjTUoAAAAAAHwU4SIAjzHCs9jwQHtTF+lUyNbUnF65GB4oiTUXAQAAAAC+j3ARgMcY4VlceCCVi7nH7I9hzRQXbkyLpnIRAAAAAODbCBcBeIzR0CU27LRp0UbI1tRUUblos9m8OCgAAAAAAOqGcBGARxQUW5VXbJXEtGhJp6252MwetkoqtpYpp6jUi4MCAAAAAKBuCBcBeISx3mKgv5/Cg/yl8Hj7C011WvRplYshgWaFBZolse4iAAAAAMC3ES4C8AjHeothgTKZTKetuci0aEmKiyjvGM26iwAAAAAAH0a4CMAjTnWKtodoCjMqF5v6tGj79PDYMPu6izR1AQAAAAD4MsJFAB6RXl65aDQvcay5mHtMampNTGy2CpWLsY6O0UyLBgAAAAD4rnoJF+fMmaN27dopODhYPXv21Jo1a2p03Lfffit/f39dcMEFnh0gALczpkXHhBnhYvm0aGuRVJTjpVF5SWGWVFZif14essad1jEaaAr27dsnk8mk1NRUbw8FAAAAgBt5PFxcuHCh7r33Xj388MPasmWLLr30Ug0dOlQHDhyo9risrCyNHj1aV1xxhaeHCMADTpRPi44zpkUHhkqB4fbnTa2pizElOjBCCgiRdOp9MaaPA2ezadMmmUwm3XLLLU7by8rK1KlTJ5lMJj3wwANOr508eVJhYWE699xzZfPxiuGmfv8AAABAQ+XxcPHZZ5/VmDFjNHbsWHXt2lWzZs1Sq1atNHfu3GqPGzdunEaOHKnk5GRPDxGABxgVecbagpJOTY1ucuGiMSU6zrGJNRfhqujoaElSTo5z5e/nn3+uXbt2SZIyMzOdXps/f77y8/N199132xsr+bCmfv8AAABAQ+XRcLG4uFibN29WSkqK0/aUlBStW7euyuNef/117d69W//v//0/Tw4PgAel5xlrLgad2mg0dcltYh2jz1hvUWLNRbguKipKkpSbm+u0febMmUpKSlLLli2dwjWbzaa5c+cqKipKo0aNqs+hekRTv38AAACgofL35MnT09NltVqVkJDgtD0hIUFpaWmVHrNr1y797W9/05o1a+Tvf/bhFRUVqajoVOVPdnZ23QYNwC0yco1u0adXLpaHa022cvH0cNFYc5HKRVfYbDbl5+d7exguCQ0NdUvVXFRUlEwmk1Pl3tatW7Vy5Uo98cQT+uCDD5zCteXLl+vXX3/VAw88oLCwsDpf39ua+v0DAAAADZVHw0XDmb9U2Wy2Sn/RslqtGjlypB555BF16tSpRueeMWOGHnnkEbeME4D7GNOi48JOq1wMb6rhYvmai6dNi27mWHORykVX5OfnKzw83NvDcElubq5bwi2z2ayIiAinyr2ZM2cqJCRE48aN07Jly5zCtRdffFFms1kTJ06s0flTU1O1b98+rVy5ss5j/de//qVffvnFaZsx7rVr11ba1OVvf/ubunTpUuU53XH/NblHd74PAAAAQFPg0XAxLi5OZrO5QpXisWPHKlQzSvZ1lDZt2qQtW7boL3/5iyT7Qu02m03+/v768ssvdfnllzsdM3XqVE2ePNnxeXZ2tlq1auWBuwFQUzabzdGohMpFVTst+mR+iUqsZQowe3wJXDQCUVFRjsq9tLQ0vffee0pNTVVsbKwsFov2798vSdq/f7+++OILDR8+XG3atKnRuZ977jlZrVa3jHPp0qVatWpVpa/t3r1bu3fvrrA9NTW12nBR8uz9AwAAAKgdj4aLgYGB6tmzp5YvX67rrrvOsX358uW69tprK+wfGRmpbdu2OW2bM2eOVqxYoQ8//FDt2rWrcExQUJCCgoIqbAfgPdmFpSqx2juzxjg1dGHNRUNUSID8TFKZTTqRV6yEyGAvDc63hIaGVlhzr6ELDQ1127mio6O1b98+SfbKvOLiYt1zzz2S7P8PNSr3XnrpJVmtVsdrNWGxWNw2zsqq/vbt26d27drptttu0/z582t1Xk/ePwAAAIDa8fi06MmTJ2vUqFHq1auXkpOT9corr+jAgQMaP368JHvl4aFDh/Tmm2/Kz89P3bp1czo+Pj5ewcHBFbYDaLiMdQQjgvwVHGA+9YKjW3S6F0blRZVMi/bzMykmLEjpuUVKzy0iXKwhk8nUpNfPi46O1vbt21VQUKCXXnpJKSkpOvfccyXZw8Hs7Gzl5+frtdde04UXXqhLL73U6fi1a9fqr3/9q3788UdJUvv27fXkk09q8ODBFaYDFxQU6O6779b7778vPz8//fnPf5bFYtG7777rCPjqW13v3/Diiy/q3//+t44dO6aBAwfq5ZdfrrLCMS0tTVdddZXi4uL04Ycfyt/fv8G9LwAAAIA3eXwe3k033aRZs2bp0Ucf1QUXXKDVq1dryZIljh/ijxw5ogMHDnh6GADqkbGOYMzpU6IlKby8cjGPykVJinM0dWHdRdRMVFSUrFarXn31VaWnp+u+++5zvBYZGSlJeuWVV3T8+PEKVXtWq1XXXHONevXqpc2bN+uHH37QI488UmVl5ZQpU/Tpp5/qzTff1IYNG2SxWDRnzhzP3VwN1OX+DT/88IMWL16szz77TN98842OHj2q6667TjabrcK+v/zyi5KTk9W9e3d9/vnnioiIaJDvCwAAAOBN9dLQZcKECZowYUKlr51tatS0adM0bdo09w8KgMek59grF+PCz1iygDUXnTbb358cx/qUwNlER0dLkp588kl16dJFgwcPdrxmTGt+6qmnFB8fr5tvvtnp2KysLGVmZmrEiBGOpmkdO3as9Dq5ubmaN2+enn/+eccyJjNmzNA333xTYR3l+lSX+zeUlpZqwYIFio2NlSS99dZb6t69u1asWKErrrjCsd/atWt17bXXavz48XriiSckNdz3BYDrZq/4TaXmkBrvf9+VNWs2CQBAU0QHAQBul55rhItnVC4a4VphllTaRAI1a6lUcML+/Ixw0Wh2k55D5SJqxgjXDh06pHvuuUcmk8nxmlG5d/jwYY0fP77CesQxMTEaM2aMUlJSNGTIEP3rX//Szp07K73O7t27VVxcrL59+zptT05OduftuKwu92/o3LmzI1iUpG7duslisWjHjh2ObT/99JMGDRqkv/3tb45gUWq47wsA1wVYC+TvwoeK86RKKpwBAEA9VS4CaFqOl1cuNos445f74CjJz18qK7WvQ2hpUf+Dq2/5GeVPTFJojNNLsWH29yedykXUkBGuxcTEaPTo0U6vGZV7AQEBjnWNzzRv3jzde++9+vLLL7V8+XL94x//0OzZs6vc//TwriGo6/1LVd/T6dtbtWql4OBgvfvuu7r99tsVFxdX5b4AfNP47weffafTbZD00GEpsOmu+wsAQFWoXATgdsfL1xCsMC3az++0qdFNZN1FY0p0aKzkZ3Z6KS6CNRfhmr///e+y2WzKyMiosFbiLbfcIpvNpuLiYiUmJlZ5jm7dumny5Mn673//qzFjxmju3LkV9unQoYMCAwO1fv16p+0bNmyo9djbtm0rm81W607Rknvu/5dfftGJEyccn+/YsUNZWVnq2rWrY1tERIS+/PJLRUVFaeDAgY4pz554XwAAAABfR+UiALc7NS26kmmJYXFSzpGm0zG6ivUWJSmuvHLR6K4NeNJvv/2mV199VVdffbVatWqlw4cPa82aNTr//PMr7BseHq6xY8fqn//8pxITE9WlSxe98cYb+vnnnx3Vg77K399ft956q2bMmKGCggJNnDhRPXr0cFpvUZLCwsK0ZMkSXX/99RowYIC+/vprtWzZstG+L0BTUOoXrNl9V7t0TIC1wPUqRwAAmhgqFwG4XfXhYnnH6NymUrlYHqKGxVV4ybHmIpWLqAdhYWHatWuXbr75ZnXq1EkjRoxQ3759q+x0/NRTT+nqq6/Wrbfeqj59+igzM1OpqakKDg6u55G71x/+8AcNHjxYV111lQYOHKjY2FgtWrSo0qnOwcHB+uSTT3Tuueeqf//+2rdvX6N9X4AmwWRSqTnEpY8SF5q+AADQVFG5CMDtjHCxWURgxRebWsfoaioXY8OpXET9SUxM1Mcff1zl62dOVw4NDdW8efM0b948x7bLL7/c0WnaF51+j/fcc89Z95GkwMBALVq0yGlbY3tfAAAAgLogXATgVjabzdHQpdLKxXDCRYPRTTs9r1g2m40mEWhQduzYoe+//179+vVTcXGx3nrrLX3zzTdavHixt4fmVbwvAAAAgDPCRQBulVdsVWFJmaSqpkU3tXCxfPp3ZZWL5WsuFpeWKbeoVBHBAfU5MqBafn5+evnll3XPPfeorKxMnTt31kcffaRhw4Z5e2hexfsCAAAAOCNcBOBW6eVVi6GBZoUFVfItxlhzscmEi1WvuRgSaFZYoFl5xVal5xYTLqJB6dq1a4WuyOB9AQAAAM5EQxcAblVtMxfpVAVfblMJF6ueFi2x7iIAAAAAwLcRLgJwq1PhYiXNXCTWXDxDHB2jAQAAAAA+jHARgFsdLw/Jzlq5mHdcKiurp1F5UTXToqXTKhfzqFwEAAAAAPgewkUAbuXoFB1RRbgYWh6y2axS4cn6GZS3FOVKJfn25+Hxle5iVC5mULkIAAAAAPBBhIsA3MqYFt2sqspF/0ApOMr+PPdY/QzKW3KP2h8DQqXA8Ep3MTpGp7PmIgAAAADABxEuAnCr9LNVLkqnqvga+7qLp6+3aDJVuksslYsAAAAAAB9GuAjArU5VLlbR0EU6bd3Fxl65WH5/4QlV7mKsTUnlYkU2m83bQwDcjn/XAAAAaGwIFwG4VfrZGrpIp4WL6fUwIi8ypkVXsd6idKpy8TjhooPZbJYklZSUeHkkgPsZ/66Nf+cAAACAryNcBOBWjoYuNQkXG/uai6dPi65CfESwpFPvG6SAgAAFBQUpKyuLKi80KjabTVlZWQoKClJAQIC3hwMAAAC4hb+3BwCg8cgrKlVBiVUSay5KOq1ysepp0c3K36ecwlIVllgVHEA1kyTFxcXp0KFDOnjwoCwWiwICAmSqYt1KoKGz2WwqKSlRVlaWcnNz1aJFC28PCUAtzF7xm0rNITXe/74rO3lwNAAANByEiwDcxlg3MCTArLDAakKysDj7Y6MPF8vvL7zqysXIYH8F+vupuLRMx3OK1ComtJ4G17BFRkZKktLT03Xo0CEvjwZwj6CgILVo0cLx7xuAbwmwFrh2QHGeFBBaZVM3AAAaC8JFAG5jhItxEYHVV5mFUbloMJlMio8I0sHMAh0jXHQSGRmpyMhIlZSUyGq1ens4QJ2YzWamQrvB6tWr9dRTT2nz5s06cuSIFi1apOHDhztet9lseuSRR/TKK68oMzNTF110kV588UWdd955jn2Kioo0ZcoUvfvuuyooKNAVV1yhOXPmqGXLlo59MjMzdffdd+uzzz6TJF1zzTWaPXu2oqKi6utW0QCN/36wawdskPTQYSkwzCPjAQCgoSBcBOA2x3Nq0MxFakJrLpbfX1jVDV0k+9Tog5kFrLtYhYCAAEIZAJKkvLw89ejRQ7fffrtGjBhR4fUnn3xSzz77rObPn69OnTrp8ccf15VXXqmdO3cqIiJCknTvvfdq8eLFeu+99xQbG6v7779fw4YN0+bNmx2NdkaOHKmDBw9q6dKlkqS77rpLo0aN0uLFi+vvZgEAAHwE4SIAt3FULp4tXAxvAt2ibbbTpkVXHy7Gl6+7eDyn0NOjAgCfNnToUA0dOrTS12w2m2bNmqWHH35Y119/vSTpjTfeUEJCgt555x2NGzdOWVlZeu211/TWW29p0KBBkqS3335brVq10ldffaXBgwfr559/1tKlS7VhwwZddNFFkqRXX31VycnJ2rlzpzp37lw/N4sGodQvWLP7rnbpmABrgetVjgAA+DC6RQNwmxp1ipZOVS6W5NnXI2qMinKk0vK1mc4SLjZzhItULgJAbe3du1dpaWlKSUlxbAsKCtKAAQO0bt06SdLmzZtVUlLitE9SUpK6devm2Gf9+vWyWCyOYFGS+vbtK4vF4tinMkVFRcrOznb6QCNgMqnUHOLSR4kLTV8AAGgMCBcBuI1RudgsPLD6HQPDJf/yH7wb67qLxn0Fhp91raVm4cGSpOO5hIsAUFtpaWmSpIQE53VuExISHK+lpaUpMDBQ0dHR1e4TH1/xj0Lx8fGOfSozY8YMWSwWx0erVq3qdD8AAAC+gnARgNs4wsWIs1QumkynrbvYSMNFo5lLWNWdog3xkfb361g24SIA1NWZDcVsNlv1TcYq2aey/c92nqlTpyorK8vx8fvvv7s4cgAAAN9EuAjAbdJza9jQRTpt3cXGGi6WN3OpplO0oVn5+0XlIgDUXvPmzSWpQnXhsWPHHNWMzZs3V3FxsTIzM6vd5+jRoxXOf/z48QpVkacLCgpydLk3PgAAAJoCwkUAbuNo6HK2ykXptMrFir/ANQqOcJHKRQCoD+3atVPz5s21fPlyx7bi4mKtWrVK/fr1kyT17NlTAQEBTvscOXJE27dvd+yTnJysrKwsbdy40bHPd999p6ysLMc+AAAAOIVu0QDcwmazOcKxZjWqXCxfz6qxVi7muVC5WB7GpucWqazMJj+/6qfvAUBTlZubq99++83x+d69e7V161bFxMSodevWuvfeezV9+nR17NhRHTt21PTp0xUaGqqRI0dKkiwWi8aMGaP7779fsbGxiomJ0ZQpU9S9e3dH9+iuXbtqyJAhuvPOO/Xyyy9Lku666y4NGzaMTtEAAACVIFwE4Ba5RaUqKLFKOlWJV61w+/Q15VS9OL5Pc6y5WH2naEmKDbO/X6VlNmXmFyu2JuEsADRBmzZt0mWXXeb4fPLkyZKk2267TfPnz9eDDz6ogoICTZgwQZmZmbrooov05ZdfKiIiwnHMzJkz5e/vrxtvvFEFBQW64oorNH/+fJnNZsc+CxYs0N133+3oKn3NNdfohRdeqKe7BAAA8C2EiwDc4liOvWoxIshfoYE1+NZiVC422mnR5RWZ4WcPFwP9/RQTFqgTecU6nltEuAgAVRg4cKBsNluVr5tMJk2bNk3Tpk2rcp/g4GDNnj1bs2fPrnKfmJgYvf3223UZKgAAQJPBmosA3OJodqEkqVlNqhYlKaK8crGxhouOadFnDxel05q65LDuIgAAAADAdxAuAnALIxSLr0kzF+nUWoSNNVw0GrrUYFq0dGrdRZq6AAAAAAB8CeEiALcwQrGEyOCaHWCEizlHpWqmuPkkm+20btE1CxeNUPZ4LuEiAAAAAMB3EC4CcItjOfZp0S5XLlqLpMIsD43KSwqz7Pcl1XxaNJWLAAAAAAAfRLgIwC2OZhvTomtYuRgQLAVb7M8b29TovPJmLkGRUkBIjQ5pRuUiAAAAAMAHES4CcAtH5WJNG7pIjXfdReN+wprV+BBHuFj+PgIAAAAA4AsIFwG4xbEcFysXJed1FxsTx3qLCTU+xDEtmm7RAAAAAAAfQrgIwC2MtQKpXNSpadHhNa9cNELZ44SLAAAAAAAfQrgIoM7yi0uVW1QqyYWGLpIU0dz+mJvmgVF5kRGW1qJyMaewVIUlVk+MCgAAAAAAtyNcBFBnRtViaKBZ4UH+NT/Q6KRsTCNuLIz7CatZp2hJigz2V5C//Vsy1YsAAAAAAF9BuAigzk6ttxgkk8lU8wPDyysXcxpb5aKx5mLNp0WbTCbWXQQAAAAA+BzCRQB1djS7vFO0K81cpMZbuZhzxP4YkejSYXSMBgAAAAD4GsJFAHXmqFx0pZmL1PjXXDTur4aM9SqPZlO5CAAAAADwDYSLAOrsWE5tKxfLG54UZEqljSRQs5aeNi3atXCxeaT9/UvLpnIRAAAAAOAbXOi8AACVO55dy8rFkGjJL0AqK7EHclGtPDC6epZ3XJJNMpmlsDiXDk2w2MPFo1mEiwAANAYvLd+mEnNIjfefdPk5UkCo5Moa1gAAeBnhIoA6O+qoXHQxXDSZ7NWL2QcbT7horLcYHi/5mV06lMpFAAAal/HfD3btgA2SHjosBYZ5ZDwAAHgC06IB1Nmx8srFhEgXp0VLUkT51OjGsu5iLddblKTmFsJFAAAAAIBvoXIRQJ05Grq4WrkonVp30QjlfJ2jcrEW4WIk06IBAPB1pX7Bmt13tUvHBFgLXK9yBACggaiXysU5c+aoXbt2Cg4OVs+ePbVmzZoq9/3444915ZVXqlmzZoqMjFRycrKWLVtWH8MEUAuFJVZlFZRIqkVDF+lUuJjTWMLFulcu5hVblVNY4s5RAQCA+mIyqdQc4tKHK+syAgDQ0Hg8XFy4cKHuvfdePfzww9qyZYsuvfRSDR06VAcOHKh0/9WrV+vKK6/UkiVLtHnzZl122WW6+uqrtWXLFk8PFUAtHC2fwhsSYFZkSC2KoRtr5WJEosuHhgb6KyLY/h4eZWo0AAAAAMAHeDxcfPbZZzVmzBiNHTtWXbt21axZs9SqVSvNnTu30v1nzZqlBx98UL1791bHjh01ffp0dezYUYsXL/b0UAHUwpHyKbyJlmCZatPZMDze/thYwkXHmosJtTrc0dQlq8hdIwIAAAAAwGM8Gi4WFxdr8+bNSklJcdqekpKidevW1egcZWVlysnJUUxMjCeGCKCOjAq7WjVzkU5NH24s4WIdKhelU1Ojj2QVuGtEAAAAAAB4jEcbuqSnp8tqtSohwbmCJyEhQWlpNesM+8wzzygvL0833nhjpa8XFRWpqOhUhU92dnbtBwzAZadXLtZKY11zMbx2lYtGSMu0aAAAAACAL6iXhi5nTpW02Ww1mj757rvvatq0aVq4cKHi4+Mr3WfGjBmyWCyOj1atWrllzABqJq08XGxe13Ax96hks7lpVF5SZpXyjtmf17Zy0ZgWTbgIAAAAAPABHq1cjIuLk9lsrlCleOzYsQrVjGdauHChxowZow8++ECDBg2qcr+pU6dq8uTJjs+zs7MJGIF6ZEzfrX3lYvkfDspKpPwTUlism0bmBXnHJVuZZPKTwuJqdYoEC2suAgDQlM1e8ZtKXegefd+VnTw4GgAAzs6jlYuBgYHq2bOnli9f7rR9+fLl6tevX5XHvfvuu0pNTdU777yjq666qtprBAUFKTIy0ukDQP05VblY8x+CnfgHSaHlgaKxXqGvMsYfniD5mWt1ikSmRQMA0KQFWAvk78KHivN8f/YHAMCnebRyUZImT56sUaNGqVevXkpOTtYrr7yiAwcOaPz48ZLslYeHDh3Sm2++KckeLI4ePVrPPfec+vbt66h6DAkJkcVi8fRwAbiozmsuSlJEkpSfYQ/nmndz08i8oI7rLUqnppczLRoAgKZp/PeDXTtgg6SHDkuBYR4ZDwAAZ+PxNRdvuukmzZo1S48++qguuOACrV69WkuWLFGbNm0kSUeOHNGBAwcc+7/88ssqLS3VxIkTlZiY6Pi45557PD1UAC4qsZbpeK59+m6t11yUpMjy9QmzD7thVF5Ux07R0qmGLum5RSqxlrljVAAAAAAAeIzHKxclacKECZowYUKlr82fP9/p85UrV3p+QADc4lhOkWw2KdDsp5jQwNqfyAjjfH1adG555WJE7SsXY8MCFWA2qcRq0/GcIiVF1XK6OQAA8BmlfsGa3Xe1S8cEWAtcr3IEAMAD6iVcBNA4pZU3c0mwBMnP7+wd4KsUmWR/zD7khlF5kRsqF/38TIqPCNahkwVKyy4kXAQAoCkwmVxq4gIAQEPi8WnRABovx3qLkXX8YdgI47J9vHLRDWsuSlJCZJAk6WgW6y4CAAAAABo2wkUAtXaqU3Qd1luUTlUu+vq0aDdULko0dQEAAAAA+A7CRQC15pZO0dJplYs+3tDFDWsuSlLz8krQI1QuAgAAAAAaOMJFALXm9srFghNSiY8GamVWKfeY/Xl48zqdKinK/n4eOllQ11EBAAAAAOBRhIsAau1IeUOXOlcuhkRLZvs6gz47NTr3qGSzSn7+Unh8nU7VMtpeuXgok3ARAAAAANCwES4CqLVTlYt1bOhiMkmR5VOjfTVcNKZ0RyRKfuY6napFVKgk6TCViwAAAACABo5wEUCtlFrLdDSnSJIbKhclKaJ8arSvrruYfcj+aEzxrgNjWvSxnCIVlVrrfD4AAAAAADyFcBFAraRlF8paZlOg2U/NwoPqfsLGUrnohnAxJixQwQH2b89HTvroGpQAAAAAgCaBcBFArRwsXw8wKSpYfn6mup/QCOWyfTVcNCoXW9T5VCaTSS2i7FPNmRoNAAAAAGjICBcB1IrRbKRldKh7TmhMi87x1WnR7qtclKSk8nDxIOEiAAAAAKABI1wEUCuHykMvo8Kuzoxp0T5buejecJGO0QAAAAAAX0C4CKBWDmbmS5JaRLspXPT5ykX3TYuWpCQL06IBAAAAAA0f4SKAWjEqF1u6K1x0NHRJk2w295yzvpSVnaq4dFPlohHaHiJcBAAAAAA0YISLAGrFaOjitmnR4c3tj9ZiKT/DPeesL/npUlmJZPKTwhPcckrjfSVcBAAAAAA0ZISLAFxWVmZzTNd127Ro/0AprJn9ebaPTY02pkSHJ0jmALec0mjocuRkocrKfKySEwAAAADQZBAuAnDZsZwilVhtMvuZ1Dwy2H0njjCmRvtYUxc3N3ORpOaWYPmZpGJrmdJzi9x2XgAAAAAA3Mnf2wMA4HsOnbQ3c2keGSx/sxv/RhGZJKX9eKoS0FdkGc1c3BcuBpj91DwyWIezCnXoZIHi3RniAgCAxqU437X9A0Ilk8kzYwEANDmEiwBcZqy36LZmLgZLS/tjlo+Fi27uFG1IigpxhIsXto5267kBAEAj8vQ5ru3/0GEpMMwzYwEANDlMiwbgMkczF4+Fiwfde15P88C0aOlUePv7CZq6AAAAAAAaJioXAbjM6GDc0l2dog2WVvZHnw0X3Vu52DrWXlFw4ESeW88LAAB8X6lfsGb3Xa1Jl9ewarE43/UKRwAAaoBwEYDLfj9hX9fHc5WLv7v3vJ6W7f41FyWpTUyoJGl/hovrKAEAgMbPZFKpOYTpzQAAr2NaNACXHSgPF9vEuvmHWSNczD4slVnde25Psdk8Ni26TSzhIgAAAACgYSNcBOCSEmuZY81FI/xym/DmkskslZVIucfce25PyT8hWYvszyMS3Xrq1uXv75GsAhWXlrn13AAAAAAAuAPhIgCXHD5ZIGuZTUH+fkqICHbvyc3+p9Yt9JWp0VkH7I/hCZJ/kFtP3Sw8SCEBZpXZTq1zCQAAAABAQ0K4CMAl+8qn6LaOCZWfn8n9F/C1dRdPlo/TaEbjRiaTSa0d6y7S1AUAAAAA0PAQLgJwyYHykMvt6y0aHOGij3SMNkLQKPeHi9KpqdHGOpcAAAAAADQkdIsG4BKjctHt6y0afC1c9GDlokTHaAAAUL2Zy3+t0X7+1gJN8vBYAABNE5WLAFxihFxtCRftHJWLrT1yejpGAwAAAAAaMsJFAC4x1v5r7bFp0eUVgD6z5mJ5QxcPVS4a7/OBE6y5CAAAAABoeAgXAdTY/2/vzsOjLO/9j38myyQhJAMkZJMtyr4ryKaIRURpEepSRSzqVY9HjopFsKdo2yP16hHqqUvFglVxO9qD5/yqHq0ohiMgln2JIJsRImFJCAkhCSRksty/P4aZEsgyM2TmmUner+uaaybz3M9zf/NNxCffuZe6OuNZ+4+Ri2e5i4sBWnPRPS0670SFjDEB6QMAAAAAAH9RXATgtWPlZ1RVU6fICJsyOsQFphN3cbGyRKo6FZg+WkpVuXTmpOt1gEYuXtIxTpERNp2prtPx8qqA9AEAAAAAgL8oLgLwmnvdvy4d4xQdGaB/PmITpRiH63XZkcD00VLcm7nEdnDFHQDRkRHq0tFVyD1QxNRoAAAAAEBoobgIwGu5Z4tb3QO13qKbZ2p0iK+76NnMJTCjFt0u69xekrT/eIiP5AQAAAAAtDkUFwF47btCV3Gr59liV8C4i3Whvu6iZzOXwOwU7XZZZ1cxd38hIxcBAAAAAKGF4iIAr7lHzl2WEqSRiycZuSgxchEAfDF//nzZbLZ6j7S0NM9xY4zmz5+vjIwMxcXF6dprr9WuXbvqXaOqqkqzZs1ScnKy4uPjNWXKFB0+HOIfeAG+cFZIztO+PdhYDgDQiCirAwAQPoI3cvHsSMCTBwPbz8VyFz8DtJmL22UpFBcBwBcDBgzQypUrPV9HRkZ6Xj/zzDN67rnn9Oabb6p379763e9+p+uvv1779u1TQkKCJGn27Nn6+OOPtWzZMiUlJWnu3LmaPHmytm7dWu9aQNj6Q0/fz3niqGQP8AfMAICwRHERgFcqnbU6crJSktQzJcDFxY49XM8l3we2n4sV5JGLR05WqtJZqzg7f9gCQFOioqLqjVZ0M8bohRde0K9+9SvdcsstkqS33npLqamp+stf/qIHHnhApaWlWrp0qf7zP/9TEyZMkCS988476tq1q1auXKkbbrghqN8LAABAqKO4CMArB4pOyRipQ7todYq3B7azcCkuetZcDGxxsVO8XR3bRaukoloHik5pQIYjoP0BQLjLyclRRkaGYmJiNHLkSD399NO69NJLlZubq4KCAk2cONHTNiYmRuPGjdO6dev0wAMPaOvWraqurq7XJiMjQwMHDtS6desaLS5WVVWpqqrK83VZWVngvkHADzURsVo06kvNGu/DqEVnhX+jHAEAbQprLgLwyv7jrs1EenZuL5vNFtjO3MXF08elqhCdClxTJZ065nrdoXvAu/vHuots6gIATRk5cqTefvttrVixQq+++qoKCgo0ZswYFRcXq6CgQJKUmppa75zU1FTPsYKCAtntdnXs2LHRNg1ZsGCBHA6H59G1a2A/eAJ8ZrOpJjLONbXZ60c7q6MGAIQBiosAvOJZbzHQU6IlKdYhxZ39o849OjDUuOOKjpfadQp4d57iYmGIFlsBIERMmjRJt956qwYNGqQJEybok08+keSa/ux2/odkxphmPzhrrs3jjz+u0tJSz+PQoRDflAwAAKCFUFwE4BXPTtGB3szFzT0aMFSnRp/IdT13ypQCPZJT/9ihm01dAMA38fHxGjRokHJycjzrMJ4/ArGwsNAzmjEtLU1Op1MlJSWNtmlITEyMEhMT6z2AVoUdpgEAjWDNRQBe2R/MkYuSa2p0fnboFhdLzhYX3VO4A8xd1M05RnERAHxRVVWlPXv2aOzYscrMzFRaWpqysrJ0+eWXS5KcTqfWrFmj3//+95KkYcOGKTo6WllZWbr99tslSfn5+frmm2/0zDPPWPZ9AC3l+axvvW4bVVupWe4v2GEaANAIiosAmuWsqfOMmAtqcVEK3eLiuSMXg6BvumsEzP7jp+SsqZM9ioHnANCQxx57TDfddJO6deumwsJC/e53v1NZWZnuuece2Ww2zZ49W08//bR69eqlXr166emnn1a7du00ffp0SZLD4dB9992nuXPnKikpSZ06ddJjjz3mmWYNAACA+iguAmjW/uOnVF1rlBAbpS4d44LTaagXF91xdQxOcTHDEavE2CiVnanRd4Wn1D+D6XYA0JDDhw/rzjvvVFFRkTp37qxRo0Zpw4YN6t7dtdzGv/7rv6qyslIPPvigSkpKNHLkSH3++edKSEjwXOP5559XVFSUbr/9dlVWVuq6667Tm2++qcjISKu+LcAS7DANAPAGxUUAzdpbUCZJ6peWGPidot06nl1z8eTB4PTnqyBPi7bZbOqbnqhNuSe0t6CM4iIANGLZsmVNHrfZbJo/f77mz5/faJvY2FgtWrRIixYtauHogDBz7g7TAAA0gnl1AJq1J79cktQvPaGZli3o3JGLobYYeF3dP0YuBmlatCT1S3Plf09+WdD6BAAAAACgKRQXATTLXcxyr/sXFI6uki1CqjkjnToWvH69carAFZct0hVnkPQ7m/+9BeVB6xMAAAAAgKZQXATQLHdxsV8wi4uR0ZKji+t1qK276I6nQ1dXnEHizj8jFwEAAAAAoSIoxcXFixcrMzNTsbGxGjZsmNauXdtk+zVr1mjYsGGKjY3VpZdeqpdffjkYYQJowPHyKhWdcirCJvVJDeK0aEnqcHbdxZIQW3fRvVN0kDZzceudmqAIm1R0yqnC8jNB7RsAAAAAgIYEvLj43nvvafbs2frVr36l7du3a+zYsZo0aZLy8vIabJ+bm6sf/vCHGjt2rLZv364nnnhCjzzyiP76178GOlQADXCPkuuRHK84e5B3yfSsu5gb3H6b444niOstSlKcPVI9kl0LqrvXwQQAAAAAwEoB3y36ueee03333ad/+qd/kiS98MILWrFihZYsWaIFCxZc0P7ll19Wt27d9MILL0iS+vXrpy1btugPf/iDbr31Vq/7dTqdcjqdLfI9AG3ZjrxiRalW/VPbBf+/qQ6XSoqSjh+QQum/56LvJUVJid2DHlf/1HbKO16mnXnFGt3DEdS+AQQP9zAAQsnzWd963TaqtlKzAhgLACD0BLS46HQ6tXXrVs2bN6/e+xMnTtS6desaPGf9+vWaOHFivfduuOEGLV26VNXV1YqOrr++WVVVlaqqqjxfl5W5Rlk9++yzio2NbYlvA2jzZsRJ2i8tWPBp8Du3PSLtlrT7wg8jrNPVFdeqUmlVcOPqLNfPo/jv27Xg70HtGkAQnTnD0gcAWgFnhe/nRLeTbLaWjwUAEDABLS4WFRWptrZWqamp9d5PTU1VQUFBg+cUFBQ02L6mpkZFRUVKT0+vd2zBggX67W9/27KBAwAAAAAuzh96+n7OE0cle3zLxwIACJiAT4uWJNt5nzwZYy54r7n2Db0vSY8//rjmzJnj+bqsrExdu3bV3LlzlZgYxJ1tgVaooKxS4/+wRpERNm16YkLw11ysqZKeyZRkpJ/vkOI7B7f/hlSUSC/0d71+7Lug3/xWOms14umVqq0z+uKxcUpLjAtq/wCCo6ysTAsXLrQ6DAAAAKBZAS0uJicnKzIy8oJRioWFhReMTnRLS0trsH1UVJSSkpIuaB8TE6OYmJgL3rfb7bLb7RcRPYDdBcWqUaR6pybK0d6CIpbdLnXIkE4elMoOSh0vCX4M5yv4XlKNlNhFat8x6N3b7VLPtA7adbRMu/Ir1C2ZdReB1oh7GADhqiYiVotGfalZ430Yteis8G+UIwAgJAS0uGi32zVs2DBlZWXp5ptv9ryflZWlqVOnNnjO6NGj9fHHH9d77/PPP9fw4cMvWG8RQGBlHyqVJA3p2sG6IJJ6uoqLRTlS9zHWxeFWnON6TrbuBnhIV1dxMfvwSU0alN78CQAAAMFis6kmMk7Przni9SlsAgMA4S0i0B3MmTNHr732ml5//XXt2bNHjz76qPLy8jRz5kxJrmnNd999t6f9zJkzdfDgQc2ZM0d79uzR66+/rqVLl+qxxx4LdKgAzpN9qESSNLSrhaPjks4W8Yq/sy6GcxWdLS4m9bIshKFni73ZeSctiwEAAAAAACkIay7ecccdKi4u1lNPPaX8/HwNHDhQy5cvV/fu3SVJ+fn5ysvL87TPzMzU8uXL9eijj+pPf/qTMjIy9OKLL+rWW28NdKgAzlFVU6vsQyclSVd0C/70Xw9PcXG/dTGcy11cTLauuHj52eLijsOlctbUyR4V8M+JAAAAAABoUFA2dHnwwQf14IMPNnjszTffvOC9cePGadu2bQGOCkBTdhwu1ZnqOiXF29Uzpb11gSSH2MjFYuuLiz1T2qtTvF0nTju188hJDeveybJYAAAAWpSzwvdzottJTWwYCgAIrKAUFwGEn40HiiVJIzI7Nbm7e8C5Ry6eOCDV1UoRQd6x+ly1NdKJ3LNxWVdctNlsGnVpJy3fWaD1+4spLgIAgNbDn41dnjgq2eNbPhYAgFeYSwegQRtzT0iSRmZaXLhK7CJFxkh11a6NXax08qArjqg4KdHanatHXZokSdpw4ISlcQAAAAAA2jZGLgK4QHVtnbYedG3mMvJsEcsyERFS0mVS4W7XuoudLrUuFs9mLj1dcVnIXVzccvAE6y4CAICwVhMRq0WjvvTpnOjaSs3cfEOAIgIA+IK/RgFc4OtDJ1XhrFWHdtHqk5pgdTj/mBp9fJ+1cRR963pO9mO6TgvrdXbdxTPVdfr68EmrwwEAAPCfzaaayDifHtWRcVZHDQA4i5GLAC6wal+hJGlsr86KiAiBxbFT+kl7PpKO77E2DvdmLhaut+hms9k0+rIkfbIjX19+e1xX9mDdRQAA0DYt+uI71XhZbHz0+t4BjgYA2h5GLgK4wKq9xyVJP+jT2eJIzkrp53ou3GttHO6Rk8mhcVM6vk+KJOn/9hRaHAkAAAAAoK2iuAignmNlZ7Q7v0w2m3RN7xApLnY+W1w8vlcyxpoYjJEKz46cTO1vTQznubZPZ9ls0u78MuWXVlodDgAAAACgDaK4CKCe1WenRA/u0kHJ7WMsjuaspMukiGjJeUoqPWRNDGVHpKoyKSIqJKZFS1JS+xhd3rWDJOmLvYxeBAAAbVN0baWivHzIedq6D6sBoJVizUUA9Xz2TYGkf0y5DQmR0VJyL9eO0YV7pA7dgh+De9RiUi8pyh78/htxXb9Ubcs7qf/bU6i7Rna3OhwAAICg82nX6A3SolFfer1Go8Q6jQDQHEYuAvA4WeHU2pwiSdKPBqdbHM15POsuWrSpy7Fd9eMIEdf3T5Ukrc05rtKKaoujAQAAAAC0NYxcBOCxYleBauqM+qYlqGdKe6vDqa+zxcVFd78pobHeolvv1AT1TUvQ3oJyLf8mX3eOsGBUJwAAQJDVRMRq0agvvW4fXVvp2whHAIDXKC4C8Pj463xJ0k1DMiyOpAGekYu7renf3W+IbOZyrqlDL9Hez/bqf7OPUFwEAABtg83m09Tmc0XX+rgRnvO0FN1Ostn86g8AWjuKiwAkSYdOVOjv+11Tom8aHMLFxaJvpbpaKSIyeH3X1UrH99WPI4TcNCRdv/9srzbmntCRk5W6pIN/N9oAAABtgc8jGDdIeuKoZI8PSDwAEO5YcxGAJGnZ5jwZI13dM1ndktpZHc6FOvaQomKlmjPSidzg9n3igFRb5frEukOP4PbthS4d22n0pUkyRvqvjXlWhwMAAAAAaEMYuQhA1bV1+u8thyVJd40M0Wm1EZGu9Q6PbpOO7ZSSewavb/eU6M59pYjQ/Ezm7tHdtf5Asf5rU54eHt9TsdFBHNkJAAAQ4nxdo1FinUYA8FZo/pUMIKj+N/uojpdXqXNCjCac3X04JKUPdj3nfx3cfvN3uJ5TBwS3Xx9c3z9V6Y5YFZ926pMd+VaHAwAAEFrOrtHoy6PazzUdAaCtobgItHG1dUaLV38nSbrv6kxFR4bwPwvpQ1zPQS8uZrueM4YGt18fREVG6KejukuSFq/+TrV1xuKIAAAAAABtQQhXEQAEw/Kd+Tpw/LQccdGe4lTIOre4aIJUPDNGOpp9tv/Lg9Onn2aM7i5HXLT2Hz+tj74+YnU4AAAAAIA2gOIi0Iadqa7V7z/bK0n62VWZah8T4suwpgyQbJFSRbFUFqTiWdlRqaLI1W9q/+D06afE2Gj98zWXSpKez8rRmepaiyMCAAAAALR2FBeBNuzVLw/ocEml0h2xuv+aTKvDaV50rJTSz/U6WFOj3f2k9JOiQ3/dnXvH9FBKQozyTlRoyer9VocDAADQthgjOU/7/wjW7BwAaEEhPkwJQKDsyS/Toi9cay3Om9RX7exh8s9B+hDp2DeuTVb6/ijw/bnXW3RPyQ5x8TFRevKmAXroL9u0ZPV+/WhwunqnJlgdFgAAQNtQXSE9neH/+U8clezxLRcPAAQBIxeBNqjSWatH38uWs7ZO1/VN0ZQhF3EDFGzB3tTF3U+YFBcl6YeD0vSDPp3lrK3TQ+9uU4WzxuqQAAAAAACtVJgMVQLQUmrrjGa/t117C8qVFG/XwlsHy2azWR2W99xFvqPbXdNGAh27ZzOXoYHtpwXZbDY9c9sQ/ejFtcopPKW5//21Xpp+hSIjwujnDAAAEEqcFb63e+w7yd7Ou3P+0NO/uAAgBFBcBNqQ2jqjeX/doRW7jskeGaE/zximzgkxVoflm7TBUkSUdKpAKj0kdegWuL5KD7v6sUVKaQMD108AdE6I0UvTr9Bdr23Qp98UaN5fd2jhrYMpMAIAAPjDn+KfvR1TnAG0CUyLBtqI0spqzXxnq/5n62FF2KRnbx+i4T06WR2W7+ztpLRBrteHNgW2r0MbXc9pg8LyxnBEZie9OO1yRdik/9l6WPe/vUXlZ6qtDgsAAAAA0IowchFoA9Z8e1y//nCnDp2olD0yQi/eOVQ3Dky3Oiz/dRnhmhZ9aJM06LbA9eMuXnYdEbg+AmzSoHS9NP0KPfpetr7YW6gbX1irBbcM0jW9O1sdGgAAQEiriYjVolFf+n/+6sNeLeETVVupWX73AgDWo7gItFJ1dUZrco7r9a9ytTanSJLUtVOcFt15hYZ27WBtcBer6whp05+lw4EeueguLo4MbD8B9sNB6bqkQ5we+ss2HS6p1N2vb9JVPZP0wDWX6aqeyUyVBgAAaIjNpprIOKujAICQR3ERaCWMMTpcUqmdR0r11XdF+mJPoQrKzkiSoiJsundMDz0yoZcSY6MtjrQFuIt9+Tsk5+nATFl2VkgFO872F74jF92GdO2gFbOv0X+s2Kd3Nx7U378r1t+/K1ZqYowm9EvVmMuSdXm3Dkp3xIbXBj8AAAAAAEu12uLit8fK1P68Db2MabhtY+9LklHDB5s6p9FrtXA/jR0yTZzU+DmN99PYWf7F1sQ5jRxsKrRGf6ZNndXoOS3bT+PnNNVP4zmoqq5ThbNGp521qqhyPZ84XaWC0jPKLz2jQycqVHampt55CTFR+snwrrp3TA91S/Jip7pw4egiJaRL5fmu6dE9rm75Po5ul+pqpPZpkqNry1/fAvExUZo/ZYD+aWymXv3ygD7MPqpjZVV6d2Oe3t2YJ0lqHxOlSzvHKy0xVskJMercPkaJcdGKi45UnD1CcdFRirNHKirCJptNirTZFBFhU4TNpgibFHn2tc0m2eRbkdKfmqZf5/gYF2CFU+XlVocAALCCt7tSnyu6nX83RQDQQlptcfGWxesVEdOKiimAF6IjbeqTlqDLu3bU+H4pGn1pkmKjI60Oq+XZbK7RhLv/17XpSiCKi4c2uJ67jmh1N2tdOrbTb6cO1BM/6qe13xbpq++KtOFAsb4rPKVTVTXacbhUO1RqdZhAm1ZX5ccflwCA8OfPrtRPHA3LzQcBtB6ttriYFB+tyFh7A0caLhI0VjtoqqTQ+Dkt2UfLjPxp6jLBiLfRc4LQh68/p6bO8TUmVz++9dHY+zFRkWpnj1S8PUrtYlzPjrhopXeIVbojVumOOF3Wub3sUW1kE/huY1zFxdy10ti5LX/93LWu5+5jWv7aISImKlIT+qdqQv9USZKzpk55J05r//HTOl5e5XqcqtLpqhpVOGt1prpWFc5aVTprVWeMauuMao1RXZ1RnZFq64zqjPvhWyz+jAZvehxwS/YDBF9tZLUOWR0EAAAA4IVWW1xc86/jlZiYaHUYAAIl8xrXc94GqaZKioppuWvXVLmuK0mZ41ruuiHOHhWhnikJ6pmSYHUoQJtXVlYmx9NWRwEACAZ/dqWOrq3UzM03uL7wdSo106gBtLBWW1wE0Mql9JPiU6TTha5dnTPHtty1D2+Waiql+M6ufgAAAIBAudhdqX2dSs00agAtrI3MnwTQ6ths/xi9mLumZa+de/aT48xr+FQXAAAArYuzQnKe9u3B2jIAmsDIRQDh69JrpW/+n3RgjTT+1y133QNni5VtaEo0AAAAwoevU6nrTaNm0xgALYziIoDwdenZ4t+RrdKZUinWcfHXPFMqHdnieu0eGQkAAACEkoudSg0ALYjiIoDw1aGblNRLKs6RvlspDbz14q/53UqprkZK7i11yrz46wEAAAAWu+hNYwCgCay5CCC89f2h63nfpy1zvX2fuZ77TGqZ6wEAAABWOzvS0ZdHNSMjAXiJkYsAwlufH0p//6OU87lUWy1FRvt/rdoa13UkqTfFRQAAAECSaxOYUBXdjk0YAYtRXAQQ3rpcKbVLliqKpIN/d23y4q+89dKZk1JcJ6nriJaKEAAAAAhv/mwCEyxsNgNYjmnRAMJbRKTU50bX690fXdy1dr3veu4zyXVdAAAAAADQJEYuAgh/A26Wtr/jKg7euFCKsvt+jRqntOsD1+tBt7VsfAAAAECY8WcTGLdZ430f6bjoi++8btsaN5t5Putbn8959PreAYgE8B3FRQDhL/NaqX2adKrAtWZiv8m+X2P//0mVJVL7VClzXEtHCAAAAISXs5vA+MWPacp+9wXAchQXAYS/yChp8E+kdYukHcv8Ky5+/V+u54G3MSUaAAAACBMvZ+30aWfrWeN7sgkM0MIoLgJoHYbc6Sou7vtUKsuXEtO9P7fsqLTnb67XQ6cHJj4AAAAALc7n6dEbJD32nWRvF5B4PLwtYBojVVcoqrbS9z6cpymUIiRQXATQOqQOkLqNdu34vPlV6bp/8/7cLW9IplbqfpWUNjBwMQIAAABtgD/rBwZVMHa/9nYX6+oK6ekMzfKnjw0+9AMEEMVFAK3H6IdcxcUtr0tj53r3P1nnaVd7SRpxf2DjAwAAAHDR/NlspjVuAuMPXwu/bBoDb1BcBNB69Pmh1LGHVPK9tOlV6erZzZ+z6RWposh1Xl8/1moEAAAAEFx+bDbjLkj6upO137tYOyu8O+mcdi9fucKr9SP96ucsn6dfO0/71t6N6dptCsVFAK1HRKQ0bp704Uxp7XPSFXdL7To13r7ihPT3P7pej5snRUYHJ04AAAAAwXW2IPn8miO+nefvLtZ+TL2ujozzfddsH/vxefr1Bl9POIvp2m1KQIuLJSUleuSRR/TRRx9JkqZMmaJFixapQ4cODbavrq7Wr3/9ay1fvlwHDhyQw+HQhAkTtHDhQmVkZAQyVACtxeDbpfV/ko7tlLJ+I039U+Nts34jVZZInftJg34SvBgBAGFh8eLF+o//+A/l5+drwIABeuGFFzR27FirwwIAIPT5OKLSH76MKnXzerfwsxvtBLSPVsRmjDGBuvikSZN0+PBhvfLKK5Kkf/7nf1aPHj308ccfN9i+tLRUt912m+6//34NGTJEJSUlmj17tmpqarRlyxav+iwrK5PD4VBpaakSExNb7HsBEEYOrpfemCTJSD95Sxrw4wvb7PpQ+p97XK9/9rnUbWQQAwSApnE/Y7333ntPM2bM0OLFi3XVVVfpz3/+s1577TXt3r1b3bp1a/b8gP8Mnaelp10fvi8a9aXvI10AAC3PGEXVnfH79JqIWK93mI6qO+PzFG/J94KcT304K4KzWc7F8ma38Iv9XvzZkTzECpK+3MsErLi4Z88e9e/fXxs2bNDIka4/2jds2KDRo0dr79696tOnj1fX2bx5s0aMGKGDBw+Gxo0cgPCQ9W+uKc9RsdKd/yVdNv4fx/avkpZNd+3MNmaWNPF31sUJAA3gfsZ6I0eO1BVXXKElS5Z43uvXr59+/OMfa8GCBc2eT3ERABBo/my2EsidvKNqKzVrwzUBu36rF2IFSV/uZQI2LXr9+vVyOByewqIkjRo1Sg6HQ+vWrfO6uFhaWiqbzdboVOqqqipVVVV5vi4rK7uouAG0EuP/TSrKkfYtl965VbriHqnbKClvg7TtLcnUSb0mStfNtzpSAECIcTqd2rp1q+bNm1fv/YkTJ2rdunUWRQUAQH2BLBT6w59dvN0CPQrzYnYL92ujHX/4M1IyRNa2DFhxsaCgQCkpKRe8n5KSooKCAq+ucebMGc2bN0/Tp09vtEq6YMEC/fa3v72oWAG0QpFR0m1vSH97VPr6L9LWN1wPt8HTpCkvutoBAHCOoqIi1dbWKjU1td77qampjd7H8oE3AKDN82MXbw8/CmS+9HUxu4V7O13dn+LqRRckQ4TPf1XPnz+/2WLe5s2bJUm2BpJvjGnw/fNVV1dr2rRpqqur0+LFixtt9/jjj2vOnDmer8vKytS1a9dmrw+gDYiOlW5eIg2dLn29TCrNkxxdpSHTpEyG6wMAmnb+PWtT97FB/8DbHi/NL5Xkx86fAAC0Av5MC/fVrBuHBLYDY6Trj/p3bgiMWHTzubj48MMPa9q0aU226dGjh3bs2KFjx45dcOz48eMXfAp8vurqat1+++3Kzc3VF1980eTc7piYGMXExHgXPIC2KXOs6wEAgBeSk5MVGRl5wSjFwsLCRu9j+cAbAAD4zGYLqSKhv3wuLiYnJys5ObnZdqNHj1Zpaak2bdqkESNGSJI2btyo0tJSjRkzptHz3IXFnJwcrVq1SklJSb6GCAAAAPjNbrdr2LBhysrK0s033+x5PysrS1OnTm3wHD7wBgAAbVVEoC7cr18/3Xjjjbr//vu1YcMGbdiwQffff78mT55cbzOXvn376oMPPpAk1dTU6LbbbtOWLVv07rvvqra2VgUFBSooKJDT6QxUqAAAAEA9c+bM0WuvvabXX39de/bs0aOPPqq8vDzNnDnT6tAAAABCSkB3Mnj33Xf1yCOPaOLEiZKkKVOm6KWXXqrXZt++fSotda0Xc/jwYX300UeSpKFDh9Zrt2rVKl177bWBDBcAAACQJN1xxx0qLi7WU089pfz8fA0cOFDLly9X9+7drQ4NAAAgpNiMMcbqIFpSWVmZHA6HSktLm1yrEQAAIFRxPxP++BkCAIBw5su9TMCmRQMAAAAAAABo3SguAgAAAAAAAPALxUUAAAAAAAAAfqG4CAAAAAAAAMAvFBcBAAAAAAAA+IXiIgAAAAAAAAC/UFwEAAAAAAAA4BeKiwAAAAAAAAD8QnERAAAAAAAAgF8oLgIAAAAAAADwC8VFAAAAAAAAAH6huAgAAAAAAADALxQXAQAAAAAAAPiF4iIAAAAAAAAAv0RZHUBLM8ZIksrKyiyOBAAAwD/u+xj3fQ3CD/ekAAAgnPlyP9rqiovFxcWSpK5du1ocCQAAwMUpLi6Ww+GwOgz4oby8XBL3pAAAILyVl5c3ez/a6oqLnTp1kiTl5eVxMx5EZWVl6tq1qw4dOqTExESrw2kzyLs1yLs1yLs1yLs1SktL1a1bN899DcJPRkaGDh06pISEBNlstoD0wX+fgUFeWx45DQzy2vLIacsjp4ERjLwaY1ReXq6MjIxm27a64mJEhGsZSYfDwS+uBRITE8m7Bci7Nci7Nci7Nci7Ndz3NQg/ERER6tKlS1D64r/PwCCvLY+cBgZ5bXnktOWR08AIdF69HbTHHSsAAAAAAAAAv1BcBAAAAAAAAOCXVldcjImJ0ZNPPqmYmBirQ2lTyLs1yLs1yLs1yLs1yLs1yDu8we9JYJDXlkdOA4O8tjxy2vLIaWCEWl5txps9pQEAAAAAAADgPK1u5CIAAAAAAACA4KC4CAAAAAAAAMAvFBcBAAAAAAAA+IXiIgAAAAAAAAC/hGRxcf78+bLZbPUeaWlpnuPGGM2fP18ZGRmKi4vTtddeq127dtW7RlVVlWbNmqXk5GTFx8drypQpOnz4cL02JSUlmjFjhhwOhxwOh2bMmKGTJ08G41sMSc3l/f3339cNN9yg5ORk2Ww2ZWdnX3AN8u67pvJeXV2tX/7ylxo0aJDi4+OVkZGhu+++W0ePHq13DfLuu+Z+3+fPn6++ffsqPj5eHTt21IQJE7Rx48Z61yDvvmsu7+d64IEHZLPZ9MILL9R7n7z7prmc33vvvRccHzVqVL1rkHPfefO7vmfPHk2ZMkUOh0MJCQkaNWqU8vLyPMfJO5qzePFiZWZmKjY2VsOGDdPatWutDimsffnll7rpppuUkZEhm82mDz/80OqQwt6CBQt05ZVXKiEhQSkpKfrxj3+sffv2WR1WWFuyZIkGDx6sxMREJSYmavTo0fr000+tDqtVWbBggWw2m2bPnm11KGHNl/t+eO/IkSP66U9/qqSkJLVr105Dhw7V1q1brQ4rNIuLkjRgwADl5+d7Hjt37vQce+aZZ/Tcc8/ppZde0ubNm5WWlqbrr79e5eXlnjazZ8/WBx98oGXLlumrr77SqVOnNHnyZNXW1nraTJ8+XdnZ2frss8/02WefKTs7WzNmzAjq9xlqmsr76dOnddVVV2nhwoWNnk/e/dNY3isqKrRt2zb95je/0bZt2/T+++/r22+/1ZQpU+qdT97909Tve+/evfXSSy9p586d+uqrr9SjRw9NnDhRx48f97Qh7/5pKu9uH374oTZu3KiMjIwLjpF33zWX8xtvvLHe8eXLl9c7Ts7901Te9+/fr6uvvlp9+/bV6tWr9fXXX+s3v/mNYmNjPW3IO5ry3nvvafbs2frVr36l7du3a+zYsZo0aVK9AjV8c/r0aQ0ZMkQvvfSS1aG0GmvWrNFDDz2kDRs2KCsrSzU1NZo4caJOnz5tdWhhq0uXLlq4cKG2bNmiLVu2aPz48Zo6deoFg23gn82bN+uVV17R4MGDrQ6lVfDmvh/eKykp0VVXXaXo6Gh9+umn2r17t5599ll16NDB6tAkE4KefPJJM2TIkAaP1dXVmbS0NLNw4ULPe2fOnDEOh8O8/PLLxhhjTp48aaKjo82yZcs8bY4cOWIiIiLMZ599ZowxZvfu3UaS2bBhg6fN+vXrjSSzd+/eAHxXoa+pvJ8rNzfXSDLbt2+v9z5594+3eXfbtGmTkWQOHjxojCHv/vI176WlpUaSWblypTGGvPvLm7wfPnzYXHLJJeabb74x3bt3N88//7znGHn3XXM5v+eee8zUqVMbPU7O/dNc3u+44w7z05/+tNHj5B3NGTFihJk5c2a99/r27WvmzZtnUUStiyTzwQcfWB1Gq1NYWGgkmTVr1lgdSqvSsWNH89prr1kdRtgrLy83vXr1MllZWWbcuHHm5z//udUhhTVf/95C8375y1+aq6++2uowGhSyIxdzcnKUkZGhzMxMTZs2TQcOHJAk5ebmqqCgQBMnTvS0jYmJ0bhx47Ru3TpJ0tatW1VdXV2vTUZGhgYOHOhps379ejkcDo0cOdLTZtSoUXI4HJ42bVFjefcGefefL3kvLS2VzWbzfDpB3v3nbd6dTqdeeeUVORwODRkyRBJ5vxhN5b2urk4zZszQL37xCw0YMOCCc8m7f5r7XV+9erVSUlLUu3dv3X///SosLPQcI+f+ayzvdXV1+uSTT9S7d2/dcMMNSklJ0ciRI+tNwSTvaIrT6dTWrVvr/X5I0sSJE/nZI6SVlpZKkjp16mRxJK1DbW2tli1bptOnT2v06NFWhxP2HnroIf3oRz/ShAkTrA6l1biY+gIu9NFHH2n48OH6yU9+opSUFF1++eV69dVXrQ5LUohOix45cqTefvttrVixQq+++qoKCgo0ZswYFRcXq6CgQJKUmppa75zU1FTPsYKCAtntdnXs2LHJNikpKRf0nZKS4mnT1jSVd2+Qd//4kvczZ85o3rx5mj59uhITEyWRd395k/e//e1vat++vWJjY/X8888rKytLycnJksi7v5rL++9//3tFRUXpkUceafB88u675nI+adIkvfvuu/riiy/07LPPavPmzRo/fryqqqokkXN/NZX3wsJCnTp1SgsXLtSNN96ozz//XDfffLNuueUWrVmzRhJ5R9OKiopUW1vb5P0wEGqMMZozZ46uvvpqDRw40OpwwtrOnTvVvn17xcTEaObMmfrggw/Uv39/q8MKa8uWLdO2bdu0YMECq0NpNS62voALHThwQEuWLFGvXr20YsUKzZw5U4888ojefvttq0NTlNUBNGTSpEme14MGDdLo0aN12WWX6a233vIsMm+z2eqdY4y54L3znd+mofbeXKe1airvc+bM8fu65L1p3ua9urpa06ZNU11dnRYvXtzsdcl707zJ+w9+8ANlZ2erqKhIr776qm6//XZt3LixwT/m3ch705rK+7hx4/THP/5R27Zt8zk/5L1xzf2u33HHHZ7jAwcO1PDhw9W9e3d98sknuuWWWxq9LjlvWlN5nzZtmiRp6tSpevTRRyVJQ4cO1bp16/Tyyy9r3LhxjV6XvONc/twPA1Z5+OGHtWPHDn311VdWhxL2+vTpo+zsbJ08eVJ//etfdc8992jNmjUUGP106NAh/fznP9fnn39eb+1jXJxA1Rfasrq6Og0fPlxPP/20JOnyyy/Xrl27tGTJEt19992WxhaSIxfPFx8fr0GDBiknJ8ezu9D5n8oWFhZ6Pr1NS0uT0+lUSUlJk22OHTt2QV/Hjx+/4FPgturcvHuDvLeMhvJeXV2t22+/Xbm5ucrKyvKMWpTIe0tpKO/x8fHq2bOnRo0apaVLlyoqKkpLly6VRN5byrl5X7t2rQoLC9WtWzdFRUUpKipKBw8e1Ny5c9WjRw9J5L0lNPdve3p6urp37+45Ts5bxrl5T05OVlRU1AV/BPbr18+zGQd5R1OSk5MVGRnZ5P0wEEpmzZqljz76SKtWrVKXLl2sDifs2e129ezZU8OHD9eCBQs0ZMgQ/fGPf7Q6rLC1detWFRYWatiwYZ570DVr1ujFF19UVFRUvY3U4D9f6wu4UHp6epP3j1YKi+JiVVWV9uzZo/T0dGVmZiotLU1ZWVme406nU2vWrNGYMWMkScOGDVN0dHS9Nvn5+frmm288bUaPHq3S0lJt2rTJ02bjxo0qLS31tGnrzs27N8h7yzg/7+7CYk5OjlauXKmkpKR67cl7y/Dm990Y45kqSt5bxrl5nzFjhnbs2KHs7GzPIyMjQ7/4xS+0YsUKSeS9JTT3u15cXKxDhw55jpPzlnFu3u12u6688krt27evXptvv/1W3bt3l0Te0TS73a5hw4bV+/2QpKysLH72CCnGGD388MN6//339cUXXygzM9PqkFqlc+9R4bvrrrtOO3furHcPOnz4cN11113Kzs5WZGSk1SG2Cr7WF3Chq666qsn7R0sFd/8Y78ydO9esXr3aHDhwwGzYsMFMnjzZJCQkmO+//94YY8zChQuNw+Ew77//vtm5c6e58847TXp6uikrK/NcY+bMmaZLly5m5cqVZtu2bWb8+PFmyJAhpqamxtPmxhtvNIMHDzbr168369evN4MGDTKTJ08O+vcbKprLe3Fxsdm+fbv55JNPjCSzbNkys337dpOfn++5Bnn3XVN5r66uNlOmTDFdunQx2dnZJj8/3/OoqqryXIO8+66pvJ86dco8/vjjZv369eb77783W7duNffdd5+JiYkx33zzjeca5N13zf07c77zd4s2hrz7qqmcl5eXm7lz55p169aZ3Nxcs2rVKjN69GhzySWX8P/Ui9Tc7/r7779voqOjzSuvvGJycnLMokWLTGRkpFm7dq3nGuQdTVm2bJmJjo42S5cuNbt37zazZ8828fHxjf57iuaVl5eb7du3m+3btxtJ5rnnnjPbt283Bw8etDq0sPUv//IvxuFwmNWrV9e7j62oqLA6tLD1+OOPmy+//NLk5uaaHTt2mCeeeMJERESYzz//3OrQWhV2i754vt73o3mbNm0yUVFR5t///d9NTk6Oeffdd027du3MO++8Y3VoJiSLi3fccYdJT0830dHRJiMjw9xyyy1m165dnuN1dXXmySefNGlpaSYmJsZcc801ZufOnfWuUVlZaR5++GHTqVMnExcXZyZPnmzy8vLqtSkuLjZ33XWXSUhIMAkJCeauu+4yJSUlwfgWQ1JzeX/jjTeMpAseTz75pKcNefddU3nPzc1tMOeSzKpVqzzXIO++ayrvlZWV5uabbzYZGRnGbreb9PR0M2XKFLNp06Z61yDvvmvu35nzNVRcJO++aSrnFRUVZuLEiaZz584mOjradOvWzdxzzz0X5JOc+86b3/WlS5eanj17mtjYWDNkyBDz4Ycf1jtO3tGcP/3pT6Z79+7GbrebK664wqxZs8bqkMLaqlWrGrznuueee6wOLWw1dh/7xhtvWB1a2PrZz37m+e++c+fO5rrrrqOwGAAUFy+er/f98M7HH39sBg4caGJiYkzfvn3NK6+8YnVIxhhjbMYYE7xxkgAAAAAAAABai7BYcxEAAAAAAABA6KG4CAAAAAAAAMAvFBcBAAAAAAAA+IXiIgAAAAAAAAC/UFwEAAAAAAAA4BeKiwAAAAAAAAD8QnERAAAAAAAAgF8oLgIAAAAAAADwC8VFAAAAAADCyLXXXqvZs2dbHQYASKK4CAAAAAAAAMBPNmOMsToIAAAAAADQvHvvvVdvvfVWvfdyc3PVo0cPawIC0OZRXAQAAAAAIEyUlpZq0qRJGjhwoJ566ilJUufOnRUZGWlxZADaqiirAwAAAAAAAN5xOByy2+1q166d0tLSrA4HAFhzEQAAAAAAAIB/KC4CAAAAAAAA8AvFRQAAAAAAwojdbldtba3VYQCAJIqLAAAAAACElR49emjjxo36/vvvVVRUpLq6OqtDAtCGUVwEAAAAACCMPPbYY4qMjFT//v3VuXNn5eXlWR0SgDbMZowxVgcBAAAAAAAAIPwwchEAAAAAAACAXyguAgAAAAAAAPALxUUAAAAAAAAAfqG4CAAAAAAAAMAvFBcBAAAAAAAA+IXiIgAAAAAAAAC/UFwEAAAAAAAA4BeKiwAAAAAAAAD8QnERAAAAAAAAgF8oLgIAAAAAAADwC8VFAAAAAAAAAH6huAgAAAAAAADAL/8fLNTYck5PYUMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -902,10 +902,10 @@ "start_time": "2023-11-09T18:41:43.914957342Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:22.892836Z", - "iopub.status.busy": "2023-11-09T20:46:22.892398Z", - "iopub.status.idle": "2023-11-09T20:46:22.898081Z", - "shell.execute_reply": "2023-11-09T20:46:22.897524Z" + "iopub.execute_input": "2023-11-09T22:34:16.166288Z", + "iopub.status.busy": "2023-11-09T22:34:16.165953Z", + "iopub.status.idle": "2023-11-09T22:34:16.170459Z", + "shell.execute_reply": "2023-11-09T22:34:16.170049Z" } }, "outputs": [ @@ -913,7 +913,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Correlation between m and t: 0.031706619360597356" + "Correlation between m and t: 0.03810736484190183" ] }, { @@ -944,16 +944,16 @@ "start_time": "2023-11-09T18:41:43.919368369Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:22.900778Z", - "iopub.status.busy": "2023-11-09T20:46:22.900283Z", - "iopub.status.idle": "2023-11-09T20:46:23.109823Z", - "shell.execute_reply": "2023-11-09T20:46:23.109309Z" + "iopub.execute_input": "2023-11-09T22:34:16.172422Z", + "iopub.status.busy": "2023-11-09T22:34:16.172044Z", + "iopub.status.idle": "2023-11-09T22:34:16.360709Z", + "shell.execute_reply": "2023-11-09T22:34:16.360162Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGdCAYAAADjWSL8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqHElEQVR4nO3df3BV9Z3/8deV/BCyySkBci+3RMzalAUTkAYnCbqFlp+OMbbOFGzwVmcp4CKwKSA/6s6ITjcgu4J1M1JgneIPXPrHistWGgmzNpVNAhg2U0BAXCI/JJdQ93IT3Jik5PP9w+F8vQkmuQGTfMLzMXNmvOe877mf856r5+Un55zrMcYYAQAAWOaW3h4AAABAdxBiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWiuntAXxdWltbdf78eSUmJsrj8fT2cAAAQBcYY9TQ0CC/369bbul4rqXfhpjz588rNTW1t4cBAAC64ezZsxoxYkSHNf02xCQmJkr6oglJSUm9PBoAANAV9fX1Sk1Ndc/jHem3Iebqn5CSkpIIMQAAWKYrl4JwYS8AALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAK/XbX7EGboTbV70d8frjdff30kgAAG0xEwMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWImH3QFRaPvwO4kH4AFAb2EmBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGClqEPMJ598okceeURDhgzRoEGDdNddd6mqqsrdbozRmjVr5Pf7NXDgQE2ePFlHjx6N2EdTU5MWL16soUOHKiEhQfn5+Tp37lxETSgUUiAQkOM4chxHgUBAly5d6t5RAgCAfieqEBMKhXTPPfcoNjZWv/vd7/TBBx/o+eef1ze+8Q23Zv369dqwYYOKi4t18OBB+Xw+TZs2TQ0NDW5NYWGhdu7cqR07dmjfvn26fPmy8vLydOXKFbemoKBA1dXVKikpUUlJiaqrqxUIBK7/iAEAQL/gMcaYrhavWrVK//Vf/6X33nvvmtuNMfL7/SosLNTKlSslfTHr4vV69dxzz2nBggUKh8MaNmyYXnvtNc2ePVuSdP78eaWmpmr37t2aMWOGjh07pjFjxqiyslLZ2dmSpMrKSuXm5ur48eMaNWpUp2Otr6+X4zgKh8NKSkrq6iECEW5f9XanNR+vu78HRgIAN4dozt9RzcTs2rVLEyZM0I9+9COlpKRo/Pjx2rp1q7u9pqZGwWBQ06dPd9fFx8dr0qRJKi8vlyRVVVWppaUlosbv9ysjI8OtqaiokOM4boCRpJycHDmO49a01dTUpPr6+ogFAAD0X1GFmFOnTmnTpk1KT0/XO++8o8cff1xLlizRq6++KkkKBoOSJK/XG/E+r9frbgsGg4qLi9PgwYM7rElJSWn3+SkpKW5NW2vXrnWvn3EcR6mpqdEcGgAAsExUIaa1tVXf+c53VFRUpPHjx2vBggWaN2+eNm3aFFHn8XgiXhtj2q1rq23Nteo72s/q1asVDofd5ezZs109LAAAYKGoQszw4cM1ZsyYiHWjR4/WmTNnJEk+n0+S2s2W1NXVubMzPp9Pzc3NCoVCHdZcuHCh3edfvHix3SzPVfHx8UpKSopYAABA/xVViLnnnnt04sSJiHUffvihRo4cKUlKS0uTz+dTaWmpu725uVllZWWaOHGiJCkrK0uxsbERNbW1tTpy5Ihbk5ubq3A4rAMHDrg1+/fvVzgcdmsAAMDNLSaa4p/97GeaOHGiioqKNGvWLB04cEBbtmzRli1bJH3xJ6DCwkIVFRUpPT1d6enpKioq0qBBg1RQUCBJchxHc+fO1bJlyzRkyBAlJydr+fLlyszM1NSpUyV9Mbszc+ZMzZs3T5s3b5YkzZ8/X3l5eV26MwkAAPR/UYWYu+++Wzt37tTq1av17LPPKi0tTS+88ILmzJnj1qxYsUKNjY1auHChQqGQsrOztWfPHiUmJro1GzduVExMjGbNmqXGxkZNmTJF27Zt04ABA9ya7du3a8mSJe5dTPn5+SouLr7e4wUAAP1EVM+JsQnPicGNwHNiAKBnfW3PiQEAAOgrCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJViensAQF9x+6q3e3sIAIAoMBMDAACsRIgBAABWIsQAAAArRRVi1qxZI4/HE7H4fD53uzFGa9askd/v18CBAzV58mQdPXo0Yh9NTU1avHixhg4dqoSEBOXn5+vcuXMRNaFQSIFAQI7jyHEcBQIBXbp0qftHCQAA+p2oZ2LuvPNO1dbWusvhw4fdbevXr9eGDRtUXFysgwcPyufzadq0aWpoaHBrCgsLtXPnTu3YsUP79u3T5cuXlZeXpytXrrg1BQUFqq6uVklJiUpKSlRdXa1AIHCdhwoAAPqTqO9OiomJiZh9ucoYoxdeeEFPPfWUHnroIUnSK6+8Iq/XqzfeeEMLFixQOBzWyy+/rNdee01Tp06VJL3++utKTU3V3r17NWPGDB07dkwlJSWqrKxUdna2JGnr1q3Kzc3ViRMnNGrUqOs5XgAA0E9EPRNz8uRJ+f1+paWl6eGHH9apU6ckSTU1NQoGg5o+fbpbGx8fr0mTJqm8vFySVFVVpZaWlogav9+vjIwMt6aiokKO47gBRpJycnLkOI5bAwAAENVMTHZ2tl599VV9+9vf1oULF/SLX/xCEydO1NGjRxUMBiVJXq834j1er1enT5+WJAWDQcXFxWnw4MHtaq6+PxgMKiUlpd1np6SkuDXX0tTUpKamJvd1fX19NIcGAAAsE1WIue+++9x/zszMVG5uru644w698sorysnJkSR5PJ6I9xhj2q1rq23Nteo728/atWv1zDPPdOk4AACA/a7rFuuEhARlZmbq5MmT7nUybWdL6urq3NkZn8+n5uZmhUKhDmsuXLjQ7rMuXrzYbpbny1avXq1wOOwuZ8+evZ5DAwAAfdx1hZimpiYdO3ZMw4cPV1pamnw+n0pLS93tzc3NKisr08SJEyVJWVlZio2Njaipra3VkSNH3Jrc3FyFw2EdOHDArdm/f7/C4bBbcy3x8fFKSkqKWAAAQP8V1Z+Tli9frgceeEC33Xab6urq9Itf/EL19fV69NFH5fF4VFhYqKKiIqWnpys9PV1FRUUaNGiQCgoKJEmO42ju3LlatmyZhgwZouTkZC1fvlyZmZnu3UqjR4/WzJkzNW/ePG3evFmSNH/+fOXl5XFnEgAAcEUVYs6dO6cf//jH+tOf/qRhw4YpJydHlZWVGjlypCRpxYoVamxs1MKFCxUKhZSdna09e/YoMTHR3cfGjRsVExOjWbNmqbGxUVOmTNG2bds0YMAAt2b79u1asmSJexdTfn6+iouLb8TxAgCAfsJjjDG9PYivQ319vRzHUTgc5k9L6JLu/or1x+vuv8EjAYCbVzTnb347CQAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASlE9JwZAe21vzeaWawDoGczEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsdF0hZu3atfJ4PCosLHTXGWO0Zs0a+f1+DRw4UJMnT9bRo0cj3tfU1KTFixdr6NChSkhIUH5+vs6dOxdREwqFFAgE5DiOHMdRIBDQpUuXrme4AACgH+l2iDl48KC2bNmisWPHRqxfv369NmzYoOLiYh08eFA+n0/Tpk1TQ0ODW1NYWKidO3dqx44d2rdvny5fvqy8vDxduXLFrSkoKFB1dbVKSkpUUlKi6upqBQKB7g4XAAD0M90KMZcvX9acOXO0detWDR482F1vjNELL7ygp556Sg899JAyMjL0yiuv6P/+7//0xhtvSJLC4bBefvllPf/885o6darGjx+v119/XYcPH9bevXslSceOHVNJSYn+5V/+Rbm5ucrNzdXWrVv129/+VidOnLgBhw0AAGzXrRDzxBNP6P7779fUqVMj1tfU1CgYDGr69Onuuvj4eE2aNEnl5eWSpKqqKrW0tETU+P1+ZWRkuDUVFRVyHEfZ2dluTU5OjhzHcWvaampqUn19fcQCAAD6r5ho37Bjxw4dOnRIBw8ebLctGAxKkrxeb8R6r9er06dPuzVxcXERMzhXa66+PxgMKiUlpd3+U1JS3Jq21q5dq2eeeSbawwEAAJaKaibm7Nmz+ru/+zu9/vrruvXWW7+yzuPxRLw2xrRb11bbmmvVd7Sf1atXKxwOu8vZs2c7/DwAAGC3qEJMVVWV6urqlJWVpZiYGMXExKisrEwvvviiYmJi3BmYtrMldXV17jafz6fm5maFQqEOay5cuNDu8y9evNhulueq+Ph4JSUlRSwAAKD/iirETJkyRYcPH1Z1dbW7TJgwQXPmzFF1dbX+8i//Uj6fT6Wlpe57mpubVVZWpokTJ0qSsrKyFBsbG1FTW1urI0eOuDW5ubkKh8M6cOCAW7N//36Fw2G3BgAA3NyiuiYmMTFRGRkZEesSEhI0ZMgQd31hYaGKioqUnp6u9PR0FRUVadCgQSooKJAkOY6juXPnatmyZRoyZIiSk5O1fPlyZWZmuhcKjx49WjNnztS8efO0efNmSdL8+fOVl5enUaNGXfdBAwAA+0V9YW9nVqxYocbGRi1cuFChUEjZ2dnas2ePEhMT3ZqNGzcqJiZGs2bNUmNjo6ZMmaJt27ZpwIABbs327du1ZMkS9y6m/Px8FRcX3+jhAgAAS3mMMaa3B/F1qK+vl+M4CofDXB+DLrl91ds3ZD8fr7v/huwHAG5G0Zy/+e0kAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFgpprcHAPSG21e93dtDAABcJ2ZiAACAlaIKMZs2bdLYsWOVlJSkpKQk5ebm6ne/+5273RijNWvWyO/3a+DAgZo8ebKOHj0asY+mpiYtXrxYQ4cOVUJCgvLz83Xu3LmImlAopEAgIMdx5DiOAoGALl261P2jBAAA/U5UIWbEiBFat26d3n//fb3//vv6/ve/rwcffNANKuvXr9eGDRtUXFysgwcPyufzadq0aWpoaHD3UVhYqJ07d2rHjh3at2+fLl++rLy8PF25csWtKSgoUHV1tUpKSlRSUqLq6moFAoEbdMgAAKA/8BhjzPXsIDk5Wf/4j/+ov/mbv5Hf71dhYaFWrlwp6YtZF6/Xq+eee04LFixQOBzWsGHD9Nprr2n27NmSpPPnzys1NVW7d+/WjBkzdOzYMY0ZM0aVlZXKzs6WJFVWVio3N1fHjx/XqFGjujSu+vp6OY6jcDispKSk6zlE9ENf5zUxH6+7/2vbNwD0d9Gcv7t9TcyVK1e0Y8cOffbZZ8rNzVVNTY2CwaCmT5/u1sTHx2vSpEkqLy+XJFVVVamlpSWixu/3KyMjw62pqKiQ4zhugJGknJwcOY7j1gAAAER9d9Lhw4eVm5urzz//XH/xF3+hnTt3asyYMW7A8Hq9EfVer1enT5+WJAWDQcXFxWnw4MHtaoLBoFuTkpLS7nNTUlLcmmtpampSU1OT+7q+vj7aQwMAABaJeiZm1KhRqq6uVmVlpf72b/9Wjz76qD744AN3u8fjiag3xrRb11bbmmvVd7aftWvXuhcCO46j1NTUrh4SAACwUNQhJi4uTt/61rc0YcIErV27VuPGjdMvf/lL+Xw+SWo3W1JXV+fOzvh8PjU3NysUCnVYc+HChXafe/HixXazPF+2evVqhcNhdzl79my0hwYAACxy3c+JMcaoqalJaWlp8vl8Ki0tdbc1NzerrKxMEydOlCRlZWUpNjY2oqa2tlZHjhxxa3JzcxUOh3XgwAG3Zv/+/QqHw27NtcTHx7u3fl9dAABA/xXVNTE///nPdd999yk1NVUNDQ3asWOHfv/736ukpEQej0eFhYUqKipSenq60tPTVVRUpEGDBqmgoECS5DiO5s6dq2XLlmnIkCFKTk7W8uXLlZmZqalTp0qSRo8erZkzZ2revHnavHmzJGn+/PnKy8vr8p1JAACg/4sqxFy4cEGBQEC1tbVyHEdjx45VSUmJpk2bJklasWKFGhsbtXDhQoVCIWVnZ2vPnj1KTEx097Fx40bFxMRo1qxZamxs1JQpU7Rt2zYNGDDArdm+fbuWLFni3sWUn5+v4uLiG3G8AACgn7ju58T0VTwnBh3hOTEA0Df1yHNiAAAAehMhBgAAWIkQAwAArESIAQAAViLEAAAAK0X920kAOnatO5+4YwkAbjxmYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAK0UVYtauXau7775biYmJSklJ0Q9+8AOdOHEiosYYozVr1sjv92vgwIGaPHmyjh49GlHT1NSkxYsXa+jQoUpISFB+fr7OnTsXURMKhRQIBOQ4jhzHUSAQ0KVLl7p3lAAAoN+JKsSUlZXpiSeeUGVlpUpLS/XnP/9Z06dP12effebWrF+/Xhs2bFBxcbEOHjwon8+nadOmqaGhwa0pLCzUzp07tWPHDu3bt0+XL19WXl6erly54tYUFBSourpaJSUlKikpUXV1tQKBwA04ZAAA0B94jDGmu2++ePGiUlJSVFZWpu9+97syxsjv96uwsFArV66U9MWsi9fr1XPPPacFCxYoHA5r2LBheu211zR79mxJ0vnz55Wamqrdu3drxowZOnbsmMaMGaPKykplZ2dLkiorK5Wbm6vjx49r1KhRnY6tvr5ejuMoHA4rKSmpu4eIfur2VW/36Od9vO7+Hv08ALBVNOfv67omJhwOS5KSk5MlSTU1NQoGg5o+fbpbEx8fr0mTJqm8vFySVFVVpZaWlogav9+vjIwMt6aiokKO47gBRpJycnLkOI5b01ZTU5Pq6+sjFgAA0H91O8QYY7R06VLde++9ysjIkCQFg0FJktfrjaj1er3utmAwqLi4OA0ePLjDmpSUlHafmZKS4ta0tXbtWvf6GcdxlJqa2t1DAwAAFuh2iFm0aJH++Mc/6l//9V/bbfN4PBGvjTHt1rXVtuZa9R3tZ/Xq1QqHw+5y9uzZrhwGAACwVLdCzOLFi7Vr1y69++67GjFihLve5/NJUrvZkrq6Ond2xufzqbm5WaFQqMOaCxcutPvcixcvtpvluSo+Pl5JSUkRCwAA6L+iCjHGGC1atEhvvvmm/vM//1NpaWkR29PS0uTz+VRaWuqua25uVllZmSZOnChJysrKUmxsbERNbW2tjhw54tbk5uYqHA7rwIEDbs3+/fsVDofdGgAAcHOLiab4iSee0BtvvKF///d/V2Jiojvj4jiOBg4cKI/Ho8LCQhUVFSk9PV3p6ekqKirSoEGDVFBQ4NbOnTtXy5Yt05AhQ5ScnKzly5crMzNTU6dOlSSNHj1aM2fO1Lx587R582ZJ0vz585WXl9elO5MAAED/F1WI2bRpkyRp8uTJEet//etf67HHHpMkrVixQo2NjVq4cKFCoZCys7O1Z88eJSYmuvUbN25UTEyMZs2apcbGRk2ZMkXbtm3TgAED3Jrt27dryZIl7l1M+fn5Ki4u7s4xAgCAfui6nhPTl/GcGHSE58QAQN/UY8+JAQAA6C2EGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFaK6e0BAD3h9lVv9/YQAAA3GDMxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKPLEX6AFtnxj88br7e2kkANB/MBMDAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKUYeYP/zhD3rggQfk9/vl8Xj01ltvRWw3xmjNmjXy+/0aOHCgJk+erKNHj0bUNDU1afHixRo6dKgSEhKUn5+vc+fORdSEQiEFAgE5jiPHcRQIBHTp0qWoDxAAAPRPUYeYzz77TOPGjVNxcfE1t69fv14bNmxQcXGxDh48KJ/Pp2nTpqmhocGtKSws1M6dO7Vjxw7t27dPly9fVl5enq5cueLWFBQUqLq6WiUlJSopKVF1dbUCgUA3DhEAAPRHHmOM6fabPR7t3LlTP/jBDyR9MQvj9/tVWFiolStXSvpi1sXr9eq5557TggULFA6HNWzYML322muaPXu2JOn8+fNKTU3V7t27NWPGDB07dkxjxoxRZWWlsrOzJUmVlZXKzc3V8ePHNWrUqE7HVl9fL8dxFA6HlZSU1N1DRD/R9jktvY3nxADAtUVz/r6h18TU1NQoGAxq+vTp7rr4+HhNmjRJ5eXlkqSqqiq1tLRE1Pj9fmVkZLg1FRUVchzHDTCSlJOTI8dx3Jq2mpqaVF9fH7EAAID+64aGmGAwKEnyer0R671er7stGAwqLi5OgwcP7rAmJSWl3f5TUlLcmrbWrl3rXj/jOI5SU1Ov+3gAAEDf9bXcneTxeCJeG2ParWurbc216jvaz+rVqxUOh93l7Nmz3Rg5AACwxQ0NMT6fT5LazZbU1dW5szM+n0/Nzc0KhUId1ly4cKHd/i9evNhulueq+Ph4JSUlRSwAAKD/uqEhJi0tTT6fT6Wlpe665uZmlZWVaeLEiZKkrKwsxcbGRtTU1tbqyJEjbk1ubq7C4bAOHDjg1uzfv1/hcNitAQAAN7eof8X68uXL+uijj9zXNTU1qq6uVnJysm677TYVFhaqqKhI6enpSk9PV1FRkQYNGqSCggJJkuM4mjt3rpYtW6YhQ4YoOTlZy5cvV2ZmpqZOnSpJGj16tGbOnKl58+Zp8+bNkqT58+crLy+vS3cmAQCA/i/qEPP+++/re9/7nvt66dKlkqRHH31U27Zt04oVK9TY2KiFCxcqFAopOztbe/bsUWJiovuejRs3KiYmRrNmzVJjY6OmTJmibdu2acCAAW7N9u3btWTJEvcupvz8/K98Ng0AALj5XNdzYvoynhODL+M5MQBgh157TgwAAEBPIcQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASjG9PQDgRrt91du9PQQAQA9gJgYAAFiJEAMAAKxEiAEAAFYixAAAACtxYS/QC6518fHH6+7vhZEAgL2YiQEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlfp8iHnppZeUlpamW2+9VVlZWXrvvfd6e0gAAKAP6NMh5je/+Y0KCwv11FNP6b//+7/113/917rvvvt05syZ3h4aAADoZX06xGzYsEFz587VT3/6U40ePVovvPCCUlNTtWnTpt4eGgAA6GV9NsQ0NzerqqpK06dPj1g/ffp0lZeXt6tvampSfX19xAIAAPqvmN4ewFf505/+pCtXrsjr9Uas93q9CgaD7erXrl2rZ555pqeGp9tXvd1jn4XofLzu/t4eQrfwnQJgm97+722fDTFXeTyeiNfGmHbrJGn16tVaunSp+7q+vl6pqalf+/jQ+3r7X6Ibpe1xEGoAoGN9NsQMHTpUAwYMaDfrUldX1252RpLi4+MVHx/fU8MDAMBa3fmfpr74P4x9NsTExcUpKytLpaWl+uEPf+iuLy0t1YMPPtiLIwMA9JZrnUhtPQH3Jbb2p8+GGElaunSpAoGAJkyYoNzcXG3ZskVnzpzR448/3ttDA4A+xdaT0I1wMx/7za5Ph5jZs2fr008/1bPPPqva2lplZGRo9+7dGjlyZG8PDUA/wQkQsFefDjGStHDhQi1cuLC3hwGglxE2ALTV50MMcLPq7t/+u7tvALANIQZWudlPvjf78QPAl/XZJ/YCAAB0hJkY9GnMPAAAvgohBn0GgQUAEA1CDDpEsAAA9FWEmJsYAQUAYDNCjAUIGwAAtEeI6WUEFAAAuocQ002EDwAAehfPiQEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYKaa3B/B1McZIkurr63t5JAAAoKuunrevnsc70m9DTENDgyQpNTW1l0cCAACi1dDQIMdxOqzxmK5EHQu1trbq/PnzSkxMlMfjuaH7rq+vV2pqqs6ePaukpKQbum/8f/S5Z9DnnkGfewZ97jlfV6+NMWpoaJDf79ctt3R81Uu/nYm55ZZbNGLEiK/1M5KSkviXpAfQ555Bn3sGfe4Z9LnnfB297mwG5iou7AUAAFYixAAAACsRYrohPj5eTz/9tOLj43t7KP0afe4Z9Lln0OeeQZ97Tl/odb+9sBcAAPRvzMQAAAArEWIAAICVCDEAAMBKhBgAAGClmzLErFmzRh6PJ2Lx+XzudmOM1qxZI7/fr4EDB2ry5Mk6evRoxD6ampq0ePFiDR06VAkJCcrPz9e5c+ciakKhkAKBgBzHkeM4CgQCunTpUk8cYp/QUZ9bWlq0cuVKZWZmKiEhQX6/Xz/5yU90/vz5iH3Q58519n3+sgULFsjj8eiFF16IWE+fu6YrvT527Jjy8/PlOI4SExOVk5OjM2fOuNvpdec66/Ply5e1aNEijRgxQgMHDtTo0aO1adOmiH3Q56755JNP9Mgjj2jIkCEaNGiQ7rrrLlVVVbnb+/z50NyEnn76aXPnnXea2tpad6mrq3O3r1u3ziQmJpp/+7d/M4cPHzazZ882w4cPN/X19W7N448/br75zW+a0tJSc+jQIfO9733PjBs3zvz5z392a2bOnGkyMjJMeXm5KS8vNxkZGSYvL69Hj7U3ddTnS5cumalTp5rf/OY35vjx46aiosJkZ2ebrKysiH3Q58519n2+aufOnWbcuHHG7/ebjRs3Rmyjz13TWa8/+ugjk5ycbJ588klz6NAh8z//8z/mt7/9rblw4YJbQ68711mff/rTn5o77rjDvPvuu6ampsZs3rzZDBgwwLz11ltuDX3u3P/+7/+akSNHmscee8zs37/f1NTUmL1795qPPvrIrenr58ObNsSMGzfumttaW1uNz+cz69atc9d9/vnnxnEc86tf/coY88UJODY21uzYscOt+eSTT8wtt9xiSkpKjDHGfPDBB0aSqaysdGsqKiqMJHP8+PGv4aj6no76fC0HDhwwkszp06eNMfS5q7rS53PnzplvfvOb5siRI2bkyJERIYY+d11nvZ49e7Z55JFHvnI7ve6azvp85513mmeffTZi3Xe+8x3z93//98YY+txVK1euNPfee+9XbrfhfHhT/jlJkk6ePCm/36+0tDQ9/PDDOnXqlCSppqZGwWBQ06dPd2vj4+M1adIklZeXS5KqqqrU0tISUeP3+5WRkeHWVFRUyHEcZWdnuzU5OTlyHMetuRl8VZ+vJRwOy+Px6Bvf+IYk+hyNjvrc2tqqQCCgJ598UnfeeWe799Ln6HxVr1tbW/X222/r29/+tmbMmKGUlBRlZ2frrbfect9Lr7uuo+/0vffeq127dumTTz6RMUbvvvuuPvzwQ82YMUMSfe6qXbt2acKECfrRj36klJQUjR8/Xlu3bnW323A+vClDTHZ2tl599VW988472rp1q4LBoCZOnKhPP/1UwWBQkuT1eiPe4/V63W3BYFBxcXEaPHhwhzUpKSntPjslJcWt6e866nNbn3/+uVatWqWCggL3h8Toc9d01ufnnntOMTExWrJkyTXfT5+7rqNe19XV6fLly1q3bp1mzpypPXv26Ic//KEeeughlZWVSaLXXdXZd/rFF1/UmDFjNGLECMXFxWnmzJl66aWXdO+990qiz1116tQpbdq0Senp6XrnnXf0+OOPa8mSJXr11VclyYrzYb/9FeuO3Hfffe4/Z2ZmKjc3V3fccYdeeeUV5eTkSJI8Hk/Ee4wx7da11bbmWvVd2U9/0VGfly5d6m5raWnRww8/rNbWVr300kud7pc+R+qoz5MmTdIvf/lLHTp0KOp+0Of2Our1ww8/LEl68MEH9bOf/UySdNddd6m8vFy/+tWvNGnSpK/cL72O1Nl/O1588UVVVlZq165dGjlypP7whz9o4cKFGj58uKZOnfqV+6XPkVpbWzVhwgQVFRVJksaPH6+jR49q06ZN+slPfuLW9eXz4U05E9NWQkKCMjMzdfLkSfcK+LbpsK6uzk2jPp9Pzc3NCoVCHdZcuHCh3WddvHixXaq9WXy5z1e1tLRo1qxZqqmpUWlpacTPudPn7vlyn9977z3V1dXptttuU0xMjGJiYnT69GktW7ZMt99+uyT6fD2+3OuhQ4cqJiZGY8aMiagZPXq0e3cSve6eL/e5sbFRP//5z7VhwwY98MADGjt2rBYtWqTZs2frn/7pnyTR564aPnx4p99XqW+fDwkx+uL2sGPHjmn48OFKS0uTz+dTaWmpu725uVllZWWaOHGiJCkrK0uxsbERNbW1tTpy5Ihbk5ubq3A4rAMHDrg1+/fvVzgcdmtuNl/us/T/A8zJkye1d+9eDRkyJKKePnfPl/scCAT0xz/+UdXV1e7i9/v15JNP6p133pFEn6/Hl3sdFxenu+++WydOnIio+fDDDzVy5EhJ9Lq7vtznlpYWtbS06JZbIk9fAwYMUGtrqyT63FX33HNPh99XK86H13VZsKWWLVtmfv/735tTp06ZyspKk5eXZxITE83HH39sjPniljLHccybb75pDh8+bH784x9f85ayESNGmL1795pDhw6Z73//+9e8pWzs2LGmoqLCVFRUmMzMzJvq9r2O+tzS0mLy8/PNiBEjTHV1dcStlE1NTe4+6HPnOvs+t9X27iRj6HNXddbrN99808TGxpotW7aYkydPmn/+5382AwYMMO+99567D3rduc76PGnSJHPnnXead99915w6dcr8+te/Nrfeeqt56aWX3H3Q584dOHDAxMTEmH/4h38wJ0+eNNu3bzeDBg0yr7/+ulvT18+HN2WIuXqfe2xsrPH7/eahhx4yR48edbe3traap59+2vh8PhMfH2+++93vmsOHD0fso7Gx0SxatMgkJyebgQMHmry8PHPmzJmImk8//dTMmTPHJCYmmsTERDNnzhwTCoV64hD7hI76XFNTYyRdc3n33XfdfdDnznX2fW7rWiGGPndNV3r98ssvm29961vm1ltvNePGjYt4dokx9LorOutzbW2teeyxx4zf7ze33nqrGTVqlHn++edNa2urW0Ofu+Y//uM/TEZGhomPjzd/9Vd/ZbZs2RKxva+fDz3GGHN9czkAAAA9j2tiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALDS/wNHdFY4xaabLAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGdCAYAAADjWSL8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqHElEQVR4nO3df3BV5Z3H8c+VJBfIJqckmHu5JSKtKQskIBucEHQLXX46xti6U7DBq85SwEVgU0GQujOi0w0/dgXqZqRAneIPLP1jxcVKA2HWprJJgA3NFBAQ1ygguYS6lxtw0yQlz/7hcNabYJLLjyRPeL9mzoz3nO899znfiZxPnnvOiccYYwQAAGCZW7p7AAAAAFeDEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsFJcdw/gRmlpadGZM2eUlJQkj8fT3cMBAACdYIzRhQsXFAgEdMst7c+19NoQc+bMGaWnp3f3MAAAwFU4deqUBg8e3G5Nrw0xSUlJkr5oQnJycjePBgAAdEZ9fb3S09Pd83h7em2IufwVUnJyMiEGAADLdOZSEC7sBQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGClXvtXrIHr4fan34l6/fGq+7ppJACA1piJAQAAVmImBohB65kZidkZAOguzMQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArBRziPn000/18MMPKzU1Vf3799edd96pqqoqd7sxRitWrFAgEFC/fv00ceJEHTlyJGofjY2NWrhwoQYOHKjExETl5+fr9OnTUTXhcFjBYFCO48hxHAWDQZ0/f/7qjhIAAPQ6MYWYcDisu+++W/Hx8frNb36j999/Xy+88IK+9rWvuTVr1qzR2rVrVVxcrAMHDsjv92vKlCm6cOGCW1NYWKjt27dr27Zt2rt3ry5evKi8vDxdunTJrSkoKFB1dbVKSkpUUlKi6upqBYPBaz9iAADQK3iMMaazxU8//bT+8z//U++9994VtxtjFAgEVFhYqGXLlkn6YtbF5/Np9erVmjdvniKRiG699Va99tprmjlzpiTpzJkzSk9P186dOzVt2jQdPXpUI0aMUGVlpXJyciRJlZWVys3N1bFjxzRs2LAOx1pfXy/HcRSJRJScnNzZQwSi3P70Ox3WfLzqvi4YCQDcHGI5f8c0E7Njxw6NHTtW3//+95WWlqYxY8Zo8+bN7vaamhqFQiFNnTrVXef1ejVhwgSVl5dLkqqqqtTc3BxVEwgElJmZ6dZUVFTIcRw3wEjSuHHj5DiOWwMAAG5uMYWYjz76SBs2bFBGRoZ27dqlxx9/XIsWLdKrr74qSQqFQpIkn88X9T6fz+duC4VCSkhI0IABA9qtSUtLa/P5aWlpbk1rjY2Nqq+vj1oAAEDvFRdLcUtLi8aOHauioiJJ0pgxY3TkyBFt2LBBjzzyiFvn8Xii3meMabOutdY1V6pvbz8rV67Uc8891+ljAQAAdotpJmbQoEEaMWJE1Lrhw4fr5MmTkiS/3y9JbWZL6urq3NkZv9+vpqYmhcPhdmvOnj3b5vPPnTvXZpbnsuXLlysSibjLqVOnYjk0AABgmZhCzN13363jx49Hrfvggw80ZMgQSdLQoUPl9/tVWlrqbm9qalJZWZnGjx8vScrOzlZ8fHxUTW1trQ4fPuzW5ObmKhKJaP/+/W7Nvn37FIlE3JrWvF6vkpOToxYAANB7xfR10o9+9CONHz9eRUVFmjFjhvbv369NmzZp06ZNkr74CqiwsFBFRUXKyMhQRkaGioqK1L9/fxUUFEiSHMfR7NmztXjxYqWmpiolJUVLlixRVlaWJk+eLOmL2Z3p06drzpw52rhxoyRp7ty5ysvL69SdSQAAoPeLKcTcdddd2r59u5YvX67nn39eQ4cO1fr16zVr1iy3ZunSpWpoaND8+fMVDoeVk5Oj3bt3Kykpya1Zt26d4uLiNGPGDDU0NGjSpEnasmWL+vTp49Zs3bpVixYtcu9iys/PV3Fx8bUeLwAA6CViek6MTXhODK4HnhMDAF3rhj0nBgAAoKcgxAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYKaYQs2LFCnk8nqjF7/e7240xWrFihQKBgPr166eJEyfqyJEjUftobGzUwoULNXDgQCUmJio/P1+nT5+OqgmHwwoGg3IcR47jKBgM6vz581d/lAAAoNeJeSZm5MiRqq2tdZdDhw6529asWaO1a9equLhYBw4ckN/v15QpU3ThwgW3prCwUNu3b9e2bdu0d+9eXbx4UXl5ebp06ZJbU1BQoOrqapWUlKikpETV1dUKBoPXeKgAAKA3iYv5DXFxUbMvlxljtH79ej3zzDN68MEHJUmvvPKKfD6f3njjDc2bN0+RSEQvv/yyXnvtNU2ePFmS9Prrrys9PV179uzRtGnTdPToUZWUlKiyslI5OTmSpM2bNys3N1fHjx/XsGHDruV4AQBALxFziDlx4oQCgYC8Xq9ycnJUVFSkb3zjG6qpqVEoFNLUqVPdWq/XqwkTJqi8vFzz5s1TVVWVmpubo2oCgYAyMzNVXl6uadOmqaKiQo7juAFGksaNGyfHcVReXv6VIaaxsVGNjY3u6/r6+lgPDTe5259+p7uHAACIQUxfJ+Xk5OjVV1/Vrl27tHnzZoVCIY0fP16fffaZQqGQJMnn80W9x+fzudtCoZASEhI0YMCAdmvS0tLafHZaWppbcyUrV650r6FxHEfp6emxHBoAALBMTCHm3nvv1d/+7d8qKytLkydP1jvvfPGb6yuvvOLWeDyeqPcYY9qsa611zZXqO9rP8uXLFYlE3OXUqVOdOiYAAGCna7rFOjExUVlZWTpx4oR7nUzr2ZK6ujp3dsbv96upqUnhcLjdmrNnz7b5rHPnzrWZ5fkyr9er5OTkqAUAAPRe1xRiGhsbdfToUQ0aNEhDhw6V3+9XaWmpu72pqUllZWUaP368JCk7O1vx8fFRNbW1tTp8+LBbk5ubq0gkov3797s1+/btUyQScWsAAABiurB3yZIluv/++3Xbbbeprq5OP/nJT1RfX69HH31UHo9HhYWFKioqUkZGhjIyMlRUVKT+/furoKBAkuQ4jmbPnq3FixcrNTVVKSkpWrJkifv1lCQNHz5c06dP15w5c7Rx40ZJ0ty5c5WXl8edSQAAwBVTiDl9+rR+8IMf6I9//KNuvfVWjRs3TpWVlRoyZIgkaenSpWpoaND8+fMVDoeVk5Oj3bt3Kykpyd3HunXrFBcXpxkzZqihoUGTJk3Sli1b1KdPH7dm69atWrRokXsXU35+voqLi6/H8QIAgF7CY4wx3T2IG6G+vl6O4ygSiXB9DDrlam+x/njVfdd5JABw84rl/M3fTgIAAFYixAAAACvF/MReANFafw3F10sA0DWYiQEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADAStcUYlauXCmPx6PCwkJ3nTFGK1asUCAQUL9+/TRx4kQdOXIk6n2NjY1auHChBg4cqMTEROXn5+v06dNRNeFwWMFgUI7jyHEcBYNBnT9//lqGCwAAepGrDjEHDhzQpk2bNGrUqKj1a9as0dq1a1VcXKwDBw7I7/drypQpunDhgltTWFio7du3a9u2bdq7d68uXryovLw8Xbp0ya0pKChQdXW1SkpKVFJSourqagWDwasdLgAA6GWuKsRcvHhRs2bN0ubNmzVgwAB3vTFG69ev1zPPPKMHH3xQmZmZeuWVV/S///u/euONNyRJkUhEL7/8sl544QVNnjxZY8aM0euvv65Dhw5pz549kqSjR4+qpKREP//5z5Wbm6vc3Fxt3rxZv/71r3X8+PHrcNgAAMB2VxVinnjiCd13332aPHly1PqamhqFQiFNnTrVXef1ejVhwgSVl5dLkqqqqtTc3BxVEwgElJmZ6dZUVFTIcRzl5OS4NePGjZPjOG5Na42Njaqvr49aAABA7xUX6xu2bdumgwcP6sCBA222hUIhSZLP54ta7/P59Mknn7g1CQkJUTM4l2suvz8UCiktLa3N/tPS0tya1lauXKnnnnsu1sMBAACWimkm5tSpU/qHf/gHvf766+rbt+9X1nk8nqjXxpg261prXXOl+vb2s3z5ckUiEXc5depUu58HAADsFlOIqaqqUl1dnbKzsxUXF6e4uDiVlZXpxRdfVFxcnDsD03q2pK6uzt3m9/vV1NSkcDjcbs3Zs2fbfP65c+fazPJc5vV6lZycHLUAAIDeK6YQM2nSJB06dEjV1dXuMnbsWM2aNUvV1dX6xje+Ib/fr9LSUvc9TU1NKisr0/jx4yVJ2dnZio+Pj6qpra3V4cOH3Zrc3FxFIhHt37/frdm3b58ikYhbAwAAbm4xXROTlJSkzMzMqHWJiYlKTU111xcWFqqoqEgZGRnKyMhQUVGR+vfvr4KCAkmS4ziaPXu2Fi9erNTUVKWkpGjJkiXKyspyLxQePny4pk+frjlz5mjjxo2SpLlz5yovL0/Dhg275oMGAAD2i/nC3o4sXbpUDQ0Nmj9/vsLhsHJycrR7924lJSW5NevWrVNcXJxmzJihhoYGTZo0SVu2bFGfPn3cmq1bt2rRokXuXUz5+fkqLi6+3sMFAACW8hhjTHcP4kaor6+X4ziKRCJcH4NOuf3pd67Lfj5edd912Q8A3IxiOX/zt5MAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArBRTiNmwYYNGjRql5ORkJScnKzc3V7/5zW/c7cYYrVixQoFAQP369dPEiRN15MiRqH00NjZq4cKFGjhwoBITE5Wfn6/Tp09H1YTDYQWDQTmOI8dxFAwGdf78+as/SgAA0OvExVI8ePBgrVq1SnfccYck6ZVXXtEDDzyg3//+9xo5cqTWrFmjtWvXasuWLfrWt76ln/zkJ5oyZYqOHz+upKQkSVJhYaHefvttbdu2TampqVq8eLHy8vJUVVWlPn36SJIKCgp0+vRplZSUSJLmzp2rYDCot99++3oeO25itz/9TncPAQBwjTzGGHMtO0hJSdE///M/6+/+7u8UCARUWFioZcuWSfpi1sXn82n16tWaN2+eIpGIbr31Vr322muaOXOmJOnMmTNKT0/Xzp07NW3aNB09elQjRoxQZWWlcnJyJEmVlZXKzc3VsWPHNGzYsE6Nq76+Xo7jKBKJKDk5+VoOEb3QjQwxH6+674btGwB6u1jO31d9TcylS5e0bds2ff7558rNzVVNTY1CoZCmTp3q1ni9Xk2YMEHl5eWSpKqqKjU3N0fVBAIBZWZmujUVFRVyHMcNMJI0btw4OY7j1lxJY2Oj6uvroxYAANB7xRxiDh06pL/4i7+Q1+vV448/ru3bt2vEiBEKhUKSJJ/PF1Xv8/ncbaFQSAkJCRowYEC7NWlpaW0+Ny0tza25kpUrV7rX0DiOo/T09FgPDQAAWCTmEDNs2DBVV1ersrJSf//3f69HH31U77//vrvd4/FE1Rtj2qxrrXXNleo72s/y5csViUTc5dSpU509JAAAYKGYQ0xCQoLuuOMOjR07VitXrtTo0aP105/+VH6/X5LazJbU1dW5szN+v19NTU0Kh8Pt1pw9e7bN5547d67NLM+Xeb1e966pywsAAOi9rvk5McYYNTY2aujQofL7/SotLXW3NTU1qaysTOPHj5ckZWdnKz4+PqqmtrZWhw8fdmtyc3MViUS0f/9+t2bfvn2KRCJuDQAAQEy3WP/4xz/Wvffeq/T0dF24cEHbtm3Tb3/7W5WUlMjj8aiwsFBFRUXKyMhQRkaGioqK1L9/fxUUFEiSHMfR7NmztXjxYqWmpiolJUVLlixRVlaWJk+eLEkaPny4pk+frjlz5mjjxo2SvrjFOi8vr9N3JgEAgN4vphBz9uxZBYNB1dbWynEcjRo1SiUlJZoyZYokaenSpWpoaND8+fMVDoeVk5Oj3bt3u8+IkaR169YpLi5OM2bMUENDgyZNmqQtW7a4z4iRpK1bt2rRokXuXUz5+fkqLi6+HscLAAB6iWt+TkxPxXNi0B6eEwMAPVOXPCcGAACgOxFiAACAlQgxAADASoQYAABgpZjuTgLQsStdNMzFvgBw/TETAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWiinErFy5UnfddZeSkpKUlpam7373uzp+/HhUjTFGK1asUCAQUL9+/TRx4kQdOXIkqqaxsVELFy7UwIEDlZiYqPz8fJ0+fTqqJhwOKxgMynEcOY6jYDCo8+fPX91RAgCAXiemEFNWVqYnnnhClZWVKi0t1Z///GdNnTpVn3/+uVuzZs0arV27VsXFxTpw4ID8fr+mTJmiCxcuuDWFhYXavn27tm3bpr179+rixYvKy8vTpUuX3JqCggJVV1erpKREJSUlqq6uVjAYvA6HDAAAegOPMcZc7ZvPnTuntLQ0lZWV6dvf/raMMQoEAiosLNSyZcskfTHr4vP5tHr1as2bN0+RSES33nqrXnvtNc2cOVOSdObMGaWnp2vnzp2aNm2ajh49qhEjRqiyslI5OTmSpMrKSuXm5urYsWMaNmxYh2Orr6+X4ziKRCJKTk6+2kNEL3X70+906ed9vOq+Lv08ALBVLOfva7omJhKJSJJSUlIkSTU1NQqFQpo6dapb4/V6NWHCBJWXl0uSqqqq1NzcHFUTCASUmZnp1lRUVMhxHDfASNK4cePkOI5b01pjY6Pq6+ujFgAA0HtddYgxxujJJ5/UPffco8zMTElSKBSSJPl8vqhan8/nbguFQkpISNCAAQParUlLS2vzmWlpaW5NaytXrnSvn3EcR+np6Vd7aAAAwAJXHWIWLFigP/zhD/rlL3/ZZpvH44l6bYxps6611jVXqm9vP8uXL1ckEnGXU6dOdeYwAACApa4qxCxcuFA7duzQu+++q8GDB7vr/X6/JLWZLamrq3NnZ/x+v5qamhQOh9utOXv2bJvPPXfuXJtZnsu8Xq+Sk5OjFgAA0HvFFGKMMVqwYIHefPNN/cd//IeGDh0atX3o0KHy+/0qLS111zU1NamsrEzjx4+XJGVnZys+Pj6qpra2VocPH3ZrcnNzFYlEtH//frdm3759ikQibg0AALi5xcVS/MQTT+iNN97Qv//7vyspKcmdcXEcR/369ZPH41FhYaGKioqUkZGhjIwMFRUVqX///iooKHBrZ8+ercWLFys1NVUpKSlasmSJsrKyNHnyZEnS8OHDNX36dM2ZM0cbN26UJM2dO1d5eXmdujMJAAD0fjGFmA0bNkiSJk6cGLX+F7/4hR577DFJ0tKlS9XQ0KD58+crHA4rJydHu3fvVlJSklu/bt06xcXFacaMGWpoaNCkSZO0ZcsW9enTx63ZunWrFi1a5N7FlJ+fr+Li4qs5RgAA0Atd03NiejKeE4P28JwYAOiZuuw5MQAAAN2FEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKcd09AKAr3P70O909BADAdcZMDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEk/sBbpA6ycGf7zqvm4aCQD0HszEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYKeYQ87vf/U7333+/AoGAPB6P3nrrrajtxhitWLFCgUBA/fr108SJE3XkyJGomsbGRi1cuFADBw5UYmKi8vPzdfr06aiacDisYDAox3HkOI6CwaDOnz8f8wECAIDeKeYQ8/nnn2v06NEqLi6+4vY1a9Zo7dq1Ki4u1oEDB+T3+zVlyhRduHDBrSksLNT27du1bds27d27VxcvXlReXp4uXbrk1hQUFKi6ulolJSUqKSlRdXW1gsHgVRwiAADojTzGGHPVb/Z4tH37dn33u9+V9MUsTCAQUGFhoZYtWybpi1kXn8+n1atXa968eYpEIrr11lv12muvaebMmZKkM2fOKD09XTt37tS0adN09OhRjRgxQpWVlcrJyZEkVVZWKjc3V8eOHdOwYcM6HFt9fb0cx1EkElFycvLVHiJ6idYPm+tuPOwOAK4slvP3db0mpqamRqFQSFOnTnXXeb1eTZgwQeXl5ZKkqqoqNTc3R9UEAgFlZma6NRUVFXIcxw0wkjRu3Dg5juPWtNbY2Kj6+vqoBQAA9F7XNcSEQiFJks/ni1rv8/ncbaFQSAkJCRowYEC7NWlpaW32n5aW5ta0tnLlSvf6GcdxlJ6efs3HAwAAeq4bcneSx+OJem2MabOutdY1V6pvbz/Lly9XJBJxl1OnTl3FyAEAgC2ua4jx+/2S1Ga2pK6uzp2d8fv9ampqUjgcbrfm7NmzbfZ/7ty5NrM8l3m9XiUnJ0ctAACg97quIWbo0KHy+/0qLS111zU1NamsrEzjx4+XJGVnZys+Pj6qpra2VocPH3ZrcnNzFYlEtH//frdm3759ikQibg0AALi5xcX6hosXL+rDDz90X9fU1Ki6ulopKSm67bbbVFhYqKKiImVkZCgjI0NFRUXq37+/CgoKJEmO42j27NlavHixUlNTlZKSoiVLligrK0uTJ0+WJA0fPlzTp0/XnDlztHHjRknS3LlzlZeX16k7kwAAQO8Xc4j5r//6L33nO99xXz/55JOSpEcffVRbtmzR0qVL1dDQoPnz5yscDisnJ0e7d+9WUlKS+55169YpLi5OM2bMUENDgyZNmqQtW7aoT58+bs3WrVu1aNEi9y6m/Pz8r3w2DQAAuPlc03NiejKeE4Mv4zkxAGCHbntODAAAQFchxAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALBSXHcPALjebn/6ne4eAgCgCzATAwAArESIAQAAViLEAAAAK3FNDNANrnTdzser7uuGkQCAvZiJAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVenyIeemllzR06FD17dtX2dnZeu+997p7SAAAoAfo0SHmV7/6lQoLC/XMM8/o97//vf76r/9a9957r06ePNndQwMAAN2sR4eYtWvXavbs2frhD3+o4cOHa/369UpPT9eGDRu6e2gAAKCb9dgQ09TUpKqqKk2dOjVq/dSpU1VeXt6mvrGxUfX19VELAADoveK6ewBf5Y9//KMuXbokn88Xtd7n8ykUCrWpX7lypZ577rmuGp5uf/qdLvssxObjVfd19xCuCj9TAGzT3f/e9tgQc5nH44l6bYxps06Sli9frieffNJ9XV9fr/T09Bs+PuB6af2PAaEGANrXY0PMwIED1adPnzazLnV1dW1mZyTJ6/XK6/V21fDQg3T3bwIA0BvZ8ItVjw0xCQkJys7OVmlpqb73ve+560tLS/XAAw9048gAAL0RvxC1ryf2p8eGGEl68sknFQwGNXbsWOXm5mrTpk06efKkHn/88e4eGgD0Sj3xRAV8lR4dYmbOnKnPPvtMzz//vGpra5WZmamdO3dqyJAh3T00AIjCyR/oej06xEjS/PnzNX/+/O4eBoAu1JlAcKXv5wkSwM2lx4cY4GZ1pRNyd15Y19MCQk8bD4CuR4gBLMKJGwD+HyEGVuEkDgC4rMf+2QEAAID2MBODHoNZFgBALAgxuCEIJACAG40QcxMjaAAAbEaIsVBnbr0loAAAejtCTDe7XmGD0AIAuNkQYq4SoQEAgO7FLdYAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAK8V19wBuFGOMJKm+vr6bRwIAADrr8nn78nm8Pb02xFy4cEGSlJ6e3s0jAQAAsbpw4YIcx2m3xmM6E3Us1NLSojNnzigpKUkej+e67ru+vl7p6ek6deqUkpOTr+u+8f/oc9egz12DPncN+tx1blSvjTG6cOGCAoGAbrml/ateeu1MzC233KLBgwff0M9ITk7mf5IuQJ+7Bn3uGvS5a9DnrnMjet3RDMxlXNgLAACsRIgBAABWIsRcBa/Xq2effVZer7e7h9Kr0eeuQZ+7Bn3uGvS56/SEXvfaC3sBAEDvxkwMAACwEiEGAABYiRADAACsRIgBAABWuilDzIoVK+TxeKIWv9/vbjfGaMWKFQoEAurXr58mTpyoI0eORO2jsbFRCxcu1MCBA5WYmKj8/HydPn06qiYcDisYDMpxHDmOo2AwqPPnz3fFIfYI7fW5ublZy5YtU1ZWlhITExUIBPTII4/ozJkzUfugzx3r6Of5y+bNmyePx6P169dHrafPndOZXh89elT5+flyHEdJSUkaN26cTp486W6n1x3rqM8XL17UggULNHjwYPXr10/Dhw/Xhg0bovZBnzvn008/1cMPP6zU1FT1799fd955p6qqqtztPf58aG5Czz77rBk5cqSpra11l7q6Onf7qlWrTFJSkvm3f/s3c+jQITNz5kwzaNAgU19f79Y8/vjj5utf/7opLS01Bw8eNN/5znfM6NGjzZ///Ge3Zvr06SYzM9OUl5eb8vJyk5mZafLy8rr0WLtTe30+f/68mTx5svnVr35ljh07ZioqKkxOTo7Jzs6O2gd97lhHP8+Xbd++3YwePdoEAgGzbt26qG30uXM66vWHH35oUlJSzFNPPWUOHjxo/vu//9v8+te/NmfPnnVr6HXHOurzD3/4Q/PNb37TvPvuu6ampsZs3LjR9OnTx7z11ltuDX3u2P/8z/+YIUOGmMcee8zs27fP1NTUmD179pgPP/zQrenp58ObNsSMHj36ittaWlqM3+83q1atctf96U9/Mo7jmJ/97GfGmC9OwPHx8Wbbtm1uzaeffmpuueUWU1JSYowx5v333zeSTGVlpVtTUVFhJJljx47dgKPqedrr85Xs37/fSDKffPKJMYY+d1Zn+nz69Gnz9a9/3Rw+fNgMGTIkKsTQ587rqNczZ840Dz/88Fdup9ed01GfR44caZ5//vmodX/1V39l/vEf/9EYQ587a9myZeaee+75yu02nA9vyq+TJOnEiRMKBAIaOnSoHnroIX300UeSpJqaGoVCIU2dOtWt9Xq9mjBhgsrLyyVJVVVVam5ujqoJBALKzMx0ayoqKuQ4jnJyctyacePGyXEct+Zm8FV9vpJIJCKPx6Ovfe1rkuhzLNrrc0tLi4LBoJ566imNHDmyzXvpc2y+qtctLS1655139K1vfUvTpk1TWlqacnJy9NZbb7nvpded197P9D333KMdO3bo008/lTFG7777rj744ANNmzZNEn3urB07dmjs2LH6/ve/r7S0NI0ZM0abN292t9twPrwpQ0xOTo5effVV7dq1S5s3b1YoFNL48eP12WefKRQKSZJ8Pl/Ue3w+n7stFAopISFBAwYMaLcmLS2tzWenpaW5Nb1de31u7U9/+pOefvppFRQUuH9IjD53Tkd9Xr16teLi4rRo0aIrvp8+d157va6rq9PFixe1atUqTZ8+Xbt379b3vvc9PfjggyorK5NErzuro5/pF198USNGjNDgwYOVkJCg6dOn66WXXtI999wjiT531kcffaQNGzYoIyNDu3bt0uOPP65Fixbp1VdflSQrzoe99q9Yt+fee+91/zsrK0u5ubn65je/qVdeeUXjxo2TJHk8nqj3GGParGutdc2V6juzn96ivT4/+eST7rbm5mY99NBDamlp0UsvvdThfulztPb6PGHCBP30pz/VwYMHY+4HfW6rvV4/9NBDkqQHHnhAP/rRjyRJd955p8rLy/Wzn/1MEyZM+Mr90utoHf3b8eKLL6qyslI7duzQkCFD9Lvf/U7z58/XoEGDNHny5K/cL32O1tLSorFjx6qoqEiSNGbMGB05ckQbNmzQI4884tb15PPhTTkT01piYqKysrJ04sQJ9wr41umwrq7OTaN+v19NTU0Kh8Pt1pw9e7bNZ507d65Nqr1ZfLnPlzU3N2vGjBmqqalRaWlp1J9zp89X58t9fu+991RXV6fbbrtNcXFxiouL0yeffKLFixfr9ttvl0Sfr8WXez1w4EDFxcVpxIgRUTXDhw93706i11fny31uaGjQj3/8Y61du1b333+/Ro0apQULFmjmzJn6l3/5F0n0ubMGDRrU4c+r1LPPh4QYfXF72NGjRzVo0CANHTpUfr9fpaWl7vampiaVlZVp/PjxkqTs7GzFx8dH1dTW1urw4cNuTW5uriKRiPbv3+/W7Nu3T5FIxK252Xy5z9L/B5gTJ05oz549Sk1Njaqnz1fny30OBoP6wx/+oOrqancJBAJ66qmntGvXLkn0+Vp8udcJCQm66667dPz48aiaDz74QEOGDJFEr6/Wl/vc3Nys5uZm3XJL9OmrT58+amlpkUSfO+vuu+9u9+fVivPhNV0WbKnFixeb3/72t+ajjz4ylZWVJi8vzyQlJZmPP/7YGPPFLWWO45g333zTHDp0yPzgBz+44i1lgwcPNnv27DEHDx40f/M3f3PFW8pGjRplKioqTEVFhcnKyrqpbt9rr8/Nzc0mPz/fDB482FRXV0fdStnY2Ojugz53rKOf59Za351kDH3urI56/eabb5r4+HizadMmc+LECfOv//qvpk+fPua9995z90GvO9ZRnydMmGBGjhxp3n33XfPRRx+ZX/ziF6Zv377mpZdecvdBnzu2f/9+ExcXZ/7pn/7JnDhxwmzdutX079/fvP76625NTz8f3pQh5vJ97vHx8SYQCJgHH3zQHDlyxN3e0tJinn32WeP3+43X6zXf/va3zaFDh6L20dDQYBYsWGBSUlJMv379TF5enjl58mRUzWeffWZmzZplkpKSTFJSkpk1a5YJh8NdcYg9Qnt9rqmpMZKuuLz77rvuPuhzxzr6eW7tSiGGPndOZ3r98ssvmzvuuMP07dvXjB49OurZJcbQ687oqM+1tbXmscceM4FAwPTt29cMGzbMvPDCC6alpcWtoc+d8/bbb5vMzEzj9XrNX/7lX5pNmzZFbe/p50OPMcZc21wOAABA1+OaGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACs9H+7HVmUIZUHhQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -988,10 +988,10 @@ "start_time": "2023-11-09T18:41:44.214787904Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:23.112468Z", - "iopub.status.busy": "2023-11-09T20:46:23.112109Z", - "iopub.status.idle": "2023-11-09T20:46:23.114855Z", - "shell.execute_reply": "2023-11-09T20:46:23.114410Z" + "iopub.execute_input": "2023-11-09T22:34:16.362692Z", + "iopub.status.busy": "2023-11-09T22:34:16.362518Z", + "iopub.status.idle": "2023-11-09T22:34:16.365238Z", + "shell.execute_reply": "2023-11-09T22:34:16.364816Z" } }, "outputs": [], @@ -1008,16 +1008,16 @@ "start_time": "2023-11-09T18:41:44.221274727Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:23.117393Z", - "iopub.status.busy": "2023-11-09T20:46:23.117053Z", - "iopub.status.idle": "2023-11-09T20:46:23.436415Z", - "shell.execute_reply": "2023-11-09T20:46:23.435589Z" + "iopub.execute_input": "2023-11-09T22:34:16.367090Z", + "iopub.status.busy": "2023-11-09T22:34:16.366750Z", + "iopub.status.idle": "2023-11-09T22:34:16.646977Z", + "shell.execute_reply": "2023-11-09T22:34:16.646458Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMcAAAINCAYAAAA6MBi/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABAN0lEQVR4nO3df3SV1Z0v/k8kkliviRU04OJnLRYo/sCgklD8ca2xlLr8UcaMjtGOUOVGHWLWurek6C0wqwZnLMRfoMz0mjIdMd6qoy5xQeyogKRWKbH91l51OmpYTFIKc0vUjjDA+f7hMrcxATkhJyfkeb3Wetby7LOfnc9zELN9P/vsJyeVSqUCAAAAABLoqGwXAAAAAADZIhwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEis3GwX0Fv2798f//Zv/xbHHXdc5OTkZLscAOAIkEql4v3334+TTz45jjrKPcP+yjwPAEhXOvO8AROO/du//VuMHDky22UAAEegrVu3xogRI7JdBgdgngcA9NShzPMGTDh23HHHRcTHF11QUJDlagCAI0F7e3uMHDmyYx5B/2SeBwCkK5153oAJxz5ZYl9QUGDSBACkxVf1+jfzPACgpw5lnmdzDQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAdFi+fHmMHTs28vPzo7i4ODZs2HBI57388suRm5sbZ555Zpf3Hn/88Zg4cWLk5eXFxIkT48knn+zlqgEAek44BgBAREQ0NDREVVVVLFiwILZs2RLTp0+PGTNmREtLy0HP27VrV1x33XVx0UUXdXmvqakpysvLo6KiIl5//fWoqKiIq666Kl555ZVMXQYAQFpyUqlUKttF9Ib29vYoLCyMXbt2RUFBQbbLAQCOAOYPnZ177rlx1llnxYoVKzraJkyYEJdffnnU1tYe8Lw///M/j3HjxsWgQYPin/7pn6K5ubnjvfLy8mhvb4/nnnuuo+1rX/tafP7zn4/Vq1cfUl3+nACAdKUzf7ByDACA2LNnT2zevDnKyso6tZeVlcWmTZsOeN7DDz8cv/3tb+N73/tet+83NTV1GfOSSy456Ji7d++O9vb2TgcAQKYIxwAAiB07dsS+ffuiqKioU3tRUVG0tbV1e87bb78d8+fPj3/8x3+M3Nzcbvu0tbWlNWZERG1tbRQWFnYcI0eOTPNqAAAOnXAMAIAOOTk5nV6nUqkubRER+/bti2uuuSYWLVoUp556aq+M+YmamprYtWtXx7F169Y0rgAAID3d3+L7DMuXL4+//du/jdbW1vjyl78cdXV1MX369M887+WXX47zzz8/Jk2a1GkvioiPn2J0xx13xG9/+9s45ZRT4vvf/35cccUVPSkPOAxj5j/ba2O9u2Rmr40FQGYNHTo0Bg0a1GVF1/bt27us/IqIeP/99+O1116LLVu2xC233BIREfv3749UKhW5ubmxbt26+K//9b/GsGHDDnnMT+Tl5UVeXl4vXBWQBL0xfzVvhWRLe+WYpxgBAAw8gwcPjuLi4mhsbOzU3tjYGKWlpV36FxQUxK9+9atobm7uOObOnRtf+tKXorm5Oc4999yIiCgpKeky5rp167odEwAgG9JeObZ06dKYPXt2zJkzJyIi6urqYu3atbFixYqDPsXopptuimuuuabjKUZ/qq6uLi6++OKoqamJiI+X0r/00ktRV1d3yE8xAgDg8FRXV0dFRUVMmTIlSkpKYuXKldHS0hJz586NiI/naNu2bYtVq1bFUUcdFZMmTep0/kknnRT5+fmd2ufNmxfnnXde3HXXXXHZZZfFU089Fc8//3xs3LixT68NAOBA0lo55ilGAAADV3l5edTV1cXixYvjzDPPjPXr18eaNWti9OjRERHR2tr6md8W+LTS0tJ49NFH4+GHH47TTz896uvro6GhoWNlGQBAtqW1cuxwnmK0YcOGXn+K0aJFi9IpHwCAz1BZWRmVlZXdvldfX3/QcxcuXBgLFy7s0j5r1qyYNWtWL1QHAND7evS0Sk8xAgAAAGAgSGvlmKcYAQAAADCQpLVyzFOMAAAAABhI0n5apacYAQAAADBQpB2OlZeXx86dO2Px4sXR2toakyZN6rWnGN1+++1xxx13xCmnnOIpRgAAAAPcmPnPZrsEgMhJpVKpbBfRG9rb26OwsDB27doVBQUF2S4Hjli9OUF5d8nMXhsLIBPMH44M/pxg4Oov4Zh5Kww86cwfevS0SgAAAAAYCIRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJlZvtAgAAAI5oL9RmdvwLazI7PkDCWTkGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsWzIDwAADGyZ3jAfgCOalWMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASy4b8QMaMmf9sr4zz7pKZvTIOAAAAfJqVYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAADosX748xo4dG/n5+VFcXBwbNmw4YN+NGzfGtGnTYsiQIXHMMcfE+PHjY9myZZ361NfXR05OTpfjo48+yvSlAAAcktxsFwAAQP/Q0NAQVVVVsXz58pg2bVo89NBDMWPGjHjjjTdi1KhRXfofe+yxccstt8Tpp58exx57bGzcuDFuuummOPbYY+PGG2/s6FdQUBBvvvlmp3Pz8/Mzfj0AAIdCOAYAQERELF26NGbPnh1z5syJiIi6urpYu3ZtrFixImpra7v0nzx5ckyePLnj9ZgxY+KJJ56IDRs2dArHcnJyYtiwYZm/AACAHvC1SgAAYs+ePbF58+YoKyvr1F5WVhabNm06pDG2bNkSmzZtivPPP79T+wcffBCjR4+OESNGxDe+8Y3YsmVLr9UNAHC4rBwDACB27NgR+/bti6Kiok7tRUVF0dbWdtBzR4wYEb///e9j7969sXDhwo6VZxER48ePj/r6+jjttNOivb097rnnnpg2bVq8/vrrMW7cuG7H2717d+zevbvjdXt7+2FcGQDAwfVo5ZiNWgEABqacnJxOr1OpVJe2T9uwYUO89tpr8eCDD0ZdXV2sXr26472pU6fGtddeG2eccUZMnz49HnvssTj11FPjvvvuO+B4tbW1UVhY2HGMHDny8C4KAOAg0l45ZqNWAICBZ+jQoTFo0KAuq8S2b9/eZTXZp40dOzYiIk477bT43e9+FwsXLoyrr766275HHXVUnH322fH2228fcLyampqorq7ueN3e3i4gAwAyJu2VY3+6UeuECROirq4uRo4cGStWrOi2/+TJk+Pqq6+OL3/5yzFmzJi49tpr45JLLumy2uyTjVr/9AAAoG8MHjw4iouLo7GxsVN7Y2NjlJaWHvI4qVSq01ciu3u/ubk5hg8ffsA+eXl5UVBQ0OkAAMiUtMIxG7UCAAxc1dXV8fd///fxv/7X/4rf/OY3cdttt0VLS0vMnTs3Ij5e0XXdddd19H/ggQfimWeeibfffjvefvvtePjhh+Puu++Oa6+9tqPPokWLYu3atfGv//qv0dzcHLNnz47m5uaOMQEAsi2tr1XaqBUAYOAqLy+PnTt3xuLFi6O1tTUmTZoUa9asidGjR0dERGtra7S0tHT0379/f9TU1MQ777wTubm5ccopp8SSJUvipptu6ujzhz/8IW688cZoa2uLwsLCmDx5cqxfvz7OOeecPr8+gAMZM//ZXhnn3SUze2UcoG/16GmVPd2o9YMPPoif/exnMX/+/PjiF7/YsRfF1KlTY+rUqR19p02bFmeddVbcd999ce+993Y7Xm1tbSxatKgn5QMAcACVlZVRWVnZ7Xv19fWdXt96661x6623HnS8ZcuWdXkYEwBAf5JWOGajVgAAAAAGkrT2HLNRKwAAAAADSdpfq6yuro6KioqYMmVKlJSUxMqVK7ts1Lpt27ZYtWpVRHy8UeuoUaNi/PjxERGxcePGuPvuuzstwV+0aFFMnTo1xo0bF+3t7XHvvfdGc3NzPPDAA71xjQAAAADQrbTDMRu1AgAAADBQ5KRSqVS2i+gN7e3tUVhYGLt27fIVSzgMvfWknt7kqT9Appg/HBn8OXHYXqjNdgWH58KabFeQMf1x7nk4zFuh/0hn/pDWnmMAAAAAMJAIxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWLnZLgA4fGPmP5vtEgAAAOCIZOUYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEis32wUAAABwZBkz/9lslwDQa6wcAwAAACCxhGMAAAAAJJZwDAAAAIDEsucY0O/15p4W7y6Z2WtjAQAAcOSzcgwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWLnZLgAAAICDeKE2s+NfWJPZ8QH6OSvHAAAAAEgs4RgAAAAAiSUcAwCgw/Lly2Ps2LGRn58fxcXFsWHDhgP23bhxY0ybNi2GDBkSxxxzTIwfPz6WLVvWpd/jjz8eEydOjLy8vJg4cWI8+eSTmbwEAIC0CMcAAIiIiIaGhqiqqooFCxbEli1bYvr06TFjxoxoaWnptv+xxx4bt9xyS6xfvz5+85vfxO233x633357rFy5sqNPU1NTlJeXR0VFRbz++utRUVERV111Vbzyyit9dVkAAAeVk0qlUtkuoje0t7dHYWFh7Nq1KwoKCrJdDvSpMfOfzXYJR4x3l8zMdglAP2L+0Nm5554bZ511VqxYsaKjbcKECXH55ZdHbe2hbQh+5ZVXxrHHHhv/8A//EBER5eXl0d7eHs8991xHn6997Wvx+c9/PlavXn1IY/pz4rBlekP7I10PNuQ3/+yeuSb0H+nMH6wcAwAg9uzZE5s3b46ysrJO7WVlZbFp06ZDGmPLli2xadOmOP/88zvampqauox5ySWXHHTM3bt3R3t7e6cDACBTehSO2YsCAGBg2bFjR+zbty+Kioo6tRcVFUVbW9tBzx0xYkTk5eXFlClT4uabb445c+Z0vNfW1pb2mLW1tVFYWNhxjBw5sgdXBABwaHLTPeGTvSiWL18e06ZNi4ceeihmzJgRb7zxRowaNapL/0/2ojj99NPj2GOPjY0bN8ZNN90Uxx57bNx4440R8f/2ovjrv/7ruOKKK+LJJ5+Mq666KjZu3Bjnnnvu4V8lAACHJCcnp9PrVCrVpe3TNmzYEB988EH87Gc/i/nz58cXv/jFuPrqq3s8Zk1NTVRXV3e8bm9vF5ANdL72CEAWpR2OLV26NGbPnt1xR7Curi7Wrl0bK1as6HYvismTJ8fkyZM7Xo8ZMyaeeOKJ2LBhQ0c4VldXFxdffHHU1Hz8Xfeampp46aWXoq6u7pD3ogAAoOeGDh0agwYN6rKia/v27V1Wfn3a2LFjIyLitNNOi9/97nexcOHCjnBs2LBhaY+Zl5cXeXl5PbkMAIC0pfW1SntRAAAMTIMHD47i4uJobGzs1N7Y2BilpaWHPE4qlYrdu3d3vC4pKeky5rp169IaEwAgk9JaOXa4e1H8/ve/j71798bChQt7ZS+KRYsWpVM+AAAHUV1dHRUVFTFlypQoKSmJlStXRktLS8ydOzciPl7dv23btli1alVERDzwwAMxatSoGD9+fER8vNfs3XffHbfeemvHmPPmzYvzzjsv7rrrrrjsssviqaeeiueffz42btzY9xcIANCNtL9WGWEvCgCAgai8vDx27twZixcvjtbW1pg0aVKsWbMmRo8eHRERra2t0dLS0tF///79UVNTE++8807k5ubGKaecEkuWLImbbrqpo09paWk8+uijcfvtt8cdd9wRp5xySjQ0NNhXFgDoN9IKx+xFAQAwsFVWVkZlZWW379XX13d6feutt3ZaJXYgs2bNilmzZvVGeQAAvS6tPcfsRQEAAADAQJL21yrtRQEAAADAQJF2OGYvCgAAAAAGipxUKpXKdhG9ob29PQoLC2PXrl1RUFCQ7XKgT42Z/2y2SzhivLtkZrZLAPoR84cjgz+nBHihNtsVJNuFNWmfYv7ZPXNN6D/SmT+ktecYAAAAAAwkwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBi5Wa7AEiyMfOfzXYJAAAAkGhWjgEAAACQWFaOAQAAJEjdT9/q/HqtbzMAySYcAwAAgF7QG9umvLtkZi9UAqTD1yoBAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAB2WL18eY8eOjfz8/CguLo4NGzYcsO8TTzwRF198cZx44olRUFAQJSUlsXbt2k596uvrIycnp8vx0UcfZfpSAAAOiXAMAICIiGhoaIiqqqpYsGBBbNmyJaZPnx4zZsyIlpaWbvuvX78+Lr744lizZk1s3rw5Lrzwwrj00ktjy5YtnfoVFBREa2trpyM/P78vLgkA4DPlZrsAAAD6h6VLl8bs2bNjzpw5ERFRV1cXa9eujRUrVkRtbW2X/nV1dZ1e33nnnfHUU0/FM888E5MnT+5oz8nJiWHDhmW0dgCAnurRyjHL7QEABpY9e/bE5s2bo6ysrFN7WVlZbNq06ZDG2L9/f7z//vtxwgkndGr/4IMPYvTo0TFixIj4xje+0WVl2aft3r072tvbOx0AAJmS9sqxT5bbL1++PKZNmxYPPfRQzJgxI954440YNWpUl/6fLLe/88474/jjj4+HH344Lr300njllVc63VEsKCiIN998s9O5R/xy+xe63mHtNRfWZG5sACBxduzYEfv27YuioqJO7UVFRdHW1nZIY/zgBz+IDz/8MK666qqOtvHjx0d9fX2cdtpp0d7eHvfcc09MmzYtXn/99Rg3bly349TW1saiRYt6fjEAAGlIOxyz3B4AYODKycnp9DqVSnVp687q1atj4cKF8dRTT8VJJ53U0T516tSYOnVqx+tp06bFWWedFffdd1/ce++93Y5VU1MT1dXVHa/b29tj5MiR6V4KAMAhSetrlf1puT0AAL1n6NChMWjQoC6rxLZv395lNdmnNTQ0xOzZs+Oxxx6Lr371qwfte9RRR8XZZ58db7/99gH75OXlRUFBQacDACBT0grHMr3c/umnn47Vq1dHfn5+TJs27aCTJntRAAD0nsGDB0dxcXE0NjZ2am9sbIzS0tIDnrd69er41re+FY888kjMnDnzM39OKpWK5ubmGD58+GHXDADQG3r0tMr+sNzeXhQAAL2ruro6KioqYsqUKVFSUhIrV66MlpaWmDt3bkR8/HXHbdu2xapVqyLi47ndddddF/fcc09MnTq142bpMcccE4WFhRERsWjRopg6dWqMGzcu2tvb4957743m5uZ44IEHsnORAACfktbKsf603L6mpiZ27drVcWzduvXQLwQAgC7Ky8ujrq4uFi9eHGeeeWasX78+1qxZE6NHj46IiNbW1mhpaeno/9BDD8XevXvj5ptvjuHDh3cc8+bN6+jzhz/8IW688caYMGFClJWVxbZt22L9+vVxzjnn9Pn1AQB0J62VY3+63P6KK67oaG9sbIzLLrvsgOetXr06brjhhli9enVay+1PO+20A/bJy8uLvLy8dMoHAOAzVFZWRmVlZbfv1dfXd3r94osvfuZ4y5Yti2XLlvVCZQAAmZH21yottwcAAABgoEg7HCsvL4+dO3fG4sWLo7W1NSZNmnTIy+1vvvnmjvbrr7++4+7jJ8vt29raorCwMCZPnmy5PQAAAAAZ16MN+S23BwAAAGAgSGtDfgAAAAAYSIRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAImVm+0C6KEXajM7/oU1mR0fAAAAoB+wcgwAAACAxBKOAQAAAJBYvlYJJMqY+c/2yjjvLpnZK+MAAACQXVaOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwCgw/Lly2Ps2LGRn58fxcXFsWHDhgP2feKJJ+Liiy+OE088MQoKCqKkpCTWrl3bpd/jjz8eEydOjLy8vJg4cWI8+eSTmbwEAIC0CMcAAIiIiIaGhqiqqooFCxbEli1bYvr06TFjxoxoaWnptv/69evj4osvjjVr1sTmzZvjwgsvjEsvvTS2bNnS0aepqSnKy8ujoqIiXn/99aioqIirrroqXnnllb66LACAgxKOAQAQERFLly6N2bNnx5w5c2LChAlRV1cXI0eOjBUrVnTbv66uLv7H//gfcfbZZ8e4cePizjvvjHHjxsUzzzzTqc/FF18cNTU1MX78+KipqYmLLroo6urq+uiqAAAOrkfhmOX2AAADy549e2Lz5s1RVlbWqb2srCw2bdp0SGPs378/3n///TjhhBM62pqamrqMeckllxx0zN27d0d7e3unAwAgU9IOxyy3BwAYeHbs2BH79u2LoqKiTu1FRUXR1tZ2SGP84Ac/iA8//DCuuuqqjra2tra0x6ytrY3CwsKOY+TIkWlcCQBAetIOxyy3BwAYuHJycjq9TqVSXdq6s3r16li4cGE0NDTESSeddFhj1tTUxK5duzqOrVu3pnEFAADpSSscs9weAGBgGjp0aAwaNKjLiq7t27d3Wfn1aQ0NDTF79ux47LHH4qtf/Wqn94YNG5b2mHl5eVFQUNDpAADIlLTCMcvtAQAGpsGDB0dxcXE0NjZ2am9sbIzS0tIDnrd69er41re+FY888kjMnDmzy/slJSVdxly3bt1BxwQA6Eu5PTnpcJfbP/XUU72y3L66urrjdXt7u4CsN71Qm7mxL6zJ3NgAQI9VV1dHRUVFTJkyJUpKSmLlypXR0tISc+fOjYiP51/btm2LVatWRcTHc7vrrrsu7rnnnpg6dWrHjc1jjjkmCgsLIyJi3rx5cd5558Vdd90Vl112WTz11FPx/PPPx8aNG7NzkQAAn5JWONYby+3/9//+37223D4vLy+d8gEAOIjy8vLYuXNnLF68OFpbW2PSpEmxZs2aGD16dEREtLa2dnoI00MPPRR79+6Nm2++OW6++eaO9uuvvz7q6+sjIqK0tDQeffTRuP322+OOO+6IU045JRoaGuLcc8/t02sDADiQtMKxP11uf8UVV3S0NzY2xmWXXXbA81avXh033HBDrF69+qDL7W+77baONsvtAQD6XmVlZVRWVnb73ieB1ydefPHFQxpz1qxZMWvWrMOsDAAgM9L+WqXl9gAAAAAMFGltyB/x8XL7urq6WLx4cZx55pmxfv36Q15uP3z48I5j3rx5HX0+WW7/8MMPx+mnnx719fWW2wMAAACQcT3akN9yewAAAAAGgrRXjgEAAADAQCEcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABIrNxsFwAAAMChqfvpW9kuAWDAsXIMAAAAgMSycgwAADi4F2qzXQEAZIyVYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEis3GwXAAAAQPZU5f4ko+PX7Z2V0fEHmjHznz3sMd5dMrMXKoHksHIMAAAAgMSycgzS1Bt3cgAAAID+QThG33uhNrPjX1iT2fEBAACAAcPXKgEAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMTKzXYB0OteqM3c2BfWZG5sAAAAoM9ZOQYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BANBh+fLlMXbs2MjPz4/i4uLYsGHDAfu2trbGNddcE1/60pfiqKOOiqqqqi596uvrIycnp8vx0UcfZfAqAAAOnXAMAICIiGhoaIiqqqpYsGBBbNmyJaZPnx4zZsyIlpaWbvvv3r07TjzxxFiwYEGcccYZBxy3oKAgWltbOx35+fmZugwAgLT0KBxzRxEAYOBZunRpzJ49O+bMmRMTJkyIurq6GDlyZKxYsaLb/mPGjIl77rknrrvuuigsLDzguDk5OTFs2LBOBwBAf5F2OOaOIgDAwLNnz57YvHlzlJWVdWovKyuLTZs2HdbYH3zwQYwePTpGjBgR3/jGN2LLli0H7b979+5ob2/vdAAAZEra4Zg7igAAA8+OHTti3759UVRU1Km9qKgo2traejzu+PHjo76+Pp5++ulYvXp15Ofnx7Rp0+Ltt98+4Dm1tbVRWFjYcYwcObLHPx8A4LOkFY65owgAMLDl5OR0ep1Kpbq0pWPq1Klx7bXXxhlnnBHTp0+Pxx57LE499dS47777DnhOTU1N7Nq1q+PYunVrj38+AMBnSSscc0cRAGBgGjp0aAwaNKjLnG779u1d5n6H46ijjoqzzz77oPO8vLy8KCgo6HQAAGRKjzbkd0cRAGBgGTx4cBQXF0djY2On9sbGxigtLe21n5NKpaK5uTmGDx/ea2MCAByO3HQ697c7inl5eb32MwEAkq66ujoqKipiypQpUVJSEitXroyWlpaYO3duRHx8c3Lbtm2xatWqjnOam5sj4uMtMn7/+99Hc3NzDB48OCZOnBgREYsWLYqpU6fGuHHjor29Pe69995obm6OBx54oM+vDwCgO2mFY396R/GKK67oaG9sbIzLLrus14r65I7iaaed1mtjAgBwcOXl5bFz585YvHhxtLa2xqRJk2LNmjUxevToiIhobW3t8oTyyZMnd/zz5s2b45FHHonRo0fHu+++GxERf/jDH+LGG2+Mtra2KCwsjMmTJ8f69evjnHPO6bPrAgA4mLTCsQh3FAEABrLKysqorKzs9r36+voubalU6qDjLVu2LJYtW9YbpQEAZETa4Zg7igAAAAAMFGmHYxHuKAIAAAAwMPToaZUAAAAAMBAIxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBi5Wa7ADiivFAbVblvZWTour2zMjIuAAAAcGBWjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgsG/ID9MCY+c/22ljvLpnZa2MBAACQHivHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASKzfbBQAfq8r9SUbHr9s7K6PjAwAAwJHIyjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEys12AQAAAEDvGTP/2V4Z590lM3tlHOjvrBwDAAAAILGsHAMAAMiwup++le0SADgA4RgkRFXuTzI2dt3eWRkbGwAAADLJ1yoBAOiwfPnyGDt2bOTn50dxcXFs2LDhgH1bW1vjmmuuiS996Utx1FFHRVVVVbf9Hn/88Zg4cWLk5eXFxIkT48knn8xQ9QAA6ROOAQAQERENDQ1RVVUVCxYsiC1btsT06dNjxowZ0dLS0m3/3bt3x4knnhgLFiyIM844o9s+TU1NUV5eHhUVFfH6669HRUVFXHXVVfHKK69k8lIAAA5Zj8IxdxQBAAaepUuXxuzZs2POnDkxYcKEqKuri5EjR8aKFSu67T9mzJi455574rrrrovCwsJu+9TV1cXFF18cNTU1MX78+KipqYmLLroo6urqMnglAACHLu1wzB1FAICBZ8+ePbF58+YoKyvr1F5WVhabNm3q8bhNTU1dxrzkkksOOubu3bujvb290wEAkClph2PuKAIADDw7duyIffv2RVFRUaf2oqKiaGtr6/G4bW1taY9ZW1sbhYWFHcfIkSN7/PMBAD5LWuGYO4oAAANbTk5Op9epVKpLW6bHrKmpiV27dnUcW7duPayfDwBwMLnpdO5vdxQXLVrU459JstT99K1slwAA/drQoUNj0KBBXeZf27dv7zJPS8ewYcPSHjMvLy/y8vJ6/DMBANLRow353VEEABhYBg8eHMXFxdHY2NipvbGxMUpLS3s8bklJSZcx161bd1hjAgD0prRWjrmjCAAwcFVXV0dFRUVMmTIlSkpKYuXKldHS0hJz586NiI9vTm7bti1WrVrVcU5zc3NERHzwwQfx+9//Ppqbm2Pw4MExceLEiIiYN29enHfeeXHXXXfFZZddFk899VQ8//zzsXHjxj6/PgCA7qS1cswdRQCAgau8vDzq6upi8eLFceaZZ8b69etjzZo1MXr06IiIaG1t7fKE8smTJ8fkyZNj8+bN8cgjj8TkyZPj61//esf7paWl8eijj8bDDz8cp59+etTX10dDQ0Oce+65fXptAAAHktbKsQh3FAEABrLKysqorKzs9r36+voubalU6jPHnDVrVsyaNetwS+NgXqjNdgUAcMRKOxwrLy+PnTt3xuLFi6O1tTUmTZp0SHcUP/HJXcXRo0fHu+++GxH/747i7bffHnfccUeccsop7igCAAAAkHFph2MR7igCnVXl/iSj49ft9d8GAAAAMqNHT6sEAAAAgIFAOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFi52S4AAACAgasq9ycZHb9u76yMjg8MfFaOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABIrN9sFAHyWqtyfZGzsur2zMjY2AAAA/Z+VYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABLLhvxAotnsHwAAINmsHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASKzcbBcAAAAA9D9j5j972GO8u2RmL1QCmWXlGAAAAACJZeUYQIZU5f7k0Dq+8Mue/YALa3p2HgAAAB2sHAMAAAAgsawcAwAAOIi6n76V7RIAyCDhGECW9XTCXbe26wapNjwFAABIj69VAgAAAJBYwjEAAAAAEsvXKgHo6oXazI7vSZsAAEA/IRwDOEJV5f6ka+MLv+z7QgAAAI5gvlYJAECH5cuXx9ixYyM/Pz+Ki4tjw4YNB+3/0ksvRXFxceTn58cXvvCFePDBBzu9X19fHzk5OV2Ojz76KJOXAQBwyHoUjpk0AQAMPA0NDVFVVRULFiyILVu2xPTp02PGjBnR0tLSbf933nknvv71r8f06dNjy5Yt8d3vfjf+6q/+Kh5//PFO/QoKCqK1tbXTkZ+f3xeXBADwmdL+WuUnk6bly5fHtGnT4qGHHooZM2bEG2+8EaNGjerS/5NJ07e//e348Y9/HC+//HJUVlbGiSeeGN/85jc7+hUUFMSbb77Z6VyTJup++la2SwCAxFi6dGnMnj075syZExERdXV1sXbt2lixYkXU1nbdi/DBBx+MUaNGRV1dXURETJgwIV577bW4++67O83zcnJyYtiwYX1yDQAA6Up75difTpomTJgQdXV1MXLkyFixYkW3/f900jRhwoSYM2dO3HDDDXH33Xd36vfJpOlPDwAA+saePXti8+bNUVZW1qm9rKwsNm3a1O05TU1NXfpfcskl8dprr8V//ud/drR98MEHMXr06BgxYkR84xvfiC1btvT+BQAA9FBa4Vh/mjTt3r072tvbOx0AAPTMjh07Yt++fVFUVNSpvaioKNra2ro9p62trdv+e/fujR07dkRExPjx46O+vj6efvrpWL16deTn58e0adPi7bffPmAt5nkAQF9KKxzrT5Om2traKCws7DhGjhyZzqUAANCNnJycTq9TqVSXts/q/6ftU6dOjWuvvTbOOOOMmD59ejz22GNx6qmnxn333XfAMc3zAIC+1KMN+fvDpKmmpiZ27drVcWzdurUnlwIAQEQMHTo0Bg0a1OWG5/bt27vc6PzEsGHDuu2fm5sbQ4YM6faco446Ks4+++yD3gQ1zwMA+lJa4Vh/mjTl5eVFQUFBpwMAgJ4ZPHhwFBcXR2NjY6f2xsbGKC0t7fackpKSLv3XrVsXU6ZMiaOPPrrbc1KpVDQ3N8fw4cMPWIt5HgDQl9J6WuWfTpquuOKKjvbGxsa47LLLuj2npKQknnnmmU5thzppOu2009IpD4AjxQtdn3rXay6sydzYMMBVV1dHRUVFTJkyJUpKSmLlypXR0tISc+fOjYiPV3Rt27YtVq1aFRERc+fOjfvvvz+qq6vj29/+djQ1NcUPf/jDWL16dceYixYtiqlTp8a4ceOivb097r333mhubo4HHnggK9cIAPBpaYVjESZNAAADVXl5eezcuTMWL14cra2tMWnSpFizZk2MHj06IiJaW1ujpaWlo//YsWNjzZo1cdttt8UDDzwQJ598ctx7773xzW9+s6PPH/7wh7jxxhujra0tCgsLY/LkybF+/fo455xz+vz6AAC6k3Y4ZtIEADBwVVZWRmVlZbfv1dfXd2k7//zz4xe/+MUBx1u2bFksW7ast8oDAOh1aYdjESZNAAAAAAwMPXpaJQAAAAAMBMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxcrNdAAD0qhdqMzf2hTWZGxsAAMgKK8cAAAAASCwrxwAAINMyuaoVADgswjEAAACOWFW5P8no+HV7Z2V0fCD7hGMAcKgyvfLDnmYAANDn7DkGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsWzIDwD9RSY3/LfZP5BAdT99K9slAHAEEI4BDCC99T8BVRed2ivjAAAA9HfCMQBIgkyuSouwMg0AgCOWPccAAAAASCwrxwCAw2e/NAAAjlBWjgEAAACQWFaOAQAAABkxZv6zvTLOu0tm9so40B0rxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEis32wUw8NT99K1slwAAAABwSKwcAwAAACCxhGMAAAAAJJavVQIAAAD92pj5zx72GO8umdkLlTAQCccAAOCF2mxXAPRTVbk/yej4dXtnZXR84LMJxwDoojcfrFF10am9NhYAAEBvs+cYAAAAAIklHAMAAAAgsYRjAAAAACSWPccAAIB+pzf3vwSAg7FyDAAAAIDEEo4BAAAAkFi+VkkHS9cBAACApLFyDAAAAIDEsnIMAADoVb6RAPRHY+Y/e9hjvLtkZi9UQn/To5Vjy5cvj7Fjx0Z+fn4UFxfHhg0bDtr/pZdeiuLi4sjPz48vfOEL8eCDD3bp8/jjj8fEiRMjLy8vJk6cGE8++WRPSgOgn6n76Vu9dgCZZ54HACRN2ivHGhoaoqqqKpYvXx7Tpk2Lhx56KGbMmBFvvPFGjBo1qkv/d955J77+9a/Ht7/97fjxj38cL7/8clRWVsaJJ54Y3/zmNyMioqmpKcrLy+Ov//qv44orrognn3wyrrrqqti4cWOce+65h3+VAAwIvRWQVV10aq+MAwONeR4AkEQ5qVQqlc4J5557bpx11lmxYsWKjrYJEybE5ZdfHrW1tV36f+c734mnn346fvOb33S0zZ07N15//fVoamqKiIjy8vJob2+P5557rqPP1772tfj85z8fq1evPqS62tvbo7CwMHbt2hUFBQXpXFLmvND18+htVlIApE84doS5sCZjQ/fL+UMWJXqe1wfztiQxR4X+o27vrGyXQDd8PTPz0pk/pLVybM+ePbF58+aYP39+p/aysrLYtGlTt+c0NTVFWVlZp7ZLLrkkfvjDH8Z//ud/xtFHHx1NTU1x2223delTV1d3wFp2794du3fv7ni9a9euiPj44jNl0vfWptW/Mvf/y1AlAByO9g8/ynYJpCODv9s/mTekea9wQEr6PC/8dyEiIpa/9C/ZLgHoZfv3/jHbJdCNjP5OIyLSm+elFY7t2LEj9u3bF0VFRZ3ai4qKoq2trdtz2trauu2/d+/e2LFjRwwfPvyAfQ40ZkREbW1tLFq0qEv7yJEjD/VyMi5z97kBOBw1d2e7AtKzOOM/4f3334/CwsKM/5z+zDwPYKB6JNsF0I3CumxXkByHMs/r0dMqc3JyOr1OpVJd2j6r/6fb0x2zpqYmqqurO17v378//v3f/z2GDBly0PP6Snt7e4wcOTK2bt3qaxp9yOfe93zm2eFz73s+8+zI9OeeSqXi/fffj5NPPrnXxz5SJXGe5+93dvn8s8vnn10+/+zy+WdXf5rnpRWODR06NAYNGtTlTt/27du73BH8xLBhw7rtn5ubG0OGDDlonwONGRGRl5cXeXl5ndqOP/74Q72UPlNQUOAvWRb43Puezzw7fO59z2eeHZn83JO+YuwT5nn+fmebzz+7fP7Z5fPPLp9/dvWHed5R6Qw6ePDgKC4ujsbGxk7tjY2NUVpa2u05JSUlXfqvW7cupkyZEkcfffRB+xxoTAAAepd5HgCQVGl/rbK6ujoqKipiypQpUVJSEitXroyWlpaYO3duRHy8DH7btm2xatWqiPj4iUX3339/VFdXx7e//e1oamqKH/7wh52eTjRv3rw477zz4q677orLLrssnnrqqXj++edj48aNvXSZAAB8FvM8ACCJ0g7HysvLY+fOnbF48eJobW2NSZMmxZo1a2L06NEREdHa2hotLS0d/ceOHRtr1qyJ2267LR544IE4+eST4957741vfvObHX1KS0vj0Ucfjdtvvz3uuOOOOOWUU6KhoSHOPffcXrjE7MjLy4vvfe97Xb4SQGb53Puezzw7fO59z2eeHT73vpXUeZ5/z7LL559dPv/s8vlnl88/u/rT55+T8uxyAAAAABIqrT3HAAAAAGAgEY4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxzJg+fLlMXbs2MjPz4/i4uLYsGFDtksa0Gpra+Pss8+O4447Lk466aS4/PLL480338x2WYlTW1sbOTk5UVVVle1SBrRt27bFtddeG0OGDInPfe5zceaZZ8bmzZuzXdaAtnfv3rj99ttj7Nixccwxx8QXvvCFWLx4cezfvz/bpQ0o69evj0svvTROPvnkyMnJiX/6p3/q9H4qlYqFCxfGySefHMccc0xccMEF8etf/zo7xTKgmLdlh/lb/2Ielx3mddljfte3joR5nnCslzU0NERVVVUsWLAgtmzZEtOnT48ZM2Z0euw5veull16Km2++OX72s59FY2Nj7N27N8rKyuLDDz/MdmmJ8eqrr8bKlSvj9NNPz3YpA9r//b//N6ZNmxZHH310PPfcc/HGG2/ED37wgzj++OOzXdqAdtddd8WDDz4Y999/f/zmN7+Jv/mbv4m//du/jfvuuy/bpQ0oH374YZxxxhlx//33d/v+3/zN38TSpUvj/vvvj1dffTWGDRsWF198cbz//vt9XCkDiXlb9pi/9R/mcdlhXpdd5nd964iY56XoVeecc05q7ty5ndrGjx+fmj9/fpYqSp7t27enIiL10ksvZbuURHj//fdT48aNSzU2NqbOP//81Lx587Jd0oD1ne98J/WVr3wl22UkzsyZM1M33HBDp7Yrr7wyde2112apooEvIlJPPvlkx+v9+/enhg0bllqyZElH20cffZQqLCxMPfjgg1mokIHCvK3/MH/LDvO47DGvyy7zu+zpr/M8K8d60Z49e2Lz5s1RVlbWqb2srCw2bdqUpaqSZ9euXRERccIJJ2S5kmS4+eabY+bMmfHVr34126UMeE8//XRMmTIl/uzP/ixOOumkmDx5cvzd3/1dtssa8L7yla/ET3/603jrrbciIuL111+PjRs3xte//vUsV5Yc77zzTrS1tXX6/ZqXlxfnn3++36/0mHlb/2L+lh3mcdljXpdd5nf9R3+Z5+X22U9KgB07dsS+ffuiqKioU3tRUVG0tbVlqapkSaVSUV1dHV/5yldi0qRJ2S5nwHv00UfjF7/4Rbz66qvZLiUR/vVf/zVWrFgR1dXV8d3vfjd+/vOfx1/91V9FXl5eXHfdddkub8D6zne+E7t27Yrx48fHoEGDYt++ffH9738/rr766myXlhif/A7t7vfre++9l42SGADM2/oP87fsMI/LLvO67DK/6z/6yzxPOJYBOTk5nV6nUqkubWTGLbfcEr/85S9j48aN2S5lwNu6dWvMmzcv1q1bF/n5+dkuJxH2798fU6ZMiTvvvDMiIiZPnhy//vWvY8WKFSZRGdTQ0BA//vGP45FHHokvf/nL0dzcHFVVVXHyySfH9ddfn+3yEsXvVzLBv1fZZ/7W98zjss+8LrvM7/qfbP8+Fo71oqFDh8agQYO63G3cvn17lxSU3nfrrbfG008/HevXr48RI0Zku5wBb/PmzbF9+/YoLi7uaNu3b1+sX78+7r///ti9e3cMGjQoixUOPMOHD4+JEyd2apswYUI8/vjjWaooGf77f//vMX/+/PjzP//ziIg47bTT4r333ova2lqTpz4ybNiwiPj4zuLw4cM72v1+5XCYt/UP5m/ZYR6XfeZ12WV+13/0l3mePcd60eDBg6O4uDgaGxs7tTc2NkZpaWmWqhr4UqlU3HLLLfHEE0/EP//zP8fYsWOzXVIiXHTRRfGrX/0qmpubO44pU6bEX/zFX0Rzc7MJVQZMmzaty2Pu33rrrRg9enSWKkqGP/7xj3HUUZ1/XQ4aNMijvvvQ2LFjY9iwYZ1+v+7Zsydeeuklv1/pMfO27DJ/yy7zuOwzr8su87v+o7/M86wc62XV1dVRUVERU6ZMiZKSkli5cmW0tLTE3Llzs13agHXzzTfHI488Ek899VQcd9xxHXeACwsL45hjjslydQPXcccd12VfkGOPPTaGDBliv5AMue2226K0tDTuvPPOuOqqq+LnP/95rFy5MlauXJnt0ga0Sy+9NL7//e/HqFGj4stf/nJs2bIlli5dGjfccEO2SxtQPvjgg/iXf/mXjtfvvPNONDc3xwknnBCjRo2KqqqquPPOO2PcuHExbty4uPPOO+Nzn/tcXHPNNVmsmiOdeVv2mL9ll3lc9pnXZZf5Xd86IuZ5ffZczAR54IEHUqNHj04NHjw4ddZZZ3kkdYZFRLfHww8/nO3SEscjwDPvmWeeSU2aNCmVl5eXGj9+fGrlypXZLmnAa29vT82bNy81atSoVH5+fuoLX/hCasGCBandu3dnu7QB5YUXXuj2v+XXX399KpX6+DHf3/ve91LDhg1L5eXlpc4777zUr371q+wWzYBg3pYd5m/9j3lc3zOvyx7zu751JMzzclKpVKrvojgAAAAA6D/sOQYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEY0O9dcMEFceutt0ZVVVV8/vOfj6Kioli5cmV8+OGH8Zd/+Zdx3HHHxSmnnBLPPfdcRETs27cvZs+eHWPHjo1jjjkmvvSlL8U999zTacwXX3wxzjnnnDj22GPj+OOPj2nTpsV7770XERGvv/56XHjhhXHcccdFQUFBFBcXx2uvvdbn1w0AQPcuuOCCuOWWW+KWW26J448/PoYMGRK33357pFKpbJcGHIGEY8AR4Uc/+lEMHTo0fv7zn8ett94a/+2//bf4sz/7sygtLY1f/OIXcckll0RFRUX88Y9/jP3798eIESPiscceizfeeCP+5//8n/Hd7343HnvssYiI2Lt3b1x++eVx/vnnxy9/+ctoamqKG2+8MXJyciIi4i/+4i9ixIgR8eqrr8bmzZtj/vz5cfTRR2fz8gEA+JQf/ehHkZubG6+88krce++9sWzZsvj7v//7bJcFHIFyUqJ1oJ+74IILYt++fbFhw4aI+HhlWGFhYVx55ZWxatWqiIhoa2uL4cOHR1NTU0ydOrXLGDfffHP87ne/i5/85Cfx7//+7zFkyJB48cUX4/zzz+/St6CgIO677764/vrrM3thAAD0yAUXXBDbt2+PX//61x03OOfPnx9PP/10vPHGG1muDjjSWDkGHBFOP/30jn8eNGhQDBkyJE477bSOtqKiooiI2L59e0REPPjggzFlypQ48cQT47/8l/8Sf/d3fxctLS0REXHCCSfEt771rbjkkkvi0ksvjXvuuSdaW1s7xqquro45c+bEV7/61ViyZEn89re/7YtLBAAgDVOnTu0IxiIiSkpK4u233459+/ZlsSrgSCQcA44In/5aY05OTqe2TyZG+/fvj8ceeyxuu+22uOGGG2LdunXR3Nwcf/mXfxl79uzp6P/www9HU1NTlJaWRkNDQ5x66qnxs5/9LCIiFi5cGL/+9a9j5syZ8c///M8xceLEePLJJ/vgKgEAAOhrwjFgwNmwYUOUlpZGZWVlTJ48Ob74xS92u/pr8uTJUVNTE5s2bYpJkybFI4880vHeqaeeGrfddlusW7currzyynj44Yf78hIAAPgMn9zY/NPX48aNi0GDBmWpIuBIJRwDBpwvfvGL8dprr8XatWvjrbfeijvuuCNeffXVjvffeeedqKmpiaampnjvvfdi3bp18dZbb8WECRPiP/7jP+KWW26JF198Md577714+eWX49VXX40JEyZk8YoAAPi0rVu3RnV1dbz55puxevXquO+++2LevHnZLgs4AuVmuwCA3jZ37txobm6O8vLyyMnJiauvvjoqKyvjueeei4iIz33uc/F//s//iR/96Eexc+fOGD58eNxyyy1x0003xd69e2Pnzp1x3XXXxe9+97sYOnRoXHnllbFo0aIsXxUAAH/quuuui//4j/+Ic845JwYNGhS33npr3HjjjdkuCzgCeVolAAAAR5QLLrggzjzzzKirq8t2KcAA4GuVAAAAACSWcAwAAACAxPK1SgAAAAASy8oxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAAS6/8Hnlo/N0YXh70AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMcAAAINCAYAAAA6MBi/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/uElEQVR4nO3df3TV5Z0n8E8kkljXpBU04AGBWiwgqBhUEoo/1hKGUg/VMrI6gm2hyiIOIWd3SgpugZkxOG0h/gJl2krZWTFO1cEe8UBsVaCkVhlCu+pUZ6qGwySlMNtEnTYMcPcP16wxAbkhyQ35vl7n3HO4z33uk8/3oubxfZ/v82SlUqlUAAAAAEACnZLpAgAAAAAgU4RjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJlZ3pAjrLkSNH4l//9V/jjDPOiKysrEyXAwCcBFKpVLzzzjtxzjnnxCmn+M6wpzLPAwDSlc48r9eEY//6r/8agwcPznQZAMBJaM+ePTFo0KBMl8FRmOcBAB11PPO8XhOOnXHGGRHx/kXn5eVluBoA4GTQ1NQUgwcPbplH0DOZ5wEA6UpnntdrwrEPltjn5eWZNAEAaXGrXs9mngcAdNTxzPNsrgEAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJlZ3pAoCeY+iipztlnLdWTO2UcQAA4Gg6a+4aYf4KSWflGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMTqUDi2evXqGDZsWOTm5kZhYWFs27btuN73s5/9LLKzs+Piiy9u89rjjz8eo0aNipycnBg1alQ8+eSTHSkNAAAAAI5b2uFYVVVVlJaWxuLFi2PXrl0xceLEmDJlStTV1R3zfY2NjTFr1qy45ppr2rxWU1MTM2bMiJkzZ8bu3btj5syZccMNN8SLL76YbnkAAAAAcNzSDsdWrlwZs2fPjjlz5sTIkSOjsrIyBg8eHGvWrDnm+2677ba46aaboqioqM1rlZWVMWnSpCgvL48RI0ZEeXl5XHPNNVFZWZlueQAAAABw3NIKxw4ePBg7d+6MkpKSVu0lJSWxY8eOo77v4Ycfjn/5l3+Jb33rW+2+XlNT02bMyZMnH3PM5ubmaGpqavUAAAAAgHSkFY7t378/Dh8+HAUFBa3aCwoKoqGhod33vPHGG7Fo0aL4X//rf0V2dna7fRoaGtIaMyKioqIi8vPzWx6DBw9O51IAAAAAoGMb8mdlZbV6nkql2rRFRBw+fDhuuummWLZsWZx//vmdMuYHysvLo7GxseWxZ8+eNK4AAAAAANIMx/r37x99+vRps6Jr3759bVZ+RUS888478fLLL8f8+fMjOzs7srOzY/ny5bF79+7Izs6On/70pxERMWDAgOMe8wM5OTmRl5fX6gEAwIlxKjkAkDRphWN9+/aNwsLCqK6ubtVeXV0dxcXFbfrn5eXFr371q6itrW15zJ07Nz772c9GbW1tXH755RERUVRU1GbMLVu2tDsmAABdw6nkAEAStb8J2DGUlZXFzJkzY9y4cVFUVBRr166Nurq6mDt3bkS8f7vj3r17Y/369XHKKafE6NGjW73/7LPPjtzc3FbtCxYsiCuuuCLuvvvumDZtWmzcuDGeffbZ2L59+wleHgAAx+vDp5JHvH+i+ObNm2PNmjVRUVFx1Pd9cCp5nz594h/+4R9avfbhU8kj3p8rvvDCC1FZWRkbNmzosmsBADheae85NmPGjKisrIzly5fHxRdfHFu3bo1NmzbFkCFDIiKivr7+Y79d/Kji4uJ49NFH4+GHH44LL7ww1q1bF1VVVS0rywAA6FpOJQcAkirtlWMREfPmzYt58+a1+9q6deuO+d6lS5fG0qVL27RPnz49pk+f3pFyAAA4QSdyKvm2bds6/VTyZcuWpXkFAAAd06HTKgEA6J2cSg4AJE2HVo4BANC7dPRU8l27dsX8+fMjIuLIkSORSqUiOzs7tmzZEv/5P//nDp9KnpOT0wlXBQDw8awcAwDAqeQAQGJZOQYAQEQ4lRwASCbhGAAAEfH+qeQHDhyI5cuXR319fYwePbrTTiVfsmRJ3HnnnXHeeec5lRwA6FGyUqlUKtNFdIampqbIz8+PxsbGyMvLy3Q5cFIauujpThnnrRVTO2UcgK5m/nBy8PcEtKez5q4R5q/QG6Uzf7DnGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxsjNdAAAAQJd6rqJrx7+6vGvHB6BLCcfgJDd00dOZLgEAAABOWsIxAACAE2FlGsBJzZ5jAAAAACSWcAwAAACAxBKOAQAAAJBY9hwDAACgWzhMCuiJrBwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxsjNdAND7DF30dKeN9daKqZ02FgAAAHyUlWMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACRWh8Kx1atXx7BhwyI3NzcKCwtj27ZtR+27ffv2mDBhQvTr1y9OO+20GDFiRKxatapVn3Xr1kVWVlabxx//+MeOlAcAAAAAxyU73TdUVVVFaWlprF69OiZMmBAPPfRQTJkyJV599dU499xz2/Q//fTTY/78+XHhhRfG6aefHtu3b4/bbrstTj/99Lj11ltb+uXl5cWvf/3rVu/Nzc3twCUBAAAAwPFJOxxbuXJlzJ49O+bMmRMREZWVlbF58+ZYs2ZNVFRUtOk/duzYGDt2bMvzoUOHxhNPPBHbtm1rFY5lZWXFgAEDOnINAAAAANAhad1WefDgwdi5c2eUlJS0ai8pKYkdO3Yc1xi7du2KHTt2xJVXXtmq/d13340hQ4bEoEGD4otf/GLs2rUrndIAAAAAIG1prRzbv39/HD58OAoKClq1FxQURENDwzHfO2jQoPjd734Xhw4diqVLl7asPIuIGDFiRKxbty7GjBkTTU1Ncc8998SECRNi9+7dMXz48HbHa25ujubm5pbnTU1N6VwKAAAAAKR/W2XE+7dAflgqlWrT9lHbtm2Ld999N37+85/HokWL4jOf+UzceOONERExfvz4GD9+fEvfCRMmxCWXXBL33Xdf3Hvvve2OV1FREcuWLetI+QAAAAAQEWneVtm/f//o06dPm1Vi+/bta7Oa7KOGDRsWY8aMia9//euxcOHCWLp06dGLOuWUuPTSS+ONN944ap/y8vJobGxseezZsyedSwEAoB1OJQcAkiatlWN9+/aNwsLCqK6ujuuuu66lvbq6OqZNm3bc46RSqVa3RLb3em1tbYwZM+aofXJyciInJ+e4fyYAAMfmVHIAIInSvq2yrKwsZs6cGePGjYuioqJYu3Zt1NXVxdy5cyPi/RVde/fujfXr10dExAMPPBDnnntujBgxIiLe/4bxO9/5Ttxxxx0tYy5btizGjx8fw4cPj6amprj33nujtrY2Hnjggc64RgAAjoNTyQGAJEo7HJsxY0YcOHAgli9fHvX19TF69OjYtGlTDBkyJCIi6uvro66urqX/kSNHory8PN58883Izs6O8847L1asWBG33XZbS5/f//73ceutt0ZDQ0Pk5+fH2LFjY+vWrXHZZZd1wiUCAPBxPjiVfNGiRa3aO3Iq+V/91V+1av/gVPLDhw/HxRdfHH/5l3/ZKlT7KAcvAQDdqUMb8s+bNy/mzZvX7mvr1q1r9fyOO+5otUqsPatWrWqzPwUAAN2nJ51K7uAlAKA7dSgcAwCgd+oJp5KXl5dHWVlZy/OmpqYYPHhwRy8JAOCYhGMAAJzwqeQREWPGjInf/va3sXTp0pZw7KOO51RyBy8BAN3plEwXAABA5n34VPIPq66ujuLi4uMe53hPJR84cGCHawUA6ExWjgEAEBFOJQcAkkk4BgBARDiVHABIpqxUKpXKdBGdoampKfLz86OxsTHy8vIyXQ50m6GLns50CV3qrRVTM10C0IuZP5wc/D1xwp6ryHQFJ+bq8kxX0Gl66tzVnBN6n3TmD/YcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASKzsTBcAAAAAmTR00dOdNtZbK6Z22lhA97ByDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAImVnekCAAAA6JmGLno60yUAdDkrxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWB0Kx1avXh3Dhg2L3NzcKCwsjG3bth217/bt22PChAnRr1+/OO2002LEiBGxatWqNv0ef/zxGDVqVOTk5MSoUaPiySef7EhpAAAAAHDc0g7HqqqqorS0NBYvXhy7du2KiRMnxpQpU6Kurq7d/qeffnrMnz8/tm7dGq+99losWbIklixZEmvXrm3pU1NTEzNmzIiZM2fG7t27Y+bMmXHDDTfEiy++2PErAwAAAICPkZVKpVLpvOHyyy+PSy65JNasWdPSNnLkyPjSl74UFRUVxzXG9ddfH6effnr8z//5PyMiYsaMGdHU1BTPPPNMS58/+ZM/iU996lOxYcOG4xqzqakp8vPzo7GxMfLy8tK4Iji5DV30dKZL6FJvrZia6RKAXsz84eTg74kT9tzx/X9Kj3V1ecZ+dG+fa3YF81foGdKZP6S1cuzgwYOxc+fOKCkpadVeUlISO3bsOK4xdu3aFTt27Igrr7yypa2mpqbNmJMnTz7uMQEAAACgI7LT6bx///44fPhwFBQUtGovKCiIhoaGY7530KBB8bvf/S4OHToUS5cujTlz5rS81tDQkPaYzc3N0dzc3PK8qakpnUsBAAAAgI5tyJ+VldXqeSqVatP2Udu2bYuXX345HnzwwaisrGxzu2S6Y1ZUVER+fn7LY/DgwWleBQAAH+XgJQAgadIKx/r37x99+vRps6Jr3759bVZ+fdSwYcNizJgx8fWvfz0WLlwYS5cubXltwIABaY9ZXl4ejY2NLY89e/akcykAAHyEg5cAgCRKKxzr27dvFBYWRnV1dav26urqKC4uPu5xUqlUq1sii4qK2oy5ZcuWY46Zk5MTeXl5rR4AAHTcypUrY/bs2TFnzpwYOXJkVFZWxuDBg1sdxPRhY8eOjRtvvDEuuOCCGDp0aNx8880xefLkVqvNKisrY9KkSVFeXh4jRoyI8vLyuOaaa6KysrKbrgoA4NjS2nMsIqKsrCxmzpwZ48aNi6Kioli7dm3U1dXF3LlzI+L9FV179+6N9evXR0TEAw88EOeee26MGDEiIt5ffv+d73wn7rjjjpYxFyxYEFdccUXcfffdMW3atNi4cWM8++yzsX379s64RgAAPsYHBy8tWrSoVXtHDl76q7/6q5a2mpqaWLhwYat+kydPPmY4Zm9ZAKA7pR2OzZgxIw4cOBDLly+P+vr6GD16dGzatCmGDBkSERH19fWtlt4fOXIkysvL480334zs7Ow477zzYsWKFXHbbbe19CkuLo5HH300lixZEnfeeWecd955UVVVFZdffnknXCIAAB+nJx28VFFREcuWLevAVQAApC/tcCwiYt68eTFv3rx2X1u3bl2r53fccUerVWJHM3369Jg+fXpHygEAoJN09OCld999N37+85/HokWL4jOf+UzceOONHR6zvLw8ysrKWp43NTU5fKm3e64i0xUAkGAdCscAAOhdTvTgpYiIMWPGxG9/+9tYunRpSzjWkYOXcnJyIicnpyOXAQCQNuEYAACtDl667rrrWtqrq6tj2rRpxz3O0Q5e+vC+Yx938BLwEV29su7q8q4dH6CHE44BABARDl4CAJJJOAYAQEQ4eAkASKasVCqVynQRnaGpqSny8/OjsbEx8vLyMl0OdJuhi57OdAld6q0VUzNdAtCLmT+cHPw9JYAN+TPrGLdV9va5Zlcwf4WeIZ35wyndVBMAAAAA9DjCMQAAAAASy55jkCGWqAMAAEDmCceAHq0zQ0T7PwAAAPBRbqsEAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJFZ2R960evXq+Pa3vx319fVxwQUXRGVlZUycOLHdvk888USsWbMmamtro7m5OS644IJYunRpTJ48uaXPunXr4qtf/Wqb9/7hD3+I3NzcjpTY9Z6r6Nrxry7v2vEBAAAASH/lWFVVVZSWlsbixYtj165dMXHixJgyZUrU1dW123/r1q0xadKk2LRpU+zcuTOuvvrquPbaa2PXrl2t+uXl5UV9fX2rR48NxgAAAADoFdJeObZy5cqYPXt2zJkzJyIiKisrY/PmzbFmzZqoqGi7mqqysrLV87vuuis2btwYP/7xj2Ps2LEt7VlZWTFgwIB0ywEAAACADktr5djBgwdj586dUVJS0qq9pKQkduzYcVxjHDlyJN55550488wzW7W/++67MWTIkBg0aFB88YtfbLOy7KOam5ujqamp1QMAAAAA0pFWOLZ///44fPhwFBQUtGovKCiIhoaG4xrju9/9brz33ntxww03tLSNGDEi1q1bF0899VRs2LAhcnNzY8KECfHGG28cdZyKiorIz89veQwePDidSwEAoB2rV6+OYcOGRW5ubhQWFsa2bduO2veJJ56ISZMmxVlnnRV5eXlRVFQUmzdvbtVn3bp1kZWV1ebxxz/+sasvBQDguHTotMqsrKxWz1OpVJu29mzYsCGWLl0aVVVVcfbZZ7e0jx8/Pm6++ea46KKLYuLEifHYY4/F+eefH/fdd99RxyovL4/GxsaWx549ezpyKQAA/D/2lgUAkiitPcf69+8fffr0abNKbN++fW1Wk31UVVVVzJ49O/7+7/8+Pv/5zx+z7ymnnBKXXnrpMVeO5eTkRE5OzvEXDwDAMdlbFgBIorRWjvXt2zcKCwujurq6VXt1dXUUFxcf9X0bNmyIr3zlK/HII4/E1KlTP/bnpFKpqK2tjYEDB6ZTHgAAHWRvWQAgqdK+rbKsrCy+973vxQ9+8IN47bXXYuHChVFXVxdz586NiPdvd5w1a1ZL/w0bNsSsWbPiu9/9bowfPz4aGhqioaEhGhsbW/osW7YsNm/eHL/5zW+itrY2Zs+eHbW1tS1jAgDQtewtCwAkVVq3VUZEzJgxIw4cOBDLly+P+vr6GD16dGzatCmGDBkSERH19fWt9qV46KGH4tChQ3H77bfH7bff3tJ+yy23xLp16yIi4ve//33ceuut0dDQEPn5+TF27NjYunVrXHbZZSd4eQAApONE95bduHFjm71lx48f3/J8woQJcckll8R9990X9957b7tjlZeXR1lZWcvzpqYmARkA0GXSDsciIubNmxfz5s1r97UPAq8PPP/88x873qpVq2LVqlUdKQUAgE5gb1kAIKk6dFolAAC9i71lAYCk6tDKMQAAep+ysrKYOXNmjBs3LoqKimLt2rVt9pbdu3dvrF+/PiL+/96y99xzT8veshERp512WuTn50fE+3vLjh8/PoYPHx5NTU1x7733Rm1tbTzwwAOZuUiALjZ00dOdNtZbKz7+SwfgxAnHAACICHvLAgDJJBwDAKCFvWUBgKSx5xgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASKzsTBcAAABA56n8yevp9d/8dBdVAnBysHIMAAAAgMQSjgEAAACQWG6r7Kmeq+ja8a8u79rxAQAAAE4CVo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiZWe6ADLkuYquHf/q8q4dHwAAAKATWDkGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxMrOdAEA3WXooqc7ZZy3VkztlHEAAADIvA6tHFu9enUMGzYscnNzo7CwMLZt23bUvk888URMmjQpzjrrrMjLy4uioqLYvHlzm36PP/54jBo1KnJycmLUqFHx5JNPdqQ0AAAAADhuaYdjVVVVUVpaGosXL45du3bFxIkTY8qUKVFXV9du/61bt8akSZNi06ZNsXPnzrj66qvj2muvjV27drX0qampiRkzZsTMmTNj9+7dMXPmzLjhhhvixRdf7PiVAQAAAMDHSDscW7lyZcyePTvmzJkTI0eOjMrKyhg8eHCsWbOm3f6VlZXxF3/xF3HppZfG8OHD46677orhw4fHj3/841Z9Jk2aFOXl5TFixIgoLy+Pa665JiorKzt8YQAAAADwcdIKxw4ePBg7d+6MkpKSVu0lJSWxY8eO4xrjyJEj8c4778SZZ57Z0lZTU9NmzMmTJx9zzObm5mhqamr1AADgxNg+AwBImrTCsf3798fhw4ejoKCgVXtBQUE0NDQc1xjf/e5347333osbbrihpa2hoSHtMSsqKiI/P7/lMXjw4DSuBACAj7J9BgCQRB3akD8rK6vV81Qq1aatPRs2bIilS5dGVVVVnH322Sc0Znl5eTQ2NrY89uzZk8YVAADwUbbPAACSKK1wrH///tGnT582K7r27dvXZuXXR1VVVcXs2bPjsccei89//vOtXhswYEDaY+bk5EReXl6rBwAAHWP7DAAgqdIKx/r27RuFhYVRXV3dqr26ujqKi4uP+r4NGzbEV77ylXjkkUdi6tSpbV4vKipqM+aWLVuOOSYAAJ3H9hkAQFJlp/uGsrKymDlzZowbNy6Kiopi7dq1UVdXF3Pnzo2I92933Lt3b6xfvz4i3g/GZs2aFffcc0+MHz++ZSJ02mmnRX5+fkRELFiwIK644oq4++67Y9q0abFx48Z49tlnY/v27Z11nQAAHIcT3T5j48aNnbJ9RllZWcvzpqYmARkA0GXSDsdmzJgRBw4ciOXLl0d9fX2MHj06Nm3aFEOGDImIiPr6+labtj700ENx6NChuP322+P2229vab/lllti3bp1ERFRXFwcjz76aCxZsiTuvPPOOO+886Kqqiouv/zyE7w8AACOR2dsn/H3f//3nbZ9Rk5OTppXAADQMWmHYxER8+bNi3nz5rX72geB1weef/754xpz+vTpMX369I6UAwDACfrw9hnXXXddS3t1dXVMmzbtqO/bsGFDfO1rX4sNGzYcc/uMhQsXtrTZPgMA6Ek6FI5BUg1d9HSmSwCALmP7DAAgidLakB8AgN5rxowZUVlZGcuXL4+LL744tm7detzbZwwcOLDlsWDBgpY+H2yf8fDDD8eFF14Y69ats30GANCjWDkGAEAL22cAAElj5RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGJlZ7oAAACgh3uuItMVAECXsXIMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYtmQHwAAIMFKs3/UpeNXHprepeMDnCgrxwAAAABILOEYAAAAAIklHAMAAAAgsew5Rtd4rqJrx7+6vGvHBwAAABLByjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASKzvTBUCHPFfRdWNfXd51YwMAAAA9ipVjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBidSgcW716dQwbNixyc3OjsLAwtm3bdtS+9fX1cdNNN8VnP/vZOOWUU6K0tLRNn3Xr1kVWVlabxx//+MeOlAcAAAAAxyU73TdUVVVFaWlprF69OiZMmBAPPfRQTJkyJV599dU499xz2/Rvbm6Os846KxYvXhyrVq066rh5eXnx61//ulVbbm5uuuUBAABArzB00dOdOt5bK6Z26njQW6S9cmzlypUxe/bsmDNnTowcOTIqKytj8ODBsWbNmnb7Dx06NO65556YNWtW5OfnH3XcrKysGDBgQKsHAADdyx0CAEDSpBWOHTx4MHbu3BklJSWt2ktKSmLHjh0nVMi7774bQ4YMiUGDBsUXv/jF2LVr1zH7Nzc3R1NTU6sHAAAd98EdAosXL45du3bFxIkTY8qUKVFXV9du/w/fIXDRRRcdddy8vLyor69v9XCHAADQU6QVju3fvz8OHz4cBQUFrdoLCgqioaGhw0WMGDEi1q1bF0899VRs2LAhcnNzY8KECfHGG28c9T0VFRWRn5/f8hg8eHCHfz4AAO4QAACSqUMb8mdlZbV6nkql2rSlY/z48XHzzTfHRRddFBMnTozHHnsszj///LjvvvuO+p7y8vJobGxseezZs6fDPx8AIOl60h0CAADdKa0N+fv37x99+vRps0ps3759bVaTnYhTTjklLr300mOuHMvJyYmcnJxO+5kAAEnW1XcIjBkzJpqamuKee+6JCRMmxO7du2P48OHtvqe5uTmam5tbnts+AwDoSmmtHOvbt28UFhZGdXV1q/bq6uooLi7utKJSqVTU1tbGwIEDO21MAAA+Xk+4Q8D2GQBAd0pr5VhERFlZWcycOTPGjRsXRUVFsXbt2qirq4u5c+dGxPu3O+7duzfWr1/f8p7a2tqIeH9J/e9+97uora2Nvn37xqhRoyIiYtmyZTF+/PgYPnx4NDU1xb333hu1tbXxwAMPdMIlAgDwcXrSHQLl5eVRVlbW8rypqUlABgB0mbTDsRkzZsSBAwdi+fLlUV9fH6NHj45NmzbFkCFDIuL9I70/eqLR2LFjW/68c+fOeOSRR2LIkCHx1ltvRUTE73//+7j11lujoaEh8vPzY+zYsbF169a47LLLTuDSAAA4Xh++Q+C6665raa+uro5p06Z12s/54A6BMWPGHLWP7TMAgO6UdjgWETFv3ryYN29eu6+tW7euTVsqlTrmeKtWrYpVq1Z1pBQAADqJOwQAgCTqUDgGAEDv4w4BACCJhGMAALRwhwAAkDRpnVYJAAAAAL2JcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiOa0SPuq5iqO+VJr9+gkPX3lo+gmPAQAAAHQO4RgAAECGVf7kxL+EBaBj3FYJAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEis7EwXAN2h8ievZ7oEAAAAoAcSjgGkaeiipzttrLdWTO20sQAAAEif2yoBAAAASCzhGAAAAACJ5bZK6Gal2T/q0vErD03v0vEBAACgN7FyDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILKdVQi/jNEwAAAA4flaOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJ1aFwbPXq1TFs2LDIzc2NwsLC2LZt21H71tfXx0033RSf/exn45RTTonS0tJ2+z3++OMxatSoyMnJiVGjRsWTTz7ZkdIAAAAA4LilHY5VVVVFaWlpLF68OHbt2hUTJ06MKVOmRF1dXbv9m5ub46yzzorFixfHRRdd1G6fmpqamDFjRsycOTN2794dM2fOjBtuuCFefPHFdMsDAOAE+BIUAEiatMOxlStXxuzZs2POnDkxcuTIqKysjMGDB8eaNWva7T906NC45557YtasWZGfn99un8rKypg0aVKUl5fHiBEjory8PK655pqorKxMtzwAADrIl6AAQBKlFY4dPHgwdu7cGSUlJa3aS0pKYseOHR0uoqamps2YkydPPuaYzc3N0dTU1OoBAEDH+RIUAEiitMKx/fv3x+HDh6OgoKBVe0FBQTQ0NHS4iIaGhrTHrKioiPz8/JbH4MGDO/zzAQCSrid9CQoA0J06tCF/VlZWq+epVKpNW1ePWV5eHo2NjS2PPXv2nNDPBwBIsp70Jag7BACA7pRWONa/f//o06dPm8nMvn372kx60jFgwIC0x8zJyYm8vLxWDwAATkxP+BLUHQIAQHdKKxzr27dvFBYWRnV1dav26urqKC4u7nARRUVFbcbcsmXLCY0JAMDx60lfgrpDAADoTmnfVllWVhbf+9734gc/+EG89tprsXDhwqirq4u5c+dGxPuTmVmzZrV6T21tbdTW1sa7774bv/vd76K2tjZeffXVltcXLFgQW7Zsibvvvjv+6Z/+Ke6+++549tlnj3ocOAAAnasnfQnqDgEAoDtlp/uGGTNmxIEDB2L58uVRX18fo0ePjk2bNsWQIUMiIqK+vr7Ncd9jx45t+fPOnTvjkUceiSFDhsRbb70VERHFxcXx6KOPxpIlS+LOO++M8847L6qqquLyyy8/gUsDACAdZWVlMXPmzBg3blwUFRXF2rVr23wJunfv3li/fn3Le2prayMiWn0J2rdv3xg1alREvP8l6BVXXBF33313TJs2LTZu3BjPPvtsbN++vduvDwCgPWmHYxER8+bNi3nz5rX72rp169q0pVKpjx1z+vTpMX369I6UAwBAJ/AlKACQRB0Kx4DkKs3+UZeOX3lISA6QSb4EPUk9V5HpCgDgpJX2nmMAAAAA0FsIxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSW0yoBAAAgAYYuerrTxnprxdROGwsyzcoxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxnFYJ9Cil2T/q0vErD03v0vEBAAA4uQjHAAAAOqDyJ69nugQAOoHbKgEAAABILCvHAAAA6DK2zQB6OivHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGJlZ7oAgO5Umv2jLhu78tD0tN8zdNHTnfKz31oxtVPGAQAASBorxwAAAABILOEYAAAAAIklHAMAAAAgsew5BtBJunI/s4iO7WkGAADAsVk5BgAAAEBiCccAAAAASCy3VQKcJI552+ZzvzzxH3B1+YmPAQAAcJKxcgwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGyM10AHE3lT17PdAkAAABAL2flGAAAAACJJRwDAAAAILGEYwAAAAAkVof2HFu9enV8+9vfjvr6+rjggguisrIyJk6ceNT+L7zwQpSVlcUrr7wS55xzTvzFX/xFzJ07t+X1devWxVe/+tU27/vDH/4Qubm5HSkRgHQ9V9G1419d3rXjA53CPA8ASJq0V45VVVVFaWlpLF68OHbt2hUTJ06MKVOmRF1dXbv933zzzfjCF74QEydOjF27dsU3v/nN+PM///N4/PHHW/XLy8uL+vr6Vg8TJgCA7mOeBwAkUdorx1auXBmzZ8+OOXPmREREZWVlbN68OdasWRMVFW1XHTz44INx7rnnRmVlZUREjBw5Ml5++eX4zne+E1/+8pdb+mVlZcWAAQM6eBkAAJwo8zwAIInSWjl28ODB2LlzZ5SUlLRqLykpiR07drT7npqamjb9J0+eHC+//HL8x3/8R0vbu+++G0OGDIlBgwbFF7/4xdi1a9cxa2lubo6mpqZWDwAAOqYnzfMAALpTWuHY/v374/Dhw1FQUNCqvaCgIBoaGtp9T0NDQ7v9Dx06FPv374+IiBEjRsS6deviqaeeig0bNkRubm5MmDAh3njjjaPWUlFREfn5+S2PwYMHp3MpAAB8SE+a5/kSFADoTh06rTIrK6vV81Qq1abt4/p/uH38+PFx8803x0UXXRQTJ06Mxx57LM4///y47777jjpmeXl5NDY2tjz27NnTkUsBAOBDesI8z5egAEB3Sisc69+/f/Tp06fNt4f79u1r863hBwYMGNBu/+zs7OjXr1/7RZ1ySlx66aXH/EYxJycn8vLyWj0AAOiYnjTP8yUoANCd0grH+vbtG4WFhVFdXd2qvbq6OoqLi9t9T1FRUZv+W7ZsiXHjxsWpp57a7ntSqVTU1tbGwIED0ykPAIAO6knzPF+CAgDdKe3bKsvKyuJ73/te/OAHP4jXXnstFi5cGHV1dTF37tyIeP+bvlmzZrX0nzt3brz99ttRVlYWr732WvzgBz+I73//+/Hf/tt/a+mzbNmy2Lx5c/zmN7+J2tramD17dtTW1raMCQBA1zPPAwCSKDvdN8yYMSMOHDgQy5cvj/r6+hg9enRs2rQphgwZEhER9fX1UVdX19J/2LBhsWnTpli4cGE88MADcc4558S9997b6njv3//+93HrrbdGQ0ND5Ofnx9ixY2Pr1q1x2WWXdcIlAgBwPMzzAIAkykp9sGvqSa6pqSny8/OjsbGxe5beP1fR9T8j4Sp/8nqmS4CTRuk152e6hI93dXmmK4A2un3+QIf4ezoO5qYZYb7aM1Qemp7pEhLprRVTM10CHFM684cOnVYJAAAAAL2BcAwAAACAxBKOAQAAAJBYaW/IDwAd0tX74djTDAAA6AArxwAAAABILOEYAAAAAInltkoAege3bQIAAB0gHAMAABKh8ievZ7oEAHog4RgAAACQlqGLnu60sd5aMbXTxoKOsOcYAAAAAIklHAMAAAAgsdxWCQAAwEmrNPtHXTp+5aHpXTo+kHnCMQA4Hk7DBE5EV/83BADoMLdVAgAAAJBYVo7R6RyRDQAAAJwsrBwDAAAAILGsHAPoBTpzxWbpNed32lgAAAA9nZVjAAAAACSWlWMA0BN05Ul2TsIEAICjEo4BQG/XlcFbhPANAICTmtsqAQAAAEgs4RgAAAAAiSUcAwAAACCx7DkGAJwYe5oBAHASs3IMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgsp1UCAAAAGTN00dOdNtZbK6Z22lgkh5VjAAAAACSWcAwAAACAxBKOAQAAAJBY9hwDoJXKn7zeKeOUXnN+p4wDAADQlYRjAAAAcBSl2T/q0vErD03v0vGBjyccAwAAeqzOWtEMAEcjHCMiTDoAAACAZBKOAQDAcxWZrgAAyBCnVQIAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgsG/IDAACdyknoQKYMXfR0p4311oqpnTYWPVuHVo6tXr06hg0bFrm5uVFYWBjbtm07Zv8XXnghCgsLIzc3Nz796U/Hgw8+2KbP448/HqNGjYqcnJwYNWpUPPnkkx0pLXEqf/J6pzwAACLM8wCA5El75VhVVVWUlpbG6tWrY8KECfHQQw/FlClT4tVXX41zzz23Tf8333wzvvCFL8TXv/71+Lu/+7v42c9+FvPmzYuzzjorvvzlL0dERE1NTcyYMSP+8i//Mq677rp48skn44Ybbojt27fH5ZdffuJXCQDAxzLPA4D/rzNXoUVYidaTZaVSqVQ6b7j88svjkksuiTVr1rS0jRw5Mr70pS9FRUVFm/7f+MY34qmnnorXXnutpW3u3Lmxe/fuqKmpiYiIGTNmRFNTUzzzzDMtff7kT/4kPvWpT8WGDRuOq66mpqbIz8+PxsbGyMvLS+eSOua5tteaCVZ9AUlQes35mS6BTLq6vMuG7vb5Qw+X6HleD5nb9RbmqNBzVB6anukS+H+EY90rnflDWivHDh48GDt37oxFixa1ai8pKYkdO3a0+56ampooKSlp1TZ58uT4/ve/H//xH/8Rp556atTU1MTChQvb9KmsrDxqLc3NzdHc3NzyvLGxMSLev/iuMvpbm1v+PC/7f3fZzwGgtRWbOue/ufOu/EynjEM368Lf7R/MG9L8rrBXSvo8L977Y9eNfZJY/cI/Z7oEoAvMjUe6dPzVh77UpeP3Jp35e+zD+cSJ+t/LJnfaWD1JOvO8tMKx/fv3x+HDh6OgoKBVe0FBQTQ0NLT7noaGhnb7Hzp0KPbv3x8DBw48ap+jjRkRUVFREcuWLWvTPnjw4OO9nBPSdd9hA9BVyr+T6QromOVd/hPeeeedyM/P7/Kf05OZ5wHQMV0bvvUm+ZWZrqB9PbWuznI887wOnVaZlZXV6nkqlWrT9nH9P9qe7pjl5eVRVlbW8vzIkSPxb//2b9GvX79jvq8zNDU1xeDBg2PPnj1uwcgAn3/m+Owzx2efWT7/zOnqzz6VSsU777wT55xzTqePfbJK4jzPv+OZ5fPPLJ9/Zvn8M8vnn1k9aZ6XVjjWv3//6NOnT5tv+vbt29fmG8EPDBgwoN3+2dnZ0a9fv2P2OdqYERE5OTmRk5PTqu2Tn/zk8V5Kp8jLy/MvUAb5/DPHZ585PvvM8vlnTld+9klfMfYB8zz/jmeazz+zfP6Z5fPPLJ9/ZvWEed4p6Qzat2/fKCwsjOrq6lbt1dXVUVxc3O57ioqK2vTfsmVLjBs3Lk499dRj9jnamAAAdC7zPAAgqdK+rbKsrCxmzpwZ48aNi6Kioli7dm3U1dXF3LlzI+L9ZfB79+6N9evXR8T7Jxbdf//9UVZWFl//+tejpqYmvv/977c6nWjBggVxxRVXxN133x3Tpk2LjRs3xrPPPhvbt2/vpMsEAODjmOcBAEmUdjg2Y8aMOHDgQCxfvjzq6+tj9OjRsWnTphgyZEhERNTX10ddXV1L/2HDhsWmTZti4cKF8cADD8Q555wT9957b3z5y19u6VNcXByPPvpoLFmyJO68884477zzoqqqKi6//PJOuMTOl5OTE9/61rfaLPene/j8M8dnnzk++8zy+WeOz757JXWe55+zzPL5Z5bPP7N8/pnl88+snvT5Z6WcXQ4AAABAQqW15xgAAAAA9CbCMQAAAAASSzgGAAAAQGIJxwAAAABILOFYB6xevTqGDRsWubm5UVhYGNu2bct0Sb1eRUVFXHrppXHGGWfE2WefHV/60pfi17/+dabLSqSKiorIysqK0tLSTJeSGHv37o2bb745+vXrF5/4xCfi4osvjp07d2a6rF7v0KFDsWTJkhg2bFicdtpp8elPfzqWL18eR44cyXRpvdLWrVvj2muvjXPOOSeysrLiH/7hH1q9nkqlYunSpXHOOefEaaedFldddVW88sormSmWXsW8LjPM7XoW87vMMMfLHPO87nUyzPOEY2mqqqqK0tLSWLx4cezatSsmTpwYU6ZMaXWsOZ3vhRdeiNtvvz1+/vOfR3V1dRw6dChKSkrivffey3RpifLSSy/F2rVr48ILL8x0KYnxf/7P/4kJEybEqaeeGs8880y8+uqr8d3vfjc++clPZrq0Xu/uu++OBx98MO6///547bXX4m/+5m/i29/+dtx3332ZLq1Xeu+99+Kiiy6K+++/v93X/+Zv/iZWrlwZ999/f7z00ksxYMCAmDRpUrzzzjvdXCm9iXld5pjb9Rzmd5lhjpdZ5nnd66SY56VIy2WXXZaaO3duq7YRI0akFi1alKGKkmnfvn2piEi98MILmS4lMd55553U8OHDU9XV1akrr7wytWDBgkyXlAjf+MY3Up/73OcyXUYiTZ06NfW1r32tVdv111+fuvnmmzNUUXJEROrJJ59seX7kyJHUgAEDUitWrGhp++Mf/5jKz89PPfjggxmokN7CvK7nMLfLDPO7zDHHyyzzvMzpqfM8K8fScPDgwdi5c2eUlJS0ai8pKYkdO3ZkqKpkamxsjIiIM888M8OVJMftt98eU6dOjc9//vOZLiVRnnrqqRg3blz86Z/+aZx99tkxduzY+Nu//dtMl5UIn/vc5+InP/lJvP766xERsXv37ti+fXt84QtfyHBlyfPmm29GQ0NDq9+/OTk5ceWVV/r9S4eZ1/Us5naZYX6XOeZ4mWWe13P0lHledrf9pF5g//79cfjw4SgoKGjVXlBQEA0NDRmqKnlSqVSUlZXF5z73uRg9enSmy0mERx99NP7xH/8xXnrppUyXkji/+c1vYs2aNVFWVhbf/OY34xe/+EX8+Z//eeTk5MSsWbMyXV6v9o1vfCMaGxtjxIgR0adPnzh8+HD89V//ddx4442ZLi1xPvgd297v37fffjsTJdELmNf1HOZ2mWF+l1nmeJllntdz9JR5nnCsA7Kyslo9T6VSbdroOvPnz49f/vKXsX379kyXkgh79uyJBQsWxJYtWyI3NzfT5STOkSNHYty4cXHXXXdFRMTYsWPjlVdeiTVr1pg4dbGqqqr4u7/7u3jkkUfiggsuiNra2igtLY1zzjknbrnllkyXl0h+/9IV/HOVeeZ23c/8LvPM8TLLPK/nyfTvY+FYGvr37x99+vRp823ivn372qScdI077rgjnnrqqdi6dWsMGjQo0+Ukws6dO2Pfvn1RWFjY0nb48OHYunVr3H///dHc3Bx9+vTJYIW928CBA2PUqFGt2kaOHBmPP/54hipKjv/+3/97LFq0KP7Lf/kvERExZsyYePvtt6OiosKkqZsNGDAgIt7/ZnHgwIEt7X7/ciLM63oGc7vMML/LPHO8zDLP6zl6yjzPnmNp6Nu3bxQWFkZ1dXWr9urq6iguLs5QVcmQSqVi/vz58cQTT8RPf/rTGDZsWKZLSoxrrrkmfvWrX0VtbW3LY9y4cfFnf/ZnUVtba+LUxSZMmNDmaPvXX389hgwZkqGKkuPf//3f45RTWv+a7NOnjyO+M2DYsGExYMCAVr9/Dx48GC+88ILfv3SYeV1mmdtllvld5pnjZZZ5Xs/RU+Z5Vo6lqaysLGbOnBnjxo2LoqKiWLt2bdTV1cXcuXMzXVqvdvvtt8cjjzwSGzdujDPOOKPlW978/Pw47bTTMlxd73bGGWe02f/j9NNPj379+tkXpBssXLgwiouL46677oobbrghfvGLX8TatWtj7dq1mS6t17v22mvjr//6r+Pcc8+NCy64IHbt2hUrV66Mr33ta5kurVd6991345//+Z9bnr/55ptRW1sbZ555Zpx77rlRWload911VwwfPjyGDx8ed911V3ziE5+Im266KYNVc7Izr8scc7vMMr/LPHO8zDLP614nxTyv287F7EUeeOCB1JAhQ1J9+/ZNXXLJJY6c7gYR0e7j4YcfznRpieSo7+714x//ODV69OhUTk5OasSIEam1a9dmuqREaGpqSi1YsCB17rnnpnJzc1Of/vSnU4sXL041NzdnurRe6bnnnmv3v/O33HJLKpV6/5jvb33rW6kBAwakcnJyUldccUXqV7/6VWaLplcwr8sMc7uex/yu+5njZY55Xvc6GeZ5WalUKtV9URwAAAAA9Bz2HAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAM6PGuuuqquOOOO6K0tDQ+9alPRUFBQaxduzbee++9+OpXvxpnnHFGnHfeefHMM89ERMThw4dj9uzZMWzYsDjttNPis5/9bNxzzz2txnz++efjsssui9NPPz0++clPxoQJE+Ltt9+OiIjdu3fH1VdfHWeccUbk5eVFYWFhvPzyy91+3QAAtO+qq66K+fPnx/z58+OTn/xk9OvXL5YsWRKpVCrTpQEnIeEYcFL44Q9/GP37949f/OIXcccdd8R//a//Nf70T/80iouL4x//8R9j8uTJMXPmzPj3f//3OHLkSAwaNCgee+yxePXVV+N//I//Ed/85jfjsccei4iIQ4cOxZe+9KW48sor45e//GXU1NTErbfeGllZWRER8Wd/9mcxaNCgeOmll2Lnzp2xaNGiOPXUUzN5+QAAfMQPf/jDyM7OjhdffDHuvffeWLVqVXzve9/LdFnASSgrJVoHerirrroqDh8+HNu2bYuI91eG5efnx/XXXx/r16+PiIiGhoYYOHBg1NTUxPjx49uMcfvtt8dvf/vb+NGPfhT/9m//Fv369Yvnn38+rrzyyjZ98/Ly4r777otbbrmlay8MAIAOueqqq2Lfvn3xyiuvtHzBuWjRonjqqafi1VdfzXB1wMnGyjHgpHDhhRe2/LlPnz7Rr1+/GDNmTEtbQUFBRETs27cvIiIefPDBGDduXJx11lnxn/7Tf4q//du/jbq6uoiIOPPMM+MrX/lKTJ48Oa699tq45557or6+vmWssrKymDNnTnz+85+PFStWxL/8y790xyUCAJCG8ePHtwRjERFFRUXxxhtvxOHDhzNYFXAyEo4BJ4WP3taYlZXVqu2DidGRI0fisccei4ULF8bXvva12LJlS9TW1sZXv/rVOHjwYEv/hx9+OGpqaqK4uDiqqqri/PPPj5///OcREbF06dJ45ZVXYurUqfHTn/40Ro0aFU8++WQ3XCUAAADdTTgG9Drbtm2L4uLimDdvXowdOzY+85nPtLv6a+zYsVFeXh47duyI0aNHxyOPPNLy2vnnnx8LFy6MLVu2xPXXXx8PP/xwd14CAAAf44MvNj/8fPjw4dGnT58MVQScrIRjQK/zmc98Jl5++eXYvHlzvP7663HnnXfGSy+91PL6m2++GeXl5VFTUxNvv/12bNmyJV5//fUYOXJk/OEPf4j58+fH888/H2+//Xb87Gc/i5deeilGjhyZwSsCAOCj9uzZE2VlZfHrX/86NmzYEPfdd18sWLAg02UBJ6HsTBcA0Nnmzp0btbW1MWPGjMjKyoobb7wx5s2bF88880xERHziE5+If/qnf4of/vCHceDAgRg4cGDMnz8/brvttjh06FAcOHAgZs2aFb/97W+jf//+cf3118eyZcsyfFUAAHzYrFmz4g9/+ENcdtll0adPn7jjjjvi1ltvzXRZwEnIaZUAAACcVK666qq4+OKLo7KyMtOlAL2A2yoBAAAASCzhGAAAAACJ5bZKAAAAABLLyjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABLr/wIOe1ZhByrNYQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1069,10 +1069,10 @@ "start_time": "2023-11-09T18:41:44.614171146Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:23.438950Z", - "iopub.status.busy": "2023-11-09T20:46:23.438569Z", - "iopub.status.idle": "2023-11-09T20:46:23.933289Z", - "shell.execute_reply": "2023-11-09T20:46:23.932697Z" + "iopub.execute_input": "2023-11-09T22:34:16.649084Z", + "iopub.status.busy": "2023-11-09T22:34:16.648891Z", + "iopub.status.idle": "2023-11-09T22:34:17.077346Z", + "shell.execute_reply": "2023-11-09T22:34:17.076833Z" } }, "outputs": [ @@ -1088,7 +1088,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAINCAYAAAAgDPgxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA76UlEQVR4nO3df5RW9X0n8PcUZER2eOJAZoY5ItIWLQ3UGEz4kWzEiCgrcgxutKGdaOuqWQVD0LWg7Zb0pGDcE7UrG6uuR4hINGc3GHtIJmKNGAoo0kyjxiVmiwa3jBg7zohhB8Vn/8j12Qz4A9DxGeD1OueeM8+9n7l87vN4nO95P9/7vTXlcrkcAAAAACC/Ve0GAAAAAKCvEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAU+le7gd7yxhtv5F/+5V9SV1eXmpqaarcDABwkyuVyXnnllTQ3N+e3fsv3in2RcR4AcCD2dZx3yIZl//Iv/5Lhw4dXuw0A4CC1devWHHPMMdVug7dgnAcAvBfvNs47ZMOyurq6JL9+AwYPHlzlbgCAg0VXV1eGDx9eGUvQ9xjnAQAHYl/HeYdsWPbmlPzBgwcbRAEA+83tfX2XcR4A8F682zjPQhwAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQGG/wrLFixfn4x//eOrq6tLQ0JBzzjknmzdv7lFz4YUXpqampsc2YcKEHjXd3d2ZM2dOhg4dmkGDBmXGjBl5/vnne9R0dHSkpaUlpVIppVIpLS0tefnllw/sKgEAAABgH+xXWLZmzZpcfvnl2bBhQ1avXp3XX389U6dOzauvvtqj7swzz8y2bdsq2/e+970ex+fOnZuVK1fmnnvuydq1a7Njx45Mnz49u3fvrtTMmjUrbW1taW1tTWtra9ra2tLS0vIeLhUAAAAA3ln//SlubW3t8frOO+9MQ0NDNm3alE9/+tOV/bW1tWlqanrLc3R2duaOO+7IXXfdlSlTpiRJli9fnuHDh+fBBx/MGWeckaeffjqtra3ZsGFDxo8fnyS5/fbbM3HixGzevDknnHDCfl0kAAAAAOyL97RmWWdnZ5Kkvr6+x/6HH344DQ0NOf7443PxxRdn+/btlWObNm3Ka6+9lqlTp1b2NTc3Z8yYMVm3bl2SZP369SmVSpWgLEkmTJiQUqlUqdlTd3d3urq6emwAAAAAsD8OOCwrl8uZN29ePvWpT2XMmDGV/dOmTcvdd9+dhx56KF//+tezcePGfOYzn0l3d3eSpL29PQMGDMjRRx/d43yNjY1pb2+v1DQ0NOz1bzY0NFRq9rR48eLK+malUinDhw8/0EsDAAAA4DC1X7dh/qbZs2fnJz/5SdauXdtj//nnn1/5ecyYMTn55JMzYsSIrFq1KjNnznzb85XL5dTU1FRe/+bPb1fzmxYsWJB58+ZVXnd1dQnMAAAAANgvBzSzbM6cObn//vvzwx/+MMccc8w71g4bNiwjRozIM888kyRpamrKrl270tHR0aNu+/btaWxsrNS88MILe53rxRdfrNTsqba2NoMHD+6xAQAAAMD+2K+wrFwuZ/bs2fnOd76Thx56KCNHjnzX33nppZeydevWDBs2LEkybty4HHHEEVm9enWlZtu2bXnyySczadKkJMnEiRPT2dmZxx57rFLz6KOPprOzs1IDAAAAAO+3/boN8/LLL8+KFSvy3e9+N3V1dZX1w0qlUgYOHJgdO3Zk4cKFOffcczNs2LA8++yzueaaazJ06NB89rOfrdRedNFFufLKKzNkyJDU19fnqquuytixYytPxxw9enTOPPPMXHzxxbn11luTJJdcckmmT5/uSZgAAAAA9Jr9CstuueWWJMnkyZN77L/zzjtz4YUXpl+/fnniiSfyzW9+My+//HKGDRuWU089Nffee2/q6uoq9TfeeGP69++f8847Lzt37sxpp52WpUuXpl+/fpWau+++O1dccUXlqZkzZszIkiVLDvQ6AQAAAOBd1ZTL5XK1m+gNXV1dKZVK6ezstH4ZALDPjCH6Pp8RAHAg9nUMcUAL/AMAAADAoUhYBgAAAACF/VqzDDh4HDd/Va+e/9nrzurV8wMAcGjq7XFqYqwKvDdmlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFPpXuwEAAAD6juPmr6p2CwBVJSwDDkhvD6Keve6sXj0/AAAAvBVhGQAAAIeUg312nC+OobqsWQYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAoX+1GwAAAAD+v+Pmr+rV8z973Vm9en442JlZBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAQBYvXpyPf/zjqaurS0NDQ84555xs3ry5R025XM7ChQvT3NycgQMHZvLkyXnqqad61HR3d2fOnDkZOnRoBg0alBkzZuT555/vUdPR0ZGWlpaUSqWUSqW0tLTk5Zdf7u1LBADYJ8IyAACyZs2aXH755dmwYUNWr16d119/PVOnTs2rr75aqbn++utzww03ZMmSJdm4cWOamppy+umn55VXXqnUzJ07NytXrsw999yTtWvXZseOHZk+fXp2795dqZk1a1ba2trS2tqa1tbWtLW1paWl5QO9XgCAt9O/2g0AAFB9ra2tPV7feeedaWhoyKZNm/LpT3865XI5N910U6699trMnDkzSbJs2bI0NjZmxYoVufTSS9PZ2Zk77rgjd911V6ZMmZIkWb58eYYPH54HH3wwZ5xxRp5++um0trZmw4YNGT9+fJLk9ttvz8SJE7N58+accMIJH+yFAwDswcwyAAD20tnZmSSpr69PkmzZsiXt7e2ZOnVqpaa2tjannHJK1q1blyTZtGlTXnvttR41zc3NGTNmTKVm/fr1KZVKlaAsSSZMmJBSqVSp2VN3d3e6urp6bAAAvUVYBgBAD+VyOfPmzcunPvWpjBkzJknS3t6eJGlsbOxR29jYWDnW3t6eAQMG5Oijj37HmoaGhr3+zYaGhkrNnhYvXlxZ36xUKmX48OHv7QIBAN6BsAwAgB5mz56dn/zkJ/nWt76117Gampoer8vl8l779rRnzVvVv9N5FixYkM7Ozsq2devWfbkMAIADIiwDAKBizpw5uf/++/PDH/4wxxxzTGV/U1NTkuw1+2v79u2V2WZNTU3ZtWtXOjo63rHmhRde2OvfffHFF/eatfam2traDB48uMcGANBbhGUAAKRcLmf27Nn5zne+k4ceeigjR47scXzkyJFpamrK6tWrK/t27dqVNWvWZNKkSUmScePG5YgjjuhRs23btjz55JOVmokTJ6azszOPPfZYpebRRx9NZ2dnpQYAoJo8DRMAgFx++eVZsWJFvvvd76aurq4yg6xUKmXgwIGpqanJ3Llzs2jRoowaNSqjRo3KokWLctRRR2XWrFmV2osuuihXXnllhgwZkvr6+lx11VUZO3Zs5emYo0ePzplnnpmLL744t956a5LkkksuyfTp0z0JEwDoE4RlAADklltuSZJMnjy5x/4777wzF154YZLk6quvzs6dO3PZZZelo6Mj48ePzwMPPJC6urpK/Y033pj+/fvnvPPOy86dO3Paaadl6dKl6devX6Xm7rvvzhVXXFF5auaMGTOyZMmS3r1AAIB9VFMul8vVbqI3dHV1pVQqpbOz07oWHJaOm7+q2i28J89ed1a1WwAOU8YQfZ/PCHrXwT6O5N0Za3O42tcxhDXLAAAAAKAgLAMAAACAgjXLAAAADiJukwToXWaWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFPYrLFu8eHE+/vGPp66uLg0NDTnnnHOyefPmHjXlcjkLFy5Mc3NzBg4cmMmTJ+epp57qUdPd3Z05c+Zk6NChGTRoUGbMmJHnn3++R01HR0daWlpSKpVSKpXS0tKSl19++cCuEgAAAAD2wX6FZWvWrMnll1+eDRs2ZPXq1Xn99dczderUvPrqq5Wa66+/PjfccEOWLFmSjRs3pqmpKaeffnpeeeWVSs3cuXOzcuXK3HPPPVm7dm127NiR6dOnZ/fu3ZWaWbNmpa2tLa2trWltbU1bW1taWlreh0sGAAAAgLfWf3+KW1tbe7y+884709DQkE2bNuXTn/50yuVybrrpplx77bWZOXNmkmTZsmVpbGzMihUrcumll6azszN33HFH7rrrrkyZMiVJsnz58gwfPjwPPvhgzjjjjDz99NNpbW3Nhg0bMn78+CTJ7bffnokTJ2bz5s054YQT3o9rBwAAAIAe3tOaZZ2dnUmS+vr6JMmWLVvS3t6eqVOnVmpqa2tzyimnZN26dUmSTZs25bXXXutR09zcnDFjxlRq1q9fn1KpVAnKkmTChAkplUqVmj11d3enq6urxwYAAAAA++OAw7JyuZx58+blU5/6VMaMGZMkaW9vT5I0Njb2qG1sbKwca29vz4ABA3L00Ue/Y01DQ8Ne/2ZDQ0OlZk+LFy+urG9WKpUyfPjwA700AAAAAA5TBxyWzZ49Oz/5yU/yrW99a69jNTU1PV6Xy+W99u1pz5q3qn+n8yxYsCCdnZ2VbevWrftyGQAAAABQcUBh2Zw5c3L//ffnhz/8YY455pjK/qampiTZa/bX9u3bK7PNmpqasmvXrnR0dLxjzQsvvLDXv/viiy/uNWvtTbW1tRk8eHCPDQAAAAD2x34t8F8ulzNnzpysXLkyDz/8cEaOHNnj+MiRI9PU1JTVq1fnpJNOSpLs2rUra9asyde+9rUkybhx43LEEUdk9erVOe+885Ik27Zty5NPPpnrr78+STJx4sR0dnbmscceyyc+8YkkyaOPPprOzs5MmjTpvV0x9BHHzV9V7RYAAACAPexXWHb55ZdnxYoV+e53v5u6urrKDLJSqZSBAwempqYmc+fOzaJFizJq1KiMGjUqixYtylFHHZVZs2ZVai+66KJceeWVGTJkSOrr63PVVVdl7Nixladjjh49OmeeeWYuvvji3HrrrUmSSy65JNOnT/ckTAAAAAB6zX6FZbfcckuSZPLkyT3233nnnbnwwguTJFdffXV27tyZyy67LB0dHRk/fnweeOCB1NXVVepvvPHG9O/fP+edd1527tyZ0047LUuXLk2/fv0qNXfffXeuuOKKylMzZ8yYkSVLlhzINQIAAADAPqkpl8vlajfRG7q6ulIqldLZ2Wn9Mvokt2G+s2evO6vaLQCHKWOIvs9nxOHOOJL3ylibw9W+jiEO+GmYAAAAAHCoEZYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEChf7UbAHgrx81f1avnf/a6s3r1/AAAAByczCwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAK/avdAAAAAPDBOW7+ql49/7PXndWr54feZmYZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAJEkeeeSRnH322Wlubk5NTU3uu+++HscvvPDC1NTU9NgmTJjQo6a7uztz5szJ0KFDM2jQoMyYMSPPP/98j5qOjo60tLSkVCqlVCqlpaUlL7/8ci9fHQDAvhGWAQCQJHn11Vdz4oknZsmSJW9bc+aZZ2bbtm2V7Xvf+16P43Pnzs3KlStzzz33ZO3atdmxY0emT5+e3bt3V2pmzZqVtra2tLa2prW1NW1tbWlpaem16wIA2B/9q90AAAB9w7Rp0zJt2rR3rKmtrU1TU9NbHuvs7Mwdd9yRu+66K1OmTEmSLF++PMOHD8+DDz6YM844I08//XRaW1uzYcOGjB8/Pkly++23Z+LEidm8eXNOOOGE9/eiAAD2k5llAADss4cffjgNDQ05/vjjc/HFF2f79u2VY5s2bcprr72WqVOnVvY1NzdnzJgxWbduXZJk/fr1KZVKlaAsSSZMmJBSqVSp2VN3d3e6urp6bAAAvUVYBgDAPpk2bVruvvvuPPTQQ/n617+ejRs35jOf+Uy6u7uTJO3t7RkwYECOPvroHr/X2NiY9vb2Sk1DQ8Ne525oaKjU7Gnx4sWV9c1KpVKGDx/+Pl8ZAMD/5zZMAAD2yfnnn1/5ecyYMTn55JMzYsSIrFq1KjNnznzb3yuXy6mpqam8/s2f367mNy1YsCDz5s2rvO7q6hKYAQC9xswyAAAOyLBhwzJixIg888wzSZKmpqbs2rUrHR0dPeq2b9+exsbGSs0LL7yw17lefPHFSs2eamtrM3jw4B4bAEBvEZYBAHBAXnrppWzdujXDhg1LkowbNy5HHHFEVq9eXanZtm1bnnzyyUyaNClJMnHixHR2duaxxx6r1Dz66KPp7Oys1AAAVJPbMAEASJLs2LEjP//5zyuvt2zZkra2ttTX16e+vj4LFy7Mueeem2HDhuXZZ5/NNddck6FDh+azn/1skqRUKuWiiy7KlVdemSFDhqS+vj5XXXVVxo4dW3k65ujRo3PmmWfm4osvzq233pokueSSSzJ9+nRPwuSQcdz8VdVuAYD3QFgGAECS5PHHH8+pp55aef3mOmEXXHBBbrnlljzxxBP55je/mZdffjnDhg3LqaeemnvvvTd1dXWV37nxxhvTv3//nHfeedm5c2dOO+20LF26NP369avU3H333bniiisqT82cMWNGlixZ8gFdJQDAO6spl8vlajfRG7q6ulIqldLZ2WldCw6IbwQPbc9ed1a1WwD6KGOIvs9nRF9nHMnhzlibvmpfxxDWLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoLDfYdkjjzySs88+O83Nzampqcl9993X4/iFF16YmpqaHtuECRN61HR3d2fOnDkZOnRoBg0alBkzZuT555/vUdPR0ZGWlpaUSqWUSqW0tLTk5Zdf3u8LBAAAAIB9td9h2auvvpoTTzzxHR/vfeaZZ2bbtm2V7Xvf+16P43Pnzs3KlStzzz33ZO3atdmxY0emT5+e3bt3V2pmzZqVtra2tLa2prW1NW1tbWlpadnfdgEAAABgn/Xf31+YNm1apk2b9o41tbW1aWpqestjnZ2dueOOO3LXXXdlypQpSZLly5dn+PDhefDBB3PGGWfk6aefTmtrazZs2JDx48cnSW6//fZMnDgxmzdvzgknnLC/bQMAAADAu+qVNcsefvjhNDQ05Pjjj8/FF1+c7du3V45t2rQpr732WqZOnVrZ19zcnDFjxmTdunVJkvXr16dUKlWCsiSZMGFCSqVSpQYAAAAA3m/7PbPs3UybNi2f+9znMmLEiGzZsiV/8Rd/kc985jPZtGlTamtr097engEDBuToo4/u8XuNjY1pb29PkrS3t6ehoWGvczc0NFRq9tTd3Z3u7u7K666urvfxqgAAAAA4HLzvYdn5559f+XnMmDE5+eSTM2LEiKxatSozZ858298rl8upqampvP7Nn9+u5jctXrw4X/nKV95D5wAAAAAc7nrlNszfNGzYsIwYMSLPPPNMkqSpqSm7du1KR0dHj7rt27ensbGxUvPCCy/sda4XX3yxUrOnBQsWpLOzs7Jt3br1fb4SAAAAAA51vR6WvfTSS9m6dWuGDRuWJBk3blyOOOKIrF69ulKzbdu2PPnkk5k0aVKSZOLEiens7Mxjjz1WqXn00UfT2dlZqdlTbW1tBg8e3GMDAAAAgP2x37dh7tixIz//+c8rr7ds2ZK2trbU19envr4+CxcuzLnnnpthw4bl2WefzTXXXJOhQ4fms5/9bJKkVCrloosuypVXXpkhQ4akvr4+V111VcaOHVt5Oubo0aNz5pln5uKLL86tt96aJLnkkksyffp0T8IEAAAAoNfsd1j2+OOP59RTT628njdvXpLkggsuyC233JInnngi3/zmN/Pyyy9n2LBhOfXUU3Pvvfemrq6u8js33nhj+vfvn/POOy87d+7MaaedlqVLl6Zfv36VmrvvvjtXXHFF5amZM2bMyJIlSw74QgEAAADg3ex3WDZ58uSUy+W3Pf6DH/zgXc9x5JFH5uabb87NN9/8tjX19fVZvnz5/rYHAAAAAAes19csAwAAAICDhbAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAQv9qNwBQDcfNX9Wr53/2urN69fwAAAD0DjPLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACg0L/aDcCBOm7+qmq3AAAAABxizCwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgqdhvge9/TTGZ687q1fPDwAAAEBPZpYBAAAAQMHMMgAAAOB94y4sDnZmlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAECS5JFHHsnZZ5+d5ubm1NTU5L777utxvFwuZ+HChWlubs7AgQMzefLkPPXUUz1quru7M2fOnAwdOjSDBg3KjBkz8vzzz/eo6ejoSEtLS0qlUkqlUlpaWvLyyy/38tUBAOwbYRkAAEmSV199NSeeeGKWLFnylsevv/763HDDDVmyZEk2btyYpqamnH766XnllVcqNXPnzs3KlStzzz33ZO3atdmxY0emT5+e3bt3V2pmzZqVtra2tLa2prW1NW1tbWlpaen16wMA2Bf9q90AAAB9w7Rp0zJt2rS3PFYul3PTTTfl2muvzcyZM5Mky5YtS2NjY1asWJFLL700nZ2dueOOO3LXXXdlypQpSZLly5dn+PDhefDBB3PGGWfk6aefTmtrazZs2JDx48cnSW6//fZMnDgxmzdvzgknnPDBXCwAwNswswwAgHe1ZcuWtLe3Z+rUqZV9tbW1OeWUU7Ju3bokyaZNm/Laa6/1qGlubs6YMWMqNevXr0+pVKoEZUkyYcKElEqlSs2euru709XV1WMDAOgtwjIAAN5Ve3t7kqSxsbHH/sbGxsqx9vb2DBgwIEcfffQ71jQ0NOx1/oaGhkrNnhYvXlxZ36xUKmX48OHv+XoAAN6OsAwAgH1WU1PT43W5XN5r3572rHmr+nc6z4IFC9LZ2VnZtm7degCdAwDsG2EZAADvqqmpKUn2mv21ffv2ymyzpqam7Nq1Kx0dHe9Y88ILL+x1/hdffHGvWWtvqq2tzeDBg3tsAAC9RVgGAMC7GjlyZJqamrJ69erKvl27dmXNmjWZNGlSkmTcuHE54ogjetRs27YtTz75ZKVm4sSJ6ezszGOPPVapefTRR9PZ2VmpAQCoJk/DBAAgSbJjx478/Oc/r7zesmVL2traUl9fn2OPPTZz587NokWLMmrUqIwaNSqLFi3KUUcdlVmzZiVJSqVSLrroolx55ZUZMmRI6uvrc9VVV2Xs2LGVp2OOHj06Z555Zi6++OLceuutSZJLLrkk06dP9yRMAKBPEJb1YcfNX9Wr53/2urN69fwAwMHl8ccfz6mnnlp5PW/evCTJBRdckKVLl+bqq6/Ozp07c9lll6WjoyPjx4/PAw88kLq6usrv3Hjjjenfv3/OO++87Ny5M6eddlqWLl2afv36VWruvvvuXHHFFZWnZs6YMSNLliz5gK4SAOCd7fdtmI888kjOPvvsNDc3p6amJvfdd1+P4+VyOQsXLkxzc3MGDhyYyZMn56mnnupR093dnTlz5mTo0KEZNGhQZsyYkeeff75HTUdHR1paWipPPWppacnLL7+83xcIAMC+mTx5csrl8l7b0qVLk/x6Yf6FCxdm27Zt+b//9/9mzZo1GTNmTI9zHHnkkbn55pvz0ksv5Ve/+lX+7u/+bq+nV9bX12f58uXp6upKV1dXli9fng996EMf0FUCALyz/Q7LXn311Zx44olv++3f9ddfnxtuuCFLlizJxo0b09TUlNNPPz2vvPJKpWbu3LlZuXJl7rnnnqxduzY7duzI9OnTs3v37krNrFmz0tbWltbW1rS2tqatrS0tLS0HcIkAAAAAsG/2+zbMadOmZdq0aW95rFwu56abbsq1116bmTNnJkmWLVuWxsbGrFixIpdeemk6Oztzxx135K677qqsXbF8+fIMHz48Dz74YM4444w8/fTTaW1tzYYNGzJ+/Pgkye23356JEydm8+bN1rMAAAAOWG8vdwLAwe19fRrmli1b0t7eXll/Ivn1o75POeWUrFu3LkmyadOmvPbaaz1qmpubM2bMmErN+vXrUyqVKkFZkkyYMCGlUqlSs6fu7u7KVP43NwAAAADYH+9rWNbe3p4kaWxs7LG/sbGxcqy9vT0DBgzI0Ucf/Y41DQ0Ne52/oaGhUrOnxYsXV9Y3K5VKe62NAQAAAADv5n0Ny95UU1PT43W5XN5r3572rHmr+nc6z4IFC9LZ2VnZtm7degCdAwAAAHA4e1/DsqampiTZa/bX9u3bK7PNmpqasmvXrnR0dLxjzQsvvLDX+V988cW9Zq29qba2NoMHD+6xAQAAAMD+eF/DspEjR6apqSmrV6+u7Nu1a1fWrFmTSZMmJUnGjRuXI444okfNtm3b8uSTT1ZqJk6cmM7Ozjz22GOVmkcffTSdnZ2VGgAAAAB4v+330zB37NiRn//855XXW7ZsSVtbW+rr63Psscdm7ty5WbRoUUaNGpVRo0Zl0aJFOeqoozJr1qwkSalUykUXXZQrr7wyQ4YMSX19fa666qqMHTu28nTM0aNH58wzz8zFF1+cW2+9NUlyySWXZPr06Z6ECQAAAECv2e+w7PHHH8+pp55aeT1v3rwkyQUXXJClS5fm6quvzs6dO3PZZZelo6Mj48ePzwMPPJC6urrK79x4443p379/zjvvvOzcuTOnnXZali5dmn79+lVq7r777lxxxRWVp2bOmDEjS5YsOeAL5YPnkdwAAADAwWa/w7LJkyenXC6/7fGamposXLgwCxcufNuaI488MjfffHNuvvnmt62pr6/P8uXL97c9AAAAADhgvfI0TAAAAAA4GO33zDIOHW6TBAAAAOjJzDIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAIBC/2o3AHAoOm7+ql49/7PXndWr5wcAADhcmVkGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAoX+1GwAAAADYV8fNX9Wr53/2urN69fz0fWaWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAAhf7VbgAAAOA3HTd/VbVbAOAwZmYZAAD7ZOHChampqemxNTU1VY6Xy+UsXLgwzc3NGThwYCZPnpynnnqqxzm6u7szZ86cDB06NIMGDcqMGTPy/PPPf9CXAgDwtoRlAADss4985CPZtm1bZXviiScqx66//vrccMMNWbJkSTZu3JimpqacfvrpeeWVVyo1c+fOzcqVK3PPPfdk7dq12bFjR6ZPn57du3dX43IAAPbiNkwAAPZZ//79e8wme1O5XM5NN92Ua6+9NjNnzkySLFu2LI2NjVmxYkUuvfTSdHZ25o477shdd92VKVOmJEmWL1+e4cOH58EHH8wZZ5zxgV4LAMBbMbMMAIB99swzz6S5uTkjR47MH/7hH+af//mfkyRbtmxJe3t7pk6dWqmtra3NKaecknXr1iVJNm3alNdee61HTXNzc8aMGVOpeSvd3d3p6urqsQEA9BZhGQAA+2T8+PH55je/mR/84Ae5/fbb097enkmTJuWll15Ke3t7kqSxsbHH7zQ2NlaOtbe3Z8CAATn66KPftuatLF68OKVSqbINHz78fb4yAID/730Pyyz8CgBwaJo2bVrOPffcjB07NlOmTMmqVb9+YuGyZcsqNTU1NT1+p1wu77VvT+9Ws2DBgnR2dla2rVu3voerAAB4Z70ys8zCrwAAh75BgwZl7NixeeaZZypfju45Q2z79u2V2WZNTU3ZtWtXOjo63rbmrdTW1mbw4ME9NgCA3tIrYdmbC7++uX34wx9OsvfCr2PGjMmyZcvyq1/9KitWrEiSysKvX//61zNlypScdNJJWb58eZ544ok8+OCDvdEuAAAHoLu7O08//XSGDRuWkSNHpqmpKatXr64c37VrV9asWZNJkyYlScaNG5cjjjiiR822bdvy5JNPVmoAAKqtV8IyC78CABx6rrrqqqxZsyZbtmzJo48+mn//7/99urq6csEFF6SmpiZz587NokWLsnLlyjz55JO58MILc9RRR2XWrFlJklKplIsuuihXXnll/v7v/z4//vGP88d//MeV2zoBAPqC/u/3Cd9c+PX444/PCy+8kK9+9auZNGlSnnrqqXdc+PW5555L8t4Wfv3KV77yPl8NAABvev755/P5z38+v/zlL/PhD384EyZMyIYNGzJixIgkydVXX52dO3fmsssuS0dHR8aPH58HHnggdXV1lXPceOON6d+/f84777zs3Lkzp512WpYuXZp+/fpV67IAAHp438OyadOmVX4eO3ZsJk6cmN/5nd/JsmXLMmHChCS9t/DrvHnzKq+7uro8KQkA4H10zz33vOPxmpqaLFy4MAsXLnzbmiOPPDI333xzbr755ve5OwCA90ev3Ib5myz8CgAAAMDBotfDMgu/AgAAAHCweN9vw7zqqqty9tln59hjj8327dvz1a9+9S0Xfh01alRGjRqVRYsWve3Cr0OGDEl9fX2uuuoqC78CAAAA0Ove97DMwq8AAAAAHKxqyuVyudpN9Iaurq6USqV0dnb22vplx81f1SvnBXg3z153VrVbgEPWBzGG4L3xGR36jLOBajLWPnTt6xii19csAwAAAICDhbAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgEL/ajcAwP47bv6qXj3/s9ed1avnBwAA6KvMLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAo9K92AwAAAAB9xXHzV/Xq+Z+97qxePT/vnbAMgL309gAhMUgAAAD6JrdhAgAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAU+le7AQAA4OBy3PxV1W4BAHqNmWUAAAAAUBCWAQAAAEDBbZgAVEVv38Lz7HVn9er5AQCAQ5OZZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUOhf7QYAoDccN39Vr57/2evO6tXzAwAA1WFmGQAAAAAUhGUAAAAAUHAbJgAcALd5AgDAocnMMgAAAAAoCMsAAAAAoCAsAwAAAICCNcsAoA+yJhoAAFSHsAwADkPCOAAAeGtuwwQAAACAgpllAMD7zsw1AAAOVmaWAQAAAEBBWAYAAAAABbdhAgAAAHxALFfR95lZBgAAAAAFYRkAAAAAFNyGCQAAh5jevsUHAA5lZpYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAU+le7AQAAAADeH8fNX9Wr53/2urN69fx9gZllAAAAAFAwswwAAD5gvf2tPwBw4MwsAwAAAIBCnw/LvvGNb2TkyJE58sgjM27cuPzoRz+qdksAALwPjPMAgL6oT9+Gee+992bu3Ln5xje+kU9+8pO59dZbM23atPz0pz/NscceW+32AAA4QMZ5AHBwOhweIFBTLpfL1W7i7YwfPz4f+9jHcsstt1T2jR49Ouecc04WL178jr/b1dWVUqmUzs7ODB48uFf6s9YEAFRHbw6iPogxBMZ5AMBb6wvjvD47s2zXrl3ZtGlT5s+f32P/1KlTs27dur3qu7u7093dXXnd2dmZ5NdvRG95o/tXvXZuAODt9ebf9zfP3Ye/TzzoGecBAG+nL4zz+mxY9stf/jK7d+9OY2Njj/2NjY1pb2/fq37x4sX5yle+stf+4cOH91qPAEB1lG7q/X/jlVdeSalU6v1/6DBknAcAvJ2+MM7rs2HZm2pqanq8LpfLe+1LkgULFmTevHmV12+88Ub+9V//NUOGDHnL+veqq6srw4cPz9atW92iUQXe/+ry/leX97/6fAbV1dvvf7lcziuvvJLm5ub3/dz01FfHeX2V//f0XT6bvstn0zf5XPquQ/2z2ddxXp8Ny4YOHZp+/frt9e3i9u3b9/oWMklqa2tTW1vbY9+HPvSh3mwxSTJ48OBD8j+gg4X3v7q8/9Xl/a8+n0F19eb7b0ZZ7zpYxnl9lf/39F0+m77LZ9M3+Vz6rkP5s9mXcd5vfQB9HJABAwZk3LhxWb16dY/9q1evzqRJk6rUFQAA75VxHgDQl/XZmWVJMm/evLS0tOTkk0/OxIkTc9ttt+UXv/hFvvjFL1a7NQAA3gPjPACgr+rTYdn555+fl156KX/1V3+Vbdu2ZcyYMfne976XESNGVLu11NbW5i//8i/3uiWAD4b3v7q8/9Xl/a8+n0F1ef8PDX15nNdX+W+/7/LZ9F0+m77J59J3+Wx+rabsuegAAAAAkKQPr1kGAAAAAB80YRkAAAAAFIRlAAAAAFAQlgEAAABAQVh2gL7xjW9k5MiROfLIIzNu3Lj86Ec/qnZLh4XFixfn4x//eOrq6tLQ0JBzzjknmzdvrnZbh63FixenpqYmc+fOrXYrh43/83/+T/74j/84Q4YMyVFHHZWPfvSj2bRpU7XbOiy8/vrr+fM///OMHDkyAwcOzG//9m/nr/7qr/LGG29Uu7VD0iOPPJKzzz47zc3NqampyX333dfjeLlczsKFC9Pc3JyBAwdm8uTJeeqpp6rTLHxAjD/7HmPTg4Mxa99iPNs3Gev2JCw7APfee2/mzp2ba6+9Nj/+8Y/zb//tv820adPyi1/8otqtHfLWrFmTyy+/PBs2bMjq1avz+uuvZ+rUqXn11Ver3dphZ+PGjbntttvyB3/wB9Vu5bDR0dGRT37ykzniiCPy/e9/Pz/96U/z9a9/PR/60Ieq3dph4Wtf+1r+9m//NkuWLMnTTz+d66+/Pv/lv/yX3HzzzdVu7ZD06quv5sQTT8ySJUve8vj111+fG264IUuWLMnGjRvT1NSU008/Pa+88soH3Cl8MIw/+yZj077PmLVvMZ7tu4x1e6opl8vlajdxsBk/fnw+9rGP5ZZbbqnsGz16dM4555wsXry4ip0dfl588cU0NDRkzZo1+fSnP13tdg4bO3bsyMc+9rF84xvfyFe/+tV89KMfzU033VTttg558+fPzz/8wz+YSVAl06dPT2NjY+64447KvnPPPTdHHXVU7rrrrip2duirqanJypUrc8455yT59ayy5ubmzJ07N3/2Z3+WJOnu7k5jY2O+9rWv5dJLL61it9A7jD8PDsamfYsxa99jPNt3Gev2ZGbZftq1a1c2bdqUqVOn9tg/derUrFu3rkpdHb46OzuTJPX19VXu5PBy+eWX56yzzsqUKVOq3cph5f7778/JJ5+cz33uc2loaMhJJ52U22+/vdptHTY+9alP5e///u/zs5/9LEnyT//0T1m7dm3+3b/7d1Xu7PCzZcuWtLe39/hbXFtbm1NOOcXfYg5Jxp8HD2PTvsWYte8xnu27jHV76l/tBg42v/zlL7N79+40Njb22N/Y2Jj29vYqdXV4KpfLmTdvXj71qU9lzJgx1W7nsHHPPffkH//xH7Nx48Zqt3LY+ed//ufccsstmTdvXq655po89thjueKKK1JbW5svfOEL1W7vkPdnf/Zn6ezszO/93u+lX79+2b17d/76r/86n//856vd2mHnzb+3b/W3+LnnnqtGS9CrjD8PDsamfYsxa99kPNt3Gev2JCw7QDU1NT1el8vlvfbRu2bPnp2f/OQnWbt2bbVbOWxs3bo1X/rSl/LAAw/kyCOPrHY7h5033ngjJ598chYtWpQkOemkk/LUU0/llltuMbj4ANx7771Zvnx5VqxYkY985CNpa2vL3Llz09zcnAsuuKDa7R2W/C3mcOO/+b7N2LTvMGbtu4xn+y5j3Z6EZftp6NCh6dev317f4m3fvn2vb/voPXPmzMn999+fRx55JMccc0y12zlsbNq0Kdu3b8+4ceMq+3bv3p1HHnkkS5YsSXd3d/r161fFDg9tw4YNy+///u/32Dd69Oj8z//5P6vU0eHlP/2n/5T58+fnD//wD5MkY8eOzXPPPZfFixcflgOIampqakry6xlmw4YNq+z3t5hDlfFn32ds2rcYs/ZdxrN9l7FuT9Ys208DBgzIuHHjsnr16h77V69enUmTJlWpq8NHuVzO7Nmz853vfCcPPfRQRo4cWe2WDiunnXZannjiibS1tVW2k08+OX/0R3+UtrY2g45e9slPfnKvx9H/7Gc/y4gRI6rU0eHlV7/6VX7rt3r+2ezXr99h+zjtaho5cmSampp6/C3etWtX1qxZ428xhyTjz77L2LRvMmbtu4xn+y5j3Z7MLDsA8+bNS0tLS04++eRMnDgxt912W37xi1/ki1/8YrVbO+RdfvnlWbFiRb773e+mrq6u8g1rqVTKwIEDq9zdoa+urm6vNTgGDRqUIUOGWJvjA/DlL385kyZNyqJFi3Leeeflsccey2233Zbbbrut2q0dFs4+++z89V//dY499th85CMfyY9//OPccMMN+dM//dNqt3ZI2rFjR37+859XXm/ZsiVtbW2pr6/Psccem7lz52bRokUZNWpURo0alUWLFuWoo47KrFmzqtg19B7jz77J2LRvMmbtu4xn+y5j3T2UOSD/7b/9t/KIESPKAwYMKH/sYx8rr1mzptotHRaSvOV25513Vru1w9Ypp5xS/tKXvlTtNg4bf/d3f1ceM2ZMuba2tvx7v/d75dtuu63aLR02urq6yl/60pfKxx57bPnII48s//Zv/3b52muvLXd3d1e7tUPSD3/4w7f8//0FF1xQLpfL5TfeeKP8l3/5l+WmpqZybW1t+dOf/nT5iSeeqG7T0MuMP/seY9ODhzFr32E82zcZ6/ZUUy6Xyx94QgcAAAAAfZA1ywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAw46EyePDlz5szJ3Llzc/TRR6exsTG33XZbXn311fzJn/xJ6urq8ju/8zv5/ve/nyTZvXt3LrrooowcOTIDBw7MCSeckL/5m7/pcc6HH344n/jEJzJo0KB86EMfyic/+ck899xzSZJ/+qd/yqmnnpq6uroMHjw448aNy+OPP/6BXzcAAG9t8uTJmT17dmbPnp0PfehDGTJkSP78z/885XK52q0BByFhGXBQWrZsWYYOHZrHHnssc+bMyX/8j/8xn/vc5zJp0qT84z/+Y84444y0tLTkV7/6Vd54440cc8wx+fa3v52f/vSn+c//+T/nmmuuybe//e0kyeuvv55zzjknp5xySn7yk59k/fr1ueSSS1JTU5Mk+aM/+qMcc8wx2bhxYzZt2pT58+fniCOOqOblAwCwh2XLlqV///559NFH81//63/NjTfemP/+3/97tdsCDkI1ZVE7cJCZPHlydu/enR/96EdJfj1zrFQqZebMmfnmN7+ZJGlvb8+wYcOyfv36TJgwYa9zXH755XnhhRfyP/7H/8i//uu/ZsiQIXn44Ydzyimn7FU7ePDg3Hzzzbngggt698IAADggkydPzvbt2/PUU09VvvCcP39+7r///vz0pz+tcnfAwcbMMuCg9Ad/8AeVn/v165chQ4Zk7NixlX2NjY1Jku3btydJ/vZv/zYnn3xyPvzhD+ff/Jt/k9tvvz2/+MUvkiT19fW58MILc8YZZ+Tss8/O3/zN32Tbtm2Vc82bNy//4T/8h0yZMiXXXXdd/vf//t8fxCUCALAfJkyYUAnKkmTixIl55plnsnv37ip2BRyMhGXAQWnP2yBramp67HtzoPTGG2/k29/+dr785S/nT//0T/PAAw+kra0tf/Inf5Jdu3ZV6u+8886sX78+kyZNyr333pvjjz8+GzZsSJIsXLgwTz31VM4666w89NBD+f3f//2sXLnyA7hKAAAAPmjCMuCQ96Mf/SiTJk3KZZddlpNOOim/+7u/+5azw0466aQsWLAg69aty5gxY7JixYrKseOPPz5f/vKX88ADD2TmzJm58847P8hLAADgXbz5Redvvh41alT69etXpY6Ag5WwDDjk/e7v/m4ef/zx/OAHP8jPfvaz/MVf/EU2btxYOb5ly5YsWLAg69evz3PPPZcHHnggP/vZzzJ69Ojs3Lkzs2fPzsMPP5znnnsu//AP/5CNGzdm9OjRVbwiAAD2tHXr1sybNy+bN2/Ot771rdx888350pe+VO22gINQ/2o3ANDbvvjFL6atrS3nn39+ampq8vnPfz6XXXZZvv/97ydJjjrqqPyv//W/smzZsrz00ksZNmxYZs+enUsvvTSvv/56XnrppXzhC1/ICy+8kKFDh2bmzJn5yle+UuWrAgDgN33hC1/Izp0784lPfCL9+vXLnDlzcskll1S7LeAg5GmYAAAAHNQmT56cj370o7npppuq3QpwCHAbJgAAAAAUhGUAAAAAUHAbJgAAAAAUzCwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAIDC/wPyaMqiBKB7uAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAINCAYAAAAgDPgxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA07klEQVR4nO3df5CV9X0v8PcWZAUKRxeyu+yISG/RUiEJwcgPk4jRoFyRUjMhjS3R1qvJFTAEbQqxbbDTgiETtRcaG72OGpFopg2JDgmKNWKooEhDo8ZrzC0qtqwYi7uidFE89w8fz3XFHyyyexb29Zo5M5znfPfh8xwS9zPv5/t8vzXlcrkcAAAAACC/Ue0CAAAAAKC7EJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUele7gM7y2muv5T/+4z8yYMCA1NTUVLscAOAgUS6X8+KLL6apqSm/8RvuK3ZH+jwAYH/sa593yIZl//Ef/5GhQ4dWuwwA4CC1devWHHXUUdUug7ehzwMA3o/36vMO2bBswIABSV7/AgYOHFjlagCAg0Vra2uGDh1a6SXofvR5AMD+2Nc+75ANy96Ykj9w4EBNFADQYR7v6770eQDA+/FefZ6FOAAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACh0KCxbvHhxPvrRj2bAgAGpr6/P9OnT8/jjj7cbc95556Wmpqbda/z48e3GtLW1Zc6cORk8eHD69++fadOm5Zlnnmk3ZseOHZk5c2ZKpVJKpVJmzpyZF154Yf+uEgAAAAD2QYfCsrVr12bWrFnZsGFD1qxZk1dffTWTJ0/OSy+91G7cGWeckW3btlVeP/rRj9p9Pnfu3KxcuTK33npr1q1bl507d2bq1KnZs2dPZcw555yTzZs3Z/Xq1Vm9enU2b96cmTNnvo9LBQAAAIB317sjg1evXt3u/Q033JD6+vps2rQpn/jEJyrHa2tr09jY+LbnaGlpyfXXX5+bb745p512WpJk+fLlGTp0aO6+++6cfvrpeeyxx7J69eps2LAh48aNS5Jcd911mTBhQh5//PEcd9xxHbpIAAAAANgX72vNspaWliRJXV1du+P33ntv6uvrc+yxx+aCCy7I9u3bK59t2rQpr7zySiZPnlw51tTUlFGjRuX+++9Pkqxfvz6lUqkSlCXJ+PHjUyqVKmPeqq2tLa2tre1eAAAAANAR+x2WlcvlzJs3Lx/72McyatSoyvEpU6bklltuyT333JNvfvOb2bhxYz75yU+mra0tSdLc3Jw+ffrkyCOPbHe+hoaGNDc3V8bU19fv9XfW19dXxrzV4sWLK+ublUqlDB06dH8vDQAAAIAeqkOPYb7Z7Nmz8/Of/zzr1q1rd/yzn/1s5c+jRo3KCSeckGHDhmXVqlU5++yz3/F85XI5NTU1lfdv/vM7jXmzBQsWZN68eZX3ra2tAjMAAAAAOmS/ZpbNmTMnt99+e37yk5/kqKOOetexQ4YMybBhw/LEE08kSRobG7N79+7s2LGj3bjt27enoaGhMubZZ5/d61zPPfdcZcxb1dbWZuDAge1eAADsG7ueAwC8rkMzy8rlcubMmZOVK1fm3nvvzfDhw9/zZ55//vls3bo1Q4YMSZKMHTs2hx12WNasWZMZM2YkSbZt25ZHHnkkS5YsSZJMmDAhLS0tefDBB3PiiScmSR544IG0tLRk4sSJHbpA6KmOmb+qU8//5BVndur5Aehab+x6/tGPfjSvvvpqLrvsskyePDm/+MUv0r9//8q4M844IzfccEPlfZ8+fdqdZ+7cubnjjjty6623ZtCgQbnkkksyderUbNq0Kb169Ury+q7nzzzzTGXzqAsvvDAzZ87MHXfc0QVXClRbZ/epXUEvDIe2DoVls2bNyooVK/LDH/4wAwYMqKwfViqV0rdv3+zcuTMLFy7Mpz/96QwZMiRPPvlkvvrVr2bw4MH5/d///crY888/P5dcckkGDRqUurq6XHrppRk9enRld8yRI0fmjDPOyAUXXJBvf/vbSV5voqZOnWonTACATmDXcwCA13XoMcxrrrkmLS0tmTRpUoYMGVJ53XbbbUmSXr165eGHH87v/d7v5dhjj825556bY489NuvXr8+AAQMq57nqqqsyffr0zJgxIyeddFL69euXO+64o3K3MUluueWWjB49OpMnT87kyZPzwQ9+MDfffPMBumwAAN6NXc8BgJ6qw49hvpu+ffvmzjvvfM/zHH744Vm6dGmWLl36jmPq6uqyfPnyjpQHAMAB8G67nn/mM5/JsGHDsmXLlvzFX/xFPvnJT2bTpk2pra3t1F3PL7/88gN4hQAA72y/d8MEAODQZNdzAKAn26/dMAEAODTZ9RwA6OmEZQAApFwuZ/bs2fn+97+fe+65533vev6GN3Y9f2NH8zfvev4Gu54DAN2JxzABALDrOQBAQVgGAECuueaaJMmkSZPaHb/hhhty3nnnVXY9/853vpMXXnghQ4YMySmnnJLbbrttr13Pe/funRkzZmTXrl059dRTc+ONN+616/nFF19c2TVz2rRpWbZsWedfJLBPjpm/qtolAFSVsAwAALueAwAUrFkGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABbthAgAAQAccM39Vp57/ySvO7NTzA+/OzDIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKDQu9oFAAenY+av6tTzP3nFmZ16fgAAAHg7ZpYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAIXe1S4AAACAfXfM/FXVLgHgkGZmGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQKFDYdnixYvz0Y9+NAMGDEh9fX2mT5+exx9/vN2YcrmchQsXpqmpKX379s2kSZPy6KOPthvT1taWOXPmZPDgwenfv3+mTZuWZ555pt2YHTt2ZObMmSmVSimVSpk5c2ZeeOGF/btKAAAAANgHHQrL1q5dm1mzZmXDhg1Zs2ZNXn311UyePDkvvfRSZcySJUty5ZVXZtmyZdm4cWMaGxvzqU99Ki+++GJlzNy5c7Ny5crceuutWbduXXbu3JmpU6dmz549lTHnnHNONm/enNWrV2f16tXZvHlzZs6ceQAuGQAAAADeXu+ODF69enW79zfccEPq6+uzadOmfOITn0i5XM7VV1+dyy67LGeffXaS5KabbkpDQ0NWrFiRL3zhC2lpacn111+fm2++OaeddlqSZPny5Rk6dGjuvvvunH766XnssceyevXqbNiwIePGjUuSXHfddZkwYUIef/zxHHfccQfi2gEAAACgnfe1ZllLS0uSpK6uLkmyZcuWNDc3Z/LkyZUxtbW1Ofnkk3P//fcnSTZt2pRXXnml3ZimpqaMGjWqMmb9+vUplUqVoCxJxo8fn1KpVBkDAAAAAAdah2aWvVm5XM68efPysY99LKNGjUqSNDc3J0kaGhrajW1oaMhTTz1VGdOnT58ceeSRe4154+ebm5tTX1+/199ZX19fGfNWbW1taWtrq7xvbW3dzysDAAAAoKfa75lls2fPzs9//vN897vf3euzmpqadu/L5fJex97qrWPebvy7nWfx4sWVzQBKpVKGDh26L5cBAEBs5AQA8Ib9CsvmzJmT22+/PT/5yU9y1FFHVY43NjYmyV6zv7Zv316ZbdbY2Jjdu3dnx44d7zrm2Wef3evvfe655/aatfaGBQsWpKWlpfLaunXr/lwaAECPZCMnAIDXdegxzHK5nDlz5mTlypW59957M3z48HafDx8+PI2NjVmzZk3GjBmTJNm9e3fWrl2br3/960mSsWPH5rDDDsuaNWsyY8aMJMm2bdvyyCOPZMmSJUmSCRMmpKWlJQ8++GBOPPHEJMkDDzyQlpaWTJw48W1rq62tTW1tbUcuBwCAgo2cALqPY+av6tTzP3nFmZ16fjjYdWhm2axZs7J8+fKsWLEiAwYMSHNzc5qbm7Nr164krz86OXfu3CxatCgrV67MI488kvPOOy/9+vXLOeeckyQplUo5//zzc8kll+Sf/umf8rOf/Sx/9Ed/lNGjR1eaqpEjR+aMM87IBRdckA0bNmTDhg254IILMnXqVA0UAEAX6E4bObW1taW1tbXdCwCgs3RoZtk111yTJJk0aVK74zfccEPOO++8JMlXvvKV7Nq1KxdddFF27NiRcePG5a677sqAAQMq46+66qr07t07M2bMyK5du3LqqafmxhtvTK9evSpjbrnlllx88cWVZmvatGlZtmzZ/lwjdEudfbcIAPZXd9vIafHixbn88svf30UBAOyjDj+G+V5qamqycOHCLFy48B3HHH744Vm6dGmWLl36jmPq6uqyfPnyjpQHAMAB8MZGTuvWrdvrs2ps5LRgwYLMmzev8r61tdVmTgBAp9nv3TABADj0dMeNnGprazNw4MB2LwCAziIsAwAg5XI5s2fPzve///3cc88977qR0xve2MjpjQ2Y3ryR0xve2MjpjTFv3sjpDe+1kRMAQFfq0GOYAAAcmmbNmpUVK1bkhz/8YWUjp+T1zZn69u3bbiOnESNGZMSIEVm0aNE7buQ0aNCg1NXV5dJLL33HjZy+/e1vJ0kuvPBCGzkBAN2GsAwAABs5AQAUasr7smr/Qai1tTWlUiktLS3WtaBbshvmu3vyijOrXQLQQ+khuj//RvR0+kjeL702PdW+9hDWLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACj0rnYBAG/nmPmrOvX8T15xZqeeHwAAgIOTmWUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABR6V7sAAACAQ8kx81dVuwQA3gczywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACh0OCy77777ctZZZ6WpqSk1NTX5wQ9+0O7z8847LzU1Ne1e48ePbzemra0tc+bMyeDBg9O/f/9MmzYtzzzzTLsxO3bsyMyZM1MqlVIqlTJz5sy88MILHb5AAAAAANhXHQ7LXnrppXzoQx/KsmXL3nHMGWeckW3btlVeP/rRj9p9Pnfu3KxcuTK33npr1q1bl507d2bq1KnZs2dPZcw555yTzZs3Z/Xq1Vm9enU2b96cmTNndrRcAAAAANhnvTv6A1OmTMmUKVPedUxtbW0aGxvf9rOWlpZcf/31ufnmm3PaaaclSZYvX56hQ4fm7rvvzumnn57HHnssq1evzoYNGzJu3LgkyXXXXZcJEybk8ccfz3HHHdfRsqHDjpm/qtolAAAAAF2sU9Ysu/fee1NfX59jjz02F1xwQbZv3175bNOmTXnllVcyefLkyrGmpqaMGjUq999/f5Jk/fr1KZVKlaAsScaPH59SqVQZ81ZtbW1pbW1t9wIAYN9ZbgMAoBPCsilTpuSWW27JPffck29+85vZuHFjPvnJT6atrS1J0tzcnD59+uTII49s93MNDQ1pbm6ujKmvr9/r3PX19ZUxb7V48eJKw1UqlTJ06NADfGUAAIc2y20AAOzHY5jv5bOf/Wzlz6NGjcoJJ5yQYcOGZdWqVTn77LPf8efK5XJqamoq79/853ca82YLFizIvHnzKu9bW1sFZgAAHWC5DQCATnoM882GDBmSYcOG5YknnkiSNDY2Zvfu3dmxY0e7cdu3b09DQ0NlzLPPPrvXuZ577rnKmLeqra3NwIED270AADiwqrHcBgBAV+r0sOz555/P1q1bM2TIkCTJ2LFjc9hhh2XNmjWVMdu2bcsjjzySiRMnJkkmTJiQlpaWPPjgg5UxDzzwQFpaWipjAADoWtVabsPatABAV+rwY5g7d+7Mr371q8r7LVu2ZPPmzamrq0tdXV0WLlyYT3/60xkyZEiefPLJfPWrX83gwYPz+7//+0mSUqmU888/P5dcckkGDRqUurq6XHrppRk9enRluv7IkSNzxhln5IILLsi3v/3tJMmFF16YqVOnmpoPAFAl1VpuY/Hixbn88svfR+UAAPuuwzPLHnrooYwZMyZjxoxJksybNy9jxozJX/7lX6ZXr155+OGH83u/93s59thjc+655+bYY4/N+vXrM2DAgMo5rrrqqkyfPj0zZszISSedlH79+uWOO+5Ir169KmNuueWWjB49OpMnT87kyZPzwQ9+MDfffPMBuGQAAA6ErlpuY8GCBWlpaam8tm7deoCvBADg/+vwzLJJkyalXC6/4+d33nnne57j8MMPz9KlS7N06dJ3HFNXV5fly5d3tDwAALrIuy23MWPGjCT/f7mNJUuWJGm/3MaJJ56Y5L2X26itrU1tbW0XXBEAQCfshgkAwMHJchsAAMIyAAAKDz30UE455ZTK+3nz5iVJzj333FxzzTV5+OGH853vfCcvvPBChgwZklNOOSW33XbbXstt9O7dOzNmzMiuXbty6qmn5sYbb9xruY2LL764smvmtGnTsmzZsi66SgCAdycsAwAgieU2AACS/VjgHwAAAAAOVcIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACj0rnYBAAAAQNc5Zv6qTj3/k1ec2annh85mZhkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUOhd7QIAqsF22QAAALwdM8sAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACj0rnYBB7Nj5q/q1PM/ecWZnXp+AAAAANozswwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIIF/jlodfYGCwAAAEDPY2YZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFDo3dEfuO+++/KNb3wjmzZtyrZt27Jy5cpMnz698nm5XM7ll1+ea6+9Njt27Mi4cePyd3/3dzn++OMrY9ra2nLppZfmu9/9bnbt2pVTTz013/rWt3LUUUdVxuzYsSMXX3xxbr/99iTJtGnTsnTp0hxxxBH7f7UHmWPmr+rU8z95xZmden4AAACAg02HZ5a99NJL+dCHPpRly5a97edLlizJlVdemWXLlmXjxo1pbGzMpz71qbz44ouVMXPnzs3KlStz6623Zt26ddm5c2emTp2aPXv2VMacc8452bx5c1avXp3Vq1dn8+bNmTlz5n5cIgAAAADsmw7PLJsyZUqmTJnytp+Vy+VcffXVueyyy3L22WcnSW666aY0NDRkxYoV+cIXvpCWlpZcf/31ufnmm3PaaaclSZYvX56hQ4fm7rvvzumnn57HHnssq1evzoYNGzJu3LgkyXXXXZcJEybk8ccfz3HHHbe/18ubmLkGAAAA0N4BXbNsy5YtaW5uzuTJkyvHamtrc/LJJ+f+++9PkmzatCmvvPJKuzFNTU0ZNWpUZcz69etTKpUqQVmSjB8/PqVSqTIGAIAD67777stZZ52Vpqam1NTU5Ac/+EG7z8vlchYuXJimpqb07ds3kyZNyqOPPtpuTFtbW+bMmZPBgwenf//+mTZtWp555pl2Y3bs2JGZM2emVCqlVCpl5syZeeGFFzr56gAA9s0BDcuam5uTJA0NDe2ONzQ0VD5rbm5Onz59cuSRR77rmPr6+r3OX19fXxnzVm1tbWltbW33AgBg31luAwBgPx7D3Bc1NTXt3pfL5b2OvdVbx7zd+Hc7z+LFi3P55ZfvR7UAACSW26Dn6OzlSAA4uB3QmWWNjY1Jstfsr+3bt1dmmzU2Nmb37t3ZsWPHu4559tln9zr/c889t9estTcsWLAgLS0tldfWrVvf9/UAAPC6ai634QkCAKArHdCwbPjw4WlsbMyaNWsqx3bv3p21a9dm4sSJSZKxY8fmsMMOazdm27ZteeSRRypjJkyYkJaWljz44IOVMQ888EBaWloqY96qtrY2AwcObPcCAODAqOZyG4sXL66sb1YqlTJ06ND3fT0AAO+kw49h7ty5M7/61a8q77ds2ZLNmzenrq4uRx99dObOnZtFixZlxIgRGTFiRBYtWpR+/frlnHPOSZKUSqWcf/75ueSSSzJo0KDU1dXl0ksvzejRoyvT9UeOHJkzzjgjF1xwQb797W8nSS688MJMnTrV1PyDiOntAHDoqcZyGwsWLMi8efMq71tbWwVmAECn6XBY9tBDD+WUU06pvH+jcTn33HNz44035itf+Up27dqViy66KDt27Mi4ceNy1113ZcCAAZWfueqqq9K7d+/MmDEju3btyqmnnpobb7wxvXr1qoy55ZZbcvHFF1em8U+bNu0dF5sFAKBzvXm5jSFDhlSOv9NyG2+eXbZ9+/bK0wH7s9xGbW1tamtrD9i1AAC8mw4/hjlp0qSUy+W9XjfeeGOS1+8ULly4MNu2bct//dd/Ze3atRk1alS7cxx++OFZunRpnn/++bz88su544479ro7WFdXl+XLl1fWpVi+fHmOOOKI/b5QAAD2XzWX2wAA6EqdshsmAAAHH8ttAAAIywAAKFhuAwAgqSmXy+VqF9EZWltbUyqV0tLS0mk7Y1rAHngnT15xZrVLAPZTV/QQvD/+jXi/9PHQufTCdFf72kN0eM0yAAAAADhUCcsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKPSudgEAh6Jj5q/q1PM/ecWZnXp+AACAnsrMMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAIBC72oXAAAAABw6jpm/qlPP/+QVZ3bq+cHMMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoHPCwbOHChampqWn3amxsrHxeLpezcOHCNDU1pW/fvpk0aVIeffTRdudoa2vLnDlzMnjw4PTv3z/Tpk3LM888c6BLBQAAAIB2OmVm2fHHH59t27ZVXg8//HDlsyVLluTKK6/MsmXLsnHjxjQ2NuZTn/pUXnzxxcqYuXPnZuXKlbn11luzbt267Ny5M1OnTs2ePXs6o1wAAPaBm6IAQE/QKWFZ796909jYWHl94AMfSPJ6A3X11Vfnsssuy9lnn51Ro0blpptuyssvv5wVK1YkSVpaWnL99dfnm9/8Zk477bSMGTMmy5cvz8MPP5y77767M8oFAGAfuSkKABzqOiUse+KJJ9LU1JThw4fnD/7gD/Jv//ZvSZItW7akubk5kydProytra3NySefnPvvvz9JsmnTprzyyivtxjQ1NWXUqFGVMW+nra0tra2t7V4AABxYbooCAIe6Ax6WjRs3Lt/5zndy55135rrrrktzc3MmTpyY559/Ps3NzUmShoaGdj/T0NBQ+ay5uTl9+vTJkUce+Y5j3s7ixYtTKpUqr6FDhx7gKwMAwE1RAOBQd8DDsilTpuTTn/50Ro8endNOOy2rVq1Kktx0002VMTU1Ne1+plwu73Xsrd5rzIIFC9LS0lJ5bd269X1cBQAAb+WmKADQE3TKY5hv1r9//4wePTpPPPFEZQHYtzZD27dvrzRWjY2N2b17d3bs2PGOY95ObW1tBg4c2O4FAMCB46YoANAT9O7sv6CtrS2PPfZYPv7xj2f48OFpbGzMmjVrMmbMmCTJ7t27s3bt2nz9619PkowdOzaHHXZY1qxZkxkzZiRJtm3blkceeSRLlizp7HIBDgrHzF/Vqed/8oozO/X8wKHhzTdFp0+fnuT1m6JDhgypjHmnm6Jvnl22ffv2TJw48R3/ntra2tTW1nbORQAAvMUBD8suvfTSnHXWWTn66KOzffv2/PVf/3VaW1tz7rnnpqamJnPnzs2iRYsyYsSIjBgxIosWLUq/fv1yzjnnJElKpVLOP//8XHLJJRk0aFDq6upy6aWXVu5gAgDQPbgpSmfp7JtCAPBuDnhY9swzz+Rzn/tcfv3rX+cDH/hAxo8fnw0bNmTYsGFJkq985SvZtWtXLrroouzYsSPjxo3LXXfdlQEDBlTOcdVVV6V3796ZMWNGdu3alVNPPTU33nhjevXqdaDLBQBgH7kpCgD0BAc8LLv11lvf9fOamposXLgwCxcufMcxhx9+eJYuXZqlS5ce4OoAANhfbooCAD1BTblcLle7iM7Q2tqaUqmUlpaWTlvs3/Rw4FBlzTJ6sq7oIXh//Bsd+vTZwLvRq7K/9rWH6PTdMAEAAADgYCEsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACj0rnYBAHQ/x8xf1el/x5NXnNnpfwcAAEBHmVkGAAAAAAUzywAAAICDRmc/BeEJCMwsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACg0LvaBQDQMx0zf1Wnnv/JK87s1PMDAACHJjPLAAAAAKAgLAMAAACAgscwATgkecwTAADYH2aWAQAAAEDBzDIAAKBDOnv2LgBUk5llAAAAAFAwswwA9oM10QAA4NBkZhkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAUL/ANAN2QDAQAAqA5hGQD0QMI4AAB4ex7DBAAAAICCsAwAAAAACh7DBAAOOI95AgBwsBKWAQAAABTc9MNjmAAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUele7AAAA4MA6Zv6qapcAAActM8sAAAAAoCAsAwAAAICCsAwAAAAACt1+zbJvfetb+cY3vpFt27bl+OOPz9VXX52Pf/zj1S4LAID3SZ8HQE/U2etKPnnFmZ16/p6gW88su+222zJ37txcdtll+dnPfpaPf/zjmTJlSp5++ulqlwYAwPugzwMAuquacrlcrnYR72TcuHH5yEc+kmuuuaZybOTIkZk+fXoWL178rj/b2tqaUqmUlpaWDBw4sFPqs8sQAFRHZ94x7Yoegu7f53U2fSQAB6uDeebavvYQ3fYxzN27d2fTpk2ZP39+u+OTJ0/O/fffv9f4tra2tLW1Vd63tLQkef2L6Cyvtb3caecGAN5ZZ/5+f+Pc3fh+4kHvYOjzRn3tzk47NwAczDrz929n29c+r9uGZb/+9a+zZ8+eNDQ0tDve0NCQ5ubmvcYvXrw4l19++V7Hhw4d2mk1AgDVUbq68/+OF198MaVSqfP/oh5InwcAB6+u6MM623v1ed02LHtDTU1Nu/flcnmvY0myYMGCzJs3r/L+tddey3/+539m0KBBbzv+/Wptbc3QoUOzdevWg3b6/8HM919dvv/q8v1Xn3+D6urs779cLufFF19MU1PTAT837XXXPu9Q4r9XXcv33bV8313L9921fN+dY1/7vG4blg0ePDi9evXa6+7i9u3b97oLmSS1tbWpra1td+yII47ozBKTJAMHDvQ/3Cry/VeX77+6fP/V59+gujrz+zejrHMdLH3eocR/r7qW77tr+b67lu+7a/m+D7x96fO67W6Yffr0ydixY7NmzZp2x9esWZOJEydWqSoAAN4vfR4A0J1125llSTJv3rzMnDkzJ5xwQiZMmJBrr702Tz/9dL74xS9WuzQAAN4HfR4A0F1167Dss5/9bJ5//vn81V/9VbZt25ZRo0blRz/6UYYNG1bt0lJbW5uvfe1rez0SQNfw/VeX77+6fP/V59+gunz/h4bu3OcdSvz/pWv5vruW77tr+b67lu+7umrK9kUHAAAAgCTdeM0yAAAAAOhqwjIAAAAAKAjLAAAAAKAgLAMAAACAgrBsP33rW9/K8OHDc/jhh2fs2LH56U9/Wu2SeoTFixfnox/9aAYMGJD6+vpMnz49jz/+eLXL6rEWL16cmpqazJ07t9ql9Bj//u//nj/6oz/KoEGD0q9fv3z4wx/Opk2bql1Wj/Dqq6/mz//8zzN8+PD07ds3v/Vbv5W/+qu/ymuvvVbt0g5J9913X84666w0NTWlpqYmP/jBD9p9Xi6Xs3DhwjQ1NaVv376ZNGlSHn300eoUC92YnrVr6FGrRz/a+fSfXUe/2X0Iy/bDbbfdlrlz5+ayyy7Lz372s3z84x/PlClT8vTTT1e7tEPe2rVrM2vWrGzYsCFr1qzJq6++msmTJ+ell16qdmk9zsaNG3Pttdfmgx/8YLVL6TF27NiRk046KYcddlh+/OMf5xe/+EW++c1v5ogjjqh2aT3C17/+9fz93/99li1blsceeyxLlizJN77xjSxdurTapR2SXnrppXzoQx/KsmXL3vbzJUuW5Morr8yyZcuycePGNDY25lOf+lRefPHFLq4Uui89a9fRo1aHfrTz6T+7ln6z+6gpl8vlahdxsBk3blw+8pGP5JprrqkcGzlyZKZPn57FixdXsbKe57nnnkt9fX3Wrl2bT3ziE9Uup8fYuXNnPvKRj+Rb3/pW/vqv/zof/vCHc/XVV1e7rEPe/Pnz88///M9mBVTJ1KlT09DQkOuvv75y7NOf/nT69euXm2++uYqVHfpqamqycuXKTJ8+Pcnrs8qampoyd+7c/Nmf/VmSpK2tLQ0NDfn617+eL3zhC1WsFroPPWv16FE7n360a+g/u5Z+s/sws6yDdu/enU2bNmXy5Mntjk+ePDn3339/larquVpaWpIkdXV1Va6kZ5k1a1bOPPPMnHbaadUupUe5/fbbc8IJJ+Qzn/lM6uvrM2bMmFx33XXVLqvH+NjHPpZ/+qd/yi9/+cskyb/+679m3bp1+e///b9XubKeZ8uWLWlubm73u7i2tjYnn3yy38VQ0LNWlx618+lHu4b+s2vpN7uP3tUu4GDz61//Onv27ElDQ0O74w0NDWlubq5SVT1TuVzOvHnz8rGPfSyjRo2qdjk9xq233pp/+Zd/ycaNG6tdSo/zb//2b7nmmmsyb968fPWrX82DDz6Yiy++OLW1tfn85z9f7fIOeX/2Z3+WlpaW/M7v/E569eqVPXv25G/+5m/yuc99rtql9Thv/L59u9/FTz31VDVKgm5Hz1o9etTOpx/tOvrPrqXf7D6EZfuppqam3ftyubzXMTrX7Nmz8/Of/zzr1q2rdik9xtatW/OlL30pd911Vw4//PBql9PjvPbaaznhhBOyaNGiJMmYMWPy6KOP5pprrtGsdIHbbrsty5cvz4oVK3L88cdn8+bNmTt3bpqamnLuuedWu7weye9ieG/+f9L19KidSz/atfSfXUu/2X0Iyzpo8ODB6dWr11535LZv377XnTs6z5w5c3L77bfnvvvuy1FHHVXtcnqMTZs2Zfv27Rk7dmzl2J49e3Lfffdl2bJlaWtrS69evapY4aFtyJAh+d3f/d12x0aOHJl//Md/rFJFPcuf/umfZv78+fmDP/iDJMno0aPz1FNPZfHixZqXLtbY2Jjk9RlmQ4YMqRz3uxj+Pz1rdehRO59+tGvpP7uWfrP7sGZZB/Xp0ydjx47NmjVr2h1fs2ZNJk6cWKWqeo5yuZzZs2fn+9//fu65554MHz682iX1KKeeemoefvjhbN68ufI64YQT8od/+IfZvHmzxqSTnXTSSXttQ//LX/4yw4YNq1JFPcvLL7+c3/iN9r82e/XqZSvvKhg+fHgaGxvb/S7evXt31q5d63cxFPSsXUuP2nX0o11L/9m19Jvdh5ll+2HevHmZOXNmTjjhhEyYMCHXXnttnn766Xzxi1+sdmmHvFmzZmXFihX54Q9/mAEDBlTulpZKpfTt27fK1R36BgwYsNfaG/3798+gQYOsydEFvvzlL2fixIlZtGhRZsyYkQcffDDXXnttrr322mqX1iOcddZZ+Zu/+ZscffTROf744/Ozn/0sV155Zf7kT/6k2qUdknbu3Jlf/epXlfdbtmzJ5s2bU1dXl6OPPjpz587NokWLMmLEiIwYMSKLFi1Kv379cs4551Sxauhe9KxdR4/adfSjXUv/2bX0m91Imf3yd3/3d+Vhw4aV+/TpU/7IRz5SXrt2bbVL6hGSvO3rhhtuqHZpPdbJJ59c/tKXvlTtMnqMO+64ozxq1KhybW1t+Xd+53fK1157bbVL6jFaW1vLX/rSl8pHH310+fDDDy//1m/9Vvmyyy4rt7W1Vbu0Q9JPfvKTt/3v/bnnnlsul8vl1157rfy1r32t3NjYWK6trS1/4hOfKD/88MPVLRq6IT1r19CjVpd+tHPpP7uOfrP7qCmXy+UuT+gAAAAAoBuyZhkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBB51JkyZlzpw5mTt3bo488sg0NDTk2muvzUsvvZQ//uM/zoABA/Lf/tt/y49//OMkyZ49e3L++edn+PDh6du3b4477rj87d/+bbtz3nvvvTnxxBPTv3//HHHEETnppJPy1FNPJUn+9V//NaecckoGDBiQgQMHZuzYsXnooYe6/LoBAHh7kyZNyuzZszN79uwcccQRGTRoUP78z/885XK52qUBByFhGXBQuummmzJ48OA8+OCDmTNnTv7n//yf+cxnPpOJEyfmX/7lX3L66adn5syZefnll/Paa6/lqKOOyve+97384he/yF/+5V/mq1/9ar73ve8lSV599dVMnz49J598cn7+859n/fr1ufDCC1NTU5Mk+cM//MMcddRR2bhxYzZt2pT58+fnsMMOq+blAwDwFjfddFN69+6dBx54IP/rf/2vXHXVVfnf//t/V7ss4CBUUxa1AweZSZMmZc+ePfnpT3+a5PWZY6VSKWeffXa+853vJEmam5szZMiQrF+/PuPHj9/rHLNmzcqzzz6bf/iHf8h//ud/ZtCgQbn33ntz8skn7zV24MCBWbp0ac4999zOvTAAAPbLpEmTsn379jz66KOVG57z58/P7bffnl/84hdVrg442JhZBhyUPvjBD1b+3KtXrwwaNCijR4+uHGtoaEiSbN++PUny93//9znhhBPygQ98IL/5m7+Z6667Lk8//XSSpK6uLuedd15OP/30nHXWWfnbv/3bbNu2rXKuefPm5X/8j/+R0047LVdccUX+7//9v11xiQAAdMD48eMrQVmSTJgwIU888UT27NlTxaqAg5GwDDgovfUxyJqamnbH3miUXnvttXzve9/Ll7/85fzJn/xJ7rrrrmzevDl//Md/nN27d1fG33DDDVm/fn0mTpyY2267Lccee2w2bNiQJFm4cGEeffTRnHnmmbnnnnvyu7/7u1m5cmUXXCUAAABdTVgGHPJ++tOfZuLEibnooosyZsyY/PZv//bbzg4bM2ZMFixYkPvvvz+jRo3KihUrKp8de+yx+fKXv5y77rorZ599dm644YauvAQAAN7DGzc63/x+xIgR6dWrV5UqAg5WwjLgkPfbv/3beeihh3LnnXfml7/8Zf7iL/4iGzdurHy+ZcuWLFiwIOvXr89TTz2Vu+66K7/85S8zcuTI7Nq1K7Nnz869996bp556Kv/8z/+cjRs3ZuTIkVW8IgAA3mrr1q2ZN29eHn/88Xz3u9/N0qVL86UvfanaZQEHod7VLgCgs33xi1/M5s2b89nPfjY1NTX53Oc+l4suuig//vGPkyT9+vXL//k//yc33XRTnn/++QwZMiSzZ8/OF77whbz66qt5/vnn8/nPfz7PPvtsBg8enLPPPjuXX355la8KAIA3+/znP59du3blxBNPTK9evTJnzpxceOGF1S4LOAjZDRMAAICD2qRJk/LhD384V199dbVLAQ4BHsMEAAAAgIKwDAAAAAAKHsMEAAAAgIKZZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUPh/tugGUAJmks8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1135,17 +1135,17 @@ "start_time": "2023-11-09T18:41:44.945907133Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:23.935984Z", - "iopub.status.busy": "2023-11-09T20:46:23.935513Z", - "iopub.status.idle": "2023-11-09T20:46:24.129250Z", - "shell.execute_reply": "2023-11-09T20:46:24.128712Z" + "iopub.execute_input": "2023-11-09T22:34:17.079552Z", + "iopub.status.busy": "2023-11-09T22:34:17.079183Z", + "iopub.status.idle": "2023-11-09T22:34:17.254133Z", + "shell.execute_reply": "2023-11-09T22:34:17.253567Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 24, @@ -1154,7 +1154,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACTHElEQVR4nOzdd3iUZfbw8e/UTMpk0nsIofcWehML2LBgQ11R14qyKrqua9l11d13+a26dnCt4KogNiwLSlOKEFogSBMpCek9mUmd+rx/hEQjASbJTCblfK5rLmHmue/nDBLmzF3OrVIURUEIIYQQogNT+zoAIYQQQoizkYRFCCGEEB2eJCxCCCGE6PAkYRFCCCFEhycJixBCCCE6PElYhBBCCNHhScIihBBCiA5PEhYhhBBCdHhaXwfgKS6Xi7y8PIxGIyqVytfhCCGEEMINiqJQWVlJXFwcavXpx1G6TMKSl5dHYmKir8MQQgghRCtkZ2eTkJBw2te7TMJiNBqB+jccHBzs42iEEEII4Q6LxUJiYmLj5/jpdJmEpWEaKDg4WBIWIYQQopM523IOWXQrhBBCiA5PEhYhhBBCdHiSsAghhBCiw5OERQghhBAdniQsQgghhOjwJGERQgghRIcnCYsQQgghOjxJWIQQQgjR4UnCIoQQQogOTxIWIYQQQnR4XaY0vxCie3O5XDgcDlwul69DEaJbUKvVaLXaM56w7EmSsAghOjWz2YzFYqGmpkaSFSHamVqtJiAggODgYEwmk1fvJQmLEKJTUhSFwsJCysvLCQgIICIiAoPBgFqtPushakKItlEUBZfLRV1dHVVVVeTl5VFbW0t0dLTXfv4kYRFCdErl5eWUl5cTExNDaGior8MRolsKDAwkPDyc8vJyCgoK0Ov1hIWFeeVekrAI0Ukt3Z7V6rY3juvhwUjan6IoVFRUYDQaJVkRogMIDQ2lurqaiooKQkNDvTLKIruEhBCdjsPhwGq1en3OXAjhPpPJhNVqxeFweKV/SViEEJ2O0+kEQKuVQWIhOoqGn8eGn09Pk4RFCNFpyeJaIToOb/88SsIihBBCiA5PEhYhhBBCdHiSsAghhBCiw5OERQghhBAdniQsQgghvKJnz56oVCpuvfVWX4fSLrrb+21vkrAIIYQQosOThEUIIYQQHZ5UXRJCCOEVmZmZvg5BdCEywiKEEEKIDq9VCcuiRYtITk7GYDCQkpLC5s2bT3vt559/zvTp04mMjCQ4OJgJEyawevXqJtcsWbIElUp1yqOurq414QkhhBCii2lxwrJ8+XLmz5/PE088wZ49e5gyZQoXX3wxWVnNnxy7adMmpk+fzqpVq0hLS+Pcc8/lsssuY8+ePU2uCw4OJj8/v8nDYDC07l0JIYTwqLy8PB599FFGjRqFyWRCr9cTExPD0KFDueGGG1iyZAkWi6VJG3d2zdjtdl5++WXGjBmD0WgkJCSE0aNH8+KLL2Kz2cjMzGz8ErtkyZJT2t96662oVCp69uwJQEVFBU8++SSDBw8mMDCQkJAQpk6dyocffnjG91ddXc3y5cu54447GDFiBCaTCZ1OR2RkJOeccw7PP/88VVVVLf1jEx7U4jUsL7zwArfffjt33HEHAC+99BKrV6/m9ddfZ8GCBadc/9JLLzX5/T//+U++/PJLvv76a0aOHNn4vEqlIiYmpqXhCCGE8LLNmzczc+bMUxKSwsJCCgsL2b9/Px999BERERHMnDnT7X4rKiq48MIL2bFjR5Pn09LSSEtL46OPPuKNN95wu7+ffvqJiy+++JS1M5s3b2bz5s2kpqby2muvNdv20ksvZePGjac8X1JSwqZNm9i0aROLFi1i1apVDBgwwO2YhOe0KGGx2WykpaXx6KOPNnl+xowZbN261a0+XC4XlZWVhIWFNXm+qqqKpKQknE4nI0aM4O9//3uThEYIIUT7s1qtXH/99VgsFoxGI/fccw/nnnsuUVFR2O12Tpw4QWpqKp999lmL+77++usbk5UJEyZw//3307dvX4qLi/nggw/48MMPmTt3rlt91dTUcPnll1NaWspf/vIXLrjgAoKCgtizZw9PP/00OTk5LFy4kMsuu4wLL7zwlPYOh4OhQ4dy+eWXM3r0aOLi4lAUhRMnTrBixQo+/vhjMjIyuPLKK0lPT5cZAB9oUcJSUlKC0+kkOjq6yfPR0dEUFBS41ce///1vqqurue666xqfGzBgAEuWLGHo0KFYLBZefvllJk2axN69e+nbt2+z/VitVqxWa+Pvf5v5CyGEaLstW7aQl5cHwNKlS08ZQRk3bhzXXXcdzz33HDU1NW73u2LFisb1jFdccQWfffYZGo2m8fWLLrqIkSNH8vDDD7vVX3FxMXa7ndTUVAYPHtz4fEpKCtOmTWPo0KHU1dWxaNGiZhOWxYsXN/t50/D+br/9di688EIOHz7Mhx9+yO233+72exWe0apFt789QlpRFLeOlV62bBlPPfUUy5cvJyoqqvH58ePHc9NNNzF8+HCmTJnCxx9/TL9+/Xj11VdP29eCBQswmUyNj8TExNa8FSFEV6YoYKvuHg9F8cof4a+/jE6dOvW012m1WoKDg93ut2Gqx2Aw8MYbbzRJVho89NBDjBo1yu0+n3nmmSbJSoM+ffpw5ZVXApx2k8jpvhw3uOCCC7j88ssB+OKLL9yOSXhOi0ZYIiIi0Gg0p4ymFBUVnTLq8lvLly/n9ttv55NPPuGCCy4447VqtZoxY8Zw5MiR017z2GOP8dBDDzX+3mKxSNIihGjKXgP/jPN1FO3j8TzQB3q829jY2MZfL168mAceeKDNfTocDjZt2gTUj6Sc7vNDpVIxZ84cdu/efdY+VSoVN95442lfT0lJ4aOPPqK8vJyKigpCQkLO2F9xcTEVFRVNRvIjIyMB2Lt371njEZ7XooRFr9eTkpLC2rVrmTVrVuPza9eu5Yorrjhtu2XLlnHbbbexbNkyLr300rPeR1EU0tPTGTp06Gmv8fPzw8/PryXhCyGEaKHJkyfTq1cvjh8/zvz58/nwww+ZNWsW55xzDqNHj0av17e4z2PHjlFbWwvUJxJnMnr0aLf6jIiIIDw8/LSv/3rdZGVlZbMJy5YtW3jllVdYt24dZWVlp+2rpKTErZiEZ7V4l9BDDz3EnDlzGD16NBMmTODNN98kKyurcWHUY489Rm5uLv/973+B+mTl5ptv5uWXX2b8+PGNozP+/v6YTCYAnn76acaPH0/fvn2xWCy88sorpKens3DhQk+9TyFEd6QLqB956A50Ad7pVqfj66+/5pprruHQoUPs3LmTnTt3AvX/jp9zzjnMmTOH2bNnNzut05zy8vLGX/96eUBzGkY1ziYg4MzvX63+ZQWE0+k85fWnnnqKp59+2q17NSRbon21OGGZPXs2paWlPPPMM+Tn5zNkyBBWrVpFUlISAPn5+U1qsrzxxhs4HA7mzZvHvHnzGp+/5ZZbGvfUV1RUcNddd1FQUIDJZGLkyJFs2rSJsWPHtvHtCdF9aaos6CrKqItLBLV7HyRdjkrllWmS7mbQoEHs27ePr7/+mq+//pqNGzc2jpJ8++23fPvtt7zwwgusWrXqrAlIR7R+/frGZKVXr148/PDDTJ48mR49ehAUFNSYiD355JP8/e9/92Wo3VqrzhK69957uffee5t97beFfTZs2HDW/l588UVefPHF1oQihGiG/4mj9H7+CXSWCpyGAGp69aO6zyCq+wykuvcAlm5vvtCjO24c18ODkYrOQqPRcOWVVzYuXs3Pz+ebb75h0aJFjXVT7r77blasWHHWvkJDQxt/XVRUdMZri4uL2xS3O9566y0AQkJCSE1NPW3S9euRIdH+5PBDIbqYwMP76P3ik2hqa1BUKjR1NRgPpmM8mN54TV1sAtW9B1LdZxBVA4djjYn3XcCiU4qNjeW2225jzpw5jB8/nt27d/O///2P2tpa/P39z9i2d+/eGAwG6urq2LVr1xmvPdvrnnDgwAEAzjvvvDOOELVHLOL0JGERogsJTt9O8mv/QG23Udl/KBkP/A1daTGBxw4ReLT+YSjIwZBf/wj/YS2KSk3mPY9SMe4cX4cvOiGdTsc555zD7t27cTgcVFRUnDVh0Wq1TJ06lTVr1rB69WoKCwub3SmkKArvv/++t0Jv5HA4AM5YRyY9PZ1t27Z5PRZxepKwCNFFhKZ+R9Jbz6NyOjGPGEfGvCdQ9H44A43U9ehF6bn1O/Q0VZbG5MV4MJ3AY4dIXPIyNb36Y4uU4zFEU5s3byY2NpY+ffo0+7rNZmssaR8UFOT2Itm7776bNWvWUFdXx913331K4TioPwrGnS3NbdW3b19++uknfvjhB44fP06vXr2avF5cXMxNN93k9TjEmbWqcJwQomOJWPcVSW88i8rppGzCeRy/70kUffPb/p1BwVhGjCP/mlv5+Yl/U9VnINqaapLeeBaa2T0hurf169fTv39/pk2bxnPPPcfq1avZvXs3W7ZsYfHixUyZMqUxqbjjjjvQat37HnzVVVcxY8YMAL788svGoqG7d+9m9erVzJkzh4cffrjJ5gt3CpS2xs033wzUHxFzzjnn8Nprr5GamsrWrVt5/vnnGT58OAcPHmTChAleub9wj4ywCNGZKQrRXy0l7vP6MgJF068g98a5oHbzu4hGw4m5jzLgr/cQdOQAMV8tpWDWHC8GLDojl8vFxo0bmz0csMFVV13V7AG4Z7J8+fLGww9TU1NJTU1t8vrIkSNZtGhRYy0Wb53fc8011/D73/+exYsXk5OTw3333dfkdY1Gw4svvkh5efkpMYr2IyMsQnRWLhfxS99oTFbyr7yJ3N/d436ycpItMobsW+4HIObLpQT+vN/joYrO65FHHmHVqlU8+OCDjB8/nh49emAwGDAYDPTs2ZPZs2ezcuVKPvvssxYnFCEhIfzwww+89NJLpKSkEBQUhNFoZMSIESxYsICtW7c2mSZqqN3lDe+++y7vv/8+U6ZMwWg04ufnR1JSEnPmzGHr1q0eqfAr2kalKF46gKKdWSwWTCYTZrO5RedZCNEZKQ4HW+Y+RPgPawHI+d1cimfMOkurM+vx5nOEb1mHLTyKn/7+Os7AoGav6wjbmuvq6sjIyCA5OVlOze3iPvjgA+bMqR/1O3r0KL179/ZxROJ0Wvtz6e7nt4ywCNHJKC4XuQ8+WL/DR63mxJ0PtzlZAciZMw9rZCz60iISl7zstcP0hGiJZcuWAfUVb3+7GFZ0L5KwCNHJWFauonLtOlw6Hcfve5KyydM90q/LP4DMex5F0WgI3bGJsJOjN0J4S25u7hnL3L/zzjusWrUKqF8Y661Ft6JzkIRFiE5Esdspfu1VAAouvxHLKM/uWqjpPYD8q24BIOH9hfgV5Hq0fyF+be3atSQlJXH//ffz+eefk5aWxs6dO/noo4+YNWsWd9xxBwDR0dE8+uijPo5W+JrsEhKiE6n44gvsJ7LQhIV5ZBqoOYWXXINxfxrGQ3vp+foCfv7riyhanVfuJURxcTGvvvoqr776arOvx8bGsnLlSiIiIto5MtHRyAiLEJ2Ey2ajZNHrAITfdScuw5mribaaWsOJu/6EI9BIQOYRYj97zzv3Ed3ezJkzef3117niiivo168foaGhaLVaIiIimDJlCs8++yyHDx9m5MiRvg5VdAAywiJEJ1Hx0XIc+floo6MJveEGSC/02r3sYZFk3fYgvV59huhVn1A5ZBSVg0d57X6ie4qIiGDu3LnMnTvX16GITkBGWIToBFw1NZS88QYAEffcg9qv+Sq2nmQePYmScy8BIOnN59BUmr1+TyGEOB1JWIToBMo++BBnaSm6xERCrr6q3e6bc8Pd1MUmoqsoI3aF9w+hE0KI05GERYgOzmmxUPrOOwBE/mEeKl37LYBV/AzkzLkXgLAt61HXnX4LqhBCeJMkLEJ0cGVLluAym9H36U3wzJntfv/KQSOpi0lAU1dDaOp37X5/IYQASViE6NAcZWWULanfpRN53/2ofnWuSrtRqSg579L6GNZ/TRc5zUMI0clIwiJEB1b61tu4amowDBqEcYZnKtq2Rtnk6bj0fvhnZ1C7J91ncQghui9JWITooOyFRZQvXQpA5PwHfFqW3BlopHzcOQCUnzzbRQgh2pMkLEJ0UCX/eR3FasV/1CgCp0zxdTgUn38ZAJXffoujrMzH0QghuhspHCdEB2TLyaHik08B34+uNKhN7kd1cj8CM35mw0vvUnTpdS3u48ZxPbwQmRCiO5ARFiE6oJLXFoLDQeDEiQSOHevrcBqVnFe/Syni+5Xgcvk4GiFEdyIJixAdjPXYMcxffQXUj650JOXjzsEREIRfcQHB+9J8HY4QohuRhEWIDqb4lVfB5SLo/PPxHzbM1+E0ofgZKJtcv1sp4ruvfRyNEKI7kYRFiA6k7vBhKlevBpWKyPvv93U4zWqoyRK8dwe6Eu8dwCiEEL8mCYsQHUjF8uUAGGfMwNC/n4+jaZ41NpHKQSNQKQoRG1b5OhzRDp566ilUKpXPFn/feuutqFQqevbs6ZP7i45BEhYhOgiX1Yp5ZX0CEHLttT6O5syKTy6+Dd/4LSqH3cfRCCG6A9nWLIQPLd2e1fjrkO0bSTabsYVF8JUmDn71WkdjHjkBW0g4+opSTLu2UDF+mq9DEkJ0cTLCIkQHEfbDWgDKJl0Aah+cGdQSWi2l0y4G6s8XEkIIb5OERYgOQFdW0rhNuGzyDB9H457Scy5GUasJ+nk/hpxMX4cjhOjiJGERogMITV2PSnFR1Xcw1ph4X4fjFntYBOZREwCI+O5/Po5GCNHVScIihK8pCuGb1wBQOqVzjK40aKh8G7ZlPeq6Wh9HI9pLRUUFf/vb3xg8eDBBQUGEhYUxbdo0Pvzww7O2tdlsvPnmm1x66aXEx8fj5+dHVFQUKSkp/OEPf2Dz5s0oitLimNavX4/RaESlUtGvXz9OnDjRmrcmOjBZdCuEjwUc+wlDfg4uvR8VY31/yGFLVA4cQV1MAoaCHEJTv6P03Et9HZLwsoyMDKZPn86xY8can6uurmbjxo1s3LiRL774gmXLlqHVnvrxkp6ezlVXXUVGRkaT54uLiykuLmb37t0sXLiQjIyMFm1hXrFiBTfccANWq5URI0awevVqoqKiWv0eRcckIyxC+FjD6ErF6Mm4/AN9HE0LqdWUnExSItd/Da34Ziw6l9mzZ5ORkcHcuXNZt24dO3fu5J133qFfv/q6QZ9++ikPPfTQKe0OHjzIlClTGpOVWbNmsXz5cnbu3Mm2bdt47733uOmmmwgMbNnPwOLFi7n22muxWq1MmTKFDRs2SLLSRckIixA+pLJZCd2+Aeh800ENyiZfQNyni/HPziDw6EGq+w72dUjCi3bu3MnSpUu54YYbGp8bPXo01157LVOmTGHv3r0sXLiQO++8k6FDhzZec9NNN1FVVYVarebDDz/k+uuvb9LvuHHjuPnmmyktLSUgIMCtWJ5//nn+9Kc/AXDJJZfw6aef4u/v74F3KToiSViE8KGQtC1oamuwRkRTNaBjnRvkLmdQMOXjpxG+eQ0R363sUAmLoijUOrrH2hp/rX+7VKKdOXNmk2SlgdFo5M0332TcuHG4XC7+85//sHDhQgBWr17Nnj17ALjvvvtOSVZ+LTw83K04Hn/8cRYsWADADTfcwHvvvYdOp2vp2xGdiCQsQvhQ2OZf117pvDO0pedcRPjmNZj2pKJy2FG0HeODo9ZRy7il43wdRrvYfuN2AnTujUy0xe9///vTvjZ27FgGDx7MgQMHWLduXePzK1eubPz1gw8+2Kb7u1wu7r33Xt544w0A7r33Xl577TWfHRsg2k/n/RdSiE7OnpeH8WD9t86GE5A7q+reA7GbQtHU1hB06EdfhyO8aMyYMWd8fezYsQAcOXIEm80G0Di60qNHD5KSklp9b4fDwQ033NCYrDzxxBMsXLhQkpVuQkZYhPAR81dfoVIUKgcMwxYV6+tw2katxjxiPBEbv8G0J5XKoSm+jgionybZfuN2X4fRLvy17bN242wLWqOjo4H66bjy8nKio6MpKSkBIDa2bX/Pc3Nz+fjjj4H6NSv/+Mc/2tSf6FwkYRHCBxRFoWLFCgDKOuli298yp0ysT1h2p5IzZx50gG+9KpWqXaZJupOzjWacqYZKW0dCoqOj6dOnD1u2bGHVqlX8+9//5o9//GOb+hSdh0wJCeEDtbt3Yz+RhdPPQMXoyb4OxyMqB47A6WdAX16Cf+YRX4cjvKSwsPCMrxcVFQH1yUloaCgAERERAOTl5bXp3gaDgW+++YYJE+orLD/88MO89NJLbepTdB6SsAjhAxWff17/37FTcRm6xjZMRa/HMqx+fUNI2lYfRyO8ZefOnW693rdvX/R6PQCjRo0CICsrq80VaI1GI99++y3jxtUvpn7wwQd57bXX2tSn6BwkYRGinblqaqj85lsASjvJQYfuMo+s/+Zr2pPq40iEt7z33nunfW3Xrl3s378fgAsuuKDx+csuu6zx1y+++GKbYwgODmb16tWNC4Dvu+8+Xn/99Tb3Kzo2SViEaGeWNWtw1dSgS0ykuv8QX4fjUZYRY1HUavxzMtEXtm34X3RMX331VePC11+rqqrirrvuAkCtVnP33Xc3vnbBBReQklK/EPvVV1/lo48+Om3/ZWVl1NaevXaOyWRizZo1jf3OmzePt956q0XvRXQukrAI0c7MK74AwDTryg6xMNWTnIHGxgJ4MsrSNY0ePZobb7yRefPm8f3335OWlsbixYsZPXp04/blefPmMWxY00KI77//PkFBQbhcLm644QauvvpqPvnkE9LS0tixYwdLly7l97//PUlJSWddJ9MgJCSEtWvXMnLkSBRF4e677+bdd9/1+HsWHYPsEhKiHdlycqjZvh1UKkKuvBKyHb4OyePMIydgPJiOaXcqxRdd7etwhId9/PHHnH/++SxatIhFixad8vrVV1/NCy+8cMrzAwcOZMOGDcyaNYvs7Gw+//xzPj+5lqstQkNDWbt2Leeffz579+7lzjvvRKPRcMstt7S5b9GxyAiLEO3I/MWXAAROGI8uLs7H0XhHxaj6dSxBPx9AU2n2cTTC05KTk0lLS+Pxxx9n4MCBBAQEYDKZmDp1Kh988AGffvppsyc1A6SkpHD48GFeeeUVzjvvPKKiotDpdMTExJCSksIDDzxAampqi05qhvpy/uvWrWPo0KG4XC5uu+02PvjgAw+8W9GRqJQzbZrvRCwWCyaTCbPZTHBwsK/DEeIUisvFsekzsOfmEvfcs5guu4yl27N8HZZX9P/rvQRkHePEHX9sUmfmxnE9PNJ/XV0dGRkZJCcnYzAYPNKnEKJtWvtz6e7nt4ywCNFOanbuwp6bizooCOOvdlB0ReZREwEw7ZbtzUIIz5CERYh2Yv76KwCCL74ItX/XqL1yOuaT00LB+3ejstb5OBohRFcgCYsQ7UBxOKhatx6A4Esv9XE03lfboxfWiGjUNivBB3b7OhwhRBcgCYsQ7aBm506cFRVoQkMJGD3a1+F4n0r1SxG53bK9WQjRdrKtWYg2cmfhbMJ/PyMSKBw2jl1p3aOgmjllAlFrvyA4fTu4nKDW+DokIUQnJiMsQniby0lI2hYAKsZM8XEw7aeq31AcgUHoKs0EHjno63CEEJ2cJCxCeFngzwfRWSpwBAZROXCEr8NpPxoNluH1B9TJtJAQoq1albAsWrSocZ91SkoKmzdvPu21n3/+OdOnTycyMpLg4GAmTJjA6tWrT7nus88+Y9CgQfj5+TFo0CBWrFjRmtCE6HBCdtX/fJhHToDTFNTqqhqKyIXs3gpdo+STEMJHWpywLF++nPnz5/PEE0+wZ88epkyZwsUXX0xWVvPz+Js2bWL69OmsWrWKtLQ0zj33XC677LLGMycAUlNTmT17NnPmzGHv3r3MmTOH6667ju3bt7f+nQnREbhchOz8AYCKMZN9HEz7qxw6GpdOh19RPobcE74ORwjRibW40u24ceMYNWpUk6O8Bw4cyJVXXsmCBQvc6mPw4MHMnj2bJ598EoDZs2djsVj45ptvGq+56KKLCA0NZdmyZW71KZVuha+cadFt4JED9PvHQzgNAex7bTmKTt+OkXUMvV74K6a9O8i7+hbO/3+PeqRPqXQrRMfToSrd2mw20tLSmDFjRpPnZ8yYwdat7lW0dLlcVFZWEhYW1vhcamrqKX1eeOGFbvcpREcVsqt+dMU8cny3TFbglyJyso5FCNEWLUpYSkpKcDqdREdHN3k+OjqagoICt/r497//TXV1Ndddd13jcwUFBS3u02q1YrFYmjyE6FAU5VfTQd1nd9BvmUeMR1GpCMz4GXthoa/DEUJ0Uq1aAahSqZr8XlGUU55rzrJly3jqqaf48ssviYqKalOfCxYs4Omnn25B1EK0r4CMn9GXFuH0M2AZmuK7QBQFvd1CYG0egXV5BNbmE1CbT2BtPoF1eagUF9uG/p2K4P5eub0jJIzq3gMIOnqIqu++I/SGG7xyHyFE19aihCUiIgKNRnPKyEdRUdEpIyS/tXz5cm6//XY++eQTLvjNwW8xMTEt7vOxxx7joYceavy9xWIhMTHR3bcihNeF7KzfHWQZPhZF79e+N1cUBh5/l+S8rwmszUfnrDnj5efuvIt149+jMrCnV8Ixj5pI0NFDVK6XhEUI0TotmhLS6/WkpKSwdu3aJs+vXbuWiRMnnrbdsmXLuPXWW1m6dCmXNnOOyoQJE07pc82aNWfs08/Pj+Dg4CYPIToMRWlcv+KL6aDeOZ8x8ueXCKk61pis1OrDKDUNIStmOoeSb2HXwEfZNOolyoIH4m8r47wddxJQm++VeBrWsVRv346zstIr9xBCdG0tnhJ66KGHmDNnDqNHj2bChAm8+eabZGVlMXfuXKB+5CM3N5f//ve/QH2ycvPNN/Pyyy8zfvz4xpEUf39/TCYTAA888ABTp07lX//6F1dccQVffvkl69at44cffvDU+xSiXflnHcevKB+XTo9l2Jh2vXeY+QCjD/wTgAO9bud4wpXUGGJwappftV8cMpILtt+KqTqD83bcybrxS6jzi/BoTNbYROpiEzHkZ1O9eTPBl1zi0f6FEF1fi+uwzJ49m5deeolnnnmGESNGsGnTJlatWkVSUhIA+fn5TWqyvPHGGzgcDubNm0dsbGzj44EHHmi8ZuLEiXz00UcsXryYYcOGsWTJEpYvX864ceM88BaFaH+N00HDxuAy+LfbffU2M5P3PIRGsZMTNY29/e6nMrDnaZMVAKtfGN+NeZMq/ziCa05w7s670dnNHo+tYZSl8uSp1UII0RItrsPSUUkdFuErp9RhURQGPnYHhvwcMuf+mfIJ57VPIIqLaWnziCv+gcqARL6d+BF2nfs/C0HVWUzffgv+1hKKQ4bz/Zg3cWgDPBZewNGD9P/7g6iDgui3LRVVG6r+Sh0WITqeDlWHRQhxdobcExjyc3BpdZhHtN8o4ZCjbxBX/AMOtR+bR77YomQFoCqwB9+NeQOrLpjIir1M2f0AaqfVY/HV9OqPxmTCVVVF7Y/7PNavEKJ7kIRFCA9rqL1SOWQULv/AdrlnbPEPDD1aX3165+C/tnqLstnYjw2jX8eu8Se2dBuT9j6CyuXwTJBqDQETTi6+laKQ3UbPnj1RqVTceuutvg7Fp5566ilUKpVbJUC85dZbb0WlUtGzZ0+fxdAWkrAI4WENhx221+6ggNo8Ju59FBUKRxKvJSPhijb1VxoyjI0pr+FU60ks/I7x+54ExeWRWAMnnkxYtmzxSH9CiO5DEhYhPMgvPxv/nEwUjQbzyPFev5/aaWXKnofws5spNQ0mbeCfPdJvUfhYfhjxb1wqDcl5XzP64AKPnLYcOHESALU//ijbm4UQLSIJixAe1FB7pXLQSJyBRq/fL+XQvwg3H8CqM7F55Au4NJ4rUJcbPY3UYf8PBRX9sj6iX5Z7B5GeiT4hHn1SEjid1OzY4YEoRUeXmZmJoigsWbLE16GITk4SFiE8qPHsoNGTvX6v5Jwv6Zv9CQoqtg7/FzX+cR6/x4m4S9kz4I8ADDr2Nmqnrc19Bk6qLwhZvUXWsYiOo2F9R3dfa9ORScIihIfoC/MIOHEURa2mIuX0VZo9IcRymDEH/g7Avj73kB85yWv3+jnpRqoN0QRYi0nO/bLN/QWerGAtC2+FEC0hCYsQHtIwHVQ1YBhOo8lr99E465iy50G0Lit5kZPZ3+dur90LwKXW8VPPWwAYlLEYleJsU38B48aBRoMtMxN7bq4nQhTtIC8vj0cffZRRo0ZhMpnQ6/XExMQwdOhQbrjhBpYsWYLFYjmlnTu7hOx2Oy+//DJjxozBaDQSEhLC6NGjefHFF7HZbGRmZjbusOkqU0sVFRX87W9/Y/DgwQQFBREWFsa0adP48MMP3Wpvs9l48803ufTSS4mPj8fPz4+oqChSUlL4wx/+wObNm2lNmbX169djNBpRqVT069ePEydOtLgPb2l95SYhRBONZwd5eTqoZ95KjDXZ1PhFsXXY/4HK+987jiZezeBjb2KsySaxYC1ZsRe1ui+N0Yj/sGHU7tlD1dathF57rQcjFd6wefNmZs6ceUpCUlhYSGFhIfv37+ejjz4iIiKCmTNntqjviooKLrzwQnb8Zk1TWloaaWlpfPTRR7zxxhttfg8dSUZGBtOnT+fYsWONz1VXV7Nx40Y2btzIF198wbJly9Ceprhieno6V111FRkZGU2eLy4upri4mN27d7Nw4UIyMjJatIV5xYoV3HDDDVitVkaMGMHq1auJiopq1Xv0BhlhEcIDdCWFBB4/jKJSUZHivekZFIX+mR8A8FPyzdj03hvJ+TWnNoCfk24EYPCxt9u8Y0imhToPq9XK9ddfj8ViwWg08sgjj/DNN9+QlpbGtm3bWL58OfPnzycxMbFV/V9//fWNycqECRNYtmwZu3bt4ptvvuF3v/sdO3bsaDyrrquYPXs2GRkZzJ07l3Xr1rFz507eeecd+vXrB8Cnn37KQw891GzbgwcPMmXKlMZkZdasWSxfvpydO3eybds23nvvPW666SYCA1tWA2rx4sVce+21WK1WpkyZwoYNGzpUsgIywiKER4Tsqq8rUtVvCI6QMK/dJ7psByFVR7Fr/DmWMMtr92nOz0k3MjBjMaGVh4kt+YH8yNbXmQmcNJGShQup2ZqK4nSi0mg8GKnwpC1btpCXlwfA0qVLTxlBGTduHNdddx3PPfccNTU1Lep7xYoVrF69GoArrriCzz77DM2v/i5cdNFFjBw5kocffriN76Jj2blzJ0uXLuWGG25ofG706NFce+21TJkyhb1797Jw4ULuvPNOhg4d2qTtTTfdRFVVFWq1mg8//JDrr7++yevjxo3j5ptvprS0lIAA947WeP755/nTn/4EwCWXXMKnn36Kv3/7nYHmLklYhPCAhukgs5engxpGVzLiL29x6f22sulNHE28loGZ/2XwsbfblLD4Dx2KOjAQp9lM3cFD+A8d4sFIf6EoCkptrVf67mhU/v5eqaJaUFDQ+OupU6ee9jqtVtvic9wapnoMBgNvvPFGk2SlwUMPPcTSpUvZvXt3i/ruyGbOnNkkWWlgNBp58803GTduHC6Xi//85z8sXLiw8fXVq1ezZ88eAO67775TkpVfCw8PdyuWxx9/nAULFgBwww038N5776HT6VrydtqNJCxCtJG2opTAowcBqBjtvemgoOps4os2AnA46Xdeu8+Z/JR8M/1OLCWqfDcR5XsoCR3Zqn5UOh0B48ZR9d13VG/d6r2EpbaWw6NSvNJ3R9N/dxoqN79Rt0RsbGzjrxcvXswDDzzgkX4dDgebNm0C6kdSoqOjm71OpVIxZ86cLpWw/P73vz/ta2PHjmXw4MEcOHCAdevWNXlt5cqVjb9+8MEH2xSDy+Xi3nvvbUwa7733Xl577TWfHh1wNrKGRYg2Mu1ORaUoVPfqjz0s0mv36Ze1FBUKeRGTqAxK9tp9zqTWEE1GfH3p/8HH3mlTX431WGQdS4c2efJkevXqBcD8+fMZO3YsCxYsYOvWrdhsra/Lc+zYMWpPjn6lpJw5qRw9enSr79Ngw4YNjTuNmnu89957ALz33ntnvC4zM7PNsYwZM+aMr48dOxaAI0eONPkzbhhd6dGjB0lJSa2+v8Ph4IYbbmhMVp544gkWLlzYoZMVkBEWIdosJK3+A9eboytaexW9s1cAcLjnTV67jzsO9bqV3jmfE1+8EVPlz5iN/VrVT8PC29rdu3HV1qL2wpy5yt+f/rvTPN5vR6Ty0poDnU7H119/zTXXXMOhQ4fYuXMnO3fuBMDf359zzjmHOXPmMHv27GandE6nvLy88ddnW9wZGem9LwK+cLb32zDapCgK5eXljb8vKSkBmo56tUZubi4ff/wxUL9m5R//+Eeb+msvkrAI0QZOsxnjoXQAzF7cHdQr90t0zmrMgT3Jj/BuUbqzqQzsSVbMdJIK1jD42DtsHfEvt9su3Z71y28UNYPDo9CXFrHyg1VUDjvzt84bx/Vocawqlcor0yTdzaBBg9i3bx9ff/01X3/9NRs3bmwcIfn222/59ttveeGFF1i1alWH21nSYMyYMezbt++0r//lL3/hyy+/5IorrjjjB3h8fHybYznbSMbZ6qe0dSQkOjqaPn36sGXLFlatWsW///1v/vjHP7apz/YgCYsQbVC1YQMqp5Pa+CSsMQneuYniov+JpQD8nPS7dqm7cjYHe91BUsEaeuR/y95+f6A6oBVbWlUqLINHEbHpW4L37z5rwiJ8S6PRcOWVV3LllVcCkJ+fzzfffMOiRYsaa6bcfffdrFixwq3+QkNDG39dVFR0xmuLi4tbHXeDwMBAhgw5/VqpkJCQxv+e6TpPKCwsPOM28IY/D5VK1eTPKSIiAqBx11ZrGQwGvvnmGy688EJSU1N5+OGH0Wg0zJ8/v039epvv/+UTohOzrF0LeHc6KK54M8aaLGxaIxnxl3vtPi1RbhpIXsQk1LgYdHxJq/upHFK/aNd4oOssqOwuYmNjue2220hNTWXUqFEA/O9//2tcl3I2vXv3xmAwALBr164zXnu21zubhim1s73et29f9Hp94/MNf85ZWVltrkBrNBr59ttvGTduHFC/iPe1115rU5/eJgmLEK3kqqmh+of6+ivmFO9tZ27Yynw08Woc2o4zvXGw1+0A9Mr9AoO1pFV9VA4aiaJS4Z+Tibai1JPhiXai0+k455xzgPrFnBUVFW6102q1jdukV69eTWFhYbPXKYrC+++/75FYO4qGBb7N2bVrF/v37wfgggsuaPLaZZdd1vjrF198sc1xBAcHs3r16sZFwPfddx+vv/56m/v1FklYhGilqh9+QKmrwxoZQ22PXl65h6nyKLGl23Ch5uekU+s2+FJR2GhKQoahcdnon9m6DxSn0URtUh8AjAf2eDI84SGbN2/m6NGjp33dZrOxcWP9dvugoKAWLZC9++76c7Dq6uq4++67cTpPPafqhRde6FJbmgG++uqrxkWvv1ZVVcVdd90FgFqtbvzzaXDBBRc07qh69dVX+eijj057j7KyMrdGu0wmE2vWrGnsd968ebz11ltuv5f2JAmLEK1Uuba+RkJFyiTw0nbAfifqD0LLiT6PGv84r9yj1VQqDvS6A4B+J5ajs5968J07LIPrh7mD93etD6WuYv369fTv359p06bx3HPPsXr1anbv3s2WLVtYvHgxU6ZMaUwo7rjjjtOef9Ocq666ihkzZgDw5ZdfMmXKFD7++GN2797N6tWrmTNnDg8//HDjNl9o+4LTjmD06NHceOONzJs3j++//560tDQWL17M6NGjG7cuz5s3j2HDhp3S9v333ycoKAiXy8UNN9zA1VdfzSeffEJaWho7duxg6dKl/P73vycpKem0o1a/FRISwtq1axk5ciSKonD33Xfz7rvvevQ9e4IsuhWiFRSbjaoNGwDv7Q7S28wk5/4PgMM9fVMo7mxyo86hIqgPIVVH6Zu1nIO972xxH5VDRhGzcnn9CIuieC35E63ncrkaD+Y7nauuuqqxYmpLLF++vPHww9TUVFJTU5u8PnLkSBYtWtRYi6Vh3Utn9vHHH3P++eezaNEiFi1adMrrV199NS+88EKzbQcOHMiGDRuYNWsW2dnZfP7553z++edtjik0NJS1a9dy/vnns3fvXu688040Gg233HJLm/v2FBlhEaIVqrfvwFVZiSYyguo+A71yj97Zn6J11VFmHEBxaAet1qpSc7DXbQAMyPwAjbPlZfCr+w7CpfdDZy7DkJPp4QBFWz3yyCOsWrWKBx98kPHjx9OjRw8MBgMGg4GePXsye/ZsVq5cyWeffdaqZCIkJIQffviBl156iZSUFIKCgjAajYwYMaKxQN2v67uYTO1z4Kc3JScnk5aWxuOPP87AgQMJCAjAZDIxdepUPvjgAz799NMzjlSlpKRw+PBhXnnlFc477zyioqLQ6XTExMSQkpLCAw88QGpqaotOaob6cv7r1q1j6NChuFwubrvtNj744IM2vlvPUSln2/DdSVgsFkwmE2azucXnWQjRUvlP/o2Kjz8m5PrZfH/xbR7vX+Wyc/nGiwmsKyR16N/JSLjS4/fwFJXLzmWbZhJUm8euQY81nurcEr2ff4LgfbvIueEuii+6utlrfl2Hpa6ujoyMDJKTk7vEN25xZh988AFz5swB4OjRo/Tu3dvHEYnmtPbn0t3PbxlhEaKFFKeTyvXrATBOn+6VeyQWriewrpA6fRgnYi/2yj08RVHrOJR8KwB9Tyyvn9ZpIcsQWcciTm/ZsmVAfcXbhmMCRPcjCYsQLVS7Zw/O0lLUwcEE/moxoCf1z6xfbHukx3W4NH5euYcnZcbNxKnSYao+jqnqSIvbV55ceBt0eB+qNpxPIzqf3NzcM+5meeedd1i1ahUAN998c5dYdCtaRxIWIVqo8mSxOOO501B54Rj2MPMBIivScaq0HOkx2+P9e4NdZyQvsr4WTVL+ty1uX5fQE7spDLXN2njytege1q5dS1JSEvfffz+ff/45aWlp7Ny5k48++ohZs2Zxxx31O9Gio6N59NFHfRyt8CXZJSRECyiK0rid2VvTQQ2F4rJiL6LOL8Ir9/CGrNiLSCz6nqT8b/mx730t2+2jUlE5eCRhW9dj3L+bqkEjvBan6HiKi4t59dVXefXVV5t9PTY2lpUrVzaWphfdk4ywCNECdQcPYs/LQ+XvT+Akz29nNlhL6HFyhMLXpzK3VG7UNBxqA8aabEItLR8lqRxcX6Y/WMr0dyszZ87k9ddf54orrqBfv36Ehoai1WqJiIhgypQpPPvssxw+fJiRI0f6OlThYzLCIkQLNEwHBU2Zgtrf3+P998xbiUZxUBwynDLTYI/3700ObQC5UVNJKlhDUv5qylsYf8PCW/8TR9FUmnEaO//2VXF2ERERzJ07l7lz5/o6FNHByQiLEC3g7emgxIL6hCgz7lKv9O9tWbEXASfXsbRwt5AjJJzahJ6oFAXjQSnTL4RoShIWIdxkPX4c27FjoNMRNO0cj/fvX1tAZMVeFFTkRJ/v8f7bQ17kFOyaAALr8omo2Nvi9g27hYz7JWERQjQlCYsQbmoYXQkcPx6N0ejx/hML62u7FIeOpNYQ5fH+24NTYyAn+lygdbuFGhKW4AO7W1XPRQjRdUnCIoSbGrczT7/gLFe2To+CNQBkR3un//bSUOgusWANKuXU03fPpGrAUFxaHfrSIvwKc70RnhCik5KERQg32PPyqNu/H1QqjOd7frrGUFdMZHn9NEh2TOdOWAoiJmLTGgmwFhNZ1rIdPy4/Q+PZTMYDZ58W6iIniwjRJXj751ESFiHcULmufromICUFbXi4x/tPLFyPCoUS0zBq/GM93n97cql1jUlXq6aFTtZgCTp0+jUwanX9P10ul6vlAQohvMLprB9Rbfj59DRJWIRwg7engxIL69fHZMV4Z/dRezsRU79bKLFgLSqXo0VtG4rGGQ/thdMkJDqdDo1GQ3V1dZviFEJ4Tk1NDRqNBp0XKoCDJCxCnJWjtJSatDQAjBd4PmHxs5YRVboT6PzTQQ0Kw8dSpwvFYC8nunRHi9pWJ/fHafBHW2XBPzuj2WtUKhVGoxGLxSLTQkJ0AIqiYLFYMBqNXjvvSRIWIc6i8rvvwOXCMHgwuvh4j/efUPQdalyUBg+iOiDB4/37gqLWkn1ytCgp/5uWNdZqqeo/FOCM9VhMJhN2u528vDxJWoTwIUVRyMvLw263YzJ5r+CjVLoV4iwq13m3WFyPk8XisrvIdFCDE7EX0Tf7YxIL17PT9SQutfvDxFUDh2Pau4Ogg+kUXXxNs9cEBASQkJBATk4OtbW1BAcHExAQgEajkRN9hfAyRVFwOp3U1NRgsViw2+0kJCQQEBDgtXtKwiLEGTjNZqq3pgLeWb+it1UQXbod6HoJS3HYKGr8IgmwFhNTspW8KPeL7VUOqj83JujwPnA4QNv8P1VGo5GkpCTMZjMVFRWUlpZ6JHYhhHs0Gg1GoxGTyeTVZAUkYRECgKXbs5p9PmzTapLsdmoTkvmsRAclzV/XWglF36NWnJQb+1EZmOTRvn1NUWnIjplB/xMfkpT/TYsSltrEZBxBwWirLAQeP0x1v9OfSxQQEEBAQAAxMTHY7XbZOSREO1Gr1eh0unYb0ZSERYgzCN2+EYDycVO90n9iF50OanAi9iL6n/iQhMLv0TjrcGoM7jVUq6kcOJzQnZsJOpR+xoSlgUqlQq/XtzFiIURHJYtuhTgNraWicdFn+TjPnx2ks1cSU1I/3ZQVM8Pj/XcEJSHDqTbEonPWEFe8uUVtG+qxGA+mez4wIUSnIwmLEKdh2vUDKpeLmp59sUV7fndQfNEGNIqDiqDeWIJ6ebz/DkGl4kTshQD0aGERuYZ6LIFHD6Gy1nk6MiFEJyMJixCn8ct0kOdHV6DrTwc1OBFbX0QuvmgTWkeN2+2s0fHYwiJQO+wEHTngrfCEEJ2EJCxCNENbXlq/QwXvJCxaRzVxJVuAzn/Y4dmUBw+iMiARrauO+KIN7jdUqagcOAKQaSEhhCQsQjQrdOcmVIpCVZ9B2MOjPN5/fNEmNC4bloAkKoz9PN5/h6JSNY6ytLSIXMO0UJAkLEJ0e5KwCNGM0G0np4PGT/NK/02mg7pBkbOGhCW2eAs6u8Xtdg0LbwMyj+K0uN9OCNH1SMIixG/oiwsIPHYIRaWiYsxkj/evcfyyY6arHHZ4NuagvlQE9Uaj2Eko/N7tdvawSOpiElApLmp27vRihEKIjk4SFiF+I2THJgCqBgzDERLu8f7jSragddVR5R9PefBAj/ffIalUZMXU7xZq6bRQwyhLdeo2T0clhOhEJGER4jfaa3dQVsyMbjEd1KBhWiimdDs6e6Xb7RrWsVRvS/VGWEKITkISFiF+xa8gh4ATR1HUaipGe2E6yFlHfFF9QtTVtzP/VmVQMpbAnqgVR2PBPLfaDRyOolJhO3oMR3GxFyMUQnRkkrAI8SshJ0dXKgePwmn0/DHpMSVb0TlrqDbEUGoa4vH+O7q8yCkAxBVvcruNMyiY2h69Aajett0rcQkhOj5JWIT4FW9PB/Vo3B10QbeaDmqQG1l/JlNc8WZQ3D+ksHLgcACqt8s6FiG6K0lYhDjJkJOJf+4JXFod5lETPd6/2mlrLJzWVc8OOpvisBTsmgD8bWWEmQ+63a5q0EgAamThrRDdVqsSlkWLFpGcnIzBYCAlJYXNm09/qFl+fj433ngj/fv3R61WM3/+/FOuWbJkCSqV6pRHXZ2cHyLaT+i2DQBYhqbgDAzyeP8xpdvQO6qo8YukJGS4x/vvDFxqHQUREwBadBhiVf8hoNViz83FlpPjrfCEEB1YixOW5cuXM3/+fJ544gn27NnDlClTuPjii8nKymr2eqvVSmRkJE888QTDh5/+H+ng4GDy8/ObPAwGN4+iF6KtFIWQHfXTQRXjpnnlFglF3wGQE30+qLrv4GbDtFB8C9axuAz++A8bBkB1quwWEqI7avG/mi+88AK33347d9xxBwMHDuSll14iMTGR119/vdnre/bsycsvv8zNN9+MyXT6RYwqlYqYmJgmDyHai3/mUQyFebj0fphHjvf8DRSFuKL6EYXcqGme778TaVh4G27ej8Fa4na7wPH1/19kWkiI7knbkottNhtpaWk8+uijTZ6fMWMGW7dubVMgVVVVJCUl4XQ6GTFiBH//+98ZOXLkaa+3Wq1YrdbG31ukbHe3tnR78yN87oo7ObpiHj4Wl8HfEyE1EVL5MwHWIhxqA4Vhoz3ef2dSZ4ikLHggYZZDxBb/QEbClW61Cxg/DhYtonr7dhRFQdUNFy0L0Z21aISlpKQEp9NJdHR0k+ejo6MpKChodRADBgxgyZIlfPXVVyxbtgyDwcCkSZM4cuTIadssWLAAk8nU+EhMTGz1/UU353L9sjvIS2cHxRb/AEBh+FhcGj+v3KMzac20kP+IEagMBpylpVjP8G+DEKJratVE+m+/2bT128748eO56aabGD58OFOmTOHjjz+mX79+vPrqq6dt89hjj2E2mxsf2dnZrb6/6N4Cjx1CX1qE0+CPZdgYr9yjYYFpXqTni9F1RnlR9QlLTEkqKpfdrTZqvZ6AUaMAqJF6LEJ0Oy1KWCIiItBoNKeMphQVFZ0y6tKmoNRqxowZc8YRFj8/P4KDg5s8hGiNkO313/LNoyai6D0/+qGzW4isSAckYWlQahpCnT4MvaOKyPJ0t9sFTKhfx1K9TdaxCNHdtChh0ev1pKSksHbt2ibPr127lokTPVe3QlEU0tPTiY2N9VifQjTL5ST05GGH5eOmeuUWMSXbUCtOzIHJVAfI1CUAKnVj8taSqreB4+u3RNfs2IHicHglNCFEx9TiKaGHHnqIt99+m3fffZdDhw7x4IMPkpWVxdy5c4H6qZqbb765SZv09HTS09OpqqqiuLiY9PR0Dh78pWjU008/zerVqzl+/Djp6encfvvtpKenN/YphLcEHd6PzlyGIyCIyiEpXrlHw3RQvoyuNNGwWyi+yP2ExTBoIOrgYFxVVdQddL/wnBCi82vRLiGA2bNnU1payjPPPEN+fj5Dhgxh1apVJCUlAfWF4n5bk+XXu33S0tJYunQpSUlJZGZmAlBRUcFdd91FQUEBJpOJkSNHsmnTJsaOHduGtybE2YVu3wCAefQkFK3O8zdQFOJK6hfc5p78gBb18iMm4lJpMFUfJ7Amh+qAhLO2UWk0BIwdQ9W69VSnbmuszSKE6PpanLAA3Hvvvdx7773NvrZkyZJTnlMU5Yz9vfjii7z44outCUWI1nM4CNlZn0x46+ygUMtP+FtLsGv8KQ71zghOZ2XXBVMcMoLo8jTiizfxc9KNbrULHDeeqnXrqdm+De6+y8tRCiE6iu5bblN0e6Yfd6CtsmAPDqFy4Aiv3KNhOqgwfBwujd4r9+jMGnYLxbVgWijw5MLbmrTduH5Vi0kI0bVJwiK6rfAN3wBQNnk6aDReuUfsyemgPJkOalbeyXos0WU70Thr3Wqj790bTWQEitVK7Z50L0YnhOhIJGER3ZKupJDgH3cCUHrOxV65h95mJqJ8LyAJy+mYg3pT5R+HxmUjunSHW21UKlXjbiE5V0iI7kMSFtEthW/6FpWiUDloBNaYeK/cI6Y0FTUuKoL6UOMvW/SbpVK1ardQ4MkyCtVtPBJECNF5SMIiuh+nk/CNqwEomead0RX4dXVbGV05k4ZpobjiTXCWBfoNAifWj7DU7d+Ps6LCW6EJITqQVu0SEqIzC967A31FKXajCfMozxU8bEJxEVfcsH5F6q+cSWH4GBxqPwLrCjBVHcFs7Nfsdb894HJAXA/887JY/f7/qBh75qJ/N47r4bF4hRC+ISMsotuJ2LAKqF9sq+i8s3MnzHIIg60MuyaQktDTnzouwKnxpzC8vuZSS6aFKofUnytk3L/bK3EJIToWSVhEt6IrLSL4x10AlHpzOujkB29BxHhcai8UpOtifpkW2ux2m4bKxMYDu92eShJCdF6SsIhuJXzTalSKi8oBw7DGnL2yamvFyXbmFsk9WY8lomIvOrvZrTZVA4bh0mjxKylEX5TnzfCEEB2AJCyi+3A6Cd/0LQCl0y7x2m38bOWEV+wDZP2Ku2r846gI6oNacRJX7N7OH5efgeq+gwAIlmkhIbo8SVhEtxG8byf6shIcQcFUjJ7ktfvEFm9BhUK5sR+1hmiv3aeraRiNasnpzZWD69cHyToWIbo+SVhEtxHxfX1l21IvLrYFqW7bWg3TQrHFP6BSnG61aVzHcigdnO61EUJ0TpKwiG5BV1ZM8N76SqreXGyrUpzEFm8BZDqopUpCRmDTGjHYKxqn1M6mpmcfHIFBaGprCMg47OUIhRC+JAmL6BaaLLaNTfTafcLMBzDYK7BpjZSEDPfafboiRa0lP6K+Lo7bu4XUGioH1U8LBe+TaSEhujJJWETX53ISvrFhsa33Rlfglw/a/IgJKLKducUaT29uyfbmwSfrsRyQhEWIrkwSFtHlBf+4C31ZMY5AIxUp3p2maUxYZDqoVfIiJqOgIsxyCP+6IrfaNBSQCzx2CHVttTfDE0L4kCQsossL/3VlW733FtsarCWEmw8A9R+8ouWsfmGUmoYAEFuyxa02tsgY6qLjULlcBB360ZvhCSF8SBIW0aXpykowpdcvtvXmQYcAsSX19UPKggdSZ4j06r26svzI+i3nDX+e7miYFgren+aVmIQQvicJi+jSwjbXL7at6jcEa5x3D8CLlcMOPSI/oj5hiSnZ6v725sZ1LHu8FpcQwrckYRFdl8tJxMnFtiVerGwLoHI5GqcwGs7FEa1TahqCTWvEz24h7OQU29lUDRyOolZjKMhBV+re2hchROciCYvosoL37UZfWoQjMIiKMd4d9Qg378PPbsGqC6Y0ZKhX79XVKWotBRHjARpr2pyNMzCI6l79Aal6K0RXJQmL6LIaF9tOmo6i9/PqvX7ZzjwJRaXx6r26g4ZFy+4uvIVfrWOR7c1CdEmSsIguSVteiil9G+D92isAcSfXr8h2Zs9oKCAXXrHP7dObG7Y3Gw/sAZfLa7EJIXxDEhbRJUWt/hyVy0VVv8HUxSd59V4GawlhlkPALx+0om1q/WPqT2/GRUzJNrfaVPcagNMQgLbKgv+JY16OUAjR3iRhEV2O1lxO5PqvASi8dLbX7xdTkgqc3M7sF+H1+3UXjWX63Z0W0mqpHDgMkGkhIboiSVjOorI4jx+/eNfXYYgWiF71MWqblepe/bEMH+v1+zWss2jYjis8o7EeS/EWUBS32kiZfiG6LklYzsBaU8mOW2ahefQ5fnjpcV+HI9ygrSglYv3/AMifNQdUKu/eUHERW1xf4EymgzyrKDQFh9pAgLUIU9VRt9o0lun/+QAqa503wxNCtDNJWM5Eq6UiMRQ1EP6fFXz/2G0ospivQ4te+TFqu43q3gOpHDra6/cLtRzCYC/HrgmkJHSE1+/Xnbg0fhSF1/8/dHd7szUmAVt4FGqHnaDD+7wZnhCinUnCcgZ+en+ufH0lB64ZAUDMilS+u/MKXFarbwMTzdKWlxLx/UqgnUZXgLiTH6QFEeNwyenMHtcwzeb29maVCotsbxaiS9L6OoCOTqPWYJ35f6zT/j/OXb6ZuC1H+ebq8zH/8Q0IMJ61/Y3jvFsOXvwieuVy1HY7VX0HN04NeJusX/GuvIhJpABRZWloHDU4tQFnbVM5ZCQRm77FuF/K9AvRlcgIixtUKhXhF/+F7+6eRZ0Oeh0tJfqZW6Asz9ehiZN0ZcVEfF9fKK69Rld09koiKvbW31PWr3hFZWBPqvzj0Ch2ost2uddm0EgUlQr/nAy0FaVejlAI0V4kYWmBiAlz2Tz/LswBEJdfTY+n70LJOeTrsAQQ/b/lqB12qvoNoWrQiPa5Z+l21IoTc2BPqgMS2uWe3Y5K1eJpIafRRG1SH0AOQxSiK5GEpYUihlzNrkefoCBUTXiFnX7/eAh+2urrsLo1e14e4ScPOcy/6uZ2GV0BiCupr25bINNBXvVLwuL+z1njOhY5V0iILkMSllYIS5rKT088y/E4HUG1LgY99zRs/9LXYXVbJW+8idphp3LAMKoGDm+fmypK43bmvEhJWLypMHwsLpWW4OpMAmty3GrTpEy/mzVchBAdmyQsrWSKHEruE6+zr68/fg4Y/voiNKv+4+uwuh17bi4Vn38OQP6sm9vtvsHVGQTW5eNU6ykK8/726e7MrjNSElJfwdbdUZbqvoNw6f3Qmcsw5GR6MTohRHuRhKUNgoISqXxkCdtGhaBWYNjyFQS89Rg4HL4Ordso+c8bYLdTOWgE1QOGttt9Y08edlgUmoJT499u9+2u8k4eKtnw5342ik5PVf/6vw9S9VaIrkESljby14eg/sMS1lyYjAvo/8Nuwv/vDtRVFl+H1uXZcnKoWLECaN/RFfjlm36+TAe1i4ZdWDGlO1C77G61sQxNAcC0d4fX4hJCtB9JWDxAp/En4oZFfH3LJOp00ONIPvF/uwVtfqavQ+vSSl5/HRwOAidNorrf4Ha7r8ZZR9TJLbZ5EZPb7b7dWXnwQOr0Yeic1USUp7vVxjxiHABBh/fhrKz0YnRCiPYgCYuHqFRqepz3JN/O/x0lwRBRUkPvp+6laNM6X4fWJdmysjB/Ub/QOfK+P7TrvaPKdqF1Wak2RGMJ6tWu9+62VGryIyYA7q9jsUXHUxebgMrppPoH96aShBAdlyQsHpY05Ga2PfoYR+LVBNQ5KZp7H8cXv+7rsLqcktf/A04ngVOm4D9iRLve+5fqtpPbbQu1aEWZfsA8YjwAld9/75WYhBDtR0rze0F8/DQyH4un9D8PM35/HdZ/vcK+o4cZ8vTzqLTyR346S7dnuXWdX0EuA7/4EhWw+9xr+MHNdp7ScBCfVLdtXw1/3mGWQxisJdT5RZy1jXnEeKK/+ZTqjZtQHA75+ROiE5MRFi+JMPbFPv9d1l8cA4D2s9XsufkanBZZjNsmLhcJHyxEpbgwDx9LTe8B7Xr7gNo8TNUZuFQaCiLGt+u9uzurXzhlwQMBiClJdatNdd9BOAKDcJrN1KanezE6IYS3ydcNLwrShWO77g0+DP0zV3/yE/67D7PjkgvIv/9f1CX1Pmt7OTjxVBHrvyZ4XxounZ7c6+9s9/s3jK6UhAzDrgtu9/t3d/kRkwizHCK2ZAuZ8ZedvYFGg2XYWMJSv6Py++8JGC01c4TorGSExcv0agMDZrzA8nvPpzgYQkoq6fPMHwjetNLXoXU6hpxM4pe/BUDu7DuwxrV/Qhd3cv1EgUwH+URDVeHY4q2guNxqYx5Zv1uo6vsN3gpLCNEOJGFpB2qVhmGjHmHto3PZ00uNzuGi9zuvEP32AlQ2q6/D6xRUdhtJb/wLtd2OZehoSi64vP1jcNmJLt0OyHZmXykJGY5dE4jBXk6Yxb2DRy1Dx4BWi+34cWwnTng5QiGEt0jC0o4Gxs8i+4/P8tk5/riAuM0b6PnMPeiL8n0dWocX+/l/Ccg6jt1o4sQdf/TJ7pyIih/RO6qo04VSZhrU7vcXoKh1FETUj5g0TM+djSsgsHEqSHYLCdF5ScLSzhKDhhI+500WzUnA4g8h2bn0efJugne7t4iwOwo6lE7UN58CkH3bfBwhYT6JI7ZxOmg8qORHx1das73ZeO40QKaFhOjM5F9dHzDpohh73kLeum8CP8eBX62V3i8/Rczyt8Dp9HV4HYqmupKkN59DpSiUnHMx5lG+WzvSuJ05UqaDfKlhe3NExV50dvcq2Aadey4ANWlpslNPiE5KEhYf0akNnDvob6x/4BZWjq7/3xC76lN6/ethtBVlPo6ug1AUEt97FX1ZCXXR8eT+bq7PQvGzlhJuOQhI/RVfqw5IwBLYE7XibFxTdDb6Hj3Q9+4NDodUvRWik5KExYdUKhXjY26k+taneHWWgVo9mA4fpN9f7sK0273y411Z6NbvCN2+EUWt5sTdj+DyM/gsloZy8GXGAW4VLBPe1bDoOa54s9ttGqaFKmVaSIhOSRKWDqCvcRz9L36FBXfEkBUJfpWV9Hr5afIee7zbHtqmLy4g8f3XAMi/ck67F4j7LTmduWPJi5wCnExYFMWtNg3TQlWb6qveCiE6F0lYOohIvyQuGv0ab9w7mi/HqXAB5hUrOH75FVRvc2/Yu8twOUl68zk0tTVU9RlE4czZvo1Hcf2SsERIwtIRFIWNxqHxJ8BaTEjlYbfa+A8fjsZkwmU2U7tnj5cjFEJ4miQsHYi/xshVyc+Qee3veOomDYUh4MjPJ+vWWylcsABXXZ2vQ2wX0Ss/Iejn/TgNAZyY+2fQaHwaT6jlEAZbGXZNACWhI3wai6jn0ugpCK/f3hxftMmtNiqtlsBzpgIyLSREZySl+TsYtUrD1Mg5HJ3Qn7/GPMe16yqZnq5Q9t5/yVvzPZl3P0Jtcr+z9tNZy/r7Z/xM7Ir/ApAz515skTE+juiX6aCC8HG41DofRyMa5EZOJaFoA3HFmznQ5y632hjPPRfLV19T9f33RD/yJy9HKITwJBlh6aD6BI3lhv6v8tWV/VhwrZryQDDkZ9P/mQeIWfE+dME5+IDjh+n977+gcjopHzOFskkX+DokAOKK63eVyHRQx5J/ch1LeMWP6G0VbrUJnDy5vuptRga2zEzvBSeE8DhJWDqwEH0Mc5Kew5lyIX+8Q0PqABUql4vYLz6g/zMPEHD0oK9D9JiqTZvos+BP6CrN1PToTfat9/ukmu1v6ewWIir2ArLgtqOp8Y+h3NgXNS63i8hpjEYCxjRUvd3gxeiEEJ7WqoRl0aJFJCcnYzAYSElJYfPm028tzM/P58Ybb6R///6o1Wrmz5/f7HWfffYZgwYNws/Pj0GDBrFixYrWhNbl6NR+XBo7n6m9HuCVWX68fLmaaoOKgBNH6f/3B0n6z7/QlRX7OsxGS7dntfjx7XNvkTX3HjQ2K5bBozjy+PM4gzrGScixJVtRK07Mgb2oDkjwdTjiN/Ii69ektGx788ndQlKmX4hOpcUJy/Lly5k/fz5PPPEEe/bsYcqUKVx88cVkZWU1e73VaiUyMpInnniC4cOHN3tNamoqs2fPZs6cOezdu5c5c+Zw3XXXsX17N9sdcwbDQy5kTs/n2T8ilvl3qvl+uAZFBWGp3zHwz7cT/eXSzneQoqIQ/eWHJL3zAiqXi7KJ53P8oWdw+Qf4OrJG8UUbAciNOsfHkYjmNGxvji3egkpxr0p0k6q3ZrPXYhNCeJZKUdwsYnDSuHHjGDVqFK+//nrjcwMHDuTKK69kwYIFZ2w7bdo0RowYwUsvvdTk+dmzZ2OxWPjmm28an7vooosIDQ1l2bJlbsVlsVgwmUyYzWaCgz377Xzp9uaTMV+odVbydd7zHKveRa98hXu/C6RHVn2pcWtENHnX30nF6MncOD7JJ/G5/WfldJL439eI2LAKgIKZs8m/5vcdYhqogUpxMmv9NAz2CtaNfZei8DG+Dkn8hsrl4Or1U9E7Klkz/n23d3ENeOxO/POyyJz7KOUTzj3jtZ11AbsQnYW7n98tGmGx2WykpaUxY8aMJs/PmDGDrVtbX5k1NTX1lD4vvPDCM/ZptVqxWCxNHt2Bv8bItQl/47zI28iM1fLwjdW8dVUotaEh+JUUkvzaP+jzf49Qd+iQr0M9LZW1jl6vPEPEhlUoKhXZc+aRf+1tHSpZAQiv2IfBXoFNa6RYtjN3SIpa27i2qCXTQpaR4wEITt/mlbiEEJ7XooSlpKQEp9NJdHR0k+ejo6MpKChodRAFBQUt7nPBggWYTKbGR2JiYqvv39moVGrGhV/NTUnPYtLHsLZ/JXNvq2HXjFG4dHqMP/1IxlVXk//XJ7GdOOHrcJvQVJrp+69HMaVvw6XTkfGHv1JyweW+DqtZccX19T3yIyehyHbmDqtJ1Vs3mUecTFh+3NUld9wJ0RW1qg6L6jffhBVFOeU5b/f52GOP8dBDDzX+3mKxdKukBSDefwC39XyFbwpe5afKH3g25UdGDhvKHRv9idy5lYpPPqH800+xDBtD8QWXUzkkBdRnz1G9NQSuLy6g9/NPYCjIwREYxPH5T1Pdb4hX7uUJjetXTi7sFB1TXsQkFFSEWQ5hqCumzhB51jbVfQZgN5rQVZoJOnqQqgHD2iFSIURbtChhiYiIQKPRnDLyUVRUdMoISUvExMS0uE8/Pz/8/Pxafc+uwqAJ4sq4R0k3f8u6wjfZo9vHny8K59Yp9zJ8/S5Me3c0PupiEii+4HLKJl+Ayz/wtH16es2OITuDyDVfEJb6HWq7DVt4FEcf/n9Y4zru2oCA2gJCK3/GhZr8yMm+DkecgdUvnFLTECLM+4gr/oHjibPO3kitwTJsDOFb1hG8Z5skLEJ0Ai2aEtLr9aSkpLB27domz69du5aJEye2OogJEyac0ueaNWva1Gd3olKpGBlyMbckvUi4PpEqRymv+b3Fkjn92f+vtymaMQunfwCGghwSP1jEkPm/I+H9hfjlZ3svKJcT0+6t9Pm/Rxj4l7lEbPoWtd1GVZ9BHP7rSx06WYFfpoNKQ4Zh1Yf6OBpxNq2ZFmpYx2JKl92IQnQGLZ4Seuihh5gzZw6jR49mwoQJvPnmm2RlZTF37lygfqomNzeX//73v41t0tPTAaiqqqK4uJj09HT0ej2DBg0C4IEHHmDq1Kn861//4oorruDLL79k3bp1/PDDDx54i91HlKEnt/Z8ibWF/+FH81q2lC4j038Pl137MOFX3UzY1vVErv0SQ342keu+InLdV1gGj8IyfAzVvQdSm9QbRadvUwzqmmrCN31L5Lqv8CuuHzVT1GoqUiZRPGMW1X0HdbjFtc2R7cydS17kFIYdXVRfN8dld+sIBcuQUbg0WgwFOfgV5GCNkTo7QnRkLU5YZs+eTWlpKc888wz5+fkMGTKEVatWkZRUv402Pz//lJosI0eObPx1WloaS5cuJSkpicyTpbEnTpzIRx99xF/+8hf++te/0rt3b5YvX864cePa8Na6J73awKWx8+kZMILVhQvJrf2JdzPv44KoOxl23kxKzpuJ8cBuItd+RfDe7QQf2E3wgd0AuLQ6apN6U917ANW9B1LTewC2iOjTJxguF5raajQ11WjN5YRtXU/YD2vRWOsPaXQEBlE67RKKz78Me3hUe/0RtJnGWUt0af237oZv7qJjKzMNolYfhr+tjIjyPRSFjz1rG5d/IFUDhhJ8YA+mPdsouviadohUCNFaLa7D0lF1lzosLWG2F/G/vBfIqt0HQL+gCVwccx8BWhMA+sI8QndsJPDoTwQcO4Su8tQiWnZTKDXJ/VE0GjQ1VWiqq+r/W1OFprYGVTN/fWrjkyiefiVlE89D8TN49016QVzRJqalzaPaEMOX09Z0ihEhAeN/fIJeuV9xMPlW0gf80a02kWu+IOHD16nqN5gjT7zQ7DVSh0UI73L381tOa+7CTLoobujx/9hRtoKNxe/zc1UquRmHuCR2Pn2CxmCLjqPwshvqL1YU9MUFBB47RMCxnwg8eoiArGPozOWYzlKrwqXT4wwIorpXP0qmX0HloJGd+kO+Yf1KXuTUTv0+upu8yCn0yv2KuOLNbicsFaMnEb/0PwT9fABdaVGnGgkUoruRhKWLU6s0jA+/huTAkXyV9zwltiw+yXmKUSGXcl7UbejUJ0dAVCpsUbHYomIpn3Be/VM2KwEnjuKfeRTUapwBQTgDgnAEBuEMCMQZaMTpH4iib9u6lw5FUWT9SieVHzERl0pDSNUxAmtyqQ6IP2sbe1gkVf2HYvzpR0K3baDo0uvaIVIhRGvIac3dRLShN7f2fInRoVcAsLtiJe9mPkB+7ZHTtlH0flT3HUzJ9CsoOf8yyieci2X4GGr6DMQa1wOHKbRrJSuAqeoIgXUFONQGCt1YByE6DrsumOKQEUDLdgs1lOYPS/3OG2EJITxEEpZuRKf2Y3r0XVyf+A+CtOGU2XL474k/srn4Q5yK3dfhdQjxRfXTQYXhY3FqOt/6m+6uNdubK0ZPxqXR4p+dgSEn00uRCSHaShKWbig5cCR3JC9kgHEyLpz8ULqUJZkPUlh3zNeh+VzD+hWZDuqc8qLqqxJHl+5A46xzq40zKBjL8PqDLUNllEWIDksSlm7KX2PkyrhHuSLuEfw1wRRZM1iS+SCbS5Z229EWP1s5EeV7AdnO3FmZg/pQbYhB66ojqmyn2+3Kx9dPC4Vu2wBdY+OkEF2OJCzdmEqlYlDwOdyZvIh+QRPqR1tKPuy2oy2xxT+gxkW5sR81/rG+Dke0hkpVv7uLFh6GOHI8ToM/fiWFBB456K3ohBBtIAmLIFAbylXxT3T70ZaGD7g8OeywU2sYHYsv2uT2aImi96MiZRIAodu+91psQojWk4RFAE1HW/oHTex2oy0ql4O44vqjIGT9SudWED4Wp1pPUG0uwdUZbrdr2M4fsmMTOBzeCk8I0UqSsIgmArWhzIp/nCvi/txktGVT8fs4XDZfh+c1ERXp6B2V1OlCKA0Z6utwRBs4tQEUhtUvom3JtFDloBHYg0PQVZobj6sQQnQckrCIU9SPtkxtMtqypfQj3sn8A1k1+3wdnlc0bGfOj5yMotL4OBrRVq3Z3oxGQ/m4aYDsFhKiI5KERZxWw2jLrLjHCdKGUWbL5cOsR1mV/zK1zkpfh+dRsp25a2lIWCLL0tDaq9xu11BEzpS2FbXVvW3RQoj2IQmLOCOVSsWA4Encmfw6I0MuAWCveQ1vHp/LQctGusLZmYE12YRUHcOl0pAfMdHX4QgPqArsgSWwJxrFQczJk7fdUdOrP9aoWDQ2K6bdW70YoRCipSRhEW4xaIK4KGYeN/V4lnB9IjXOCr7Me5aPc56iwlbo6/DapGE6qDh0JHadZ0/6Fr6TFzkZgPiiFuz6UakoOznKEpoqu4WE6EgkYREtkhgwmNt6vsqUiJvQqLQcr97F2xn3sKNsBS7F6evwWkW2M3dNOVH1u34Sijagcrm/Pb+hiFzw/jQ0lWavxCaEaDlJWESLadU6JkfcwO09F5LoPwS7YmV90dssyZxPTu0hX4fXIlpHDdGlOwBZv9LVFIeNolYfhp/dTFTZLrfbWeN6UJPUB5XTSeiOTV6MUAjREpKwiFYL90vgdz0WcEnM/RjUgRRaj/P+iYdZmf8SNY7O8c00unQbGsVOpX8ClsBkX4cjPEhRaciJrh9l6VGwrkVtyybWt5MickJ0HJKwiDZRqdQMD7mQu3q9yTDTdAB+NK/ljeN3srt8ZYefJmpYv5IXNRVUKh9HIzwtO7r+72RC4XpULfi7WDH2HBSViqCfD2DPzfVWeEKIFpCERXhEoDaES2PnMyfpeaL9elHnqmZ14SLey3yQ3NqffB1e8xTll+3MkTId1BUVho/BpjXibyslojzd7Xb2sAiqBg4HwLxylZeiE0K0hCQswqMS/Adya8+XmBF9D37qQAqsx/jviT+yKv+VDjdNFGY+QIC1GLvGn6Kw0b4OR3iBotaRE12/iDaxpdNCJxffWr7+2uNxCSFaThIW4XFqlYaU0Jnc3esNhpouAGCveTVvHL+b3eWrOsw0UY+C1QDkRZ2DS6P3cTTCW7Kj6/8OJhauc/swRADz6Mm4tDqsR45Qd/hnb4UnhHCTJCzCawK1ocyMfZA5PZ4jyi+ZOlclqwsXsjjzAU5U7/VtcIpCj4I1AGTFzPBtLMKr8iMmYtcEEFhXQLh5v9vtnIFBWIaPBcDyPxllEcLXJGERXpcQMIjf93yZ6VF3Y1AHUWTNYGn243yW8w/KbHk+iSnMfICg2jwcGv/GAmOia3Jp/OoXVQOJBWtb1LahiJx55UoUl8vjsQkh3CcJi2gXapWG0WGXc3fvt0gJmYkKNT9XpfLW8Xv4rugd6pzV7RpPw3RQbtQ5ODX+7Xpv0f6yWjktZBk+FnVQEI68fGp3ywnOQviSJCyiXQVogpkRcw93JC8kOXAULhxsL/ucN47fyZ6Kb9pnfYtMB3U7+ZFTcKj9MNZkE1Lp/noURe+HcXr91mjz//7nrfCEEG6QhEX4RIRfD65P/DvXJTxNuD6BGqeZbwteY3HmA2R6eX2LTAd1Pw5tAPmRk4CWTwuZLpsJgOWbb3HVyQnOQviKJCzCp3oHjeb25IVc8Kv1LcuyH+fj7L9RVJfplXvKdFD31GS3UAsEjBuHLj4el9mM+auvvBGaEMINkrAIn9OotIz51foWNRqOVe/incw/8L/8F7HYiz13M5kO6rZyo87BqdISUnWM4KrjbrdTaTSEzrkJgLL//helBWtghBCeIwmL6DAa1rfc2et1BhgnAQr7zOt44/hdfF/0LrXOyjbfI9y8n6DaPOwyHdTt2HXBFIaPA+pL9bdEyNVXow4IwHb0GNVbt3ojPCHEWUjCIjqcMH08s+If5+akf5PoPwSHYmNb2Wf859gdbC/9HIfL1uq+E0+OruTJdFC3lB1Tv4C2RwvXsWiMRkxXXw3Uj7IIIdqfJCyiw4r3H8Dvevwf1yT8jQh9EnWuKr4rfoc3jt/FPvP6lu8okumgbi8n6lxcqAmzHCKwJqdFbcNu+h2oVFRv3IT1eIaXIhRCnI4kLKJDU6lU9A0ay+3Jr3JJzAMYteFYHMX8L/8F3sm4j8OVW9xeUyDTQcLqF9Z4blRiC6eF9ElJBJ1bX0iu/IP3PR6bEOLMJGERnYJapWF4yAzu7vUm0yJvwU8dSIntBJ/n/pMlmQ9wrGrXWRMXmQ4SANkxJ3cLtXBaCCDs5psBqFjxBU5zxzrMU4iuThIW0ano1AYmhF/HPb3fYWL49ejV/hRYj/Fxzt94P+tPpz+j6FfTQSdiLmzHiEVHkxN9PgCRFXvxrytsUduAcWPx698fpbaWik8/9UZ4QojTkIRFdEr+GiPnRM7hnl7vMC7sKrQqPbm1h1ia/ThLsx4np+Zgk+t/PR2UL9NB3VqtIYrikBFAy6eFVCpV4yhL2Qcfojgcng5PCHEakrCITi1Aa+K8qNuZ2+ttRoXMRI2WEzV7eT/rT3yc/Tfya48Av50OMvgyZNEB/DIt1LIicgDBMy9FEx6OIz+fynUtby+EaB1JWESXYNSFc2HMPczt/RbDTTNQoeZY9S6WnJjP8uwnMZfKdJD4RXbDtFBZGn7Wsha1Vfv5EXr99QCUvSdbnIVoL5KwiC7FpIviktgHuKvXfxgcfC4q1ByvTuOucC13xMSwPSjM1yGKDqA6IIGy4IGocZFQ9F2L24dePxuVTkftnj3U/vijFyIUQvyWJCyiSwrTx3N53MPc1esNziUWraKw3V/Pf3P+yodZj5JZvVdKrHdzWSeLyLVmWkgbGUnwpZcCMsoiRHuRhEV0aWG6WP5ZkM3/cvKYrB+KGi1ZNftYlv04H2Q9wvGqNElcuqmGwxBjSrejs7d8i3LYzXMAsKxejb2gwKOxCSFOJQmL6NIadgdFKXqmJT3FPb3fJiVkJhqVjpzagyzPeZIlJx7kJ8uWllfOFZ1aZVAyFUF9UCsOEoo2tri9YdAgAsaMAYeD8qXLvBChEOLXtL4OQAhv6lGwGoDcqGk4NQaCNQZmxNzDxIjZbCv9jD0V31BQd4QVef8kVBfH+PCrGRJ8Plq1zseRi/aQHXMBIUePkliwloz4y5u9Zun2rNO2N024hF47d1L44TLWj74Uxa/pDrQbx/XwaLxCdGcywiK6LkVprGb627ODgrRhXBB9J/N6L2ZS+PUY1EGU2/P4puBVXj9+G9tKP6XOWe2LqEU7OhFzEQBxxT9gsJa0uL155DiskTFoqysJ29ryxbtCCPdJwiK6LHeKxQVoTUyNnMO8Pks4P+oOjNoIqhxlfF+8mEXHbuX7osVUOVq27VV0HhZjb0pMw1ArDnrm/q/lHag1FE+/AoDINStA1kMJ4TWSsIgu67fTQWeiV/szNmwW9/R+m0tj5hOuT8TqqmFb2acsOvZ7vsl/hRLr6acGROd1LHEWAL1zWpdwlE69EKchAP+8LIz7d3s6PCHESZKwiK7pDNNBZ6JR6RgWMp07kxdxdfxfiPcfgFNxkG5ezVsZ97A8+29kVO+RnUVdyImYi3CoDZiqjxNRcZqzqM7A5R9I6dT6v2ORa1Z4OjwhxEmSsIguKdy8r01nB6lUavoZJzCnx/Pc1ONf9AuaAKg4Xr2Lj7L/wjuZ89hbsQaHy+b54EW7cuiCyIqtTzh65XzRqj6KL7gCRaXC9ONO/E8c82B0QogGkrCILqlXTv033dyoc9t0dpBKpSIxYAhXJ/yFu3u9SUroZehUBoqtJ1hV8DILj/2ezSVLqXZUeChy4QvHEuqnhZLyv0HrqGlxe1t0HBVjzwEgful/ZC2LEF4gCYvocrSOanrmrQLgaOI1Hus3TB/HjOi5/KHPe5wbeRvB2khqnBX8UPIhC4/dysr8lyisk2/XnVFxaAqVAT3QOWsaD8psqdzrbsOl02H86UdMu1M9HKEQQhIW0eUk5a1C56zBHNiTorDRHu/foAlifPjVzO39NlfEPUKsoR9Oxc6P5rW8m3k/75/4EwctG3Eqdo/fW3iJStU4ytI7p3XrUOwR0RRddDUAccvfQuWQ//9CeJIkLKLL6Zv9CQDHEq8Blcpr99GotAwKPodbkl5gTo/nGGicihoNObUH+TLvWRYe/T2bij+g0l7qtRiE52TEX4YLNVHluzFWZ7aqj8JLZ2M3hWEozCNi3VeeDVCIbk4SFtGlhJoPEGY5hFOlO23lUk9TqVQkBAziyvg/M6/PEiZH/I5ATSjVznK2lC5j0bHf80Xu/5Fds192F3VgtYZo8iMnAa1ffOvyDyDv6lsAiPnyQxzl5Z4KT4huTxIW0aU0jK5kx0zHqg9t9/sHacOYEnEj8/os5oq4P5PoPxgXTg5VbuaDrD/zbuZ97C5fKVV0O6hjCVcBkJz7FSqXo1V9lE2ZTk2P3mhrqil59VVPhidEtyYJi+gytPYqkryw2LY1NCodg4KnclPSs9zW81VGmC5Ep/KjyJrB6sJFvHZ0DqvyXyav9rCMunQgeVHnUKcPI8BaTGzJltZ1otaQe+NdAJQv/xjr0aMejFCI7ksSFtFl9Mxfhc5Z67XFtq0VbejFxbH3M6/Pe1wQdRfh+kTsipW95jW8d+IhFmfeL6MuHYRLrSMjbiYAvXM+b3U/VQNHUDFqIjidFP7rWU+FJ0S3JgmL6BoUhT7ZnwLeX2zbWv4aI2PCruDO5Ne5qcezDAk+D41KR6H1uIy6dCDHT+4Wii/a1KoDERvkXn8H6HRUb95M1ebNngpPiG6rVQnLokWLSE5OxmAwkJKSwuaz/DBu3LiRlJQUDAYDvXr14j//+U+T15csWYJKpTrlUVdX15rwRDcUZjlYv9hWred4/BW+DueM6ovRDeayuD9yX5/3mx11eSfzD+woW0GNw+zrcLsds7HPLwci5q1sdT+26HjCfvc7AAr/718ojtatiRFC1GtxwrJ8+XLmz5/PE088wZ49e5gyZQoXX3wxWVnNHwyXkZHBJZdcwpQpU9izZw+PP/44999/P5999lmT64KDg8nPz2/yMBhaX6FUdC99suoX22bFTMemD/FtMC1wulGXYmsm64ve5tWjc/gs5x8cqdyOS3H6Otxu41jClQD0zv68TVVrI+69B01ICLZjxyhfvtxD0QnRPamUFo49jxs3jlGjRvH66683Pjdw4ECuvPJKFixYcMr1f/7zn/nqq684dOhQ43Nz585l7969pKbWV4NcsmQJ8+fPp6KiopVvAywWCyaTCbPZTHBwcKv7ac7S7XJKb0emtVcx6/vz0DlrWTtuMcUdaP1Ka9Q6Kzlk2cSP5nXk1/3c+HygJoQhpvMYZppOhF8PH0bY9enslcz67jy0rjpWj/+A0tDhrernxnE9KFu6lMJn/o4mJITeq79FYzJ5OFohOjd3P79bNMJis9lIS0tjxoymp9/OmDGDrVu3NtsmNTX1lOsvvPBCdu3ahd3+SyXIqqoqkpKSSEhIYObMmezZs+eMsVitViwWS5OH6J5+WWybTHFoiq/DaTN/jZFRoZdya88XuSN5IWNDZxGgCaHaWcH2ss95K+MelmQ+yO7yldQ45e+9N9h1xsYDEVtb+bZB6HXXoe/TG2dFBSWv/+fsDYQQzWpRwlJSUoLT6SQ6OrrJ89HR0RQUFDTbpqCgoNnrHQ4HJSX1C9oGDBjAkiVL+Oqrr1i2bBkGg4FJkyZx5MiR08ayYMECTCZT4yMxMbElb0V0FYrSOB10tIMutm2LSL+enB99B3/o8x5Xx/+FvkHjUaMhv+5nVhcu4tUj9VNGP1m2yMnRHnY8/kqg/kBETSsORGyg0mqJ/vOfASj78ENsmZkeiE6I7qdVi25Vv/lQUBTllOfOdv2vnx8/fjw33XQTw4cPZ8qUKXz88cf069ePV89QdOmxxx7DbDY3PrKzs1vzVkQnF2Y+QFjlTzjV+narbOsLGpWWfsYJXJPwV/7Q5z3Oj7qDaL9euHDwc1UqK/L+yatHb+Kb/FfIqtmPorh8HXKnVxQ2uvFAxB6tPBCxQdCUKQROnQJ2O4XPPe+hCIXoXlqUsERERKDRaE4ZTSkqKjplFKVBTExMs9drtVrCw8ObD0qtZsyYMWccYfHz8yM4OLjJQ3Q/fbI752LbtgjUhjI2bBa3Jb/KHckLGR92DUZtBHWuatLNq/kw68+8fux2Nha/R4lV1l+1mkr1y+LbNk4LAfWjLBoNVevXU7VxY5v7E6K7aVHCotfrSUlJYe3atU2eX7t2LRMnTmy2zYQJE065fs2aNYwePRqdTtdsG0VRSE9PJzY2tiXhiW5Ga6+iZ/43ABxNvNbH0fhGpF9Pzo36PfN6L+bGxH8yzDQdP3UAZkcRW0s/5q2Me3gn4w9sLf2Yclu+r8PtdDLiL2/zgYgN/Hr3Juym+m3OeX9+FHu+/P8QoiVaPCX00EMP8fbbb/Puu+9y6NAhHnzwQbKyspg7dy5QP1Vz8803N14/d+5cTpw4wUMPPcShQ4d49913eeedd3j44Ycbr3n66adZvXo1x48fJz09ndtvv5309PTGPoVoTs+8lWidtZgDe1EcOsrX4fiUSqUmKXA4l8bO574+H3Bl3KP0CRyLGi1F1gw2Fr/Hf47fwZLMB9lRtgKLvfUF0boTTxyI+GuRDz2EYdAgnBUV5M5/EMUm646EcJe2pQ1mz55NaWkpzzzzDPn5+QwZMoRVq1aRlJQEQH5+fpOaLMnJyaxatYoHH3yQhQsXEhcXxyuvvMLVV1/deE1FRQV33XUXBQUFmEwmRo4cyaZNmxg7dqwH3qLokhSl8aDDrrjYti10aj8GBk9hYPAUap2V/Fy5lYOWTZyo+ZH8up/Jr/uZ9UVvk+g/mIHBUxlgnEygNsTXYXdYxxNmEV+8mV65X7Kvz724NPpW96X28yP+lZfJuOpqavfupejf/yb6scc8GK0QXVeL67B0VFKHpXsJr9jHhak34lTrWXHud9j0UtvibKod5fxUuYWDlk3k1B5ofF6Fmh4BQ+hvnES/oAkYdc2vLeuu1C47l2+4iABrETsG/5WjPa5zu+2N45qvl1P53Xfk3DsPgPiXXiL4ogs9EqsQnZFX6rAI0VH8sth2hiQrbgrUhpISOpM5Sc8yr/cSzou8nRhDXxRcnKj5kTWFr/PasVt4/8Sf2FH2BWZ7ka9D7hBcah0He90GwKDj76Jy2c/S4uyM551H+B23A5D/xBOy1VkIN8gIixtkhKVj0dkrmfX9+Widtawd9x7FYd17/UpbVdgKOFy5hZ8qt5JX91OT12IN/RhgnER/4yRC9d13EbzGWcvlGy7C31ZG6rD/55kt9E4nff/vEYJ+3k9tYjKHn3wZRe/X+PLpRmeE6GpkhEV0Wcl5X/9qse1IX4fT6YXoYxgXfjW39Pw383q/xwVRd5PoPwRQkV/3M98XL+Y/x+/g7Yx5bCp+n/y6I93uNGmnxp+fetZvJhh07C1UnjjXSaMh497HsQeH4J+dQeL7C9vepxBdWIsX3QrhS2qnjYHHFwNwJGm2LLb1sGBdBGPCLmdM2OVUOcr4uXIbhyu3cKLmR4qtmRRbM9lS+hFGbQR9g8bR1ziepIChaFTNlyjoSo70mM2gjHcxVWeSWLCWrNiL2tynIzSczHseo8+zjxG+aTVVfQdTNlXWswjRHElYRKfSO+czAusKqPGL4mjC1WdvIFotSBvGqNBLGBV6CbXOSo5W7eRI1TaOV6VR6Shhd8VKdlesxE8dQK/A0fQzjqdX4GgMmkBfh+4VDl0Qh5NuYtjRRQw+9hZZMRd6JGGuGjSC/KvmEPfZeyT+9zVqe/ahtkdvD0QsRNciCYvoNDTOOgYfewuA/b3vwqXxO0sL4Sn+GiNDTecx1HQeDpeNzJp0jlRu40jVdqqdFRyq3MShyk2o0ZAQMIg+gWPpEzSGMH3CGY/t6Gx+TrqRgRnvEVr5M/FFG8mNnuaRfgtnXk/gkYOYftxJz9f+weGnXvNIv0J0JbLo1g2y6LZj6J/xPik/PUu1IZavp/6vTfUwhGcoiovcusMcqdzGz1XbKLPlNHk9RBdDn6Cx9A4aQw//oWjVnX/qaPjhlxh8/B1KTENZM+FDj01LaqosDPjrvejLiikfPZkJ77/ZpZI9IU7H3c9vSVjcIAmL72kcNVy+8WL8bWVsH/IUxxJlOqgjKrflc7RqJ8eqd5JV8yNOxdH4mk5lIDlwJL2DRpMcOAqTLsqHkbaen7WUKzZchNZVx3dj3qAgovljSVoj4NhP9P1/f0TtdBAxbx4Rf5gnSYvo8tz9/JYpIdEp9Mtajr+tjEr/BI534VOZO7tQfWzjol2bq5bM6vTGBKbKUcbPVan8XJUKQIS+B8mBo+gVlEIP/yFo1Z1jxMzqF87RxGsYcOIDBh9906MJS03vAeTeeDeJ7y+kZOFCXLW1RP3pYUlahEASFtEJaB3VDDz+LgD7+8xF6QLTCt2BXu1PP+ME+hknoCgKhdZjHK3ayfHqNPJqD1Niy6LElsXO8i/QqvzoETCEXoEp9Aoc1eHXvhxKvoW+WcuJLk8jsiyN4rAUj/VdcsHlqBwOEpa9Qdm77+Kqribmyb+i0mg8dg8hOiNJWESH1z/zQwz2CiyBPcmMu9TX4YhWUKlUxBj6EGPow+SIG6h1VnKiei/Hq9M4Xr2bSkfJyV+nARCsjSQ5cCQ9A0eQFDC8w511VOsfw/GEK+mb/QmDj73FBg8mLADFF12F0z+AHotfomL5co6fKOTEnX8CrXv/ZEvROdEVScIiOjSdvZKBGUsA2NdnLopa/sp2Bf4aIwOCJzMgeDKKolBiy+J4VX3ykl27D4ujmL3mNew1rwEgyi+ZnoEj6BkwgsSAIejVBh+/AzjY6zZ653xOXMkWwir2UxYyxKP9l51zES6DgZ5vPEvYtg1o6urImPcEir5zTJ0J4Wnyr7/o0AZkvo/eUUlFUG+PFOoSHY9KpSLSL4lIvyTGhV+F3VVHds0BMmvSyaxOp9B6nCJrBkXWDHaUrUCNlgT/gSQFDicpYBhx/v18UriuOiCBzLhL6ZX7FYOPvcnmlFc8fo+KcdM47udP8mv/wJS+jd4v/pXjDzyFy+Dv8XsJ0dHJLiE3yC4h39DbzFy+8SL0jio2j3ie7FipANod1TjMZNbsJbM6nczqPZgdTQ9l1Kn8iPcfRFLAUHoEDiPW0BeNqn2+ixmrMpi5+QpUKKya9CkVwf29cp+gQ3vp9dLf0NTVUt17IMf++HecgcbTXi9TQqIzkW3NHiQJi28M+/kVhhx7i3JjP76Z9Amo5Oir7k5RFCrsBfXJS006WTX7qHGam1yjUxlICBhEUsAwkgKGEWPog1rlvQWrk/Y8TFLBak7EXsSWEc957T4Bx36i97+fQFtdRW1iMkf/tACHKbTZayVhEZ2JJCweJAlL+/OzlXP5hgvROWvZNOolcqLP93VIogOqX/9yghM1+8iq/pETNfuoc1U2uUanMhDvP5DEgMEk+g8mzr8/OrXnqiSHWA5zyZZrUFDxvylfUhmU7LG+f8uQk0mfZx9DZy6jLjqeo48swB4Rfcp1krCIzkTqsIhObeDxxeictZQFDyQn6jxfhyM6qPr1Lz2J9OvJ6NDLUBQXxdYTnKj5kRM1P5Jds586VxWZNXvIrNkDgBotsf596eE/hISAwST4D2rT+UcVwf3JiZpGQtEGBh1/h+3D/uGpt3eKuoSe/PzE8/R59jEMhbkMePJecn53L+UTz5ODQEWXJyMsbpARlvZlsJZw+YaL0brq2JCykLyoqb4OSXRS9QlMFtm1+8muOUB27QGqHKW/uUpFlF9P4v0HkuA/kAT/QZh00S2qAxNesY8LU2/EpdKwavLnWIJ6efaN/IautIherzxDQOYRACpGjif71vtxhIS3uW8ZnRHtTaaEPEgSlvY16tC/GJD5ASWmYayZ8IF8cxQe07AGJrtmP9m1B8iuOUC5Pe+U6wI1oSQEDCLBfyDx/gOJMfQ+606kqWn3kVC0gaLQkawbt8T7a64cDqJXfUzMFx+idjpwBAaRc9M8yiec26afGUlYRHuThMWDJGFpP/51RVy+8WI0LhvfjX6DgkjPlT0XojlVjjJyag6RW3uInNqDFNQdw4WjyTValZ4YQx/i/PsTZ+hPvP8AjNqIJqMwAbX5XLr5CnTOWnYM+gtHk2a3S/yG7AyS3nqegBNHAagYNYHsW+7HERLWqv4kYRHtTRIWD5KEpf2M2f8MfbM/Ofkt9T0ZXRHtzu6yUlB3lJzagyeTmEPUOi2nXBekDSPO0J84//oEJsbQlyFZnzH60P9h1wTyvylfUOsf0z5BOxxEr/yYmC/bPtoiCYtob5KweJAkLO0junQ75++4A4B1Y9+lKHyMjyMSon4aqcyeR17tT+TVHiav9icKrRkouJpcp0JNpF8PRlvySKksICpgCNkjFqJpx0MdDVnHSXr7378abZlI9i33tWi0RRIW0d4kYfEgSVi8T2ev5JIfriawLp8jideyc8iTvg5JiNOyu+ooqDtWn8DU/URe7c9YHMWnXKdFTaShD7GGvvUP/36E6xO8Whfmt6MtTj8DpdMuoeiiq7CHRZ61uSQsor1JwuJBkrB437gf/0rv3C+o9E/gm8mf4dAG+DokIVqk0l5Kft3P5NcdobL0O044C7A0c8KyTmUg2tCLaENvYvx6E2PoQ7hfoser8xqyjtNj8UsEHj8MgEujpXzS+RReci3W2MTTtpOERbQ3SVg8SBIW74ov3MA5u+9DQcW6cYsp9vDJt0K0N7XTxoVbr6WqLovvYieyKWok+bVHKKg7il2pO+V6jUpHlF/yyROtexNt6E2kPgltW6eTFAXj/jSi/7cc408/1j+lUlGRMonCmbOpTe53ShNJWER7k4TFgyRh8R4/WzmXbJ6Fv62Ug8m3kj7gj74OSQiPiChPZ/q2m1Gh8N2YNyiImIhLcVJmy6Wg7hgFdUcprDtGofUYVlfNKe1VqInwSyTKL5lov15EGXoR7deLAK2pVfEEHD1E9P8+ImTPtsbnKgeNoGDm9VQNGtG4OFcSFtHeJGHxIElYvERRmJz+R3oUrKUiqA/fTvwIl8ZzJdOF8LWUgwvof2IpVf7xrJz8Oc5mpjoVxUW5vYDCk0lMQzLz2yMGGgRpw+uTGEMvok5W+Q3Tx7s9pWTIySR65ceEbvselat+4XBNUh/KJ5xL+dip2MOjWv1+JdkRrSEJiwdJwuIdSXkrmbT3UVwqLasnfEi5aZCvQxLCo7SOai7dfCWBdQUc6nkzewb+ya12iqJQ6SilyHqcwrrjJ/+bQbk9Hzj1n2yNSku4PpFIv56NSUykX0+M2vDTVuzVlRQS/c2nhG/8FrXd1vh8VZ+BVIw7h/IxU3GEtqxyriQsojUkYfEgSVg8z7+ukEs3z0LvqOTHPveyv+89vg5JCK+ILd7MubvuxYWaNRM+pCxkSKv7srlqKbJmUlR3nCJrBkXWDIqtJ7C5apu93qAOItIviQi/JCL8ehCp70GEXxKB2pDGa7SWCkJ2bCJkxyaCft6P6uRHgqJSUd13MOXjzqFizJTTngz9a5KwiNaQhMWDJGHxMEVh2q57iCvZQqlpMGvGv4+iPnPZcyE6s4npf6Zn/irKjf34duJHHv37rigKZnsRxdYMiqyZFFtPUGzNpNSWc0qtmAb+mmAi9fVJTIRfDyL9kgjXJ2Ky2AndtYWQ7RsJOnrwl3uo1FT1H0LlkFFUDRhGdXJ/0J46BSUJi2gNOa1ZdFh9sj8hrmQLTrWe1GH/lGRFdHlpA/9MTMlWQit/ZmDGEg72vtNjfatUKkL00YToo+lrHN/4vMNlo9SWTbH1BCXWLIpt9f+tsBdS67SQVbuPrNp9TfoyqIMI759IxNCeJFWPYMiBcpL3HMaUcRzjTz827jRy+hmo7jeYqgHDqRw4nJqefaGZLdxCeJKMsLhBRlg8J6g6m4u3XI3OWUvagEc4nDzH1yEJ0S565n7NxB8fx6nW8+3EZZiNp24pbg92Vx0ltmxKrFmUWE9QbM2i1JZNhb2Q5tbHAMSYtUzOMDI4C3plWPCvsTZ53Wnwp6rfEPrOmIph2DAMgwahCQpqh3cjugKZEvIgSVg8Q6U4OX/774kq30Nh2BjWj33b+yfaCtFRKArT0u4lrvgHqg3RrB3/ATXtddaQG+wuK2W2XEpt2ZRYsym1ZVNqy6HMloNT+eUwSJWikFgMg08oDM5SGJQFQXWnfozoknrgP3gIhsGD6x+DBqLx8L/NomuQhMWDJGHxjIHHFzPy8AvYNYGsmvwZ1QHxvg5JiHalt5mZvu1mTNXHqQjqzbpx72HTt66uSntxKU4q7IX1yYu1PoEpteVSZsuh2lmBSlHoUQRDTigMzFboVaAQcepZkQBURYRR1bM3zh4DsMYnU5eQhDUyFjQaWf/SjUnC4kGSsLRdYv4aJqX/CTUutg15muOJV/k6JCF8IqA2nxmpNxFgLaIodCTfj3kTp8bg67Bapc5ZTdnJ5KUhiSm35WEvzyWxoJZeBdCrQCG5QCHK3HwfDo0ac1QI/v16EtC3HxGDRhLcfzD6Hj1Q6WR9W3cgCYsHScLSNvGFG5iy50HUioNjCbPYPuTpFh95L0RXYqo8wvRtt6B3VJIddS4/jHwBRd119kAoikK1s5wyWx7lJx+15hMEn8gkPKeYuGIHCSUK8aVgsDffh1MN5hB/LJEh1EZFY4vpAbF90MQPwh4Z12SRr4zOdG6SsHiQJCytF1O8lXPS/oBGsZMZewmpw/+J4s2TaoXoJCLLdnHezrvRuGwcSbyGnYOf7BaJfEMyU27Lp9yah6vwKPq8TILy8gkrLCem2EZCKfjbTt+HUw1loX6YI4KpCQ/HFhWLEtUDdUxfNNH9UILcn2aTZMf3ZFuz8Lmo0p1M3X0/GsVOVvR0Uof9P0lWhDipOGw0W4b/iyl7HqJv9qfU+kV1iwKKKpWKIG0YQdowEgMGQ+h0GPDL6yXOao7a8rGWHEWVdwRdYQ4BRYWYis2El9YSU66gd0BkqZXI0mKgGPipyT2qDSrKwwxUhgVTExGBIzwaV2Qi6uhe6KL6owo6exE80fHICIsbZISl5SLK0zl3513onLXkRp7D5lEv4pJ6K0Kcos+J5Yw9+A8Atg/5G8cSr/FxRB2XoriospVQV3IEJe9ntIUn8CspIrCkDFNZNWHlNkJOPUfyFDV+KipC9FhCA/FLiEIbF0dAfCKmhF5E9BxIZGI/tHo516y9yAiL8Jkw8wGm7boHnbOW/PAJbB75b0lWhDiNo0mzCbAWMuTYW4zZ/3fq9OHkRp/r67A6JJVKjdEvCmN8FMRPavKaGShXnNRU5eMo+AkKj6MpysavpJjA8gqCy6sJrbBhrIUAq0JAoZW4Qiv8VMavR2gqgDIVWIwaqkMN2MKDISocbWwMAXGJBCckE5HYj8jEfuj8/Nvz7Xd7MsLiBhlhcV+I5TDn77gNP7uFwrDRbBi9CKdGfqiFOCNFYdz+v9E7ZwUOtR/fjX2bktARvo6qy1EUBWtNEY7CI7iKj6MuziG2rgIKitGXWggsq8VkcaJt/kSDJlxAZaAas0lPdXAAtSHB2MLCcYRGQWgs6vBEtOE90RpjUKlPrTcla2d+IYtuPUgSFvcEVx7jgh23YbCVURwynO/HvIFDG+jrsIToFFQuB1N3P0B88SasumDWj32XiuD+vg6ry/tt4mB32CjOPUrJiZ+oyDpKbW429oJ8KCpFX1ZJQHmd20kNgE0DZqOGymA/aoIDqQsxYTeFktwvmcCYeExxPQmP701odBIaTfec9JCExYMkYTk7Y/UJLth+K/7WEkqDB/Hd2Lex64y+DkuITkXjqOH8HXcSYf4Rh9rAzsFPkJFwpa/DEr+hOB3YzNk4SjJQSrJRl+WjLS/Gr7wcf0sVQeZagivtGGvd/3h1qMESqKbKqKfa6E9dcBC2YBPOkDBcpkgIiUEdGo8utAc3nTcSdTOjNp2VJCweJAnLmUWW7WJS+p8JsBZRbuzL+rHvYtOH+DosITolvc3MpL2PEFuyFYBj8Veya/DjMrXaCTmtVdhLM3CWZqGU56EuK0RXUYJfRQWGymqCLHUYq+wE17TsY9imhaogDbXBfthMAbhCjKhCQ9BFROAXEUVAVBzB0QmExvYkLLonWp2+sW1bPs+8NY0lCYsHScLSPLXTxrAjrzEwYwkqFMyBvVg37l2sfuG+Dk2Izk1xMfjYWww9sgg1LiqC+rB55AtUBiX7OjLhBS57LbbybJxlWShleagqCtBWlKKzVGCwVOFfWUNglY3gKscZ69M02zdQ7a+iKlBLTaCeuiB/rEGB2I1GHMYQlOAwFFMk6uAYNKYYtKYENH4BzfYlCYuHSMLSvkyVR5i49zFCKw8DcDThKnYPfETWrAjhQdGl25mY/mf8baXYNQHsGPI3TsRd4uuwhA85a83Yy7JwVuRCeR4qSylqSxk6SwV+lir8q2oIqLISVO0gqEahNRNHtXqoDtBQHaCjLtCPusAA7MYgIuKjGPq7eST0HenR9yQJiwdJwvIriosBme8z/PDLaBQ7dbpQdgz9GznR5/s6MiG6JIO1hEnpjxBdthOAI4nXkTbwEVwaqRMizszltOGoyMVpzsNVUQCWElSWUrSWcnSVFvRVVfhX1eFfbSWwpj7B0ZwlI7Ateprh513n0TilDovwuIDafMb/+BdiynYAkBs5le1Dn6bOL8LHkQnRddX5RfDdmDcZevR1hhx7k77ZHxNu3scPI/5NVWCir8MTHZhao0cfngzhzU8l2k8+Gg7XVpwO7NXFOM35uCwFKOZi1JZS1JUVaKvMhDnqSEke1F7hn0ISFnF2ikLPvJWMPvhP9I5KHBp/0gb8qb4iZzc4+0QIX1PUWn7sdx/FoSOZsPcxwiyHuGjrdewe8Ccy4i9DkcKMwgNUGi364FgIjm329Zk+rh3TdfZFCa8Iqs5mUvqfmPjjY+gdlZSYhrFq0qcc63GtJCtCtLP8yMl8O+kTikNGoHdUMX7/37hs02X0zv4Utes0xx4L0UXICIs4laIQUZHOwIz3SCj8DhUKLpWG/X3mcqDXHShq+WsjhK/U+Mewbty79M/8kEEZiwmqzWXc/qcZcvQNDva6nWMJs2R9i+iS5JNHNFK5HCQWrmNAxn+JMO9rfD4vcjI/9v0DZabBPoxOCNFAUev4qdetHEmaTZ+sTxiUsZjAugLGHPx/DD72Fgd73caxxKtxagy+DlUIj5GERaC1V9En5zP6Z35IYF0+AE61noy4mRzuOQezsY+PIxRCNOf/t3fvQU1d+x7AvzsBkgAB5BmihAYOLRZsq6Q6PNSeaUurHqdqb6EPH3OdcS5TbIHMtGDVsbUD+Dh1vC2CTa/TmY7Hyh9qpTM6x7S1UAoeuVTUix4pwgUOheaCQsIrIcm6f0DTkwb0YCE7bH6fmT3JXll755c1Q9aPlb32solluKXejGZVBmL/cRqP3j4GX7MBmpv7kHD7E9yM+Xf8GPUSbF4T31eDkNmEEpY5imM2BPffgKr7r4jtOAUf6wAAYMR7Hn6Mfhk/qjJo9g8hs4RNLEVT9KtoXvBviOn8Agm3/wt+I11Y8vc/47GmEnSFJqMz/I/4KXw5/V2TWYsSljnEd7gbip4aRPbUQNF7CZLRfsdr/X5q/F29Gf+r/BMNIxMyS9nFPmhWZaBlwXo81PklElqOQT7UjijDRUQZLoKBQ2/QIvwj/I/oDF+Jfv8/0MXzZNaghEXAvKxDCL/z32MJSk8NAgdbnV63ePnj55BluL1gA34KSwM4mjRGiBDYRd5oidqAlgXrEWS6hQWGbzHf8C1C+hsR2ncNoX3X8ETTf2JANh+d4U/hp7BU3JXHj42+UAJDPNQDJSylpaU4ePAgurq6kJCQgMOHD2P58uWT1q+srIRWq0VjYyOUSiXefvttZGVlOdU5deoUdu/ejdu3byM2NhaFhYVYv379g4Q354jso5APtiFgoAWBgy0IGGhBwEArAgeaIWZWRz07ROgNWoTu0BR0haagNzCRZvwQImQch76AePQFxON//pAF2cjPmG+oxHxDJRS9l+A/3IlH2v6CR9r+AmDsJ+G+gIfR5x+HPvnD6At4GP3+MbTwIvEIU+6tysvLkZubi9LSUqSmpuLjjz/GqlWrcOPGDahUrjeVaW1txerVq7Ft2zYcP34c33//PV5//XWEhYXhxRdfBADU1tYiMzMT77//PtavX48zZ84gIyMD1dXVWLZs2e//lLOc2DoEqaUXMnMvpJZeSM298BvuHEtKBlvhP9QBEbNNeOyAbD66xhOUn0OWYtR7epctIITMHsPSCDSrMtCsyoDYOoTI3lrM//lbhPZdhXywDdLRu1D0/g2K3r85jrFDhAE/Ffr9YzEkVWBYEophaTiGJGEYloRjWBqGUS85jcyQGTfltYSWLVuGJUuWoKyszFG2cOFCrFu3DsXFxS718/PzUVFRgZs3bzrKsrKycPXqVdTW1gIAMjMzYTQacf78eUed559/HvPmzcPnn3/+L8XlKWsJccwGkd0CkX30142NQjz+3Ms2DC/rELxtg/CyDsHLNjS+P+TYl1juQjaemEgsd+BtG77v+46K/dDvHwOjvxr9fjEw+segTx6HQdl8+iIhhNyX2DaCgIHbmGdqQpDpRwSZmhBkbIJ09O59j7WKJBiWhI0nLwEY9fLFqJf/+Obn9Gj18oVNJIVN5AO7yHv80Qc2kQ9s4rHndpEPGCd2w6cmU8H3as1TGmGxWCyor69HQUGBU3l6ejpqamomPKa2thbp6elOZc899xyOHTuG0dFReHt7o7a2Fnl5eS51Dh8+PGksZrMZZrPZsd/fP3YBqdFonOyQB3P6P7CyvQEcs4NjNnCMjT/awcH2T+V2iJgVItin7a3tAIbHNysnwYgkGGafeRjxCcawNBxG32gY/R+Cye8hDEvCXBMTBmBoYNriIYQIm8lLhc55KmDeM2MFjEFquYPAgWbIB9ogs/RAau6BbKQXUksPZOb/g8RqAjACDHdAig5M1yX7DBzsEINxIjBOPL6JYP+n54wTg4EDOA4MIjCOAxyPHBgnGnsEBzh9PXLj35ec471+U8FR7bcx3a8SE/A/iMY6CbBqHxD2yPSed7zfvt/4yZQSlp6eHthsNkRERDiVR0REoLu7e8Jjuru7J6xvtVrR09ODyMjISetMdk4AKC4uxnvvvedSHhUl1MXATAB6+A6CEELInLZ0xs5sMpkQGBg46esPdMUl95sMkjHmUna/+r8tn+o5d+zYAa1W69i32+24c+cOQkJC7nncVBmNRkRFRaGjo2Paf2oiv6J2dh9qa/egdnYPamf3mMl2ZozBZDJBqVTes96UEpbQ0FCIxWKXkQ+DweAyQvILhUIxYX0vLy+EhITcs85k5wQAiUQCicR5vYygoKB/9aNMWUBAAP0xuAG1s/tQW7sHtbN7UDu7x0y1871GVn4xpRtv+Pj4ICkpCXq93qlcr9cjJSVlwmOSk5Nd6l+4cAEajQbe3t73rDPZOQkhhBAyt0z5JyGtVotNmzZBo9EgOTkZOp0O7e3tjvuq7NixA52dnfjss88AjM0IKikpgVarxbZt21BbW4tjx445zf7JycnBihUrsH//frzwwgs4e/YsvvrqK1RXV0/TxySEEELIbDblhCUzMxO9vb3Yu3cvurq6kJiYiHPnziE6OhoA0NXVhfb2X6cBq9VqnDt3Dnl5eThy5AiUSiU+/PBDxz1YACAlJQUnT57Erl27sHv3bsTGxqK8vNwj7sEikUiwZ88el5+fyPSidnYfamv3oHZ2D2pn9/CEdp7yfVgIIYQQQtyNFo8hhBBCiMejhIUQQgghHo8SFkIIIYR4PEpYCCGEEOLxKGG5j9LSUqjVakilUiQlJeG7777jOyRBKS4uxpNPPgm5XI7w8HCsW7cOt27d4jsswSsuLgbHccjNzeU7FMHp7OzExo0bERISAl9fXzzxxBOor6/nOyzBsVqt2LVrF9RqNWQyGWJiYrB3717Y7dO3nttcVFVVhbVr10KpVILjOHzxxRdOrzPG8O6770KpVEImk+Gpp55CY2OjW2KjhOUeysvLkZubi507d+LKlStYvnw5Vq1a5TRtm/w+lZWVyM7OxqVLl6DX62G1WpGeno7BwUG+QxOsuro66HQ6PPbYY3yHIjh3795FamoqvL29cf78edy4cQMffPDBjN6Fe67av38/jh49ipKSEty8eRMHDhzAwYMH8dFHH/Ed2qw2ODiIxx9/HCUlJRO+fuDAARw6dAglJSWoq6uDQqHAs88+C5PJNPPBMTKppUuXsqysLKey+Ph4VlBQwFNEwmcwGBgAVllZyXcogmQymVhcXBzT6/Vs5cqVLCcnh++QBCU/P5+lpaXxHcacsGbNGrZ161ansg0bNrCNGzfyFJHwAGBnzpxx7NvtdqZQKNi+ffscZSMjIywwMJAdPXp0xuOhEZZJWCwW1NfXIz093ak8PT0dNTU1PEUlfP39/QCA4OBgniMRpuzsbKxZswbPPPMM36EIUkVFBTQaDV566SWEh4dj8eLF+OSTT/gOS5DS0tLw9ddfo6mpCQBw9epVVFdXY/Xq1TxHJlytra3o7u526hclEglWrlzpln7xgVZrngt6enpgs9lcFmCMiIhwWaiRTA/GGLRaLdLS0pCYmMh3OIJz8uRJ/PDDD6irq+M7FMFqaWlBWVkZtFot3nnnHVy+fBlvvvkmJBIJNm/ezHd4gpKfn4/+/n7Ex8dDLBbDZrOhsLAQr7zyCt+hCdYvfd9E/WJbW9uMvz8lLPfBcZzTPmPMpYxMj+3bt+PatWu0htQM6OjoQE5ODi5cuACpVMp3OIJlt9uh0WhQVFQEAFi8eDEaGxtRVlZGCcs0Ky8vx/Hjx3HixAkkJCSgoaEBubm5UCqV2LJlC9/hCRpf/SIlLJMIDQ2FWCx2GU0xGAwu2SX5/d544w1UVFSgqqoKCxYs4Dscwamvr4fBYEBSUpKjzGazoaqqCiUlJTCbzRCLxTxGKAyRkZF49NFHncoWLlyIU6dO8RSRcL311lsoKCjAyy+/DABYtGgR2traUFxcTAnLDFEoFADGRloiIyMd5e7qF+kalkn4+PggKSkJer3eqVyv1yMlJYWnqISHMYbt27fj9OnT+Oabb6BWq/kOSZCefvppXL9+HQ0NDY5No9HgtddeQ0NDAyUr0yQ1NdVlWn5TU5NjcVgyfYaGhiASOXdhYrGYpjXPILVaDYVC4dQvWiwWVFZWuqVfpBGWe9Bqtdi0aRM0Gg2Sk5Oh0+nQ3t6OrKwsvkMTjOzsbJw4cQJnz56FXC53jGgFBgZCJpPxHJ1wyOVyl+uC/Pz8EBISQtcLTaO8vDykpKSgqKgIGRkZuHz5MnQ6HXQ6Hd+hCc7atWtRWFgIlUqFhIQEXLlyBYcOHcLWrVv5Dm1WGxgYQHNzs2O/tbUVDQ0NCA4OhkqlQm5uLoqKihAXF4e4uDgUFRXB19cXr7766swHN+PzkGa5I0eOsOjoaObj48OWLFlC022nGYAJt08//ZTv0ASPpjXPjC+//JIlJiYyiUTC4uPjmU6n4zskQTIajSwnJ4epVComlUpZTEwM27lzJzObzXyHNqtdvHhxwu/kLVu2MMbGpjbv2bOHKRQKJpFI2IoVK9j169fdEhvHGGMznxYRQgghhDw4uoaFEEIIIR6PEhZCCCGEeDxKWAghhBDi8ShhIYQQQojHo4SFEEIIIR6PEhZCCCGEeDxKWAghhBDi8ShhIYQQQojHo4SFEEIIIR6PEhZCCCGEeDxKWAghhBDi8ShhIYQQQojH+3945C9E5cSZ1AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACRsUlEQVR4nOzddXicZfbw8e8zlmSSycS1sbpb6k4VdyhlaXEosCyyLLvAsruwvMtvBYdiC5QFKlixGqVQTy01qlTSuDfJREef9480gVKbJDOZyPlc11wNM89z32dC0zm55dyKqqoqQgghhBBtmMbXAQghhBBCnI8kLEIIIYRo8yRhEUIIIUSbJwmLEEIIIdo8SViEEEII0eZJwiKEEEKINk8SFiGEEEK0eZKwCCGEEKLN0/k6AE9xuVzk5eVhMplQFMXX4QghhBDCDaqqUllZSVxcHBrN2cdROkzCkpeXR0JCgq/DEEIIIUQzZGdn06VLl7O+3mESFpPJBNS/4eDgYB9HI4QQQgh3WCwWEhISGj/Hz6bDJCwN00DBwcGSsAghhBDtzPmWc8iiWyGEEEK0eZKwCCGEEKLNk4RFCCGEEG2eJCxCCCGEaPMkYRFCCCFEmycJixBCCCHaPElYhBBCCNHmScIihBBCiDZPEhYhhBBCtHmSsAghhBCizeswpfmFEJ2by+XC4XDgcrl8HYoQnYJGo0Gn053zhGVPkoRFCNGuVVRUYLFYqKmpkWRFiFam0WgwGo0EBwdjNpu92pckLEKIdklVVQoLCykrK8NoNBIREYG/vz8ajea8h6gJIVpGVVVcLhd1dXVUVVWRl5dHbW0t0dHRXvv5k4RFCNEulZWVUVZWRkxMDKGhob4OR4hOKTAwkPDwcMrKyigoKMBgMBAWFuaVviRhEaKdWrAlq9n33jgy0YORtD5VVSkvL8dkMkmyIkQbEBoaSnV1NeXl5YSGhnpllEV2CQkh2h2Hw4HVavX6nLkQwn1msxmr1YrD4fBK+5KwCCHaHafTCYBOJ4PEQrQVDT+PDT+fniYJixCi3ZLFtUK0Hd7+eZSERQghhBBtniQsQgghhGjzJGERQgghRJsnCYsQQggh2jxJWIQQQnhFcnIyiqJwyy23+DqUVtHZ3m9rk4RFCCGEEG2eJCxCCCGEaPOk6pIQQgivOH78uK9DEB2IjLAIIYQQos2ThEUIIYQQbZ4kLEIIIc4rLy+PP/3pTwwdOhSz2YzBYCAmJoYBAwYwa9Ys5s+fj8ViOeUed3bN2O12XnrpJYYPH47JZCIkJIRhw4bxwgsvYLPZOH78OIqioCgK8+fPP+3+W265BUVRSE5OBqC8vJy//OUv9OvXj8DAQEJCQpgwYQIfffTROd9fdXU1ixcv5o477mDw4MGYzWb0ej2RkZFMnDiR//znP1RVVTX12yY8SNawCCGEOKf169dz6aWXnpaQFBYWUlhYyN69e1m0aBERERFceumlbrdbXl7OjBkz2Lp16ynPp6enk56ezqJFi3jzzTfdbu/gwYNcdNFFp62dWb9+PevXryctLY1XX331jPdecsklrF279rTnS0pKWLduHevWrWPevHksW7aM3r17ux2T8BxJWIQQQpyV1WrlhhtuwGKxYDKZuOeee7jggguIiorCbreTmZlJWloan332WZPbvuGGGxqTldGjR/O73/2OHj16UFxczIcffshHH33E3Llz3WqrpqaGyy+/nNLSUv785z8zdepUgoKC2LlzJ0899RQ5OTm89tprXHbZZcyYMeO0+x0OBwMGDODyyy9n2LBhxMXFoaoqmZmZLFmyhI8//piMjAyuvPJKdu3ahb+/f5Pfr2gZSViEEEKc1caNG8nLywNgwYIFp42gjBw5kuuvv55///vf1NTUuN3ukiVLWLlyJQBXXHEFn332GVqttvH1Cy+8kCFDhvDII4+41V5xcTF2u520tDT69evX+HxqaiqTJk1iwIAB1NXVMW/evDMmLO+99x49evQ47fmG93f77bczY8YMDh06xEcffcTtt9/u9nsVniFrWIQQHZeqgq26czxU1SvfwoKCgsavJ0yYcNbrdDodwcHBbrfbMNXj7+/Pm2++eUqy0uDhhx9m6NChbrf59NNPn5KsNOjevTtXXnklUD89dCZnSlZ+aerUqVx++eUAfPHFF27HJDxHRliEEB2XvQb+EefrKFrH43lgCPR4s7GxsY1fv/feezzwwAMtbtPhcLBu3TqgfiQlOjr6jNcpisLs2bPZsWPHedtUFIUbb7zxrK+npqayaNEiysrKKC8vJyQk5JztFRcXU15ejtVqbXwuMjISgN27d583HuF5krAIIYQ4q3HjxtG1a1eOHTvGgw8+yEcffcRVV13FxIkTGTZsGAaDocltHj16lNraWqA+kTiXYcOGudVmREQE4eHhZ309LCys8evKysozJiwbN27k5Zdf5rvvvuPEiRNnbaukpMStmIRnScIihOi49Mb6kYfOQG/0TrN6PV9//TXXXnstBw4cYNu2bWzbtg2AgIAAJk6cyOzZs5k5c+YZp3XOpKysrPHrqKioc17bMKpxPkbjud+/RvPzCgin03na63/729946qmn3OqrIdkSrUvWsAghOi5FqZ8m6QwPRfHat7Fv3778+OOPLFmyhNtuu41u3boB9R/cK1as4De/+Q0jR46kqKjIazF40+rVqxuTla5duzJv3jz27NlDeXk5DocDVVVRVZUnn3zSx5F2bjLCIoQQ4ry0Wi1XXnll4+LV/Px8li9fzrx58xrrptx9990sWbLkvG2FhoY2fn2+JKe4uLhFcbvj7bffBiAkJIS0tLSzjvr8cmRItL5mjbDMmzePlJQU/P39SU1NPeuqa4DPP/+cadOmERkZSXBwMKNHj27cytZg/vz5jZUMf/moq6trTnhCCCG8LDY2lttuu420tLTGnTzffPONW9Ml3bp1a6xjsn379nNee77XPWHfvn0ATJ48+ZxTVK0Rizi7Jicsixcv5sEHH+SJJ55g586djB8/nosuuoisrKwzXr9u3TqmTZvGsmXLSE9P54ILLuCyyy5j586dp1wXHBxMfn7+KQ8pzCOEEG2bXq9n4sSJQP3un/Ly8vPeo9PpGrdIr1y5ksLCwjNep6oqH3zwgcdiPRuHwwFwzjoyu3btYvPmzV6PRZxdkxOW559/nttvv5077riDPn368OKLL5KQkMDrr79+xutffPFFHn30UYYPH06PHj34xz/+QY8ePfj6669PuU5RFGJiYk55CCGE8K3169dz5MiRs75us9kaS9oHBQW5vUj27rvvBqCuro677777jAthn3/+ebe2NLdUQw2WDRs2cOzYsdNeLy4u5qabbvJ6HOLcmrSGxWazkZ6ezp/+9KdTnp8+fTqbNm1yqw2Xy0VlZeUpW8wAqqqqSEpKwul0MnjwYP7+978zZMiQs7ZjtVpP2R//6zMuhBBnt2DLmUdE3XHjyEQPRiLautWrV/P3v/+d8ePHc8kllzBw4EAiIyOpra3lp59+4o033mhMKu644w50Ovc+Vq6++mqmT5/Ot99+y5dffsn48eN58MEH6d69e2Np/g8//JARI0Y0lu9XvLSweM6cOXz99ddUVVUxceJE/vjHP5KamoqqqmzatInnn3+egoICRo8eTVpamldiEOfXpISlpKQEp9N5WpGf6OjoU6ohnstzzz1HdXU1119/feNzvXv3Zv78+QwYMACLxcJLL73E2LFj2b1791mrDz777LNub0ETQgjRfC6Xi7Vr157xcMAGV199Nc8++2yT2l28eHHj4YdpaWmnJQNDhgxh3rx5jbVYvLVM4Nprr+XWW2/lvffeIycnh/vvv/+U17VaLS+88AJlZWWSsPhQsxbd/jrLVVXVrcx34cKF/O1vf2Px4sWnLGwaNWoUN910E4MGDWL8+PF8/PHH9OzZk1deeeWsbT322GNUVFQ0PrKzs5vzVoQQQpzDo48+yrJly3jooYcYNWoUiYmJ+Pv74+/vT3JyMjNnzmTp0qV89tlnTU4oQkJC2LBhAy+++CKpqakEBQVhMpkYPHgwzz77LJs2bTqltovZbPb022v07rvv8sEHHzB+/HhMJhN+fn4kJSUxe/ZsNm3a5JEKv6JlFFV1/wAKm82G0Wjkk08+4aqrrmp8/oEHHmDXrl3nzL4XL17MrbfeyieffMIll1xy3r7uvPNOcnJyWL58uVuxWSwWzGYzFRUVTTrPQoj2qiXTOi3RFqaE6urqyMjIaNytKDquDz/8kNmzZwNw5MiRxhowou1p7s+lu5/fTRphMRgMpKamsmrVqlOeX7VqFWPGjDnrfQsXLuSWW25hwYIFbiUrqqqya9euU86wEEII0fksXLgQqK9427VrVx9HI3ypyYXjHn74YWbPns2wYcMYPXo0b731FllZWcydOxeon6rJzc3lf//7H1D/l23OnDm89NJLjBo1qnGtS0BAQOPw3lNPPcWoUaPo0aMHFouFl19+mV27dvHaa6956n0K0en45WfjV5hLTXJPHCFh579BiFaWm5tLWFgYAQEBZ3z9nXfeYdmyZUD9wlhvLboV7UOTE5aZM2dSWlrK008/TX5+Pv3792fZsmUkJSUB9dUPf1mT5c0338ThcHDfffdx3333NT5/8803M3/+fADKy8u56667KCgowGw2M2TIENatW8eIESNa+PaE6JyCd20m5bV/oLHV76SzhUdR3a031d16U9O1NzXJ3VENfj6OUnR2q1at4tFHH+WGG25g0qRJJCUl4XK5OHr0KIsXL+aLL74A6jd2/Hp3quh8mrSGpS2TNSyisznbGpawtStInP8SisuF3RyGzlKG8qsfc1WrpTahK9XdelPZdwgVqWPcPotG1rAIT5k/fz633nrrOa+JjY1l6dKl5yxzIdoGb69hkbOEhOgoVJXorxcS99n7AJSOm0bWrQ+isVsxZhwm8OhBjMcOEnj0IPqKMozHD2M8fpjI1V+Td/UcCq/4jY/fgOhsLr30Ul5//XVWrFjBgQMHKC4uprKykpCQEPr06cNll13G3LlzMZlMvg5VtAGSsAjREbicdPnwdSJX11eQLrjsBvKvuQUUBZdOR1XfwVT1HVx/raqiLy0i8OhBTPt2ErF2ObFLPqSq10Cqew/w2VsQnU9ERARz585tXAMpxLk0qw6LEKLtUGw2kl/7B5Grv0ZVFLJvupf8a289+xSPomCPiKZ85ESyb3uQ0nHTUFQXya8/i85S3qqxCyGEuyRhEaId01ZX0e25JwjdvgGXTs/xex6jZNoVTWojZ85vqYtNwFBeSuLb/wGXy0vRCiFE80nCIkQ7pSsrpcc/HsF0cA/OACNHH3mG8pETm9yOy8+fjPuewKU3YN6zjagVn3khWiGEaBlJWIRoh6zHjtHr7w8SkJOB3RzG4cf/Q1Wfwc1ury4hhZzf3ANA3KfvYTxywEORCiGEZ0jCIkQ74ygtJfOm2RhKi6iL6cJPT75AbWLLy5WXTrqIspETUZxOkl9/Fm11pQeiFUIIz5CERYh2puSNN3GeOEFtfBKHn3gOW2SMZxpWFLJufQBrVCx+JYUkvvMCdIwyTUKIDkASFiHaEVtODmWLFgGQ85t7cASHeLR9V0AgGfc+gUurIyR9IxHffeXR9oUQorkkYRGiHSl+6WWw2wkcM4aqft6p/Fmb0oO8G+4EIH7R2wRkHvFKP0II0RSSsAjRTtQdPIjlm28AiPz9w17tq3jaFZQPHY3GYSf5tf+HprbGq/0JIcT5SMIiRDtR9PzzoKoEX3wRAf36ebczRSHr9oexhUfhX5hHwvyXZD2LEMKnJGERoh2o3rqV6nXrQacj8oEHWqVPZ1AwGfc+hqrRELZ5DaFpP7RKv0IIcSaSsAjRxqmqStFzzwEQev11GJKSWq3vmu59KTh5KGL0N4tklEUI4TOSsAjRxlV+9x11u/egBAQQcc89rd5/0fSrcPr5E5CbSdDBPa3evxBCgCQsQrRpqsNB8QsvAhB2y83oIiNbPQaXMZATY6cCEPndl63ev/C9v/3tbyiKgnK2AzW97JZbbkFRFJKTk33Sv2gbJGERog0rX7IE27FjaENCCL/9dp/FUTLlMgDM6WnY8/J8FocQovOShEWINspVV0fJq68BED73brRBQT6Lpa5LMpV9B6OoLsoWLfZZHEKIzkvn6wCE6MwWbMk662tRSz8mvrAQW3gU33Ybh3qOa1tD8dQrMO3fRfknnxBx371o/Px8Go8QonORhEWINkhbXUn0N/UjGflXz0E1GHwcEVQMHoktPApDaRHfvvIBJ8ZPb3IbN45M9EJkQojOQKaEhGiDopd+jK6mitouyZwYM9nX4dTTaimecikAkau+lC3OQohWJQmLEG2M/kQJkd9+AUDedbeCRuvbgH6hdMKFuPR6jJlHMB494OtwhI+Ul5fz17/+lX79+hEUFERYWBiTJk3io48+Ou+9NpuNt956i0suuYT4+Hj8/PyIiooiNTWV3/72t6xfvx61Gcnw6tWrMZlMKIpCz549yczMbM5bE22YTAkJ0cbEfPEhGruNqp79sAwa6etwTuE0mSkbdQHh678lctWXZHbv6+uQRCvLyMhg2rRpHD16tPG56upq1q5dy9q1a/niiy9YuHAhOt3pHy+7du3i6quvJiMj45Tni4uLKS4uZseOHbz22mtkZGQ0aQvzkiVLmDVrFlarlcGDB7Ny5UqioqKa/R5F2yQjLEK0IX4FOYSvWwlA3vW3g4/qXpxL8dTLAQjdth5deamPoxGtbebMmWRkZDB37ly+++47tm3bxjvvvEPPnj0B+PTTT3n44dMP59y/fz/jx49vTFauuuoqFi9ezLZt29i8eTPvv/8+N910E4GBgU2K57333uO6667DarUyfvx41qxZI8lKByUjLEK0IRGrv0FRXVQMGkF1Dy8fcNhMtck9qOrel6Aj+4n4YTkFV93k65BEK9q2bRsLFixg1qxZjc8NGzaM6667jvHjx7N7925ee+017rzzTgYMGNB4zU033URVVRUajYaPPvqIG2644ZR2R44cyZw5cygtLcVoNLoVy3/+8x/+8Ic/AHDxxRfz6aefEhAQ4IF3KdoiSViEaCMUu42wTauBnwu1tVXF0644mbAspfCymag6va9DOiNVVal11Po6jFYRoAtolUq0l1566SnJSgOTycRbb73FyJEjcblcvPHGG7z2Wn0doZUrV7Jz504A7r///tOSlV8KDw93K47HH3+cZ599FoBZs2bx/vvvo9e3zb+HwjMkYRGijTDvSENXZcEWGoFlQKqvwzmnimFjsYeEoS8/gXn7RspHTfJ1SGdU66hl5IK2tQ7IW7bcuAWj3r2RiZa49dZbz/raiBEj6NevH/v27eO7775rfH7p0qWNXz/00EMt6t/lcnHvvffy5ptvAnDvvffy6quv+uzYANF6ZA2LEG1Ew9qVE+Ont6mdQWei6vSUTLoEOLnFWXQaw4cPP+frI0aMAODw4cPYbDaAxtGVxMREklpw2rjD4WDWrFmNycoTTzzBa6+9JslKJyEjLEK0AfqSQkz7dgBQ2oyCbL5QcsHFRH+9kKAj+wk4fpja5B6+Duk0AboAtty4xddhtIoAXeus3Tjfgtbo6GigfjqurKyM6OhoSkpKAIiNjW1R37m5uXz88cdA/ZqVZ555pkXtifZFEhYh2oDw9d+iqCqVfQdji2rZP+qtxRESRvnwcYRtXkPkd1+RdcfvfR3SaRRFaZVpks7kfKMZ56qh0tKRkOjoaLp3787GjRtZtmwZzz33HL//fdv7eye8Q6aEhPA1l5Pw9d8C9YXZ2pPiaVcAELr5B7SVFT6ORrSGwsLCc75eVFQE1CcnoaGhAERERACQ18KTvv39/Vm+fDmjR48G4JFHHuHFF19sUZui/ZCERQgfM+3biaG0CEdgEOWpY30dTpPUdOtDTXIPNHY7EWtX+Doc0Qq2bdvm1us9evTAcPIMrKFDhwKQlZXV4gq0JpOJFStWMHJk/WLqhx56iFdffbVFbYr2QRIWIXws/OQH/YkxU9rEIYdNoiiNheQivv8GnE4fByS87f333z/ra9u3b2fv3r0ATJ06tfH5yy77eZv+Cy+80OIYgoODWblyZeMC4Pvvv5/XX3+9xe2Ktk0SFiF8SGcpx7wjDYATE2b4OJrmKRs5CbvJjKG0CPPOzb4OR3jZV1991bjw9Zeqqqq46667ANBoNNx9992Nr02dOpXU1Pqt+q+88gqLFi06a/snTpygtvb8tXPMZjPffvttY7v33Xcfb7/9dpPei2hfJGERwodCN32PxumgOqUntYndfB1Os6gGA6UT69feRPyw9DxXi/Zu2LBh3Hjjjdx333388MMPpKen89577zFs2LDG7cv33XcfAwcOPOW+Dz74gKCgIFwuF7NmzeKaa67hk08+IT09na1bt7JgwQJuvfVWkpKSzrtOpkFISAirVq1iyJAhqKrK3Xffzbvvvuvx9yzaBtklJISPqKpK+NrlAJS209GVBqUTZhDzzWJMB3ahrbLgDAr2dUjCSz7++GOmTJnCvHnzmDdv3mmvX3PNNTz//POnPd+nTx/WrFnDVVddRXZ2Np9//jmff/55i+MJDQ1l1apVTJkyhd27d3PnnXei1Wq5+eabW9y2aFtkhEUIH6nbvZuAvCxcBj/KRl3g63BaxBYdT22XFBSnE/OuzlH3pLNKSUkhPT2dxx9/nD59+mA0GjGbzUyYMIEPP/yQTz/99IwnNQOkpqZy6NAhXn75ZSZPnkxUVBR6vZ6YmBhSU1N54IEHSEtLa9JJzVBfzv+7775jwIABuFwubrvtNj788EMPvFvRlijquTbNtyMWiwWz2UxFRQXBwfLbnWj78v78Zyo+/YzSsVPJuusPvg6nxWKWfEDsFx9SPnQ0GQ/87YzX3Dgy0SN91dXVkZGRQUpKCv7+/h5pUwjRMs39uXT381tGWITwAWdVNZZlDdNB7av2ytk0bMkO/jEdTV3nOHBQCNF6JGERwgcqVyxHramhLjqe6l79fR2OR9QlpGCNikVjtxH843ZfhyOE6GAkYRHCB8o//QyA0okzoKMc3KYolA8bB4B5+wYfByOE6GgkYRGilVmPHKF21y7Qajkxdpqvw/Gohmkh8+6tKHabj6MRQnQkkrAI0coaRleCJk3CERLm42g8q6ZrL2wh4WhrazDt3+3rcIQQHYgkLEK0ItVmo+LLLwEIufYaH0fjBRoNFaljADCny7SQEMJzJGERohVVfv8DzrIydJGRBI0f7+twvKJxWmhHGrjkbCEhhGdIwiJEKyr/9FMAzFdfjXKW4lrtXVWvATgCTegrKwj6aZ+vwxFCdBCSsAjRSux5eVRv3AhAyDVX+zgaL9LpqBgyCgDz9o0+DkYI0VFIwiJEKyn/4gtQVYwjRmBI9EzF17aqYXtzSPoG6BjFtIUQPiYJixCtpHJ5fWVb85VX+jaQVlDZbyhOP38MJ0owZvzk63CEEB2AJCxCtALr4cNYDx8BvR7T1Cm+DsfrVIMBy6ARgEwLCSE8QxIWIVqBZfkKAILGjkXbSQ7nLB9Wv1soZLtMCwkhWk4SFiG8TFVVLCvqE5bgiy/ycTStxzJwBC6dHv/CXPxzM30djhCinZOERQgvs/70E7Zjx1AMBoImT/Z1OK3GFWCksv9QAMzpMi0khGiZZiUs8+bNIyUlBX9/f1JTU1m/fv1Zr/3888+ZNm0akZGRBAcHM3r0aFauXHnadZ999hl9+/bFz8+Pvn37smTJkuaEJkSbYzm52DZwwni0QUE+jqZ1NRSRC5F1LEKIFmpywrJ48WIefPBBnnjiCXbu3Mn48eO56KKLyMrKOuP169atY9q0aSxbtoz09HQuuOACLrvsMnbu3Nl4TVpaGjNnzmT27Nns3r2b2bNnc/3117Nly5bmvzMh2gBVVak8uX4l+MLOMx3UoGLIKFSNBmPWUQzFBb4ORwjRjimq2rTVcCNHjmTo0KG8/vrrjc/16dOHK6+8kmeffdatNvr168fMmTP5y1/+AsDMmTOxWCwsP/mbKMCFF15IaGgoCxcudKtNi8WC2WymoqKC4E6yqFG0fXX795Nx9TUofn702LgRbVDgKa8v2HLmRL8j6f7PP2Lav4ucWXcx7a8PeaTNuro6MjIyGkd6hRC+19yfS3c/v5s0wmKz2UhPT2f69OmnPD99+nQ2bdrkVhsul4vKykrCwn4+pTYtLe20NmfMmOF2m0K0VY27gyZOPC1Z6SzKh9YfhijTQkKIlmhSwlJSUoLT6SQ6OvqU56OjoykocG+497nnnqO6uprrr7++8bmCgoImt2m1WrFYLKc8hGhLVFVtXL8SfNGFPo7GdxpObw48sh97UZGPoxGtLTk5GUVRuOWWW3wdik/97W9/Q1EUFEXxWQy33HILiqKQnJzssxhaolmnr/36G66qqlv/ExYuXMjf/vY3vvzyS6KiolrU5rPPPstTTz3VhKiFaF11e/dhz8lBCQggaOJE3wWiuvC3lhJYl4+xtuBXf+bj1Pqzve9jlAf39kr39rBIqrv1JvDoQaq+/57QG27wSj9CiI6tSQlLREQEWq32tJGPoqKi00ZIfm3x4sXcfvvtfPLJJ0ydOvWU12JiYprc5mOPPcbDDz/c+N8Wi4WEhAR334oQXmdZUT+6EjRpIhqjsXU7V1UGHJlHcu43GOsK0KqOc14+eeudrB75LhWmHl4Jpzx1LIFHD1L57SpJWIQQzdKkKSGDwUBqaiqrVq065flVq1YxZsyYs963cOFCbrnlFhYsWMAll1xy2uujR48+rc1vv/32nG36+fkRHBx8ykOItsLXu4N6Hf+AAUfewFSbg1Z14EJDtX80xSGDOR57EftTbmVb38dZO/QlSswD8LeXM3nrnZiqMrwST8XJ7c3VW7fiLC/3Sh+ibTp+/DiqqjJ//nxfhyLauSZPCT388MPMnj2bYcOGMXr0aN566y2ysrKYO3cuUD/ykZuby//+9z+gPlmZM2cOL730EqNGjWocSQkICMBsNgPwwAMPMGHCBP75z39yxRVX8OWXX/Ldd9+xYcMGT71PIbzmTDt9jEcP0isvD6efP0uNKaituBsounQLQw49D8DuHveTEX8ZtX6RqJoz/7gXhaUyZcsdhFUeZMrWO/hu5HyqAj07WmmNiae2SwoBORlUrllDSCc4AFK0L7fccgvvv/8+N998syRXbVST67DMnDmTF198kaeffprBgwezbt06li1bRlJSEgD5+fmn1GR58803cTgc3HfffcTGxjY+HnjggcZrxowZw6JFi3jvvfcYOHAg8+fPZ/HixYwcOdIDb1GI1he6dS1wsg6Jwa/V+jXW5jF25x/QqE6OxV/Ovm53UhMQe9ZkBcCuN/PDiLcoD+qO0VrElK23Y6zN83hsDWcLVa76zuNtCyE6vmZVur333ns5fvw4VquV9PR0JkyY0Pja/PnzWbNmTeN/r1mzBlVVT3v8OoO99tprOXjwIDabjQMHDnD11Vc36w0J4XMuFyFb1wFQPqL1FttqnbVM2PEg/vYySoP7sq3fk+DmjgSrIZTvR7xNRWAygXX5TNlyOwF1hR6Nr6HqbfWGDbjq6jzatvC+vLw8/vSnPzF06FDMZjMGg4GYmBgGDBjArFmzmD9//hl3a7qzS8hut/PSSy8xfPhwTCYTISEhDBs2jBdeeAGbzcbx48cbd9h0lNGP8vJy/vrXv9KvXz+CgoIICwtj0qRJfPTRR27db7PZeOutt7jkkkuIj4/Hz8+PqKgoUlNT+e1vf8v69etpYpk1AFavXo3JZEJRFHr27ElmZts5B6xZu4SEEGcXePQAhhMlOP2NWAYMa51OVZURe58izHKAOn0o64e+iFPbtIJqdX4RfD/iv0zdfAum2pyT00PvUecX4ZEQ6xJS0EVH4ygspGbbdoLGj/NIu8L71q9fz6WXXnpaQlJYWEhhYSF79+5l0aJFREREcOmllzap7fLycmbMmMHWrVtPeT49PZ309HQWLVrEm2++2eL30JZkZGQwbdo0jh492vhcdXU1a9euZe3atXzxxRcsXLgQne7MH9G7du3i6quvJiPj1DVnxcXFFBcXs2PHDl577TUyMjKatIV5yZIlzJo1C6vVyuDBg1m5cuVpO3p9SQ4/FMLDGkZXKoaORjUYWqXPXsc/JCVvKS5Fy4Yhz1ETENusdmr9o1k98h2q/WMJrj7O5K134mcr80yQikLgySSlWtantRtWq5UbbrgBi8WCyWTi0UcfZfny5aSnp7N58+bG41qau0vzhhtuaExWRo8ezcKFC9m+fTvLly/nN7/5DVu3bm1cI9lRzJw5k4yMDObOnct3333Htm3beOedd+jZsycAn3766Sm7YH9p//79jB8/vjFZueqqq1i8eDHbtm1j8+bNvP/++9x0000EBjatUOV7773Hddddh9VqZfz48axZs6ZNJSsgIyxCeJbLRcjW+sNAy0ZMOM/FnhFVupUhh54DYGfvRygKH96i9moC4lg94h2mbrmFkKojXLD1LlaP/C92vbnFsQaNG0fFp59RtXED5y6EINqKjRs3kpdXv6ZpwYIFp42gjBw5kuuvv55///vf1NTUNKntJUuWNB6Ge8UVV/DZZ5+h1WobX7/wwgsZMmQIjzzySAvfRduybds2FixYwKxZsxqfGzZsGNdddx3jx49n9+7dvPbaa9x5550MGDDglHtvuukmqqqq0Gg0fPTRR9zwqzIBI0eOZM6cOZSWlmJ0s5zCf/7zH/7whz8AcPHFF/Ppp58SEBDQwnfpeZKwCOFBgYf3YSgvxWEMpLL/UK/3Z6zNY9zORxoX2R5K+o1H2q0KTGD1iP8ydcuthFUeZPK2uawe/jYOfctOmw4cPRo0GmxHjmLPz0cf27yRIHepqopaW+vVPtoKJSDAK1VUf1kj65frFX9Np9M1ubxEw1SPv78/b7755inJSoOHH36YBQsWsGPHjia13ZZdeumlpyQrDUwmE2+99RYjR47E5XLxxhtv8NprrzW+vnLlysaDg++///7TkpVfCg8PdyuWxx9/vPEcwFmzZvH++++j1+ub8nZajSQsQnhQaON00BhUvXeng7TOusZFtieC+zRpka07KoNS+H7E20zZchvhFXsZcugFtvV/skVtas1mAgYOpHbXLqo2bCD0uus8FO2ZqbW1HBqa6tU+2opeO9JRvFCgMPYXSeV77713yg7PlnA4HKxbV//zcuGFF561UKiiKMyePbtDJSy33nrrWV8bMWIE/fr1Y9++fXz33ak76pYuXdr49UMPtewgUZfLxb333tuYNN577728+uqrPj064HxkDYsQnuJyErKtfm1Gubeng361yHbd0JeavMjWHRWmHmwYUl/TpWvOEgJq3Tsz7FwCxzWsY5HDENuDcePG0bVrVwAefPBBRowYwbPPPsumTZuw2WzNbvfo0aPUnhz9Sk09d1I5bFjLF6+vWbOmcafRmR7vv/8+AO+///45rzt+/HiLYxk+/NzTtiNGjADg8OHDp3yPG0ZXEhMTG0uJNIfD4WDWrFmNycoTTzzBa6+91qaTFZARFiE8JujQXvQVJ3AEBlHZb4hX++qV+REped+0eJGtO4rCh1MYNozoE9vpmzGf9L5/alF7QePGUvLqq1Rv2oTqcKCcZSeEJygBAfTake619tsSxUtrDvR6PV9//TXXXnstBw4cYNu2bWzbtg2oLwA6ceJEZs+ezcyZM884pXM2ZWU/L+Y+3+LOyMjI5gXfRp3v/TaMNqmqSllZWeN/l5SUAKeOejVHbm4uH3/8MVC/ZuWZZ55pUXutRRIWITykcXdQ6lhUnffmgIOqsxly8D+AZxbZumNvt7uJPrGdbtmfsq/bHS3a6uw/YAAasxlXRQW1e37EONR7yZ2iKF6ZJuls+vbty48//sjXX3/N119/zdq1axtHSFasWMGKFSt4/vnnWbZsWZvbWdJg+PDh/Pjjj2d9/c9//jNffvklV1xxxTk/wOPj41scy/lGMs5XP6WlIyHR0dF0796djRs3smzZMp577jl+//vft6jN1iAJixCe4HQSsq1hd5B3i8X1yvwAjeokP3y0xxbZnk9h+EhKQgYSUb6H3hn/Y1fvM2+5dIei1RI4ZjSVy1dQvWGDVxMW4TlarZYrr7ySK08eq5Cfn8/y5cuZN29eY82Uu+++myVLlrjVXmhoaOPXRUVF57y2uLi42XE3CAwMpH///md9PSQkpPHPc13nCYWFhefcBt7w/VAU5ZTvU0RE/S8KDbu2msvf35/ly5czY8YM0tLSeOSRR9BqtTz44IMtatfbZA2LEB4QdHAP+soKHEHBVPYZ5LV+DLYKuuV8AcD+rrd5dJHtOSkKe7vdDUCPrEUtrs0SdHIdS5XUY2m3YmNjue2220hLS2Po0Podcd98803jupTz6datG/7+9euutm/ffs5rz/d6e9MwpXa+13v06IHhF7WcGr7PWVlZLa5AazKZWLFiReMROA899BCvvvpqi9r0NklYhPCAht1B5aljwYtrMrpnf4LOWUuZqReF4a171lZe5HhOBPdB76yl1/EPW9RWw8Lbuh9/xFHmocJ0wif0ej0TJ9aPKjocDsrdPI1bp9M1bpNeuXIlhYVnPgpCVVU++OADj8TaVjQs8D2T7du3s3fvXgCmTp16ymuXXXZZ49cvvPBCi+MIDg5m5cqVjYuA77//fl5//fUWt+stkrAI0VJOJ+b0+h0v5SO9tztI47LTM3MhAAdT5rTe6EqDX4yy9MxcgN5++rkx7tJHR+PXoweoKjVpaZ6KUHjB+vXrOXLkyFlft9lsrF1bf9hnUFBQkxbI3n13/d+nuro67r77bpxO52nXPP/88x1qSzPAV1991bjo9Zeqqqq46667ANBoNI3fnwZTp05t3FH1yiuvsGjRorP2ceLECbdGu8xmM99++21ju/fddx9vv/222++lNUnCIkQLnTId1Nt700GJ+SswWouo8YskM/Yir/VzLjnRF1Ae1B2Do6oxeWquhlGWqvUyLdSWrV69ml69ejFp0iT+/e9/s3LlSnbs2MHGjRt57733GD9+fGNCcccdd5z1/Jszufrqq5k+fToAX375JePHj+fjjz9mx44drFy5ktmzZ/PII480bvOFli84bQuGDRvGjTfeyH333ccPP/xAeno67733HsOGDWvcunzfffcxcODA0+794IMPCAoKwuVyMWvWLK655ho++eQT0tPT2bp1KwsWLODWW28lKSnprKNWvxYSEsKqVasYMmQIqqpy99138+6773r0PXuCLLoVooUaFtuWp46BJmzrbBJVpU9G/TDyT0k34tL4qBKlomFft7sYu/tReh//gEPJN+HQNe3MkgZB48dx4r33qN64EVVVO8QHUUflcrkaD+Y7m6uvvrqxYmpTLF68uPHww7S0NNJ+NeI2ZMgQ5s2b11iLpWHdS3v28ccfM2XKFObNm8e8efNOe/2aa67h+eefP+O9ffr0Yc2aNVx11VVkZ2fz+eef8/nnn7c4ptDQUFatWsWUKVPYvXs3d955J1qtlptvvrnFbXuKjLAI0QKq00lIw3TQ8PFe6yf6xFZCKw/h0AZwJMG71WHPJyt2OpbAZPzsFfTIOn1Y210Bqako/v44ioqw/nTYgxEKT3r00UdZtmwZDz30EKNGjSIxMRF/f3/8/f1JTk5m5syZLF26lM8++6xZyURISAgbNmzgxRdfJDU1laCgIEwmE4MHD24sUPfL+i5mc8vPtPK1lJQU0tPTefzxx+nTpw9GoxGz2cyECRP48MMP+fTTT885UpWamsqhQ4d4+eWXmTx5MlFRUej1emJiYkhNTeWBBx4gLS2tSSc1Q305/++++44BAwbgcrm47bbb+PDDlq1X8yRFPd+G73bCYrFgNpupqKho8nkWQjRX9datZM25GUdgED++vNhrC24nbr+X+OL1/JR4A9v7PeGVPpoiJedLRv/4Z2oNYXw1aQVOrXtFy24cmXjKf2fddRfV69YT9YdHCL/9drf7r6urIyMjg5SUlA7xG7c4tw8//JDZs2cDcOTIEbp16+bjiMSZNPfn0t3PbxlhEaIFKlfUnzRbMXSM15KV4KpjxBevR0XhYPJsr/TRVMfjLqYqIJ4A2wm6Z3/W7HaCxtWPSsn2ZnEuCxfWr5eKjIxsPCZAdD6SsAjRTKrLhWXVt4B3p4N6H/8fUL/gtSow8TxXtw5Vo2df1/oRkT7H3kPjbN6ZMg0Lb2u3p+OqqfFYfKL9yM3NPedulnfeeYdly5YBMGfOHFnr1IlJwiJEM9Xu3ImzuASHMdBrZwf5WUtJyf0agIPJbWfxG0BG/BVU+0djtBbRNfeLZrVhSElGHx+PardTvXWrZwMU7cKqVatISkrid7/7HZ9//jnp6els27aNRYsWcdVVV3HHHXcA9eXk//Snlp1jJdo32SUkRDNZGqaDhoz22tlBPbI+RuuyUWIeQHFo2yph79IaOJByK8MO/B99j73D0S5XoTZx95KiKASOG0f54sVUb9iIadIk7wQr2rTi4mJeeeUVXnnllTO+Hhsby9KlSxtL04vOSUZYhGgG1eWi8lvvTgdpnXX0zKovDOWTQnFuOJpwDbWGcIJq80jJ+6ZZbQSOGwtAtaxj6ZQuvfRSXn/9da644gp69uxJaGgoOp2OiIgIxo8fz7/+9S8OHTrEkCFtK2EXrU9GWIRohtrdu3EUFqIJDKSy31Cv9JGctxR/2wmq/WPJjp56/ht8wKn150DKLQw99Bz9jv6XjPjLUZWz16JZsCXrtOc0ui4M1GqxHT/Op99sxRYZc8Z7f73DSHQMERERzJ07l7lz5/o6FNHGyQiLEM1QubJ+dCVo8mTUXxxO5jGqi94Z9YttDyX/BlXTdn+3OJJ4PXX6EEw1WSTmr2jy/S5jINXd+gBg+rFjHXInhPAcSViEaCJVVbF8W79+JXjGdK/0EVe8AXP1MezaQI50ucYrfXiKQ2fk0Mnt1r2PN++QOsuA+nNMgn9M91hcQoiORRIWIZqo7scfceTlozEaG7flelrDVuYjCdfg0Ad5pQ9POpJwLS5FS3jFPkzVx5t8v2VA/Wmxpv27wOHwbHBCiA5BEhYhmsiysn50JWjSJDReqLIaYjlITOkWXIqWQ8k3ebx9b7D6hVEQMRqA5LxlTb6/NqkbdpMZbV0NgUcOeDo8IUQHIAmLEE2gqmpjdVvTjBle6aNhWiUrZjo1AbFe6cMbjsdeDEBS3jJo6okfGg2V/esXLwfvdX8dSwc5WUSIDsHbP4+SsAjRBHX79mPPzUUJCCBogue3MwfUFdV/4AMHk+d4vH1vyomejEPjT3BNJmGW/U2+3zKg/jTe4D3nT1g0mvp/ulwuV5P7EUJ4h9PpBH7++fQ0SViEaILKhumgCRPQBLh34F9TJOd9g1Z1UBQ6hBMh/T3evjc5dIHkRk8C6rdkN1Vl//qFt8bMI+gs5ee8Vq/Xo9Vqqa6ubnI/QgjvqKmpQavVotd7p5CmJCxCuElV1cb1K8EXemc6KOnktuCMuMu80r63NUwLJeavQFGdTbrXYQ6lJrH+FF7T3h3nvFZRFEwmExaLRaaFhGgDVFXFYrFgMpm8dt6TJCxCuMl68CD2rCwUPz+CJkzwePtB1VmEWQ7gUrTkRE/xePutIT9yHFZ9MEZrMVEnml5TpXFayI16LGazGbvdTl5eniQtQviQqqrk5eVht9sxm81e66ftVqMSoo1p3B00YTyawECPt59YUN9+YdgIrH5hHm+/Nbg0erJiptMj+1OS8pZRGD6ySfdXDkglZuliTHvTweWCc8yFG41GunTpQk5ODrW1tQQHB2M0GtFqtXKirxBepqoqTqeTmpoaLBYLdrudLl26YDQavdanJCxCuOHU3UEXeqWPpPz69jNjvdN+a8mMvZge2Z+SWLCK7X0fx6X1c/ve6h59cfoHoLeUE5B9jNqk7ue83mQykZSUREVFBeXl5ZSWlrY0fCFEE2i1WkwmE2az2avJCkjCIoRbrD8dxnb8OIrBQNCkiR5v31SVQWjlIVyKrt1OBzUoCkulxi8Ko7WIuOIN5MS4/35UnZ6q3gMx79qCad/O8yYsUD/SYjQaiYmJwW63y84hIVqJRqNBr9e32oimJCxCuKFhd1DguHFogzxfeTbp5HRQQcQobAbvzQG3CkXD8biL6Zsxn+T8pU1KWAAq+w2tT1j27qDo4uvc71ZRMHjjXCchRJsgi26FcIO3zw5KbJgOivHO7qPWlnlyt1B80Vp09qom3VvZbwgAQT/tRbHZPB6bEKJ9koRFiPOwHjmC7chR0OsJmjzZ4+0HVx4lpOoITkVHTrTn2/eFsuDeVASmoHXZSChc3aR76+ISsYWEo7HbCDy8z0sRCiHaG0lYhDiPxt1BY8agNZk83v7P00FjseuDPd6+TygKx+MuASA5v4lnCynKz2X69527HosQovOQhEWI8/Dq2UGqSuLJYnGZsR1jOqhBw7RQdMlm/K0lTbq3sm/9tND5CsgJIToPSViEOIe6n37Cevgw6PWYpnh+usZcdRhzdQZOjYGcqAs83r4vVQUmUGIeiAZX4xoddzWsYwnIOoq2ssIb4Qkh2hlJWIQ4B8s39WfiBE2YgNYLFRwbaq/kRYzFoff87iNfOx5XP8qSnNe0aSFHSBi1XZJRVBXT/l1eiEwI0d5IwiLEWaiqiuWbbwAwX3qJNzpoHHnIaufF4s4mK3YGLjREVOwhqDq7SfdW9qtfx2KSdSxCCCRhEeKsanfuwp6Xh8ZoJGjSJI+3H1J5iOCaTBwaP3KjPF+Mri2o84toLM+f1MTFtz8nLDtBzgoSotOThEWIs7B88zUApmnT0AQEeLz9hpOZ8yIn4NB5/myitqJxt1De0iYlHlW9B+DS6vArKcRQlOet8IQQ7YRUuhUCWLAl69QnHA76f70MPZDeYwRrfv16S50yHeSdYnRtRXb0FEbsexpzdQYhlYcoD+7t1n0uP3+qe/TFdHBP/SjL5aO9HKkQoi2TERYhziB43070lRXYg0Mat9h6UphlP6baHBzaAHIjJ3i8/bbEoQ9qnPJKzlvapHsbdgtJPRYhhCQsQpxBaNr3AJSNnAharcfbbxhdyY2cgFPn3RNO24LjsQ3TQstAdf9wwoZ1LEH7d6M6nV6JTQjRPkjCIsSvaKx1mHdsAqBslBdqo6gqiSer22Z20N1Bv5YXOQ6bzoTRWkTUiXS376tJ6YHDGISupoq6fVKmX4jOTBIWIX4leOdmtNY6rJGx1HRzb71FU4RX/EhQbR52bQD5keM83n5b5NL6kR0zFWjibiGNlqq+gwCo3rTJG6EJIdoJSViE+JWwhumg0ReAoni8/cbpoKhJOLX+Hm+/rWrYLZRY8C2Ky+H2fQ1riKo3SsIiRGcmCYsQv6CtshD843YAToz2xnSQq9NNBzUoChtGnT4EP7uFyLKdbt9nOXkQYs2uXbhqarwVnhCijZOERYhfCNm2HsXppCaxG9a4RI+3H1G+h8C6Qmy6IPIjxnq8/bZMVbTkR44HIL54rdv32aLisEZEg91Ozfbt3gpPCNHGScIixC+EbfrFdJAXNBSLy426AJfWzyt9tGU5UZMAiC9c4/5NitK4vVmmhYTovCRhEeIkfWkRQT/tRVUUykZN8nwHqouEgm8ByIyd4fn224H8iDE4FR3BNZmYqjLcvq9he3N1Wpq3QhNCtHHNSljmzZtHSkoK/v7+pKamsn79+rNem5+fz4033kivXr3QaDQ8+OCDp10zf/58FEU57VFXV9ec8IRoltDNawCo6jUAe1ikx9uPLNuB0VqMTWeiIGKMx9tvDxz6IIrChgMQX+T+tFBl38GgKFh/+glHcbGXohNCtGVNTlgWL17Mgw8+yBNPPMHOnTsZP348F110EVlZZy5dbrVaiYyM5IknnmDQoEFnbTc4OJj8/PxTHv7+nWcHhfC9xt1B3qi9AiQWfAdATvQFuDR6r/TRHjRUvY0vWuP2PU6TGf8+fQAZZRGis2pywvL8889z++23c8cdd9CnTx9efPFFEhISeP311894fXJyMi+99BJz5szBbDaftV1FUYiJiTnlIURr8c85TkB2Bi6tjvLhXqiNoqqNH9DZ0VM83347kntyHUtk+S4Mtgq37wscWz8qVb1JEhYhOqMmJSw2m4309HSmTz/1sLbp06ezqYVFnaqqqkhKSqJLly5ceuml7Nzp/rZHIVoqdPMPAFgGDsMZFOzx9oOrMwiqzcWpMVAYPsrj7bcn1cZ4yoO6o1GdxBWffTr51wLHNCQsm1CbcOqzEKJjaFLCUlJSgtPpJDo6+pTno6OjKSgoaHYQvXv3Zv78+Xz11VcsXLgQf39/xo4dy+HDh896j9VqxWKxnPIQojlUVSU0rT5h8dbuoIb1GoVhw3F0grODzicnuv773JRpoYChQ1H8/HAUFWE7etRLkQkh2qpmLbpVflX9U1XV055rilGjRnHTTTcxaNAgxo8fz8cff0zPnj155ZVXznrPs88+i9lsbnwkJCQ0u3/RudXu3IVfSSFO/wAqBntn9CPuZMLSsH6js8uNrP8+xJZsROOyu3WPxs8PY2oqINNCQnRGTUpYIiIi0Gq1p42mFBUVnTbq0qKgNBqGDx9+zhGWxx57jIqKisZHdna2x/oXnYvlm28AqBg6BtXP8wu9DbYKIst3AZAXOcHj7bdHpSEDqDWEYXBUEdmEwxB/Xsci9ViE6GyalLAYDAZSU1NZtWrVKc+vWrWKMWM8t01TVVV27dpFbGzsWa/x8/MjODj4lIcQTaXa7ViWLwe8VIqfk6MIqpPyoO5UG+O90ke7o2gak7embG8OHD0agJqtW1Ht7o3MCCE6hiZPCT388MP897//5d133+XAgQM89NBDZGVlMXfuXKB+5GPOnDmn3LNr1y527dpFVVUVxcXF7Nq1i/379ze+/tRTT7Fy5UqOHTvGrl27uP3229m1a1djm0J4S3VaGs6yMuwmc2NxMk+Ll+mgM2rYLdSl6AdwcxGtX+/eaMPCcNXUULtnjxejE0K0Nbqm3jBz5kxKS0t5+umnyc/Pp3///ixbtoykpCSgvlDcr2uyDBkypPHr9PR0FixYQFJSEsePHwegvLycu+66i4KCAsxmM0OGDGHdunWMGDGiBW9NiPOrODkdVD5yImi1Hm9fcTmILdkIyHTQrxVEjMap6AmqzcVcdZQKU/fz3qNoNASOGoVl2TKqN25qXNMihOj4FLWD7A+0WCyYzWYqKipkeki4xVVTw0/jxqPW1HDoyReo6d7X431EntjBtC03Y9Wb+XzyGlRNk39H6NAmbb+HuOIN7Or5APu73XHOa28cWX8YZfmnn5L/5ycJGDKE5IULWiNMIYQXufv5LWcJiU7LsmwZak0N+sREarr18UofcSdPJc6LHCfJyhnkRE4CmriO5eR6udo9e3BWVnojLCFEGyQJi+iUVFWlbMFCAEJnXg8t2JZ/LvFF6wDIi5T1K2eSd3JdT0T5bvysJ9y6Rx8XhyE5GZxOarZu9WJ0Qoi2RBIW0SnV/fgjdfv3oxgMmK++2it9BNbkEFJ1BJeiJS+ycx52eD41ATGcMPVGQW1W1duqDRu8FZoQoo2RhEV0SmULFwFgunAGutBQr/QRX1w/ulIcOgS7/uznaHV2Px+G2IRpofH15z1Vr98gZfqF6CQkYRGdjrO8HMuyZQCEzprltX7iTk4H5cp00Dk1bG+OLdmIxmlz657AESNAr8eek4M9M9OL0Qkh2gpZBSg6nfIvvkC1WvHr3ZuAwYO90ofOUUN0af36irwo2c58LifMfanxi8RoLSb6xDbyI8ee8boFW04tl9C9e19MB3az5sOvKZl2xTn7aNhhJIRov2SERXQqqstF+cnpoNAbbmjRGVjnElOahla1U2lMwBKY4pU+OgxF05jUNeUwRMuAYQAE73W/tL8Qov2ShEV0KjWbN2PLzEQTGIj5sku91s8p00FeSoo6ktxfbm92c01K5YD6onFB+3eh2N2bShJCtF+SsIhOpWGxrfmKK9AEBnqnE9XVuOA2L2q8d/roYAoiRuLQ+BFYl09I5U9u3VOb0BW7OQytzUrg4f3nv0EI0a5JwiI6DXthIZXffw9A6KwbvNZPmOUAAdYS7FojRaHDvNZPR+LUBlAYPgpowrSQomA5OcoS/ON2L0UmhGgrJGERnUb5J5+C00nAsFT8evTwWj8N23PzI8bg0hq81k9Hk9OM7c2V/SVhEaKzkF1CokP49Q6S0zgc9PtwIQbgwLBpbDrf9S0Q1zgdJLuDmiIvaiLsg4iKH/G3llDnF3Heeyz9h6IqCgHZGejKSnGEhrdCpEIIX5ARFtEpmHdtxlBeit1kpnzYmbfNeoJ/XTHhFfsAyIuU9StNUesfRam5H/DzouXzcZrM1CTXj5bJbiEhOjZJWESnEPH9NwCUTrwQVe+9aZqG8vIl5gFujRCIUzUU2WvS9uaBJ7c3/ygJixAdmSQsosPzK8gleN9OVEWhdNLFXu0rvuF0ZpkOapbGqrelm9E669y6p7J/fcJi2psOLqe3QhNC+JgkLKLDi/ihfnTFMnA4tsgYr/WjcVqJKUkDpBx/c5UF96baPxqds5aoE+4tpK3u1huHMRBddSXGjMNejlAI4SuSsIgOTbFZCVv/LQAlk71XKA4g+sR29M5aavyiKAvu7dW+OixFIT+y/mBDt09v1mqp7DsEODnKIoTokCRhER1a6Ja16KqrsEZEN6518Ja4k9NBuVETpLptCzQsVo4rWtfkqrfBe2R7sxAdlSQsokNrXGx7wSWg0XqvI1Ul/uTOlrxIWb/SEgXho3AqOky1OZhq3DuJueFcocBjB9FWV3kzPCGEj0jCIjqsgOOHCTx2CJdWR+mEGV7ty1x1lKDaXJwaAwXhI73aV0fn0AVSHFY/YhJXvMGte+zhUdTGJaK4XATt3+nN8IQQPiIJi+iwGkZXyoePwxEc4tW+4k5WZy0MH4FTZ/RqX51B47SQu+tYkKq3QnR0UunWDeetonoON45M9GAkwl3a6ipC034AoGTKZV7vr+Gww1yZDvKIvMjxDD34H6JKt6F11LiVBFoGDiPq2yX19VhUVdYRCdHByAiL6JAivv8arc1KbZdkqnv082pfensFEeW7AVm/4imWwBSqAuLRqnZiSre6dU9VrwG49AYMJ4rxz/Pe0QtCCN+QhEV0ONrqKqKWfQpA4aUzvf6bdmxJGhrVSXlQN6qN8V7tq9NQFPJObm+OLXFvHYtq8KOq1wAATFL1VogORxKW86gqLcS242tfhyGaIGr5p+hqqqjtkkzZyEle769hnUVD/RDhGaesY3Fze3PDbqHgvbKORYiORhKWc7DX1bL5lqsY/vKrOL550dfhCDfoLOVEfrsEgPyrbwaNl/+Kqy5iT+5kkcMOPaswbDhOjYGg2jyCq465dU9DPZaggz+i2KzeDE8I0cokYTkHh+rAEhGARoXhnyxH896j4HL5OixxDtFfL0JrraM6pScVQ0d7vb9QywECbCewa40Uhw71en+diVNnpDBsOOD+bqG6uERsYZFo7DaCDv3ozfCEEK1MEpZzCAgwcfl/V7J2Rh8ABq3ZjfG521Hrqn0cmTgTfWlR47lB+dfe0iq7ROJPfpAWRIzGpdF7vb/OpnFayM11LCgKloaqt7KORYgORRKW89BpdZhmvcB3N03GroVee/OIfOZm1PJCX4cmfiXmywVo7HYqew+ksl/rjHY0/OYv00He0bAuKPJEOjq7exVsK0+uYzFJPRYhOhRJWNygKArh0/7ID7+dTZU/JGRXkvi321Gz9/s6NHGSoTCX8PUrAci/5pZWGV3xs5URXl4/7ZAnC269ojIwiUpjIlrVQUzpFvfu6TsEVaMhIC8LfWmRlyMUQrQWSViaIHLoTWz54x8pDNEQUWan1zO/x/Xj974OSwCxSz5EcbmoGDSC6p7erbvS2GfxRhRUyky9qPWPbpU+O6OmVr11BgZR3bX+tGypeitExyEJSxOFdZ3MgSf/w9F4PYF1LgY9/09Y84Gvw+rU6n76idDN9VVt86+5udX6/Xk6SEZXvKlZ25sHNkwLyToWIToKSViawRzRj4I//5edfYPQuWDIex+i+/j/3P7HVHhW8csvo6gqZcPHU5vUvVX6VFQnMSWbAFm/4m2FYcNwaPwxWosIqfzJrXsazhUy7d8JTqc3wxNCtBJJWJrJaIzB9vv/sXZcLAADlv5A0Mu/BWudjyPrXGr37KHqu9Woiob8q+e0Wr9h5Xvxt5dj05koCRnUav12Ri6tH4XhIwD3p4VqUnrgCDShq6km8OhBb4YnhGglkrC0gEEXSNAd77DiqgE4Feix4wgxT81BU5Ln69A6jeIXXwLgxNgpWONa76DJxuq2EWNQNXKGqLc1+fRmjVZObxaig5GEpYU0ipaoK/7N0nsvwxIAsbkVdP3LnWgPuLejQTRf9ZatVG/aBHo9BVfe1Kp9y3bm1tWwTiiifDd6u8WteyoG1RedM+9M81pcQojWIwmLByiKQsKI37L+sd+TGaXBVO2g77/+gt+3shjXW1RVpfjFFwEIve5abJExrda3v7WEcEv9lvb8yLGt1m9nVm3sQkVgChrVSUyJewmIZdCI+u3N2RnYcnK8HKEQwttkLNuD4pKmc+TJZIpff5Rh+2vp+9GH7KjIZsg/XkYxGHwdXpu3YEuW29cG795Kt507cekNrBtxmRejOl3D2UGlwX2p84to1b47s7zI8ZirM4grXk927IzzXu8MCqaq1wBMB3ZTtXo1YTe33g4yIYTnyQiLh4UF98T68HyWTo3FBQR8s5ZtMy/BXlzs69A6DpeL2M/eB6B46uU4QsNbtXuZDvKNn9exbADVvTO9Gs6Tqlwt9ZKEaO8kYfECoz6E6Jve5pNbhlHjB6YDOey5fAaVe3b7OrQOIWTrOoyZR3D6Gym85PpW7VtxOYg9OSUhCUvrKg4dil1rJMBWSqjFvZ0/FUPqE5aa9HQcZWXeDE8I4WWSsHiJVtHTY9IzHP3XXeSFgbGslozfzCLv0wW+Dq1d058oJuF/rwJQdNE1OE3mVu0/onw3BkcldfoQToT0b9W+OzuX1kBB+EjA/d1CtsgYahNSwOmkau1ab4YnhPAySVi8SFEUrp/xEIZ3X2B3dx16u0rFn//Ogd/fh6u21tfhtT8uJ0lv/gtddSU1yT0ovHRmq4fQuJ05ciyqom31/ju7Jm9vBsqHjgGgSqaFhGjXJGFpBeN7X0jq/E9ZMTkEF8DS79lzxUVYjxzxdWjtSvTXizEd3IPTz5/j9zyGqtO3egyyfsW38k9+3yPK92Cwlbt1T8M6lqqNG3HVSWFHIdorSVhaSY+IXtz2wgq++N0gygLBL6uQn66+ktJPP0GVkv7nFfjTPmK/qN8mnjPnt1hj4ls9hoDaAkIrf0JFIT9CtjP7Qk1ADGWmHiioxJ48GuF8apO6o4uNRa2poTpNarII0V5JwtKKzH5mHrtnAXv/cyu7kxV0NidFf/4LGY88hKu62tfhtVna6iqS3/g/FJeLE6Mnc2LsVJ/EEVdycjtzyABshhCfxCAgP6K+iJzb00KKgmnyZACqvpdpISHaK0lYWplG0XDXBY8S9cbLfHaBHy4FrEtXcvDqy6k75N7Bbp2KqpLw3osYSouwRsaSffNvQVF8EkrcyforMh3kWw3f/9jijSiqewcbmqbUJyyV3/+AKochCtEuScLiI5OTp/Kb/1vC23d24UQQKJl5HL3uGso+/limiH4hfO0KQretR9VqOX7Pn3AFBPokDo3L3lhhNVcSFp8qDh2MTReEv72MsIp9bt1jHD4cjcmEs7SU2t17vByhEMIbpNKtl527equWQaNe4c2If3Hhos0MOeag4C9/Zf/Xq8i5+XfMnDqg1eJsi/zysujy0esA5F1zCzXdevsslsiyHeidNdQawikL7uOzOASoGj0FEaNJLFhFXNE6SkMGnvceRa8naMIELEuXUvX9aoxDh7RCpEIIT5KExcf8tEZm9Pwrafd+zP5v3ueGtU7Ctm0g6OAeLOozBE+b1qx2m1Lm/tduHNl6px6fjWKzkTLvH2hsViz9hlB00bU+jefn3UHjQJGBSV/LjZxIYsEq4ovW8mPP37p1j2nqFCxLl1K5+nuiHnnEyxEKITxN/uVtAxRFYXTkTPyvf4anbzGRHQGGSgu59/+O3Id/3ykrdMZ9/F8CsjOwm8xk3vUH0Pj2r2pckWxnbkvyIsejohBWeRBjbYFb9wSOHw96PbaMDKzHjnk5QiGEp0nC0oZ0DRzKBWPn8dK9fVkyWsGlgGXZMo5deimWb7/1dXitJnjnZqJWfQlA1p2P4Ahp3bOCfi2wJhdz9TFcipaCiNE+jUXUs/qFUXJyKiiueJ1b92iDgggcWV8pt3L1aq/FJoTwDklY2hizPoobuv6bo1dfyxNztGRHgLP0BLm/e6BTjLboT5SQ9N/nACiacTWWQSN8HNHPpzOXhAzCrg/2cTSiQW7UJADii9a4fY9p6hRAqt4K0R7JGpY2SKvomBJ1B4eH9+evMc9x2bpKrtisYlm2jNINm8i++X4qho3zdZgepz9RQtcXnkRXZaEmqTt5193q65AAiJfqtm1SbtREBv/0EjGlW9A6anDqjOe9J+iCyfC3p6jdvRtHcTG6yMhWiFQI4QkywtKG9TCNYnb3V1lzYR+emKMlKwL0lnK6vvJ3kl99Bn1pka9D9Ji6gwfp+fQDGLOOYTeZOX7vY6h6g6/DQuusI7p0CyAJS1tTEdSdqoA4tC4bMSf/H52PPjoK/wEDQFWp/OEHL0cohPCkZiUs8+bNIyUlBX9/f1JTU1m//uwVJ/Pz87nxxhvp1asXGo2GBx988IzXffbZZ/Tt2xc/Pz/69u3LkiVLmhNahxNiiGZ20r8I63clf7pVy+djFJwaCN22nr5/vI3YT95FU9u+q+RWrV9P5o2/wVBWQl1sAj/99WWsMV18HRYA0aVb0LnqqPaPpdzU09fhiF9SFHKjJgIQX+T+ScymKTItJER71OQpocWLF/Pggw8yb948xo4dy5tvvslFF13E/v37SUw8fTus1WolMjKSJ554ghdeeOGMbaalpTFz5kz+/ve/c9VVV7FkyRKuv/56NmzYwMiTi+Q6M62iZ2r0XSQY+7PE8CKbe1Vx62rok2Un5pvFhK9bSf7VcyidcCFoW36CcGtuiS5btJiCv/8dnE4qew8k43d/wRloanb/ntalqP638JzoST6rsCvOLjdyEr0yF9YvvFVdbm05N02ZTPGLL1KdloaruhpNoG+KEQohmkZRm1hWdeTIkQwdOpTXX3+98bk+ffpw5ZVX8uyzz57z3kmTJjF48GBefPHFU56fOXMmFouF5cuXNz534YUXEhoaysKFC92Ky2KxYDabqaioIDjYswsjW/IB7mnltgK+yPsn+bWHGHZY5fa1AYSX1I+w1MYlkjvrLioHDvdxlG5wuYj75F2il30CwIkxU8i6/SGfnMB8VqqLq36YQoC1hO+Hv0lBxBhfRyR+ReO0cc3q8eidNawYs4gT5n5nvO6XibSqqhydcSH2rCziX3qJ4BnTWytcIcQZuPv53aQpIZvNRnp6OtOnn/oDPn36dDZtcu/k1DNJS0s7rc0ZM2acs02r1YrFYjnl0RmEGGKYnfQvRoVfx/aeWn57Wx2LLwzDFhhIQF4W3Z/7M93+/Tj+2Rm+DvWsFJuV5Hn/aExW8q+cTeZdf2hbyQoQXrGPAGsJdm0gRWHtIAnshFxaA/knE0l3dwsppxyGKNubhWgvmpSwlJSU4HQ6iY6OPuX56OhoCgrcK950JgUFBU1u89lnn8VsNjc+EhISmt1/e6NV9FwQdSs3Jvw/jH4RfDbEwj13Otg1aSAurY7gven0fvJeEt55Ab+8tjM6BKCzlNPj//5I6Lb1uLQ6jt/1BwquuqlNTrfEn5wOyosci0vTtpIp8bO8qAlAE9exnNzeXLlmLarD4ZW4hBCe1axFt8qvPlxUVT3tOW+3+dhjj1FRUdH4yM7OblH/7VFS4CBuS3mVXkFjqAxw8o/R+/nX73pTnDoCRXURsW4FfR+7k+7//CPmbevBx/8w++Vl0fPpBwk8egCHMYijf/gHZWOn+jSmc2n4jb2h3odom3IjJ9RXvbUcIKCu0K17AoYMQRsaiquigprt6V6OUAjhCU1adBsREYFWqz1t5KOoqOi0EZKmiImJaXKbfn5++Pn5NbvPjsKoDeaq+MfZXfEt3xW+yQ7/g+y/0MTNE24jde0BzDu3YNq/C9P+XdhCwimddDElky7CEdpK1WNVlaCDu4n87ivMO9JQXC6skTEcffjvWON8f2bR2QTW5BBaeRiXoiUvcoKvwxHnYPULpzRkABHle4grWsfRxOtOu+ZM69AS+w0jfMMqti/4glwl9qztt4WztYQQTRxhMRgMpKamsmrVqlOeX7VqFWPGNH9B4ujRo09r89tvv21Rm52JoigMDpnBrckvE+PXjTpXJW/6/495M8PZ9a83KbjsBuwmM4byUmK/+ID+D99E8qvPEHRgFzRtzbXbNLU1RKz+mt6P30WP//sjIds3orhcWAak8tNfXmrTyQr8PL1QHDoEm8Hs42jE+eRG1m9v7tKEaaGK1Pp/X8w70rz2cyCE8Jwmb2t++OGHmT17NsOGDWP06NG89dZbZGVlMXfuXKB+qiY3N5f//e9/jffs2rULgKqqKoqLi9m1axcGg4G+ffsC8MADDzBhwgT++c9/csUVV/Dll1/y3XffsWHDBg+8xc4j3K8Lc5KfY13xB2w+8Tm7yldwXL+byy5+mIQrfkPI9o1EfP81QT/tI3TbekK3racutguW/qnUpPSipltvrNFxLVpP4peXRcT33xC+fhXauhoAnH7+nBgzhZKpl1PXJdlD79a7ZDqofcmNmsigw68QXboZrbMWpzbgvPdY+g3FZfDDr6SQgOxj1CZ2a4VIhRDN1eSEZebMmZSWlvL000+Tn59P//79WbZsGUlJSUB9obisrFOHX4cMGdL4dXp6OgsWLCApKYnjx48DMGbMGBYtWsSf//xnnnzySbp168bixYulBksz1C/IvY2UwFSW5r9AuT2fD7IeZWTY1UwYeRNloy/AP+sYEd9/Q9im1fjn5+Cfn9N4vyMwqD556dqL6m69qOnaG0dwyM8dqCqaulq0NVVoa6rr/6ytRmepIHTzDwTv29l4aV1MF0qmXEbpuGm4jO2n1oXeXkn0ie2AJCztRbmpJ9X+sQTW5RNdupW8kwXlzkX188fSbwghOzdj3pEmCYsQbVyT67C0VZ2lDktT1DmrWV30Nnsq6qfbIgyJXBr7MLEBPQDQ1FZj3rUV47GDGI8dwph5BI3dflo7trBIVK2uMUlRVNdZ+1QVDRWDR1Ay9XIq+w4BTfs7/SExfwXjdv2BisCuLJ3wpa/DEW4atu8ZemYt5nDCtWzr/1e37glbt5Kkd56ntksKB//fG2e8RtawCOFd7n5+y+GHHZi/NpBLYh+kZ9Bolhe8TIkti/czH2ZM+EzGRtwAAYGUjb6AstEXAKA47PhnHyewIYE5dgj//GwMJ4pPa9ul1eE0BuI0Bp38M5Ca5J6UXnAxtsiY1n6rHtWl8BfVbUW7kRs1iZ5Zi4kvWsc2VXVrarMidQyu918hICeDgKyjMsoiRBsmCUsn0MM0knjj63xb8DoHKtexsXQhR6q2clncw0T6JTdep+r01Kb0oDalB0y5DABNTTUB2cdQtdpfJCdB9QcTtsHaKS2luOzEnTydOTfqAh9HI5qiMGw4dm0ARmsRoZYDlJn7nvceZ6CJisEjCd2+gdCNqyVhEaINa3/j9aJZjNpgroz/I1fE/RF/jYlC61HeO/4AaaWf4FKdZ73PZQykutcAarr3xRqXiCMkHNXg1yGTFYDIsp0YHJXUGcIoDRng63BEE7i0fhREjAaaVkSubGx9EbmwzT+A6+w/C0II35KEpZPpGzyBO7vOo3vgCJyqgzXF8/lf5iMU1R33dWhtQsNhh7mRE1CVlh8kKVpXbuQkAOKL3U9YLAOH4wgKRl9+AtO+Xd4JTAjRYpKwdEJBujCu7fIXLol5ED9NIPl1P/He8d+xrvgDHK7TF912GqrauH5Fdge1T3lR44GT50DVFbl1j6rTUzayfldR2MbvvBabEKJlJGHppBRFYWDINO5MeZ2eQaNx4WRj6SLePX4/OTX7fR2eT5irjhJUm4tTY2icWhDtS51fBCXm+qm8uOJ1bt934uQREeb0jWjqar0SmxCiZSRh6eRM+nCujn+Cq+IeI1AbQqktmw+yHuXbwjewuTrXP9wNxeIKwkfi0Bl9G4xotuYchljTtRd10fFobVZCtkvBSiHaIklYBIqi0Dt4HHd2fYMB5qmASnrZ1/z32L0cq+o8B8M1rl+R6aB2Lefk/7+Yks1onXXu3aQonDi5+DZ002ovRSaEaAlJWESjAK2JS2Mf4oaEZzDro6lwFLE45y98nfccNU6Lr8PzKn9rCeHlPwL1Zd5F+1Vu6kW1fzQ6Vx3RpVvdvq9sTH3CYtq/C/0Zag8JIXxLEhZxmpTAIdyRMo/hoVcACnst3/PWsbvZU74K9RxVbtuzuKL1KKiUmvtR69/8k8dFG6Ao5J08DLEp00K2yBiqevZHUVVC037wVnRCiGaShEWckUHjz9Tou5iT9B8i/ZKodVpYWvAiH2b9iWLrcV+H53HxMh3UoTSMksUVr23SScwN00JhG7+TE5yFaGMkYRHnFB/Qm1uTX2Zy5G3oFX9yavfxTsb9fF/0bodZlKt11hFbkgZAjlS37RAKwkfi0AYQWFdISOUht+8rHz4Bl15PQG4mAVlHvRihEKKpJGER56VVdIwMv4a7ur5Bz6DRqLjYcuIz3j52D4cqN9Hez8+MLt2CzlVHtX8s5aaevg5HeIBL60dBeP1p7w21ddzhDAyiYvAoAMI2yuJbIdoSSViE24L1kVzT5c9c1+WvmPXRWBzFfJ77//gk5ynKbQW+Dq/ZGnYH5URP6rBHDnRGOVGTAUgoXNWk+xpqsoRu/gGcUqpfiLZCEhbRZN2DRnBnyjzGhF+PBh1Hq7fxdsa9bCxZhMNl83V4TaO6GhdmyvqVjiUnejIuRUdo5WFMVRlu32cZMAy7yYy+ogzTvh1ejFAI0RSSsIhm0Wv8mRh5M7envEKicQAO1cq6kg94O+MefqpMazfTROEV+wiwlmDXBlIUNtzX4QgPshnMjdNCiQXfun+jTkfZqEmAlOoXoi2RhEW0SIRfIjcmPMtlsY8QpAun3F7AZ7nPsCj7SUqsWb4O77wadgflRY7FpdH7OBrhaVmxMwBILFjZpPsaarKE7EjDWVXt8biEEE0nCYtoMUVR6G++gLu7vsno8OvRKjqO1+zknYzf8l3hW9Q5q3wd4lk1lOOX6aCOKSfq52mh4Kpjbt9Xk9KTutguaGxWKr9twuiMEMJrJGERHmPQBDAp8mbuTHmDHkEjceFkW9mXvHnsLnaVr8Cltq0FjIE12YRWHsalaMmLnODrcIQX2AxmCiLqd/00aVpIURoX31Z8+aU3QhNCNJEkLMLjQg2xXNvlL8xM+Dvhhi7UOCtYXvAK7x9/qE2dBJ2UXz9NUBQ2DJvB7ONohLdkxUwHIKEpCQtwYnT9LqOarVux5+d7PC4hRNNIwiK8pmvgUG5PeY0pUXfipzFSYD3KB1l/YEnuPyiz+f4DICl/OQDHYy/2cSTCm7KjJ+NsxrSQPSKayt4DQVWp+PobL0YohHCHJCzCq7SKjhFhV3J317cZZJ6BgoaDlRt569hcvit8y2eHKgZXHiW08iecio6c6Ck+iUG0DrveTGFzpoWAEycX31Z89WW72fkmREclCYtoFYG6EC6O/R23Jb9C18BUXDjq17ccvYMtpZ/jcNlbNZ6kghUAFESMlemgTiAz5uRuofym7RYqHz4exc8P25Gj1O1rO9OZQnRGkrCIVhXln8zMhKeZmfB3ovxSqHNV833xO7yVcTf7LWtb57dYVSUpvz5hyYy90Pv9CZ/Lib4Ap6IjpOpIk6aFXMZATFPq17JUfCWLb4XwJZ2vAxCdU9fAoSQnD2JvxfesLfmACnshX+b9i63+XzAl6nYSjP291neo5SDB1cdxaPzIiZbDDjsDu95MQcRo4ovXk5i/kr097nH73p29RtNt2XKKlnzFD+OvRzUY3L73xpGJzQlXCHEGMsIifEajaBkYMo27u77F+Iib0Cv+5Nf9xIdZf+ST7KcorHP/N+GmaFhsmxc1AYcu0Ct9iLanYbdQU9exWAYMwxYWib6ygtC0770RmhDCDZKwCJ8zaPwZFzGLud3eZnDIhShoOFK9lXeP/44v8/7FCVue5zo7ZTroIs+1K9q85k4LodVSPP1KAKJWfAYul3cCFEKckyQsos0I0oVxUcz93Nn1DfqYJgAq+y1refvYXFYUvEqlvaTFfUSU7yawLh+71khe5PiWBy3ajYZpIWj64tuSSRfhDDASkJdF8I/bvRGeEOI8JGERbU64IZ4r4//Irckv0zVwGC6c7CxfzhvH7uT7ondbtBW6YXQlJ3oyTq2/p0IW7URzp4VcAYGUTKwfkYta8ZnH4xJCnJ8kLKLNivHvxsyEp7gp8Z90CeiLQ7Wx5cRnvHH0djaULMTqrGlSe4rqbDwET6aDOqdmTwsBxdOvRNVqMe3fRUDmES9FKIQ4G0lYRJuXYOzPTYn/4roufyXKLwWrq4b1JR8y7+htbCr92O3EJfJEOgHWEqz64MapAdG5tGRayB4eRdmI+jOnopbLKIsQrU0SFtEuKIpC96AR3Jb8MlfEPUqoPo46VyVri993O3Fp2B2UHT0Nl0bfGmGLNiiroYhcE6eFAIouvAaA0C1r0JcWeTQuIcS5ScIi2hVF0dA3eCJ3dX2Dy2J/f0ri8vqx20k7S+KiuOwkFqwCpFhcZ3fKtFDl0SbdW5vcg8o+g1BcLiJXSSE5IVqTJCyiXdIoWvqbJ5+SuNQ6Law5S+ISU7oZP3sFtYZwisKH+zBy4Wt2fTAFEWOAZo6yXHQtABE/LENTU+3R2IQQZycJi2jXzpe4bCpZTJ2zqnF3UFbsdFRF6+Ooha81d7cQ1BeSq41LRFtXQ8Ta5Z4OTQhxFpKwiA7hbInL2pL/Me/orXxRm0aJRiO7gwTQsmkhNJrGtSyR334BDofnAxRCnEYSFtGhnJq4PEKEIQmrq4b3zAFcmBjPAutmKuyyWLKza+m0UNnoydiDQzCcKCZ02zpPhyeEOANJWESHVJ+4XMAdKa/yZ2sXBtRZsSoK6eXf8MbRO/gm73lKrdm+DlP4UFZs83cLqQYDxVOvAE5ucW6NU8aF6OQkYREdmt5ZxzUFO/gov5C7wu4i2TgIF05+tKzmrYx7+Dz3H+TXHvZ1mMIHcqImNX9aCCiZcikugx/GzCMEHdzthQiFEL8kCYvo0OKL1qBz1VFlTCQ88nJmJf6DOUnP0SNoFKByqHIj8zMf5KPMP3G4aiuqKgfbdRb100JjgeaNsjiDgikdX794VwrJCeF9krCIDq2hWFxm7IWgKADEB/Tm2i5PckfKa/QLvgANWrJqf+TTnKd4O+MedpWvwOGy+TJs0UoyT04LpeR906xpnaIZV6EqCubdW/HLy/J0eEKIX5CERXRYensFscUbgDOfHRTpl8zlcY9wT7d3GRl2DX4aI6W2HJYXvMJrR29lQ8kCahwVrR22aEU50VOwa42YarKIOtH0U5ht0fFUDK1fvCuHIgrhXZKwiA4rofB7tKqD8qDuVJi6n/W6YH0Ek6Nu475u7zMl6g6CdZHUOMtZX/IRrx29lRUFr1Fqy23FyEVrceiMHI+7BIDu2Z80q42ii+q3OIdtXI2uosxjsQkhTiUJi+iwGorFuVt7xU9rZETYVdzT7R2uiHuUGP/uOFQrO8uX8daxu/k4+28cq0qXdS4dzJGE+oQjoeA7DLbyJt9f3aMf1d36oHHYiVj9lYejE0I0kIRFdEh+1lKiS7cATT87SKNo6Rs8kVuSXuQ3if9H98ARgMrR6m0szvkLb2XcQ3rZN26fEi3atjJzP04E90Gr2knJbV7CUXhylCXyu6/R1NV6MjwhxEmSsIgOKTlvGRrVSam5H1WBic1qQ1EUEo0DuC7hr9zd9S2GhV6BQRPACVsO3xa+zmtHb+a7wrcos+V7OHrR2o4k1J8P1D27eTVVKlLHUBcdh666kuhvFns6PCEEkrCIjkh10SOr/kPjaJerPdJkmCGeadF38dtu/2Na9FzCDPFYXTVsK/uSN47dySfZT5FRvVOmi9qp47EX49AGYK4+RmTZzqY3oNGSN/NOAKKWf4qhMM/DEQohJGERHU506RaCazKxawM5HnepR9v20xoZFnoZd6W8wfVdnqJr4DBA5Uj1VhZl/5k3j93NltLPqXFaPNqv8C6HPqhx6rBbTvN2+1QMHY2l31A0Djvxi97yZHhCCCRhER1Qz5OjKxnxl+HQGb3Sh6Jo6BY0jJkJT3FX17dIDbkUgyaAMnse3xe/w6tH5vB13nPk1B5AlbLt7cKRLvXrUBLzV6K3N2M7u6KQc9M9qFotITvSMP2Y7uEIhejcJGERHUpAbQHxRWsAOJw4s1X6DDfEMz3mHu7v/gEXxdxPtF83nKqdvZbv+SDzEd49fj87ypbJIt02rjRkIGWmHuhcVlLyljarDWtcIsVTLgegy0evo9rtngxRiE5NEhbRoXTP+QyN6qQwbNg5a694g0ETwOCQC7k1+SVuTnqeAeap6BQDRdYMVha+xqtH57Ci4DUK6o60alzCTYrC0ZOjLN2yP232gYYFV96E3WTGPz+bEx995MkIhejUJGERHYbistM9+1Og9UZXzhiHohAX0ItLYx/it93/x5SoOwkzdMHmqmVn+TLeO/4A72bcT3rZN9Q6K30WpzhdRvylODR+hFYeJrzix2a14QwMIu+62wAoefU1HCUlngxRiE5LEhbRYXQp/J4Aawm1hnByoqf4OhwAArQmRoRdyV0pb3BjwrP0MU1Aq+gotB7j28LXeeXIbL7M+zfHq3fLDqM2wK43kx1Tf6BhQ/LbHCfGT6cmuQeuqiqKXnjBU+EJ0alJwiI6jB5ZHwNwNOEaXBq9j6M5laIoJAUO5Mr4P/Lb7h8wNepuovxScKp29lvWsDD7cd44dicbSxZhsctv5L7UUJMlKX8FOntV8xrRaMi56R4AKj5fQu2PzRutEUL8rFkJy7x580hJScHf35/U1FTWr19/zuvXrl1Lamoq/v7+dO3alTfeeOOU1+fPn4+iKKc96urqmhOe6ISCq44Rc2IrLjQcSbjO1+Gck1EbzPCwy7kt+RVuSXqRISEX46cxUm4vYF3JB8w7eiuLsp9kn2UNdpfV1+F2OsWhQ6gI7IrOWUty/rJmt1Pdox/mKy4HVaXwmf+H6pIRNCFaQtfUGxYvXsyDDz7IvHnzGDt2LG+++SYXXXQR+/fvJzHx9IqiGRkZXHzxxdx55518+OGHbNy4kXvvvZfIyEiuueaaxuuCg4M5dOjQKff6+/s34y2JzqihUFxu9CRqAmJ8HI17FEUhNqAHsQE9mBJ1OwcrN7K7/Fuya/eSUb2DjOod+GmM9DaNo795CgkBfVEUGRT1OkXhSMI1pB78N92zP+VI4vXNbmrDBTfQd8W31O7ezcoX3uPEuGlu33vjyOZVaBaio1LUJhaJGDlyJEOHDuX1119vfK5Pnz5ceeWVPPvss6dd/8c//pGvvvqKAwcOND43d+5cdu/eTVpaGlA/wvLggw9SXl7ezLcBFosFs9lMRUUFwcHBzW7nTBZsyfJoe8KzdI4arvxhCgZHFd8Pe5OCyDG+DqlFTtjy2Fuxmr2WH6iwFzY+H6KPpl/wZPqbJxNmiPNhhB2fn62MK7+fgla1s3zMIsrM/ZrdVtTSxcR//C52cxj7//kOrgD3agNJwiI6C3c/v5v065rNZiM9PZ3p06ef8vz06dPZtGnTGe9JS0s77foZM2awfft27L+oUVBVVUVSUhJdunTh0ksvZefOc5fHtlqtWCyWUx6ic0rKX4bBUUWlMZGCiFG+DqfFwgxxTIiczT1d/8tvEv/JQPM0DJoAyu2FbCxdyJvH7uSDzD+ws2y5VNT1EqshlOyYqcDJ84VaoHj6VdRFx6GvOEHMVws8EZ4QnVKTEpaSkhKcTifR0dGnPB8dHU1BQcEZ7ykoKDjj9Q6Hg5KT2/169+7N/Pnz+eqrr1i4cCH+/v6MHTuWw4cPnzWWZ599FrPZ3PhISEhoylsRHYWq0iOzfjrocOL10IGmTBRFQ6KxP5fEPsjvun/I5bF/ICVwKAoacmr3s6LwVV45fBMfZ/+NfRVrsLnklGBPalh8m5y3FJ2j+UX/VL2B3BvvBiBy5RL8CnI8Ep8QnU2z/nVXFOWU/1ZV9bTnznf9L58fNWoUN910E4MGDWL8+PF8/PHH9OzZk1deeeWsbT722GNUVFQ0PrKzs5vzVkQ7F1G+m7DKgzg0fhyLv9LX4XiNXuNPP/Mkbkj4O/d1m8/kyNuI9uuGCydHq7fxVf6/efnwb/gy718crtyCU5UKqy1VFDacSmMiemcNifkrWtSWZdBIKgYOR+N0EL/gTQ9FKETn0qRFtxEREWi12tNGU4qKik4bRWkQExNzxut1Oh3h4eFnvEej0TB8+PBzjrD4+fnh5+fXlPBFB9Sw2DYz9kJsBrOPo2kdJn04I8OvYWT4NZRYs9hvWct+yzrK7Hknv16LvyaI3sHj6GuaSIKxHxpF6+uw25+Ti2+HHHqB7tmfciyhBSd/Kwq5N96Nad9OzLu3ErJlDeUjJ3ksVCE6gyaNsBgMBlJTU1m1atUpz69atYoxY8680HH06NGnXf/tt98ybNgw9Poz18pQVZVdu3YRGxvblPBEJ+NnKyMxfyUAhxNv8HE0vhHhl8iEyNnc3fUtbk56geGhVxCkC6POVcWu8hUsyH6MV4/UHwmQWb0bl+r0dcjtSkb85bgUHREVPxJiOXT+G87BGptA0cX1W+4T33kB/9xMT4QoRKfR5Cmhhx9+mP/+97+8++67HDhwgIceeoisrCzmzp0L1E/VzJkzp/H6uXPnkpmZycMPP8yBAwd49913eeedd3jkkUcar3nqqadYuXIlx44dY9euXdx+++3s2rWrsU0hzqRrzhK0qp1Scz9OhPT3dTg+VX8cQE+mRt/Ffd3mMyvhHwwyT8dfE0S1s5yd5ctYkP04r0jy0iR1fhHkRF8AtKzybYP8q2ZT2WcQWmsdKS8/jaamusVtCtFZNLkOy8yZMyktLeXpp58mPz+f/v37s2zZMpKSkgDIz88nK+vnbcApKSksW7aMhx56iNdee424uDhefvnlU2qwlJeXc9ddd1FQUIDZbGbIkCGsW7eOESNGeOAtio5IUZ2NlW19eW5QW6RRtCQHDiI5cBAzYu4js3o3Bys3cKgyjZqTycvO8mUYtSH0Mo2ht2kcicb+Mm10Fke6XEtiwSqS875hd8/7setbUDZBq+X4vY/T66/34V+QQ9Lb/yHj/idB03EWiwvhLU2uw9JWSR2WziWuaB2T0u/DpjOxZPJqnNoAX4fU5jlVB5k1ezhoWc+hyjTqXD8fvOivMdEjaAQ9TaNJCRyKXiPrwxqpLi7ecA0hVUfY0/1e9va4p8VNGo8epMc/HkHjsJN37a0UXnb6lKbUYRGdhVfqsAjRVjSMrhzrcqUkK27SKjq6Bg7l4tgH+F2PD5mZ8HcGmWcQoA2mzlXJj5bVfJb7DC8dnsXnOf+PvRXfU+ds5lk6HYmiYW/3+m3JvY9/gN7e8to3Nd16kzP7PgBiP5uP6cf0FrcpREfX5CkhIXwtsCaXuOJ1wMnaK6LJGpKXroFDuVC9j5za/RyqTOOnyk1YHMUcqtrEoapNaNCSaBxIL9NougeNJFgf4evQfSI7ZhrlQd0IqTpKr+MfeWSUpXTSRRiPHSRi7QqSX3+WQ0+9ii2yfRwrIYQvyAiLaHd6Zi5AQSU/fDSVgcm+Dqfd0yhaEo0DmBZ9F/d2e49bkl9kTPhMIgyJuHByvGYnKwvn8drRm3k343esK/6Q/NrDqGrnOcxPVbTs7V6/CaB+lKXyPHe4J+em+6hO6YmuupKUV/6OYpPDLoU4GxlhEe1KQG0BPbMWAXAwZc55rhZNpSgKsf49iPXvwcTIOZTacvmpchM/VW4mr+4QhdajFFqPsrF0IUG6MLoHDqd70EiSAweh13Tsw0qzY6ZREdgVc/UxemV+1JjAtIRqMJBx/5P0+utvMWYeIeH9V8i64/dwjkKcQnRWsujWDbLotu0YvvcpemR/SlHoUL4bOV/+YW9F1Y5yjlZt40jVVjJqdp5yFIBO8SPZOIhuQcPpFjQMsz7Kh5F6T1LecsbufhSbzsSXk1Zi15s80m7Q/l10/9djKKqL7Dm/pWTKZS1qTxbsivbE3c9vGWER7YapOpNuOUsA2N3zAUlWWlmgLoSBIdMYGDINh8tOVs0eDldt5UjVFiyOYo5Ub+VI9VYohHBDAt0Ch9E1KJWEgP7oNGcuEtneZMVOp/+RNzBXH6Nn5gL2nVyM21JVfQeTd/1txC/+L/EfvUFNUjdquvf1SNtCdBQywuIGGWFpG8bsepTk/OXkRo5n7bB5vg5HnKSqKsXWTI5UbeFodTq5tQdQ+Xl9i17xJylwYH0CEziMEMOZj/FoL5LyljF29x+x6oP5auIKj42yoKokv/b/CN22HltIOIeeehVHSFizmpIRFtGeyAiL6FBCLIdIzl8OwJ4e9/s4GvFLiqIQ5Z9MlH8yYyJmUuesIqN6J8eq0zlatZ1qZxlHqrZypGorAGGGLqQEDiHFOIRE4wD8tEYfv4OmyYqdcXKUJcOjoywoCll3/B7/3EwC8rLo8X9/4MgfnsUe3jGn14RoKhlhcYOMsPjexO2/Jb54LZmxF7Jx8L99HY5wk6qqFFqPcaxq+xlHXzRoiQ/oTXLgEFIChxDr36NdVNz95SjLlxNX4tAHeaxtQ2EuPf7vjxhOFGMLjeDoH/5BXXxSk9qQERbRnrj7+S0JixskYfGtiLKdTN88B5eiZen4L2QrcztW56wis2YPGdU7yajeSbk9/5TX/TWBJAUOJsU4hKTAgYTq41Da4FolRXVy8fqrMFdnsLvH/ezrfpdH29eXFtHtP08QkJeFIzCIow8/Q033Pm7fLwmLaE8kYfEgSVh8SFWZsuVWosvSOdLlGrYO+JuvIxIeVGbL53j1LjKqd5BZs5s616mHAZp0ESQZB5EUOJBk4yCC9ZE+ivR0SXlLGbv7T14ZZQHQVlno9vyTBB49iNPgR8b9T1I5cLhb90rCItoTSVg8SBIW34kt3sgF2+fi1Bj4esJSagKkEmhH5VKd5NcdJqN6J5nVu8mtO4BTdZxyTag+jqTAgfVJjHEggboQ3wRLwyjLlZirj7Or5+/Y3+1Oj/ehsdaR8srTBP+YjqrVknnnI5SNnnze+yRhEe2JJCweJAmLj6gqF26aSZjlAAeTZ7Ojz6O+jki0IrurjpzaA2TW7CGzejf5dYdPWf8C9dunE40DSDD2IzFgACZ9eKvGmJz7DWP2PIZVb+bLSStx6AI93ofisJP43+cIS/sBgJzf3EPx9CvPeY8kLKI9kV1Cot1LKFhFmOUAdq2RfV3v8HU4opXpNf71u4kCh0Ak1Dmrya7dR2b1bjJrdlNkzaDUlk2pLZud5cuA+hGYBGM/Eo0DSDQO8HoBu8y4i+h/9E2Cq4/TM3Mh+7t5/u+pqtOTedejOILMRK36gi4fvY7OUk7+NTdLLSLRqUjCItokxeVg4OFXgfoS/Fa/5tWjEB2HvzaQHkEj6BE0AoAap4Wcmn1k1ewlu+ZHCq0ZlNnzKKvIY0/FKgCCdZEkGPvRJaAfXQL6EumXiKJ47gg1VdGyt9vdjNnzGH0y5vNT0iyvjLKg0ZD7m7k4zCHEfTqfmK8XorOUk33L/aBp+7uqhPAESVhEm5SS9zXm6gysejMHkm/2dTiiDTJqg+lpGk1P02igfgQmp3Yf2TV7yarZS37dYSyOYvZZ1rDPsgao34UUH9CHLgF96WLsR6x/D/QavxbF0RqjLAAoCoWXzcIRZCbh/VeIWLscQ0kB2bc+KKc8i05B1rC4QdawtC6N08Zl6y4lsC6fHb1+z8Gut/g6JNEO2Vy15NYeJKdmPzm1+8itPYRdrTvlGg06Yvy70yWgD/EBvYkL6E2wPqLJfSXnfs2YPY9Tpw/h64lLses9+2/Qr5m3byD5jX+isdtw+vmTd91t9ecPaepHj2QNi2hPZNGtB0nC0rp6Hv+IYQf+jxq/KL6euBSntmOfAixah0t1Umg9djKBqX9UOU6cdp1JF0F8QO/GBCbGr/t5z0JSXA4u3nA15uoMjnS5mq0DnvLW22jkl59N4rsvEvTTXgCquvcl6/aHsMYlSsIi2hVJWDxIEpbWo3PUcPnai/C3nWBrvyc5kni9r0MSHZSqqlTYC8mu3U9u7QHyag9RZM04bSeSVtER7deNuIDexPn3JDagJ6H62NMK2kWe2MHULbegoPLDsDfIjxzr/TfhchHxw1LiPn4XbV0NLp2egstvZPJTv0fRd4wDJ0XHJwmLB0nC0nr6H3mDgYdfo9KYwDfjv0TtIKf8ivbB5qolv/YweXUHya2tf9Q4K067zl8TRGxAT2L9e55MYnoQpAtj6P5/0jvzQ6r9Y1g6bonHi8mdjb60iIT3X8G8u/68Jr9evYh95hkCBvRvlf6FaAlJWDxIEpbWYa78iQs3zULrsrFx0D/JjLvY1yGJTk5VVcrtBeTWHiS/7ifyan+i0HoUp2o/7dpgXSRxfl2ZVJDGkOoS/CNmcLD/M60ZLKGbf6DLh6+jq7KARkPYrbcQ+dvfogkIaL04hGgiSVg8SBIW79M4rcxIm0Vo5WFyIyeyNvUVqTEh2iSnaqfIepz82p/IrztMXu1PlNiygNP/KQ3VmIkK7E+Mf/fGh1Hr3QW5Oks5Y1d+gOWbb+r/OyaGsDlzCLn+OrRBrTPiI0RTSMLiQZKweN/QA/+i9/EPqDWEsWzc51j9WrdiqRAtYXXWUFB3mIK6I+TXHaHMspUCpe6M15p1UUT7dyPavyvRfl2J9u+GSRfh8UMeg3dtIeH9VzCcKAbAGWCk5IJLKJp+FY7Qs/98yYJd0dokYfEgSVi8K7okjSnb6k+7XZP6KnlRE30ckRAto3PUMH7j1WS7SlgbPYJt5iQK6o5QZs874/UB2mCi/VKI8u9KtF99MhNu6IJGaVlROMVuI3TT90Qv/xT//GwAXFodZaMvoOiia6nrknzaPZKwiNYmCYsHScLiPQZbORdvuAajtYifEmeyvd+ffR2SEB4RXbqFKVvri8h9N+IdisJHUOesprDuKIXWYxTWHaPIeowSaxYunKfdr1X0RBoSifRPIcovmSi/FKL8UjDqzE0PxuUiePdWopd90rgNGqBi0AiKLrqWqt4DG6dgJWERrU0SFg+ShMVLVJVxO39PYuEqKgKTWTH2Y5xaWRwoOo7he/9Oj+yPqQqIZ9m4z3HojKdd43DZKLZlUlR3jIK6YxRaj1JUl3FakbsGQbowIk8mMJF+yUT6JRFu6OJ2xV7j0YNELfuEkPSNKCf/+a9J7EbZqEmUDxvHtZePav4bFqIZJGHxIElYvCMl5wtG//gkLkXHytEfUmbu5+uQhPAonaOaS9ZfRWBdPoeSbiS972Nu3aeqLsrthRRZMyiyHqe4rv7Ps00pKWgI0ccQ6Zd08lGfyIQa4tAqZz6BxVCYS9SKzwlf/y0au63xeb++fQiePgPT9On4dU1p+psWookkYfEgSVg8L7Amm4s3XIveWcOung947/wVIXwspmQTk7fdDcCqke9RHDas2W3ZXLUUWzPrE5m645RYMymyHqfOVXnG6zXoCPeLJ9yQQIQhkQi/RCL8EgjVxzdW79VWVhCyfQMh29ZjOrAbxfVz4Ty/Hj0wzZhB8Izp+PXo0ey4hTgXSVg8SBIWz1JcDqZuuYXI8t0Uhqby/ch3UFu4uFCItmzEj3+je85nVBoTWDbuM49OfaqqSrWzjGJrJiXWLIqtmfVf2zKxuWrPeI+ChlBD7MkkJoFwQ/0jymrissosLCu/pTotDRyOxnsMKSkEjh6FcdgwjMOHo4uM9Nh7EJ2bJCweJAmLZzVUs7Xpglg27jNqAuJ8HZIQXqW3V3LxhqsIrCvkYPJN7OjzR6/3qaoqFkcxJdas+octi1JbNiXWbKyu6rPeFxUQRbI5mZ66OAYetBK3LRND+gGwn1osz5CcjHH4cIzD6xMYfWyst9+S6KAkYfEgSVg8J7x8D9M2z0GjOtk08FmOx1/q65CEaBWxxRu4YPs9qCisGfZ665w1dAaqqlLlOHEyecmixJZNqS2bUmsO1c6yM94TUKeSmq0ntSCAXpkOwnMqUX71yaHv0gXjsGH4D+iPf5+++PfuhcZ4+iJjIX5NEhYPkoTFM3SOGi7aeB2mmiyOx17EpsH/8nVIQrSqhqkhhzaA1cPfpjR0kK9DOkWds5oTthxKbTn1f1obvs7Dxc/TQ4G1Kr1zVPpkq/TNUkkpAO2vPklURUGXnEhg3/749+2Df9+++PfpgzYkpHXflGjzJGHxIElYPEBVGfnjk3TL/ZJq/xiWjfsMu967JcqFaGs0LjsT0u8nrmQjVn0w342cT4Wp7S9mdalOyu2FlNnyOGHL5cTJP8tsuVQ4ivG3uuiVq9I7WyWlEJILVcKqztyWPTIEpVsSgd17EtKrP/7deuDXrStaczPqy4gOQRIWD5KEpYVUlaEH/03v4x+gorB6xDsUhQ/3dVRC+ITWUcPkbXcRWb6bGr9IVo36H9XGLr4Oq9kcLhtl9nxO2HJJjK4muzKb7MpsyvIyCMwobExgUgpUYsrP3k5dsD+2hCi0KUkEde9FeK+BmLv1Qh8Xh6I789Zs0TFIwuJBkrC0gKoy5OB/6HP8fwBs6f9XjiZc6+OghPAtg62CqVtuIaTqCJXGBFaN+h91fhG+DsvjHC4b5fYCymz5lNnzqKnIIiD7GKb8QsKKLMSVuIgvVYk4865sAJwaqAo3Yo0JhS6xBCSnYE7pRUyvwZiSu6Pxc69gnmi7JGHxIElYmklVGXLoOfpkvA9IsiLEL/nXFTN982yCanMpM/Xku5HvdappUpfqpNJRSrktn6rKLHrY8rEePYo2K5/A3DLCS21El4Hh9FMLTmEJ1lETEYQjOgxNbAz+iYmEJPUksls/IpJ6SULTDkjC4kGSsDTDr5OVfn/haOJ1Pg5KiLYlqDqbaVvmEGAtoSh0CD8Mf1OOpzjJ6qzBYivAWnIUJf8I+oJsAoqLMJWUEVZaS2SZE6Pt3G24AItZR3VYQP3amehI/OLjCYpPJjSpB9Fd+xMUHuPxk7JF00jC4kGSsDSRqjL40PP0zZgPwNZ+T3Ik8XrfxiREGxViOcTULbdicFSSFzmOdUNfxnWyCq04uzpHFbVlx3AWHaG7Woo1Ows1vxB9YRmBpTWElTnwc7jRjh4soQZqwwJxRoagiYrELzaeoLgkQhO7E53cB1N4rCQ1XiQJiwdJwtIEqsrgQy/QN+M9QJIVIdwRUbaTyVvvQueqq9/yP+j/QNH4Oqx2zeG0UVd2DGfBYSjJQleaj6G0BGNZOaayGkIrbATXuPfxZ9WDxaynNtSIIywYJTIMXVQ0xrh4guOSCU/oQWSXXhgCpO5Mc0jC4kGSsLjp18lK3z9zJGmmj4MSon2ILd7AxPT70agOfkqcyfa+T4D8Vu9VttoyxoZVUJpxgKq8LKwFebgKi9GUlOF/ohpTuQ2Tm0kNQKVRodpsoC7EiDMsGE14GLqoKIwx8ZhikwiNTyEysRcBxs6zVskdkrB4kCQsblBVBv30Iv2OvQvAtr5PcDjpBh8HJUT7kpS3nDG7/4iCytEuV7G972OypsXH7HUV2EuO4SrOgBN56E4Uoi8/gX95BebqGoxldQRXOtGfZ3HwL1X7K1SbdNSZA3CEBKGGmdFGhOMXFUNgdDzBsUmExSYTFpuC3uDvvTfXRrj7+S2b20XLqS4GH3qxcWRlW9/HJVkRohky4y5C76hk+L5n6JazhPDyPWwc/O92UVyuo9L7m9F3GQJdhpzyvB2YPjIRAKfLSVlhJsVZh6jIPU5NYS7WwgKcxSUoJ8oxlFURUFGHyeLE4ITAOpXAOjsU2wELkHdavydOPioDFCqDdNQE+VEbZMQabCIiIRpDRBQBUbEERcVhjk4kLDaZwOAINJqOO5UoIyxukBGWswusyWbUnieJLksHGpKVWT6OSoj2LbpkM2P2PEaAtQSHxo8dfR7lSMJ1MkXUzqkuF/aqQpylmbjKcqGiEE15MbqKMvwqKvCvrMZYWYepyk5wtQtNEz+dbTqoCtRSZzJgCw7AaQ5CCTWjDQ3BEB6Jf3gUgRGxBEd3ISQ6geCwWLRa349byJSQB0nCcgaqSvesjxly6Dn0zlrs2gC2932cjC5X+joyIToEP2spo/c8QVzJRgAyY6aztf9fO1Wtls7M5bThqMjHWZ6Dqyy/PrmpKEFnKSfcVoO2vBJ9eQ0BVTYCq5xu7Yj6NacCVYEa6gJ1WIP8cJqMuMxBKOZgdKGhGMLC8Q+LJDAyFlNEnNeSHElYPEgSllMZa/MZ+eNfiC3dDEBh2DA2D/h7uy4vLkSbpLronfE/Bv/0EhrVQVVAPBsH/bPNHZoofM9RW46jLAdneR6qpX7kRlNZhs5SjqGqCr+qGvyr6zDVODBWOwg4Tw2bs6l5/k+kXnyzR2OXNSzC81SVrjlfMPTgvzA4qnBo/NnV60F+SpolWzCF8AZFw8Gut1AclsrYXX8gqDaXaVtuYXfP+zmQcov83IlGuoAQdAEhENf/tNdcQO3JR9nJ55zWGhwVOTgrCnBZClAsJSiV5WirKtBVWTBU1eBfXYN/jQ1jtZ3AWicBNgiMiGm9N/UrMsLiBhlhgYC6IkbsfYr44nUAFIcMYvPAZ6gMTPZtYEJ0Enp7JSP2PkVSwUoA8iPGkDbgGer8I30cmegsrhkYhlZnQKc3eLRdGWERnqGqJOctJfXAs/jZLTgVPXt6/paDKTejKlpfRydEp2HXm9g4+N8U5Iwmdf//EVuyicvXXsTRhKs5kHILNQFxvg5RdHB+AUE+7V8SFnFGWkcNKblf0yvzI8zVGQCUBvdl88D/R4Wpu4+jE6KTUhSOJlxDScggRu79KxHle+iVuZAeWZ9wPO5i9ne9HUtQV19HKYRXSMIiTmGszaNn5kK6Z3+GwVF/5rtdG8j+rreyv+ttqHLGiRA+V2HqzrejPiT6xFb6HX2bmNItdM39ipTcr8mOnsq+brdTZu7n6zCF8ChJWASoKpFl6fQ6voAuhavR4AKg0pjAoaTfcCz+Chx63w4FCiF+RVEoDB9JYfhIwsv30Pfof0ko+oHEwlUkFq4iL2Is+7rdQXFoqtRvER2CJCydmN5eSZfC1fTKXECY5UDj8/nhoziUfBN5keNlF4IQ7UBpyEDWp76MufIwfY+9S1L+cuJKNhJXspEyUy9yoiaRFzWBUnN/+ZkW7ZbsEnJDR9klpHHaiCjfTUzpZmJKNxNWvrdxNMWh8eN4/KUcSvqNlAEXop0LrMmm77H5dM1Zgla1Nz5fZwgjL3IcuZETKIgYg11v8mGUor258eRRBJ4mheM8qN0mLKqLkMrD9QlKSRpRZTvQOWtPuaQiMJmM+Cs4knAtNkOIb+IUQniFn/UEccXriSteR2zJJgyOqsbXXIqOotCh5EVNoCB8FBVBXWWNmjgnXycszZoSmjdvHv/+97/Jz8+nX79+vPjii4wfP/6s169du5aHH36Yffv2ERcXx6OPPsrcuXNPueazz/5/e/ce09TZxwH82xunLTelIKVTWFXy4mQXpFO5TJds66bGqFsmu+hMTMxLhhuleRdwatxcAHWZWTYU18UsWYyTP9TJEk3sLoExu0AYqFEzp/KKMfB2gLbl1uvz/gFWuwIO1/aU4++TND3n6TmHbx+D58dzbkexfft2XL16FXPmzEFlZSXWrFnzIPEePoxB7upFQn8HEgZGX/0dSLJfgtzVF7DoUIwK3cmL0a1ajP+pFmNQwd9NgAgh4eXkktAxcxU6Zq6CyOdGyq02PPJnIzTWBiQO/Bfqvmao+5oBAF6RFPY4LWxxc3E7PhO2uEzcjp+LAYWGDiORqDDpgqWurg4GgwH79+9HQUEBvvjiCyxbtgwXL15Eenpw9dXR0YHly5dj06ZNOHToEH755Re8/fbbSElJwSuvvAIAsFgsKCoqwkcffYQ1a9bg+PHjWLt2LZqamrBo0aJ//i2nOJHPA859G5yrD3JnH+SuXsQOdfkLk4SBjoC/nO7llihgTdKhW7UY3cl5sMXNpRPwCHkIMbEMVtVCWFUL0Zb1H8QN3IDmz0Y8Ym1A8u1zkHkHMN3xB6Y7/gC6TvnXc0uUsMXNhS1OiyH5DAxxKRjiUjDMJY9OJ8Mn4Xj8ZuRhMelDQosWLcKCBQtQW1vrb5s3bx5Wr16N6urqoOXLy8tRX1+PS5funtRZXFyMs2fPwmKxAACKiopgt9tx6tTdX5KXXnoJ06dPxzfffPO3ckXNISHmg9jnhtjnhoS5/dPi0WmpdwhSz+DIu3cQUs8gZN7Be9oHwblt4Jx9kLv6IHf2gnPfhggT/zP5IMaA8hHYY7Wwxz7q/0upL3E+fDTMSwiZCGNQDndhmuMKpjkuI7H/CqY5riCh/1rAOTDjccoS/EWMSxoPj1QJtzQObmks3JJYeKSxI9PSkWmvmINXHAOfOOaed9k98zIa1YlCU+qQkMvlQmtrKyoqKgLa9Xo9zpw5M+Y6FosFer0+oO3FF1/EwYMH4Xa7IZPJYLFYUFZWFrTMp59+Om4Wp9MJp9Ppn7fZbABGvnhIHfs3lna2Q8R8EDEvRIxBBN8983ffxcwDMbwh/fGu0ReDCE7ZNAzHTIczZjqGuBQ4lBlwxGXAoUyHQzkLPskYt0seGgYwHNJMhBDhGUQ8emJzgNgcf5vI50b84E0k9F9F/EAnFK4eyJ29ULh6wDl7oRjugQQewGmDuN8GJa5AGaI8PkjAIAITS8EgBhOJ4RNJwURiMJFk9F0MBhHgnwYwuiyA0XfR6DL3bl00OtI80shwd/rOx3ewgBXvPzrNBDyCbW/hgGW7gJR/hXa7o/vt+42fTKpg6enpgdfrRWpqakB7amoquru7x1ynu7t7zOU9Hg96enqQlpY27jLjbRMAqqur8eGHHwa1z5o16+9+nSnIDmCKngBMCCFEABaGbcsOhwOJiYnjfv5AJ92K/lJBMsaC2u63/F/bJ7vNLVu2wGg0+ud9Ph/6+vqgUqkmXG+y7HY7Zs2ahRs3boT8UBO5i/o5cqivI4P6OTKonyMjnP3MGIPD4YBGM/HzsCZVsCQnJ0MikQSNfFit1qARkjvUavWYy0ulUqhUqgmXGW+bAMBxHDgu8ESvadOm/d2vMmkJCQn0yxAB1M+RQ30dGdTPkUH9HBnh6ueJRlbumNRZTTExMcjNzYXZbA5oN5vNyM/PH3OdvLy8oOVPnz4NnU4HmUw24TLjbZMQQgghD5dJHxIyGo1Yv349dDod8vLyYDKZ0NnZ6b+vypYtW3Dz5k18/fXXAEauCKqpqYHRaMSmTZtgsVhw8ODBgKt/SktLsWTJEuzevRurVq3CiRMn8P3336OpqSlEX5MQQgghU9mkC5aioiL09vZi586d6OrqQnZ2Nk6ePImMjAwAQFdXFzo7754YqtVqcfLkSZSVlWHfvn3QaDT47LPP/PdgAYD8/HwcOXIE27Ztw/bt2zFnzhzU1dVFxT1YOI7Djh07gg4/kdCifo4c6uvIoH6ODOrnyIiGfhbMrfkJIYQQIlx0Zx5CCCGERD0qWAghhBAS9ahgIYQQQkjUo4KFEEIIIVGPCpb72L9/P7RaLeRyOXJzc/Hzzz/zHUlQqqur8fTTTyM+Ph4zZszA6tWr8fvvv/MdS/Cqq6shEolgMBj4jiI4N2/exLp166BSqaBUKvHUU0+htbWV71iC4/F4sG3bNmi1WigUCsyePRs7d+6Ez+fjO9qU1tjYiJUrV0Kj0UAkEuHbb78N+Jwxhg8++AAajQYKhQLPPvssLly4EJFsVLBMoK6uDgaDAVu3bkVbWxueeeYZLFu2LOCybfLPNDQ0oKSkBL/++ivMZjM8Hg/0ej0GBgb4jiZYLS0tMJlMeOKJJ/iOIji3bt1CQUEBZDIZTp06hYsXL+KTTz4J6124H1a7d+/GgQMHUFNTg0uXLmHPnj34+OOP8fnnn/MdbUobGBjAk08+iZqamjE/37NnD/bu3Yuamhq0tLRArVbjhRdegMPhCH84Rsa1cOFCVlxcHNCWlZXFKioqeEokfFarlQFgDQ0NfEcRJIfDwTIzM5nZbGZLly5lpaWlfEcSlPLyclZYWMh3jIfCihUr2MaNGwPaXn75ZbZu3TqeEgkPAHb8+HH/vM/nY2q1mu3atcvfNjw8zBITE9mBAwfCnodGWMbhcrnQ2toKvV4f0K7X63HmzBmeUgmfzWYDACQlJfGcRJhKSkqwYsUKPP/883xHEaT6+nrodDq8+uqrmDFjBnJycvDll1/yHUuQCgsL8cMPP+Dy5csAgLNnz6KpqQnLly/nOZlwdXR0oLu7O2C/yHEcli5dGpH94gM9rflh0NPTA6/XG/QAxtTU1KAHNZLQYIzBaDSisLAQ2dnZfMcRnCNHjuC3335DS0sL31EE69q1a6itrYXRaMT777+P5uZmvPvuu+A4Dm+99Rbf8QSlvLwcNpsNWVlZkEgk8Hq9qKysxOuvv853NMG6s+8ba794/fr1sP98KljuQyQSBcwzxoLaSGhs3rwZ586do2dIhcGNGzdQWlqK06dPQy6X8x1HsHw+H3Q6HaqqqgAAOTk5uHDhAmpra6lgCbG6ujocOnQIhw8fxvz589He3g6DwQCNRoMNGzbwHU/Q+NovUsEyjuTkZEgkkqDRFKvVGlRdkn/unXfeQX19PRobGzFz5ky+4whOa2srrFYrcnNz/W1erxeNjY2oqamB0+mERCLhMaEwpKWl4bHHHgtomzdvHo4ePcpTIuF67733UFFRgddeew0A8Pjjj+P69euorq6mgiVM1Go1gJGRlrS0NH97pPaLdA7LOGJiYpCbmwuz2RzQbjabkZ+fz1Mq4WGMYfPmzTh27Bh+/PFHaLVaviMJ0nPPPYfz58+jvb3d/9LpdHjzzTfR3t5OxUqIFBQUBF2Wf/nyZf/DYUnoDA4OQiwO3IVJJBK6rDmMtFot1Gp1wH7R5XKhoaEhIvtFGmGZgNFoxPr166HT6ZCXlweTyYTOzk4UFxfzHU0wSkpKcPjwYZw4cQLx8fH+Ea3ExEQoFAqe0wlHfHx80HlBsbGxUKlUdL5QCJWVlSE/Px9VVVVYu3YtmpubYTKZYDKZ+I4mOCtXrkRlZSXS09Mxf/58tLW1Ye/evdi4cSPf0aa0/v5+XLlyxT/f0dGB9vZ2JCUlIT09HQaDAVVVVcjMzERmZiaqqqqgVCrxxhtvhD9c2K9DmuL27dvHMjIyWExMDFuwYAFdbhtiAMZ8ffXVV3xHEzy6rDk8vvvuO5adnc04jmNZWVnMZDLxHUmQ7HY7Ky0tZenp6Uwul7PZs2ezrVu3MqfTyXe0Ke2nn34a8//kDRs2MMZGLm3esWMHU6vVjOM4tmTJEnb+/PmIZBMxxlj4yyJCCCGEkAdH57AQQgghJOpRwUIIIYSQqEcFCyGEEEKiHhUshBBCCIl6VLAQQgghJOpRwUIIIYSQqEcFCyGEEEKiHhUshBBCCIl6VLAQQgghJOpRwUIIIYSQqEcFCyGEEEKiHhUshBBCCIl6/wfIV/5NpjQ2PwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1192,10 +1192,10 @@ "start_time": "2023-11-09T18:41:45.185498912Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:24.132749Z", - "iopub.status.busy": "2023-11-09T20:46:24.131965Z", - "iopub.status.idle": "2023-11-09T20:46:24.141271Z", - "shell.execute_reply": "2023-11-09T20:46:24.140728Z" + "iopub.execute_input": "2023-11-09T22:34:17.256265Z", + "iopub.status.busy": "2023-11-09T22:34:17.255832Z", + "iopub.status.idle": "2023-11-09T22:34:17.262527Z", + "shell.execute_reply": "2023-11-09T22:34:17.262119Z" } }, "outputs": [], @@ -1215,10 +1215,10 @@ "start_time": "2023-11-09T18:41:45.195431060Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:24.143456Z", - "iopub.status.busy": "2023-11-09T20:46:24.143253Z", - "iopub.status.idle": "2023-11-09T20:46:24.360281Z", - "shell.execute_reply": "2023-11-09T20:46:24.359692Z" + "iopub.execute_input": "2023-11-09T22:34:17.264233Z", + "iopub.status.busy": "2023-11-09T22:34:17.264067Z", + "iopub.status.idle": "2023-11-09T22:34:17.486794Z", + "shell.execute_reply": "2023-11-09T22:34:17.486253Z" } }, "outputs": [ @@ -1226,7 +1226,7 @@ "data": { "text/plain": [ "((0.0, 10.0),\n", - " ,\n", + " ,\n", " Text(0.5, 0, 'mass'))" ] }, @@ -1236,7 +1236,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGwCAYAAACKOz5MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2oElEQVR4nO3dd1xV9f/A8de9Fy57CAiCgnugqKg4cKSpYWo2rLQytWxZ2rJp9W3Yr2xZVqZlpVmZo70sJfceuBVxCyKKoOx5x++Pw0VRVMa9nAv3/Xw87uOee+6557zRC/d9P+P90ZjNZjNCCCGEEHZMq3YAQgghhBDXIgmLEEIIIeyeJCxCCCGEsHuSsAghhBDC7knCIoQQQgi7JwmLEEIIIeyeJCxCCCGEsHtOagdQESaTiVOnTuHl5YVGo1E7HCGEEEJUgNlsJjs7m5CQELTa6rWR1IqE5dSpU4SGhqodhhBCCCGqICkpiUaNGlXrHLUiYfHy8gKUH9jb21vlaIQQQghREVlZWYSGhpZ+jldHrUhYLN1A3t7ekrAIIYQQtYw1hnPIoFshhBBC2D1JWIQQQghh9yRhEUIIIYTdk4RFCCGEEHZPEhYhhBBC2D1JWIQQQghh9yRhEUIIIYTdk4RFCCGEEHZPEhYhhBBC2D1JWIQQQghh9yqdsKxZs4Zhw4YREhKCRqPht99+u+ZrVq9eTZcuXXB1daVZs2Z8/vnnVYlVCCGEEA6q0glLbm4uHTt2ZMaMGRU6/tixYwwZMoQ+ffqwY8cOXnrpJZ544gl+/vnnSgcrhBBCCMdU6cUPBw8ezODBgyt8/Oeff05YWBjTp08HIDw8nG3btvHBBx9w++23V/byQgghhH0zm0tuRjCbLtxMFz82A+ayryl7ksvPqebzVZWVbZ3zUAOrNW/cuJGYmJgy+wYNGsTXX39NcXExzs7Ol72msLCQwsLC0sdZWVnKxiedwMMNdHrl5lRyr3MBnTM4We5dQe8BLl6g9wIXz5LtknsXb/AIAI/6ymMrrCIphBDCDhXnQ945yEtXbvnnoCi35JZTcp934XFxPhiLwFgMxsKLtosu2S6+cjJirQ/7uqDQev8WNk9YTp8+TVBQUJl9QUFBGAwG0tLSCA4Ovuw1U6dO5Y033rj8ZLlnwWDl5ELnoiQulgTGpxHUawy+Jbd6jcHdX5IaIYSwN8X5kH4Yzh+HzJPKLStZuc8+rSQoxXlqR2kll3wGlflMqupzlzxvi885gwmwTiuLzRMWAM0l/wjmkqanS/dbTJ48mUmTJpU+zsrKIjQ0FMYtBTd9SXZbqGS4hsLLs+HiAiVbLsxSMubCnJL7bOVWkKm8kYtylNdknVRuV+LqC0HtlFtgW2jQXrk5uVT730YIIcQ1mM1KUpIcB6d2wNkESEuAjCQq1JqhdVK+eLr7g1u9khZ3j5Kbp3Lv7K5sO7tdaK23tOaX2b5on0Zb/k2rK9nWXPKc7qLtkucuVhe/GGdlwVs+VjmVzROWBg0acPr06TL7UlNTcXJywt/fv9zXuLi44OJSTjIQ1A68va0XXFEe5KUpLTe5aZBzRvkFyDgB509ARiJkp0BBBpxYr9wsdC7QsAuEdYewntCkN+jdrRebEEI4KpMJTu+Go6vg+DolUck/V/6xbvXArzn4NASfUPBuqGx7N7yQpEjXf51g84QlOjqaP//8s8y+ZcuWERUVVe74lRqldwd9GPiGXfmY4gJIOwip++HMXjizH1J2Ki00iRuUGx8pCUzT66DVIGg9WOlaEkIIUTFFeXD4P4j/A46sUP7GXkynh6AIaNhZ+fIa0Brqt1a684VDqHTCkpOTw+HDh0sfHzt2jJ07d+Ln50dYWBiTJ08mOTmZb7/9FoDx48czY8YMJk2axEMPPcTGjRv5+uuvWbBggfV+CltydoXgDsrNwmxW+k0TN0HSJji6BjIT4XCsclvynNLi0mEktL0FXK3YKiSEEHWFyaQkJzvnw8GlUJx74Tm9JzTpA836Qmg3JVmRbniHpjGbL5vLdFWrVq3i+uuvv2z/2LFj+eabb7jvvvs4fvw4q1atKn1u9erVPP300+zbt4+QkBBeeOEFxo8fX+FrZmVl4ePjQ2ZmJt7W7BKyFrMZzh5QfuES/lGSGAsnN+h4F/R4VPk2IIQQji43DbbPg7h5She8hU8YtLsFWg+FRlHKOBFRq1nz87vSCYsa7D5huVRGIuxeDLsXKd1JFi0GwnXPK+NehBDC0WQmw4ZPlETFkK/sc/WBjndDhxEQ0lnGmtQxkrDUFmYznNgAm2bCgb8pHc3eMgb6vwLBHVUNTwghakTeOVj9Lmz9GkzFyr6QTtD1IWh3m0xYqMMkYamNzh2DdR/Bju+V6ocAne6FgVPAo/zZUkIIUasZimDrl0qyUpCp7GvSB/o8A836SWuKA5CEpTZLPwKrpsKeH5XHbvVg4OvQeaz88goh6o5TO+C3CZC6T3kcFAEx/wfNLx8DKeouSVjqgsTN8PckZao0KONbbpkJXkFXf50QQtgzQxGsehvWf6K0Jrv7w4DXlBZlrU7t6EQNs+bnd6VXaxZWEtYdHl4NMW8pax8d/g9mRcOBJWpHJoQQVZORCHNvVLq/zUaIuB0mbIEuYyVZEdUmCYuadE7QcyI8vAqC2iuFkhbeDSvfVuoTCCFEbXFwKXzeR6lK6+oLI7+HO+ZIYTdhNZKw2IPAcHhoOXQvqU2z+l1YdC8UZKkblxBCXIvZrHT//DBSWcakYRcYvxbCh6kdmahjJGGxF04uMPhduHWWUuY/4W/4ZgjkpKodmRBClM9ogL+fgdj/AWaIegDu//fqy50IUUWSsNibyHvg/n/Aoz6c3gNzBikLMQohhD0xFMGPY2Hb14AGBk2FodPASa92ZKKOkoTFHjXqAuOWKt9Szh1Vkpa0w9d+nRBC1ARDISweDQf+UlqER34H0Y9JaQZhU5Kw2Cv/5jBuGQS2hewU+PZmOH9c7aiEEI6uuAAW3gMH/1VmON69QMariBohCYs98w6GMX8oy6hnJcO8m5W1OIQQQg0mI/z8gFKGwdkd7lkMLQaoHZVwEJKw2DvP+jDmd6jXVFnV9LvbID9D7aiEEI7GbFaKXR74C3R6uHshNOurdlTCgUjCUht4B8PYP8ArBNISYPEYMBarHZUQwpGseR/ivgE0cPtXkqyIGicJS23hGwajFoPeE46thr+eVr7xCCGErcX/CSvfUraHToO2t6gbj3BIkrDUJg3awx1zQaOFHd/BpllqRySEqOvO7INfHlG2uz8KXR9QNx7hsCRhqW1axSj1DkAp1pS4Wd14hBB1V945ZUZQcS40vU5ZbVkIlUjCUht1f0RZVMxkgB/vg9w0tSMSQtQ1ZjP8PlEpp+DbGO6cp6x/JoRKJGGpjTQaGPYxBLSC7FPw84OyWKIQwrq2fqUsEaLTK4Xh3P3Ujkg4OElYaisXLxjxrVIL4ehK2PKF2hEJIeqKM/tg6cvK9g1TILijuvEIgSQstVtgOMS8qWz/9zqcTVA1HCFEHVBcAD+NA2MhtBx0YRV5IVQmCUttF/UAtBgIhgL45WGpzyKEqJ7V78LZA+ARCLfOlPWBhN2QhKW202jg5hngVg9SdsLaaWpHJISorU7thPUfK9s3fQgeAaqGI8TFJGGpC7yDYcgHyvbaaZB2SN14hBC1j7FYmRVkNkK722RBQ2F3JGGpKyJuhxY3gLFIquAKISpv/cdwZg+4+cHg99WORojLSMJSV2g0MPQDcHKD42th1wK1IxJC1BYZibCmpJX2xneURVeFsDOSsNQl9ZpAvxeV7aUvK1UqhRDiWpa+DIZ8aNwbOoxQOxohyiUJS10TPQEC20L+OWW0vxBCXM2RFRD/B2h0MOQ9mRUk7JYkLHWNzhluLFlraMuXcPaguvEIIeyXoQj+eUHZ7vYwBLVTNx4hrkISlrqoWT9oNVgZ7b/sFbWjEULYq21zIO0geNS/0J0shJ2ShKWuivk/0DrBoaVKk68QQlysIAvWvKdsX/8yuPmqGo4Q1yIJS10V0EJp4gVY+gqYjOrGI4SwLxs+hbx08G8JnUarHY0Q1yQJS13W93lw9YHUfbD3F7WjEULYi+wzsHGGsj3wNdA5qRuPEBUgCUtd5lYPej6ubK96G4wGdeMRQtiH1e9CcR406gptblI7GiEqRBKWuq77eHD3h3NHYdcPakcjhFBb+hGI+0bZHvi6TGMWtYYkLHWdixf0nqRsr34PDIXqxiOEUNfaD5UZhC1ugCa91Y5GiAqThMURdH0AvIIhMwni5qkdjRBCLeePw+6FyrZMYxa1jCQsjsDZDfo8o2yvn64UixJCOJ51H4HJAM37Q6MotaMRolIkYXEUnUaDZxBkJcPuRWpHI4SoaRlJsGO+sn3d8+rGIkQVSMLiKJxdIXqisr3uI6nLIoSjWf8xmIqhSR9oHK12NEJUmiQsjiTqfnD1hXNHlMXOhBCOIfs0bP9W2e4rrSuidpKExZG4eCnTnAHWTgOzWd14hBA1Y/MXYCyE0O5KC4sQtZAkLI6m+yPg7AGn98Dh/9SORghha0W5yiKHoBSSlLoropaShMXRuPspXUNwoTS3EKLu2jEfCjKgXlNoPUTtaISoMklYHFG3h0GjhaOr4Mx+taMRQtiKyQibPlO2oyeAVqduPEJUgyQsjqheYwgfpmxvnqVuLEII2znwl1Iszq0eRI5SOxohqkUSFkfV4zHlftciyE1TNxYhhG1sKOn2jXoA9O7qxiJENUnC4qhCu0NIJ2XmwLa5akcjhLC2k9vg5BbQ6ZVuYCFqOUlYHJVGAz0mKNtbv5Ry/ULUNVu/Uu7bDQevIHVjEcIKJGFxZG1vURZFzDkD+39TOxohhLXkpsPeX5Ttbg+pG4sQViIJiyNz0it923ChToMQovbb+b3S3RvcERp2UTsaIaxCEhZH13k0aHSQuBHO7FM7GiFEdZmMsPVrZbvrg1IoTtQZkrA4Oq8G0Gaosi2Db4Wo/Q4vh4wT4OoDEXeoHY0QVuOkdgDCDkSNUxZD3LUQBr4OLp5qRySqKD2nkBPn8kg6l0dieh7puUVk5ReTVVBMQbEJUL5wazUavN2c8XVzxtfdmWAfN5r4uxPm706wjxs6rXwrr7Usg20j75WpzKJOkYRFQNO+4NcMzh2FvT9Dl7FqRyQqoNBgJO74ebYeP8+e5Ax2n8wkNbuw2uf10Oto19CHjo18iAytR8/m/tTz0FshYmFz54/DoWXKdtQ4VUMRwtokYRGg1UKX+yH2f8rgW0lY7FZqdgH/7DnNyoRUNh89R36xsczzGg0Ee7sS6udOmJ879b1c8HFzxtvNGTfnC2XZi40msgoMZOYVcS6viJPn80lMzyPpfB65RUa2HDvHlmPngGNoNNChoQ/XtarPoHYNaBfijUbGRdinuHmAGZr1g4AWakcjhFVJwiIUkaNgxZuQshOSt0PDzmpHJErkFBr4a9cp/th1ik1H0zGZLzxX38uFns39iQz1pX1DH9qGeOOur/qvtdFk5sjZHHYlKS02W46dI+FMNrtOZrLrZCafrjhM8/oeDOsYwu2dGxHqJ10OdsNogF0LlO0u96kaihC2oDGbzeZrH1bWzJkzef/990lJSaFdu3ZMnz6dPn36XPH4+fPn895773Ho0CF8fHy48cYb+eCDD/D396/Q9bKysvDx8SEzMxNvb+/Khisq6ueHYM9i6DwGbv5U7Wgc3uHUbL7beIKftyeTU2go3d8pzJfBEQ24rlV9Wgd52by140xWAWsPpbE8/gwrDqRSaLgwFmZAm0DGRDehd4sAtDLuRV0Hl8IPI8DND545AE4uakckhFU/vyudsCxatIjRo0czc+ZMevXqxRdffMFXX33F/v37CQsLu+z4devW0bdvXz766COGDRtGcnIy48ePp2XLlvz6668VuqYkLDXk2FqYdxPoveDZBNB7qB2RQ9pzMpOPlx/kv/jU0n1NAzy4M6oRwzqEqNqqkV1QTOz+M/yyPZl1hy+sQdUy0JPHB7RkaPtgGbCrlkX3QvyfyjphN05VOxohAJUTlu7du9O5c2dmzbqwym94eDi33norU6de/kvywQcfMGvWLI4cOVK679NPP+W9994jKSmp3GsUFhZSWHhh8GBWVhahoaGSsNiayQSfRCpTIm/7AjrepXZEDmVvciYfxh5kxQElUdFoYGB4EGOiG9Oruf21YBw5m6O0AMWdJLukBah5fQ+eHNiKYR2CZZxLTco5Cx+2AZMBHt0AQe3UjkgIwLoJS6XqsBQVFREXF0dMTEyZ/TExMWzYsKHc1/Ts2ZOTJ0+yZMkSzGYzZ86c4aeffmLo0KFXvM7UqVPx8fEpvYWGhlYmTFFVWu2FJeh3zlc3FgdyNruQF37azbAZ61hxIBWtBoZ3ash/k/ry5Zgo+rSsb3fJCkDz+p68fnM71k/uzzM3tMLb1YkjZ3N5YsEObp+1gV1JGWqH6Dh2L1SSlZDOkqyIOqtSCUtaWhpGo5GgoLILaQUFBXH69OlyX9OzZ0/mz5/PyJEj0ev1NGjQAF9fXz799MpjJCZPnkxmZmbp7UotMcIGIu8GNHBsDZw/oXY0dZrRZOartUe5/oNVLNqWhNkMwzqGsPyZfnw4MpLm9WtHPRxvV2ceH9CSdS/25+mBrXDX69iemMEtn63n2R93cS5XFta0KbMZdnyvbHcerW4sQthQlSrdXtrUazabr9j8u3//fp544gleffVV4uLi+Pfffzl27Bjjx4+/4vldXFzw9vYucxM1xDcMml6nbFtmHAirO3Qmm9tnbeD//o4np9BA+4Y+/DQ+mk/v7kTTgNo5dsjb1ZknB7Zk5bP9GN65IQA/xZ0k5qPV/LMnReXo6rCT2+DsAXByg4jb1Y5GCJupVMISEBCATqe7rDUlNTX1slYXi6lTp9KrVy+ee+45OnTowKBBg5g5cyZz5swhJUX+iNmlTvcq9zvnK+NahNUYTWZmrjrM0E/WsTMpAy8XJ96+rT2/T+hFVBM/tcOziiBvVz4cEckvj/WkVZAnaTlFPDp/O4/Nj+O8tLZY347vlPu2tyjl+IWooyqVsOj1erp06UJsbGyZ/bGxsfTs2bPc1+Tl5aHVlr2MTqcUsKrCjGpRE9rcBC7ekJEIJ9apHU2dcTa7kLFztvDevwkUGU1c37o+yyZdxz3dw+xyjEp1dQ6rx5+P9+bx/i3QaTUs2XOaoZ+sZdvxc2qHVncU58O+ktmWli8aQtRRle4SmjRpEl999RVz5swhPj6ep59+msTExNIunsmTJzNmzJjS44cNG8Yvv/zCrFmzOHr0KOvXr+eJJ56gW7duhISEWO8nEdajd4eI4cr2Dhl8aw0bDqcx+OO1rDuchpuzjvfu6MCc+7oS7OOmdmg25eKk45mY1vw+oRdNAzw4lVnAyNmbmLnqMCaTfGGptoR/oDALfMKgcS+1oxHCpipdEnPkyJGkp6czZcoUUlJSiIiIYMmSJTRu3BiAlJQUEhMTS4+/7777yM7OZsaMGTzzzDP4+vrSv39/3n33Xev9FML6Iu+FuG+URRELp8mCiFVkNpuZu/44//f3fkxmaBXkyWf3dKZlkJfaodWoiIY+/Pl4b176ZQ9/7DrFe/8msOdkJtNGdKxWZV6Ht3uxct/hTmWWnxB1WJUq3dY0KRynArMZPukE54/BbbOh40i1I6p1io0mXv19Hwu2KAn8HV0a8eYtEbjpddd4Zd1lNptZuDWJV3/fS7HRTERDb74cE1XnW5psIjcdprVSpjM/thkC26gdkRCXUa0Oi3AgGg10GKFs71msbiy1UGZ+MWPnbGHBlkQ0Gnh5SDjv39HBoZMVUGYY3t0tjB8e6oGfh569yVncMmM9e5Mz1Q6t9tn3i5KsBHeUZEU4BElYxJW1L0lYjqxUKmmKCknLKeTu2ZvYcCQdD72OL0dH8dB1zaTy60W6NvHj9wm9aBXkSWq28u+1+Wi62mHVLqXdQdL6KRyDJCziygJaKJUzzUbl25y4puSMfEZ8vpH9KVkEeOpZPD6agW3Ln/Lv6EL93Pn50Z50b+pHdqGBMXO2sOLAGbXDqh3OHYWTW0CjldorwmFIwiKuztIttFu6ha7lRHoud87awNG0XBr6urH4kWjahUhdjKvxcnVm3rhuDGgTSKHBxMPfxvH3bqnPdE27f1Tum/UDrwaqhiJETZGERVxdu+HKt7jkbZB+5NrHO6iT5/O458vNnMosoFl9D34cH02zWlJaX22uzjo+H92FWyNDMJjMPLlwB8v2lb/Uh0AZEL97kbIt3UHCgUjCIq7OK0j5Fgew5ydVQ7FXpzMLGPXVZpIz8mlW34NFD0cT4iuzXirDWadl2ohIbuvUEIPJzIQftrMyIVXtsOxT8nY4dwSc3ZUij0I4CElYxLW1v2i2kP3Pgq9RaTmFjPpqEyfS8wjzc+eHB3tQ38tF7bBqJZ1Ww/t3dGBo+2CKjWbGfxfHhiNpaodlfyytK22GSn0k4VAkYRHXFn6TsrBa+mE4tUPtaOxGfpGRB+Zt48jZXEJ8XJn/YHca+LiqHVat5qTTMv2uSG5oG0ShwcQj38aRcDpb7bDsh8kI+39TttvfqWooQtQ0SVjEtbl4QevByrZ0CwHKIoZPLNzBrqQMfN2d+e7B7oT6uasdVp3grNPy6d2d6FYye+i+uVs4nVmgdlj24cQGyDkDrr7Q7Hq1oxGiRknCIiqm/R3K/f7fHH4FZ7PZzJt/7Sd2/xn0Tlq+GhNFcxlga1Wuzjpmj+5C8/oepGQWcN/cLWQXFKsdlvos5QXCbwInvbqxCFHDJGERFdN8gLKCc1YynNyqdjSqmrfhON9sOA7ARyMiiWrip25AdZSvu55v7u9GgKcLB05n88SCHRgdecFEowH2/6Fst7tN3ViEUIEkLKJinF2h9RBl27KcvQPadDSdN/+OB2Dy4DYM7RCsckR1W6ifO3Pv64qLk5aVCWeZ/t9BtUNSz/G1kJcGbn7QtK/a0QhR4yRhERVn+VbnoN1CKZn5TPxhO0aTmVsiQ3j4umZqh+QQ2jfy4Z3b2wPw6YrD/LvXQQvLWbqD2t4MOmd1YxFCBZKwiIprfj24+EB2CiRtUjuaGlVoMDL+++2k5RQRHuzNO8M7yNpANei2To0Y16spAM8s3sWhMw42c8hYDPF/KtvthqsbixAqkYRFVJyTi1L7ARyuW2jKn/tLZwTNHt3F4VddVsPkIW3o0cyP3CIjj87fTn6RUe2Qas7R1ZB/HjzqQ+NeakcjhCokYRGVU9ot9LtSE8IB/Ls3hfmbE9Fo4OO7Osn0ZZU467TMuKczgV4uHE7NYcpf+9QOqeaUdgfdAjondWMRQiWSsIjKadZPqQGRcwYSN6odjc2dysjnhZ/3APDwdc3o26q+yhE5tgBPF6aPjESjgQVbkvhz1ym1Q7I9QyHE/6VsS3eQcGCSsIjKcdIrNSCgzncLGU1mnlq0k8z8Yjo28uGZG1qrHZIAerYI4LF+zQF46Zc9JJ3LUzkiGzuyEgozwbMBhPVQOxohVCMJi6g8B+kWmrnyMFuOncNDr+OTuzuhd5JfF3vx1MBWdA7zJbvQwFOLdtbt+iyW7qB2t4JWxk4JxyV/gUXlNe0LbvUg9ywcX6d2NDax/1QWHy8/BMCbt0bQ2N9D5YjExZx1Wj6+qxOeLk7EnTjP3PXH1A7JNooL4MASZVu6g4SDk4RFVJ7OGcKHKdt1sFuo2GjiuZ92YTCZGdQuiNs6NVQ7JFGOUD93Xh4aDsD7SxM4cjZH5Yhs4MgKKMoG74bQqKva0QihKklYRNVYuoXi/6xz3UKfrzrCvlNZ+Lo78+atEVJvxY7d1TWUPi0DKDSYeO7HXXWva+hAyWDb8GGglT/XwrHJb4ComiZ9lNlCeWl1arZQwulsPlmhdAW9PqwdgV6uKkckrkaj0fDO7R3wdHFie2IGc9bVoa4howESSrqD2tykbixC2AFJWETV6JwvFJGzVOCs5YwmM8//tItio5mB4UHcEhmidkiiAhr6uvFKSdfQtNiEujNr6MR6pVicuz+ERasdjRCqk4RFVJ1lHEv8n2Cu/U3xP2xJZNfJTLxcnXjrNukKqk1Gdg2le1M/CopNvP7HPsx14P1Y2h3UerAUixMCSVhEdTS7HvSekJUMydvVjqZa0nIKef/fAwA8G9OaIG/pCqpNNBoNb90WgbNOw/IDqSzbf0btkKrHZLpQLK7NMHVjEcJOSMIiqs7ZFVrGKNvxf6gbSzVNXXKArAID7UK8ubdHY7XDEVXQItCLh/ooK2i/8cc+cgsNKkdUDad2QPYp5QtBs35qRyOEXZCERVRPabfQH7W2W2jz0XR+3n4SjQb+79YIdFrpCqqtHu/fkkb13DiVWVBaR6dWsnwBaHmD8sVACCEJi6imljGgc4FzRyF1v9rRVJrBaOLV35VF9O7qGkansHoqRySqw02vY8ot7QCYu/4Yx9JyVY6oCszmCwPZw6U7SAgLSVhE9bh4QosByvb+2tcttGBrEglnsqnn7szzg2StoLqgf5sgrm9dn2KjmbeXxKsdTuWdPQDnjoBODy1uUDsaIeyGJCyi+sJvVu5r2fTm7IJipsceBJS1aep56FWOSFjLy0PD0Wk1xO4/w4bDaWqHUzmWwbbNrgdXb3VjEcKOSMIiqq/VINA6Qeo+SD+idjQVNnPVEdJzi2hW34N7uoepHY6wohaBXtxb8n865a/9tasCrmX8SrgUixPiYpKwiOpz91Mq30KtmS2UdC6Pr0uqok4eHI6zTn4V6pqnBrbC29WJA6ezWbwtSe1wKub8CTi9GzRaaD1E7WiEsCvyV1pYR9va1S30/tIEigwmopv5MzA8UO1whA3U89Dz5MBWAExbdpC8olowzfnA38p9WE/wCFA3FiHsjCQswjpaDwU0kBwHmSfVjuaqdp/M4I9dp9BolLEOUtG27hrdozGN/d1Jyylk7vrjaodzbTI7SIgrkoRFWIdXEIT1ULYtgwbt1AfLlIG2t0U2JKKhj8rRCFvSO2mZdIPSyvLF6iNk5hWrHNFV5KReWEjUsk6XEKKUJCzCemrBbKEtx86x5uBZnLQanirpLhB127AOIbRp4EVWgYEv1tjxoPCEJYAZQjqBb6ja0QhhdyRhEdZjmdWQuAFyzqobSznMZjMfLEsAYETXUML83VWOSNQErVbDMzFKjZ2564+Tml2gckRXULp2kMwOEqI8krAI6/ENU74dmk0XVpq1I+sOp7Hl2Dn0Tloe799C7XBEDRoYHkinMF/yi43MXGmHrSwFmXB0lbIt41eEKJckLMK6LH9s7SxhUVpXlLEro7qHEezjpnJEoiZpNBqeK6lkPH/zCZIz8lWO6BKHYsFUDAGtoL5UXBaiPJKwCOtqU5KwHF2tfGu0E8vjU9mVlIGbs45H+zVXOxyhgp7NA4hu5k+x0cwXq+2slcVSv0i6g4S4IklYhHXVbwUBrZVviweXqR0NoLSufLpCWbl3TM/GBHrJ6reO6vEBSlfgwq1JpGbZyViW4nw49J+yLd1BQlyRJCzC+kq7hexjttD6w+nsOpmJq7OWh/o0UzscoaLoZv50aVyPIoOJ2WuOqh2O4ugqKM4F70bKGDAhRLkkYRHWZ5ktdChW+faoshkrldaVu7qGEeDponI0Qk0ajaZ0wPX8zYmk5xSqHBEXFYu7CaSIoRBXJAmLsL7gSPAJheI8OLJC1VDiTpxj09FzOGk1PHydtK4I6NuqPh0a+ZBfbCxdT0o1RkNJ/RVk/IoQ1yAJi7A+jeZCt5DKVW8tU1iHd25IiK/MDBJKK8vE65VWlm83nlC3+u2J9ZB/Htz9ISxavTiEqAUkYRG2Yfm2mLAEjOp8IOw/lcXyA6loNfBoP6m7Ii4YGB5EmwZe5BQa+G7TcfUCsUz/bz0YdE7qxSFELSAJi7CNsB7gHgAFGXB8nSohzFx1GIAh7YNpGuChSgzCPmm1Gh7pq3QRztt4gkKDseaDMJkutEBalrUQQlyRJCzCNrS6Cwu4qVBELulcHkv2pABI3RVRrps6hNDA25Wz2YX8vvNUzQdwagdknwK9JzTtW/PXF6KWkYRF2M7F41hMphq99LwNxzGZoXeLANqFyIrM4nLOOi3jejcB4Ms1RzGbzTUbgKVYXMsbwFlqAwlxLZKwCNtpeh24eEPOaUjeVmOXzS4oZuHWJAAe6NO0xq4rap+7uoXh6eLEodQcVh2swQU7zeaLpjNLsTghKkISFmE7Ti7QapCyHV9zReQWbztJTqGB5vU96Nuyfo1dV9Q+3q7O3NU1FFBaWWrM2QNw7gjo9NDihpq7rhC1mCQswrYss4Xi/1S+VdqY0WRm7nqltsa43k3RaqUQl7i6+3s3RafVsOFIOnuTa2j9K8tg22bXg6t3zVxTiFpOEhZhWy0GgpMrnD8GZ/bZ/HLL9p3m5Pl86rk7M7xTI5tfT9R+DX3duKlDMEDNFZI7cFF1WyFEhUjCImzLxROaD1C2a2C20FclHzijujfGTa+z+fVE3fBAb2Ws09+7U0izdbn+8ycgZRdotNB6iG2vJUQdIgmLsL3wi7qFbGhnUgZxJ87jrNMwJrqxTa8l6pYOjXyJDPWlyGhiUcmAbZs58LdyH9YTPAJsey0h6pAqJSwzZ86kadOmuLq60qVLF9auXXvV4wsLC3n55Zdp3LgxLi4uNG/enDlz5lQpYFELtboRNDo4sxfO2W5g47cbjwMwrEMIgd4yTVRUztieSpL7/aYTGIw2nIYvs4OEqJJKJyyLFi3iqaee4uWXX2bHjh306dOHwYMHk5iYeMXXjBgxguXLl/P111+TkJDAggULaNOmTbUCF7WIux807aNs22htofO5Rfy1WykUd6+0rogqGNI+GH8PPSmZBfwXf8Y2F8lJhcSNyralsKIQokIqnbB8+OGHPPDAAzz44IOEh4czffp0QkNDmTVrVrnH//vvv6xevZolS5YwcOBAmjRpQrdu3ejZs+cVr1FYWEhWVlaZm6jl2ti2W+jHuCSKDCbahXjTKdTXJtcQdZuLk467u4UBMG/DCdtcJGEJYIaQTuAbaptrCFFHVSphKSoqIi4ujpiYmDL7Y2Ji2LBhQ7mv+eOPP4iKiuK9996jYcOGtGrVimeffZb8/PwrXmfq1Kn4+PiU3kJD5Re71rMkLCe3QFaKVU9tMpmZv1lp4RvdozEajUxlFlVzT/cwdFoNG4+mc/BMtvUvYGlhbCOzg4SorEolLGlpaRiNRoKCgsrsDwoK4vTp0+W+5ujRo6xbt469e/fy66+/Mn36dH766ScmTJhwxetMnjyZzMzM0ltSko0HwQnb8w6GRt2U7YS/rXrqtYfTOJGeh5erEzdHhlj13MKxhPi6EdNW+ftmGRNlNQWZcHSVsi3jV4SotCoNur30G6zZbL7it1qTyYRGo2H+/Pl069aNIUOG8OGHH/LNN99csZXFxcUFb2/vMjdRB9hottB3G5Xm+9s7N8Jd72TVcwvHM7pkDNQv25PJLii23okPLgNTMQS0hvqtrXdeIRxEpRKWgIAAdDrdZa0pqampl7W6WAQHB9OwYUN8fC4sQBceHo7ZbObkyZNVCFnUWpZm8GNrIe+cVU6ZnJHPigPKAMl7e8hgW1F90c38aRHoSV6RkT92WXEVZ8tih9K6IkSVVCph0ev1dOnShdjY2DL7Y2NjrziItlevXpw6dYqcnJzSfQcPHkSr1dKokVQidSj+zSEoAsxGOLjUKqdcsDkRkxl6Nlc+ZISoLo1GU7q+0MItVuqOLs6Hw/8p21LdVogqqXSX0KRJk/jqq6+YM2cO8fHxPP300yQmJjJ+/HhAGX8yZsyY0uPvuece/P39uf/++9m/fz9r1qzhueeeY9y4cbi5uVnvJxG1gxVnCxUbTaWrMo+W1hVhRcM7N0Kv07InOdM66wsdWQHFeeATCsGR1T+fEA6o0gnLyJEjmT59OlOmTCEyMpI1a9awZMkSGjdWPjBSUlLK1GTx9PQkNjaWjIwMoqKiGDVqFMOGDeOTTz6x3k8hag9Lc/iR5VCUW61TrTyQSlpOIQGeega2Lb9LUoiq8PPQE9NOeU8t3HrlGlMVdnGxOJnFJkSVaMzmGlhCt5qysrLw8fEhMzNTBuDWdmYzfNJJWQxxxLfQ9pYqn+rBeVv5Lz6VR65rxuQh4VYMUghYfziNUV9txsvFic0vD6j6gG5jMbzfXJkldP8/0PjKNaiEqGus+fktawmJmqXRWGW2UGpWASsTzgJwZ5TU6RHWF93MnzA/d7ILDfy9uxq1g46vVZIVj/oQ2t16AQrhYCRhETUv/Gbl/uBSMBRV6RQ/bT+J0WQmqnE9GWwrbEKr1TDSMvi2OgsiWhLzNkNBKyuIC1FVUrRC1LyGUeDZAHJOw7E10HJgpV5uNpv5cZsyJX6EtK4IG7qzSyM+jD1I3InzHDyTTasgr8qdwGS6sDqzytOZjUYjxcVWrCsjBODs7IxOVzOJuCQsouZptcq3zW1fK7UpKpmwbD1+nmNpuXjodQztEGyjIIWAQG9XBrQJZNn+MyzcksSrw9pW7gQnt0LOGXDxgSbX2SbIazCbzZw+fZqMjAxVri/qPl9fXxo0aGDzZVEkYRHqCB+mJCwH/oabPqpUU/mikub5mzqE4OEib2FhW3d1C2XZ/jP8vjOZyUPa4KyrRE+6pVhcq0HgpLdNgNdgSVYCAwNxd3eXtbaE1ZjNZvLy8khNTQWUQrG2JH/thTqa9AZXX8hLg6TNFZ45kV1QzJI9ygDIEV2lO0jY3nUt6xPgqSctp4jVCWcrPoXebC47nVkFRqOxNFnx9/dXJQZRt1nqqaWmphIYGGjT7iEZdCvUoXOG1oOV7UrMFvpzVwr5xUZaBHrSOczXNrEJcREnnZZbIhsC8PP2SiwncnoPZJwAJzdoMcBG0V2dZcyKu7u7KtcXjsHy/rL1GClJWIR6LN864/9Uvo1WwE9xSnfQiKhG0rQtasztnZVlRJbHp5KRV8GZbZZEvMUA0HvYKLKKkd8VYUs19f6ShEWop3l/cHaHzCRI2XXNw4+n5bI9MQOtBm4t+cYrRE1oG+JNeLA3RUYTf1Z0QcTS7qCbbReYEA5EEhahHmc3aFEyQ6gC3UK/7kgGoHfL+gR6u9oyMiEuc3tnS7dQ8rUPTjsMZ+NB66QMuBVWdd9993HrrbeqHcYVWSO+48ePo9Fo2Llz5xWPWbVqFRqNpnQG2DfffIOvr2/p86+//jqRkZHVisOeSMIi1GX59nmNhMVsNvPbTuWDYngnaV0RNe+WyIbotBp2JmVw5GzO1Q8+UPJ+bnoduPnaPDZH8/HHH/PNN9+oHYbqevbsSUpKCj4+PuU+/+yzz7J8+fLSx/ae6F2LJCxCXa1iQOsMaQlw9uAVD9uemMGJ9Dzc9brSRemEqEn1vVzo26o+AD/HXWPwrcqzg+o6Hx+fMi0JNaWoqGqVuW1Fr9dftf6Jp6dnnZodJgmLUJerDzTrq2wfuHIry687lA+IG9s1qPoidEJUk2Xw7a87kjGarjBQPCMRkuMADbQeWnPB1TE//fQT7du3x83NDX9/fwYOHEhurrLC+6UtBdnZ2YwaNQoPDw+Cg4P56KOP6NevH0899dQVz2/pLvniiy8IDQ3F3d2dO++8s0yBPct1pk6dSkhICK1atQJgz5499O/fvzS2hx9+mJycy1vd3njjDQIDA/H29uaRRx4pk/D8+++/9O7dG19fX/z9/bnppps4cuTIZec4cOAAPXv2xNXVlXbt2rFq1arS5y7tErrSz2jZnjdvHr///jsajQaNRsOqVavo378/EydOLPO69PR0XFxcWLFixRX//dQgCYtQ38WzhcpRZDDxV8nic7d1lu4goZ4B4YF4uzqRklnAxiPp5R+0/3flvklv8LK/1kCz2UxekUGVm7mCswFTUlK4++67GTduHPHx8axatYrhw4df8fWTJk1i/fr1/PHHH8TGxrJ27Vq2b99+zescPnyYxYsX8+eff/Lvv/+yc+dOJkyYUOaY5cuXEx8fT2xsLH/99Rd5eXnceOON1KtXj61bt/Ljjz/y33//Xfahb3ndypUrWbBgAb/++itvvPFG6fO5ublMmjSJrVu3snz5crRaLbfddhsmk6nMeZ577jmeeeYZduzYQc+ePbn55ptJT7/Ce+8qnn32WUaMGMGNN95ISkoKKSkp9OzZkwcffJAffviBwsLC0mPnz59PSEgI119/faWvY0vyVVWor/VQ+PMpOLUDMpLAt2xBuJUJqWTkFRPo5ULP5gHqxCgE4Oqs46aOIfywOZHfdibTu2U578d9vyr3bW+p2eAqKL/YSNtXl6py7f1TBlWohTQlJQWDwcDw4cNp3LgxAO3bty/32OzsbObNm8cPP/zAgAFKvZu5c+cSEhJyzesUFBQwb948GjVSWs4+/fRThg4dyrRp02jQoAEAHh4efPXVV+j1SqXiL7/8kvz8fL799ls8PJTp6jNmzGDYsGG8++67BAUpSaper2fOnDm4u7vTrl07pkyZwnPPPcebb76JVqvl9ttvLxPL119/TWBgIPv37yciIqJ0/8SJE0uPnTVrFv/++y9ff/01zz///DV/vot5enri5uZGYWFh6c8GcPvtt/P444/z+++/M2LEiNJ/v/vuu8/upsNLC4tQn2d9CItWti0LxV3kt5LZQbdEhqDT2tcvkHA8lin1S/eepqDYWPbJi7uDZDpzlXXs2JEBAwbQvn177rzzTr788kvOnz9f7rFHjx6luLiYbt26le7z8fGhdevW17xOWFhYabICEB0djclkIiEhoXRf+/btS5MVgPj4eDp27FiarAD06tXrstd17NixTMG+6OhocnJySEpSakkdOXKEe+65h2bNmuHt7U3Tpk0BSExMLBNjdHR06baTkxNRUVHEx8df82erKBcXF+69917mzJkDwM6dO9m1axf33Xef1a5hLdLCIuxD+DBI3KB0C/UYX7o7M6+Y5fHKOhW3dWp0pVcLUWOiGtcjxMeVU5kFrEpI5caIi9ZPsXQHNe5ll91BAG7OOvZPUWeqtZtzxcq263Q6YmNj2bBhA8uWLePTTz/l5ZdfZvPmzaUf7BaWbqJLWwMq2v10Mcs5Lj7XxYmJ5bxXanmoSIuE5Zhhw4YRGhrKl19+SUhICCaTiYiIiAoN7LV2y8eDDz5IZGQkJ0+eZM6cOQwYMKC0ZcueSAuLsA/hNyn3iRsgN6109997UigymmjTwIu2Id4qBSfEBVqthmEdle6G33deUkRu32/KfbtbazSmytBoNLjrnVS5VeaDVqPR0KtXL9544w127NiBXq/n119/vey45s2b4+zszJYtW0r3ZWVlcejQoWteIzExkVOnLvwfbty4Ea1WWzq4tjxt27Zl586dpQOAAdavX3/Z63bt2kV+fn7p402bNuHp6UmjRo1IT08nPj6eV155hQEDBhAeHn7FFqRNmzaVbhsMBuLi4mjTps01f7by6PV6jEbjZfvbt29PVFQUX375JT/88APjxo2r0vltTRIWYR98wyC4I5hNkLCkdLelO+g2qb0i7MjNkUrCsvxAKtkFJeunZCRC8jakO6j6Nm/ezNtvv822bdtITEzkl19+4ezZs4SHh192rJeXF2PHjuW5555j5cqV7Nu3j3HjxqHVaq+ZILm6ujJ27Fh27drF2rVreeKJJxgxYkSZMR6XGjVqVOnr9u7dy8qVK3n88ccZPXp06fgVUKZAP/DAA+zfv59//vmH1157jYkTJ6LVaqlXrx7+/v7Mnj2bw4cPs2LFCiZNmlTu9T777DN+/fVXDhw4wIQJEzh//nyVE4omTZqwe/duEhISSEtLK7P2z4MPPsg777yD0Wjktttuq9L5bU0SFmE/LLOFSprVUzLz2XL8HEDpN1oh7EHbYG+a1/egyGBi6b4zys5a0B1UW3h7e7NmzRqGDBlCq1ateOWVV5g2bRqDBw8u9/gPP/yQ6OhobrrpJgYOHEivXr0IDw/H1fXqFbFbtGjB8OHDGTJkCDExMURERDBz5syrvsbd3Z2lS5dy7tw5unbtyh133MGAAQOYMWNGmeMGDBhAy5Ytue666xgxYgTDhg3j9ddfB0Cr1bJw4ULi4uKIiIjg6aef5v333y/3eu+88w7vvvsuHTt2ZO3atfz+++8EBFRt8sFDDz1E69atiYqKon79+qxfv770ubvvvhsnJyfuueeea/67qUVjrkpHXw3LysrCx8eHzMxMvL2lW6DOSjsEM6KUcubPHuKruAz+7+94ujapx4/je6odnRBlfLL8EB/GHqRPywC+e6A7fDlAaWEZ8gF0e0jt8ABlFsyxY8do2rSp3X4I2UJubi4NGzZk2rRpPPDAA+Ue8/rrr/Pbb79dtfS9I0lKSqJJkyZs3bqVzp07V+q1V3ufWfPzW1pYhP0IaAkN2oPJAPF/8GdJ7RVpXRH26OaS9+WGI+mkJx+W7iAV7dixgwULFnDkyBG2b9/OqFGjALjlFvucWm5PiouLSUxM5IUXXqBHjx6VTlZqkiQswr5EKPUGCnb+xK4kZWXmwRfPwhDCTjQJ8KBjIx+MJjNHV89Xdkp3kGo++OADOnbsWFoRd+3atVXuOnEk69evp3HjxsTFxfH555+rHc5VybRmYV/a3Qb/vY4+aT31uZtWzZtT38tF7aiEKNfNkQ3ZdTITn2Ml9YPseHZQXdapUyfi4uIq9ZrXX3+9dEyJI+vXr1+VpoCrQVpYhH2p1wQaRqHFxGDdZm7qIN1Bwn7d1CGYhpo0WhUnYJbuICFsShIWYXfSmigLxg3TbeLGdleeXiiE2oK8XXm0/l4ATvl0ku4gIWxIEhZhd34r6o7JrKGrNoF6hlS1wxHiqgZrlKmhvxd3u8aRQojqkIRF2BWz2czCBANbzSXrgFgqhwphj9KP4J+5D4NZy9fnOnI8LffarxFCVIkkLMKuJJzJ5nBqDv+YS+qu7P1Z3YCEuJo9PwGwz60z6fjw954UlQMSou6ShEXYlT93Ket6ZDcdDBotnNoO546pHJUQ5TCbYc+PAOS1UkqZL5GERQibkYRF2A2z2cxfJcXi+nWJgKbXKU/s+0XFqIS4gtO7If0QOLnSut/d6LQa9p3K4kS6dAtZQ79+/Xjqqaeq/PpVq1ah0WjIyMiwWkzV0aRJE6ZPn16tc3zzzTf4+vpe9ZjXX3+dyMjI0sf33Xcft956a+nj6v67qkkSFmE39iRnciI9DzdnHQPCA6HdcOWJvZev0CqE6kpaV2g1CD8/f6Kb+QNIt5BQ1bPPPsvy5cuv+Pwvv/zCm2++WfrYGolUTZGERdiNJXtOA9A/PBB3vZOyGKLWCc7sgbMJKkcnxEVMJthb0vLX/k4AhnZQKjJLt5BjKSoqUjuEMjw9PfH397/i835+fnh5edVgRNYjCYuwC2azmaX7lIRlcERJ7RV3P2g+QNnevVilyIQoR+JGyEoGFx9ocQMAg9o1QKfVsDdZuoWsxWAwMHHiRHx9ffH39+eVV14pU5W1sLCQ559/ntDQUFxcXGjZsiVff/11uefKz89n6NCh9OjRg3PnzpV7TL9+/Zg4ceJVr9mkSRP+7//+j/vuuw8fHx8eekhZ6PLnn3+mXbt2uLi40KRJE6ZNm3bZ+bOzs7nnnnvw9PQkJCSETz/9tMzzH374Ie3bt8fDw4PQ0FAee+wxcnJyLjvPb7/9RqtWrXB1deWGG24gKSmp9LlLu4TK+xktXUL9+vXjxIkTPP3002g0GjQaDbm5uXh7e/PTTz+Ved2ff/6Jh4cH2dnZVzy3rUnCIuzCodQcjqXlonfS0q914IUnOo5U7vcsVr7VCmEPLN1B4cPAWVmd1s9DXzu6hcxmKMpV51bJEvDz5s3DycmJzZs388knn/DRRx/x1VdflT4/ZswYFi5cyCeffEJ8fDyff/45np6el50nMzOTmJgYioqKWL58OX5+flW+JsD7779PREQEcXFx/O9//yMuLo4RI0Zw1113sWfPHl5//XX+97//8c0331z2ug4dOrB9+3YmT57M008/TWxsbOnzWq2WTz75hL179zJv3jxWrFjB888/X+YceXl5vPXWW8ybN4/169eTlZXFXXfdVZl/1lK//PILjRo1YsqUKaSkpJCSkoKHhwd33XUXc+fOLXPs3LlzueOOO1RtnZG1hIRd+Hev0rrSp0UAni4XvS1bDwG9F2QkQtImaNxTpQiFKGEogv2/Kdvt7yjz1JD2waw7nMaSPSk81q9FzcdWEcV58LZKS168dAr0HhU+PDQ0lI8++giNRkPr1q3Zs2cPH330EQ899BAHDx5k8eLFxMbGMnDgQACaNWt22TnOnDnDyJEjad68OQsWLECv11f5mhb9+/fn2WefLX08atQoBgwYwP/+9z8AWrVqxf79+3n//fe57777So/r1asXL774Yukx69ev56OPPuKGG5RWuosHwzZt2pQ333yTRx99lJkzZ5buLy4uZsaMGXTv3h1QEqzw8HC2bNlCt26VK17o5+eHTqfDy8uLBg0uVBV/8MEH6dmzJ6dOnSIkJIS0tDT++uuvMsmVGqSFRdgFS3fQoIhLSvE7u0HbkiXidy2s4aiEKMfRlZB/HjwCL8xkKzGoXVBpt1Biep5KAdYdPXr0QKPRlD6Ojo7m0KFDGI1Gdu7ciU6no2/fvlc9x8CBA2nWrBmLFy++ZrJyrWtaREVFlXlNfHw8vXr1KrOvV69el70uOjq6zDHR0dHEx8eXPl65ciU33HADDRs2xMvLizFjxpCenk5u7oUuRicnpzLXb9OmDb6+vmXOU13dunWjXbt2fPvttwB89913hIWFcd11113jlbYlLSxCdUnn8th3KgutBgaGl7MWS8eRsPN7pert4PdKm+CFUIVlPFW720CrK/OUv6cL0c38WXc4jb/3pPBov+YqBHgNzu5KS4da17YSNze3Ch03dOhQfv75Z/bv30/79u2tcm0Pj7KtRGazuUySY9lXEZbXnThxgiFDhjB+/HjefPNN/Pz8WLduHQ888ADFxcXlvuZa+6rjwQcfZMaMGbz44ovMnTuX+++/3+rXqCxpYRGqs7SudG/qj59HOd+AGvcG74ZQmAmHltZwdEJcpCATDvylbFvGV11iSHtlttDfe1RKCq5Fo1G6ZdS4VfIDb9OmTZc9btmyJTqdjvbt22MymVi9evVVz/HOO+8wduxYBgwYwP79+6t1zStp27Yt69atK7Nvw4YNtGrVqszryjt3mzZtANi2bRsGg4Fp06bRo0cPWrVqxalTl7+HDAYD27ZtK32ckJBARkZG6XkqS6/Xl2kFsrj33ntJTEzkk08+Yd++fYwdO7ZK57cmSViE6iwJy42XdgdZaLWlU0fZtaiGohKiHPt+A0MBBLSGkM7lHnJxt5DMFqqepKQkJk2aREJCAgsWLODTTz/lySefBJTZOmPHjmXcuHH89ttvHDt2jFWrVrF48eUzCj/44ANGjRpF//79OXDgQJWveSXPPPMMy5cv58033+TgwYPMmzePGTNmlBnnArB+/Xree+89Dh48yGeffcaPP/5Yeu7mzZtjMBj49NNPOXr0KN999x2ff/75Zddydnbm8ccfZ/PmzWzfvp3777+fHj16VHr8ikWTJk1Ys2YNycnJpKWlle6vV68ew4cP57nnniMmJoZGjRpV6fzWJAmLUFVqdgHbTpwHIKZdOd1BFh1LRsEfWgZ55U9JFMLmLOOoIu++YmuBv6cLPZops1AsybiomjFjxpCfn0+3bt2YMGECjz/+OA8//HDp87NmzeKOO+7gscceo02bNjz00ENlxntc7KOPPmLEiBH079+fgwcPVvma5encuTOLFy9m4cKFRERE8OqrrzJlypQyA25BSWzi4uLo1KkTb775JtOmTWPQoEEAREZG8uGHH/Luu+8SERHB/PnzmTp16mXXcnd354UXXuCee+4hOjoaNzc3Fi6s+vi+KVOmcPz4cZo3b079+vXLPPfAAw9QVFTEuHHjqnx+a9KYK9rRpqKsrCx8fHzIzMzE29tb7XCEFc3ffIKXf91Lx1Bffp/Q6+oHf95HKYc+5APo9tDVjxXC2s4dg08iAQ1M2g/eV55p893G4/zv9310aVyPnx9Vb2ZbQUEBx44do2nTpri6ytiva+nXrx+RkZG1pvKrrc2fP58nn3ySU6dOXXXA8tXeZ9b8/JYWFqGqpfvOAHBjuyt0B13M0soiReSEGiytK836XTVZAbihrfJ+jjtxntSsAhsHJoR15eXlsW/fPqZOncojjzxSodlVNUESFqGazPxiNhxW+kwHXa07yCLiDmUF55NbIP2IjaMT4iImE+xaoGxH3nPNwxv4uNIpzBeApfvP2DAwIazvvffeIzIykqCgICZPnqx2OKUkYRGqWXHgDAaTmVZBnjSrf3l1yst4BUHz/sq25cNDiJqQuBEyTihFDNvcVKGXWFoNl+6VcSy1xapVq6Q7CKW8f3FxMcuXLy+3crBaJGERqlm6txLdQRaRo5T7nT+A6fKpeELYhCVBbncL6CtWS2RQyft649F0MvLsa4E8IWojSViEKvKLjKw6mApATGUSljZDwa2esvDckRU2ik6IixTlKdOZATpeuzvIokmAB20aeGE0mfkvPtU2sVVQLZhbIWqxmnp/ScIiVLH64FkKik00qudGu5BKjBx3coEOJQW7dnxnm+CEuNiBv6AoG3wbQ1j0tY+/iKW20L8qdQs5OzsDyiBKIWzF8v6yvN9sRUrzC1UssxSLa9eg8uWeO42GzZ/DgSWQmwYeATaIUIgS25X1VIi8RyliWAmD2jVg+n+HWHvoLLmFBjxcavZPrk6nw9fXl9RUpYXH3d1d9fLqou4wm83k5eWRmpqKr6/vVasBW4MkLKLGFRlM/BevjF+5bLHDimgQASGd4NQO2L0IoidYOUIhSqQfgeNrldlpne6t9MvbNPCisb87J9LzWH3wbGnZ/ppkWYXXkrQIYW2+vr5lVnu2FUlYRI3bdDSdrAIDAZ4udA6rV7WTdBqtJCzbv4Mej1V6jRIhKmT7POW+xUDwqXxpco1Gw43tGvDFmqP8u/e0KgmLRqMhODiYwMDAyxbRE6K6nJ2dbd6yYiEJi6hxlnLlMSVrrlRJ+ztg6UtwNh6S46BR1LVfI0RlGIqU2WgAnau+8NugCCVhWXEglUKDERenmvnjfimdTldjHyxC2IIMuhU1ymgyl1a3HVSZ2UGXcvWBtrco2zL4VtjCwX8g9yx4BEKrQVU+TWQjX4K8XcgpNLDhcLoVAxTCsUjCImrUjsTzpOUU4uXqRHQz/+qdrNNo5X7Pz1Akq+IKK4sr6Q7qNAp0VZ/9oNVqSpNztWYLCVEXSMIiapSlO2hgeBB6p2q+/Zr0Br9mypTTPT9ZITohSpw/caHOT+cx1T6dpThibPwZjCapiSJEVUjCImqM2Wzm35KEpUJrB12LRgNd7le2t34FUhxLWMuO7wEzNL1OSYqrqVtTP3zdnTmXW8TW4+eqH58QDqhKCcvMmTNLl5Hu0qULa9eurdDr1q9fj5OTE5GRkVW5rKjl9qdkkXQuH1dnLde1qm+dk3a6F3QucHq3MvhWiOoyGkoSFqo12PZiTjotA8OVJF26hYSomkonLIsWLeKpp57i5ZdfZseOHfTp04fBgweTmJh41ddlZmYyZswYBgwYUOVgRe1mWQSub6v6uOutNEHN3Q8ible2t35lnXMKx3bwH8g+Be7+ED7MaqctXQxx32kplS9EFVQ6Yfnwww954IEHePDBBwkPD2f69OmEhoYya9asq77ukUce4Z577iE6unKlrUXdYZXZQeXp+oByv/cXyJPmdlFNW2Yr953HKktBWEnvlgG463WkZBaw62Sm1c4rhKOoVMJSVFREXFwcMTExZfbHxMSwYcOGK75u7ty5HDlyhNdee61C1yksLCQrK6vMTdRuR8/mkHAmGyethgFtrDB+5WINu0BwRzAWXmjKF6IqUg/AsTVKZduocVY9tauzjuvbBAIXBp8LISquUglLWloaRqORoKCyHzhBQUGcPl3+L+ChQ4d48cUXmT9/Pk5OFesGmDp1Kj4+PqW30NDQyoQp7JCldSW6uT8+7lZeIEujga4PKtvbvgaTybrnF45j65fKfesh4Gv9vzuW1sWle6VbSIjKqtKg20sXzzKbzeUuqGU0Grnnnnt44403aNWqVYXPP3nyZDIzM0tvSUlJVQlT2JGlpbODbLTeRMTt4OID549fmI4qRGUUZMLOBcp2t4dtconrW9dHr9NyNC2Xw6k5NrmGEHVVpRKWgIAAdDrdZa0pqampl7W6AGRnZ7Nt2zYmTpyIk5MTTk5OTJkyhV27duHk5MSKFeV/sLi4uODt7V3mJmqvlMx8diZloNFATFsrdwdZ6D2U1XThwrdkISpj10IozoWA1sp0ZhvwcnWmVwulYKJ0CwlROZVKWPR6PV26dCE2NrbM/tjYWHr27HnZ8d7e3uzZs4edO3eW3saPH0/r1q3ZuXMn3bt3r170olZYVtId1CWsHoHerra7kKVb6OBSSDtsu+uIusdkujDYtttDNl1Ms7RbqOT3QghRMZWeWzpp0iRGjx5NVFQU0dHRzJ49m8TERMaPHw8o3TnJycl8++23aLVaIiIiyrw+MDAQV1fXy/aLusvm3UEWAS2g1Y1w8F/YPAuGTrPt9UTdcWwVpB8GvRd0vMumlxrYNgjtr3vYk5zJyfN5NKrnbtPrCVFXVHoMy8iRI5k+fTpTpkwhMjKSNWvWsGTJEho3bgxASkrKNWuyCMdxLreIzceUqcY2T1gAejym3O/8QaY4i4rb+JlyH3kPuHjZ9FIBni5ENfEDLrQ+CiGuTWOuBUPVs7Ky8PHxITMzU8az1DKLtyXx/E+7aRvszZIn+9j+gmYzfN4HzuyBAa9Bn0m2v6ao3c7sh1nRylTmx7eDX1ObX3LOumNM+Ws/3Zr6sfgRqU0l6i5rfn7LWkLCppbVVHeQhUYD0SWtLFtmg6GoZq4raq+NM5T78GE1kqwAxJSspbXt+DnScgpr5JpC1HaSsAibySk0sOZQGgA3RtRQwgLKFGfPIMhOgf2/1dx1Re2TfRp2L1a2ez5RY5dtVM+d9g19MJnhv/3SLSRERUjCImxmVUIqRQYTTQM8aBXkWXMXdnKBrg8p2xtnyCrO4so2fwGmYgiLhkZRNXppy4rlMr1ZiIqRhEXYjGXaZky7oHILC9pU1DhwcoWUXUqpdSEuVZijVEYGiJ5Y45e3tDquP5xOdkFxjV9fiNpGEhZhEwXFRlbEKwnLjTU1fuViHv7Q6V5le92HNX99Yf92fK9Ut/VrDq0H1/jlWwR60ay+B0VGEysTztb49YWobSRhETax4UgauUVGGni70rGRrzpB9HoStE5wdBWcjFMnBmGfDEUXBttGPwZanSphXLy2kBDi6iRhETaxdO+F7iCttoa7gyx8w6D9CGV7rRSRExfZvRAyk5TB2ZGjVAvD0vq4MiGVgmKjanEIURtIwiKszmA0Eatmd9DFej8NaCDhb6XehhBGA6wt6Sbs+Tg4u6kWSodGPgT7uJJXZGRdyYw6IUT5JGERVrf1+HnO5Rbh6+5Mt6Z+6gZTvxW0vVnZlrEsAmDvz3D+GLj5KYOzVaTRaC5aW0i6hYS4GklYhNVZ/vAODA/CSWcHb7HeJdVu9/4M546qG4tQl8kEaz9QtqMnKKt8q8xSRO6/+DMYjCaVoxHCftnBp4moS8xmc2nConp3kEVIJLQYCGYTrJGxLA4t/ndIOwiuPtDtYbWjAaBbEz/quTtzPq+YLcdl/SshrkQSFmFVu09mkpJZgLteR++WAWqHc0HfF5T7XQsg7bC6sQh1mEywpqR1pft4cLWPdcmcdFoGhiutLLIYohBXJgmLsCpL68r1rQNxdVZnqmi5QrtBy0FgNsLqd9SORqhh/29wZi/ovZSExY5Yisgt3XeaWrAerRCqkIRFWI3ZbObfkoTF0i9vV65/Sbnf85PMGHI0RgOsfEvZ7vk4uKs8GPwSvVoE4KHXkZJZwO6TmWqHI4RdkoRFWM2h1ByOns1Fr9PSv02g2uFcLiQSwm8GzLDqbbWjETVp1w+Qfhjc/S+s5m1HXJ119Gut/M78K7OFhCiXJCzCav4tqdbZp2UAXq7OKkdzBde/BGgg/k84tUPtaERNKC6AVe8q232eARcvdeO5gkERF6reSreQEJeThEVYjSVhsfzhtUuB4dChpPrt8jfVjUXUjLi5kHUSvBtC1ANqR3NF17euj16n5WhaLodTc9QORwi7IwmLsIrE9Dz2p2Sh02q4IdwOx69crO8LyhpDR5bD4eVqRyNsqTD7wsygvs+Ds6u68VyFl6szvVr4A1JETojySMIirOLffSkA9GjmRz0PvcrRXIN/c+j6kLK97H9gkjVc6qy1H0JemrIis4prBlWUpeqtjGMR4nKSsAir+GevnRWLu5a+z4OrL6Tugx3fqx2NsIXzJ2DjZ8p2zP+Bzk7HVV1kYNsgtBrYm5zFyfN5aocjhF2RhEVU2+nMAnYkZqDRXPiGaPfc/ZSkBZTproXZ6sYjrO+/18BYCE37QuvBakdTIQGeLkQ1UaZcSxE5IcqShEVU27L9SutK57B6BHrb7xiBy3R9COo1hZwzsP5jtaMR1nRiI+z7FTRaGPQ2aDRqR1RhN0q3kBDlkoRFVNs/e2pZd5CFkx5umKJsb/hU6UIQtZ/JBEsnK9udRkODCHXjqSRL0cVtx8+RllOocjRC2A9JWES1nMstYvOxdOBCefFaJXwYNOkDhgL490W1oxHWsPN7pcaO3gv6v6J2NJXWqJ477Rv6YDLDf/ulW0gIC0lYRLX8t/8MJjO0C/Em1M9d7XAqT6OBIR8o05wTlkDCP2pHJKojNx1iX1W2+70AnnZYcbkCBpW0ssj0ZiEukIRFVMs/e5XpzINrY+uKRWAbiJ6obP/zPBTJ7IxaK/ZVyD8PQRHQ/VG1o6kyy+D19YfTyS4oVjkaIeyDJCyiyrIKill/uBZ3B12s7/Pg3QgyEmHtNLWjEVVxYoPSHQRw00egc1I3nmpoEehJs/oeFBlNrEw4q3Y4QtgFSVhEla08kEqR0UTz+h60CLTP9VkqTO8Bg99Rttd/DKkH1I1HVI6hCP6apGx3uQ9Cu6kaTnVpNJrSVpale6VbSAiQhEVUg2XtoMERwSpHYiVtboJWN4KpGH5/DIwGtSMSFbXuQzgbD+4BMOA1taOxCsusu5UJqRQUSzVmISRhEVWSX2RkVUlTda3vDrLQaJSuBBcfSI6DTZ+pHZGoiJTdsOZ9ZXvwu0pRwDqgQyMfgn1cySsysu5QmtrhCKE6SVhElaw+mEp+sZFG9dxoF+KtdjjW4x0CN76tbK94C84eVDcecXWGIvjtMTAZlBayiNvVjshqynQLyWwhISRhEVXz125ldtDQ9sFoalEV0QqJHAXNByhl3X+fIIsj2rO10+DMHnDzU1rH6th70VJELjb+DMVGk8rRCKEuSVhEpeUXGVkenwrA0A51ZPzKxTQauPkTpfDYyS2w7iO1IxLlObUD1n6gbA/9oNbWXLmabk38CPDUk5FXzPrD0i0kHJskLKLSViYo3UGhfm60b+ijdji24dNIGQ8BsPJtSNqqbjyirMJs+Gmc0hXU9hZoN1ztiGzCSactHdRuadUUwlFJwiIq7a/dpwAY2j6k7nUHXSzyHmVMhNkIPz8ABZlqRyQs/n4Wzh1VaufcNL3OdQVdzNKKuXTfaYoM0i0kHJckLKJScgsNrDigdAfdVBe7gy5mmTXkGwYZJ5Q6H2az2lGJXQth90JlJebbv6ozs4KupGsTPwK9XMguMLD2kBSRE45LEhZRKSsOpFJQbKKJv3vdmh10Ja4+cPsc0Ohg70+w/Vu1I3JsaYfh72eU7X6ToXG0uvHUAJ1Ww5D20i0khCQsolL+tswO6lAHZwddSWhX6P+ysr3kWTgZp248jqowGxaNgqIcZYXtPs+oHVGNsbRmxu4/I0XkhMOShEVUWE6hgZUJJbOD2oeoHE0N6/U0tB4KxiJYPBpypGm+RplM8Ot4OHsAvILh9q9Bq1M7qhrTOawewT6u5BQaWH1Q3nvCMUnCIipsefwZCg0mmgV4EB5cy9cOqiytFm77HPxbQlYy/HgfGGUV3Rqzbhoc+At0ehj5PXgFqR1RjdJqNQwt6Rb6W7qFhIOShEVU2F+O2B10MVdvuGs+6D3hxDr453kZhFsTDixRqg4DDJ0GjaLUjUclltlC/8WfIb9IuoWE45GERVRIdkExq0vWDqqTxeIqqn5rGD4b0MC2OcrKzsJ2TsYp9VYwQ9Q46DxG7YhUExnqS6N6buQVGUu7ZoVwJJKwiAr5L/4MRUYTLQI9aR3kYN1Bl2ozFG6cqmz/9xrs+UndeOqqc8fghxFgyIcWA2Hwe2pHpCqNRlP6ZUG6hYQjkoRFVMjvOy3F4hy0O+hSPR6F7o8q2789CsfXqRtPXZN3DubfAXlp0KAD3PkN6JzVjkp1N5UMdl9+4Ay5hQaVoxGiZknCIq4pLaeQtSXL298S6WCzg65m0FvKCsHGIvjhLpnubC35GfDdrZB+GHxCYdSP4OLgrXolIhp609jfnYJiE//Fn1E7HCFqlCQs4pr+3p2C0WSmQyMfmtX3VDsc+6HVKZVWm/SBomz4/jZI2aV2VLVbYTZ8f7vy7+geAPf+DF4N1I7Kbmg0GoZ1UL40/FHS6imEo5CERVzTbzuTAbglsqHKkdghZze4eyGE9lDWGvr2VjizX+2oaqeiXJg/ApK3gVs9GPO7MshZlHFrJyVhWX3wLOk5hSpHI0TNkYRFXNXxtFx2JGag1cCwjg48O+hqXDxh1GII6QT55+CboZC8Xe2oapf8DPhuOCRuABcfGP0rNIhQOyq71CLQi/YNfTCYzPy9RwbfCschCYu4Kstg214tAgj0clU5Gjvm6gP3/gIhnZWkZd7NMhC3onJS4ZubIGmT8u84+hcl+RNXdGsnpbXz1x3JKkciRM2RhEVckdls5veS7qBbpTvo2tz9YOwfF41puV0peiau7PwJmHMjnNkDHoFw3xKHLQxXGcM6BqPVwI7EDI6n5aodjhA1QhIWcUV7kjM5mpaLq7OWQREy8LFCXLxg1E/QeggYCmDhPbBhhlTELU/iJviyP5w7Aj5hMO5f6QaqoEAvV/q0rA9cGGMmRF0nCYu4ot92KN1BA8OD8HRxUjmaWsTZFUZ8C53HAmZY9jL8+QQYitSOzH7sXADzhpXUWWmvJCv+zdWOqla57aJuIbMkxMIBSMIiymU0mflzt5KwSHdQFeicYdjHMGgqaLSw/Vv49hbIcvCpqIYi+Pcl+G28Ur8mfBiMWwo+8h6rrJh2QbjrdZxIz2NHUoba4Qhhc5KwiHKtO5zG2exCfN2dua5VfbXDqZ00Goh+DO5eBHovZQbM573h0H9qR6aO8ydg7o2w6TPlcZ9n4M5vQe+hbly1lLveiUHtlK7a32TwrXAAkrCIcv24LQmAWzqGoHeSt0m1tIqBR1YrJebz0mH+7bDsf1BcoHZkNWffr/BFH0iOU2YC3fUDDHgVtPLeqg7LbKE/d52i2GhSORohbEv+WojLZOYVs2y/Uvb7zqhQlaOpI/ybwwOx0PUh5fGGT+CL6yBpq7px2VpOKiwaDT/epxTWaxgF49cpC0iKauvV3J8ATxfO5xWz8oCs4CzqtiolLDNnzqRp06a4urrSpUsX1q5de8Vjf/nlF2644Qbq16+Pt7c30dHRLF26tMoBC9v7Y1cyRQYTbRp40S7EW+1w6g5nVxj6AYycr0zhTUuAOTHKmI6CLLWjsy6TSRlY+1l3iP8DtE5w3fNw/z/gG6Z2dHWGk07L8M5KK8vibSdVjkYI26p0wrJo0SKeeuopXn75ZXbs2EGfPn0YPHgwiYmJ5R6/Zs0abrjhBpYsWUJcXBzXX389w4YNY8eOHdUOXtjGj3HKH747o0JlZWZbCL8JJmyGDneB2aSM6fi0C2z/Tvmgr+2StsLXA5WBtfnnlFlAD62E/i+Dk17t6OqcEVGNAFiZkEpqlgN1MwqHozFXcj5c9+7d6dy5M7NmzSrdFx4ezq233srUqVMrdI527doxcuRIXn311Qodn5WVhY+PD5mZmXh7yzd+W0o4nc2g6Wtw0mrY/NIA/D1d1A6pbju4DP59UalFAhDcEa5/BVreoAzarU3OHoTV78Len5THek+47lmInqjMmhI2M3zmerYnZvDCjW14tJ9MDxf2w5qf35VqYSkqKiIuLo6YmJgy+2NiYtiwYUOFzmEymcjOzsbPz++KxxQWFpKVlVXmJmqGZbBt/zaBkqzUhFYx8NgmiPk/cPFWVin+4U748npI+Kd2FJw7mwA/PwifdbuQrETeC4/HQe+nJVmpASO7KmPNftyWJDVZRJ1VqYQlLS0No9FIUFBQmf1BQUGcPn26QueYNm0aubm5jBgx4orHTJ06FR8fn9JbaKgM/KwJxUZTadVMGWxbg5z00PNxeHy7cu/sDqd2wIK7YEZX2PS5MmDVnpiMyrID396qJCp7fgTM0HooPLIGbv0MvKQ6ck0Z2iEEd72Oo2m5bDtxXu1whLCJKg26vXRcg9lsrtBYhwULFvD666+zaNEiAgMDr3jc5MmTyczMLL0lJSVVJUxRSSsPpJKWU0SAp55+raX2So3zrK+0tDy5G3o9qXSppB+Cf1+AaeHw22Nw+D8wFqsX45l98N8b8HFHWHg3HF0JaKDNTUqicvcPSreWqFGeLk4Mba+spr5oq/y9FHVTpeqtBwQEoNPpLmtNSU1NvazV5VKLFi3igQce4Mcff2TgwIFXPdbFxQUXF+mOqGkLS/7Q3dapIc46mfGuGs/6cMMUuO452LUQtn4FZw/AzvnKzd0fWg+G5gOgWT9l0UVbMRRC0mY4vBwOLoWz8Reec6sHncdA1Dio18R2MYgKGdk1lB/jTvL37hRev7mdLKch6pxKvaP1ej1dunQhNjaW2267rXR/bGwst9xyyxVft2DBAsaNG8eCBQsYOlTqL9ijk+fzWJmg1HG4u5tMO7ULLl7Q7SHo+qCyUODen5UCbHlpsON75YYGgjtAwy4QHAkhkeDXHFw8K389YzFkJMLpPUqX1KntcDIOii9aDVinh5YxEHG7kjQ5u1nphxXV1aVxPZrV9+Do2Vz+2nWKu+T3WNQxlU7BJ02axOjRo4mKiiI6OprZs2eTmJjI+PHjAaU7Jzk5mW+//RZQkpUxY8bw8ccf06NHj9LWGTc3N3x8fKz4o4jqWLglCbMZerXwp1n9KnzYCdvRaKBxtHK78R04vlbpGjqyAlL3KwN1U3aVfY1HfajXFDwDwdVXqS6rd78wiNdkgIIMyM9Qqu9mJELmSTAbL7++RyA07w8tBijJipuvbX9eUSUajYYRUaG8888BFmxJlIRF1DmVTlhGjhxJeno6U6ZMISUlhYiICJYsWULjxo0BSElJKVOT5YsvvsBgMDBhwgQmTJhQun/s2LF888031f8JRLUVG02l3UGjujdWORpxVTonaH69cgPISoGkTSUtIjvh9G7IPw+5Z5VbZTm5Qf1WENIZQjpBoygIbFv7plg7qDu7NOLDZQfZdTKTXUkZdAz1VTskIaym0nVY1CB1WGxryZ4UHpu/nfpeLmx4sb+MX6nt8jMg4wScPw65aUpLSkEmFOcDGiX50OiUVhe3esrNpyH4NQPPIElOarmnF+3k1x3J3NGlER/cKQOghbqs+fkto7IE8zefAGBkVKgkK3WBm69yk9k6DuneHo35dUcyf+46xctDwqnnIdWFRd0gn04O7ujZHNYfTkergbu7S5+3ELVd5zBf2gZ7U2gw8VOcrC8k6g5JWBzcD5uV8UbXtw6koa/M+BCittNoNIyOVsaifb/5BCaT3ff6C1EhkrA4sNxCA4tKSvHf20MG2wpRV9wSGYKXqxMn0vNYc6gKg6+FsEOSsDiwn+JOkl1goFmAB31bSWVbIeoKd70Td3RRVnH+buMJlaMRwjokYXFQJpOZueuPAXB/ryZotTIzRIi6xNJquiIhlWNpudc4Wgj7JwmLg1pxIJXj6Xl4uzoxvHMjtcMRQlhZ8/qe9G8TiNkMX687qnY4QlSbJCwOak5J68rd3cLwkDVHhKiTHuzTFFC6f8/nFqkcjRDVIwmLA4pPyWLDkXR0Wg1jejZROxwhhI1EN/OnXYg3BcUmvt8kY1lE7SYJiwP6aq3SunJjRAOZyixEHabRaHj4umYAzNt4nILictaKEqKWkITFwZw8n8fvO5MBeLB3U5WjEULY2pD2wQT7uJKWU1T6uy9EbSQJi4P5cs1RDCYzvVr40ymsntrhCCFszFmn5f5eTQD4cu0xKSQnai1JWBzI2ezC0lWZJ/RroXI0Qoiacle3MLxcnTicmsO/+06rHY4QVSIJiwOZs/4YhQYTkaG+RDf3VzscIUQN8XZ15v5eShfwJ8sPSSuLqJUkYXEQmfnFpRUvH+vXHI1GCsUJ4UjG9WqCp4sTB05n81/8GbXDEaLSJGFxEN+sP05OoYFWQZ4MDA9SOxwhRA3zddcztqdS/faTFYcwm6WVRdQukrA4gIy8Ir5aq1S6nNi/pZThF8JBPdC7Ge56HXuTs1iVIIsiitpFEhYH8MWao2QXGmjTwIub2gerHY4QQiV+HnpGl6wxNP2/g9LKImoVSVjquLPZhXyz/jgAz8S0ltYVIRzcQ9cprSy7Tmby716ZMSRqD0lY6riZqw6TX2ykY6gvA8MD1Q5HCKGyAE8XHuqjVL99f2kCxUaTyhEJUTGSsNRhyRn5zN+UCMCzMa1kZpAQAlBaWfw99BxNy2XxtiS1wxGiQiRhqcPe/ecARUYTPZr50btFgNrhCCHshKeLE4/3V4pHTv/vEHlFBpUjEuLaJGGpo7YnnuePXafQaOCVoW2ldUUIUcY93RsT6ufG2exCvi5ZEFUIeyYJSx1kNpuZ8ud+AO7s0oiIhj4qRySEsDd6Jy3PxrQGYOaqI6Rk5qsckRBXJwlLHfTHrlPsTMrAXa8r/YMkhBCXurljCF2b1CO/2Mhbf8erHY4QVyUJSx2TU2jgnX8OAEoJ/kBvV5UjEkLYK41Gw+s3t0Orgb92p7DhSJraIQlxRZKw1DEfLjtISmYBYX7uPFgydVEIIa6kXYgPo7orxeTe+GO/THMWdksSljpkz8lMvtmgDJ5789YIXJ11KkckhKgNnolpRT13ZxLOZDNnnQzAFfZJEpY6wmA0MfnX3ZjMSr9031b11Q5JCFFL+LrrmTwkHIAPYw9y9GyOyhEJcTlJWOqIueuPszc5C29XJ165KVztcIQQtcydXRrRp2UAhQYTL/68B5NJ1hkS9kUSljrg4Jls3l+WAMDkIeEEeslAWyFE5Wg0Gt6+rT3ueh1bjp/j+80n1A5JiDIkYanligwmnlq4kyKDietb1+eurqFqhySEqKVC/dx54cY2ALzzzwHpGhJ2RRKWWu7j5QfZn5JFPXdn3r29g1S0FUJUy+gejenRzI+8IiNPLNxBkUFmDQn7IAlLLbbhSBqzVh0B4K3b2kvNFSFEtWm1GqaP7ISvuzN7k7N4f+kBtUMSApCEpdY6k1XAEwt2YDIrg+WGtA9WOyQhRB3RwMeV9+/oCMCXa4+xMiFV5YiEkISlVio2mpj4w3bScopo08CLKbdEqB2SEKKOuaFtEGOjlYJyTy3cyfG0XJUjEo5OEpZaaOqSA2w9fh4vFydm3dsFN70UiBNCWN9LQ8PpFOZLZn4xD327jZxCg9ohCQcmCUst893G48xZr1SifP/ODjQN8FA5IiFEXeXipOOLe7sQ5O3CodQcnl60U+qzCNVIwlKLrExI5bU/9gHw3KDW3Bgh41aEELYV6O3KF6Oj0Dtpid1/hqn/yKrOQh2SsNQSu5IymDh/OyYz3NGlEY/1a652SEIIBxEZ6st7t3cAlEG4s9ccUTki4YgkYakF4lOyGDNnC7lFRno29+ft29pLvRUhRI26tVNDXhqiFJV7e8kBftyWpHJEwtFIwmLnDqfmcO9Xm8nML6ZzmC+zxyhNs0IIUdMevq45D/VpCsDzP+9m8VZJWkTNkU8+O7Y3OZO7Zm8kPbeIiIbezL2/G54uTmqHJYRwYJMHhzO6R2PMZiVp+WFzotohCQchCYud2nw0nbtnbyItp4i2wd58O647Pm7OaoclhHBwWq2GKbe04/5eTQB46dc9zFp1BLNZZg8J25KExQ79uesUY+ZsIbvQQLemfix8pAd+Hnq1wxJCCEBZ2fnVm9ryyHXNAHj33wO8/NteDEZZd0jYjiQsdsRoMvPOPwd4fMEOCg0mBoYH8e24bni7SsuKEMK+aDQaJg8J57VhbdFo4IfNidz/zVbO5RapHZqooyRhsRNpOYWM+2Yrn69Wpgs+0rcZX4zugquzVLEVQtiv+3s1ZfboKNycdaw9lMbQT9ay7fg5tcMSdZAkLHZgxYEz3Dh9DasPnsXFScvHd0UyeXA4Oq1MXRZC2L8b2gbx64SeNKvvQUpmASNnb+KzlYeli0hYlcZcC0ZKZWVl4ePjQ2ZmJt7e3mqHYzUZeUW8888BFpZMDWwd5MX0uyIJD647P6MQwnHkFBp46Zc9/LHrFADtG/rw3h0d5G+aA7Pm57ckLCowmcz8tP0k7/xzoLS/94HeTXluUGvpAhJC1Gpms5lftifzxp/7yCow4KTVcF/PJjw+oKXMdHRAkrDUUmazmVUHzzJtWQJ7k7MAaBXkyZu3RNC9mb/K0QkhhPWkZhXwv9/3snTfGQDquTvz1MBW3N0tTIpfOhBJWGoZs9nM6oNn+WzlYbYePw+Ah17HkwNbcn+vpjjr5JdXCFE3rUpI5a2/4zmUmgNAsI8rD1/XjLu6huGmlxbluk4Slloir8jArzuSmbv+OIdLflldnLSMiW7M+L7N8fd0UTlCIYSwPYPRxIKtSXy6/BCp2YUA+HnouTOqEfd0C6Oxv4fKEQpbkYTFjhlNZjYcSePX7cn8u+80eUVGADxdnLgzqhGPXNecBj6uKkcphBA1r6DYyE9xJ/l89RFOns8v3d+nZQC3RjZkYNsgGedSx0jCYmeyC4pZeyiNFQdSWZWQSlrOhcJJTfzdGRPdhDujGuElBeCEEAKD0cTyA6n8sDmRNYfOYvkUctZp6NOyPje0DaJ3iwBC/dzVDVRUmyQsKkvPKSTuxHm2nTjPtuPn2H0yE4Ppwj+jr7szN3UI5rZOjegc5otGI/VUhBCiPEnn8vgp7iRL9qSUjnOxaOLvTq8WAXQOq0fHUF+aBXiglfpUtYrqCcvMmTN5//33SUlJoV27dkyfPp0+ffpc8fjVq1czadIk9u3bR0hICM8//zzjx4+v8PXUSliyC4pJOpfPodRsEk5nc+C0cp+ckX/Zsc0CPOjfJpD+bQKJauIno+CFEKKSDp3J5p+9p1lz8Cw7kjIwmsp+PHm5ONG+kQ+tG3jRItCTFvU9aR7oib+HXr4Y2ilVE5ZFixYxevRoZs6cSa9evfjiiy/46quv2L9/P2FhYZcdf+zYMSIiInjooYd45JFHWL9+PY899hgLFizg9ttvr9A1rZ2wFBqMnMstIj2niLScQtJzikjPLeRsdiHJGfkkncsn6XweGXnFVzxHy0BPopr4EdW4Hl2b+BHmL02XQghhLdkFxWw+eo6NR9PZfTKDPcmZFBSXXznXy8WJYF9XQnzdCPZxI8THlQY+rvh76qnnXnLz0OPt6iSJTQ1TNWHp3r07nTt3ZtasWaX7wsPDufXWW5k6deplx7/wwgv88ccfxMfHl+4bP348u3btYuPGjRW6puUHXrDuAE6uHhQbTRQZTBQbTRSW3F/YZ6bQYCSn0EhOQTG5hUZyCg3kFhnIKTCQU2ig0FDxctH13J1pVt+T1g28aNPAizYNvGndwEsGhgkhRA0yGE0cPJPDnuQMDp3J4fDZHI6czeHk+Xwq+inmpNXg6+6Mh4sT7nonPPQ63F1K7vVOeLjocHPWoXfS4qyz3DSXP9ZpcdJp0WmVRSC1Gg1aDeg0mpLHoNWW3Jc+r0GjAZ32wvGX505ld1z6/KWHX5p8Xf78pa+/+vkvi8YKuV12VhZtmwRbJWFxqszBRUVFxMXF8eKLL5bZHxMTw4YNG8p9zcaNG4mJiSmzb9CgQXz99dcUFxfj7Hz5B39hYSGFhYWlj7OylCJrz/+0G62LdVoynLQa/Dz0+Hu6EOCpx79kO8TXjdB6boT6uRPq546nS6X+iYQQQtiAk05L2xBv2oaU/dArKDZy8nw+pzLyScnM51RGAacy8jmdVUBGXjHncos4n1dEXpERg8lMWk5RmYkRwrZMhXlWO1elPo3T0tIwGo0EBQWV2R8UFMTp06fLfc3p06fLPd5gMJCWlkZwcPBlr5k6dSpvvPHGZfu7NfHD3csLvU6L3knJcp112tLs18XpwmMPFye8XJzwcFGyZi/Xkm29E16uTni7OsvgLSGEqOVcnXXKeJZAz6seV1BsJCOvuCR5MZBbaCx7X2Qkr9BQmtgUXdSSr7Tgm0u3i40mioxmzGYzJrMZkwnl3mzGZFa2zeaL9l3yvNlsvmx8zsWPLm0xurQjxHzFB5ee5yqvu+Q65kuetdZ0HKPReuM5q9R8cGkzlNlsvmq/YHnHl7ffYvLkyUyaNKn0cVZWFqGhocy5v6tdzBISQghRu7g662jgo5M6WDUsKysLnw+sc65KJSwBAQHodLrLWlNSU1Mva0WxaNCgQbnHOzk54e9f/vo5Li4uuLhIFVghhBBCKCrVVqPX6+nSpQuxsbFl9sfGxtKzZ89yXxMdHX3Z8cuWLSMqKqrc8StCCCGEEJeqdOfSpEmT+Oqrr5gzZw7x8fE8/fTTJCYmltZVmTx5MmPGjCk9fvz48Zw4cYJJkyYRHx/PnDlz+Prrr3n22Wet91MIIYQQok6r9BiWkSNHkp6ezpQpU0hJSSEiIoIlS5bQuHFjAFJSUkhMTCw9vmnTpixZsoSnn36azz77jJCQED755JMK12ARQgghhJDS/EIIIYSwCWt+fkv9eCGEEELYPUlYhBBCCGH3JGERQgghhN2ThEUIIYQQdk8SFiGEEELYPUlYhBBCCGH3JGERQgghhN2ThEUIIYQQdk8SFiGEEELYvUqX5leDpRhvVlaWypEIIYQQoqIsn9vWKKpfKxKW9PR0AEJDQ1WORAghhBCVlZ6ejo+PT7XOUSsSFj8/PwASExOr/QOL6snKyiI0NJSkpCRZ10ll8n9hP+T/wr7I/4f9yMzMJCwsrPRzvDpqRcKi1SpDbXx8fOTNZye8vb3l/8JOyP+F/ZD/C/si/x/2w/I5Xq1zWCEOIYQQQgibkoRFCCGEEHavViQsLi4uvPbaa7i4uKgdisOT/wv7If8X9kP+L+yL/H/YD2v+X2jM1phrJIQQQghhQ7WihUUIIYQQjk0SFiGEEELYPUlYhBBCCGH3JGERQgghhN2z+4Rl5syZNG3aFFdXV7p06cLatWvVDskhTZ06la5du+Ll5UVgYCC33norCQkJaofl8KZOnYpGo+Gpp55SOxSHlZyczL333ou/vz/u7u5ERkYSFxendlgOx2Aw8Morr9C0aVPc3Nxo1qwZU6ZMwWQyqR2aQ1izZg3Dhg0jJCQEjUbDb7/9VuZ5s9nM66+/TkhICG5ubvTr1499+/ZV6hp2nbAsWrSIp556ipdffpkdO3bQp08fBg8eTGJiotqhOZzVq1czYcIENm3aRGxsLAaDgZiYGHJzc9UOzWFt3bqV2bNn06FDB7VDcVjnz5+nV69eODs7888//7B//36mTZuGr6+v2qE5nHfffZfPP/+cGTNmEB8fz3vvvcf777/Pp59+qnZoDiE3N5eOHTsyY8aMcp9/7733+PDDD5kxYwZbt26lQYMG3HDDDWRnZ1f8ImY71q1bN/P48ePL7GvTpo35xRdfVCkiYZGammoGzKtXr1Y7FIeUnZ1tbtmypTk2Ntbct29f85NPPql2SA7phRdeMPfu3VvtMITZbB46dKh53LhxZfYNHz7cfO+996oUkeMCzL/++mvpY5PJZG7QoIH5nXfeKd1XUFBg9vHxMX/++ecVPq/dtrAUFRURFxdHTExMmf0xMTFs2LBBpaiERWZmJoBVFrQSlTdhwgSGDh3KwIED1Q7Fof3xxx9ERUVx5513EhgYSKdOnfjyyy/VDssh9e7dm+XLl3Pw4EEAdu3axbp16xgyZIjKkYljx45x+vTpMp/nLi4u9O3bt1Kf53a7+GFaWhpGo5GgoKAy+4OCgjh9+rRKUQlQ+iInTZpE7969iYiIUDsch7Nw4UK2b9/O1q1b1Q7F4R09epRZs2YxadIkXnrpJbZs2cITTzyBi4sLY8aMUTs8h/LCCy+QmZlJmzZt0Ol0GI1G3nrrLe6++261Q3N4ls/s8j7PT5w4UeHz2G3CYqHRaMo8NpvNl+0TNWvixIns3r2bdevWqR2Kw0lKSuLJJ59k2bJluLq6qh2OwzOZTERFRfH2228D0KlTJ/bt28esWbMkYalhixYt4vvvv+eHH36gXbt27Ny5k6eeeoqQkBDGjh2rdniC6n+e223CEhAQgE6nu6w1JTU19bIsTdScxx9/nD/++IM1a9bQqFEjtcNxOHFxcaSmptKlS5fSfUajkTVr1jBjxgwKCwvR6XQqRuhYgoODadu2bZl94eHh/PzzzypF5Liee+45XnzxRe666y4A2rdvz4kTJ5g6daokLCpr0KABoLS0BAcHl+6v7Oe53Y5h0ev1dOnShdjY2DL7Y2Nj6dmzp0pROS6z2czEiRP55ZdfWLFiBU2bNlU7JIc0YMAA9uzZw86dO0tvUVFRjBo1ip07d0qyUsN69ep12fT+gwcP0rhxY5Uiclx5eXlotWU/0nQ6nUxrtgNNmzalQYMGZT7Pi4qKWL16daU+z+22hQVg0qRJjB49mqioKKKjo5k9ezaJiYmMHz9e7dAczoQJE/jhhx/4/fff8fLyKm358vHxwc3NTeXoHIeXl9dl44Y8PDzw9/eX8UQqePrpp+nZsydvv/02I0aMYMuWLcyePZvZs2erHZrDGTZsGG+99RZhYWG0a9eOHTt28OGHHzJu3Di1Q3MIOTk5HD58uPTxsWPH2LlzJ35+foSFhfHUU0/x9ttv07JlS1q2bMnbb7+Nu7s799xzT8UvYq1pTLby2WefmRs3bmzW6/Xmzp07yzRalQDl3ubOnat2aA5PpjWr688//zRHRESYXVxczG3atDHPnj1b7ZAcUlZWlvnJJ580h4WFmV1dXc3NmjUzv/zyy+bCwkK1Q3MIK1euLPczYuzYsWazWZna/Nprr5kbNGhgdnFxMV933XXmPXv2VOoaGrPZbLZWhiWEEEIIYQt2O4ZFCCGEEMJCEhYhhBBC2D1JWIQQQghh9yRhEUIIIYTdk4RFCCGEEHZPEhYhhBBC2D1JWIQQQghh9yRhEUIIIYTdk4RFCCGEEHZPEhYhhBBC2D1JWIQQQghh9yRhEUJUS79+/Xj88cd56qmnqFevHkFBQcyePZvc3Fzuv/9+vLy8aN68Of/88w8ARqORBx54gKZNm+Lm5kbr1q35+OOPy5xz1apVdOvWDQ8PD3x9fenVqxcnTpwAYNeuXVx//fV4eXnh7e1Nly5d2LZtW43/3EKImiUJixCi2ubNm0dAQABbtmzh8ccf59FHH+XOO++kZ8+ebN++nUGDBjF69Gjy8vIwmUw0atSIxYsXs3//fl599VVeeuklFi9eDIDBYODWW2+lb9++7N69m40bN/Lwww+j0WgAGDVqFI0aNWLr1q3ExcXx4osv4uzsrOaPL4SoAbJasxCiWvr164fRaGTt2rWA0oLi4+PD8OHD+fbbbwE4ffo0wcHBbNy4kR49elx2jgkTJnDmzBl++uknzp07h7+/P6tWraJv376XHevt7c2nn37K2LFjbfuDCSHsirSwCCGqrUOHDqXbOp0Of39/2rdvX7ovKCgIgNTUVAA+//xzoqKiqF+/Pp6ennz55ZckJiYC4Ofnx3333cegQYMYNmwYH3/8MSkpKaXnmjRpEg8++CADBw7knXfe4ciRIzXxIwohVCYJixCi2i7tktFoNGX2WbpzTCYTixcv5umnn2bcuHEsW7aMnTt3cv/991NUVFR6/Ny5c9m4cSM9e/Zk0aJFtGrVik2bNgHw+uuvs2/fPoYOHcqKFSto27Ytv/76aw38lEIINUnCIoSoUWvXrqVnz5489thjdOrUiRYtWpTbStKpUycmT57Mhg0biIiI4Icffih9rlWrVjz99NMsW7aM4cOHM3fu3Jr8EYQQKpCERQhRo1q0aMG2bdtYunQpBw8e5H//+x9bt24tff7YsWNMnjyZjRs3cuLECZYtW8bBgwcJDw8nPz+fiRMnsmrVKk6cOMH69evZunUr4eHhKv5EQoia4KR2AEIIxzJ+/Hh27tzJyJEj0Wg03H333Tz22GOl057d3d05cOAA8+bNIz09neDgYCZOnMgjjzyCwWAgPT2dMWPGcObMGQICAhg+fDhvvPGGyj+VEMLWZJaQEEIIIeyedAkJIYQQwu5JwiKEEEIIuycJixBCCCHsniQsQgghhLB7krAIIYQQwu5JwiKEEEIIuycJixBCCCHsniQsQgghhLB7krAIIYQQwu5JwiKEEEIIuycJixBCCCHs3v8DFWycgeMvhM8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGwCAYAAACKOz5MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2p0lEQVR4nO3deXxM9/rA8c/MZN8lkUhIEIQQBLGEKkWjqFa1paVo6eJXutDVbW8Xvbe6r0qrLdVea7XVTZHa9yXEGvuSiBAJsm+z/P44mZAKsszkTDLP+/Wa15w5c+acZ0gyz3yX56sxmUwmhBBCCCFsmFbtAIQQQgghbkYSFiGEEELYPElYhBBCCGHzJGERQgghhM2ThEUIIYQQNk8SFiGEEELYPElYhBBCCGHzHNQOoCKMRiNnz57F09MTjUajdjhCCCGEqACTyUR2djbBwcFotdVrI6kVCcvZs2cJCQlROwwhhBBCVEFycjKNGjWq1jlqRcLi6ekJKG/Yy8tL5WiEEEIIURFZWVmEhISUfo5XR61IWMzdQF5eXpKwCCGEELWMJYZzyKBbIYQQQtg8SViEEEIIYfMkYRFCCCGEzZOERQghhBA2TxIWIYQQQtg8SViEEEIIYfMkYRFCCCGEzZOERQghhBA2TxIWIYQQQtg8SViEEEIIYfMqnbCsX7+ewYMHExwcjEajYenSpTd9zbp16+jUqRMuLi6EhYXx5ZdfViVWIYQQQtipSicsubm5tG/fnunTp1fo+JMnTzJw4EB69uzJ7t27+de//sXTTz/NTz/9VOlghRBCCGGfKr344YABAxgwYECFj//yyy8JDQ3lk08+ASAiIoKdO3fywQcfcO+991b28kIIIYRtM5nAZASjQbkv92YCTGVfU/Yk155TzeerKivbMuehBlZr3rJlC7GxsWX29e/fn2+//Zbi4mIcHR2veU1hYSGFhYWlj7OyspSNzzqAuyvonJSbQ8m9zhl0juBQcq9zBmcPcPIAZ6+rtj1Lbl7g7q/cnL3AAqtICiGEsEHF+ZCXAXkXlfv8i1CUW3LLgaK8so+L88BQBIbikvvrbRdflZD8IzERVxRaKPGhBhKWc+fOERgYWGZfYGAger2e9PR0goKCrnnNtGnTePPNN689We4F0Fs4udA5g3v9kgSmPng3BJ/GUK8x+DRR7t38JKkRQghbU5wP6Ufh8mnITIHMZMhKgcwzkH1OSVCK89SO0kL+8RlU5jPpRs/94/lKPWcBeiNgmVYWqycsAJp//COYSpqe/rnfbMqUKUyePLn0cVZWFiEhITB2Jbg5KpmtvrAk0y1Usl29OfstVJ4rzIGibOW+MFvJnAtzoDBLueVmKM8bCiHrjHK7HhcfCGyj3AJaQ4O2ys3Budr/NkIIIW7CZIJLJyFlF6QmwIXDyu1yEhXqutA6gpuv8uXTtZ7S0u7kXnLzAEe3q7Zdr2qtN7fil7OtdQStDjRa5Xb1dulNU3J/g+euVhe/GGdlwX+9LXIqqycsDRo04Ny5c2X2paWl4eDggJ+fX7mvcXZ2xtm5nGQgsDV4eVkuuOJ8pdUm9wLkpkPOebicrGTrl04r99mpUHAZTm9SbmY6Z2jYCUK7QWgMNLkFnNwsF5sQQtgroxHO74Pja+DURkiJV7pyyuNaD3zDwLsReIeAV0OlpdyroZKguPkpCUpdTAbsjNUTlpiYGH7//fcy+1auXEl0dHS541dqlKMr+IQqt+spLoD0I3D+AKQdgPMHlQw/LwOSNis3AAcXaNITwvtDywHKL48QQoiKKcqDY3GQ+LuSqOSll31e56S0bAd3hIBWUL8V+LdUuvMlGbELlU5YcnJyOHbsWOnjkydPkpCQgK+vL6GhoUyZMoWUlBS+//57AMaPH8/06dOZPHkyjz32GFu2bOHbb79lwYIFlnsX1uToAkHtlJuZyQQZxyFpCyRvhRPrITNJ+WU7FgfLnleSl3bDofXd4GLBViEhhKgrjEY4vhoS5sGRFVCce+U5R3el5TqsN4R0hQaR0g1v5zQm0zVzmW5o7dq13HbbbdfsHzNmDN999x0PP/wwp06dYu3ataXPrVu3jkmTJnHgwAGCg4N56aWXGD9+fIWvmZWVhbe3N5mZmXhZskvIUkwmuHBI+YU7slxJZMwcXCHqQeg6Huq3VC9GIYSwFbnpsGsuxH9XMg6lhHcotLkbwgdAo87KTFBRq1ny87vSCYsabD5h+afLybBvMexZBOmHr+xv3g9ufUEZ9yKEEPYm6yxs+kxJVPT5yj4Xb2j/ILQbpnT3SPdOnSIJS21hMikDdbfOhEN/UjqavUUs9HkVgtqrGp4QQtSIvIuw9h2In6PM5gQI7gBdHofWQ2TCQh0mCUttdPEkbPwYdv9PKTIE0GEU9HsT3MufLSWEELWaoRh2fANrp0FBprKv8S1w63MQdpu0ptgBSVhqs4zjyi/vvh+Vx671lKSl42j55RVC1B1nd8PSJyHtoPI4MBL6/1cZRCvshiQsdUHSNvhzMpzfrzxufjvc/QV4Bt74dUIIYcv0hbDuPaVF2WRQ6qD0fU1pUdbq1I5O1DBLfn5XerVmYSGhXeHxdRD7X6UI3bE4mBkDh5apHZkQQlTNpdMwuz9s+EBJVtoMhQk7oNPDkqyIapOERU06B+g+EZ5YB4FtlWJ0Cx+ENW8r9QmEEKK2OLISvrpV6QpyrQfDvof758gYPWExkrDYgoAIeGyVUqsFYN27sGgkFGSpG5cQQtyMyQSbP4f59yvLmDTsBE9sUIpmCmFBkrDYCgdnGPAu3D1D6SI6vAy+Gwg5aWpHJoQQ5TMaYPnLsPJV5XH0OHjkL/AJUTcuUSdJwmJrOoyER5aBe304t0/pD750Su2ohBCirOIC+PFh2Pal8jj2v3DnR1I+X1iNJCy2qFE0jF2hLMp48QR82x/Sj938dUIIUROKC5Ru68TflEUJ75utjMcTwookYbFVfs1g7EoIaA055+D7u6SlRQihPnOycuxvcHSDkUsg8l61oxJ2QBIWW+YVBGN+V5ZQz0qBuXdBZoraUQkh7JXRAD+Nu5KsjFgMYb3UjkrYCUlYbJ27P4z5DXzD4PJp+OEeyL+sdlRCCHtjMsGy5+HQH0o30IhF0LSn2lEJOyIJS23g2QBG/waewcrqz4tHgb5I7aiEEPZk/QewczaggaFfQ9Nb1Y5I2BlJWGoLnxAYuRicPODkevhzkvKNRwghrO3AUljzH2V7wHvQZoia0Qg7JQlLbdKgLdw3BzRaZdXnrTPVjkgIUded2w9L/0/Z7jYBuj6ubjzCbknCUtuEx0L/t5XtuH8riygKIYQ15F2EhSOgOE9ZZfn2qWpHJOyYJCy1UdfxyjRCo14p3JRzQe2IhBB1jckEv05QBvv7NFZad3UOakcl7JgkLLWRRgODPwP/cMg+Cz8/JoslCiEsa8c3yhIhOicY/gO4+aodkbBzkrDUVs4eMOwHpRbCiTWwfZbaEQkh6orzB2DFK8r27VMhqL268QiBJCy1W0AriH1L2f77dbhwWN14hBC1X3EBLBkHhkJoEXtlFXkhVCYJS20XPQ6a9wN9Afz8OBiK1Y5ICFGbrXsXLiSCe4CyerxGo3ZEQgCSsNR+Gg3cNR1c60FqAmz4SO2IhBC11dkE2PSpsn3nx+BRX9VwhLiaJCx1gVcQDPxA2d7wgazsLISoPEMx/DoRTAZocw9E3Kl2REKUIQlLXRF5r9I1ZCiCP56VKrhCiMrZ9Amc3weuvjDgfbWjEeIakrDUFRoNDPoQHFzh1AZImK92REKI2uJykrJWEMAd70hXkLBJkrDUJfWaQO+Xle2VryhVKoUQ4mZWvKIM3G/SE9oNUzsaIcolCUtdEzMBAlpD/iVY957a0QghbN2JtZD4G2h0MOBdmRUkbJYkLHWNzhH6/1fZ3vE1XDiibjxCCNtlKIZlLyrbnR+FwDbqxiPEDUjCUhc16wPhA5S1hla+qnY0QghbteMbSD8Mbn5w2xS1oxHihiRhqati/wNaBzi6Ao79rXY0QghbU5CpFIkD6PNvpZaTEDZMEpa6yr85dHlC2V75miyOKIQoa9Nnylg3/3DoMErtaIS4KUlY6rJeL4CzN6QdgAM/qx2NEMJWZJ+DrTOU7b6vgc5B3XiEqABJWOoy13rQ/Slle83bYNCrG48Qwjasew+K86BRZ2glFW1F7SAJS13XbbwyoO7icdgjxeSEsHsZxyH+O2W73xsyjVnUGpKw1HXOntDzOWV77bugL1Q3HiGEujZ8pKwX1LwfNLlF7WiEqDBJWOxB9DjwDIasMxA/V+1ohBBquXQK9ixQtnu9rGooQlSWJCz2wNEFbi1pZdn0KeiL1I1HCKGOjR8rrSvN+kBIZ7WjEaJSJGGxF1EPgUeg0sqyb7Ha0QghatrlZNg9T9nu9ZK6sQhRBZKw2AtHF4iZqGxv/BiMBnXjEULUrE2fgrFYWeAwtJva0QhRaZKw2JPoR8DFBzKOKYudCSHsQ/Z52PW9si2tK6KWkoTFnjh7Qtfxyvb6D8FkUjceIUTN2D4LDIXQqIvMDBK1liQs9qbrE+DoDuf3yRpDQtiDolxlkUOAHk9L3RVRa0nCYm/cfKHTw8r2lumqhiKEqAEJ86HgMtRrCi0Hqh2NEFUmCYs96voEaLRwYi2cP6h2NEIIazEarnwxiZkAWp268QhRDZKw2KN6ja+sH7JtprqxCCGs59CfSrE413oQNULtaISoFklY7FXMBOV+zyLITVc3FiGEdWz+XLmPHgdO7urGIkQ1ScJir0K6QnAHZebAzjlqRyOEsLQz8XBmO+icoMvjakcjRLVJwmKvNBroVtLKsuNrWRRRiLrGPDOozVDwDFQ3FiEsQBIWe9b6bvAMgpzzcGCp2tEIISwl7yLs/0nZ7vyourEIYSGSsNgzByelbxsgXrqFhKgzdv9P6e4Nag+NotWORgiLkITF3nUcBRodJG2B8wfUjkYIUV1GI+z8Vtnu/KgUihN1hiQs9s6zAbQapGzL4Fshar/jq5SpzC7eEHmf2tEIYTEOagcgbED0WGUxxD0Lod8b4OyhdkSiijJyCjl9MY/kklt6ThFZBcVk5RdTUGwElC/cWo0GL1dHfFwd8XFzJMjblcZ+bjT2cyPI2xWdVr6V11rmwbZRD4GTm7qxCGFBkrAIaNoLfMPg4glloF6nMWpHJCqgUG8g/tQltp+6yP6UTPaeySQtu/qzvdyddLRp6E27ht5EhfrQvZk/vu5OFohYWN2l03BkhbIdPVbdWISwMElYBGi10OkRiPs37JwtCYsNS8sqYNm+VNYcvsC2kxmlrSZmGg0EebkQ4utGiK8bAZ7OeLk64u3qiKvjlbLsxQYjWQV6MvOKuJRXzJlLeaUtM7lFBrafvMj2kxdLz9m2oTe3tqjPHZENaBPshUbGRdimXXMBE4T1Bv/makcjhEVJwiIUUSNh9VuQmgAp8dCwk9oRiRK5hXp+23OW3xLOsvVkBibTlefqezrTvZkf7Rv50K6RN62DvXBzqvqvtcFo4viFHPYkX2ZfSibbT17k0Lls9p5RWnCmrzlGWH137mofzL0dGxHiK10ONsOgVxY6BOULiBB1jMZkuvrPX8XMmDGD999/n9TUVNq0acMnn3xCz549r3v8vHnzeO+99zh69Cje3t7ccccdfPDBB/j5+VXoellZWXh7e5OZmYmXl1dlwxUV9dNjsG8xdBwDd32mdjR271haNj9sOc1Pu1LIKdSX7u8Y6sOAyCB6hvvTMtDT6q0d57MKWH/kAqsS01h9OI0i/ZWxMH1bBTA6pgm3NPdHK+Ne1HVkBcwfBm5+MPmQUrZACJVZ8vO70gnLokWLGDVqFDNmzKBHjx589dVXfPPNNxw8eJDQ0NBrjt+4cSO9evXi448/ZvDgwaSkpDB+/HhatGjBL7/8UqFrSsJSQ06uh7mDwckTnj8iA/ZUsu9MJp+tPkrcwfOl+5r6uzMsOoQ72wWp2qqRXVDMygPn+WV3ChuPXVmDqkWAB0/1bcGgtkEyYFctix6CxN+h25NwxzS1oxECUDlh6dq1Kx07dmTmzCur/EZERDBkyBCmTbv2l+SDDz5g5syZHD9+vHTf559/znvvvUdycnK51ygsLKSw8MrgwaysLEJCQiRhsTajET5rD5eT4J5Z0H642hHZlf0pmXwUd4TVh9IApQWjX0Qgo2Ma06OZ7bVgHL+Qww9bTrMk/kxpC1Cz+u480y+cwe2CZJxLTcq5AB+1AqMe/m8LBLZWOyIhAMsmLJWqw1JUVER8fDyxsbFl9sfGxrJ58+ZyX9O9e3fOnDnDsmXLMJlMnD9/niVLljBo0KDrXmfatGl4e3uX3kJCQioTpqgqrVaZCgmQ8D91Y7EjF7ILeWnJXgZP38jqQ2loNTC0Q0P+ntyLr0dH07NFfZtLVgCa1ffgjbvasHlKHybfHo6XiwPHL+Ty9ILd3DtzM3uSL6sdov3Yu0hJVoI7SrIi6qxKJSzp6ekYDAYCA8supBUYGMi5c+fKfU337t2ZN28ew4cPx8nJiQYNGuDj48Pnn39+3etMmTKFzMzM0tv1WmKEFUQ9CGiU7qFLp9WOpk4zGE18s+EEt32wlkU7kzGZYHD7YFY915uPhkfRrH7tqIfj5eLI031bsPHlPkzqF46bk45dSZe5+4tNPLd4Dxdzi9QOsW4zmWD3D8p2x1HqxiKEFVWp0u0/m3pNJtN1m38PHjzI008/zWuvvUZ8fDzLly/n5MmTjB8//rrnd3Z2xsvLq8xN1BCfUGh6q7JtnnEgLO7o+WzunbmZ//yZSE6hnnaNvPnp/2L4/MEONPV3Vzu8KvFyceSZfi1Y83xvhnZsCMBPu84Q+/E6lu1LVTm6OuzMTrhwCBxcIfJetaMRwmoqlbD4+/uj0+muaU1JS0u7ptXFbNq0afTo0YMXXniBdu3a0b9/f2bMmMHs2bNJTZU/Yjapg7lbaL4yrkVYjMFoYsbaYwz6bCMJyZfxdHZg2tC2LH2yB50a+6odnkUEernw0bAofn6yO+GBHqTnFPHkvF1MmLeLS9LaYnnm1pXWdyvl+IWooyqVsDg5OdGpUyfi4uLK7I+Li6N79+7lviYvLw+ttuxldDqlgFUVZlSLmtDqTnD2gswkOLVB7WjqjAvZhYyZvZ33lh+myGCkT6sAVk6+lQe7hNrkGJXq6hhaj9+fuoWn+jRHp9Xw575UBn22gfjTF9UOre4ozocDJbMtzV80hKijKt0lNHnyZL755htmz55NYmIikyZNIikpqbSLZ8qUKYwePbr0+MGDB/Pzzz8zc+ZMTpw4waZNm3j66afp0qULwcHBlnsnwnKc3CByqLKdME/dWOqIzcfSGfjZBjYeS8fVUcd797Xj2zHRBHm7qh2aVTk76HgutiW/TuhBmL87ZzMLGPbVVmauPY7RKF9Yqu3IcijMAu8QaNxD7WiEsKpKl8QcPnw4GRkZTJ06ldTUVCIjI1m2bBmNGzcGIDU1laSkpNLjH374YbKzs5k+fTrPPfccPj4+9OnTh3fffddy70JYXtRDEP+dUtehMEcWRKwik8nEnE2n+M+fBzGaIDzQgy9GdKRFoKfaodWoyIbe/PbULfzr5338tucs7y4/xJ7ky3w0vH21KvPavb2Llfu29yuz/ISow6pU6bamSeE4FZhM8HlHZUFEqclSJcUGI6/9eoAF25UE/r5OjXjr7khcnXQ3eWXdZTKZWLA9mdd/20+xwURkQy++Gd2ZBt4uaodW++RmwIfhynTmJ7dBQCu1IxLiGqrVYRF2RKOBtsOU7X2L1Y2lFsrML2bM7O0s2J6ERgOvDIzg/fva2XWyAsoMwxFdQ5n/WDd83Z3Yn5LFXdM3sj8lU+3Qap8DPyvJSlB7SVaEXZCERVxfu5KE5fgapZKmqJD0nEIenLWVzcczcHfS8c3oaB67NUwqv16lcxNffp3Qg/BAD9KylX+vbScy1A6rdjF3B7WT1k9hHyRhEdfn10ypnGkyKN/mxE2lXM5n2JdbOJiahb+HE4vHx9A3ovwp//YuxNeNn/6vO12b+pJdqGf07O2sKVmWQNzExRNwZjtotFJ7RdgNSVjEjZlbWfZKt9DNnM7I5f6ZmzmRnktDH1cWPxFDm2Cpi3Ejni6OzB3bhb6tAijUG3ns+538uVfqM93U3h+V+7De4NlA1VCEqCmSsIgbazNU+RaXshMyjt/8eDt15lIeI77extnMAsLqu/Pj+BjCaklpfbW5OOr4clQnhkQFozeaeGbhblYeKH+pD4EyIH7vImVbuoOEHZGERdyYZ6DyLQ5g3xJVQ7FV5zILGPnNNlIu5xPm787Cx7sR7FO366tYmqNOy4fDorinQ0P0RhMT5+9m7WHpHipXyi64eBwc3ZQij0LYCUlYxM1dPVvI9mfB16j0nEJGfrOV0xl5hPi6Mu+xrgR4yhTdqtBpNbx/XzsGtQ2iyGDkiR/i2Xw8Xe2wbI+5daXVIKmPJOyKJCzi5iLuVBZWyzgGZ3erHY3NyC8yMG7uTo5fyCXY24X5j3ar85Vrrc1Bp+WTB6LoFxFIod7IE9/Hc/hcttph2Q6jAQ4uVbbb3q9qKELUNElYxM05e0LLAcq2dAsByiKGTy/czZ7ky/i4OfLDo10J8XVTO6w6wVGnZfqIDnQpmT308JztnMssUDss23B6E+ScBxcfCLtN7WiEqFGSsIiKaXufcn9wqd2v4GwymZj6+wHiDp7HyUHL16OjaSYDbC3KxVHHrFGdaFbfndTMAh75bgfZBcVqh6U+80KHEXeCg5O6sQhRwyRhERXTrK+ygnNWCpzZoXY0qpq7+RRzt5wG4ONhUXRu4qtyRHWTj5sT3z3SBX8PZxJTs3h6wW4M9rxgokEPB39TttsMVTcWIVQgCYuoGEcXaDlQ2TZ/y7NDW09k8NafiQBMGdCKQe2CVI6obgvxdWPOw51xdtCy5vAFPo47onZI6jm1AfLSwdUXmvZSOxohapwkLKLi2tyj3Ntpt1BqZj4T5+/CYDRxd1Qwj98apnZIdqFtI2/evbcdANPXHGP5fjstLGeuNt36LtDJCtfC/kjCIiqu2W3g7A3ZqZC8Ve1oalSh3sD4/+0iPaeIiCAv3hnaTtYGqkFDOjRk3C1NAXhu8R6OnrezmUOGYkj8XdmW7iBhpyRhERXn4KzUfgC76xaa+vvB0hlBs0Z1svtVl9UwZUAruoX5kltk4P/m7SKvSK92SDXnxDrIvwTu9aFxD7WjEUIVkrCIyintFvpVqQlhB5bvT2XetiQAPn2gg0xfVomDTssXIzoS4OnMsbQcpv5+UO2Qak5pd9Dd0h0k7JYkLKJywnorNSByzkPSFrWjsbqzl/N56ad9ADzRK4xe4fVVjsi++Xk488nwKDQaWLgjmd/3nFU7JOvTF0LiH8q2dAcJOyYJi6gcByelBgTU+W4hg9HEswsTyMwvpl0jb567vaXaIQmge3N/nuzdDIB//byP5It5KkdkZcfXQGEmeDSA0G5qRyOEaiRhEZVnJ91CX6w5xvZTF3F30vHZAx1wcpBfF1vxbL9wOob6kF2o59lFCXW7Pou5O6jNENDK2Clhv+QvsKi8pr2UWhC5F+DURrWjsYqDZ7P4bNVRAN4aEkkTf3eVIxJXc9Rp+fSBDng4OxB/+hJzNp1UOyTrKC6AQ8uUbfMXBSHslCQsovJ0jhAxWNmug91CxQYjLyzZg95oon+bQO7p0FDtkEQ5QnzdeGVQBADvrzjM8Qs5KkdkBSfWQFE2eDWERl3UjkYIVUnCIqrG/G0v8fc61y305drjHDibhY+bI28NiZR6Kzbsgc4h9GzhT6HeyAs/7ql7XUPm2iut7gSt/LkW9k1+A0TVNLkFXOsppcLr0GyhQ+ey+Gy10hX0xuA2BHi6qByRuBGNRsM797bDw9mBXUmX+XbjCbVDshyDHg6XdAeZWzSFsGOSsIiq0TleWVvI/C2wljMYTby0ZC/FBhP9IgK5OypY7ZBEBTT0ceXVkq6hj+KO1J1ZQ6c3KcXiXH0hNEbtaIRQnSQsouoi7lLuE3+vE2sLzd+exJ4zmXi6OPDfe6QrqDYZ3jmErk19KSg28sZvBzCZ6kDX0KGS2iutBkqxOCGQhEVUR1hvcPKArBQ4u1vtaKrlQnYh7y0/BMDzsS0J9JKuoNpEo9Hw33sicdRpWHUojZUHz6sdUvUYjVeKxbWS7iAhQBIWUR2OLtAiVtlO/FXdWKpp2l+JZBfoaRPsxUPdGqsdjqiC5gGepStov/nbAXILa/FaQ2d3Q/ZZ5QtBWG+1oxHCJkjCIqqn9VXdQrW0GX7biQx+3pWCRgP/GRKJTitdQbXVxNta0KieK2czC/i0pI5OrZT4m3Lf4nbli4EQQhIWUU3NbwedM1w8AWm1bzE6vcHIv3/dD8ADnUPpEFpP5YhEdbg66Zh6dxsAZm88yYnaWJvFZLpq/Mqd6sYihA2RhEVUj7MHNO+rbB/8Td1YqmDBjmSOnM+hnpsjL/aXtYLqgj6tArmtZX30RhNvLzukdjiVd+EwZBwDndOVLlchhCQswgKuni1Ui2QVFPNJ3BFAWZumnruTyhEJS3llUAQ6rYa/E8+z+Vi62uFUjvn3KKw3uHipGooQtkQSFlF94f1B6wBpByDjuNrRVNiMNcfJyC0irL47I7qGqh2OsKDmAZ48VPJ/OvWPg7WrAu6hkoRFisUJUYYkLKL63HyhSU9lO7F2dAslX8xjdsmCef8aEIGjTn4V6ppn+4Xj5eLAoXPZLN6ZrHY4FXPpNKTuAY32SmFGIQQgCYuwlNa1q1vo/RWHKdIbiQnzo29EgNrhCCuo5+7EM/3CAfhw5RHyimrBNOdDfyr3od3B3V/dWISwMZKwCMtoOQjQQEo8ZJ5RO5ob2nvmMr/tOYtGo4x1kIq2ddeobo1p7OdGek4hczadUjucmzMn/BEyO0iIf5KERViGZ+CV9U7MFTpt1AcrlYG290Q1JLKht8rRCGtyctAyqaSV5ct1x8nMK1Y5ohvISbuykKhMZxbiGpKwCMsxDxK04XEs209eZP2RCzhoNTzTr4Xa4YgacFf7YFo18CS7QM9X6214UPjhZYAJgqLAJ0TtaISwOZKwCMsxN2Of3qx8W7QxJpOJD1YeBuD+6BAa+7mrHJGoCVqthudilRo7czadIi27QOWIrsPcMimzg4QolyQswnJ8QiG4A2Aq+bZoWzYdy2D7yYs4OWh5um9ztcMRNahfRABRIT7kFxv4YvUxtcO5VkEmnFirbEvCIkS5JGERlmXue7ex2UImk4n3S1pXRnYNJcjbVeWIRE3SaDSllYznb08i5XK+yhH9w9E4MBaDfzjUl4rLQpRHEhZhWeaqtyfWKd8abcSqxDT2JF/G1VHHk72ldcUedW/uT0yYH8UGE1+ts7GxLOZxXzLYVojrkoRFWFb9cPBvqXxbPLJS7WgApXXl8zVKN8CY7k2o7+msckRCLU+VdAUu3JFMWpaNjGUpzoejfyvb0h0kxHVJwiIszzz41kZmC20+nsGe5Mu4OGp5tGdTtcMRKooJ86NT43oU6Y3MWn9C7XAUJ9ZCcS54NSoZAyaEKI8kLMLyzN8Sj/2tfHtU2fSSQZYPdA7F30NaV+yZRqPhqT5KK8u8bUlk5BSqHBFli8VJEUMhrksSFmF5QVHgHQLFeXB8taqhxJ++xJYTGTjqNDx+a5iqsQjb0Cu8Pu0aeZNfbODbjSfVDcagvzKjTsavCHFDkrAIy9NobGa20IySsStDOzQi2EdmBgmllWXibUory/dbTqtb/fb0Jsi/BG5+VypFCyHKJQmLsA5zt9Dhv8CgzgfCwbNZrDqUhlYD43s3UyUGYZv6RQTSqoEnOYV6/rfttHqBHCopFtdyAOgc1ItDiFpAEhZhHaHdwM0fCi7DqY2qhDCzZOrqwLZBNPWXqrbiCq1WwxO9lC7COZtOUag31HwQRuOV6ratZHaQEDcjCYuwDq0OWg1UtlXoFkq+mMefe88CSN0VUa472wXTwMuF9JxCft19tuYDOLsbss+CkweE9a756wtRy0jCIqzHXETu0J/Kt8kaNHfzKYwmuKW5P62DvWr02qJ2cNRpGXtLEwC+3nACk8lUswGYp/23uB0cXWr22kLUQpKwCOtpeis4e0HOOUjZWWOXzS4oZtGOZADGSd0VcQMPdAnFw9mBo2k5rD1yoeYubDJdNZ1ZuoOEqAhJWIT1ODhDi1hluwaLyC3eeYbsQj3N6rvTq0X9GruuqH28XBx5sEsIAF/XZCG5C4fg4nHQOUHz22vuukLUYpKwCOsyf3tM/EP5VmllBqOJOZuU2hrjbglDq5VCXOLGHunRFAeths3HM9ifUkPrX5kH24bdBi7SZSlERUjCIqyreT9wcIFLJ+H8AatfbuWBc5y5lE89N0eGdmxo9euJ2i/Yx5U72wUBMLumCsmZWxwjpFicEBUlCYuwLmcPaNZH2a6B2ULflHzgPNStMS6OOqtfT9QNj/RQxjr9sTeVdGuX6790Gs7tBY0WWg607rWEqEMkYRHWZ+4WMhfJspKE5MvEn76Eo07DqG6NrXotUbe0D/GhfYgPRQZj6YBtqzn0p3If2h3c/a17LSHqkColLDNmzKBp06a4uLjQqVMnNmzYcMPjCwsLeeWVV2jcuDHOzs40a9aM2bNnVylgUQuF3wEaHZzfDxnHrXaZ77ecAmBwu2ACvGSaqKicMTFKkvu/rafRG6w4DV9mBwlRJZVOWBYtWsSzzz7LK6+8wu7du+nZsycDBgwgKSnpuq8ZNmwYq1at4ttvv+Xw4cMsWLCAVq1aVStwUYu4+UKTW5RtK7WyXMot4o+9qQA8FCOtK6LyBrULws/didTMAv5OPG+di+SkQdIWZbvVIOtcQ4g6qtIJy0cffcS4ceN49NFHiYiI4JNPPiEkJISZM2eWe/zy5ctZt24dy5Yto1+/fjRp0oQuXbrQvXv3616jsLCQrKysMjdRy109W8gKfoxPpkhvpE2wFx1CfKxyDVG3OTvoeLBLKABzN1tpfaHDywATBHcAnxDrXEOIOqpSCUtRURHx8fHExsaW2R8bG8vmzZvLfc1vv/1GdHQ07733Hg0bNiQ8PJznn3+e/Pz8615n2rRpeHt7l95CQuQXu9Yzr958ZjtkpVr01EajiXnblBa+Ud0ao9HIVGZRNSO6hqLTathyIoMj57Mtf4HStYNkdpAQlVWphCU9PR2DwUBgYGCZ/YGBgZw7d67c15w4cYKNGzeyf/9+fvnlFz755BOWLFnChAkTrnudKVOmkJmZWXpLTrbyIDhhfV5B0Kizsm3hbqENx9I5nZGHp4sDd0UFW/Tcwr4E+7gS21r5+zZ38ynLnrwgE06sVbZl/IoQlValQbf//AZrMpmu+63WaDSi0WiYN28eXbp0YeDAgXz00Ud89913121lcXZ2xsvLq8xN1AFWmi30wxal+f6+To1wc3Kw6LmF/Rkd0wSAX3ankF1QbLkTH1kJxmLwbwn1W1ruvELYiUolLP7+/uh0umtaU9LS0q5pdTELCgqiYcOGeHt7l+6LiIjAZDJx5syZKoQsai1zM/jJDZB30SKnTLmcz+pDygDJkV1lsK2ovm5hvjSr705ekYHf9lhwFefSYnHSuiJEVVQqYXFycqJTp07ExcWV2R8XF3fdQbQ9evTg7Nmz5OTklO47cuQIWq2WRo0aVSFkUWv5NYOANmAywJHlFjnlgm1JGE3QvZkfzQM8LHJOYd80Gg0PdFYG3y7cbqHu6OJ8OPa3si3VbYWokkp3CU2ePJlvvvmG2bNnk5iYyKRJk0hKSmL8+PGAMv5k9OjRpcePGDECPz8/HnnkEQ4ePMj69et54YUXGDt2LK6urpZ7J6J2sOBsoWKDkYUlRb6kUJywpHs7NcJJp2VfSqZl1hc6vhqK88A7BIKiqn8+IexQpROW4cOH88knnzB16lSioqJYv349y5Yto3Fj5QMjNTW1TE0WDw8P4uLiuHz5MtHR0YwcOZLBgwfz2WefWe5diNrDnLAcXwWFOTc+9ibWHEojPacQfw8n+rUuv0tSiKrwdXcito3yM7Vwx/VrTFXY1cXiZBabEFWiMZlqYAndasrKysLb25vMzEwZgFvbmUzwWQdlMcT750KbIVU+1aNzd/B3YhpP3BrGlIERlotRCGDTsXRGfrMNT2cHtr3St+oDug3F8H4zZZbQI39B4+vXoBKirrHk57esJSRqlkZzpQ+/GrOF0rIKWHP4AgD3R0udHmF5MWF+hPq6kV2o58+91agddGqjkqy414eQrpYLUAg7IwmLqHkRdyn3R1aAvmor4y7ZdQaD0USnxvVksK2wCq1Ww/DOSjK8sDoLIpq7g1oOBK2sIC5EVUnRClHzGkaDRwPIOQcn10OL2yv1cpPJxI87lSnxw6V1RVjR/Z0a8VHcEeJPX+LI+WzCAz0rdwKj8UpLojlRV4nBYKC42IJ1ZYQAHB0d0elqJhGXhEXUPK1WWfht57fKt89KJizbT17kZHou7k46BrULslKQQkCAlwv9IgJYceA8C7cn89rg1pU7wZkdkHMenL2g6a3WCfImTCYT586d4/Lly6pcX9R9Pj4+NGjQwOrLokjCItQRMVhJWA79CXd+XKmm8sUlrSt3tgvG3Vl+hIV1DYsOYcWB8/yakMKUga1w1FWiJ91cLC78DnBwsk6AN2FOVgICAnBzc5O1toTFmEwm8vLySEtLA5RCsdYkf+2FOprcAi4+kJcOSVuhSY8KvSy7oJhl+5QBkMM6S+FBYX23htfH38OJ9Jwi1h2+UPEp9CbTVd1B6hSLMxgMpcmKn5+fKjGIus1cTy0tLY2AgACrdg/JoFuhDp0jtBygbFdittDve1LJLzbQrL47HUPrWSk4Ia5w1Gm5O6ohAD/tqsRyIuf3w6VT4OACzftZJ7ibMI9ZcXNzU+X6wj6Yf76sPUZKEhahntKqt78r30YrYEm8MltjWHSING2LGnNvR6U1b1ViGpfziir2IvPsoOb9wMndSpFVjPyuCGuqqZ8vSViEepr1AUc3yEyG1ISbHn4qPZddSZfRauCeDg2tH58QJVoHexER5EWRwcjvFV0Q8erqtkKIapOERajH0fVKU3kF1hb6ZXcKAD2a+xPg5WLNyIS4xr0dlSR5ya6Umx+ccRzSDoLWAcL7Wzky+/Pwww8zZMgQtcO4LkvEd+rUKTQaDQkJCdc9Zu3atWg0mtIZYN999x0+Pj6lz7/xxhtERUVVKw5bIgmLUJe5NoX52+h1mEwmliYoHxRDO0rriqh5d0c1RKfVsCf5MsfSbrIOlvnnuUlPcJWxVpb26aef8t1336kdhuq6d+9Oamoq3t7e5T7//PPPs2rVqtLHtp7o3YwkLEJd4bGgdYT0w3DhyHUP25V0mdMZebg56ejfpkENBiiEor6nM73D6wPw880G30p3kFV5e3uXaUmoKUVFFRy/VEOcnJxuWP/Ew8OjTs0Ok4RFqMvFG8J6KduHrt/K8stu5QPijjYNqr4InRDVNLRk8O0vu1MwGK8zUPxyEqTsBDTQSp3pzHXBkiVLaNu2La6urvj5+dGvXz9yc3OBa1sKsrOzGTlyJO7u7gQFBfHxxx/Tu3dvnn322eue39xd8tVXXxESEoKbmxv3339/mQJ75utMmzaN4OBgwsPDAdi3bx99+vQpje3xxx8nJ+faVrc333yTgIAAvLy8eOKJJ8okPMuXL+eWW27Bx8cHPz8/7rzzTo4fP37NOQ4dOkT37t1xcXGhTZs2rF27tvS5f3YJXe89mrfnzp3Lr7/+ikajQaPRsHbtWvr06cPEiRPLvC4jIwNnZ2dWr1593X8/NUjCItR39WyhchTpjfxRsvjcEBlsK1TUNyIALxcHUjML2HI8o/yDDv6q3DfuAZ4VrNlSg0wmE3lFelVupgrOBkxNTeXBBx9k7NixJCYmsnbtWoYOHXrd10+ePJlNmzbx22+/ERcXx4YNG9i1a9dNr3Ps2DEWL17M77//zvLly0lISGDChAlljlm1ahWJiYnExcXxxx9/kJeXxx133EG9evXYsWMHP/74I3///fc1H/rm161Zs4YFCxbwyy+/8Oabb5Y+n5uby+TJk9mxYwerVq1Cq9Vyzz33YDQay5znhRde4LnnnmP37t10796du+66i4yM6/zs3cDzzz/PsGHDuOOOO0hNTSU1NZXu3bvz6KOPMn/+fAoLr6zrNm/ePIKDg7ntttsqfR1rkq+qQn0tB8Hvz8LZ3XA5GXzKrg+09nAal/OKCfB0pkdzf3ViFAJwcdRxZ/tg5m9LYmlCCre0KOfn8cBS5b7NkJoMrcLyiw20fm2FKtc+OLV/hVpIU1NT0ev1DB06lMaNGwPQtm3bco/Nzs5m7ty5zJ8/n759+wIwZ84cgoODb3qdgoIC5s6dS6NGSsvZ559/zqBBg/jwww9p0EDpenZ3d+ebb77ByUmpVPz111+Tn5/P999/j7u7Ml19+vTpDB48mHfffZfAQCVJdXJyYvbs2bi5udGmTRumTp3KCy+8wFtvvYVWq+Xee+8tE8u3335LQEAABw8eJDIysnT/xIkTS4+dOXMmy5cv59tvv+XFF1+86fu7moeHB66urhQWFpa+N4B7772Xp556il9//ZVhw4aV/vs9/PDDNjcdXlpYhPo86kNojLJ96M9rnjbPDro7Khid1rZ+gYT9GVJSRG7F/nMUFBvKPnl1d5DKix3WZu3bt6dv3760bduW+++/n6+//ppLly6Ve+yJEycoLi6mS5cupfu8vb1p2bLlTa8TGhpamqwAxMTEYDQaOXz4cOm+tm3bliYrAImJibRv3740WQHo0aPHNa9r3759mYJ9MTEx5OTkkJys1JI6fvw4I0aMICwsDC8vL5o2bQpAUlJSmRhjYmJKtx0cHIiOjiYxMfGm762inJ2deeihh5g9ezYACQkJ7Nmzh4cffthi17AUaWERtiFiMCRtVrqFuo0v3Z2ZV8yqRGWdins6SCl+ob7oxvUI8nYhNbOAtYfTuCPyqvVTbLw7CMDVUcfBqepMtXZ1rFjZdp1OR1xcHJs3b2blypV8/vnnvPLKK2zbtq30g93M3E30z9aAinY/Xc18jqvPdXViYj7v9VoeKtIiYT5m8ODBhISE8PXXXxMcHIzRaCQyMrJCA3st3fLx6KOPEhUVxZkzZ5g9ezZ9+/YtbdmyJdLCImyDea2VpM2Qm166+899qRQZjLRq4EnrYC+VghPiCq1Ww13tle6GXxP+UUTOxruDQPmwc3NyUOVWmQ9ajUZDjx49ePPNN9m9ezdOTk788ssv1xzXrFkzHB0d2b59e+m+rKwsjh49etNrJCUlcfbslf/DLVu2oNVqSwfXlqd169YkJCSUDgAG2LRp0zWv27NnD/n5+aWPt27dioeHB40aNSIjI4PExEReffVV+vbtS0RExHVbkLZu3Vq6rdfriY+Pp1WrVjd9b+VxcnLCYDBcs79t27ZER0fz9ddfM3/+fMaOHVul81ubJCzCNviEQlB7MBnh8LLS3ebaK1LZVtiSu6KUhGXVoTSyC0rWT7mcLN1BFrJt2zbefvttdu7cSVJSEj///DMXLlwgIiLimmM9PT0ZM2YML7zwAmvWrOHAgQOMHTsWrVZ70wTJxcWFMWPGsGfPHjZs2MDTTz/NsGHDyozx+KeRI0eWvm7//v2sWbOGp556ilGjRpWOXwFlCvS4ceM4ePAgf/31F6+//joTJ05Eq9VSr149/Pz8mDVrFseOHWP16tVMnjy53Ot98cUX/PLLLxw6dIgJEyZw6dKlKicUTZo0Ye/evRw+fJj09PQya/88+uijvPPOOxgMBu65554qnd/aJGERtsM8W6ikWT01M58dpy4CMLj9zQfQCVFTWgd50ay+O0V6IysOnFd2lnYHdbfZ7qDawsvLi/Xr1zNw4EDCw8N59dVX+fDDDxkwYEC5x3/00UfExMRw55130q9fP3r06EFERAQuLjeuiN28eXOGDh3KwIEDiY2NJTIykhkzZtzwNW5ubqxYsYKLFy/SuXNn7rvvPvr27cv06dPLHNe3b19atGjBrbfeyrBhwxg8eDBvvPEGAFqtloULFxIfH09kZCSTJk3i/fffL/d677zzDu+++y7t27dnw4YN/Prrr/j7V23ywWOPPUbLli2Jjo6mfv36bNq0qfS5Bx98EAcHB0aMGHHTfze1aExV6eirYVlZWXh7e5OZmYmXl3QL1FnpR2F6tFLO/PmjfBN/mf/8mUjnJvX4cXx3taMToozPVh3lo7gj3Bpen+/HdoGv+yotLAM/gC6PqR0eoMyCOXnyJE2bNrXZDyFryM3NpWHDhnz44YeMGzeu3GPeeOMNli5desPS9/YkOTmZJk2asGPHDjp27Fip197o58ySn9/SwiJsh38LaNAWjHpI/K209sqd7aR1Rdge8ziWTcfSyUg5Lt1BKtq9ezcLFizg+PHj7Nq1i5EjRwJw9913qxyZ7SsuLiYpKYmXXnqJbt26VTpZqUmSsAjbEqnUGyjY/SMJycrKzAPaSil+YXua+LvTvpE3BqOJE+vmKTulO0g1H3zwAe3bty+tiLthw4Yqd53Yk02bNtG4cWPi4+P58ssv1Q7nhmRas7Atbe6Bv9/A6cxm6jOCFmHNCPC0n6ZsUbvcFdWQPWcy8TpZUj+o9RBV47FXHTp0ID4+vlKveeONN0rHlNiz3r17V2kKuBqkhUXYlnpNoGE0WowM0G2TwbbCpt3ZLoiGmnRaFh/ChAZaS3eQENYiCYuwOelNlZosd+m2coeszCxsWKCXC/9Xfz8AZ707gKf8vAphLZKwCJuztLALRpOGaO1h6unT1A5HiBsaoFGmhv5a3OUmRwohqkMSFmFTTCYTCw/r2WEqWQfkwLWVLYWwGRnH8cs8gN6k5duL7TmVnnvz1wghqkQSFmFTDp/P5lhaDn+ZSuqu7P9Z3YCEuJF9SwA44NqRDLz5c1+qygEJUXdJwiJsyh97lD/42WEDQaOFs7vg4gmVoxKiHCYT7PsRgLxwpZT5MklYhLAaSViEzTCZTPy+V1mIrFfHNtD0VuUJ6RYStih1D2QcBQcXWvZ+EJ1Ww4GzWdItZCG9e/fm2WefrfLr165di0aj4fLlyxaLqTqaNGnCJ598Uq1zfPfdd/j4+NzwmDfeeIOoqKjSxw8//DBDhgwpfVzdf1c1ScIibMa+lExOZ+Th6qijX0RAaRE56RYSNmm/0h1E+B34+vrRvZkfgHQLCVU9//zzrFq16rrP//zzz7z11luljy2RSNUUSViEzfhr/zkA+rQKwM3JAVrdqawrdH4/XDiscnRCXMVovJJIt70PgIFtgwDpFrI3RUVFaodQhoeHB35+ftd93tfXF09PzxqMyHIkYRE2wWQysbwkYbkjsqSWhZsvNO+nbO9drFJkQpQjaQtkpYCzNzS/HYD+bRqUdgudzpBuIUvQ6/VMnDgRHx8f/Pz8ePXVV8tUZS0sLOTFF18kJCQEZ2dnWrRowbffflvuufLz8xk0aBDdunXj4sWL5R7Tu3dvJk6ceMNrNmnShP/85z88/PDDeHt789hjykKXP/30E23atMHZ2ZkmTZrw4YcfXnP+7OxsRowYgYeHB8HBwXz++edlnv/oo49o27Yt7u7uhISE8OSTT5KTk3PNeZYuXUp4eDguLi7cfvvtJCcnlz73zy6h8t6juUuod+/enD59mkmTJqHRaNBoNOTm5uLl5cWSJUvKvO7333/H3d2d7Ozs657b2iRhETbhaFoOJ9NzcdJpua1VwJUn2g1T7vcuVr7VCmELSgbbEjEYHJWlI3zdnYgJqwXdQiYTFOWqc6tkCfi5c+fi4ODAtm3b+Oyzz/j444/55ptvSp8fPXo0Cxcu5LPPPiMxMZEvv/wSDw+Pa86TmZlJbGwsRUVFrFq1Cl9f3ypfE+D9998nMjKS+Ph4/v3vfxMfH8+wYcN44IEH2LdvH2+88Qb//ve/+e677655Xbt27di1axdTpkxh0qRJxMXFlT6v1Wr57LPP2L9/P3PnzmX16tW8+OKLZc6Rl5fHf//7X+bOncumTZvIysrigQceqMw/a6mff/6ZRo0aMXXqVFJTU0lNTcXd3Z0HHniAOXPmlDl2zpw53Hfffaq2zshaQsImrChpXenZwh8P56t+LFsOBCdPyEyC5K3K4nJCqElfBAeXKtsl3UFmg9oFsfFYOn/uTeXJ3s1rPraKKM6Dt1Va8uJfZ8HJvcKHh4SE8PHHH6PRaGjZsiX79u3j448/5rHHHuPIkSMsXryYuLg4+vVTWmLDwsKuOcf58+cZPnw4zZo1Y8GCBTg5OVX5mmZ9+vTh+eefL308cuRI+vbty7///W8AwsPDOXjwIO+//z4PP/xw6XE9evTg5ZdfLj1m06ZNfPzxx9x+u9JKd/Vg2KZNm/LWW2/xf//3f8yYMaN0f3FxMdOnT6dr166AkmBFRESwfft2unSpXPFCX19fdDodnp6eNGhwpUrzo48+Svfu3Tl79izBwcGkp6fzxx9/lEmu1CAtLMImLD+gJCz9/1mK39EVWpcsEb9nYQ1HJUQ5TqyB/EvgHnBlJlsJ6RayrG7duqHRaEofx8TEcPToUQwGAwkJCeh0Onr16nXDc/Tr14+wsDAWL15802TlZtc0i46OLvOaxMREevToUWZfjx49rnldTExMmWNiYmJITEwsfbxmzRpuv/12GjZsiKenJ6NHjyYjI4Pc3Cs/Sw4ODmWu36pVK3x8fMqcp7q6dOlCmzZt+P777wH44YcfCA0N5dZbb73JK61LWliE6pIv5nHgbBZaDfRrHXjtAe2HQ8L/4MBSGPBeaRO8EKowj6eKHApaXZmnzN1CG4+l8+c+G21lcXRTWjrUuraFuLq6Vui4QYMG8dNPP3Hw4EHatm1rkWu7u5dtJTKZTGWSHPO+ijC/7vTp0wwcOJDx48fz1ltv4evry8aNGxk3bhzFxcXlvuZm+6rj0UcfZfr06bz88svMmTOHRx55xOLXqCxpYRGqW1HSutK1qR++7uV8A2p8C3g1gsJMOLK8hqMT4ioFWXDoD2W77bByD7H52UIajdIto8atkh94W7duveZxixYt0Ol0tG3bFqPRyLp16254jnfeeYcxY8bQt29fDh48WK1rXk/r1q3ZuHFjmX2bN28mPDy8zOvKO3erVq0A2LlzJ3q9ng8//JBu3boRHh7O2bPXJpZ6vZ6dO3eWPj58+DCXL18uPU9lOTk5lWkFMnvooYdISkris88+48CBA4wZM6ZK57ckSViE6laUdgeV07oCoNVCu/uV7b2LaigqIcpxcCnoC8A/HBp2LPeQ/m0C0Wk17E+RbqHqSk5OZvLkyRw+fJgFCxbw+eef88wzzwDKbJ0xY8YwduxYli5dysmTJ1m7di2LF187o/CDDz5g5MiR9OnTh0OHDlX5mtfz3HPPsWrVKt566y2OHDnC3LlzmT59eplxLgCbNm3ivffe48iRI3zxxRf8+OOPpedu1qwZer2ezz//nBMnTvDDDz/w5ZdfXnMtR0dHnnrqKbZt28auXbt45JFH6NatW6XHr5g1adKE9evXk5KSQnp6eun+evXqMXToUF544QViY2Np1KhRlc5vSZKwCFWlZRew8/QlAGL/OX7lau2GK/dHV0JuRg1EJkQ5EhYo9+0fvG5rgZ+HM93ClFko5qn6ompGjx5Nfn4+Xbp0YcKECTz11FM8/vjjpc/PnDmT++67jyeffJJWrVrx2GOPlRnvcbWPP/6YYcOG0adPH44cOVLla5anY8eOLF68mIULFxIZGclrr73G1KlTywy4BSWxiY+Pp0OHDrz11lt8+OGH9O/fH4CoqCg++ugj3n33XSIjI5k3bx7Tpk275lpubm689NJLjBgxgpiYGFxdXVm4sOrj+6ZOncqpU6do1qwZ9evXL/PcuHHjKCoqYuzYsVU+vyVpTBXtaFNRVlYW3t7eZGZm4uXlpXY4woLmbTvNK7/sp32ID79O6HHjg7/sCef2wsAPoMtjNz5WCEu7eBI+iwI0MOkAeDe87qE/bDnFv389QMdQH35+8iY/11ZUUFDAyZMnadq0KS4uMvbrZnr37k1UVFStqfxqbfPmzeOZZ57h7NmzNxywfKOfM0t+fksLi1DVigPngRt0B12tfUmtAekWEmowz1IL633DZAWutBbuSrrM+awCKwcmhGXl5eVx4MABpk2bxhNPPFGh2VU1QRIWoZrM/GI2H1P6TO+4UXeQWeR9ygrOZ3ZAxnErRyfEVYxG2FPSHRQ14qaHB3q50DHUB4CVB6RbSNQu7733HlFRUQQGBjJlyhS1wyklCYtQzepD59EbTYQHehBW/9rqlNfwDISw25Rt84eHEDUhaQtcPq0UMWx1Z4VeYq4ptFwSllpj7dq10h2EUt6/uLiYVatWlVs5WC2SsAjVrNhv7g6qQOuKWYeRyn3CfDBeOxVPCKvYM1+5b3M3OFWsloj553rriYtczrOtBfKEqI0kYRGqyC8ysPZIGlDJhKXVneBaT1l47vhqK0UnxFWK8uDAr8p2+5t3B5k18XenVQNPDEYTfyemWSm4iqkFcytELVZTP1+SsAhVrDtygYJiI43qudImuBIjxx2cr0xx3v2DdYIT4mqH/oCibPBpDKExNz/+KuaVx9Wa3uzo6AgogyiFsBbzz5f5581apDS/UMXKq9YOqnS55w6jYNuXcGgZ5KaDu78VIhSixC5lPRXaP6gUMayEOyIb8MnfR1l/9AK5hXrcnWv2T65Op8PHx4e0NKWFx83NTfXy6qLuMJlM5OXlkZaWho+Pzw2rAVuCJCyixhXpjfydqIxfMX8DrZQGkRDcAc7uVqY4x0ywcIRClMg4Dqc2ABro8FClX94y0JPGfm6czshj7eELDGoXZPkYb8K8Cq85aRHC0nx8fMqs9mwtkrCIGrf1RAZZBXr8PZzpGFqvaifp8JCSsOz6Abo9Wek1SoSokF1zlfvm/cAnpNIv12g03NGmAV+tP8GKA+dUSVg0Gg1BQUEEBARcs4ieENXl6Oho9ZYVM0lYRI0zrx10e2tlzZUqibwPVrwCFxIhZRc06mTBCIUA9EXKbDSATlVf+K1/pJKwrD6URqHegLNDzfxx/yedTldjHyxCWIMMuhU1ymA0lVa3rVJ3kJmrD7S+W9ne/X31AxPin478BbkXwCMQwu+o8mmiGvkQ6OVMTqGezcdkHSwhqkoSFlGjdiddIj2nEE8XB2LC/Kp3sg6jlPt9P0GRrIorLCy+pDsoaiToqj77QavVXCkiJ4shClFlkrCIGmXuDurbKgAnh2r++DW5Beo1Vaac7v/JAtEJUeLS6St1fjqOqvbpzAlLXOJ5DEapiSJEVUjCImqMyWQqLVNere4gM40GokuWPd/+NUhxLGEpu/8HmKBpL/ANq/bpujT1xcfNkYu5Rew4dbH68Qlhh6qUsMyYMaN0GelOnTqxYcOGCr1u06ZNODg4EBUVVZXLilruYGoWyRfzcXHUcmt4fcuctMNDoHOGc3shJd4y5xT2zaAvSVio1mDbqznqtPSLUFYkl24hIaqm0gnLokWLePbZZ3nllVfYvXs3PXv2ZMCAASQlJd3wdZmZmYwePZq+fftWOVhRu5kH297aoj5uThaaoObmC5FDle0d31jmnMK+HfkLss+Cm1+FFzqsCPOK5CsPnJNS+UJUQaUTlo8++ohx48bx6KOPEhERwSeffEJISAgzZ8684eueeOIJRowYQUxM5Upbi7pjxX4LdgddrfOjyv3+nyFPmttFNW2fpdx3HKMsBWEht7Twx81Jx9nMAvaeybTYeYWwF5VKWIqKioiPjyc2NrbM/tjYWDZv3nzd182ZM4fjx4/z+uuvV+g6hYWFZGVllbmJ2u3EhRwOn8/GQauhb6tAy568YScIag+GwitN+UJURdohOLkeNNor46MsxMVRx20tA4Arg8+FEBVXqYQlPT0dg8FAYGDZD5zAwEDOnSv/F/Do0aO8/PLLzJs3DweHinUDTJs2DW9v79JbSEjlK0wK22LuDopp5oe3m4UXyNJoIHqcsr3zWzAaLXt+YT92fK3ctxpUpcq2N9PfvBiiJCxCVFqVBt3+c/Esk8lU7oJaBoOBESNG8OabbxIeHl7h80+ZMoXMzMzSW3JyclXCFDZkxVWLHVpF2/vA2RsunboyHVWIyijIhIQFynaXx61yidta1sdJp+XEhVyOpWVb5RpC1FWVSlj8/f3R6XTXtKakpaVd0+oCkJ2dzc6dO5k4cSIODg44ODgwdepU9uzZg4ODA6tXl//B4uzsjJeXV5mbqL1SM/NJSL6MRgOxrS3cHWTm5A5RI5Rt8xgEISpjz0IozoX6raBJT6tcwtPFkR7NlYKJMltIiMqpVMLi5OREp06diIuLK7M/Li6O7t27X3O8l5cX+/btIyEhofQ2fvx4WrZsSUJCAl27dq1e9KJWWFnSHdQxtB4BXi7Wu5B58O3RFZB+zHrXEXWP0Xgl0e3ymFUX0zS3Mpq7SYUQFVPpuaWTJ09m1KhRREdHExMTw6xZs0hKSmL8+PGA0p2TkpLC999/j1arJTIysszrAwICcHFxuWa/qLvM3UF3WKs7yMy/ubLmy5HlsG0mDPrQutcTdceJNZBxDJy9oN0DVr1Uv9aBaH/Zx76UTM5cyqNRPTerXk+IuqLSY1iGDx/OJ598wtSpU4mKimL9+vUsW7aMxo0bA5CamnrTmizCflzMLWLbSWWqsdXGr1yt25PKfcJ8meIsKm7rDOU+agQ4e1j1Uv4ezkQ38QWutD4KIW5OY6oFFYyysrLw9vYmMzNTxrPUMot3JvPikr20DvJi2TPWGRdQhskEX/aE8/ug7+vQc7L1rylqt/MHYWaMMpX5qV3g29Tql/x240ne+uMgXZr6svgJqU0l6i5Lfn7LWkLCqlZae3bQP2k0EFPSyrJ9FuiLaua6ovba8oVyHzG4RpIVgP5tlMHnO09dJD2nsEauKURtJwmLsJqcQj3rj6YDVqhueyOR94JHIGSnwsGlNXddUftkn4O9i5Tt7k/X2GUb1XMjsqEXRhP8fVC6hYSoCElYhNWsPZxGkd5IU393wgOtOy6gDAdnZaYHwJbpsoqzuL5tX4GxGEJjoFF0jV76jtLZQjK9WYiKkIRFWI152mZsm8ByCwtaVaex4OACqXvgVMVWExd2pjBHqYwMEDOxxi9v7ibddCyD7ILiGr++ELWNJCzCKgqKDaxOVBIWq09nLo+7H3R4SNneINObRTl2/0+pbuvbDFoOqPHLNw/wIKy+O0UGI2sOX6jx6wtR20jCIqxi8/F0cosMNPByoX0jH3WC6PEMaB3gxFo4E69ODMI26YuU7kJQBmlrdTUegkajuVJETqreCnFTkrAIq1ix/0p3kFZbw91BZj6h0HaYsr3xI3ViELZp70LITFYGZ0eNVC0Mc+vj2sNpFBQbVItDiNpAEhZhcXqDkTg1u4OudsskQAOH/lDqbQhh0MOGkgS2+9Pg6KpaKO0aeRPk7UJukYFNx9JVi0OI2kASFmFxO05d4mJuET5ujnRp6qtuMPXDofVdyvbGj9WNRdiG/T/BpZPg6gvRj6gaytXdQrIYohA3JgmLsDjzNM1+EYE46GzgR6znc8r9/iVw8aS6sQh1GY2w4QNlO2aCssq3ymJLisj9nXgevcGocjRC2C4b+DQRdYnJZKq5xQ4rKqg9NL8dTEaZMWTvEn+D9CPg4g1dHlc7GgC6NPGlnpsjl/KK2X5K1r8S4nokYREWtfdMJqmZBbg56bilhb/a4VzR6yXlPmE+ZBxXNxahDqMR1pe0rnQdDy62sS6Zg05LvwillUUWQxTi+iRhERZlbl25rWUALo41P1X0ukI6Q4v+YDLA2nfUjkao4eBSZVFMJ08lYbEh5qUrVhw4Ry1Yj1YIVUjCIizGZDKxvCRhMffL25Tb/qXc7/sR0hLVjUXULIMe1vxX2e7+FLipPBj8H3o098fdSUdqZgF7z2SqHY4QNkkSFmExR9NyOHEhFyedlj6tAtQO51rBURBxF2C68uEl7MOe+ZBxDNz8rqzmbUNcHHX0bqn8ziyXtYWEKJckLMJizNMyb2nhj6eLo8rRXMdtrwAaSPwdzu5WOxpRE4oLYO27ynbP58DZU914rqN/5JWqt9ItJMS1JGERFmNOWMz98TYpoBW0K6l+u/o/6sYiakb8HMg6A14NIXqc2tFc120t6+Ok03IiPZdjaTlqhyOEzZGERVhEUkYeB1Oz0Gk13B5hg+NXrtbrJWWNoWN/w/HVakcjrKkw+8rMoF4vgqOLuvHcgKeLIz2a+wFXBq8LIa6QhEVYxPIDqQB0C/OlnruTytHchF8z6PyYsr3iVTDKGi511oaPIC9dWZFZxTWDKqq06q0kLEJcQxIWYRGl3UG2UizuZnq9qBQPSzsACfPUjkZYw6XTsOULZTv2P6Cz0XFVV+nXOhCtBvanZHHmUp7a4QhhUyRhEdV2LrOAXUmXAYitLQmLm++VYnKr/wOFMmagzvn7dTAUQtNboeUAtaOpEH8PZ6KbKFOuV0gROSHKkIRFVNvKg0rrSqfG9Qj0st0xAtfo/BjUawo552HTp2pHIywpaSsc+AU0Wug/DTQatSOqMHMrpYxjEaIsSVhEtdW67iAzBye4/U1le/PnSheCqP2MRlj+srLdYRQ0iFQ3nkoyF13cceoi6TmFKkcjhO2QhEVUy8XcIradVBZss+npzNcTcRc0vgX0+bB8itrRCEtI+J9SY8fJE/q8qnY0ldaonhttG3pjMsHfB6VbSAgzSVhEtfx98DwGo4k2wV6E+LqpHU7laTQw6ENlmvPhP+HwX2pHJKojNwPiXlO2e78EHjZYcbkC+pe0sshsISGukIRFVIv5D2qt6w66WkAriJmgbP/1IhTJ7IxaK+41yL8EgZE2t8BhZZhbKzcfyyCroFjlaISwDZKwiCrLLihm49F0AAa0rcUJC8CtL4JXI7icBBs+VDsaURWnNyvdQQB3flwrpjFfT/MAT8Lqu1NkMLLmUJra4QhhEyRhEVW2+lAaRQYjzeq70zzANtdnqTBnDxjwjrK96VNIO6RuPKJy9EXwx2Rlu+MYCOmibjwWYG61XCnTm4UAJGER1WCeHTQgMkjlSCyk1Z0QfgcYi+HXJ8GgVzsiUVEbP4YLicpqzP3eUDsaizBXvV1zOI2CYqnGLIQkLKJK8osMrD18Aails4PKo9EoXQnO3pASD1u/UDsiURGpe2H9e8r2He8qRQHrgHaNvAnydiGvyFDa9SqEPZOERVTJuiNp5BcbaOjjSptgL7XDsRyvYLjjbWV79X/hwhF14xE3pi+CpU+CUa+0kLW9T+2ILEaj0cjaQkJcRRIWUSV/7FUWO7yzXRCaWlRFtEKiRkKzvkpZ91+flMURbdmGD+H8PnD1VVrH6tjPojlh+TvxPMUGo8rRCKEuSVhEpeUXGViVqMxcGNSujoxfuZpGA3d9phQeO7NDGR8hbM/Z3bDhA2V70Ae1tubKjXRuUg9/Dycu5xWz6Zh0Cwn7JgmLqLQ1h5XuoBBfV9o29FY7HOvwbgQD3lW217wNyTvUjUeUVZgNS8YqXUGt74Y2Q9WOyCocdNrSQe3mVk0h7JUkLKLS/iz5wzmobXDd6w66WtQIiLwXTAb4aSwUZKodkTD783m4eEKpnXPnJ3WuK+hq5lbMFQfOUaSXbiFhvyRhEZWSW6hn1SGlLsSddbE76GrmWUM+oUpBuT8mg8mkdlRiz0LYu1BZifner+vMrKDr6dzElwBPZ7IL9Gw4ekHtcIRQjSQsolJWH0qjoNhIYz+3ujU76HpcvOHe2aDRwf4lsOt7tSOyb+nH4M/nlO1eL0Pj7urGUwN0Wg0D20q3kBCSsIhK+bMuzw66npDO0OcVZXvZ83AmXt147FVhNiwcAUU5ygrbtz6vdkQ1xtyaGXfwvBSRE3ZLEhZRYTmFetYcLpkd1DZY5WhqWI9JSp0PQxEsHgU50jRfo4xG+GU8pB8GzyC4bzZodWpHVWM6htYjyNuFnEI9647Iz56wT5KwiApblXieQr2RMH93IoJq+dpBlaXVwpCZ4B8OWSnw48NgkFV0a8zGD+HQH6BzgmE/gGeg2hHVKO1V3UJ/SreQsFOSsIgKM/efD7Kn7qCruXjB8HlKfZbTG+GvF2UQbk04tEypOgww8AOli84OmbuF/k48T36RdAsJ+yMJi6iQ7IJi1pWsHVQni8VVVP1wGPoVoIGds5WVnYX1nIlX6q1gguix0GmM2hGpJirEh4Y+ruQVGUq7ZoWwJ5KwiAr5O/E8RQYjzeq70zLQzrqD/qnVILhjmrL99+uwb4m68dRVF0/C/GGgz4fm/WDA+2pHpCqNRlPayiLdQsIeScIiKuTXhLMADGpXx4vFVVS3/4NuTyrbS/8PTm1UN566JjcD5t0HeenQoB3c/x3oHNSOSnV3tlMGu686dJ7cQr3K0QhRsyRhETeVnlPIhpLl7YdE2dnsoBuJ/c+VmUPzh8OZnWpHVDfkX4YfhkDGMfAOhZE/grOdt+qViGzoRaivGwXFRv5OPK92OELUKElYxE39uTcVg9FEu0behNX3UDsc26HVwb3fQJOeSm2Q/w2F1D1qR1W7FWbD/+6Fc3vBvT489BN4NlA7Kpuh0Wi4q73ypeG3klZPIeyFJCzippYmpABwd1RDlSOxQY6u8OBCCOmmrDX0/RA4f1DtqGqnolyYNwxSdoJrPRj9qzLIWZQxpIOSsKw7coGMnEKVoxGi5kjCIm7odEYuu5Muo9XA4PZ2PDvoRpw9YORiCO4I+Rfhu0GQskvtqGqX/Mvww1BI2gzO3jDqFwhso3ZUNql5gCdtG3qjN5qkVL+wK5KwiBsyD7bt0dyfAE8XlaOxYS7eSveFOWmZe5cMxK2onDT47k5I3qr8O476GYI7qB2VTRvSQWnt/GV3isqRCFFzJGER12UymaQ7qDLcfGHMbyVjWkrGYhz+S+2obNul0zD7Dji/D9wD4OFl0Cha7ahs3uD2QWg1kJB8mZPpuWqHI0SNkIRFXNf+lCxOXMjF2UFL/zb2VQq9ypw9YeQSCB8A+gJY8CBsni4VccuTtBW+7gMXjyuzgcYuhwaRakdVKwR4utCzRX0Alkori7ATkrCI6zK3rvRrHYini6PK0dQiji4w/AfoOAYwwcpX4PenQV+kdmS2I2EBzB18pc7KuBXg10ztqGqVe0q6hZYmpGCShFjYAUlYRLkMRhO/71HGrwyR7qDK0znC4E+h/zTQaGHX9/D9XZBl51NR9UWw/F+wdLxSvyZisNKy4iX1fSortk0gbk46TmfksTv5strhCGF1krCIcm08lk5adiE+bo70Cq+vdji1k0YDMU8q056dPCFpC3x5Cxz9W+3I1HHpNMy5A7Z+oTy+ZTLc/z04uasbVy3l5uRA/zZKjRrpFhL2QBIWUa4fdyYDcFf7YJwc5MekWsL7wxProEFbyMuAefdC3Gugt6MaGgd+ga96Qkq8MhPogfnQ73XQys9WdZhnC/2+5yzFBqPK0QhhXfLXQlwjM6+YlQeVst/3dwpROZo6wq8ZjPsbOj+qPN70KXzZs+6X889Jg0Wj4MeHlcJ6jTrD+I3KApKi2no088Pfw5lLecWsOSQrOIu6rUoJy4wZM2jatCkuLi506tSJDRs2XPfYn3/+mdtvv5369evj5eVFTEwMK1asqHLAwvp+25NCkd5IqwaeRDb0UjucusPRBQZ9CMPnKVN40w/Dt7fDileUkvR1idGoDKz9oisk/gZaB7j1RXjkL/AJVTu6OsNBp2VoR6WVZfHOMypHI4R1VTphWbRoEc8++yyvvPIKu3fvpmfPngwYMICkpKRyj1+/fj233347y5YtIz4+nttuu43Bgweze/fuagcvrOPHeOUP3/3RIbIyszVE3AkTtkG7B8BkhC3T4bOOsOsHMBrUjq76zuxUErGl45Uieg3awmNroM8rymBkYVHDohsBsOZwGmlZBSpHI4T1aEyVnA/XtWtXOnbsyMyZM0v3RUREMGTIEKZNm1ahc7Rp04bhw4fz2muvVej4rKwsvL29yczMxMtLvvFb0+Fz2fT/ZD0OWg3b/tUXPw9ntUOq247GwV8vKbVIAILaw22vQovblUG7tcmFI7DuXdi/RHns5AG3Pg8xEyVRsbKhMzaxK+kyLw9oxfheMj1c2A5Lfn5XqoWlqKiI+Ph4YmNjy+yPjY1l8+bNFTqH0WgkOzsbX1/f6x5TWFhIVlZWmZuoGebBtn0jAiRZqQktbocnt0Lsf8DZS1ntef798PVtSpXc2lBfI+0QLBkHX3S5kqxEPQRPxcMtkyRZqQHDOytjzRbvSJaaLKLOqlTCkp6ejsFgIDCwbNXTwMBAzp07V6FzfPjhh+Tm5jJs2LDrHjNt2jS8vb1LbyEhMvCzJhQbjKVrk8hg2xrk4ATdn4KndimtEY5ucHY3LHgApneGrV8qA1ZtidEAh5Ypq1PP6FqSqJig5SB4Yj0M+QI8G6gdpd0Y1C4YNycdJ9Jz2Xn6ktrhCGEVVRp0+89xDSaTqUJjHRYsWMAbb7zBokWLCAgIuO5xU6ZMITMzs/SWnJxclTBFJa0+lEZGbhH+Hs70bim1V2qcR33o/194Zi/0eFbpUsk4Cstfgg9bwS//B8f+BkOxejGePwB/vwGftoeFD8KJNYAGWt2pJCoPzle6tUSN8nB2YFBbZTX1xTvk76Womxwqc7C/vz86ne6a1pS0tLRrWl3+adGiRYwbN44ff/yRfv363fBYZ2dnnJ2lO6KmLSr5Qze0Y0McdDLjXTUe9eH2N5XxH3sWwo5v4MIh2DNfubn5QcuB0KwPhPVWFl20Fn0hJG+DY6vgyAq4kHjlOdd60HE0RI+Fek2sF4OokOGdQ/gx/gx/7kvl9bva4OFcqT/vQti8Sv1EOzk50alTJ+Li4rjnnntK98fFxXH33Xdf93ULFixg7NixLFiwgEGDpP6CLTpzKY81h5U6Dg90lu4gm+DsCV0eU2q3JG1Vul0OLFXW39n9g3JDA0HtoGEnCIqC4Cjwa1616rGGYricBOf2wdldSrfUmXgovmo1YJ0TtIiFyHuh5QBwdLXMexXV1qlxPcLqu3PiQi5/7DnLA11k+rioWyqdgk+ePJlRo0YRHR1NTEwMs2bNIikpifHjxwNKd05KSgrff/89oCQro0eP5tNPP6Vbt26lrTOurq54e3tb8K2I6li4PRmTCXo09yOsvofa4YiraTTQOEa53fEunFqvlPc/sQbSDioDdVP3lH2Ne4DS6uERAC4+SnVZJ7crg3iNeii4DPmXleq7l5MgM1mZZv1P7gFKa07zvkqy4upj1bcrqkaj0TAsOoR3/jrEgu1JkrCIOqfSCcvw4cPJyMhg6tSppKamEhkZybJly2jcuDEAqampZWqyfPXVV+j1eiZMmMCECRNK948ZM4bvvvuu+u9AVFuxwcjCku6gkV0bqxyNuCGdg5I8NOujPM5KVdYoSk1QWkTO7YP8S5Cbptwqy8EV/FtAw44Q3BEaRUP9CCmhX0vc36kRH608wp4zmexJvkz7EB+1QxLCYipdh0UNUofFupbtS+XJebuo7+nM5pf74CjjV2q3/EvKQoOXTimtJwWXlVlGxfmARmmx0WiVlhfXekqLiXcjqNdUmdlT2+q/iDImLUrgl90p3NepER/cLwOghbos+fkto7IE87adBmB4dIgkK3WBaz3lFhyldiRCBaNiGvPL7hR+33OWVwZGUM/dSe2QhLAI+XSycycu5LDpWAZaDTzYVfq8hajtOoT40CbYi0K9kR/jZYqzqDskYbFz87cp441uaxlAQx+Z8SFEbafRaBjVTRmL9r+tSRiNNt/rL0SFSMJix3IL9SwqKcU/spu0rghRV9wVFYyniwNJF/NYf/SC2uEIYRGSsNixJfFnyC7Q09Tfnd7h1688LISoXdycHLivk7KK8w9bTqscjRCWIQmLnTIaTczZdBKAR3o0QauVmSFC1CUPlXQLrT6cxsn03JscLYTtk4TFTq0+lMapjDy8XBy4t2MjtcMRQlhYs/oe9GkVgMkE3248oXY4QlSbJCx2anZJ68qDXUJxlzVHhKiTHu3ZFFC6fy/mFqkcjRDVIwmLHUpMzWLz8Qx0Wg2juzdROxwhhJXEhPkR2dCLgmIj/9sqY1lE7SYJix36dqPSunJHZAOZyixEHabRaHisZxgA3285RUGxQeWIhKg6SVjsTMrlfJbuTgHg0VuaqhyNEMLaBrYNItjbhfScIn5NSFE7HCGqTBIWOzNr3XH0RhM9mvvRIbSe2uEIIazMUaflkR7Kl5NZ609IITlRa0nCYkcuZBeWrso8oXdzlaMRQtSUB7qE4OniwPELuSw/cE7tcISoEklY7MjsTScp1BuJCvEhppmf2uEIIWqIp4tjaSvLZ6uOSiuLqJUkYbETmfnFpRUvJ9zWHI1GCsUJYU/G9miCu5OOQ+ey+TvxvNrhCFFpkrDYibmbT5FTqKdloCd9W0kZfiHsjY+bE2NKyhh8tvooJpO0sojaRRIWO5CZV8zXG5RKlxP6NJcy/ELYqUd7huHmpGN/ShZrD8uiiKJ2kYTFDny1/jjZBXpaNfDkzrZBaocjhFCJr7tT6RpDH/99RFpZRK0iCUsddyG7kDmbTgHwXGxLaV0Rws49VtLKsvdMJn/tlxlDovaQhKWO+2LNMfKLDbQP8aFfhIxdEcLe1fd05tGS6rcfrDiM3mBUOSIhKkYSljos5XI+87clAfBCbEuZGSSEAOCxnk3xdXfiRHoui3eeUTscISpEEpY67L3lhygyGIkJ86NHc6m7IoRQeLo4MvE2pXjkJ38fIb9I1hgStk8Sljoq/vQlfk04i0YDrwyKkNYVIUQZI7uF0qieK2nZhaWzCIWwZZKw1EFGo4m3/jgIwP2dGhHZ0FvliIQQtsbZQceLd7QCYMbaY6Rczlc5IiFuTBKWOui3PWdJSL6Mu5OO52Nbqh2OEMJGDW4XRJcmvhQUG3n7z0S1wxHihiRhqWNyC/W889chAJ68rTkBXi4qRySEsFUajYY37mqDVgN/7ktl87F0tUMS4rokYaljPlx5hHNZBYT4ujLulqZqhyOEsHGtg70Y2VUpJvfG7wcolmnOwkZJwlKH7DuTyXebTwLwnyFtcXHUqRyREKI2eC42HB83R46cz+HbjSfVDkeIcknCUkfoDUam/LIXownuah9Mr/D6aockhKglfNyc+NeACAA+jjvCiQs5KkckxLUkYakj5mw6xf6ULLxcHPj3na3VDkcIUcvcH92Ini38KdQbefmnfRiNss6QsC2SsNQBR85n8/7KwwD8a2AE9T2dVY5ICFHbaDQa3r6nLW5OOrafusi8bafVDkmIMiRhqeWK9EaeXZhAkd7IbS3rM7xziNohCSFqqRBfN14qqc0y7a9D0jUkbIokLLXcp6uOcDA1i3pujrx7XzupaCuEqJZR3RoTE+ZHXpGBpxfuplAvZfuFbZCEpRbbcjyDmWuPA/D2PW0J8JSaK0KI6tFqNXw8PIp6bo7sT8nigxWH1Q5JCEASllrrfFYBTy3YhdGklN8f0DZI7ZCEEHVEA28X3ruvPQBfbzjJmsNpKkckhCQstVKxwcjE+btIzymiVQNPpt4dqXZIQog65vbWgYyOUQrKPbswgdMZuSpHJOydJCy10LRlh9hx6hKezg7MfKgTrk5SIE4IYXmvDIqgQ6gPmfnFPP59PLmFerVDEnZMEpZa5oetp5m9SalE+f797Wjq765yREKIusrZQceXD3Wivqczh89n89ziPVKfRahGEpZaZM3hNF7/dT8Az8eGc0ekjFsRQlhXoJcLXz7UCUedhuUHzvHWnwcxmSRpETVPEpZaYt+ZTCbOUwbZ3tepERNua652SEIIO9GpcT0+uF8ZhDtn0ylmrT+hckTCHknCUgskpmbx0LfbyC0y0L2ZH2/f01bqrQghatTdUQ15dZCy3tC0vw6xeGeyyhEJeyMJi407lpbNQ99sIzO/mA6hPswaHY2Tg/y3CSFq3qM9w3isZ1MAXvppL0viz6gckbAn8slnww6czeSBWdvIyC0isqEX3z3SBQ9nB7XDEkLYsX8NjOChbqGYTPDCkj0s2pGkdkjCTkjCYqO2ncjgga+2kp5TSOsgL34Y2xVvV0e1wxJC2DmNRsNbd0eWJi0v/bSPT/8+KgNxhdVJwmKDft9zltGzt5NdqKdLU18WPtGNeu5OaoclhBDAlaRlwm3NAPj47yP865d96A1GlSMTdZkkLDbEYDTxzl+HeGrBbgr1RvpFBPL92C54uUjLihDCtmg0Gl7o34q3hkSi1cCC7ck8PGcHGTmFaocm6ihJWGxEek4hY7/bwZfrlMUMn7g1jK9GdcLFUarYCiFs16hujfnyoU64OurYeCydOz/fSPzpS2qHJeogSVhswOpD57njk/WsO3IBZwctnz4QxZSBEei0MnVZCGH7Yts0YOmEHoTVdyc1s4DhX21h+uqjFEsXkbAgjakWjJTKysrC29ubzMxMvLy81A7HYi7nFfHOX4dYuEOpZ9Ay0JNPHogiIqjuvEchhP3IKdTz0k97+XNvKgCRDb344P72tGogf9PslSU/vyVhUYHRaGLJrjO889chLuYWATDulqa80L+ldAEJIWo1k8nErwlnef23A2TmF+Og1TCmexOe7ttCZjraIUlYaimTycTaIxf4cOVh9qdkARAe6MFbd0fSNcxP5eiEEMJy0rIKeHXpflYePA9APTdHJt0ezvDOITg7yBczeyEJSy1jNJpYf/QCX6w5xo5TymA0dycdz/RrwSM9muKok6FEQoi6ad2RC/znj4McTcsBIMjbhcdvDeOBzqG4OkniUtdJwlJL5BXp+XlXCnM2neT4hVwAnBy0jIlpzPhezfDzcFY5QiGEsD69wciC7UlMX3OM81nKtGdfdyeGRYcwoksooX5uKkcorEUSFhtmMJrYfDydX3alsPzAOfKKDAB4ODswLDqEx28No4G3i8pRCiFEzSvUG1gSf4aZa49z5lJ+6f6eLfwZEtWQ29sESt2pOkYSFhuTXVDMhqPprD6UxtrDaaTnFJU+19TfndExjbmvUyM85RdRCCHQG4ysOpTGvG1JbDh6AfOnkJNOS88W/vSJCODWFvUJ8ZWWl9pOEhaVZeQUEn/6EjtPX2LnqYvsS8mk2HDln9HHzZE72wVxT4dGdAz1QaOReipCCFGepIw8ftp1hmX7UkvHuZg19nPjlub+dAytR/sQH8L83dFKfapaRfWEZcaMGbz//vukpqbSpk0bPvnkE3r27Hnd49etW8fkyZM5cOAAwcHBvPjii4wfP77C11MrYckuKCb5Yj5H07I5dC6bwyW3lMv51xwb5u/Oba0C6NsqgOgmvjg5yEBaIYSojCPns1mx/xwbjqazK+kSemPZjydPFwfaNvQmPNCT5gEepTc/dyf5YmijVE1YFi1axKhRo5gxYwY9evTgq6++4ptvvuHgwYOEhoZec/zJkyeJjIzkscce44knnmDTpk08+eSTLFiwgHvvvbdC17R0wlKkN3Ixt4j0nELScwrJyCkiI7eQ9JwizlzKI/liPsmX8ricV3zdc7QI8CC6ST2iG/vSuYmvDBoTQggLyinUs/V4BltPZLDnzGX2pWRSUFx+5VxPZweCfFwI9nElyNuVYG8XGni74OfhRD03J3zdnfBxc8LLxUESmxqmasLStWtXOnbsyMyZM0v3RUREMGTIEKZNm3bN8S+99BK//fYbiYmJpfvGjx/Pnj172LJlS4WuaX7DCzcewsHFnWKDkSKDkSK9cl+sN1FkMFBsMFGkN1KoN5BTaCC3UE9OoZ6cAj25RXpyC/VkF+gp1Fe8XHQ9N0ea+rvTKsiLVg08adXAi5YNPKUAkhBC1KBig5Ej57PZn5LJsbQc5XYhhzOX8qnop5iDVoOPmyPuzg64OTng7qTDzdkBN0cdbs463J0ccHPS4ajTKjcHDU46LU4O2iv7dMo+R50WnVaDRgNajabkBlrtlW2NeV/J86XHapX7f6ZOZXMpzQ2eK/vsP5OwG533n1e9Uf5midwuOyuL1k2CLJKwOFTm4KKiIuLj43n55ZfL7I+NjWXz5s3lvmbLli3ExsaW2de/f3++/fZbiouLcXS89oO/sLCQwsIrK35mZSlF1l5Yshets2VaMnRaDX7uTvh5OOPv4YS/hzN+7k4E+bgSUs+VEF83GtVzlYGyQghhAxx1WtoEe9Mm2LvM/oJiA2cu5ZOamc/Zy/mcvVzA2cv5nMsq4HJeMRdzi7iUV0RekQG90UR6TlGZiRHCuoyFeRY7V6USlvT0dAwGA4GBgWX2BwYGcu7cuXJfc+7cuXKP1+v1pKenExQUdM1rpk2bxptvvnnN/i5NfHHz9CzJeK9kuebs19nhymN3Zwc8nHV4ODvi7qzDw9kBDxcH3J0c8HRxwMvFUQZvCSFELefiqCsdy3IjBcUGLucVlyQvenILDeQV6ckrMpBbZCCvUE9ukYH8Ir3SWm8wUqw3UmwwXnlsvulNFBqMmEwmjCYTBiOl20YTGE0mTCalzIV523jV8yaTCcM/xudc/eifLUb/7AgxXffBNQ/LvPba565+nem6z1WHwWC58ZyVSljM/tn8ZDKZbtgvWN7x5e03mzJlCpMnTy59nJWVRUhICLMf6WwTs4SEEELULi6OOhp466QOVg3LysrC+wPLnKtSCYu/vz86ne6a1pS0tLRrWlHMGjRoUO7xDg4O+PmVv36Os7Mzzs5SBVYIIYQQikq11Tg5OdGpUyfi4uLK7I+Li6N79+7lviYmJuaa41euXEl0dHS541eEEEIIIf6p0p1LkydP5ptvvmH27NkkJiYyadIkkpKSSuuqTJkyhdGjR5ceP378eE6fPs3kyZNJTExk9uzZfPvttzz//POWexdCCCGEqNMqPYZl+PDhZGRkMHXqVFJTU4mMjGTZsmU0btwYgNTUVJKSkkqPb9q0KcuWLWPSpEl88cUXBAcH89lnn1W4BosQQgghhJTmF0IIIYRVWPLzW+rHCyGEEMLmScIihBBCCJsnCYsQQgghbJ4kLEIIIYSweZKwCCGEEMLmScIihBBCCJsnCYsQQgghbJ4kLEIIIYSweZKwCCGEEMLmVbo0vxrMxXizsrJUjkQIIYQQFWX+3LZEUf1akbBkZGQAEBISonIkQgghhKisjIwMvL29q3WOWpGw+Pr6ApCUlFTtNyyqJysri5CQEJKTk2VdJ5XJ/4XtkP8L2yL/H7YjMzOT0NDQ0s/x6qgVCYtWqwy18fb2lh8+G+Hl5SX/FzZC/i9sh/xf2Bb5/7Ad5s/xap3DAnEIIYQQQliVJCxCCCGEsHm1ImFxdnbm9ddfx9nZWe1Q7J78X9gO+b+wHfJ/YVvk/8N2WPL/QmOyxFwjIYQQQggrqhUtLEIIIYSwb5KwCCGEEMLmScIihBBCCJsnCYsQQgghbJ7NJywzZsygadOmuLi40KlTJzZs2KB2SHZp2rRpdO7cGU9PTwICAhgyZAiHDx9WOyy7N23aNDQaDc8++6zaoditlJQUHnroIfz8/HBzcyMqKor4+Hi1w7I7er2eV199laZNm+Lq6kpYWBhTp07FaDSqHZpdWL9+PYMHDyY4OBiNRsPSpUvLPG8ymXjjjTcIDg7G1dWV3r17c+DAgUpdw6YTlkWLFvHss8/yyiuvsHv3bnr27MmAAQNISkpSOzS7s27dOiZMmMDWrVuJi4tDr9cTGxtLbm6u2qHZrR07djBr1izatWundih269KlS/To0QNHR0f++usvDh48yIcffoiPj4/aodmdd999ly+//JLp06eTmJjIe++9x/vvv8/nn3+udmh2ITc3l/bt2zN9+vRyn3/vvff46KOPmD59Ojt27KBBgwbcfvvtZGdnV/wiJhvWpUsX0/jx48vsa9Wqlenll19WKSJhlpaWZgJM69atUzsUu5SdnW1q0aKFKS4uztSrVy/TM888o3ZIdumll14y3XLLLWqHIUwm06BBg0xjx44ts2/o0KGmhx56SKWI7Bdg+uWXX0ofG41GU4MGDUzvvPNO6b6CggKTt7e36csvv6zweW22haWoqIj4+HhiY2PL7I+NjWXz5s0qRSXMMjMzASyyoJWovAkTJjBo0CD69eundih27bfffiM6Opr777+fgIAAOnTowNdff612WHbplltuYdWqVRw5cgSAPXv2sHHjRgYOHKhyZOLkyZOcO3euzOe5s7MzvXr1qtTnuc0ufpieno7BYCAwMLDM/sDAQM6dO6dSVAKUvsjJkydzyy23EBkZqXY4dmfhwoXs2rWLHTt2qB2K3Ttx4gQzZ85k8uTJ/Otf/2L79u08/fTTODs7M3r0aLXDsysvvfQSmZmZtGrVCp1Oh8Fg4L///S8PPvig2qHZPfNndnmf56dPn67weWw2YTHTaDRlHptMpmv2iZo1ceJE9u7dy8aNG9UOxe4kJyfzzDPPsHLlSlxcXNQOx+4ZjUaio6N5++23AejQoQMHDhxg5syZkrDUsEWLFvG///2P+fPn06ZNGxISEnj22WcJDg5mzJgxaocnqP7nuc0mLP7+/uh0umtaU9LS0q7J0kTNeeqpp/jtt99Yv349jRo1UjscuxMfH09aWhqdOnUq3WcwGFi/fj3Tp0+nsLAQnU6nYoT2JSgoiNatW5fZFxERwU8//aRSRPbrhRde4OWXX+aBBx4AoG3btpw+fZpp06ZJwqKyBg0aAEpLS1BQUOn+yn6e2+wYFicnJzp16kRcXFyZ/XFxcXTv3l2lqOyXyWRi4sSJ/Pzzz6xevZqmTZuqHZJd6tu3L/v27SMhIaH0Fh0dzciRI0lISJBkpYb16NHjmun9R44coXHjxipFZL/y8vLQast+pOl0OpnWbAOaNm1KgwYNynyeFxUVsW7dukp9nttsCwvA5MmTGTVqFNHR0cTExDBr1iySkpIYP3682qHZnQkTJjB//nx+/fVXPD09S1u+vL29cXV1VTk6++Hp6XnNuCF3d3f8/PxkPJEKJk2aRPfu3Xn77bcZNmwY27dvZ9asWcyaNUvt0OzO4MGD+e9//0toaCht2rRh9+7dfPTRR4wdO1bt0OxCTk4Ox44dK3188uRJEhIS8PX1JTQ0lGeffZa3336bFi1a0KJFC95++23c3NwYMWJExS9iqWlM1vLFF1+YGjdubHJycjJ17NhRptGqBCj3NmfOHLVDs3syrVldv//+uykyMtLk7OxsatWqlWnWrFlqh2SXsrKyTM8884wpNDTU5OLiYgoLCzO98sorpsLCQrVDswtr1qwp9zNizJgxJpNJmdr8+uuvmxo0aGBydnY23XrrraZ9+/ZV6hoak8lkslSGJYQQQghhDTY7hkUIIYQQwkwSFiGEEELYPElYhBBCCGHzJGERQgghhM2ThEUIIYQQNk8SFiGEEELYPElYhBBCCGHzJGERQgghhM2ThEUIIYQQNk8SFiGEEELYPElYhBBCCGHzJGERQlRL7969eeqpp3j22WepV68egYGBzJo1i9zcXB555BE8PT1p1qwZf/31FwAGg4Fx48bRtGlTXF1dadmyJZ9++mmZc65du5YuXbrg7u6Oj48PPXr04PTp0wDs2bOH2267DU9PT7y8vOjUqRM7d+6s8fcthKhZkrAIIapt7ty5+Pv7s337dp566in+7//+j/vvv5/u3buza9cu+vfvz6hRo8jLy8NoNNKoUSMWL17MwYMHee211/jXv/7F4sWLAdDr9QwZMoRevXqxd+9etmzZwuOPP45GowFg5MiRNGrUiB07dhAfH8/LL7+Mo6Ojmm9fCFEDZLVmIUS19O7dG4PBwIYNGwClBcXb25uhQ4fy/fffA3Du3DmCgoLYsmUL3bp1u+YcEyZM4Pz58yxZsoSLFy/i5+fH2rVr6dWr1zXHenl58fnnnzNmzBjrvjEhhE2RFhYhRLW1a9eudFun0+Hn50fbtm1L9wUGBgKQlpYGwJdffkl0dDT169fHw8ODr7/+mqSkJAB8fX15+OGH6d+/P4MHD+bTTz8lNTW19FyTJ0/m0UcfpV+/frzzzjscP368Jt6iEEJlkrAIIartn10yGo2mzD5zd47RaGTx4sVMmjSJsWPHsnLlShISEnjkkUcoKioqPX7OnDls2bKF7t27s2jRIsLDw9m6dSsAb7zxBgcOHGDQoEGsXr2a1q1b88svv9TAuxRCqEkSFiFEjdqwYQPdu3fnySefpEOHDjRv3rzcVpIOHTowZcoUNm/eTGRkJPPnzy99Ljw8nEmTJrFy5UqGDh3KnDlzavItCCFUIAmLEKJGNW/enJ07d7JixQqOHDnCv//9b3bs2FH6/MmTJ5kyZQpbtmzh9OnTrFy5kiNHjhAREUF+fj4TJ05k7dq1nD59mk2bNrFjxw4iIiJUfEdCiJrgoHYAQgj7Mn78eBISEhg+fDgajYYHH3yQJ598snTas5ubG4cOHWLu3LlkZGQQFBTExIkTeeKJJ9Dr9WRkZDB69GjOnz+Pv78/Q4cO5c0331T5XQkhrE1mCQkhhBDC5kmXkBBCCCFsniQsQgghhLB5krAIIYQQwuZJwiKEEEIImycJixBCCCFsniQsQgghhLB5krAIIYQQwuZJwiKEEEIImycJixBCCCFsniQsQgghhLB5krAIIYQQwub9P+wem4jLz22SAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1269,10 +1269,10 @@ "start_time": "2023-11-09T18:41:45.536975210Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:24.363335Z", - "iopub.status.busy": "2023-11-09T20:46:24.362807Z", - "iopub.status.idle": "2023-11-09T20:46:24.468033Z", - "shell.execute_reply": "2023-11-09T20:46:24.467469Z" + "iopub.execute_input": "2023-11-09T22:34:17.488907Z", + "iopub.status.busy": "2023-11-09T22:34:17.488704Z", + "iopub.status.idle": "2023-11-09T22:34:17.569092Z", + "shell.execute_reply": "2023-11-09T22:34:17.568496Z" } }, "outputs": [], @@ -1298,16 +1298,16 @@ "start_time": "2023-11-09T18:41:45.649725765Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:24.471484Z", - "iopub.status.busy": "2023-11-09T20:46:24.470542Z", - "iopub.status.idle": "2023-11-09T20:46:24.680061Z", - "shell.execute_reply": "2023-11-09T20:46:24.679468Z" + "iopub.execute_input": "2023-11-09T22:34:17.571912Z", + "iopub.status.busy": "2023-11-09T22:34:17.571204Z", + "iopub.status.idle": "2023-11-09T22:34:17.760059Z", + "shell.execute_reply": "2023-11-09T22:34:17.759488Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGwCAYAAACkfh/eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0r0lEQVR4nO3dd3xT9f7H8ddJuldKd0tbKLMFWkbZBQFBEBBFFHGjKF6v4oCLXtfPeR33XsV5FXFvURkqIEOl7A1ltkBZZbSUtnTvJL8/TlOoFGgh6UmTz/PxyCOnyUnyrtTkk+9UzGazGSGEEEIIB6LTOoAQQgghhLVJgSOEEEIIhyMFjhBCCCEcjhQ4QgghhHA4UuAIIYQQwuFIgSOEEEIIhyMFjhBCCCEcjovWAazNZDJx4sQJfH19URRF6zhCCCGEaACz2UxRURERERHodJff/uJwBc6JEyeIiorSOoYQQgghLsHRo0eJjIy87OdxuALH19cXUP8D+fn5aZxGCCGEEA1RWFhIVFRU7ef45XK4AsfSLeXn5ycFjhBCCNHMWGt4iQwyFkIIIYTDkQJHCCGEEA5HChwhhBBCOBwpcIQQQgjhcKTAEUIIIYTDkQJHCCGEEA5HChwhhBBCOBwpcIQQQgjhcKTAEUIIIYTDkQJHCCGEEA5HChwhhBBCOBwpcIQQQgjhcKTAEUIIIYTDcbjdxGst+Af4+YDeDfSuoHdXj13cam6rubi4g4sHuPuAmy+4+9Yc+6jHeletfxMhhBBaMJmgsggqS2ouxeceV1eAsbLmUnWB4yowm/5yMddcG+u/z/SX2+sw/+VHs+3u/+tdF33sJSqrts7z1HDcAmfnbHC3wpbrenfwbAHeweAdVHNdc+wbBv7R6sWvJej0l/96QgghbMdshvICKDwOBceh4Kh6XJwNZaehNPfMpex0PYWFsJkKKxVKNRy3wIlIhPgRavVcXfGXavrs2yqgqgwqiqGiUK3KK4rV20G9Ls5SLxeicwFDJLRoDcFxENoJQjpDSCy4edv81xVCCHEWs1ktXjJ3QM5eOLUPcvZBbrr6Xt8Yiv5My76bd83FB1y9wNXjrF4B13qOa651LurzKDpQlJrrsy46/V9uO/scvfozZ31pV/76Bf4vP9e5vzH3nfPLN/w1L1dRCbw2xmpP57gFTlQfGPzEpT++urKm2ClSq/iSHCg5ddYlB4pOwOkjUHAMTFVw+rB6OZh81hMpENQeovtCVF/1OqBNPX8oQgghLllVORxdDxkb4MRWOL5Ffa8+H88W6pdSv0gwtASfMPAKAK/Asy4B4OGvDmWQ92zbK2xk4XkRjlvguHpe3uNd3MAlQP0Db9HqwueajFCUqRY7eQchOxWyd8PJPVCSrX5ryNkHW79Uz/eNgA7Dof0IaDNIWniEEOJS5KRD2gL1S2XGOqgur3u/zgVC4tRW9aAOENxBvfaPlvddJyAFjjXo9Oo3AUMktE6qe1/xKTi+Wf2fz/LNougEbPlcvejd1WIn4WZoP1wtrIQQQtQv9wDsmgO756tfJM/mGw6tB0DLntAyEcK6NO1ngbArjlvguHhonUDlEwwdR6oXUJtRj6yGfUtg32LIz4DUX9WLZwuIvwn6/A0C22qbWwgh7IWxCtIWwuZP4dCKM7frXCBmkPrlsM1gCO4oXUmilmI2W2t+l30oLCzEYDBQsHIWfgMnax3nwsxmyNoJO2bDzp/OGsisQIcR0P8h9duIEEI4o8oStahZ+17d98e2Q6DLDdBxlDqMQDiE2s/vggL8/Pwu+/kctwWnOTRLKgqEJ6iXq16EA8th4yzYX9O6s28xxFwBVz4LUb20TiuEEE2jsgTWfwDr/gdleeptPqHQ/Q7ocefFx0UKgRQ49kOnh/bD1EtOOqx/H7Z9BYdWwifD1G8qI16BgBitkwohhG2YTLDrJ1j2nDpWEaBFDAz8ByRMkDGKolEct4sqZSF+XUdpHefy5GfAin9DyrfqYlMuHjBwOiQ9rE5bFEIIR3FyD/z6MBzbpP7sHw1DnlG7ovSO+11cnGHtLirH3YuqubXg1Mc/Gq77HzywHloPVKdALv8XzByoLl4lhBDNnbEaVr4OswapxY2bDwx9Fh7cBF0nSHEjLpkUOM1BcEeY+CuM+xi8Q9RVOT+6Eta8rTbpCiFEc3T6CHw6HP58SV1hvsPVMGWT2iXlaiczYUWz5cAFjoP9z6EokDAeHlgHHUerKycvexa+vQnK8rVOJ4QQjbNvCXx4hbrisIcBrv8Qbvke/CK0TiYchOMWOC5eWiewDe8guPkbGPMOuHhC+jK1NefUXq2TCSHExZnNkPxv9ctZeT5E9ID7V0PXm2UNG2FVjlvgOFoLztkUBRInwj1LwBAFeQfgo6F/2QNLCCHsTHUlzH8Akl9Rf+41GSYtVscbCmFlDlzgOGgLztnCu8Lk5dAqCSqL4JvxsOdnrVMJIcS5Korh2/Gw/Vt1d+xr3oLRr8uMUGEzjlvg6F21TtA0fILhjnkQd606SO/Hu85s6imEEPagogi+vkFtZXb1Vsfa9Lxb61TCwTlugeNMfbku7jD+c0i8S10v55eH1LVzhBBCa+WF8NU4OLpeHUw88Vd1g2EhbMxxCxxno6tp8u1zv/rzzw+qO+4KIYRWqsrUrvNjG8HDH+78GSITtU4lnIQUOI5EUeDq16DHRLUlZ85kdSqmEEI0NZMRfrrnTMvNnT9DRHetUwknYtMCZ+XKlYwZM4aIiAgURWH+/PkXPD85ORlFUc65pKWl2TKmY1EUtSUnYQKYjfDj3bLqsRCiaZnNsOgx2LsQ9O7qmJuIblqnEk7GpgVOSUkJXbt25b333mvU4/bu3UtmZmbtpX379jZK6KB0OnWLhzaDoaoEvp0AhSe0TiWEcBarZ8DmTwAFbvgIWvXXOpFwQjbd5GPkyJGMHDmy0Y8LCQnB39/f+oGcid4Vxn8Bn46AU2lqkXPPUsfawkIIYX/2LoY/XlSPR/4bOl2nbR7htOxyDE737t0JDw9n6NChLF++/ILnVlRUUFhYWOcianj6w62zwSsIsnbAoulaJxJCOLLcAzD3PvW4173Q52/a5hFOza4KnPDwcGbNmsWcOXOYO3cuHTt2ZOjQoaxcufK8j3n11VcxGAy1l6ioqCZM3Ay0aA3jPwNFB9u+hq1faZ1ICOGIKktg9u1QUQBRfWHEq1onEk5OMZvN5iZ5IUVh3rx5jB07tlGPGzNmDIqi8Msvv9R7f0VFBRUVFbU/FxYWEhUVRUFBAX5+fpcT2bGsfF3dsdfFA+5ZBuEJWicSQjiSXx+BLZ+DTyj8bSX4hmmdSDQzhYWFGAwGq31+21ULTn369u3L/v37z3u/u7s7fn5+dS6iHgOmQfsRUF0Oc+5V16cQQghrSP1VLW5QYNwsKW6EXbD7Amfbtm2Eh4drHaP50+ng+pnqt6ucvWcGAQohxOUoOK6ung6Q9Ig6e1MIO2DTWVTFxcWkp6fX/nzo0CFSUlIICAggOjqaJ598kuPHj/Pll+reSW+99RatW7emc+fOVFZW8vXXXzNnzhzmzJEVea3CK0CdPv7NjbD+fehwNbQZpHUqIURzZTbDL1Og7LS6iN+Qp7VOJEQtmxY4mzdvZsiQIbU/T5s2DYCJEyfy+eefk5mZSUZGRu39lZWVTJ8+nePHj+Pp6Unnzp1ZuHAho0aNsmVM59L+Kki8G7Z8BvMfgAfWqquMCiFEY6V8Cwf+VMf2jfsYXNy0TiRErSYbZNxUrD1IySFVFMPMAXD6EPS+D0b9V+tEQojmpugk/K8XlBfAsBdgwKNaJxLNnNMNMhY24O4DY95Sjzd+BMe2aBpHCNEMLZquFjfhXaHfFK3TCHEOKXCcVZvBkHAzYFandxqrtE4khGgu0hZB6i+gc1HH9eltOtpBiEsiBY4zG/EyeLaAkzth/QdapxFCNAdV5bDkSfW43xQIi9c2jxDnIQWOM/MOgqteUo9X/FvtUxdCiAtZ9y6cPgy+4XDFY1qnEeK8pMBxdt1ug5aJUFmsrnQshBDnU3AMVs1Qj696SR3PJ4SdkgLH2el0Z/aM2fY1ZO7QNo8Qwn4t/T+oKoXo/hB/o9ZphLggKXAERPeBzuMAMyx5Sl28SwghznZsM+yeq27cO+o/oChaJxLigqTAEaqrXgC9OxxeBWkLtU4jhLAnZjP8/rx63PUWGVgsmgUpcITKPxr616xl8edLYDJqm0cIYT/S/1C//OjdYfCTWqcRokGkwBFn9H9Y3bbhVBrskv2/hBCAyXSm9ab3ZPCP0jSOEA0lBY44w9Nf3Q0YYPkrsvifEEL9snNyJ7j7wcB/aJ1GiAaTAkfU1ed+8A5W96lK+UbrNEIILRmrIfkV9TjpYfAK0DaPEI0gBY6oy80bBqi7vrPiP+qqpUII57R7LuQdBM8A6PN3rdMI0ShS4Ihz9ZwEfi2h8Li04gjhrExGWPm6etzvQVnUTzQ7UuCIc7l6QNKj6vGat9RmaiGEc9nzM+TsVSce9L5P6zRCNJoUOKJ+3W8HryDIz5AZVUI4G5PpTOtNn7+Dh5+2eYS4BFLgiPq5eUG/B9Tj1TPUNzwhhHPYuwiyd4ObL/S9X+s0QlwSKXDE+fW6V50aeipNfcMTQjg+s1n9UgPqujeeLbTNI8QlkgJHnJ+HQX2DA1j1huxRJYQzyFgPx7eoqxb3fUDrNEJcMilwxIX1+Tu4eMKJrXBkrdZphBC2tu499brrBPAJ1jaLEJdBChxxYT7B0PVm9Xj9+9pmEULYVu6BM5vt9n1Q2yxCXCYpcMTF9a1Z4CttIeQd0jaLEMJ21n8AmKHdVRASq3UaIS6LFDji4oI7QrthgBk2ztI6jRDCFkrzzizs2X+KtlmEsAIpcETDWFpxtn4F5YXaZhFCWN+Wz6CqFELjIWaQ1mmEuGxS4IiGaTsUgjpCZRFs+1rrNEIIazJWw8aP1eN+D4KiaJtHCCuQAkc0jKKcacXZMFPdp0YI4Rj2/QZFJ9TVy7uM0zqNEFYhBY5ouIQJ4OEP+UfgwJ9apxFCWMummtabHneCi7u2WYSwEilwRMO5eUG329TjzZ9qm0UIYR05++FgMqBAz7u1TiOE1UiBIxrH8ga4bzHkH9U2ixDi8lm+rHS4Gvyjtc0ihBW5aB1ANDNB7aH1QDi8CrZ+CVc+rXUicYlKK6s5eKqEjLxSMvJKOZFfRkFZFQVlVRSWVWE8a2cODxcd/l6u+Hu6EeDjRlQLL6IDvGgV6EVLf090OhmU2ixVlsC2mqnhve7VNosQViYFjmi8npPOFDiDHge9q9aJxEWYzWYO55ayOj2HlIx8dh7PJz27GJMVthfz9XAhIdJAfEt/ese0oE9MIN7u8tbSLOyaAxUF0KI1tL1S6zRCWJW8C4nGi70GvEOgOAv2/gadrtU6kahHtdHE2gO5/LYri1X7T3HsdNk55wR4u9EqUG2NiWzhSQsvN/w8XfHzcMFFp/Zgm4HyKiP5NS07p4oqyMgr5UhuCUfzyigqr2ZNei5r0nOZuQJc9Qo9WwUwuGMwoxPCiWzh1cS/uWgwy+DinveATkYsCMciBY5oPBc36HGHusP45k+lwLEz24/m89OWYyzamUluSWXt7a56hcRWLejdOoCESH/iIw2E+nlc1mtVGU3sO1nEjmMFbD+az+r0HI6dLmPdwVzWHczl1d/SSGzVguu6RXBdt5YYPKW1z25kblcverczkweEcCCK2Wy2QiO1/SgsLMRgMFBQUICfn5/WcRzX6SPwdlfADA9vg4A2WidyauVVRhbsyOSrdYfZfqyg9vYAbzdGdgljWFwofdoE4OVm2+80ZrOZI7mlrNh3isW7slh/KBfLO4ynq57re7Tkzn6tiA2T/zc1t+gxdeuVzuNg/GdapxHC6p/fUuCIS/fVODjwB1zxGFz5jNZpnFJZpZFvNhxh5oqD5BRXAOCm1zEqPozre0SS1DYQF712XQ8nC8tZsCOTHzYdZe/JotrbB3UI5pFh7ekR3UKzbE6tqhze6Ajl+XD7XGg3VOtEQkiBczFS4DShXXPgp0ngFwmP7gCdXutETqOi2shX644wc8UBcorVbqhwgwe3923FhF5RBPnY12JtZrOZjYfy+HLdERbvzsJYM7r5ig7BTB/egYRIf20DOpudP8Gce+T/XWFXrP35LWNwxKXrOBo8DFB4TF0oTL4F2pzZbGbpnpO8siiVI7mlAEQFePLg4HaM6xGJm4t9DhRVFIU+bQLp0yaQI7kl/G95OnO2HmflvlOs3HeKGxMjeXxER0Iuc0yQaKBtX6nX3W+T4kY4LGnBEZdn4T/UmRhdboAbZXVjWzqcU8Iz83exOj0HgBBfd/4xvAPjekTiqmE31KXKyC3lrd/3MXfbcQC83fQ8PLQ99wyI0bRbzeGdPX7uke3qFHEh7IC1P7/lXURcnu63q9epC6DstLZZHJTRZObjVQe5+u2VrE7Pwc1Fx4ND2rJ8+mAm9IpulsUNQHSgFzMmdGPeA/3pGuVPSaWRV39L44YP1rI3q+jiTyAuzfbvADPEDJLiRji05vnOKOxHeDcI6QzGCnVMjrCqwzkljJ+5ln8tTKW8ykRSu0B+nzqIx0bEOsxiet2jWzDv7/35zw0J+Hq4sP1YAde8u4r/LU+vHasjrMRkOrNycfc7tM0ihI1JgSMuj6Ko/fhw5o1TWMWCHSe45t3VbM3Ix8fdhVfHxfP1PX2IDnS8hfN0OoWbekWxbOoghsaGUGU0898le7nz0w1kF5VrHc9xHFoBBRngboC4a7ROI4RNSYEjLl/CBNC5wImtkJ2qdZpmr7zKyNPzdjLl220UV1TTq3ULlk69glt6R6Mojr3nU5jBg48n9uS/Nybg6apnTXouo95ezZqacUfiMu2YrV7H3wCuntpmEcLGpMARl887SN2JGGDb19pmaeayi8q5edZ6vtmQgaLAg0Pa8t3kvkT4O8+HkaIojO8ZxS9TkugY6ktOcQV3fLKBT1cfwsHmRDStyhJI/VU9TrhZ2yxCNAEpcIR1dK15w9w1B0xGbbM0U7tPFDD2vTWkHM3H4OnK53f35rERsU47o6h9qC/zH0zixsRITGZ4ccEenp6/iyqjSetozdPe36CyGPxbQVRvrdMIYXPO+c4prK/9cHVNnKJMOLxa6zTNzh+pJxk/cx0nCsppE+zNzw8mMahDsNaxNOfppue/Nybw9Kg4FAW+3ZDBxE83UlhepXW05sfSPZUwQR07J4SDkwJHWIeLO3Qaqx7v/EHTKM3NvG3HuO+rLZRWGhnQLoh5f0+idZC31rHshqIoTL6iDR/d0RNvNz1rD+Ry60frya3ZmkI0QEkOpP+hHifcpG0WIZqIFDjCeixvnHt+Ufe6ERf15brDTJ29HaPJzLjuLfns7l4YvGTH7foM6xTK7L/1I9DbjV3HC7npw3WcyC/TOlbzsGsumI0Q0R2C2mudRogmIQWOsJ7o/ureNhWFsH+J1mns3gfJB3j2590A3NW/Na+P79psF+1rKl1aGvjx/n5EGDw4cKqE8TPXcTSvVOtY9u/s7ikhnIS8mwrr0enU6acAO6Sb6kI+XnWQfy9OA+Dhoe15bkwndDoZF9EQbYJ9+Onv/WkT7M3x/DJu+Wi9tORcSO4BOL4ZFL26pYoQTkIKHGFd8TXdVPuXytYN5/HV+iP8a6G6XtDUYR2YdlUHh1/fxtoi/D35fnJfWgd6cex0Gbd+tJ7sQukWrZfly0bbIeATom0WIZqQFDjCusK6QEgnMFaqY3FEHT9uPsr/zd8FwN8Ht+Xhoe00TtR8hfh58O3kvkS28ORwbim3fryBvJJKrWPZF7NZuqeE05ICR1hf/Hj1eueP2uawM8v3ZvPE3J0A3J3UmsdHdJSWm8sU4e/Jd5P7Em7wID27mHu/2ER5lazDVOv4Fjh9CFy9IXa01mmEaFJS4Ajri79RvT68GgqOa5vFTuw6XsCUb7aqs6V6tOTZazpJcWMlUQFefDmpN34eLmzNyOfR71Nkk06LXXPV644jwU2WHhDORQocYX3+0eqMKsywZ77WaTR3PL+MSZ9voqTSSP+2gbw2LkGKGytrH+rLrDt74qbXsXh3Fi8vlD3RMJlg9zz1uMs4bbMIoQEpcIRtWN5QLW+wTqqkopp7Pt9EdlEFHUJ9+OD2RNxc5H87W+jbJpDXb+oKwKdrDvHNhiMaJ9LYsY1QdALc/aDtUK3TCNHk5J1W2EbctYACxzZBfobWaTRhNpt5fM4O0rKKCPZ157O7e2PwlEX8bOnarhE8NqIjAM//spstR/I0TqSh2u6pUeDqoW0WITQgBY6wDd9QaD1APd49X9MoWpm18iALd2TiolP44LYetHSiHcG19MDgtoyKD6PKaOb+r7dy0hmnj5uMsOdn9Vi6p4STkgJH2E7nseq1E3ZTrd6fU7uQ33NjOtGzdYDGiZyHoij898audAz15VRRBfd/vYWKaiebWZWxDoqz1A1w2wzROo0QmpACR9hO3LWg6ODEVjh9WOs0TSaroJyHvtuKyQw3JkZye99WWkdyOt7uLsy6MxE/Dxe2ZeTz79/2ah2paVm+VMSOARc3bbMIoREpcITt+IQ4XTeV0WRm6uwUTpdW0aWlH/8a20VmTGmkVaA3b07oBqiDjv9MO6ltoKZydvdU5+u1zSKEhqTAEbbV2blmU81ccYB1B3PxctPz7i098HDVax3JqQ2NC+XupNYATP9xh3OMxzm8GkpOgWcLaDNI6zRCaMamBc7KlSsZM2YMERERKIrC/PnzL/qYFStWkJiYiIeHB23atGHmzJm2jChsLW6MuslfZgrkHdQ6jU1tyzjNjGX7AHjh2s7EBMnCavbgiZGxdAr3I6+k0jkWAbR8mYgbA3qZtSecl00LnJKSErp27cp7773XoPMPHTrEqFGjGDhwINu2beOpp57i4YcfZs6cObaMKWzJOwhirlCPHbibqriimoe/34bRZGZM1whuTIzUOpKo4e6i591bu+PlpmfdwVw+XuXAhbaxGlJr9oDrLLOnhHOzaYEzcuRI/vWvfzFuXMP+R5s5cybR0dG89dZbxMXFce+99zJp0iRef/11W8YUtmYZB7B7rrY5bOjVRakczSsjsoUnL18v427sTdtgH54b0wmAN5btIz27SONENnJ4JZTmglcQtB6odRohNGVXY3DWrVvH8OHD69w2YsQINm/eTFVVVb2PqaiooLCwsM5F2BlLN1XWTshJ1zqN1a1Nz+GbDepihv+9sSt+HtItYI9u6hnF4I7BVFabmP7jDsfsqrIs7tfpWtC7aJtFCI3ZVYGTlZVFaGhondtCQ0Oprq4mJyen3se8+uqrGAyG2ktUVFRTRBWN4RUAbQarx3sca7BxSUU1j8/ZAcDtfaPp1zZQ40TifBRF4dVx8fh6uJByNJ+PHK2rylgNaQvV405jNY0ihD2wqwIHOKdp32w213u7xZNPPklBQUHt5ejRozbPKC6BZdG/Pb9oGsPa/r04jWOny2jp78kTI+O0jiMuItzgyf9do3ZVzVi6j/0nHairKmMtlOWBZwC0StI6jRCas6sCJywsjKysrDq3ZWdn4+LiQmBg/d+M3d3d8fPzq3MRdqjjaHXRv6wdDrPo38ZDeXy5Tt3Q8d83JODjLl0CzcH4xEiGdAym0mji6Xm7ar9ENXupC9Tr2FHSPSUEdlbg9OvXj2XLltW5benSpfTs2RNXVxnX0Kx5B575Vml5I27Gqowmnpm/E4AJPaMY0D5I40SioRRF4V/Xx+Ppqmfj4Tx+2nJM60iXz2yGNEuBM0bbLELYCZsWOMXFxaSkpJCSkgKo08BTUlLIyFAHZD755JPceeedtefff//9HDlyhGnTppGamsqnn37KJ598wvTp020ZUzSVTtep16nNv5vq8zWH2XeymABvN54YGat1HNFILf09eXRYewBeWZTK6ZJKjRNdphNbofA4uPmcGe8mhJOzaYGzefNmunfvTvfu3QGYNm0a3bt359lnnwUgMzOzttgBiImJYdGiRSQnJ9OtWzdeeukl3nnnHW644QZbxhRNJXa0en10AxRlXfhcO5ZZUMabv6sL+j1xdSwtvGWvn+Zo0oAYOob6crq0qnZj1GYr9Vf1uv1V4OqhbRYh7IRidpgOaFVhYSEGg4GCggIZj2OPPh4GxzbBqNeh92St01ySB7/ZysKdmSS2asGPf+uHTidr3jRXmw/ncePMdQDM+Xs/Els1w13fzWZ4ryfkpsONn0IX+UIomidrf37b1Rgc4QTirlWvLd84m5lV+0+xcGcmOgVeuq6LFDfNXM/WAdzUU111+vlf9mBqjmvjnNqrFjd6N2h3ldZphLAbUuCIphV3jXp9eDWU5mmbpZGqjSZeWrAHgIn9W9MpQloIHcHjV8fi6+7CzuMFzN12XOs4jZdW82WhzRDwkL9JISykwBFNK6ANhMaD2Qh7F2mdplF+2HyMfSeL8fdy5dGhHbSOI6wkyMedB69sB8B/l6RRWlmtcaJGsrSGWr48CCEAKXCEFjo1v26q4opqZizbC8AjQ9tj8JJlCxzJ3UmtiQrw5GRhBTNXNKMVjvMzIHO7usZUx1FapxHCrkiBI5peXM06HQf+hIrmsZLszOQD5BRXEhPkzW19WmkdR1iZu4uep2pWop618gCZBWUaJ2ogy5pS0f3BW9ZiEuJsUuCIphccC4HtwVgJ+5ZoneaiTuSX1e5b9MTIWNxc5H8bR3R1lzB6xwRQXmXiv0v2ah2nYSyL+8XJ4n5C/JW8U4umpyhn3pCbQTfV60v3UlFtondMAMM7hV78AaJZUhSFZ0arrTjzth1nn73vU1V8Co6sVY8ta0wJIWpJgSO0YSlw9i+DKvvtDkjPLmJ+zcyap0fFnXfTV+EYEiL9GdklDLNZ3YzTru1dBJghojv4R2mdRgi7IwWO0EZEdzBEQVWJOhbHTr35+35MZhjeKZSuUf5axxFNYNpVHdApsHh3FtuP5msd5/wsrZ+xMntKiPpIgSO00Qy6qfacKGThjkwUBaYNl2nhzqJ9qC/Xd1cX/3t9qZ2OxSkvgIPJ6rFl8UwhRB1S4AjtWAqcvYug2v42O5yxTO2iuCYhgtgwWUDNmTw6rD2ueoVV+3NYdyBX6zjn2r8MTFUQ1AGCpfgWoj5S4AjtRPUB7xD12+jhVVqnqSPlaD6/p55Ep1C767RwHlEBXtzcKxpQW3Hsbsu+1F/Ua5k9JcR5SYEjtKPTQ2zN4mSW6a524o2arolxPSJpG+yjcRqhhSlXtsPNRceWI6dZd9COWnGqymD/7+qxjL8R4rykwBHaqh2HswBMRm2z1NiWcZpV+3Nw0Sk8MlRab5xVqJ8HN/dSZye992e6xmnOcmC5OjjfL1IdrC+EqJcUOEJbra8AdwOUZMOxTVqnAeB/yw8AMLZ7S6ICvDROI7T0t0FtcdUrrD2Qy5YjdrI5bO3ifteog/WFEPWSAkdoy8UNOoxQj+1gNlVaViG/p55EUeDvg9tqHUdorKW/Jzf0UGdUvWsPrTjG6jOb1Mr4GyEuSAocob2zp4trPJjz/ZrWm1FdwmXsjQDUQlenQPLeU+w8VqBtmCNroOw0eAVCdD9tswhh56TAEdprNxRcPCH/CGTt1CzG4ZwSFuw4AUjrjTijVaA313VrCcB7y/drG8bSytlxlDpIXwhxXlLgCO25eatFDmjaTfXhygOYzDC4YzBdWho0yyHsz4ND2qIosGT3SfZrtUeVyQRpC9Vj6Z4S4qKkwBH2wfKGrdF08ayCcn7acgyAKUPaaZJB2K92Ib61G61+svqQNiFObIWiE+DmCzGDtMkgRDMiBY6wDx1GgM4FsvdATtMP5vxs7SGqjGZ6tw6gZ+uAJn99Yf8mD2wDwNytxzlVVNH0ASytm+2vAlePpn99IZoZKXCEffBsATFXqMdpTdtNVVJRzXcbMgCYfEWbJn1t0XwktmpB92h/Ko0mvlp3uGlf3Gw+U+BI95QQDSIFjrAfZy/614R+2nKMwvJqWgd6MTQ2pElfWzQfiqLUtuJ8uf4IZZVNuDDlqTTIOwB6d7UFRwhxUVLgCPvRcTSgwPHNUHC8SV7SaDLz2Rp1TMWkATHodLJwmji/EZ3DiArwJL+0ip+2HG26F7a03rQdAu6+Tfe6QjRjUuAI++Ebqm7ACWdmi9jYH6knOZxbisHTlRsTI5vkNUXzpdcp3JMUA6iDjY2mJlq3yVLgyN5TQjSYFDjCvtR2U/3SJC9nmRFzS+9ovNxcmuQ1RfM2vmcUBk9XDueW8nvqSdu/4OnDkLUDFJ26/o0QokGkwBH2Ja7mG+qRtVBi2x2cdx0vYMOhPFx0ChP7t7LpawnH4e3uwi29owH4sikGG1taM1slgXeg7V9PCAchBY6wLy1aQ1g8mI2w7zebvtSnNa03oxPCCTd42vS1hGO5vW80OgXWpOeSnm3jhf9k9pQQl0QKHGF/4q5Vr224qnFucQULdmQCMKlmTIUQDRXZwothcerCf1+uO2K7FyrOhoz16nHsaNu9jhAOSAocYX8s31QPLIcK23w7/mHzMSqNJrpGGuga5W+T1xCO7c5+rQGYs+UYReVVtnmRtIWAGSJ6gEEGwQvRGFLgCPsTHAsBbcFYAfuXWf3pjSYz32xQv3Xf3lfG3ohLk9QukDbB3pRUGpm71UbLGtR2T8nsKSEaSwocYX8U5azZVNbvplq57xTHTpdh8HRlTNcIqz+/cA6KojCxphXny3WHMZutPGW8LB8OrVSPLd22QogGkwJH2CfLG/r+pVBVbtWn/mq92nozPjESD1e9VZ9bOJdxPVri7abnwKkS1h6w8qy//UvBVKW2aAa1t+5zC+EEpMAR9imiO/i1hMpiOLTCak97NK+U5XuzAbhNuqfEZfL1cOWGmgUiv1h72LpPblkLSmZPCXFJpMAR9kmnOzNrxIqL/n27MQOzGQa2DyImyNtqzyuc1x01hfIfadlkF1qptbGyFNL/UI9l9WIhLokUOMJ+Wb65pi0CY/VlP11FtZHZm9T9g2RwsbCW9qG+JLZqgdFk5sctx6zzpAf+hKpSMERDeFfrPKcQTkYKHGG/ovuDZwCU5UHGust+usW7ssgrqSTc4CG7hgururlXFACzNx3FZI39qc5e3E+RDWCFuBRS4Aj7pXc5s/eOFWZT/bBZbb25qWcULnr50xfWMzohHF93FzLySll38DIHGxurzqziLeNvhLhk8i4v7NvZ08VNpkt+mqN5paxJz0VRYHxPWTBNWJeXmwvXdVeXHPhuY8blPdnhVVBeAN7BENXbCumEcE5S4Aj71mYwuPlA0Qk4se2Sn+bHmtabAe2CiGzhZaVwQpxxcy91A86lu0+SV1J56U9kaa2MHQ06WcZAiEslBY6wb64e0H64epx2ad1UZw/+vKlnlLWSCVFHl5YGurT0o9JoYu7WSxxsbDKd2T1cuqeEuCwuWgcQ4qLiroHdc2HPLzD0uUYPulydnkNmQTkGT1eu6hRqo5BCqK04zxzfxfebjnLPgBiUxg4QPrYJik+CuwFaX2GbkBowGo1UVdlovy7RrLi6uqLXN03LpBQ4wv61Hw56N8g7AKfSICSuUQ//oWZq+PXdW8rKxcKmrusWwcsLU0nPLmbLkdP0bB3QuCewrPnUYQS4uFk/YBMzm81kZWWRn5+vdRRhR/z9/QkLC2v8F4BGkgJH2D93X2h7JexbrI5PaESBk1dSydI9WYB0Twnb8/VwZXRCOD9tOcZPW441rsAxm+tOD3cAluImJCQELy8vm3+gCftmNpspLS0lO1tdTT48PNymrycFjmge4sacKXAGPd7gh83bdpwqo5kuLf3oFOFnw4BCqG5MjOSnLcdYuCOT56/t3PBWw6ydkH8EXDyh3VDbhmwCRqOxtrgJDAzUOo6wE56engBkZ2cTEhJi0+4qGWQsmocOI0HRQdYOOH24QQ8xm821s6cmSOuNaCK9WwfQ0t+ToopqluzOavgD0xao1+2Gglvz30bEMubGy0tmLYq6LH8Tth6XJQWOaB68A6FVknqcuqBBD9l1vJC0rCLcXHRc262lDcMJcYZOp3BDD/Xvbc7W4w1/oIN1T1lIt5T4q6b6m5ACRzQfcdeq12kNK3DmblOn6g7vFIrB09VWqYQ4x7ge6mKSq/ef4mRDNuDMSYfsPaBzUQcYCyEumxQ4ovmw7C6esR6KTl7w1GqjiV+3nwBgXA9pvRFNq3WQNz1btcBkhvnbGtCKY1njKeYK8Gxh23Dikt11112MHTtW6xiNpigK8+fPb/D5ycnJKIrS7Ge/SYEjmg9DS2iZCJhh78ILnroqPYec4koCvd0Y2D64afIJcZYbEtVWnDlbj2E2X2QDTku3a+w1Nk4lLsfbb7/N559/bpPnLi4uxtXVldmzZ9e5fcKECSiKwoEDB+rc3rZtW5566qkGPXdmZiYjR460WlaA559/nm7duln1Oa1NChzRvJy9N9UFzKsZ+zCmawSusrGm0MCo+HDcXHTsO1nMruOF5z+x4Bgc3wwoZ1ophV0yGAz4+/vb5Ll9fHzo2bMny5cvr3P7ihUriIqKqnP7sWPHOHjwIEOGDGnQc4eFheHu7m7VvM2BvPOL5iW2psA5tBLK8us9pbiiunbtm+u7S/eU0IbB05XhNStnz7nQ1g17flavW/UH37AmSCYu5KeffiI+Ph5PT08CAwMZNmwYJSUlwLldVEVFRdx22214e3sTHh7Om2++yeDBg3n00UfP+/zbt29nyJAh+Pr64ufnR2JiIps3bwZgyJAhJCcn156bmppKWVkZDzzwQJ3bly9fjqurK0lJ6sSLX3/9lcTERDw8PGjTpg0vvPAC1dXVtef/tYtq7dq1dOvWDQ8PD3r27Mn8+fNRFIWUlJQ6Wbds2ULPnj3x8vKif//+7N27F4DPP/+cF154ge3bt6MoCoqi2Kxl63JIgSOal6B2EBwHpmrYt6TeU37bmUl5lYk2wd4kRBqaOKAQZ1i6qX5OOU5ltan+k3bPU687jW2aUBoym82UVlY3+eWiXYQ1MjMzueWWW5g0aRKpqakkJyczbty48z5+2rRprFmzhl9++YVly5axatUqtm7desHXuO2224iMjGTTpk1s2bKFJ554AldXdRLEkCFD2Lt3L5mZmYBayAwcOJArr7zynAKnT58+eHl5sWTJEm6//XYefvhh9uzZw4cffsjnn3/Oyy+/XO/rFxUVMWbMGOLj49m6dSsvvfQS//znP+s99+mnn+aNN95g8+bNuLi4MGnSJEDtNvvHP/5B586dyczMJDMzkwkTJlzw99aCLPQnmp+4MXAqVV3Wvuu5/1PNT1G7p67v1lKmqApNDWwXRLCvO6eKKli1/xRD4/6yF1rBMXX/KRTodK0mGZtSWZWRTs/W/8XElva8OAIvt4t/3GVmZlJdXc24ceNo1aoVAPHx8fWeW1RUxBdffMG3337L0KHqwoyfffYZERERF3yNjIwMHnvsMWJjYwFo37597X1JSUm4urqSnJzMLbfcQnJyMoMGDaJHjx4UFBSwf/9+2rdvT3JyMrfffjsAL7/8Mk888QQTJ04EoE2bNrz00ks8/vjjPPfcc+e8/jfffIOiKHz00Ud4eHjQqVMnjh8/zuTJk8859+WXX2bQoEEAPPHEE4wePZry8nI8PT3x8fHBxcWFsDD7bXWUFhzR/FjG4aT/AZWlde7KLChj7YFcAMZK95TQmItexzUJ6nL0P6ecOPcES/dUdD/pnrIDXbt2ZejQocTHxzN+/Hg++ugjTp8+Xe+5Bw8epKqqit69e9feZjAY6Nix4wVfY9q0adx7770MGzaM1157rc7gYS8vL3r37l3bWrNixQoGDx6Mi4sLSUlJJCcnk5GRwaFDh7jyyisBtRvpxRdfxMfHp/YyefJkMjMzKS0tPef19+7dS0JCAh4eHrW3nf07nC0hIaH22LKtgmWbheZAWnBE8xMWD/6t1GXtD/xRZ2G0n1NOYDarq8lGBcgKqkJ713VryWdrDrNsz0lKK6vrtiTsnq9edx6rRbQm5+mqZ8+LTb/Oj2cDt8vQ6/UsW7aMtWvXsnTpUt59912efvppNmzYQExMTJ1zLd1Wf20lvlh32PPPP8+tt97KwoUL+e2333juuef4/vvvuf766wG1m2r27Nns3r2bsrIyevToAcCgQYNYvnw5bm5ueHh40LdvXwBMJhMvvPAC48aNO+e1zi5izs7X0MyWrrOzf0+T6TxdrXZIWnBE86Mo551NZVlzRFpvhL3oGmmgVaAXZVVGlu05a/2mgmNwbCOgnFnE0sEpioKXm0uTXxrTVa0oCklJSbzwwgts27YNNzc35s2bd855bdu2xdXVlY0bN9beVlhYyP79+y/6Gh06dGDq1KksXbqUcePG8dlnn9XeN2TIEPbv38+3337LgAEDavdqGjRoEMnJySQnJ9OvX7/a4qVHjx7s3buXdu3anXPR6c79iI+NjWXHjh1UVFTU3mYZ5NwYbm5uGI3GRj+uKUmBI5onS4GzdzFUVwKQmlmzNYNex+h42+5SK0RDKYrCtV3VcRm/nN1NdXb3lJ/8vdqDDRs28Morr7B582YyMjKYO3cup06dIi4u7pxzfX19mThxIo899hjLly9n9+7dTJo0CZ1Od96CqqysjClTppCcnMyRI0dYs2YNmzZtqvP8/fv3x93dnXfffbd2/AtAr169KCgoYM6cOXWmhz/77LN8+eWXPP/88+zevZvU1FRmz57NM888U2+GW2+9FZPJxH333UdqaipLlizh9ddfBxq3hULr1q05dOgQKSkp5OTk1CmY7IUUOKJ5iuwNPqFQUQAHkwH4pWbl4iGxwRi8ZGsGYT+u66YWOCv2neJ0iVqQO1v3VHPg5+fHypUrGTVqFB06dOCZZ57hjTfeOO8ieTNmzKBfv35cc801DBs2jKSkJOLi4urtGgK1Cyw3N5c777yTDh06cNNNNzFy5EheeOGF2nMs3U9FRUUMHjy49nZXV1f69etHUVFRnQJnxIgRLFiwgGXLltGrVy/69u3LjBkzagdJ1/c7/vrrr6SkpNCtWzeefvppnn322drXbqgbbriBq6++miFDhhAcHMx3333X4Mc2FcXc0PlzzURhYSEGg4GCggL8/Py0jiNsadFjsHEWdL0F89gPuOK/yzmaV8Z7t3bnmoQLz2QQoqmNfHsVqZmFvHJ9PLfG6uDNzoAC01IdsgWnvLycQ4cOERMT06gPzuaspKSEli1b8sYbb3DPPfdoHafBvvnmG+6++24KCgrw9PS0+eud72/D2p/fMshYNF+dx6kFTtpCdhw+ydG8Mrzc9FwZG6J1MiHOcV23CFIzC/ll+3FuNW1Tb4zu65DFjbPYtm0baWlp9O7dm4KCAl588UUArrvuOo2TXdiXX35JmzZtaNmyJdu3b+ef//wnN910U5MUN02pSbqo3n///dpKLTExkVWrVp33XMsmX3+9pKWlNUVU0ZxE9QG/llBRyN7V6iDAoXGhDVrvQoimNqZmHM6GQ3lU7pir3ugEi/s5utdff52uXbvWrni8atUqgoKCtI51QVlZWdx+++3ExcUxdepUxo8fz6xZs7SOZXU2/ySYPXs2jz76KO+//z5JSUl8+OGHjBw5kj179hAdHX3ex+3du7dOE1VwsGyYKP5Cp4PO18O69/A/tAB4gDEJ8m1Y2KeW/p70at2CY4fTcct0nsX9HFn37t3ZsmWL1jEa7fHHH+fxxx/XOobN2bwFZ8aMGdxzzz3ce++9xMXF8dZbbxEVFcUHH3xwwceFhIQQFhZWe7FMlROiji7q2g8DjJsIca9mUEcphIX9urZbS0bqa6YVR/cFPxkrJoSt2LTAqaysZMuWLQwfPrzO7cOHD2ft2rUXfGz37t0JDw9n6NCh5+yueraKigoKCwvrXIQTiehBnlsEXkoFUyIP4u4ihbCwX6O6hDFavwGAnOj6Z+YIIazDpgVOTk4ORqOR0NC6+6+EhoaSlZVV72PCw8OZNWsWc+bMYe7cuXTs2JGhQ4eycuXKes9/9dVXMRgMtZeoqCir/x7CflWbzMyv6gPASGWNxmmEuLDA6pMk6vZhMiv8WtVT6zhCOLQmGWRc37LQ51tQqGPHjkyePJkePXrQr18/3n//fUaPHl27ENFfPfnkkxQUFNRejh49avX8wn5tOJTHj+XqPipBmSuhXFrwhB3bNQeA9aY4Zu+171VghWjubFrgBAUFodfrz2mtyc7OPqdV50L69u173uWv3d3d8fPzq3MRzmPBjhOkmqPJdm+FYqyAvYu0jiTE+e38CYCF5v6kZRVx8FSxxoGEcFw2LXDc3NxITExk2bJldW5ftmwZ/fv3b/DzbNu2rXYnUyEsqowmftuVBShUdKhZd2LXXE0zCXFe2alwchfoXMlrpY6/WbQzU+NQQjgum3dRTZs2jY8//phPP/2U1NRUpk6dSkZGBvfffz+gdjHdeeedtee/9dZbzJ8/n/3797N7926efPJJ5syZw5QpU2wdVTQzq9NzyC+tIsjHnYgBt6k3HvgDSvO0DSZEfWpab2g3jMHdOgCwcGf9YxGFdgYPHsyjjz56yY+3rOWWn59vtUzWdikZn3/+ebp162azTLZg8wJnwoQJvPXWW7z44ot069aNlStXsmjRotp9MjIzM8nIyKg9v7KykunTp5OQkMDAgQNZvXo1CxcurHcreOHcfq3Ze2p0fBj60FgI7QKmakhboHEyIf7CbIZdNQVO/I0M7xSGXqeQmlnIoZwSbbMJu7V48WIURTlnmEdYWNg5E2qOHTuGoigsXbr0os/bv39/MjMzMRgMVs17ucWhtTXJIOMHHniAw4cPU1FRwZYtW7jiiitq7/v8889JTk6u/fnxxx8nPT2dsrIy8vLyWLVqFaNGjWqKmKIZqaw2sWzPSQCuqVkh1rImTu03ZSHsxfEtcPowuHpDx5G08HYjqZ262q10U4nzGTBgAC4uLnU+I1NTUykvL6ewsJD09PTa25cvX46rqytJSUkXfV43NzfCwsIatXt4cyS7iYtmae2BHIrKqwn2dScxuoV6Y5cb1OtDK6FQPjSEHdn5o3odOwrcvAG15RFgwQ75W7U31dXVTJkyBX9/fwIDA3nmmWc4e1/qiooKHn/8caKionB3d6d9+/Z88skn9T5XWVkZo0ePpm/fvuTl1d99/tNPPxEfH4+npyeBgYG12z74+PjQq1evOgVOcnIyAwYMYMCAAefc3rt3b7y9vTGbzfznP/+hTZs2eHp60rVrV3766ac65/61i+qjjz4iKioKLy8vrr/+embMmIG/v/85Wb/66itat26NwWDg5ptvpqioCIC77rqLFStW8Pbbb9dusXT48OGL/8e2ISlwRLO0ZLfaZDuicyg6Xc23kBatIaovYD7zgSKE1kzGM4Pf48fX3uyU3VRmM1SWNP3lrOKkIb744gtcXFzYsGED77zzDm+++SYff/xx7f133nkn33//Pe+88w6pqanMnDkTHx+fc56noKCA4cOHU1lZyR9//EFAQMA552RmZnLLLbcwadIkUlNTSU5OZty4cbUF1ZAhQ+osdrt8+XIGDx7MoEGDzrl9yJAhADzzzDN89tlnfPDBB+zevZupU6dy++23s2LFinp/3zVr1nD//ffzyCOPkJKSwlVXXcXLL798znkHDhxg/vz5LFiwgAULFrBixQpee+01AN5++2369evH5MmTyczMJDMzU/N16WRXQtHsGE3m2u6pEZ3D6t7ZdQIcXQ87ZkPSwxqkE+IvDq2EkmzwbAFthtTe3MLbjf5tA1m1P4dFOzN5cEg7DUM2kapSeEWD7SmeOlHbctYQUVFRvPnmmyiKQseOHdm5cydvvvkmkydPZt++ffzwww8sW7aMYcOGAdCmTZtznuPkyZNMmDCBtm3b8t133+Hm5lbva2VmZlJdXc24ceNqx6bGx8fX3j948GBeeeUVMjMzCQ8PZ8WKFTz22GOYTCbefvttAI4ePcqhQ4cYMmQIJSUlzJgxgz///JN+/frV5lu9ejUffvghgwYNOifDu+++y8iRI5k+fToAHTp0YO3atSxYUHc8o8lk4vPPP8fX1xeAO+64gz/++IOXX34Zg8GAm5sbXl5ehIWFnfMaWpAWHNHsbDlympziSvw8XOjbJrDunZ2vB72bOh03a5c2AYU4m2VMWKex4FL3Q250vLr8xULpprIrffv2rTM+pV+/fuzfvx+j0UhKSgp6vb7eQuFsw4YNo02bNvzwww/nLW4AunbtytChQ4mPj2f8+PF89NFHnD59uvb+pKQk3NzcSE5OZs+ePZSVldGjRw8SExMpLCxk//79LF++HHd3d/r378+ePXsoLy/nqquuwsfHp/by5ZdfcuDAgXoz7N27l969e9e57a8/A7Ru3bq2uAF154Hs7OwL/nfQkrTgiGZn8S61e2pYp1Bc9X+p0T1bQPvh6kyqHbMhrIsGCYWoUVUGqb+ox/E3nnP3iM5hPD1/F3tquqlighreytAsuXqprSlavK6VeHp6Nui80aNHM2fOHPbs2VOnReav9Ho9y5YtY+3atSxdupR3332Xp59+mg0bNhATE4OXlxe9e/dm+fLl5OXlMWDAgNrNp/v378/y5ctZt24d/fr1w8PDA5PJBMDChQtp2bJlnddyd3evN0N9uwuY6+nWc3V1rfOzoii1r2ePpAVHNCtms/ms8TfnaQbterN6vfNHdfyDEFpJWwgVhWCIhuhzFze1dFOBk8ymUhS1q6ipL42cLbR+/fpzfm7fvj16vZ74+HhMJtN5x7NYvPbaa0ycOJGhQ4eyZ8+ei/xnUUhKSuKFF15g27ZtuLm5MW/evNr7hwwZQnJyMsnJyQwePLj29kGDBtXebhl/06lTJ9zd3cnIyKBdu3Z1LucbExMbG8vGjRvr3LZ58+YLZq6Pm5sbRqP9vOdKgSOald0nCjmeX4anq54r2gfXf1L74eDhD0WZ6vgHIbSy/Xv1uusE0NX/divdVPbn6NGjTJs2jb179/Ldd9/x7rvv8sgjjwBqN83EiROZNGkS8+fP59ChQyQnJ/PDDz+c8zyvv/46t912G1deeSVpaWn1vtaGDRt45ZVX2Lx5MxkZGcydO5dTp04RFxdXe86QIUPYv38/ixcvrtM1NmjQIBYsWMDhw4drCxxfX1+mT5/O1KlT+eKLLzhw4ADbtm3jf//7H1988UW9GR566CEWLVrEjBkz2L9/Px9++CG//fZbo6eRt27dmg0bNnD48GFycnI0b92RAkc0K5buqcEdg/F009d/kou7OhYHYMe5bzpCNImiLHVlbYCut5z3tBGd1dlUezILOZLrJLOp7Nydd95JWVkZvXv35sEHH+Shhx7ivvvuq73/gw8+4MYbb+SBBx4gNjaWyZMnU1JS/7/dm2++yU033cSVV17Jvn37zrnfz8+PlStXMmrUKDp06MAzzzzDG2+8wciRI2vP6devX233UmJiYu3tvXr1wmg04unpSZ8+fWpvf+mll3j22Wd59dVXiYuLY8SIEfz666/ExMTUmzEpKYmZM2cyY8YMunbtyuLFi5k6dSoeHh6N+u82ffp09Ho9nTp1Ijg4uM4ivlpQzPV1tDVjhYWFGAwGCgoKZONNBzRsxgrSs4t5++ZuXNet5flPzFgPn44ANx+Yvh/crNcHL0SDrHkHlv0fRPaGe5dd8NTbP97A6vQcnhoVy31XtG2igLZVXl7OoUOHiImJafQHpdDe5MmTSUtLY9WqVVZ/7vP9bVj781tacESzkZ5dTHp2Ma56hSGxIRc+OaoP+LeCymJ1HIQQTclshu3fqcfdzt96YzGicyhwpoVSiKb2+uuvs337dtLT03n33Xf54osvmDhxotaxLosUOKLZsAwu7t82CD8P1wufrCiQMEE93vG9jZMJ8ReZ2yF7D+jdofPF99EbXjNgfmtGPicLy22dTohzbNy4kauuuor4+HhmzpzJO++8w7333qt1rMsi08RFs2EpcK7u0sBFpLreDCv/Awf+hMIT4KfBAmPCOVkGF8eOAk//i54e6udBj2h/tmbks3R3Fnf0a23TeEL8VX2DpJs7acERzcLx/DJ2HCtAUWBYXGjDHhTYFqL7gdl0prtACFszVp3ZKqTrrQ1+mGXZgyW7T9oilRBORwoc0SwsrWm96dUqgGDf+herqlf3O9TrbV83ej8aIS7J/mVQmgPeIdD2ygY/zFLgrDuYS35ppa3SNTkHm8cirKCp/iakwBHNgmXw5YiGdk9ZdLpOnUmVdxCOrLFBMiH+IuUb9TrhJtA3fBRA6yBvYsN8MZrM/J5qv8vfN5Rl1dvS0lKNkwh7Y/mb+OvKyNYmY3CE3cstrmDT4TzgzGyTBnP3gS7jYOuXsPUraD3ABgmFqFGcDfsWq8fdbmv0w6/uEkZaVhGLd2VxY2KklcM1Lb1ej7+/f+1eRV5eXo1eOE44FrPZTGlpKdnZ2fj7+9duOWErUuAIu/d76klMZujS0o/IFpewnk33O9UCZ8/PMOo/4GGwfkghQG29MVVDZC8I7dToh4/oHMZbv+9n1f5TlFRU4+3evN+iLbtK2/OGjKLp+fv7N8mO4837/x7hFCzdU1efb++pi4nsCcGxcCoNds2BnpOsmE6IGmazWkgD9Li09UNiw3xpFejFkdxSVuw7xaiabRyaK0VRCA8PJyQkhKqqKq3jCDvg6upq85YbCylwhF0rLK9iTXou0Ijp4X+lKOpg46VPq91UUuAIWzi8Sh3r5eardoteAkVRuLpzGB+uPMjiXVnNvsCx0Ov1TfahJoSFDDIWdm15WjaVRhNtg71pF+J76U+UMAF0LnBiK5zcbb2AQlhsqdnIMP5GdQfrS2QZSL88LZuKavvZmVmI5kYKHGHXltasCTLiUrunLHyCoWPN5nVbv7rMVEL8RWkepP6iHide3vL23SL9CfF1p6iimrUHcq0QTgjnJAWOsFvlVUaW71UHJ15y99TZLOMitn8HVWWX/3xCWGz/HoyVEJYAEd0v66l0OuXMon+yN5UQl0wKHGG3Vu3PobTSSITBg/iWVpj51PZKdQPO8nzYNffyn08IqBlcXNM9dZmtNxaWgn7ZnpMYTbJQnhCXQgocYbcss6eGdw6zzvoZOj30vFs93vTx5T+fEABHN6oz9Fw8IX68VZ6yd0wABk9Xcksq2VyzBpQQonGkwBF2qcpo4o80dfyNVbqnLLrfAXo3dbDx8a3We17hvDZ9pF53GWe1NZZc9braPdcW75ZuKiEuhRQ4wi5tPJRHfmkVgd5u9GodYL0n9g6Czterx5s/sd7zCudUnA2756vHve+z6lNbCvslu7JkPychLoEUOMIuWbqnruoUil5n5eXde96jXu/8CcpOW/e5hXPZ8gWYqtSViyO6WfWpB7YPwstNz4mCcnYeL7DqcwvhDKTAEXbHZDKzdE/N5pqXOz28PlG9ITQeqssh5VvrP79wDsYq2Pypemzl1hsAD1c9gzsGA7BEuqmEaDQpcITdSTmWz8nCCnzcXejfLtD6L6Ao0KumFWfTJ2AyWf81hONLWwhFJ8A7WN213gYsBf5imS4uRKNJgSPsjmXtjytjQ3B3sdHy7vHj1SX18w7AweW2eQ3h2DbWDC5OvAtc3G3yEkNiQ3DVKxw4VUJ6dpFNXkMIRyUFjrArZrO5dtaITbqnLNx9oPtt6vH69233OsIxndwNR1aDoofEu232Mn4eriS1CwJgSc2q3kKIhpECR9iVvSeLOJJbipuLrnb8gc30+RugQPrvkJ1m29cSjmXjLPU67howtLTpS9WuaizjcIRoFClwhF2xjDW4on0w3u423uw+oA3EjlaPpRVHNFRJjro1A9hkcPFfXdUpFEWBHccKOJ4vW4wI0VBS4Ai7YilwrLq434X0e1C93jFb/eAS4mI2faLOwIvoDq2SbP5yQT7u9GqlrgW1VFpxhGgwKXCE3TiSW0JaVhF6ncKwuJCmedHofuoHVXX5mSm/QpxPVdmZ7ql+U9QZeU1gRBeZTSVEY0mBI+yGZYxB3zYB+Hu5Nc2LKgr0rWnF2fgRVFc0zeuK5mn791CaA4Yo6DS2yV52eCd124ZNh/PILZa/USEaQgocYTdqu6dsOXuqPp3Hgm8ElGSrqxsLUR+TCdb9Tz3u+3fQ23iM2FmiArzo0tIPkxl+T5XZVEI0hBQ4wi6cLCxna0Y+AFd1auICR+8KfWoGi659Vxb+E/XbvwRy94O7AXrc2eQvP6KTZTaVFDhCNIQUOMIuLN2jvml3j/YnzODR9AES71YX/juVCvsWN/3rC/u39j31uudd4O7b5C9vGXi/en8OReVVTf76QjQ3UuAIu7BEq+4pC09/6H2verzqdZDdm8XZMjaoC/vpXKD33zSJ0C7EhzZB3lQaTSTvPaVJBiGaEylwhObySytZdzAXsPHqxRfT9wFw8YDjW+DQCu1yCPuz8r/qdbdbbb6w3/koinJmNpVMFxfioqTAEZr7PTUbo8lMbJgvrYO8tQviEwI9JqrHq97QLoewLye2QfoyUHQwYKqmUSwtnMlp2ZRXGTXNIoS9kwJHaG5JU+w91VD9H1K7IQ6thKObtE4j7MHK19Xr+PHq6tcaSog0EG7woKTSyJp0WZhSiAuRAkdoqqSimpX71PEETbZ68YX4R0HCzeqxtOKIk7shbQGgwMB/aJ1G7aaSvamEaBApcISmVuw7RUW1iegAL2LDmn5mSr0GPAoosO83yNyudRqhJUuR2+k6CO6obZYawzuri/4t23OSaqMsaSDE+UiBIzR19t5TShMte39RQe0h/kb1ePkr2mYR2snZD7vmqsdXTNc2y1l6tw6ghZcrp0ur2HT4tNZxhLBbUuAIzVRUG1melg3Yyfibsw16AhS9uiaOjMVxTstfBszQcTSExWudppaLXsewOLUVR7qphDg/KXCEZtam51JUUU2Irzvdo/y1jlNXUDvodot6vPxf2mYRTS9zO+yeBygw5Cmt05zDMl5tye4szLJmkxD1kgJHaMbSPTWicxg6nZ10T53tisdB5woHk+HQKq3TiKb0Z01RG38jhHXRNks9ktoF4e2mJ7OgnB3HCrSOI4RdkgJHaKLaaGJZzaaBI+1h9lR9WrSCxJp1cZa/LKsbO4sj62D/UnW5gMFPap2mXh6uegbHhgDSTSXE+UiBIzSx8XAeeSWV+Hu50jsmQOs45zdwurq6ccY6SP9d6zTC1sxm+ONF9bj7HRDYVts8F2AZtyarGgtRPylwhCYse09dFReKi96O/wz9wqH3ZPV46f+BsVrbPMK20n+HjLWgd4dBj2ud5oKGdAzGTa/j4KkS0rOLtI4jhN2x408W4ahMJjNLdtd0T8XbaffU2Qb+AzxbqDuNb/tK6zTCVozVsPQZ9bjPfeAXoW2ei/D1cCWpXSBwZjybEOIMKXBEk0s5lk9WYTk+7i4ktQvSOs7FebZQp42DOhanQr4tO6Qtn8GpNPAKVLsmm4Ezs6lOapxECPsjBY5ocpbuqStjQ3B30WucpoF6ToKAtlByCla/qXUaYW1l+WcWdRz8JHj6a5mmwYbFhaJTYOfxAo6dLtU6jhB2RQoc0aTMZnPtoEi72HuqoVzc4Kqawafr/gcFx7TNI6xr5X+hLA+CYyHxbq3TNFigjzu9WquD9JdKK44QdUiBI5pUamYRR3JLcXfRMahDsNZxGid2NLQaANXl6oBj4RhyD8CGD9Xj4S+D3kXbPI0ks6mEqJ8UOKJJWd6EB3UIxtu9eX2QoChw9aug6GD3XDiwXOtE4nKZzbD4CTBVQbth0H6Y1okabURNS+jmw3nkFFdonEYI+yEFjmhSi3dlAs2se+ps4QnQq2ba+KLpUC0fKM1a6q/qon56N7j6Na3TXJKW/p7EtzRgMsPve6SbSggLKXBEkzlwqph9J4tx0SkMrdkssFm68mnwDoHcdFj7rtZpxKWqKILf/qkeJz2q7iLfTJ29N5UQQiUFjmgyljff/u2CMHi6apzmMngYYMTL6vHK1+H0EW3ziEuT/BoUnYAWrWHgNK3TXJYRndUvDGvScykqr9I4jRD2oUkKnPfff5+YmBg8PDxITExk1aoLb1y4YsUKEhMT8fDwoE2bNsycObMpYgobsyxGdnXnZto9dbb48dB6IFSXqV1Vsk9V85K1E9Z/oB6PegNcPbXNc5nahfjSNtibSqOJ5XtPaR1HCLtg8wJn9uzZPProozz99NNs27aNgQMHMnLkSDIyMuo9/9ChQ4waNYqBAweybds2nnrqKR5++GHmzJlj66jCho7nl7HjWAGKAsM7N+PuKQtFgdFvqGM39i+F7d9rnUg0lLEKfp4CZiN0GtssBxbXp7abSlY1FgJoggJnxowZ3HPPPdx7773ExcXx1ltvERUVxQcffFDv+TNnziQ6Opq33nqLuLg47r33XiZNmsTrr79u66jChiytN71aBxDk465xGisJ7giDasZwLP4nFMkHS7Ow5i3ITAEPfxj5b43DWI9luvjyvdmUVxk1TiOE9mxa4FRWVrJlyxaGDx9e5/bhw4ezdu3aeh+zbt26c84fMWIEmzdvpqrq3L7liooKCgsL61yE/Vm0U509NbK5zp46n6RHIbwblBfAgqnSVWXvTu6G5JqiZuR/wNdx/h7jWxqIMHhQWmlk5T7pphLCpgVOTk4ORqOR0NC6XRKhoaFkZdX/bTcrK6ve86urq8nJyTnn/FdffRWDwVB7iYqKst4vIKziRH4ZW46cRlFgVHy41nGsS+8CY98HnSvsXQQ7f9I6kTgfYxXMu19d86bjaEi4SetEVqUoCiNr/v9aWPOFQghn1iSDjBVFqfOz2Ww+57aLnV/f7QBPPvkkBQUFtZejR49aIbGwJkvrTa/WAYT6eWicxgZCO8Ogx9XjRdNlGwd7tWoGZO1QN0+95k11HJWDGZ2gFji/7zkp3VTC6dm0wAkKCkKv15/TWpOdnX1OK41FWFhYvee7uLgQGBh4zvnu7u74+fnVuQj7Yvk2eU2Cg7XenG3AVIjoAeX5MPc+MMmHi13JWA8rLF1T/wVfBxjoXo/uUf609PekpNJI8t5sreMIoSmbFjhubm4kJiaybNmyOrcvW7aM/v371/uYfv36nXP+0qVL6dmzJ66uzXjtFCd17HQp2zLy1V0OHG38zdn0rnDjJ+DmA0fWwKo3tE4kLMpOw5x71VlTCRMgYbzWiWxGUZTaVpwFO6SbSjg3m3dRTZs2jY8//phPP/2U1NRUpk6dSkZGBvfffz+gdjHdeeedtefff//9HDlyhGnTppGamsqnn37KJ598wvTp020dVdiApXuqT0wAIb4O2D11toA26tRxUBeRy9igbR6hDvr+5SEoOFr338eBWVpK/0jNprSyWuM0QmjH5gXOhAkTeOutt3jxxRfp1q0bK1euZNGiRbRq1QqAzMzMOmvixMTEsGjRIpKTk+nWrRsvvfQS77zzDjfccIOtowobWFjzLXJ0QoTGSZpI15sh/ia1tWDOPVCSq3Ui57b5E3W/KZ0r3PgpuPtqncjm4lsaiArwpKzKyPI0mU0lnJdiNjvWvNbCwkIMBgMFBQUyHkdjR/NKGfif5egU2Pj0MMdZ/+Ziygth1iDIOwhtBsNtc9TZVqJpHd0In41SZ00Nfxn6T9E6UZN57bc0Zq44wMguYXxwe6LWcYRoEGt/fsteVMJmLIOL+7UNdJ7iBsDDDyZ8A65ecDAZ/nxR60TOpzATZt+hFjdx10K/B7VO1KQs3VR/pmVTUiHdVMI5SYEjbGbBjhMAjI53ku6ps4V2guv+px6veRt2zdU2jzOproQf7oTiLAiOg7EfOOSU8AvpHOFH60AvKqpN/J56Uus4QmhCChxhE4dzSth1vBC9Tqnd6djpdBkH/R9Sj39+EE5s0zaPMzCbYdE/4NhGcDfAzd+Au4/WqZqcoihcUzPubaHMphJOSgocYROW7qn+bQMJdKbuqb8a+jy0vRKqSuHbCZBf/yazwkpWvQFbvwQUuOFjCGyrdSLNWKaLJ+87RVH5udvcCOHopMARNmFZg2O0o23N0Fh6Fxj/BYR0huKT8M14KMvXOpVj2j4b/nxJPR75H+gw/MLnO7jYMF/aBntTKd1UwklJgSOsbt/JIlIzC3HVK469uF9DefjBbT+CbwScSoPZt0NVudapHMuhlWo3IKjdgn3u0zaPHVAX/VO7qX7dLt1UwvlIgSOsbv624wAM6hCCv5ebxmnshKEl3PYDuPnC4VXw413qYFhx+Y5ugu9uUWdMdb4ehsmsNYtru6otqCv3nSKvRP7ehHORAkdYlclk5ucUdfbU2O5OOHvqQsLi4ZZvwcUD9v0GcyeDUabwXpYTKfD1DVBZDDGDYOxM0MnbmkW7EF+6tPSj2mSWHcaF05F3AmFVWzJOczy/DB93F4bFOensqQuJuUJdI0fnCnvmq90qsjHnpTm5G74aCxUFEN0fbvkOXB18O5BLMLZbS+BMy6oQzkIKHGFVljfREZ3D8HDVa5zGTrUfBuM/B0UPO76vacmRWS6NcnwLfH6NupFmZK+a7j9vrVPZpTFdI9ApsOXIaTJyS7WOI0STkQJHWE1ltam2GVy6py4i7hp1bySdK+yaA9/fCpXy4dMgh1bCF9dCWR60TITbfnKKPaYuVaifB0ntggCYnyKtOMJ5SIEjrGbFvlPkl1YR7OtO/7ZBWsexf53Hwi3fg4sn7F+qjiWRKeQXlrYQvr7xzJibO38BT3+tU9m9s7upHGz7QSHOSwocYTWWb4djEiLQ65xrafxL1n4Y3DEP3P0gYy18PAxyD2idyv6YzbD2Pfj+NjBWQOw1cOsPTrlK8aUY0SUMD1cdB3NK2HGsQOs4QjQJKXCEVRSVV/H7HnUxMemeaqRW/eCuheDXEnL3w8dD4dAqrVPZj+pK+OUhWPo0YIbEu9TFE2VAcYP5uLswvJO6JtU8GWwsnIQUOMIqluw+SUW1iTZB3sS3NGgdp/kJT4DJf6pjSspOq7ODNnyotlw4s8IT8OV1sO0rUHQw4lW45i11hWjRKNd3V7upFuw4QbXRpHEaIWxPChxhFXO2HANgbPeWKE62c7PV+IapLTmdx4GpGn57HH64w3nH5aT/DjMHqF13br5wy2zo94DT7QxuLQPaBxHo7UZOcSWr03O0jiOEzUmBIy7b0bxS1h3MRVHghsRIreM0b66e6uyqq19TZ1il/gofDoSjG7VO1nSqK2DZc+qg69JcdYHEv61w+r2lLperXsc1NRtwzt0q3VTC8UmBIy7bjzWtN0ltg2jp76lxGgegKND373DPEvBvpe5A/slwWPK0408lP7YFPhwEa95Sf+51L9zzu1PvCm5N43qoX0AW786ioFTWXhKOTQoccVlMJnNt99T4ntJ6Y1UtE+FvK6HrrYAZ1r0HM5Pg4Aqtk1lfRTEs/T/4ZBicSgXvYJjwNYx+QwYTW1FCpIHYMF8qq038suOE1nGEsCkpcMRlWXcwl+P5Zfh6uDCis+wcbnWe/nD9B3Drj+osq7yD8OW16nTpvENap7t8JhOkfAfvJsLad8Bsgvib4MGNEDdG63QOR1EUxveMAuCHTUc1TiOEbUmBIy7Lj5vVN8lru0bI1gy21GE4PLAOet+nbvGQtgD+1xuWPgPFp7RO13hmMxz4U22xmX8/FGdBi9bqQOIbPgKvAK0TOqzru7fEVa+w83gBe04Uah1HCJuRAkdcssLyKn7blQVQ+61Q2JCHAUb9F/6+BtoMAWMlrH0X3k5Qx+cUZ2ud8OLMZnV21CfD4avr1T2l3Hxg2PNqq03Hq7VO6PACvN24qpO6Ee6PW6QVRzguKXDEJVuwPZOKahPtQ3zoGilr3zSZkDh19eNbf4SIHlBVqo7PebMLzP0bHNtsf+vnVBTD5k/hg/7q7KhjG8HFA/r8HR7aCgOmgou71imdhuULybxtx6molt3shWOS1bLEJbN8+xvfM1LWvmlqiqJ2W7W/CtL/gBX/VouGHd+rl/CukHAzdL4e/MK1yWgywpG1sOsn2DUXKmq6Q1y9IPFuSHpYXftHNLkr2gcT5udBVmE5v+/JZnSCRn8jQtiQFDjikqRmFrItIx8XncLYmhVShQYURd3Pqv0wdYr1po/UYiJzu3pZ8hS0HgAdroa2QyCkk20XyqsogsOr1aIrbQEUZZ65L6At9J4MXW+RDTI1ptcp3JgYyXvL0/lh81EpcIRDkgJHXJJvNhwBYETnMEJ8ZRqvXYhMVC/D/6UWObt+gqMb4PAq9QLgE6bufRXeDSK6q4voeba4tKLHWAWnj0BmChzfqo6nOb5ZXYXZwsMAcddC/I3Q+grQSa+4vRjfUy1wVu4/xfH8MlnDSjgcKXBEoxVXVDOvZiXU2/pEa5xGnMM7CPrcp17yMyB1gTpj6fBqdbbS7nnqxcLdAC1agX+0OnvJw19tYdG51IzlMUNVubpHVnm+Opj59CHIPwrmesZvtIiBtleq3Wdtr5SxNXaqVaA3Se0CWZOey3cbMpg+oqPWkYSwKilwRKP9knKCkkojbYK86dc2UOs44kL8o9X9m/o9oBYpxzaqLS0ntqmX/AyoKICsHeqlsVw8ILQLtOyhtghF94WANtb/PYRN3NG3FWvSc/l+UwYPD22Pm4u0sAnHIQWOaBSz2VzbPXVrn2gZXNycuHpAzBXqxaKyFPKPwOnDUHBM3dizvOZiOmvHaRd3tSvLswV4Bapr1gTEqF1e0u3UbA2LCyXUz52ThRUs3p3FtV0jtI4khNVIgSMaZfuxAnafKMTNRceNsrFm8+fmpU47D4nTOonQgItexy29o3nr9/18ve6IFDjCochXL9Eo36xXW2+uSQjH38tN4zRCiMt1S+9o9DqFjYfzSMuSlY2F45ACRzRYfmklv9Zs0Hdbn1YapxFCWEOonwcjOqsrG39d8wVGCEcgBY5osG83ZlBeZaJTuB89ov21jiOEsJLb+6pfWOZtPU5ReZXGaYSwDilwRINUGU18uVb9dnfPgBgZXCyEA+nXJpB2IT6UVBr5cfMxreMIYRVS4IgGWbQzk6zCcoJ83Lmmq6x6KoQjURSFu/q3BuDTNYeoNpou/AAhmgEpcMRFmc1mPl19CFDXzXB30WucSAhhbTf0iKSFlyvHTpexdM9JreMIcdmkwBEXtTUjn+3HCnBz0XFbX1m5WAhH5Omm546asTgfrTqocRohLp8UOOKiLK03Y7tFEOQjy+4L4aju6NcaN72ObRn5bDmSp3UcIS6LFDjigjJyS/ltl7oj9N1JMRqnEULYUrCvO2O7q4v9fbzqkMZphLg8UuCIC5q58gAmMwzqEExcuJ/WcYQQNnbvQHUvsSW7sziSW6JxGiEunRQ44rxOFpbzU82U0QeHtNM4jRCiKXQI9WVwx2BMZpi5QsbiiOZLChxxXh+vOkil0USv1i3oHROgdRwhRBOxfKH5actRTuSXaZxGiEsjBY6o1+mSSr7ZkAHAA9J6I4RT6dU6gL5tAqgymvlwxQGt4whxSaTAEfX6fO1hSiuNdAr3Y3CHYK3jCCGa2MNXtgfgu01HyS4s1ziNEI0nBY44R0FpFZ+uUWdQPDCkrWzLIIQT6tc2kMRWLaisNvHhShmLI5ofKXDEOT5adZCi8mo6hvoyqotsyyCEM1IUhYeuVLunv9lwhJziCo0TCdE4UuCIOnKKK2pbb6YN74BOJ603QjirQR2C6RppoLzKxP+Wp2sdR4hGkQJH1PFB8gFKK40kRBoY3ilU6zhCCA0pisL0ER0B+GZ9BkfzSjVOJETDSYEjamUWlPHV+iMA/GN4Rxl7I4RgYPtgktoFUmk08eayfVrHEaLBpMARtd5atp/KahO9WwdwRfsgreMIIezEP6+OBWBeynFSMws1TiNEw0iBIwDYfaKAH7YcBeCfI6X1RghxRkKkP6PjwzGb4b9L9modR4gGkQJHYDab+deCVMxmuCYhnMRWsmqxEKKu6SM6otcp/JmWzer9OVrHEeKipMARLNtzknUHc3Fz0fHEyFit4wgh7FBMkDd39G0FwPO/7qbKaNI4kRAXJgWOk6usNvHKolQAJg+MIbKFl8aJhBD2auqwDgR4u5GeXcwXaw9rHUeIC5ICx8l9tOogh3NLCfZ15++DZc8pIcT5Gbxcebxm2vjbv+/nVJEs/ifslxQ4TuxwTgnv/LEfgKdHxeHj7qJxIiGEvbupZxQJkQaKKqp57bc0reMIcV5S4Dgps9nM//28i4pqEwPbB3FdtwitIwkhmgGdTuH5azujKDBn6zFW7T+ldSQh6iUFjpP6OeUEq/bn4O6i419ju8i0cCFEg/WIbsHEfq0BeHLuTkoqqrUNJEQ9pMBxQtlF5by4YA8ADw9tT6tAb40TCSGam8dGdKSlvyfHTpfx+lJZG0fYHylwnIzZbObJOTvJK6kkLtyPyQPbaB1JCNEMebu78Mq4eAA+X3uYzYfzNE4kRF1S4DiZ2ZuO8kdaNm56HW9N6Iabi/wJCCEuzaAOwdyYGInZDI/OTqGwvErrSELUsumn2+nTp7njjjswGAwYDAbuuOMO8vPzL/iYu+66C0VR6lz69u1ry5hO40huSW3X1GMjOtIxzFfjREKI5u65MZ2IClC7qp6Ztwuz2ax1JCEAGxc4t956KykpKSxevJjFixeTkpLCHXfccdHHXX311WRmZtZeFi1aZMuYTqG8ysiD326ltNJIn5gA7hkQo3UkIYQD8PVw5a0J3dHrFH7ZfoK5W49rHUkIAGy28ElqaiqLFy9m/fr19OnTB4CPPvqIfv36sXfvXjp27Hjex7q7uxMWFmaraE7phV/3sOt4IQHebrw5oRs6ncyaEkJYR2KrFjwytD0zlu3j/37eRZeWBmkhFpqzWQvOunXrMBgMtcUNQN++fTEYDKxdu/aCj01OTiYkJIQOHTowefJksrOzz3tuRUUFhYWFdS6irjlbjvHdxgwUBd6a0I0If0+tIwkhHMyDQ9rRv20gpZVG/vbVZgrKZDyO0JbNCpysrCxCQkLOuT0kJISsrKzzPm7kyJF88803/Pnnn7zxxhts2rSJK6+8koqK+pcEf/XVV2vH+BgMBqKioqz2OziClKP5PD1/JwCPDG3PFR2CNU4khHBEep3Ce7f2oKW/J4dzS5k2OwWjScbjCO00usB5/vnnzxkE/NfL5s2bAepdPM5sNl9wUbkJEyYwevRounTpwpgxY/jtt9/Yt28fCxcurPf8J598koKCgtrL0aNHG/srOaxjp0u594vNlFeZuDI2hIevbK91JCGEAwvwdmPm7Ym4uej4Iy2blxbskUHHQjONHoMzZcoUbr755gue07p1a3bs2MHJkyfPue/UqVOEhoY2+PXCw8Np1aoV+/fvr/d+d3d33N3dG/x8zqKwvIpJn28ip7iCuHA/3rmlu4y7EULYXHykgdfHd+Xh77bx+drDRPh7cN8VbbWOJZxQowucoKAggoKCLnpev379KCgoYOPGjfTu3RuADRs2UFBQQP/+/Rv8erm5uRw9epTw8PDGRnVaZZVG7v1iM/tOFhPq586nd/WUjTSFEE3m2q4RZBeW86+FqbyyKI1QPw+u69ZS61jCydhsDE5cXBxXX301kydPZv369axfv57JkydzzTXX1JlBFRsby7x58wAoLi5m+vTprFu3jsOHD5OcnMyYMWMICgri+uuvt1VUh1JeZeS+rzaz8VAevh4ufDKxF+EGGVQshGha9w5sw6QkdTmK6T9uZ9mec1v0hbAlm66D88033xAfH8/w4cMZPnw4CQkJfPXVV3XO2bt3LwUFBQDo9Xp27tzJddddR4cOHZg4cSIdOnRg3bp1+PrKlMOLqag28uA3W1m1PwcvNz2f392bLi0NWscSQjipZ0bHcW3XCKqMZh74ZgtLdp9/gokQ1qaYHWwEWGFhIQaDgYKCAvz8/LSO02SKK6r521ebWZOei7uLjs/v7k2/toFaxxJCOLlqo4mpP2zn1+0ncNEpvHNLd0bFy5ADcS5rf3477EZEDla3XVBeSSW3fbSeNem5eLvp+fSuXlLcCCHsgotex5s3deW6bhFUm8w8+O1WPltzSOtYwgk4bIFTaTRpHaFJ7M0q4vr317D9WAEB3m58d19fktpdfBC4EEI0FRe9jhk3deO2PtGYzerK6i8t2CPr5AibctgCp7zS8QucxbuyuP79NRzJLSWyhSc//K0fCZH+WscSQohz6HUK/xrbhX9eHQvAJ6sPcddnG8ktrn8RVyEul+MWOFVGrSPYTEW1kZcX7uH+r7dQWmmkf9tAfpkygHYhPlpHE0KI81IUhb8Pbsu7t3TH01XPqv05jH5nNVuO5GkdTTgghy1wyqods8DZm1XEde+t4aNVah/23Umt+XJSbwK83TROJoQQDTOmawTzH0yiTbA3WYXl3PThev6zOI0KB33fFtpw2AKnvNKx/kcprzIyY+lexry7mrSsIgK93fj4zp48N6YzLnqH/WcUQjiojmG+/DJlAGO7RWA0mXk/+QDXvLOabRmntY4mHITDThNP3nmIQV1aax3nspnNZv5IzeaFBbs5mlcGwJWxIfz7hgSCfWWLCiFE87d4VybPzN9FTnElAOO6t+Txq2MJM3honEw0JWtPE3fY9fvLq5p/3bbuQC6vL93LliPqN5owPw+eG9OJq7uEXXDDUiGEaE6u7hJO75hAXl6Yypytx5i77Ti/7cri3oEx3J0UI13w4pI4bAvOvA37Gdu7ndZxGs1kMvNnWjYfrz7I+oPqwDsPVx139Y/hoSvb4S17SgkhHNj2o/m8uGBP7Rc7Lzc9t/dtxT0DYgj1kxYdR2btFhyHLXC+W53GzUkdL/4AO5FTXMHPKSf4at1hDueWAuCqV7ildzRThrQjRP7HFkI4CbPZzJLdWbz7Zzq7TxQC6jTzq+JCubVPNAPaBaHTSSu2o5EuqgZqDoOMi8qrSN57innbjrNi36naRa/8PFy4pXc0d/ZvTUt/2ShTCOFcFEXh6i7hjOgcRvLeU7yfnM6mw6dZvDuLxbuziGzhyej4cEbFh5MQaZAue1Evxy1w7HC6odls5sCpYlbsy+HPtJNsPJRHlfFMA1pCpIHxiZGM6xEpXVFCCKenKApDYkMYEhvC3qwivt1whLnbjnPsdBkfrjzIhysP0tLfk8EdgxnYPoh+bYIweLlqHVvYCYftopqxcBtTR3XTNEtBaRWpWYWkHM1n8+E8thw5zenSqjrntA70YnRCONd3j5SF+oQQ4iLKKo0s35vNop2Z/JmWTelZrfU6BTpF+NEtyp+ukf50jfKnbbAPeunOahaki6qBmmqrhspqE8fzyziaV8rR06Vk5JaSllXE3qwisgrLzznf3UVHz9YtGNIxhCtjQ2gTLEWNEEI0lKebnlE13VNllUbWpOewOj2HVftPceBUCbuOF7LreCFfkwGog5TbBvvQNtibdiE+tA32IbKFFxH+HgR4u0n3lgNz3ALnErqoKqtNlFRUU1xzsRwXlFWRU1xJbnEFucWV5JZUkFNcycnCcrIKy7lQG1hLf0+6tPSjV+sAElu1oHOEATcXWZhPCCEul6ebnmGdQhnWKRSAzIIythw5zY5jBaQczWfX8QJKK43sPF7AzuMF5zze3UVHhL8n4QYPQnzdaeHtRoCXG/411y28XDF4ueLt5oKXux5vNxc8XfUywLmZcNgCZ/nebPK+20ZVtYlKo4kqo4mKahOV1erx2ddlVUZKKoyXvAO5p6ueyBaeRAV4ER3gRftQH2LDfOkQ6ouvh/QHCyFEUwg3eHJNgifXJEQAYDSZOZxbQnp2MenZxRw4VcyBUyWcyC/jVFEFFdUmDuWUcCinpFGv4+Wmx8vNBW93Pe4uOlz16sVNr8PVRan7s1792UWvoFMsF3V8kU5R0OtApyg1P6vHOt1ZxwrodAoKCn9tbPprmXXu/coF7/+rv7ZmKXXuu9hrX37RV1ZSdNnPcTaHLXAO55SSUXTikh7r4arDx90Fb3cXvN1cMHi6EuTrTqC3G0E+bgT6qMfBvu5EBXgRKM2cQghhd/Q6paZ7yocRneveV1Ft5GRBBScKyjiRX0ZOcQWnS6s4XVJJXkklp0srOV1aRUFZFWWVRkoqq2tb60srjZRWGskpbvrfyZGZKkqt+nwOW+BMu6o9BoOhtop2q6my1WsFN5czt3u46vF2d8GnpiKXvZ2EEMKxubvoiQ70IjrQq0Hnm81myqtMlFRWU1qhFjylldVUVFl6CcxUGc/uITjrZ6OJaqMZk9mMyaw+l+XYZDZjMp05NltuM5sxmuqeeybLX7Jxzg31Hdb+Hue/77xPw1/nI5nP+8Olqywt5mPrPBXgwLOorDUKWwghhBC2Z+3Pb2mqEEIIIYTDkQJHCCGEEA5HChwhhBBCOBwpcIQQQgjhcKTAEUIIIYTDkQJHCCGEEA5HChwhhBBCOBwpcIQQQgjhcKTAEUIIIYTDkQJHCCGEEA5HChwhhBBCOBwpcIQQQgjhcKTAEUIIIYTDkQJHCCGEEA7HResA1mY2mwF123UhhBBCNA+Wz23L5/jlcrgCJzc3F4CoqCiNkwghhBCisXJzczEYDJf9PA5X4AQEBACQkZFhlf9A4vIUFhYSFRXF0aNH8fPz0zqOU5N/C/sh/xb2Q/4t7EdBQQHR0dG1n+OXy+EKHJ1OHVZkMBjkj9WO+Pn5yb+HnZB/C/sh/xb2Q/4t7Iflc/yyn8cqzyKEEEIIYUekwBFCCCGEw3G4Asfd3Z3nnnsOd3d3raMI5N/Dnsi/hf2Qfwv7If8W9sPa/xaK2VrzsYQQQggh7ITDteAIIYQQQkiBI4QQQgiHIwWOEEIIIRyOFDhCCCGEcDgOV+C8//77xMTE4OHhQWJiIqtWrdI6ktN59dVX6dWrF76+voSEhDB27Fj27t2rdSyB+m+jKAqPPvqo1lGc1vHjx7n99tsJDAzEy8uLbt26sWXLFq1jOZ3q6mqeeeYZYmJi8PT0pE2bNrz44ouYTCatozm8lStXMmbMGCIiIlAUhfnz59e532w28/zzzxMREYGnpyeDBw9m9+7djX4dhypwZs+ezaOPPsrTTz/Ntm3bGDhwICNHjiQjI0PraE5lxYoVPPjgg6xfv55ly5ZRXV3N8OHDKSkp0TqaU9u0aROzZs0iISFB6yhO6/Tp0yQlJeHq6spvv/3Gnj17eOONN/D399c6mtP597//zcyZM3nvvfdITU3lP//5D//973959913tY7m8EpKSujatSvvvfdevff/5z//YcaMGbz33nts2rSJsLAwrrrqKoqKihr3QmYH0rt3b/P9999f57bY2FjzE088oVEiYTabzdnZ2WbAvGLFCq2jOK2ioiJz+/btzcuWLTMPGjTI/Mgjj2gdySn985//NA8YMEDrGMJsNo8ePdo8adKkOreNGzfOfPvtt2uUyDkB5nnz5tX+bDKZzGFhYebXXnut9rby8nKzwWAwz5w5s1HP7TAtOJWVlWzZsoXhw4fXuX348OGsXbtWo1QC1A3UAKttoCYa78EHH2T06NEMGzZM6yhO7ZdffqFnz56MHz+ekJAQunfvzkcffaR1LKc0YMAA/vjjD/bt2wfA9u3bWb16NaNGjdI4mXM7dOgQWVlZdT7L3d3dGTRoUKM/yx1ms82cnByMRiOhoaF1bg8NDSUrK0ujVMJsNjNt2jQGDBhAly5dtI7jlL7//nu2bt3Kpk2btI7i9A4ePMgHH3zAtGnTeOqpp9i4cSMPP/ww7u7u3HnnnVrHcyr//Oc/KSgoIDY2Fr1ej9Fo5OWXX+aWW27ROppTs3xe1/dZfuTIkUY9l8MUOBaKotT52Ww2n3ObaDpTpkxhx44drF69WusoTuno0aM88sgjLF26FA8PD63jOD2TyUTPnj155ZVXAOjevTu7d+/mgw8+kAKnic2ePZuvv/6ab7/9ls6dO5OSksKjjz5KREQEEydO1Dqe07PGZ7nDFDhBQUHo9fpzWmuys7PPqQRF03jooYf45ZdfWLlyJZGRkVrHcUpbtmwhOzubxMTE2tuMRiMrV67kvffeo6KiAr1er2FC5xIeHk6nTp3q3BYXF8ecOXM0SuS8HnvsMZ544gluvvlmAOLj4zly5AivvvqqFDgaCgsLA9SWnPDw8NrbL+Wz3GHG4Li5uZGYmMiyZcvq3L5s2TL69++vUSrnZDabmTJlCnPnzuXPP/8kJiZG60hOa+jQoezcuZOUlJTaS8+ePbnttttISUmR4qaJJSUlnbNkwr59+2jVqpVGiZxXaWkpOl3dj0C9Xi/TxDUWExNDWFhYnc/yyspKVqxY0ejPcodpwQGYNm0ad9xxBz179qRfv37MmjWLjIwM7r//fq2jOZUHH3yQb7/9lp9//hlfX9/aVjWDwYCnp6fG6ZyLr6/vOWOfvL29CQwMlDFRGpg6dSr9+/fnlVde4aabbmLjxo3MmjWLWbNmaR3N6YwZM4aXX36Z6OhoOnfuzLZt25gxYwaTJk3SOprDKy4uJj09vfbnQ4cOkZKSQkBAANHR0Tz66KO88sortG/fnvbt2/PKK6/g5eXFrbfe2rgXssY0L3vyv//9z9yqVSuzm5ubuUePHjI1WQNAvZfPPvtM62jCbJZp4hr79ddfzV26dDG7u7ubY2NjzbNmzdI6klMqLCw0P/LII+bo6Gizh4eHuU2bNuann37aXFFRoXU0h7d8+fJ6PyMmTpxoNpvVqeLPPfecOSwszOzu7m6+4oorzDt37mz06yhms9lsjYpMCCGEEMJeOMwYHCGEEEIICylwhBBCCOFwpMARQgghhMORAkcIIYQQDkcKHCGEEEI4HClwhBBCCOFwpMARQgghhMORAkcIIYQQDkcKHCGEEEI4HClwhBBCCOFwpMARQgghhMORAkcI0aQGDx7MQw89xKOPPkqLFi0IDQ1l1qxZlJSUcPfdd+Pr60vbtm357bffADAajdxzzz3ExMTg6elJx44defvtt+s8Z3JyMr1798bb2xt/f3+SkpI4cuQIANu3b2fIkCH4+vri5+dHYmIimzdvbvLfWwjRtKTAEUI0uS+++IKgoCA2btzIQw89xN///nfGjx9P//792bp1KyNGjOCOO+6gtLQUk8lEZGQkP/zwA3v27OHZZ5/lqaee4ocffgCgurqasWPHMmjQIHbs2MG6deu47777UBQFgNtuu43IyEg2bdrEli1beOKJJ3B1ddXy1xdCNAHZTVwI0aQGDx6M0Whk1apVgNpCYzAYGDduHF9++SUAWVlZhIeHs27dOvr27XvOczz44IOcPHmSn376iby8PAIDA0lOTmbQoEHnnOvn58e7777LxIkTbfuLCSHsirTgCCGaXEJCQu2xXq8nMDCQ+Pj42ttCQ0MByM7OBmDmzJn07NmT4OBgfHx8+Oijj8jIyAAgICCAu+66ixEjRjBmzBjefvttMjMza59r2rRp3HvvvQwbNozXXnuNAwcONMWvKITQmBQ4Qogm99cuIkVR6txm6V4ymUz88MMPTJ06lUmTJrF06VJSUlK4++67qaysrD3/s88+Y926dfTv35/Zs2fToUMH1q9fD8Dzzz/P7t27GT16NH/++SedOnVi3rx5TfBbCiG0JAWOEMKurVq1iv79+/PAAw/QvXt32rVrV28rTPfu3XnyySdZu3YtXbp04dtvv629r0OHDkydOpWlS5cybtw4Pvvss6b8FYQQGpACRwhh19q1a8fmzZtZsmQJ+/bt4//+7//YtGlT7f2HDh3iySefZN26dRw5coSlS5eyb98+4uLiKCsrY8qUKSQnJ3PkyBHWrFnDpk2biIuL0/A3EkI0BRetAwghxIXcf//9pKSkMGHCBBRF4ZZbbuGBBx6onUbu5eVFWloaX3zxBbm5uYSHhzNlyhT+9re/UV1dTW5uLnfeeScnT54kKCiIcePG8cILL2j8WwkhbE1mUQkhhBDC4UgXlRBCCCEcjhQ4QgghhHA4UuAIIYQQwuFIgSOEEEIIhyMFjhBCCCEcjhQ4QgghhHA4UuAIIYQQwuFIgSOEEEIIhyMFjhBCCCEcjhQ4QgghhHA4UuAIIYQQwuH8P3UkWkRWjdykAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGwCAYAAACkfh/eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1oUlEQVR4nO3dd1iT9/7/8WcSIGwQkKGCooKg4sKFo26tWttqa+22tXac1g499nSeztPxO9/W7tbanrZ221ZrXXVUxVH3wIm4UFBBRNkbcv/+uAFFUEGT3CF5P64rV26z7heKyTufqVMURUEIIYQQwo7otQ4ghBBCCGFuUuAIIYQQwu5IgSOEEEIIuyMFjhBCCCHsjhQ4QgghhLA7UuAIIYQQwu5IgSOEEEIIu+OkdQBzM5lMnDp1Ci8vL3Q6ndZxhBBCCFEPiqKQl5dHs2bN0Ouvvf3F7gqcU6dOERoaqnUMIYQQQlyF1NRUWrRocc2vY3cFjpeXF6D+BXl7e2ucRgghhBD1kZubS2hoaPXn+LWyuwKnqlvK29tbChwhhBCikTHX8BIZZCyEEEIIuyMFjhBCCCHsjhQ4QgghhLA7UuAIIYQQwu5IgSOEEEIIuyMFjhBCCCHsjhQ4QgghhLA7UuAIIYQQwu5IgSOEEEIIuyMFjhBCCCHsjhQ4QgghhLA7UuAIIYQQwu7Y3WabQgghRKOhKJUX0wWXiov+XHn/xc+reYNt3X81cvOu/TUuYL8FzvudwMMVDC7qxckIBmcwVF1fcJuzO7h4gtETjF7g4nXBsSe4+YJHU/XiZNT6JxNCCGEJigLFOVB4FgrPqdcluVCaD6UFlZcLjwugvBgqSqGirPL6wuOLbruwaDFVFjHmKAzsRYl5/y7st8ApOgcm82y5XoPRBzwC1GLHMxB8w6BJK/BtCU1aqn92djP/eYUQQlw9RYGCTDh7CLJTIfcE5JyAnJPqdUGGWtQoFVonNZMLPv90F38WXvTnGvdf7X1mUG4CzNeKY78FTqv+cOObUF56QQVdeSkvqaysK6+rqvKSfCjNg5K8yuN89bgoGwrOgKkMSnLUy7kjlz53k1YQ2AGCOkBQewjpDE3Czf/LIIQQorayYji9F05uV6/PHITMJCjKqt/zXTzB3Q/c/cHVR/2zi8cFl8o/O7urF4Pz+Z6B6uuLjvVOoDeATn/Rpeo2Xc3bL34supqfIfb4eZKbC2/4mO3l7LfAaRqtFhbmoihQnK1+Ayg4o15y0yA7BbKPQ9Zx9bokF7KOqZekxeef7xEIYb3VS6t+ENzJPn9BhRDC2kry4fjfcDQeUjZB+h71C2ktuspW95bg3QJ8WoBPc/XYK0gtaNz8wNnV2j+BsAD7LXDMXTzodODWRL0ERNT9GEVR+2wz9sPpfecv6XvU5s/EBeoFwCsEIoZD5AhoM1i6tYQQoiGyU2D/H5C0FFI31y5o3P2heXcI6QRNoyAgUn3vlvdah2HHBY5Bg3Pq1PE54deplyplRXBqp/rNImUTHFsPeWmwY7Z6MXpD+5ug0wRo2Rf0MntfCCFqKcqCXXNgz69wclvN+3zD1C+LrfpDix7qn6WV3KHZb4FjS0WCsxu07KNeQO0fPr4eDi6HA4vVwW47v1MvTcKh1yPQ9S51FpcQQji6E9tg6/9g3zx11hIAOrW7P/pGaDsE/FpLQSNq0ClKrcnsjVpubi4+Pj7kLHgR7zGvax3nykwmSNkAu35Wm1tLctXbjd4QOxH6PqW2CgkhhCNRFEheC2v/D46tO397UEfoNlFt9fYK0i6fMLvqz++cHLy9va/59ey3BUdnQy04l6PXq99CWvWDkf8Pdv0Em2aqUxk3fARbv4K4RyFuiroejxBC2LvULbD8RXVsDYDeGWJuhe4PQIvu0lIj6sV+Cxy9BmNwrpWLB/SYDLGT4PAKWP0mpCWo32C2/g+GvQpd7rat7jchhDCX7FT46xXY+5v6ZydXtbWm7xPqjCchGsB+C5zG0oJTF71enV0VMRwSF8Kq/6hrOCx4HHZ8Bze8B8EdtU4phBDmYTLBllmw8lUoKwR00PVuGPwieAVrnU40Uo24CriCxtiCczGdDtrfCP/4G4b/B5w94MQWmDUQ/v5QfVMQQojG7OwR+GY0LH1GLW7C+sDDa+Cmj6W4EdfEfgucxtyCczGDM/R5HKZshciR6noPK/4N394Iuae0TieEEFdnz28ws7860cLFE0bPgPuXmHeRVuGw7KgKuIg9FThVfJrDHT/BmA/U5cGPrYPPB0DKZq2TCSFE/ZWXwJKnYe4DUFYALfvBPzZAjwdkALEwGzusAirZQxdVXXQ6iL0PHlmvTpcsyFCbd7d/o3UyIYS4ssJz8O3N6pgbgP7/hIkL1O0ThDAj+y1wtFjJ2Jr828CkZepaEKYyWPgkrHxNXTtCCCFsUXYKfHW92iVl9IY75sCQl+z3C6nQlP0WOBdv626PjJ4wfjYMfF7987p3YdFTYKrQNJYQQtSSvge+HKbOCPVqBpOWQrvrtU4l7Jj9FjiO8o1Ap4OBz8AN76vjjrZ/A3MnQ0W51smEEEJ1KgG+uQHy06FpNExeAUEdtE4l7Jz9Fjj23kV1se73w/hv1BU/982DPx6TaeRCCO2dSoBvb4LibHUTzElLZdE+YRV2XODY7492Se1vUoscnQF2/6x2V8mYHCGEVjIPw3djzxc3d8+TLWeE1dhvFeCo2xlE3wC3fKEWeDtmqwOPhRDC2vLS4fuxUHQOmnVVixvXa99AUYj6smgVsHbtWsaMGUOzZs3Q6XTMnz//so+Pj49Hp9PVuhw4cKDhJ3e0LqoLdbwFbvxIPV4/A3Z8q20eIYRjKc6F729VZ035tYY7f5XiRlidRQucgoICOnfuzMcff9yg5yUlJZGWllZ9iYiIaPjJHWWQ8aV0vRsGPKMeL5oKR1Zrm0cI4RhMJpj3EJzeAx5N1ZYbz6ZapxIOyKKbbY4cOZKRI0c2+HmBgYH4+vpe28llNUwY+BycOwp7foVfJ8JDa8AvXOtUQgh7tuZtOPgnGIxw5xx5zxGascmBKl27diUkJIQhQ4awevXlWx5KSkrIzc2tcQEcu4uqik4HN32iDu4rzlGLnLJirVMJIexV4kJY8//U4zEfQPNYbfMIh2ZTBU5ISAizZs1i7ty5zJs3j3bt2jFkyBDWrl17yee89dZb+Pj4VF9CQ0PVOxy9i6qKk1GdWeXuD2m74M9/aZ1ICGGPso7B/EfV417/gC53aBpHCJ2iWGcesU6n4/fff+fmm29u0PPGjBmDTqdjwYIFdd5fUlJCSUlJ9Z9zc3MJDQ0lZ+uveHe/9Voi25cjq+C7cYACY2dB5wlaJxJC2IuKMvh6JJzYCqG94L4lYLDoCAhhh3Jzc/Hx8SEnJwdv72sflG5TLTh16d27N4cOHbrk/UajEW9v7xoXQMbgXKzNYBj4rHq8ZDpkp2qbRwhhP+LfVosbow/c8qUUN8Im2HyBs3PnTkJCQhr+ROmiqq3/dGjRE0pyYf4/ZKVjIcS1O7Ze3QcP4MYPwDdM2zxCVLJomZ2fn8/hw4er/5ycnExCQgJ+fn6EhYXx3HPPcfLkSb79Vl2n5f3336dVq1Z06NCB0tJSvv/+e+bOncvcuXOv4uw2X7tZn8EJxs6Emf3h2DrY9Cn0maJ1KiFEY1VaoG4LgwJd74EOY7VOJEQ1ixY427ZtY9CgQdV/njZtGgATJ07km2++IS0tjZSUlOr7S0tLmT59OidPnsTNzY0OHTqwePFiRo0a1fCTSwtO3fzbwIg31G0cVr4GkSMg4CrWGRJCiFVvqIOLvVvAiDe1TiNEDVYbZGwt1YOUdi3Bu1PD1+BxCIoC398CR1ZCq/4wcaGMWRJCNEzqFvjfcECBu+ZCxFCtE4lGzuEGGV81WQfn0nQ6uGEGOLmpXVUJP2qdSAjRmJSXwB9TAAU63yHFjbBJ9lvgSBfV5TVpdX5W1fIXoCBT0zhCiEZk02eQmaRuxSBdU8JG2W+Bo7PfH81s4h6DoI5QlAUrXtI6jRCiMchNg7X/px4Pew3c/bTNI8Ql2G8VIAXOlRmc4Yb31eOEH+DUTk3jCCEagRUvQWm+ugVMp9u1TiPEJdlvFaC33x/NrEJ7QKfKVY2XPqcOQBZCiLqkbII9vwA6GPlfeZ8VNs1+fztlkHH9DXlZHXCcshH2z9c6jRDCFplMsORp9bjbPdC8m7Z5hLgC+y1wZJBx/fk0h35PqcfLX5Idx4UQte39DdJ3q9sxDHlZ6zRCXJH9FjgyBqdh+jwB3s0hJwW2zNI6jRDClpSXwKrX1eN+T4JHgLZ5hKgH+60CpIuqYVzcYdDz6vH696A4V9s8Qgjbse1ryE4Bz2Do9Q+t0whRL/Zb4Mjgt4brdDv4R0DROXWfKiGEKM6Ftf9Vjwc+o34ZEqIRsOMqQLYeaDCD0/lWnA0fQ+E5bfMIIbS38RMoPAt+bdQNNYVoJOy3wJEuqqvT/mYIioHSPPj7fa3TCCG0VJStrloMMPhFde0sIRoJ+y1wZBbV1dHrYci/1ePNsyA/Q9s8QgjtbJkFJTnQNEr98iNEI2K/BY604Fy9iOHQvDuUF6nN00IIx1OSd/7//3VPy7hG0ejY72+sTBO/ejodXDddPd76P3WvKiGEY9nyBRRnqxMPOozVOo0QDWa/VYB0UV2biBEQ2EEdi7PlS63TCCGsqbQANn6sHl83Xd5PRaNkvwWOTmZRXRO9HvpPU483faq+4QkhHMP2b9SZU03CoeOtWqcR4qrYb4Ej3ziuXfub1Te4onOwfbbWaYQQ1lBRdn7mVL+n1OUjhGiE7LfAkTE4187gdH6Pqg0fQXmppnGEEFaw/w/ISQWPpurin0I0UvZbBcgsKvPofIe6PHveKdlpXAh7pyiw4UP1uOdD4OyqbR4hroH9FjjSRWUeTkboOVk93viJ+gYohLBPx9ZD2i5wcoPuD2idRohrYr8FjrTgmE/sJHByhbQESNmkdRohhKVs+Ei97nInePhrm0WIa2THBY79/mhW5+EPnSaox7IJpxD26UwSHFoG6CDuMa3TCHHN7LcKkFU3zav3P9TrA4sg65imUYQQFrB5pnrdbhT4t9E2ixBmIFWAqJ/AaGg9CBSTusKpEMJ+FOfCrjnqce9HtM0ihJlIgSPqr6rZese3UJKvbRYhhPnsngNlBRAQCa36a51GCLOQAkfUX5sh4NcGSnJh71yt0wghzEFRYGvldiw9Jssq8MJuSIEj6k+vh+73q8fbvtI2ixDCPI6thzMHwNkDOsvCfsJ+SIEjGqbznWAwqlPGT27XOo0Q4lpVtd50ug1cfbTNIoQZySYjomE8/KHDzWqf/bavoHms1onEVVIUhTN5JaScKyTlXCGnsovILiwjt7iM3KJyyk3qoo46HRid9Pi6O+Pr5oKfhwuhfu609HcnzM8dV2dZc6rRyk1TZ0aC2j0lhB2RAkc0XPdJaoGzZy4MfwPcfLVOJOohp6iMjUfOkpCazd6TOew5mUNOUdk1v27rph50au5Dpxa+dG/VhI7NfNDrZRxHo7DjWzCVQ1gcBHfUOo0QZiUFjmi40F4Q2B4y9quFTq+HtU4kLiEpPY8le9JYe+gMu1KzMV2004ZeB8183Qjzc6e5rxt+Hi54uznj7eqEs0FP1cOLSivIKSojp6isutXn2NkC8orLOXqmgKNnCpifcAoAPw8X+rUNYGC7pgxrH4SXq7N1f2hRP6YK2DFbPZZtGYQdkgJHNJxOp7biLJmudlP1fEhmXtiQk9lFzN1+goW7TnEoo+Z0/tZNPegV7kdMc186tfAhIsgTo9PVdTEpisLZglL2nMxhd2oOu05ksyX5HOcKSlmw6xQLdp3CxUnP4HaB3NSlGUOig3BxkmF/NuPIKsg9CW5+0P5GrdMIYXZS4Iir0+k2WPGSOvsidTOE9dY6kUMzmRTWH87k243HWXXgdHVLjYtBz4B2TRkWHUTfiACa+7qZ7Zw6nY4ATyOD2gUyqF0gAGUVJnamZLPmYAZ/7k3n6JkClu5LZ+m+dAK9jNzZK4w7e4YR6C27VGtux7fqdacJ6qa6QtgZnaLY1/bQubm5+Pj4kJOTg7e3t9Zx7Nvv/4BdP0LXe+Cmj7VO45AqTAqL96Tx8apDHDx9vrWmTxt/xnZtzvAOwfi4adNFpCgK+9NyWbDrFPN2nORMXgkATnodY7s2Z8rgtrT099Akm8MryIR3o8BUBo/8LeNvhE0w9+e3FDji6h1bD9+MBhdPmH4QXOTDylpMJoWFu0/x4cpDHDlTAICX0YlbYltwd++WtA301DhhTaXlJpbtS2f2hmNsO54FgKGy0HlySAShfu4aJ3QwGz+BZc9Ds67wULzWaYQAzP/5LV1U4uq17AtNWqmbb+5fAF3u0DqRQ9iZksWrC/eTkJoNgI+bMw/0C+e+vq3wttEBvS5OesZ0bsaYzs3YkZLFhysPEZ90ht+2n2DBrlNM7hfOo4Pa4mmUtySLUxTY8Z163PVubbMIYUHSgiOuzZr/g9X/UfevuW+R1mns2tn8Et5YnMi8nScBcHcx8I8Bbbivb6tGOVMpITWbd5Ylsf5wJgCBXkaeHxXNTV2aoZNB65ZzYjt8ORicXOGfSbLMg7AZ5v78likN4tp0uQPQwbF1cC5Z6zR2SVEUFuw6xbD31lYXN7fGtiB++kAeHxLRKIsbgC6hvnz3QE++uLc7Lf3dycgr4ak5CUyevY30nGKt49mvnZWDi9vfJMWNsGtS4Ihr49MCWg9UjxN+1DSKPcrML+Hh77bzxE87OVdQSlSwF/Mf68s74zvbxUwknU7HsPZBLJ96HdOHR+Ji0LPyQAbD3lvDb9tPYGcNzNorLVQX6ATpnhJ2Twocce2q3ih3/QQmk7ZZ7Mimo2cZ9cE6lu8/jbNBx9ShkSyY0o8uob5aRzM7o5OBKYMjWPREPzqH+pJXXM70X3cx7ZddFJSUax3PfhxYDKV54NsSWvbTOo0QFiUFjrh2UaPB6AM5qZC8Rus0jV6FSeGDvw5x5xebyMgroW2gJwum9OPJoRF2v1BeZJAXcx+J4+kR7TDodfy+8yRjPl5PYlqu1tHsw+6f1evOt4Pevn+XhJDfcHHtnN0g5hb1eNfP2mZp5PJLynno222899dBTIo61mbBlL5EhzjOgHkng57HBrXl54d6E+LjytEzBdz8yd8s3p2mdbTGLT9DXb0Y1MX9hLBzUuAI8+h0u3p9YJHazy8a7ERWIbd+toGVBzIwOul5Z3xn3hnfGXcXx5w63aOVH4uf6M+AyKaUlJt47McdfLjykIzLuVp754Jigubdwb+N1mmEsDgpcIR5hPZU+/VL8yFpidZpGp0dKVnc/MnfHEjPo6mXkTkPx3FrbAutY2nOz8OFr+7rwQP9wgGYseIgT/6cQEl5hcbJGqHdc9Rrab0RDkIKHGEeOh3EjFeP9/yqbZZGZt2hM9z1xWYy80vp0MybBVP62uVA4qtl0Ov49w3teWtcDE56nbow4OxtFJbK4ON6O3MQTu0EnQE6jtM6jRBWIQWOMJ9Ot6nXh/+CgrPaZmkk/tyTxqRvtlJUVsF1kU359ZE4QnzMtyGmPbmjZxjf3N8TdxcD6w5lcveXm8kpLNM6VuOw5xf1uu1Q8AjQNosQViIFjjCfpu0guBOYymH/71qnsXlzt5/gsR93UFahMDomhC/v7e6w423qq19EAN9P7oWPmzM7UrKZMGsjZ/NLtI5l2xTlgu6p27TNIoQVSYEjzKvqDXS3dFNdzh8JJ5n+2y5MCkzoHsqHd3S1+yng5tItrAlzHu5NUy8jB9LzuOd/W8guLNU6lu1K3QzZKeqmuO1GaZ1GCKuRd1RhXh1vAXSQugmyjmudxiYt3ZvGtF92oShwZ68w3r4lBoNe9l5qiKhgb35+qDcBnkb2p+Uy8ast5BZLd1Wdqlpvom8EF9m1XTgOKXCEeXk3g/D+6rEMNq5l9YEMHv9pJxUmhVu6teA/N3WUjSWvUpumnvwwuRdN3J3ZdSKHSV9vlYHHFysvhb3z1GPpnhIORgocYX4xlW+ke35V+/8FoO6e/Y8ftlNWoXBDpxD+e2sn9NJyc03aBXvx3QO98HZ1YtvxLJ6oLB5FpaOroTgbPIMg/Dqt0whhVVLgCPNrfyMYjHDmAJzeq3Uam5BytpDJs7dSXGZiQGRT3pvQRbqlzKRjcx++vr8HLk56/krM4JUF+2QxwCpVrTftbwa9QdMoQlibFDjC/Fx9IGKYerxPZlNlFZRy3zdbqte5+eSubjgb5L+eOcW29OODCV3Q6eC7Tcf5fO1RrSNpr6z4/KKbHcZqm0UIDci7rLCMqjfUfb87dDdVabmJh7/fztEzBTTzceWr+3rgaZSp4JYwMiaEF0e3B+DtPw+wdK+D7111ZCWU5IJXMwjtpXUaIaxOChxhGZHXg5MbnDsKabu0TqOZNxbvZ0vyOTyNTnx9f0+CvF21jmTXHugXzn19WgHwz192ceh0nraBtFTVPdVhrOwcLhyS/NYLyzB6QuRw9dhBu6nmbj/B7I3qVPn3JnShXbCXxokcwwujo+nd2o+C0goe+m47OUUOOH28rAiS/lSPpXtKOCgpcITlOHA31d6TOTz/+x4AnhgSwbD2QRonchzOBj2f3NmN5r5uJGcWMHVOAiZHm1l1aDmUFYBPGLTornUaITQhBY6wnIjh4OwO2cfVjf4cRE5RGQ9/t52SchNDogJ5akiE1pEcjr+nkc/vicXopGfVgQw+W3NE60jWVd09dbO6Ea4QDkgKHGE5Lh4QOUI9dpBuKkVReH7eHk5mFxHm586MCV1krRuNdGzuw+s3dQRgxoqDbD+epXEiKyktgIPL1GPpnhIOTAocYVkdxqnX++Y7RDfVnK2pLN6ThpNex0d3dMXHzVnrSA5tfPcW3Ni5GRUmhSd+2ukY43EOLoXyImjSCpp11TqNEJqxaIGzdu1axowZQ7NmzdDpdMyfP/+Kz1mzZg2xsbG4urrSunVrZs6cacmIwtIihoGzB+SkwMntWqexqMMZeby6cD8A00e0o3Oor7aBBDqdjjfGdiTMz52T2UU8P2+P/S8CWNVa2mGsdE8Jh2bRAqegoIDOnTvz8ccf1+vxycnJjBo1iv79+7Nz506ef/55nnjiCebOnWvJmMKSnN2g3Uj12I67qUrKK3j8pwSKyiro1zaAh/q31jqSqOTl6syHd3TFSa9j8Z40ft1+QutIllOSB4dWqMdVradCOCiLFjgjR47kP//5D+PG1e8/2syZMwkLC+P9998nOjqayZMnM2nSJN555x1LxhSWVj2baj6YTJpGsZSPVx0mMS0XPw8XZtzWWcbd2Jguob5MGx4JwOsL95OWU6RxIgtJ+hPKi8G/LQTHaJ1GCE3Z1BicjRs3Mnz48Bq3jRgxgm3btlFWVnffeUlJCbm5uTUuwsa0HQouXpB7Ak5u0zqN2e09mcOn8eosnf/c3JFAWczPJj18XRu6hPqSV1LOs3PttKtq/x/qdfubpXtKODybKnDS09MJCqq5XkhQUBDl5eVkZmbW+Zy33noLHx+f6ktoaKg1ooqGcHaFqFHq8b75mkYxt9JyE9N/3UWFSWF0TAijYkK0jiQuwaDX8c74zrg46Vlz8Ay/bEvVOpJ5lRbC4ZXqcfsbtc0ihA2wqQIH1EGBF6r6lnXx7VWee+45cnJyqi+pqXb2pmUvoivfcBMX2tVsqk9WH+ZAeh5+Hi68elMHreOIK2gb6Mk/h1V2VS1K5FS2HXVVHVmpzp7yDYPgTlqnEUJzNlXgBAcHk56eXuO2jIwMnJyc8Pf3r/M5RqMRb2/vGhdhg9oMVhf9y0mBtASt05jFgfRcPll9GIBXb+xAgKdR40SiPib3b03XMF/yS8p5ZcE+reOYT+JC9TpqjHRPCYGNFThxcXGsWLGixm3Lly+ne/fuODvLeiKNmou7OmUczr8RN2KKovDv+XspNykMbx/EDZ2ka6qxMOh1vD2uE056Hcv3n2bF/tNaR7p25aXq+jcA0WO0zSKEjbBogZOfn09CQgIJCQmAOg08ISGBlJQUQO1euvfee6sf/8gjj3D8+HGmTZtGYmIiX331Ff/73/+YPn26JWMKa7mwm6qRm7vjJFuPZeHuYuCVGztcsgtV2KZ2wV5MrpzK/8qCfRSWlmuc6BodWwfFOeDRFEJ7ap1GCJtg0QJn27ZtdO3ala5d1dU0p02bRteuXXnppZcASEtLqy52AMLDw1myZAnx8fF06dKF119/nQ8//JBbbrnFkjGFtUQMB4MLZB6EjANap7lq2YWlvLUkEYAnh0TQzNdN40TiajwxpC3Nfd04mV3EhysPax3n2hxYpF5HjQa9QdssQtgIJ0u++MCBAy87FfObb76pdduAAQPYsWOHBVMJzbh6Q+tBcGiZ2ooTGKV1oqvyf8uSOFtQSkSgJ5P6hWsdR1wldxcnXr2xA5O/3caX644yrltzIoO8tI7VcCYTHFisHkdJ95QQVWxqDI5wAFXjAxL/0DbHVdqVms2PW9RWx9dv7oizQf4LNWZD2wcxvH0Q5SaF1xbub5xr45zYCvmnwegN4ddpnUYImyHvzsK62o0CnQHS98C5ZK3TNIiiKLy+aD+KAmO7Nqd367pn9onG5cXR7XEx6Fl/OJNVBzK0jtNwiQvU68gR4OSibRYhbIgUOMK6PPyhVV/1uGrcQCPx5950th3PwtVZzzPXN87uNVFbmL97dVfjG4sTKatoRNuJKMr5/0cye0qIGqTAEdZXNZtq/wJtczRASXkFb/+pDox+6Lo2BPvIdgz25LFBbQjwdOFoZgHfbTyudZz6O70Pso6Bk6u6JYoQopoUOML6om5Qr09sgdw0bbPU03cbj5NyrpCmXkYevk52Crc3Xq7OTBvWDoAPVh4iu7BU40T1VLXkQpsh4OKhbRYhbIwUOML6vEOgReVaHY2gmyqroJQPVx4C4Onh7fAwWnTyodDIhB6hRAV7kVNU1nimjVd3T92gbQ4hbJAUOEIb1bOpbL+b6qNVh8ktLicq2ItbYltoHUdYiEGv4/lR0QB8v+k4J219n6pzR+H0XnXQfuT1WqcRwuZIgSO0UVXgHPsbCs5qm+Uy0nKK+H6zOibjuVHRGPSyYrE96x8RQO/WfpRWmPjwr0Nax7m8xMrWm1b9wN1P2yxC2CApcIQ2/MIhOAaUCkhaonWaS/po1WFKy030DPfjuogAreMIC9PpdDw9Qp0h99uOExw5k69xosuoGn8js6eEqJMUOEI71XtT2WY3VcrZQn7ZmgrA9OHtZL8pBxHbsglDowOpMCm8t+Kg1nHqlpeuDtIHdXsGIUQtUuAI7VQVOEfjoThX0yh1+WDlIcpNCtdFNqVnuHQBOJJ/DldnVC3ancbekzkap6lD1eDiFj3Au5m2WYSwUVLgCO00bQf+EVBRCoeWa52mhsMZefy+8wQA/xwWqXEaYW3RId7c2FktHGbYYitO1fibKJk9JcSlSIEjtKPTnZ/eWjWewEa899chTAoMax9E51BfreMIDUwdFoleB6sOZNhWK05RFhxbpx7L+BshLkkKHKGtqjfoQyugrFjbLJUOZ+SzZI+6AOE0ab1xWOEBHoypbMX5eJUNrYtzcBmYyiGwPfi30TqNEDZLChyhrWbdwLs5lBXA0dVapwHgs/gjKJWtN9Eh3lrHERqaMqgtAEv3pXPwdJ7GaSrJ7Ckh6kUKHKEtne78OAIb6KZKPVfI/ISTADxW+eEmHFdEkBcjOwYDNtKKU1oAh1eqxzL+RojLkgJHaK/qm2jSEqgo1zTKrLVHqTAp9GsbQBcZeyM4X+gu2n2Ko1qvi3N4JZQXgW9LdR0pIcQlSYEjtBcWB+7+6uDJ439rFiMjr5g529R1b6T1RlTp2NyHIVGBmBT4NP6ItmGq954ao7Z+CiEuSQocoT2DE7QbqR5r2E31v3XJlJab6BbmS+/Wsu6NOG/KYLXgnb/zJGk5Gu1RVV4KSUvVYxl/I8QVSYEjbEPVon8HFoPJZPXT5xSW8f0mdc+pKYPbyqrFooauYU3o3dqPcpPCN38f0ybEsXVQkgMegdCipzYZhGhEpMARtiF8ALh4Qd4pOLXD6qf/YctxCkoriAr2YlC7QKufX9i+h65rDcCPm1PIKy6zfoCq1s2oUaCXt24hrkT+lwjb4OwKEcPUYyvvTVVabmL2hmMAPNi/tbTeiDoNjAykbaAneSXlzKnco8xqTBVq6yZI95QQ9SQFjrAdVW/ciQtBUax22iV70jidW0JTL2P1wm5CXEyv1/Fg/3AAvlqfTFmFFbtST2yFggww+kCr66x3XiEaMSlwhO2IGAYGI5w7ChmJVjmloih8uf4oABPjWuLiJP8lxKXd1KU5AZ4unMoprl7t2iqquqciR4CTi/XOK0QjJu/mwnYYvaDNYPXYSrOptiSfY+/JXIxOeu7s1dIq5xSNl6uzgYlxrQD4Yt1RFGu0NCrKBasXy+J+QtSXFDjCtlS9gR+wToHz5fpkAG6JbYGfh3wzFld2d++WuDkb2Hsyl83J5yx/wtN7Ifs4OLlC26GWP58QdkIKHGFbIkeCzgDpe+BcskVPdSyzgL8STwMwqW+4Rc8l7EcTDxfGdmsOwLcbj1n+hFWtN22GgIuH5c8nhJ2QAkfYFg9/aNVXPa5atdVCvtlwDEWBQe2a0jbQ06LnEvbl3ji1O3PZvtOWX/gv8YLVi4UQ9SYFjrA9UVWzqSxX4BSUlPPb9hMA3C+tN6KBooK96RXuR4VJ4cfNKZY70dkjkLFPbdWMHGG58whhh6TAEbYnarR6nboZ8tItcor5CSfJLyknPMCDfm0DLHIOYd8m9mkFwE9bUigpr7DMSapaMcP7g7tsHyJEQ0iBI2yPT3No3h1Qzi9uZkaKovDdRnVbhrt6haHXy8J+ouGGtQ8i2NuVzPxS/txjmUK8uhUzSmZPCdFQUuAI21Q9m8r83VTbj2dxID0PV2c942NDzf76wjE4G/Tc1SsMgNmWGGycmwYntqjHUuAI0WBS4AjbVDUOJ3ktFGWZ9aWrNtW8sXMzfNydzfrawrHc3jMMZ4OOnSnZ7D6Rbd4XryruW/QA7xDzvrYQDkAKHGGbAtpCYHswlcPBZWZ72cz8EpZUdifc07uV2V5XOKamXkZGx6jFx7eV3Z5mc0BmTwlxLaTAEbarqlnejKsa/7ItldIKE51b+BDTwsdsrysc19291Snji3afItdcu4wXnoPkdeqxdE8JcVWkwBG2q+qb6+GVUFpwzS9XYVL4YZM6pbfqQ0mIaxXbsgltAz0pLjPxR8Ip87zowaWgVEBQR/BvY57XFMLBSIEjbFdwDPi2hPIitci5RmsPneFkdhE+bs6ya7gwG51Oxx091cHGP28x05o41XtPSfeUEFdLChxhu3S682/wZuimmrMlFYBx3Zrj6my45tcTosq4rs1xMejZdyqXPSdyru3FSvLPF/RS4Ahx1aTAEbat6g3+4DIoL73ql8nML6ned2pCD5kaLsyriYcL13cMBuCnrdfYinP4L6gogSbh6kB7IcRVkQJH2LYWPcEzCEpy4Njaq36Z+TtPUm5S6NzCh6hgbzMGFEJ1e0+1cF6QcIqCkvKrf6ELu6d0sgilEFdLChxh2/T681s3XGU3laIozNmqdk/dJq03wkLiWvvTyt+d/JJyFu2+ysHG5SXnl0WIvtF84YRwQE5aBxDiiqJugG1fwYElMHoG6Bs2fmZnajaHMvJxddbL4GJhMTqdjtt7hvH2nwf4aUsqE3qENfxFjq6B0jzwCoHmseYPqZGKigrKysw0hV40as7OzhgM1hkDKQWOsH2t+oOrDxRkQOoWaBnXoKf/Utl6M6pjCN6usnKxsJxburXgnWVJJKRmk5SeR7tgr4a9QOIC9TrqBrX1spFTFIX09HSys7O1jiJsiK+vL8HBwegs3AUrBY6wfU4uEDkSdv+sdlM1oMApKCln4S61u0C6p4SlNfUyMiQ6kGX7TjN3xwmeHxVd/yebKiBpiXocbR+L+1UVN4GBgbi7u1v8A03YNkVRKCwsJCMjA4CQEMtuQSIFjmgcom9QC5wDC2HEG/UefLl4TxoFpRW08nenV7ifhUMKobbiLNt3mt93nuRfI9rhZKhnS0zKRig8C25NoGVfy4a0goqKiurixt/fX+s4wka4ubkBkJGRQWBgoEW7qxp/G6hwDG2GgJMbZKdA+u56P+3XbWr31PjuofLtUVjFwHaB+Hm4cCavhHWHM+v/xKpB9O1GgaHxd6VWjblxd3fXOImwNVW/E5YelyUFjmgcXNwhYqh6XM/ZVMmZBWw9loVeB7fGtrBgOCHOc3HSc2PlYPa520/U70mKYrerF8sXC3Exa/1OSIEjGo+oqlWNF9Xr4fN3ngSgX0RTgrxdLZVKiFpu6aYW1Mv3nyanqB7fUk/tgNyT4OwBrQdZOJ0QjkEKHNF4RI4AvROcSYTMQ5d9qKIozE9QC5xxXZtbI50Q1To29yYyyJPSchOLd6dd+QlVRXvkcHCWYtxW3Xfffdx8881ax2gwnU7H/Pnz6/34+Ph4dDpdo5/9JgWOaDzcfCF8gHp8hW6qHSlZHD9biLuLgeEdgiyfTYgL6HS66lacuTuu0E2lKDWnhwub9cEHH/DNN99Y5LXz8/NxdnZmzpw5NW6fMGECOp2OI0eO1Li9TZs2PP/88/V67bS0NEaOHGm2rACvvPIKXbp0MetrmpsUOKJxqZo+e+Dy3VTzdqitN9d3DMbdRSYLCusb27U5eh1sP55FcmbBpR94JgnOHgaDC0QMt15A0WA+Pj74+vpa5LU9PT3p3r07q1evrnH7mjVrCA0NrXH7iRMnOHr0KIMG1a87Mzg4GKPRaNa8jYEUOKJxaTca0MHJ7ZBT9zfjkvIKFlV2C4yV7imhkUBvV/pHNAVg3uVacfbPV6/bDAZX2SdNa7/99hsxMTG4ubnh7+/P0KFDKShQC9SLu6jy8vK466678PDwICQkhPfee4+BAwfy1FNPXfL1d+3axaBBg/Dy8sLb25vY2Fi2bdsGwKBBg4iPj69+bGJiIkVFRTz66KM1bl+9ejXOzs707asuJ7Bw4UJiY2NxdXWldevWvPrqq5SXn98P7eIuqg0bNtClSxdcXV3p3r078+fPR6fTkZCQUCPr9u3b6d69O+7u7vTp04ekpCQAvvnmG1599VV27dqFTqdDp9NZrGXrWkiBIxoXryAI660eH1hc50Pik86QU1RGkLeRPm0CrBhOiJpuqZy9N2/HSUwmpe4H7ftdvW5/s3VCaUhRFApLy61+UZRL/N1fJC0tjTvuuINJkyaRmJhIfHw848aNu+Tzp02bxt9//82CBQtYsWIF69atY8eOHZc9x1133UWLFi3YunUr27dv59lnn8XZWV0WYNCgQSQlJZGWpn5BW716Nf3792fw4MG1CpxevXrh7u7OsmXLuPvuu3niiSfYv38/n3/+Od988w1vvPFGnefPy8tjzJgxxMTEsGPHDl5//XWeeeaZOh/7wgsv8O6777Jt2zacnJyYNGkSoHab/fOf/6RDhw6kpaWRlpbGhAkTLvtza0Ha7kXjE3WDuiha4kLo9XCtu3+v7J66qUtzDHqZoiq0M7x9EF5GJ05mF7E9JYserS5abDLjAJw5AHpnaGfeMRK2qKisgvYvLbP6efe/NqJeXdVpaWmUl5czbtw4WrZsCUBMTEydj83Ly2P27Nn8+OOPDBkyBICvv/6aZs0uv99dSkoKTz/9NFFRUQBERERU39e3b1+cnZ2Jj4/njjvuID4+ngEDBtCtWzdycnI4dOgQERERxMfHc/fddwPwxhtv8OyzzzJx4kQAWrduzeuvv86//vUvXn755Vrn/+GHH9DpdHzxxRe4urrSvn17Tp48yYMPPljrsW+88QYDBqjjHp999llGjx5NcXExbm5ueHp64uTkRHBw8GV/Xi1JC45ofKrG4Rz/GwrO1rgrp7CMVQfUZcCle0pozdXZwPAO6gfAH5Wz+mq4sHvKzddquUTdOnfuzJAhQ4iJiWH8+PF88cUXZGVl1fnYo0ePUlZWRs+ePatv8/HxoV27dpc9x7Rp05g8eTJDhw7l7bffrjF42N3dnZ49e1a31qxZs4aBAwfi5ORE3759iY+PJyUlheTkZAYPHgyo3UivvfYanp6e1ZcHH3yQtLQ0CgsLa50/KSmJTp064ep6frbehT/DhTp16lR9XLWtQtU2C42BtOCIxqdJKwjupK5onLQEut1TfdeiPacorTARFexFdIiMZxDau6lLM+buOMHi3Wm8PKYDzhdu3VDVPdVhrDbhrMzN2cD+10Zoct76MBgMrFixgg0bNrB8+XI++ugjXnjhBTZv3kx4eHiNx1Z1W128aN2VusNeeeUV7rzzThYvXsyff/7Jyy+/zM8//8zYservwKBBg5gzZw779u2jqKiIbt26ATBgwABWr16Ni4sLrq6u9O6tdtWbTCZeffVVxo0bV+tcFxYxF+arb+aqrrMLf06TyXTZn8+WSAuOaJyib1SvL5pNVdU9Na6btN4I29CnjT8Bni5kFZax/sKtGxysewrUD0l3FyerXxqycq5Op6Nv3768+uqr7Ny5ExcXF37//fdaj2vTpg3Ozs5s2bKl+rbc3FwOHbr8Gl0AkZGRTJ06leXLlzNu3Di+/vrr6vsGDRrEoUOH+PHHH+nXr1/1Xk0DBgwgPj6e+Ph44uLiqouXbt26kZSURNu2bWtd9HXsSB8VFcXu3bspKSmpvq1qkHNDuLi4UFFR0eDnWZMUOKJxquqmOrIKSvIASD1XyLbjWeh0cGNnKXCEbXAy6BkdozbvL0g4df4O6Z6yOZs3b+bNN99k27ZtpKSkMG/ePM6cOUN0dO1d4b28vJg4cSJPP/00q1evZt++fUyaNAm9Xn/JgqqoqIgpU6YQHx/P8ePH+fvvv9m6dWuN1+/Tpw9Go5GPPvqoevwLQI8ePcjJyWHu3Lk1poe/9NJLfPvtt7zyyivs27ePxMRE5syZw4svvlhnhjvvvBOTycRDDz1EYmIiy5Yt45133gEatoVCq1atSE5OJiEhgczMzBoFk62QAkc0Tk2jwL8tVJTCQXXQYtXU8LjW/gT7yGqwwnbc2EUtuJftS6eotPJb77756nWHmzXJJGrz9vZm7dq1jBo1isjISF588UXefffdSy6SN2PGDOLi4rjhhhsYOnQoffv2JTo6us6uIVC7wM6ePcu9995LZGQkt912GyNHjuTVV1+tfkxV91NeXh4DBw6svt3Z2Zm4uDjy8vJqFDgjRoxg0aJFrFixgh49etC7d29mzJhRPUi6rp9x4cKFJCQk0KVLF1544QVeeuml6nPX1y233ML111/PoEGDaNq0KT/99FO9n2stOqW+8+caidzcXHx8fMjJycHbW8Zg2LWVr8O6d9S1ce74kVEfrGN/Wi5vjYvhjp5hWqcTopqiKPT/72pOZBXx8Z1duSE4Fz7tpXZPPX3YLltwiouLSU5OJjw8vEEfnI1ZQUEBzZs359133+WBBx7QOk69/fDDD9x///3k5OTg5uZm8fNd6nfD3J/f0oIjGq+OlYPqDq8g+cQp9qfl4qTXcX0H2522KByTTqer3mH8j4RT0j1lJ3bu3MlPP/3EkSNH2LFjB3fddRcAN910k8bJLu/bb79l/fr1JCcnM3/+fJ555hluu+02qxQ31mSVAufTTz+trtRiY2NZt27dJR9btcnXxZcDBw5YI6poTALbq11VFaUcWqPu39IvIoAmHi4aBxOitpsqu6nikzKo2Fs1e+pm7QIJs3jnnXfo3Llz9YrH69atIyDAthcYTU9P5+677yY6OpqpU6cyfvx4Zs2apXUss7P4NPE5c+bw1FNP8emnn9K3b18+//xzRo4cyf79+wkLu3Q3QlJSUo0mqqZNm1o6qmhsdDroeAusfgOf5IXAP7mh0+UX2RJCK+2CvWgX5EVFRiKGzKrZU6O0jiWuQdeuXdm+fbvWMRrsX//6F//617+0jmFxFm/BmTFjBg888ACTJ08mOjqa999/n9DQUD777LPLPi8wMJDg4ODqS9VUOSFq6KB2U3UrSyDIkC87hwubdmOXZozWb1b/IN1TQliURQuc0tJStm/fzvDhNXfIHT58OBs2bLjsc7t27UpISAhDhgyptbvqhUpKSsjNza1xEQ4koC2nPdrhrKtgSkgi3q7OV36OEBq5sXMzRhnUAien9WiN0whh3yxa4GRmZlJRUUFQUM1v1UFBQaSnp9f5nJCQEGbNmsXcuXOZN28e7dq1Y8iQIaxdu7bOx7/11lv4+PhUX0JDQ83+cwjbpSgKv5f2AuB63UaN0whxeaFlybTTn6BEcWJxaVet4whh16wyyLiuZaEvtaBQu3btePDBB+nWrRtxcXF8+umnjB49unohoos999xz5OTkVF9SU1PNnl/Yrj0nc/g+PxaAgMwtkHda40RCXMaeXwGIN3VhfmKBxmGEsG8WLXACAgIwGAy1WmsyMjJqtepcTu/evS+5/LXRaMTb27vGRTiORbvTOKE0Jdk1Gp1igv1/aB1JiLopCuyZC8AfFX3YevwcGbnFGocSwn5ZtMBxcXEhNjaWFStW1Lh9xYoV9OnTp96vs3PnzuqdTIWoYjIpLNqlLn1f3O5m9ca9c7ULJMTlpG6BnBRw8eRs80EoCvy5t+6ueiHEtbN4F9W0adP48ssv+eqrr0hMTGTq1KmkpKTwyCOPAGoX07333lv9+Pfff5/58+dz6NAh9u3bx3PPPcfcuXOZMmWKpaOKRmZnahancorxNDoRft1dgA5SN0HOCa2jCVFbZfcUUTcwrFMrABbvSdMuj6jTwIEDeeqpp676+VVruWVnZ5stk7ldTcZXXnmFLl26WCyTJVi8wJkwYQLvv/8+r732Gl26dGHt2rUsWbKkep+MtLQ0UlJSqh9fWlrK9OnT6dSpE/3792f9+vUsXry4zq3ghWNbuEv9cBjePghX/1BoWdkquK/2zr9CaKqi/PzvZcx4RlZuvrn1mHRTiUtbunQpOp2u1jCP4ODgWhNqTpw4gU6nY/ny5Vd83T59+pCWloaPj49Z815rcWhuVhlk/Oijj3Ls2DFKSkrYvn071113XfV933zzDfHx8dV//te//sXhw4cpKiri3LlzrFu3jlGjZDEsUZPJpPDnXrXAGd2psvuyausG6aYStiY5Hgozwd0fWg+gua8bXcN8pZtKXFa/fv1wcnKq8RmZmJhIcXExubm5HD58uPr21atX4+zsTN++fa/4ui4uLgQHBzdo9/DGSPaiEo1SwolsTueW4Gl0ol9E5bLo0TeBzgCndkJm3YPShdDEnt/U6w5jwaCu1TS6shVHuqlsT3l5OVOmTMHX1xd/f39efPFFLtyXuqSkhH/961+EhoZiNBqJiIjgf//7X52vVVRUxOjRo+nduzfnzp2r8zG//fYbMTExuLm54e/vX73tg6enJz169KhR4MTHx9OvXz/69etX6/aePXvi4eGBoij897//pXXr1ri5udG5c2d+++23Go+9uIvqiy++IDQ0FHd3d8aOHcuMGTPw9fWtlfW7776jVatW+Pj4cPvtt5OXlwfAfffdx5o1a/jggw+qt1g6duzYlf+yLUgKHNEoLdunfusdFBWI0alylWvPptB2iHq8e45GyYS4SFkRJC5Sj2PGV9/skN1UigKlBda/XFCc1Mfs2bNxcnJi8+bNfPjhh7z33nt8+eWX1fffe++9/Pzzz3z44YckJiYyc+ZMPD09a71OTk4Ow4cPp7S0lJUrV+Ln51frMWlpadxxxx1MmjSJxMRE4uPjGTduXHVBNWjQoBqL3a5evZqBAwcyYMCAWrcPGjQIgBdffJGvv/6azz77jH379jF16lTuvvtu1qxZU+fP+/fff/PII4/w5JNPkpCQwLBhw3jjjTdqPe7IkSPMnz+fRYsWsWjRItasWcPbb78NwAcffEBcXBwPPvggaWlppKWlab4uncX3ohLC3BRFYVlls36tncM7TYBDy9UCZ+DzoJcaXmjs4DIozQOfUGjRs/rmqm6qnSnZ/Lk3nYl9WmmX0VrKCuFNDfaLe/4UuHjU++GhoaG899576HQ62rVrx549e3jvvfd48MEHOXjwIL/88gsrVqxg6NChALRu3brWa5w+fZoJEybQpk0bfvrpJ1xc6t4EOC0tjfLycsaNG1c9NjUmJqb6/oEDB/Lmm2+SlpZGSEgIa9as4emnn8ZkMvHBBx8AkJqaSnJyMoMGDaKgoIAZM2awatUq4uLiqvOtX7+ezz//nAEDBtTK8NFHHzFy5EimT58OQGRkJBs2bGDRokU1Hmcymfjmm2/w8vIC4J577mHlypW88cYb+Pj44OLigru7O8HBwbXOoQV59xeNTtLpPI6dLcTFSc/AdhdtwtpuFLh4QXaKOqNKCK1VzZ7qeEutglu6qWxT7969a4xPiYuL49ChQ1RUVJCQkIDBYKizULjQ0KFDad26Nb/88sslixuAzp07M2TIEGJiYhg/fjxffPEFWVlZ1ff37dsXFxcX4uPj2b9/P0VFRXTr1o3Y2Fhyc3M5dOgQq1evxmg00qdPH/bv309xcTHDhg3D09Oz+vLtt99y5MiROjMkJSXRs2fPGrdd/GeAVq1aVRc3oO48kJGRcdm/By1JC45odJbtVVcrvi4iAA/jRb/CLu7Q/kZI+EFtxWlZ//WWhDC7omw4VLkOWMytte4eGRPCfxYnVndTBXq7WjeftTm7q60pWpzXTNzc3Or1uNGjRzN37lz2799fo0XmYgaDgRUrVrBhwwaWL1/ORx99xAsvvMDmzZsJDw/H3d2dnj17snr1as6dO0e/fv2qN5/u06cPq1evZuPGjcTFxeHq6orJZAJg8eLFNG/evMa5jEZjnRnq2l1AqaNbz9m55l5/Op2u+ny2SFpwRKOztHL8zYiLu6eqdJqgXu/7HcocZGyDsE375kFFCQS2h6COte6+cDZV1e+1XdPp1K4ia18aOFto06ZNtf4cERGBwWAgJiYGk8l0yfEsVd5++20mTpzIkCFD2L9//xX+WnT07duXV199lZ07d+Li4sLvv59f7mLQoEHEx8cTHx/PwIEDq28fMGBA9e1V42/at2+P0WgkJSWFtm3b1rhcakxMVFQUW7ZsqXHbtm3bLpu5Li4uLlRUVDT4eZYiBY5oVFLOFpKYlotBr2No9CW2+2jVH7ybQ3EOHFpm3YBCXCjhJ/W68x2X/JCt6qZatFu6qWxFamoq06ZNIykpiZ9++omPPvqIJ598ElC7aSZOnMikSZOYP38+ycnJxMfH88svv9R6nXfeeYe77rqLwYMHc+DAgTrPtXnzZt588022bdtGSkoK8+bN48yZM0RHR1c/ZtCgQRw6dIilS5fW6BobMGAAixYt4tixY9UFjpeXF9OnT2fq1KnMnj2bI0eOsHPnTj755BNmz55dZ4bHH3+cJUuWMGPGDA4dOsTnn3/On3/+2eBp5K1atWLz5s0cO3aMzMxMzVt3pMARjUrV7Kle4X408bhEv7Zef747YJfMphIayTwMJ7aATg+dbrvkwy6cTZWZX2KtdOIy7r33XoqKiujZsyePPfYYjz/+OA899FD1/Z999hm33norjz76KFFRUTz44IMUFNS9eep7773HbbfdxuDBgzl48GCt+729vVm7di2jRo0iMjKSF198kXfffZeRI0dWPyYuLq66eyk2Nrb69h49elBRUYGbmxu9evWqvv3111/npZde4q233iI6OpoRI0awcOFCwsPD68zYt29fZs6cyYwZM+jcuTNLly5l6tSpuLo2rMt0+vTpGAwG2rdvT9OmTWss4qsFnVJXR1sjlpubi4+PDzk5ObLxph265bMNbD+exWs3deDeuFaXfuDp/fBZHOidYfpBcK89PVMIi1r5Oqx7B9oOg7t/u+xDb/x4PbtP5PD2uBhu7xlmpYCWVVxcTHJyMuHh4Q3+oBTae/DBBzlw4ADr1q0z+2tf6nfD3J/f0oIjGo2M3GK2H1dnFwxvf4VpiEHtITgGTGXqOAghrMlkOr8WU5c7rvjwqvFkDjEOR9ikd955h127dnH48GE++ugjZs+ezcSJE7WOdU2kwBGNxvL96uypLqG+BPvU4xthp9vVa+mmEtZ2fD3kpILRR1264AqqCpy/D2eSW1xm6XRC1LJlyxaGDRtGTEwMM2fO5MMPP2Ty5Mlax7omMk1cNBpV42+u71jPRaRiboUV/1bHQWQegoAIC6YT4gJVg4s73AzOV55W3DbQk7aBnhzOyGf1gQxu6tL8is8RwpzqGiTd2EkLjmgUcgrL2HjkLHCZ6eEX8wpWxz8A7PzOQsmEuEhJPuz/Qz3ucme9n1a1KvdS2XxTCLOQAkc0CisPnKbcpNAuyIvwgPovuU63e9TrhJ+gQpr+hRUkLoSyAvBrDaG9rvz4SlWFe3zSGYrLbGctkWtlZ/NYhBlY63dCChzRKFR9qx1R3+6pKhEjwD0ACjLOrygrhCXt+lG9vszaN3Xp2Nyb5r5uFJVVsPbgGQuFs56qVW8LCws1TiJsTdXvxMUrI5ubjMERNq+wtJw1lW/4tTbXvBInF+h8O2z8WO2mirrygE8hrtq5o5C8FtCpv3cNoNPpGNEhmK/+TmbpvnSGN/R33cYYDAZ8fX2r9ypyd3dv8MJxwr4oikJhYSEZGRn4+vpWbzlhKVLgCJu39uAZSspNhPq5ER3ideUnXKzbvWqBc3AZ5KWrY3OEsIQdlWO92gwG34avZ3N9R7XA+Wv/acoqTDgbGncje9Wu0ra8IaOwPl9fX6vsOC4FjrB5Vd1T13cIvrpvgE3bQYue6myqXT9Bv6lmTigE6hivhB/U49irWz8ktmUTAjxdyMwvZdPRs/SPaGrGgNan0+kICQkhMDCQsjIZAyfUbilLt9xUkQJH2LTSchMrD6jf/uo9Pbwu3e5RC5yd30Pfpxq8+Z4QV3RwKeSfBo+mEDnyyo+vg0GvY1j7IH7aksrSvemNvsCpYjAYrPahJkSVxt3+KezexqNnySsup6mXka6hTa7+hTqMBWcPOHsYUjZd+fFCNNT2yo0Mu9ypjv26SlWzqZbvP43JJDOQhLhaUuAIm1bVPTW8fRB6/TW0uhi9oONY9VjWxBHmlp0Kh/9Sj7td2/L2fdoE4GV04kxeCTtTs8wQTgjHJAWOsFkVJoUV+xu4evHldL1Xvd47D4rkg0OY0c7vAQVa9Qf/Ntf0Ui5OeoZEBwKy6J8Q10IKHGGzth/PIjO/FG9XJ3q39r/2FwztCUEdobzo/FL6QlwrU8X5VsHY+8zyklUF/dJ96bJQnhBXSQocYbOq9p4aGh1knumyOh30eEA93vqluuOzENfq8F+QexLcmkDUDWZ5yesim2J00pN6roj9ablmeU0hHI0UOMImKYpy9asXX07MbeDiBeeOQPIa872ucFxbv1SvO98BzvXY5b4e3F2cGBCpzqBatu+0WV5TCEcjBY6wSftO5XIyuwg3ZwPXmXOqrNHz/AqzVR9MQlyts0fObwHSY7JZX7q6m2pvmllfVwhHIQWOsElV3VMDIpvi5mLm9TOquqmSlkDOSfO+tnAs274CFHXX+mscXHyxIVFBOOl1HDydT3JmgVlfWwhHIAWOsEnVqxebs3uqSmA0tOwHigl2zDb/6wvHUFpwfnBxz4fM/vI+7s7EtVEH11cV/EKI+pMCR9icI2fyOZSRj7NBx6CoQMucpMck9Xr7N+oS+0I01J5foTgHmrSCtkMtcoqqDTdlurgQDScFjrA5Vd9W49oE4OPmbJmTRI0Bj0B1af3EBZY5h7BfigJbvlCPezwIesu8lY5oH4ROBwmp2aTnFFvkHELYKylwhM1ZdsHmmhbj5ALd71ePN31mufMI+5SyEU7vBSc36HqXxU4T6O1K11BfAJbvl1YcIRpCChxhU05lF7HrRA46HQxrH2TZk/WYDAYXOLEVUrdY9lzCvmyZpV53uk1d/8aCqsahyTgcIRpGChxhU5ZXvol3b9mEpl5Gy57MM1BdFwdg4yeWPZewH9kpsL+yW9MCg4svVrX55qaj58gqKLX4+YSwF1LgCJuytLLAGWHJ7qkLxT2qXicugKzj1jmnaNw2zQSlAloPhOCOFj9dS38PooK9qDAprDyQYfHzCWEvpMARNuNsfglbks8BVixwgjqoH1SK6Xy3gxCXUpR9fmmBPo9b7bQjZDaVEA0mBY6wGSsTMzAp0KGZN6F+7tY7cdwU9Xr7bCiWfX/EZeyYDaX5ENge2gyx2mmrxuGsO3SGgpJyq51XiMZMChxhM6q6pyw6e6oubYZAQCSU5sHO7617btF4lJeq3VOgFsU6ndVOHRXsRZifOyXlJtYcPGO18wrRmEmBI2xCXnEZ6w9lAhZavfhy9HroXTkWZ9NnsvCfqNu+eZB3CjyDIeZWq55ap9PJbCohGkgKHGET4pPOUFphonWAB20DPa0foPPt4NEUclLUFWqFuJCiwIaP1ONeD4OThWf41WFEB3XZhFWJGZSWm6x+fiEaGylwhE2onj3VMRidFZv+qzm7Qdxj6vG6GWCqsH4GYbsOrVAX9nP2OL9ApJV1DVWXTsgrKWfDkUxNMgjRmEiBIzRXXFZBfOX0V6uPv7lQ9wfA1QfOHoIDi7TLIWyLosDa/6rHPSZZfGG/S9HrdQyvXPxSuqmEuDIpcITm/j6cSUFpBSE+rnRq4aNdEFdv6Pmwerz2HfWDTYjkNepq106uEGe9qeF1qRqHs2L/aSpM8vspxOVIgSM0V7W2x4gOGnVPXaj3P9RuiPTdcHiltlmEbVj7jnrdbSJ4WXj7kCvo3dofb1cnMvNL2X48S9MsQtg6KXCEpsorTKxIPA1YcXG/y3H3Oz/GYt072mYR2ju+EY6tA70z9H1C6zQ4G/QMjZZuKiHqQwocoaktyefILizDz8OFHq20GdtQS9wUdRPOlI2QvFbrNEJLa/9Pve56F/i00DZLpeEXrGqsSDeqEJckBY7QVNW30KHRgTgZbOTX0TtE7Y4AWPWGjMVxVCe2w5GVoDNA36e0TlNtQGRTXJ31nMwuYt8pWXlbiEuxkU8U4YhMJoVl+9TuKasv7ncl/f+pDipN3QSH/9I6jdDCqtfU6863g1+4tlku4OZiYEBkU0C6qYS4HClwhGZ2ncgmPbcYDxcDfdoEaB2nJu8Q6DFZPV71urTiOJqja+BovDr2ZsAzWqepRVY1FuLKpMARmqla3G9wdBCuzgaN09Sh31Rw8YS0XbIujiNRFLWoBXXAeZOW2uapw+B2QTjpdRw8nc/RM/laxxHCJkmBIzShKEr19HBNF/e7HI8Addo4qGNxZHVjx5D0Z+W6N27Qf7rWaerk4+5MXBt/gOpuXiFETVLgCE0cSM/j+NlCjE56BrZrqnWcS4uboq5ufCYR9vymdRphaSbT+dab3o9ovu7N5VQtq7BUuqmEqJMUOEITVa0310U2xcPopHGay3DzhT6V65+seh3KijSNIyxs72+QsR+MPtD3Sa3TXNbw9kHodLArNZu0HPm9FOJiUuAITdh899SF4h4D7xaQkwqbPtU6jbCU0kL461X1uO8Tmu05VV+B3q50C1MzLpduKiFqkQJHWN3RM/kknc7DSa+rXpXVpjm7wZCX1ON170F+hrZ5hGVs/BhyT4BP6Pmd5W1c1RcEmU0lRG1S4AirqxoUGdfGHx93Z43T1FPMeGjWFUrzYPWbWqcR5pabBuvfU4+HvqIWtY1A1TiczcnnyCoo1TiNELZFChxhdUv3pgE2uLjf5ej1MPwN9XjHbMhI1DaPMK9Vr0NZIbToCR1v0TpNvYX5uxMd4k2FSeGvROmmEuJCUuAIqzqZXcSuEznodDC8fSMqcABa9YWoG0AxwdJnZfE/e3FqJyT8qB5f/zZovaN9A43oULX5phQ4QlxIChxhVcsqBxf3aOlHUy+jxmmuwvDXwWBUV7nd97vWacS1Mplgyb8ABWJugxaxWidqsKqW0LWHzlBQUq5xGiFshxQ4wqqq1uxoVN1TF/JrDf2nqcdLn4Ni2eywUdv5LZzYoq5YPexVrdNclXZBXrT0d6e03MSag2e0jiOEzZACR1jNmbwSth47B8CIxlrggLqzdJNwyE+H+Le1TiOuVv4ZWPGyejz4RfBupm2eq6TT6apnU1UtvyCEkAJHWNGK/adRFOjUwofmvo1jlkqdnF1h1Dvq8eaZkL5X2zzi6qz4NxRnQ3AM9HhQ6zTXZHhlgbP6QAYl5bKliBBgpQLn008/JTw8HFdXV2JjY1m3bt1lH79mzRpiY2NxdXWldevWzJw50xoxhYU1+u6pC0UMhfY3gVIBi56Sfaoam+R1sOsnQAc3vA8GG15Nux66hvoS6GUkr6ScDUfOah1HCJtg8QJnzpw5PPXUU7zwwgvs3LmT/v37M3LkSFJSUup8fHJyMqNGjaJ///7s3LmT559/nieeeIK5c+daOqqwoJyiMjYczgQayerF9THiLXDxUjdm3CxFeKNRWggLK7ff6H4/tOiubR4z0Ot1DK+cTbVcFv0TArBCgTNjxgweeOABJk+eTHR0NO+//z6hoaF89tlndT5+5syZhIWF8f777xMdHc3kyZOZNGkS77zzjqWjCgtamXiacpNCuyAvWjf11DqOefg0hxH/UY9XvgZnj2ibR9TPqtfh3FHwagZDXtY6jdlc3yEEULdtqDDJEgZCWLTAKS0tZfv27QwfPrzG7cOHD2fDhg11Pmfjxo21Hj9ixAi2bdtGWVlZrceXlJSQm5tb4yJsz5I96rfKRj24uC7dJkLrgVBeDPMfla4qW3d8A2yq/HJ144fqZqp2oldrP3zcnDlbUMr241laxxFCcxYtcDIzM6moqCAoqOZ+Q0FBQaSn192Mmp6eXufjy8vLyczMrPX4t956Cx8fn+pLaGio+X4AYRa5xWWsrZy+OjomROM0ZqbTwZgP1WnGqZtgyyytE4lLKS1Qi1AU6Ho3RAzTOpFZORv0DIkOBGDJnjSN0wihPasMMtZdtDKooii1brvS4+u6HeC5554jJyen+pKammqGxMKc/tp/mtIKExGBnrQL9tI6jvk1aQnDXlOP/3pFtnGwVX+9AlnJ4N0cRtjnfmKjOqpfIP7cm4ZJuqmEg7NogRMQEIDBYKjVWpORkVGrlaZKcHBwnY93cnLC39+/1uONRiPe3t41LsK2LN6tfpsc3cnOWm8uFHs/tBmsdlX99gCUFWudSFzowJLzrWs3fgSuPtrmsZD+kQF4uTpxOreEbdJNJRycRQscFxcXYmNjWbFiRY3bV6xYQZ8+fep8TlxcXK3HL1++nO7du+Ps3Eh2nhbVcorKWHvITrunLqTXw80zwaMpZOxT11gRtiHnJPzxqHocNwXaDtE2jwUZnQzVe7wt2n1K4zRCaMviXVTTpk3jyy+/5KuvviIxMZGpU6eSkpLCI488AqhdTPfee2/14x955BGOHz/OtGnTSExM5KuvvuJ///sf06dPt3RUYQHL96VTVqHOnooIssPuqQt5BalFDqitBUl/aptHqIO+5z0IRVkQ0sWuZk1dyg2d1S8SS/aky2wq4dAsXuBMmDCB999/n9dee40uXbqwdu1alixZQsuWLQFIS0ursSZOeHg4S5YsIT4+ni5duvD666/z4Ycfcsstt1g6qrCAxXscoHvqQhFD1VYCgPn/gOy613sSVrLmv3D8b3UQ+K1fgZOL1oksrm+bAHzcnMnML2Fzsiz6JxyXTqkawWsncnNz8fHxIScnR8bjaCy7sJTu//mLcpPCyn8OoI29rH9zJeUl8NUIOLUTQjrDpGXg3Ii3pmiskpbCT7cDCoydBZ0naJ3Iap75bTdztqVyZ68w3hwbo3UcIerF3J/fsheVsJjl+9TF/aJDvB2nuAFwMsJt34G7P6TtgkVTwb6+R9i+zMNq1xQKdH/AoYobON9NtXRvOuUVJo3TCKENKXCExSyq7J66wVG6py7kGwq3fg06vbrn0ZYvtE7kOEryYM5dUJILYXFwvePt+B7X2h8/DxfOFZSy8ah0UwnHJAWOsIhzBaX8Xbn31Ch7nj11Oa0HnF8fZ9lzcGSVtnkcgakC5j0EZw6AVwiMn+0Q424u5mTQV29qu2iXLPonHJMUOMIilu1TZ3B0aOZNeICH1nG0EzcFYm4DUznMuRfS92qdyH4pCix9FpKWgKGym9Cr7vW2HMENlV8slu5Lp7RcuqmE45ECR1iEQyzuVx86Hdz0MbTsB6V58MN4yJX1SSxi48eVi/npYNwsCO2hdSJN9WrtT4CnkZyiMv4+UnubGyHsnRQ4wuwy8orZUPmGekNMM43T2AAnI9z+PQS0g7xT8MNtUJyjdSr7snceLH9RPR7+H+hws6ZxbIFBr2NUjHRTCcclBY4wu4W70jAp0DXMlzB/d63j2Aa3JnDXr+ARCKf3wPe3qoNhxbVLWqqOuwHo9QjEPaZtHhtStXr48v3pFJfJTvfCsUiBI8zuj4STANzcpbnGSWxMk5Zw91x1H6QTW+DH26G0UOtUjdvhlfDLPWAqg463qJtoXmYjX0fTo5UfIT6u5BWXE5+UoXUcIaxKChxhVkfP5LP7RA4GvU7G39QlpBPc8zu4eMHx9ep0ZtmY8+okr4Of74KKUogeA2M/B71B61Q2Ra/XcWMXtZv4950nNU4jhHVJgSPMan6COoC2f0QAAZ5GjdPYqOaxcPdv4OyhTh3/cbx0VzXUoRXqgO3yIogYAbd8BQbZjLcuY7uqLamrD5whu7BU4zRCWI8UOMJsFEWR7qn6CusNd/2i7pGUvBa+vQkKz2mdqnHYO1fdgqG8CCKGw23fOuRaN/UVFexNVLAXpRWm6r3hhHAEUuAIs0lIzeb42ULcnA0Ma++464/UW6t+MHEhuPnBye3w9SjIkW6Ey9r2Ffz2gLquUMdb4fYfwdlV61Q2r6oVZ750UwkHIgWOMJs/KrunhncIwsPopHGaRqJ5N7j/T3XV3TOJ8MVgtdgRNZkqYNkL6r5eKNB9krrWjXRL1cuNXZqh08HWY1mknpOB7cIxSIEjzKKswsTCXWqBI91TDRQYBQ8sh8D2kJ+utuTsnad1KttRnAs/3aEu5Acw8DkYPUMGFDdAiI8bfdr4A+dnOQph76TAEWax/nAmZwtK8fNwoV9EgNZxGh/fMJi0TB0wW14Mv90Pf70CFeVaJ9NWxgH43zA4tAycXNUNTAc+K1PBr0LVF4/fd55Ekd3thQOQAkeYxe871G+FN3QKwdkgv1ZXxdUb7vhJ3b8KYP178M1oyDmhbS6t7PwBZg1UN870DIb7l0DHcVqnarSu7xiM0UnPkTMF7D2Zq3UcISxOPonENcspKmPZvnQAbunWQuM0jZzeACPeUFsqjN6Quglm9oPERVons56ibJj3MPzxqDpTqvUgeGSdOr1eXDUvV+fqwf+yJo5wBFLgiGu2cNcpSspNRAZ50qmFj9Zx7EPHcfDwGgjpAkVZ6oKAv02CAjvfNDFpKXzaG3b/DDo9DH4R7p4HnoFaJ7MLVbOpFuw6SVmF7DAu7JsUOOKa/bpd7UK5rXsoOhkbYT5+rdXBx/2mgs6grv/ySU/YNQfsbQxF3mmY+yD8NAHy0sC/rTq77LqnQS9vU+ZyXWRTAjyNZOaXsuqAbN0g7Ju8c4hrcvB0HrtSs3HS67i5q8yeMjsnIwx9BSb/BYEdoPAs/P6QOvD2hB1MJy8vUccafdQN9vyittr0eRweWa8uhijMytmg55ZY9f/pL1tTNU4jhGVJgSOuya/b1DfJQVGBsjWDJTXvBg/Fw+B/q1s8nNgKXw6GuZMh85DW6RquohwSflRbpP56BUrz1TE2D/wFw/8Dzm5aJ7Rb42NDAVidlMHpXNkHTdgvKXDEVSurMFUPVhwfK4OLLc7JBa6bDo9vh853qrft+RU+7qGu7ptxQNt89VFeqs6O+rg7zP8HZB1TZ0iN/VwtblrIQGJLaxvoSfeWTTApMHeHg87QEw5BChxx1eKTzpCZX0qApwuDomQQqNV4h8DYz+ChNdBuFKDA3t/g017w7c3qjCtbWz8nNw1WvwnvdVBnR2Ulg7s/DH21smC7XcbaWNFt3dVWnF+3nZA1cYTdkvX0xVWr6p66uUtzWftGC826qOvmpO2CNf+FA4vh6Gr14t0cYm5V92sKjtFmYbzSAkj6E/b8BodXqPtHgdpiE/codH8AjJ7WzyUY3SmEVxfuIzmzgK3HsugZ7qd1JCHMTgoccVUycourZ2GMr/w2KDQS0hlu/wGyjqubUe74FnJPwt8fqBf/CGh3PbQZDGFxlh3fkp0Ch1fCkZXqddkF+x6F9YGeD0L0GNlDSmMeRidu6NSMOdtSmbM1VQocYZd0ip21T+bm5uLj40NOTg7e3t5ax7FbH686xDvLDxLbsglz/9FH6zjiQmXFcPBPdT+rQ8vVrR+qGIzQoru6vk6zrhDcEZq0anjRoyiQfxrOHoZTCXBqB5zcoXY9XahJK7UVKeZWCIy+tp9LmNX24+e45bONuDkb2PLCELxcpegU2jL357e04IgGqzAp/LRF7Z66q1eYxmlELc6u0GGseinJg4PL4Ehl11XuSTj+t3q5kGewuh+Wux+4+oKrj9rKUvX9p7xIXXCwKAvyz6iFTFkdu1LrDNCih9paFDFMLaJkbSSb1C2sCW0DPTmckc/8hFPc07ul1pGEMCspcESDrTmYwcnsInzdnRkVE6J1HHE5Ri+19STmVrVYyTwEJ7dVtrrsVPd5KslVdzHPT2/Ya+v04NMCgjup44GadVNbh1xlNevGQKfTcVevMF5duJ/vNh7j7l5hslCnsCtS4IgG+2FTCgC3dmuBq7NB4zSi3nQ6aBqpXrpUTjNXFLVVJusY5KSq+0AVZ0NxDpgqzj/PYDzfuuPur3Y9+YapU9dFozWuWwv+uzSJg6fz2ZJ8jl6t/bWOJITZSIEjGuREViGrktTBxXdK91Tjp9OphYu7n7qYoHAoPm7O3Ny1GT9tSeW7TcelwBF2Reb2igaZszUVRYG+bf1p3VSm+ArR2N1dOfZm6d50MmRlY2FHpMAR9VZabuLnrVWDi2VAohD2oEMzH2JbNqHcpFT//xbCHkiBI+rtz71pnMkroamXkWHtg7SOI4Qwk6oZVD9uTqG8wqRxGiHMQwocUS+KovC/9eoaJ/f2bikrFwthR0bGBOPv4UJ6bjF/JZ7WOo4QZiGfUqJeth/PYveJHIxOehlcLISdMToZmNBDXZH8q/XHtA0jhJnYbYFjMtnVAs2aq2q9Gdu1Of6eRo3TCCHM7d64VjjpdWw5do5dqdlaxxHimtltgVNhXztQaCr1XCHL9qmLwN3fN1zjNEIISwj2ceXGLs0A+GLdUY3TCHHt7LfAkRYcs5m94RgmBfpHBNAu2EvrOEIIC5ncrzUAS/akkXqujq04hGhE7LbAkQYc88gtLmNO5dTRSdJ6I4Rda9/Mm/4RAZgU+PrvY1rHEeKa2G2BI11U5vH9puPklZTTNtCTAZFNtY4jhLCwyf3VVpw5W1PIKSrTOI0QV89+CxzporpmRaUV/G+dOrj40YFt0OtlIz4h7N11EQG0C/KioLSCHzenaB1HiKtmtwWOzKK6dr9sS+VsQSktmrgxpnMzreMIIaxAp9Px0HVqK87/1h+lqLRC40RCXB27LXAU6aK6JqXlJj5fcwSAhwe0kYX9hHAgN3ZpRqifG5n5pfy4RVpxRONkt59aMgbn2vyRcJJTOcUEeBoZH9tC6zhCCCtyNuh5bGBbAGauOUJxmbTiiMbHbgsck2ynctXKK0x8Fq+23jzYPxxXZ4PGiYQQ1jauWwua+7pxJq+keialEI2J/RY40oJz1X7feZKjmQX4ujtzV2/ZNVwIR+TipOeRgW0AtRWnpFxacUTjYrcFjsyiujql5SY+WHkIgH8MaIOn0UnjREIIrdzWvQXB3q6k5RRLK45odOy2wDEhBc7VmLM1hRNZRQR6Gbk3rpXWcYQQGjI6GXh0kNqK8+HKwxSUlGucSIj6s9sCR1pwGq6otIIPVx0G4PHBbXFzkbE3Qji623uEEebnTmZ+CV9VbrorRGNgtwWO1DcN9+3GY5zJK6FFEzcm9AjTOo4Qwga4OOn55/BIAD5fe5RzBaUaJxKifuy2wJF1cBrmbH4JH69WW2+eGhqJi5Pd/moIIRpoTKdmdGjmTX5JOR9XtvIKYevs9lNMuqga5r2/DpJXXE6HZt6M7dpc6zhCCBui1+t45vooQN2f7vjZAo0TCXFlUuAIktLzqvec+fcN7THInlNCiIv0jwigf0QApRUmXl+0X+s4QlyR3RY40kNVP4qi8Pqi/ZgUGNkxmN6t/bWOJISwQTqdjpfHdMBJr+OvxAxWJ2VoHUmIy7LbAke2aqifFftPs/5wJi4GPc+NjNY6jhDChrUN9OT+vq0AeG3hfln8T9g0+y1wpIvqivJLynl5wT4AHugfTpi/u8aJhBC27okhEQR4GknOLODrv49pHUeIS7LbAke2ariyGcsPkpZTTKifG08MjtA6jhCiEfBydebZkeqA4w/+OkTquUKNEwlRN7stcBTZbPOy9pzI4ZsN6qJd/7k5Rhb1E0LU27iuzekZ7kdRWQXPzdsjy3IIm2S3BY6Mwbm0sgoTz87bjUmBGzs3Y0BkU60jCSEaEb1ex/+7pRNGJz3rD2fy67YTWkcSoha7LXBkCM6lfbTyEPtO5eLj5sy/b2ivdRwhRCMUHuBRvcLx64v3czq3WONEQtRktwWOtODUbWdKFp/EHwHgjbEdaepl1DiREKKxmtQ3nM4tfMgrLufp33Zjkm+WwoZYtMDJysrinnvuwcfHBx8fH+655x6ys7Mv+5z77rsPnU5X49K7d+8Gn1sGGddWWFrOtF92UWFSuKlLM27o1EzrSEKIRszJoOed8Z0xOulZe/AMX/0tm3EK22HRAufOO+8kISGBpUuXsnTpUhISErjnnnuu+Lzrr7+etLS06suSJUsafG75JlHbqwv2k5xZQIiPK6/d2FHrOEIIOxAR5MVLY9Su7v+39AB7T+ZonEgIlZOlXjgxMZGlS5eyadMmevXqBcAXX3xBXFwcSUlJtGvX7pLPNRqNBAcHX9P5ZR2cmn7ZlsqcbanodPDu+M74uDtrHUkIYSfu7BnGuoOZLN2XzuM/7WTh4/3wNFrs40WIerFYC87GjRvx8fGpLm4AevfujY+PDxs2bLjsc+Pj4wkMDCQyMpIHH3yQjIxLLwleUlJCbm5ujQtIF9WF9p3K4d/z9wIwbWgkfdoGaJxICGFPdDodb98SQ4iPK8mZBUybkyCt6EJzFitw0tPTCQwMrHV7YGAg6enpl3zeyJEj+eGHH1i1ahXvvvsuW7duZfDgwZSUlNT5+Lfeeqt6jI+Pjw+hoaGA7EVVJauglEd/2EFJuYlB7Zry2KC2WkcSQtghX3cXPr2rGy4GPcv3n+ajVYe1jiQcXIMLnFdeeaXWIOCLL9u2bQPUqv5iiqLUeXuVCRMmMHr0aDp27MiYMWP4888/OXjwIIsXL67z8c899xw5OTnVl9TUVEC6qABKyit4+LvtHD9bSHNfN96b0AW97BQuhLCQrmFN+M9YdXzfe38dZNm+S3+ZFcLSGtxJOmXKFG6//fbLPqZVq1bs3r2b06dP17rvzJkzBAUF1ft8ISEhtGzZkkOHDtV5v9FoxGisPdXZ0buoFEXh2bl72HLsHF5GJ766rwe+7i5axxJC2Lnbuoey72QOszce58mfd/LD5N7EtmyidSzhgBpc4AQEBBAQcOUxHHFxceTk5LBlyxZ69uwJwObNm8nJyaFPnz71Pt/Zs2dJTU0lJCSkQTkdvcB5Z3kSv+88iZNex6d3d6NdsJfWkYQQDuLFG9qTcq6Q1UlneGD2Vn57pA9tAz21jiUcjMXG4ERHR3P99dfz4IMPsmnTJjZt2sSDDz7IDTfcUGMGVVRUFL///jsA+fn5TJ8+nY0bN3Ls2DHi4+MZM2YMAQEBjB07tkHnr3Dgvag+WX2YT1ari/n95+aO9I+QrRiEENbjbNDzyV3d6BzqS3ZhGRO/2sKJLNmUU1iXRdfB+eGHH4iJiWH48OEMHz6cTp068d1339V4TFJSEjk56roJBoOBPXv2cNNNNxEZGcnEiROJjIxk48aNeHk1rAXCUUfwf7nuKP+3LAmA50dFcXvPMI0TCSEckbuLE1/f14PWAR6czC7iji82SZEjrEqn2Nk2sLm5ufj4+PDlyr08MLiD1nGsRlEUZq45yv9begCAqUMjeXJohMaphBCOLi2niNtnbeL42UJC/dz4/oFetPT30DqWsEFVn985OTl4e3tf8+vZ7V5UJuyqbrssk0nhjcWJ1cXNlEFteWKITAcXQmgvxMeNnx/qTUt/d1LPFXHLZxvYlZqtdSzhAOy2wFEcpIuquKyCqb8k8OV6dQ+YF0dHM31Eu8tOxRdCCGsK8XHj14fjaB/iTWZ+KbfP2sTqA5dewFUIc7DbAscR1sE5lV3E+Jkb+SPhFAa9jnfHd2Zy/9ZaxxJCiFoCvV2Z83Bv+kcEUFRWweRvt/HluqPY2SgJYUPst8Cx8/8zfx/O5MaP17PnZA5N3J357oGe3BLbQutYQghxSV6uznx1Xw9ujW1BhUnhP4sT+cf3O8gtLtM6mrBDdrsbmr1+Kyguq+CdZUnVXVJRwV58cW93Qv3cNU4mhBBX5mzQ83+3dqJzCx9eW7SfpfvS2Z+WyzvjO9Mz3E/reMKO2G8Ljh12Ue1IyeLmT/6uLm7u6hXGvEf7SHEjhGhUdDod98S14tdH+tDc142Uc4VMmLWRVxbso7C0XOt4wk7Yb4FjRy04WQWlPDt3N+M+3cCB9Dz8PVz48t7uvDE2BncXu22EE0LYuS6hvvz5VH9u7xGKosA3G44xbMZaFu46Zbet8MJ67PbT0WQHKxkXlJTz9d/JzFp7lNxi9VvN+NgWPDsyCn/P2vtvCSFEY+Pt6szbt3RiZEwIz8/bw8nsIh7/aSezNxzj+dHRdAuTfazE1bHbAqcxF/+5xWX8vCWFz9cc5WxBKaCOtXn95o70aCV91EII+zMgsil/TRvAF+uO8ln8EbYdz2LcpxvoHxHAlEFt6dXaX+uIopGx2wKnMY7BSc4sYPaGY/y6LZWC0goAWvq7M21YJDd0aoZBL2vbCCHsl5uLgSeGRHBb91BmrEhi3o6TrDuUybpDmXQO9eWuXmGM6dQMNxeD1lFFI2C3WzX8Z942Xhgbq3WcK8ouLGXR7jR+33mS7cezqm+PCPRkcv9wxnVrgbPBbodKCSHEJZ3IKuTzNUeZsy2V0nJ13IGXqxM3d2nOmM7N6N6yCXr54mc3zL1Vg90WOK/+tpWXbumudZw6HcssYOWBDFYfyGBz8lnKKhft0evUZtpJ/cLp1zZAViMWQgggM7+EX7ed4KctKaScO79hZ6CXkes7BjMgsim9WvvjabTbTgmHIAXOFVT9Bb3821ZesYECx2RSOHImn63Hsth2/BzbjmXV+A8KEB3izdiuzbipS3OCvF01SiqEELbNZFJYfziTBbtOsWxfOnnF56eUO+l1dAtrQlwbf7qE+dK5hS9+Hi4aphUNZe4Cx27LXZOV6zaTSeFMfgnHzxaSlJ5LYnoeSel5HEzPI6+k5roOTnodPcP9GBwVyOCoQFo39bRqViGEaIz0eh3XRTblusimvDk2hvWHz7AyMYP1hzM5fraQLcfOseXYuerHh/m507G5N22betIm0JOIQC9aN/XA1VnG8DgCuy1wzDXIWFEUCkoryMwr4WxBCZn5pZzNL+Vsfgmn84pJPVdEalYhJ7KKqvuIL+bqrKdLqC89WvkR27IJsS2b4OXqbJZ8QgjhiFyc9AyOCmJwVBAAKWcLWXf4DNuPZ5GQms3RMwWknCus1WKu00FTTyMhvm4093UlxMeNEB9XgrxdaeLuQhMPZ/w8XGji7iKFUCNnt11Usf/+g3+Pi6Wk3ERZhYmychOlFSbKKpTq20orr4tKK8gvKSe/pJyC6uvzt9W3WNLr1F1z2wV70S7Yi6hgL6KCvWnd1EMGCgshhBXlFJWx+0Q2Sel5HM7IVy9n8skurP++V+4uBnzcnHF3MeDu4oS7iwEPY+W1ixPuRgOuzgacDXpcDDqcDXr14nTRnw16nA069Hodep0OvQ70Oh26yuvq2y5zv04HF47KrD1Es+YNF95/8UMvHt95udfVXXDvlYaFXuuw0bzcXNq3CpEuqivJyCvhyZ8TzPZ67i4G/D1dCPA04u9hJKDyONTPjdAm7rRo4k6Ir6sUMkIIYQN83JzpH9GU/hFNq29TFIVzBaWcyi7mVE4Rp7KLSMsp5mR2EZl5JWQVlpJVWEZWQSnlJoXC0goKK5fsEJZnKim88oMawG4LnNiwJrh7eeJSWT27OOlxqbx2rnGbDqOzAS9XJzxcnPB0dcLT6ISHUb32NDrh7eYkWyIIIUQjp9Pp8Pc04u9pJKaFzyUfpygKeSXlZBWUkltUTmFpOYWlFRSUllNYUnldWkFBSfn5XoIKE6XlSvVxWYWJ0gqFsgvuNynq+FCToo7bVI8VlAtvV5TK+87fplQ+rjpfrby181/qsRfeUPt1lEs9tPY5Lnq2OfqCKirM20Bgt11U5mriEkIIIYTlmfvzW/pThBBCCGF3pMARQgghhN2RAkcIIYQQdkcKHCGEEELYHSlwhBBCCGF3pMARQgghhN2RAkcIIYQQdkcKHCGEEELYHSlwhBBCCGF3pMARQgghhN2RAkcIIYQQdkcKHCGEEELYHSlwhBBCCGF3pMARQgghhN1x0jqAuSmKAqjbrgshhBCicaj63K76HL9WdlfgnD17FoDQ0FCNkwghhBCioc6ePYuPj881v47dFTh+fn4ApKSkmOUvSFyb3NxcQkNDSU1NxdvbW+s4Dk3+LWyH/FvYDvm3sB05OTmEhYVVf45fK7srcPR6dViRj4+P/LLaEG9vb/n3sBHyb2E75N/Cdsi/he2o+hy/5tcxy6sIIYQQQtgQKXCEEEIIYXfsrsAxGo28/PLLGI1GraMI5N/Dlsi/he2QfwvbIf8WtsPc/xY6xVzzsYQQQgghbITdteAIIYQQQkiBI4QQQgi7IwWOEEIIIeyOFDhCCCGEsDt2V+B8+umnhIeH4+rqSmxsLOvWrdM6ksN566236NGjB15eXgQGBnLzzTeTlJSkdSyB+m+j0+l46qmntI7isE6ePMndd9+Nv78/7u7udOnShe3bt2sdy+GUl5fz4osvEh4ejpubG61bt+a1117DZDJpHc3urV27ljFjxtCsWTN0Oh3z58+vcb+iKLzyyis0a9YMNzc3Bg4cyL59+xp8HrsqcObMmcNTTz3FCy+8wM6dO+nfvz8jR44kJSVF62gOZc2aNTz22GNs2rSJFStWUF5ezvDhwykoKNA6mkPbunUrs2bNolOnTlpHcVhZWVn07dsXZ2dn/vzzT/bv38+7776Lr6+v1tEczv/7f/+PmTNn8vHHH5OYmMh///tf/u///o+PPvpI62h2r6CggM6dO/Pxxx/Xef9///tfZsyYwccff8zWrVsJDg5m2LBh5OXlNexEih3p2bOn8sgjj9S4LSoqSnn22Wc1SiQURVEyMjIUQFmzZo3WURxWXl6eEhERoaxYsUIZMGCA8uSTT2odySE988wzSr9+/bSOIRRFGT16tDJp0qQat40bN065++67NUrkmADl999/r/6zyWRSgoODlbfffrv6tuLiYsXHx0eZOXNmg17bblpwSktL2b59O8OHD69x+/Dhw9mwYYNGqQSoG6gBZttATTTcY489xujRoxk6dKjWURzaggUL6N69O+PHjycwMJCuXbvyxRdfaB3LIfXr14+VK1dy8OBBAHbt2sX69esZNWqUxskcW3JyMunp6TU+y41GIwMGDGjwZ7ndbLaZmZlJRUUFQUFBNW4PCgoiPT1do1RCURSmTZtGv3796Nixo9ZxHNLPP//Mjh072Lp1q9ZRHN7Ro0f57LPPmDZtGs8//zxbtmzhiSeewGg0cu+992odz6E888wz5OTkEBUVhcFgoKKigjfeeIM77rhD62gOrerzuq7P8uPHjzfoteymwKmi0+lq/FlRlFq3CeuZMmUKu3fvZv369VpHcUipqak8+eSTLF++HFdXV63jODyTyUT37t158803AejatSv79u3js88+kwLHyubMmcP333/Pjz/+SIcOHUhISOCpp56iWbNmTJw4Uet4Ds8cn+V2U+AEBARgMBhqtdZkZGTUqgSFdTz++OMsWLCAtWvX0qJFC63jOKTt27eTkZFBbGxs9W0VFRWsXbuWjz/+mJKSEgwGg4YJHUtISAjt27evcVt0dDRz587VKJHjevrpp3n22We5/fbbAYiJieH48eO89dZbUuBoKDg4GFBbckJCQqpvv5rPcrsZg+Pi4kJsbCwrVqyocfuKFSvo06ePRqkck6IoTJkyhXnz5rFq1SrCw8O1juSwhgwZwp49e0hISKi+dO/enbvuuouEhAQpbqysb9++tZZMOHjwIC1bttQokeMqLCxEr6/5EWgwGGSauMbCw8MJDg6u8VleWlrKmjVrGvxZbjctOADTpk3jnnvuoXv37sTFxTFr1ixSUlJ45JFHtI7mUB577DF+/PFH/vjjD7y8vKpb1Xx8fHBzc9M4nWPx8vKqNfbJw8MDf39/GROlgalTp9KnTx/efPNNbrvtNrZs2cKsWbOYNWuW1tEczpgxY3jjjTcICwujQ4cO7Ny5kxkzZjBp0iSto9m9/Px8Dh8+XP3n5ORkEhIS8PPzIywsjKeeeoo333yTiIgIIiIiePPNN3F3d+fOO+9s2InMMc3LlnzyySdKy5YtFRcXF6Vbt24yNVkDQJ2Xr7/+WutoQlFkmrjGFi5cqHTs2FExGo1KVFSUMmvWLK0jOaTc3FzlySefVMLCwhRXV1eldevWygsvvKCUlJRoHc3urV69us7PiIkTJyqKok4Vf/nll5Xg4GDFaDQq1113nbJnz54Gn0enKIpijopMCCGEEMJW2M0YHCGEEEKIKlLgCCGEEMLuSIEjhBBCCLsjBY4QQggh7I4UOEIIIYSwO1LgCCGEEMLuSIEjhBBCCLsjBY4QQggh7I4UOEIIIYSwO1LgCCGEEMLuSIEjhBBCCLsjBY4QwqoGDhzI448/zlNPPUWTJk0ICgpi1qxZFBQUcP/99+Pl5UWbNm34888/AaioqOCBBx4gPDwcNzc32rVrxwcffFDjNePj4+nZsyceHh74+vrSt29fjh8/DsCuXbsYNGgQXl5eeHt7Exsby7Zt26z+cwshrEsKHCGE1c2ePZuAgAC2bNnC448/zj/+8Q/Gjx9Pnz592LFjByNGjOCee+6hsLAQk8lEixYt+OWXX9i/fz8vvfQSzz//PL/88gsA5eXl3HzzzQwYMIDdu3ezceNGHnroIXQ6HQB33XUXLVq0YOvWrWzfvp1nn30WZ2dnLX98IYQVyG7iQgirGjhwIBUVFaxbtw5QW2h8fHwYN24c3377LQDp6emEhISwceNGevfuXes1HnvsMU6fPs1vv/3GuXPn8Pf3Jz4+ngEDBtR6rLe3Nx999BETJ0607A8mhLAp0oIjhLC6Tp06VR8bDAb8/f2JiYmpvi0oKAiAjIwMAGbOnEn37t1p2rQpnp6efPHFF6SkpADg5+fHfffdx4gRIxgzZgwffPABaWlp1a81bdo0Jk+ezNChQ3n77bc5cuSINX5EIYTGpMARQljdxV1EOp2uxm1V3Usmk4lffvmFqVOnMmnSJJYvX05CQgL3338/paWl1Y//+uuv2bhxI3369GHOnDlERkayadMmAF555RX27dvH6NGjWbVqFe3bt+f333+3wk8phNCSFDhCCJu2bt06+vTpw6OPPkrXrl1p27Ztna0wXbt25bnnnmPDhg107NiRH3/8sfq+yMhIpk6dyvLlyxk3bhxff/21NX8EIYQGpMARQti0tm3bsm3bNpYtW8bBgwf597//zdatW6vvT05O5rnnnmPjxo0cP36c5cuXc/DgQaKjoykqKmLKlCnEx8dz/Phx/v77b7Zu3Up0dLSGP5EQwhqctA4ghBCX88gjj5CQkMCECRPQ6XTccccdPProo9XTyN3d3Tlw4ACzZ8/m7NmzhISEMGXKFB5++GHKy8s5e/Ys9957L6dPnyYgIIBx48bx6quvavxTCSEsTWZRCSGEEMLuSBeVEEIIIeyOFDhCCCGEsDtS4AghhBDC7kiBI4QQQgi7IwWOEEIIIeyOFDhCCCGEsDtS4AghhBDC7kiBI4QQQgi7IwWOEEIIIeyOFDhCCCGEsDtS4AghhBDC7vx/z+TXl7ytHt8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1340,16 +1340,16 @@ "start_time": "2023-11-09T18:41:46.023629125Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:24.682636Z", - "iopub.status.busy": "2023-11-09T20:46:24.682426Z", - "iopub.status.idle": "2023-11-09T20:46:25.117387Z", - "shell.execute_reply": "2023-11-09T20:46:25.116807Z" + "iopub.execute_input": "2023-11-09T22:34:17.762346Z", + "iopub.status.busy": "2023-11-09T22:34:17.761917Z", + "iopub.status.idle": "2023-11-09T22:34:18.110095Z", + "shell.execute_reply": "2023-11-09T22:34:18.109546Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAJaCAYAAAAxh8B+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABd7UlEQVR4nO3dfbhVZZ0//vfx8IxwFJBzPL8gUcknUAmUQL9JoRCF5FgyRaE2jloqSuITYxZawWipNDBaOo6QSPR1RkxrBgUzS01UlCYf0nFCgYJwCg+ieEDYvz/c7G8HUHk4sPGc1+u69nW517rXWp+1D82+573vdd8VhUKhEAAAAAAge5S7AAAAAADYXQjLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgKIW5S5gZ9mwYUP++Mc/pkOHDqmoqCh3OQDA+0ShUMhrr72W2tra7LGH3xV3R/p5AMD22Np+XpMNy/74xz+mW7du5S4DAHifWrJkST7wgQ+Uuwy2QD8PANgR79XPa7JhWYcOHZK8/QF07NixzNUAAO8Xq1atSrdu3Up9CXY/+nkAwPbY2n5ekw3LNg7J79ixo04UALDNPN63+9LPAwB2xHv180zEAQAAAABFwjIAAAAAKBKWAQCQJPnlL3+ZE088MbW1tamoqMhdd931jm3PPvvsVFRUZPLkyQ2219fXZ8yYMenSpUvat2+fESNGZOnSpQ3arFy5MqNHj05VVVWqqqoyevTovPrqq41/QwAA26HJzlkGQONYv3591q1bV+4yoNFUVlamRYsW5iTbgtdffz1HHHFEvvSlL+Uzn/nMO7a76667Mn/+/NTW1m62b+zYsbnnnnsya9asdO7cOePGjcvw4cOzYMGCVFZWJklGjRqVpUuXZs6cOUmSs846K6NHj84999yzc24MgBQKhbz11ltZv359uUuBnaax+nnCMgDe0erVq7N06dIUCoVylwKNql27dtl3333TqlWrcpeyWxk2bFiGDRv2rm3+8Ic/5Lzzzsu9996bT33qUw321dXV5ZZbbsltt92W448/PkkyY8aMdOvWLfPmzcvQoUPz3HPPZc6cOXn00UfTv3//JMnNN9+cAQMG5Pnnn89BBx20c24OoBlbu3Ztli1bljfeeKPcpcBO1xj9PGEZAFu0fv36LF26NO3atcs+++xjFA5NQqFQyNq1a/PKK69k0aJF6dmzZ/bYw6wUW2vDhg0ZPXp0Lr744hx22GGb7V+wYEHWrVuXIUOGlLbV1tamV69eeeSRRzJ06ND8+te/TlVVVSkoS5KPfOQjqaqqyiOPPCIsA2hkGzZsyKJFi1JZWZna2tq0atVKv44mqTH7ecIyALZo3bp1KRQK2WeffdK2bdtylwONpm3btmnZsmVefvnlrF27Nm3atCl3Se8bV199dVq0aJHzzz9/i/uXL1+eVq1aZe+9926wvbq6OsuXLy+16dq162bHdu3atdRmU/X19amvry+9X7Vq1fbeAkCzs3bt2mzYsCHdunVLu3btyl0O7FSN1c/zUyoA78ovjzRFRpNtuwULFuR73/tepk2bts3/d6FQKDQ4ZkvHb9rmr02aNKm0GEBVVVW6deu2bcUD4LuPZqMx/q37XwsAAO/pV7/6VVasWJHu3bunRYsWadGiRV5++eWMGzcu++23X5KkpqYma9euzcqVKxscu2LFilRXV5fa/OlPf9rs/K+88kqpzabGjx+furq60mvJkiWNe3MAAH9FWAYASSZMmJAjjzxym44ZNGhQxo4dW/Y6NnrppZdSUVGRhQsXNmpNkCSjR4/Of/3Xf2XhwoWlV21tbS6++OLce++9SZK+ffumZcuWmTt3bum4ZcuW5emnn87AgQOTJAMGDEhdXV0ee+yxUpv58+enrq6u1GZTrVu3TseOHRu8AGBL3i99ul/84hepqKjIq6++ut3X2Bl18zZzlgGwTWbOX7xLrzeqf/ddcp2LLrooY8aM2aZj7rzzzrRs2XInVbTtunXrlmXLlqVLly7lLoX3qdWrV+fFF18svV+0aFEWLlyYTp06pXv37uncuXOD9i1btkxNTU1pUv6qqqqcccYZGTduXDp37pxOnTrloosuSu/evUurYx5yyCH5xCc+kTPPPDM/+MEPkiRnnXVWhg8fbnJ/gF1sV/br9Ol4PxGWAdCsFQqFrF+/PnvuuWf23HPPbTq2U6dOO6mq7VNZWZmamppyl8H72BNPPJGPfexjpfcXXnhhkuS0007LtGnTtuoc119/fVq0aJGRI0dmzZo1GTx4cKZNm5bKyspSm9tvvz3nn39+adXMESNGZOrUqY13IwA0O02pT0f5eQwTgCalvr4+559/frp27Zo2bdrk2GOPzeOPP17av3HI+7333pt+/fqldevW+dWvfrXZUPm33nor559/fvbaa6907tw5l156aU477bScdNJJpTabDn3fb7/9MnHixPzd3/1dOnTokO7du+emm25qUN+ll16aD33oQ2nXrl3233//XHHFFVm3bt1W39/KlSvzhS98obRKac+ePXPrrbcm2fJjmHfffXd69uyZtm3b5mMf+1imT5/+nkP+KyoqcuONN2bYsGFp27ZtevTokTvuuGOra+T9a9CgQSkUCpu93ikoe+mllzZ7/KNNmzaZMmVK/vznP+eNN97IPffcs9mE/J06dcqMGTOyatWqrFq1KjNmzMhee+21c24KgPelpt6n2+jhhx/OEUcckTZt2qR///757W9/u9n+4447Lu3atcvee++doUOHbjY36EZz5sxJVVVVfvjDH25x/8bP7Gc/+9m7XhNhGQBNzCWXXJJ///d/z/Tp0/Pkk0/mwAMPzNChQ/OXv/xls3aTJk3Kc889l8MPP3yz81x99dW5/fbbc+utt+bhhx/OqlWrctddd73n9a+99tr069cvTz31VM4555x85Stfye9+97vS/g4dOmTatGl59tln873vfS8333xzrr/++q2+vyuuuCLPPvts/vM//zPPPfdcbrzxxnd87PKll17KZz/72Zx00klZuHBhzj777Fx++eVbfZ3PfOYz+c1vfpMvfvGL+fznP5/nnntuq+sEANgRTb1Pt9HFF1+c7373u3n88cfTtWvXjBgxohS6LVy4MIMHD85hhx2WX//613nooYdy4oknZv369ZudZ9asWRk5cmR++MMf5tRTT93ua/I2YRkATcbrr7+eG2+8Md/5zncybNiwHHroobn55pvTtm3b3HLLLQ3aXnXVVTnhhBNywAEHbDYPU5JMmTIl48ePz9/8zd/k4IMPztSpU7dq5MsnP/nJnHPOOTnwwANz6aWXpkuXLvnFL35R2v+1r30tAwcOzH777ZcTTzwx48aNy//9v/93q+9x8eLF6dOnT/r165f99tsvxx9/fE488cQttv3+97+fgw46KN/5zndy0EEH5XOf+1xOP/30rbrOKaeckr//+7/Phz70oXzzm99Mv379MmXKlK2uEwBgezWHPt1G3/jGN3LCCSekd+/emT59ev70pz9l9uzZSZJrrrkm/fr1yw033JAjjjgihx12WM4777zNfii94YYb8uUvfzk/+clP8ulPf3qHrsnbzFkGQJPxP//zP1m3bl2OOeaY0raWLVvm6KOP3mxUVL9+/d7xPHV1dfnTn/6Uo48+urStsrIyffv2zYYNG961hr/+RbOioiI1NTVZsWJFadu//du/ZfLkyXnxxRezevXqvPXWW9u0st9XvvKVfOYzn8mTTz6ZIUOG5KSTTnrHFQSff/75HHXUUQ22/fU9vZsBAwZs9t4qmwDArtAc+nQb/XWfq1OnTjnooINK97hw4cKccsop73r8v//7v+dPf/pTHnrooe3q5216Td5mZBkATUahUEjydodm0+2bbmvfvv17nm9L53kvm66kVFFRUeqMPfroo/nc5z6XYcOG5ac//WmeeuqpXH755Vm7du17nnejYcOG5eWXX87YsWPzxz/+MYMHD85FF120xbZbuu+tuYd3sum5AAB2hubQp9uaetu2bfuebY888sjss88+ufXWW/XzGpGwDIAm48ADD0yrVq3y0EMPlbatW7cuTzzxRA455JCtPk9VVVWqq6vz2GOPlbatX78+Tz311A7V9/DDD+eDH/xgLr/88vTr1y89e/bMyy+/vM3n2WeffXL66adnxowZmTx58mYTzm508MEHN5gIN3l7tcOt8eijj272/uCDD97mWgEAtlVz6dMlDftcK1euzAsvvFDqcx1++OG5//773/X4Aw44IA888EB+8pOfZMyYMTt8Td7mMUwAmoz27dvnK1/5Si6++OJ06tQp3bt3zzXXXJM33ngjZ5xxxjada8yYMZk0aVIOPPDAHHzwwZkyZUpWrly5Q7+6HXjggVm8eHFmzZqVo446Kj/72c+2eX6Ir3/96+nbt28OO+yw1NfX56c//ek7dhrPPvvsXHfddbn00ktzxhlnZOHChaVVDd/rPu64447069cvxx57bG6//fY89thjm80RAgCwMzSHPt1GV111VTp37pzq6upcfvnl6dKlS2mlzvHjx6d3794555xz8uUvfzmtWrXKAw88kFNOOaXBvGUf+tCH8sADD2TQoEFp0aJFJk+evN3X5G1GlgHQpPzjP/5jPvOZz2T06NH58Ic/nBdffDH33ntv9t577206z6WXXprPf/7zOfXUUzNgwIDsueeeGTp0aNq0abPdtX3605/OV7/61Zx33nk58sgj88gjj+SKK67YpnO0atUq48ePz+GHH56PfvSjqayszKxZs7bYtkePHvm3f/u33HnnnTn88MNz4403llbDbN269bte58orr8ysWbNy+OGHZ/r06bn99ttz6KGHblOtAADbq6n36Tb6x3/8x1xwwQXp27dvli1blrvvvjutWrVK8nYIdt999+U3v/lNjj766AwYMCA/+clP0qLF5uOeDjrooPz85z/Pj370o4wbN267r8nbKgo78lDrbmzVqlWpqqpKXV3ddk2yB9Dcvfnmm1m0aFF69OixQ52JpmLDhg055JBDMnLkyHzzm98sdznb7dvf/na+//3vZ8mSJe/YpqKiIrNnz27SvzC+279vfYjdn78RwNbTp2uoqfTptscvfvGLfOxjH8vKlSu3akXQ96vG6Od5DBNonp64dceO7/elxqmD3dbLL7+c++67L8cdd1zq6+szderULFq0KKNGjSp3advkhhtuyFFHHZXOnTvn4Ycfzne+852cd9555S4LoGnTz4DdRlPp07FrCcsAYAv22GOPTJs2LRdddFEKhUJ69eqVefPmbdOksruD//7v/863vvWt/OUvf0n37t0zbty4jB8/vtxlAQDsEk2lT8euJSwDmqX5i/6yQ8f379dIhbDb6tatWx5++OFyl7HDrr/++lx//fXbdEwTnaEBAGiGmkqfrjEMGjRIP28rCcuA96cdfbwBAAAAtsBqmAAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAYLu99NJLqaioyMKFC7fr+EGDBmXs2LGNWhMAANtma/p0++23XyZPnrzd15g2bVr22muv7T5+V2pR7gIAtsf8RX8pdwnN1xO37trr9fvSrr1emQwaNChHHnnkDnVAttZLL72UHj165KmnnsqRRx6506/3bu688860bNmyrDUAQLO1K/t1+nSNbnfq0zU1wjIAmrS1a9emVatW5S6jURQKhaxfvz4tWjSdr+9OnTqVuwSARrejP+r179dIhUATok/HruQxTACalEGDBuW8887LhRdemC5duuSEE05Ikjz77LP55Cc/mT333DPV1dUZPXp0/vd//7d03IYNG3L11VfnwAMPTOvWrdO9e/d8+9vfLu3/7W9/m49//ONp27ZtOnfunLPOOiurV68u7T/99NNz0kkn5bvf/W723XffdO7cOeeee27WrVtXanPDDTekZ8+eadOmTaqrq/PZz362dOyDDz6Y733ve6moqEhFRUVeeuml/OIXv0hFRUXuvffe9OvXL61bt86vfvWr0rX+2tixYzNo0KCtup8ePXokSfr06ZOKiooGx91666055JBD0qZNmxx88MG54YYbGlznscceS58+fdKmTZv069cvTz311Hv+Td7pvjf+vf76Mcxly5blU5/6VNq2bZsePXpk5syZ7znkf+PnceWVV6Zr167p2LFjzj777Kxdu/Y9awMAdk/6dO99P7u6T5ckr732WkaNGpU999wztbW1mTJlSoP9r776as4666xUV1enTZs26dWrV376059u8Vx//vOfc/TRR2fEiBF58803t9hmv/32yze/+c13vebOIMYEoMmZPn16vvKVr+Thhx9OoVDIsmXLctxxx+XMM8/MddddlzVr1uTSSy/NyJEj8/Of/zxJMn78+Nx88825/vrrc+yxx2bZsmX53e9+lyR544038olPfCIf+chH8vjjj2fFihX5+7//+5x33nmZNm1a6boPPPBA9t133zzwwAN58cUX87d/+7c58sgjc+aZZ+aJJ57I+eefn9tuuy0DBw7MX/7yl/zqV79Kknzve9/LCy+8kF69euWqq65Kkuyzzz556aWXkiSXXHJJvvvd72b//fff6nke3u1+HnvssRx99NGZN29eDjvssNKvtDfffHO+8Y1vZOrUqenTp0+eeuqpnHnmmWnfvn1OO+20vP766xk+fHg+/vGPZ8aMGVm0aFEuuOCCd63j3e57S0499dT87//+b37xi1+kZcuWufDCC7NixYr3vN/7778/bdq0yQMPPJCXXnopX/rSl9KlS5cGnWMA4P1Fn2736dNt9J3vfCf/8A//kAkTJuTee+/NV7/61Rx88ME54YQTsmHDhgwbNiyvvfZaZsyYkQMOOCDPPvtsKisrNzvP0qVLM2TIkPTr1y//+q//+q6j7N7tmjuLsAyAJufAAw/MNddcU3r/9a9/PR/+8IczceLE0rZ//dd/Tbdu3fLCCy9k3333zfe+971MnTo1p512WpLkgAMOyLHHHpskuf3227NmzZr88Ic/TPv27ZMkU6dOzYknnpirr7461dXVSZK99947U6dOTWVlZQ4++OB86lOfyv33358zzzwzixcvTvv27TN8+PB06NAhH/zgB9OnT58kSVVVVVq1apV27dqlpqZms/u56qqrtqkz8Nprr73r/eyzzz5Jks6dOze43je/+c1ce+21Ofnkk5O8/Wvls88+mx/84Ac57bTTcvvtt2f9+vX513/917Rr1y6HHXZYli5dmq985SvvWMu73femfve732XevHl5/PHH06/f288g/cu//Et69uz5nvfcqlWrBnVdddVVufjii/PNb34ze+xhID2wbWbOX7xDxx/QSHVAc6dPt/v06TY65phjctlllyVJPvShD+Xhhx/O9ddfnxNOOCHz5s3LY489lueeey4f+tCHkiT777//Zud44YUXcsIJJ+TTn/50aRTe9l5zZ9F7BKDJ2Ri0bLRgwYI88MAD2XPPPUuvgw8+OEnyP//zP3nuuedSX1+fwYMHb/F8zz33XI444ohSpyp5+0t7w4YNef7550vbDjvssAa/nO27776lUVEnnHBCPvjBD2b//ffP6NGjc/vtt+eNN97Yrvt5L+91P1vyyiuvZMmSJTnjjDMafE7f+ta38j//8z+l8x5xxBFp165d6bgBAwa863m35b6ff/75tGjRIh/+8IdL2w488MDsvffe71n/lupavXp1lixZ8p7HAgC7J3263adP907tBgwYkOeeey5JsnDhwnzgAx8oBWVbsmbNmhx77LE56aST8k//9E/vGZS91zV3FiPLAGhy/roDlLw918PGXww3te++++b3v//9u56vUCi84xf5X2/fdFXHioqKbNiwIUnSoUOHPPnkk/nFL36R++67L1//+tczYcKEPP744+85DH/T+9ljjz1SKBQabPvreTTatm37rufbko113nzzzenfv3+DfRs7i5tec2tsy32/0/m357obbU0HDADYPenT7T59unez8bPbmnpbt26d448/Pj/72c9y8cUX5wMf+MAOXXNnMbIMgCbvwx/+cJ555pnst99+OfDAAxu82rdvn549e6Zt27a5//77t3j8oYcemoULF+b1118vbXv44Yezxx57vOsvZ5tq0aJFjj/++FxzzTX5r//6r7z00kul+TVatWqV9evXb9V59tlnnyxbtqzBtoULF5b++73uZ+N8Fn99verq6vx//9//l9///vebfUYbJ4899NBD85vf/CZr1qwpHffoo4/u0H3/tYMPPjhvvfVWgwlmX3zxxbz66qvveY0t1bXnnntudwcMANj96NM1tKv7dFtq9+ijj5ZG9x1++OFZunRpXnjhhXc8fo899shtt92Wvn375uMf/3j++Mc/7tA1dxYjywBo8s4999zcfPPN+fznP5+LL744Xbp0yYsvvphZs2bl5ptvTps2bXLppZfmkksuSatWrXLMMcfklVdeyTPPPJMzzjgjX/jCF/KNb3wjp512WiZMmJBXXnklY8aMyejRo0tzW7yXn/70p/n973+fj370o9l7773zH//xH9mwYUMOOuigJG+v9DN//vy89NJL2XPPPdOpU6d3PNfHP/7xfOc738kPf/jDDBgwIDNmzMjTTz9dmi/jve6na9euadu2bebMmZMPfOADadOmTaqqqjJhwoScf/756dixY4YNG5b6+vo88cQTWblyZS688MKMGjUql19+ec4444x87Wtfy0svvZTvfve7O3Tff+3ggw/O8ccfn7POOis33nhjWrZsmXHjxqVt27bv+evh2rVrS3W9/PLL+cY3vpHzzjvPfGXAdjlg8R3lLgHYAn268vXpNnr44YdzzTXX5KSTTsrcuXNzxx135Gc/+1mS5LjjjstHP/rRfOYzn8l1112XAw88ML/73e9SUVGRT3ziE6VzVFZW5vbbb8/nP//5fPzjH88vfvGLLc7xtjXX3Fn0IAFo8mpra/Pwww9n/fr1GTp0aHr16pULLrggVVVVpTDliiuuyLhx4/L1r389hxxySP72b/+2NDdFu3btcu+99+Yvf/lLjjrqqHz2s5/N4MGDM3Xq1K2uYa+99sqdd96Zj3/84znkkEPy/e9/Pz/60Y9y2GGHJUkuuuiiVFZW5tBDD80+++yTxYvfeXLpoUOH5oorrsgll1ySo446Kq+99lpOPfXUBm3e7X5atGiRf/qnf8oPfvCD1NbW5tOf/nSS5O///u/zL//yL5k2bVp69+6d4447LtOmTSv9CrnnnnvmnnvuybPPPps+ffrk8ssv3+JjENty35v64Q9/mOrq6nz0ox/N3/zN3+TMM89Mhw4d0qZNm3e9zuDBg9OzZ8989KMfzciRI3PiiSdmwoQJ73oMAPD+ok9Xvj7dRuPGjcuCBQvSp0+f0kICQ4cOLe3/93//9xx11FH5/Oc/n0MPPTSXXHLJFkfatWjRovS5ffzjH3/X1c/f65o7Q0WhsR9W3U2sWrUqVVVVqaurS8eOHctdDtDI5t9xbVmv3/+UcWW9/q7w5ptvZtGiRenRo8d7BhWwsyxdujTdunXLvHnz3nFy29NPPz2vvvpq7rrrrq0+77v9+9aH2P35G7Gz6WfQlOjT8X623377ZezYsRk7duxWH9MY/TyPYQIAu42f//znWb16dXr37p1ly5blkksuyX777ZePfvSj5S4NAIBmQlgGAOw21q1bl3/4h3/I73//+3To0CEDBw7M7bffvtmqVAAAsLMIywCA3cbQoUO3eQ6KadOm7ZxiAAAoq5deeqks1zXBPwAAAAAUCcsAAAAAoEhYBsC7aqKLJtPM+XcNQHPju4/mojH+rQvLANiiysrKJMnatWvLXAk0vjfeeCNJLBwAQJO38btu43cfNHWN0c8zwT8AW9SiRYu0a9cur7zySlq2bJk99vD7Cu9/hUIhb7zxRlasWJG99tqrFAoDQFNVWVmZvfbaKytWrEiStGvXLhUVFWWuChpfY/bzhGUAbFFFRUX23XffLFq0KC+//HK5y4FGtddee6WmpqbcZQDALrHxO29jYAZNWWP084RlALyjVq1apWfPnh7FpElp2bKlEWUANCsbfwTt2rVr1q1bV+5yYKdprH6esAyAd7XHHnukTZs25S4DAIAdVFlZ6Qcj2AomoAEAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBom8OyX/7ylznxxBNTW1ubioqK3HXXXaV969aty6WXXprevXunffv2qa2tzamnnpo//vGPDc5RX1+fMWPGpEuXLmnfvn1GjBiRpUuXNmizcuXKjB49OlVVVamqqsro0aPz6quvbtdNAgAAAMDW2Oaw7PXXX88RRxyRqVOnbrbvjTfeyJNPPpkrrrgiTz75ZO6888688MILGTFiRIN2Y8eOzezZszNr1qw89NBDWb16dYYPH57169eX2owaNSoLFy7MnDlzMmfOnCxcuDCjR4/ejlsEAAAAgK3TYlsPGDZsWIYNG7bFfVVVVZk7d26DbVOmTMnRRx+dxYsXp3v37qmrq8stt9yS2267Lccff3ySZMaMGenWrVvmzZuXoUOH5rnnnsucOXPy6KOPpn///kmSm2++OQMGDMjzzz+fgw46aFvLBgAAAID3tNPnLKurq0tFRUX22muvJMmCBQuybt26DBkypNSmtrY2vXr1yiOPPJIk+fWvf52qqqpSUJYkH/nIR1JVVVVqAwAAAACNbZtHlm2LN998M5dddllGjRqVjh07JkmWL1+eVq1aZe+9927Qtrq6OsuXLy+16dq162bn69q1a6nNpurr61NfX196v2rVqsa6DQAAAACaiZ02smzdunX53Oc+lw0bNuSGG254z/aFQiEVFRWl93/93+/U5q9NmjSptBhAVVVVunXrtv3FAwAAANAs7ZSwbN26dRk5cmQWLVqUuXPnlkaVJUlNTU3Wrl2blStXNjhmxYoVqa6uLrX505/+tNl5X3nllVKbTY0fPz51dXWl15IlSxrxjgAAAABoDho9LNsYlP33f/935s2bl86dOzfY37dv37Rs2bLBQgDLli3L008/nYEDByZJBgwYkLq6ujz22GOlNvPnz09dXV2pzaZat26djh07NngBAAAAwLbY5jnLVq9enRdffLH0ftGiRVm4cGE6deqU2trafPazn82TTz6Zn/70p1m/fn1pjrFOnTqlVatWqaqqyhlnnJFx48alc+fO6dSpUy666KL07t27tDrmIYcckk984hM588wz84Mf/CBJctZZZ2X48OFWwgQAAABgp9nmsOyJJ57Ixz72sdL7Cy+8MEly2mmnZcKECbn77ruTJEceeWSD4x544IEMGjQoSXL99denRYsWGTlyZNasWZPBgwdn2rRpqaysLLW//fbbc/7555dWzRwxYkSmTp26reUCAAAAwFbb5scwBw0alEKhsNlr2rRp2W+//ba4r1AolIKyJGnTpk2mTJmSP//5z3njjTdyzz33bDYhf6dOnTJjxoysWrUqq1atyowZM7LXXnvt6P0CAPAOfvnLX+bEE09MbW1tKioqctddd5X2rVu3Lpdeeml69+6d9u3bp7a2Nqeeemr++Mc/NjhHfX19xowZky5duqR9+/YZMWJEli5d2qDNypUrM3r06NLCTKNHj86rr766C+4QAOC97bTVMAEAeH95/fXXc8QRR2xxNP8bb7yRJ598MldccUWefPLJ3HnnnXnhhRcyYsSIBu3Gjh2b2bNnZ9asWXnooYeyevXqDB8+POvXry+1GTVqVBYuXJg5c+Zkzpw5WbhwYUaPHr3T7w8AYGts82OYAAA0TcOGDcuwYcO2uK+qqqrBAk1JMmXKlBx99NFZvHhxunfvnrq6utxyyy257bbbSnPRzpgxI926dcu8efMydOjQPPfcc5kzZ04effTR9O/fP0ly8803Z8CAAXn++efNTwsAlJ2RZQAAbJe6urpUVFSUpspYsGBB1q1bV5pzNklqa2vTq1evPPLII0mSX//616mqqioFZUnykY98JFVVVaU2m6qvry9NzbHxBQCwsxhZBrA9nrh1x47v96XGqQOgTN58881cdtllGTVqVDp27JgkWb58eVq1apW99967Qdvq6urSCunLly9P165dNztf165dS202NWnSpFx55ZWNfAcAAFtmZBkAANtk3bp1+dznPpcNGzbkhhtueM/2hUIhFRUVpfd//d/v1OavjR8/PnV1daXXkiVLtr94AID3YGQZwHaYv+gvO3R8/36NVAjALrZu3bqMHDkyixYtys9//vPSqLIkqampydq1a7Ny5coGo8tWrFiRgQMHltr86U9/2uy8r7zySqqrq7d4zdatW6d169aNfCcAAFtmZBkAAFtlY1D23//935k3b146d+7cYH/fvn3TsmXLBgsBLFu2LE8//XQpLBswYEDq6ury2GOPldrMnz8/dXV1pTYAAOVkZBkAAEmS1atX58UXXyy9X7RoURYuXJhOnTqltrY2n/3sZ/Pkk0/mpz/9adavX1+aY6xTp05p1apVqqqqcsYZZ2TcuHHp3LlzOnXqlIsuuii9e/curY55yCGH5BOf+ETOPPPM/OAHP0iSnHXWWRk+fLiVMAGA3YKwDACAJMkTTzyRj33sY6X3F154YZLktNNOy4QJE3L33XcnSY488sgGxz3wwAMZNGhQkuT6669PixYtMnLkyKxZsyaDBw/OtGnTUllZWWp/++235/zzzy+tmjlixIhMnTp1J94ZAMDWE5YBAJAkGTRoUAqFwjvuf7d9G7Vp0yZTpkzJlClT3rFNp06dMmPGjO2qEQBgZzNnGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgqEW5CwAAAOD/mTl/8Q4dP6p/90aqBKB5MrIMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoMhqmAAAALuRAxbfsWMn6D+ucQoBaKaMLAMAAACAIiPLgLKYOX/xDh1/QCPVAQAAAH/NyDIAAAAAKBKWAQAAAECRsAwAAAAAisxZBpTFDq/yBAAAADuBkWUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUtSh3AQAAAI1p5vzFO3T8AY1UBwDvT0aWAQAAAECRsAwAAAAAioRlAAAAAFBkzjIAAKBJOWDxHeUuAYD3MSPLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAirY5LPvlL3+ZE088MbW1tamoqMhdd93VYH+hUMiECRNSW1ubtm3bZtCgQXnmmWcatKmvr8+YMWPSpUuXtG/fPiNGjMjSpUsbtFm5cmVGjx6dqqqqVFVVZfTo0Xn11Ve3+QYBAAAAYGttc1j2+uuv54gjjsjUqVO3uP+aa67Jddddl6lTp+bxxx9PTU1NTjjhhLz22mulNmPHjs3s2bMza9asPPTQQ1m9enWGDx+e9evXl9qMGjUqCxcuzJw5czJnzpwsXLgwo0eP3o5bBAAAAICt02JbDxg2bFiGDRu2xX2FQiGTJ0/O5ZdfnpNPPjlJMn369FRXV2fmzJk5++yzU1dXl1tuuSW33XZbjj/++CTJjBkz0q1bt8ybNy9Dhw7Nc889lzlz5uTRRx9N//79kyQ333xzBgwYkOeffz4HHXTQ9t4vAAAAALyjRp2zbNGiRVm+fHmGDBlS2ta6descd9xxeeSRR5IkCxYsyLp16xq0qa2tTa9evUptfv3rX6eqqqoUlCXJRz7ykVRVVZXabKq+vj6rVq1q8AIAAACAbdGoYdny5cuTJNXV1Q22V1dXl/YtX748rVq1yt577/2ubbp27brZ+bt27Vpqs6lJkyaV5jerqqpKt27ddvh+AAAAAGhedspqmBUVFQ3eFwqFzbZtatM2W2r/bucZP3586urqSq8lS5ZsR+UAAAAANGeNGpbV1NQkyWajv1asWFEabVZTU5O1a9dm5cqV79rmT3/602bnf+WVVzYbtbZR69at07FjxwYvAAAAANgWjRqW9ejRIzU1NZk7d25p29q1a/Pggw9m4MCBSZK+ffumZcuWDdosW7YsTz/9dKnNgAEDUldXl8cee6zUZv78+amrqyu1AQAAAIDGts2rYa5evTovvvhi6f2iRYuycOHCdOrUKd27d8/YsWMzceLE9OzZMz179szEiRPTrl27jBo1KklSVVWVM844I+PGjUvnzp3TqVOnXHTRRendu3dpdcxDDjkkn/jEJ3LmmWfmBz/4QZLkrLPOyvDhw62ECQAAAMBOs80jy5544on06dMnffr0SZJceOGF6dOnT77+9a8nSS655JKMHTs255xzTvr165c//OEPue+++9KhQ4fSOa6//vqcdNJJGTlyZI455pi0a9cu99xzTyorK0ttbr/99vTu3TtDhgzJkCFDcvjhh+e2227b0fsFAOAd/PKXv8yJJ56Y2traVFRU5K677mqwv1AoZMKECamtrU3btm0zaNCgPPPMMw3a1NfXZ8yYMenSpUvat2+fESNGZOnSpQ3arFy5MqNHjy4tzDR69Oi8+uqrO/nuAAC2zjaHZYMGDUqhUNjsNW3atCRvT8w/YcKELFu2LG+++WYefPDB9OrVq8E52rRpkylTpuTPf/5z3njjjdxzzz2brV7ZqVOnzJgxI6tWrcqqVasyY8aM7LXXXtt9owAAvLvXX389RxxxRKZOnbrF/ddcc02uu+66TJ06NY8//nhqampywgkn5LXXXiu1GTt2bGbPnp1Zs2bloYceyurVqzN8+PCsX7++1GbUqFFZuHBh5syZkzlz5mThwoUZPXr0Tr8/AICtsc2PYQIA0DQNGzYsw4YN2+K+QqGQyZMn5/LLL8/JJ5+cJJk+fXqqq6szc+bMnH322amrq8stt9yS2267rTS9xowZM9KtW7fMmzcvQ4cOzXPPPZc5c+bk0UcfTf/+/ZMkN998cwYMGJDnn3/elBsAQNk16gT/AAA0TYsWLcry5cszZMiQ0rbWrVvnuOOOyyOPPJIkWbBgQdatW9egTW1tbXr16lVq8+tf/zpVVVWloCxJPvKRj6SqqqrUZlP19fWlpw02vgAAdhZhGQAA72n58uVJkurq6gbbq6urS/uWL1+eVq1aZe+9937XNl27dt3s/F27di212dSkSZNK85tVVVVtNn0HAEBjEpYBALDVKioqGrwvFAqbbdvUpm221P7dzjN+/PjU1dWVXkuWLNmOygEAto6wDACA91RTU5Mkm43+WrFiRWm0WU1NTdauXZuVK1e+a5s//elPm53/lVde2WzU2katW7dOx44dG7wAAHYWYRkAAO+pR48eqampydy5c0vb1q5dmwcffDADBw5MkvTt2zctW7Zs0GbZsmV5+umnS20GDBiQurq6PPbYY6U28+fPT11dXakNAEA5WQ0TAIAkyerVq/Piiy+W3i9atCgLFy5Mp06d0r1794wdOzYTJ05Mz54907Nnz0ycODHt2rXLqFGjkiRVVVU544wzMm7cuHTu3DmdOnXKRRddlN69e5dWxzzkkEPyiU98ImeeeWZ+8IMfJEnOOuusDB8+3EqY0FieuHXHju/3pcapA+B9SlgGAECS5IknnsjHPvax0vsLL7wwSXLaaadl2rRpueSSS7JmzZqcc845WblyZfr375/77rsvHTp0KB1z/fXXp0WLFhk5cmTWrFmTwYMHZ9q0aamsrCy1uf3223P++eeXVs0cMWJEpk6duovuEgDg3VUUCoVCuYvYGVatWpWqqqrU1dWZ1wJ2Q/PvuLbcJZRV/1PGlbsE4B3oQ+z+/I14L82+n9Gj046dwMgyoIna2j6EOcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAilqUuwAAAIC/NnP+4h06/oBGqgOA5snIMgAAAAAoMrIMAADYrRyw+I5ylwBAM2ZkGQAAAAAUCcsAAAAAoMhjmABlsKMTF4/q372RKgEAAOCvGVkGAAAAAEXCMgAAAAAo8hgmAABAEzJ/0V926Pj+/RqpEID3KWEZsH2euLXcFbyvHbD4jh07Qf9xjVMIAAAADXgMEwAAAACKhGUAAAAAUCQsAwAAAIAic5YB22VHJ44FAACA3ZGRZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAokYPy95666187WtfS48ePdK2bdvsv//+ueqqq7Jhw4ZSm0KhkAkTJqS2tjZt27bNoEGD8swzzzQ4T319fcaMGZMuXbqkffv2GTFiRJYuXdrY5QIAAABASaOHZVdffXW+//3vZ+rUqXnuuedyzTXX5Dvf+U6mTJlSanPNNdfkuuuuy9SpU/P444+npqYmJ5xwQl577bVSm7Fjx2b27NmZNWtWHnrooaxevTrDhw/P+vXrG7tkAAAAAEiStGjsE/7617/Opz/96XzqU59Kkuy333750Y9+lCeeeCLJ26PKJk+enMsvvzwnn3xykmT69Omprq7OzJkzc/bZZ6euri633HJLbrvtthx//PFJkhkzZqRbt26ZN29ehg4d2thlAwAAAEDjjyw79thjc//99+eFF15IkvzmN7/JQw89lE9+8pNJkkWLFmX58uUZMmRI6ZjWrVvnuOOOyyOPPJIkWbBgQdatW9egTW1tbXr16lVqs6n6+vqsWrWqwQsAAAAAtkWjjyy79NJLU1dXl4MPPjiVlZVZv359vv3tb+fzn/98kmT58uVJkurq6gbHVVdX5+WXXy61adWqVfbee+/N2mw8flOTJk3KlVde2di3AwAAAEAz0ugjy3784x9nxowZmTlzZp588slMnz493/3udzN9+vQG7SoqKhq8LxQKm23b1Lu1GT9+fOrq6kqvJUuW7NiNAAAAANDsNPrIsosvvjiXXXZZPve5zyVJevfunZdffjmTJk3KaaedlpqamiRvjx7bd999S8etWLGiNNqspqYma9euzcqVKxuMLluxYkUGDhy4xeu2bt06rVu3buzbAQAAAKAZafSRZW+88Ub22KPhaSsrK7Nhw4YkSY8ePVJTU5O5c+eW9q9duzYPPvhgKQjr27dvWrZs2aDNsmXL8vTTT79jWAYAAAAAO6rRw7ITTzwx3/72t/Ozn/0sL730UmbPnp3rrrsuf/M3f5Pk7ccvx44dm4kTJ2b27Nl5+umnc/rpp6ddu3YZNWpUkqSqqipnnHFGxo0bl/vvvz9PPfVUvvjFL6Z3796l1TEBANi13nrrrXzta19Ljx490rZt2+y///656qqrSj+KJm9PmzFhwoTU1tambdu2GTRoUJ555pkG56mvr8+YMWPSpUuXtG/fPiNGjMjSpUt39e0AAGxRoz+GOWXKlFxxxRU555xzsmLFitTW1ubss8/O17/+9VKbSy65JGvWrMk555yTlStXpn///rnvvvvSoUOHUpvrr78+LVq0yMiRI7NmzZoMHjw406ZNS2VlZWOXDADAVrj66qvz/e9/P9OnT89hhx2WJ554Il/60pdSVVWVCy64IElyzTXX5Lrrrsu0adPyoQ99KN/61rdywgkn5Pnnny/19caOHZt77rkns2bNSufOnTNu3LgMHz48CxYs0NcDAMquolAoFMpdxM6watWqVFVVpa6uLh07dix3OdDkzL/j2nKX0Kz1P2VcuUuAJksf4p0NHz481dXVueWWW0rbPvOZz6Rdu3a57bbbUigUUltbm7Fjx+bSSy9N8vYosurq6lx99dU5++yzU1dXl3322Se33XZb/vZv/zZJ8sc//jHdunXLf/zHf2To0KHvWYe/UdOnn1Fe+hlAU7W1fYhGfwwTAICm6dhjj83999+fF154IUnym9/8Jg899FA++clPJkkWLVqU5cuXZ8iQIaVjWrduneOOOy6PPPJIkmTBggVZt25dgza1tbXp1atXqc2m6uvrs2rVqgYvAICdpdEfwwQAoGm69NJLU1dXl4MPPjiVlZVZv359vv3tb+fzn/98krdXO09SWuF8o+rq6rz88sulNq1atWqw4vnGNhuP39SkSZNy5ZVXNvbtAABskZFlAABslR//+MeZMWNGZs6cmSeffDLTp0/Pd7/73UyfPr1Bu4qKigbvC4XCZts29W5txo8fn7q6utJryZIlO3YjAADvwsgyAAC2ysUXX5zLLrssn/vc55IkvXv3zssvv5xJkybltNNOS01NTZK3R4/tu+++peNWrFhRGm1WU1OTtWvXZuXKlQ1Gl61YsSIDBw7c4nVbt26d1q1b76zbAgBowMgyAAC2yhtvvJE99mjYfaysrMyGDRuSJD169EhNTU3mzp1b2r927do8+OCDpSCsb9++admyZYM2y5Yty9NPP/2OYRkAwK5kZBkAAFvlxBNPzLe//e107949hx12WJ566qlcd911+bu/+7skbz9+OXbs2EycODE9e/ZMz549M3HixLRr1y6jRo1KklRVVeWMM87IuHHj0rlz53Tq1CkXXXRRevfuneOPP76ctwcAkERYBgDAVpoyZUquuOKKnHPOOVmxYkVqa2tz9tln5+tf/3qpzSWXXJI1a9bknHPOycqVK9O/f//cd9996dChQ6nN9ddfnxYtWmTkyJFZs2ZNBg8enGnTpqWysrIctwUA0EBFoVAolLuInWHVqlWpqqpKXV1dOnbsWO5yoMmZf8e15S6hWet/yrhylwBNlj7E7s/fqOnTzygv/QygqdraPoQ5ywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEUtyl0AUB4z5y/eoeMPaKQ6AAAAYHdiZBkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUtSh3AQBsu5nzF+/Q8aP6d2+kSgAAAJoWI8sAAAAAoMjIMoD3oQMW37FjJ+g/rnEKAQAAaGKMLAMAAACAImEZAAAAABR5DBMAAGhcT9xa7goAYLsJy6CZ2uE5rwAA3sH8RX8pdwkAsN08hgkAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQZDVMAAAASmbOX7xDx4/q372RKgEoDyPLAAAAAKBIWAYAAAAARcIyAAAAACgyZxkAAAAlByy+Y8dO0H9c4xQCUCY7ZWTZH/7wh3zxi19M586d065duxx55JFZsGBBaX+hUMiECRNSW1ubtm3bZtCgQXnmmWcanKO+vj5jxoxJly5d0r59+4wYMSJLly7dGeUCAAAAQJKdEJatXLkyxxxzTFq2bJn//M//zLPPPptrr702e+21V6nNNddck+uuuy5Tp07N448/npqampxwwgl57bXXSm3Gjh2b2bNnZ9asWXnooYeyevXqDB8+POvXr2/skgEAAAAgyU54DPPqq69Ot27dcuutt5a27bfffqX/LhQKmTx5ci6//PKcfPLJSZLp06enuro6M2fOzNlnn526urrccsstue2223L88ccnSWbMmJFu3bpl3rx5GTp0aGOXDQAAAACNP7Ls7rvvTr9+/XLKKaeka9eu6dOnT26++ebS/kWLFmX58uUZMmRIaVvr1q1z3HHH5ZFHHkmSLFiwIOvWrWvQpra2Nr169Sq1AQAAAIDG1uhh2e9///vceOON6dmzZ+699958+ctfzvnnn58f/vCHSZLly5cnSaqrqxscV11dXdq3fPnytGrVKnvvvfc7ttlUfX19Vq1a1eAFAAAAANui0R/D3LBhQ/r165eJEycmSfr06ZNnnnkmN954Y0499dRSu4qKigbHFQqFzbZt6t3aTJo0KVdeeeUOVg8AAABAc9boI8v23XffHHrooQ22HXLIIVm8eHGSpKamJkk2GyG2YsWK0mizmpqarF27NitXrnzHNpsaP3586urqSq8lS5Y0yv0AAAAA0Hw0elh2zDHH5Pnnn2+w7YUXXsgHP/jBJEmPHj1SU1OTuXPnlvavXbs2Dz74YAYOHJgk6du3b1q2bNmgzbJly/L000+X2myqdevW6dixY4MXAACN6w9/+EO++MUvpnPnzmnXrl2OPPLILFiwoLS/UChkwoQJqa2tTdu2bTNo0KA888wzDc5RX1+fMWPGpEuXLmnfvn1GjBiRpUuX7upbAQDYokYPy7761a/m0UcfzcSJE/Piiy9m5syZuemmm3Luuecmefvxy7Fjx2bixImZPXt2nn766Zx++ulp165dRo0alSSpqqrKGWeckXHjxuX+++/PU089lS9+8Yvp3bt3aXVMAAB2rZUrV+aYY45Jy5Yt85//+Z959tlnc+2112avvfYqtbnmmmty3XXXZerUqXn88cdTU1OTE044Ia+99lqpzdixYzN79uzMmjUrDz30UFavXp3hw4dn/fr1ZbgrAICGGn3OsqOOOiqzZ8/O+PHjc9VVV6VHjx6ZPHlyvvCFL5TaXHLJJVmzZk3OOeecrFy5Mv379899992XDh06lNpcf/31adGiRUaOHJk1a9Zk8ODBmTZtWiorKxu7ZAAAtsLVV1+dbt265dZbby1t22+//Ur/XSgUMnny5Fx++eU5+eSTkyTTp09PdXV1Zs6cmbPPPjt1dXW55ZZbctttt5V+BJ0xY0a6deuWefPmZejQobv0ngAANtXoI8uSZPjw4fntb3+bN998M88991zOPPPMBvsrKioyYcKELFu2LG+++WYefPDB9OrVq0GbNm3aZMqUKfnzn/+cN954I/fcc0+6deu2M8oFAGAr3H333enXr19OOeWUdO3aNX369MnNN99c2r9o0aIsX748Q4YMKW1r3bp1jjvuuDzyyCNJkgULFmTdunUN2tTW1qZXr16lNgAA5bRTwjIAAJqe3//+97nxxhvTs2fP3Hvvvfnyl7+c888/Pz/84Q+T/L8FnDZdkKm6urq0b/ny5WnVqlX23nvvd2yzqfr6+qxatarBCwBgZ2n0xzABAGiaNmzYkH79+mXixIlJkj59+uSZZ57JjTfemFNPPbXUrqKiosFxhUJhs22berc2kyZNypVXXrmD1QMAbB0jywAA2Cr77rtvDj300AbbDjnkkCxevDhJUlNTkySbjRBbsWJFabRZTU1N1q5dm5UrV75jm02NHz8+dXV1pdeSJUsa5X4AALZEWAYAwFY55phj8vzzzzfY9sILL+SDH/xgkqRHjx6pqanJ3LlzS/vXrl2bBx98MAMHDkyS9O3bNy1btmzQZtmyZXn66adLbTbVunXrdOzYscELAGBn8RgmAABb5atf/WoGDhyYiRMnZuTIkXnsscdy00035aabbkry9uOXY8eOzcSJE9OzZ8/07NkzEydOTLt27TJq1KgkSVVVVc4444yMGzcunTt3TqdOnXLRRReld+/epdUxAQDKSVgGAMBWOeqoozJ79uyMHz8+V111VXr06JHJkyfnC1/4QqnNJZdckjVr1uScc87JypUr079//9x3333p0KFDqc3111+fFi1aZOTIkVmzZk0GDx6cadOmpbKyshy3BQDQQEWhUCiUu4idYdWqVamqqkpdXZ2h+rAF8++4ttwlUEb9TxlX7hJgt6UPsfvzN9r96Wc0b/oZwO5qa/sQ5iwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKGpR7gKA7fTEreWuAAAAAJocI8sAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFDUotwFANtn/qK/lLsEAAAAaHKMLAMAAACAImEZAAAAABR5DBOgOXri1h07vt+XGqcOAACA3YyRZQAAAABQJCwDAAAAgCKPYQI0Qzu6mmr/fo1UCAAAwG7GyDIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUNRiZ19g0qRJ+Yd/+IdccMEFmTx5cpKkUCjkyiuvzE033ZSVK1emf//++ed//uccdthhpePq6+tz0UUX5Uc/+lHWrFmTwYMH54YbbsgHPvCBnV0yAAA0azPnL96h4w9opDp4n3ri1h0/R78v7fg5ALbTTh1Z9vjjj+emm27K4Ycf3mD7Nddck+uuuy5Tp07N448/npqampxwwgl57bXXSm3Gjh2b2bNnZ9asWXnooYeyevXqDB8+POvXr9+ZJQMAAADQjO20sGz16tX5whe+kJtvvjl77713aXuhUMjkyZNz+eWX5+STT06vXr0yffr0vPHGG5k5c2aSpK6uLrfcckuuvfbaHH/88enTp09mzJiR3/72t5k3b97OKhkAAACAZm6nhWXnnntuPvWpT+X4449vsH3RokVZvnx5hgwZUtrWunXrHHfccXnkkUeSJAsWLMi6desatKmtrU2vXr1KbTZVX1+fVatWNXgBAAAAwLbYKXOWzZo1K08++WQef/zxzfYtX748SVJdXd1ge3V1dV5++eVSm1atWjUYkbaxzcbjNzVp0qRceeWVjVE+AAAA22n+or/s8Dn692uEQgC2U6OPLFuyZEkuuOCCzJgxI23atHnHdhUVFQ3eFwqFzbZt6t3ajB8/PnV1daXXkiVLtr14AAAAAJq1Rg/LFixYkBUrVqRv375p0aJFWrRokQcffDD/9E//lBYtWpRGlG06QmzFihWlfTU1NVm7dm1Wrlz5jm021bp163Ts2LHBCwCAnWfSpEmpqKjI2LFjS9sKhUImTJiQ2tratG3bNoMGDcozzzzT4Lj6+vqMGTMmXbp0Sfv27TNixIgsXbp0F1cPALBljf4Y5uDBg/Pb3/62wbYvfelLOfjgg3PppZdm//33T01NTebOnZs+ffokSdauXZsHH3wwV199dZKkb9++admyZebOnZuRI0cmSZYtW5ann34611xzTWOXDADANnqvVc+nTZuWD33oQ/nWt76VE044Ic8//3w6dOiQ5O1Vz++5557MmjUrnTt3zrhx4zJ8+PAsWLAglZWV5bgdNnHA4jvKXQIAlE2jh2UdOnRIr169Gmxr3759OnfuXNo+duzYTJw4MT179kzPnj0zceLEtGvXLqNGjUqSVFVV5Ywzzsi4cePSuXPndOrUKRdddFF69+692YIBAADsWn+96vm3vvWt0vZNVz1PkunTp6e6ujozZ87M2WefXVr1/Lbbbiv162bMmJFu3bpl3rx5GTp0aFnuCQBgo522Gua7ueSSSzJ27Nicc8456devX/7whz/kvvvuK/3amCTXX399TjrppIwcOTLHHHNM2rVrl3vuucevjQAAZWbVcwCgKdspq2Fu6he/+EWD9xUVFZkwYUImTJjwjse0adMmU6ZMyZQpU3ZucQAAbDWrngMATV1ZRpYBAPD+Y9VzAKA5EJYBALBVrHoOADQHwjIAALbKxlXPFy5cWHr169cvX/jCF7Jw4cIGq55vtHHV84EDByZpuOr5RhtXPd/YBgCgnHbJnGUAALz/WfUcAGgOhGUAADSaSy65JGvWrMk555yTlStXpn///ltc9bxFixYZOXJk1qxZk8GDB2fatGlWPQcAdgvCMgAAtptVzwGApsacZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFLcpdAAAA0MieuLXcFQDA+5awDIBtNv+Oa3f4HP1PGdcIlQAAADQuj2ECAAAAQJGRZQAA0MTMX/SXcpcAAO9bRpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUtSh3AdBczZy/eIeOP6CR6gAAAAD+HyPLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqshgkAAMBuZUdXjh/Vv3sjVQI0R0aWAQAAAECRsAwAAAAAioRlAAAAAFDU6HOWTZo0KXfeeWd+97vfpW3bthk4cGCuvvrqHHTQQaU2hUIhV155ZW666aasXLky/fv3zz//8z/nsMMOK7Wpr6/PRRddlB/96EdZs2ZNBg8enBtuuCEf+MAHGrtkKIsDFt9R7hIAAACATTT6yLIHH3ww5557bh599NHMnTs3b731VoYMGZLXX3+91Oaaa67Jddddl6lTp+bxxx9PTU1NTjjhhLz22mulNmPHjs3s2bMza9asPPTQQ1m9enWGDx+e9evXN3bJAAAAAJBkJ4wsmzNnToP3t956a7p27ZoFCxbkox/9aAqFQiZPnpzLL788J598cpJk+vTpqa6uzsyZM3P22Wenrq4ut9xyS2677bYcf/zxSZIZM2akW7dumTdvXoYOHdrYZQMAAABA44dlm6qrq0uSdOrUKUmyaNGiLF++PEOGDCm1ad26dY477rg88sgjOfvss7NgwYKsW7euQZva2tr06tUrjzzyyBbDsvr6+tTX15fer1q1amfdEgAAADvRDk9Z0n9c4xQCNEs7dYL/QqGQCy+8MMcee2x69eqVJFm+fHmSpLq6ukHb6urq0r7ly5enVatW2Xvvvd+xzaYmTZqUqqqq0qtbt26NfTsAAAAANHE7NSw777zz8l//9V/50Y9+tNm+ioqKBu8LhcJm2zb1bm3Gjx+furq60mvJkiXbXzgAAJuZNGlSjjrqqHTo0CFdu3bNSSedlOeff75Bm0KhkAkTJqS2tjZt27bNoEGD8swzzzRoU19fnzFjxqRLly5p3759RowYkaVLl+7KWwEAeEc7LSwbM2ZM7r777jzwwAMNVrCsqalJks1GiK1YsaI02qympiZr167NypUr37HNplq3bp2OHTs2eAEA0Hgs5AQANAeNHpYVCoWcd955ufPOO/Pzn/88PXr0aLC/R48eqampydy5c0vb1q5dmwcffDADBw5MkvTt2zctW7Zs0GbZsmV5+umnS20AANi15syZk9NPPz2HHXZYjjjiiNx6661ZvHhxFixYkCSbLeTUq1evTJ8+PW+88UZmzpyZJKWFnK699tocf/zx6dOnT2bMmJHf/va3mTdvXjlvDwAgyU4Iy84999zMmDEjM2fOTIcOHbJ8+fIsX748a9asSfL245djx47NxIkTM3v27Dz99NM5/fTT065du4waNSpJUlVVlTPOOCPjxo3L/fffn6eeeipf/OIX07t379LqmAAAlNe2LuSU5D0XctqS+vr6rFq1qsELAGBnafTVMG+88cYkyaBBgxpsv/XWW3P66acnSS655JKsWbMm55xzTlauXJn+/fvnvvvuS4cOHUrtr7/++rRo0SIjR47MmjVrMnjw4EybNi2VlZWNXTIAANtoWxdyevnll0tttmchpyuvvLKxbwEAYIsaPSwrFArv2aaioiITJkzIhAkT3rFNmzZtMmXKlEyZMqURqwMAoDFsXMjpoYce2mzfzljI6cILLyy9X7VqlZXPAYCdZqeuhgkAQNNjIScAoCkTlgEAsFUs5AQANAeN/hgmAABN07nnnpuZM2fmJz/5SWkhp+TtxZnatm3bYCGnnj17pmfPnpk4ceI7LuTUuXPndOrUKRdddJGFnACA3YawDACArWIhJwCgORCWAQCwVSzkBAA0B+YsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACiyGiZsryduLXcFAAAAQCMzsgwAAAAAiowsAwCA3Y0R7ABQNkaWAQAAAECRkWWwneYv+ku5SwAAAAAamZFlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgyAT/AACwm7GQEACUj5FlAAAAAFAkLAMAAACAIo9hAgAA0KTMnL94h44f1b97I1UCvB8JywAoC51YAABgdyQsA6AsDlh8x46doP+4xikEAGhy9DOAHWHOMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoKhFuQsAgO3yxK07dny/LzVOHQAAQJMiLAPgfWn+or/s0PH9+zVSIQAAQJMiLKP52tFRKQAAAECTY84yAAAAACgysgwAABqbEewA8L4lLKPZ2tH5jgAAgKZp5vzFO3T8qP7dG6kSoByEZQAA0Mj8KAfvbwcsvmPHTtB/XOMUApSFOcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFDUotwFAEA5zL/j2h06vv8ploQHAN7BE7fu2PH9vtQ4dQDbRVjG+9eOfgEBAAAAbMJjmAAAAABQZGQZ71vzF/2l3CUAAAAATYywDAAAABrRjv6w379fIxUCbBdhGdvPpJUAAABAEyMsAwCATcycv3iHjj+gkeoAAHY9YRkAAGzigMV3lLsEAKBMhGWUjV9sgfez+Xdcu0PH9z9lXCNVAgAANKY9yl3Ae7nhhhvSo0ePtGnTJn379s2vfvWrcpcEAAAAQBO1W48s+/GPf5yxY8fmhhtuyDHHHJMf/OAHGTZsWJ599tl079693OWxgzzeAAAAAOxuduuw7LrrrssZZ5yRv//7v0+STJ48Offee29uvPHGTJo0qczVxWqQAGw3j3ECAMDuabcNy9auXZsFCxbksssua7B9yJAheeSRRzZrX19fn/r6+tL7VatW7fQam7v5i/5S7hIAAAAAGtVuG5b97//+b9avX5/q6uoG26urq7N8+fLN2k+aNClXXnnlrirvbTs6MmxHR6aVmVENAMCOuOGGG/Kd73wny5Yty2GHHZbJkyfn//yf/1PusgDKz1NMUFa7bVi2UUVFRYP3hUJhs21JMn78+Fx44YWl96tWrUq3bt12en0AAGw7c9MCvLMdfYqnf79GKgSaqd02LOvSpUsqKys3G0W2YsWKzUabJUnr1q3TunXrXVVe42jmI9MAgOZrt5+bFgBotnbbsKxVq1bp27dv5s6dm7/5m78pbZ87d24+/elPl7GyJsTQXACgDMxNCwDsznbbsCxJLrzwwowePTr9+vXLgAEDctNNN2Xx4sX58pe/XO7SAADYTu+HuWnNzQq8r5nzDHbIbh2W/e3f/m3+/Oc/56qrrsqyZcvSq1ev/Md//Ec++MEPlrs0AAB2kLlpAYDd0W4dliXJOeeck3POOafcZeyepP0AwPtQs5ibFqCc/P+KsEP2KHcBAAA0L389N+1fmzt3bgYOHFimqgAA3rbbjywDAKDpMTctALC7EpYBALDLmZsWANhdCcsAACgLc9MCALsjc5YBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFDUotwF7CyFQiFJsmrVqjJXAgC8n2zsO2zsS7D70c8DALbH1vbzmmxY9tprryVJunXrVuZKAID3o9deey1VVVXlLoMt0M8DAHbEe/XzKgpN9GfTDRs25I9//GM6dOiQioqKRj//qlWr0q1btyxZsiQdO3Zs9PPz7nz+5eXzLy+ff/n5G5TXzv78C4VCXnvttdTW1maPPcxYsTvSz2vafP7l5fMvP3+D8vL5l9fu0s9rsiPL9thjj3zgAx/Y6dfp2LGj/wGVkc+/vHz+5eXzLz9/g/LamZ+/EWW7N/285sHnX14+//LzNygvn395lbuf5+dSAAAAACgSlgEAAABAkbBsO7Vu3Trf+MY30rp163KX0iz5/MvL519ePv/y8zcoL58/O5t/Y+Xl8y8vn3/5+RuUl8+/vHaXz7/JTvAPAAAAANvKyDIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLNtON9xwQ3r06JE2bdqkb9+++dWvflXukpqFSZMm5aijjkqHDh3StWvXnHTSSXn++efLXVazNWnSpFRUVGTs2LHlLqXZ+MMf/pAvfvGL6dy5c9q1a5cjjzwyCxYsKHdZzcJbb72Vr33ta+nRo0fatm2b/fffP1dddVU2bNhQ7tKapF/+8pc58cQTU1tbm4qKitx1110N9hcKhUyYMCG1tbVp27ZtBg0alGeeeaY8xdLk6OeVh37e7kU/b9fTzysf/bxd6/3QzxOWbYcf//jHGTt2bC6//PI89dRT+T//5/9k2LBhWbx4cblLa/IefPDBnHvuuXn00Uczd+7cvPXWWxkyZEhef/31cpfW7Dz++OO56aabcvjhh5e7lGZj5cqVOeaYY9KyZcv853/+Z5599tlce+212WuvvcpdWrNw9dVX5/vf/36mTp2a5557Ltdcc02+853vZMqUKeUurUl6/fXXc8QRR2Tq1Klb3H/NNdfkuuuuy9SpU/P444+npqYmJ5xwQl577bVdXClNjX5e+ejn7T7083Y9/bzy0s/btd4X/bwC2+zoo48ufPnLX26w7eCDDy5cdtllZaqo+VqxYkUhSeHBBx8sdynNymuvvVbo2bNnYe7cuYXjjjuucMEFF5S7pGbh0ksvLRx77LHlLqPZ+tSnPlX4u7/7uwbbTj755MIXv/jFMlXUfCQpzJ49u/R+w4YNhZqamsI//uM/lra9+eabhaqqqsL3v//9MlRIU6Kft/vQzysP/bzy0M8rL/288tld+3lGlm2jtWvXZsGCBRkyZEiD7UOGDMkjjzxSpqqar7q6uiRJp06dylxJ83LuuefmU5/6VI4//vhyl9Ks3H333enXr19OOeWUdO3aNX369MnNN99c7rKajWOPPTb3339/XnjhhSTJb37zmzz00EP55Cc/WebKmp9FixZl+fLlDb6LW7duneOOO853MTtEP2/3op9XHvp55aGfV176ebuP3aWf12KXXamJ+N///d+sX78+1dXVDbZXV1dn+fLlZaqqeSoUCrnwwgtz7LHHplevXuUup9mYNWtWnnzyyTz++OPlLqXZ+f3vf58bb7wxF154Yf7hH/4hjz32WM4///y0bt06p556arnLa/IuvfTS1NXV5eCDD05lZWXWr1+fb3/72/n85z9f7tKanY3ft1v6Ln755ZfLURJNhH7e7kM/rzz088pHP6+89PN2H7tLP09Ytp0qKioavC8UCpttY+c677zz8l//9V956KGHyl1Ks7FkyZJccMEFue+++9KmTZtyl9PsbNiwIf369cvEiROTJH369MkzzzyTG2+8USdqF/jxj3+cGTNmZObMmTnssMOycOHCjB07NrW1tTnttNPKXV6z5LuYncW/rfLTz9v19PPKSz+vvPTzdj/l/i4Wlm2jLl26pLKycrNfF1esWLFZ8snOM2bMmNx999355S9/mQ984APlLqfZWLBgQVasWJG+ffuWtq1fvz6//OUvM3Xq1NTX16eysrKMFTZt++67bw499NAG2w455JD8+7//e5kqal4uvvjiXHbZZfnc5z6XJOndu3defvnlTJo0SSdqF6upqUny9i+P++67b2m772J2lH7e7kE/rzz088pLP6+89PN2H7tLP8+cZduoVatW6du3b+bOndtg+9y5czNw4MAyVdV8FAqFnHfeebnzzjvz85//PD169Ch3Sc3K4MGD89vf/jYLFy4svfr165cvfOELWbhwoQ7UTnbMMcfk+eefb7DthRdeyAc/+MEyVdS8vPHGG9ljj4Zfm5WVlZYUL4MePXqkpqamwXfx2rVr8+CDD/ouZofo55WXfl556eeVl35eeenn7T52l36ekWXb4cILL8zo0aPTr1+/DBgwIDfddFMWL16cL3/5y+Uurck799xzM3PmzPzkJz9Jhw4dSr/8VlVVpW3btmWurunr0KHDZvOGtG/fPp07dzafyC7w1a9+NQMHDszEiRMzcuTIPPbYY7npppty0003lbu0ZuHEE0/Mt7/97XTv3j2HHXZYnnrqqVx33XX5u7/7u3KX1iStXr06L774Yun9okWLsnDhwnTq1Cndu3fP2LFjM3HixPTs2TM9e/bMxIkT065du4waNaqMVdMU6OeVj35eeennlZd+Xnnp5+1a74t+3i5bd7OJ+ed//ufCBz/4wUKrVq0KH/7why1pvYsk2eLr1ltvLXdpzZYlxXete+65p9CrV69C69atCwcffHDhpptuKndJzcaqVasKF1xwQaF79+6FNm3aFPbff//C5ZdfXqivry93aU3SAw88sMX/e3/aaacVCoW3lxX/xje+UaipqSm0bt268NGPfrTw29/+trxF02To55WHft7uRz9v19LPKx/9vF3r/dDPqygUCoVdF80BAAAAwO7LnGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgKIW5S4AYFcZNGhQevXqlSSZMWNGKisr85WvfCXf/OY3U1FRUebqAADYXvp5QGMysgxoVqZPn54WLVpk/vz5+ad/+qdcf/31+Zd/+ZdylwUAwA7SzwMaS0WhUCiUuwiAXWHQoEFZsWJFnnnmmdIvjJdddlnuvvvuPPvss2WuDgCA7aWfBzQmI8uAZuUjH/lIg6H4AwYMyH//939n/fr1ZawKAIAdpZ8HNBZhGQAAAAAUCcuAZuXRRx/d7H3Pnj1TWVlZpooAAGgM+nlAYxGWAc3KkiVLcuGFF+b555/Pj370o0yZMiUXXHBBucsCAGAH6ecBjaVFuQsA2JVOPfXUrFmzJkcffXQqKyszZsyYnHXWWeUuCwCAHaSfBzQWYRnQrLRs2TKTJ0/OjTfeWO5SAABoRPp5QGPxGCYAAAAAFAnLAAAAAKCoolAoFMpdBAAAAADsDowsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgKL/H2xb/k7um4VaAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAJaCAYAAAAxh8B+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbsElEQVR4nO3df5iVdZ0//uc4wPAjGAVixvkGiUpqQmqgBLpJoRiJ5LpJRaGVqYWiBP4ityJLWC2FgtXSdYVEso9bttZuKJhpaqKgtPljNTcUKJBaaQClAeF8//B4tgFUYAYOMI/HdZ3r8tz3+77P6z7D7nn1PO/zvisKhUIhAAAAAED2KXcBAAAAALC7EJYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARa3KXcDOsmnTpvzxj39Mx44dU1FRUe5yAIA9RKFQyJo1a1JXV5d99vG94u5InwcA7Iht7fP22rDsj3/8Y7p3717uMgCAPdTSpUvzjne8o9xlsBX6PACgKd6qz9trw7KOHTsmee0N6NSpU5mrAQD2FKtXr0737t1LvQS7H30eALAjtrXP22vDsten5Hfq1EkTBQBsNz/v233p8wCApnirPs9CHAAAAABQJCwDAAAAgCJhGQAAAAAU7bVrlgHQPDZu3JgNGzaUuwxoNpWVlWnVqpU1yQBoUQqFQl599dVs3Lix3KXATtNcfZ6wDIA3tHbt2ixbtiyFQqHcpUCzat++ffbff/+0adOm3KUAwE63fv36LF++PK+88kq5S4Gdrjn6PGEZAFu1cePGLFu2LO3bt8/b3/52s3DYKxQKhaxfvz5/+tOfsnjx4vTq1Sv77GNVCgD2Xps2bcrixYtTWVmZurq6tGnTRl/HXqk5+zxhGQBbtWHDhhQKhbz97W9Pu3btyl0ONJt27dqldevWeeGFF7J+/fq0bdu23CUBwE6zfv36bNq0Kd27d0/79u3LXQ7sVM3V5/kqFYA35ZtH9kZmkwHQ0vjso6Vojn/r/q8FAAAAAIq2Oyy7//77c8opp6Suri4VFRX5yU9+8oZjzz333FRUVGTq1KmNtjc0NGTMmDHp2rVrOnTokOHDh2fZsmWNxqxatSqjRo1KdXV1qqurM2rUqPzlL3/Z3nIBYJtMnDgxRx555HYdM2jQoIwdO7bsdbzu+eefT0VFRRYtWtSsNQEA7Cn2lJ7ul7/8ZSoqKpqUc+yMunnNdq9Z9vLLL+eII47IZz7zmfzDP/zDG477yU9+kvnz56eurm6LfWPHjs1Pf/rT3HbbbenSpUvGjx+fYcOGZeHChamsrEySjBw5MsuWLcucOXOSJOecc05GjRqVn/70p9tbMgDNaPb8Jbv09Ub277FLXueiiy7KmDFjtuuYH//4x2nduvVOqmj7de/ePcuXL0/Xrl3LXQoAsAfYlX2dno49yXaHZUOHDs3QoUPfdMwf/vCHnH/++bnrrrty8sknN9pXX1+fm266KbfccktOOOGEJMmsWbPSvXv3zJs3LyeddFKefvrpzJkzJw8//HD69++fJLnxxhszYMCAPPPMMznkkEO2t2wA2KpCoZCNGzfmbW97W972trdt17GdO3feSVXtmMrKytTW1pa7DACAXW5v6ukov2Zfs2zTpk0ZNWpULr744hx++OFb7F+4cGE2bNiQIUOGlLbV1dWld+/eeeihh5Ikv/71r1NdXV0KypLkfe97X6qrq0tjNtfQ0JDVq1c3egDQ8jQ0NOSCCy5It27d0rZt2xx33HF59NFHS/tfn/J+1113pV+/fqmqqsqvfvWrLabKv/rqq7nggguy7777pkuXLrn00ktz5pln5tRTTy2N2Xzq+wEHHJBJkybls5/9bDp27JgePXrkhhtuaFTfpZdemne9611p3759DjzwwHz5y1/Ohg0btvn6Vq1alU9+8pOlu5T26tUrN998c5Kt/wzzzjvvTK9evdKuXbt84AMfyMyZM99yyn9FRUWuv/76DB06NO3atUvPnj1z++23b3ONAABNtbf3dK978MEHc8QRR6Rt27bp379/fvvb326x//jjj0/79u2z33775aSTTsqqVau2eq45c+akuro63//+97e6//X37D/+4z/e9DXZCWHZVVddlVatWuWCCy7Y6v4VK1akTZs22W+//Rptr6mpyYoVK0pjunXrtsWx3bp1K43Z3OTJk0vrm1VXV6d79+5NvBIA9kSXXHJJfvSjH2XmzJl57LHHcvDBB+ekk07KSy+9tMW4yZMn5+mnn8573vOeLc5z1VVX5dZbb83NN9+cBx98MKtXr37TdTpfd80116Rfv355/PHHM3r06HzhC1/If//3f5f2d+zYMTNmzMhTTz2Vb3/727nxxhszZcqUbb6+L3/5y3nqqafy85//PE8//XSuv/76N/zZ5fPPP5+PfvSjOfXUU7No0aKce+65ufzyy7f5df7hH/4hv/nNb/KpT30qn/jEJ/L0009vc50AAE2xt/d0r7v44ovzrW99K48++mi6deuW4cOHl0K3RYsWZfDgwTn88MPz61//Og888EBOOeWUbNy4cYvz3HbbbRkxYkS+//3v54wzztjh1+Q1zRqWLVy4MN/+9rczY8aMVFRUbNexhUKh0TFbO37zMX9rwoQJqa+vLz2WLl26fcUDsMd7+eWXc/311+eb3/xmhg4dmne/+9258cYb065du9x0002Nxl5xxRU58cQTc9BBB6VLly5bnGvatGmZMGFC/v7v/z6HHnpopk+fnn333fcta/jwhz+c0aNH5+CDD86ll16arl275pe//GVp/z/+4z9m4MCBOeCAA3LKKadk/Pjx+X//7/9t8zUuWbIkRx11VPr165cDDjggJ5xwQk455ZStjv3ud7+bQw45JN/85jdzyCGH5OMf/3g+/elPb9PrnH766fnc5z6Xd73rXfn617+efv36Zdq0adtcJwDAjmoJPd3rvvrVr+bEE09Mnz59MnPmzLz44ou54447kiRXX311+vXrl+uuuy5HHHFEDj/88Jx//vlbfFF63XXX5fOf/3z+/d//PR/5yEea9Jq8ZrvXLHszv/rVr7Jy5cr06PF/C/dt3Lgx48ePz9SpU/P888+ntrY269evz6pVqxrNLlu5cmUGDhyYJKmtrc2LL764xfn/9Kc/paamZquvXVVVlaqqqua8HAD2MP/zP/+TDRs25Nhjjy1ta926dY455pgtZkX169fvDc9TX1+fF198Mcccc0xpW2VlZfr27ZtNmza9aQ1/+41mRUVFamtrs3LlytK2f/u3f8vUqVPz3HPPZe3atXn11VfTqVOnbb7GL3zhC/mHf/iHPPbYYxkyZEhOPfXU0ufn5p555pkcffTRjbb97TW9mQEDBmzx3F02AYBdoSX0dK/7256rc+fOOeSQQ0rXuGjRopx++ulvevyPfvSjvPjii3nggQd2qM/b/DV5TbPOLBs1alT+67/+K4sWLSo96urqcvHFF+euu+5KkvTt2zetW7fO3LlzS8ctX748TzzxRKnZHzBgQOrr6/PII4+UxsyfPz/19fVv+D8IAKBQKCTZcnby1mYmd+jQ4S3Pt7XzvJXN76RUUVFRasYefvjhfPzjH8/QoUPzs5/9LI8//nguv/zyrF+//i3P+7qhQ4fmhRdeyNixY/PHP/4xgwcPzkUXXbTVsVu77m25hjeyvbPGAQB2REvo6bal3nbt2r3l2COPPDJvf/vbc/PNN+vzmtF2h2Vr164tBWFJsnjx4ixatChLlixJly5d0rt370aP1q1bp7a2tnQHy+rq6px11lkZP3587rnnnjz++OP51Kc+lT59+pTujnnYYYflQx/6UM4+++w8/PDDefjhh3P22Wdn2LBh7oQJwBs6+OCD06ZNmzzwwAOlbRs2bMiCBQty2GGHbfN5qqurU1NT0+hLm40bN+bxxx9vUn0PPvhg3vnOd+byyy9Pv3790qtXr7zwwgvbfZ63v/3t+fSnP51Zs2Zl6tSpWyw4+7pDDz200UK4SbJgwYJteo2HH354i+eHHnrodtcKALC9WkpPlzTuuVatWpVnn3221HO95z3vyT333POmxx900EG599578+///u8ZM2ZMk1+T12z3zzAXLFiQD3zgA6Xn48aNS5KceeaZmTFjxjadY8qUKWnVqlVGjBiRdevWZfDgwZkxY0YqKytLY2699dZccMEFpbtmDh8+PNOnT9/ecgFoQTp06JAvfOELufjii9O5c+f06NEjV199dV555ZWcddZZ23WuMWPGZPLkyTn44INz6KGHZtq0aVm1alWTvnU7+OCDs2TJktx22205+uij8x//8R/bvT7EV77ylfTt2zeHH354Ghoa8rOf/ewNm8Zzzz031157bS699NKcddZZWbRoUemz+q2u4/bbb0+/fv1y3HHH5dZbb80jjzyyxRohAAA7Q0vo6V53xRVXpEuXLqmpqcnll1+erl27lu7UOWHChPTp0yejR4/O5z//+bRp0yb33ntvTj/99Ebrlr3rXe/Kvffem0GDBqVVq1aZOnXqDr8mr9nusGzQoEHbNbXv+eef32Jb27ZtM23atDddKLhz586ZNWvW9pYHQAv3T//0T9m0aVNGjRqVNWvWpF+/frnrrru2uAvzW7n00kuzYsWKnHHGGamsrMw555yTk046qdEXO9vrIx/5SL74xS/m/PPPT0NDQ04++eR8+ctfzsSJE7f5HG3atMmECRPy/PPPp127dvm7v/u73HbbbVsd27Nnz/zbv/1bxo8fn29/+9sZMGBALr/88nzhC194y3U+v/a1r+W2227L6NGjU1tbm1tvvTXvfve7t+dyAQB22N7e073un/7pn3LhhRfmd7/7XY444ojceeedadOmTZLXQrC77747X/rSl3LMMcekXbt26d+/fz7xiU9scZ5DDjkkv/jFLzJo0KBUVlbmmmuu2aHX5DUVhab8qHU3tnr16lRXV6e+vn6HFtkDaOn++te/ZvHixenZs2fatm1b7nLKbtOmTTnssMMyYsSIfP3rXy93OTvsyiuvzHe/+903vWt0RUVF7rjjjr36G8Y3+/eth9j9+RsBbDs9XWN7S0+3I375y1/mAx/4QFatWrVNdwTdUzVHn9esd8ME2FPMnr+kSceP7N/jrQexR3vhhRdy99135/jjj09DQ0OmT5+exYsXZ+TIkeUubbtcd911Ofroo9OlS5c8+OCD+eY3v5nzzz+/3GUB7NX0GbD72Ft6OnYtYRkAbMU+++yTGTNm5KKLLkqhUEjv3r0zb9687VpUdnfwu9/9Lt/4xjfy0ksvpUePHhk/fnwmTJhQ7rIAAHaJvaWnY9cSlgHAVnTv3j0PPvhguctosilTpmTKlCnbdcxeukIDANAC7S09XXPY3jXoW7J9yl0AAAAAAOwuzCwDAAD4G01dcwyAPZuZZQAAAABQJCwDAAAAgCJhGQAAAAAUWbMMaJEOWnJ7007Qf3zzFAIA7HX0GQB7NjPLAIAd9vzzz6eioiKLFi3aoeMHDRqUsWPHNmtNAABsn23p6Q444IBMnTp1h19jxowZ2XfffXf4+F3JzDIAts+Cm3ft6/X7zK59vTIZNGhQjjzyyCY1INvq+eefT8+ePfP444/nyCOP3Omv92Z+/OMfp3Xr1mWtAWBzTZ4ZBnuKXdnX6ema3e7U0+1tzCwDYK+2fv36cpfQbAqFQl599dVyl9GsOnfunI4dO5a7DABgN6enY1cSlgGwVxk0aFDOP//8jBs3Ll27ds2JJ56YJHnqqafy4Q9/OG9729tSU1OTUaNG5c9//nPpuE2bNuWqq67KwQcfnKqqqvTo0SNXXnllaf9vf/vbfPCDH0y7du3SpUuXnHPOOVm7dm1p/6c//emceuqp+da3vpX9998/Xbp0yXnnnZcNGzaUxlx33XXp1atX2rZtm5qamnz0ox8tHXvffffl29/+dioqKlJRUZHnn38+v/zlL1NRUZG77ror/fr1S1VVVX71q1+VXutvjR07NoMGDdqm6+nZs2eS5KijjkpFRUWj426++eYcdthhadu2bQ499NBcd911jV7nkUceyVFHHZW2bdumX79+efzxx9/yb/JG1/363+tvf4a5fPnynHzyyWnXrl169uyZ2bNnv+WU/9ffj6997Wvp1q1bOnXqlHPPPXevaqoBoKXR07319ezqni5J1qxZk5EjR+Ztb3tb6urqMm3atEb7//KXv+Scc85JTU1N2rZtm969e+dnP/vZVs/1v//7vznmmGMyfPjw/PWvf93qmAMOOCBf//rX3/Q1dwY/wwRgrzNz5sx84QtfyIMPPphCoZDly5fn+OOPz9lnn51rr70269aty6WXXpoRI0bkF7/4RZJkwoQJufHGGzNlypQcd9xxWb58ef77v/87SfLKK6/kQx/6UN73vvfl0UcfzcqVK/O5z30u559/fmbMmFF63XvvvTf7779/7r333jz33HP52Mc+liOPPDJnn312FixYkAsuuCC33HJLBg4cmJdeeim/+tWvkiTf/va38+yzz6Z379654oorkiRvf/vb8/zzzydJLrnkknzrW9/KgQceuM3rPLzZ9TzyyCM55phjMm/evBx++OFp06ZNkuTGG2/MV7/61UyfPj1HHXVUHn/88Zx99tnp0KFDzjzzzLz88ssZNmxYPvjBD2bWrFlZvHhxLrzwwjet482ue2vOOOOM/PnPf84vf/nLtG7dOuPGjcvKlSvf8nrvueeetG3bNvfee2+ef/75fOYzn0nXrl0bNccAwJ5FT7f79HSv++Y3v5kvfelLmThxYu6666588YtfzKGHHpoTTzwxmzZtytChQ7NmzZrMmjUrBx10UJ566qlUVlZucZ5ly5ZlyJAh6devX/71X/81rVq9cTz1Zq+5swjLANjrHHzwwbn66qtLz7/yla/kve99byZNmlTa9q//+q/p3r17nn322ey///759re/nenTp+fMM89Mkhx00EE57rjjkiS33npr1q1bl+9///vp0KFDkmT69Ok55ZRTctVVV6WmpiZJst9++2X69OmprKzMoYcempNPPjn33HNPzj777CxZsiQdOnTIsGHD0rFjx7zzne/MUUcdlSSprq5OmzZt0r59+9TW1m5xPVdcccV2NQNr1qx50+t5+9vfniTp0qVLo9f7+te/nmuuuSannXZakte+rXzqqafyve99L2eeeWZuvfXWbNy4Mf/6r/+a9u3b5/DDD8+yZcvyhS984Q1rebPr3tx///d/Z968eXn00UfTr1+/JMm//Mu/pFevXm95zW3atGlU1xVXXJGLL744X//617PPPibSA8CeSE+3+/R0rzv22GNz2WWXJUne9a535cEHH8yUKVNy4oknZt68eXnkkUfy9NNP513veleS5MADD9ziHM8++2xOPPHEfOQjHynNwtvR19xZdI8A7HVeD1pet3Dhwtx7771529veVnoceuihSZL/+Z//ydNPP52GhoYMHjx4q+d7+umnc8QRR5SaquS1D+1NmzblmWeeKW07/PDDG31ztv/++5dmRZ144ol55zvfmQMPPDCjRo3KrbfemldeeWWHruetvNX1bM2f/vSnLF26NGeddVaj9+kb3/hG/ud//qd03iOOOCLt27cvHTdgwIA3Pe/2XPczzzyTVq1a5b3vfW9p28EHH5z99tvvLevfWl1r167N0qVL3/JYAGD3pKfbfXq6Nxo3YMCAPP3000mSRYsW5R3veEcpKNuadevW5bjjjsupp56a73znO28ZlL3Va+4sZpYBsNf52wYoeW2th9e/Mdzc/vvvn9///vdver5CofCGH+R/u33zuzpWVFRk06ZNSZKOHTvmscceyy9/+cvcfffd+cpXvpKJEyfm0Ucffctp+Jtfzz777JNCodBo29+uo9GuXbs3Pd/WvF7njTfemP79+zfa93qzuPlrbovtue43Ov+OvO7rtqUBAwB2T3q63aenezOvv3fbUm9VVVVOOOGE/Md//EcuvvjivOMd72jSa+4sZpYBe6YFNzftQYvy3ve+N08++WQOOOCAHHzwwY0eHTp0SK9evdKuXbvcc889Wz3+3e9+dxYtWpSXX365tO3BBx/MPvvs86bfnG2uVatWOeGEE3L11Vfnv/7rv/L888+X1tdo06ZNNm7cuE3nefvb357ly5c32rZo0aLSf7/V9by+nsXfvl5NTU3+v//v/8vvf//7Ld6j1xePffe7353f/OY3WbduXem4hx9+uEnX/bcOPfTQvPrqq40WmH3uuefyl7/85S1fY2t1ve1tb9vhBgwA2P3o6Rrb1T3d1sY9/PDDpdl973nPe7Js2bI8++yzb3j8Pvvsk1tuuSV9+/bNBz/4wfzxj39s0mvuLMIyAPZ65513Xl566aV84hOfyCOPPJLf//73ufvuu/PZz342GzduTNu2bXPppZfmkksuyfe///38z//8Tx5++OHcdNNNSZJPfvKTadu2bc4888w88cQTuffeezNmzJiMGjWqtLbFW/nZz36W73znO1m0aFFeeOGFfP/738+mTZtyyCGHJHntTj/z58/P888/nz//+c+lbwW35oMf/GAWLFiQ73//+/nd736Xr371q3niiSdK+9/qerp165Z27dplzpw5efHFF1NfX58kmThxYiZPnlxanPa3v/1tbr755lx77bVJkpEjR2afffbJWWedlaeeeir/+Z//mW9961tNuu6/deihh+aEE07IOeeck0ceeSSPP/54zjnnnLRr1+4tvz1cv359qa6f//zn+epXv5rzzz/femUAsBfR05Wvp3vdgw8+mKuvvjrPPvts/vmf/zm333576eYAxx9/fN7//vfnH/7hHzJ37twsXrw4P//5zzNnzpxG56isrMytt96aI444Ih/84AezYsWKHX7NnUUHCcBer66uLg8++GA2btyYk046Kb17986FF16Y6urqUpjy5S9/OePHj89XvvKVHHbYYfnYxz5WWpuiffv2ueuuu/LSSy/l6KOPzkc/+tEMHjw406dP3+Ya9t133/z4xz/OBz/4wRx22GH57ne/mx/84Ac5/PDDkyQXXXRRKisr8+53vztvf/vbs2TJkjc810knnZQvf/nLueSSS3L00UdnzZo1OeOMMxqNebPradWqVb7zne/ke9/7Xurq6vKRj3wkSfK5z30u//Iv/5IZM2akT58+Of744zNjxozSt5Bve9vb8tOf/jRPPfVUjjrqqFx++eVb/RnE9lz35r7//e+npqYm73//+/P3f//3Ofvss9OxY8e0bdv2TV9n8ODB6dWrV97//vdnxIgROeWUUzJx4sQ3PQYA2LPo6crX071u/PjxWbhwYY466qjSjQROOumk0v4f/ehHOfroo/OJT3wi7373u3PJJZdsdaZdq1atSu/bBz/4wTe9+/lbvebOUFFo7h+r7iZWr16d6urq1NfXp1OnTuUuB2huTfwp5fzFLzXp+P6nj2/S8XuCv/71r1m8eHF69uz5lkEF7CzLli1L9+7dM2/evDdc3PbTn/50/vKXv+QnP/nJNp/3zf596yF2f/5G7Gzzb7+mrK/fEvoMdh09HXuyAw44IGPHjs3YsWO3+Zjm6PMs8A8A7DZ+8YtfZO3atenTp0+WL1+eSy65JAcccEDe//73l7s0AABaCGEZALDb2LBhQ770pS/l97//fTp27JiBAwfm1ltv3eKuVAAAsLMIywCA3cZJJ5203WtQzJgxY+cUAwBAWT3//PNleV0L/AMAAABAkbAMAAAAAIqEZQC8qb30psm0cP5dA9DS+OyjpWiOf+vWLAP2SPMXv1TuEvZ6lZWVSZL169enXbt2Za4Gmtcrr7ySJG4cAMBe7/XPuldeeUVPR4vQHH2esAyArWrVqlXat2+fP/3pT2ndunX22cdkZPZ8hUIhr7zySlauXJl99923FAoDwN6qsrIy++67b1auXJkkad++fSoqKspcFTS/5uzzhGUAbFVFRUX233//LF68OC+88EK5y4Fmte+++6a2trbcZQDALvH6Z97rgRnszZqjzxOWAfCG2rRpk169emX9+vXlLgWaTevWrc0oA6BFef1L0G7dumXDhg3lLgd2mubq84RlALypffbZJ23bti13GQAANFFlZaUvjGAbWIAGAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAIEly//3355RTTkldXV0qKiryk5/8pLRvw4YNufTSS9OnT5906NAhdXV1OeOMM/LHP/6x0TkaGhoyZsyYdO3aNR06dMjw4cOzbNmyRmNWrVqVUaNGpbq6OtXV1Rk1alT+8pe/7IIrBAB4a8IyAACSJC+//HKOOOKITJ8+fYt9r7zySh577LF8+ctfzmOPPZYf//jHefbZZzN8+PBG48aOHZs77rgjt912Wx544IGsXbs2w4YNy8aNG0tjRo4cmUWLFmXOnDmZM2dOFi1alFGjRu306wMA2Batyl0AAAC7h6FDh2bo0KFb3VddXZ25c+c22jZt2rQcc8wxWbJkSXr06JH6+vrcdNNNueWWW3LCCSckSWbNmpXu3btn3rx5Oemkk/L0009nzpw5efjhh9O/f/8kyY033pgBAwbkmWeeySGHHLJzLxIA4C2YWQYAwA6pr69PRUVF9t133yTJwoULs2HDhgwZMqQ0pq6uLr17985DDz2UJPn1r3+d6urqUlCWJO973/tSXV1dGrO5hoaGrF69utEDAGBnEZYBALDd/vrXv+ayyy7LyJEj06lTpyTJihUr0qZNm+y3336NxtbU1GTFihWlMd26ddvifN26dSuN2dzkyZNL65tVV1ene/fuzXw1AAD/R1gGAMB22bBhQz7+8Y9n06ZNue66695yfKFQSEVFRen53/73G435WxMmTEh9fX3psXTp0h0vHgDgLQjLAADYZhs2bMiIESOyePHizJ07tzSrLElqa2uzfv36rFq1qtExK1euTE1NTWnMiy++uMV5//SnP5XGbK6qqiqdOnVq9AAA2FmEZQAAbJPXg7Lf/e53mTdvXrp06dJof9++fdO6detGNwJYvnx5nnjiiQwcODBJMmDAgNTX1+eRRx4pjZk/f37q6+tLYwAAysndMAEASJKsXbs2zz33XOn54sWLs2jRonTu3Dl1dXX56Ec/msceeyw/+9nPsnHjxtIaY507d06bNm1SXV2ds846K+PHj0+XLl3SuXPnXHTRRenTp0/p7piHHXZYPvShD+Xss8/O9773vSTJOeeck2HDhrkTJgCwWxCWAQCQJFmwYEE+8IEPlJ6PGzcuSXLmmWdm4sSJufPOO5MkRx55ZKPj7r333gwaNChJMmXKlLRq1SojRozIunXrMnjw4MyYMSOVlZWl8bfeemsuuOCC0l0zhw8fnunTp+/EK6OlmT1/SZOOP6iZ6gBgzyQsAwAgSTJo0KAUCoU33P9m+17Xtm3bTJs2LdOmTXvDMZ07d86sWbN2qEYAgJ3NmmUAAAAAUCQsAwAAAIAiP8MEAAD2Kgctub3cJQCwBzOzDAAAAACKhGUAAAAAULTdYdn999+fU045JXV1damoqMhPfvKT0r4NGzbk0ksvTZ8+fdKhQ4fU1dXljDPOyB//+MdG52hoaMiYMWPStWvXdOjQIcOHD8+yZcsajVm1alVGjRqV6urqVFdXZ9SoUfnLX/6yQxcJAAAAANtiu8Oyl19+OUcccUSmT5++xb5XXnkljz32WL785S/nsccey49//OM8++yzGT58eKNxY8eOzR133JHbbrstDzzwQNauXZthw4Zl48aNpTEjR47MokWLMmfOnMyZMyeLFi3KqFGjduASAQAAAGDbbPcC/0OHDs3QoUO3uq+6ujpz585ttG3atGk55phjsmTJkvTo0SP19fW56aabcsstt+SEE05IksyaNSvdu3fPvHnzctJJJ+Xpp5/OnDlz8vDDD6d///5JkhtvvDEDBgzIM888k0MOOWR7ywYAAACAt7TT1yyrr69PRUVF9t133yTJwoULs2HDhgwZMqQ0pq6uLr17985DDz2UJPn1r3+d6urqUlCWJO973/tSXV1dGrO5hoaGrF69utEDAAAAALbHTg3L/vrXv+ayyy7LyJEj06lTpyTJihUr0qZNm+y3336NxtbU1GTFihWlMd26ddvifN26dSuN2dzkyZNL65tVV1ene/fuzXw1AAAAAOztdlpYtmHDhnz84x/Ppk2bct11173l+EKhkIqKitLzv/3vNxrztyZMmJD6+vrSY+nSpTtePAAAAAAt0k4JyzZs2JARI0Zk8eLFmTt3bmlWWZLU1tZm/fr1WbVqVaNjVq5cmZqamtKYF198cYvz/ulPfyqN2VxVVVU6derU6AEAAAAA26PZw7LXg7Lf/e53mTdvXrp06dJof9++fdO6detGNwJYvnx5nnjiiQwcODBJMmDAgNTX1+eRRx4pjZk/f37q6+tLYwAAAACguW333TDXrl2b5557rvR88eLFWbRoUTp37py6urp89KMfzWOPPZaf/exn2bhxY2mNsc6dO6dNmzaprq7OWWedlfHjx6dLly7p3LlzLrroovTp06d0d8zDDjssH/rQh3L22Wfne9/7XpLknHPOybBhw9wJEwAAAICdZrvDsgULFuQDH/hA6fm4ceOSJGeeeWYmTpyYO++8M0ly5JFHNjru3nvvzaBBg5IkU6ZMSatWrTJixIisW7cugwcPzowZM1JZWVkaf+utt+aCCy4o3TVz+PDhmT59+vaWCwAAAADbbLvDskGDBqVQKLzh/jfb97q2bdtm2rRpmTZt2huO6dy5c2bNmrW95QEAAADADttpd8MEAAAAgD2NsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgqFW5CwAAAOD/zJ6/pEnHj+zfo5kqAWiZhGUAAAC7kYOW3N60E/Qf3zyFALRQwjKgLJr6jelBzVQHAAAA/C1rlgEAAABAkbAMAAAAAIqEZQAAAABQZM0ygB3gLlUAAAB7JzPLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkQX+AXbAQUtub9oJ+o9vnkIAAABoVmaWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAIgv8A2XR5AXyAQAAYCcwswwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQCQJLn//vtzyimnpK6uLhUVFfnJT37SaH+hUMjEiRNTV1eXdu3aZdCgQXnyyScbjWloaMiYMWPStWvXdOjQIcOHD8+yZcsajVm1alVGjRqV6urqVFdXZ9SoUfnLX/6yk68OAGDbCMsAAEiSvPzyyzniiCMyffr0re6/+uqrc+2112b69Ol59NFHU1tbmxNPPDFr1qwpjRk7dmzuuOOO3HbbbXnggQeydu3aDBs2LBs3biyNGTlyZBYtWpQ5c+Zkzpw5WbRoUUaNGrXTrw8AYFu0KncBAADsHoYOHZqhQ4dudV+hUMjUqVNz+eWX57TTTkuSzJw5MzU1NZk9e3bOPffc1NfX56abbsott9ySE044IUkya9asdO/ePfPmzctJJ52Up59+OnPmzMnDDz+c/v37J0luvPHGDBgwIM8880wOOeSQXXOxAABvwMwyAADe0uLFi7NixYoMGTKktK2qqirHH398HnrooSTJwoULs2HDhkZj6urq0rt379KYX//616muri4FZUnyvve9L9XV1aUxAADlZGYZAABvacWKFUmSmpqaRttramrywgsvlMa0adMm++233xZjXj9+xYoV6dat2xbn79atW2nM5hoaGtLQ0FB6vnr16h2/EACAt2BmGQAA26yioqLR80KhsMW2zW0+Zmvj3+w8kydPLt0MoLq6Ot27d9+BygEAto2wDACAt1RbW5skW8z+WrlyZWm2WW1tbdavX59Vq1a96ZgXX3xxi/P/6U9/2mLW2usmTJiQ+vr60mPp0qVNvh4AgDciLAMA4C317NkztbW1mTt3bmnb+vXrc99992XgwIFJkr59+6Z169aNxixfvjxPPPFEacyAAQNSX1+fRx55pDRm/vz5qa+vL43ZXFVVVTp16tToAQCws1izDACAJMnatWvz3HPPlZ4vXrw4ixYtSufOndOjR4+MHTs2kyZNSq9evdKrV69MmjQp7du3z8iRI5Mk1dXVOeusszJ+/Ph06dIlnTt3zkUXXZQ+ffqU7o552GGH5UMf+lDOPvvsfO9730uSnHPOORk2bJg7YQIAuwVhGQAASZIFCxbkAx/4QOn5uHHjkiRnnnlmZsyYkUsuuSTr1q3L6NGjs2rVqvTv3z933313OnbsWDpmypQpadWqVUaMGJF169Zl8ODBmTFjRiorK0tjbr311lxwwQWlu2YOHz4806dP30VXCQDw5ioKhUKh3EXsDKtXr051dXXq6+tN1Yfd0Pzbryl3CWXV//Tx5S4BeAN6iN2fvxFvRZ+hzwDYmm3tIaxZBgAAAABFwjIAAAAAKNrusOz+++/PKaeckrq6ulRUVOQnP/lJo/2FQiETJ05MXV1d2rVrl0GDBuXJJ59sNKahoSFjxoxJ165d06FDhwwfPjzLli1rNGbVqlUZNWpUqqurU11dnVGjRuUvf/nLdl8gAAAAAGyr7Q7LXn755RxxxBFvuAjr1VdfnWuvvTbTp0/Po48+mtra2px44olZs2ZNaczYsWNzxx135LbbbssDDzyQtWvXZtiwYdm4cWNpzMiRI7No0aLMmTMnc+bMyaJFizJq1KgduEQAAAAA2DbbfTfMoUOHZujQoVvdVygUMnXq1Fx++eU57bTTkiQzZ85MTU1NZs+enXPPPTf19fW56aabcsstt5RuIT5r1qx079498+bNy0knnZSnn346c+bMycMPP5z+/fsnSW688cYMGDAgzzzzjNuKAwAAALBTNOuaZYsXL86KFStKtwFPkqqqqhx//PF56KGHkiQLFy7Mhg0bGo2pq6tL7969S2N+/etfp7q6uhSUJcn73ve+VFdXl8ZsrqGhIatXr270AAAAAIDt0axh2YoVK5IkNTU1jbbX1NSU9q1YsSJt2rTJfvvt96ZjunXrtsX5u3XrVhqzucmTJ5fWN6uurk737t2bfD0AAAAAtCw75W6YFRUVjZ4XCoUttm1u8zFbG/9m55kwYULq6+tLj6VLl+5A5QAAAAC0ZNu9Ztmbqa2tTfLazLD999+/tH3lypWl2Wa1tbVZv359Vq1a1Wh22cqVKzNw4MDSmBdffHGL8//pT3/aYtba66qqqlJVVdVs1wIAALBHWnBz047v95nmqQNgD9WsM8t69uyZ2trazJ07t7Rt/fr1ue+++0pBWN++fdO6detGY5YvX54nnniiNGbAgAGpr6/PI488Uhozf/781NfXl8YAAAAAQHPb7plla9euzXPPPVd6vnjx4ixatCidO3dOjx49Mnbs2EyaNCm9evVKr169MmnSpLRv3z4jR45MklRXV+ess87K+PHj06VLl3Tu3DkXXXRR+vTpU7o75mGHHZYPfehDOfvss/O9730vSXLOOedk2LBh7oQJAAAAwE6z3WHZggUL8oEPfKD0fNy4cUmSM888MzNmzMgll1ySdevWZfTo0Vm1alX69++fu+++Ox07diwdM2XKlLRq1SojRozIunXrMnjw4MyYMSOVlZWlMbfeemsuuOCC0l0zhw8fnunTp+/whQIAALQE8xe/1KTj+/drpkIA9lAVhUKhUO4idobVq1enuro69fX16dSpU7nLATYz//Zryl1CWfU/fXy5SwDegB5i9+dvxFtp6X1GU+lTgL3VtvYQO+VumAAAAACwJxKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAICiVuUuAAAA4G/Nnr+kSccf1Ex1ANAymVkGAAAAAEXCMgAAAAAo8jNMYIf4eQQAAAB7I2EZAACwWzloye3lLgGAFszPMAEAAACgSFgGAAAAAEXCMgAAAAAosmYZsEOsJQIAAMDeyMwyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQZIF/gHJYcHPTju/3meapAwAAgEbMLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEUW+Acog/mLX2rS8f37NVMhAAAANGJmGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAwDZ59dVX84//+I/p2bNn2rVrlwMPPDBXXHFFNm3aVBpTKBQyceLE1NXVpV27dhk0aFCefPLJRudpaGjImDFj0rVr13To0CHDhw/PsmXLdvXlAABslbAMAIBtctVVV+W73/1upk+fnqeffjpXX311vvnNb2batGmlMVdffXWuvfbaTJ8+PY8++mhqa2tz4oknZs2aNaUxY8eOzR133JHbbrstDzzwQNauXZthw4Zl48aN5bgsAIBGWpW7AAAA9gy//vWv85GPfCQnn3xykuSAAw7ID37wgyxYsCDJa7PKpk6dmssvvzynnXZakmTmzJmpqanJ7Nmzc+6556a+vj433XRTbrnllpxwwglJklmzZqV79+6ZN29eTjrppPJcHABAkZllAABsk+OOOy733HNPnn322STJb37zmzzwwAP58Ic/nCRZvHhxVqxYkSFDhpSOqaqqyvHHH5+HHnooSbJw4cJs2LCh0Zi6urr07t27NAYAoJzMLAMAYJtceumlqa+vz6GHHprKysps3LgxV155ZT7xiU8kSVasWJEkqampaXRcTU1NXnjhhdKYNm3aZL/99ttizOvHb66hoSENDQ2l56tXr262awIA2JyZZQAAbJMf/vCHmTVrVmbPnp3HHnssM2fOzLe+9a3MnDmz0biKiopGzwuFwhbbNvdmYyZPnpzq6urSo3v37k27EACANyEsAwBgm1x88cW57LLL8vGPfzx9+vTJqFGj8sUvfjGTJ09OktTW1ibJFjPEVq5cWZptVltbm/Xr12fVqlVvOGZzEyZMSH19femxdOnS5r40AIASYRkAANvklVdeyT77NG4fKysrs2nTpiRJz549U1tbm7lz55b2r1+/Pvfdd18GDhyYJOnbt29at27daMzy5cvzxBNPlMZsrqqqKp06dWr0AADYWaxZBgDANjnllFNy5ZVXpkePHjn88MPz+OOP59prr81nP/vZJK/9/HLs2LGZNGlSevXqlV69emXSpElp3759Ro4cmSSprq7OWWedlfHjx6dLly7p3LlzLrroovTp06d0d0wAgHJq9pllr776av7xH/8xPXv2TLt27XLggQfmiiuuKH3jmLy2JsXEiRNTV1eXdu3aZdCgQXnyyScbnaehoSFjxoxJ165d06FDhwwfPjzLli1r7nIBANhG06ZNy0c/+tGMHj06hx12WC666KKce+65+frXv14ac8kll2Ts2LEZPXp0+vXrlz/84Q+5++6707Fjx9KYKVOm5NRTT82IESNy7LHHpn379vnpT3+aysrKclwWAEAjFYVCodCcJ7zyyiszZcqUzJw5M4cffngWLFiQz3zmM/nGN76RCy+8MEly1VVX5corr8yMGTPyrne9K9/4xjdy//3355lnnik1Ul/4whfy05/+NDNmzEiXLl0yfvz4vPTSS1m4cOE2NVKrV69OdXV16uvrTdWHnWD+7deUu4QWrf/p48tdAuy19BC7P3+jvZ8+o7z0GcDealt7iGb/Geavf/3rfOQjH8nJJ5+cJDnggAPygx/8IAsWLEjy2qyyqVOn5vLLL89pp52WJJk5c2Zqamoye/bsnHvuuamvr89NN92UW265pTQdf9asWenevXvmzZuXk046qbnLBgAAAIDm/xnmcccdl3vuuSfPPvtskuQ3v/lNHnjggXz4wx9OkixevDgrVqzIkCFDSsdUVVXl+OOPz0MPPZQkWbhwYTZs2NBoTF1dXXr37l0as7mGhoasXr260QMAAAAAtkezzyy79NJLU19fn0MPPTSVlZXZuHFjrrzyynziE59I8n+3Et/81uA1NTV54YUXSmPatGmT/fbbb4sxm9+K/HWTJ0/O1772tea+HAAAAABakGafWfbDH/4ws2bNyuzZs/PYY49l5syZ+da3vpWZM2c2GldRUdHoeaFQ2GLb5t5szIQJE1JfX196LF26tGkXAgAAAECL0+wzyy6++OJcdtll+fjHP54k6dOnT1544YVMnjw5Z555Zmpra5O8Nnts//33Lx23cuXK0myz2trarF+/PqtWrWo0u2zlypUZOHDgVl+3qqoqVVVVzX05AAAAALQgzT6z7JVXXsk++zQ+bWVlZTZt2pQk6dmzZ2prazN37tzS/vXr1+e+++4rBWF9+/ZN69atG41Zvnx5nnjiiTcMywAAAACgqZp9Ztkpp5ySK6+8Mj169Mjhhx+exx9/PNdee20++9nPJnnt55djx47NpEmT0qtXr/Tq1SuTJk1K+/btM3LkyCRJdXV1zjrrrIwfPz5dunRJ586dc9FFF6VPnz6lu2MCAAAAQHNr9rBs2rRp+fKXv5zRo0dn5cqVqaury7nnnpuvfOUrpTGXXHJJ1q1bl9GjR2fVqlXp379/7r777nTs2LE0ZsqUKWnVqlVGjBiRdevWZfDgwZkxY0YqKyubu2QAAAAASJJUFAqFQrmL2BlWr16d6urq1NfXp1OnTuUuB/Y682+/ptwltGj9Tx9f7hJgr6WH2P35G+399Bnlpc8A9lbb2kM0+5plAAAAALCnEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQFGrchcAAADAbmTBzU07vt9nmqcOgDIxswwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABRZ4B8AAGhWs+cvadLxBzVTHQCwI4RlAAAAlMxf/FKTju/fr5kKASgTP8MEAAAAgCIzywAAgGZ10JLby10CAOwwYRnAHqipa8GM7N+jmSoBAADYuwjLAPZATf7Gvv/45ikEAABgL2PNMgAAAAAoEpYBAAAAQJGfYUIL1dQ1rw5qpjoAAABgd2JmGQAAAAAUCcsAAAAAoMjPMKGFavLdFAEAAGAvZGYZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAC22R/+8Id86lOfSpcuXdK+ffsceeSRWbhwYWl/oVDIxIkTU1dXl3bt2mXQoEF58sknG52joaEhY8aMSdeuXdOhQ4cMHz48y5Yt29WXAgCwVcIyAAC2yapVq3LsscemdevW+fnPf56nnnoq11xzTfbdd9/SmKuvvjrXXnttpk+fnkcffTS1tbU58cQTs2bNmtKYsWPH5o477shtt92WBx54IGvXrs2wYcOycePGMlwVAEBjrcpdAAAAe4arrroq3bt3z80331zadsABB5T+u1AoZOrUqbn88stz2mmnJUlmzpyZmpqazJ49O+eee27q6+tz00035ZZbbskJJ5yQJJk1a1a6d++eefPm5aSTTtql1wQAsDkzywAA2CZ33nln+vXrl9NPPz3dunXLUUcdlRtvvLG0f/HixVmxYkWGDBlS2lZVVZXjjz8+Dz30UJJk4cKF2bBhQ6MxdXV16d27d2kMAEA5CcsAANgmv//973P99denV69eueuuu/L5z38+F1xwQb7//e8nSVasWJEkqampaXRcTU1Nad+KFSvSpk2b7Lfffm84ZnMNDQ1ZvXp1owcAwM6yU8IyC78CAOx9Nm3alPe+972ZNGlSjjrqqJx77rk5++yzc/311zcaV1FR0eh5oVDYYtvm3mzM5MmTU11dXXp07969aRcCAPAmmj0ss/ArAMDeaf/998+73/3uRtsOO+ywLFmyJElSW1ubJFvMEFu5cmVptlltbW3Wr1+fVatWveGYzU2YMCH19fWlx9KlS5vlegAAtqbZw7K/Xfj1mGOOyQEHHJDBgwfnoIMOSrLlwq+9e/fOzJkz88orr2T27NlJUlr49ZprrskJJ5yQo446KrNmzcpvf/vbzJs3r7lLBgBgGxx77LF55plnGm179tln8853vjNJ0rNnz9TW1mbu3Lml/evXr899992XgQMHJkn69u2b1q1bNxqzfPnyPPHEE6Uxm6uqqkqnTp0aPQAAdpZmD8vKtfCrtSwAAHauL37xi3n44YczadKkPPfcc5k9e3ZuuOGGnHfeeUle+/nl2LFjM2nSpNxxxx154okn8ulPfzrt27fPyJEjkyTV1dU566yzMn78+Nxzzz15/PHH86lPfSp9+vQp3R0TAKCcmj0sK9fCr9ayAADYuY4++ujccccd+cEPfpDevXvn61//eqZOnZpPfvKTpTGXXHJJxo4dm9GjR6dfv375wx/+kLvvvjsdO3YsjZkyZUpOPfXUjBgxIscee2zat2+fn/70p6msrCzHZQEANNKquU+4adOm9OvXL5MmTUqSHHXUUXnyySdz/fXX54wzziiNa+6FXydMmJBx48aVnq9evVpgBgDQzIYNG5Zhw4a94f6KiopMnDgxEydOfMMxbdu2zbRp0zJt2rSdUCEAQNM0+8yyci38ai0LAAAAAJqq2cOyci38CgAAAABN1ew/w/ziF7+YgQMHZtKkSRkxYkQeeeSR3HDDDbnhhhuSNF74tVevXunVq1cmTZr0hgu/dunSJZ07d85FF11k4VcAAAAAdqpmD8teX/h1woQJueKKK9KzZ8+tLvy6bt26jB49OqtWrUr//v23uvBrq1atMmLEiKxbty6DBw/OjBkzLPwKAAAAwE5TUSgUCuUuYmdYvXp1qqurU19fb/0y2Ir5t19T7hIoo/6njy93CbDb0kPs/vyNdn/6jJZNnwHsrra1h2j2NcsAAAAAYE8lLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAolblLgAAANjNLLi53BUAQNmYWQYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFrcpdAAAAsHuZv/ilcpcAAGVjZhkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACiywD8AAADNZ8HNTT9Hv880/RwAO8jMMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKCoVbkLAHbQgpvLXQEAAADsdYRlsIeav/ilcpcAAAAAex0/wwQAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAocjdMgBZo9vwlTTp+ZP8ezVQJALC3aY67tvfv1wyFAOwgM8sAAAAAoMjMMoAW6KAltzftBP3HN08hwB5t8uTJ+dKXvpQLL7wwU6dOTZIUCoV87Wtfyw033JBVq1alf//++ed//uccfvjhpeMaGhpy0UUX5Qc/+EHWrVuXwYMH57rrrss73vGOMl0JAMD/2ekzyyZPnpyKioqMHTu2tK1QKGTixImpq6tLu3btMmjQoDz55JONjmtoaMiYMWPStWvXdOjQIcOHD8+yZct2drkAAGyDRx99NDfccEPe8573NNp+9dVX59prr8306dPz6KOPpra2NieeeGLWrFlTGjN27Njccccdue222/LAAw9k7dq1GTZsWDZu3LirLwMAYAs7NSzTRAEA7H3Wrl2bT37yk7nxxhuz3377lbYXCoVMnTo1l19+eU477bT07t07M2fOzCuvvJLZs2cnSerr63PTTTflmmuuyQknnJCjjjoqs2bNym9/+9vMmzevXJcEAFCy08IyTRQAwN7pvPPOy8knn5wTTjih0fbFixdnxYoVGTJkSGlbVVVVjj/++Dz00ENJkoULF2bDhg2NxtTV1aV3796lMQAA5bTTwrJd3UQ1NDRk9erVjR4AADSv2267LY899lgmT568xb4VK1YkSWpqahptr6mpKe1bsWJF2rRp0+jL1M3HbE6fBwDsSjslLCtHEzV58uRUV1eXHt27d2+OSwEAoGjp0qW58MILM2vWrLRt2/YNx1VUVDR6XigUtti2uTcbo88DAHalZg/LytVETZgwIfX19aXH0qVLt794AADe0MKFC7Ny5cr07ds3rVq1SqtWrXLfffflO9/5Tlq1alX6MnTzLzdXrlxZ2ldbW5v169dn1apVbzhmc/o8AGBXavawrFxNVFVVVTp16tToAQBA8xk8eHB++9vfZtGiRaVHv3798slPfjKLFi3KgQcemNra2sydO7d0zPr163Pfffdl4MCBSZK+ffumdevWjcYsX748TzzxRGnM5vR5AMCu1Kq5T/h6E/W3PvOZz+TQQw/NpZde2qiJOuqoo5L8XxN11VVXJWncRI0YMSLJ/zVRV199dXOXDADANujYsWN69+7daFuHDh3SpUuX0vaxY8dm0qRJ6dWrV3r16pVJkyalffv2GTlyZJKkuro6Z511VsaPH58uXbqkc+fOueiii9KnT58t1roFACiHZg/LNFEAAC3XJZdcknXr1mX06NFZtWpV+vfvn7vvvjsdO3YsjZkyZUpatWqVESNGZN26dRk8eHBmzJiRysrKMlYOAPCaZg/LtoUmCgBg7/DLX/6y0fOKiopMnDgxEydOfMNj2rZtm2nTpmXatGk7tzgAgB2wS8IyTRQAAAAAe4JmX+AfAAAAAPZUwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAilqVuwBosRbcXO4KAAAAgM2YWQYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgKJW5S4AWqr5i18qdwkAAADAZswsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQ1KrcBQAAAM1r9vwlTTr+oGaqAwD2RGaWAQAAAECRmWUAbL8FNzf9HP0+0/RzAAAANDMzywAAAACgyMwyALbb/MUvNfkc/fs1QyEAAADNzMwyAAAAACgSlgEAAABAkbAMAAAAAIqsWQYAAHuZg5bcXu4SAGCPZWYZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKWjX3CSdPnpwf//jH+e///u+0a9cuAwcOzFVXXZVDDjmkNKZQKORrX/tabrjhhqxatSr9+/fPP//zP+fwww8vjWloaMhFF12UH/zgB1m3bl0GDx6c6667Lu94xzuau2QAAAB2I7PnL2nS8SP792imSoCWqNlnlt13330577zz8vDDD2fu3Ll59dVXM2TIkLz88sulMVdffXWuvfbaTJ8+PY8++mhqa2tz4oknZs2aNaUxY8eOzR133JHbbrstDzzwQNauXZthw4Zl48aNzV0yAAAAACTZCTPL5syZ0+j5zTffnG7dumXhwoV5//vfn0KhkKlTp+byyy/PaaedliSZOXNmampqMnv27Jx77rmpr6/PTTfdlFtuuSUnnHBCkmTWrFnp3r175s2bl5NOOqm5ywYAAACAnb9mWX19fZKkc+fOSZLFixdnxYoVGTJkSGlMVVVVjj/++Dz00ENJkoULF2bDhg2NxtTV1aV3796lMZtraGjI6tWrGz0AAGg+kydPztFHH52OHTumW7duOfXUU/PMM880GlMoFDJx4sTU1dWlXbt2GTRoUJ588slGYxoaGjJmzJh07do1HTp0yPDhw7Ns2bJdeSkAAG9op4ZlhUIh48aNy3HHHZfevXsnSVasWJEkqampaTS2pqamtG/FihVp06ZN9ttvvzccs7nJkyenurq69OjevXtzXw4AQItmuQ0AoCVo9p9h/q3zzz8///Vf/5UHHnhgi30VFRWNnhcKhS22be7NxkyYMCHjxo0rPV+9erXADACgGVluAwBoCXbazLIxY8bkzjvvzL333tvoDpa1tbVJssUMsZUrV5Zmm9XW1mb9+vVZtWrVG47ZXFVVVTp16tToAQDAzrOrltsAANiVmj0sKxQKOf/88/PjH/84v/jFL9KzZ89G+3v27Jna2trMnTu3tG39+vW57777MnDgwCRJ375907p160Zjli9fnieeeKI0BgCA8tmVy21YmxYA2JWa/WeY5513XmbPnp1///d/T8eOHUtNT3V1ddq1a5eKioqMHTs2kyZNSq9evdKrV69MmjQp7du3z8iRI0tjzzrrrIwfPz5dunRJ586dc9FFF6VPnz6l6foAAJTPrlxuY/Lkyfna176248UCAGyHZp9Zdv3116e+vj6DBg3K/vvvX3r88Ic/LI255JJLMnbs2IwePTr9+vXLH/7wh9x9993p2LFjacyUKVNy6qmnZsSIETn22GPTvn37/PSnP01lZWVzlwwAwHbY1cttTJgwIfX19aXH0qVLm/NyAAAaafaZZYVC4S3HVFRUZOLEiZk4ceIbjmnbtm2mTZuWadOmNWN1AADsqEKhkDFjxuSOO+7IL3/5yzddbuOoo45K8n/LbVx11VVJGi+3MWLEiCT/t9zG1VdfvdXXraqqSlVV1U68MmB3c9CS25t2gv7jm6cQoEXaqXfDBABg72G5DQCgJRCWAQCwTa6//vokyaBBgxptv/nmm/PpT386yWvLbaxbty6jR4/OqlWr0r9//60ut9GqVauMGDEi69aty+DBgzNjxgzLbQAAuwVhGQAA28RyGwBASyAsgx214OZyVwAAAAA0s2a/GyYAAAAA7KmEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoMjdMGEHzV/8UrlLAAAAtqapd67v95nmqQPYI5lZBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgqFW5CwAAAIDmNH/xS006vn+/ZioE2COZWQYAAAAARcIyAAAAACgSlgEAAABAkTXLAABgNzN7/pImHX9QM9UBAC2RsAyAsph/+zVNOr7/6eObqRKA3c9BS24vdwkA0GL5GSYAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAolblLgDKZsHN5a4AaIL5t1/TpOP7nz6+mSoBAAD2JmaWAQAAAECRsAwAAAAAioRlAAAAAFBkzTJarPmLXyp3CQAAwO6oqesb9/tM89QBlIWZZQAAAABQJCwDAAAAgCJhGQAAAAAUWbOMPVdT1xEAAAAA2IywDAAAmtn8268pdwlAEzT1ZmD9+zVTIUBZ+BkmAAAAABQJywAAAACgyM8w2WM1dWo0AAAAwObMLAMAAACAImEZAAAAABQJywAAAACgyJplLdmCm5t2fL/PNE8dAGUw//ZrmnR8/9PHN1MlAADA7sTMMgAAAAAoMrOM8mnqzDaAMjIzDQAA9k67/cyy6667Lj179kzbtm3Tt2/f/OpXvyp3SQAAAADspXbrmWU//OEPM3bs2Fx33XU59thj873vfS9Dhw7NU089lR49epS7PAAAANjC7PlLmnT8yP7+9y6U024dll177bU566yz8rnPfS5JMnXq1Nx11125/vrrM3ny5DJXBwA7zs84AQBg97TbhmXr16/PwoULc9lllzXaPmTIkDz00ENbjG9oaEhDQ0Pp+erVq3d6jWVX5jW/mvptyUFLXmqmSgAAmpm1VQGgxdptw7I///nP2bhxY2pqahptr6mpyYoVK7YYP3ny5Hzta1/bVeW9pqlNVL/PlPf4JhrZ1Os3KwIA2E3NX+xLPQBoqXbbsOx1FRUVjZ4XCoUttiXJhAkTMm7cuNLz1atXp3v37ju3uDKHVQAAAAA0r902LOvatWsqKyu3mEW2cuXKLWabJUlVVVWqqqp2VXkAAACwVQctub1pJ+jvVzhQTrttWNamTZv07ds3c+fOzd///d+Xts+dOzcf+chHylgZAADN4brrrss3v/nNLF++PIcffnimTp2av/u7vyt3WQDlV+4lf6CF223DsiQZN25cRo0alX79+mXAgAG54YYbsmTJknz+858vd2kAADTBD3/4w4wdOzbXXXddjj322Hzve9/L0KFD89RTT6VHjx7lLg+grJq6bmL/fs1UCLRQu3VY9rGPfSz/+7//myuuuCLLly9P796985//+Z955zvfWe7SAABogmuvvTZnnXVWPve5zyVJpk6dmrvuuivXX399Jk+eXObqAICWbLcOy5Jk9OjRGT16dLnLAACgmaxfvz4LFy7MZZdd1mj7kCFD8tBDD5WpKoC9SBN/xjl74+AmHT+yvxnC7Nl2+7AMAIC9y5///Ods3Lhxi5s21dTUbHFzpyRpaGhIQ0ND6fnq1at3eo0ALZkbFNDSCcvYcRaNBACaoKKiotHzQqGwxbYkmTx5cr72ta/tqrKSJP1P9z/0gJbLmme0dPuUuwAAAFqWrl27prKycotZZCtXrtxitlmSTJgwIfX19aXH0qVLd1WpAEALJCwDAGCXatOmTfr27Zu5c+c22j537twMHDhwi/FVVVXp1KlTowcAwM7iZ5gAAOxy48aNy6hRo9KvX78MGDAgN9xwQ5YsWZLPf/7z5S4NAGjhhGUAAOxyH/vYx/K///u/ueKKK7J8+fL07t07//mf/5l3vvOd5S4NAGjhhGUAAJTF6NGjM3r06HKXAQDQiDXLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEWtyl3AzlIoFJIkq1evLnMlAMCe5PXe4fVegt2PPg8A2BHb2ufttWHZmjVrkiTdu3cvcyUAwJ5ozZo1qa6uLncZbIU+DwBoirfq8yoKe+nXpps2bcof//jHdOzYMRUVFc1+/tWrV6d79+5ZunRpOnXq1Ozn5815/8vL+19e3v/y8zcor539/hcKhaxZsyZ1dXXZZx8rVuyO9Hl7N+9/eXn/y8/foLy8/+W1u/R5e+3Msn322SfveMc7dvrrdOrUyf8BlZH3v7y8/+Xl/S8/f4Py2pnvvxlluzd9Xsvg/S8v73/5+RuUl/e/vMrd5/m6FAAAAACKhGUAAAAAUCQs20FVVVX56le/mqqqqnKX0iJ5/8vL+19e3v/y8zcoL+8/O5t/Y+Xl/S8v73/5+RuUl/e/vHaX93+vXeAfAAAAALaXmWUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWLaDrrvuuvTs2TNt27ZN375986tf/arcJbUIkydPztFHH52OHTumW7duOfXUU/PMM8+Uu6wWa/LkyamoqMjYsWPLXUqL8Yc//CGf+tSn0qVLl7Rv3z5HHnlkFi5cWO6yWoRXX301//iP/5iePXumXbt2OfDAA3PFFVdk06ZN5S5tr3T//ffnlFNOSV1dXSoqKvKTn/yk0f5CoZCJEyemrq4u7dq1y6BBg/Lkk0+Wp1j2Ovq88tDn7V70ebuePq989Hm71p7Q5wnLdsAPf/jDjB07Npdffnkef/zx/N3f/V2GDh2aJUuWlLu0vd59992X8847Lw8//HDmzp2bV199NUOGDMnLL79c7tJanEcffTQ33HBD3vOe95S7lBZj1apVOfbYY9O6dev8/Oc/z1NPPZVrrrkm++67b7lLaxGuuuqqfPe738306dPz9NNP5+qrr843v/nNTJs2rdyl7ZVefvnlHHHEEZk+ffpW91999dW59tprM3369Dz66KOpra3NiSeemDVr1uziStnb6PPKR5+3+9Dn7Xr6vPLS5+1ae0SfV2C7HXPMMYXPf/7zjbYdeuihhcsuu6xMFbVcK1euLCQp3HfffeUupUVZs2ZNoVevXoW5c+cWjj/++MKFF15Y7pJahEsvvbRw3HHHlbuMFuvkk08ufPazn2207bTTTit86lOfKlNFLUeSwh133FF6vmnTpkJtbW3hn/7pn0rb/vrXvxaqq6sL3/3ud8tQIXsTfd7uQ59XHvq88tDnlZc+r3x21z7PzLLttH79+ixcuDBDhgxptH3IkCF56KGHylRVy1VfX58k6dy5c5kraVnOO++8nHzyyTnhhBPKXUqLcuedd6Zfv345/fTT061btxx11FG58cYby11Wi3HcccflnnvuybPPPpsk+c1vfpMHHnggH/7wh8tcWcuzePHirFixotFncVVVVY4//nifxTSJPm/3os8rD31eeejzykuft/vYXfq8VrvslfYSf/7zn7Nx48bU1NQ02l5TU5MVK1aUqaqWqVAoZNy4cTnuuOPSu3fvcpfTYtx222157LHH8uijj5a7lBbn97//fa6//vqMGzcuX/rSl/LII4/kggsuSFVVVc4444xyl7fXu/TSS1NfX59DDz00lZWV2bhxY6688sp84hOfKHdpLc7rn7db+yx+4YUXylESewl93u5Dn1ce+rzy0eeVlz5v97G79HnCsh1UUVHR6HmhUNhiGzvX+eefn//6r//KAw88UO5SWoylS5fmwgsvzN133522bduWu5wWZ9OmTenXr18mTZqUJDnqqKPy5JNP5vrrr9dE7QI//OEPM2vWrMyePTuHH354Fi1alLFjx6auri5nnnlmuctrkXwWs7P4t1V++rxdT59XXvq88tLn7X7K/VksLNtOXbt2TWVl5RbfLq5cuXKL5JOdZ8yYMbnzzjtz//335x3veEe5y2kxFi5cmJUrV6Zv376lbRs3bsz999+f6dOnp6GhIZWVlWWscO+2//77593vfnejbYcddlh+9KMflamiluXiiy/OZZddlo9//ONJkj59+uSFF17I5MmTNVG7WG1tbZLXvnncf//9S9t9FtNU+rzdgz6vPPR55aXPKy993u5jd+nzrFm2ndq0aZO+fftm7ty5jbbPnTs3AwcOLFNVLUehUMj555+fH//4x/nFL36Rnj17lrukFmXw4MH57W9/m0WLFpUe/fr1yyc/+cksWrRIA7WTHXvssXnmmWcabXv22Wfzzne+s0wVtSyvvPJK9tmn8cdmZWWlW4qXQc+ePVNbW9vos3j9+vW57777fBbTJPq88tLnlZc+r7z0eeWlz9t97C59npllO2DcuHEZNWpU+vXrlwEDBuSGG27IkiVL8vnPf77cpe31zjvvvMyePTv//u//no4dO5a++a2urk67du3KXN3er2PHjlusG9KhQ4d06dLFeiK7wBe/+MUMHDgwkyZNyogRI/LII4/khhtuyA033FDu0lqEU045JVdeeWV69OiRww8/PI8//niuvfbafPazny13aXultWvX5rnnnis9X7x4cRYtWpTOnTunR48eGTt2bCZNmpRevXqlV69emTRpUtq3b5+RI0eWsWr2Bvq88tHnlZc+r7z0eeWlz9u19og+b5fdd3Mv88///M+Fd77znYU2bdoU3vve97ql9S6SZKuPm2++udyltVhuKb5r/fSnPy307t27UFVVVTj00EMLN9xwQ7lLajFWr15duPDCCws9evQotG3btnDggQcWLr/88kJDQ0O5S9sr3XvvvVv9//dnnnlmoVB47bbiX/3qVwu1tbWFqqqqwvvf//7Cb3/72/IWzV5Dn1ce+rzdjz5v19LnlY8+b9faE/q8ikKhUNh10RwAAAAA7L6sWQYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKGpV7gIAdpVBgwald+/eSZJZs2alsrIyX/jCF/L1r389FRUVZa4OAIAdpc8DmpOZZUCLMnPmzLRq1Srz58/Pd77znUyZMiX/8i//Uu6yAABoIn0e0FwqCoVCodxFAOwKgwYNysqVK/Pkk0+WvmG87LLLcuedd+app54qc3UAAOwofR7QnMwsA1qU973vfY2m4g8YMCC/+93vsnHjxjJWBQBAU+nzgOYiLAMAAACAImEZ0KI8/PDDWzzv1atXKisry1QRAADNQZ8HNBdhGdCiLF26NOPGjcszzzyTH/zgB5k2bVouvPDCcpcFAEAT6fOA5tKq3AUA7EpnnHFG1q1bl2OOOSaVlZUZM2ZMzjnnnHKXBQBAE+nzgOYiLANalNatW2fq1Km5/vrry10KAADNSJ8HNBc/wwQAAACAImEZAAAAABRVFAqFQrmLAAAAAIDdgZllAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUPT/A1D/7M6rFg8kAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1393,17 +1393,17 @@ "start_time": "2023-11-09T18:41:46.636425810Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:25.120513Z", - "iopub.status.busy": "2023-11-09T20:46:25.119465Z", - "iopub.status.idle": "2023-11-09T20:46:25.125851Z", - "shell.execute_reply": "2023-11-09T20:46:25.125295Z" + "iopub.execute_input": "2023-11-09T22:34:18.112358Z", + "iopub.status.busy": "2023-11-09T22:34:18.111953Z", + "iopub.status.idle": "2023-11-09T22:34:18.116446Z", + "shell.execute_reply": "2023-11-09T22:34:18.115918Z" } }, "outputs": [ { "data": { "text/plain": [ - "-0.34495151496553955" + "-0.3342216663824436" ] }, "execution_count": 30, @@ -1431,10 +1431,10 @@ "start_time": "2023-11-09T18:41:46.644686446Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:25.128328Z", - "iopub.status.busy": "2023-11-09T20:46:25.127843Z", - "iopub.status.idle": "2023-11-09T20:46:25.136318Z", - "shell.execute_reply": "2023-11-09T20:46:25.135821Z" + "iopub.execute_input": "2023-11-09T22:34:18.118507Z", + "iopub.status.busy": "2023-11-09T22:34:18.118175Z", + "iopub.status.idle": "2023-11-09T22:34:18.123548Z", + "shell.execute_reply": "2023-11-09T22:34:18.123037Z" } }, "outputs": [ @@ -1442,7 +1442,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.00038079437364165185" + "0.006467750252848808" ] }, { @@ -1456,7 +1456,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "-0.0015770204104652037" + "0.010045672889273587" ] }, { @@ -1488,16 +1488,16 @@ "start_time": "2023-11-09T18:41:46.669469133Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:25.138759Z", - "iopub.status.busy": "2023-11-09T20:46:25.138296Z", - "iopub.status.idle": "2023-11-09T20:46:25.372100Z", - "shell.execute_reply": "2023-11-09T20:46:25.371304Z" + "iopub.execute_input": "2023-11-09T22:34:18.125573Z", + "iopub.status.busy": "2023-11-09T22:34:18.125270Z", + "iopub.status.idle": "2023-11-09T22:34:18.299811Z", + "shell.execute_reply": "2023-11-09T22:34:18.299223Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABDmklEQVR4nO3deVxWdf7//+clCgLCpYBsIyLmmpAblmCTmgsyaouVmX0IyzT3DExDR0OnpM2s0Y+mjuOSls630T5Ni4qjZrkkLkya5pIi9BHCDEHNQOH6/dHP8+kK3JCLiwOP++12bjeuc97nnNcbF568z/ucY7HZbDYBAACYVC1nFwAAAHArCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUaju7gMpQUlKiU6dOycvLSxaLxdnlAACAG2Cz2XTu3DkFBwerVq2rj7/UiDBz6tQphYSEOLsMAABQDllZWWrUqNFVt9eIMOPl5SXp12+Gt7e3k6sBAAA3oqCgQCEhIcbP8aupEWHmyqUlb29vwgwAACZzvSkiTAAGAACmRpgBAACmRpgBAACmViPmzNyo4uJiXbp0ydllAKbk6up6zVsnAcBRCDP69T72nJwcnT171tmlAKZVq1YthYWFydXV1dmlAKhhCDOSEWT8/f3l4eHBg/WAm3TlwZTZ2dlq3Lgx/4YAVKoaH2aKi4uNIOPr6+vscgDTatiwoU6dOqXLly+rTp06zi4HQA1S4y9wX5kj4+Hh4eRKAHO7cnmpuLjYyZUAqGlqfJi5gmFx4NbwbwiAsxBmAACAqRFmAACAqdX4CcBXMzv1SKWe77leLSrlPMnJyfrwww+Vnp5+w/t069ZN7dq101tvveXUOq7IyMhQWFiY9u3bp3bt2lVYTQAAcyLM1DATJkzQ2LFjb2qfNWvWVKm7U0JCQpSdnS0/Pz9nlwIAqAIIMzWEzWZTcXGx6tWrp3r16t3Uvj4+Pg6qqnxcXFwUGBjo7DIAAFUEc2ZMqrCwUOPGjZO/v7/q1q2ru+++W2lpacb2LVu2yGKxaP369YqMjJSbm5u++OILJScn212auXz5ssaNG6f69evL19dXkyZNUnx8vB544AGjTbdu3TR+/Hjjc5MmTTRz5kw99dRT8vLyUuPGjbVw4UK7+iZNmqQWLVrIw8NDTZs21dSpU2/qVRF5eXl6/PHH1bBhQ7m7u6t58+ZasmSJpF8vM1ksFrtLVB999JGaN28ud3d3de/eXcuWLZPFYrnmU50tFosWLFigfv36ycPDQ61bt9aOHTt07NgxdevWTZ6enoqKitJ3331n7PPdd9/p/vvvV0BAgOrVq6dOnTpp48aNdsedN2+emjdvrrp16yogIEAPP/ywse2DDz5QRESE3N3d5evrq549e+rChQs3/H1BNbI5pfwLADuEGZOaOHGi/vnPf2rZsmXau3evmjVrppiYGP3000+l2qWkpOjQoUO64447Sh3n1Vdf1cqVK7VkyRJt27ZNBQUF+vDDD697/lmzZikyMlL79u3TqFGjNHLkSH377bfGdi8vLy1dulQHDx7U22+/rUWLFmn27Nk33L+pU6fq4MGD+uyzz3To0CHNnz//qpeVMjIy9PDDD+uBBx5Qenq6nnnmGU2ZMuWGzvOXv/xFTzzxhNLT09WqVSsNHjxYzzzzjJKSkrR7925J0pgxY4z258+f15/+9Cdt3LhR+/btU0xMjPr376/MzExJ0u7duzVu3DjNmDFDhw8f1rp163TPPfdIkrKzs/XYY4/pqaee0qFDh7RlyxYNGDBANpvthr8vAIDSuMxkQhcuXND8+fO1dOlSxcbGSpIWLVqk1NRULV68WM8//7zRdsaMGerVq9dVjzVnzhwlJSXpwQcflCTNnTtXn3766XVr+NOf/qRRo0ZJ+nUUZvbs2dqyZYtatWolSfrzn/9stG3SpIkSExO1evVqTZw48Yb6mJmZqfbt2ysyMtI4xtW88847atmypV5//XVJUsuWLXXgwAG9/PLL1z3Pk08+qYEDBxr9iIqK0tSpUxUTEyNJevbZZ/Xkk08a7du2bau2bdsan1966SWtXbtWH330kcaMGaPMzEx5enqqX79+8vLyUmhoqNq3by/p1zBz+fJlDRgwQKGhoZKkiIiIG/p+AACujpEZE/ruu+906dIldenSxVhXp04d3XnnnTp06JBd2ythoCz5+fn64YcfdOeddxrrXFxc1LFjx+vW8NtRHovFosDAQOXm5hrrPvjgA919990KDAxUvXr1NHXqVGP04kaMHDlSq1atUrt27TRx4kRt3779qm0PHz6sTp062a37bZ9utB8BAQGS7ANGQECAfvnlFxUUFEj6NUhOnDhRt99+u+rXr6969erp22+/NfrWq1cvhYaGqmnTpoqLi9PKlSv1888/S/o1CPXo0UMRERF65JFHtGjRIuXl5d1QnQCAqyPMmNCVyxK/f+KqzWYrtc7T0/O6xyvrONfz+7ubLBaLSkpKJEk7d+7UoEGDFBsbq48//lj79u3TlClTVFRUdN3jXhEbG6uTJ09q/PjxOnXqlHr06KEJEyaU2basft/opZvf9uPKMcpad6Vvzz//vP75z3/q5Zdf1hdffKH09HRFREQYffPy8tLevXv1/vvvKygoSNOmTVPbtm119uxZubi4KDU1VZ999pluv/12zZkzRy1bttSJEydu8LsCACgLYcaEmjVrJldXV3355ZfGukuXLmn37t1q3br1DR/HarUqICBAu3btMtYVFxdr3759t1Tftm3bFBoaqilTpigyMlLNmzfXyZMnb/o4DRs21JAhQ7RixQq99dZbpSYZX9GqVSu7yc+SjPkuFe2LL77QkCFD9OCDDyoiIkKBgYHKyMiwa1O7dm317NlTr732mr7++mtlZGRo06ZNkn4NR126dNH06dO1b98+ubq6au3atQ6pFQBqCubMmJCnp6dGjhyp559/Xj4+PmrcuLFee+01/fzzzxo6dOhNHWvs2LFKSUlRs2bN1KpVK82ZM0d5eXm39J6dZs2aKTMzU6tWrVKnTp30ySef3PQP7GnTpqljx45q06aNCgsL9fHHH181qD3zzDN68803NWnSJA0dOlTp6elaunSppIp/X1CzZs20Zs0a9e/fXxaLRVOnTjVGbSTp448/1vHjx3XPPfeoQYMG+vTTT1VSUqKWLVvqq6++0r///W/17t1b/v7++uqrr3T69OmbCqAAgNIIM1dRWU/kLa9XXnlFJSUliouL07lz5xQZGan169erQYMGN3WcSZMmKScnR0888YRcXFw0fPhwxcTEyMXFpdy13X///Xruuec0ZswYFRYWqm/fvpo6daqSk5Nv+Biurq5KSkpSRkaG3N3d9cc//lGrVq0qs21YWJg++OADJSYm6u2331ZUVJSmTJmikSNHys3Nrdz9KMvs2bP11FNPKTo6Wn5+fpo0aZIxn0aS6tevrzVr1ig5OVm//PKLmjdvrvfff19t2rTRoUOHtHXrVr311lsqKChQaGioZs2aZUziBgCUj8VWA+4LLSgokNVqVX5+vry9ve22/fLLLzpx4oTCwsJUt25dJ1VYdZSUlKh169YaOHCg/vKXvzi7nHJ7+eWX9c477ygrK8vZpdQY/Fu6Sc56Xkz3JOecFyiHa/38/i1GZmq4kydPasOGDeratasKCws1d+5cnThxQoMHD3Z2aTdl3rx56tSpk3x9fbVt2za9/vrrds+HAQBUX4SZGq5WrVpaunSpJkyYIJvNpvDwcG3cuNF08ziOHj2ql156ST/99JMaN26sxMREJSXxGygA1ASEmRouJCRE27Ztc3YZt2z27Nk39YRhAED1wa3ZAADA1AgzAADA1AgzAADA1AgzAADA1ModZrZu3ar+/fsrODhYFotFH374od32IUOGyGKx2C2dO3e2a1NYWKixY8fKz89Pnp6euu+++/T999/btcnLy1NcXJysVqusVqvi4uJ09uzZ8pYNAACqmXKHmQsXLqht27aaO3fuVdv06dNH2dnZxvLpp5/abR8/frzWrl2rVatW6csvv9T58+fVr18/FRcXG20GDx6s9PR0rVu3TuvWrVN6erri4uLKWzZQLhkZGbJYLEpPTy/X/t26ddP48eMrtCYAwK/KfWt2bGzsdR/D7ubmpsDAwDK35efna/HixXr33XfVs2dPSdKKFSsUEhKijRs3KiYmRocOHdK6deu0c+dO3XXXXZKkRYsWKSoqSocPH1bLli3LW/71VfbTOWvIUzm7deumdu3a6a233nL4uTIyMhQWFqZ9+/apXbt2Dj/ftaxZs6bUm8ZRDTjrKb4A7Dh0zsyWLVvk7++vFi1aaNiwYcrNzTW27dmzR5cuXVLv3r2NdcHBwQoPD9f27dslSTt27JDVajWCjCR17txZVqvVaFOWwsJCFRQU2C3VXVFRkbNLqDA2m02XL192dhkVysfHR15eXs4uAwCqJYeFmdjYWK1cuVKbNm3SrFmzlJaWpnvvvVeFhYWSpJycHLm6upZ6MWJAQIBycnKMNv7+/qWO7e/vb7QpS0pKijHHxmq1KiQkpAJ7VjV069ZNY8aMUUJCgvz8/NSrVy9J0sGDB/WnP/1J9erVU0BAgOLi4vTjjz8a+5WUlOjVV19Vs2bN5ObmpsaNG+vll182tu/fv1/33nuv3N3d5evrq+HDh+v8+fPG9iFDhuiBBx7QG2+8oaCgIPn6+mr06NG6dOmS0WbevHlq3ry56tatq4CAAD388MPGvp9//rnefvttYx5VRkaGtmzZIovFovXr1ysyMlJubm764osvjHP91vjx49WtW7cb6k9YWJgkqX379rJYLHb7LVmyRK1bt1bdunXVqlUrzZs3z+48u3btUvv27VW3bl1FRkZq37591/0zuVq/r/x5/fYyU3Z2tvr27St3d3eFhYXpvffeU5MmTa45YnXl+zFz5kwFBASofv36mj59ui5fvmy8Qb1Ro0b6+9//brffpEmT1KJFC3l4eKhp06aaOnWq3Z/Xf/7zH3Xv3l1eXl7y9vZWx44dtXv3bkm/vu6if//+atCggTw9PdWmTZtSl4sBwNkc9gTgRx991Pg6PDxckZGRCg0N1SeffKIBAwZcdT+bzSaLxWJ8/u3XV2vze0lJSUpISDA+FxQUVMtAs2zZMo0cOVLbtm2TzWZTdna2unbtqmHDhunNN9/UxYsXNWnSJA0cOFCbNm2S9Ov3ZtGiRZo9e7buvvtuZWdn69tvv5Uk/fzzz+rTp486d+6stLQ05ebm6umnn9aYMWO0dOlS47ybN29WUFCQNm/erGPHjunRRx9Vu3btNGzYMO3evVvjxo3Tu+++q+joaP3000/64osvJElvv/22jhw5ovDwcM2YMUOS1LBhQ2VkZEiSJk6cqDfeeENNmzZV/fr1b+h7cK3+7Nq1S3feeac2btyoNm3ayNXVVdKvlypffPFFzZ07V+3bt9e+ffs0bNgweXp6Kj4+XhcuXFC/fv107733asWKFTpx4oSeffbZa9ZxrX6X5YknntCPP/6oLVu2qE6dOkpISLAbubyaTZs2qVGjRtq6dau2bdumoUOHaseOHbrnnnv01VdfafXq1RoxYoR69epl/J338vLS0qVLFRwcrP3792vYsGHy8vLSxIkTJUmPP/642rdvr/nz58vFxUXp6enGJbHRo0erqKhIW7dulaenpw4ePKh69epd/w8GACpRpb3OICgoSKGhoTp69KgkKTAwUEVFRcrLy7MbncnNzVV0dLTR5ocffih1rNOnTysgIOCq53Jzc5Obm1sF96DqadasmV577TXj87Rp09ShQwfNnDnTWPf3v/9dISEhOnLkiIKCgvT2229r7ty5io+PlyTddtttuvvuuyVJK1eu1MWLF7V8+XJ5enpKkubOnav+/fvr1VdfNb7nDRo00Ny5c+Xi4qJWrVqpb9+++ve//61hw4YpMzNTnp6e6tevn7y8vBQaGqr27dtLkqxWq1xdXeXh4VHmXKoZM2YYI0w34ty5c9fsT8OGDSVJvr6+duf7y1/+olmzZhmhOiwsTAcPHtSCBQsUHx+vlStXqri4WH//+9/l4eGhNm3a6Pvvv9fIkSOvWsu1+v173377rTZu3Ki0tDRFRkZKkv72t7+pefPm1+2zj4+P/vrXv6pWrVpq2bKlXnvtNf3888+aPHmypF/D3SuvvKJt27Zp0KBBkqQ///nPxv5NmjRRYmKiVq9ebYSZzMxMPf/882rVqpUk2dWRmZmphx56SBEREZKkpk2bXrdGAKhslfacmTNnzigrK0tBQUGSpI4dO6pOnTpKTU012mRnZ+vAgQNGmImKilJ+fr527dpltPnqq6+Un59vtKnJrvwgvGLPnj3avHmz6tWrZyxXfkB99913OnTokAoLC9WjR48yj3fo0CG1bdvWCDKS1KVLF5WUlOjw4cPGujZt2sjFxcX4HBQUZIwq9OrVS6GhoWratKni4uK0cuVK/fzzz+Xqz/Vcrz9lOX36tLKysjR06FC779NLL72k7777zjhu27Zt5eHhYewXFRV1zePeTL8PHz6s2rVrq0OHDsa6Zs2albrkWpY2bdqoVq3/+2cbEBBgBA1JcnFxka+vr90ozwcffKC7775bgYGBqlevnqZOnarMzExje0JCgp5++mn17NlTr7zyivF9kKRx48bppZdeUpcuXfTiiy/q66+/vm6NAFDZyj0yc/78eR07dsz4fOLECaWnp8vHx0c+Pj5KTk7WQw89pKCgIGVkZGjy5Mny8/PTgw8+KOnX39KHDh2qxMRE+fr6ysfHRxMmTFBERIRxd1Pr1q3Vp08fDRs2TAsWLJAkDR8+XP369XPsnUwm8dvQIf06f+TKKMrvBQUF6fjx49c83rUu3/12/e/vyrFYLCopKZH06yWNvXv3asuWLdqwYYOmTZum5ORkpaWlXffS0e/7U6tWLdlsNrt1v53r4e7ufs3jleVKnYsWLbKbWC7JCGi/P+eNuJl+X+34N3Lesr731/rz2LlzpwYNGqTp06crJiZGVqtVq1at0qxZs4z2ycnJGjx4sD755BN99tlnevHFF7Vq1So9+OCDevrppxUTE6NPPvlEGzZsUEpKimbNmqWxY8feyLcFVdGt3IFVQ+66hPmUe2Rm9+7dat++vTGUnpCQoPbt22vatGlycXHR/v37df/996tFixaKj49XixYttGPHDrs7OmbPnq0HHnhAAwcOVJcuXeTh4aF//etfdr/1r1y5UhEREerdu7d69+6tO+64Q+++++4tdLn66tChg7755hs1adJEzZo1s1s8PT3VvHlzubu769///neZ+99+++1KT0/XhQsXjHXbtm1TrVq11KJFixuuo3bt2urZs6dee+01ff3118rIyDDm7Li6uto9R+haGjZsqOzsbLt1v33Oy/X6c2WOzG/PFxAQoD/84Q86fvx4qe/RlQnDt99+u/7zn//o4sWLxn47d+68pX7/VqtWrXT58mW7ScXHjh1zyMMgt23bptDQUE2ZMkWRkZFq3ry5Tp48WapdixYt9Nxzz2nDhg0aMGCAlixZYmwLCQnRiBEjtGbNGiUmJmrRokUVXicA3Ipyj8x069btmr9Jrl+//rrHqFu3rubMmaM5c+ZctY2Pj49WrFhRrhprmtGjR2vRokV67LHH9Pzzz8vPz0/Hjh3TqlWrtGjRItWtW1eTJk3SxIkT5erqqi5duuj06dP65ptvNHToUD3++ON68cUXFR8fr+TkZJ0+fVpjx45VXFzcNeco/dbHH3+s48eP65577lGDBg306aefqqSkxBhJa9Kkib766itlZGSoXr168vHxueqx7r33Xr3++utavny5oqKitGLFCh04cMAI0Nfrj7+/v9zd3bVu3To1atRIdevWldVqVXJyssaNGydvb2/FxsaqsLBQu3fvVl5enhISEjR48GBNmTJFQ4cO1Z///GdlZGTojTfeuKV+/1arVq3Us2dPDR8+XPPnz1edOnWUmJgod3f3a05sL49mzZopMzNTq1atUqdOnfTJJ59o7dq1xvaLFy/q+eef18MPP6ywsDB9//33SktL00MPPSTp17vHYmNj1aJFC+Xl5WnTpk1q3bp1hdYIALeKdzNVI8HBwdq2bZuKi4sVExOj8PBwPfvss7JarcY8i6lTpyoxMVHTpk1T69at9eijjxrzKzw8PLR+/Xr99NNP6tSpkx5++GH16NHjmk95/r369etrzZo1uvfee9W6dWu98847ev/999WmTRtJ0oQJE+Ti4qLbb79dDRs2tJu78XsxMTGaOnWqJk6cqE6dOuncuXN64okn7Npcqz+1a9fWX//6Vy1YsEDBwcG6//77JUlPP/20/va3v2np0qWKiIhQ165dtXTpUmNkpl69evrXv/6lgwcPqn379poyZUqZl+5upt+/t3z5cgUEBOiee+7Rgw8+aNxhVLdu3Rv7Rt+g+++/X88995zGjBmjdu3aafv27Zo6daqx3cXFRWfOnNETTzyhFi1aaODAgYqNjdX06dMl/TqqNXr0aOOSb8uWLUvdxg4AzmaxlWeCgMkUFBTIarUqPz9f3t7edtt++eUXnThxQmFhYRX+gwS4Ud9//73x9OubmdBcldTIf0s17QnAzJlBJbvWz+/fqrRbswH8n02bNun8+fOKiIhQdna2Jk6cqCZNmuiee+5xdmkAYDqEGcAJLl26pMmTJ+v48ePy8vJSdHS0Vq5cyfubAKAcCDOAE8TExCgmJsbZZQBAtcAEYAAAYGqEmf9fDZgHDTgU/4YAOEuNDzNX5ijc6CP3AZStqKhIkuweegkAlaHGz5lxcXFR/fr17Z61UtEPLgOqu5KSEp0+fVoeHh6qXbvG/7cCoJLxv45kvFH5ty/nA3BzatWqpcaNG/PLAIBKR5jRry/mCwoKkr+/v92LDAHcOFdXV7s3egNAZSHM/IaLiwvX+wEAMBl+jQIAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZW7jCzdetW9e/fX8HBwbJYLPrwww+NbZcuXdKkSZMUEREhT09PBQcH64knntCpU6fsjtGtWzdZLBa7ZdCgQXZt8vLyFBcXJ6vVKqvVqri4OJ09e7a8ZQMAgGqm3GHmwoULatu2rebOnVtq288//6y9e/dq6tSp2rt3r9asWaMjR47ovvvuK9V22LBhys7ONpYFCxbYbR88eLDS09O1bt06rVu3Tunp6YqLiytv2QAAoJqpXd4dY2NjFRsbW+Y2q9Wq1NRUu3Vz5szRnXfeqczMTDVu3NhY7+HhocDAwDKPc+jQIa1bt047d+7UXXfdJUlatGiRoqKidPjwYbVs2bK85QMAgGqi0ubM5Ofny2KxqH79+nbrV65cKT8/P7Vp00YTJkzQuXPnjG07duyQ1Wo1gowkde7cWVarVdu3b7/quQoLC1VQUGC3AACA6qncIzM345dfftELL7ygwYMHy9vb21j/+OOPKywsTIGBgTpw4ICSkpL0n//8xxjVycnJkb+/f6nj+fv7Kycn56rnS0lJ0fTp0yu+IwAAoMpxeJi5dOmSBg0apJKSEs2bN89u27Bhw4yvw8PD1bx5c0VGRmrv3r3q0KGDJMlisZQ6ps1mK3P9FUlJSUpISDA+FxQUKCQk5Fa7AgAAqiCHhplLly5p4MCBOnHihDZt2mQ3KlOWDh06qE6dOjp69Kg6dOigwMBA/fDDD6XanT59WgEBAVc9jpubm9zc3G65fgAAUPU5bM7MlSBz9OhRbdy4Ub6+vtfd55tvvtGlS5cUFBQkSYqKilJ+fr527dpltPnqq6+Un5+v6OhoR5UOAABMpNwjM+fPn9exY8eMzydOnFB6erp8fHwUHByshx9+WHv37tXHH3+s4uJiY46Lj4+PXF1d9d1332nlypX605/+JD8/Px08eFCJiYlq3769unTpIklq3bq1+vTpo2HDhhm3bA8fPlz9+vXjTiYAACBJsthsNlt5dtyyZYu6d+9ean18fLySk5MVFhZW5n6bN29Wt27dlJWVpf/6r//SgQMHdP78eYWEhKhv37568cUX5ePjY7T/6aefNG7cOH300UeSpPvuu09z584tdVfUtRQUFMhqtSo/P/+6l7oA1DCbU5xdgXl0T3J2BahhbvTnd7nDjJkQZgBcFWHmxhFmUMlu9Oc372YCAACmVinPmQEAVAO3MorFqA4ciJEZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgarWdXQAA1EQ7jp8p975RTX0rsBLA/BiZAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApsZzZgDAZHhGDWCPkRkAAGBq5Q4zW7duVf/+/RUcHCyLxaIPP/zQbrvNZlNycrKCg4Pl7u6ubt266ZtvvrFrU1hYqLFjx8rPz0+enp6677779P3339u1ycvLU1xcnKxWq6xWq+Li4nT27Nnylg0AAKqZcoeZCxcuqG3btpo7d26Z21977TW9+eabmjt3rtLS0hQYGKhevXrp3LlzRpvx48dr7dq1WrVqlb788kudP39e/fr1U3FxsdFm8ODBSk9P17p167Ru3Tqlp6crLi6uvGUDAIBqptxzZmJjYxUbG1vmNpvNprfeektTpkzRgAEDJEnLli1TQECA3nvvPT3zzDPKz8/X4sWL9e6776pnz56SpBUrVigkJEQbN25UTEyMDh06pHXr1mnnzp266667JEmLFi1SVFSUDh8+rJYtW5a3fAAAUE04ZALwiRMnlJOTo969exvr3Nzc1LVrV23fvl3PPPOM9uzZo0uXLtm1CQ4OVnh4uLZv366YmBjt2LFDVqvVCDKS1LlzZ1mtVm3fvv2qYaawsFCFhYXG54KCAgf0EkCVsTnFKae9lYm4ACqOQyYA5+TkSJICAgLs1gcEBBjbcnJy5OrqqgYNGlyzjb+/f6nj+/v7G23KkpKSYsyxsVqtCgkJuaX+AACAqsuhdzNZLBa7zzabrdS63/t9m7LaX+84SUlJys/PN5asrKybrBwAAJiFQ8JMYGCgJJUaPcnNzTVGawIDA1VUVKS8vLxrtvnhhx9KHf/06dOlRn1+y83NTd7e3nYLAAConhwSZsLCwhQYGKjU1FRjXVFRkT7//HNFR0dLkjp27Kg6derYtcnOztaBAweMNlFRUcrPz9euXbuMNl999ZXy8/ONNgAAoGYr9wTg8+fP69ixY8bnEydOKD09XT4+PmrcuLHGjx+vmTNnqnnz5mrevLlmzpwpDw8PDR48WJJktVo1dOhQJSYmytfXVz4+PpowYYIiIiKMu5tat26tPn36aNiwYVqwYIEkafjw4erXrx93MgFAOfD0YFRH5Q4zu3fvVvfu3Y3PCQkJkqT4+HgtXbpUEydO1MWLFzVq1Cjl5eXprrvu0oYNG+Tl5WXsM3v2bNWuXVsDBw7UxYsX1aNHDy1dulQuLi5Gm5UrV2rcuHHGXU/33XffVZ9tAwAAah6LzWazObsIRysoKJDValV+fj7zZ4DqiFuzK8Utjcx0T6q4QlBj3OjPb97NBAAATI23ZgMAHO9WRs8Y1cF1MDIDAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMrbazCwAAmMOO42fKvW9UU98KrASwR5gBUKPdyg9oAFUDl5kAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpOTTMNGnSRBaLpdQyevRoSdKQIUNKbevcubPdMQoLCzV27Fj5+fnJ09NT9913n77//ntHlg0AAEzEoWEmLS1N2dnZxpKamipJeuSRR4w2ffr0sWvz6aef2h1j/PjxWrt2rVatWqUvv/xS58+fV79+/VRcXOzI0gEAgEk49AnADRs2tPv8yiuv6LbbblPXrl2NdW5ubgoMDCxz//z8fC1evFjvvvuuevbsKUlasWKFQkJCtHHjRsXExDiueAAAYAqVNmemqKhIK1as0FNPPSWLxWKs37Jli/z9/dWiRQsNGzZMubm5xrY9e/bo0qVL6t27t7EuODhY4eHh2r59+1XPVVhYqIKCArsFAABUT5UWZj788EOdPXtWQ4YMMdbFxsZq5cqV2rRpk2bNmqW0tDTde++9KiwslCTl5OTI1dVVDRo0sDtWQECAcnJyrnqulJQUWa1WYwkJCXFInwAAgPNV2osmFy9erNjYWAUHBxvrHn30UePr8PBwRUZGKjQ0VJ988okGDBhw1WPZbDa70Z3fS0pKUkJCgvG5oKCAQAMAQDVVKWHm5MmT2rhxo9asWXPNdkFBQQoNDdXRo0clSYGBgSoqKlJeXp7d6Exubq6io6Ovehw3Nze5ublVTPEAAKBKq5TLTEuWLJG/v7/69u17zXZnzpxRVlaWgoKCJEkdO3ZUnTp1jLugJCk7O1sHDhy4ZpgBAAA1h8NHZkpKSrRkyRLFx8erdu3/O9358+eVnJyshx56SEFBQcrIyNDkyZPl5+enBx98UJJktVo1dOhQJSYmytfXVz4+PpowYYIiIiKMu5sAAEDN5vAws3HjRmVmZuqpp56yW+/i4qL9+/dr+fLlOnv2rIKCgtS9e3etXr1aXl5eRrvZs2erdu3aGjhwoC5evKgePXpo6dKlcnFxcXTpAADABCw2m83m7CIcraCgQFarVfn5+fL29nZ2OQAq2uaUcu+64/iZCiwEVxPV1Lf8O3dPqrhCYCo3+vO70u5mAgBHIZAANRsvmgQAAKbGyAyAquEWLhUBqNkYmQEAAKbGyAwAoGq7lVE7Jg/XCIzMAAAAUyPMAAAAUyPMAAAAUyPMAAAAU2MCMADA4W7lwYa39PRg1AiMzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFOr7ewCAECSdhw/4+wSAJgUIzMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUHBpmkpOTZbFY7JbAwEBju81mU3JysoKDg+Xu7q5u3brpm2++sTtGYWGhxo4dKz8/P3l6euq+++7T999/78iyAQCAiTh8ZKZNmzbKzs42lv379xvbXnvtNb355puaO3eu0tLSFBgYqF69euncuXNGm/Hjx2vt2rVatWqVvvzyS50/f179+vVTcXGxo0sHAAAm4PDnzNSuXdtuNOYKm82mt956S1OmTNGAAQMkScuWLVNAQIDee+89PfPMM8rPz9fixYv17rvvqmfPnpKkFStWKCQkRBs3blRMTEyZ5ywsLFRhYaHxuaCgwAE9AwAAVYHDR2aOHj2q4OBghYWFadCgQTp+/Lgk6cSJE8rJyVHv3r2Ntm5uburatau2b98uSdqzZ48uXbpk1yY4OFjh4eFGm7KkpKTIarUaS0hIiIN6BwAAnM2hYeauu+7S8uXLtX79ei1atEg5OTmKjo7WmTNnlJOTI0kKCAiw2ycgIMDYlpOTI1dXVzVo0OCqbcqSlJSk/Px8Y8nKyqrgngEAgKrCoZeZYmNjja8jIiIUFRWl2267TcuWLVPnzp0lSRaLxW4fm81Wat3vXa+Nm5ub3NzcbqFyAABgFpX6biZPT09FRETo6NGjeuCBByT9OvoSFBRktMnNzTVGawIDA1VUVKS8vDy70Znc3FxFR0dXZukAACe5lfd2RXWvwEJQZVXqc2YKCwt16NAhBQUFKSwsTIGBgUpNTTW2FxUV6fPPPzeCSseOHVWnTh27NtnZ2Tpw4ABhBgAASHLwyMyECRPUv39/NW7cWLm5uXrppZdUUFCg+Ph4WSwWjR8/XjNnzlTz5s3VvHlzzZw5Ux4eHho8eLAkyWq1aujQoUpMTJSvr698fHw0YcIERUREGHc3AQCAms2hYeb777/XY489ph9//FENGzZU586dtXPnToWGhkqSJk6cqIsXL2rUqFHKy8vTXXfdpQ0bNsjLy8s4xuzZs1W7dm0NHDhQFy9eVI8ePbR06VK5uLg4snQAAGASFpvNZnN2EY5WUFAgq9Wq/Px8eXt7O7scoPranFLuXW9lXgRwNVFD33B2CbgFN/rzm3czAQAAU6vUu5kAAKhUtzBaqO5JFVcHHIqRGQAAYGqEGQAAYGqEGQAAYGqEGQAAYGqEGQAAYGrczQSgwvCsGADOwMgMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNd7NBACotm7lfWFR3SuwEDgUIzMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUHPo6g5SUFK1Zs0bffvut3N3dFR0drVdffVUtW7Y02gwZMkTLli2z2++uu+7Szp07jc+FhYWaMGGC3n//fV28eFE9evTQvHnz1KhRI0eWD9RIs1OPlHvfzhVYBwDcKIeOzHz++ecaPXq0du7cqdTUVF2+fFm9e/fWhQsX7Nr16dNH2dnZxvLpp5/abR8/frzWrl2rVatW6csvv9T58+fVr18/FRcXO7J8AABgAg4dmVm3bp3d5yVLlsjf31979uzRPffcY6x3c3NTYGBgmcfIz8/X4sWL9e6776pnz56SpBUrVigkJEQbN25UTExMqX0KCwtVWFhofC4oKKiI7gAAgCqoUufM5OfnS5J8fHzs1m/ZskX+/v5q0aKFhg0bptzcXGPbnj17dOnSJfXu3dtYFxwcrPDwcG3fvr3M86SkpMhqtRpLSEiIA3oDAACqgkoLMzabTQkJCbr77rsVHh5urI+NjdXKlSu1adMmzZo1S2lpabr33nuNkZWcnBy5urqqQYMGdscLCAhQTk5OmedKSkpSfn6+sWRlZTmuYwAAwKkcepnpt8aMGaOvv/5aX375pd36Rx991Pg6PDxckZGRCg0N1SeffKIBAwZc9Xg2m00Wi6XMbW5ubnJzc6uYwgEAQJVWKSMzY8eO1UcffaTNmzdf9w6koKAghYaG6ujRo5KkwMBAFRUVKS8vz65dbm6uAgICHFYzAAAwB4eGGZvNpjFjxmjNmjXatGmTwsLCrrvPmTNnlJWVpaCgIElSx44dVadOHaWmphptsrOzdeDAAUVHRzusdgAAYA4Ovcw0evRovffee/qf//kfeXl5GXNcrFar3N3ddf78eSUnJ+uhhx5SUFCQMjIyNHnyZPn5+enBBx802g4dOlSJiYny9fWVj4+PJkyYoIiICOPuJgAAKtzmlPLv2z2p4urAdTk0zMyfP1+S1K1bN7v1S5Ys0ZAhQ+Ti4qL9+/dr+fLlOnv2rIKCgtS9e3etXr1aXl5eRvvZs2erdu3aGjhwoPHQvKVLl8rFxcWR5QMAABOw2Gw2m7OLcLSCggJZrVbl5+fL29vb2eUAVdqOxROcXQJQJUQ19S3/zozMVIgb/fnNu5kAAICpEWYAAICpEWYAAICpEWYAAICpVdoTgAEAMJMdx8+Ue9+o7hVYCK6LkRkAAGBqjMwA1dDs1CPl3rdzBdYBAJWBkRkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBq3JoNAEAFu5XHIzzXq0UFVlIzMDIDAABMjZEZoIq6ld/sADhX58yFt7D3GxVWR03ByAwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA17mYCAKAK4Rk1N4+RGQAAYGqEGQAAYGqEGQAAYGqEGQAAYGqEGQAAYGrczQQ4EO9XAlCZauqdUIzMAAAAU2NkBrgORlcAoGozTZiZN2+eXn/9dWVnZ6tNmzZ666239Mc//tHZZQEAUKE6Zy4s9747Gw8v975mvkRlijCzevVqjR8/XvPmzVOXLl20YMECxcbG6uDBg2rcuLGzywOqnFv5zxAAzMYUYebNN9/U0KFD9fTTT0uS3nrrLa1fv17z589XSkqKk6uDGXCpCACqryofZoqKirRnzx698MILdut79+6t7du3l7lPYWGhCgsLjc8FBQUOrdFZdiyeUO59o4a+Ue59CQYAgKqkyoeZH3/8UcXFxQoICLBbHxAQoJycnDL3SUlJ0fTp0yujPKe6lUCizeUf0Xquyv+tgW7l7wYA04q6hf/bb02Sk877K9Pcmm2xWOw+22y2UuuuSEpKUn5+vrFkZWVVRokAAMAJqvzv2H5+fnJxcSk1CpObm1tqtOYKNzc3ubm5VUZ5AADAyar8yIyrq6s6duyo1NRUu/WpqamKjo52UlUAAKCqqPIjM5KUkJCguLg4RUZGKioqSgsXLlRmZqZGjBjh7NIAAKg6ut/C3BWnzbe5daYIM48++qjOnDmjGTNmKDs7W+Hh4fr0008VGhrq7NIAAICTmSLMSNKoUaM0atQoZ5cBAACqmCo/ZwYAAOBaCDMAAMDUTHOZCQAAONCtTB52MkZmAACAqRFmAACAqRFmAACAqRFmAACAqRFmAACAqRFmAACAqXFrdk1VQ9/fAQCofhiZAQAApkaYAQAApkaYAQAApsacGaCqMvGjxQGgMjEyAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATK22swsAqrXuSc6uAACqPUZmAACAqTkszGRkZGjo0KEKCwuTu7u7brvtNr344osqKiqya2exWEot77zzjl2b/fv3q2vXrnJ3d9cf/vAHzZgxQzabzVGlAwAAE3HYZaZvv/1WJSUlWrBggZo1a6YDBw5o2LBhunDhgt544w27tkuWLFGfPn2Mz1ar1fi6oKBAvXr1Uvfu3ZWWlqYjR45oyJAh8vT0VGJioqPKBwAAJuGwMNOnTx+7gNK0aVMdPnxY8+fPLxVm6tevr8DAwDKPs3LlSv3yyy9aunSp3NzcFB4eriNHjujNN99UQkKCLBaLo7oAAABMoFLnzOTn58vHx6fU+jFjxsjPz0+dOnXSO++8o5KSEmPbjh071LVrV7m5uRnrYmJidOrUKWVkZJR5nsLCQhUUFNgtAACgeqq0MPPdd99pzpw5GjFihN36v/zlL/p//+//aePGjRo0aJASExM1c+ZMY3tOTo4CAgLs9rnyOScnp8xzpaSkyGq1GktISEgF9wYAAFQVNx1mkpOTy5y0+9tl9+7ddvucOnVKffr00SOPPKKnn37abtuf//xnRUVFqV27dkpMTNSMGTP0+uuv27X5/aWkK5N/r3aJKSkpSfn5+caSlZV1s90EAAAmcdNzZsaMGaNBgwZds02TJk2Mr0+dOqXu3bsrKipKCxcuvO7xO3furIKCAv3www8KCAhQYGBgqRGY3NxcSSo1YnOFm5ub3WUpAABQfd10mPHz85Ofn98Ntf3f//1fde/eXR07dtSSJUtUq9b1B4L27dununXrqn79+pKkqKgoTZ48WUVFRXJ1dZUkbdiwQcHBwXahCQAA1EwOu5vp1KlT6tatmxo3bqw33nhDp0+fNrZduXPpX//6l3JychQVFSV3d3dt3rxZU6ZM0fDhw42RlcGDB2v69OkaMmSIJk+erKNHj2rmzJmaNm0adzKhcvAUXwCo0hwWZjZs2KBjx47p2LFjatSokd22K3Ne6tSpo3nz5ikhIUElJSVq2rSpZsyYodGjRxttrVarUlNTNXr0aEVGRqpBgwZKSEhQQkKCo0oHAAAmYrHVgEfpFhQUyGq1Kj8/X97e3s4ux/w2pzi7gsrFyAwAOMWN/vzm3UwAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUHHZrNlClcEcSAFRbjMwAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABT424mmAd3JAEAysDIDAAAMDXCDAAAMDUuM6FycakIAFDBGJkBAACmRpgBAACmRpgBAACmRpgBAACmRpgBAACmRpgBAACmxq3ZuHncXg0AqEIYmQEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKbm0DDTpEkTWSwWu+WFF16wa5OZman+/fvL09NTfn5+GjdunIqKiuza7N+/X127dpW7u7v+8Ic/aMaMGbLZbI4sHQAAmITDnwA8Y8YMDRs2zPhcr1494+vi4mL17dtXDRs21JdffqkzZ84oPj5eNptNc+bMkSQVFBSoV69e6t69u9LS0nTkyBENGTJEnp6eSkxMdHT5AACginN4mPHy8lJgYGCZ2zZs2KCDBw8qKytLwcHBkqRZs2ZpyJAhevnll+Xt7a2VK1fql19+0dKlS+Xm5qbw8HAdOXJEb775phISEmSxWBzdBQAAUIU5fM7Mq6++Kl9fX7Vr104vv/yy3SWkHTt2KDw83AgykhQTE6PCwkLt2bPHaNO1a1e5ubnZtTl16pQyMjLKPGdhYaEKCgrsFgAAUD05dGTm2WefVYcOHdSgQQPt2rVLSUlJOnHihP72t79JknJychQQEGC3T4MGDeTq6qqcnByjTZMmTezaXNknJydHYWFhpc6bkpKi6dOnO6BHAACgqrnpkZnk5ORSk3p/v+zevVuS9Nxzz6lr166644479PTTT+udd97R4sWLdebMGeN4ZV0mstlsdut/3+bK5N+rXWJKSkpSfn6+sWRlZd1sNwEAgEnc9MjMmDFjNGjQoGu2+f1IyhWdO3eWJB07dky+vr4KDAzUV199ZdcmLy9Ply5dMkZfAgMDjVGaK3JzcyWp1KjOFW5ubnaXpQAAQPV102HGz89Pfn5+5TrZvn37JElBQUGSpKioKL388svKzs421m3YsEFubm7q2LGj0Wby5MkqKiqSq6ur0SY4OPiqoen3rozkMHcGAADzuPJz+7qPY7E5yPbt221vvvmmbd++fbbjx4/bVq9ebQsODrbdd999RpvLly/bwsPDbT169LDt3bvXtnHjRlujRo1sY8aMMdqcPXvWFhAQYHvsscds+/fvt61Zs8bm7e1te+ONN264lqysLJskFhYWFhYWFhMuWVlZ1/w5b7HZHPP0ub1792rUqFH69ttvVVhYqNDQUA0aNEgTJ06Uh4eH0S4zM1OjRo3Spk2b5O7ursGDB+uNN96wu0y0f/9+jR49Wrt27VKDBg00YsQITZs27YZvyy4pKdGpU6fk5eVV4bdyFxQUKCQkRFlZWfL29q7QY1cF9M/8qnsf6Z/5Vfc+0r/ys9lsOnfunIKDg1Wr1tWn+ToszNQUBQUFslqtys/Pr7Z/SemfuVX3PtI/86vufaR/jse7mQAAgKkRZgAAgKkRZm6Rm5ubXnzxxWp7Kzj9M7/q3kf6Z37VvY/0z/GYMwMAAEyNkRkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhJkK9PLLLys6OloeHh6qX7++s8u5ZfPmzVNYWJjq1q2rjh076osvvnB2SRVm69at6t+/v4KDg2WxWPThhx86u6QKlZKSok6dOsnLy0v+/v564IEHdPjwYWeXVaHmz5+vO+64Q97e3vL29lZUVJQ+++wzZ5flMCkpKbJYLBo/fryzS6kQycnJslgsdktgYKCzy6pw//u//6v/+q//kq+vrzw8PNSuXTvt2bPH2WVViCZNmpT6M7RYLBo9enSl10KYqUBFRUV65JFHNHLkSGeXcstWr16t8ePHa8qUKdq3b5/++Mc/KjY2VpmZmc4urUJcuHBBbdu21dy5c51dikN8/vnnGj16tHbu3KnU1FRdvnxZvXv31oULF5xdWoVp1KiRXnnlFe3evVu7d+/Wvffeq/vvv1/ffPONs0urcGlpaVq4cKHuuOMOZ5dSodq0aaPs7Gxj2b9/v7NLqlB5eXnq0qWL6tSpo88++0wHDx7UrFmzqsUvu9Kvfy9/++eXmpoqSXrkkUcqv5ibeHckbtCSJUtsVqvV2WXckjvvvNM2YsQIu3WtWrWyvfDCC06qyHEk2dauXevsMhwqNzfXJsn2+eefO7sUh2rQoIHtb3/7m7PLqFDnzp2zNW/e3Jaammrr2rWr7dlnn3V2SRXixRdftLVt29bZZTjUpEmTbHfffbezy6g0zz77rO22226zlZSUVPq5GZlBKUVFRdqzZ4969+5tt753797avn27k6rCrcjPz5ck+fj4OLkSxyguLtaqVat04cIFRUVFObucCjV69Gj17dtXPXv2dHYpFe7o0aMKDg5WWFiYBg0apOPHjzu7pAr10UcfKTIyUo888oj8/f3Vvn17LVq0yNllOURRUZFWrFihp556qsJf6HwjCDMo5ccff1RxcbECAgLs1gcEBCgnJ8dJVaG8bDabEhISdPfddys8PNzZ5VSo/fv3q169enJzc9OIESO0du1a3X777c4uq8KsWrVKe/fuVUpKirNLqXB33XWXli9frvXr12vRokXKyclRdHS0zpw54+zSKszx48c1f/58NW/eXOvXr9eIESM0btw4LV++3NmlVbgPP/xQZ8+e1ZAhQ5xyfsLMdZQ1Se33y+7du51dpkP8Pl3bbDanJG7cmjFjxujrr7/W+++/7+xSKlzLli2Vnp6unTt3auTIkYqPj9fBgwedXVaFyMrK0rPPPqsVK1aobt26zi6nwsXGxuqhhx5SRESEevbsqU8++USStGzZMidXVnFKSkrUoUMHzZw5U+3bt9czzzyjYcOGaf78+c4urcItXrxYsbGxCg4Odsr5azvlrCYyZswYDRo06JptmjRpUjnFVBI/Pz+5uLiUGoXJzc0tNVqDqm3s2LH66KOPtHXrVjVq1MjZ5VQ4V1dXNWvWTJIUGRmptLQ0vf3221qwYIGTK7t1e/bsUW5urjp27GisKy4u1tatWzV37lwVFhbKxcXFiRVWLE9PT0VEROjo0aPOLqXCBAUFlRopbN26tf75z386qSLHOHnypDZu3Kg1a9Y4rQbCzHX4+fnJz8/P2WVUKldXV3Xs2FGpqal68MEHjfWpqam6//77nVgZbpTNZtPYsWO1du1abdmyRWFhYc4uqVLYbDYVFhY6u4wK0aNHj1J39zz55JNq1aqVJk2aVK2CjCQVFhbq0KFD+uMf/+jsUipMly5dSj0S4ciRIwoNDXVSRY6xZMkS+fv7q2/fvk6rgTBTgTIzM/XTTz8pMzNTxcXFSk9PlyQ1a9ZM9erVc25xNykhIUFxcXGKjIxUVFSUFi5cqMzMTI0YMcLZpVWI8+fP69ixY8bnEydOKD09XT4+PmrcuLETK6sYo0eP1nvvvaf/+Z//kZeXlzHKZrVa5e7u7uTqKsbkyZMVGxurkJAQnTt3TqtWrdKWLVu0bt06Z5dWIby8vErNcfL09JSvr2+1mPs0YcIE9e/fX40bN1Zubq5eeuklFRQUKD4+3tmlVZjnnntO0dHRmjlzpgYOHKhdu3Zp4cKFWrhwobNLqzAlJSVasmSJ4uPjVbu2EyNFpd8/VY3Fx8fbJJVaNm/e7OzSyuW///u/baGhoTZXV1dbhw4dqtVtvZs3by7zzyo+Pt7ZpVWIsvomybZkyRJnl1ZhnnrqKePvZ8OGDW09evSwbdiwwdllOVR1ujX70UcftQUFBdnq1KljCw4Otg0YMMD2zTffOLusCvevf/3LFh4ebnNzc7O1atXKtnDhQmeXVKHWr19vk2Q7fPiwU+uw2Gw2W6UnKAAAgArC3UwAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAnKpbt24aO3asxo8frwYNGiggIEALFy7UhQsX9OSTT8rLy0u33XabPvvsM0lScXGxhg4dqrCwMLm7u6tly5Z6++237Y65ZcsW3XnnnfL09FT9+vXVpUsXnTx5UpL0n//8R927d5eXl5e8vb3VsWNH7d69u9L7DaDiEGYAON2yZcvk5+enXbt2aezYsRo5cqQeeeQRRUdHa+/evYqJiVFcXJx+/vlnlZSUqFGjRvrHP/6hgwcPatq0aZo8ebL+8Y9/SJIuX76sBx54QF27dtXXX3+tHTt2aPjw4bJYLJKkxx9/XI0aNVJaWpr27NmjF154QXXq1HFm9wHcIt6aDcCpunXrpuLiYn3xxReSfh15sVqtGjBggJYvXy5JysnJUVBQkHbs2KHOnTuXOsbo0aP1ww8/6IMPPtBPP/0kX19fbdmyRV27di3V1tvbW3PmzFF8fLxjOwag0jAyA8Dp7rjjDuNrFxcX+fr6KiIiwlgXEBAgScrNzZUkvfPOO4qMjFTDhg1Vr149LVq0SJmZmZIkHx8fDRkyRDExMerfv7/efvttZWdnG8dKSEjQ008/rZ49e+qVV17Rd999VxldBOBAhBkATvf7yzwWi8Vu3ZVLRCUlJfrHP/6h5557Tk899ZQ2bNig9PR0PfnkkyoqKjLaL1myRDt27FB0dLRWr16tFi1aaOfOnZKk5ORkffPNN+rbt682bdqk22+/XWvXrq2EXgJwFMIMAFP54osvFB0drVGjRql9+/Zq1qxZmaMr7du3V1JSkrZv367w8HC99957xrYWLVroueee04YNGzRgwAAtWbKkMrsAoIIRZgCYSrNmzbR7926tX79eR44c0dSpU5WWlmZsP3HihJKSkrRjxw6dPHlSGzZs0JEjR9S6dWtdvHhRY8aM0ZYtW3Ty5Elt27ZNaWlpat26tRN7BOBW1XZ2AQBwM0aMGKH09HQ9+uijslgseuyxxzRq1Cjj1m0PDw99++23WrZsmc6cOaOgoCCNGTNGzzzzjC5fvqwzZ87oiSee0A8//CA/Pz8NGDBA06dPd3KvANwK7mYCAACmxmUmAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgav8fYMmcbz9jevAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA330lEQVR4nO3deVhV5d7/8c8WBZlEAWU4IuIBZ1ITS9BScyCO2mBl5nkI05znIY18LPWklKcc0kdT84impV0d7WlUMTXNGYOTU86K/oQoB1AzUNi/P/y5f5E4MW1ueL+ua1+Xe617rfW9NyAf7nWvtSxWq9UqAAAAQ1WwdwEAAACFQZgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADBaRXsXUBJyc3N19uxZubu7y2Kx2LscAABwD6xWqy5duiR/f39VqHD78ZdyEWbOnj2rgIAAe5cBAAAK4PTp06pZs+Zt15eLMOPu7i7pxodRpUoVO1cDAADuRWZmpgICAmy/x2+nXISZm6eWqlSpQpgBAMAwd5siwgRgAABgNMIMAAAwGmEGAAAYrVzMmblXOTk5unbtmr3LAIzk6Oh4x0snAaC4EGZ04zr2tLQ0Xbx40d6lAMaqUKGCgoKC5OjoaO9SAJQzhBnJFmRq1KghFxcXbqwH3KebN6ZMTU1VrVq1+BkCUKLKfZjJycmxBRkvLy97lwMYq3r16jp79qyuX7+uSpUq2bscAOVIuT/BfXOOjIuLi50rAcx28/RSTk6OnSsBUN6U+zBzE8PiQOHwMwTAXggzAADAaIQZAABgtHI/Afh2ZiQcLtHjjexYt0SOM3HiRH322WdKTk6+523atm2rpk2baubMmXat46aTJ08qKChISUlJatq0aZHVBAAwE2GmnBkzZoyGDh16X9usWrWqVF2dEhAQoNTUVHl7e9u7FABAKUCYKSesVqtycnLk5uYmNze3+9rW09OzmKoqGAcHB/n6+tq7DABAKcGcGUNlZWVp2LBhqlGjhipXrqzWrVtr9+7dtvWbNm2SxWLR2rVrFRYWJicnJ23ZskUTJ07Mc2rm+vXrGjZsmKpWrSovLy+NGzdOMTExeuqpp2xt2rZtqxEjRtje165dW1OnTlXv3r3l7u6uWrVqacGCBXnqGzdunOrWrSsXFxfVqVNHEyZMuK9HRVy4cEF///vfVb16dTk7OyskJESLFy+WdOM0k8ViyXOK6vPPP1dISIicnZ3Vrl07LVmyRBaL5Y53dbZYLJo/f766dOkiFxcXNWjQQNu3b9fRo0fVtm1bubq6Kjw8XMeOHbNtc+zYMT355JPy8fGRm5ubWrRoofXr1+fZ79y5cxUSEqLKlSvLx8dHzz77rG3dp59+qtDQUDk7O8vLy0sdOnTQlStX7vlzQRmyMa7gLwB5EGYMNXbsWP373//WkiVL9MMPPyg4OFiRkZE6f/78Le3i4uJ08OBBPfDAA7fs5+2339by5cu1ePFibd26VZmZmfrss8/uevx3331XYWFhSkpK0qBBgzRw4ED99NNPtvXu7u6Kj4/XgQMHNGvWLC1cuFAzZsy45/5NmDBBBw4c0DfffKODBw9q3rx5tz2tdPLkST377LN66qmnlJycrP79+2v8+PH3dJx//OMfevHFF5WcnKz69eurZ8+e6t+/v2JjY5WYmChJGjJkiK395cuX9be//U3r169XUlKSIiMj1bVrV6WkpEiSEhMTNWzYME2ePFmHDh3SmjVr9Oijj0qSUlNT9cILL6h37946ePCgNm3apG7duslqtd7z5wIAuBWnmQx05coVzZs3T/Hx8YqKipIkLVy4UAkJCVq0aJFeeeUVW9vJkyerY8eOt93X7NmzFRsbq6efflqSNGfOHH399dd3reFvf/ubBg0aJOnGKMyMGTO0adMm1a9fX5L03//937a2tWvX1ujRo7Vy5UqNHTv2nvqYkpKiZs2aKSwszLaP23n//fdVr149/fOf/5Qk1atXT/v27dOUKVPuepyXXnpJ3bt3t/UjPDxcEyZMUGRkpCRp+PDheumll2ztmzRpoiZNmtjev/nmm1q9erU+//xzDRkyRCkpKXJ1dVWXLl3k7u6uwMBANWvWTNKNMHP9+nV169ZNgYGBkqTQ0NB7+jwAALfHyIyBjh07pmvXrqlVq1a2ZZUqVdJDDz2kgwcP5ml7MwzkJyMjQz///LMeeugh2zIHBwc1b978rjX8cZTHYrHI19dX6enptmWffvqpWrduLV9fX7m5uWnChAm20Yt7MXDgQK1YsUJNmzbV2LFjtW3bttu2PXTokFq0aJFn2R/7dK/98PHxkZQ3YPj4+Oj3339XZmampBtBcuzYsWrYsKGqVq0qNzc3/fTTT7a+dezYUYGBgapTp46io6O1fPly/fbbb5JuBKH27dsrNDRUzz33nBYuXKgLFy7cU50AgNsjzBjo5mmJP99x1Wq13rLM1dX1rvvLbz938+ermywWi3JzcyVJO3bsUI8ePRQVFaUvv/xSSUlJGj9+vLKzs++635uioqJ06tQpjRgxQmfPnlX79u01ZsyYfNvm1+97PXXzx37c3Ed+y2727ZVXXtG///1vTZkyRVu2bFFycrJCQ0NtfXN3d9cPP/ygjz/+WH5+fnr99dfVpEkTXbx4UQ4ODkpISNA333yjhg0bavbs2apXr55OnDhxj58KACA/hBkDBQcHy9HRUd9//71t2bVr15SYmKgGDRrc8348PDzk4+OjXbt22Zbl5OQoKSmpUPVt3bpVgYGBGj9+vMLCwhQSEqJTp07d936qV6+uXr16admyZZo5c+Ytk4xvql+/fp7Jz5Js812K2pYtW9SrVy89/fTTCg0Nla+vr06ePJmnTcWKFdWhQwdNmzZNP/74o06ePKkNGzZIuhGOWrVqpUmTJikpKUmOjo5avXp1sdQKAOUFc2YM5OrqqoEDB+qVV16Rp6enatWqpWnTpum3335Tnz597mtfQ4cOVVxcnIKDg1W/fn3Nnj1bFy5cKNRzdoKDg5WSkqIVK1aoRYsW+uqrr+77F/brr7+u5s2bq1GjRsrKytKXX35526DWv39/TZ8+XePGjVOfPn2UnJys+Ph4SUX/vKDg4GCtWrVKXbt2lcVi0YQJE2yjNpL05Zdf6vjx43r00UdVrVo1ff3118rNzVW9evW0c+dOffvtt+rUqZNq1KihnTt36pdffrmvAAoAuBVh5jZK6o68BfXWW28pNzdX0dHRunTpksLCwrR27VpVq1btvvYzbtw4paWl6cUXX5SDg4P69eunyMhIOTg4FLi2J598UiNHjtSQIUOUlZWlzp07a8KECZo4ceI978PR0VGxsbE6efKknJ2d9cgjj2jFihX5tg0KCtKnn36q0aNHa9asWQoPD9f48eM1cOBAOTk5Fbgf+ZkxY4Z69+6tiIgIeXt7a9y4cbb5NJJUtWpVrVq1ShMnTtTvv/+ukJAQffzxx2rUqJEOHjyozZs3a+bMmcrMzFRgYKDeffdd2yRuAEDBWKzl4LrQzMxMeXh4KCMjQ1WqVMmz7vfff9eJEycUFBSkypUr26nC0iM3N1cNGjRQ9+7d9Y9//MPe5RTYlClT9P777+v06dP2LqXc4GfpPhXmfjHtYouuDqAUu9Pv7z9iZKacO3XqlNatW6c2bdooKytLc+bM0YkTJ9SzZ097l3Zf5s6dqxYtWsjLy0tbt27VP//5zzz3hwEAlF2EmXKuQoUKio+P15gxY2S1WtW4cWOtX7/euHkcR44c0Ztvvqnz58+rVq1aGj16tGJj+esVAMoDwkw5FxAQoK1bt9q7jEKbMWPGfd1hGABQdhBmAMA0zLcB8uA+MwAAwGiEGQAAYDROMwFAQRXmdA+AIsPIDAAAMBphBrgHJ0+elMViUXJycoG2b9u2rUaMGFGkNQEAbuA00+2U9PBxObnCoG3btmratKlmzpxZ7Mc6efKkgoKClJSUpKZNmxb78e5k1apVtzxpHABQNAgzZUR2drYcHR3tXUaRsFqtysnJUcWKZefb09PT094lAECZVeDTTJs3b1bXrl3l7+8vi8Wizz77LM/6Xr16yWKx5Hm1bNkyT5usrCwNHTpU3t7ecnV11RNPPKEzZ87kaXPhwgVFR0fLw8NDHh4eio6O1sWLFwtadpnRtm1bDRkyRKNGjZK3t7c6duwoSTpw4ID+9re/yc3NTT4+PoqOjtavv/5q2y43N1dvv/22goOD5eTkpFq1amnKlCm29Xv37tVjjz0mZ2dneXl5qV+/frp8+bJtfa9evfTUU0/pnXfekZ+fn7y8vDR48GBdu3bN1mbu3LkKCQlR5cqV5ePjo2effda27XfffadZs2bZvidOnjypTZs2yWKxaO3atQoLC5OTk5O2bNliO9YfjRgxQm3btr2n/gQFBUmSmjVrJovFkme7xYsXq0GDBqpcubLq16+vuXPn5jnOrl271KxZM1WuXFlhYWFKSkq669fkdv2++fX642mm1NRUde7cWc7OzgoKCtJHH32k2rVr33HE6ubnMXXqVPn4+Khq1aqaNGmSrl+/bnuCes2aNfWvf/0rz3bjxo1T3bp15eLiojp16mjChAl5vl7/+c9/1K5dO7m7u6tKlSpq3ry5EhMTJd143EXXrl1VrVo1ubq6qlGjRvr666/v+lkAQEkq8J++V65cUZMmTfTSSy/pmWeeybfN448/rsWLF9ve/3nkYMSIEfriiy+0YsUKeXl5afTo0erSpYv27Nlje2pzz549debMGa1Zs0aS1K9fP0VHR+uLL74oaOllxpIlSzRw4EBt3bpVVqtVqampatOmjfr27avp06fr6tWrGjdunLp3764NGzZIkmJjY7Vw4ULNmDFDrVu3Vmpqqn766SdJ0m+//abHH39cLVu21O7du5Wenq6XX35ZQ4YMUXx8vO24GzdulJ+fnzZu3KijR4/q+eefV9OmTdW3b18lJiZq2LBh+vDDDxUREaHz589ry5YtkqRZs2bp8OHDaty4sSZPnixJql69uk6ePClJGjt2rN555x3VqVNHVatWvafP4E792bVrlx566CGtX79ejRo1sn3/LVy4UG+88YbmzJmjZs2aKSkpSX379pWrq6tiYmJ05coVdenSRY899piWLVumEydOaPjw4Xes4079zs+LL76oX3/9VZs2bVKlSpU0atQopaen37W/GzZsUM2aNbV582Zt3bpVffr00fbt2/Xoo49q586dWrlypQYMGKCOHTsqICBAkuTu7q74+Hj5+/tr79696tu3r9zd3TV27FhJ0t///nc1a9ZM8+bNk4ODg5KTk22nxAYPHqzs7Gxt3rxZrq6uOnDggNzc3O7+hQGAElTgMBMVFaWoqKg7tnFycpKvr2++6zIyMrRo0SJ9+OGH6tChgyRp2bJlCggI0Pr16xUZGamDBw9qzZo12rFjhx5++GFJN34RhYeH69ChQ6pXr15Byy8TgoODNW3aNNv7119/XQ8++KCmTp1qW/avf/1LAQEBOnz4sPz8/DRr1izNmTNHMTExkqS//vWvat26tSRp+fLlunr1qpYuXSpXV1dJ0pw5c9S1a1e9/fbb8vHxkSRVq1ZNc+bMkYODg+rXr6/OnTvr22+/Vd++fZWSkiJXV1d16dJF7u7uCgwMVLNmzSRJHh4ecnR0lIuLS77fF5MnT7aNMN2LS5cu3bE/1atXlyR5eXnlOd4//vEPvfvuu+rWrZukGyM4Bw4c0Pz58xUTE6Ply5crJydH//rXv+Ti4qJGjRrpzJkzGjhw4G1ruVO//+ynn37S+vXrtXv3boWFhUmSPvjgA4WEhNy1z56ennrvvfdUoUIF1atXT9OmTdNvv/2m1157TdKNcPfWW29p69at6tGjhyTpv//7v23b165dW6NHj9bKlSttYSYlJUWvvPKK6tevL0l56khJSdEzzzyj0NBQSVKdOnXuWiMAlLRivZpp06ZNqlGjhurWrau+ffvm+ctzz549unbtmjp16mRb5u/vr8aNG2vbtm2SpO3bt8vDw8MWZCSpZcuW8vDwsLXJT1ZWljIzM/O8yqKbvwhv2rNnjzZu3Cg3Nzfb6+YvqGPHjungwYPKyspS+/bt893fwYMH1aRJE1uQkaRWrVopNzdXhw4dsi1r1KiRbeRMkvz8/Gxf244dOyowMFB16tRRdHS0li9frt9++61A/bmbu/UnP7/88otOnz6tPn365Pmc3nzzTR07dsy23yZNmsjFxcW2XXh4+B33ez/9PnTokCpWrKgHH3zQtiw4OFjVqlW7a/2NGjVShQr//8fWx8fHFjQkycHBQV5eXnl+1j799FO1bt1avr6+cnNz04QJE5SSkmJbP2rUKL388svq0KGD3nrrLdvnIEnDhg3Tm2++qVatWumNN97Qjz/+eNcaAaCkFVuYiYqK0vLly7Vhwwa9++672r17tx577DFlZWVJktLS0uTo6HjLf+A+Pj5KS0uztalRo8Yt+65Ro4atTX7i4uJsc2w8PDxsw+1lzR9Dh3Rj/kjXrl2VnJyc53XkyBE9+uijcnZ2vuP+rFarLBZLvuv+uPzPV+VYLBbl5uZKunFK44cfftDHH38sPz8/vf7662rSpMk9zXP6c38qVKggq9WaZ9kf53rcrT/5uVnnwoUL83xG+/bt044dOyTplmPei/vp9+32fy/Hze+zv9PXY8eOHerRo4eioqL05ZdfKikpSePHj1d2drat/cSJE7V//3517txZGzZsUMOGDbV69WpJ0ssvv6zjx48rOjpae/fuVVhYmGbPnn3XOgGgJBVbmHn++efVuXNnNW7cWF27dtU333yjw4cP66uvvrrjdn/+hZrfL9c7/dKVbgy1Z2Rk2F6nT58ueEcM8uCDD2r//v2qXbu2goOD87xcXV0VEhIiZ2dnffvtt/lu37BhQyUnJ+vKlSu2ZVu3blWFChVUt27de66jYsWK6tChg6ZNm6Yff/xRJ0+etM3ZcXR0VE5Ozj3tp3r16kpNTc2z7I/3eblbf27Okfnj8Xx8fPSXv/xFx48fv+UzujlhuGHDhvrPf/6jq1ev2ra7GXQK2u8/ql+/vq5fv55nUvHRo0eLZWL71q1bFRgYqPHjxyssLEwhISE6derULe3q1q2rkSNHat26derWrVueuW4BAQEaMGCAVq1apdGjR2vhwoVFXicAFEaJ3TTPz89PgYGBOnLkiCTJ19dX2dnZunDhQp526enptrkZvr6++vnnn2/Z1y+//GJrkx8nJydVqVIlz6s8GDx4sM6fP68XXnhBu3bt0vHjx7Vu3Tr17t1bOTk5qly5ssaNG6exY8dq6dKlOnbsmHbs2KFFixZJujERtHLlyoqJidG+ffu0ceNGDR06VNHR0Xf8vP/oyy+/1Hvvvafk5GSdOnVKS5cuVW5urm1+U+3atbVz506dPHlSv/76q20EIT+PPfaYEhMTtXTpUh05ckRvvPGG9u3bZ1t/t/7UqFFDzs7OWrNmjX7++WdlZGRIujESERcXZ5uQvHfvXi1evFjTp0+XdGPSeYUKFdSnTx8dOHBAX3/9td55551C9fuP6tevrw4dOqhfv37atWuXkpKS1K9fPzk7O98xpBdEcHCwUlJStGLFCh07dkzvvfeebdRFkq5evaohQ4Zo06ZNOnXqlLZu3ardu3erQYMGkm5M0l+7dq1OnDihH374QRs2bLCtA4DSosTCzLlz53T69Gn5+flJkpo3b65KlSopISHB1iY1NVX79u1TRESEpBvzFDIyMrRr1y5bm507dyojI8PWBv+fv7+/tm7dqpycHEVGRqpx48YaPny4PDw8bPMsJkyYoNGjR+v1119XgwYN9Pzzz9vmV7i4uGjt2rU6f/68WrRooWeffVbt27fXnDlz7rmGqlWratWqVXrsscfUoEEDvf/++/r444/VqFEjSdKYMWPk4OCghg0bqnr16nnmbvxZZGSkJkyYoLFjx6pFixa6dOmSXnzxxTxt7tSfihUr6r333tP8+fPl7++vJ598UtKNUycffPCB4uPjFRoaqjZt2ig+Pt42MuPm5qYvvvhCBw4cULNmzTR+/Hi9/fbbher3ny1dulQ+Pj569NFH9fTTT9uuMKpcufK9fdD36Mknn9TIkSM1ZMgQNW3aVNu2bdOECRNs6x0cHHTu3Dm9+OKLqlu3rrp3766oqChNmjRJ0o1RrcGDB6tBgwZ6/PHHVa9evVsuYwcAe7NYCzJBQNLly5d19OhRSTfu4zF9+nS1a9dOnp6e8vT01MSJE/XMM8/Iz89PJ0+e1GuvvaaUlBQdPHhQ7u7ukqSBAwfqyy+/VHx8vDw9PTVmzBidO3cuz6XZUVFROnv2rObPny/pxqXZgYGB93VpdmZmpjw8PJSRkXHLKM3vv/+uEydOKCgoqMh/kQD36syZM7Yr+e5nQnNpUi5/lkx80GQ5uds4yoY7/f7+owJfmp2YmKh27drZ3o8aNUqSFBMTo3nz5mnv3r1aunSpLl68KD8/P7Vr104rV660BRlJmjFjhipWrKju3bvr6tWrat++veLj4/NcKbN8+XINGzbMdtXTE088cV8jBUBptGHDBl2+fFmhoaFKTU3V2LFjVbt2bT366KP2Lg0AjFPgMNO2bds7Xn2xdu3au+6jcuXKmj179h2vjvD09NSyZcsKVCNQWl27dk2vvfaajh8/Lnd3d0VERGj58uU8vwkACqDsPPwGMEhkZKQiIyPtXQYAlAklNgEYAACgOBBm/p8CzoMG8P/wMwTAXsp9mLk5R+Feb7kPIH837yr8xwn8AFASyv2cGQcHB1WtWjXPvVaK+sZlQFmXm5urX375RS4uLqpYsdz/t1K6FeZyci7rRinF/zqS7YnKf3w4H4D7U6FCBdWqVYs/BgCUOMKMbjz/yc/PTzVq1MjzIEMA987R0THPE70BoKQQZv7AwcGB8/0AABiGP6MAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRKtq7AACwq41x9q4AQCExMgMAAIxGmAEAAEbjNBMA4N4U5pRcu9iiqwP4E0ZmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjFbR3gUAQHm0/fi5Am8bXserCCsBzMfIDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAo3E1EwAUUGGuSLLXcbkSCmURIzMAAMBohBkAAGA0wgwAADAaYQYAABitwGFm8+bN6tq1q/z9/WWxWPTZZ5/lWW+1WjVx4kT5+/vL2dlZbdu21f79+/O0ycrK0tChQ+Xt7S1XV1c98cQTOnPmTJ42Fy5cUHR0tDw8POTh4aHo6GhdvHixoGUDAIAypsBh5sqVK2rSpInmzJmT7/pp06Zp+vTpmjNnjnbv3i1fX1917NhRly5dsrUZMWKEVq9erRUrVuj777/X5cuX1aVLF+Xk5Nja9OzZU8nJyVqzZo3WrFmj5ORkRUdHF7RsAABQxhT40uyoqChFRUXlu85qtWrmzJkaP368unXrJklasmSJfHx89NFHH6l///7KyMjQokWL9OGHH6pDhw6SpGXLlikgIEDr169XZGSkDh48qDVr1mjHjh16+OGHJUkLFy5UeHi4Dh06pHr16uV7/KysLGVlZdneZ2ZmFrSbAACglCuWOTMnTpxQWlqaOnXqZFvm5OSkNm3aaNu2bZKkPXv26Nq1a3na+Pv7q3HjxrY227dvl4eHhy3ISFLLli3l4eFha5OfuLg422kpDw8PBQQEFHUXAQBAKVEsYSYtLU2S5OPjk2e5j4+PbV1aWpocHR1VrVq1O7apUaPGLfuvUaOGrU1+YmNjlZGRYXudPn26UP0BAAClV7HeAdhiseR5b7Vab1n2Z39uk1/7u+3HyclJTk5O91ktAAAwUbGMzPj6+krSLaMn6enpttEaX19fZWdn68KFC3ds8/PPP9+y/19++eWWUR8AAFA+FUuYCQoKkq+vrxISEmzLsrOz9d133ykiIkKS1Lx5c1WqVClPm9TUVO3bt8/WJjw8XBkZGdq1a5etzc6dO5WRkWFrAwAAyrcCn2a6fPmyjh49ant/4sQJJScny9PTU7Vq1dKIESM0depUhYSEKCQkRFOnTpWLi4t69uwpSfLw8FCfPn00evRoeXl5ydPTU2PGjFFoaKjt6qYGDRro8ccfV9++fTV//nxJUr9+/dSlS5fbXskEAADKlwKHmcTERLVr1872ftSoUZKkmJgYxcfHa+zYsbp69aoGDRqkCxcu6OGHH9a6devk7u5u22bGjBmqWLGiunfvrqtXr6p9+/aKj4+Xg4ODrc3y5cs1bNgw21VPTzzxxG3vbQMAAMofi9Vqtdq7iOKWmZkpDw8PZWRkqEqVKvYuB0BpsjGuwJtuP36uCAspGeF1vOxz4Hax9jkujHavv7+L9WomACgRhQgkAMxHmAGAcqQwo0l2G9UB7oKnZgMAAKMRZgAAgNEIMwAAwGjMmQEAFL/CTNLmSijcBSMzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaz2YCUK5tP37O3iUAKCRGZgAAgNEIMwAAwGiEGQAAYDTmzAAA7klh5heF1/EqwkqAvBiZAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKNVtHcBAFBY24+fs3cJAOyIkRkAAGA0RmYAlA4b4+xdAQBDMTIDAACMxsgMAKB0K8yoXbvYoqsDpRYjMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAo3GfGQBAsSvM87PC63gVYSUoixiZAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADBaRXsXAACStP34OXuXAMBQjMwAAACjFWuYmThxoiwWS56Xr6+vbb3VatXEiRPl7+8vZ2dntW3bVvv378+zj6ysLA0dOlTe3t5ydXXVE088oTNnzhRn2QAAwCDFPjLTqFEjpaam2l579+61rZs2bZqmT5+uOXPmaPfu3fL19VXHjh116dIlW5sRI0Zo9erVWrFihb7//ntdvnxZXbp0UU5OTnGXDgAADFDsc2YqVqyYZzTmJqvVqpkzZ2r8+PHq1q2bJGnJkiXy8fHRRx99pP79+ysjI0OLFi3Shx9+qA4dOkiSli1bpoCAAK1fv16RkZHFXT4AACjlin1k5siRI/L391dQUJB69Oih48ePS5JOnDihtLQ0derUydbWyclJbdq00bZt2yRJe/bs0bVr1/K08ff3V+PGjW1t8pOVlaXMzMw8LwAAUDYVa5h5+OGHtXTpUq1du1YLFy5UWlqaIiIidO7cOaWlpUmSfHx88mzj4+NjW5eWliZHR0dVq1bttm3yExcXJw8PD9srICCgiHsGAABKi2INM1FRUXrmmWcUGhqqDh066KuvvpJ043TSTRaLJc82Vqv1lmV/drc2sbGxysjIsL1Onz5diF4AAIDSrETvM+Pq6qrQ0FAdOXJETz31lKQboy9+fn62Nunp6bbRGl9fX2VnZ+vChQt5RmfS09MVERFx2+M4OTnJycmpeDoBAChRhbkHUXi7IiwEpVaJ3mcmKytLBw8elJ+fn4KCguTr66uEhATb+uzsbH333Xe2oNK8eXNVqlQpT5vU1FTt27fvjmEGAACUH8U6MjNmzBh17dpVtWrVUnp6ut58801lZmYqJiZGFotFI0aM0NSpUxUSEqKQkBBNnTpVLi4u6tmzpyTJw8NDffr00ejRo+Xl5SVPT0+NGTPGdtoKAACgWMPMmTNn9MILL+jXX39V9erV1bJlS+3YsUOBgYGSpLFjx+rq1asaNGiQLly4oIcffljr1q2Tu7u7bR8zZsxQxYoV1b17d129elXt27dXfHy8HBwcirN0AABgCIvVarXau4jilpmZKQ8PD2VkZKhKlSr2LgdAPrYvGmPvElAGhfd5x94loBDu9fc3z2YCAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGC0Er0DMIAybmOcvSsAUA4xMgMAAIzGyAwAoOwqzGhhu9iiqwPFipEZAABgNMIMAAAwGqeZABSZ7cfP2bsEAOUQIzMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0HTQIAyqzCPPw0vF0RFoJixcgMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBo3GcGAID8bIwr+LbtYouuDtwVIzMAAMBojMwAyGNGwuECb9uyCOsAgHvFyAwAADAaYQYAABiNMAMAAIzGnBkAAPLBE7fNwcgMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjcTUTgDxapiywdwkAcF8YmQEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDSuZgLKoBkJhwu8bcsirAMorwrzMziyY90irKR8YGQGAAAYjTADAACMxmkmAACKWOFuPvlOkdVRXjAyAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaFzNBJRShbnpFgCUJ4zMAAAAozEyAwBAKcKjEO4fIzMAAMBohBkAAGA0TjMBxYhJvABQ/BiZAQAARiPMAAAAoxFmAACA0ZgzAwBAGVFeL+tmZAYAABiNkRkAAEqRlikLCrztjlr9irAScxgTZubOnat//vOfSk1NVaNGjTRz5kw98sgj9i4L5QCXVwMoD0w+RWVEmFm5cqVGjBihuXPnqlWrVpo/f76ioqJ04MAB1apVy97lwQDlLZAU5i87ADCNEWFm+vTp6tOnj15++WVJ0syZM7V27VrNmzdPcXFxt7TPyspSVlaW7X1mZmaJ1YriU94CCQDg3pT6MJOdna09e/bo1VdfzbO8U6dO2rZtW77bxMXFadKkSSVRnrk23hoCS7uRpf67tRTp8469KwBgB+F2+7891k7HvaHUX83066+/KicnRz4+PnmW+/j4KC0tLd9tYmNjlZGRYXudPn26JEoFAAB2YMzfuhaLJc97q9V6y7KbnJyc5OTkVBJlAQAAOyv1IzPe3t5ycHC4ZRQmPT39ltEaAABQ/pT6MOPo6KjmzZsrISEhz/KEhARFRETYqSoAAFBaGHGaadSoUYqOjlZYWJjCw8O1YMECpaSkaMCAAfYuDQCA0qNdISbiGnhhyE1GhJnnn39e586d0+TJk5WamqrGjRvr66+/VmBgoL1LAwAAdmZEmJGkQYMGadCgQfYuAwAAlDKlfs4MAADAnRgzMgMAAIpRYebb2BkjMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAo3GfmfKqnD6/AwBQ9jAyAwAAjEaYAQAARuM0E1BaGXxrcQAoSYzMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxW0d4FAGVau1h7VwAAZR4jMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjQdNAnfDwyIBoFRjZAYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGhcmg1zcIk0ACAfjMwAAACjEWYAAIDROM2EksWpIgBAEWNkBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABG49lMuH88XwkAUIowMgMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGjFGmZq164ti8WS5/Xqq6/maZOSkqKuXbvK1dVV3t7eGjZsmLKzs/O02bt3r9q0aSNnZ2f95S9/0eTJk2W1WouzdAAAYIhivzR78uTJ6tu3r+29m5ub7d85OTnq3Lmzqlevru+//17nzp1TTEyMrFarZs+eLUnKzMxUx44d1a5dO+3evVuHDx9Wr1695OrqqtGjRxd3+QAAoJQr9jDj7u4uX1/ffNetW7dOBw4c0OnTp+Xv7y9Jevfdd9WrVy9NmTJFVapU0fLly/X7778rPj5eTk5Oaty4sQ4fPqzp06dr1KhRslgsxd0FAABQihX7nJm3335bXl5eatq0qaZMmZLnFNL27dvVuHFjW5CRpMjISGVlZWnPnj22Nm3atJGTk1OeNmfPntXJkyfzPWZWVpYyMzPzvAAAQNlUrCMzw4cP14MPPqhq1app165dio2N1YkTJ/TBBx9IktLS0uTj45Nnm2rVqsnR0VFpaWm2NrVr187T5uY2aWlpCgoKuuW4cXFxmjRpUjH0CAAAlDb3PTIzceLEWyb1/vmVmJgoSRo5cqTatGmjBx54QC+//LLef/99LVq0SOfOnbPtL7/TRFarNc/yP7e5Ofn3dqeYYmNjlZGRYXudPn36frsJAAAMcd8jM0OGDFGPHj3u2ObPIyk3tWzZUpJ09OhReXl5ydfXVzt37szT5sKFC7p27Zpt9MXX19c2SnNTenq6JN0yqnOTk5NTntNSAACg7LrvMOPt7S1vb+8CHSwpKUmS5OfnJ0kKDw/XlClTlJqaalu2bt06OTk5qXnz5rY2r732mrKzs+Xo6Ghr4+/vf9vQBAAAyo9imwC8fft2zZgxQ8nJyTpx4oQ++eQT9e/fX0888YRq1aolSerUqZMaNmyo6OhoJSUl6dtvv9WYMWPUt29fValSRZLUs2dPOTk5qVevXtq3b59Wr16tqVOnciUTAACQVIwTgJ2cnLRy5UpNmjRJWVlZCgwMVN++fTV27FhbGwcHB3311VcaNGiQWrVqJWdnZ/Xs2VPvvPOOrY2Hh4cSEhI0ePBghYWFqVq1aho1apRGjRpVXKUDAACDWKzl4Fa6GRkZqlq1qk6fPm0b8QEAAKVbZmamAgICdPHiRXl4eNy2XbHfNK80uHTpkiQpICDAzpUAAID7denSpTuGmXIxMpObm6uzZ8/K3d29yOfZ3EyNZXXUh/6Zr6z3kf6Zr6z3kf4VnNVq1aVLl+Tv768KFW4/zbdcjMxUqFBBNWvWLNZjVKlSpUx+k95E/8xX1vtI/8xX1vtI/wrmTiMyNxX74wwAAACKE2EGAAAYjTBTSE5OTnrjjTfK7B2H6Z/5ynof6Z/5ynof6V/xKxcTgAEAQNnFyAwAADAaYQYAABiNMAMAAIxGmAEAAEYjzBShKVOmKCIiQi4uLqpataq9yym0uXPnKigoSJUrV1bz5s21ZcsWe5dUZDZv3qyuXbvK399fFotFn332mb1LKlJxcXFq0aKF3N3dVaNGDT311FM6dOiQvcsqUvPmzdMDDzxgu1FXeHi4vvnmG3uXVWzi4uJksVg0YsQIe5dSJCZOnCiLxZLn5evra++yitz/+T//R//1X/8lLy8vubi4qGnTptqzZ4+9yyoStWvXvuVraLFYNHjw4BKvhTBThLKzs/Xcc89p4MCB9i6l0FauXKkRI0Zo/PjxSkpK0iOPPKKoqCilpKTYu7QiceXKFTVp0kRz5syxdynF4rvvvtPgwYO1Y8cOJSQk6Pr16+rUqZOuXLli79KKTM2aNfXWW28pMTFRiYmJeuyxx/Tkk09q//799i6tyO3evVsLFizQAw88YO9SilSjRo2Umppqe+3du9feJRWpCxcuqFWrVqpUqZK++eYbHThwQO+++26Z+GNXuvF9+cevX0JCgiTpueeeK/lirChyixcvtnp4eNi7jEJ56KGHrAMGDMizrH79+tZXX33VThUVH0nW1atX27uMYpWenm6VZP3uu+/sXUqxqlatmvWDDz6wdxlF6tKlS9aQkBBrQkKCtU2bNtbhw4fbu6Qi8cYbb1ibNGli7zKK1bhx46ytW7e2dxklZvjw4da//vWv1tzc3BI/NiMzuEV2drb27NmjTp065VneqVMnbdu2zU5VoTAyMjIkSZ6ennaupHjk5ORoxYoVunLlisLDw+1dTpEaPHiwOnfurA4dOti7lCJ35MgR+fv7KygoSD169NDx48ftXVKR+vzzzxUWFqbnnntONWrUULNmzbRw4UJ7l1UssrOztWzZMvXu3bvIH+h8LwgzuMWvv/6qnJwc+fj45Fnu4+OjtLQ0O1WFgrJarRo1apRat26txo0b27ucIrV37165ubnJyclJAwYM0OrVq9WwYUN7l1VkVqxYoR9++EFxcXH2LqXIPfzww1q6dKnWrl2rhQsXKi0tTRERETp37py9Sysyx48f17x58xQSEqK1a9dqwIABGjZsmJYuXWrv0orcZ599posXL6pXr152OT5h5i7ym6T251diYqK9yywWf07XVqvVLokbhTNkyBD9+OOP+vjjj+1dSpGrV6+ekpOTtWPHDg0cOFAxMTE6cOCAvcsqEqdPn9bw4cO1bNkyVa5c2d7lFLmoqCg988wzCg0NVYcOHfTVV19JkpYsWWLnyopObm6uHnzwQU2dOlXNmjVT//791bdvX82bN8/epRW5RYsWKSoqSv7+/nY5fkW7HNUgQ4YMUY8ePe7Ypnbt2iVTTAnx9vaWg4PDLaMw6enpt4zWoHQbOnSoPv/8c23evFk1a9a0dzlFztHRUcHBwZKksLAw7d69W7NmzdL8+fPtXFnh7dmzR+np6WrevLltWU5OjjZv3qw5c+YoKytLDg4OdqywaLm6uio0NFRHjhyxdylFxs/P75aRwgYNGujf//63nSoqHqdOndL69eu1atUqu9VAmLkLb29veXt727uMEuXo6KjmzZsrISFBTz/9tG15QkKCnnzySTtWhntltVo1dOhQrV69Wps2bVJQUJC9SyoRVqtVWVlZ9i6jSLRv3/6Wq3teeukl1a9fX+PGjStTQUaSsrKydPDgQT3yyCP2LqXItGrV6pZbIhw+fFiBgYF2qqh4LF68WDVq1FDnzp3tVgNhpgilpKTo/PnzSklJUU5OjpKTkyVJwcHBcnNzs29x92nUqFGKjo5WWFiYwsPDtWDBAqWkpGjAgAH2Lq1IXL58WUePHrW9P3HihJKTk+Xp6alatWrZsbKiMXjwYH300Uf63//9X7m7u9tG2Tw8POTs7Gzn6orGa6+9pqioKAUEBOjSpUtasWKFNm3apDVr1ti7tCLh7u5+yxwnV1dXeXl5lYm5T2PGjFHXrl1Vq1Ytpaen680331RmZqZiYmLsXVqRGTlypCIiIjR16lR1795du3bt0oIFC7RgwQJ7l1ZkcnNztXjxYsXExKhiRTtGihK/fqoMi4mJsUq65bVx40Z7l1Yg//M//2MNDAy0Ojo6Wh988MEydVnvxo0b8/1axcTE2Lu0IpFf3yRZFy9ebO/Sikzv3r1t35/Vq1e3tm/f3rpu3Tp7l1WsytKl2c8//7zVz8/PWqlSJau/v7+1W7du1v3799u7rCL3xRdfWBs3bmx1cnKy1q9f37pgwQJ7l1Sk1q5da5VkPXTokF3rsFitVmuJJygAAIAiwtVMAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQaAXbVt21ZDhw7ViBEjVK1aNfn4+GjBggW6cuWKXnrpJbm7u+uvf/2rvvnmG0lSTk6O+vTpo6CgIDk7O6tevXqaNWtWnn1u2rRJDz30kFxdXVW1alW1atVKp06dkiT95z//Ubt27eTu7q4qVaqoefPmSkxMLPF+Ayg6hBkAdrdkyRJ5e3tr165dGjp0qAYOHKjnnntOERER+uGHHxQZGano6Gj99ttvys3NVc2aNfXJJ5/owIEDev311/Xaa6/pk08+kSRdv35dTz31lNq0aaMff/xR27dvV79+/WSxWCRJf//731WzZk3t3r1be/bs0auvvqpKlSrZs/sAComnZgOwq7Zt2yonJ0dbtmyRdGPkxcPDQ926ddPSpUslSWlpafLz89P27dvVsmXLW/YxePBg/fzzz/r00091/vx5eXl5adOmTWrTps0tbatUqaLZs2crJiameDsGoMQwMgPA7h544AHbvx0cHOTl5aXQ0FDbMh8fH0lSenq6JOn9999XWFiYqlevLjc3Ny1cuFApKSmSJE9PT/Xq1UuRkZHq2rWrZs2apdTUVNu+Ro0apZdfflkdOnTQW2+9pWPHjpVEFwEUI8IMALv782kei8WSZ9nNU0S5ubn65JNPNHLkSPXu3Vvr1q1TcnKyXnrpJWVnZ9vaL168WNu3b1dERIRWrlypunXraseOHZKkiRMnav/+/ercubM2bNighg0bavXq1SXQSwDFhTADwChbtmxRRESEBg0apGbNmik4ODjf0ZVmzZopNjZW27ZtU+PGjfXRRx/Z1tWtW1cjR47UunXr1K1bNy1evLgkuwCgiBFmABglODhYiYmJWrt2rQ4fPqwJEyZo9+7dtvUnTpxQbGystm/frlOnTmndunU6fPiwGjRooKtXr2rIkCHatGmTTp06pa1bt2r37t1q0KCBHXsEoLAq2rsAALgfAwYMUHJysp5//nlZLBa98MILGjRokO3SbRcXF/30009asmSJzp07Jz8/Pw0ZMkT9+/fX9evXde7cOb344ov6+eef5e3trW7dumnSpEl27hWAwuBqJgAAYDROMwEAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaP8XbYuN+LJhQy4AAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/advanced-python/70ScikitHEPUniverse.ipynb b/advanced-python/70ScikitHEPUniverse.ipynb index e04765d2..0e476dd2 100644 --- a/advanced-python/70ScikitHEPUniverse.ipynb +++ b/advanced-python/70ScikitHEPUniverse.ipynb @@ -34,10 +34,10 @@ "start_time": "2023-11-09T18:41:36.790957906Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:29.669007Z", - "iopub.status.busy": "2023-11-09T20:46:29.668713Z", - "iopub.status.idle": "2023-11-09T20:46:30.120330Z", - "shell.execute_reply": "2023-11-09T20:46:30.119776Z" + "iopub.execute_input": "2023-11-09T22:34:21.376511Z", + "iopub.status.busy": "2023-11-09T22:34:21.376349Z", + "iopub.status.idle": "2023-11-09T22:34:21.752462Z", + "shell.execute_reply": "2023-11-09T22:34:21.751876Z" } }, "outputs": [ @@ -68,10 +68,10 @@ "start_time": "2023-11-09T18:41:37.505747578Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.122957Z", - "iopub.status.busy": "2023-11-09T20:46:30.122552Z", - "iopub.status.idle": "2023-11-09T20:46:30.129099Z", - "shell.execute_reply": "2023-11-09T20:46:30.128037Z" + "iopub.execute_input": "2023-11-09T22:34:21.754655Z", + "iopub.status.busy": "2023-11-09T22:34:21.754272Z", + "iopub.status.idle": "2023-11-09T22:34:21.758090Z", + "shell.execute_reply": "2023-11-09T22:34:21.757588Z" } }, "outputs": [ @@ -99,10 +99,10 @@ "start_time": "2023-11-09T18:41:37.510628475Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.131308Z", - "iopub.status.busy": "2023-11-09T20:46:30.131113Z", - "iopub.status.idle": "2023-11-09T20:46:30.136285Z", - "shell.execute_reply": "2023-11-09T20:46:30.135812Z" + "iopub.execute_input": "2023-11-09T22:34:21.760018Z", + "iopub.status.busy": "2023-11-09T22:34:21.759636Z", + "iopub.status.idle": "2023-11-09T22:34:21.763316Z", + "shell.execute_reply": "2023-11-09T22:34:21.762825Z" } }, "outputs": [ @@ -139,10 +139,10 @@ "start_time": "2023-11-09T18:41:37.522736067Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.138621Z", - "iopub.status.busy": "2023-11-09T20:46:30.138258Z", - "iopub.status.idle": "2023-11-09T20:46:30.298539Z", - "shell.execute_reply": "2023-11-09T20:46:30.297870Z" + "iopub.execute_input": "2023-11-09T22:34:21.765241Z", + "iopub.status.busy": "2023-11-09T22:34:21.764922Z", + "iopub.status.idle": "2023-11-09T22:34:21.886326Z", + "shell.execute_reply": "2023-11-09T22:34:21.885764Z" } }, "outputs": [], @@ -170,10 +170,10 @@ "start_time": "2023-11-09T18:41:37.779040900Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.301835Z", - "iopub.status.busy": "2023-11-09T20:46:30.301261Z", - "iopub.status.idle": "2023-11-09T20:46:30.305317Z", - "shell.execute_reply": "2023-11-09T20:46:30.304751Z" + "iopub.execute_input": "2023-11-09T22:34:21.888748Z", + "iopub.status.busy": "2023-11-09T22:34:21.888374Z", + "iopub.status.idle": "2023-11-09T22:34:21.891979Z", + "shell.execute_reply": "2023-11-09T22:34:21.891545Z" } }, "outputs": [ @@ -201,10 +201,10 @@ "start_time": "2023-11-09T18:41:37.779268397Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.307704Z", - "iopub.status.busy": "2023-11-09T20:46:30.307214Z", - "iopub.status.idle": "2023-11-09T20:46:30.312350Z", - "shell.execute_reply": "2023-11-09T20:46:30.311769Z" + "iopub.execute_input": "2023-11-09T22:34:21.894104Z", + "iopub.status.busy": "2023-11-09T22:34:21.893784Z", + "iopub.status.idle": "2023-11-09T22:34:21.897092Z", + "shell.execute_reply": "2023-11-09T22:34:21.896646Z" } }, "outputs": [ @@ -232,10 +232,10 @@ "start_time": "2023-11-09T18:41:37.779388976Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.314727Z", - "iopub.status.busy": "2023-11-09T20:46:30.314364Z", - "iopub.status.idle": "2023-11-09T20:46:30.318810Z", - "shell.execute_reply": "2023-11-09T20:46:30.317764Z" + "iopub.execute_input": "2023-11-09T22:34:21.898830Z", + "iopub.status.busy": "2023-11-09T22:34:21.898535Z", + "iopub.status.idle": "2023-11-09T22:34:21.902083Z", + "shell.execute_reply": "2023-11-09T22:34:21.901700Z" } }, "outputs": [ @@ -263,10 +263,10 @@ "start_time": "2023-11-09T18:41:37.779605715Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.321099Z", - "iopub.status.busy": "2023-11-09T20:46:30.320732Z", - "iopub.status.idle": "2023-11-09T20:46:30.325765Z", - "shell.execute_reply": "2023-11-09T20:46:30.325217Z" + "iopub.execute_input": "2023-11-09T22:34:21.903893Z", + "iopub.status.busy": "2023-11-09T22:34:21.903566Z", + "iopub.status.idle": "2023-11-09T22:34:21.906734Z", + "shell.execute_reply": "2023-11-09T22:34:21.906303Z" } }, "outputs": [ @@ -302,10 +302,10 @@ "start_time": "2023-11-09T18:41:37.779707095Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.327964Z", - "iopub.status.busy": "2023-11-09T20:46:30.327601Z", - "iopub.status.idle": "2023-11-09T20:46:30.372766Z", - "shell.execute_reply": "2023-11-09T20:46:30.371369Z" + "iopub.execute_input": "2023-11-09T22:34:21.908540Z", + "iopub.status.busy": "2023-11-09T22:34:21.908237Z", + "iopub.status.idle": "2023-11-09T22:34:21.939800Z", + "shell.execute_reply": "2023-11-09T22:34:21.939335Z" } }, "outputs": [ @@ -378,10 +378,10 @@ "start_time": "2023-11-09T18:41:37.835409659Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.375256Z", - "iopub.status.busy": "2023-11-09T20:46:30.374763Z", - "iopub.status.idle": "2023-11-09T20:46:30.380661Z", - "shell.execute_reply": "2023-11-09T20:46:30.380136Z" + "iopub.execute_input": "2023-11-09T22:34:21.941831Z", + "iopub.status.busy": "2023-11-09T22:34:21.941501Z", + "iopub.status.idle": "2023-11-09T22:34:21.944745Z", + "shell.execute_reply": "2023-11-09T22:34:21.944318Z" } }, "outputs": [ @@ -411,10 +411,10 @@ "start_time": "2023-11-09T18:41:37.841358263Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.383039Z", - "iopub.status.busy": "2023-11-09T20:46:30.382543Z", - "iopub.status.idle": "2023-11-09T20:46:30.385175Z", - "shell.execute_reply": "2023-11-09T20:46:30.384654Z" + "iopub.execute_input": "2023-11-09T22:34:21.946682Z", + "iopub.status.busy": "2023-11-09T22:34:21.946317Z", + "iopub.status.idle": "2023-11-09T22:34:21.948627Z", + "shell.execute_reply": "2023-11-09T22:34:21.948244Z" } }, "outputs": [], @@ -431,10 +431,10 @@ "start_time": "2023-11-09T18:41:37.883077241Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.387413Z", - "iopub.status.busy": "2023-11-09T20:46:30.387056Z", - "iopub.status.idle": "2023-11-09T20:46:30.392001Z", - "shell.execute_reply": "2023-11-09T20:46:30.391509Z" + "iopub.execute_input": "2023-11-09T22:34:21.950486Z", + "iopub.status.busy": "2023-11-09T22:34:21.950177Z", + "iopub.status.idle": "2023-11-09T22:34:21.953416Z", + "shell.execute_reply": "2023-11-09T22:34:21.953025Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "start_time": "2023-11-09T18:41:37.883233940Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.394290Z", - "iopub.status.busy": "2023-11-09T20:46:30.393937Z", - "iopub.status.idle": "2023-11-09T20:46:30.556194Z", - "shell.execute_reply": "2023-11-09T20:46:30.555614Z" + "iopub.execute_input": "2023-11-09T22:34:21.955340Z", + "iopub.status.busy": "2023-11-09T22:34:21.954970Z", + "iopub.status.idle": "2023-11-09T22:34:22.029395Z", + "shell.execute_reply": "2023-11-09T22:34:22.028929Z" } }, "outputs": [], @@ -496,10 +496,10 @@ "start_time": "2023-11-09T18:41:38.000640796Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.558985Z", - "iopub.status.busy": "2023-11-09T20:46:30.558585Z", - "iopub.status.idle": "2023-11-09T20:46:30.567598Z", - "shell.execute_reply": "2023-11-09T20:46:30.567031Z" + "iopub.execute_input": "2023-11-09T22:34:22.031670Z", + "iopub.status.busy": "2023-11-09T22:34:22.031335Z", + "iopub.status.idle": "2023-11-09T22:34:22.038228Z", + "shell.execute_reply": "2023-11-09T22:34:22.037724Z" }, "pycharm": { "name": "#%%\n" @@ -562,10 +562,10 @@ "start_time": "2023-11-09T18:41:38.047094192Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.569928Z", - "iopub.status.busy": "2023-11-09T20:46:30.569565Z", - "iopub.status.idle": "2023-11-09T20:46:30.597419Z", - "shell.execute_reply": "2023-11-09T20:46:30.596125Z" + "iopub.execute_input": "2023-11-09T22:34:22.039973Z", + "iopub.status.busy": "2023-11-09T22:34:22.039814Z", + "iopub.status.idle": "2023-11-09T22:34:22.051736Z", + "shell.execute_reply": "2023-11-09T22:34:22.051324Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "start_time": "2023-11-09T18:41:38.047282206Z" }, "execution": { - "iopub.execute_input": "2023-11-09T20:46:30.600595Z", - "iopub.status.busy": "2023-11-09T20:46:30.599556Z", - "iopub.status.idle": "2023-11-09T20:46:30.605364Z", - "shell.execute_reply": "2023-11-09T20:46:30.604868Z" + "iopub.execute_input": "2023-11-09T22:34:22.053497Z", + "iopub.status.busy": "2023-11-09T22:34:22.053330Z", + "iopub.status.idle": "2023-11-09T22:34:22.057219Z", + "shell.execute_reply": "2023-11-09T22:34:22.056694Z" } }, "outputs": [ diff --git a/python/01basics.ipynb b/python/01basics.ipynb index b08bd700..e91ead19 100644 --- a/python/01basics.ipynb +++ b/python/01basics.ipynb @@ -55,10 +55,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:32.878771Z", - "iopub.status.busy": "2023-11-09T20:46:32.878457Z", - "iopub.status.idle": "2023-11-09T20:46:32.883993Z", - "shell.execute_reply": "2023-11-09T20:46:32.883527Z" + "iopub.execute_input": "2023-11-09T22:34:23.981989Z", + "iopub.status.busy": "2023-11-09T22:34:23.981604Z", + "iopub.status.idle": "2023-11-09T22:34:23.986539Z", + "shell.execute_reply": "2023-11-09T22:34:23.986148Z" }, "slideshow": { "slide_type": "subslide" @@ -74,10 +74,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:32.886414Z", - "iopub.status.busy": "2023-11-09T20:46:32.885949Z", - "iopub.status.idle": "2023-11-09T20:46:32.889094Z", - "shell.execute_reply": "2023-11-09T20:46:32.888663Z" + "iopub.execute_input": "2023-11-09T22:34:23.988384Z", + "iopub.status.busy": "2023-11-09T22:34:23.988063Z", + "iopub.status.idle": "2023-11-09T22:34:23.990936Z", + "shell.execute_reply": "2023-11-09T22:34:23.990536Z" }, "slideshow": { "slide_type": "subslide" @@ -148,10 +148,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:32.891330Z", - "iopub.status.busy": "2023-11-09T20:46:32.890961Z", - "iopub.status.idle": "2023-11-09T20:46:32.894313Z", - "shell.execute_reply": "2023-11-09T20:46:32.893762Z" + "iopub.execute_input": "2023-11-09T22:34:23.992625Z", + "iopub.status.busy": "2023-11-09T22:34:23.992480Z", + "iopub.status.idle": "2023-11-09T22:34:23.995203Z", + "shell.execute_reply": "2023-11-09T22:34:23.994822Z" }, "slideshow": { "slide_type": "subslide" @@ -180,10 +180,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:32.896575Z", - "iopub.status.busy": "2023-11-09T20:46:32.896110Z", - "iopub.status.idle": "2023-11-09T20:46:32.903124Z", - "shell.execute_reply": "2023-11-09T20:46:32.902658Z" + "iopub.execute_input": "2023-11-09T22:34:23.996913Z", + "iopub.status.busy": "2023-11-09T22:34:23.996736Z", + "iopub.status.idle": "2023-11-09T22:34:24.001923Z", + "shell.execute_reply": "2023-11-09T22:34:24.001449Z" }, "slideshow": { "slide_type": "subslide" @@ -234,10 +234,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:32.905392Z", - "iopub.status.busy": "2023-11-09T20:46:32.905013Z", - "iopub.status.idle": "2023-11-09T20:46:32.908338Z", - "shell.execute_reply": "2023-11-09T20:46:32.907854Z" + "iopub.execute_input": "2023-11-09T22:34:24.004332Z", + "iopub.status.busy": "2023-11-09T22:34:24.003923Z", + "iopub.status.idle": "2023-11-09T22:34:24.006527Z", + "shell.execute_reply": "2023-11-09T22:34:24.006042Z" }, "slideshow": { "slide_type": "subslide" @@ -254,10 +254,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:32.910652Z", - "iopub.status.busy": "2023-11-09T20:46:32.910190Z", - "iopub.status.idle": "2023-11-09T20:46:32.913765Z", - "shell.execute_reply": "2023-11-09T20:46:32.913253Z" + "iopub.execute_input": "2023-11-09T22:34:24.008677Z", + "iopub.status.busy": "2023-11-09T22:34:24.008318Z", + "iopub.status.idle": "2023-11-09T22:34:24.011999Z", + "shell.execute_reply": "2023-11-09T22:34:24.011507Z" }, "slideshow": { "slide_type": "subslide" @@ -295,10 +295,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:32.916059Z", - "iopub.status.busy": "2023-11-09T20:46:32.915605Z", - "iopub.status.idle": "2023-11-09T20:46:33.060401Z", - "shell.execute_reply": "2023-11-09T20:46:33.059851Z" + "iopub.execute_input": "2023-11-09T22:34:24.013966Z", + "iopub.status.busy": "2023-11-09T22:34:24.013806Z", + "iopub.status.idle": "2023-11-09T22:34:24.150423Z", + "shell.execute_reply": "2023-11-09T22:34:24.149972Z" }, "slideshow": { "slide_type": "subslide" @@ -340,10 +340,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.063245Z", - "iopub.status.busy": "2023-11-09T20:46:33.062750Z", - "iopub.status.idle": "2023-11-09T20:46:33.076835Z", - "shell.execute_reply": "2023-11-09T20:46:33.076344Z" + "iopub.execute_input": "2023-11-09T22:34:24.152481Z", + "iopub.status.busy": "2023-11-09T22:34:24.152175Z", + "iopub.status.idle": "2023-11-09T22:34:24.162539Z", + "shell.execute_reply": "2023-11-09T22:34:24.162108Z" }, "slideshow": { "slide_type": "subslide" @@ -385,10 +385,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.079231Z", - "iopub.status.busy": "2023-11-09T20:46:33.078860Z", - "iopub.status.idle": "2023-11-09T20:46:33.083957Z", - "shell.execute_reply": "2023-11-09T20:46:33.083493Z" + "iopub.execute_input": "2023-11-09T22:34:24.164349Z", + "iopub.status.busy": "2023-11-09T22:34:24.164189Z", + "iopub.status.idle": "2023-11-09T22:34:24.167455Z", + "shell.execute_reply": "2023-11-09T22:34:24.167008Z" }, "slideshow": { "slide_type": "subslide" @@ -428,10 +428,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.086265Z", - "iopub.status.busy": "2023-11-09T20:46:33.085898Z", - "iopub.status.idle": "2023-11-09T20:46:33.088988Z", - "shell.execute_reply": "2023-11-09T20:46:33.088405Z" + "iopub.execute_input": "2023-11-09T22:34:24.169153Z", + "iopub.status.busy": "2023-11-09T22:34:24.168998Z", + "iopub.status.idle": "2023-11-09T22:34:24.171805Z", + "shell.execute_reply": "2023-11-09T22:34:24.171378Z" }, "slideshow": { "slide_type": "subslide" @@ -456,10 +456,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.091265Z", - "iopub.status.busy": "2023-11-09T20:46:33.090814Z", - "iopub.status.idle": "2023-11-09T20:46:33.093958Z", - "shell.execute_reply": "2023-11-09T20:46:33.093441Z" + "iopub.execute_input": "2023-11-09T22:34:24.173566Z", + "iopub.status.busy": "2023-11-09T22:34:24.173412Z", + "iopub.status.idle": "2023-11-09T22:34:24.175885Z", + "shell.execute_reply": "2023-11-09T22:34:24.175401Z" }, "slideshow": { "slide_type": "subslide" @@ -495,10 +495,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.096080Z", - "iopub.status.busy": "2023-11-09T20:46:33.095713Z", - "iopub.status.idle": "2023-11-09T20:46:33.098409Z", - "shell.execute_reply": "2023-11-09T20:46:33.097854Z" + "iopub.execute_input": "2023-11-09T22:34:24.177685Z", + "iopub.status.busy": "2023-11-09T22:34:24.177443Z", + "iopub.status.idle": "2023-11-09T22:34:24.179742Z", + "shell.execute_reply": "2023-11-09T22:34:24.179333Z" }, "slideshow": { "slide_type": "subslide" @@ -525,10 +525,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.100517Z", - "iopub.status.busy": "2023-11-09T20:46:33.100157Z", - "iopub.status.idle": "2023-11-09T20:46:33.104365Z", - "shell.execute_reply": "2023-11-09T20:46:33.103847Z" + "iopub.execute_input": "2023-11-09T22:34:24.181578Z", + "iopub.status.busy": "2023-11-09T22:34:24.181425Z", + "iopub.status.idle": "2023-11-09T22:34:24.184657Z", + "shell.execute_reply": "2023-11-09T22:34:24.184251Z" }, "slideshow": { "slide_type": "subslide" @@ -587,10 +587,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.106653Z", - "iopub.status.busy": "2023-11-09T20:46:33.106290Z", - "iopub.status.idle": "2023-11-09T20:46:33.109248Z", - "shell.execute_reply": "2023-11-09T20:46:33.108731Z" + "iopub.execute_input": "2023-11-09T22:34:24.186583Z", + "iopub.status.busy": "2023-11-09T22:34:24.186286Z", + "iopub.status.idle": "2023-11-09T22:34:24.189070Z", + "shell.execute_reply": "2023-11-09T22:34:24.188646Z" }, "slideshow": { "slide_type": "subslide" @@ -627,10 +627,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.111452Z", - "iopub.status.busy": "2023-11-09T20:46:33.111089Z", - "iopub.status.idle": "2023-11-09T20:46:33.115316Z", - "shell.execute_reply": "2023-11-09T20:46:33.114785Z" + "iopub.execute_input": "2023-11-09T22:34:24.190646Z", + "iopub.status.busy": "2023-11-09T22:34:24.190505Z", + "iopub.status.idle": "2023-11-09T22:34:24.193599Z", + "shell.execute_reply": "2023-11-09T22:34:24.193150Z" }, "slideshow": { "slide_type": "subslide" @@ -668,10 +668,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.117503Z", - "iopub.status.busy": "2023-11-09T20:46:33.117066Z", - "iopub.status.idle": "2023-11-09T20:46:33.120031Z", - "shell.execute_reply": "2023-11-09T20:46:33.119477Z" + "iopub.execute_input": "2023-11-09T22:34:24.195370Z", + "iopub.status.busy": "2023-11-09T22:34:24.195078Z", + "iopub.status.idle": "2023-11-09T22:34:24.197787Z", + "shell.execute_reply": "2023-11-09T22:34:24.197305Z" }, "slideshow": { "slide_type": "subslide" @@ -707,10 +707,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.122253Z", - "iopub.status.busy": "2023-11-09T20:46:33.121797Z", - "iopub.status.idle": "2023-11-09T20:46:33.124796Z", - "shell.execute_reply": "2023-11-09T20:46:33.124277Z" + "iopub.execute_input": "2023-11-09T22:34:24.199508Z", + "iopub.status.busy": "2023-11-09T22:34:24.199361Z", + "iopub.status.idle": "2023-11-09T22:34:24.202154Z", + "shell.execute_reply": "2023-11-09T22:34:24.201647Z" }, "slideshow": { "slide_type": "subslide" @@ -748,10 +748,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.127032Z", - "iopub.status.busy": "2023-11-09T20:46:33.126677Z", - "iopub.status.idle": "2023-11-09T20:46:33.139260Z", - "shell.execute_reply": "2023-11-09T20:46:33.138704Z" + "iopub.execute_input": "2023-11-09T22:34:24.203991Z", + "iopub.status.busy": "2023-11-09T22:34:24.203682Z", + "iopub.status.idle": "2023-11-09T22:34:24.213619Z", + "shell.execute_reply": "2023-11-09T22:34:24.213203Z" }, "slideshow": { "slide_type": "subslide" @@ -793,10 +793,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.141498Z", - "iopub.status.busy": "2023-11-09T20:46:33.141141Z", - "iopub.status.idle": "2023-11-09T20:46:33.144205Z", - "shell.execute_reply": "2023-11-09T20:46:33.143690Z" + "iopub.execute_input": "2023-11-09T22:34:24.215479Z", + "iopub.status.busy": "2023-11-09T22:34:24.215191Z", + "iopub.status.idle": "2023-11-09T22:34:24.218227Z", + "shell.execute_reply": "2023-11-09T22:34:24.217743Z" }, "slideshow": { "slide_type": "subslide" @@ -821,10 +821,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.146306Z", - "iopub.status.busy": "2023-11-09T20:46:33.145947Z", - "iopub.status.idle": "2023-11-09T20:46:33.149033Z", - "shell.execute_reply": "2023-11-09T20:46:33.148469Z" + "iopub.execute_input": "2023-11-09T22:34:24.220186Z", + "iopub.status.busy": "2023-11-09T22:34:24.219797Z", + "iopub.status.idle": "2023-11-09T22:34:24.222794Z", + "shell.execute_reply": "2023-11-09T22:34:24.222302Z" }, "slideshow": { "slide_type": "subslide" @@ -863,10 +863,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.151248Z", - "iopub.status.busy": "2023-11-09T20:46:33.150884Z", - "iopub.status.idle": "2023-11-09T20:46:33.153427Z", - "shell.execute_reply": "2023-11-09T20:46:33.152910Z" + "iopub.execute_input": "2023-11-09T22:34:24.224721Z", + "iopub.status.busy": "2023-11-09T22:34:24.224416Z", + "iopub.status.idle": "2023-11-09T22:34:24.226986Z", + "shell.execute_reply": "2023-11-09T22:34:24.226439Z" }, "slideshow": { "slide_type": "subslide" @@ -893,10 +893,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.155599Z", - "iopub.status.busy": "2023-11-09T20:46:33.155243Z", - "iopub.status.idle": "2023-11-09T20:46:33.158170Z", - "shell.execute_reply": "2023-11-09T20:46:33.157617Z" + "iopub.execute_input": "2023-11-09T22:34:24.228842Z", + "iopub.status.busy": "2023-11-09T22:34:24.228522Z", + "iopub.status.idle": "2023-11-09T22:34:24.231042Z", + "shell.execute_reply": "2023-11-09T22:34:24.230574Z" }, "slideshow": { "slide_type": "subslide" @@ -934,10 +934,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.160220Z", - "iopub.status.busy": "2023-11-09T20:46:33.160034Z", - "iopub.status.idle": "2023-11-09T20:46:33.172379Z", - "shell.execute_reply": "2023-11-09T20:46:33.171897Z" + "iopub.execute_input": "2023-11-09T22:34:24.232722Z", + "iopub.status.busy": "2023-11-09T22:34:24.232570Z", + "iopub.status.idle": "2023-11-09T22:34:24.242173Z", + "shell.execute_reply": "2023-11-09T22:34:24.241758Z" }, "slideshow": { "slide_type": "subslide" @@ -979,10 +979,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.174649Z", - "iopub.status.busy": "2023-11-09T20:46:33.174199Z", - "iopub.status.idle": "2023-11-09T20:46:33.177266Z", - "shell.execute_reply": "2023-11-09T20:46:33.176740Z" + "iopub.execute_input": "2023-11-09T22:34:24.243919Z", + "iopub.status.busy": "2023-11-09T22:34:24.243749Z", + "iopub.status.idle": "2023-11-09T22:34:24.246642Z", + "shell.execute_reply": "2023-11-09T22:34:24.246221Z" }, "slideshow": { "slide_type": "subslide" @@ -1031,10 +1031,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.179357Z", - "iopub.status.busy": "2023-11-09T20:46:33.179169Z", - "iopub.status.idle": "2023-11-09T20:46:33.181807Z", - "shell.execute_reply": "2023-11-09T20:46:33.181284Z" + "iopub.execute_input": "2023-11-09T22:34:24.248239Z", + "iopub.status.busy": "2023-11-09T22:34:24.248086Z", + "iopub.status.idle": "2023-11-09T22:34:24.250462Z", + "shell.execute_reply": "2023-11-09T22:34:24.250056Z" }, "slideshow": { "slide_type": "subslide" @@ -1053,10 +1053,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.183862Z", - "iopub.status.busy": "2023-11-09T20:46:33.183499Z", - "iopub.status.idle": "2023-11-09T20:46:33.186207Z", - "shell.execute_reply": "2023-11-09T20:46:33.185692Z" + "iopub.execute_input": "2023-11-09T22:34:24.252014Z", + "iopub.status.busy": "2023-11-09T22:34:24.251860Z", + "iopub.status.idle": "2023-11-09T22:34:24.254278Z", + "shell.execute_reply": "2023-11-09T22:34:24.253874Z" } }, "outputs": [], @@ -1089,10 +1089,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.188317Z", - "iopub.status.busy": "2023-11-09T20:46:33.188131Z", - "iopub.status.idle": "2023-11-09T20:46:33.191007Z", - "shell.execute_reply": "2023-11-09T20:46:33.190491Z" + "iopub.execute_input": "2023-11-09T22:34:24.256196Z", + "iopub.status.busy": "2023-11-09T22:34:24.255840Z", + "iopub.status.idle": "2023-11-09T22:34:24.258693Z", + "shell.execute_reply": "2023-11-09T22:34:24.258189Z" }, "slideshow": { "slide_type": "subslide" @@ -1116,10 +1116,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.193044Z", - "iopub.status.busy": "2023-11-09T20:46:33.192748Z", - "iopub.status.idle": "2023-11-09T20:46:33.205161Z", - "shell.execute_reply": "2023-11-09T20:46:33.204679Z" + "iopub.execute_input": "2023-11-09T22:34:24.260456Z", + "iopub.status.busy": "2023-11-09T22:34:24.260201Z", + "iopub.status.idle": "2023-11-09T22:34:24.270042Z", + "shell.execute_reply": "2023-11-09T22:34:24.269554Z" }, "slideshow": { "slide_type": "subslide" @@ -1174,10 +1174,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.207417Z", - "iopub.status.busy": "2023-11-09T20:46:33.206978Z", - "iopub.status.idle": "2023-11-09T20:46:33.209592Z", - "shell.execute_reply": "2023-11-09T20:46:33.209065Z" + "iopub.execute_input": "2023-11-09T22:34:24.271852Z", + "iopub.status.busy": "2023-11-09T22:34:24.271582Z", + "iopub.status.idle": "2023-11-09T22:34:24.273930Z", + "shell.execute_reply": "2023-11-09T22:34:24.273450Z" }, "slideshow": { "slide_type": "subslide" @@ -1193,10 +1193,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.211744Z", - "iopub.status.busy": "2023-11-09T20:46:33.211382Z", - "iopub.status.idle": "2023-11-09T20:46:33.214677Z", - "shell.execute_reply": "2023-11-09T20:46:33.214204Z" + "iopub.execute_input": "2023-11-09T22:34:24.275636Z", + "iopub.status.busy": "2023-11-09T22:34:24.275371Z", + "iopub.status.idle": "2023-11-09T22:34:24.277661Z", + "shell.execute_reply": "2023-11-09T22:34:24.277186Z" }, "slideshow": { "slide_type": "subslide" @@ -1212,10 +1212,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.216944Z", - "iopub.status.busy": "2023-11-09T20:46:33.216460Z", - "iopub.status.idle": "2023-11-09T20:46:33.219162Z", - "shell.execute_reply": "2023-11-09T20:46:33.218635Z" + "iopub.execute_input": "2023-11-09T22:34:24.279494Z", + "iopub.status.busy": "2023-11-09T22:34:24.279133Z", + "iopub.status.idle": "2023-11-09T22:34:24.281429Z", + "shell.execute_reply": "2023-11-09T22:34:24.281014Z" }, "slideshow": { "slide_type": "subslide" @@ -1255,10 +1255,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.221433Z", - "iopub.status.busy": "2023-11-09T20:46:33.221075Z", - "iopub.status.idle": "2023-11-09T20:46:33.223892Z", - "shell.execute_reply": "2023-11-09T20:46:33.223478Z" + "iopub.execute_input": "2023-11-09T22:34:24.283321Z", + "iopub.status.busy": "2023-11-09T22:34:24.283020Z", + "iopub.status.idle": "2023-11-09T22:34:24.285553Z", + "shell.execute_reply": "2023-11-09T22:34:24.285059Z" }, "slideshow": { "slide_type": "subslide" @@ -1284,10 +1284,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.225971Z", - "iopub.status.busy": "2023-11-09T20:46:33.225678Z", - "iopub.status.idle": "2023-11-09T20:46:33.228593Z", - "shell.execute_reply": "2023-11-09T20:46:33.228016Z" + "iopub.execute_input": "2023-11-09T22:34:24.287396Z", + "iopub.status.busy": "2023-11-09T22:34:24.287100Z", + "iopub.status.idle": "2023-11-09T22:34:24.289646Z", + "shell.execute_reply": "2023-11-09T22:34:24.289159Z" }, "slideshow": { "slide_type": "subslide" @@ -1323,10 +1323,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.230878Z", - "iopub.status.busy": "2023-11-09T20:46:33.230427Z", - "iopub.status.idle": "2023-11-09T20:46:33.233423Z", - "shell.execute_reply": "2023-11-09T20:46:33.232909Z" + "iopub.execute_input": "2023-11-09T22:34:24.291469Z", + "iopub.status.busy": "2023-11-09T22:34:24.291154Z", + "iopub.status.idle": "2023-11-09T22:34:24.293890Z", + "shell.execute_reply": "2023-11-09T22:34:24.293405Z" }, "slideshow": { "slide_type": "subslide" @@ -1352,10 +1352,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.235575Z", - "iopub.status.busy": "2023-11-09T20:46:33.235211Z", - "iopub.status.idle": "2023-11-09T20:46:33.238059Z", - "shell.execute_reply": "2023-11-09T20:46:33.237622Z" + "iopub.execute_input": "2023-11-09T22:34:24.295786Z", + "iopub.status.busy": "2023-11-09T22:34:24.295372Z", + "iopub.status.idle": "2023-11-09T22:34:24.298063Z", + "shell.execute_reply": "2023-11-09T22:34:24.297671Z" }, "slideshow": { "slide_type": "subslide" @@ -1405,10 +1405,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.240361Z", - "iopub.status.busy": "2023-11-09T20:46:33.239999Z", - "iopub.status.idle": "2023-11-09T20:46:33.242548Z", - "shell.execute_reply": "2023-11-09T20:46:33.242029Z" + "iopub.execute_input": "2023-11-09T22:34:24.299969Z", + "iopub.status.busy": "2023-11-09T22:34:24.299670Z", + "iopub.status.idle": "2023-11-09T22:34:24.302179Z", + "shell.execute_reply": "2023-11-09T22:34:24.301671Z" }, "slideshow": { "slide_type": "subslide" @@ -1436,10 +1436,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.244849Z", - "iopub.status.busy": "2023-11-09T20:46:33.244390Z", - "iopub.status.idle": "2023-11-09T20:46:33.248448Z", - "shell.execute_reply": "2023-11-09T20:46:33.247312Z" + "iopub.execute_input": "2023-11-09T22:34:24.303945Z", + "iopub.status.busy": "2023-11-09T22:34:24.303694Z", + "iopub.status.idle": "2023-11-09T22:34:24.306201Z", + "shell.execute_reply": "2023-11-09T22:34:24.305708Z" }, "slideshow": { "slide_type": "subslide" @@ -1468,10 +1468,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.250807Z", - "iopub.status.busy": "2023-11-09T20:46:33.250342Z", - "iopub.status.idle": "2023-11-09T20:46:33.253585Z", - "shell.execute_reply": "2023-11-09T20:46:33.253067Z" + "iopub.execute_input": "2023-11-09T22:34:24.307862Z", + "iopub.status.busy": "2023-11-09T22:34:24.307723Z", + "iopub.status.idle": "2023-11-09T22:34:24.310797Z", + "shell.execute_reply": "2023-11-09T22:34:24.310371Z" }, "slideshow": { "slide_type": "subslide" @@ -1510,10 +1510,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.255676Z", - "iopub.status.busy": "2023-11-09T20:46:33.255318Z", - "iopub.status.idle": "2023-11-09T20:46:33.258608Z", - "shell.execute_reply": "2023-11-09T20:46:33.258048Z" + "iopub.execute_input": "2023-11-09T22:34:24.312609Z", + "iopub.status.busy": "2023-11-09T22:34:24.312236Z", + "iopub.status.idle": "2023-11-09T22:34:24.315209Z", + "shell.execute_reply": "2023-11-09T22:34:24.314704Z" }, "slideshow": { "slide_type": "subslide" @@ -1541,10 +1541,10 @@ "execution_count": 40, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.260647Z", - "iopub.status.busy": "2023-11-09T20:46:33.260401Z", - "iopub.status.idle": "2023-11-09T20:46:33.263358Z", - "shell.execute_reply": "2023-11-09T20:46:33.262797Z" + "iopub.execute_input": "2023-11-09T22:34:24.316879Z", + "iopub.status.busy": "2023-11-09T22:34:24.316690Z", + "iopub.status.idle": "2023-11-09T22:34:24.319460Z", + "shell.execute_reply": "2023-11-09T22:34:24.319032Z" }, "slideshow": { "slide_type": "subslide" @@ -1582,10 +1582,10 @@ "execution_count": 41, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.265405Z", - "iopub.status.busy": "2023-11-09T20:46:33.265224Z", - "iopub.status.idle": "2023-11-09T20:46:33.267515Z", - "shell.execute_reply": "2023-11-09T20:46:33.267096Z" + "iopub.execute_input": "2023-11-09T22:34:24.321310Z", + "iopub.status.busy": "2023-11-09T22:34:24.320948Z", + "iopub.status.idle": "2023-11-09T22:34:24.323448Z", + "shell.execute_reply": "2023-11-09T22:34:24.322936Z" }, "slideshow": { "slide_type": "subslide" @@ -1601,10 +1601,10 @@ "execution_count": 42, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.269656Z", - "iopub.status.busy": "2023-11-09T20:46:33.269184Z", - "iopub.status.idle": "2023-11-09T20:46:33.272174Z", - "shell.execute_reply": "2023-11-09T20:46:33.271767Z" + "iopub.execute_input": "2023-11-09T22:34:24.325333Z", + "iopub.status.busy": "2023-11-09T22:34:24.325058Z", + "iopub.status.idle": "2023-11-09T22:34:24.327872Z", + "shell.execute_reply": "2023-11-09T22:34:24.327375Z" }, "slideshow": { "slide_type": "subslide" @@ -1648,10 +1648,10 @@ "execution_count": 43, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.274350Z", - "iopub.status.busy": "2023-11-09T20:46:33.273872Z", - "iopub.status.idle": "2023-11-09T20:46:33.276779Z", - "shell.execute_reply": "2023-11-09T20:46:33.276353Z" + "iopub.execute_input": "2023-11-09T22:34:24.330008Z", + "iopub.status.busy": "2023-11-09T22:34:24.329562Z", + "iopub.status.idle": "2023-11-09T22:34:24.332367Z", + "shell.execute_reply": "2023-11-09T22:34:24.331974Z" }, "slideshow": { "slide_type": "subslide" @@ -1677,10 +1677,10 @@ "execution_count": 44, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.278911Z", - "iopub.status.busy": "2023-11-09T20:46:33.278428Z", - "iopub.status.idle": "2023-11-09T20:46:33.281295Z", - "shell.execute_reply": "2023-11-09T20:46:33.280886Z" + "iopub.execute_input": "2023-11-09T22:34:24.334085Z", + "iopub.status.busy": "2023-11-09T22:34:24.333817Z", + "iopub.status.idle": "2023-11-09T22:34:24.336570Z", + "shell.execute_reply": "2023-11-09T22:34:24.336048Z" }, "slideshow": { "slide_type": "subslide" @@ -1716,10 +1716,10 @@ "execution_count": 45, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.283450Z", - "iopub.status.busy": "2023-11-09T20:46:33.282976Z", - "iopub.status.idle": "2023-11-09T20:46:33.285884Z", - "shell.execute_reply": "2023-11-09T20:46:33.285466Z" + "iopub.execute_input": "2023-11-09T22:34:24.338513Z", + "iopub.status.busy": "2023-11-09T22:34:24.338166Z", + "iopub.status.idle": "2023-11-09T22:34:24.341018Z", + "shell.execute_reply": "2023-11-09T22:34:24.340486Z" }, "slideshow": { "slide_type": "subslide" @@ -1780,10 +1780,10 @@ "execution_count": 46, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.288137Z", - "iopub.status.busy": "2023-11-09T20:46:33.287633Z", - "iopub.status.idle": "2023-11-09T20:46:33.290886Z", - "shell.execute_reply": "2023-11-09T20:46:33.290485Z" + "iopub.execute_input": "2023-11-09T22:34:24.342722Z", + "iopub.status.busy": "2023-11-09T22:34:24.342585Z", + "iopub.status.idle": "2023-11-09T22:34:24.345711Z", + "shell.execute_reply": "2023-11-09T22:34:24.345299Z" }, "slideshow": { "slide_type": "subslide" @@ -1812,10 +1812,10 @@ "execution_count": 47, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.293034Z", - "iopub.status.busy": "2023-11-09T20:46:33.292527Z", - "iopub.status.idle": "2023-11-09T20:46:33.296138Z", - "shell.execute_reply": "2023-11-09T20:46:33.295731Z" + "iopub.execute_input": "2023-11-09T22:34:24.347477Z", + "iopub.status.busy": "2023-11-09T22:34:24.347105Z", + "iopub.status.idle": "2023-11-09T22:34:24.350784Z", + "shell.execute_reply": "2023-11-09T22:34:24.350297Z" } }, "outputs": [ @@ -1840,10 +1840,10 @@ "execution_count": 48, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.298285Z", - "iopub.status.busy": "2023-11-09T20:46:33.297808Z", - "iopub.status.idle": "2023-11-09T20:46:33.301025Z", - "shell.execute_reply": "2023-11-09T20:46:33.300620Z" + "iopub.execute_input": "2023-11-09T22:34:24.352482Z", + "iopub.status.busy": "2023-11-09T22:34:24.352324Z", + "iopub.status.idle": "2023-11-09T22:34:24.355554Z", + "shell.execute_reply": "2023-11-09T22:34:24.355060Z" } }, "outputs": [ @@ -1878,10 +1878,10 @@ "execution_count": 49, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.303358Z", - "iopub.status.busy": "2023-11-09T20:46:33.302884Z", - "iopub.status.idle": "2023-11-09T20:46:33.305910Z", - "shell.execute_reply": "2023-11-09T20:46:33.305491Z" + "iopub.execute_input": "2023-11-09T22:34:24.357370Z", + "iopub.status.busy": "2023-11-09T22:34:24.357080Z", + "iopub.status.idle": "2023-11-09T22:34:24.359970Z", + "shell.execute_reply": "2023-11-09T22:34:24.359470Z" }, "slideshow": { "slide_type": "subslide" @@ -1906,10 +1906,10 @@ "execution_count": 50, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.308051Z", - "iopub.status.busy": "2023-11-09T20:46:33.307558Z", - "iopub.status.idle": "2023-11-09T20:46:33.310467Z", - "shell.execute_reply": "2023-11-09T20:46:33.310068Z" + "iopub.execute_input": "2023-11-09T22:34:24.361652Z", + "iopub.status.busy": "2023-11-09T22:34:24.361514Z", + "iopub.status.idle": "2023-11-09T22:34:24.364283Z", + "shell.execute_reply": "2023-11-09T22:34:24.363875Z" }, "slideshow": { "slide_type": "subslide" @@ -2005,10 +2005,10 @@ "execution_count": 51, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:33.312697Z", - "iopub.status.busy": "2023-11-09T20:46:33.312208Z", - "iopub.status.idle": "2023-11-09T20:46:33.315304Z", - "shell.execute_reply": "2023-11-09T20:46:33.314901Z" + "iopub.execute_input": "2023-11-09T22:34:24.366107Z", + "iopub.status.busy": "2023-11-09T22:34:24.365815Z", + "iopub.status.idle": "2023-11-09T22:34:24.368875Z", + "shell.execute_reply": "2023-11-09T22:34:24.368334Z" }, "slideshow": { "slide_type": "subslide" diff --git a/python/classes.ipynb b/python/classes.ipynb index 2b7125a7..55dc6eef 100644 --- a/python/classes.ipynb +++ b/python/classes.ipynb @@ -26,10 +26,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.041243Z", - "iopub.status.busy": "2023-11-09T20:46:36.040808Z", - "iopub.status.idle": "2023-11-09T20:46:36.103013Z", - "shell.execute_reply": "2023-11-09T20:46:36.102483Z" + "iopub.execute_input": "2023-11-09T22:34:27.152112Z", + "iopub.status.busy": "2023-11-09T22:34:27.151648Z", + "iopub.status.idle": "2023-11-09T22:34:27.214803Z", + "shell.execute_reply": "2023-11-09T22:34:27.214265Z" } }, "outputs": [], @@ -42,10 +42,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.106895Z", - "iopub.status.busy": "2023-11-09T20:46:36.105944Z", - "iopub.status.idle": "2023-11-09T20:46:36.110375Z", - "shell.execute_reply": "2023-11-09T20:46:36.109919Z" + "iopub.execute_input": "2023-11-09T22:34:27.218665Z", + "iopub.status.busy": "2023-11-09T22:34:27.217751Z", + "iopub.status.idle": "2023-11-09T22:34:27.222272Z", + "shell.execute_reply": "2023-11-09T22:34:27.221821Z" } }, "outputs": [], @@ -66,10 +66,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.113622Z", - "iopub.status.busy": "2023-11-09T20:46:36.112747Z", - "iopub.status.idle": "2023-11-09T20:46:36.120371Z", - "shell.execute_reply": "2023-11-09T20:46:36.119940Z" + "iopub.execute_input": "2023-11-09T22:34:27.225552Z", + "iopub.status.busy": "2023-11-09T22:34:27.224673Z", + "iopub.status.idle": "2023-11-09T22:34:27.232630Z", + "shell.execute_reply": "2023-11-09T22:34:27.232167Z" } }, "outputs": [ @@ -100,10 +100,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.123580Z", - "iopub.status.busy": "2023-11-09T20:46:36.122734Z", - "iopub.status.idle": "2023-11-09T20:46:36.126956Z", - "shell.execute_reply": "2023-11-09T20:46:36.126522Z" + "iopub.execute_input": "2023-11-09T22:34:27.236058Z", + "iopub.status.busy": "2023-11-09T22:34:27.235229Z", + "iopub.status.idle": "2023-11-09T22:34:27.239796Z", + "shell.execute_reply": "2023-11-09T22:34:27.239341Z" } }, "outputs": [], @@ -124,10 +124,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.130122Z", - "iopub.status.busy": "2023-11-09T20:46:36.129263Z", - "iopub.status.idle": "2023-11-09T20:46:36.134646Z", - "shell.execute_reply": "2023-11-09T20:46:36.134212Z" + "iopub.execute_input": "2023-11-09T22:34:27.243114Z", + "iopub.status.busy": "2023-11-09T22:34:27.242286Z", + "iopub.status.idle": "2023-11-09T22:34:27.247802Z", + "shell.execute_reply": "2023-11-09T22:34:27.247356Z" } }, "outputs": [ @@ -165,10 +165,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.137924Z", - "iopub.status.busy": "2023-11-09T20:46:36.137073Z", - "iopub.status.idle": "2023-11-09T20:46:36.140862Z", - "shell.execute_reply": "2023-11-09T20:46:36.140408Z" + "iopub.execute_input": "2023-11-09T22:34:27.251124Z", + "iopub.status.busy": "2023-11-09T22:34:27.250286Z", + "iopub.status.idle": "2023-11-09T22:34:27.254490Z", + "shell.execute_reply": "2023-11-09T22:34:27.254046Z" } }, "outputs": [], @@ -186,10 +186,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.143972Z", - "iopub.status.busy": "2023-11-09T20:46:36.143134Z", - "iopub.status.idle": "2023-11-09T20:46:36.148628Z", - "shell.execute_reply": "2023-11-09T20:46:36.148183Z" + "iopub.execute_input": "2023-11-09T22:34:27.257672Z", + "iopub.status.busy": "2023-11-09T22:34:27.256856Z", + "iopub.status.idle": "2023-11-09T22:34:27.262548Z", + "shell.execute_reply": "2023-11-09T22:34:27.262111Z" } }, "outputs": [ @@ -220,10 +220,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.151771Z", - "iopub.status.busy": "2023-11-09T20:46:36.150911Z", - "iopub.status.idle": "2023-11-09T20:46:36.154757Z", - "shell.execute_reply": "2023-11-09T20:46:36.154330Z" + "iopub.execute_input": "2023-11-09T22:34:27.265767Z", + "iopub.status.busy": "2023-11-09T22:34:27.264950Z", + "iopub.status.idle": "2023-11-09T22:34:27.268923Z", + "shell.execute_reply": "2023-11-09T22:34:27.268459Z" } }, "outputs": [], @@ -241,10 +241,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.157892Z", - "iopub.status.busy": "2023-11-09T20:46:36.157037Z", - "iopub.status.idle": "2023-11-09T20:46:36.162700Z", - "shell.execute_reply": "2023-11-09T20:46:36.162123Z" + "iopub.execute_input": "2023-11-09T22:34:27.271263Z", + "iopub.status.busy": "2023-11-09T22:34:27.271082Z", + "iopub.status.idle": "2023-11-09T22:34:27.274737Z", + "shell.execute_reply": "2023-11-09T22:34:27.274337Z" } }, "outputs": [ @@ -276,10 +276,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.165884Z", - "iopub.status.busy": "2023-11-09T20:46:36.165029Z", - "iopub.status.idle": "2023-11-09T20:46:36.169615Z", - "shell.execute_reply": "2023-11-09T20:46:36.169192Z" + "iopub.execute_input": "2023-11-09T22:34:27.276487Z", + "iopub.status.busy": "2023-11-09T22:34:27.276327Z", + "iopub.status.idle": "2023-11-09T22:34:27.279597Z", + "shell.execute_reply": "2023-11-09T22:34:27.279205Z" } }, "outputs": [], @@ -308,10 +308,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.172697Z", - "iopub.status.busy": "2023-11-09T20:46:36.171857Z", - "iopub.status.idle": "2023-11-09T20:46:36.175712Z", - "shell.execute_reply": "2023-11-09T20:46:36.175299Z" + "iopub.execute_input": "2023-11-09T22:34:27.281337Z", + "iopub.status.busy": "2023-11-09T22:34:27.281176Z", + "iopub.status.idle": "2023-11-09T22:34:27.284555Z", + "shell.execute_reply": "2023-11-09T22:34:27.284165Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.177918Z", - "iopub.status.busy": "2023-11-09T20:46:36.177613Z", - "iopub.status.idle": "2023-11-09T20:46:36.181508Z", - "shell.execute_reply": "2023-11-09T20:46:36.180483Z" + "iopub.execute_input": "2023-11-09T22:34:27.286304Z", + "iopub.status.busy": "2023-11-09T22:34:27.286146Z", + "iopub.status.idle": "2023-11-09T22:34:27.289202Z", + "shell.execute_reply": "2023-11-09T22:34:27.288792Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.183670Z", - "iopub.status.busy": "2023-11-09T20:46:36.183336Z", - "iopub.status.idle": "2023-11-09T20:46:36.186651Z", - "shell.execute_reply": "2023-11-09T20:46:36.185557Z" + "iopub.execute_input": "2023-11-09T22:34:27.291060Z", + "iopub.status.busy": "2023-11-09T22:34:27.290900Z", + "iopub.status.idle": "2023-11-09T22:34:27.293385Z", + "shell.execute_reply": "2023-11-09T22:34:27.292983Z" } }, "outputs": [], @@ -418,10 +418,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.188664Z", - "iopub.status.busy": "2023-11-09T20:46:36.188352Z", - "iopub.status.idle": "2023-11-09T20:46:36.191684Z", - "shell.execute_reply": "2023-11-09T20:46:36.191269Z" + "iopub.execute_input": "2023-11-09T22:34:27.295180Z", + "iopub.status.busy": "2023-11-09T22:34:27.294844Z", + "iopub.status.idle": "2023-11-09T22:34:27.298218Z", + "shell.execute_reply": "2023-11-09T22:34:27.297767Z" } }, "outputs": [ @@ -459,10 +459,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.193904Z", - "iopub.status.busy": "2023-11-09T20:46:36.193571Z", - "iopub.status.idle": "2023-11-09T20:46:36.196772Z", - "shell.execute_reply": "2023-11-09T20:46:36.196334Z" + "iopub.execute_input": "2023-11-09T22:34:27.300248Z", + "iopub.status.busy": "2023-11-09T22:34:27.299943Z", + "iopub.status.idle": "2023-11-09T22:34:27.303254Z", + "shell.execute_reply": "2023-11-09T22:34:27.302771Z" } }, "outputs": [ @@ -527,10 +527,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.198889Z", - "iopub.status.busy": "2023-11-09T20:46:36.198599Z", - "iopub.status.idle": "2023-11-09T20:46:36.202626Z", - "shell.execute_reply": "2023-11-09T20:46:36.202198Z" + "iopub.execute_input": "2023-11-09T22:34:27.305089Z", + "iopub.status.busy": "2023-11-09T22:34:27.304927Z", + "iopub.status.idle": "2023-11-09T22:34:27.308847Z", + "shell.execute_reply": "2023-11-09T22:34:27.308321Z" } }, "outputs": [], @@ -562,10 +562,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.204682Z", - "iopub.status.busy": "2023-11-09T20:46:36.204369Z", - "iopub.status.idle": "2023-11-09T20:46:36.207272Z", - "shell.execute_reply": "2023-11-09T20:46:36.206670Z" + "iopub.execute_input": "2023-11-09T22:34:27.310585Z", + "iopub.status.busy": "2023-11-09T22:34:27.310423Z", + "iopub.status.idle": "2023-11-09T22:34:27.313131Z", + "shell.execute_reply": "2023-11-09T22:34:27.312670Z" } }, "outputs": [], @@ -600,10 +600,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.209368Z", - "iopub.status.busy": "2023-11-09T20:46:36.209076Z", - "iopub.status.idle": "2023-11-09T20:46:36.211697Z", - "shell.execute_reply": "2023-11-09T20:46:36.211277Z" + "iopub.execute_input": "2023-11-09T22:34:27.315045Z", + "iopub.status.busy": "2023-11-09T22:34:27.314775Z", + "iopub.status.idle": "2023-11-09T22:34:27.317592Z", + "shell.execute_reply": "2023-11-09T22:34:27.317072Z" } }, "outputs": [], @@ -620,10 +620,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.213838Z", - "iopub.status.busy": "2023-11-09T20:46:36.213543Z", - "iopub.status.idle": "2023-11-09T20:46:36.216368Z", - "shell.execute_reply": "2023-11-09T20:46:36.215724Z" + "iopub.execute_input": "2023-11-09T22:34:27.319455Z", + "iopub.status.busy": "2023-11-09T22:34:27.319159Z", + "iopub.status.idle": "2023-11-09T22:34:27.321944Z", + "shell.execute_reply": "2023-11-09T22:34:27.321430Z" } }, "outputs": [], @@ -639,10 +639,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.218462Z", - "iopub.status.busy": "2023-11-09T20:46:36.218167Z", - "iopub.status.idle": "2023-11-09T20:46:36.221259Z", - "shell.execute_reply": "2023-11-09T20:46:36.220845Z" + "iopub.execute_input": "2023-11-09T22:34:27.323787Z", + "iopub.status.busy": "2023-11-09T22:34:27.323461Z", + "iopub.status.idle": "2023-11-09T22:34:27.326850Z", + "shell.execute_reply": "2023-11-09T22:34:27.326428Z" } }, "outputs": [ @@ -702,10 +702,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-11-09T20:46:36.223324Z", - "iopub.status.busy": "2023-11-09T20:46:36.223033Z", - "iopub.status.idle": "2023-11-09T20:46:36.226641Z", - "shell.execute_reply": "2023-11-09T20:46:36.225457Z" + "iopub.execute_input": "2023-11-09T22:34:27.328715Z", + "iopub.status.busy": "2023-11-09T22:34:27.328391Z", + "iopub.status.idle": "2023-11-09T22:34:27.331126Z", + "shell.execute_reply": "2023-11-09T22:34:27.330731Z" } }, "outputs": [], diff --git a/python/further_reading.html b/python/further_reading.html index 1235d3c8..e9c0eba1 100644 --- a/python/further_reading.html +++ b/python/further_reading.html @@ -468,7 +468,7 @@

More advanced topics in Python

Nice standard libraries

    -
  • argsparse, datetime, fnmatch, glob, os, re, sys, subprocess

  • +
  • argsparse, datetime, fnmatch, re, sys, subprocess, pathlib

@@ -477,6 +477,10 @@

Nice libraries for data analysisNumPy

  • pandas

  • matplotlib

  • +
  • iminuit for fitting

  • +
  • resample for uncertainty estimation with the bootstrap and jackknife

  • +
  • jacobi for error propagation based on first derivatives

  • +
  • numba-stats fast implementations of statistical distributions to build statistical models

  • diff --git a/searchindex.js b/searchindex.js index 15ea30ae..8f29d2f8 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["CONDUCT", "CONTRIBUTING", "LICENSE", "advanced-python/10Basics", "advanced-python/11AdvancedPython", "advanced-python/12AdvancedClasses", "advanced-python/20DataAndPlotting", "advanced-python/30Classification", "advanced-python/31ClassificationExtension", "advanced-python/32BoostingToUniformity", "advanced-python/40Histograms", "advanced-python/45DemoReweighting", "advanced-python/50LikelihoodInference", "advanced-python/60sPlot", "advanced-python/70ScikitHEPUniverse", "advanced-python/README", "git/01-basics", "git/02-setup", "git/03-create", "git/04-changes", "git/05-history", "git/06-ignore", "git/07-gitlab", "git/08-share", "git/09-pullrequests", "git/10-conflict", "git/11-ci", "git/12-open", "git/13-licensing", "git/14-citation", "git/README", "index", "python/00scripts", "python/01basics", "python/README", "python/classes", "python/conditions", "python/dictionaries", "python/first_histogram", "python/further_reading", "python/learning", "python/lists", "python/methods", "python/modules", "python/numbers", "python/operators", "python/running", "python/scripting", "python/strings", "shell-extras/README", "shell-extras/persistent-screen", "shell-extras/screen", "shell-extras/screen2", "shell-extras/shell2", "shell/02-filedir", "shell/03-create", "shell/04-pipefilter", "shell/05-loop", "shell/06-script", "shell/07-find", "shell/README", "snakemake/README"], "filenames": ["CONDUCT.md", "CONTRIBUTING.md", "LICENSE.md", "advanced-python/10Basics.ipynb", "advanced-python/11AdvancedPython.ipynb", "advanced-python/12AdvancedClasses.ipynb", "advanced-python/20DataAndPlotting.ipynb", "advanced-python/30Classification.ipynb", "advanced-python/31ClassificationExtension.ipynb", "advanced-python/32BoostingToUniformity.ipynb", "advanced-python/40Histograms.ipynb", "advanced-python/45DemoReweighting.ipynb", "advanced-python/50LikelihoodInference.ipynb", "advanced-python/60sPlot.ipynb", "advanced-python/70ScikitHEPUniverse.ipynb", "advanced-python/README.md", "git/01-basics.md", "git/02-setup.md", "git/03-create.md", "git/04-changes.md", "git/05-history.md", "git/06-ignore.md", "git/07-gitlab.md", "git/08-share.md", "git/09-pullrequests.md", "git/10-conflict.md", "git/11-ci.md", "git/12-open.md", "git/13-licensing.md", "git/14-citation.md", "git/README.md", "index.md", "python/00scripts.md", "python/01basics.ipynb", "python/README.md", "python/classes.ipynb", "python/conditions.md", "python/dictionaries.md", "python/first_histogram.md", "python/further_reading.md", "python/learning.md", "python/lists.md", "python/methods.md", "python/modules.md", "python/numbers.md", "python/operators.md", "python/running.md", "python/scripting.md", "python/strings.md", "shell-extras/README.md", "shell-extras/persistent-screen.md", "shell-extras/screen.md", "shell-extras/screen2.md", "shell-extras/shell2.md", "shell/02-filedir.md", "shell/03-create.md", "shell/04-pipefilter.md", "shell/05-loop.md", "shell/06-script.md", "shell/07-find.md", "shell/README.md", "snakemake/README.md"], "titles": ["Contributor Code of Conduct", "Contributing", "Instructional Material", "1: Basics", "Advanced Python Concepts", "Advanced Classes", "2: First look at data", "3: Multivariate Analysis", "4: Extension on Classification", "5: Boosting to Uniformity", "6: Histograms", "7: Demonstration of distribution reweighting", "8: Likelihood inference", "9: sPlot", "10: Scikit-HEP", "Advanced Python Tutorial", "Automated Version Control", "Setting Up Git", "Creating a Repository", "Tracking Changes", "Exploring History", "Ignoring Things", "Remotes in CERN GitLab", "Sharing a repository with others", "Collaborating with Pull Requests", "Conflicts", "GitLab CI", "Open Science", "Licensing", "Citation", "Git", "Analysis essentials ", "Scripting", "1: Basics", "An introduction to Python", "Classes", "Conditions", "Dictionaries", "Making your first histogram", "More advanced topics in Python", "Learning more", "Lists and looping", "Functions", "Modules", "Numbers", "Objects and operators", "Running Python", "Scripting", "Strings", "UNIX shell", "Persistent screen or tmux session on lxplus", "Using screen to keep things running", "Advanced screen topics", "More about the UNIX shell", "Navigating Files and Directories", "Working With Files and Directories", "Pipes and Filters", "Loops", "Shell Scripts", "Finding Things", "Introducing the Shell", "Analysis automation with Snakemake"], "terms": {"As": [0, 4, 9, 11, 13, 14, 17, 20, 21, 22, 24, 25, 27, 30, 33, 37, 38, 41, 42, 43, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "maintain": [0, 1, 6, 14, 24, 28, 31, 34], "thi": [0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "project": [0, 1, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 27, 28, 29, 30, 31, 55], "we": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "pledg": 0, "respect": [0, 4, 5, 6, 33, 41, 55, 58], "all": [0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 31, 34, 36, 37, 38, 43, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "peopl": [0, 1, 16, 20, 22, 24, 25, 27, 28, 34, 38, 40, 42, 48, 53, 54, 55, 56, 57, 58, 59, 60], "who": [0, 1, 24, 25, 27, 28, 34, 40, 42, 50, 53, 54, 57, 58, 59], "contribut": [0, 13, 24, 28, 31, 38], "through": [0, 6, 14, 15, 19, 20, 21, 23, 24, 27, 28, 35, 40, 43, 45, 46, 52, 53, 54, 56, 57, 59, 60], "report": [0, 1, 19, 59], "issu": [0, 1, 17, 21, 22, 31, 60, 61], "post": [0, 23, 27, 40], "featur": [0, 3, 6, 7, 11, 12, 13, 15, 22, 26, 30, 31, 34, 46, 52, 56, 61], "request": [0, 1, 3, 30, 31, 61], "updat": [0, 1, 12, 17, 19, 20, 22, 23, 25, 26, 38, 40, 43, 46, 57, 61], "document": [0, 1, 2, 3, 15, 16, 20, 22, 26, 27, 31, 38, 42, 43, 54, 55], "submit": [0, 1, 24, 27], "pull": [0, 1, 22, 23, 25, 30, 31], "patch": [0, 6, 10, 19, 20, 60], "other": [0, 2, 4, 5, 7, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61], "activ": [0, 15, 17, 31, 34, 43, 51], "ar": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "commit": [0, 1, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "make": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61], "particip": [0, 31], "harass": 0, "free": [0, 2, 6, 7, 11, 26, 27, 28, 30, 41, 53], "experi": [0, 6, 12, 31, 46, 55, 57, 59], "everyon": [0, 1, 19, 20, 21, 40, 42, 60], "regardless": [0, 54, 60, 61], "level": [0, 12, 21, 23, 36, 53, 54, 55, 56, 60], "gender": 0, "ident": [0, 6, 11, 16, 33, 37, 41, 54, 55, 61], "express": [0, 2, 13, 15, 31, 32, 38, 40, 41, 42, 45, 47, 48, 53, 56, 59], "sexual": 0, "orient": [0, 35, 43], "disabl": [0, 54], "person": [0, 2, 16, 22, 23, 24, 25, 27, 33, 42, 54, 58, 61], "appear": [0, 18, 19, 20, 23, 24, 54, 55, 57, 58, 59, 60, 61], "bodi": [0, 36, 57], "size": [0, 10, 13, 19, 38, 41, 53, 54, 55, 59], "race": 0, "ethnic": 0, "ag": [0, 24, 33, 42], "religion": 0, "exampl": [0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 24, 26, 31, 32, 33, 35, 36, 37, 38, 41, 42, 45, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "unaccept": 0, "behavior": [0, 5, 12, 35, 46], "includ": [0, 1, 2, 3, 4, 7, 8, 12, 16, 17, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 40, 42, 43, 46, 47, 48, 51, 54, 55, 56, 58, 59, 60], "us": [0, 2, 3, 5, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60], "languag": [0, 28, 31, 33, 34, 35, 38, 40, 41, 45, 46, 59, 60], "imageri": 0, "derogatori": 0, "comment": [0, 1, 3, 8, 16, 19, 20, 23, 24, 32, 33, 40, 42, 47, 58, 59, 61], "attack": 0, "troll": 0, "public": [0, 2, 22, 26, 28, 29, 35, 38, 54], "privat": [0, 22, 24, 26, 35, 50], "insult": 0, "unprofession": 0, "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "right": [0, 2, 4, 5, 7, 8, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 34, 38, 43, 45, 54, 55, 56, 57, 58, 59, 60], "respons": [0, 3, 7, 15, 25, 41, 54, 55, 57, 58], "remov": [0, 4, 7, 10, 11, 12, 18, 20, 22, 25, 32, 38, 40, 41, 47, 55, 56, 57, 58, 61], "edit": [0, 17, 19, 24, 25, 33, 53, 57, 58, 61], "reject": [0, 24, 25], "wiki": 0, "align": 0, "do": [0, 1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 35, 36, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "follow": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 17, 18, 19, 20, 21, 22, 24, 25, 26, 29, 30, 31, 33, 34, 35, 36, 37, 40, 41, 42, 43, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61], "mai": [0, 1, 2, 4, 5, 6, 8, 11, 13, 15, 17, 19, 20, 22, 25, 27, 29, 35, 46, 52, 53, 54, 55, 56, 57, 58, 59], "from": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 45, 47, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "team": 0, "instanc": [0, 4, 5, 9, 12, 13, 22, 26, 35, 43, 46, 52, 59, 61], "abus": 0, "otherwis": [0, 2, 9, 19, 28, 33, 54, 56, 61], "open": [0, 1, 4, 5, 6, 7, 9, 11, 18, 23, 24, 28, 30, 31, 38, 43, 53, 54, 55, 56, 57, 58, 61], "an": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "contact": [0, 1, 28], "one": [0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "more": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61], "i": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60], "adapt": [0, 2, 8], "coven": 0, "version": [0, 1, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 46, 53, 54, 57, 61], "1": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20, 23, 24, 25, 29, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61], "0": [0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "avail": [0, 1, 2, 4, 6, 10, 12, 13, 14, 15, 24, 25, 26, 28, 32, 36, 37, 38, 42, 43, 44, 45, 47, 48, 53, 54, 60, 61], "http": [0, 3, 6, 7, 8, 9, 11, 12, 16, 22, 24, 25, 31, 43, 54, 60, 61], "org": [0, 6, 7, 8, 54], "hsf": [1, 31, 61], "train": [1, 7, 8, 15, 31, 61], "sourc": [1, 13, 24, 28, 30, 31, 38, 43, 44, 46, 48, 53, 54, 61], "welcom": [1, 15, 22, 31, 33, 34], "kind": [1, 2, 12, 15, 19, 22, 28, 55, 58, 60], "new": [1, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 30, 31, 33, 35, 38, 41, 42, 43, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61], "lesson": [1, 3, 6, 7, 8, 15, 17, 19, 20, 22, 23, 24, 26, 29, 31, 34, 38, 42, 43, 45, 49, 51, 54, 55, 56, 59, 60], "fix": [1, 3, 6, 13, 15, 19, 20, 22, 24, 25, 34, 46, 53, 56, 58, 59], "exist": [1, 4, 8, 9, 10, 24, 25, 30, 33, 34, 36, 41, 42, 43, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61], "materi": [1, 28, 31, 46, 49, 53], "bug": [1, 7, 24, 46], "review": [1, 19, 23, 24, 27], "propos": [1, 23, 24], "chang": [1, 2, 4, 6, 12, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 30, 31, 32, 33, 36, 38, 41, 42, 43, 47, 48, 52, 53, 54, 55, 56, 57, 58, 59, 61], "By": [1, 4, 8, 13, 23, 24, 42, 43, 48, 54, 55, 56, 57, 58], "you": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "agre": [1, 5, 11], "redistribut": [1, 2], "your": [1, 2, 3, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "work": [1, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 36, 37, 40, 41, 44, 46, 47, 48, 52, 53, 54, 56, 57, 58, 59, 60, 61], "under": [1, 2, 5, 7, 9, 11, 12, 15, 21, 22, 24, 25, 28, 32, 43, 47, 56, 59], "our": [1, 4, 6, 7, 8, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 32, 33, 34, 35, 38, 41, 42, 43, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61], "licens": [1, 2, 30, 31, 46], "In": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 19, 20, 22, 23, 24, 25, 26, 28, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "exchang": 1, "address": [1, 17, 28, 53, 61], "assess": 1, "promptli": 1, "can": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "help": [1, 3, 7, 12, 16, 17, 19, 21, 25, 26, 28, 31, 32, 33, 34, 40, 41, 42, 46, 47, 52, 53, 54, 55, 56, 58, 59, 61], "becom": [1, 6, 16, 19, 20, 28, 31, 33, 40, 42, 48, 56, 57, 58, 60, 61], "member": [1, 23], "commun": [1, 27, 34, 35, 40, 60], "involv": [1, 5, 7, 12, 15, 26], "abid": 1, "code": [1, 3, 4, 5, 7, 13, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 41, 42, 44, 46, 47, 48, 53, 54, 57, 61], "conduct": [1, 31], "The": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59], "easiest": [1, 22, 58, 60], "wai": [1, 2, 4, 5, 6, 7, 10, 11, 13, 16, 17, 19, 20, 21, 23, 24, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "get": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 25, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61], "start": [1, 3, 4, 6, 10, 13, 15, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28, 31, 32, 33, 35, 36, 37, 40, 41, 42, 43, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61], "file": [1, 2, 3, 4, 6, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 49, 50, 51, 52, 57, 58, 59, 60], "tell": [1, 7, 17, 18, 19, 20, 21, 22, 24, 25, 32, 33, 36, 37, 41, 42, 43, 45, 47, 48, 50, 51, 53, 54, 55, 56, 57, 61], "u": [1, 5, 6, 7, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 25, 30, 31, 32, 33, 36, 37, 38, 41, 42, 43, 44, 47, 48, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "about": [1, 3, 5, 6, 7, 9, 12, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 31, 32, 33, 35, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61], "mistak": [1, 7, 18, 20, 55, 57, 58], "some": [1, 3, 4, 6, 7, 8, 9, 12, 13, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 35, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "awkward": [1, 39], "word": [1, 13, 16, 19, 24, 40, 42, 46, 48, 53, 54, 55, 56, 57, 58, 59], "factual": 1, "error": [1, 3, 4, 5, 6, 7, 12, 20, 22, 24, 25, 26, 33, 41, 43, 54, 55, 56, 57, 58, 61], "good": [1, 3, 4, 5, 6, 7, 8, 11, 18, 19, 20, 23, 24, 28, 33, 34, 35, 40, 42, 51, 53, 55, 56, 57, 60], "introduc": [1, 4, 13, 15, 22, 24, 25, 31, 54, 58], "yourself": [1, 19, 23, 25, 37, 40, 41, 43, 48, 52, 56, 57, 61], "meet": 1, "If": [1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 31, 33, 36, 37, 38, 40, 41, 42, 43, 44, 46, 48, 52, 53, 54, 55, 56, 57, 58, 59, 61], "account": [1, 11, 12, 17, 22, 24, 54, 60], "write": [1, 3, 4, 6, 12, 13, 16, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 40, 41, 42, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "convenor": 1, "email": [1, 17, 24, 53], "howev": [1, 4, 5, 6, 7, 8, 10, 13, 15, 16, 19, 22, 26, 27, 31, 35, 37, 38, 41, 42, 43, 46, 51, 53, 54, 55, 56, 57, 59, 60, 61], "abl": [1, 4, 11, 13, 20, 23, 26, 27, 31, 33, 38, 40, 42, 51, 58, 60, 61], "respond": [1, 4, 6], "quickli": [1, 24, 40, 53, 57, 61], "method": [1, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 26, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 54, 59], "describ": [1, 10, 12, 13, 27, 29, 41, 43, 55, 56], "below": [1, 3, 4, 7, 11, 17, 19, 20, 24, 25, 28, 33, 54, 55, 56, 57, 59], "willing": 1, "creat": [1, 4, 5, 6, 7, 8, 10, 12, 13, 14, 19, 20, 21, 22, 23, 25, 26, 27, 30, 31, 32, 33, 35, 37, 38, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "know": [1, 4, 5, 6, 10, 11, 13, 19, 24, 25, 32, 33, 35, 40, 41, 43, 45, 47, 48, 53, 54, 55, 56, 57, 58, 61], "git": [1, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 43, 54, 59, 61], "problem": [1, 4, 7, 11, 13, 15, 19, 20, 25, 28, 31, 34, 35, 37, 40, 54, 56, 57, 58, 59, 61], "suggest": [1, 2, 23, 43, 55], "improv": [1, 6, 7, 11, 24, 43, 53, 57, 58, 60], "allow": [1, 3, 6, 10, 13, 14, 16, 19, 20, 22, 23, 24, 25, 26, 28, 30, 32, 37, 38, 42, 43, 47, 48, 51, 53, 54, 55, 56, 57, 58, 60, 61], "assign": [1, 4, 11, 24, 26, 31, 34, 36, 38, 41, 42, 43, 46, 51, 53, 57], "item": [1, 5, 11, 33, 37, 40, 41, 43, 57, 61], "someon": [1, 19, 22, 24, 25, 28, 40, 42, 53, 55, 56, 61], "thread": [1, 9, 22, 23, 24, 25, 43, 61], "discuss": [1, 6, 18, 19, 21, 25, 27, 28, 30, 31, 52], "comfort": [1, 31, 34, 40], "would": [1, 4, 7, 11, 16, 19, 20, 21, 22, 23, 24, 28, 35, 38, 41, 42, 43, 45, 50, 51, 54, 55, 56, 57, 58, 59, 60, 61], "like": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "add": [1, 3, 4, 5, 6, 10, 12, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 31, 32, 35, 38, 42, 47, 48, 53, 54, 55, 58, 61], "pr": 1, "instruct": [1, 12, 22, 31, 55, 57], "There": [1, 4, 5, 6, 7, 12, 13, 19, 27, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 51, 52, 53, 54, 55, 56, 57, 59, 61], "mani": [1, 4, 6, 10, 11, 13, 15, 16, 17, 21, 23, 24, 27, 28, 33, 34, 35, 36, 38, 40, 41, 42, 43, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61], "exercis": [1, 4, 5, 6, 7, 8, 10, 12, 22, 24, 35, 53, 55, 56, 57], "ones": [1, 4, 8, 11, 13, 22, 25, 33, 38, 40, 48, 53, 57, 59, 61], "fill": [1, 6, 10, 15, 24, 42, 54, 55, 56, 61], "thing": [1, 3, 4, 6, 7, 10, 11, 12, 13, 15, 17, 19, 20, 22, 24, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 54, 55, 56, 57, 58, 60, 61], "clear": [1, 5, 28, 35, 42], "miss": [1, 5, 7, 20, 22, 38, 48, 56, 60], "look": [1, 3, 4, 5, 7, 8, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 36, 37, 41, 42, 43, 45, 51, 53, 54, 55, 56, 57, 59, 61], "idea": [1, 4, 5, 7, 13, 15, 18, 20, 24, 27, 40, 42, 54, 56, 57, 59], "pleas": [1, 7, 12, 17, 29, 31, 43, 59], "see": [1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 31, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61], "tab": [1, 22, 23, 24, 25, 26, 31, 33, 45, 46, 49, 54, 57, 60], "list": [1, 3, 4, 7, 17, 18, 19, 20, 21, 24, 28, 31, 32, 33, 34, 35, 36, 37, 42, 43, 45, 46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61], "associ": [1, 2, 17, 22, 42, 54], "repositori": [1, 16, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 31, 43], "also": [1, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61], "particularli": [1, 34, 42, 51, 55, 61], "easi": [1, 3, 5, 7, 8, 12, 14, 20, 27, 29, 41, 56, 57, 59, 61], "suitabl": [1, 4, 19, 20, 26, 38], "first": [1, 3, 4, 5, 7, 8, 10, 11, 12, 13, 15, 17, 19, 20, 22, 24, 25, 26, 30, 31, 32, 33, 34, 35, 41, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61], "just": [1, 3, 4, 5, 6, 7, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25, 26, 32, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "smarter": 1, "togeth": [1, 4, 10, 15, 20, 35, 37, 38, 53, 54, 56, 59, 60], "than": [1, 3, 5, 6, 11, 13, 15, 16, 19, 20, 22, 23, 24, 27, 32, 34, 35, 36, 38, 42, 43, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "own": [1, 4, 11, 17, 19, 20, 22, 23, 24, 26, 27, 28, 32, 37, 40, 42, 43, 46, 47, 54, 59], "novic": [1, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 54, 55, 56, 57, 58, 59, 60], "newcom": 1, "valuabl": 1, "been": [1, 6, 7, 8, 11, 14, 15, 16, 19, 20, 22, 23, 24, 34, 35, 38, 42, 44, 46, 53, 54, 55, 56, 57, 60, 61], "while": [1, 4, 5, 6, 7, 8, 11, 12, 15, 20, 24, 26, 27, 33, 36, 38, 42, 43, 44, 49, 50, 53, 54, 55, 56, 58, 59, 60], "forget": [1, 5, 6, 17, 20, 22, 52], "impenetr": 1, "so": [1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "fresh": [1, 51, 59], "ey": 1, "alwai": [1, 4, 8, 15, 17, 18, 19, 21, 24, 32, 35, 36, 37, 38, 40, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 58, 59, 60, 61], "choos": [1, 7, 11, 13, 17, 19, 28, 33, 42, 48, 57], "via": [1, 5, 11, 19, 21, 24, 33, 43, 51, 54], "want": [1, 4, 6, 7, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 32, 33, 35, 36, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "To": [1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 18, 19, 22, 23, 24, 25, 26, 29, 31, 32, 38, 43, 46, 47, 50, 51, 52, 53, 54, 55, 56, 58, 59, 61], "manag": [1, 15, 16, 25, 28, 31, 53, 54, 60], "flow": [1, 10, 15, 31, 33, 56], "each": [1, 6, 7, 8, 10, 11, 13, 16, 18, 19, 20, 22, 24, 25, 26, 28, 37, 38, 40, 41, 42, 44, 53, 54, 55, 56, 57, 58, 59, 60, 61], "ha": [1, 3, 4, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "two": [1, 3, 4, 5, 7, 8, 10, 11, 13, 15, 16, 19, 20, 21, 22, 24, 25, 31, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61], "encourag": [1, 31, 46], "volunt": 1, "final": [1, 4, 7, 13, 21, 23, 24, 27, 41, 42, 53, 54, 56, 57, 58, 59, 61], "sai": [1, 4, 12, 13, 20, 21, 22, 23, 24, 32, 40, 42, 43, 47, 48, 53, 54, 55, 56, 58], "over": [1, 4, 10, 11, 12, 14, 15, 19, 22, 23, 24, 31, 33, 34, 36, 37, 41, 42, 43, 46, 49, 57, 58], "merg": [1, 2, 7, 16, 23, 25, 30, 31, 61], "web": [1, 6, 11, 15, 22, 24, 26, 27, 28, 38, 54, 61], "interfac": [1, 6, 8, 10, 23, 24, 26, 31, 35, 38, 39, 55, 59], "fork": [1, 23, 30, 31], "origin": [1, 6, 8, 12, 13, 15, 22, 23, 25, 26, 30, 31, 41, 54, 56, 57, 59, 61], "profil": [1, 3, 12], "within": [1, 7, 13, 16, 18, 19, 26, 41, 43, 45, 52, 53, 54, 57, 58, 59, 61], "move": [1, 18, 19, 20, 22, 33, 54, 55, 57, 61], "gh": 1, "page": [1, 7, 17, 19, 22, 23, 24, 26, 27, 31, 49, 52, 54, 56, 59, 60], "branch": [1, 18, 19, 20, 21, 22, 23, 24, 25], "signific": [1, 6, 7, 12, 15], "being": [1, 4, 13, 19, 20, 21, 24, 25, 26, 27, 28, 31, 34, 43, 46, 53, 55, 56, 57, 59, 60, 61], "made": [1, 2, 12, 16, 19, 20, 22, 23, 24, 25, 28, 30, 38, 41, 43, 55, 58, 59, 61], "navig": [1, 19, 31, 33, 55, 60], "": [1, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 57, 58, 59, 61], "wish": [1, 14, 17, 55], "revis": [1, 19, 27, 54], "requir": [1, 6, 11, 15, 26, 27, 28, 31, 35, 36, 37, 41, 53, 54, 55, 56, 57, 59, 61], "appropri": [1, 2, 7, 11, 13, 19, 24, 25, 27, 42, 45, 61], "individu": [1, 13], "receiv": [1, 7, 24, 56, 57], "feedback": [1, 27], "specif": [1, 4, 6, 19, 20, 21, 23, 31, 33, 34, 37, 41, 42, 43, 49, 51, 53, 54, 59, 60, 61], "automat": [1, 4, 23, 25, 26, 28, 30, 31, 32, 33, 35, 38, 40, 42, 46, 47, 49, 54, 60, 61], "repeat": [1, 12, 23, 48, 53, 57, 58, 60], "need": [1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 37, 38, 41, 42, 43, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "until": [1, 4, 6, 11, 20, 26, 37, 38, 41, 53, 59, 60], "when": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "sure": [1, 10, 11, 12, 18, 19, 22, 23, 24, 31, 35, 36, 37, 41, 53, 54, 55, 56, 57, 58, 59], "clone": [1, 23, 25, 30, 31, 43], "up": [1, 4, 7, 8, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 30, 31, 33, 36, 37, 41, 43, 46, 49, 51, 53, 54, 55, 56, 57, 58, 60, 61], "date": [1, 19, 20, 22, 24, 29, 43, 51, 54, 59, 61], "befor": [1, 4, 6, 12, 16, 17, 19, 20, 23, 24, 25, 26, 27, 33, 35, 38, 40, 41, 42, 43, 54, 55, 56, 57, 58, 59, 61], "e": [1, 4, 6, 7, 8, 11, 12, 13, 14, 17, 19, 20, 21, 22, 24, 25, 26, 33, 35, 40, 41, 43, 44, 46, 50, 54, 55, 56, 57, 58, 59, 60, 61], "addition": [1, 26, 30], "onli": [1, 4, 5, 6, 7, 10, 12, 13, 17, 19, 21, 22, 24, 25, 27, 28, 30, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "newli": [1, 19, 21, 55], "lastli": [1, 43], "publish": [1, 2, 27], "copi": [1, 2, 7, 10, 18, 19, 20, 22, 23, 24, 25, 27, 28, 33, 37, 38, 41, 43, 48, 50, 54, 55, 56, 57], "refer": [1, 6, 7, 10, 17, 20, 27, 29, 31, 32, 33, 46, 47, 51, 53, 54, 55, 57, 58, 59, 61], "inform": [1, 6, 12, 14, 15, 17, 18, 19, 22, 23, 24, 27, 28, 31, 32, 38, 40, 42, 46, 47, 53, 54, 55, 56, 58, 59, 61], "home": [1, 18, 22, 25, 43, 51, 54, 55, 56, 57, 59], "creativ": [2, 28, 61], "common": [2, 3, 4, 6, 20, 22, 23, 24, 26, 28, 34, 36, 38, 41, 48, 53, 57, 59, 60], "attribut": [2, 5, 10, 14, 28, 35, 41, 59], "human": [2, 5, 22, 53, 54, 55, 57, 60], "readabl": [2, 5, 14, 22, 33, 36, 40, 41, 42, 43, 53, 54, 59], "summari": [2, 19, 61], "substitut": [2, 57, 61], "full": [2, 12, 19, 20, 22, 25, 26, 35, 41, 54, 55, 56, 59, 61], "legal": [2, 28], "text": [2, 3, 6, 7, 10, 11, 13, 17, 19, 20, 22, 25, 31, 33, 34, 43, 46, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61], "cc": [2, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 54, 55, 56, 57, 58, 59, 60], "BY": [2, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 54, 55, 56, 57, 58, 59, 60], "4": [2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 54, 55, 56, 57, 58, 59, 60, 61], "share": [2, 3, 7, 12, 13, 21, 22, 25, 26, 27, 28, 30, 31, 53, 54, 61], "ani": [2, 4, 5, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 31, 33, 37, 38, 40, 41, 42, 43, 44, 46, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "medium": 2, "format": [2, 6, 19, 22, 31, 34, 36, 40, 42, 43, 47, 54, 56, 58, 59], "remix": 2, "transform": [2, 8, 56], "build": [2, 12, 15, 20, 24, 26, 41, 43, 45, 56, 57, 59, 60, 61], "upon": 2, "purpos": [2, 7, 9, 12, 19, 27, 30, 42, 55, 56, 57], "even": [2, 6, 11, 13, 16, 19, 20, 24, 25, 28, 30, 32, 33, 34, 35, 38, 41, 42, 43, 47, 48, 51, 53, 54, 55, 56, 59, 60, 61], "commerci": [2, 28], "licensor": 2, "cannot": [2, 7, 11, 24, 25, 33, 37, 41, 43, 54, 55, 57, 61], "revok": 2, "freedom": 2, "long": [2, 3, 16, 17, 19, 20, 32, 36, 43, 46, 47, 48, 51, 54, 59, 60, 61], "term": [2, 19, 24, 44, 54, 59], "must": [2, 4, 20, 24, 25, 28, 36, 37, 38, 40, 41, 42, 43, 50, 53, 54, 55, 56, 58, 61], "give": [2, 4, 5, 6, 7, 10, 15, 23, 24, 25, 31, 37, 38, 41, 42, 43, 44, 48, 54, 56, 57, 58, 59, 61], "credit": [2, 46], "provid": [2, 4, 5, 6, 10, 11, 12, 14, 15, 22, 24, 26, 28, 38, 40, 42, 43, 51, 53, 54, 55, 56, 58, 59, 60, 61], "link": [2, 22, 23, 24, 27, 31, 49, 54, 59], "indic": [2, 22, 33, 37, 41, 48, 54, 55, 56], "were": [2, 6, 13, 20, 21, 22, 23, 25, 26, 42, 56, 57, 58, 59, 61], "reason": [2, 11, 13, 17, 19, 22, 27, 41, 44, 48, 53, 58, 61], "manner": [2, 37], "endors": 2, "No": [2, 4, 6, 7, 11, 36, 42, 53, 54, 55, 57], "addit": [2, 5, 19, 22, 24, 25, 26, 31, 33, 37, 43, 45, 49, 53, 54, 55, 56, 57, 58, 60, 61], "restrict": [2, 6, 22, 28, 37, 41, 43, 59], "appli": [2, 5, 7, 10, 12, 14, 15, 20, 28, 31, 34, 42, 54, 57], "technolog": 2, "measur": [2, 6, 11, 12, 57, 60, 61], "anyth": [2, 4, 12, 19, 24, 25, 27, 30, 32, 37, 41, 42, 46, 47, 54, 55, 56, 57, 58, 61], "permit": 2, "notic": [2, 18, 19, 20, 21, 33, 43, 48, 53, 54, 55, 59, 61], "compli": 2, "element": [2, 4, 33, 41, 42, 43, 54, 55, 57], "domain": [2, 50], "where": [2, 3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 22, 24, 25, 26, 27, 33, 34, 35, 41, 42, 43, 44, 46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "applic": [2, 3, 9, 11, 54], "except": [2, 5, 6, 12, 15, 21, 22, 24, 31, 43, 46, 54, 55, 56], "limit": [2, 10, 12, 13, 16, 19, 24, 31, 54, 57, 59], "warranti": 2, "given": [2, 4, 8, 11, 12, 13, 19, 20, 21, 24, 25, 27, 35, 41, 42, 43, 44, 53, 54, 55, 56, 57, 58, 59, 61], "permiss": [2, 6, 23, 24, 28, 53, 54, 59], "necessari": [2, 25, 41, 43, 54, 60], "intend": [2, 30, 46], "For": [2, 4, 5, 6, 7, 9, 11, 12, 16, 17, 19, 21, 23, 27, 31, 33, 35, 36, 38, 41, 42, 43, 44, 45, 46, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "privaci": 2, "moral": 2, "how": [2, 3, 4, 6, 7, 8, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 37, 40, 41, 42, 43, 44, 45, 47, 48, 53, 54, 55, 57, 58, 59, 60, 61], "note": [2, 3, 4, 6, 12, 17, 18, 19, 22, 23, 24, 25, 31, 36, 37, 41, 42, 43, 46, 50, 52, 54, 55, 56, 57, 58, 59, 60, 61], "program": [2, 4, 17, 19, 21, 27, 31, 32, 34, 35, 37, 40, 43, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60], "carpentri": [2, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 49, 54, 55, 56, 57, 58, 59, 60], "osi": 2, "approv": [2, 28], "mit": 2, "herebi": [2, 24, 35], "grant": [2, 28], "charg": [2, 14, 30], "obtain": [2, 6, 9, 10, 11, 12, 13, 15, 27, 32, 47, 50, 59], "deal": [2, 10, 16, 45, 56], "without": [2, 3, 5, 6, 9, 10, 11, 13, 14, 19, 20, 21, 22, 23, 24, 25, 26, 28, 32, 35, 38, 41, 43, 44, 47, 48, 50, 54, 55, 56, 57, 58, 59, 61], "modifi": [2, 19, 20, 21, 24, 25, 26, 27, 30, 32, 38, 41, 43, 47, 48, 53, 57, 58, 59, 61], "distribut": [2, 7, 12, 15, 16, 24, 27, 28, 30, 31, 38, 43, 46, 61], "sublicens": 2, "sell": 2, "whom": 2, "furnish": 2, "subject": [2, 13, 61], "condit": [2, 12, 13, 28, 31, 34, 43, 49], "abov": [2, 3, 4, 5, 6, 8, 11, 13, 15, 17, 18, 20, 23, 25, 27, 31, 33, 35, 38, 41, 42, 43, 46, 51, 53, 54, 55, 57, 59, 61], "copyright": [2, 28, 46], "shall": [2, 13], "substanti": [2, 61], "portion": [2, 19], "THE": 2, "AS": 2, "OF": 2, "OR": [2, 12], "impli": [2, 54], "BUT": 2, "NOT": [2, 4, 35], "TO": 2, "merchant": 2, "fit": [2, 7, 8, 9, 10, 11, 12, 14, 15, 19, 31, 34], "FOR": 2, "A": [2, 3, 4, 5, 7, 10, 11, 13, 16, 20, 22, 23, 24, 25, 26, 27, 28, 33, 35, 37, 38, 39, 41, 42, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61], "particular": [2, 13, 16, 19, 22, 26, 34, 36, 43, 53, 55, 59], "AND": [2, 12, 13], "noninfring": 2, "IN": 2, "NO": 2, "event": [2, 6, 7, 11, 15, 38, 58], "author": [2, 10, 16, 19, 20, 24, 25, 29, 54], "holder": [2, 28], "BE": 2, "liabl": 2, "claim": [2, 61], "damag": 2, "liabil": 2, "whether": [2, 4, 7, 24, 28, 33, 36, 37, 43, 53, 57, 61], "action": [2, 4, 25, 32, 38, 41, 47, 61], "contract": [2, 59], "tort": 2, "aris": [2, 57], "out": [2, 3, 4, 5, 6, 7, 11, 15, 19, 20, 21, 22, 23, 24, 25, 27, 28, 32, 33, 38, 40, 41, 42, 43, 45, 46, 47, 51, 52, 54, 56, 58, 59, 60, 61], "connect": [2, 3, 22, 24, 35, 51, 52, 54, 56], "WITH": 2, "advanc": [3, 6, 7, 9, 11, 12, 31, 33, 34, 49, 59], "python": [3, 5, 6, 7, 9, 10, 11, 12, 14, 20, 26, 28, 31, 32, 35, 36, 37, 38, 41, 42, 44, 45, 47, 48, 61], "tutori": [3, 4, 5, 6, 14, 30, 31, 33, 53, 54], "cover": [3, 4, 6, 15, 19, 21, 33, 35, 49, 54, 55, 60], "skill": [3, 60], "tip": [3, 22, 25, 55], "load": [3, 4, 7, 8, 10, 14, 15, 31, 43, 51, 61], "data": [3, 7, 8, 10, 12, 13, 14, 15, 21, 27, 31, 34, 37, 38, 41, 53, 54, 55, 56, 57, 58, 59, 60, 61], "plot": [3, 8, 9, 11, 13, 14, 15, 21, 26, 31, 34], "matplotlib": [3, 6, 7, 8, 9, 10, 11, 12, 13, 26, 31, 38, 39, 43], "cut": [3, 7, 8, 10, 12, 13, 14, 15, 31, 34, 56, 58, 59], "base": [3, 7, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 35, 38, 43, 54, 55, 56, 57, 58, 59, 60, 61], "selction": 3, "multivari": [3, 11, 15, 31], "analysi": [3, 10, 12, 13, 14, 15, 21, 27, 34, 38, 48, 55, 56, 57, 58], "scikit": [3, 6, 7, 8, 10, 15, 31], "learn": [3, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 51, 54, 55, 56, 57, 58, 59, 60, 61], "uboost": [3, 9], "hep_ml": [3, 9, 11, 13, 31], "neural": [3, 15], "network": [3, 15], "demo": [3, 60], "mutivari": 3, "kinemat": 3, "reweight": [3, 15, 31], "splot": [3, 11, 15, 31], "techniqu": [3, 7, 8, 13, 15, 41, 57, 59], "mutabl": [3, 4, 7, 31, 34, 37, 41, 42], "immut": [3, 33, 37, 48], "object": [3, 4, 5, 6, 7, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 46, 48, 51, 54, 55, 56, 57, 58, 59, 60, 61], "dictionari": [3, 6, 10, 31, 33, 34, 36, 40, 42, 61], "comprehens": [3, 31, 34, 36, 37, 42, 54, 56, 58, 59, 61], "notebook": [3, 7, 9, 12, 13, 14, 15, 27, 28, 31, 33, 38, 46], "moduel": 3, "let": [3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 32, 33, 34, 35, 41, 42, 43, 44, 46, 47, 51, 53, 54, 55, 56, 58, 59, 61], "compar": [3, 7, 9, 15, 17, 19, 20, 23, 24, 31, 33, 36, 37, 38, 45, 53, 58, 60], "string": [3, 4, 5, 14, 20, 22, 25, 31, 33, 34, 36, 37, 41, 42, 52, 53, 54, 58, 59, 61], "tupl": [3, 31, 33, 34, 36, 37, 42, 61], "what": [3, 4, 5, 6, 7, 8, 10, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60], "happen": [3, 5, 8, 15, 16, 19, 20, 22, 25, 34, 37, 41, 42, 43, 44, 46, 51, 53, 54, 55, 56, 57, 58, 59, 61], "run": [3, 4, 9, 12, 17, 18, 19, 20, 22, 23, 24, 26, 31, 32, 33, 34, 36, 37, 38, 41, 42, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60], "b": [3, 4, 5, 7, 8, 13, 14, 19, 20, 21, 33, 37, 38, 41, 42, 44, 48, 51, 53, 54, 56, 57, 58, 61], "c": [3, 4, 12, 13, 17, 21, 26, 33, 34, 36, 37, 38, 41, 42, 43, 48, 52, 54, 55, 56, 57, 59, 61], "hello": [3, 4, 5, 33, 41, 53, 56, 57, 59], "print": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 19, 20, 24, 25, 32, 33, 36, 37, 38, 40, 41, 42, 43, 46, 47, 48, 52, 53, 54, 56, 57, 58, 59, 60, 61], "39": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 33], "2": [3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20, 22, 23, 24, 25, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 51, 53, 54, 56, 57, 58, 59, 60], "3": [3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 23, 24, 25, 31, 33, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 48, 51, 54, 56, 57, 58, 59], "foo": [3, 33, 40, 42, 61], "bar": [3, 7, 13, 19, 23, 40, 42, 52, 56, 61], "n": [3, 10, 13, 15, 17, 19, 31, 33, 37, 48, 52, 53, 54, 56, 57, 58, 59, 61], "10": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 19, 20, 24, 25, 31, 33, 35, 38, 40, 41, 42, 44, 46, 48, 51, 52, 54, 56, 58, 59, 61], "list_of_squar": [3, 33], "rang": [3, 6, 7, 8, 11, 12, 13, 14, 33, 37, 41, 42, 43, 58, 60, 61], "sum_of_squar": [3, 33], "sum": [3, 7, 11, 13, 33, 41, 42], "squar": [3, 7, 8, 9, 33, 41, 42], "285": [3, 33], "5": [3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 25, 31, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 53, 54, 55, 56, 57, 58, 59], "9": [3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 22, 31, 33, 35, 38, 41, 46, 56, 58, 59], "16": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 33, 35, 38, 41, 45, 46, 51, 58], "25": [3, 4, 5, 6, 7, 10, 12, 13, 33, 37, 38, 46, 57, 59, 61], "6": [3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 22, 25, 31, 33, 35, 38, 41, 42, 46, 48, 56, 59], "36": [3, 4, 33, 51], "7": [3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 26, 31, 32, 33, 35, 37, 38, 41, 43, 46, 47, 54, 58, 59], "49": [3, 4, 11, 33], "8": [3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 24, 25, 31, 33, 35, 38, 41, 42, 46, 48, 54, 56, 59], "64": [3, 6, 11, 17, 33, 42, 61], "81": [3, 12, 33, 41, 57], "inlin": [3, 11, 31, 33, 34], "latex": [3, 6, 7, 26, 33], "frac": [3, 7, 8, 11, 12, 13, 33], "show": [3, 6, 7, 12, 13, 18, 19, 20, 22, 23, 24, 25, 32, 33, 36, 38, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59], "wonder": [3, 33], "syntax": [3, 6, 33, 36, 41, 42, 43, 45, 48, 51, 53, 56, 59, 61], "highlight": [3, 19, 25, 33, 41], "sad": [3, 33], "grei": [3, 7, 8, 9, 33], "world": [3, 4, 22, 33, 40, 46, 53, 59], "iostream": [3, 33], "std": [3, 33], "cout": [3, 33], "endl": [3, 33], "bash": [3, 19, 31, 33, 38, 46, 49, 50, 54, 56, 57, 58, 59, 60, 61], "echo": [3, 24, 25, 26, 33, 53, 56, 57, 58, 59, 61], "f": [3, 4, 5, 7, 8, 9, 10, 12, 13, 20, 21, 31, 32, 33, 35, 38, 43, 48, 50, 52, 53, 54, 55, 56, 58, 59, 61], "pt_cut": [3, 33], "1789": [3, 33], "234567890987654": [3, 33], "eta_low": [3, 33], "eta_high": [3, 33], "cut_str": [3, 33], "pt": [3, 6, 14, 33, 51], "2f": [3, 7, 8, 9, 33], "eta": [3, 6, 10, 14, 33], "gt": [3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 33, 53], "23": [3, 4, 5, 6, 7, 10, 12, 13, 33, 38, 46, 56], "amp": [3, 33], "lt": [3, 5, 6, 7, 8, 10, 12, 13, 14, 33, 53, 54], "veri": [3, 4, 8, 11, 13, 19, 20, 21, 22, 24, 25, 26, 30, 37, 38, 40, 41, 42, 46, 51, 52, 53, 54, 55, 56, 59, 61], "try": [3, 4, 5, 6, 7, 13, 18, 19, 20, 22, 24, 25, 27, 28, 32, 38, 40, 41, 42, 43, 45, 47, 51, 53, 54, 55, 56, 57, 59, 61], "faster": [3, 7, 8, 31, 37, 54], "cell": [3, 4, 7, 33, 46, 59], "return": [3, 4, 5, 6, 7, 10, 12, 13, 17, 18, 26, 32, 33, 35, 37, 40, 41, 42, 43, 44, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61], "valu": [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 53, 57, 58, 59], "which": [3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "shown": [3, 18, 19, 32, 38, 47, 55, 59], "after": [3, 4, 7, 13, 15, 19, 20, 21, 24, 25, 30, 31, 32, 41, 42, 43, 47, 50, 51, 53, 54, 55, 56, 57, 58, 60, 61], "finish": [3, 4, 19, 25, 32, 47, 48, 56, 57, 59, 61], "rune": 3, "none": [3, 4, 5, 7, 8, 9, 10, 12, 13, 21, 35, 36, 42, 48, 54, 57, 58, 59, 61], "starterkitt": 3, "shell": [3, 19, 22, 31, 32, 40, 43, 44, 46, 47, 50, 52, 54, 55, 56, 57, 59, 61], "command": [3, 10, 17, 18, 19, 20, 22, 23, 24, 25, 26, 31, 32, 33, 34, 38, 40, 42, 43, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61], "l": [3, 6, 12, 13, 18, 19, 25, 26, 37, 38, 40, 42, 46, 51, 53, 54, 55, 56, 57, 58, 59, 61], "10basic": 3, "ipynb": 3, "40histogram": 3, "11advancedpython": 3, "45demoreweight": 3, "12advancedclass": 3, "50likelihoodinfer": 3, "20dataandplot": 3, "60splot": 3, "30classif": 3, "70scikithepunivers": 3, "31classificationextens": 3, "readm": [3, 24], "md": [3, 59], "32boostingtouniform": 3, "11": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 31, 33, 35, 38, 44, 46, 51, 54, 56, 57, 58, 59, 61], "wget": [3, 31, 60, 61], "com": [3, 16, 19, 25, 28, 30, 31, 53, 61], "index": [3, 4, 6, 10, 13, 15, 19, 20, 31, 33, 37, 41, 43, 54, 61], "html": [3, 6, 7, 8, 12, 42], "2023": 3, "09": [3, 19, 61], "20": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 25, 29, 33, 35, 38, 41, 46, 51, 53, 55, 56, 57, 58], "15": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 33, 35, 38, 46, 51, 56, 58, 61], "31": [3, 4, 6, 7, 13, 15, 33, 42, 46], "resolv": [3, 25], "93": 3, "184": 3, "216": 3, "34": [3, 4, 12, 14, 33, 41], "2606": 3, "2800": 3, "220": 3, "248": 3, "1893": 3, "25c8": 3, "1946": 3, "443": 3, "sent": [3, 56], "await": 3, "200": [3, 12, 13, 35], "ok": [3, 24, 28, 32, 35, 36, 47, 54, 60], "length": [3, 41, 42, 56, 58], "1256": 3, "2k": 3, "save": [3, 16, 19, 20, 30, 31, 53, 55, 56, 57, 58, 59, 61], "100": [3, 6, 7, 8, 11, 13, 22, 23, 24, 25, 35, 38, 57, 61], "23k": 3, "kb": [3, 53, 54], "70": [3, 15, 42, 59], "mb": [3, 53, 54], "time": [3, 4, 6, 7, 8, 9, 11, 12, 13, 17, 19, 20, 22, 24, 25, 26, 27, 28, 30, 32, 33, 35, 38, 40, 41, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "someth": [3, 4, 6, 8, 11, 21, 22, 24, 25, 27, 33, 35, 36, 41, 42, 44, 45, 46, 53, 54, 55, 56, 57, 58, 59, 60, 61], "take": [3, 4, 6, 7, 9, 11, 12, 13, 19, 23, 25, 26, 32, 35, 36, 38, 40, 41, 42, 45, 47, 54, 57, 58, 59, 60, 61], "line": [3, 4, 6, 7, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 46, 47, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61], "12": [3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 33, 35, 38, 46, 54, 56, 58], "10000": [3, 12, 13], "cpu": 3, "user": [3, 6, 10, 16, 17, 19, 22, 24, 26, 28, 38, 42, 43, 46, 51, 53, 54, 55, 56, 58, 59, 60, 61], "737": 3, "\u00b5": 3, "sy": [3, 32, 39, 43, 47], "171": 3, "total": [3, 6, 11, 12, 13, 22, 23, 24, 25, 38, 42, 56, 59, 61], "908": 3, "wall": 3, "913": 3, "333283335000": 3, "entir": [3, 18, 19, 25, 26, 27, 54, 55, 56], "13": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 33, 35, 38, 46, 58], "97": 3, "m": [3, 6, 12, 13, 14, 18, 19, 20, 21, 23, 24, 25, 38, 52, 54, 61], "98": [3, 13], "longer": [3, 19, 20, 25, 51, 53, 54, 57, 58, 59], "expect": [3, 12, 13, 25, 28, 34, 41, 54, 55, 57, 58, 59, 61], "find": [3, 7, 8, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 25, 26, 27, 28, 31, 36, 40, 41, 42, 45, 48, 49, 51, 53, 54, 55, 56, 57, 58, 60, 61], "spend": [3, 40], "mayb": [3, 4, 5, 12, 19, 23, 33, 59], "skip": [3, 13, 54], "prun": 3, "cumtim": 3, "np": [3, 6, 7, 8, 10, 11, 12, 13, 35, 38, 43, 44], "sqrt": [3, 6, 7, 8, 14, 35, 38, 42, 44, 46], "100000": [3, 13, 38], "question": [3, 6, 7, 8, 20, 23, 27, 30, 31, 40, 54, 56, 58, 60, 61], "mark": [3, 25, 26, 40, 46, 48, 54, 56, 57, 58, 61], "end": [3, 4, 7, 8, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 26, 28, 30, 36, 37, 41, 42, 43, 46, 48, 51, 54, 56, 57, 58, 59, 60, 61], "14": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 19, 33, 35, 38, 44, 46, 58], "def": [3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 32, 35, 40, 42, 43, 47], "my_print": 3, "my_str": 3, "function": [3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 23, 31, 33, 34, 35, 37, 38, 40, 41, 43, 44, 45, 50, 56, 61], "17": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 33, 35, 38, 46, 56, 58], "done": [3, 6, 7, 8, 10, 12, 14, 19, 22, 23, 24, 25, 32, 38, 43, 44, 45, 46, 47, 52, 53, 56, 57, 58, 59, 60, 61], "actual": [3, 5, 8, 11, 14, 15, 17, 19, 21, 24, 26, 32, 33, 35, 36, 43, 47, 50, 53, 54, 56, 57, 58, 59, 60, 61], "sometim": [3, 4, 12, 19, 21, 24, 26, 33, 36, 38, 43, 45, 46, 53, 54, 56, 59, 60, 61], "junk": 3, "variabl": [3, 4, 7, 8, 11, 12, 13, 14, 15, 31, 34, 36, 38, 41, 42, 43, 45, 46, 48, 49, 54, 57, 58], "18": [3, 4, 5, 6, 7, 10, 11, 12, 13, 33, 35, 38, 41, 46, 55, 56, 58, 61], "found": [3, 5, 12, 15, 24, 33, 36, 37, 41, 43, 49, 53, 54, 56, 59, 60, 61], "19": [3, 4, 5, 6, 7, 10, 11, 12, 13, 33, 35, 38, 41, 46, 54, 56, 58, 59], "dict": [3, 4, 13, 14, 33, 35, 36, 37, 42], "kei": [3, 4, 6, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 36, 38, 40, 42, 46, 50, 54, 55, 56, 57, 58, 59, 60, 61], "default": [3, 5, 10, 12, 13, 15, 17, 23, 24, 33, 38, 41, 42, 43, 44, 46, 50, 54, 55, 56, 58, 59, 60, 61], "It": [3, 4, 6, 7, 8, 11, 12, 14, 16, 17, 19, 20, 22, 23, 25, 27, 31, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 50, 53, 54, 56, 57, 58, 59, 60, 61], "practic": [3, 5, 6, 13, 19, 22, 23, 24, 26, 27, 28, 30, 35, 40, 51, 53, 54, 56, 58, 60, 61], "begin": [3, 12, 13, 22, 40, 41, 43, 54, 55, 56, 57, 59, 61], "script": [3, 6, 20, 21, 26, 27, 31, 33, 34, 43, 46, 53, 56, 57, 59, 60], "avoid": [3, 7, 8, 11, 19, 21, 24, 42, 54, 55, 57, 61], "wildcard": [3, 31, 56, 57, 58, 59], "unclear": 3, "come": [3, 5, 6, 7, 12, 15, 19, 21, 22, 23, 24, 32, 33, 35, 40, 42, 43, 44, 45, 46, 47, 54, 55, 58, 59, 61], "math": [3, 10, 13, 37, 41, 43, 45, 46], "now": [3, 4, 5, 6, 7, 11, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 38, 41, 43, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "max": [3, 10, 11, 53, 61], "21": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 19, 20, 33, 35, 38, 46, 56, 58], "22": [3, 4, 5, 6, 7, 10, 11, 12, 13, 19, 20, 22, 33, 38, 46, 56, 58, 59], "numpi": [3, 6, 7, 8, 10, 11, 12, 13, 14, 31, 35, 38, 39, 43, 44, 61], "axiserror": 3, "traceback": [3, 4, 33, 36, 37, 41, 42], "most": [3, 4, 5, 7, 10, 11, 12, 15, 19, 20, 21, 22, 24, 27, 28, 32, 33, 35, 36, 37, 38, 40, 41, 42, 45, 46, 47, 48, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61], "recent": [3, 4, 12, 19, 20, 24, 26, 27, 33, 36, 37, 41, 42, 50, 54, 55, 57, 58, 61], "call": [3, 4, 5, 6, 7, 9, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "last": [3, 4, 12, 15, 18, 19, 20, 22, 33, 35, 36, 37, 41, 42, 52, 53, 54, 55, 56, 57, 58, 59, 60], "usr": [3, 7, 12, 13, 32, 43, 47], "miniconda": [3, 7, 12, 13, 46], "env": [3, 7, 12, 13, 31, 43, 61], "essenti": [3, 7, 10, 12, 13, 46, 60, 61], "lib": [3, 7, 12, 13, 32, 43, 47, 61], "python3": [3, 7, 12, 13], "site": [3, 7, 12, 13, 38, 58, 59], "packag": [3, 6, 7, 8, 12, 13, 14, 15, 26, 31, 38, 43, 46, 60, 61], "core": [3, 12, 17, 19, 54, 61], "fromnumer": 3, "py": [3, 6, 7, 8, 12, 13, 20, 26, 32, 35, 43, 46, 47, 61], "2810": 3, "axi": [3, 6, 7, 8, 9, 13, 15, 31, 38], "keepdim": 3, "initi": [3, 15, 18, 19, 24, 31], "2692": 3, "array_function_dispatch": 3, "_max_dispatch": 3, "2693": 3, "set_modul": 3, "2694": 3, "_novalu": 3, "2695": 3, "2696": 3, "2697": 3, "maximum": [3, 12, 13], "arrai": [3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 33, 38, 39, 41], "along": [3, 9, 24, 26, 34, 37, 46, 53, 54, 55], "2698": 3, "2808": 3, "2809": 3, "_wrapreduct": 3, "2811": 3, "88": [3, 6], "obj": [3, 4, 14, 42], "ufunc": 3, "dtype": [3, 6, 7, 10, 11, 14, 38], "kwarg": [3, 4, 5, 6, 7, 42], "85": 3, "els": [3, 4, 5, 7, 8, 9, 13, 19, 22, 24, 25, 27, 32, 33, 36, 42, 43, 47, 48, 50, 53, 54, 55, 56, 58, 61], "86": [3, 14], "reduct": 3, "passkwarg": 3, "reduc": [3, 9, 11, 12, 19, 24, 25, 57, 61], "bound": 3, "dimens": [3, 7, 14, 15, 31, 41, 59], "abriv": 3, "panda": [3, 6, 7, 11, 13, 14, 15, 31, 34, 39, 43], "pd": [3, 6, 7, 9, 11], "pyplot": [3, 6, 7, 8, 9, 11, 12, 13, 38], "plt": [3, 6, 7, 8, 9, 11, 12, 13, 38], "root": [3, 6, 7, 9, 11, 14, 19, 21, 31, 34, 38, 41, 42, 54, 60, 61], "r": [3, 5, 7, 8, 10, 12, 13, 25, 46, 52, 54, 55, 56, 57, 59, 61], "typial": 3, "nicest": [3, 61], "mixtur": [3, 13], "x": [3, 4, 6, 7, 8, 12, 13, 14, 17, 36, 40, 41, 42, 43, 53, 54, 55, 56, 57, 58, 59, 61], "y": [3, 4, 5, 6, 7, 8, 12, 13, 14, 26, 36, 40, 41, 42, 43, 52, 53, 54, 55, 59], "re": [3, 4, 5, 6, 12, 19, 20, 21, 22, 23, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 45, 46, 47, 51, 54, 55, 56, 57, 58, 59], "interest": [3, 4, 11, 12, 15, 19, 26, 32, 33, 34, 38, 41, 44, 45, 47, 53, 61], "best": [3, 6, 7, 8, 12, 18, 24, 28, 30, 34, 35, 36, 38, 40, 46, 48, 56, 60, 61], "style": [3, 6, 14, 25, 40, 43, 54, 58], "offic": [3, 28], "guid": [3, 15, 27, 31, 34, 43, 51], "pep8": [3, 40], "itself": [3, 4, 5, 10, 16, 20, 24, 27, 33, 35, 40, 41, 45, 50, 53, 54, 55, 57, 58, 60], "quit": [3, 9, 11, 22, 32, 35, 36, 40, 44, 47, 48, 51, 53, 54, 55, 56], "autom": [3, 30, 31, 57, 59, 60], "sytl": 3, "checker": 3, "linter": 3, "flake8": [3, 38], "either": [3, 5, 12, 21, 45, 46, 54, 56, 58], "plugin": 3, "favourit": [3, 36, 48, 53], "editor": [3, 17, 19, 21, 28, 31, 34, 42, 49, 55, 58, 59, 61], "care": [3, 4, 6, 7, 11, 12, 13, 18, 24, 31, 32, 47, 53, 55, 56, 57, 58, 61], "though": [3, 5, 6, 11, 15, 22, 27, 33, 36, 38, 55, 57, 58, 59, 60, 61], "occasion": [3, 27], "better": [3, 5, 6, 7, 8, 9, 11, 16, 19, 23, 24, 29, 30, 33, 35, 40, 41, 48, 55, 59, 61], "break": [3, 5, 17, 19, 25, 36, 42, 46, 48, 55, 61], "rule": [3, 5, 15, 21, 31, 41, 42, 55], "easier": [3, 6, 20, 23, 27, 28, 31, 38, 40, 52, 54, 56, 59], "read": [3, 5, 6, 11, 13, 17, 20, 23, 25, 27, 33, 36, 39, 40, 41, 42, 53, 54, 56, 57, 58, 59, 60, 61], "restart": [3, 33], "kernal": 3, "24": [3, 4, 5, 6, 7, 10, 13, 25, 33, 38, 46, 51, 57, 59, 60], "few": [4, 5, 6, 7, 11, 15, 17, 19, 20, 21, 25, 26, 27, 28, 33, 35, 40, 44, 46, 54, 55, 56, 57, 58, 60], "relat": [4, 18, 40, 53, 60, 61], "import": [4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 19, 20, 21, 24, 26, 28, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 44, 46, 47, 53, 55, 59, 61], "thei": [4, 6, 10, 11, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 33, 36, 37, 38, 40, 41, 42, 44, 45, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "act": [4, 12, 24, 27, 42, 45], "parenthesi": 4, "situat": [4, 16, 53, 55, 61], "adder": 4, "left": [4, 5, 7, 13, 24, 26, 33, 45, 51, 56, 57], "assigmenemt": 4, "oper": [4, 5, 7, 17, 21, 31, 34, 36, 38, 40, 41, 43, 44, 48, 53, 54, 55, 56, 57, 58, 59, 60], "plai": [4, 6, 11, 12, 13, 16, 23, 24, 32, 33, 35, 36, 46, 47, 59], "around": [4, 11, 12, 16, 32, 36, 40, 41, 46, 47, 57, 58, 59, 60, 61], "seen": [4, 5, 6, 8, 13, 15, 24, 33, 35, 36, 37, 42, 43, 45, 46, 55, 56, 59], "remain": [4, 19, 33, 53, 59, 61], "special": [4, 5, 6, 11, 12, 15, 18, 19, 25, 26, 41, 43, 45, 46, 48, 54, 55, 57, 58, 60, 61], "case": [4, 5, 6, 7, 8, 11, 12, 15, 19, 20, 22, 24, 26, 31, 38, 41, 42, 43, 45, 46, 50, 53, 54, 55, 56, 57, 58, 59, 61], "d1": 4, "d2": 4, "d3": 4, "d4": 4, "noth": [4, 5, 16, 18, 19, 21, 32, 44, 46, 47, 51, 54, 55, 56, 57, 58, 61], "simpli": [4, 5, 10, 12, 22, 24, 33, 43, 46, 51, 53, 57, 58, 61], "empti": [4, 19, 36, 41, 43, 48, 55, 58, 59, 61], "advantag": [4, 7, 46, 54, 58, 60, 61], "multipl": [4, 6, 7, 15, 16, 19, 21, 31, 32, 35, 36, 41, 42, 43, 45, 47, 52, 54, 55, 59, 61], "ad": [4, 7, 11, 12, 14, 15, 19, 20, 21, 22, 24, 25, 28, 31, 32, 33, 38, 42, 43, 47, 53, 56, 58], "doe": [4, 5, 6, 10, 11, 12, 19, 20, 21, 22, 24, 25, 26, 27, 30, 33, 35, 36, 37, 41, 42, 43, 54, 55, 56, 57, 58, 59, 60, 61], "possibl": [4, 5, 9, 10, 11, 16, 17, 20, 23, 33, 35, 36, 40, 42, 43, 46, 50, 53, 54, 57, 61], "ill": [4, 20], "defin": [4, 7, 8, 11, 12, 13, 21, 26, 32, 33, 36, 37, 41, 42, 43, 47, 48, 53, 58, 61], "d": [4, 5, 13, 22, 28, 33, 37, 40, 41, 42, 43, 46, 50, 51, 52, 54, 56, 58, 59], "g": [4, 8, 11, 12, 14, 19, 20, 21, 22, 25, 33, 35, 40, 41, 44, 46, 52, 53, 54, 55, 58, 59, 61], "h": [4, 6, 7, 10, 14, 17, 22, 32, 38, 47, 52, 53, 54, 58, 59], "should": [4, 5, 6, 10, 13, 18, 19, 20, 22, 23, 24, 25, 26, 28, 31, 34, 35, 36, 38, 40, 41, 42, 43, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61], "understand": [4, 16, 17, 20, 23, 24, 26, 33, 34, 41, 43, 54, 56, 57, 58, 60, 61], "arg": [4, 5, 42, 61], "func": [4, 42], "mykwarg": 4, "myarg": 4, "statement": [4, 6, 28, 36, 41, 42, 43], "basic": [4, 5, 6, 11, 12, 15, 16, 23, 27, 31, 34, 35, 43, 46, 49, 53, 54, 56, 59], "perform": [4, 8, 10, 11, 12, 13, 14, 22, 25, 36, 41, 44, 45, 53, 59, 60, 61], "enter": [4, 6, 17, 18, 20, 23, 32, 33, 38, 46, 47, 48, 53, 54, 56, 57, 60, 61], "again": [4, 6, 8, 13, 19, 20, 21, 24, 25, 26, 32, 33, 35, 37, 41, 42, 46, 47, 48, 51, 53, 54, 55, 57, 58, 59, 60, 61], "exit": [4, 17, 26, 32, 38, 43, 46, 47, 53, 54, 55, 57, 58, 61], "var": [4, 6, 7, 8, 13, 42, 51], "translat": [4, 5, 54, 60], "return_from_context_entering_cod": 4, "leav": [4, 6, 20, 46, 51, 55, 61], "great": [4, 5, 15, 30, 32, 40, 46, 47, 48, 49, 53, 54, 55, 60], "here": [4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 20, 22, 24, 25, 26, 30, 31, 33, 35, 36, 38, 40, 41, 42, 43, 45, 46, 48, 51, 54, 55, 56, 57, 58, 59, 60, 61], "whenev": [4, 17, 42, 46, 60], "step": [4, 6, 12, 13, 15, 16, 20, 22, 23, 24, 25, 27, 35, 38, 41, 50, 54, 55, 56, 57, 58, 59, 60, 61], "prove": [4, 55], "incredibli": 4, "cleanup": 4, "yet": [4, 5, 6, 8, 14, 15, 19, 22, 24, 33, 35, 46, 55, 57, 58], "tediou": [4, 38, 42, 57], "manual": [4, 14, 17, 19, 31, 49, 54, 59, 61], "forgotten": 4, "One": [4, 6, 7, 14, 19, 23, 26, 27, 32, 40, 47, 48, 50, 51, 53, 55, 57, 58, 59, 61], "executioin": 4, "stop": [4, 10, 25, 26, 35, 36, 51, 54, 56], "point": [4, 7, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 38, 43, 53, 54, 55, 56, 57, 58, 59, 61], "continu": [4, 7, 12, 21, 24, 26, 56], "wa": [4, 10, 13, 14, 19, 20, 22, 23, 25, 27, 28, 31, 32, 33, 35, 41, 46, 47, 53, 54, 55, 56, 57, 58, 59, 60, 61], "iter": [4, 15, 31, 36, 37, 41, 42, 57], "everytim": 4, "suppos": [4, 6, 19, 20, 25, 42, 55, 56, 57, 58, 61], "asynchron": 4, "wait": [4, 11, 17, 26, 54, 58, 61], "contextlib": 4, "contextmanag": 4, "printer": [4, 60], "number": [4, 6, 7, 9, 10, 11, 13, 19, 20, 24, 25, 26, 27, 31, 34, 37, 38, 41, 42, 43, 45, 48, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "insid": [4, 13, 18, 19, 31, 33, 34, 38, 41, 42, 48, 51, 53, 54, 57, 58, 59, 61], "state": [4, 13, 15, 19, 20, 22, 27, 28, 29, 30, 33, 35, 56], "set": [4, 5, 6, 7, 8, 10, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 30, 31, 33, 38, 42, 43, 45, 46, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "tmp": [4, 6, 7, 8, 40, 54, 58, 61], "txt": [4, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 40, 53, 54, 55, 56, 57, 58, 59, 61], "w": [4, 11, 13, 17, 43, 52, 53, 54, 56, 59, 61], "textfil": 4, "asdf": 4, "implement": [4, 5, 8, 10, 13, 15, 28, 30, 31, 37, 42, 43, 60], "roughli": [4, 22], "myopen": 4, "mode": [4, 19, 23, 25, 33, 54, 57, 58], "close": [4, 6, 7, 11, 20, 24, 27, 34, 38, 41, 43, 50, 52, 53, 55], "temporarili": [4, 56], "42": [4, 5, 9, 11, 12, 33, 35, 38, 41, 42, 43], "switch": [4, 8, 23, 24, 46, 52, 54], "back": [4, 5, 6, 11, 15, 16, 19, 20, 22, 23, 24, 27, 32, 35, 37, 38, 42, 43, 47, 50, 51, 54, 55, 56, 57, 58, 60], "old": [4, 12, 19, 20, 25, 46, 54, 55, 59], "testdict": 4, "name": [4, 5, 6, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 31, 32, 33, 35, 36, 38, 40, 41, 42, 43, 45, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "answer": [4, 5, 7, 11, 19, 20, 27, 35, 40, 44, 45, 54, 56, 57, 58, 59], "invok": [4, 5], "solut": [4, 5, 11, 13, 18, 19, 20, 21, 22, 23, 24, 25, 35, 36, 37, 38, 41, 42, 43, 45, 53, 54, 55, 56, 57, 58, 59, 61], "var1": 4, "set_answ": 4, "old_valu": 4, "instead": [4, 6, 7, 10, 13, 17, 19, 20, 21, 22, 24, 25, 35, 36, 37, 41, 43, 45, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "__enter__": 4, "__exit__": 4, "mycontext": 4, "__init__": [4, 5, 12, 13, 35, 43], "self": [4, 7, 15, 31, 35, 54, 58], "type_": 4, "go": [4, 5, 6, 8, 11, 13, 18, 19, 20, 22, 23, 24, 25, 26, 28, 32, 33, 34, 35, 37, 38, 41, 42, 43, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61], "detail": [4, 5, 19, 24, 25, 26, 31, 38, 43, 46, 52], "power": [4, 7, 9, 11, 12, 15, 16, 35, 40, 41, 42, 53, 54, 55, 56, 58, 59, 60, 61], "offer": [4, 10, 22, 28, 33], "usus": 4, "enough": [4, 5, 19, 31, 54, 55, 56, 58, 59], "prefer": [4, 5, 13, 17, 31, 38, 40, 42, 43, 56, 61], "doesn": [4, 6, 15, 19, 22, 27, 31, 32, 36, 41, 47, 52, 54, 55, 56, 57, 58, 59, 61], "t": [4, 5, 6, 7, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 35, 36, 37, 38, 40, 41, 42, 46, 47, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "flexibl": [4, 8, 55, 58], "rememb": [4, 13, 17, 19, 20, 22, 24, 42, 51, 52, 53, 54, 57, 58, 61], "figur": [4, 6, 7, 8, 9, 11, 13, 22, 38, 42, 54, 58, 60, 61], "fulli": [4, 10, 35, 46], "hand": [4, 20, 23, 24, 25, 27, 33, 37, 41, 56, 59, 60], "programat": 4, "pattern": [4, 15, 21, 54, 57, 59], "achiev": [4, 6, 9, 13, 24, 36, 55, 59], "integ": [4, 10, 33, 37, 44, 53, 54], "everyth": [4, 5, 13, 15, 18, 19, 20, 21, 22, 25, 30, 31, 32, 35, 36, 38, 43, 46, 47, 54, 55, 56, 57, 59], "make_power_func": 4, "pow3": 4, "26": [4, 5, 7, 10, 13, 33, 38, 46, 51, 56, 61], "4398046511104": 4, "27": [4, 5, 7, 10, 13, 33, 38, 42, 46, 54], "test": [4, 6, 8, 12, 15, 21, 22, 26, 30, 31, 35, 37, 43, 50, 53, 55, 56, 59], "anoth": [4, 6, 7, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 28, 33, 34, 36, 37, 38, 41, 42, 43, 46, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "wrapper": [4, 9, 45], "timed_pow3": 4, "fime_func": 4, "hint": [4, 11, 20, 21, 25, 35, 54, 56, 59, 61], "scetch": 4, "time_func": 4, "new_func": 4, "28": [4, 6, 7, 10, 13, 33, 35, 46], "timed_func": 4, "wrapped_func": 4, "29": [4, 7, 10, 13, 33, 41, 46], "add_notim": 4, "30": [4, 6, 7, 10, 11, 12, 13, 15, 26, 33, 35, 41, 46, 56, 57, 58, 60, 61], "add_tim": 4, "32": [4, 13, 15, 17, 33, 51], "5367431640625e": 4, "07": [4, 19, 20, 29, 54, 56, 57, 58], "33": [4, 15, 33, 43], "syntact": [4, 41], "sugar": [4, 31, 34], "argument": [4, 5, 6, 13, 14, 22, 32, 33, 34, 35, 40, 41, 42, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61], "certain": [4, 6, 7, 10, 12, 24, 33, 35, 40, 41, 43, 45, 48, 53, 59], "surfac": [4, 25], "higher": [4, 12, 16, 38], "stack": [4, 13, 40, 46, 61], "typic": [4, 6, 7, 11, 13, 25, 26, 38, 42, 43, 51, 54, 56, 61], "encount": [4, 7, 8, 35, 40, 43], "wrong": [4, 7, 11, 18, 20, 35, 40, 53, 55, 57, 58, 59, 61], "type": [4, 5, 6, 10, 13, 17, 19, 20, 21, 31, 34, 35, 36, 37, 40, 42, 43, 44, 45, 46, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 61], "caught": 4, "block": [4, 36, 41, 42, 43, 45, 46, 54, 57], "order": [4, 6, 7, 8, 10, 11, 12, 13, 15, 19, 21, 25, 26, 31, 36, 37, 38, 40, 41, 42, 50, 52, 54, 55, 56, 57, 58, 59, 60, 61], "handl": [4, 11, 30, 32, 47, 51, 58, 59, 60, 61], "built": [4, 6, 9, 10, 12, 19, 26, 37, 38, 42, 53, 54, 55, 58, 61], "typeerror": [4, 5, 33, 37, 41, 42], "float": [4, 11, 12, 13, 14, 33, 44], "valueerror": [4, 61], "illeg": 4, "neg": [4, 11, 13, 41, 59], "posit": [4, 7, 8, 9, 13, 21, 32, 41, 42, 47, 48, 56, 59], "runtimeerror": 4, "statu": [4, 18, 19, 20, 21, 24, 25, 26, 52, 54, 61], "pars": [4, 14, 43], "fall": [4, 5], "categori": [4, 7, 43], "keyerror": [4, 33], "indexerror": [4, 33, 41], "rais": [4, 5, 33, 61], "35": [4, 10, 33], "int": [4, 33, 40, 42, 44, 45], "str": [4, 15, 31, 33, 36, 42, 43, 48, 61], "often": [4, 5, 6, 7, 8, 10, 15, 20, 22, 26, 27, 28, 36, 38, 40, 42, 51, 57, 59, 60, 61], "conveni": [4, 6, 25, 33, 46, 56, 57], "messag": [4, 6, 12, 19, 20, 22, 24, 25, 32, 43, 47, 54, 55, 56, 57], "And": [4, 5, 6, 11, 13, 17, 23, 32, 35, 37, 47, 48, 53, 54, 56, 59], "inherit": [4, 10, 31, 34], "attent": [4, 11, 12, 24], "subclass": 4, "never": [4, 5, 31, 36, 41, 42, 45, 48, 54], "baseexcept": 4, "37": [4, 33, 57], "myerror": 4, "pass": [4, 5, 10, 13, 14, 27, 32, 42, 43, 47, 48, 50, 53, 54, 56, 57, 58, 59, 61], "38": [4, 5, 6, 33], "alreadi": [4, 6, 7, 10, 13, 19, 21, 22, 24, 25, 27, 28, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 52, 53, 55, 56, 61], "natur": [4, 24, 27, 36, 54], "negativevalueerror": 4, "next": [4, 5, 6, 13, 16, 19, 20, 21, 22, 23, 24, 33, 35, 36, 45, 46, 54, 57, 58, 60], "specifi": [4, 10, 12, 19, 26, 32, 35, 36, 37, 38, 41, 42, 43, 47, 48, 50, 53, 54, 55, 56, 59, 61], "check": [4, 5, 11, 12, 13, 17, 18, 19, 20, 22, 24, 25, 26, 27, 36, 51, 52, 53, 54, 55, 57, 58, 60, 61], "goe": [4, 6, 7, 11, 20, 53, 54, 56, 57, 60], "ye": [4, 5, 7, 33, 40, 41, 52, 54, 55, 61], "40": [4, 6, 9, 13, 14, 20, 33, 35, 41, 57], "keyword": [4, 6, 26, 40, 41, 42, 43, 53, 57], "inspect": [4, 32, 47, 53, 54, 55], "41": [4, 6, 33, 35, 41], "anti": 4, "gener": [4, 6, 7, 8, 12, 13, 15, 19, 24, 26, 33, 35, 38, 40, 41, 42, 43, 46, 51, 54, 55, 56, 57, 61], "unfortun": [4, 20, 24], "caugth": 4, "43": [4, 33, 41, 42], "therefor": [4, 12, 18, 20, 24, 50, 58], "temporari": [4, 40, 54, 56, 61], "44": [4, 33, 42, 51], "guaranti": 4, "could": [4, 6, 7, 8, 20, 21, 22, 25, 28, 31, 32, 35, 36, 37, 38, 41, 42, 45, 47, 50, 53, 54, 55, 56, 58, 61], "omit": [4, 5, 41, 54], "45": [4, 15, 33, 41, 42, 46], "odd": [4, 35, 57], "effect": [4, 6, 7, 19, 20, 22, 33, 36, 38, 40, 41, 42, 43, 54, 55, 56, 57, 58], "ignor": [4, 6, 13, 18, 24, 30, 31, 54, 58, 59, 61], "IF": [4, 5], "logic": [4, 19, 25, 42], "46": [4, 19, 33, 60], "clean": [4, 6, 19, 21, 22, 24, 40, 58], "47": [4, 33], "elif": [4, 36, 53], "replac": [4, 20, 23, 24, 25, 35, 41, 42, 48, 53, 54, 57, 58, 59, 61], "golden": [4, 42], "steer": 4, "consid": [4, 6, 7, 12, 16, 19, 20, 25, 53, 54, 56, 58, 60, 61], "three": [4, 6, 22, 23, 24, 26, 38, 41, 42, 43, 48, 50, 53, 54, 55, 56, 57, 59, 61], "sake": [4, 54, 55], "favor": 4, "real": [4, 5, 6, 7, 8, 11, 15, 20, 24, 28, 31, 42, 43, 44, 53, 59], "larger": [4, 24, 53, 59], "scale": [4, 6, 7, 13, 54, 61], "too": [4, 6, 7, 19, 20, 21, 24, 28, 36, 40, 43, 54, 55, 56, 58, 59], "complic": [4, 5, 7, 23, 24, 27, 28, 40, 41, 51, 54, 55, 57, 58, 61], "explain": [4, 5, 13, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 42, 44, 53, 54, 56, 57, 58, 59, 60, 61], "assum": [4, 6, 8, 13, 38, 41, 54, 55, 56, 57, 58, 59, 61], "third": [4, 19, 41, 42, 55, 56, 59], "solv": [4, 7, 13, 21, 25, 28, 34, 35, 40, 57, 59, 61], "deeper": [4, 16], "nest": [4, 5, 18, 21, 36, 41, 56, 57], "don": [4, 6, 7, 11, 12, 15, 19, 20, 21, 22, 24, 25, 28, 32, 35, 36, 37, 38, 40, 41, 42, 46, 47, 53, 54, 55, 56, 57, 58, 59, 61], "output": [4, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 41, 42, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "48": [4, 33, 51], "50": [4, 6, 10, 11, 13, 15, 19, 20, 24, 33, 35], "result": [4, 7, 8, 11, 12, 13, 14, 15, 21, 25, 27, 32, 36, 42, 44, 45, 46, 47, 48, 54, 55, 56, 57, 59, 60, 61], "focus": [5, 59], "invoc": [5, 54], "demystifi": 5, "oubl": 5, "score": [5, 7, 11], "__meth__": [5, 15], "reserv": 5, "invent": 5, "precis": [5, 6, 33, 38], "__meth": 5, "fine": 5, "These": [5, 7, 15, 16, 20, 21, 26, 33, 38, 51, 54, 60, 61], "deleg": 5, "correspond": [5, 6, 13, 19, 22, 24, 25, 36, 37, 44, 45, 48, 56, 60], "__add__": [5, 35, 45], "notimpl": 5, "altern": [5, 6, 7, 12, 15, 31, 46, 59, 61], "tri": [5, 25, 40, 54], "__radd__": 5, "ight": 5, "differ": [5, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 25, 27, 28, 31, 33, 37, 38, 41, 42, 43, 44, 45, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61], "namedvalu": 5, "valueleft": 5, "valueright": 5, "radd": 5, "think": [5, 13, 16, 19, 20, 21, 22, 24, 37, 40, 41, 54, 56, 57, 58, 59], "valleft": 5, "val": 5, "valleft2": 5, "left2": 5, "__len__": [5, 15], "nice": [5, 7, 19, 31, 32, 34, 35, 36, 38, 41, 42, 47, 48, 61], "represent": [5, 7, 37], "__str__": 5, "similar": [5, 6, 19, 20, 22, 25, 33, 37, 38, 41, 42, 46, 50, 51, 53, 54, 57, 59, 60, 61], "__repr__": 5, "target": [5, 9, 15, 31, 55, 57], "toward": [5, 15, 44, 56], "develop": [5, 26, 28, 31, 42, 58], "namerepr": 5, "namestr": 5, "am": [5, 41], "namestrrepr": 5, "repr": 5, "mean": [5, 6, 7, 11, 12, 13, 16, 17, 19, 20, 22, 24, 27, 30, 33, 34, 35, 36, 37, 41, 42, 43, 45, 46, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "attach": [5, 42, 43, 44, 45, 48, 50, 51], "behind": [5, 7, 23, 24, 25, 27, 28, 45, 56], "__call__": 5, "notcal": 5, "noncal": 5, "down": [5, 19, 20, 25, 26, 31, 33, 34, 42, 44, 52, 53, 54, 55, 61], "won": [5, 12, 13, 19, 23, 25, 36, 41, 57, 59, 61], "rather": [5, 6, 11, 19, 20, 22, 23, 24, 36, 52, 54, 55, 56, 57, 58, 59, 60], "normal": [5, 7, 8, 10, 12, 13, 27, 33, 35, 38, 42, 43, 45, 52, 54, 56, 57, 59], "That": [5, 6, 7, 14, 19, 20, 35, 38, 41, 56, 57], "control": [5, 6, 15, 18, 21, 22, 23, 24, 25, 26, 27, 30, 31, 33, 54, 55, 61], "__getitem__": 5, "__setitem__": 5, "storag": [5, 10, 19, 26, 55, 56], "contain": [5, 6, 7, 9, 11, 12, 13, 14, 15, 19, 22, 24, 25, 26, 27, 31, 34, 36, 37, 38, 41, 42, 43, 45, 48, 53, 54, 55, 56, 57, 58, 59, 61], "demonstr": [5, 7, 8, 9, 12, 13, 15, 31, 44, 54, 57, 60], "getitem": 5, "setitem": 5, "renam": [5, 25, 40, 43, 54, 55], "well": [5, 6, 10, 11, 12, 13, 14, 15, 20, 22, 24, 27, 33, 35, 37, 40, 42, 48, 53, 55, 56, 57, 59], "fullstop": 5, "consequ": 5, "latter": [5, 6, 10, 11, 12, 33, 38, 43, 53, 54, 59], "why": [5, 6, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 36, 53, 54, 55, 56, 57, 58, 59], "dynam": [5, 24, 31, 34, 35], "complet": [5, 6, 11, 16, 24, 25, 26, 33, 35, 46, 53, 54, 57, 58, 60, 61], "sens": [5, 36, 41], "fun": [5, 41], "live": [5, 61], "realli": [5, 7, 11, 20, 21, 22, 33, 37, 41, 43, 55, 60, 61], "least": [5, 24, 30, 34, 36, 37, 44, 55, 56, 57, 61], "independ": [5, 6, 8, 13, 16, 24, 38, 61], "colleagu": [5, 19, 20, 27, 40, 54, 56, 58], "quiz": 5, "did": [5, 7, 12, 15, 16, 19, 24, 27, 33, 35, 41, 43, 55, 56, 58, 59, 61], "access": [5, 6, 12, 14, 15, 17, 22, 23, 27, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 50, 53, 54, 55, 60, 61], "guess": [5, 7, 20, 55], "overrid": [5, 21, 35, 42], "store": [5, 6, 7, 8, 10, 12, 18, 19, 20, 25, 26, 27, 33, 41, 45, 48, 50, 54, 58, 59, 60], "__dict__": 5, "remark": [5, 42], "__class__": 5, "mappingproxi": 5, "__module__": 5, "__main__": [5, 35, 42, 43], "__weakref__": 5, "__doc__": 5, "But": [5, 13, 18, 19, 20, 25, 32, 33, 35, 41, 42, 43, 47, 48, 53, 54, 60], "occur": [5, 19, 22, 25, 44], "realiti": [5, 27], "disclaim": 5, "extrem": [5, 35], "bad": [5, 7, 13, 18, 56, 60, 61], "getandset": 5, "__getattr__": [5, 15], "__setattr__": 5, "game": [5, 33], "same": [5, 6, 7, 8, 10, 11, 12, 13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 32, 33, 36, 37, 41, 42, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61], "provok": 5, "getattr": 5, "setattr": 5, "hi": [5, 17, 18, 25, 33], "becaus": [5, 8, 13, 17, 19, 20, 21, 22, 23, 25, 28, 32, 33, 34, 35, 36, 41, 42, 44, 45, 47, 48, 52, 54, 55, 56, 57, 58, 59, 60, 61], "explicit": [5, 33, 36, 61], "zen": [5, 40], "tim": 5, "peter": 5, "beauti": [5, 14, 20, 41], "ugli": [5, 48], "implicit": [5, 33, 42], "simpl": [5, 7, 10, 15, 24, 26, 31, 32, 35, 36, 42, 46, 47, 50, 53, 56, 57, 59, 60, 61], "complex": [5, 10, 15, 31, 33, 42, 44, 49, 55, 56, 58, 59, 60], "flat": [5, 9], "spars": 5, "dens": 5, "count": [5, 6, 10, 12, 13, 22, 23, 24, 25, 56, 58, 59, 61], "aren": [5, 16, 40, 41, 55], "although": [5, 35, 60], "beat": 5, "puriti": 5, "silent": [5, 43, 55, 56], "unless": [5, 16, 22, 34, 36, 54, 56, 61], "explicitli": [5, 6, 12, 14, 19, 24, 33, 35, 36, 41, 42, 43, 44, 54, 61], "silenc": 5, "face": 5, "ambigu": [5, 20], "refus": 5, "temptat": 5, "obviou": [5, 22, 40, 42, 61], "dutch": 5, "hard": [5, 6, 8, 20, 24, 42, 54, 56, 57, 59, 61], "namespac": [5, 43], "honk": 5, "those": [5, 6, 11, 13, 16, 19, 20, 22, 24, 25, 36, 37, 42, 43, 44, 45, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "sentenc": [5, 20, 34, 48, 53], "adult": 5, "behav": [5, 24, 36, 37, 43, 44, 56], "simul": [6, 8, 11, 12], "j": [6, 7, 12, 13, 33, 44, 53, 54], "psi": [6, 7, 12], "rightarrow": [6, 38], "mu": [6, 12, 13], "mplhep": [6, 7, 8, 12, 13, 15], "hep": [6, 7, 10, 11, 12, 15, 31, 61], "organis": [6, 53], "collect": [6, 10, 14, 26, 27, 36, 37, 40, 41, 43, 54, 60], "still": [6, 12, 13, 19, 22, 25, 35, 51, 55, 56, 57, 58, 59, 60, 61], "high": [6, 10, 11, 12, 13, 14, 31, 34, 40, 60], "energi": [6, 10, 13, 31, 34, 40], "physic": [6, 9, 10, 11, 12, 13, 14, 15, 31, 34, 40, 54], "mimic": 6, "top": [6, 7, 10, 13, 22, 23, 24, 32, 36, 38, 47, 54, 56, 58], "pure": [6, 12, 13, 15], "cumbersom": [6, 35], "uproot": [6, 7, 9, 11, 15, 31, 39], "put": [6, 8, 19, 20, 21, 22, 24, 25, 32, 42, 47, 51, 54, 55, 56, 57, 58, 59, 60, 61], "fake": [6, 13, 53, 61], "jpsi_m": [6, 7, 10, 12], "jpsi_p": [6, 7, 10], "jpsi_pt": [6, 7, 10], "jpsi_px": [6, 10], "jpsi_pi": [6, 10], "jpsi_pz": [6, 7, 10], "mum_m": [6, 10], "mum_pt": [6, 7, 8, 10], "mum_eta": [6, 7, 10], "mum_p": [6, 7, 10], "mum_px": [6, 7, 10], "mum_pi": [6, 7, 10], "mum_pz": [6, 7, 10], "mum_ip": [6, 7, 8, 10], "mum_probnnmu": [6, 7, 10], "mum_probnnpi": [6, 10], "mup_m": [6, 10], "mup_pt": [6, 7, 8, 10], "mup_eta": [6, 7, 10], "mup_p": [6, 7, 10], "mup_px": [6, 10], "mup_pi": [6, 10], "mup_pz": [6, 10], "mup_ip": [6, 7, 8, 10], "mup_probnnmu": [6, 7, 10], "mup_probnnpi": [6, 10], "ntrack": [6, 10], "suffix": 6, "_m": 6, "invari": [6, 13, 35], "mass": [6, 7, 8, 9, 10, 12, 14, 15, 35, 38], "particl": [6, 9, 13, 15, 31, 35, 38], "pdg": [6, 14], "muon": [6, 7], "_p": 6, "absolut": [6, 8, 34, 38, 53, 54, 60], "momentum": [6, 8, 13, 14, 35, 38], "_pt": 6, "plane": 6, "_pe": 6, "_px": 6, "_py": 6, "_pz": 6, "four": [6, 17, 24, 36, 41, 59, 60], "compon": [6, 13, 38, 41], "_ip": 6, "impact": 6, "paramet": [6, 13, 15, 53, 54, 55], "distanc": [6, 11, 38], "closest": 6, "approach": [6, 24, 25, 27, 59], "between": [6, 7, 8, 10, 11, 13, 14, 19, 20, 22, 25, 26, 33, 37, 41, 43, 46, 54, 56, 57, 58, 59, 60], "reconstruct": [6, 15, 19, 31], "primari": 6, "vertex": 6, "probnnmu": 6, "probnnpi": 6, "identif": 6, "pion": [6, 41], "track": [6, 10, 16, 18, 20, 21, 22, 24, 25, 30, 31, 35, 36, 41, 54, 59, 61], "instal": [6, 17, 26, 31, 38, 43, 46, 61], "github": [6, 7, 17, 22, 24, 25, 27, 28, 31, 61], "repos": 6, "tree": [6, 9, 11, 15, 38, 54, 59], "class": [6, 7, 12, 13, 15, 31, 33, 34, 42], "convert": [6, 13, 15, 31, 33, 41, 48, 53, 59], "varieti": [6, 60], "datafram": [6, 7, 13, 14, 15, 38, 39], "tabl": [6, 10, 17, 23, 25, 33, 55, 56], "root_numpi": 6, "root_panda": [6, 38, 43], "outdat": [6, 15], "grid": [6, 7, 8, 9], "cern": [6, 7, 9, 11, 17, 23, 24, 25, 26, 28, 30, 31, 38, 43, 46, 50, 51, 52, 54, 60, 61], "keep": [6, 7, 10, 11, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28, 30, 31, 35, 36, 41, 43, 49, 50, 53, 54, 55, 56, 61], "local": [6, 11, 18, 19, 20, 22, 23, 25, 30, 38, 43, 54], "xrootd": 6, "protocol": [6, 22], "my_fil": [6, 38, 55], "eosus": 6, "ch": [6, 7, 9, 11, 22, 23, 24, 25, 26, 38, 43, 46, 50, 51, 52, 54, 60, 61], "eo": [6, 38], "lhcbsk": 6, "real_data": [6, 7], "valid": [6, 7, 8, 11, 12, 22, 32, 35, 47, 56, 58], "credenti": 6, "authent": 6, "fail": [6, 24, 25, 26, 61], "oserror": 6, "server": [6, 16, 17, 22, 24, 25, 27, 30, 31], "3010": 6, "unabl": [6, 7, 57], "unauthor": 6, "deni": 6, "kinit": [6, 50, 51], "usernam": [6, 22, 23, 24, 50, 54, 61], "termin": [6, 19, 23, 24, 34, 43, 46, 51, 53, 54, 56, 57, 61], "password": [6, 31, 49], "publicli": 6, "remot": [6, 23, 25, 26, 30, 31, 51, 54, 60], "significantli": 6, "slower": 6, "starterkit": [6, 7, 9, 11, 15, 31, 34, 49], "2018": [6, 7], "httpsourc": [6, 11], "chunkbyt": [6, 11], "1024": [6, 11, 25, 54], "limitbyt": [6, 11], "33554432": [6, 11], "parallel": [6, 11, 16, 25, 26, 60, 61], "decaytre": [6, 7, 38], "singl": [6, 7, 11, 19, 22, 24, 25, 26, 36, 41, 42, 43, 48, 52, 54, 56, 57, 58, 59, 60, 61], "\u03c8": 6, "101106": 6, "1071159": 6, "08600438": 6, "00478927": 6, "77311478": 6, "7698744": 6, "data_df": [6, 7, 8, 10, 12], "usual": [6, 7, 8, 10, 11, 19, 24, 25, 28, 33, 38, 41, 43, 48, 53, 54, 56, 58, 59, 60], "head": [6, 7, 19, 20, 23, 24, 25, 38, 42, 52, 53, 56, 57, 58], "188": 6, "630181": 6, "700534": 6, "131937": 6, "375806": 6, "288923": 6, "604688": 6, "376341": 6, "246101": 6, "755981": 6, "99": [6, 11, 33, 41], "674146": 6, "119": 6, "018213": 6, "608728": 6, "105658": 6, "820565": 6, "149": 6, "999983": 6, "836058": 6, "999994": 6, "244674": 6, "52": 6, "385685": 6, "816164": 6, "595537": 6, "51": [6, 11, 19, 33], "961499": 6, "882897": 6, "293459": 6, "107116": 6, "735741": 6, "552217": 6, "776801": 6, "621295": 6, "210": [6, 38], "293355": 6, "851094": 6, "900278": 6, "125": [6, 7], "998874": 6, "264369": 6, "999999": 6, "391294": 6, "068478": 6, "552368": 6, "817129": 6, "837748": 6, "801420": 6, "976946": 6, "086004": 6, "110952": 6, "179505": 6, "096355": 6, "279673": 6, "272015": 6, "632559": 6, "490677": 6, "371": 6, "538509": 6, "313881": 6, "882305": 6, "961390": 6, "78": [6, 41], "399724": 6, "833082": 6, "818953": 6, "283360": 6, "949075": 6, "338889": 6, "087923": 6, "571993": 6, "028028": 6, "581850": 6, "020064": 6, "134": 6, "767864": 6, "792800": 6, "088611": 6, "136": 6, "896250": 6, "792830": 6, "999992": 6, "724581": 6, "83": 6, "900727": 6, "065507": 6, "457333": 6, "618226": 6, "132904": 6, "842831": 6, "116368": 6, "698279": 6, "220143": 6, "818777": 6, "851730": 6, "2926": 6, "081975": 6, "619576": 6, "031800": 6, "71": [6, 14], "998548": 6, "270670": 6, "999987": 6, "921856": 6, "row": [6, 7, 38, 56], "column": [6, 7, 10, 11, 14, 19, 25, 38, 53, 54], "hist": [6, 11, 13, 15, 38], "xlabel": [6, 7, 8, 9, 12, 13, 38], "jpsi": 6, "okai": [6, 7, 8], "api": 6, "_as_gen": 6, "intern": [6, 12, 13, 28, 37, 43], "bin": [6, 7, 8, 9, 12, 13, 15, 31, 38, 43, 53, 54, 55, 61], "histtyp": [6, 12, 13, 38], "easili": [6, 7, 11, 13, 32, 36, 38, 41, 43, 46, 47, 48, 51, 52, 61], "uncertainti": [6, 12, 15], "match": [6, 19, 21, 25, 28, 37, 40, 46, 50, 54, 55, 56, 57, 58, 59, 61], "lhcb2": 6, "atla": 6, "cm": [6, 9], "histplot": [6, 7, 8, 10, 12, 13], "lot": [6, 8, 25, 31, 34, 35, 36, 38, 40, 41, 42, 43, 46, 48, 54, 56, 59, 61], "onc": [6, 7, 16, 17, 18, 19, 21, 22, 24, 26, 27, 28, 33, 41, 42, 43, 48, 51, 52, 55, 56, 57, 58, 59, 60, 61], "subplot": [6, 9, 11, 13], "figsiz": [6, 9, 11, 13], "yerr": [6, 7, 12, 13], "true": [6, 7, 8, 9, 11, 12, 13, 17, 24, 32, 33, 36, 38, 40, 42, 43, 46, 47, 53, 59], "half_binwidth": 6, "errorbar": [6, 10, 12, 13], "xerr": 6, "errorbarartist": 6, "errorbarcontain": [6, 10], "artist": [6, 10], "plot_mass": [6, 7], "df": [6, 7, 8, 38, 53], "75": [6, 7, 10, 44], "feel": [6, 7, 11, 32, 36, 40, 46, 47, 60], "adjust": [6, 7, 8, 9, 11, 58, 61], "label": [6, 7, 8, 9, 10, 11, 12, 15, 19, 31, 38, 43, 54], "gev": [6, 7, 12, 14, 38], "xlim": [6, 7, 8, 9, 11, 13, 38], "forgot": [6, 19, 56], "bother": [6, 31], "them": [6, 10, 12, 13, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 36, 38, 40, 42, 43, 44, 45, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "eval": [6, 7, 11, 14, 38], "jpsi_eta": [6, 7, 10], "arctanh": [6, 7], "inplac": [6, 7, 12, 38], "703371": 6, "874790": 6, "307233": 6, "972345": 6, "307082": 6, "float64": [6, 38], "mu_p": 6, "809553": 6, "820509": 6, "484875": 6, "900145": 6, "577624": 6, "490405": 6, "69": 6, "311033": 6, "087997": 6, "66": [6, 13, 14], "868844": 6, "031472": 6, "increas": [6, 11, 14, 57], "signal": [6, 7, 8, 10, 12, 15, 55], "sampl": [6, 7, 12, 13, 15, 31, 38, 54, 56, 58, 60, 61], "background": [6, 7, 8, 12, 15, 31, 38], "discrimin": [6, 7, 13, 15, 31], "pid": [6, 7], "data_with_cuts_df": [6, 7], "queri": [6, 7, 10, 12, 14, 36, 38, 40], "identifi": [6, 10, 19, 20, 22, 25, 27, 54, 60, 61], "densiti": [6, 7, 8, 11, 13, 15, 31, 38], "p": [6, 7, 12, 13, 14, 22, 26, 36, 46, 50, 54, 56, 59, 61], "_t": [6, 7], "legend": [6, 7, 8, 9, 12, 13, 38], "loc": [6, 7, 8, 9, 13, 38], "0x7f040aebaf50": 6, "python_lesson": [6, 7], "check_truth": [6, 7], "ncut": 6, "moment": [6, 7, 13, 24, 41, 54, 57, 58, 61], "1216": 6, "167169": 6, "metric": [6, 7, 8, 9, 11], "58": 6, "602": 6, "31922": 6, "275": 6, "13798": 6, "told": [6, 19, 56, 61], "pick": [6, 28, 43], "simulated_data": [6, 7], "mc_df": [6, 7, 8, 10, 12], "mc_file": 6, "sideband": [6, 7, 8], "peak": [6, 7, 9], "present": [6, 15, 19, 21, 46, 53, 59, 61], "select": [6, 7, 13, 24, 33, 34, 52, 56, 57, 58, 59, 61], "outsid": [6, 42, 54, 58, 61], "region": [6, 7, 12], "bkg_df": [6, 7, 8, 10, 12], "ve": [6, 16, 19, 20, 22, 23, 24, 25, 32, 33, 36, 38, 40, 41, 44, 45, 47, 48, 54, 55, 56, 59, 61], "appl": 6, "nearest": 6, "9975": 6, "005": 6, "partial": 6, "mc": [6, 7, 8, 11, 12, 15], "hsig": [6, 7, 8], "60": [6, 7, 8, 14, 56, 57], "hbkg": [6, 7, 8], "bkg": [6, 7, 8, 12, 13], "0x7f040ae233d0": 6, "normalis": [6, 38], "0x7f040b868690": 6, "both": [6, 10, 12, 19, 20, 23, 24, 25, 26, 28, 29, 33, 42, 46, 48, 53, 54, 55, 56, 57, 59, 61], "signatur": 6, "plot_comparis": [6, 7, 8], "ipykernel_6346": 6, "3447827755": 6, "runtimewarn": [6, 7, 8], "retain": [6, 10], "consum": [6, 55], "much": [6, 8, 9, 11, 12, 16, 20, 21, 27, 32, 36, 37, 38, 40, 42, 43, 47, 48, 53, 54, 55, 56, 57, 61], "memori": [6, 33, 37, 53, 56], "warn": [6, 12, 13, 25, 43], "rcparam": 6, "max_open_warn": 6, "reli": [6, 37, 43, 61], "fortun": [6, 26, 38], "heavili": 6, "depend": [6, 9, 12, 13, 19, 24, 26, 27, 30, 35, 36, 54, 55, 61], "shape": [6, 10, 12, 13, 38], "calcul": [6, 10, 12, 14, 35, 37, 38, 42, 46, 54, 56, 58, 60, 61], "detector": 6, "calorimet": 6, "p_e": 6, "got": [6, 24, 38, 41, 42, 43], "slow": [6, 38, 46], "crash": [6, 7, 52, 58], "produc": [6, 19, 26, 55, 56, 57, 58, 61], "ever": [6, 14, 18, 24, 26, 58, 59, 61], "thousand": [6, 43], "pseudorapid": 6, "vagu": 6, "lhcb": [6, 34, 38, 44, 46, 49, 61], "asid": 6, "session": [6, 17, 25, 28, 31, 46, 49, 51, 52, 53], "reload": [6, 7], "boost": [7, 10, 15, 31], "bdt": [7, 8, 9, 10, 12, 15], "distinguish": [7, 11, 19, 54, 59, 60], "input": [7, 12, 17, 20, 41, 42, 43, 53, 54, 56, 57, 58, 59, 60, 61], "predict": [7, 8, 9, 11, 20], "previou": [7, 8, 10, 13, 14, 15, 20, 21, 24, 25, 26, 31, 38, 53, 54, 55, 56, 57, 61], "modul": [7, 8, 15, 31, 32, 34, 36, 37, 38, 41, 42, 47], "sklearn": [7, 8, 9, 11], "ensembl": [7, 8, 9, 11], "gradientboostingclassifi": [7, 8, 9, 11], "auc": [7, 8, 9, 11], "roc_curv": [7, 8, 9], "model_select": [7, 8, 9, 11], "kfold": [7, 8, 11], "xgboost": [7, 8, 15, 31], "xgbclassifi": [7, 8], "rectangular": [7, 15], "adavantag": 7, "corel": 7, "scatter": [7, 58], "marker": [7, 19, 25], "ylabel": [7, 8, 9], "0x7f7539ad5a50": 7, "dimension": [7, 11, 15], "machin": [7, 8, 15, 17, 23, 26, 27, 40, 51, 54, 56, 60, 61], "concept": [7, 15, 24, 31, 35], "known": [7, 8, 11, 15, 26, 27, 31, 38, 46, 54, 59], "weak": 7, "learner": 7, "strong": [7, 31, 34], "combin": [7, 12, 13, 14, 19, 20, 27, 36, 46, 54, 56, 57, 59, 60, 61], "algorithm": [7, 8, 11, 13, 15, 42], "luckili": [7, 20, 38, 41, 59], "ensem": 7, "classif": [7, 9, 11, 13, 15, 31, 57], "popular": [7, 26, 28, 38, 40, 60], "might": [7, 18, 19, 20, 21, 22, 23, 24, 27, 32, 34, 36, 37, 40, 41, 43, 46, 47, 53, 54, 55, 56, 57, 58, 59, 61], "sound": [7, 34, 36, 45, 48, 60], "gradientboosingclassifi": 7, "training_column": [7, 8, 9], "n_estim": [7, 8, 9, 11], "less": [7, 8, 11, 25, 31, 49, 53, 56, 57], "estim": [7, 8, 11, 12, 13, 15], "300": [7, 8, 13, 56, 58, 59, 60], "teach": [7, 27, 30, 31, 34, 61], "2d": [7, 9, 10], "catagori": [7, 8, 10], "training_data": [7, 8], "concat": 7, "ignore_index": 7, "later": [7, 16, 17, 18, 19, 20, 26, 28, 33, 43, 45, 48, 51, 56, 58], "base_scor": 7, "booster": [7, 8], "callback": 7, "colsample_bylevel": 7, "colsample_bynod": 7, "colsample_bytre": 7, "devic": [7, 53, 60], "early_stopping_round": 7, "enable_categor": 7, "fals": [7, 8, 9, 12, 13, 31, 32, 33, 36, 40, 42, 43, 47, 61], "eval_metr": 7, "feature_typ": 7, "gamma": 7, "grow_polici": 7, "importance_typ": 7, "interaction_constraint": 7, "learning_r": [7, 9, 11], "max_bin": 7, "max_cat_threshold": 7, "max_cat_to_onehot": 7, "max_delta_step": 7, "max_depth": [7, 9, 11], "max_leav": 7, "min_child_weight": 7, "nan": 7, "monotone_constraint": 7, "multi_strategi": 7, "n_job": 7, "num_parallel_tre": 7, "random_st": [7, 8, 9, 11], "jupyt": [7, 10, 12, 15, 28, 31, 34, 38, 46], "environ": [7, 12, 13, 26, 31, 34, 38, 46, 49, 54, 58, 59], "rerun": [7, 33, 61], "trust": [7, 53], "On": [7, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 37, 54, 55, 56, 59, 60], "render": [7, 33], "nbviewer": 7, "xgbclassifierxgbclassifi": 7, "dataset": [7, 8, 11, 12, 13, 15, 56], "candid": 7, "predict_proba": [7, 8, 9, 11], "0951997": 7, "9048003": 7, "22529536": 7, "77470464": 7, "63189864": 7, "3681014": 7, "6602049": 7, "33979508": 7, "36177772": 7, "6382223": 7, "float32": 7, "n_": [7, 13], "probabl": [7, 8, 15, 21, 27, 31, 33, 40, 41, 42, 53, 55, 56, 58, 59, 61], "candiat": 7, "second": [7, 12, 13, 19, 23, 24, 33, 36, 40, 41, 43, 48, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61], "assumpt": [7, 15], "treat": [7, 10, 12, 13, 41, 43, 54, 55, 57, 61], "slice": [7, 41], "367871": 7, "22820437": 7, "29143938": 7, "challeng": [7, 20, 21, 54, 60, 61], "fact": [7, 13, 19, 20, 26, 33, 36, 43, 48, 54, 58, 59, 60, 61], "fewer": [7, 32, 47, 54], "chanc": [7, 24, 25, 55, 60], "mix": [7, 28, 42, 61], "caus": [7, 12, 17, 25, 55, 58], "subtl": 7, "accidenatlli": 7, "somewher": [7, 24, 34, 42, 48, 55], "earlier": [7, 19, 22, 23, 24, 27, 38, 41, 51, 53, 55, 56, 57, 58, 59], "histogram": [7, 8, 9, 11, 12, 13, 14, 15, 31, 34], "95": 7, "0x7f75301c0f10": 7, "possibli": [7, 27, 53], "207": 7, "59": [7, 35], "far": [7, 19, 22, 23, 28, 33, 36, 54, 61], "magic": [7, 10, 33, 35, 44, 54, 55, 61], "unfortuan": 7, "tool": [7, 14, 16, 17, 19, 24, 25, 26, 28, 30, 34, 35, 46, 54, 55, 56, 58, 59, 60, 61], "almost": [7, 19, 26, 31, 50, 54, 55, 56], "characterist": [7, 13, 54], "curv": [7, 8, 11, 13, 15], "roc": [7, 8, 11, 15], "effienc": [7, 9], "rate": [7, 8, 9, 57], "tpr": [7, 8, 9], "against": 7, "ineffieicni": 7, "fpr": [7, 8, 9], "corropsond": 7, "threshold": [7, 8, 9], "reus": [7, 12, 13, 22, 23, 24, 25, 28, 35, 42, 43], "y_score": [7, 8, 9], "nicer": [7, 8, 9, 41, 42], "forc": [7, 8, 9, 21, 34, 38, 41, 53, 54, 59, 61], "corrospond": 7, "randomli": 7, "grai": [7, 23], "color": [7, 8, 9, 12, 13, 17, 19, 20, 25, 33, 53, 54, 58], "linestyl": [7, 8, 9], "ylim": [7, 8, 9, 13], "lower": [7, 8, 9, 10, 11, 12, 13, 36, 48, 59], "gca": [7, 8, 9, 12, 13], "set_aspect": [7, 8, 9], "equal": [7, 8, 9, 11, 13, 36, 37, 42, 53, 61], "box": [7, 8, 9], "closer": [7, 33], "corner": [7, 9, 35], "area": [7, 8, 9, 10, 11, 18, 19, 20, 24, 25], "generanl": 7, "pm": 7, "sigma": [7, 12, 13], "toi": [7, 11, 12, 15], "n_sig": [7, 8], "1200": [7, 8], "n_bkg": [7, 8], "23000": [7, 8], "sig": [7, 13], "ipykernel_6728": 7, "4020814425": 7, "invalid": [7, 8, 22, 42, 43, 53, 54], "divid": [7, 8, 10, 11, 44, 57], "Then": [7, 18, 23, 24, 25, 32, 34, 37, 42, 45, 47, 55, 58, 61], "optimal_index": 7, "argmax": [7, 8], "optimal_metr": 7, "optimal_cut": [7, 8], "optim": [7, 8, 13], "inf": [7, 12], "util": [7, 46, 50, 54, 59, 61], "262": 7, "zero": [7, 13, 26, 41, 54, 56, 57, 60], "scalar": [7, 10], "flat_scal": 7, "diff": [7, 12, 13, 19, 20, 22, 23, 53], "edg": [7, 10], "197": 7, "sumw": 7, "comput": [7, 12, 13, 16, 17, 19, 20, 23, 25, 27, 29, 40, 41, 42, 43, 44, 46, 51, 54, 55, 56, 58, 60, 61], "meaning": [7, 8, 24, 41, 55], "ab": [7, 8, 13, 42, 44, 56, 57, 58], "method_fcn": 7, "varianc": [7, 10], "242": 7, "multipli": [7, 10, 11, 48, 56], "243": [7, 58], "yerr_lo": 7, "244": 7, "yerr_hi": 7, "0x7f753066e910": 7, "plot_roc": [7, 8, 9], "plot_signific": [7, 8], "axvlin": [7, 8], "black": [7, 8, 12, 13, 61], "datafil": [7, 9, 57, 58], "librari": [7, 9, 10, 11, 12, 14, 15, 31, 32, 34, 38, 40, 47, 53, 54], "mcfile": 7, "succesfulli": 7, "4278176416": 7, "standardis": [8, 61], "rank": 8, "highli": [8, 12, 27, 31, 46], "competit": [8, 59], "comparis": 8, "alorithm": 8, "adaboostclassifi": 8, "gradient": [8, 9, 15, 31], "bdt_1": 8, "bdt_2": 8, "classifi": [8, 11, 13, 15, 31, 54], "xgboost_bdt": 8, "ipykernel_7186": 8, "2193470804": 8, "actuali": 8, "adaboost": [8, 9], "biject": 8, "short": [8, 10, 19, 24, 27, 42, 43, 54, 55, 59], "matter": [8, 21, 28, 33, 41, 43, 54, 55, 56, 60, 61], "correl": [8, 11, 13, 15], "littl": [8, 13, 16, 18, 24, 32, 41, 42, 47, 52, 59], "resolut": [8, 25, 54], "ipmin": 8, "min": [8, 10, 13, 53, 61], "ipdiff": 8, "bdtclass": 8, "training_columns_2": 8, "bdt_3": 8, "training_columns_3": 8, "0x7faf865cb0d0": 8, "lose": [8, 18, 20, 24, 30, 51], "part": [8, 10, 12, 13, 15, 20, 24, 26, 31, 32, 41, 43, 46, 47, 48, 54, 55, 57, 59, 61], "split": [8, 10, 11, 13, 19, 35, 43, 61], "crucial": [8, 12, 33], "scenario": 8, "red": [8, 19, 22, 57], "tile": 8, "blue": [8, 9, 23], "whole": [8, 11, 12, 23, 48, 54, 56, 57, 59, 61], "holdout": 8, "overfit": [8, 11], "overestim": 8, "evalu": [8, 11, 36, 53, 57, 60], "unbias": [8, 11], "search": [8, 14, 15, 19, 20, 43, 53, 54, 55, 57, 59, 61], "stabl": [8, 9, 12], "section": [8, 15, 38, 49, 56], "kf": 8, "n_split": 8, "get_n_split": 8, "shuffl": 8, "train_index": 8, "test_index": 8, "x_train": 8, "x_test": 8, "y_train": 8, "y_test": 8, "favorid": 8, "frequent": [9, 13, 25, 43, 54, 58, 60], "discoveri": [9, 12, 15, 27], "due": [9, 13, 16, 34, 43], "comparison": [9, 36], "signif": [9, 12], "loos": [9, 56], "qualiti": [9, 11, 24, 56], "plain": [9, 10, 54, 55, 58], "gradientboost": 9, "knn": 9, "ada": 9, "loss": [9, 11, 13, 15, 31, 55, 56, 59], "ugb": 9, "knnada": 9, "flatnessloss": 9, "paper": [9, 13, 16, 22, 27, 54, 58, 60], "plenti": [9, 34], "subset": [9, 40], "train_test_split": [9, 11], "decisiontreeclassifi": 9, "used_column": 9, "y1": 9, "y2": 9, "y3": 9, "m2ab": 9, "m2ac": 9, "2019": [9, 11], "dalitzdata": 9, "drop": [9, 46, 61], "mostli": [9, 25, 54], "tradit": [9, 32, 47], "poor": 9, "effieci": 9, "plot_distribut": 9, "data_fram": 9, "var_name1": 9, "var_name2": 9, "hist2d": 9, "cmap": 9, "colorbar": [9, 10], "titl": [9, 11, 12, 13, 24, 29], "trainx": 9, "testx": 9, "traini": 9, "testi": 9, "test_siz": 9, "uniform_featur": 9, "train_featur": 9, "150": [9, 14, 38], "base_estim": 9, "efficiency_step": 9, "smooth": [9, 11], "knnloss": 9, "knnadalossfunct": 9, "uniform_label": 9, "ugradientboostingclassifi": 9, "uboostclassifi": 9, "n_thread": 9, "knnflatnesslossfunct": 9, "fl_coeffici": 9, "fl": 9, "clf": [9, 11], "roc_auc_scor": [9, 11], "nearli": [10, 11, 16, 61], "everi": [10, 17, 20, 21, 22, 24, 26, 27, 33, 35, 37, 38, 41, 43, 50, 53, 54, 55, 56, 57, 59, 61], "place": [10, 18, 26, 33, 41, 42, 44, 48, 54, 55, 57, 58, 59], "effici": [10, 24, 30, 37, 54, 55], "correct": [10, 13, 15, 19, 20, 31, 54, 55, 56, 57, 58, 59], "friendli": [10, 46, 55], "directli": [10, 24, 27, 33, 35, 38, 41, 43, 46, 48, 56, 58, 60, 61], "workhors": 10, "written": [10, 12, 17, 27, 34, 54, 57, 58, 60, 61], "boost_histogram": 10, "bh": 10, "compos": [10, 24], "per": [10, 17, 32, 37, 42, 43, 47, 54, 56, 59], "view": [10, 19, 22, 24, 37, 38, 42, 43, 46, 54, 55, 57], "overflow": [10, 40, 53, 61], "hist2dplot": 10, "colormeshartist": 10, "pcolormesh": 10, "quadmesh": 10, "0x7fa31717d0d0": 10, "cbar": 10, "0x7fa316f893d0": 10, "cental": 10, "difin": 10, "former": [10, 11, 14, 33, 35, 54], "upper": [10, 12, 13, 43, 48], "regularli": [10, 40, 46], "axis_reg": 10, "nbin": [10, 12, 13], "arbitrarili": 10, "mro": [10, 35], "axis_var": 10, "axis1": 10, "data_h": 10, "doubl": [10, 20, 36, 37, 42, 43, 44, 45, 48, 54, 55, 58, 61], "\u03c3": 10, "168384": 10, "168385": 10, "mc_h": 10, "chain": [10, 12, 20, 31, 53, 56], "With": [10, 11, 12, 20, 23, 27, 31, 32, 33, 38, 47, 48, 54, 58, 59, 60], "unifi": [10, 53], "born": 10, "seemless": 10, "stairsartist": 10, "stair": 10, "steppatch": 10, "0x7fa316f77290": 10, "legend_artist": 10, "plot1d": 10, "0x7fa315de9910": 10, "0x7fa31450a010": 10, "axis_bdt": 10, "mc_h2d": 10, "data_h2d": 10, "0265": 10, "994": 10, "026503": 10, "993653": 10, "168383": 10, "0x7fa3143a3b10": 10, "0x7fa3145356d0": 10, "variou": [10, 12, 13, 16, 20, 22, 38, 46, 55], "besid": [10, 61], "locat": [10, 40, 53, 54, 55, 58, 59, 61], "support": [10, 11, 13, 33, 34, 41, 43, 45, 46, 52, 54, 59, 60], "318": 10, "capabl": [10, 11, 16], "underflow": 10, "integr": [10, 22, 24, 25, 26], "devid": 10, "averag": [10, 51], "24562342": 10, "20355474": 10, "32523501": 10, "37322826": 10, "07734872": 10, "27271602": 10, "00139882": 10, "38734028": 10, "48785252": 10, "77554461": 10, "97317478": 10, "4737405": 10, "21992964": 10, "7286828": 10, "6058711": 10, "42574726": 10, "2947481": 10, "17193639": 10, "09824937": 10, "02456234": 10, "27018576": 10, "34274135": 10, "36617225": 10, "26679145": 10, "2984098": 10, "37915283": 10, "68321982": 10, "66797636": 10, "66092035": 10, "94861244": 10, "30999156": 10, "87605685": 10, "76143259": 10, "69593302": 10, "39299747": 10, "35206023": 10, "13099916": 10, "26199831": 10, "46555306": 10, "16148607": 10, "49603997": 10, "76622573": 10, "33002815": 10, "6165888": 10, "19084155": 10, "68435126": 10, "48898396": 10, "85855052": 10, "95793133": 10, "83511962": 10, "54855896": 10, "27837321": 10, "12281171": 10, "08187447": 10, "05731213": 10, "43280327": 10, "14511118": 10, "74279482": 10, "16741064": 10, "95340558": 10, "42827752": 10, "83059387": 10, "29135379": 10, "47260907": 10, "9240501": 10, "23630453": 10, "98249367": 10, "56493386": 10, "33568534": 10, "22106108": 10, "06549958": 10, "01637489": 10, "20468618": 10, "32636645": 10, "76735717": 10, "32297214": 10, "86334366": 10, "31365326": 10, "576783": 10, "24222911": 10, "13692373": 10, "82580073": 10, "36730369": 10, "92518154": 10, "82693217": 10, "55674641": 10, "50762173": 10, "22924852": 10, "04093724": 10, "35911624": 10, "89130031": 10, "02116803": 10, "79897552": 10, "05984239": 10, "98615537": 10, "53810864": 10, "00592457": 10, "30180411": 10, "0234309": 10, "78599493": 10, "4503096": 10, "32749789": 10, "1555615": 10, "03274979": 10, "1953673": 10, "89948776": 10, "8246693": 10, "9872868": 10, "78146919": 10, "46215874": 10, "56972699": 10, "57085843": 10, "91586265": 10, "29361666": 10, "94155643": 10, "84330707": 10, "4339347": 10, "36843513": 10, "28656065": 10, "1391866": 10, "10643681": 10, "00818745": 10, "31112299": 10, "22811709": 10, "95566845": 10, "57791444": 10, "96978047": 10, "03528005": 10, "38847172": 10, "65160147": 10, "43167183": 10, "58130875": 10, "40118491": 10, "11462426": 10, "04912468": 10, "12986772": 10, "99773713": 10, "9638559": 10, "82353786": 10, "42122151": 10, "23177878": 10, "92884324": 10, "52060231": 10, "5135463": 10, "76030116": 10, "81874472": 10, "81055728": 10, "51580918": 10, "31931044": 10, "19649873": 10, "09006192": 10, "25381086": 10, "15443006": 10, "87492542": 10, "68548269": 10, "70778216": 10, "17446665": 10, "7323445": 10, "50422742": 10, "2187982": 10, "7684886": 10, "77780749": 10, "03161835": 10, "54742753": 10, "79191951": 10, "02003659": 10, "96159302": 10, "08666761": 10, "56267098": 10, "53924008": 10, "27724177": 10, "67955812": 10, "49124683": 10, "34387278": 10, "14737405": 10, "0398058": 10, "79305094": 10, "55448354": 10, "31478469": 10, "92065579": 10, "74053195": 10, "30772868": 10, "49717141": 10, "84217563": 10, "94974388": 10, "59768365": 10, "05618069": 10, "80123839": 10, "54629609": 10, "47147763": 10, "21653533": 10, "81421897": 10, "97796792": 10, "01298058": 10, "16967352": 10, "75211371": 10, "17080495": 10, "90880664": 10, "72049536": 10, "49943428": 10, "18717985": 10, "66205179": 10, "67729525": 10, "33229102": 10, "92178723": 10, "69959471": 10, "27384746": 10, "16035463": 10, "5299212": 10, "72755137": 10, "76962004": 10, "53218407": 10, "21287363": 10, "71117647": 10, "70185759": 10, "06210527": 10, "08553617": 10, "56859556": 10, "62590769": 10, "16854208": 10, "71230791": 10, "48305939": 10, "41755981": 10, "30293555": 10, "8842443": 10, "24336054": 10, "15216719": 10, "06097383": 10, "26566001": 10, "51128343": 10, "31591613": 10, "57198987": 10, "26905432": 10, "9006192": 10, "09711793": 10, "45736561": 10, "30886012": 10, "07848016": 10, "96272446": 10, "4375964": 10, "37209682": 10, "34979736": 10, "67842668": 10, "46668449": 10, "16374894": 10, "96611877": 10, "04686181": 10, "89835632": 10, "75803828": 10, "35572193": 10, "93110611": 10, "17786096": 10, "81761329": 10, "1789924": 10, "75324515": 10, "52399662": 10, "69480158": 10, "6925387": 10, "99547425": 10, "18378554": 10, "27497889": 10, "25154799": 10, "68661413": 10, "25267943": 10, "80236983": 10, "54037152": 10, "99068112": 10, "35092879": 10, "08779905": 10, "12760484": 10, "58610189": 10, "25747256": 10, "25041655": 10, "15329862": 10, "65386434": 10, "10530538": 10, "85149451": 10, "67023924": 10, "09598649": 10, "02822404": 10, "48672109": 10, "90654377": 10, "22698565": 10, "58017732": 10, "36024768": 10, "38367858": 10, "80010695": 10, "78260062": 10, "05278638": 10, "01184915": 10, "19310442": 10, "91699409": 10, "38481002": 10, "18012384": 10, "21061075": 10, "78373206": 10, "64341402": 10, "1030425": 10, "29248523": 10, "08893048": 10, "79418238": 10, "57312131": 10, "61405854": 10, "63043344": 10, "69367014": 10, "17672953": 10, "2820349": 10, "63409514": 10, "23404166": 10, "31704757": 10, "93336898": 10, "68774557": 10, "73687025": 10, "11349282": 10, "71004503": 10, "5533521": 10, "97091191": 10, "23743597": 10, "18831129": 10, "85968196": 10, "57904588": 10, "14397974": 10, "93816212": 10, "91473122": 10, "94042499": 10, "62224599": 10, "59542077": 10, "04573037": 10, "10191107": 10, "94634957": 10, "83398818": 10, "39186603": 10, "67137067": 10, "07255559": 10, "34160991": 10, "62817056": 10, "03048691": 10, "42461582": 10, "89243175": 10, "49830284": 10, "0796116": 10, "65499578": 10, "40937236": 10, "84104419": 10, "29954124": 10, "54516465": 10, "61179567": 10, "98136223": 10, "28542922": 10, "04799325": 10, "37662257": 10, "52286519": 10, "60247678": 10, "93223755": 10, "7450577": 10, "44212215": 10, "64680833": 10, "97430622": 10, "6527329": 10, "62703913": 10, "50535885": 10, "56380242": 10, "13805517": 10, "18604841": 10, "46442162": 10, "16261751": 10, "89016887": 10, "42235294": 10, "45849705": 10, "07368703": 10, "58836476": 10, "40710949": 10, "24449198": 10, "60360822": 10, "75098227": 10, "3743597": 10, "44917816": 10, "26792288": 10, "02935548": 10, "20242331": 10, "05391782": 10, "26086687": 10, "00705601": 10, "12168027": 10, "73573881": 10, "73460738": 10, "0632367": 10, "11236139": 10, "06436814": 10, "74392626": 10, "02229947": 10, "10417394": 10, "03867436": 10, "70412046": 10, "01524346": 10, "44099071": 10, "75916972": 10, "66318323": 10, "37549114": 10, "96498734": 10, "14624261": 10, "12873628": 10, "86673797": 10, "53105263": 10, "63862088": 10, "55561497": 10, "25973544": 10, "71936392": 10, "40005348": 10, "21174219": 10, "48192795": 10, "onto": [10, 16, 54, 56], "1d": [10, 11, 14], "transpar": 10, "7500011": 10, "76500103": 10, "78000096": 10, "79500089": 10, "81000082": 10, "82500076": 10, "84000069": 10, "85500062": 10, "87000055": 10, "88500048": 10, "90000041": 10, "91500035": 10, "93000028": 10, "94500021": 10, "96000014": 10, "97500007": 10, "99000001": 10, "00499994": 10, "01999987": 10, "0349998": 10, "04999973": 10, "06499966": 10, "0799996": 10, "09499953": 10, "10999946": 10, "12499939": 10, "13999932": 10, "15499925": 10, "16999919": 10, "18499912": 10, "19999905": 10, "21499898": 10, "22999891": 10, "24499884": 10, "25999878": 10, "27499871": 10, "28999864": 10, "30499857": 10, "3199985": 10, "33499843": 10, "34999837": 10, "3649983": 10, "37999823": 10, "39499816": 10, "40999809": 10, "42499803": 10, "43999796": 10, "45499789": 10, "46999782": 10, "48499775": 10, "49999768": 10, "center": [10, 12, 13], "75750106": 10, "772501": 10, "78750093": 10, "80250086": 10, "81750079": 10, "83250072": 10, "84750065": 10, "86250059": 10, "87750052": 10, "89250045": 10, "90750038": 10, "92250031": 10, "93750024": 10, "95250018": 10, "96750011": 10, "98250004": 10, "99749997": 10, "0124999": 10, "02749983": 10, "04249977": 10, "0574997": 10, "07249963": 10, "08749956": 10, "10249949": 10, "11749942": 10, "13249936": 10, "14749929": 10, "16249922": 10, "17749915": 10, "19249908": 10, "20749902": 10, "22249895": 10, "23749888": 10, "25249881": 10, "26749874": 10, "28249867": 10, "29749861": 10, "31249854": 10, "32749847": 10, "3424984": 10, "35749833": 10, "37249826": 10, "3874982": 10, "40249813": 10, "41749806": 10, "43249799": 10, "44749792": 10, "46249785": 10, "47749779": 10, "49249772": 10, "width": [10, 13, 14, 54], "01499993": 10, "readi": [10, 19, 24, 43, 54, 57, 58, 61], "broadcast": 10, "prod": 10, "00072536": 10, "ratio": 10, "data_df_bdt": 10, "data_bdt_h2d": 10, "734": 10, "735": 10, "0x7fa314299dd0": 10, "ratio_larg": 10, "0x7fa3143c7290": 10, "subtract": [10, 15, 45, 59], "weigth": 10, "random": [10, 12, 13, 20, 24, 25, 43, 51], "weightedsum": 10, "119865": 10, "120964": 10, "119924": 10, "121024": 10, "00000000e": 10, "00": [10, 24, 56, 58], "15797279e": 10, "28765338e": 10, "62207168e": 10, "12405263e": 10, "90871637e": 10, "01": [10, 11, 13, 54], "49697194e": 10, "19013577e": 10, "38787001e": 10, "91736926e": 10, "64413273e": 10, "66707778e": 10, "72651103e": 10, "67961404e": 10, "88785172e": 10, "06057553e": 10, "83743531e": 10, "78414501e": 10, "22219045e": 10, "17027957e": 10, "23354599e": 10, "68521268e": 10, "35393319e": 10, "05992739e": 10, "04536702e": 10, "02": [10, 51, 57], "48722298e": 10, "26204783e": 10, "93800613e": 10, "95852691e": 10, "54747287e": 10, "49162086e": 10, "75125021e": 10, "51865490e": 10, "86229801e": 10, "40514026e": 10, "31807990e": 10, "56840505e": 10, "17959569e": 10, "15145430e": 10, "27387046e": 10, "55454101e": 10, "42546915e": 10, "39393758e": 10, "44172130e": 10, "60266102e": 10, "72905912e": 10, "19303474e": 10, "98842276e": 10, "50914146e": 10, "56568451e": 10, "78672227e": 10, "88276991e": 10, "66829779e": 10, "37705970e": 10, "85317445e": 10, "96239260e": 10, "02391392e": 10, "85099975e": 10, "31033087e": 10, "92835045e": 10, "76058854e": 10, "80926784e": 10, "23320694e": 10, "68314546e": 10, "84056047e": 10, "25911910e": 10, "03": [10, 54, 56, 57, 58], "39189303e": 10, "12796551e": 10, "81640745e": 10, "29070745e": 10, "10789736e": 10, "70472061e": 10, "60080175e": 10, "28443335e": 10, "22477443e": 10, "23365535e": 10, "19463738e": 10, "13484094e": 10, "44702821e": 10, "32886393e": 10, "92362879e": 10, "56284298e": 10, "75690714e": 10, "04811806e": 10, "39042896e": 10, "83584141e": 10, "68991176e": 10, "39522039e": 10, "94902692e": 10, "64696232e": 10, "19701447e": 10, "96457289e": 10, "58253989e": 10, "79206753e": 10, "43931435e": 10, "46405825e": 10, "50434584e": 10, "70153268e": 10, "65991362e": 10, "09531376e": 10, "27845663e": 10, "36723964e": 10, "88233944e": 10, "42360537e": 10, "52055015e": 10, "49884117e": 10, "32676645e": 10, "23111864e": 10, "15985843e": 10, "17038813e": 10, "06786860e": 10, "09538638e": 10, "81557537e": 10, "03295678e": 10, "04136398e": 10, "33084716e": 10, "34867972e": 10, "19016853e": 10, "83341238e": 10, "36666591e": 10, "30788193e": 10, "01841459e": 10, "32138018e": 10, "76347947e": 10, "54043570e": 10, "57603012e": 10, "35409266e": 10, "64018775e": 10, "57881698e": 10, "02067465e": 10, "84501569e": 10, "95068864e": 10, "69292788e": 10, "59389628e": 10, "40443395e": 10, "83398717e": 10, "01498401e": 10, "16905894e": 10, "03730279e": 10, "03337666e": 10, "38522927e": 10, "95355561e": 10, "12486855e": 10, "04412686e": 10, "38640700e": 10, "07348460e": 10, "79051088e": 10, "97571776e": 10, "49827326e": 10, "37482046e": 10, "76246526e": 10, "27267684e": 10, "06622991e": 10, "53567235e": 10, "27154939e": 10, "75799802e": 10, "02480349e": 10, "40981975e": 10, "39364617e": 10, "09857594e": 10, "05752299e": 10, "43945537e": 10, "06778379e": 10, "01250795e": 10, "chi2": 10, "minim": [11, 12, 14, 15, 25, 26, 35], "mont": 11, "carlo": 11, "process": [11, 13, 23, 27, 38, 43, 46, 50, 52, 54, 55, 56, 57, 58, 59, 60, 61], "weight": [11, 13, 15, 31], "coincid": 11, "fight": 11, "drawback": 11, "multidimension": 11, "distibut": [11, 13], "aim": [11, 31, 34, 53], "pai": [11, 22], "neq": 11, "hspd": 11, "pt_b": 11, "pt_phi": 11, "vchi2_b": 11, "mu_pt_sum": 11, "mc_distribut": 11, "original_fil": 11, "original_tre": 11, "rd_distribut": 11, "target_fil": 11, "target_tre": 11, "original_weight": 11, "len": [11, 13, 15, 31, 37, 41, 42, 48, 61], "kolmogorov": 11, "smirnov": 11, "dim": 11, "ml": [11, 12], "ant": 11, "original_train": 11, "original_test": 11, "target_train": 11, "target_test": 11, "original_weights_train": 11, "original_weights_test": 11, "metrics_util": 11, "ks_2samp_weight": 11, "hist_set": 11, "alpha": [11, 13], "draw_distribut": 11, "new_original_weight": 11, "id": [11, 20, 22, 27, 54], "enumer": [11, 37, 41], "percentil": 11, "hstack": 11, "k": [11, 13, 15, 31, 41, 50, 52, 53, 54], "weights1": 11, "weights2": 11, "agreement": [11, 31], "low": 11, "1000000": 11, "21441": 11, "5203540728277889": 11, "21639364439970188": 11, "4020113592414034": 11, "40466385087324064": 11, "5173107960198898": 11, "21825811940134798": 11, "4065876517414134": 11, "4078260994964574": 11, "5294821734751087": 11, "21236421152740986": 11, "38958749151265654": 11, "3990153228883447": 11, "m_": 11, "w_": [11, 13], "fast": [11, 23, 25, 37, 40], "bring": [11, 54, 59], "disagr": 11, "bins_reweight": 11, "binsreweight": 11, "n_bin": 11, "n_neigh": 11, "bins_weights_test": 11, "predict_weight": 11, "4183458917059325": 11, "11458581625768172": 11, "26841115796356757": 11, "3392269149550772": 11, "inspir": 11, "curs": 11, "decis": [11, 15, 19, 27, 28], "functiion": 11, "reweightlossfunct": 11, "sever": [11, 20, 24, 27, 33, 36, 42, 43, 45, 53, 54, 55, 57, 58, 59], "gbreweight": 11, "250": 11, "min_samples_leaf": 11, "1000": [11, 12, 13, 54], "gb_arg": 11, "subsampl": 11, "gb_weights_test": 11, "035351037636424554": 11, "020934513422663975": 11, "03862763525433732": 11, "03908711997814751": 11, "check_ks_of_express": 11, "col_origin": 11, "engin": [11, 15, 29, 31, 53], "col_target": 11, "w_target": 11, "10376592762570142": 11, "1294872140311744": 11, "028320903503070705": 11, "37522112777531247": 11, "3403787310149172": 11, "02463233121785513": 11, "468195888453519": 11, "3753100691069646": 11, "037459516285583416": 11, "4853418186913017": 11, "3938754045974575": 11, "04487154907792107": 11, "pupros": 11, "ideal": [11, 27], "separ": [11, 16, 18, 20, 25, 32, 41, 42, 47, 54, 56, 57, 58, 59, 60, 61], "concaten": [11, 13, 56, 57], "gb_weight": 11, "new_weight": 11, "xtr": 11, "xt": 11, "ytr": 11, "yt": 11, "wtr": 11, "wt": 11, "train_siz": 11, "sample_weight": 11, "9383051166636476": 11, "9119662410317213": 11, "5315137942416742": 11, "seem": [11, 16, 24, 32, 40, 43, 45, 46, 47, 54, 57, 59, 61], "undistingish": 11, "sensibl": [11, 23], "its": [11, 13, 19, 20, 22, 23, 25, 27, 28, 30, 31, 36, 37, 38, 41, 42, 43, 46, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "hyperparamet": 11, "especi": [11, 15, 20, 25], "yeei": 11, "Or": [11, 14, 19, 27, 61], "taken": [11, 13, 14, 33, 57, 59], "wors": [11, 21, 48, 58], "spot": [11, 24], "topic": [11, 15, 25, 31, 34, 49, 59, 61], "whatev": [11, 19, 37, 41, 42, 56, 57, 58, 59], "yscale": 11, "log": [11, 19, 20, 21, 22, 24, 26, 31, 43, 52, 54, 56, 58, 60], "474": 11, "30249325344704": 11, "70142": 11, "01496046843": 11, "desir": 11, "awar": [11, 24, 27, 33, 35, 53], "hoc": 11, "clip": 11, "disturb": 11, "proce": [11, 24, 53], "determin": [11, 13, 33, 41, 43, 61], "tradeoff": [11, 58], "v": [11, 13, 22, 24, 25, 32, 35, 47, 54, 58, 59], "factor": [11, 38], "tend": [11, 20, 54], "foldingreweight": 11, "Be": [11, 13, 26, 33, 53, 57, 61], "80": [11, 12, 13, 35], "greatli": [11, 14], "reweighter_bas": 11, "n_fold": 11, "half": [11, 60], "dure": [11, 13, 21, 25, 26, 27, 31, 55, 57, 61], "folding_weight": 11, "30688085708695023": 11, "18052275594200184": 11, "3079253167194888": 11, "2991908161695863": 11, "9365769240507527": 11, "8263863727312772": 11, "model": [12, 13, 15, 27, 33, 56], "extract": [12, 14, 54, 58, 59, 61], "immedi": [12, 57], "Of": [12, 15, 32, 36, 37, 42, 45, 47, 58, 59], "poi": 12, "observ": [12, 15, 19, 31, 45, 55, 61], "relev": [12, 14, 15, 31, 53, 60], "detectoreffect": 12, "nuisanc": 12, "chi": [12, 14], "reflect": 12, "retriev": [12, 13, 16, 20, 33, 41, 45, 57], "maximis": [12, 52], "trivial": [12, 26, 33, 35], "numer": [12, 33, 37, 54, 56, 58, 59], "procedur": 12, "statist": [12, 13, 14, 15, 55, 58, 60], "studi": [12, 38], "focu": [12, 15, 35, 56], "unbin": 12, "zfit": [12, 13, 15], "hepstat": [12, 13, 15], "rel": [12, 22, 36, 41, 54, 55, 60], "young": 12, "mention": [12, 19, 27, 53, 55, 59], "roofit": 12, "roostat": 12, "older": [12, 20, 59], "proven": 12, "reliabl": 12, "framework": 12, "bind": [12, 38, 52], "standard": [12, 14, 15, 28, 31, 32, 34, 40, 47, 53, 54, 56, 57, 58, 59, 60], "templat": [12, 35, 48], "pyhf": 12, "recommend": [12, 17, 27, 31, 34, 38, 40, 43, 44, 46, 50, 61], "record": [12, 16, 19, 20, 22, 43, 54, 55, 56, 58, 61], "introduct": [12, 15, 20, 31, 35, 46], "63": [12, 13], "userwarn": [12, 13], "tensorflow": [12, 13, 31], "suppress": [12, 13, 53], "zfit_disable_tf_warn": [12, 13], "datas": 12, "fraction": 12, "ob": [12, 13], "from_panda": 12, "obs_bkg": 12, "bkg_two": 12, "consist": [12, 33, 40, 41, 55, 56, 57, 58], "distinct": [12, 33, 59], "pdf": [12, 13, 26, 38, 54, 55, 56, 61], "lambd": [12, 13], "lambda": [12, 13, 14, 42, 43], "bkg_yield": [12, 13], "5000": [12, 13, 42], "200000": 12, "step_siz": [12, 13], "sig_yield": [12, 13], "bkg_pdf": 12, "exponenti": [12, 13, 44], "set_yield": 12, "sig_pdf": 12, "gauss": [12, 13, 43], "sumpdf": [12, 13], "plot_fit": 12, "ax": [12, 13, 15, 31], "limit1d": [12, 13], "bin_edg": [12, 13], "unstack_x": [12, 13], "binwidth": [12, 13], "linspac": [12, 13, 38], "num": [12, 13], "tf": 12, "sub": [12, 13, 18, 41, 54, 55, 56], "ext_pdf": [12, 13], "royalblu": [12, 13], "zip": [12, 13, 37, 41, 60], "get_model": [12, 13], "forestgreen": [12, 13], "crimson": [12, 13], "ym": [12, 13], "set_titl": [12, 13], "data_rang": [12, 13], "set_xlim": [12, 13], "fontsiz": [12, 13], "sinc": [12, 13, 16, 24, 33, 35, 37, 43, 53, 54, 55, 56, 57, 58, 59, 60, 61], "pre": [12, 24, 46, 61], "sig_nll": 12, "unbinnednl": 12, "807": 12, "advancedfeaturewarn": 12, "unwant": [12, 24], "turn": [12, 15, 24, 30, 31, 52, 53, 54, 55, 56, 57], "off": [12, 13, 24, 28, 36, 37, 42, 43, 52, 56, 60], "advanced_warn": 12, "extended_in_unbinnednl": 12, "extend": [12, 13, 24, 26, 33, 59], "dist_tfp": 12, "param": [12, 13], "yield": [12, 13, 15, 59], "non": [12, 15, 19, 25, 26, 35, 42, 43, 54, 55, 60, 61], "nll": 12, "extendedunbinnednl": [12, 13], "warn_advanced_featur": 12, "minuit": [12, 13], "nloptlbfgsv1": 12, "iminuit": 12, "scipyslsqpv1": 12, "fitresult": 12, "0x7f173bae1090": 12, "constraint": [12, 13, 34, 60], "tol": 12, "001": 12, "converg": [12, 24], "edm": 12, "approx": 12, "fmin": 12, "2e": 12, "06": [12, 56, 58, 59, 61], "275181": 12, "55": 12, "129185": 12, "round": [12, 13, 44], "09692": 12, "0150308": 12, "tail": [12, 53, 56, 57, 58], "functor": 12, "composed_autoparam_1": 12, "composed_autoparam_2": 12, "0x7f173bad71d0": 12, "4e": 12, "05": [12, 13, 55, 56, 57, 58, 59], "2304": 12, "9829": 12, "933": 12, "6044": 12, "107": [12, 56], "336": 12, "912186": 12, "09891": 12, "hess": 12, "hessian": 12, "mino": 12, "1204": 12, "changedfeaturewarn": 12, "changed_warn": 12, "hesse_nam": 12, "current": [12, 15, 18, 19, 22, 24, 25, 26, 27, 31, 38, 40, 41, 43, 50, 51, 53, 54, 55, 56, 57, 58, 59], "minuit_hess": 12, "hesse_np": 12, "futur": [12, 30, 35, 42, 43, 54, 58], "stai": [12, 24], "compat": [12, 15, 46], "wherev": 12, "warn_changed_featur": 12, "1340": 12, "futurewarn": 12, "minuit_mino": 12, "custom": [12, 15, 54], "implementationwith": 12, "1361": 12, "errors_nam": 12, "zfit_error": 12, "82": 12, "064": 12, "065": 12, "0042": 12, "0043": 12, "hypotest": 12, "asymptoticcalcul": 12, "null": [12, 59], "hypothesi": 12, "sig_yield_poi": 12, "tqdm": 12, "auto": [12, 17, 25, 54], "tqdmwarn": 12, "iprogress": 12, "ipywidget": 12, "readthedoc": 12, "io": 12, "en": 12, "user_instal": 12, "autonotebook": 12, "notebook_tqdm": 12, "frequentistcalcul": 12, "construct": [12, 13, 35, 54, 56, 58, 59, 60], "q_": 12, "h_": 12, "pseudo": [12, 43], "repres": [12, 13, 17, 23, 24, 33, 41, 43, 44, 45, 58, 61], "ask": [12, 18, 19, 25, 27, 28, 32, 36, 40, 41, 44, 46, 47, 53, 54, 55, 56, 57, 58, 59, 61], "equat": [12, 13], "z": [12, 14, 36, 37, 40, 50, 54, 56, 57, 58, 59, 61], "phi": [12, 14], "p_0": 12, "poinul": 12, "p_valu": 12, "655763928660626e": 12, "unit": [12, 14, 24, 53, 54], "552091284639857": 12, "fluctuat": 12, "resampl": 12, "compute_sweight": 13, "properti": [13, 15, 28, 32, 40, 43, 44, 45, 47, 54, 59], "explan": [13, 20, 54, 55, 58], "sig_data": 13, "bck_data": 13, "electron": [13, 27], "positron": 13, "p_x": 13, "0x7fc48918c310": 13, "pictur": [13, 19, 22, 25, 54], "inaccuraci": 13, "correctli": [13, 18, 20, 22, 24, 25, 33], "px": [13, 35], "distort": 13, "lost": [13, 31, 49, 54], "n_sig1": 13, "n_bck1": 13, "8000": 13, "2000": 13, "n_sig2": 13, "n_bck2": 13, "first_bin": 13, "second_bin": 13, "121": 13, "bottom": [13, 24, 55], "xtick": 13, "horizontalalign": 13, "verticalalign": 13, "proport": 13, "122": [13, 48, 58], "visa": 13, "versa": [13, 33, 54, 60], "had": [13, 22, 24, 41, 42, 56, 60, 61], "big": [13, 24], "6800": 13, "compens": 13, "At": [13, 24, 28, 53, 54, 60, 61], "role": [13, 23, 35], "plot_with_weight": 13, "karg": 13, "assert": [13, 61], "electon": 13, "edgecolor": 13, "straightforward": 13, "uniqu": [13, 19, 20, 27, 37, 54, 58, 61], "continuo": 13, "channel": [13, 31, 46, 54, 56, 61], "pivk": 13, "2004ty": 13, "popul": [13, 19, 25, 55], "unfold": 13, "lifetim": [13, 38], "reson": 13, "combinatori": 13, "5279": [13, 14], "5100": 13, "5400": 13, "002": 13, "0001": 13, "space": [13, 15, 19, 21, 25, 31, 32, 36, 41, 42, 47, 49, 54, 55, 57, 58, 59, 61], "6000": [13, 56], "signal_pdf": 13, "comb_bkg_pdf": 13, "25000": 13, "50000": 13, "small": [13, 23, 24, 27, 30, 42, 56, 58], "3e5": 13, "extended_sig": 13, "create_extend": 13, "extended_bkg": 13, "backgrond": 13, "nsig_sw": 13, "20000": 13, "np_sig_m_sw": 13, "reshap": 13, "np_sig_t_sw": 13, "nbkg_sw": 13, "150000": 13, "np_bkg_m_sw": 13, "np_bkg_t_sw": 13, "t_cut": 13, "np_m_sw": 13, "np_t_sw": 13, "fig": 13, "set_xlabel": 13, "likelihood": [13, 14, 15, 31], "data_sw": 13, "from_numpi": 13, "nll_sw": 13, "simultan": [13, 25, 37, 41, 56], "anymor": [13, 51], "use_minuit_grad": 13, "result_sw": 13, "118098": 13, "20092": 13, "00202754": 13, "5278": 13, "plot_fit_project": 13, "visual": [13, 60], "set_valu": 13, "get_param": 13, "sum_": 13, "v_": 13, "nj": 13, "f_j": 13, "f_k": 13, "f_n": 13, "x_e": 13, "f_0": 13, "n_0": 13, "discrim": 13, "181e": 13, "0065188": 13, "19334121": 13, "18956193": 13, "12188645": 13, "19607437": 13, "12192696": 13, "009e": 13, "04": 13, "99348316": 13, "80666203": 13, "18956254": 13, "12187685": 13, "19607494": 13, "12191737": 13, "832164835945": 13, "24026987074": 13, "sorter": 13, "argsort": 13, "mathrm": 13, "axhlin": 13, "5600": 13, "lw": [13, 52], "uncorrel": 13, "corrcoef": 13, "031706619360597356": 13, "extra": [13, 19, 24, 43, 46, 58], "scipi": [13, 31], "stat": [13, 57, 58, 59, 61], "expon": 13, "norm": [13, 38], "sig_mass_distr": 13, "bck_mass_distr": 13, "sig_mass": 13, "rv": 13, "bck_mass": 13, "sig_p": 13, "bck_p": 13, "priori": 13, "gaussian": 13, "met": [13, 36, 43, 45], "me": [13, 19, 30, 36, 41, 53], "bck": 13, "0x7fc47c1f0590": 13, "thu": [13, 19, 20, 21, 28, 38, 43, 51, 56], "prob": 13, "div": 13, "0x7fc47c3d4cd0": 13, "goal": [13, 23, 24, 55], "hist_conf": 13, "34495151496553955": 13, "satisfi": [13, 27], "00038079437364165185": 13, "0015770204104652037": 13, "obvious": [13, 48], "p_": 13, "pb": 13, "p_b": 13, "sw_": 13, "wb": 13, "sw_b": 13, "formula": [13, 59], "nbsphinx": 13, "main": [13, 15, 22, 23, 24, 26, 42, 43, 59], "unknown": [13, 33, 54], "mathemat": [13, 43], "amount": [13, 37, 57], "1_": 13, "iff": 13, "li": [13, 59], "sum_x": 13, "guarante": [13, 15, 35, 37, 54, 55], "deviat": 13, "a_1": 13, "a_2": 13, "rewrit": [13, 35, 42, 43], "system": [13, 14, 16, 17, 22, 25, 27, 30, 31, 40, 46, 54, 55, 60], "_x": 13, "bb": 13, "sb": 13, "ss": 13, "coeffici": 13, "nb": 13, "matrix": 13, "mathbb": 13, "apart": [13, 55], "bit": [13, 17, 24, 54, 56, 58, 59], "isn": [13, 19, 27, 36, 40, 41, 54, 55, 56, 58, 61], "uniform": [13, 15, 31, 43], "leq": 13, "lagrangian": 13, "mathcal": 13, "lambda_1": 13, "lambda_2": 13, "assupt": 13, "abolut": 13, "indent": [13, 36, 41, 42], "interv": 13, "finali": 13, "helper": 14, "lookup": 14, "decaylanguag": 14, "o": [14, 17, 39, 40, 43, 52, 54, 55, 58, 59, 60], "overview": [14, 28, 46], "notabl": 14, "numexpr": 14, "usag": [14, 32, 47, 53, 54, 58, 59], "from_styl": 14, "to_styl": 14, "from_root": 14, "tmath": 14, "x_px": 14, "x_py": 14, "x_pz": 14, "pow": 14, "unnamedconst": 14, "to_numexpr": 14, "to_root": 14, "decai": [14, 38], "hold": [14, 19, 22, 27, 28, 37, 54, 55, 56], "piplu": 14, "from_pdgid": 14, "211": 14, "139": 14, "57039": 14, "5284e": 14, "pi": [14, 41, 43, 45, 56], "serv": [14, 15, 42, 53], "structur": [14, 21, 31, 34, 35, 38, 41, 54, 55, 57, 61], "neutral": 14, "hadron": [14, 38], "findal": 14, "pdgid": 14, "has_bottom": 14, "b0": 14, "511": 14, "mev": [14, 38], "513": 14, "5324": 14, "5747": 14, "515": 14, "5739": 14, "531": 14, "5366": 14, "92": [14, 35], "533": 14, "5415": 14, "s2": 14, "5840": 14, "535": [14, 59], "5839": 14, "551": 14, "9398": 14, "upsilon": 14, "553": 14, "9460": 14, "b2": 14, "1p": [14, 53], "555": 14, "9912": 14, "5122": 14, "5619": 14, "xi": 14, "5232": 14, "5791": 14, "10551": 14, "9859": 14, "10553": 14, "9899": 14, "b1": 14, "20553": 14, "9892": 14, "20555": 14, "10163": 14, "100553": 14, "10023": 14, "2p": 14, "100555": 14, "10268": 14, "110551": 14, "10232": 14, "110553": 14, "10259": 14, "120553": 14, "10255": 14, "200553": 14, "10355": 14, "3p": 14, "200555": 14, "10524": 14, "220553": 14, "10513": 14, "300553": 14, "10579": 14, "10860": 14, "9000553": 14, "10885": 14, "11020": 14, "9010553": 14, "11000": 14, "hardcod": [14, 35], "constant": [14, 57], "neat": [14, 41], "furthermor": [14, 35], "c_light": 14, "299": [14, 58, 60], "792458": 14, "1250": 14, "manipul": [14, 40, 43, 44, 45], "quantiti": [14, 19, 41], "liter": [14, 41, 42, 44, 48, 54], "coordin": [14, 40, 41], "field": [14, 24, 27, 34, 35, 56, 58, 59], "vec1": 14, "momentumnumpy4d": 14, "rho": 14, "f8": 14, "tau": 14, "theta": 14, "1035868415601453": 14, "cartesian": 14, "4d": 14, "vectorobject4d": 14, "lectur": [15, 33, 35], "schedul": 15, "knowledg": [15, 35], "lock": 15, "markdown": [15, 31, 34], "pack": [15, 31], "unpack": [15, 23, 25, 31], "context": [15, 31, 40, 54], "decor": [15, 19, 24, 31], "factori": [15, 31], "catch": [15, 25, 31, 57], "pitfal": 15, "execut": [15, 20, 26, 31, 33, 38, 43, 46, 53, 56, 57, 58, 59, 60, 61], "dunder": [15, 31], "callabl": [15, 31], "danger": [15, 28, 31, 36, 53, 55], "zone": [15, 31], "recap": [15, 19, 31], "todo": 15, "diagram": [15, 54, 55, 57], "extens": [15, 31, 46, 54, 55, 56, 58, 59, 61], "impliment": [15, 31], "fold": [15, 31], "scipt": [15, 31], "argpars": [15, 31, 34, 61], "dalitz": 15, "prepar": [15, 31, 32, 47, 54], "regular": [15, 55, 59], "multi": [15, 35, 41, 48], "arithmet": [15, 31, 53], "download": [15, 22, 23, 24, 25, 26, 31, 54, 56, 61], "gb": [15, 31, 53], "tune": [15, 31], "infer": [15, 31], "scope": [15, 31], "sweight": [15, 31], "cours": [15, 31, 32, 33, 34, 35, 36, 37, 42, 44, 45, 47, 49, 54, 58, 61], "beforehand": [15, 42], "appi": [15, 31], "deriv": [15, 28, 31, 60], "option": [15, 16, 19, 22, 24, 28, 31, 32, 36, 38, 42, 43, 47, 53, 54, 55, 56, 58, 59, 60, 61], "linear": 15, "variat": [15, 24, 54, 58], "uncorrelated": 15, "conclus": [15, 16, 19, 20, 31], "formul": [15, 31], "hepunit": [15, 31], "vector": [15, 31, 41], "repetit": [15, 57, 60], "simpler": [15, 37, 53, 57, 60], "columnar": 15, "excel": [15, 16, 28, 37, 40, 41], "sophist": 15, "art": 15, "de": 15, "bia": 15, "intro": 15, "parametr": 15, "harder": [15, 42], "gradientboostingreweight": 15, "repeatedli": 15, "ecosystem": 15, "Not": [15, 18, 36, 41, 60], "smaller": [15, 23, 25, 53], "benefit": [16, 61], "ll": [16, 19, 20, 22, 28, 32, 40, 41, 42, 44, 45, 47, 48, 54, 55, 56, 57, 58, 59, 60], "explor": [16, 22, 30, 31, 34, 54, 55, 59, 60], "collabor": [16, 19, 20, 22, 23, 25, 27, 28, 30, 31], "pile": [16, 54], "jorg": 16, "cham": 16, "phdcomic": 16, "ridicul": 16, "processor": 16, "microsoft": [16, 58], "googl": [16, 40, 53, 59], "doc": [16, 42], "histori": [16, 18, 19, 23, 24, 27, 30, 31, 32, 46, 47, 57, 58], "libreoffic": [16, 58], "displai": [16, 20, 22, 31, 53, 54, 55, 56, 57, 59], "tape": 16, "rewind": 16, "latest": [16, 23, 26], "conflict": [16, 18, 24, 30, 31, 61], "decid": [16, 24, 28, 32, 47, 54, 57, 58, 61], "metadata": 16, "kept": [16, 26], "sync": [16, 23, 30, 31], "across": [16, 23, 46, 54, 61], "facilit": [16, 24], "among": [16, 31, 49], "rc": 16, "cv": 16, "subvers": 16, "earli": [16, 59, 60], "1980": [16, 60], "larg": [16, 19, 20, 24, 25, 30, 34, 37, 42, 55, 56, 60], "compani": [16, 30, 56], "legaci": 16, "modern": [16, 59, 60], "mercuri": 16, "central": [16, 22], "host": [16, 17, 22, 24, 27], "concurr": 16, "imagin": [16, 20, 56, 58, 61], "draft": [16, 55, 59], "paragraph": [16, 23], "ruin": 16, "co": 16, "writer": [16, 58], "accept": [16, 28, 30, 31, 32, 34, 42, 47, 53, 55, 58], "unlimit": 16, "undo": [16, 18, 19, 20], "2016": [16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 54, 55, 56, 57, 58, 59, 60], "2017": [16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 46, 54, 55, 56, 57, 58, 59, 60], "softwar": [16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 34, 35, 44, 46, 49, 54, 55, 56, 57, 58, 59, 60, 61], "foundat": [16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 49, 54, 55, 56, 57, 58, 59, 60], "endright": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 54, 55, 56, 57, 58, 59, 60], "configur": [17, 18, 19, 21, 22, 24, 26, 53, 54, 55, 60], "global": [17, 19, 41, 42, 44, 48, 59], "flag": [17, 18, 19, 22, 32, 38, 42, 47, 54, 55, 56, 58, 59, 60], "verb": [17, 59], "dracula": [17, 18, 19, 20, 25], "laptop": [17, 22, 24, 25, 51, 56], "config": [17, 31], "vlad": [17, 19, 20, 22, 23, 25], "tran": [17, 19, 20], "sylvan": [17, 19, 20], "ia": [17, 19, 20], "ui": 17, "subsequ": [17, 24, 61], "push": [17, 22, 23, 25, 26, 27, 28, 30, 31], "bitbucket": [17, 22], "gitlab": [17, 23, 24, 25, 30, 31, 43], "hit": [17, 46, 54], "keyboard": [17, 54, 56, 58, 60], "encod": [17, 37], "charact": [17, 19, 20, 24, 36, 37, 46, 48, 53, 54, 55, 56, 57, 58, 59, 60], "hear": 17, "newlin": [17, 54, 59], "unexpect": [17, 33, 35, 41, 61], "recogn": [17, 27, 59], "autocrlf": 17, "linux": [17, 31, 46, 54, 55, 61], "window": [17, 23, 31, 38, 43, 52, 54, 55, 57, 60], "favorit": [17, 19, 20, 25, 61], "atom": [17, 24, 25, 56, 58, 59], "nano": [17, 18, 19, 20, 21, 23, 25, 53, 55, 58], "bbedit": 17, "mac": [17, 54, 55], "sublim": 17, "subl": 17, "win": 17, "x86": 17, "sublime_text": 17, "ex": [17, 61], "notepad": [17, 55], "multiinst": 17, "notabbar": 17, "nosess": 17, "noplugin": 17, "kate": 17, "gedit": [17, 53, 55], "scratch": [17, 24, 28], "emac": [17, 53, 54, 55], "vim": [17, 53, 55], "reconfigur": 17, "haven": [17, 19, 20, 55, 57, 59], "esc": [17, 33], "q": [17, 19, 52, 53, 54, 56, 61], "ran": [17, 26, 31, 43, 51, 58, 59, 61], "directori": [18, 19, 20, 21, 24, 26, 28, 31, 40, 43, 50, 51, 53, 56, 57, 58, 59, 60, 61], "mkdir": [18, 19, 21, 22, 24, 26, 40, 43, 55, 57, 60, 61], "planet": [18, 19, 20, 22, 23, 25, 26, 54, 55, 59], "cd": [18, 19, 20, 22, 23, 24, 26, 31, 33, 54, 55, 56, 57, 58, 59, 60, 61], "init": [18, 19, 22, 31], "content": [18, 19, 20, 21, 22, 24, 25, 28, 36, 37, 41, 53, 54, 55, 56, 57, 58, 59, 61], "hidden": [18, 54], "delet": [18, 19, 25, 26, 38, 40, 41, 43, 54, 55, 56, 61], "master": [18, 19, 20, 21, 22, 23, 24, 25, 35, 59, 61], "moon": [18, 19, 20, 25], "despit": [18, 60], "wolfman": [18, 19, 20, 25, 54], "concern": [18, 19, 20, 55, 61], "he": [18, 25], "sequenc": [18, 41, 55, 57, 59, 61], "interfer": 18, "outer": [18, 57], "inner": [18, 57], "fatal": 18, "parent": [18, 35, 54, 55], "touch": [18, 21, 36, 54, 55, 60, 61], "phobo": 18, "deimo": 18, "titan": 18, "stage": [18, 19, 20, 23, 24, 25, 26, 27, 56, 57, 58], "similarli": [18, 45, 54, 57], "gitignor": [18, 19, 21], "texteditor": 18, "cat": [18, 19, 20, 21, 23, 25, 53, 56, 57, 58, 59, 61], "afterward": [18, 22, 31], "recov": [18, 20, 23, 55], "folder": [18, 21, 23, 40, 53, 54, 55, 56], "subdirectori": [18, 53, 54, 55, 59], "rm": [18, 19, 25, 55, 56, 57, 60, 61], "rf": [18, 61], "pwd": [18, 19, 54, 55], "cycl": [19, 54, 60], "workflow": [19, 20, 23, 31, 58, 60], "descript": [19, 24, 26, 32, 47, 53, 54, 56, 60], "mar": [19, 20, 22, 25], "refresh": [19, 23, 31, 46, 49], "unix": [19, 31, 54, 55, 56, 58, 59, 60], "cold": [19, 20, 25, 53], "dry": [19, 20, 25, 57, 61], "my": [19, 20, 24, 25, 26, 27, 33, 36, 38, 43, 48, 55, 59, 61], "untrack": [19, 21, 24], "cach": 19, "unstag": [19, 20], "hasn": [19, 57, 59], "f22b25e": [19, 20], "insert": [19, 23, 24, 25, 41, 48, 58, 59], "100644": [19, 20, 23, 25], "perman": [19, 50], "launch": [19, 38, 43], "brief": 19, "blank": [19, 55, 56, 58], "f22b25e3233b4645dabd0d81e651fe074bd8e73b": [19, 20], "aug": [19, 20], "2013": [19, 20, 29, 54, 58, 59], "0400": [19, 20], "revers": [19, 37, 54, 57], "chronolog": [19, 55], "filesystem": [19, 54], "clutter": [19, 54], "accident": [19, 20, 21], "checkout": [19, 20, 22, 25], "discard": [19, 20, 43], "phrase": [19, 59], "nor": [19, 33, 41, 54], "df0654a": [19, 20], "315bf3a": [19, 20], "cryptic": [19, 59, 60], "seri": [19, 31, 54, 57, 58], "piec": [19, 25, 42, 45, 54, 56, 57], "exactli": [19, 20, 23, 24, 27, 32, 35, 37, 42, 44, 45, 47, 51, 54, 56, 57, 58, 59], "fourth": 19, "whoop": [19, 56], "didn": [19, 23, 32, 40, 41, 47, 54, 55, 60, 61], "34961b1": 19, "insist": [19, 58], "captur": [19, 42, 58, 61], "batch": [19, 46], "citat": [19, 30, 31], "supervisor": [19, 58, 60], "thesi": [19, 55, 59], "bibliographi": 19, "changeset": 19, "snapshot": [19, 24], "life": [19, 24, 28, 43, 55, 60], "prompt": [19, 50, 54, 55, 56, 57, 58], "gather": [19, 22, 43], "incomplet": [19, 24], "makeup": 19, "walk": 19, "watch": 19, "mummi": [19, 20, 25, 54], "appreci": [19, 20, 25], "lack": [19, 20, 25], "humid": [19, 20, 25], "b36abfd": [19, 20], "climat": 19, "005937f": 19, "005937fbe2a98fb83f0ade869025dc2636b4dad5": 19, "34961b159c27df3b475cfe4415d94a6d1fcd064d": [19, 20], "dif": 19, "docum": 19, "wise": 19, "coars": 19, "screen": [19, 20, 24, 31, 49, 53, 55, 56, 57, 60], "pager": 19, "press": [19, 33, 51, 53, 54, 55, 56, 57, 60], "some_word": 19, "onelin": [19, 24], "graph": [19, 24, 58, 60, 61], "gitkeep": [19, 59], "unlik": [19, 41], "sole": 19, "redund": [19, 54], "myfil": 19, "venu": [19, 20], "thought": [19, 59], "friend": [19, 36, 40, 46, 53, 59, 61], "definit": [19, 42, 61], "plan": 19, "cc127c2": 19, "committ": 19, "twice": [19, 40, 54, 56], "bio": 19, "frank": 19, "stein": 19, "franki": 19, "monster": [19, 61], "4162a51": 19, "4162a51b273ba799a9d395dd70c45d96dba4e2ff": 19, "aaa3271e5e26f75f11892718e83a3e2743fab8ea": 19, "restor": 20, "saw": [20, 41, 45, 53, 54, 57, 59, 61], "progress": [20, 24, 26, 30, 61], "0848c8d": 20, "notat": [20, 41, 57], "pronounc": 20, "minu": [20, 36, 43], "123": [20, 34, 40, 48, 57], "digit": [20, 25, 27, 52, 58, 59], "letter": [20, 25, 37, 55, 56, 57, 58, 59, 60], "annoi": [20, 24, 41, 42, 51], "overwrit": [20, 25, 55, 57], "manufactur": 20, "oxygen": 20, "further": [20, 24, 28, 40, 54, 55, 60], "reset": [20, 24, 56], "revert": 20, "detach": [20, 51, 52], "shouldn": [20, 57], "reattach": 20, "rid": [20, 24, 25, 55], "cartoon": 20, "form": [20, 21, 41, 54, 59, 61], "simplifi": 20, "carefulli": 20, "dash": [20, 43, 54, 55], "organ": [20, 28, 55, 56, 57, 60], "imposs": [20, 33, 59], "backward": [20, 46, 53], "forward": [20, 23, 25, 53, 56], "jennif": 20, "she": [20, 27, 54, 55, 56, 57, 58, 59, 60], "week": [20, 22, 60], "modif": [20, 24, 54, 61], "morn": [20, 56], "broke": 20, "spent": [20, 26, 32, 47], "1hr": 20, "luck": [20, 24], "her": [20, 23, 25, 27, 54, 55, 56, 57, 58, 60], "data_crunch": 20, "realiz": [20, 24, 38, 43, 55, 57], "group": [20, 24, 34, 41, 46, 53, 54, 57], "________": 20, "0b1d055": 20, "love": 20, "hot": [20, 36], "unsuit": 20, "wrote": [20, 21, 27, 53, 57, 59, 60], "summar": 20, "month": [20, 29, 46, 54, 60], "ago": [20, 22], "narrow": 20, "backup": [21, 23, 54, 55, 56], "intermedi": [21, 44, 56], "dummi": [21, 25], "dat": [21, 53, 55, 56, 57, 58, 59], "wast": [21, 61], "disk": [21, 31, 49, 54, 55], "distract": 21, "whose": [21, 24, 41, 42, 50, 53, 57, 59], "cleaner": 21, "wouldn": [21, 32, 47, 57], "bonu": [21, 60, 61], "path": [21, 26, 38, 43, 50, 53, 54, 55, 60, 61], "subfold": 21, "handi": [21, 23, 24, 35], "exclam": [21, 46], "previous": [21, 24, 40, 57], "exclud": [21, 41, 56, 58], "entri": [21, 35, 38, 54], "gp": 21, "info": [21, 24, 54, 61], "shortest": [21, 56], "append": [21, 25, 33, 41, 42, 52, 53, 54, 56, 57, 61], "negat": [21, 36], "log_01": 21, "log_02": 21, "log_03": 21, "etc": [21, 25, 33, 35, 53, 57, 58, 61], "neighbor": [21, 27], "resid": [21, 27], "log_": 21, "prerequisit": [22, 60, 61], "ssh": [22, 23, 24, 25, 50, 51, 52], "runn": 22, "7999": [22, 23, 24, 25], "santa": 22, "clau": 22, "machineri": 22, "hub": [22, 27], "programm": [22, 54, 55, 56, 59], "servic": [22, 24, 26], "perspect": [22, 28], "websit": [22, 23, 26, 30, 31, 59], "slightli": [22, 28, 54, 57, 59], "sign": [22, 26, 54, 57], "jira": 22, "click": [22, 23, 24, 26, 31, 55, 60], "icon": [22, 23, 60], "extern": [22, 34, 43, 57, 61], "soon": [22, 25, 27, 33, 46, 51, 53, 54], "url": [22, 24], "equival": [22, 24, 35, 36, 41, 51, 53, 54, 57, 58], "bare": 22, "krb5": 22, "browser": [22, 23, 24], "fetch": [22, 23, 24, 25], "nicknam": 22, "choic": [22, 23, 28, 43, 59], "delta": [22, 23, 24, 25], "compress": [22, 23, 24, 25, 38], "821": 22, "byte": [22, 23, 24, 25, 38, 54, 55, 59], "synonym": 22, "upstream": [22, 24, 25], "fetch_head": [22, 23, 25], "synchron": 22, "gui": [22, 55, 60], "brows": [22, 43], "hover": 22, "button": [22, 24, 31, 54], "clipboard": 22, "green": [22, 24], "shade": 22, "id1": 22, "id2": 22, "a3bf1e5": 22, "041e637": 22, "timestamp": [22, 54], "repo": [22, 23], "hour": [22, 51, 57, 59, 60], "exact": 22, "interact": [22, 32, 33, 38, 46, 47, 55, 58, 59, 60, 61], "typo": [22, 58], "broken": [22, 27, 38, 43], "pair": [23, 37], "owner": [23, 24, 53, 54], "carri": [23, 25], "partner": [23, 25], "anyon": [23, 50, 61], "desktop": [23, 54, 55, 60], "pluto": 23, "306": 23, "9272da5": 23, "29aba7c": [23, 25], "upload": 23, "massiv": 23, "light": 23, "respositori": [23, 24], "benifit": 23, "contributor": [24, 28, 31], "naiv": 24, "adopt": [24, 36], "famou": 24, "incorpor": [24, 28], "builtin": 24, "leverag": [24, 27], "platform": 24, "starter": 24, "kit": 24, "destin": [24, 55], "test_merge_request": 24, "learnt": [24, 41], "your_cern_usernam": 24, "verifi": 24, "dberzano": [24, 43], "pend": [24, 26], "nuclear": 24, "mess": 24, "seamlessli": 24, "destroi": 24, "fxd": 24, "somehow": [24, 34, 35, 45, 55], "bunch": [24, 28, 58], "firstnam": 24, "lastnam": 24, "verbos": [24, 32, 33, 40, 47, 54, 56], "shorter": [24, 43, 56], "concis": 24, "ado": 24, "316": 24, "kib": 24, "protect": [24, 28, 55], "hook": 24, "declin": 24, "ref": [24, 25], "attempt": [24, 55], "forbidden": 24, "764051d": 24, "256c9b6": 24, "tag": 24, "said": [24, 48, 59], "_": [24, 26, 39, 42, 43, 48, 55], "graphic": [24, 55, 59, 60], "polici": 24, "sit": [24, 25, 58], "relax": 24, "notifi": 24, "somebodi": 24, "sequenti": [24, 26, 37, 41, 61], "repli": 24, "proceed": 24, "certifi": 24, "certif": 24, "d09c134": 24, "359": 24, "voil\u00e0": 24, "direct": [24, 58, 61], "static": [24, 33], "simplic": 24, "disappear": [24, 55], "essenc": [24, 37], "scrutini": 24, "abil": [24, 25, 33, 43], "happi": [24, 27, 55], "orang": [24, 48], "overli": 24, "truli": 24, "minor": [24, 51, 54, 61], "major": [24, 46], "buggi": 24, "releas": [24, 28, 46], "wine": 24, "tast": [24, 53], "rush": 24, "pickiest": 24, "controversi": 24, "bear": [24, 56, 58, 59], "mind": [24, 28, 41, 53], "rampag": 24, "prevent": [24, 31, 43, 54, 56, 59, 61], "ensur": [24, 54, 61], "toe": 25, "lab": [25, 27, 31, 54, 56, 60], "overlap": 25, "5ae9631": 25, "352": 25, "dabb4c8": 25, "07ebc69": 25, "counterpart": [25, 33], "detect": [25, 61], "trampl": 25, "affect": [25, 38, 41, 43, 61], "dabb4c8c450e8475aee9b14b4383acc99f42af1d": 25, "preced": [25, 36, 38, 48, 57], "reconcil": 25, "conclud": [25, 53], "2abf2b1": 25, "697": 25, "cost": 25, "effort": [25, 61], "technic": [25, 41, 59], "segreg": 25, "alter": [25, 42], "strategi": [25, 54], "clarifi": 25, "task": [25, 26, 59, 61], "stylist": [25, 40], "churn": 25, "establish": 25, "convent": [25, 26, 31, 34, 36, 41, 54, 55, 56], "govern": 25, "htmltidi": 25, "perltidi": 25, "rubocop": 25, "enforc": 25, "instructor": 25, "textual": 25, "imag": [25, 26, 44, 55, 59], "martian": 25, "jpg": 25, "binari": [25, 59], "dev": 25, "urandom": 25, "lh": [25, 54], "rw": 25, "57095": 25, "0k": 25, "kilobyt": 25, "8e4115c": 25, "meantim": 25, "sky": 25, "familiar": [25, 28, 34, 60], "6a67967": 25, "439dc8c": 25, "439dc8c08869c342438f6dc4a2b615b05b93c76": 25, "439dc8c0": 25, "21032c3": 25, "da21b34": 25, "success": [25, 53, 56], "mv": [25, 55], "94ae08c": 25, "celebr": 25, "beer": [25, 53], "afk": 25, "blindli": 25, "pipelin": [26, 31, 57, 58, 59, 61], "artefact": 26, "job": [26, 56, 60, 61], "deploi": 26, "physicist": [26, 40], "analys": [26, 34, 38, 56, 61], "travi": 26, "circleci": 26, "appveyor": 26, "yml": [26, 31], "interconnect": 26, "my_first_job": 26, "registri": 26, "worker": 26, "cc7": 26, "docker": 26, "offici": [26, 30, 40], "cento": 26, "sidebar": 26, "runner": 26, "enabl": [26, 32, 47, 54], "minut": [26, 27, 60], "prior": 26, "scroll": [26, 35, 53, 57], "examin": [26, 56, 57, 61], "dai": [26, 28, 30, 34, 45, 51, 54, 60], "compil": [26, 46], "first_stag": 26, "second_stag": 26, "artifact": [26, 59], "make_plot": 26, "continuumio": 26, "anaconda3": 26, "before_script": 26, "backend": [26, 38], "agg": [26, 38], "matplotlibrc": 26, "make_docu": 26, "yum": [26, 36], "texliv": 26, "ghostscript": 26, "latexmk": 26, "my_docu": 26, "tex": 26, "successfulli": 26, "debug": [26, 42, 43, 57, 58, 61], "difficult": [26, 35], "interpret": [26, 33, 38, 43, 46, 53, 54, 55, 57, 59, 61], "resourc": [26, 31, 40, 60, 61], "cvmf": [26, 46, 61], "persist": [26, 31, 32, 46, 47, 49], "opposit": 27, "john": 27, "wilbank": 27, "todai": [27, 59], "scientist": [27, 28, 29, 54], "depart": [27, 60], "analyz": [27, 55, 57], "grow": [27, 61], "journal": [27, 29], "send": [27, 53, 54, 56, 58, 60], "anonym": 27, "resubmit": 27, "eventu": 27, "onlin": [27, 29, 51, 54], "paywal": 27, "institut": [27, 28], "figshar": 27, "zenodo": 27, "doi": 27, "dryad": 27, "arxiv": [27, 29], "preprint": 27, "invit": 27, "peer": 27, "research": 27, "acceler": 27, "wide": [27, 34, 60], "cite": [27, 29], "aspect": 27, "book": [27, 59], "dilig": 27, "shareabl": 27, "conceptu": 27, "stamp": 27, "intent": [27, 43], "tie": 27, "rational": 27, "intellectu": [27, 28], "spring": 27, "recover": 27, "archiv": 27, "perpetu": 27, "citabl": 27, "reproduc": [27, 58, 60, 61], "labmat": 27, "surf": 27, "internet": [27, 34], "coupl": [27, 54, 60], "homepag": 27, "scientif": [27, 34, 60], "proper": [28, 35], "social": [28, 30, 31], "manuscript": 28, "clearli": [28, 35, 57], "elig": 28, "sue": 28, "infring": 28, "license": 28, "choosealicens": 28, "suit": 28, "consider": [28, 37], "patent": 28, "licenc": 28, "wade": 28, "jargon": 28, "initit": 28, "articl": [28, 29], "ground": 28, "constitut": 28, "counsel": 28, "guidelin": 28, "doubt": 28, "hesit": 28, "trustworthi": 28, "advic": 28, "chosen": [28, 59], "unilater": 28, "daili": 28, "basi": 28, "workshop": [28, 55], "talk": [28, 43, 46], "cpython": 28, "etherpad": 28, "gpl": 28, "famili": 28, "creation": [28, 41, 59, 61], "lawyer": 28, "greg": 29, "wilson": 29, "product": [29, 57, 59, 60], "scienc": [29, 30, 31, 43], "nov": [29, 61], "dec": [29, 46], "2006": 29, "1307": 29, "5448": 29, "juli": [29, 54], "novemb": [29, 54], "decemb": [29, 54], "year": [29, 40, 54, 59], "eprinttyp": 29, "eprint": 29, "scm": 30, "design": [30, 54, 56, 60], "speed": [30, 59], "benevol": 30, "convinc": 30, "superior": 30, "hope": 30, "diari": 30, "amend": [30, 31], "retir": [30, 31], "side": [30, 31, 33, 41, 45, 59], "ci": [30, 31], "analyst": 31, "taught": 31, "student": [31, 60], "maco": [31, 46], "shut": 31, "mambaforg": 31, "mamba": 31, "conda": [31, 38, 46, 61], "interchang": [31, 54], "forg": [31, 46], "accord": [31, 54, 55], "auto_activate_bas": 31, "jupyterlab": 31, "ipython": [31, 32, 33, 38, 41, 43, 45, 46, 47], "package_nam": 31, "webpag": [31, 49], "loop": [31, 34, 37, 42, 49, 58, 59, 60], "truthi": [31, 34], "pypi": [31, 34], "virtual": [31, 34, 38, 46], "glanc": [31, 34], "nell": [31, 55, 57, 58, 59], "pipe": [31, 49, 58, 59, 60], "filter": [31, 41, 42, 43, 59, 60], "tmux": [31, 49, 51], "lxplu": [31, 38, 43, 46, 49, 51, 52, 54, 60, 61], "kerbero": [31, 49, 51], "token": [31, 49, 51], "keytab": [31, 49], "k5reauth": [31, 49], "redirect": [31, 49, 56, 57, 61], "secur": [31, 49, 54], "viewer": [31, 42, 49], "wire": [31, 49], "bandit": [31, 49], "wargam": [31, 49], "snakemak": 31, "preserv": 31, "pizzaiolo": [32, 47], "make_pizza": [32, 47], "delici": [32, 47, 53], "pizza": [32, 36, 47, 54, 55], "sleep": [32, 40, 47, 51], "chees": [32, 36, 47], "oliv": [32, 36, 47], "filenam": [32, 38, 47, 54, 55, 56, 57, 58, 59, 60], "python2": [32, 43, 47], "dynload": [32, 43, 47], "broccoli": [32, 47], "argv": [32, 47], "whilst": [32, 41, 46, 47], "awesom": [32, 47], "super": [32, 35, 41, 47], "cool": [32, 41, 47], "behaviour": [32, 44, 47, 53, 58, 61], "topping1": [32, 47], "topping2": [32, 47], "hood": [32, 47], "parser": [32, 47, 61], "argumentpars": [32, 47, 61], "add_argu": [32, 47, 61], "narg": [32, 47], "store_tru": [32, 47], "parse_arg": [32, 47, 61], "shorthand": [32, 41, 45, 47], "woah": [32, 46, 47], "alia": [32, 33, 43, 47, 50], "margherita": [32, 47], "tomato": [32, 47], "sauc": [32, 47], "buffalo": [32, 47], "mozzarella": [32, 47], "cleanli": [32, 47], "fundament": [33, 35, 45], "shift": 33, "everythin": 33, "kernel": 33, "timeit": 33, "bool": 33, "vice": [33, 54, 60], "wrap": [33, 41, 48], "e2": 33, "strongli": [33, 46, 50, 54], "oppos": 33, "weakli": 33, "surpris": [33, 56], "mix_str_int": 33, "unsupport": [33, 54], "operand": 33, "mix_str_int2": 33, "strict": 33, "convers": 33, "int_plus_float": 33, "boolean": [33, 36], "principl": [33, 57], "hash": [33, 37], "list1": 33, "Being": 33, "jona": 33, "eschl": 33, "00001": 33, "mayou36": 33, "nation": 33, "accomplish": [33, 41, 52], "hair_color": 33, "frozendict": 33, "frozenset": 33, "tuple1": 33, "tuple_from_list": 33, "list2": 33, "tuple2": 33, "list3": 33, "neither": 33, "mutat": [33, 41], "surpriz": 33, "list_a": 33, "list_b": 33, "spam": 33, "happend": 33, "list_c": 33, "pretti": [33, 36, 41, 43], "nope": 33, "obj_to_return": 33, "broad": 34, "rich": [34, 43], "concentr": 34, "stuff": [34, 38, 41, 42, 43], "ntupl": 34, "believ": 34, "superb": 34, "abc": [34, 42], "oop": [35, 46], "paradigm": 35, "java": [35, 41], "anywai": [35, 43], "ahead": 35, "momenta": 35, "pi1": 35, "pi1_px": 35, "pi1_pi": 35, "pi1_pz": 35, "pi1_": 35, "calc_mass_simpl": 35, "pz": 35, "73618495495704": 35, "alright": 35, "stick": [35, 48, 55], "calc_mass": 35, "critic": 35, "docstr": [35, 42], "formal": 35, "belong": [35, 54], "trial": 35, "blueprint": 35, "make_particl": 35, "e1": 35, "234227": 35, "5113475212892835": 35, "picki": 35, "initialize_particl": 35, "particle1": 35, "284271247461902": 35, "perfect": [35, 42], "feed": [35, 53, 56], "constructor": 35, "acces": 35, "dot": [35, 43, 45, 55, 58], "simpleparticl": 35, "initialis": 35, "16079783099616": 35, "addabl": 35, "new_px": 35, "new_pi": 35, "new_pz": 35, "new_": 35, "particle2": 35, "new_particl": 35, "overtak": 35, "verboseparticl": 35, "momentum_text": 35, "composit": 35, "getter": 35, "setter": 35, "stateless": [35, 42], "classmethod": 35, "staticmethod": 35, "fledg": 35, "mandatori": [35, 48, 54], "asset": 35, "bugfre": 35, "codebas": 35, "sidenot": 35, "isinst": 35, "betterparticl": 35, "superpow": 35, "pineappl": 36, "pepperoni": 36, "dog": 36, "amaz": [36, 48], "weird": 36, "duh": 36, "ternari": 36, "succinct": 36, "impair": 36, "truth": 36, "dude": 36, "reassign": 36, "pointless": 36, "inequ": 36, "magnitud": [36, 41, 44], "parenthes": [36, 41, 42], "hero": [36, 40], "thor": [36, 40, 42], "stdin": [36, 37, 41, 42, 56], "nameerror": [36, 42], "dive": 36, "underscor": [36, 42, 43, 44, 45, 55], "dir": [36, 43, 44, 45, 53, 54], "__contains__": 36, "promis": 36, "iron": [36, 59], "man": [36, 53, 54, 59], "likewis": [36, 54], "placehold": [36, 48], "not_cheesi": 36, "blast": 36, "forev": [36, 55, 59], "jack": 36, "dull": 36, "boi": 36, "stuck": [36, 40], "ctrl": [36, 46, 50, 51, 52, 53, 55, 56, 57, 58], "map": [37, 42], "the_list": 37, "wherea": [37, 41, 43, 57], "sin": [37, 41, 43, 45, 46], "dict_kei": 37, "dict_valu": 37, "unord": [37, 42], "th": [37, 46], "flawlessli": 37, "256": 37, "3125": 37, "dd": 37, "unhash": 37, "trade": 37, "__hash__": 37, "8411828025894108412": 37, "my_dict": 37, "my_kei": 37, "problemat": 37, "worri": [37, 48, 56, 57], "viewitem": 37, "viewkei": 37, "viewvalu": 37, "alphabet": [37, 54, 55, 56], "ascii_lowercas": 37, "abcdefghijklmnopqrstuvwxyz": 37, "alongsid": 37, "alphabet_map": 37, "invers": 37, "swap": 37, "reverse_map": 37, "portal": 38, "eospubl": 38, "opendata": 38, "antimattermatters2017": 38, "b2hhh_magnetdown": 38, "b2hhh_magnetup": 38, "phasespacesimul": 38, "safer": [38, 43], "lb": [38, 61], "pip": [38, 43], "upgrad": [38, 43], "__file__": [38, 43], "deactiv": [38, 43], "lcg": [38, 43, 46], "export": [38, 43, 53], "pythonpath": 38, "prioriti": 38, "pyroot": [38, 39], "tfile": 38, "aforement": [38, 52], "tnetxngfil": 38, "ttree": 38, "contina": 38, "my_tre": 38, "5135823": 38, "945201357": 38, "666480138": 38, "specialis": 38, "tabular": 38, "tleaf": 38, "read_root": 38, "b_flightdist": 38, "b_vertexchi2": 38, "h1_px": 38, "h1_py": 38, "h1_pz": 38, "301004": 38, "497280": 38, "375": 38, "284205": 38, "831": 38, "308481": 38, "51820": 38, "233718": 38, "94": 38, "690700": 38, "383338": 38, "4985": 38, "130785": 38, "5853": 38, "750057": 38, "326157": 38, "454706": 38, "284490": 38, "187101": 38, "1265": 38, "456544": 38, "2330": 38, "050788": 38, "90762": 38, "658032": 38, "590769": 38, "129099": 38, "720": 38, "797259": 38, "3413": 38, "790588": 38, "86793": 38, "058768": 38, "013242": 38, "988701": 38, "397": 38, "754571": 38, "1791": 38, "373059": 38, "40040": 38, "364159": 38, "bulk": 38, "child": [38, 50], "h1": 38, "h2": 38, "h3": 38, "transvers": 38, "h2_px": 38, "h2_py": 38, "1306": 38, "642724": 38, "167": 38, "578904": 38, "1273": 38, "457019": 38, "1146": 38, "299204": 38, "5135820": 38, "430531": 38, "5135821": 38, "762": 38, "344570": 38, "5135822": 38, "1454": 38, "471057": 38, "h2_pt": 38, "meson": 38, "b_p": 38, "h3_px": 38, "h3_py": 38, "h2_pz": 38, "h3_pz": 38, "xwindow": 38, "savefig": 38, "b_flight_dist": 38, "paus": 38, "ion": 38, "mathematica": 38, "matlab": 38, "b_flight_distance_v2": 38, "layer": 38, "flight": 38, "b_flight_distance_v3": 38, "throw": [38, 41, 42, 55], "awai": [38, 42, 43, 45, 55], "commonli": 38, "mm": 38, "df_with_cut": 38, "b_flight_distance_with_cut_compar": 38, "kaon": [38, 41], "argspars": 39, "datetim": 39, "fnmatch": 39, "glob": [39, 40], "subprocess": [39, 40], "deprec": 39, "career": 40, "frustrat": 40, "trick": [40, 41], "beyond": [40, 52], "alli": 40, "didact": 40, "vote": 40, "treasur": 40, "trove": 40, "gone": [40, 55, 56], "tini": 40, "tempfil": 40, "mkdtemp": 40, "localtim": 40, "tm_hour": 40, "namedtupl": 40, "coord": [40, 41], "ordereddict": 40, "321": [40, 58], "defaultdict": 40, "undefin": 40, "wider": 40, "90": [40, 41], "emphasis": 40, "consult": 40, "unsur": 40, "settl": 40, "disput": 40, "lower_case_funct": 40, "versu": 40, "uppercasefunct": 40, "myfunc": 40, "my_func": 40, "summaris": 40, "philosophi": [40, 56, 61], "bracket": [41, 48], "comma": [41, 54], "del": 41, "my_funct": 41, "exclus": [41, 59], "arbitrari": [41, 42, 58, 61], "56": [41, 43], "11d6523211c0": 41, "indentationerror": 41, "complain": 41, "57": [41, 56], "5c3d29e65ad9": 41, "symbol": [41, 45, 54, 56, 57], "endfor": 41, "a_copi": 41, "intuit": [41, 44], "freeli": 41, "ourselv": 41, "a_doubl": 41, "firstli": 41, "sublist": 41, "0x7f5abe5b1190": 41, "item2": 41, "quick": [41, 46, 51, 56], "135": 41, "2025": 41, "succinctli": [41, 54], "attributeerror": 41, "65": 41, "worth": [41, 53, 61], "magsq": 41, "encapsul": 42, "0x7f83b2bc56e0": 42, "colon": [42, 57], "quot": [42, 48, 54, 55, 57, 58, 59], "linebreak": 42, "decent": 42, "top_funct": 42, "silli": 42, "minimis": 42, "elsewher": [42, 54], "implicitli": 42, "no_return": 42, "such_output": 42, "wow": 42, "clever": 42, "213": 42, "convention": [42, 48], "lowercas": [42, 43], "border": [42, 58], "trippl": 42, "un": 42, "unnecessari": 42, "syntaxerror": [42, 43], "remind": [42, 54, 57], "hmm": 42, "aha": 42, "clearer": [42, 57], "run_method": 42, "make_incrementor": 42, "increment": 42, "plu": [42, 45, 60], "increment_on": 42, "make_increment": 42, "increment_two": 42, "caller": 42, "expand": [42, 55, 56, 57, 58, 59], "reverse_arg": 42, "steve": 42, "helen": 42, "zorblax": 42, "9963": 42, "yoda": 42, "necessarili": [42, 43, 46], "bing": 42, "baz": 42, "cube": 42, "div2": 42, "0x7fc6b2207758": 42, "__future__": [42, 44], "divis": [42, 44, 45], "quadratur": 42, "4142135623730951": 42, "downsid": [42, 61], "unwieldi": 42, "idempot": 42, "anyhow": 42, "submodul": 43, "141592653589793": [43, 45], "8414709848078965": 43, "5877109428927353": 43, "4059007502204043": 43, "prefix": [43, 54, 57], "639334770284028": 43, "extent": 43, "clash": 43, "uni": 43, "7288973406605329": 43, "arcco": 43, "alias": 43, "abspath": 43, "af": [43, 54, 61], "getcwd": 43, "basenam": 43, "exp": 43, "floor": 43, "confid": 43, "portabl": 43, "anaconda": [43, 46], "preinstal": 43, "startup": 43, "bashrc": [43, 50, 61], "pythonuserbas": 43, "virtualenv": 43, "cburr": 43, "lcg_virtualenv": 43, "create_lcg_virtualenv": 43, "myvenv": 43, "simplest": [43, 52, 54, 59], "myfirstmodul": 43, "fire": 43, "ef292d9e19f": 43, "yabba": 43, "cp": [43, 55, 56, 57], "ring": 43, "bell": 43, "startswith": [43, 61], "__": [43, 45], "endsolut": [43, 55], "runnabl": 43, "long_format": 43, "print_label": 43, "msg": 43, "__name__": 43, "chmod": [43, 53], "outstand": 43, "notion": 43, "shebang": 43, "secondli": 43, "peculiar": 43, "hei": 43, "printout": 43, "discov": [44, 58, 59], "alic": [44, 46], "bewar": 44, "3333333333333335": 44, "decim": [44, 48], "histor": [44, 58], "unintuit": 44, "everywher": 44, "shortli": 44, "truncat": 44, "66666666667": 44, "__floordiv__": 44, "__truediv__": [44, 45], "4j": 44, "1j": 44, "5j": 44, "conjug": 44, "somewhat": 44, "confusingli": 44, "123105625617661": 44, "0j": 44, "straight": 45, "2246467991473532e": 45, "twopi": 45, "my_sin": 45, "4492935982947064e": 45, "scene": [45, 56], "0x7fdc7ea75980": 45, "shortcut": [45, 54, 57], "__abs__": 45, "__and__": 45, "__bool__": 45, "to_byt": 45, "scan": 45, "__sub__": 45, "__mul__": 45, "__getattribute__": 45, "horribl": 45, "liner": 45, "illustr": [45, 54], "999": [45, 48], "newer": [46, 48, 53], "sft": 46, "setupview": 46, "sh": [46, 53, 58, 59], "lcg_94python3": 46, "x86_64": 46, "slc6": 46, "gcc62": 46, "opt": 46, "miniforg": 46, "migrat": 46, "2020": 46, "gcc": 46, "repl": [46, 60], "ead": 46, "valuat": 46, "rint": 46, "enhanc": 46, "quickref": 46, "arrow": [46, 53, 54, 57], "past": [46, 48, 50], "autocomplet": 46, "middl": [46, 58], "abc_my_var": 46, "abc_": 46, "sinh": 46, "cal": 46, "octob": 46, "su": 46, "mo": 46, "tu": 46, "fr": 46, "sa": 46, "useful": 46, "chapter": 46, "parrot": 48, "join": [48, 56], "carrot": 48, "amazingli": 48, "omg": 48, "omgomgomgomgomgomgomgomgomgomg": 48, "escap": [48, 54, 61], "backslash": 48, "gari": 48, "surround": [48, 55, 58, 59], "quotat": [48, 55], "long_fact": 48, "inde": 48, "nquit": 48, "998": 48, "a_parrot": 48, "interleav": 48, "result1": 48, "result2": 48, "referenc": 48, "template2": 48, "template3": 48, "worst": 48, "front": [48, 54, 56, 57], "3f": 48, "000": 48, "curli": [48, 57], "brace": [48, 57, 61], "innermost": 48, "ktutil": 50, "confirm": [50, 53, 54, 55, 56], "add_entri": 50, "arcfour": 50, "hmac": 50, "md5": 50, "aes256": 50, "ct": 50, "wkt": 50, "uppercas": 50, "sensit": 50, "renew": [50, 51], "children": 50, "3600": 50, "suffici": 50, "certainli": [50, 61], "ktmux": 50, "fi": [50, 53], "disconnect": 51, "reconnect": 51, "wifi": 51, "uptim": 51, "105": 51, "apr": 51, "cest": 51, "2015": [51, 56], "25593": 51, "lxplus0234": 51, "socket": 51, "thead": 51, "rd": 51, "ti": 51, "resum": 51, "hostnam": [51, 52], "lxplus0081": 51, "expir": 51, "suddenli": 51, "ganga": 51, "surviv": [51, 59], "node": 52, "snippet": 52, "seq": 52, "04g": 52, "500": [52, 58], "connecttimeout": 52, "preferredauthent": 52, "gssapi": 52, "mic": 52, "gssapiauthent": 52, "stricthostkeycheck": 52, "loglevel": 52, "quiet": [52, 61], "grep": [52, 53, 54, 56, 59, 61], "screenrc": 52, "hardstatu": 52, "alwayslastlin": 52, "bg": 52, "bw": [52, 58], "yr": 52, "predefin": 52, "colour": 52, "layout": 52, "eg": 52, "stand": [52, 54, 56, 58, 59], "visit": 52, "kill": [52, 57], "logout": 52, "tcsh": [53, 60], "apropo": 53, "gfal": 53, "vdir": 53, "ld_library_path": 53, "varnam": 53, "starwar": 53, "star": 53, "war": 53, "anakin": 53, "membership": 53, "chown": 53, "chgrp": 53, "strvar": 53, "intvar": 53, "file1": 53, "file2": 53, "fulfil": 53, "cond1": 53, "cond2": 53, "tempt": 53, "havea": 53, "poem": 53, "recip": 53, "suppli": [53, 61], "sentences2": 53, "tee": 53, "stdout": [53, 56, 61], "listoffileswithte": 53, "potenti": [53, 58], "incid": 53, "buffer": 53, "alloc": [53, 54], "malici": 53, "sebastian": 53, "lopienski": 53, "mail": 53, "passwd": 53, "reach": 53, "exhaust": 53, "vi": 53, "du": 53, "mount": 53, "recurs": [53, 54, 55, 59], "depth": [53, 54, 56], "deep": 53, "compet": 53, "earn": 53, "beginn": 53, "panic": 53, "clue": 53, "ps1": 54, "dollar": [54, 57], "whoami": 54, "hypothet": 54, "throughout": 54, "mycommand": 54, "cernus": 54, "slash": [54, 55], "lead": [54, 55, 56, 61], "miscellan": [54, 59], "underneath": 54, "imhotep": 54, "larri": 54, "music": [54, 55], "movi": 54, "arrang": 54, "neatli": 54, "trail": 54, "sort": [54, 56, 58, 59], "cftuvsux": 54, "nongraph": 54, "048": [54, 58], "576": 54, "ctime": 54, "newest": 54, "themselv": [54, 55, 56, 59], "dire": 54, "au": 54, "horizont": 54, "vertic": [54, 56], "iso": 54, "augment": 54, "1k": 54, "234m": 54, "2g": 54, "si": [54, 59], "derefer": 54, "symlink": 54, "hide": [54, 60], "overridden": 54, "inod": 54, "kibibyt": 54, "uid": 54, "gid": 54, "raw": [54, 55, 56, 61], "char": 54, "enclos": [54, 57, 58, 60], "largest": 54, "atim": 54, "format1": 54, "format2": 54, "posix": 54, "tabsiz": 54, "col": 54, "10k": 54, "emit": 54, "ls_color": 54, "dircolor": 54, "seriou": 54, "troubl": 54, "gnu": 54, "coreutil": 54, "www": 54, "lucki": 54, "spacebar": [54, 56], "wikipedia": 54, "accur": [54, 58], "hierarch": 54, "hundr": [54, 57, 58, 59], "desk": 54, "defeat": 54, "creatur": [54, 55, 57, 58], "molecul": [54, 55, 56, 57, 58], "solar": [54, 55], "north": [54, 55, 56, 57, 58, 59, 60], "pacif": [54, 55, 56, 57, 58, 60], "gyre": [54, 55, 56, 57, 58, 60], "cfg": [54, 55, 61], "mislead": [54, 57], "amino": [54, 55], "acid": [54, 55], "pdb": [54, 55, 56, 57, 58, 59], "salmon": [54, 55, 56], "anim": [54, 55, 56, 58, 59], "mors": [54, 55], "sunspot": [54, 55], "bash_profil": 54, "fa": 54, "orthogon": [54, 56], "gotten": 54, "anywher": [54, 61], "tild": 54, "forth": 54, "tv": 54, "protein": [54, 55, 56, 58, 60], "assai": [54, 56, 60], "herself": 54, "came": 54, "2012": [54, 56, 57, 58], "confer": 54, "straw": 54, "june": 54, "ten": [54, 61], "nene01729a": [54, 56, 57], "nene01812a": [54, 56], "1520": [54, 60], "amanda": 54, "unnecessarili": 54, "08": 54, "pnas_fin": 54, "pnas_sub": 54, "ownership": [54, 59], "rest": 54, "nevertheless": 54, "ong": 54, "uman": 54, "3k": 54, "5369": 54, "hierarchi": 55, "trash": 55, "pain": 55, "whitespac": [55, 57], "period": 55, "alphanumer": 55, "media": 55, "trait": 55, "menu": [55, 59], "writeout": 55, "tidi": 55, "unhook": 55, "recycl": [55, 58], "descend": 55, "mythesi": 55, "png": [55, 58], "albeit": 55, "whale": 55, "mp3": 55, "whalesong": 55, "player": 55, "statstic": 55, "misspel": 55, "incorrectli": 55, "jami": 55, "recombin": 55, "tricki": [55, 61], "recal": [55, 58], "fructos": 55, "sucros": 55, "0kb": 55, "maltos": 55, "glucos": 55, "___": 55, "safe": 55, "san": 55, "duplic": [55, 56], "wild": 55, "card": 55, "eas": 56, "six": [56, 59, 60], "bank": 56, "cuban": [56, 57, 58], "ethan": [56, 57, 58], "methan": [56, 57, 58], "octan": [56, 57, 58], "pentan": [56, 57, 58], "propan": [56, 57, 58], "wc": [56, 58, 59], "156": 56, "1158": 56, "84": 56, "622": 56, "422": 56, "246": 56, "1828": 56, "165": 56, "1226": 56, "111": 56, "825": 56, "819": 56, "6081": 56, "p5": 56, "ne": 56, "thane": 56, "greater": 56, "overwritten": [56, 57], "caution": 56, "disadvantag": [56, 58], "dump": 56, "greatest": 56, "fewest": 56, "incorrect": [56, 59], "confus": 56, "consecut": 56, "mathematician": 56, "3x": 56, "memor": 56, "stderr": [56, 61], "diagnost": 56, "circumst": [56, 59], "fed": 56, "enorm": 56, "stream": 56, "ammonia": 56, "saniti": 56, "nene01729b": [56, 57, 58], "nene01736a": [56, 57], "nene01751a": 56, "nene01751b": 56, "240": 56, "nene02018b": 56, "mondai": 56, "weekend": 56, "nene02040b": 56, "nene02040z": 56, "nene02043a": [56, 57], "nene02043b": [56, 57], "5040": 56, "nene01971z": 56, "late": 56, "henc": [56, 58], "testfile01": 56, "testfile02": 56, "sam": 56, "calibr": 56, "dataset1": 56, "dataset2": 56, "dataset_overview": 56, "trip": 56, "bob": 56, "____calibration____": 56, "____": 56, "send_to_bob": 56, "all_november_fil": 56, "all_datasets_created_on_a_23rd": 56, "uniq": [56, 58], "adjac": 56, "coho": 56, "steelhead": 56, "deer": [56, 58, 59], "rabbit": [56, 58, 59], "raccoon": [56, 58, 59], "fox": [56, 58], "unneed": 56, "expens": 56, "586": 56, "k2": 56, "difficulti": 56, "animalsupd": 56, "trace": 57, "punctuat": [57, 58, 60], "retyp": [57, 58], "genom": 57, "basilisk": [57, 58], "unicorn": [57, 58], "basiliscu": 57, "vulgari": 57, "1745": 57, "equu": 57, "monocero": 57, "1738": 57, "delimit": 57, "semicolon": 57, "reader": [57, 58], "temperatur": 57, "meaningless": 57, "dragon": 57, "purpl": 57, "judici": 57, "nene": 57, "goostat": [57, 58, 60], "redisplai": 57, "semi": 57, "five": [57, 59], "1518": 57, "coffe": 57, "456": 57, "nene0": 57, "457": 57, "458": 57, "459": 57, "460": 57, "quicker": 57, "alkan": 57, "inter": 57, "preview": 57, "reaction": 57, "compound": 57, "speci": [57, 58, 59], "expans": [57, 59], "502": 58, "681": 58, "785": 58, "254": 58, "537": 58, "357": 58, "252": 58, "895": 58, "009": 58, "741": 58, "467": 58, "172": 58, "337": 58, "206": 58, "docx": [58, 61], "font": 58, "versatil": 58, "324": 58, "350": 58, "332": 58, "271": 58, "378": 58, "074": 58, "384": 58, "288": 58, "362": 58, "205": 58, "183": 58, "412": 58, "259": 58, "420": 58, "112": 58, "608": 58, "407": 58, "130": 58, "540": 58, "303": 58, "404": 58, "393": 58, "ter": 58, "end_lin": 58, "num_lin": 58, "invalu": 58, "caveat": 58, "one_or_more_filenam": 58, "163": 58, "redo": 58, "297": 58, "298": 58, "goodiff": [58, 60], "01729": 58, "ygraph": 58, "301": 58, "serial": 58, "analyt": 58, "antarctica": 58, "adventur": 58, "leah": [58, 59], "csv": 58, "longest": 58, "hang": 58, "investig": 58, "datfil": 58, "meant": 59, "haiku": 59, "1998": 59, "salon": 59, "magazin": 59, "tao": 59, "toner": 59, "presenc": 59, "absenc": 59, "yesterdai": 59, "jeff": 59, "rothenberg": 59, "whichev": 59, "boundari": 59, "insensit": 59, "invert": 59, "bre": 59, "regexp": 59, "er": 59, "perl": 59, "taster": 59, "anchor": 59, "sadli": 59, "littlewomen": 59, "episod": 59, "oldtool": 59, "useless": 59, "21022": 59, "21403": 59, "fe": 59, "heme": 59, "924": 59, "518": 59, "databas": 59, "ish": 59, "spreadsheet": 59, "borrow": 59, "imit": 59, "sincerest": 59, "prais": 59, "Its": 59, "unbeaten": 59, "alfr": 59, "whitehead": 59, "1911": 59, "civil": 59, "explanatori": 59, "net": 59, "temp": [59, 61], "women": 59, "louisa": 59, "alcott": 59, "sister": 59, "jo": 59, "meg": 59, "beth": 59, "ami": 59, "novel": 59, "tabul": 59, "emploi": 59, "eleg": 59, "ow": 59, "inferior": 59, "ocw": 59, "criteria": 59, "ahm": 59, "mtime": 59, "login": 60, "9rkz": 60, "unzip": 60, "hopefulli": 60, "mous": 60, "speech": 60, "recognit": 60, "hardwar": 60, "commonplac": 60, "mice": 60, "touchpad": 60, "pointer": 60, "technologi": 60, "widespread": 60, "doug": 60, "engelbart": 60, "1960": 60, "mother": 60, "rewir": 60, "1950": 60, "cli": 60, "heart": 60, "bourn": 60, "stephen": 60, "IT": 60, "zsh": 60, "ters": 60, "keystrok": 60, "volum": 60, "supercomput": 60, "cluster": 60, "cloud": 60, "crunch": 60, "tackl": 60, "nemo": 60, "marin": 60, "biologist": 60, "survei": 60, "gelatin": 60, "garbag": 60, "abund": 60, "graduat": 60, "upcom": 60, "aquat": 60, "goo": 60, "eight": 60, "370": 60, "deadlin": 60, "mattermost": 61, "cmake": 61, "lbenv": 61, "rcfile": 61, "ongo": 61, "basic_tutori": 61, "noext": 61, "ofil": 61, "declar": 61, "congratul": 61, "scalabl": 61, "took": 61, "parallelis": 61, "reprocess": 61, "snakefil": 61, "monitor": 61, "mynam": 61, "myinput1": 61, "myinput2": 61, "myoutput": 61, "name_fil": 61, "dag": 61, "lhcbdev": 61, "2021": 61, "07_04": 61, "mon": 61, "jobid": 61, "tmpdir": 61, "15t183022": 61, "449488": 61, "15t183344": 61, "711303": 61, "unavoid": 61, "quirk": 61, "nproc": 61, "name_al": 61, "chr": 61, "ord": 61, "forceal": 61, "routin": 61, "reiter": 61, "create_input": 61, "knew": 61, "reqest": 61, "hello_world": 61, "missingruleexcept": 61, "ext": 61, "gif": 61, "advanced_tutori": 61, "tar": 61, "xvf": 61, "phone": 61, "ultim": 61, "luca": 61, "luca_info": 61, "merge_data": 61, "get_address": 61, "get_phon": 61, "waypoint": 61, "fred": 61, "guillaum": 61, "acycl": 61, "get_info": 61, "infil": 61, "outfil": 61, "ln": 61, "recreat": 61, "inconsequenti": 61, "forcerun": 61, "workaround": 61, "cleanest": 61, "failur": 61, "corrupt": 61, "contrast": 61, "mylog": 61, "yaml": 61, "data1": 61, "data2": 61, "configfil": 61, "dosometh": 61, "mycod": 61, "plot1": 61, "plot2": 61, "input_alt": 61, "fit_rul": 61, "snake": 61, "efficiency_rul": 61}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"contributor": [0, 1], "code": [0, 24, 40, 43], "conduct": 0, "contribut": 1, "agreement": 1, "how": [1, 11, 35], "what": [1, 11, 24, 61], "us": [1, 4, 6, 7, 8, 13, 33, 43, 50, 51, 52, 61], "github": 1, "other": [1, 23], "resourc": 1, "instruct": 2, "materi": 2, "softwar": 2, "1": [3, 33], "basic": [3, 33, 61], "markdown": [3, 33], "jupyt": [3, 33], "import": [3, 6, 13, 43], "modul": [3, 6, 43], "advanc": [4, 5, 15, 39, 52, 61], "python": [4, 15, 33, 34, 39, 40, 43, 46], "concept": 4, "pack": 4, "unpack": 4, "valu": 4, "context": 4, "manag": [4, 61], "yield": 4, "where": 4, "i": [4, 24, 61], "thi": [4, 8, 12], "class": [4, 5, 35], "decor": 4, "factori": 4, "except": 4, "custom": 4, "catch": 4, "pitfal": 4, "guarante": 4, "execut": 4, "control": [4, 16], "flow": 4, "dunder": 5, "len": 5, "str": 5, "callabl": 5, "index": 5, "iter": 5, "self": 5, "danger": 5, "zone": 5, "2": 6, "first": [6, 38, 43], "look": [6, 9], "data": [6, 9, 11, 39], "two": [6, 12], "plot": [6, 7, 10, 12, 38], "librari": [6, 39, 43], "recap": 6, "5": [6, 9], "The": [6, 24, 43, 60, 61], "toi": 6, "dataset": [6, 9], "load": [6, 9], "6": [6, 10], "simpl": [6, 11, 13], "histogram": [6, 10, 38], "ad": 6, "variabl": [6, 10, 33, 53], "rectangular": 6, "cut": [6, 38], "compar": [6, 11, 13], "distribut": [6, 9, 11, 13], "3": 7, "multivari": 7, "analysi": [7, 31, 39, 61], "classifi": [7, 9], "todo": 7, "add": 7, "diagram": 7, "decis": 7, "tree": 7, "abov": 7, "evalu": 7, "perform": 7, "collect": 7, "all": 7, "togeth": 7, "4": 8, "extens": 8, "classif": 8, "altern": [8, 13], "impliment": 8, "featur": [8, 9, 24], "engin": 8, "k": 8, "fold": [8, 11], "turn": 8, "scipt": 8, "argpars": [8, 32, 47], "boost": [9, 11], "uniform": 9, "dalitz": 9, "signal": [9, 13], "background": [9, 13, 60], "prepar": [9, 11], "train": [9, 11], "test": [9, 11, 24], "set": [9, 17, 50], "up": [9, 17, 50], "let": 9, "": [9, 54, 56, 60], "result": 9, "roc": 9, "curv": 9, "after": 9, "ax": 10, "regular": 10, "axi": 10, "name": 10, "compat": 10, "mplhep": 10, "hist": 10, "multipl": 10, "dimens": [10, 11], "access": 10, "bin": [10, 11], "get": [10, 12], "densiti": 10, "project": [10, 24], "everyth": 10, "relev": 10, "multi": 10, "dimension": 10, "arithmet": 10, "weight": 10, "7": 11, "demonstr": 11, "reweight": 11, "download": 11, "sampl": 11, "origin": [11, 24], "part": 11, "target": 11, "base": 11, "n": 11, "gradient": 11, "some": 11, "express": [11, 14], "gb": 11, "discrimin": 11, "great": 11, "did": 11, "just": 11, "happen": 11, "tune": 11, "rule": [11, 61], "8": 12, "likelihood": 12, "infer": 12, "scope": 12, "tutori": [12, 15, 61], "start": [12, 60], "differ": [12, 53], "space": [12, 53], "loss": 12, "fix": [12, 35], "paramet": 12, "9": 13, "splot": 13, "exampl": 13, "observ": 13, "appli": [13, 38], "sweight": 13, "more": [13, 39, 40, 53], "complex": [13, 53], "case": 13, "known": 13, "probabl": 13, "build": [13, 31], "over": [13, 53], "mass": 13, "Of": 13, "cours": 13, "we": 13, "don": 13, "t": 13, "have": 13, "label": 13, "which": 13, "event": 13, "ar": 13, "beforehand": 13, "inform": 13, "about": [13, 53], "real": 13, "fit": 13, "doesn": 13, "give": 13, "u": 13, "appi": 13, "reconstruct": 13, "initi": 13, "an": [13, 34], "requir": 13, "deriv": 13, "option": 13, "under": 13, "assumpt": 13, "linear": 13, "minim": 13, "variat": 13, "uncorrelated": 13, "conclus": 13, "10": 14, "scikit": 14, "hep": 14, "formul": 14, "convert": 14, "particl": 14, "hepunit": 14, "vector": 14, "properti": 14, "content": [15, 30, 31, 34, 49, 60], "autom": [16, 61], "version": 16, "git": [17, 30], "creat": [18, 24], "repositori": [18, 23, 24], "track": 19, "chang": [19, 24], "explor": [20, 40], "histori": 20, "ignor": 21, "thing": [21, 51, 59], "remot": [22, 24], "cern": 22, "gitlab": [22, 26], "share": 23, "collabor": 24, "pull": 24, "request": 24, "merg": 24, "fork": 24, "clone": 24, "its": 24, "sync": 24, "your": [24, 38, 43, 50], "local": [24, 31], "implement": 24, "new": 24, "push": 24, "discuss": 24, "amend": 24, "retir": 24, "accept": 24, "social": 24, "side": 24, "automat": [24, 50], "conflict": 25, "ci": 26, "open": 27, "scienc": 27, "licens": 28, "citat": 29, "essenti": 31, "statu": 31, "binder": 31, "prerequisit": 31, "usag": 31, "script": [32, 47, 58, 61], "type": [33, 53], "oper": [33, 45], "strong": 33, "contain": 33, "mutabl": 33, "dynam": 33, "assign": 33, "sugar": 33, "comprehens": [33, 41], "introduct": 34, "welcom": 35, "inherit": 35, "glanc": 35, "condit": [36, 53], "truthi": 36, "loop": [36, 41, 53, 57], "dictionari": 37, "kei": 37, "make": [38, 50], "panda": 38, "topic": [39, 52], "nice": 39, "standard": [39, 43], "root": 39, "learn": 40, "convent": 40, "list": 41, "tupl": 41, "function": 42, "inlin": 42, "method": 42, "from": 43, "pypi": 43, "insid": 43, "virtual": 43, "environ": [43, 53, 61], "write": 43, "structur": 43, "run": [43, 46, 51, 61], "number": 44, "object": 45, "string": 48, "format": 48, "unix": [49, 53], "shell": [49, 53, 58, 60], "persist": 50, "screen": [50, 51, 52], "tmux": 50, "session": 50, "lxplu": 50, "password": 50, "less": 50, "kerbero": 50, "token": 50, "keytab": 50, "k5reauth": 50, "refresh": 50, "keep": 51, "find": [52, 59], "lost": 52, "tab": 52, "manual": 53, "page": 53, "among": 53, "file": [53, 54, 55, 56, 61], "link": 53, "command": [53, 60], "pipe": [53, 56], "redirect": 53, "bash": 53, "secur": 53, "text": 53, "viewer": 53, "editor": 53, "disk": 53, "wire": 53, "bandit": 53, "wargam": 53, "navig": 54, "directori": [54, 55], "nell": [54, 56, 60], "pipelin": [54, 56, 60], "organ": 54, "work": 55, "With": 55, "filter": 56, "check": 56, "introduc": [60, 61], "line": 60, "interfac": 60, "why": [60, 61], "bother": 60, "point": 60, "snakemak": 61, "document": 61, "workflow": 61, "preserv": 61, "system": 61, "re": 61, "chain": 61, "limit": 61, "wildcard": 61, "log": 61, "config": 61, "includ": 61}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"Contributor Code of Conduct": [[0, "contributor-code-of-conduct"]], "Contributing": [[1, "contributing"]], "Contributor Agreement": [[1, "contributor-agreement"]], "How to Contribute": [[1, "how-to-contribute"]], "What to Contribute": [[1, "what-to-contribute"]], "Using GitHub": [[1, "using-github"]], "Other Resources": [[1, "other-resources"]], "Instructional Material": [[2, "instructional-material"]], "Software": [[2, "software"]], "1: Basics": [[3, "1:-Basics"], [33, "1:-Basics"]], "Basics": [[3, "Basics"]], "Markdown": [[3, "Markdown"]], "Jupyter": [[3, "Jupyter"], [33, "Jupyter"]], "Importing modules": [[3, "Importing-modules"]], "Advanced Python Concepts": [[4, "Advanced-Python-Concepts"]], "Packing and unpacking of values": [[4, "Packing-and-unpacking-of-values"]], "Context manager": [[4, "Context-manager"]], "Using yield": [[4, "Using-yield"]], "Where is this useful": [[4, "Where-is-this-useful"]], "Using a class": [[4, "Using-a-class"]], "Decorators and factories": [[4, "Decorators-and-factories"]], "Decorator": [[4, "Decorator"]], "Exceptions": [[4, "Exceptions"]], "Custom Exception": [[4, "Custom-Exception"]], "Catching exceptions": [[4, "Catching-exceptions"]], "pitfall \u201cguaranteed execution\u201d": [[4, "pitfall-%22guaranteed-execution%22"]], "Exceptions as control-flow": [[4, "Exceptions-as-control-flow"]], "Advanced Classes": [[5, "Advanced-Classes"]], "Dunder": [[5, "Dunder"]], "len": [[5, "len"]], "str": [[5, "str"]], "Callable": [[5, "Callable"]], "Indexing (iterating)": [[5, "Indexing-(iterating)"]], "self": [[5, "self"]], "Danger zone": [[5, "Danger-zone"]], "2: First look at data": [[6, "2:-First-look-at-data"]], "Two plotting libraries?": [[6, "Two-plotting-libraries?"]], "Recap: Importing modules": [[6, "Recap:-Importing-modules"]], "5. The toy dataset": [[6, "5.-The-toy-dataset"]], "Loading data": [[6, "Loading-data"], [9, "Loading-data"]], "6. Plotting a simple histogram": [[6, "6.-Plotting-a-simple-histogram"]], "Adding variables": [[6, "Adding-variables"]], "Using rectangular cuts": [[6, "Using-rectangular-cuts"]], "Comparing distributions": [[6, "Comparing-distributions"]], "3: Multivariate Analysis": [[7, "3:-Multivariate-Analysis"]], "Using a classifier": [[7, "Using-a-classifier"]], "TODO Add a diagram of a decision tree for the above plot": [[7, "TODO-Add-a-diagram-of-a-decision-tree-for-the-above-plot"]], "Evaluating classifier performance": [[7, "Evaluating-classifier-performance"]], "Collecting it all together": [[7, "Collecting-it-all-together"]], "4: Extension on Classification": [[8, "4:-Extension-on-Classification"]], "Alternative implimentations": [[8, "Alternative-implimentations"]], "Feature engineering": [[8, "Feature-engineering"]], "k-folding": [[8, "k-folding"]], "Turn this into a scipt using argparse": [[8, "Turn-this-into-a-scipt-using-argparse"]], "5: Boosting to Uniformity": [[9, "5:-Boosting-to-Uniformity"]], "Distributions in the Dalitz features for signal and background": [[9, "Distributions-in-the-Dalitz-features-for-signal-and-background"]], "Preparation of train/test datasets": [[9, "Preparation-of-train/test-datasets"]], "Setting up classifiers, training": [[9, "Setting-up-classifiers,-training"]], "Let\u2019s look at the results of training": [[9, "Let's-look-at-the-results-of-training"]], "ROC curves after training": [[9, "ROC-curves-after-training"]], "6: Histograms": [[10, "6:-Histograms"]], "Axes": [[10, "Axes"]], "Regular": [[10, "Regular"]], "Variable": [[10, "Variable"]], "Axis Name": [[10, "Axis-Name"]], "Compatibility with mplhep": [[10, "Compatibility-with-mplhep"]], "Plotting with hist": [[10, "Plotting-with-hist"]], "Multiple dimensions": [[10, "Multiple-dimensions"]], "Access Bins": [[10, "Access-Bins"]], "Getting Density": [[10, "Getting-Density"]], "Projecting axes": [[10, "Projecting-axes"]], "Accessing everything relevant": [[10, "Accessing-everything-relevant"]], "Multi dimensional": [[10, "Multi-dimensional"]], "Arithmetics": [[10, "Arithmetics"]], "Weights": [[10, "Weights"]], "7: Demonstration of distribution reweighting": [[11, "7:-Demonstration-of-distribution-reweighting"]], "Downloading data": [[11, "Downloading-data"]], "prepare train and test samples": [[11, "prepare-train-and-test-samples"]], "Original distributions": [[11, "Original-distributions"]], "train part of original distribution": [[11, "train-part-of-original-distribution"]], "test part for target distribution": [[11, "test-part-for-target-distribution"]], "Bins-based reweighting in n dimensions": [[11, "Bins-based-reweighting-in-n-dimensions"]], "Gradient Boosted Reweighter": [[11, "Gradient-Boosted-Reweighter"]], "Comparing some simple expressions:": [[11, "Comparing-some-simple-expressions:"]], "GB-discrimination": [[11, "GB-discrimination"]], "Great!": [[11, "Great!"]], "What did just happen?": [[11, "What-did-just-happen?"]], "How to tune": [[11, "How-to-tune"]], "Folding reweighter": [[11, "Folding-reweighter"]], "GB discrimination for reweighting rule": [[11, "GB-discrimination-for-reweighting-rule"]], "8: Likelihood inference": [[12, "8:-Likelihood-inference"]], "Scope of this tutorial": [[12, "Scope-of-this-tutorial"]], "Getting started": [[12, "Getting-started"]], "Difference of the two spaces": [[12, "Difference-of-the-two-spaces"]], "Plotting": [[12, "Plotting"]], "Loss": [[12, "Loss"]], "Fixing parameters": [[12, "Fixing-parameters"]], "9: sPlot": [[13, "9:-sPlot"]], "Simple sPlot example": [[13, "Simple-sPlot-example"]], "Observed distributions": [[13, "Observed-distributions"]], "Applying sWeights": [[13, "Applying-sWeights"]], "Compare": [[13, "Compare"]], "More complex case": [[13, "More-complex-case"]], "Splot": [[13, "Splot"]], "Alternative: Known probabilities": [[13, "Alternative:-Known-probabilities"]], "Building sPlot over mass": [[13, "Building-sPlot-over-mass"]], "Of course we don\u2019t have labels which events are signal and which are background beforehand": [[13, "Of-course-we-don't-have-labels-which-events-are-signal-and-which-are-background-beforehand"]], "We have no information about real labels": [[13, "We-have-no-information-about-real-labels"]], "Fitting doesn\u2019t give us information about real labels": [[13, "Fitting-doesn't-give-us-information-about-real-labels"]], "Appying sPlot": [[13, "Appying-sPlot"]], "Using sWeights to reconstruct initial distribution": [[13, "Using-sWeights-to-reconstruct-initial-distribution"]], "An important requirement of sPlot": [[13, "An-important-requirement-of-sPlot"]], "Derivation of sWeights (optional)": [[13, "Derivation-of-sWeights-(optional)"]], "Under assumption of linearity:": [[13, "Under-assumption-of-linearity:"]], "Minimization of variation": [[13, "Minimization-of-variation"]], "Uncorrelatedness": [[13, "Uncorrelatedness"]], "Conclusion": [[13, "Conclusion"]], "10: Scikit-HEP": [[14, "10:-Scikit-HEP"]], "formulate - converting expressions": [[14, "formulate---converting-expressions"]], "Particle": [[14, "Particle"]], "hepunits": [[14, "hepunits"]], "Vector": [[14, "Vector"]], "Vector properties": [[14, "Vector-properties"]], "Advanced Python Tutorial": [[15, "advanced-python-tutorial"]], "Contents:": [[15, null], [30, null], [31, null], [34, null], [49, null], [60, null]], "Automated Version Control": [[16, "automated-version-control"]], "Setting Up Git": [[17, "setting-up-git"]], "Creating a Repository": [[18, "creating-a-repository"]], "Tracking Changes": [[19, "tracking-changes"]], "Exploring History": [[20, "exploring-history"]], "Ignoring Things": [[21, "ignoring-things"]], "Remotes in CERN GitLab": [[22, "remotes-in-cern-gitlab"]], "Sharing a repository with others": [[23, "sharing-a-repository-with-others"]], "Collaborating with Pull Requests": [[24, "collaborating-with-pull-requests"]], "What is a Pull (or Merge) Request": [[24, "what-is-a-pull-or-merge-request"]], "Fork the original project repository": [[24, "fork-the-original-project-repository"]], "Clone a remote project and its fork": [[24, "clone-a-remote-project-and-its-fork"]], "Sync your local repository with remote changes": [[24, "sync-your-local-repository-with-remote-changes"]], "Implement your new feature": [[24, "implement-your-new-feature"]], "Push changes": [[24, "push-changes"]], "Create a Pull (or Merge) Request": [[24, "create-a-pull-or-merge-request"]], "Discussing, amending, retiring a Merge Request": [[24, "discussing-amending-retiring-a-merge-request"]], "Accepting a Pull Request": [[24, "accepting-a-pull-request"]], "The social side of coding": [[24, "the-social-side-of-coding"]], "Automatic testing": [[24, "automatic-testing"]], "Conflicts": [[25, "conflicts"]], "GitLab CI": [[26, "gitlab-ci"]], "Open Science": [[27, "open-science"]], "Licensing": [[28, "licensing"]], "Citation": [[29, "citation"]], "Git": [[30, "git"]], "Analysis essentials Build Status Binder": [[31, "analysis-essentials-build-status-binder"]], "Prerequisites": [[31, "prerequisites"]], "Local": [[31, "local"]], "Binder": [[31, "binder"]], "Usage": [[31, "usage"]], "Scripting": [[32, "scripting"], [47, "scripting"]], "argparse": [[32, "argparse"], [47, "argparse"]], "Basic types and operations": [[33, "Basic-types-and-operations"]], "strong typing": [[33, "strong-typing"]], "Container types": [[33, "Container-types"]], "Mutability": [[33, "Mutability"]], "dynamic typing": [[33, "dynamic-typing"]], "Assignement and variables": [[33, "Assignement-and-variables"]], "Python variable assignement": [[33, "Python-variable-assignement"]], "Sugar: comprehensions": [[33, "Sugar:-comprehensions"]], "Sugar: using Markdown": [[33, "Sugar:-using-Markdown"]], "An introduction to Python": [[34, "an-introduction-to-python"]], "Classes": [[35, "Classes"]], "Welcome to classes": [[35, "Welcome-to-classes"]], "Inheritance: a glance": [[35, "Inheritance:-a-glance"]], "How to fix": [[35, "How-to-fix"]], "Conditions": [[36, "conditions"]], "Truthiness": [[36, "truthiness"]], "Conditions in loops": [[36, "conditions-in-loops"]], "Dictionaries": [[37, "dictionaries"]], "Dictionary keys": [[37, "dictionary-keys"]], "Making your first histogram": [[38, "making-your-first-histogram"]], "Pandas": [[38, "pandas"]], "Plotting histograms": [[38, "plotting-histograms"]], "Applying cuts": [[38, "applying-cuts"]], "More advanced topics in Python": [[39, "more-advanced-topics-in-python"]], "Nice standard libraries": [[39, "nice-standard-libraries"]], "Nice libraries for data analysis": [[39, "nice-libraries-for-data-analysis"]], "Python and ROOT": [[39, "python-and-root"]], "Learning more": [[40, "learning-more"]], "Exploring Python": [[40, "exploring-python"]], "Conventional coding": [[40, "conventional-coding"]], "Lists and looping": [[41, "lists-and-looping"]], "Looping": [[41, "looping"]], "List comprehension": [[41, "list-comprehension"]], "Tuples": [[41, "tuples"]], "Functions": [[42, "functions"]], "Inline methods": [[42, "inline-methods"]], "Modules": [[43, "modules"]], "Using modules into your code: import": [[43, "using-modules-into-your-code-import"]], "The standard library": [[43, "the-standard-library"]], "Modules from PyPi": [[43, "modules-from-pypi"]], "Modules inside a virtual environment": [[43, "modules-inside-a-virtual-environment"]], "Write your first Python module": [[43, "write-your-first-python-module"]], "Write a structured module": [[43, "write-a-structured-module"]], "Run a module": [[43, "run-a-module"]], "Numbers": [[44, "numbers"]], "Objects and operators": [[45, "objects-and-operators"]], "Objects": [[45, "objects"]], "Running Python": [[46, "running-python"]], "Strings": [[48, "strings"]], "Formatting": [[48, "formatting"]], "UNIX shell": [[49, "unix-shell"]], "Persistent screen or tmux session on lxplus": [[50, "persistent-screen-or-tmux-session-on-lxplus"]], "Setting up password-less kerberos token": [[50, "setting-up-password-less-kerberos-token"]], "Making use of the keytab": [[50, "making-use-of-the-keytab"]], "Using k5reauth to automatically refresh your kerberos token": [[50, "using-k5reauth-to-automatically-refresh-your-kerberos-token"]], "Using screen to keep things running": [[51, "using-screen-to-keep-things-running"]], "Advanced screen topics": [[52, "advanced-screen-topics"]], "Finding lost screens": [[52, "finding-lost-screens"]], "Using tabs in screen": [[52, "using-tabs-in-screen"]], "More about the UNIX shell": [[53, "more-about-the-unix-shell"]], "Types of shell": [[53, "types-of-shell"]], "Manual pages": [[53, "manual-pages"]], "Environment variables": [[53, "environment-variables"]], "Variables": [[53, "variables"]], "Differences among files": [[53, "differences-among-files"]], "Looping over files": [[53, "looping-over-files"]], "Conditionals": [[53, "conditionals"]], "Linking commands": [[53, "linking-commands"]], "Pipes and redirection": [[53, "pipes-and-redirection"]], "Bash security": [[53, "bash-security"]], "Complexity": [[53, "complexity"]], "Text viewers": [[53, "text-viewers"]], "Text editors": [[53, "text-editors"]], "Disk space": [[53, "disk-space"]], "Over the Wire and Bandit wargame": [[53, "over-the-wire-and-bandit-wargame"]], "Navigating Files and Directories": [[54, "navigating-files-and-directories"]], "Nelle\u2019s Pipeline: Organizing Files": [[54, "nelle-s-pipeline-organizing-files"]], "Working With Files and Directories": [[55, "working-with-files-and-directories"]], "Pipes and Filters": [[56, "pipes-and-filters"]], "Nelle\u2019s Pipeline: Checking Files": [[56, "nelle-s-pipeline-checking-files"]], "Loops": [[57, "loops"]], "Shell Scripts": [[58, "shell-scripts"]], "Finding Things": [[59, "finding-things"]], "Introducing the Shell": [[60, "introducing-the-shell"]], "Background": [[60, "background"]], "The Command-Line Interface": [[60, "the-command-line-interface"]], "The Shell": [[60, "the-shell"]], "Why bother?": [[60, "why-bother"]], "Nelle\u2019s Pipeline: Starting Point": [[60, "nelle-s-pipeline-starting-point"]], "Analysis automation with Snakemake": [[61, "analysis-automation-with-snakemake"]], "Documentation and environments": [[61, "documentation-and-environments"]], "Workflow preservation": [[61, "workflow-preservation"]], "Basic Tutorial": [[61, "basic-tutorial"]], "What is a workflow?": [[61, "what-is-a-workflow"]], "Why use a workflow management system?": [[61, "why-use-a-workflow-management-system"]], "Introducing Snakemake": [[61, "introducing-snakemake"]], "Re-running rules": [[61, "re-running-rules"]], "Chaining rules": [[61, "chaining-rules"]], "The limits of wildcards": [[61, "the-limits-of-wildcards"]], "Advanced Tutorial": [[61, "advanced-tutorial"]], "Running scripts": [[61, "running-scripts"]], "Log files": [[61, "log-files"]], "Config files": [[61, "config-files"]], "Includes": [[61, "includes"]]}, "indexentries": {}}) \ No newline at end of file +Search.setIndex({"docnames": ["CONDUCT", "CONTRIBUTING", "LICENSE", "advanced-python/10Basics", "advanced-python/11AdvancedPython", "advanced-python/12AdvancedClasses", "advanced-python/20DataAndPlotting", "advanced-python/30Classification", "advanced-python/31ClassificationExtension", "advanced-python/32BoostingToUniformity", "advanced-python/40Histograms", "advanced-python/45DemoReweighting", "advanced-python/50LikelihoodInference", "advanced-python/60sPlot", "advanced-python/70ScikitHEPUniverse", "advanced-python/README", "git/01-basics", "git/02-setup", "git/03-create", "git/04-changes", "git/05-history", "git/06-ignore", "git/07-gitlab", "git/08-share", "git/09-pullrequests", "git/10-conflict", "git/11-ci", "git/12-open", "git/13-licensing", "git/14-citation", "git/README", "index", "python/00scripts", "python/01basics", "python/README", "python/classes", "python/conditions", "python/dictionaries", "python/first_histogram", "python/further_reading", "python/learning", "python/lists", "python/methods", "python/modules", "python/numbers", "python/operators", "python/running", "python/scripting", "python/strings", "shell-extras/README", "shell-extras/persistent-screen", "shell-extras/screen", "shell-extras/screen2", "shell-extras/shell2", "shell/02-filedir", "shell/03-create", "shell/04-pipefilter", "shell/05-loop", "shell/06-script", "shell/07-find", "shell/README", "snakemake/README"], "filenames": ["CONDUCT.md", "CONTRIBUTING.md", "LICENSE.md", "advanced-python/10Basics.ipynb", "advanced-python/11AdvancedPython.ipynb", "advanced-python/12AdvancedClasses.ipynb", "advanced-python/20DataAndPlotting.ipynb", "advanced-python/30Classification.ipynb", "advanced-python/31ClassificationExtension.ipynb", "advanced-python/32BoostingToUniformity.ipynb", "advanced-python/40Histograms.ipynb", "advanced-python/45DemoReweighting.ipynb", "advanced-python/50LikelihoodInference.ipynb", "advanced-python/60sPlot.ipynb", "advanced-python/70ScikitHEPUniverse.ipynb", "advanced-python/README.md", "git/01-basics.md", "git/02-setup.md", "git/03-create.md", "git/04-changes.md", "git/05-history.md", "git/06-ignore.md", "git/07-gitlab.md", "git/08-share.md", "git/09-pullrequests.md", "git/10-conflict.md", "git/11-ci.md", "git/12-open.md", "git/13-licensing.md", "git/14-citation.md", "git/README.md", "index.md", "python/00scripts.md", "python/01basics.ipynb", "python/README.md", "python/classes.ipynb", "python/conditions.md", "python/dictionaries.md", "python/first_histogram.md", "python/further_reading.md", "python/learning.md", "python/lists.md", "python/methods.md", "python/modules.md", "python/numbers.md", "python/operators.md", "python/running.md", "python/scripting.md", "python/strings.md", "shell-extras/README.md", "shell-extras/persistent-screen.md", "shell-extras/screen.md", "shell-extras/screen2.md", "shell-extras/shell2.md", "shell/02-filedir.md", "shell/03-create.md", "shell/04-pipefilter.md", "shell/05-loop.md", "shell/06-script.md", "shell/07-find.md", "shell/README.md", "snakemake/README.md"], "titles": ["Contributor Code of Conduct", "Contributing", "Instructional Material", "1: Basics", "Advanced Python Concepts", "Advanced Classes", "2: First look at data", "3: Multivariate Analysis", "4: Extension on Classification", "5: Boosting to Uniformity", "6: Histograms", "7: Demonstration of distribution reweighting", "8: Likelihood inference", "9: sPlot", "10: Scikit-HEP", "Advanced Python Tutorial", "Automated Version Control", "Setting Up Git", "Creating a Repository", "Tracking Changes", "Exploring History", "Ignoring Things", "Remotes in CERN GitLab", "Sharing a repository with others", "Collaborating with Pull Requests", "Conflicts", "GitLab CI", "Open Science", "Licensing", "Citation", "Git", "Analysis essentials ", "Scripting", "1: Basics", "An introduction to Python", "Classes", "Conditions", "Dictionaries", "Making your first histogram", "More advanced topics in Python", "Learning more", "Lists and looping", "Functions", "Modules", "Numbers", "Objects and operators", "Running Python", "Scripting", "Strings", "UNIX shell", "Persistent screen or tmux session on lxplus", "Using screen to keep things running", "Advanced screen topics", "More about the UNIX shell", "Navigating Files and Directories", "Working With Files and Directories", "Pipes and Filters", "Loops", "Shell Scripts", "Finding Things", "Introducing the Shell", "Analysis automation with Snakemake"], "terms": {"As": [0, 4, 9, 11, 13, 14, 17, 20, 21, 22, 24, 25, 27, 30, 33, 37, 38, 41, 42, 43, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "maintain": [0, 1, 6, 14, 24, 28, 31, 34], "thi": [0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "project": [0, 1, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 27, 28, 29, 30, 31, 55], "we": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "pledg": 0, "respect": [0, 4, 5, 6, 33, 41, 55, 58], "all": [0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 31, 34, 36, 37, 38, 43, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "peopl": [0, 1, 16, 20, 22, 24, 25, 27, 28, 34, 38, 40, 42, 48, 53, 54, 55, 56, 57, 58, 59, 60], "who": [0, 1, 24, 25, 27, 28, 34, 40, 42, 50, 53, 54, 57, 58, 59], "contribut": [0, 13, 24, 28, 31, 38], "through": [0, 6, 14, 15, 19, 20, 21, 23, 24, 27, 28, 35, 40, 43, 45, 46, 52, 53, 54, 56, 57, 59, 60], "report": [0, 1, 19, 59], "issu": [0, 1, 17, 21, 22, 31, 60, 61], "post": [0, 23, 27, 40], "featur": [0, 3, 6, 7, 11, 12, 13, 15, 22, 26, 30, 31, 34, 46, 52, 56, 61], "request": [0, 1, 3, 30, 31, 61], "updat": [0, 1, 12, 17, 19, 20, 22, 23, 25, 26, 38, 40, 43, 46, 50, 57, 61], "document": [0, 1, 2, 3, 15, 16, 20, 22, 26, 27, 31, 38, 42, 43, 54, 55], "submit": [0, 1, 24, 27], "pull": [0, 1, 22, 23, 25, 30, 31], "patch": [0, 6, 10, 19, 20, 60], "other": [0, 2, 4, 5, 7, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61], "activ": [0, 15, 17, 31, 34, 43, 51], "ar": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "commit": [0, 1, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "make": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61], "particip": [0, 31], "harass": 0, "free": [0, 2, 6, 7, 11, 26, 27, 28, 30, 41, 53], "experi": [0, 6, 12, 31, 46, 55, 57, 59], "everyon": [0, 1, 19, 20, 21, 40, 42, 60], "regardless": [0, 54, 60, 61], "level": [0, 12, 21, 23, 36, 53, 54, 55, 56, 60], "gender": 0, "ident": [0, 6, 11, 16, 33, 37, 41, 54, 55, 61], "express": [0, 2, 13, 15, 31, 32, 38, 40, 41, 42, 45, 47, 48, 53, 56, 59], "sexual": 0, "orient": [0, 35, 43], "disabl": [0, 54], "person": [0, 2, 16, 22, 23, 24, 25, 27, 33, 42, 54, 58, 61], "appear": [0, 18, 19, 20, 23, 24, 54, 55, 57, 58, 59, 60, 61], "bodi": [0, 36, 57], "size": [0, 10, 13, 19, 38, 41, 53, 54, 55, 59], "race": 0, "ethnic": 0, "ag": [0, 24, 33, 42], "religion": 0, "exampl": [0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 24, 26, 31, 32, 33, 35, 36, 37, 38, 41, 42, 45, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "unaccept": 0, "behavior": [0, 5, 12, 35, 46], "includ": [0, 1, 2, 3, 4, 7, 8, 12, 16, 17, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 40, 42, 43, 46, 47, 48, 51, 54, 55, 56, 58, 59, 60], "us": [0, 2, 3, 5, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60], "languag": [0, 28, 31, 33, 34, 35, 38, 40, 41, 45, 46, 59, 60], "imageri": 0, "derogatori": 0, "comment": [0, 1, 3, 8, 16, 19, 20, 23, 24, 32, 33, 40, 42, 47, 58, 59, 61], "attack": 0, "troll": 0, "public": [0, 2, 22, 26, 28, 29, 35, 38, 54], "privat": [0, 22, 24, 26, 35, 50], "insult": 0, "unprofession": 0, "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "right": [0, 2, 4, 5, 7, 8, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 34, 38, 43, 45, 54, 55, 56, 57, 58, 59, 60], "respons": [0, 3, 7, 15, 25, 41, 54, 55, 57, 58], "remov": [0, 4, 7, 10, 11, 12, 18, 20, 22, 25, 32, 38, 40, 41, 47, 55, 56, 57, 58, 61], "edit": [0, 17, 19, 24, 25, 33, 53, 57, 58, 61], "reject": [0, 24, 25], "wiki": 0, "align": 0, "do": [0, 1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 35, 36, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "follow": [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 17, 18, 19, 20, 21, 22, 24, 25, 26, 29, 30, 31, 33, 34, 35, 36, 37, 40, 41, 42, 43, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61], "mai": [0, 1, 2, 4, 5, 6, 8, 11, 13, 15, 17, 19, 20, 22, 25, 27, 29, 35, 46, 52, 53, 54, 55, 56, 57, 58, 59], "from": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 45, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "team": 0, "instanc": [0, 4, 5, 9, 12, 13, 22, 26, 35, 43, 46, 52, 59, 61], "abus": 0, "otherwis": [0, 2, 9, 19, 28, 33, 54, 56, 61], "open": [0, 1, 4, 5, 6, 7, 9, 11, 18, 23, 24, 28, 30, 31, 38, 43, 53, 54, 55, 56, 57, 58, 61], "an": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "contact": [0, 1, 28], "one": [0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "more": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61], "i": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60], "adapt": [0, 2, 8], "coven": 0, "version": [0, 1, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 46, 53, 54, 57, 61], "1": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20, 23, 24, 25, 29, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61], "0": [0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "avail": [0, 1, 2, 4, 6, 10, 12, 13, 14, 15, 24, 25, 26, 28, 32, 36, 37, 38, 42, 43, 44, 45, 47, 48, 53, 54, 60, 61], "http": [0, 3, 6, 7, 8, 9, 11, 12, 16, 22, 24, 25, 31, 43, 54, 60, 61], "org": [0, 6, 7, 8, 54], "hsf": [1, 31, 61], "train": [1, 7, 8, 15, 31, 61], "sourc": [1, 13, 24, 28, 30, 31, 38, 43, 44, 46, 48, 53, 54, 61], "welcom": [1, 15, 22, 31, 33, 34], "kind": [1, 2, 12, 15, 19, 22, 28, 55, 58, 60], "new": [1, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 30, 31, 33, 35, 38, 41, 42, 43, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61], "lesson": [1, 3, 6, 7, 8, 15, 17, 19, 20, 22, 23, 24, 26, 29, 31, 34, 38, 42, 43, 45, 49, 51, 54, 55, 56, 59, 60], "fix": [1, 3, 6, 13, 15, 19, 20, 22, 24, 25, 34, 46, 53, 56, 58, 59], "exist": [1, 4, 8, 9, 10, 24, 25, 30, 33, 34, 36, 41, 42, 43, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61], "materi": [1, 28, 31, 46, 49, 53], "bug": [1, 7, 24, 46], "review": [1, 19, 23, 24, 27], "propos": [1, 23, 24], "chang": [1, 2, 4, 6, 12, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 30, 31, 32, 33, 36, 38, 41, 42, 43, 47, 48, 52, 53, 54, 55, 56, 57, 58, 59, 61], "By": [1, 4, 8, 13, 23, 24, 42, 43, 48, 50, 54, 55, 56, 57, 58], "you": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "agre": [1, 5, 11], "redistribut": [1, 2], "your": [1, 2, 3, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "work": [1, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 36, 37, 40, 41, 44, 46, 47, 48, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61], "under": [1, 2, 5, 7, 9, 11, 12, 15, 21, 22, 24, 25, 28, 32, 43, 47, 56, 59], "our": [1, 4, 6, 7, 8, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 32, 33, 34, 35, 38, 41, 42, 43, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61], "licens": [1, 2, 30, 31, 46], "In": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 19, 20, 22, 23, 24, 25, 26, 28, 31, 32, 33, 34, 35, 37, 38, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "exchang": 1, "address": [1, 17, 28, 53, 61], "assess": 1, "promptli": 1, "can": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "help": [1, 3, 7, 12, 16, 17, 19, 21, 25, 26, 28, 31, 32, 33, 34, 40, 41, 42, 46, 47, 52, 53, 54, 55, 56, 58, 59, 61], "becom": [1, 6, 16, 19, 20, 28, 31, 33, 40, 42, 48, 56, 57, 58, 60, 61], "member": [1, 23], "commun": [1, 27, 34, 35, 40, 60], "involv": [1, 5, 7, 12, 15, 26], "abid": 1, "code": [1, 3, 4, 5, 7, 13, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 41, 42, 44, 46, 47, 48, 53, 54, 57, 61], "conduct": [1, 31], "The": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59], "easiest": [1, 22, 58, 60], "wai": [1, 2, 4, 5, 6, 7, 10, 11, 13, 16, 17, 19, 20, 21, 23, 24, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "get": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 25, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61], "start": [1, 3, 4, 6, 10, 13, 15, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28, 31, 32, 33, 35, 36, 37, 40, 41, 42, 43, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61], "file": [1, 2, 3, 4, 6, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 49, 50, 51, 52, 57, 58, 59, 60], "tell": [1, 7, 17, 18, 19, 20, 21, 22, 24, 25, 32, 33, 36, 37, 41, 42, 43, 45, 47, 48, 50, 51, 53, 54, 55, 56, 57, 61], "u": [1, 5, 6, 7, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 25, 30, 31, 32, 33, 36, 37, 38, 41, 42, 43, 44, 47, 48, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "about": [1, 3, 5, 6, 7, 9, 12, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 31, 32, 33, 35, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 54, 55, 56, 57, 58, 59, 60, 61], "mistak": [1, 7, 18, 20, 55, 57, 58], "some": [1, 3, 4, 6, 7, 8, 9, 12, 13, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 35, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "awkward": [1, 39], "word": [1, 13, 16, 19, 24, 40, 42, 46, 48, 53, 54, 55, 56, 57, 58, 59], "factual": 1, "error": [1, 3, 4, 5, 6, 7, 12, 20, 22, 24, 25, 26, 33, 39, 41, 43, 54, 55, 56, 57, 58, 61], "good": [1, 3, 4, 5, 6, 7, 8, 11, 18, 19, 20, 23, 24, 28, 33, 34, 35, 40, 42, 51, 53, 55, 56, 57, 60], "introduc": [1, 4, 13, 15, 22, 24, 25, 31, 54, 58], "yourself": [1, 19, 23, 25, 37, 40, 41, 43, 48, 52, 56, 57, 61], "meet": 1, "If": [1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 31, 33, 36, 37, 38, 40, 41, 42, 43, 44, 46, 48, 52, 53, 54, 55, 56, 57, 58, 59, 61], "account": [1, 11, 12, 17, 22, 24, 54, 60], "write": [1, 3, 4, 6, 12, 13, 16, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 40, 41, 42, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "convenor": 1, "email": [1, 17, 24, 53], "howev": [1, 4, 5, 6, 7, 8, 10, 13, 15, 16, 19, 22, 26, 27, 31, 35, 37, 38, 41, 42, 43, 46, 51, 53, 54, 55, 56, 57, 59, 60, 61], "abl": [1, 4, 11, 13, 20, 23, 26, 27, 31, 33, 38, 40, 42, 51, 58, 60, 61], "respond": [1, 4, 6], "quickli": [1, 24, 40, 53, 57, 61], "method": [1, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 26, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 54, 59], "describ": [1, 10, 12, 13, 27, 29, 41, 43, 55, 56], "below": [1, 3, 4, 7, 11, 17, 19, 20, 24, 25, 28, 33, 54, 55, 56, 57, 59], "willing": 1, "creat": [1, 4, 5, 6, 7, 8, 10, 12, 13, 14, 19, 20, 21, 22, 23, 25, 26, 27, 30, 31, 32, 33, 35, 37, 38, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "know": [1, 4, 5, 6, 10, 11, 13, 19, 24, 25, 32, 33, 35, 40, 41, 43, 45, 47, 48, 53, 54, 55, 56, 57, 58, 61], "git": [1, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 43, 54, 59, 61], "problem": [1, 4, 7, 11, 13, 15, 19, 20, 25, 28, 31, 34, 35, 37, 40, 54, 56, 57, 58, 59, 61], "suggest": [1, 2, 23, 43, 55], "improv": [1, 6, 7, 11, 24, 43, 53, 57, 58, 60], "allow": [1, 3, 6, 10, 13, 14, 16, 19, 20, 22, 23, 24, 25, 26, 28, 30, 32, 37, 38, 42, 43, 47, 48, 51, 53, 54, 55, 56, 57, 58, 60, 61], "assign": [1, 4, 11, 24, 26, 31, 34, 36, 38, 41, 42, 43, 46, 51, 53, 57], "item": [1, 5, 11, 33, 37, 40, 41, 43, 57, 61], "someon": [1, 19, 22, 24, 25, 28, 40, 42, 53, 55, 56, 61], "thread": [1, 9, 22, 23, 24, 25, 43, 61], "discuss": [1, 6, 18, 19, 21, 25, 27, 28, 30, 31, 52], "comfort": [1, 31, 34, 40], "would": [1, 4, 7, 11, 16, 19, 20, 21, 22, 23, 24, 28, 35, 38, 41, 42, 43, 45, 50, 51, 54, 55, 56, 57, 58, 59, 60, 61], "like": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "add": [1, 3, 4, 5, 6, 10, 12, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 31, 32, 35, 38, 42, 47, 48, 53, 54, 55, 58, 61], "pr": 1, "instruct": [1, 12, 22, 31, 50, 55, 57], "There": [1, 4, 5, 6, 7, 12, 13, 19, 27, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 51, 52, 53, 54, 55, 56, 57, 59, 61], "mani": [1, 4, 6, 10, 11, 13, 15, 16, 17, 21, 23, 24, 27, 28, 33, 34, 35, 36, 38, 40, 41, 42, 43, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61], "exercis": [1, 4, 5, 6, 7, 8, 10, 12, 22, 24, 35, 53, 55, 56, 57], "ones": [1, 4, 8, 11, 13, 22, 25, 33, 38, 40, 48, 53, 57, 59, 61], "fill": [1, 6, 10, 15, 24, 42, 54, 55, 56, 61], "thing": [1, 3, 4, 6, 7, 10, 11, 12, 13, 15, 17, 19, 20, 22, 24, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 54, 55, 56, 57, 58, 60, 61], "clear": [1, 5, 28, 35, 42], "miss": [1, 5, 7, 20, 22, 38, 48, 56, 60], "look": [1, 3, 4, 5, 7, 8, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 36, 37, 41, 42, 43, 45, 51, 53, 54, 55, 56, 57, 59, 61], "idea": [1, 4, 5, 7, 13, 15, 18, 20, 24, 27, 40, 42, 54, 56, 57, 59], "pleas": [1, 7, 12, 17, 29, 31, 43, 59], "see": [1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 31, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61], "tab": [1, 22, 23, 24, 25, 26, 31, 33, 45, 46, 49, 54, 57, 60], "list": [1, 3, 4, 7, 17, 18, 19, 20, 21, 24, 28, 31, 32, 33, 34, 35, 36, 37, 42, 43, 45, 46, 47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61], "associ": [1, 2, 17, 22, 42, 54], "repositori": [1, 16, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 31, 43], "also": [1, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61], "particularli": [1, 34, 42, 51, 55, 61], "easi": [1, 3, 5, 7, 8, 12, 14, 20, 27, 29, 41, 56, 57, 59, 61], "suitabl": [1, 4, 19, 20, 26, 38], "first": [1, 3, 4, 5, 7, 8, 10, 11, 12, 13, 15, 17, 19, 20, 22, 24, 25, 26, 30, 31, 32, 33, 34, 35, 39, 41, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61], "just": [1, 3, 4, 5, 6, 7, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25, 26, 32, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "smarter": 1, "togeth": [1, 4, 10, 15, 20, 35, 37, 38, 53, 54, 56, 59, 60], "than": [1, 3, 5, 6, 11, 13, 15, 16, 19, 20, 22, 23, 24, 27, 32, 34, 35, 36, 38, 42, 43, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "own": [1, 4, 11, 17, 19, 20, 22, 23, 24, 26, 27, 28, 32, 37, 40, 42, 43, 46, 47, 54, 59], "novic": [1, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 54, 55, 56, 57, 58, 59, 60], "newcom": 1, "valuabl": 1, "been": [1, 6, 7, 8, 11, 14, 15, 16, 19, 20, 22, 23, 24, 34, 35, 38, 42, 44, 46, 53, 54, 55, 56, 57, 60, 61], "while": [1, 4, 5, 6, 7, 8, 11, 12, 15, 20, 24, 26, 27, 33, 36, 38, 42, 43, 44, 49, 53, 54, 55, 56, 58, 59, 60], "forget": [1, 5, 6, 17, 20, 22, 52], "impenetr": 1, "so": [1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "fresh": [1, 51, 59], "ey": 1, "alwai": [1, 4, 8, 15, 17, 18, 19, 21, 24, 32, 35, 36, 37, 38, 40, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 58, 59, 60, 61], "choos": [1, 7, 11, 13, 17, 19, 28, 33, 42, 48, 57], "via": [1, 5, 11, 19, 21, 24, 33, 43, 51, 54], "want": [1, 4, 6, 7, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 32, 33, 35, 36, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "To": [1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 18, 19, 22, 23, 24, 25, 26, 29, 31, 32, 38, 43, 46, 47, 50, 51, 52, 53, 54, 55, 56, 58, 59, 61], "manag": [1, 15, 16, 25, 28, 31, 53, 54, 60], "flow": [1, 10, 15, 31, 33, 56], "each": [1, 6, 7, 8, 10, 11, 13, 16, 18, 19, 20, 22, 24, 25, 26, 28, 37, 38, 40, 41, 42, 44, 53, 54, 55, 56, 57, 58, 59, 60, 61], "ha": [1, 3, 4, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "two": [1, 3, 4, 5, 7, 8, 10, 11, 13, 15, 16, 19, 20, 21, 22, 24, 25, 31, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61], "encourag": [1, 31, 46], "volunt": 1, "final": [1, 4, 7, 13, 21, 23, 24, 27, 41, 42, 50, 53, 54, 56, 57, 58, 59, 61], "sai": [1, 4, 12, 13, 20, 21, 22, 23, 24, 32, 40, 42, 43, 47, 48, 53, 54, 55, 56, 58], "over": [1, 4, 10, 11, 12, 14, 15, 19, 22, 23, 24, 31, 33, 34, 36, 37, 41, 42, 43, 46, 49, 57, 58], "merg": [1, 2, 7, 16, 23, 25, 30, 31, 61], "web": [1, 6, 11, 15, 22, 24, 26, 27, 28, 38, 54, 61], "interfac": [1, 6, 8, 10, 23, 24, 26, 31, 35, 38, 39, 55, 59], "fork": [1, 23, 30, 31], "origin": [1, 6, 8, 12, 13, 15, 22, 23, 25, 26, 30, 31, 41, 54, 56, 57, 59, 61], "profil": [1, 3, 12], "within": [1, 7, 13, 16, 18, 19, 26, 41, 43, 45, 52, 53, 54, 57, 58, 59, 61], "move": [1, 18, 19, 20, 22, 33, 50, 54, 55, 57, 61], "gh": 1, "page": [1, 7, 17, 19, 22, 23, 24, 26, 27, 31, 49, 52, 54, 56, 59, 60], "branch": [1, 18, 19, 20, 21, 22, 23, 24, 25], "signific": [1, 6, 7, 12, 15], "being": [1, 4, 13, 19, 20, 21, 24, 25, 26, 27, 28, 31, 34, 43, 46, 53, 55, 56, 57, 59, 60, 61], "made": [1, 2, 12, 16, 19, 20, 22, 23, 24, 25, 28, 30, 38, 41, 43, 55, 58, 59, 61], "navig": [1, 19, 31, 33, 55, 60], "": [1, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 57, 58, 59, 61], "wish": [1, 14, 17, 55], "revis": [1, 19, 27, 54], "requir": [1, 6, 11, 15, 26, 27, 28, 31, 35, 36, 37, 41, 53, 54, 55, 56, 57, 59, 61], "appropri": [1, 2, 7, 11, 13, 19, 24, 25, 27, 42, 45, 61], "individu": [1, 13], "receiv": [1, 7, 24, 56, 57], "feedback": [1, 27], "specif": [1, 4, 6, 19, 20, 21, 23, 31, 33, 34, 37, 41, 42, 43, 49, 51, 53, 54, 59, 60, 61], "automat": [1, 4, 23, 25, 26, 28, 30, 31, 32, 33, 35, 38, 40, 42, 46, 47, 49, 54, 60, 61], "repeat": [1, 12, 23, 48, 53, 57, 58, 60], "need": [1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 37, 38, 41, 42, 43, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "until": [1, 4, 6, 11, 20, 26, 37, 38, 41, 53, 59, 60], "when": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "sure": [1, 10, 11, 12, 18, 19, 22, 23, 24, 31, 35, 36, 37, 41, 53, 54, 55, 56, 57, 58, 59], "clone": [1, 23, 25, 30, 31, 43], "up": [1, 4, 7, 8, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 30, 31, 33, 36, 37, 41, 43, 46, 49, 51, 53, 54, 55, 56, 57, 58, 60, 61], "date": [1, 19, 20, 22, 24, 29, 43, 51, 54, 59, 61], "befor": [1, 4, 6, 12, 16, 17, 19, 20, 23, 24, 25, 26, 27, 33, 35, 38, 40, 41, 42, 43, 54, 55, 56, 57, 58, 59, 61], "e": [1, 4, 6, 7, 8, 11, 12, 13, 14, 17, 19, 20, 21, 22, 24, 25, 26, 33, 35, 40, 41, 43, 44, 46, 54, 55, 56, 57, 58, 59, 60, 61], "addition": [1, 26, 30], "onli": [1, 4, 5, 6, 7, 10, 12, 13, 17, 19, 21, 22, 24, 25, 27, 28, 30, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "newli": [1, 19, 21, 55], "lastli": [1, 43], "publish": [1, 2, 27], "copi": [1, 2, 7, 10, 18, 19, 20, 22, 23, 24, 25, 27, 28, 33, 37, 38, 41, 43, 48, 50, 54, 55, 56, 57], "refer": [1, 6, 7, 10, 17, 20, 27, 29, 31, 32, 33, 46, 47, 51, 53, 54, 55, 57, 58, 59, 61], "inform": [1, 6, 12, 14, 15, 17, 18, 19, 22, 23, 24, 27, 28, 31, 32, 38, 40, 42, 46, 47, 50, 53, 54, 55, 56, 58, 59, 61], "home": [1, 18, 22, 25, 43, 51, 54, 55, 56, 57, 59], "creativ": [2, 28, 61], "common": [2, 3, 4, 6, 20, 22, 23, 24, 26, 28, 34, 36, 38, 41, 48, 53, 57, 59, 60], "attribut": [2, 5, 10, 14, 28, 35, 41, 59], "human": [2, 5, 22, 53, 54, 55, 57, 60], "readabl": [2, 5, 14, 22, 33, 36, 40, 41, 42, 43, 53, 54, 59], "summari": [2, 19, 61], "substitut": [2, 57, 61], "full": [2, 12, 19, 20, 22, 25, 26, 35, 41, 54, 55, 56, 59, 61], "legal": [2, 28], "text": [2, 3, 6, 7, 10, 11, 13, 17, 19, 20, 22, 25, 31, 33, 34, 43, 46, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61], "cc": [2, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 54, 55, 56, 57, 58, 59, 60], "BY": [2, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 54, 55, 56, 57, 58, 59, 60], "4": [2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 54, 55, 56, 57, 58, 59, 60, 61], "share": [2, 3, 7, 12, 13, 21, 22, 25, 26, 27, 28, 30, 31, 53, 54, 61], "ani": [2, 4, 5, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 31, 33, 37, 38, 40, 41, 42, 43, 44, 46, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "medium": 2, "format": [2, 6, 19, 22, 31, 34, 36, 40, 42, 43, 47, 54, 56, 58, 59], "remix": 2, "transform": [2, 8, 56], "build": [2, 12, 15, 20, 24, 26, 39, 41, 43, 45, 56, 57, 59, 60, 61], "upon": 2, "purpos": [2, 7, 9, 12, 19, 27, 30, 42, 55, 56, 57], "even": [2, 6, 11, 13, 16, 19, 20, 24, 25, 28, 30, 32, 33, 34, 35, 38, 41, 42, 43, 47, 48, 51, 53, 54, 55, 56, 59, 60, 61], "commerci": [2, 28], "licensor": 2, "cannot": [2, 7, 11, 24, 25, 33, 37, 41, 43, 54, 55, 57, 61], "revok": 2, "freedom": 2, "long": [2, 3, 16, 17, 19, 20, 32, 36, 43, 46, 47, 48, 51, 54, 59, 60, 61], "term": [2, 19, 24, 44, 54, 59], "must": [2, 4, 20, 24, 25, 28, 36, 37, 38, 40, 41, 42, 43, 50, 53, 54, 55, 56, 58, 61], "give": [2, 4, 5, 6, 7, 10, 15, 23, 24, 25, 31, 37, 38, 41, 42, 43, 44, 48, 54, 56, 57, 58, 59, 61], "credit": [2, 46], "provid": [2, 4, 5, 6, 10, 11, 12, 14, 15, 22, 24, 26, 28, 38, 40, 42, 43, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61], "link": [2, 22, 23, 24, 27, 31, 49, 54, 59], "indic": [2, 22, 33, 37, 41, 48, 54, 55, 56], "were": [2, 6, 13, 20, 21, 22, 23, 25, 26, 42, 56, 57, 58, 59, 61], "reason": [2, 11, 13, 17, 19, 22, 27, 41, 44, 48, 53, 58, 61], "manner": [2, 37], "endors": 2, "No": [2, 4, 6, 7, 11, 36, 42, 53, 54, 55, 57], "addit": [2, 5, 19, 22, 24, 25, 26, 31, 33, 37, 43, 45, 49, 53, 54, 55, 56, 57, 58, 60, 61], "restrict": [2, 6, 22, 28, 37, 41, 43, 59], "appli": [2, 5, 7, 10, 12, 14, 15, 20, 28, 31, 34, 42, 54, 57], "technolog": 2, "measur": [2, 6, 11, 12, 57, 60, 61], "anyth": [2, 4, 12, 19, 24, 25, 27, 30, 32, 37, 41, 42, 46, 47, 54, 55, 56, 57, 58, 61], "permit": 2, "notic": [2, 18, 19, 20, 21, 33, 43, 48, 53, 54, 55, 59, 61], "compli": 2, "element": [2, 4, 33, 41, 42, 43, 54, 55, 57], "domain": 2, "where": [2, 3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 22, 24, 25, 26, 27, 33, 34, 35, 41, 42, 43, 44, 46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "applic": [2, 3, 9, 11, 54], "except": [2, 5, 6, 12, 15, 21, 22, 24, 31, 43, 46, 54, 55, 56], "limit": [2, 10, 12, 13, 16, 19, 24, 31, 54, 57, 59], "warranti": 2, "given": [2, 4, 8, 11, 12, 13, 19, 20, 21, 24, 25, 27, 35, 41, 42, 43, 44, 53, 54, 55, 56, 57, 58, 59, 61], "permiss": [2, 6, 23, 24, 28, 53, 54, 59], "necessari": [2, 25, 41, 43, 54, 60], "intend": [2, 30, 46], "For": [2, 4, 5, 6, 7, 9, 11, 12, 16, 17, 19, 21, 23, 27, 31, 33, 35, 36, 38, 41, 42, 43, 44, 45, 46, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "privaci": 2, "moral": 2, "how": [2, 3, 4, 6, 7, 8, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 37, 40, 41, 42, 43, 44, 45, 47, 48, 53, 54, 55, 57, 58, 59, 60, 61], "note": [2, 3, 4, 6, 12, 17, 18, 19, 22, 23, 24, 25, 31, 36, 37, 41, 42, 43, 46, 50, 52, 54, 55, 56, 57, 58, 59, 60, 61], "program": [2, 4, 17, 19, 21, 27, 31, 32, 34, 35, 37, 40, 43, 45, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60], "carpentri": [2, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 49, 54, 55, 56, 57, 58, 59, 60], "osi": 2, "approv": [2, 28], "mit": 2, "herebi": [2, 24, 35], "grant": [2, 28], "charg": [2, 14, 30], "obtain": [2, 6, 9, 10, 11, 12, 13, 15, 27, 32, 47, 50, 59], "deal": [2, 10, 16, 45, 56], "without": [2, 3, 5, 6, 9, 10, 11, 13, 14, 19, 20, 21, 22, 23, 24, 25, 26, 28, 32, 35, 38, 41, 43, 44, 47, 48, 50, 54, 55, 56, 57, 58, 59, 61], "modifi": [2, 19, 20, 21, 24, 25, 26, 27, 30, 32, 38, 41, 43, 47, 48, 53, 57, 58, 59, 61], "distribut": [2, 7, 12, 15, 16, 24, 27, 28, 30, 31, 38, 39, 43, 46, 61], "sublicens": 2, "sell": 2, "whom": 2, "furnish": 2, "subject": [2, 13, 61], "condit": [2, 12, 13, 28, 31, 34, 43, 49], "abov": [2, 3, 4, 5, 6, 8, 11, 13, 15, 17, 18, 20, 23, 25, 27, 31, 33, 35, 38, 41, 42, 43, 46, 51, 53, 54, 55, 57, 59, 61], "copyright": [2, 28, 46], "shall": [2, 13], "substanti": [2, 61], "portion": [2, 19], "THE": 2, "AS": 2, "OF": 2, "OR": [2, 12], "impli": [2, 54], "BUT": 2, "NOT": [2, 4, 35], "TO": 2, "merchant": 2, "fit": [2, 7, 8, 9, 10, 11, 12, 14, 15, 19, 31, 34, 39], "FOR": 2, "A": [2, 3, 4, 5, 7, 10, 11, 13, 16, 20, 22, 23, 24, 25, 26, 27, 28, 33, 35, 37, 38, 39, 41, 42, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61], "particular": [2, 13, 16, 19, 22, 26, 34, 36, 43, 53, 55, 59], "AND": [2, 12, 13], "noninfring": 2, "IN": 2, "NO": 2, "event": [2, 6, 7, 11, 15, 38, 58], "author": [2, 10, 16, 19, 20, 24, 25, 29, 54], "holder": [2, 28], "BE": 2, "liabl": 2, "claim": [2, 61], "damag": 2, "liabil": 2, "whether": [2, 4, 7, 24, 28, 33, 36, 37, 43, 53, 57, 61], "action": [2, 4, 25, 32, 38, 41, 47, 61], "contract": [2, 59], "tort": 2, "aris": [2, 57], "out": [2, 3, 4, 5, 6, 7, 11, 15, 19, 20, 21, 22, 23, 24, 25, 27, 28, 32, 33, 38, 40, 41, 42, 43, 45, 46, 47, 50, 51, 52, 54, 56, 58, 59, 60, 61], "connect": [2, 3, 22, 24, 35, 51, 52, 54, 56], "WITH": 2, "advanc": [3, 6, 7, 9, 11, 12, 31, 33, 34, 49, 59], "python": [3, 5, 6, 7, 9, 10, 11, 12, 14, 20, 26, 28, 31, 32, 35, 36, 37, 38, 41, 42, 44, 45, 47, 48, 61], "tutori": [3, 4, 5, 6, 14, 30, 31, 33, 53, 54], "cover": [3, 4, 6, 15, 19, 21, 33, 35, 49, 54, 55, 60], "skill": [3, 60], "tip": [3, 22, 25, 55], "load": [3, 4, 7, 8, 10, 14, 15, 31, 43, 51, 61], "data": [3, 7, 8, 10, 12, 13, 14, 15, 21, 27, 31, 34, 37, 38, 41, 53, 54, 55, 56, 57, 58, 59, 60, 61], "plot": [3, 8, 9, 11, 13, 14, 15, 21, 26, 31, 34], "matplotlib": [3, 6, 7, 8, 9, 10, 11, 12, 13, 26, 31, 38, 39, 43], "cut": [3, 7, 8, 10, 12, 13, 14, 15, 31, 34, 56, 58, 59], "base": [3, 7, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 35, 38, 39, 43, 54, 55, 56, 57, 58, 59, 60, 61], "selction": 3, "multivari": [3, 11, 15, 31], "analysi": [3, 10, 12, 13, 14, 15, 21, 27, 34, 38, 48, 55, 56, 57, 58], "scikit": [3, 6, 7, 8, 10, 15, 31], "learn": [3, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 51, 54, 55, 56, 57, 58, 59, 60, 61], "uboost": [3, 9], "hep_ml": [3, 9, 11, 13, 31], "neural": [3, 15], "network": [3, 15], "demo": [3, 60], "mutivari": 3, "kinemat": 3, "reweight": [3, 15, 31], "splot": [3, 11, 15, 31], "techniqu": [3, 7, 8, 13, 15, 41, 57, 59], "mutabl": [3, 4, 7, 31, 34, 37, 41, 42], "immut": [3, 33, 37, 48], "object": [3, 4, 5, 6, 7, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 46, 48, 51, 54, 55, 56, 57, 58, 59, 60, 61], "dictionari": [3, 6, 10, 31, 33, 34, 36, 40, 42, 61], "comprehens": [3, 31, 34, 36, 37, 42, 54, 56, 58, 59, 61], "notebook": [3, 7, 9, 12, 13, 14, 15, 27, 28, 31, 33, 38, 46], "moduel": 3, "let": [3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 32, 33, 34, 35, 41, 42, 43, 44, 46, 47, 51, 53, 54, 55, 56, 58, 59, 61], "compar": [3, 7, 9, 15, 17, 19, 20, 23, 24, 31, 33, 36, 37, 38, 45, 53, 58, 60], "string": [3, 4, 5, 14, 20, 22, 25, 31, 33, 34, 36, 37, 41, 42, 52, 53, 54, 58, 59, 61], "tupl": [3, 31, 33, 34, 36, 37, 42, 61], "what": [3, 4, 5, 6, 7, 8, 10, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60], "happen": [3, 5, 8, 15, 16, 19, 20, 22, 25, 34, 37, 41, 42, 43, 44, 46, 51, 53, 54, 55, 56, 57, 58, 59, 61], "run": [3, 4, 9, 12, 17, 18, 19, 20, 22, 23, 24, 26, 31, 32, 33, 34, 36, 37, 38, 41, 42, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60], "b": [3, 4, 5, 7, 8, 13, 14, 19, 20, 21, 33, 37, 38, 41, 42, 44, 48, 50, 51, 53, 54, 56, 57, 58, 61], "c": [3, 4, 12, 13, 17, 21, 26, 33, 34, 36, 37, 38, 41, 42, 43, 48, 52, 54, 55, 56, 57, 59, 61], "hello": [3, 4, 5, 33, 41, 53, 56, 57, 59], "print": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 19, 20, 24, 25, 32, 33, 36, 37, 38, 40, 41, 42, 43, 46, 47, 48, 52, 53, 54, 56, 57, 58, 59, 60, 61], "39": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 33], "2": [3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20, 22, 23, 24, 25, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 51, 53, 54, 56, 57, 58, 59, 60], "3": [3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 23, 24, 25, 31, 33, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 48, 51, 54, 56, 57, 58, 59], "foo": [3, 33, 40, 42, 61], "bar": [3, 7, 13, 19, 23, 40, 42, 52, 56, 61], "n": [3, 10, 13, 15, 17, 19, 31, 33, 37, 48, 52, 53, 54, 56, 57, 58, 59, 61], "10": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 19, 20, 24, 25, 31, 33, 35, 38, 40, 41, 42, 44, 46, 48, 51, 52, 54, 56, 58, 59, 61], "list_of_squar": [3, 33], "rang": [3, 6, 7, 8, 11, 12, 13, 14, 33, 37, 41, 42, 43, 58, 60, 61], "sum_of_squar": [3, 33], "sum": [3, 7, 11, 13, 33, 41, 42], "squar": [3, 7, 8, 9, 33, 41, 42], "285": [3, 33], "5": [3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 25, 31, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 53, 54, 55, 56, 57, 58, 59], "9": [3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 22, 31, 33, 35, 38, 41, 46, 56, 58, 59], "16": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 33, 35, 38, 41, 45, 46, 51, 58], "25": [3, 4, 5, 6, 7, 10, 12, 13, 33, 37, 38, 46, 57, 59, 61], "6": [3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 22, 25, 31, 33, 35, 38, 41, 42, 46, 48, 56, 59], "36": [3, 4, 33, 51], "7": [3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 26, 31, 32, 33, 35, 37, 38, 41, 43, 46, 47, 54, 58, 59], "49": [3, 4, 11, 33], "8": [3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 24, 25, 31, 33, 35, 38, 41, 42, 46, 48, 54, 56, 59], "64": [3, 6, 11, 17, 33, 42, 61], "81": [3, 12, 33, 41, 57], "inlin": [3, 11, 31, 33, 34], "latex": [3, 6, 7, 26, 33], "frac": [3, 7, 8, 11, 12, 13, 33], "show": [3, 6, 7, 12, 13, 18, 19, 20, 22, 23, 24, 25, 32, 33, 36, 38, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59], "wonder": [3, 33], "syntax": [3, 6, 33, 36, 41, 42, 43, 45, 48, 51, 53, 56, 59, 61], "highlight": [3, 19, 25, 33, 41], "sad": [3, 33], "grei": [3, 7, 8, 9, 33], "world": [3, 4, 22, 33, 40, 46, 53, 59], "iostream": [3, 33], "std": [3, 33], "cout": [3, 33], "endl": [3, 33], "bash": [3, 19, 31, 33, 38, 46, 49, 50, 54, 56, 57, 58, 59, 60, 61], "echo": [3, 24, 25, 26, 33, 53, 56, 57, 58, 59, 61], "f": [3, 4, 5, 7, 8, 9, 10, 12, 13, 20, 21, 31, 32, 33, 35, 38, 43, 48, 50, 52, 53, 54, 55, 56, 58, 59, 61], "pt_cut": [3, 33], "1789": [3, 33], "234567890987654": [3, 33], "eta_low": [3, 33], "eta_high": [3, 33], "cut_str": [3, 33], "pt": [3, 6, 14, 33, 51], "2f": [3, 7, 8, 9, 33], "eta": [3, 6, 10, 14, 33], "gt": [3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 33, 53], "23": [3, 4, 5, 6, 7, 10, 12, 13, 33, 38, 46, 56], "amp": [3, 33], "lt": [3, 5, 6, 7, 8, 10, 12, 13, 14, 33, 53, 54], "veri": [3, 4, 8, 11, 13, 19, 20, 21, 22, 24, 25, 26, 30, 37, 38, 40, 41, 42, 46, 51, 52, 53, 54, 55, 56, 59, 61], "try": [3, 4, 5, 6, 7, 13, 18, 19, 20, 22, 24, 25, 27, 28, 32, 38, 40, 41, 42, 43, 45, 47, 51, 53, 54, 55, 56, 57, 59, 61], "faster": [3, 7, 8, 31, 37, 54], "cell": [3, 4, 7, 33, 46, 59], "return": [3, 4, 5, 6, 7, 10, 12, 13, 17, 18, 26, 32, 33, 35, 37, 40, 41, 42, 43, 44, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61], "valu": [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 53, 57, 58, 59], "which": [3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "shown": [3, 18, 19, 32, 38, 47, 55, 59], "after": [3, 4, 7, 13, 15, 19, 20, 21, 24, 25, 30, 31, 32, 41, 42, 43, 47, 51, 53, 54, 55, 56, 57, 58, 60, 61], "finish": [3, 4, 19, 25, 32, 47, 48, 56, 57, 59, 61], "rune": 3, "none": [3, 4, 5, 7, 8, 9, 10, 12, 13, 21, 35, 36, 42, 48, 54, 57, 58, 59, 61], "starterkitt": 3, "shell": [3, 19, 22, 31, 32, 40, 43, 44, 46, 47, 50, 52, 54, 55, 56, 57, 59, 61], "command": [3, 10, 17, 18, 19, 20, 22, 23, 24, 25, 26, 31, 32, 33, 34, 38, 40, 42, 43, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61], "l": [3, 6, 12, 13, 18, 19, 25, 26, 37, 38, 40, 42, 46, 51, 53, 54, 55, 56, 57, 58, 59, 61], "10basic": 3, "ipynb": 3, "40histogram": 3, "11advancedpython": 3, "45demoreweight": 3, "12advancedclass": 3, "50likelihoodinfer": 3, "20dataandplot": 3, "60splot": 3, "30classif": 3, "70scikithepunivers": 3, "31classificationextens": 3, "readm": [3, 24], "md": [3, 59], "32boostingtouniform": 3, "11": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 31, 33, 35, 38, 44, 46, 51, 54, 56, 57, 58, 59, 61], "wget": [3, 31, 60, 61], "com": [3, 16, 19, 25, 28, 30, 31, 53, 61], "index": [3, 4, 6, 10, 13, 15, 19, 20, 31, 33, 37, 41, 43, 54, 61], "html": [3, 6, 7, 8, 12, 42], "2023": 3, "09": [3, 19, 61], "22": [3, 4, 5, 6, 7, 10, 11, 12, 13, 19, 20, 22, 33, 38, 46, 56, 58, 59], "04": [3, 13], "41": [3, 4, 6, 33, 35, 41], "resolv": [3, 25], "93": 3, "184": 3, "216": 3, "34": [3, 4, 12, 14, 33, 41], "2606": 3, "2800": 3, "220": 3, "248": 3, "1893": 3, "25c8": 3, "1946": 3, "443": 3, "sent": [3, 56], "await": 3, "200": [3, 12, 13, 35], "ok": [3, 24, 28, 32, 35, 36, 47, 54, 60], "length": [3, 41, 42, 56, 58], "1256": 3, "2k": 3, "save": [3, 16, 19, 20, 30, 31, 53, 55, 56, 57, 58, 59, 61], "100": [3, 6, 7, 8, 11, 13, 22, 23, 24, 25, 35, 38, 57, 61], "23k": 3, "kb": [3, 53, 54], "42": [3, 4, 5, 9, 11, 33, 35, 38, 41, 42, 43], "82": [3, 12], "mb": [3, 53, 54], "time": [3, 4, 6, 7, 8, 9, 11, 12, 13, 17, 19, 20, 22, 24, 25, 26, 27, 28, 30, 32, 33, 35, 38, 40, 41, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "someth": [3, 4, 6, 8, 11, 21, 22, 24, 25, 27, 33, 35, 36, 41, 42, 44, 45, 46, 53, 54, 55, 56, 57, 58, 59, 60, 61], "take": [3, 4, 6, 7, 9, 11, 12, 13, 19, 23, 25, 26, 32, 35, 36, 38, 40, 41, 42, 45, 47, 54, 57, 58, 59, 60, 61], "line": [3, 4, 6, 7, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 46, 47, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61], "12": [3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 33, 35, 38, 46, 54, 56, 58], "10000": [3, 12, 13], "cpu": 3, "user": [3, 6, 10, 16, 17, 19, 22, 24, 26, 28, 38, 42, 43, 46, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61], "517": 3, "\u00b5": 3, "sy": [3, 32, 39, 43, 47], "96": 3, "total": [3, 6, 11, 12, 13, 22, 23, 24, 25, 38, 42, 56, 59, 61], "613": 3, "wall": 3, "617": 3, "333283335000": 3, "entir": [3, 18, 19, 25, 26, 27, 54, 55, 56], "13": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 33, 35, 38, 46, 58], "37": [3, 4, 33, 57], "m": [3, 6, 12, 13, 14, 18, 19, 20, 21, 23, 24, 25, 38, 52, 54, 61], "longer": [3, 19, 20, 25, 50, 51, 53, 54, 57, 58, 59], "expect": [3, 12, 13, 25, 28, 34, 41, 54, 55, 57, 58, 59, 61], "find": [3, 7, 8, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 25, 26, 27, 28, 31, 36, 40, 41, 42, 45, 48, 49, 51, 53, 54, 55, 56, 57, 58, 60, 61], "spend": [3, 40], "mayb": [3, 4, 5, 12, 19, 23, 33, 59], "skip": [3, 13, 54], "prun": 3, "cumtim": 3, "np": [3, 6, 7, 8, 10, 11, 12, 13, 35, 38, 43, 44], "sqrt": [3, 6, 7, 8, 14, 35, 38, 42, 44, 46], "100000": [3, 13, 38], "question": [3, 6, 7, 8, 20, 23, 27, 30, 31, 40, 54, 56, 58, 60, 61], "mark": [3, 25, 26, 40, 46, 48, 54, 56, 57, 58, 61], "end": [3, 4, 7, 8, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 26, 28, 30, 36, 37, 41, 42, 43, 46, 48, 51, 54, 56, 57, 58, 59, 60, 61], "14": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 19, 33, 35, 38, 44, 46, 58], "def": [3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 32, 35, 40, 42, 43, 47], "my_print": 3, "my_str": 3, "15": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 33, 35, 38, 46, 51, 56, 58, 61], "function": [3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 23, 31, 33, 34, 35, 37, 38, 40, 41, 43, 44, 45, 50, 56, 61], "17": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 33, 35, 38, 46, 56, 58], "done": [3, 6, 7, 8, 10, 12, 14, 19, 22, 23, 24, 25, 32, 38, 43, 44, 45, 46, 47, 52, 53, 56, 57, 58, 59, 60, 61], "actual": [3, 5, 8, 11, 14, 15, 17, 19, 21, 24, 26, 32, 33, 35, 36, 43, 47, 50, 53, 54, 56, 57, 58, 59, 60, 61], "sometim": [3, 4, 12, 19, 21, 24, 26, 33, 36, 38, 43, 45, 46, 53, 54, 56, 59, 60, 61], "junk": 3, "variabl": [3, 4, 7, 8, 11, 12, 13, 14, 15, 31, 34, 36, 38, 41, 42, 43, 45, 46, 48, 49, 54, 57, 58], "18": [3, 4, 5, 6, 7, 10, 11, 12, 13, 33, 35, 38, 41, 46, 55, 56, 58, 61], "found": [3, 5, 12, 15, 24, 33, 36, 37, 41, 43, 49, 53, 54, 56, 59, 60, 61], "19": [3, 4, 5, 6, 7, 10, 11, 12, 13, 33, 35, 38, 41, 46, 54, 56, 58, 59], "dict": [3, 4, 13, 14, 33, 35, 36, 37, 42], "kei": [3, 4, 6, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 36, 38, 40, 42, 46, 50, 54, 55, 56, 57, 58, 59, 60, 61], "default": [3, 5, 10, 12, 13, 15, 17, 23, 24, 33, 38, 41, 42, 43, 44, 46, 50, 54, 55, 56, 58, 59, 60, 61], "20": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 25, 29, 33, 35, 38, 41, 46, 51, 53, 55, 56, 57, 58], "It": [3, 4, 6, 7, 8, 11, 12, 14, 16, 17, 19, 20, 22, 23, 25, 27, 31, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 53, 54, 56, 57, 58, 59, 60, 61], "practic": [3, 5, 6, 13, 19, 22, 23, 24, 26, 27, 28, 30, 35, 40, 51, 53, 54, 56, 58, 60, 61], "begin": [3, 12, 13, 22, 40, 41, 43, 54, 55, 56, 57, 59, 61], "script": [3, 6, 20, 21, 26, 27, 31, 33, 34, 43, 46, 53, 56, 57, 59, 60], "avoid": [3, 7, 8, 11, 19, 21, 24, 42, 54, 55, 57, 61], "wildcard": [3, 31, 56, 57, 58, 59], "unclear": 3, "come": [3, 5, 6, 7, 12, 15, 19, 21, 22, 23, 24, 32, 33, 35, 40, 42, 43, 44, 45, 46, 47, 54, 55, 58, 59, 61], "math": [3, 10, 13, 37, 41, 43, 45, 46], "now": [3, 4, 5, 6, 7, 11, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 38, 41, 43, 46, 47, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "max": [3, 10, 11, 53, 61], "21": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 19, 20, 33, 35, 38, 46, 56, 58], "numpi": [3, 6, 7, 8, 10, 11, 12, 13, 14, 31, 35, 38, 39, 43, 44, 61], "axiserror": 3, "traceback": [3, 4, 33, 36, 37, 41, 42], "most": [3, 4, 5, 7, 10, 11, 12, 15, 19, 20, 21, 22, 24, 27, 28, 32, 33, 35, 36, 37, 38, 40, 41, 42, 45, 46, 47, 48, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61], "recent": [3, 4, 12, 19, 20, 24, 26, 27, 33, 36, 37, 41, 42, 50, 54, 55, 57, 58, 61], "call": [3, 4, 5, 6, 7, 9, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "last": [3, 4, 12, 15, 18, 19, 20, 22, 33, 35, 36, 37, 41, 42, 52, 53, 54, 55, 56, 57, 58, 59, 60], "usr": [3, 7, 12, 13, 32, 43, 47], "miniconda": [3, 7, 12, 13, 46], "env": [3, 7, 12, 13, 31, 43, 61], "essenti": [3, 7, 10, 12, 13, 46, 60, 61], "lib": [3, 7, 12, 13, 32, 43, 47, 61], "python3": [3, 7, 12, 13], "site": [3, 7, 12, 13, 38, 58, 59], "packag": [3, 6, 7, 8, 12, 13, 14, 15, 26, 31, 38, 43, 46, 60, 61], "core": [3, 12, 17, 19, 54, 61], "fromnumer": 3, "py": [3, 6, 7, 8, 12, 13, 20, 26, 32, 35, 43, 46, 47, 61], "2810": 3, "axi": [3, 6, 7, 8, 9, 13, 15, 31, 38], "keepdim": 3, "initi": [3, 15, 18, 19, 24, 31], "2692": 3, "array_function_dispatch": 3, "_max_dispatch": 3, "2693": 3, "set_modul": 3, "2694": 3, "_novalu": 3, "2695": 3, "2696": 3, "2697": 3, "maximum": [3, 12, 13], "arrai": [3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 33, 38, 39, 41], "along": [3, 9, 24, 26, 34, 37, 46, 53, 54, 55], "2698": 3, "2808": 3, "2809": 3, "_wrapreduct": 3, "2811": 3, "88": [3, 6], "obj": [3, 4, 14, 42], "ufunc": 3, "dtype": [3, 6, 7, 10, 11, 14, 38], "kwarg": [3, 4, 5, 6, 7, 42], "85": 3, "els": [3, 4, 5, 7, 8, 9, 13, 19, 22, 24, 25, 27, 32, 33, 36, 42, 43, 47, 48, 50, 53, 54, 55, 56, 58, 61], "86": [3, 14], "reduct": 3, "passkwarg": 3, "reduc": [3, 9, 11, 12, 19, 24, 25, 57, 61], "bound": 3, "dimens": [3, 7, 14, 15, 31, 41, 59], "abriv": 3, "panda": [3, 6, 7, 11, 13, 14, 15, 31, 34, 39, 43], "pd": [3, 6, 7, 9, 11], "pyplot": [3, 6, 7, 8, 9, 11, 12, 13, 38], "plt": [3, 6, 7, 8, 9, 11, 12, 13, 38], "root": [3, 6, 7, 9, 11, 14, 19, 21, 31, 34, 38, 41, 42, 54, 60, 61], "r": [3, 5, 7, 8, 10, 12, 13, 25, 46, 52, 54, 55, 56, 57, 59, 61], "typial": 3, "nicest": [3, 61], "mixtur": [3, 13], "x": [3, 4, 6, 7, 8, 12, 13, 14, 17, 36, 40, 41, 42, 43, 53, 54, 55, 56, 57, 58, 59, 61], "y": [3, 4, 5, 6, 7, 8, 12, 13, 14, 26, 36, 40, 41, 42, 43, 52, 53, 54, 55, 59], "re": [3, 4, 5, 6, 12, 19, 20, 21, 22, 23, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 45, 46, 47, 51, 54, 55, 56, 57, 58, 59], "interest": [3, 4, 11, 12, 15, 19, 26, 32, 33, 34, 38, 41, 44, 45, 47, 53, 61], "best": [3, 6, 7, 8, 12, 18, 24, 28, 30, 34, 35, 36, 38, 40, 46, 48, 56, 60, 61], "style": [3, 6, 14, 25, 40, 43, 54, 58], "offic": [3, 28], "guid": [3, 15, 27, 31, 34, 43, 51], "pep8": [3, 40], "itself": [3, 4, 5, 10, 16, 20, 24, 27, 33, 35, 40, 41, 45, 50, 53, 54, 55, 57, 58, 60], "quit": [3, 9, 11, 22, 32, 35, 36, 40, 44, 47, 48, 51, 53, 54, 55, 56], "autom": [3, 30, 31, 57, 59, 60], "sytl": 3, "checker": 3, "linter": 3, "flake8": [3, 38], "either": [3, 5, 12, 21, 45, 46, 54, 56, 58], "plugin": 3, "favourit": [3, 36, 48, 53], "editor": [3, 17, 19, 21, 28, 31, 34, 42, 49, 55, 58, 59, 61], "care": [3, 4, 6, 7, 11, 12, 13, 18, 24, 31, 32, 47, 50, 53, 55, 56, 57, 58, 61], "though": [3, 5, 6, 11, 15, 22, 27, 33, 36, 38, 50, 55, 57, 58, 59, 60, 61], "occasion": [3, 27], "better": [3, 5, 6, 7, 8, 9, 11, 16, 19, 23, 24, 29, 30, 33, 35, 40, 41, 48, 55, 59, 61], "break": [3, 5, 17, 19, 25, 36, 42, 46, 48, 55, 61], "rule": [3, 5, 15, 21, 31, 41, 42, 55], "easier": [3, 6, 20, 23, 27, 28, 31, 38, 40, 52, 54, 56, 59], "read": [3, 5, 6, 11, 13, 17, 20, 23, 25, 27, 33, 36, 39, 40, 41, 42, 53, 54, 56, 57, 58, 59, 60, 61], "restart": [3, 33], "kernal": 3, "24": [3, 4, 5, 6, 7, 10, 13, 25, 33, 38, 46, 51, 57, 59, 60], "few": [4, 5, 6, 7, 11, 15, 17, 19, 20, 21, 25, 26, 27, 28, 33, 35, 40, 44, 46, 54, 55, 56, 57, 58, 60], "relat": [4, 18, 40, 53, 60, 61], "import": [4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 19, 20, 21, 24, 26, 28, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 44, 46, 47, 53, 55, 59, 61], "thei": [4, 6, 10, 11, 13, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 31, 33, 36, 37, 38, 40, 41, 42, 44, 45, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "act": [4, 12, 24, 27, 42, 45], "parenthesi": 4, "situat": [4, 16, 53, 55, 61], "adder": 4, "left": [4, 5, 7, 13, 24, 26, 33, 45, 51, 56, 57], "assigmenemt": 4, "oper": [4, 5, 7, 17, 21, 31, 34, 36, 38, 40, 41, 43, 44, 48, 53, 54, 55, 56, 57, 58, 59, 60], "plai": [4, 6, 11, 12, 13, 16, 23, 24, 32, 33, 35, 36, 46, 47, 59], "around": [4, 11, 12, 16, 32, 36, 40, 41, 46, 47, 57, 58, 59, 60, 61], "seen": [4, 5, 6, 8, 13, 15, 24, 33, 35, 36, 37, 42, 43, 45, 46, 55, 56, 59], "remain": [4, 19, 33, 53, 59, 61], "special": [4, 5, 6, 11, 12, 15, 18, 19, 25, 26, 41, 43, 45, 46, 48, 54, 55, 57, 58, 60, 61], "case": [4, 5, 6, 7, 8, 11, 12, 15, 19, 20, 22, 24, 26, 31, 38, 41, 42, 43, 45, 46, 53, 54, 55, 56, 57, 58, 59, 61], "d1": 4, "d2": 4, "d3": 4, "d4": 4, "noth": [4, 5, 16, 18, 19, 21, 32, 44, 46, 47, 51, 54, 55, 56, 57, 58, 61], "simpli": [4, 5, 10, 12, 22, 24, 33, 43, 46, 51, 53, 57, 58, 61], "empti": [4, 19, 36, 41, 43, 48, 55, 58, 59, 61], "advantag": [4, 7, 46, 54, 58, 60, 61], "multipl": [4, 6, 7, 15, 16, 19, 21, 31, 32, 35, 36, 41, 42, 43, 45, 47, 52, 54, 55, 59, 61], "ad": [4, 7, 11, 12, 14, 15, 19, 20, 21, 22, 24, 25, 28, 31, 32, 33, 38, 42, 43, 47, 53, 56, 58], "doe": [4, 5, 6, 10, 11, 12, 19, 20, 21, 22, 24, 25, 26, 27, 30, 33, 35, 36, 37, 41, 42, 43, 54, 55, 56, 57, 58, 59, 60, 61], "possibl": [4, 5, 9, 10, 11, 16, 17, 20, 23, 33, 35, 36, 40, 42, 43, 46, 50, 53, 54, 57, 61], "ill": [4, 20], "defin": [4, 7, 8, 11, 12, 13, 21, 26, 32, 33, 36, 37, 41, 42, 43, 47, 48, 53, 58, 61], "d": [4, 5, 13, 22, 28, 33, 37, 40, 41, 42, 43, 46, 50, 51, 52, 54, 56, 58, 59], "g": [4, 8, 11, 12, 14, 19, 20, 21, 22, 25, 33, 35, 40, 41, 44, 46, 52, 53, 54, 55, 58, 59, 61], "h": [4, 6, 7, 10, 14, 17, 22, 32, 38, 47, 52, 53, 54, 58, 59], "should": [4, 5, 6, 10, 13, 18, 19, 20, 22, 23, 24, 25, 26, 28, 31, 34, 35, 36, 38, 40, 41, 42, 43, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61], "understand": [4, 16, 17, 20, 23, 24, 26, 33, 34, 41, 43, 54, 56, 57, 58, 60, 61], "arg": [4, 5, 42, 61], "func": [4, 42], "mykwarg": 4, "myarg": 4, "statement": [4, 6, 28, 36, 41, 42, 43], "basic": [4, 5, 6, 11, 12, 15, 16, 23, 27, 31, 34, 35, 43, 46, 49, 53, 54, 56, 59], "perform": [4, 8, 10, 11, 12, 13, 14, 22, 25, 36, 41, 44, 45, 53, 59, 60, 61], "enter": [4, 6, 17, 18, 20, 23, 32, 33, 38, 46, 47, 48, 53, 54, 56, 57, 60, 61], "again": [4, 6, 8, 13, 19, 20, 21, 24, 25, 26, 32, 33, 35, 37, 41, 42, 46, 47, 48, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61], "exit": [4, 17, 26, 32, 38, 43, 46, 47, 53, 54, 55, 57, 58, 61], "var": [4, 6, 7, 8, 13, 42, 51], "translat": [4, 5, 54, 60], "return_from_context_entering_cod": 4, "leav": [4, 6, 20, 46, 51, 55, 61], "great": [4, 5, 15, 30, 32, 40, 46, 47, 48, 49, 53, 54, 55, 60], "here": [4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 20, 22, 24, 25, 26, 30, 31, 33, 35, 36, 38, 40, 41, 42, 43, 45, 46, 48, 51, 54, 55, 56, 57, 58, 59, 60, 61], "whenev": [4, 17, 42, 46, 60], "step": [4, 6, 12, 13, 15, 16, 20, 22, 23, 24, 25, 27, 35, 38, 41, 50, 54, 55, 56, 57, 58, 59, 60, 61], "prove": [4, 55], "incredibli": 4, "cleanup": 4, "yet": [4, 5, 6, 8, 14, 15, 19, 22, 24, 33, 35, 46, 55, 57, 58], "tediou": [4, 38, 42, 57], "manual": [4, 14, 17, 19, 31, 49, 50, 54, 59, 61], "forgotten": 4, "One": [4, 6, 7, 14, 19, 23, 26, 27, 32, 40, 47, 48, 50, 51, 53, 55, 57, 58, 59, 61], "executioin": 4, "stop": [4, 10, 25, 26, 35, 36, 51, 54, 56], "point": [4, 7, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 38, 43, 53, 54, 55, 56, 57, 58, 59, 61], "continu": [4, 7, 12, 21, 24, 26, 56], "wa": [4, 10, 13, 14, 19, 20, 22, 23, 25, 27, 28, 31, 32, 33, 35, 41, 46, 47, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61], "iter": [4, 15, 31, 36, 37, 41, 42, 57], "everytim": 4, "suppos": [4, 6, 19, 20, 25, 42, 55, 56, 57, 58, 61], "asynchron": 4, "wait": [4, 11, 17, 26, 54, 58, 61], "contextlib": 4, "contextmanag": 4, "printer": [4, 60], "number": [4, 6, 7, 9, 10, 11, 13, 19, 20, 24, 25, 26, 27, 31, 34, 37, 38, 41, 42, 43, 45, 48, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "insid": [4, 13, 18, 19, 31, 33, 34, 38, 41, 42, 48, 50, 51, 53, 54, 57, 58, 59, 61], "state": [4, 13, 15, 19, 20, 22, 27, 28, 29, 30, 33, 35, 56], "set": [4, 5, 6, 7, 8, 10, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 30, 31, 33, 38, 42, 43, 45, 46, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "tmp": [4, 6, 7, 8, 40, 54, 58, 61], "txt": [4, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 40, 53, 54, 55, 56, 57, 58, 59, 61], "w": [4, 11, 13, 17, 43, 52, 53, 54, 56, 59, 61], "textfil": 4, "asdf": 4, "implement": [4, 5, 8, 10, 13, 15, 28, 30, 31, 37, 39, 42, 43, 60], "roughli": [4, 22], "myopen": 4, "mode": [4, 19, 23, 25, 33, 54, 57, 58], "close": [4, 6, 7, 11, 20, 24, 27, 34, 38, 41, 43, 50, 52, 53, 55], "temporarili": [4, 56], "switch": [4, 8, 23, 24, 46, 52, 54], "back": [4, 5, 6, 11, 15, 16, 19, 20, 22, 23, 24, 27, 32, 35, 37, 38, 42, 43, 47, 50, 51, 54, 55, 56, 57, 58, 60], "old": [4, 12, 19, 20, 25, 46, 50, 54, 55, 59], "testdict": 4, "name": [4, 5, 6, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 31, 32, 33, 35, 36, 38, 40, 41, 42, 43, 45, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "answer": [4, 5, 7, 11, 19, 20, 27, 35, 40, 44, 45, 54, 56, 57, 58, 59], "invok": [4, 5], "solut": [4, 5, 11, 13, 18, 19, 20, 21, 22, 23, 24, 25, 35, 36, 37, 38, 41, 42, 43, 45, 53, 54, 55, 56, 57, 58, 59, 61], "var1": 4, "set_answ": 4, "old_valu": 4, "instead": [4, 6, 7, 10, 13, 17, 19, 20, 21, 22, 24, 25, 35, 36, 37, 41, 43, 45, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "__enter__": 4, "__exit__": 4, "mycontext": 4, "__init__": [4, 5, 12, 13, 35, 43], "self": [4, 7, 15, 31, 35, 54, 58], "type_": 4, "go": [4, 5, 6, 8, 11, 13, 18, 19, 20, 22, 23, 24, 25, 26, 28, 32, 33, 34, 35, 37, 38, 41, 42, 43, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 59, 60, 61], "detail": [4, 5, 19, 24, 25, 26, 31, 38, 43, 46, 52], "power": [4, 7, 9, 11, 12, 15, 16, 35, 40, 41, 42, 53, 54, 55, 56, 58, 59, 60, 61], "offer": [4, 10, 22, 28, 33], "usus": 4, "enough": [4, 5, 19, 31, 50, 54, 55, 56, 58, 59], "prefer": [4, 5, 13, 17, 31, 38, 40, 42, 43, 56, 61], "doesn": [4, 6, 15, 19, 22, 27, 31, 32, 36, 41, 47, 52, 54, 55, 56, 57, 58, 59, 61], "t": [4, 5, 6, 7, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 35, 36, 37, 38, 40, 41, 42, 46, 47, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "flexibl": [4, 8, 55, 58], "rememb": [4, 13, 17, 19, 20, 22, 24, 42, 51, 52, 53, 54, 57, 58, 61], "figur": [4, 6, 7, 8, 9, 11, 13, 22, 38, 42, 54, 58, 60, 61], "fulli": [4, 10, 35, 46], "hand": [4, 20, 23, 24, 25, 27, 33, 37, 41, 56, 59, 60], "programat": 4, "pattern": [4, 15, 21, 54, 57, 59], "achiev": [4, 6, 9, 13, 24, 36, 55, 59], "integ": [4, 10, 33, 37, 44, 53, 54], "everyth": [4, 5, 13, 15, 18, 19, 20, 21, 22, 25, 30, 31, 32, 35, 36, 38, 43, 46, 47, 54, 55, 56, 57, 59], "make_power_func": 4, "pow3": 4, "26": [4, 5, 7, 10, 13, 33, 38, 46, 51, 56, 61], "4398046511104": 4, "27": [4, 5, 7, 10, 13, 33, 38, 42, 46, 54], "test": [4, 6, 8, 12, 15, 21, 22, 26, 30, 31, 35, 37, 43, 50, 53, 55, 56, 59], "anoth": [4, 6, 7, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 28, 33, 34, 36, 37, 38, 41, 42, 43, 46, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "wrapper": [4, 9, 45], "timed_pow3": 4, "fime_func": 4, "hint": [4, 11, 20, 21, 25, 35, 54, 56, 59, 61], "scetch": 4, "time_func": 4, "new_func": 4, "28": [4, 6, 7, 10, 13, 33, 35, 46], "timed_func": 4, "wrapped_func": 4, "29": [4, 7, 10, 13, 33, 41, 46], "add_notim": 4, "30": [4, 6, 7, 10, 11, 12, 13, 15, 26, 33, 35, 41, 46, 56, 57, 58, 60, 61], "add_tim": 4, "31": [4, 6, 7, 13, 15, 33, 42, 46], "32": [4, 13, 15, 17, 33, 51], "1920928955078125e": 4, "06": [4, 12, 56, 58, 59, 61], "33": [4, 15, 33, 43], "syntact": [4, 41], "sugar": [4, 31, 34], "argument": [4, 5, 6, 13, 14, 22, 32, 33, 34, 35, 40, 41, 42, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61], "certain": [4, 6, 7, 10, 12, 24, 33, 35, 40, 41, 43, 45, 48, 53, 59], "surfac": [4, 25], "higher": [4, 12, 16, 38], "stack": [4, 13, 40, 46, 61], "typic": [4, 6, 7, 11, 13, 25, 26, 38, 42, 43, 51, 54, 56, 61], "encount": [4, 7, 8, 35, 40, 43], "wrong": [4, 7, 11, 18, 20, 35, 40, 53, 55, 57, 58, 59, 61], "type": [4, 5, 6, 10, 13, 17, 19, 20, 21, 31, 34, 35, 36, 37, 40, 42, 43, 44, 45, 46, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 61], "caught": 4, "block": [4, 36, 41, 42, 43, 45, 46, 54, 57], "order": [4, 6, 7, 8, 10, 11, 12, 13, 15, 19, 21, 25, 26, 31, 36, 37, 38, 40, 41, 42, 50, 52, 54, 55, 56, 57, 58, 59, 60, 61], "handl": [4, 11, 30, 32, 47, 51, 58, 59, 60, 61], "built": [4, 6, 9, 10, 12, 19, 26, 37, 38, 42, 53, 54, 55, 58, 61], "typeerror": [4, 5, 33, 37, 41, 42], "float": [4, 11, 12, 13, 14, 33, 44], "valueerror": [4, 61], "illeg": 4, "neg": [4, 11, 13, 41, 59], "posit": [4, 7, 8, 9, 13, 21, 32, 41, 42, 47, 48, 56, 59], "runtimeerror": 4, "statu": [4, 18, 19, 20, 21, 24, 25, 26, 52, 54, 61], "pars": [4, 14, 43], "fall": [4, 5], "categori": [4, 7, 43], "keyerror": [4, 33], "indexerror": [4, 33, 41], "rais": [4, 5, 33, 61], "35": [4, 10, 33], "int": [4, 33, 40, 42, 44, 45], "str": [4, 15, 31, 33, 36, 42, 43, 48, 61], "often": [4, 5, 6, 7, 8, 10, 15, 20, 22, 26, 27, 28, 36, 38, 40, 42, 51, 57, 59, 60, 61], "conveni": [4, 6, 25, 33, 46, 56, 57], "messag": [4, 6, 12, 19, 20, 22, 24, 25, 32, 43, 47, 54, 55, 56, 57], "And": [4, 5, 6, 11, 13, 17, 23, 32, 35, 37, 47, 48, 53, 54, 56, 59], "inherit": [4, 10, 31, 34], "attent": [4, 11, 12, 24], "subclass": 4, "never": [4, 5, 31, 36, 41, 42, 45, 48, 54], "baseexcept": 4, "myerror": 4, "pass": [4, 5, 10, 13, 14, 27, 32, 42, 43, 47, 48, 50, 53, 54, 56, 57, 58, 59, 61], "38": [4, 5, 6, 33], "alreadi": [4, 6, 7, 10, 13, 19, 21, 22, 24, 25, 27, 28, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 52, 53, 55, 56, 61], "natur": [4, 24, 27, 36, 54], "negativevalueerror": 4, "next": [4, 5, 6, 13, 16, 19, 20, 21, 22, 23, 24, 33, 35, 36, 45, 46, 54, 57, 58, 60], "specifi": [4, 10, 12, 19, 26, 32, 35, 36, 37, 38, 41, 42, 43, 47, 48, 50, 53, 54, 55, 56, 59, 61], "check": [4, 5, 11, 12, 13, 17, 18, 19, 20, 22, 24, 25, 26, 27, 36, 51, 52, 53, 54, 55, 57, 58, 60, 61], "goe": [4, 6, 7, 11, 20, 53, 54, 56, 57, 60], "ye": [4, 5, 7, 33, 40, 41, 52, 54, 55, 61], "40": [4, 6, 9, 13, 14, 20, 33, 35, 41, 57], "keyword": [4, 6, 26, 40, 41, 42, 43, 53, 57], "inspect": [4, 32, 47, 53, 54, 55], "anti": 4, "gener": [4, 6, 7, 8, 12, 13, 15, 19, 24, 26, 33, 35, 38, 40, 41, 42, 43, 46, 50, 51, 54, 55, 56, 57, 61], "unfortun": [4, 20, 24], "caugth": 4, "43": [4, 33, 41, 42], "therefor": [4, 12, 18, 20, 24, 50, 58], "temporari": [4, 40, 54, 56, 61], "44": [4, 33, 42, 51], "guaranti": 4, "could": [4, 6, 7, 8, 20, 21, 22, 25, 28, 31, 32, 35, 36, 37, 38, 41, 42, 45, 47, 50, 53, 54, 55, 56, 58, 61], "omit": [4, 5, 41, 54], "45": [4, 15, 33, 41, 42, 46], "odd": [4, 35, 57], "effect": [4, 6, 7, 19, 20, 22, 33, 36, 38, 40, 41, 42, 43, 54, 55, 56, 57, 58], "ignor": [4, 6, 13, 18, 24, 30, 31, 54, 58, 59, 61], "IF": [4, 5], "logic": [4, 19, 25, 42], "46": [4, 19, 33, 60], "clean": [4, 6, 19, 21, 22, 24, 40, 58], "47": [4, 33], "elif": [4, 36, 53], "replac": [4, 20, 23, 24, 25, 35, 41, 42, 48, 53, 54, 57, 58, 59, 61], "golden": [4, 42], "steer": 4, "consid": [4, 6, 7, 12, 16, 19, 20, 25, 53, 54, 56, 58, 60, 61], "three": [4, 6, 22, 23, 24, 26, 38, 41, 42, 43, 48, 50, 53, 54, 55, 56, 57, 59, 61], "sake": [4, 54, 55], "favor": 4, "real": [4, 5, 6, 7, 8, 11, 15, 20, 24, 28, 31, 42, 43, 44, 53, 59], "larger": [4, 24, 53, 59], "scale": [4, 6, 7, 13, 54, 61], "too": [4, 6, 7, 19, 20, 21, 24, 28, 36, 40, 43, 54, 55, 56, 58, 59], "complic": [4, 5, 7, 23, 24, 27, 28, 40, 41, 51, 54, 55, 57, 58, 61], "explain": [4, 5, 13, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 42, 44, 53, 54, 56, 57, 58, 59, 60, 61], "assum": [4, 6, 8, 13, 38, 41, 54, 55, 56, 57, 58, 59, 61], "third": [4, 19, 41, 42, 55, 56, 59], "solv": [4, 7, 13, 21, 25, 28, 34, 35, 40, 57, 59, 61], "deeper": [4, 16], "nest": [4, 5, 18, 21, 36, 41, 56, 57], "don": [4, 6, 7, 11, 12, 15, 19, 20, 21, 22, 24, 25, 28, 32, 35, 36, 37, 38, 40, 41, 42, 46, 47, 53, 54, 55, 56, 57, 58, 59, 61], "output": [4, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 41, 42, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "48": [4, 33, 51], "50": [4, 6, 10, 11, 13, 15, 19, 20, 24, 33, 35], "result": [4, 7, 8, 11, 12, 13, 14, 15, 21, 25, 27, 32, 36, 42, 44, 45, 46, 47, 48, 54, 55, 56, 57, 59, 60, 61], "focus": [5, 59], "invoc": [5, 54], "demystifi": 5, "oubl": 5, "score": [5, 7, 11], "__meth__": [5, 15], "reserv": 5, "invent": 5, "precis": [5, 6, 33, 38], "__meth": 5, "fine": 5, "These": [5, 7, 15, 16, 20, 21, 26, 33, 38, 51, 54, 60, 61], "deleg": 5, "correspond": [5, 6, 13, 19, 22, 24, 25, 36, 37, 44, 45, 48, 56, 60], "__add__": [5, 35, 45], "notimpl": 5, "altern": [5, 6, 7, 12, 15, 31, 46, 59, 61], "tri": [5, 25, 40, 54], "__radd__": 5, "ight": 5, "differ": [5, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 25, 27, 28, 31, 33, 37, 38, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61], "namedvalu": 5, "valueleft": 5, "valueright": 5, "radd": 5, "think": [5, 13, 16, 19, 20, 21, 22, 24, 37, 40, 41, 54, 56, 57, 58, 59], "valleft": 5, "val": 5, "valleft2": 5, "left2": 5, "__len__": [5, 15], "nice": [5, 7, 19, 31, 32, 34, 35, 36, 38, 41, 42, 47, 48, 61], "represent": [5, 7, 37], "__str__": 5, "similar": [5, 6, 19, 20, 22, 25, 33, 37, 38, 41, 42, 46, 50, 51, 53, 54, 57, 59, 60, 61], "__repr__": 5, "target": [5, 9, 15, 31, 55, 57], "toward": [5, 15, 44, 56], "develop": [5, 26, 28, 31, 42, 58], "namerepr": 5, "namestr": 5, "am": [5, 41], "namestrrepr": 5, "repr": 5, "mean": [5, 6, 7, 11, 12, 13, 16, 17, 19, 20, 22, 24, 27, 30, 33, 34, 35, 36, 37, 41, 42, 43, 45, 46, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "attach": [5, 42, 43, 44, 45, 48, 50, 51], "behind": [5, 7, 23, 24, 25, 27, 28, 45, 56], "__call__": 5, "notcal": 5, "noncal": 5, "down": [5, 19, 20, 25, 26, 31, 33, 34, 42, 44, 52, 53, 54, 55, 61], "won": [5, 12, 13, 19, 23, 25, 36, 41, 57, 59, 61], "rather": [5, 6, 11, 19, 20, 22, 23, 24, 36, 52, 54, 55, 56, 57, 58, 59, 60], "normal": [5, 7, 8, 10, 12, 13, 27, 33, 35, 38, 42, 43, 45, 52, 54, 56, 57, 59], "That": [5, 6, 7, 14, 19, 20, 35, 38, 41, 56, 57], "control": [5, 6, 15, 18, 21, 22, 23, 24, 25, 26, 27, 30, 31, 33, 54, 55, 61], "__getitem__": 5, "__setitem__": 5, "storag": [5, 10, 19, 26, 55, 56], "contain": [5, 6, 7, 9, 11, 12, 13, 14, 15, 19, 22, 24, 25, 26, 27, 31, 34, 36, 37, 38, 41, 42, 43, 45, 48, 53, 54, 55, 56, 57, 58, 59, 61], "demonstr": [5, 7, 8, 9, 12, 13, 15, 31, 44, 54, 57, 60], "getitem": 5, "setitem": 5, "renam": [5, 25, 40, 43, 54, 55], "well": [5, 6, 10, 11, 12, 13, 14, 15, 20, 22, 24, 27, 33, 35, 37, 40, 42, 48, 53, 55, 56, 57, 59], "fullstop": 5, "consequ": 5, "latter": [5, 6, 10, 11, 12, 33, 38, 43, 53, 54, 59], "why": [5, 6, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 36, 53, 54, 55, 56, 57, 58, 59], "dynam": [5, 24, 31, 34, 35], "complet": [5, 6, 11, 16, 24, 25, 26, 33, 35, 46, 53, 54, 57, 58, 60, 61], "sens": [5, 36, 41], "fun": [5, 41], "live": [5, 61], "realli": [5, 7, 11, 20, 21, 22, 33, 37, 41, 43, 55, 60, 61], "least": [5, 24, 30, 34, 36, 37, 44, 55, 56, 57, 61], "independ": [5, 6, 8, 13, 16, 24, 38, 61], "colleagu": [5, 19, 20, 27, 40, 54, 56, 58], "quiz": 5, "did": [5, 7, 12, 15, 16, 19, 24, 27, 33, 35, 41, 43, 55, 56, 58, 59, 61], "access": [5, 6, 12, 14, 15, 17, 22, 23, 27, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 50, 53, 54, 55, 60, 61], "guess": [5, 7, 20, 55], "overrid": [5, 21, 35, 42], "store": [5, 6, 7, 8, 10, 12, 18, 19, 20, 25, 26, 27, 33, 41, 45, 48, 54, 58, 59, 60], "__dict__": 5, "remark": [5, 42], "__class__": 5, "mappingproxi": 5, "__module__": 5, "__main__": [5, 35, 42, 43], "__weakref__": 5, "__doc__": 5, "But": [5, 13, 18, 19, 20, 25, 32, 33, 35, 41, 42, 43, 47, 48, 53, 54, 60], "occur": [5, 19, 22, 25, 44], "realiti": [5, 27], "disclaim": 5, "extrem": [5, 35], "bad": [5, 7, 13, 18, 56, 60, 61], "getandset": 5, "__getattr__": [5, 15], "__setattr__": 5, "game": [5, 33], "same": [5, 6, 7, 8, 10, 11, 12, 13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 32, 33, 36, 37, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61], "provok": 5, "getattr": 5, "setattr": 5, "hi": [5, 17, 18, 25, 33], "becaus": [5, 8, 13, 17, 19, 20, 21, 22, 23, 25, 28, 32, 33, 34, 35, 36, 41, 42, 44, 45, 47, 48, 52, 54, 55, 56, 57, 58, 59, 60, 61], "explicit": [5, 33, 36, 61], "zen": [5, 40], "tim": 5, "peter": 5, "beauti": [5, 14, 20, 41], "ugli": [5, 48], "implicit": [5, 33, 42], "simpl": [5, 7, 10, 15, 24, 26, 31, 32, 35, 36, 42, 46, 47, 50, 53, 56, 57, 59, 60, 61], "complex": [5, 10, 15, 31, 33, 42, 44, 49, 55, 56, 58, 59, 60], "flat": [5, 9], "spars": 5, "dens": 5, "count": [5, 6, 10, 12, 13, 22, 23, 24, 25, 56, 58, 59, 61], "aren": [5, 16, 40, 41, 55], "although": [5, 35, 60], "beat": 5, "puriti": 5, "silent": [5, 43, 55, 56], "unless": [5, 16, 22, 34, 36, 54, 56, 61], "explicitli": [5, 6, 12, 14, 19, 24, 33, 35, 36, 41, 42, 43, 44, 54, 61], "silenc": 5, "face": 5, "ambigu": [5, 20], "refus": 5, "temptat": 5, "obviou": [5, 22, 40, 42, 61], "dutch": 5, "hard": [5, 6, 8, 20, 24, 42, 54, 56, 57, 59, 61], "namespac": [5, 43], "honk": 5, "those": [5, 6, 11, 13, 16, 19, 20, 22, 24, 25, 36, 37, 42, 43, 44, 45, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "sentenc": [5, 20, 34, 48, 53], "adult": 5, "behav": [5, 24, 36, 37, 43, 44, 56], "simul": [6, 8, 11, 12], "j": [6, 7, 12, 13, 33, 44, 53, 54], "psi": [6, 7, 12], "rightarrow": [6, 38], "mu": [6, 12, 13], "mplhep": [6, 7, 8, 12, 13, 15], "hep": [6, 7, 10, 11, 12, 15, 31, 61], "organis": [6, 53], "collect": [6, 10, 14, 26, 27, 36, 37, 40, 41, 43, 54, 60], "still": [6, 12, 13, 19, 22, 25, 35, 50, 51, 55, 56, 57, 58, 59, 60, 61], "high": [6, 10, 11, 12, 13, 14, 31, 34, 40, 60], "energi": [6, 10, 13, 31, 34, 40], "physic": [6, 9, 10, 11, 12, 13, 14, 15, 31, 34, 40, 54], "mimic": 6, "top": [6, 7, 10, 13, 22, 23, 24, 32, 36, 38, 47, 54, 56, 58], "pure": [6, 12, 13, 15], "cumbersom": [6, 35], "uproot": [6, 7, 9, 11, 15, 31, 39], "put": [6, 8, 19, 20, 21, 22, 24, 25, 32, 42, 47, 51, 54, 55, 56, 57, 58, 59, 60, 61], "fake": [6, 13, 53, 61], "jpsi_m": [6, 7, 10, 12], "jpsi_p": [6, 7, 10], "jpsi_pt": [6, 7, 10], "jpsi_px": [6, 10], "jpsi_pi": [6, 10], "jpsi_pz": [6, 7, 10], "mum_m": [6, 10], "mum_pt": [6, 7, 8, 10], "mum_eta": [6, 7, 10], "mum_p": [6, 7, 10], "mum_px": [6, 7, 10], "mum_pi": [6, 7, 10], "mum_pz": [6, 7, 10], "mum_ip": [6, 7, 8, 10], "mum_probnnmu": [6, 7, 10], "mum_probnnpi": [6, 10], "mup_m": [6, 10], "mup_pt": [6, 7, 8, 10], "mup_eta": [6, 7, 10], "mup_p": [6, 7, 10], "mup_px": [6, 10], "mup_pi": [6, 10], "mup_pz": [6, 10], "mup_ip": [6, 7, 8, 10], "mup_probnnmu": [6, 7, 10], "mup_probnnpi": [6, 10], "ntrack": [6, 10], "suffix": 6, "_m": 6, "invari": [6, 13, 35], "mass": [6, 7, 8, 9, 10, 12, 14, 15, 35, 38], "particl": [6, 9, 13, 15, 31, 35, 38], "pdg": [6, 14], "muon": [6, 7], "_p": 6, "absolut": [6, 8, 34, 38, 53, 54, 60], "momentum": [6, 8, 13, 14, 35, 38], "_pt": 6, "plane": 6, "_pe": 6, "_px": 6, "_py": 6, "_pz": 6, "four": [6, 17, 24, 36, 41, 59, 60], "compon": [6, 13, 38, 41], "_ip": 6, "impact": 6, "paramet": [6, 13, 15, 53, 54, 55], "distanc": [6, 11, 38], "closest": 6, "approach": [6, 24, 25, 27, 59], "between": [6, 7, 8, 10, 11, 13, 14, 19, 20, 22, 25, 26, 33, 37, 41, 43, 46, 54, 56, 57, 58, 59, 60], "reconstruct": [6, 15, 19, 31], "primari": 6, "vertex": 6, "probnnmu": 6, "probnnpi": 6, "identif": 6, "pion": [6, 41], "track": [6, 10, 16, 18, 20, 21, 22, 24, 25, 30, 31, 35, 36, 41, 54, 59, 61], "instal": [6, 17, 26, 31, 38, 43, 46, 61], "github": [6, 7, 17, 22, 24, 25, 27, 28, 31, 61], "repos": 6, "tree": [6, 9, 11, 15, 38, 54, 59], "class": [6, 7, 12, 13, 15, 31, 33, 34, 42], "convert": [6, 13, 15, 31, 33, 41, 48, 53, 59], "varieti": [6, 60], "datafram": [6, 7, 13, 14, 15, 38, 39], "tabl": [6, 10, 17, 23, 25, 33, 55, 56], "root_numpi": 6, "root_panda": [6, 38, 43], "outdat": [6, 15], "grid": [6, 7, 8, 9], "cern": [6, 7, 9, 11, 17, 23, 24, 25, 26, 28, 30, 31, 38, 43, 46, 50, 51, 52, 54, 60, 61], "keep": [6, 7, 10, 11, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28, 30, 31, 35, 36, 41, 43, 49, 50, 53, 54, 55, 56, 61], "local": [6, 11, 18, 19, 20, 22, 23, 25, 30, 38, 43, 54], "xrootd": 6, "protocol": [6, 22], "my_fil": [6, 38, 55], "eosus": 6, "ch": [6, 7, 9, 11, 22, 23, 24, 25, 26, 38, 43, 46, 50, 51, 52, 54, 60, 61], "eo": [6, 38], "lhcbsk": 6, "real_data": [6, 7], "valid": [6, 7, 8, 11, 12, 22, 32, 35, 47, 56, 58], "credenti": 6, "authent": 6, "fail": [6, 24, 25, 26, 61], "oserror": 6, "server": [6, 16, 17, 22, 24, 25, 27, 30, 31], "3010": 6, "unabl": [6, 7, 57], "unauthor": 6, "deni": 6, "kinit": [6, 50, 51], "usernam": [6, 22, 23, 24, 50, 54, 61], "termin": [6, 19, 23, 24, 34, 43, 46, 51, 53, 54, 56, 57, 61], "password": [6, 31, 49], "publicli": 6, "remot": [6, 23, 25, 26, 30, 31, 51, 54, 60], "significantli": 6, "slower": 6, "starterkit": [6, 7, 9, 11, 15, 31, 34, 49], "2018": [6, 7], "httpsourc": [6, 11], "chunkbyt": [6, 11], "1024": [6, 11, 25, 54], "limitbyt": [6, 11], "33554432": [6, 11], "parallel": [6, 11, 16, 25, 26, 60, 61], "decaytre": [6, 7, 38], "singl": [6, 7, 11, 19, 22, 24, 25, 26, 36, 41, 42, 43, 48, 52, 54, 56, 57, 58, 59, 60, 61], "\u03c8": 6, "101106": 6, "1071159": 6, "08600438": 6, "00478927": 6, "77311478": 6, "7698744": 6, "data_df": [6, 7, 8, 10, 12], "usual": [6, 7, 8, 10, 11, 19, 24, 25, 28, 33, 38, 41, 43, 48, 53, 54, 56, 58, 59, 60], "head": [6, 7, 19, 20, 23, 24, 25, 38, 42, 52, 53, 56, 57, 58], "188": 6, "630181": 6, "700534": 6, "131937": 6, "375806": 6, "288923": 6, "604688": 6, "376341": 6, "246101": 6, "755981": 6, "99": [6, 11, 33, 41], "674146": 6, "119": 6, "018213": 6, "608728": 6, "105658": 6, "820565": 6, "149": 6, "999983": 6, "836058": 6, "999994": 6, "244674": 6, "52": [6, 12], "385685": 6, "816164": 6, "595537": 6, "51": [6, 11, 19, 33], "961499": 6, "882897": 6, "293459": 6, "107116": 6, "735741": 6, "552217": 6, "776801": 6, "621295": 6, "210": [6, 38], "293355": 6, "851094": 6, "900278": 6, "125": [6, 7], "998874": 6, "264369": 6, "999999": 6, "391294": 6, "068478": 6, "552368": 6, "817129": 6, "837748": 6, "801420": 6, "976946": 6, "086004": 6, "110952": 6, "179505": 6, "096355": 6, "279673": 6, "272015": 6, "632559": 6, "490677": 6, "371": 6, "538509": 6, "313881": 6, "882305": 6, "961390": 6, "78": [6, 41], "399724": 6, "833082": 6, "818953": 6, "283360": 6, "949075": 6, "338889": 6, "087923": 6, "571993": 6, "028028": 6, "581850": 6, "020064": 6, "134": 6, "767864": 6, "792800": 6, "088611": 6, "136": 6, "896250": 6, "792830": 6, "999992": 6, "724581": 6, "83": 6, "900727": 6, "065507": 6, "457333": 6, "618226": 6, "132904": 6, "842831": 6, "116368": 6, "698279": 6, "220143": 6, "818777": 6, "851730": 6, "2926": 6, "081975": 6, "619576": 6, "031800": 6, "71": [6, 14], "998548": 6, "270670": 6, "999987": 6, "921856": 6, "row": [6, 7, 38, 56], "column": [6, 7, 10, 11, 14, 19, 25, 38, 53, 54], "hist": [6, 11, 13, 15, 38], "xlabel": [6, 7, 8, 9, 12, 13, 38], "jpsi": 6, "okai": [6, 7, 8], "api": 6, "_as_gen": 6, "intern": [6, 12, 13, 28, 37, 43], "bin": [6, 7, 8, 9, 12, 13, 15, 31, 38, 43, 53, 54, 55, 61], "histtyp": [6, 12, 13, 38], "easili": [6, 7, 11, 13, 32, 36, 38, 41, 43, 46, 47, 48, 51, 52, 61], "uncertainti": [6, 12, 15, 39], "match": [6, 19, 21, 25, 28, 37, 40, 46, 54, 55, 56, 57, 58, 59, 61], "lhcb2": 6, "atla": 6, "cm": [6, 9], "histplot": [6, 7, 8, 10, 12, 13], "lot": [6, 8, 25, 31, 34, 35, 36, 38, 40, 41, 42, 43, 46, 48, 54, 56, 59, 61], "onc": [6, 7, 16, 17, 18, 19, 21, 22, 24, 26, 27, 28, 33, 41, 42, 43, 48, 51, 52, 55, 56, 57, 58, 59, 60, 61], "subplot": [6, 9, 11, 13], "figsiz": [6, 9, 11, 13], "yerr": [6, 7, 12, 13], "true": [6, 7, 8, 9, 11, 12, 13, 17, 24, 32, 33, 36, 38, 40, 42, 43, 46, 47, 53, 59], "half_binwidth": 6, "errorbar": [6, 10, 12, 13], "xerr": 6, "errorbarartist": 6, "errorbarcontain": [6, 10], "artist": [6, 10], "plot_mass": [6, 7], "df": [6, 7, 8, 38, 53], "75": [6, 7, 10, 44], "feel": [6, 7, 11, 32, 36, 40, 46, 47, 60], "adjust": [6, 7, 8, 9, 11, 58, 61], "label": [6, 7, 8, 9, 10, 11, 12, 15, 19, 31, 38, 43, 54], "gev": [6, 7, 12, 14, 38], "xlim": [6, 7, 8, 9, 11, 13, 38], "forgot": [6, 19, 56], "bother": [6, 31], "them": [6, 10, 12, 13, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 36, 38, 40, 42, 43, 44, 45, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "eval": [6, 7, 11, 14, 38], "jpsi_eta": [6, 7, 10], "arctanh": [6, 7], "inplac": [6, 7, 12, 38], "703371": 6, "874790": 6, "307233": 6, "972345": 6, "307082": 6, "float64": [6, 38], "mu_p": 6, "809553": 6, "820509": 6, "484875": 6, "900145": 6, "577624": 6, "490405": 6, "69": 6, "311033": 6, "087997": 6, "66": [6, 13, 14], "868844": 6, "031472": 6, "increas": [6, 11, 14, 57], "signal": [6, 7, 8, 10, 12, 15, 55], "sampl": [6, 7, 12, 13, 15, 31, 38, 54, 56, 58, 60, 61], "background": [6, 7, 8, 12, 15, 31, 38], "discrimin": [6, 7, 13, 15, 31], "pid": [6, 7], "data_with_cuts_df": [6, 7], "queri": [6, 7, 10, 12, 14, 36, 38, 40], "identifi": [6, 10, 19, 20, 22, 25, 27, 54, 60, 61], "densiti": [6, 7, 8, 11, 13, 15, 31, 38], "p": [6, 7, 12, 13, 14, 22, 26, 36, 46, 50, 54, 56, 59, 61], "_t": [6, 7], "legend": [6, 7, 8, 9, 12, 13, 38], "loc": [6, 7, 8, 9, 13, 38], "0x7f77f9f22650": 6, "python_lesson": [6, 7], "check_truth": [6, 7], "ncut": 6, "moment": [6, 7, 13, 24, 41, 54, 57, 58, 61], "1216": 6, "167169": 6, "metric": [6, 7, 8, 9, 11], "58": 6, "602": 6, "31922": 6, "275": 6, "13798": 6, "told": [6, 19, 56, 61], "pick": [6, 28, 43], "simulated_data": [6, 7], "mc_df": [6, 7, 8, 10, 12], "mc_file": 6, "sideband": [6, 7, 8], "peak": [6, 7, 9], "present": [6, 15, 19, 21, 46, 53, 59, 61], "select": [6, 7, 13, 24, 33, 34, 52, 56, 57, 58, 59, 61], "outsid": [6, 42, 54, 58, 61], "region": [6, 7, 12], "bkg_df": [6, 7, 8, 10, 12], "ve": [6, 16, 19, 20, 22, 23, 24, 25, 32, 33, 36, 38, 40, 41, 44, 45, 47, 48, 54, 55, 56, 59, 61], "appl": 6, "nearest": 6, "9975": 6, "005": 6, "partial": 6, "mc": [6, 7, 8, 11, 12, 15], "hsig": [6, 7, 8], "60": [6, 7, 8, 14, 56, 57], "hbkg": [6, 7, 8], "bkg": [6, 7, 8, 12, 13], "0x7f77fa656f10": 6, "normalis": [6, 38], "0x7f77fa861d10": 6, "both": [6, 10, 12, 19, 20, 23, 24, 25, 26, 28, 29, 33, 42, 46, 48, 53, 54, 55, 56, 57, 59, 61], "signatur": 6, "plot_comparis": [6, 7, 8], "ipykernel_6447": 6, "3447827755": 6, "runtimewarn": [6, 7, 8], "retain": [6, 10], "consum": [6, 55], "much": [6, 8, 9, 11, 12, 16, 20, 21, 27, 32, 36, 37, 38, 40, 42, 43, 47, 48, 53, 54, 55, 56, 57, 61], "memori": [6, 33, 37, 53, 56], "warn": [6, 12, 13, 25, 43], "rcparam": 6, "max_open_warn": 6, "reli": [6, 37, 43, 61], "fortun": [6, 26, 38], "heavili": 6, "depend": [6, 9, 12, 13, 19, 24, 26, 27, 30, 35, 36, 54, 55, 61], "shape": [6, 10, 12, 13, 38], "calcul": [6, 10, 12, 14, 35, 37, 38, 42, 46, 54, 56, 58, 60, 61], "detector": 6, "calorimet": 6, "p_e": 6, "got": [6, 24, 38, 41, 42, 43], "slow": [6, 38, 46], "crash": [6, 7, 52, 58], "produc": [6, 19, 26, 55, 56, 57, 58, 61], "ever": [6, 14, 18, 24, 26, 58, 59, 61], "thousand": [6, 43], "pseudorapid": 6, "vagu": 6, "lhcb": [6, 34, 38, 44, 46, 49, 61], "asid": 6, "session": [6, 17, 25, 28, 31, 46, 49, 51, 52, 53], "reload": [6, 7], "boost": [7, 10, 15, 31], "bdt": [7, 8, 9, 10, 12, 15], "distinguish": [7, 11, 19, 54, 59, 60], "input": [7, 12, 17, 20, 41, 42, 43, 53, 54, 56, 57, 58, 59, 60, 61], "predict": [7, 8, 9, 11, 20], "previou": [7, 8, 10, 13, 14, 15, 20, 21, 24, 25, 26, 31, 38, 53, 54, 55, 56, 57, 61], "modul": [7, 8, 15, 31, 32, 34, 36, 37, 38, 41, 42, 47], "sklearn": [7, 8, 9, 11], "ensembl": [7, 8, 9, 11], "gradientboostingclassifi": [7, 8, 9, 11], "auc": [7, 8, 9, 11], "roc_curv": [7, 8, 9], "model_select": [7, 8, 9, 11], "kfold": [7, 8, 11], "xgboost": [7, 8, 15, 31], "xgbclassifi": [7, 8], "rectangular": [7, 15], "adavantag": 7, "corel": 7, "scatter": [7, 58], "marker": [7, 19, 25], "ylabel": [7, 8, 9], "0x7f4928f8a210": 7, "dimension": [7, 11, 15], "machin": [7, 8, 15, 17, 23, 26, 27, 40, 50, 51, 54, 56, 60, 61], "concept": [7, 15, 24, 31, 35], "known": [7, 8, 11, 15, 26, 27, 31, 38, 46, 54, 59], "weak": 7, "learner": 7, "strong": [7, 31, 34], "combin": [7, 12, 13, 14, 19, 20, 27, 36, 46, 54, 56, 57, 59, 60, 61], "algorithm": [7, 8, 11, 13, 15, 42], "luckili": [7, 20, 38, 41, 59], "ensem": 7, "classif": [7, 9, 11, 13, 15, 31, 57], "popular": [7, 26, 28, 38, 40, 60], "might": [7, 18, 19, 20, 21, 22, 23, 24, 27, 32, 34, 36, 37, 40, 41, 43, 46, 47, 53, 54, 55, 56, 57, 58, 59, 61], "sound": [7, 34, 36, 45, 48, 60], "gradientboosingclassifi": 7, "training_column": [7, 8, 9], "n_estim": [7, 8, 9, 11], "less": [7, 8, 11, 25, 31, 49, 53, 56, 57], "estim": [7, 8, 11, 12, 13, 15, 39], "300": [7, 8, 13, 56, 58, 59, 60], "teach": [7, 27, 30, 31, 34, 61], "2d": [7, 9, 10], "catagori": [7, 8, 10], "training_data": [7, 8], "concat": 7, "ignore_index": 7, "later": [7, 16, 17, 18, 19, 20, 26, 28, 33, 43, 45, 48, 51, 56, 58], "base_scor": 7, "booster": [7, 8], "callback": 7, "colsample_bylevel": 7, "colsample_bynod": 7, "colsample_bytre": 7, "devic": [7, 53, 60], "early_stopping_round": 7, "enable_categor": 7, "fals": [7, 8, 9, 12, 13, 31, 32, 33, 36, 40, 42, 43, 47, 61], "eval_metr": 7, "feature_typ": 7, "gamma": 7, "grow_polici": 7, "importance_typ": 7, "interaction_constraint": 7, "learning_r": [7, 9, 11], "max_bin": 7, "max_cat_threshold": 7, "max_cat_to_onehot": 7, "max_delta_step": 7, "max_depth": [7, 9, 11], "max_leav": 7, "min_child_weight": 7, "nan": 7, "monotone_constraint": 7, "multi_strategi": 7, "n_job": 7, "num_parallel_tre": 7, "random_st": [7, 8, 9, 11], "jupyt": [7, 10, 12, 15, 28, 31, 34, 38, 46], "environ": [7, 12, 13, 26, 31, 34, 38, 46, 49, 54, 58, 59], "rerun": [7, 33, 61], "trust": [7, 53], "On": [7, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 37, 54, 55, 56, 59, 60], "render": [7, 33], "nbviewer": 7, "xgbclassifierxgbclassifi": 7, "dataset": [7, 8, 11, 12, 13, 15, 56], "candid": 7, "predict_proba": [7, 8, 9, 11], "0951997": 7, "9048003": 7, "22529536": 7, "77470464": 7, "63189864": 7, "3681014": 7, "6602049": 7, "33979508": 7, "36177772": 7, "6382223": 7, "float32": 7, "n_": [7, 13], "probabl": [7, 8, 15, 21, 27, 31, 33, 40, 41, 42, 53, 55, 56, 58, 59, 61], "candiat": 7, "second": [7, 12, 13, 19, 23, 24, 33, 36, 40, 41, 43, 48, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61], "assumpt": [7, 15], "treat": [7, 10, 12, 13, 41, 43, 54, 55, 57, 61], "slice": [7, 41], "367871": 7, "22820437": 7, "29143938": 7, "challeng": [7, 20, 21, 54, 60, 61], "fact": [7, 13, 19, 20, 26, 33, 36, 43, 48, 54, 58, 59, 60, 61], "fewer": [7, 32, 47, 54], "chanc": [7, 24, 25, 55, 60], "mix": [7, 28, 42, 61], "caus": [7, 12, 17, 25, 55, 58], "subtl": 7, "accidenatlli": 7, "somewher": [7, 24, 34, 42, 48, 55], "earlier": [7, 19, 22, 23, 24, 27, 38, 41, 51, 53, 55, 56, 57, 58, 59], "histogram": [7, 8, 9, 11, 12, 13, 14, 15, 31, 34], "95": 7, "0x7f49067dcd90": 7, "possibli": [7, 27, 53], "207": 7, "59": [7, 35], "far": [7, 19, 22, 23, 28, 33, 36, 54, 61], "magic": [7, 10, 33, 35, 44, 54, 55, 61], "unfortuan": 7, "tool": [7, 14, 16, 17, 19, 24, 25, 26, 28, 30, 34, 35, 46, 54, 55, 56, 58, 59, 60, 61], "almost": [7, 19, 26, 31, 50, 54, 55, 56], "characterist": [7, 13, 54], "curv": [7, 8, 11, 13, 15], "roc": [7, 8, 11, 15], "effienc": [7, 9], "rate": [7, 8, 9, 57], "tpr": [7, 8, 9], "against": 7, "ineffieicni": 7, "fpr": [7, 8, 9], "corropsond": 7, "threshold": [7, 8, 9], "reus": [7, 12, 13, 22, 23, 24, 25, 28, 35, 42, 43], "y_score": [7, 8, 9], "nicer": [7, 8, 9, 41, 42], "forc": [7, 8, 9, 21, 34, 38, 41, 53, 54, 59, 61], "corrospond": 7, "randomli": 7, "grai": [7, 23], "color": [7, 8, 9, 12, 13, 17, 19, 20, 25, 33, 53, 54, 58], "linestyl": [7, 8, 9], "ylim": [7, 8, 9, 13], "lower": [7, 8, 9, 10, 11, 12, 13, 36, 48, 59], "gca": [7, 8, 9, 12, 13], "set_aspect": [7, 8, 9], "equal": [7, 8, 9, 11, 13, 36, 37, 42, 53, 61], "box": [7, 8, 9], "closer": [7, 33], "corner": [7, 9, 35], "area": [7, 8, 9, 10, 11, 18, 19, 20, 24, 25], "generanl": 7, "pm": 7, "sigma": [7, 12, 13], "toi": [7, 11, 12, 15], "n_sig": [7, 8], "1200": [7, 8], "n_bkg": [7, 8], "23000": [7, 8], "sig": [7, 13], "ipykernel_7043": 7, "4020814425": 7, "invalid": [7, 8, 22, 42, 43, 53, 54], "divid": [7, 8, 10, 11, 44, 57], "Then": [7, 18, 23, 24, 25, 32, 34, 37, 42, 45, 47, 50, 55, 58, 61], "optimal_index": 7, "argmax": [7, 8], "optimal_metr": 7, "optimal_cut": [7, 8], "optim": [7, 8, 13], "inf": [7, 12], "util": [7, 46, 50, 54, 59, 61], "262": 7, "zero": [7, 13, 26, 41, 54, 56, 57, 60], "scalar": [7, 10], "flat_scal": 7, "diff": [7, 12, 13, 19, 20, 22, 23, 53], "edg": [7, 10], "197": 7, "sumw": 7, "comput": [7, 12, 13, 16, 17, 19, 20, 23, 25, 27, 29, 40, 41, 42, 43, 44, 46, 51, 54, 55, 56, 58, 60, 61], "meaning": [7, 8, 24, 41, 55], "ab": [7, 8, 13, 42, 44, 56, 57, 58], "method_fcn": 7, "varianc": [7, 10], "242": 7, "multipli": [7, 10, 11, 48, 56], "243": [7, 58], "yerr_lo": 7, "244": 7, "yerr_hi": 7, "0x7f4906c5cd90": 7, "plot_roc": [7, 8, 9], "plot_signific": [7, 8], "axvlin": [7, 8], "black": [7, 8, 12, 13, 61], "datafil": [7, 9, 57, 58], "librari": [7, 9, 10, 11, 12, 14, 15, 31, 32, 34, 38, 40, 47, 53, 54], "mcfile": 7, "succesfulli": 7, "4278176416": 7, "standardis": [8, 61], "rank": 8, "highli": [8, 12, 27, 31, 46], "competit": [8, 59], "comparis": 8, "alorithm": 8, "adaboostclassifi": 8, "gradient": [8, 9, 15, 31], "bdt_1": 8, "bdt_2": 8, "classifi": [8, 11, 13, 15, 31, 54], "xgboost_bdt": 8, "ipykernel_7401": 8, "2193470804": 8, "actuali": 8, "adaboost": [8, 9], "biject": 8, "short": [8, 10, 19, 24, 27, 42, 43, 54, 55, 59], "matter": [8, 21, 28, 33, 41, 43, 54, 55, 56, 60, 61], "correl": [8, 11, 13, 15], "littl": [8, 13, 16, 18, 24, 32, 41, 42, 47, 52, 59], "resolut": [8, 25, 54], "ipmin": 8, "min": [8, 10, 13, 53, 61], "ipdiff": 8, "bdtclass": 8, "training_columns_2": 8, "bdt_3": 8, "training_columns_3": 8, "0x7fbe3d6fb710": 8, "lose": [8, 18, 20, 24, 30, 51], "part": [8, 10, 12, 13, 15, 20, 24, 26, 31, 32, 41, 43, 46, 47, 48, 54, 55, 57, 59, 61], "split": [8, 10, 11, 13, 19, 35, 43, 61], "crucial": [8, 12, 33], "scenario": 8, "red": [8, 19, 22, 57], "tile": 8, "blue": [8, 9, 23], "whole": [8, 11, 12, 23, 48, 54, 56, 57, 59, 61], "holdout": 8, "overfit": [8, 11], "overestim": 8, "evalu": [8, 11, 36, 53, 57, 60], "unbias": [8, 11], "search": [8, 14, 15, 19, 20, 43, 53, 54, 55, 57, 59, 61], "stabl": [8, 9, 12], "section": [8, 15, 38, 49, 56], "kf": 8, "n_split": 8, "get_n_split": 8, "shuffl": 8, "train_index": 8, "test_index": 8, "x_train": 8, "x_test": 8, "y_train": 8, "y_test": 8, "favorid": 8, "frequent": [9, 13, 25, 43, 54, 58, 60], "discoveri": [9, 12, 15, 27], "due": [9, 13, 16, 34, 43], "comparison": [9, 36], "signif": [9, 12], "loos": [9, 56], "qualiti": [9, 11, 24, 56], "plain": [9, 10, 54, 55, 58], "gradientboost": 9, "knn": 9, "ada": 9, "loss": [9, 11, 13, 15, 31, 55, 56, 59], "ugb": 9, "knnada": 9, "flatnessloss": 9, "paper": [9, 13, 16, 22, 27, 54, 58, 60], "plenti": [9, 34], "subset": [9, 40], "train_test_split": [9, 11], "decisiontreeclassifi": 9, "used_column": 9, "y1": 9, "y2": 9, "y3": 9, "m2ab": 9, "m2ac": 9, "2019": [9, 11], "dalitzdata": 9, "drop": [9, 46, 61], "mostli": [9, 25, 54], "tradit": [9, 32, 47], "poor": 9, "effieci": 9, "plot_distribut": 9, "data_fram": 9, "var_name1": 9, "var_name2": 9, "hist2d": 9, "cmap": 9, "colorbar": [9, 10], "titl": [9, 11, 12, 13, 24, 29], "trainx": 9, "testx": 9, "traini": 9, "testi": 9, "test_siz": 9, "uniform_featur": 9, "train_featur": 9, "150": [9, 14, 38], "base_estim": 9, "efficiency_step": 9, "smooth": [9, 11], "knnloss": 9, "knnadalossfunct": 9, "uniform_label": 9, "ugradientboostingclassifi": 9, "uboostclassifi": 9, "n_thread": 9, "knnflatnesslossfunct": 9, "fl_coeffici": 9, "fl": 9, "clf": [9, 11], "roc_auc_scor": [9, 11], "nearli": [10, 11, 16, 61], "everi": [10, 17, 20, 21, 22, 24, 26, 27, 33, 35, 37, 38, 41, 43, 50, 53, 54, 55, 56, 57, 59, 61], "place": [10, 18, 26, 33, 41, 42, 44, 48, 54, 55, 57, 58, 59], "effici": [10, 24, 30, 37, 54, 55], "correct": [10, 13, 15, 19, 20, 31, 54, 55, 56, 57, 58, 59], "friendli": [10, 46, 55], "directli": [10, 24, 27, 33, 35, 38, 41, 43, 46, 48, 56, 58, 60, 61], "workhors": 10, "written": [10, 12, 17, 27, 34, 54, 57, 58, 60, 61], "boost_histogram": 10, "bh": 10, "compos": [10, 24], "per": [10, 17, 32, 37, 42, 43, 47, 54, 56, 59], "view": [10, 19, 22, 24, 37, 38, 42, 43, 46, 54, 55, 57], "overflow": [10, 40, 53, 61], "hist2dplot": 10, "colormeshartist": 10, "pcolormesh": 10, "quadmesh": 10, "0x7fa2da74e8d0": 10, "cbar": 10, "0x7fa2da7dce90": 10, "cental": 10, "difin": 10, "former": [10, 11, 14, 33, 35, 50, 54], "upper": [10, 12, 13, 43, 48], "regularli": [10, 40, 46], "axis_reg": 10, "nbin": [10, 12, 13], "arbitrarili": 10, "mro": [10, 35], "axis_var": 10, "axis1": 10, "data_h": 10, "doubl": [10, 20, 36, 37, 42, 43, 44, 45, 48, 54, 55, 58, 61], "\u03c3": 10, "168384": 10, "168385": 10, "mc_h": 10, "chain": [10, 12, 20, 31, 53, 56], "With": [10, 11, 12, 20, 23, 27, 31, 32, 33, 38, 47, 48, 54, 58, 59, 60], "unifi": [10, 53], "born": 10, "seemless": 10, "stairsartist": 10, "stair": 10, "steppatch": 10, "0x7fa2da5f8150": 10, "legend_artist": 10, "plot1d": 10, "0x7fa2b0ca9650": 10, "0x7fa2b08734d0": 10, "axis_bdt": 10, "mc_h2d": 10, "data_h2d": 10, "0265": 10, "994": 10, "026503": 10, "993653": 10, "168383": 10, "0x7fa2b076f810": 10, "0x7fa2b076d650": 10, "variou": [10, 12, 13, 16, 20, 22, 38, 46, 55], "besid": [10, 61], "locat": [10, 40, 53, 54, 55, 58, 59, 61], "support": [10, 11, 13, 33, 34, 41, 43, 45, 46, 52, 54, 59, 60], "318": 10, "capabl": [10, 11, 16], "underflow": 10, "integr": [10, 22, 24, 25, 26], "devid": 10, "averag": [10, 51], "24562342": 10, "20355474": 10, "32523501": 10, "37322826": 10, "07734872": 10, "27271602": 10, "00139882": 10, "38734028": 10, "48785252": 10, "77554461": 10, "97317478": 10, "4737405": 10, "21992964": 10, "7286828": 10, "6058711": 10, "42574726": 10, "2947481": 10, "17193639": 10, "09824937": 10, "02456234": 10, "27018576": 10, "34274135": 10, "36617225": 10, "26679145": 10, "2984098": 10, "37915283": 10, "68321982": 10, "66797636": 10, "66092035": 10, "94861244": 10, "30999156": 10, "87605685": 10, "76143259": 10, "69593302": 10, "39299747": 10, "35206023": 10, "13099916": 10, "26199831": 10, "46555306": 10, "16148607": 10, "49603997": 10, "76622573": 10, "33002815": 10, "6165888": 10, "19084155": 10, "68435126": 10, "48898396": 10, "85855052": 10, "95793133": 10, "83511962": 10, "54855896": 10, "27837321": 10, "12281171": 10, "08187447": 10, "05731213": 10, "43280327": 10, "14511118": 10, "74279482": 10, "16741064": 10, "95340558": 10, "42827752": 10, "83059387": 10, "29135379": 10, "47260907": 10, "9240501": 10, "23630453": 10, "98249367": 10, "56493386": 10, "33568534": 10, "22106108": 10, "06549958": 10, "01637489": 10, "20468618": 10, "32636645": 10, "76735717": 10, "32297214": 10, "86334366": 10, "31365326": 10, "576783": 10, "24222911": 10, "13692373": 10, "82580073": 10, "36730369": 10, "92518154": 10, "82693217": 10, "55674641": 10, "50762173": 10, "22924852": 10, "04093724": 10, "35911624": 10, "89130031": 10, "02116803": 10, "79897552": 10, "05984239": 10, "98615537": 10, "53810864": 10, "00592457": 10, "30180411": 10, "0234309": 10, "78599493": 10, "4503096": 10, "32749789": 10, "1555615": 10, "03274979": 10, "1953673": 10, "89948776": 10, "8246693": 10, "9872868": 10, "78146919": 10, "46215874": 10, "56972699": 10, "57085843": 10, "91586265": 10, "29361666": 10, "94155643": 10, "84330707": 10, "4339347": 10, "36843513": 10, "28656065": 10, "1391866": 10, "10643681": 10, "00818745": 10, "31112299": 10, "22811709": 10, "95566845": 10, "57791444": 10, "96978047": 10, "03528005": 10, "38847172": 10, "65160147": 10, "43167183": 10, "58130875": 10, "40118491": 10, "11462426": 10, "04912468": 10, "12986772": 10, "99773713": 10, "9638559": 10, "82353786": 10, "42122151": 10, "23177878": 10, "92884324": 10, "52060231": 10, "5135463": 10, "76030116": 10, "81874472": 10, "81055728": 10, "51580918": 10, "31931044": 10, "19649873": 10, "09006192": 10, "25381086": 10, "15443006": 10, "87492542": 10, "68548269": 10, "70778216": 10, "17446665": 10, "7323445": 10, "50422742": 10, "2187982": 10, "7684886": 10, "77780749": 10, "03161835": 10, "54742753": 10, "79191951": 10, "02003659": 10, "96159302": 10, "08666761": 10, "56267098": 10, "53924008": 10, "27724177": 10, "67955812": 10, "49124683": 10, "34387278": 10, "14737405": 10, "0398058": 10, "79305094": 10, "55448354": 10, "31478469": 10, "92065579": 10, "74053195": 10, "30772868": 10, "49717141": 10, "84217563": 10, "94974388": 10, "59768365": 10, "05618069": 10, "80123839": 10, "54629609": 10, "47147763": 10, "21653533": 10, "81421897": 10, "97796792": 10, "01298058": 10, "16967352": 10, "75211371": 10, "17080495": 10, "90880664": 10, "72049536": 10, "49943428": 10, "18717985": 10, "66205179": 10, "67729525": 10, "33229102": 10, "92178723": 10, "69959471": 10, "27384746": 10, "16035463": 10, "5299212": 10, "72755137": 10, "76962004": 10, "53218407": 10, "21287363": 10, "71117647": 10, "70185759": 10, "06210527": 10, "08553617": 10, "56859556": 10, "62590769": 10, "16854208": 10, "71230791": 10, "48305939": 10, "41755981": 10, "30293555": 10, "8842443": 10, "24336054": 10, "15216719": 10, "06097383": 10, "26566001": 10, "51128343": 10, "31591613": 10, "57198987": 10, "26905432": 10, "9006192": 10, "09711793": 10, "45736561": 10, "30886012": 10, "07848016": 10, "96272446": 10, "4375964": 10, "37209682": 10, "34979736": 10, "67842668": 10, "46668449": 10, "16374894": 10, "96611877": 10, "04686181": 10, "89835632": 10, "75803828": 10, "35572193": 10, "93110611": 10, "17786096": 10, "81761329": 10, "1789924": 10, "75324515": 10, "52399662": 10, "69480158": 10, "6925387": 10, "99547425": 10, "18378554": 10, "27497889": 10, "25154799": 10, "68661413": 10, "25267943": 10, "80236983": 10, "54037152": 10, "99068112": 10, "35092879": 10, "08779905": 10, "12760484": 10, "58610189": 10, "25747256": 10, "25041655": 10, "15329862": 10, "65386434": 10, "10530538": 10, "85149451": 10, "67023924": 10, "09598649": 10, "02822404": 10, "48672109": 10, "90654377": 10, "22698565": 10, "58017732": 10, "36024768": 10, "38367858": 10, "80010695": 10, "78260062": 10, "05278638": 10, "01184915": 10, "19310442": 10, "91699409": 10, "38481002": 10, "18012384": 10, "21061075": 10, "78373206": 10, "64341402": 10, "1030425": 10, "29248523": 10, "08893048": 10, "79418238": 10, "57312131": 10, "61405854": 10, "63043344": 10, "69367014": 10, "17672953": 10, "2820349": 10, "63409514": 10, "23404166": 10, "31704757": 10, "93336898": 10, "68774557": 10, "73687025": 10, "11349282": 10, "71004503": 10, "5533521": 10, "97091191": 10, "23743597": 10, "18831129": 10, "85968196": 10, "57904588": 10, "14397974": 10, "93816212": 10, "91473122": 10, "94042499": 10, "62224599": 10, "59542077": 10, "04573037": 10, "10191107": 10, "94634957": 10, "83398818": 10, "39186603": 10, "67137067": 10, "07255559": 10, "34160991": 10, "62817056": 10, "03048691": 10, "42461582": 10, "89243175": 10, "49830284": 10, "0796116": 10, "65499578": 10, "40937236": 10, "84104419": 10, "29954124": 10, "54516465": 10, "61179567": 10, "98136223": 10, "28542922": 10, "04799325": 10, "37662257": 10, "52286519": 10, "60247678": 10, "93223755": 10, "7450577": 10, "44212215": 10, "64680833": 10, "97430622": 10, "6527329": 10, "62703913": 10, "50535885": 10, "56380242": 10, "13805517": 10, "18604841": 10, "46442162": 10, "16261751": 10, "89016887": 10, "42235294": 10, "45849705": 10, "07368703": 10, "58836476": 10, "40710949": 10, "24449198": 10, "60360822": 10, "75098227": 10, "3743597": 10, "44917816": 10, "26792288": 10, "02935548": 10, "20242331": 10, "05391782": 10, "26086687": 10, "00705601": 10, "12168027": 10, "73573881": 10, "73460738": 10, "0632367": 10, "11236139": 10, "06436814": 10, "74392626": 10, "02229947": 10, "10417394": 10, "03867436": 10, "70412046": 10, "01524346": 10, "44099071": 10, "75916972": 10, "66318323": 10, "37549114": 10, "96498734": 10, "14624261": 10, "12873628": 10, "86673797": 10, "53105263": 10, "63862088": 10, "55561497": 10, "25973544": 10, "71936392": 10, "40005348": 10, "21174219": 10, "48192795": 10, "onto": [10, 16, 54, 56], "1d": [10, 11, 14], "transpar": 10, "7500011": 10, "76500103": 10, "78000096": 10, "79500089": 10, "81000082": 10, "82500076": 10, "84000069": 10, "85500062": 10, "87000055": 10, "88500048": 10, "90000041": 10, "91500035": 10, "93000028": 10, "94500021": 10, "96000014": 10, "97500007": 10, "99000001": 10, "00499994": 10, "01999987": 10, "0349998": 10, "04999973": 10, "06499966": 10, "0799996": 10, "09499953": 10, "10999946": 10, "12499939": 10, "13999932": 10, "15499925": 10, "16999919": 10, "18499912": 10, "19999905": 10, "21499898": 10, "22999891": 10, "24499884": 10, "25999878": 10, "27499871": 10, "28999864": 10, "30499857": 10, "3199985": 10, "33499843": 10, "34999837": 10, "3649983": 10, "37999823": 10, "39499816": 10, "40999809": 10, "42499803": 10, "43999796": 10, "45499789": 10, "46999782": 10, "48499775": 10, "49999768": 10, "center": [10, 12, 13], "75750106": 10, "772501": 10, "78750093": 10, "80250086": 10, "81750079": 10, "83250072": 10, "84750065": 10, "86250059": 10, "87750052": 10, "89250045": 10, "90750038": 10, "92250031": 10, "93750024": 10, "95250018": 10, "96750011": 10, "98250004": 10, "99749997": 10, "0124999": 10, "02749983": 10, "04249977": 10, "0574997": 10, "07249963": 10, "08749956": 10, "10249949": 10, "11749942": 10, "13249936": 10, "14749929": 10, "16249922": 10, "17749915": 10, "19249908": 10, "20749902": 10, "22249895": 10, "23749888": 10, "25249881": 10, "26749874": 10, "28249867": 10, "29749861": 10, "31249854": 10, "32749847": 10, "3424984": 10, "35749833": 10, "37249826": 10, "3874982": 10, "40249813": 10, "41749806": 10, "43249799": 10, "44749792": 10, "46249785": 10, "47749779": 10, "49249772": 10, "width": [10, 13, 14, 54], "01499993": 10, "readi": [10, 19, 24, 43, 54, 57, 58, 61], "broadcast": 10, "prod": 10, "00072536": 10, "ratio": 10, "data_df_bdt": 10, "data_bdt_h2d": 10, "734": 10, "735": 10, "0x7fa2b0c3c390": 10, "ratio_larg": 10, "0x7fa2ad66b8d0": 10, "subtract": [10, 15, 45, 59], "weigth": 10, "random": [10, 12, 13, 20, 24, 25, 43, 51], "weightedsum": 10, "119911": 10, "121055": 10, "119969": 10, "121113": 10, "00000000e": 10, "00": [10, 24, 56, 58], "38184875e": 10, "95301077e": 10, "00566324e": 10, "26121591e": 10, "87966693e": 10, "01": [10, 11, 13, 54], "02575476e": 10, "40850782e": 10, "38790471e": 10, "57102435e": 10, "67727395e": 10, "15865183e": 10, "53524119e": 10, "81288944e": 10, "60657187e": 10, "86963672e": 10, "84502162e": 10, "34681626e": 10, "12229098e": 10, "24136859e": 10, "33879586e": 10, "73254045e": 10, "27666089e": 10, "06093030e": 10, "99412809e": 10, "56268934e": 10, "62372203e": 10, "35679645e": 10, "97665147e": 10, "60813356e": 10, "56027756e": 10, "62861190e": 10, "69372810e": 10, "62099342e": 10, "13658014e": 10, "34236801e": 10, "26901669e": 10, "15767445e": 10, "02": [10, 51, 57], "10451094e": 10, "28949825e": 10, "51750042e": 10, "48842057e": 10, "35350742e": 10, "36893104e": 10, "15123079e": 10, "71029668e": 10, "16827636e": 10, "96318055e": 10, "49844171e": 10, "72365208e": 10, "71555169e": 10, "01572683e": 10, "66231154e": 10, "38491969e": 10, "81386811e": 10, "98295005e": 10, "12405798e": 10, "96596781e": 10, "32734509e": 10, "93737970e": 10, "88241928e": 10, "83350976e": 10, "15577977e": 10, "76366459e": 10, "81545274e": 10, "24200700e": 10, "03": [10, 54, 56, 57, 58], "39421554e": 10, "12089344e": 10, "78955275e": 10, "29214102e": 10, "11647174e": 10, "70552708e": 10, "61285313e": 10, "28658436e": 10, "23912449e": 10, "24305352e": 10, "15498469e": 10, "16596384e": 10, "44536478e": 10, "34065244e": 10, "41255870e": 10, "24630272e": 10, "72887799e": 10, "87240665e": 10, "40142642e": 10, "81238700e": 10, "71159445e": 10, "42124291e": 10, "96282531e": 10, "64380803e": 10, "18499839e": 10, "98937950e": 10, "59185488e": 10, "79388044e": 10, "43547006e": 10, "47062514e": 10, "50914193e": 10, "71454577e": 10, "61155155e": 10, "27146809e": 10, "38097339e": 10, "36702346e": 10, "89010987e": 10, "38835114e": 10, "51690953e": 10, "49565491e": 10, "33989374e": 10, "23414521e": 10, "15522280e": 10, "17132302e": 10, "05165109e": 10, "10702223e": 10, "70418608e": 10, "04878206e": 10, "04526220e": 10, "33576583e": 10, "36116128e": 10, "05144646e": 10, "82167370e": 10, "55937259e": 10, "19023568e": 10, "16943249e": 10, "38124951e": 10, "74814146e": 10, "58247301e": 10, "60939057e": 10, "35037931e": 10, "68145239e": 10, "55923820e": 10, "05856152e": 10, "81174478e": 10, "94219518e": 10, "63632251e": 10, "53306616e": 10, "48311390e": 10, "42583518e": 10, "98916311e": 10, "88639383e": 10, "73129334e": 10, "73734784e": 10, "50830975e": 10, "17078907e": 10, "22044784e": 10, "03290343e": 10, "38827005e": 10, "30328225e": 10, "75107028e": 10, "02420288e": 10, "64447553e": 10, "28084380e": 10, "83904626e": 10, "30243681e": 10, "78315960e": 10, "12034969e": 10, "65733784e": 10, "35608218e": 10, "55161287e": 10, "26611365e": 10, "39761266e": 10, "53174151e": 10, "06309819e": 10, "16962485e": 10, "18158787e": 10, "02553096e": 10, "chi2": 10, "minim": [11, 12, 14, 15, 25, 26, 35], "mont": 11, "carlo": 11, "process": [11, 13, 23, 27, 38, 43, 46, 50, 52, 54, 55, 56, 57, 58, 59, 60, 61], "weight": [11, 13, 15, 31], "coincid": 11, "fight": 11, "drawback": 11, "multidimension": 11, "distibut": [11, 13], "aim": [11, 31, 34, 53], "pai": [11, 22], "neq": 11, "hspd": 11, "pt_b": 11, "pt_phi": 11, "vchi2_b": 11, "mu_pt_sum": 11, "mc_distribut": 11, "original_fil": 11, "original_tre": 11, "rd_distribut": 11, "target_fil": 11, "target_tre": 11, "original_weight": 11, "len": [11, 13, 15, 31, 37, 41, 42, 48, 61], "kolmogorov": 11, "smirnov": 11, "dim": 11, "ml": [11, 12], "ant": 11, "original_train": 11, "original_test": 11, "target_train": 11, "target_test": 11, "original_weights_train": 11, "original_weights_test": 11, "metrics_util": 11, "ks_2samp_weight": 11, "hist_set": 11, "alpha": [11, 13], "draw_distribut": 11, "new_original_weight": 11, "id": [11, 20, 22, 27, 54], "enumer": [11, 37, 41], "percentil": 11, "hstack": 11, "k": [11, 13, 15, 31, 41, 50, 52, 53, 54], "weights1": 11, "weights2": 11, "agreement": [11, 31], "low": 11, "1000000": 11, "21441": 11, "5203540728277889": 11, "21639364439970188": 11, "4020113592414034": 11, "40466385087324064": 11, "5212065671641686": 11, "21911392039638183": 11, "4042199900498724": 11, "4054638109390862": 11, "5183323618727957": 11, "21163497369863993": 11, "3966438086176893": 11, "40352927774747877": 11, "m_": 11, "w_": [11, 13], "fast": [11, 23, 25, 37, 39, 40], "bring": [11, 54, 59], "disagr": 11, "bins_reweight": 11, "binsreweight": 11, "n_bin": 11, "n_neigh": 11, "bins_weights_test": 11, "predict_weight": 11, "40485593940667297": 11, "11630298487102164": 11, "27716375657790304": 11, "3427841068127371": 11, "inspir": 11, "curs": 11, "decis": [11, 15, 19, 27, 28], "functiion": 11, "reweightlossfunct": 11, "sever": [11, 20, 24, 27, 33, 36, 42, 43, 45, 53, 54, 55, 57, 58, 59], "gbreweight": 11, "250": 11, "min_samples_leaf": 11, "1000": [11, 12, 13, 54], "gb_arg": 11, "subsampl": 11, "gb_weights_test": 11, "04263217386448881": 11, "029367621097527802": 11, "024531682786723796": 11, "01810184169643042": 11, "check_ks_of_express": 11, "col_origin": 11, "engin": [11, 15, 29, 31, 53], "col_target": 11, "w_target": 11, "08981075955998435": 11, "11601056751376654": 11, "02059862120072531": 11, "3697511714238894": 11, "3350555579592387": 11, "031041261174130086": 11, "4684061037118584": 11, "3739381551749449": 11, "04966039966873781": 11, "4936166666674155": 11, "40026612246003684": 11, "018026091541758493": 11, "pupros": 11, "ideal": [11, 27], "separ": [11, 16, 18, 20, 25, 32, 41, 42, 47, 54, 56, 57, 58, 59, 60, 61], "concaten": [11, 13, 56, 57], "gb_weight": 11, "new_weight": 11, "xtr": 11, "xt": 11, "ytr": 11, "yt": 11, "wtr": 11, "wt": 11, "train_siz": 11, "sample_weight": 11, "9326905282282532": 11, "9052877741488814": 11, "5341842227167279": 11, "seem": [11, 16, 24, 32, 40, 43, 45, 46, 47, 54, 57, 59, 61], "undistingish": 11, "sensibl": [11, 23], "its": [11, 13, 19, 20, 22, 23, 25, 27, 28, 30, 31, 36, 37, 38, 41, 42, 43, 46, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "hyperparamet": 11, "especi": [11, 15, 20, 25], "yeei": 11, "Or": [11, 14, 19, 27, 61], "taken": [11, 13, 14, 33, 57, 59], "wors": [11, 21, 48, 58], "spot": [11, 24], "topic": [11, 15, 25, 31, 34, 49, 59, 61], "whatev": [11, 19, 37, 41, 42, 56, 57, 58, 59], "yscale": 11, "log": [11, 19, 20, 21, 22, 24, 26, 31, 43, 50, 52, 54, 56, 58, 60], "555": [11, 14], "188238558999": 11, "66922": 11, "97254342238": 11, "desir": 11, "awar": [11, 24, 27, 33, 35, 53], "hoc": 11, "clip": 11, "disturb": 11, "proce": [11, 24, 53], "determin": [11, 13, 33, 41, 43, 61], "tradeoff": [11, 58], "v": [11, 13, 22, 24, 25, 32, 35, 47, 54, 58, 59], "factor": [11, 38], "tend": [11, 20, 54], "foldingreweight": 11, "Be": [11, 13, 26, 33, 53, 57, 61], "80": [11, 12, 13, 35], "greatli": [11, 14], "reweighter_bas": 11, "n_fold": 11, "half": [11, 60], "dure": [11, 13, 21, 25, 26, 27, 31, 55, 57, 61], "folding_weight": 11, "30781267860583916": 11, "18064045190795774": 11, "3080389675968616": 11, "2987982939810002": 11, "936850904691507": 11, "827192520270838": 11, "model": [12, 13, 15, 27, 33, 39, 56], "extract": [12, 14, 54, 58, 59, 61], "immedi": [12, 57], "Of": [12, 15, 32, 36, 37, 42, 45, 47, 58, 59], "poi": 12, "observ": [12, 15, 19, 31, 45, 55, 61], "relev": [12, 14, 15, 31, 53, 60], "detectoreffect": 12, "nuisanc": 12, "chi": [12, 14], "reflect": 12, "retriev": [12, 13, 16, 20, 33, 41, 45, 57], "maximis": [12, 52], "trivial": [12, 26, 33, 35], "numer": [12, 33, 37, 54, 56, 58, 59], "procedur": 12, "statist": [12, 13, 14, 15, 39, 55, 58, 60], "studi": [12, 38], "focu": [12, 15, 35, 56], "unbin": 12, "zfit": [12, 13, 15], "hepstat": [12, 13, 15], "rel": [12, 22, 36, 41, 54, 55, 60], "young": 12, "mention": [12, 19, 27, 53, 55, 59], "roofit": 12, "roostat": 12, "older": [12, 20, 59], "proven": 12, "reliabl": 12, "framework": 12, "bind": [12, 38, 52], "standard": [12, 14, 15, 28, 31, 32, 34, 40, 47, 53, 54, 56, 57, 58, 59, 60], "templat": [12, 35, 48], "pyhf": 12, "recommend": [12, 17, 27, 31, 34, 38, 40, 43, 44, 46, 61], "record": [12, 16, 19, 20, 22, 43, 54, 55, 56, 58, 61], "introduct": [12, 15, 20, 31, 35, 46], "63": [12, 13], "userwarn": [12, 13], "tensorflow": [12, 13, 31], "suppress": [12, 13, 53], "zfit_disable_tf_warn": [12, 13], "datas": 12, "fraction": 12, "ob": [12, 13], "from_panda": 12, "obs_bkg": 12, "bkg_two": 12, "consist": [12, 33, 40, 41, 55, 56, 57, 58], "distinct": [12, 33, 59], "pdf": [12, 13, 26, 38, 54, 55, 56, 61], "lambd": [12, 13], "lambda": [12, 13, 14, 42, 43], "bkg_yield": [12, 13], "5000": [12, 13, 42], "200000": 12, "step_siz": [12, 13], "sig_yield": [12, 13], "bkg_pdf": 12, "exponenti": [12, 13, 44], "set_yield": 12, "sig_pdf": 12, "gauss": [12, 13, 43], "sumpdf": [12, 13], "plot_fit": 12, "ax": [12, 13, 15, 31], "limit1d": [12, 13], "bin_edg": [12, 13], "unstack_x": [12, 13], "binwidth": [12, 13], "linspac": [12, 13, 38], "num": [12, 13], "tf": 12, "sub": [12, 13, 18, 41, 54, 55, 56], "ext_pdf": [12, 13], "royalblu": [12, 13], "zip": [12, 13, 37, 41, 60], "get_model": [12, 13], "forestgreen": [12, 13], "crimson": [12, 13], "ym": [12, 13], "set_titl": [12, 13], "data_rang": [12, 13], "set_xlim": [12, 13], "fontsiz": [12, 13], "sinc": [12, 13, 16, 24, 33, 35, 37, 43, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61], "pre": [12, 24, 46, 61], "sig_nll": 12, "unbinnednl": 12, "807": 12, "advancedfeaturewarn": 12, "unwant": [12, 24], "turn": [12, 15, 24, 30, 31, 52, 53, 54, 55, 56, 57], "off": [12, 13, 24, 28, 36, 37, 42, 43, 52, 56, 60], "advanced_warn": 12, "extended_in_unbinnednl": 12, "extend": [12, 13, 24, 26, 33, 59], "dist_tfp": 12, "param": [12, 13], "yield": [12, 13, 15, 59], "non": [12, 15, 19, 25, 26, 35, 42, 43, 54, 55, 60, 61], "nll": 12, "extendedunbinnednl": [12, 13], "warn_advanced_featur": 12, "minuit": [12, 13], "nloptlbfgsv1": 12, "iminuit": [12, 39], "scipyslsqpv1": 12, "fitresult": 12, "0x7efbd7b71310": 12, "constraint": [12, 13, 34, 60], "tol": 12, "001": 12, "converg": [12, 24], "edm": 12, "approx": 12, "fmin": 12, "2e": 12, "275181": 12, "55": 12, "129185": 12, "round": [12, 13, 44], "09692": 12, "0150308": 12, "tail": [12, 53, 56, 57, 58], "functor": 12, "composed_autoparam_1": 12, "composed_autoparam_2": 12, "0x7efbd7b4ce90": 12, "5e": 12, "05": [12, 13, 55, 56, 57, 58, 59], "2294": 12, "9832": 12, "347": 12, "6008": 12, "105": [12, 51], "199": 12, "932648": 12, "09986": 12, "hess": 12, "hessian": 12, "mino": 12, "1204": 12, "changedfeaturewarn": 12, "changed_warn": 12, "hesse_nam": 12, "current": [12, 15, 18, 19, 22, 24, 25, 26, 27, 31, 38, 40, 41, 43, 50, 51, 53, 54, 55, 56, 57, 58, 59], "minuit_hess": 12, "hesse_np": 12, "futur": [12, 30, 35, 42, 43, 50, 54, 58], "stai": [12, 24], "compat": [12, 15, 46], "wherev": 12, "warn_changed_featur": 12, "1340": 12, "futurewarn": 12, "minuit_mino": 12, "custom": [12, 15, 54], "implementationwith": 12, "1361": 12, "errors_nam": 12, "zfit_error": 12, "065": 12, "064": 12, "0047": 12, "0049": 12, "hypotest": 12, "asymptoticcalcul": 12, "null": [12, 59], "hypothesi": 12, "sig_yield_poi": 12, "tqdm": 12, "auto": [12, 17, 25, 54], "tqdmwarn": 12, "iprogress": 12, "ipywidget": 12, "readthedoc": 12, "io": 12, "en": 12, "user_instal": 12, "autonotebook": 12, "notebook_tqdm": 12, "frequentistcalcul": 12, "construct": [12, 13, 35, 54, 56, 58, 59, 60], "q_": 12, "h_": 12, "pseudo": [12, 43], "repres": [12, 13, 17, 23, 24, 33, 41, 43, 44, 45, 58, 61], "ask": [12, 18, 19, 25, 27, 28, 32, 36, 40, 41, 44, 46, 47, 53, 54, 55, 56, 57, 58, 59, 61], "equat": [12, 13], "z": [12, 14, 36, 37, 40, 50, 54, 56, 57, 58, 59, 61], "phi": [12, 14], "p_0": 12, "poinul": 12, "p_valu": 12, "953901831055262e": 12, "unit": [12, 14, 24, 53, 54], "46766493596919": 12, "fluctuat": 12, "resampl": [12, 39], "compute_sweight": 13, "properti": [13, 15, 28, 32, 40, 43, 44, 45, 47, 54, 59], "explan": [13, 20, 54, 55, 58], "sig_data": 13, "bck_data": 13, "electron": [13, 27], "positron": 13, "p_x": 13, "0x7f84bcb8f190": 13, "pictur": [13, 19, 22, 25, 54], "inaccuraci": 13, "correctli": [13, 18, 20, 22, 24, 25, 33], "px": [13, 35], "distort": 13, "lost": [13, 31, 49, 54], "n_sig1": 13, "n_bck1": 13, "8000": 13, "2000": 13, "n_sig2": 13, "n_bck2": 13, "first_bin": 13, "second_bin": 13, "121": 13, "bottom": [13, 24, 55], "xtick": 13, "horizontalalign": 13, "verticalalign": 13, "proport": 13, "122": [13, 48, 58], "visa": 13, "versa": [13, 33, 54, 60], "had": [13, 22, 24, 41, 42, 56, 60, 61], "big": [13, 24], "6800": 13, "compens": 13, "At": [13, 24, 28, 53, 54, 60, 61], "role": [13, 23, 35], "plot_with_weight": 13, "karg": 13, "assert": [13, 61], "electon": 13, "edgecolor": 13, "straightforward": 13, "uniqu": [13, 19, 20, 27, 37, 54, 58, 61], "continuo": 13, "channel": [13, 31, 46, 54, 56, 61], "pivk": 13, "2004ty": 13, "popul": [13, 19, 25, 55], "unfold": 13, "lifetim": [13, 38], "reson": 13, "combinatori": 13, "5279": [13, 14], "5100": 13, "5400": 13, "002": 13, "0001": 13, "space": [13, 15, 19, 21, 25, 31, 32, 36, 41, 42, 47, 49, 54, 55, 57, 58, 59, 61], "6000": [13, 56], "signal_pdf": 13, "comb_bkg_pdf": 13, "25000": 13, "50000": 13, "small": [13, 23, 24, 27, 30, 42, 56, 58], "3e5": 13, "extended_sig": 13, "create_extend": 13, "extended_bkg": 13, "backgrond": 13, "nsig_sw": 13, "20000": 13, "np_sig_m_sw": 13, "reshap": 13, "np_sig_t_sw": 13, "nbkg_sw": 13, "150000": 13, "np_bkg_m_sw": 13, "np_bkg_t_sw": 13, "t_cut": 13, "np_m_sw": 13, "np_t_sw": 13, "fig": 13, "set_xlabel": 13, "likelihood": [13, 14, 15, 31], "data_sw": 13, "from_numpi": 13, "nll_sw": 13, "simultan": [13, 25, 37, 41, 56], "anymor": [13, 51], "use_minuit_grad": 13, "result_sw": 13, "118148": 13, "19908": 13, "00199236": 13, "plot_fit_project": 13, "visual": [13, 60], "set_valu": 13, "get_param": 13, "sum_": 13, "v_": 13, "nj": 13, "f_j": 13, "f_k": 13, "f_n": 13, "x_e": 13, "f_0": 13, "n_0": 13, "discrim": 13, "181e": 13, "2011732": 13, "02308674": 13, "0095058": 13, "1215446": 13, "991e": 13, "20116739": 13, "02308259": 13, "00950177": 13, "12153816": 13, "623283345947": 13, "118147": 13, "92618294565": 13, "sorter": 13, "argsort": 13, "mathrm": 13, "axhlin": 13, "5600": 13, "lw": [13, 52], "uncorrel": 13, "corrcoef": 13, "03810736484190183": 13, "extra": [13, 19, 24, 43, 46, 58], "scipi": [13, 31], "stat": [13, 39, 57, 58, 59, 61], "expon": 13, "norm": [13, 38], "sig_mass_distr": 13, "bck_mass_distr": 13, "sig_mass": 13, "rv": 13, "bck_mass": 13, "sig_p": 13, "bck_p": 13, "priori": 13, "gaussian": 13, "met": [13, 36, 43, 45], "me": [13, 19, 30, 36, 41, 53], "bck": 13, "0x7f84aab4c150": 13, "thu": [13, 19, 20, 21, 28, 38, 43, 51, 56], "prob": 13, "div": 13, "0x7f84aabf3f50": 13, "goal": [13, 23, 24, 55], "hist_conf": 13, "3342216663824436": 13, "satisfi": [13, 27], "006467750252848808": 13, "010045672889273587": 13, "obvious": [13, 48], "p_": 13, "pb": 13, "p_b": 13, "sw_": 13, "wb": 13, "sw_b": 13, "formula": [13, 59], "nbsphinx": 13, "main": [13, 15, 22, 23, 24, 26, 42, 43, 59], "unknown": [13, 33, 54], "mathemat": [13, 43], "amount": [13, 37, 57], "1_": 13, "iff": 13, "li": [13, 59], "sum_x": 13, "guarante": [13, 15, 35, 37, 54, 55], "deviat": 13, "a_1": 13, "a_2": 13, "rewrit": [13, 35, 42, 43], "system": [13, 14, 16, 17, 22, 25, 27, 30, 31, 40, 46, 54, 55, 60], "_x": 13, "bb": 13, "sb": 13, "ss": 13, "coeffici": 13, "nb": 13, "matrix": 13, "mathbb": 13, "apart": [13, 55], "bit": [13, 17, 24, 54, 56, 58, 59], "isn": [13, 19, 27, 36, 40, 41, 54, 55, 56, 58, 61], "uniform": [13, 15, 31, 43], "leq": 13, "lagrangian": 13, "mathcal": 13, "lambda_1": 13, "lambda_2": 13, "assupt": 13, "abolut": 13, "indent": [13, 36, 41, 42], "interv": 13, "finali": 13, "helper": 14, "lookup": 14, "decaylanguag": 14, "o": [14, 17, 40, 43, 52, 54, 55, 58, 59, 60], "overview": [14, 28, 46], "notabl": 14, "numexpr": 14, "usag": [14, 32, 47, 53, 54, 58, 59], "from_styl": 14, "to_styl": 14, "from_root": 14, "tmath": 14, "x_px": 14, "x_py": 14, "x_pz": 14, "pow": 14, "unnamedconst": 14, "to_numexpr": 14, "to_root": 14, "decai": [14, 38], "hold": [14, 19, 22, 27, 28, 37, 54, 55, 56], "piplu": 14, "from_pdgid": 14, "211": 14, "139": 14, "57039": 14, "5284e": 14, "pi": [14, 41, 43, 45, 56], "serv": [14, 15, 42, 53], "structur": [14, 21, 31, 34, 35, 38, 41, 54, 55, 57, 61], "neutral": 14, "hadron": [14, 38], "findal": 14, "pdgid": 14, "has_bottom": 14, "b0": 14, "511": 14, "mev": [14, 38], "513": 14, "5324": 14, "5747": 14, "515": 14, "5739": 14, "531": 14, "5366": 14, "92": [14, 35], "533": 14, "5415": 14, "s2": 14, "5840": 14, "535": [14, 59], "5839": 14, "551": 14, "9398": 14, "upsilon": 14, "553": 14, "9460": 14, "b2": 14, "1p": [14, 53], "9912": 14, "5122": 14, "5619": 14, "xi": 14, "5232": 14, "5791": 14, "10551": 14, "9859": 14, "10553": 14, "9899": 14, "b1": 14, "20553": 14, "9892": 14, "20555": 14, "10163": 14, "100553": 14, "10023": 14, "2p": 14, "100555": 14, "10268": 14, "110551": 14, "10232": 14, "110553": 14, "10259": 14, "120553": 14, "10255": 14, "200553": 14, "10355": 14, "3p": 14, "200555": 14, "10524": 14, "220553": 14, "10513": 14, "300553": 14, "10579": 14, "10860": 14, "9000553": 14, "10885": 14, "11020": 14, "9010553": 14, "11000": 14, "hardcod": [14, 35], "constant": [14, 57], "neat": [14, 41], "furthermor": [14, 35], "c_light": 14, "299": [14, 58, 60], "792458": 14, "1250": 14, "manipul": [14, 40, 43, 44, 45], "quantiti": [14, 19, 41], "liter": [14, 41, 42, 44, 48, 54], "coordin": [14, 40, 41], "field": [14, 24, 27, 34, 35, 56, 58, 59], "vec1": 14, "momentumnumpy4d": 14, "rho": 14, "f8": 14, "tau": 14, "theta": 14, "1035868415601453": 14, "cartesian": 14, "4d": 14, "vectorobject4d": 14, "lectur": [15, 33, 35], "schedul": 15, "knowledg": [15, 35], "lock": 15, "markdown": [15, 31, 34], "pack": [15, 31], "unpack": [15, 23, 25, 31], "context": [15, 31, 40, 54], "decor": [15, 19, 24, 31], "factori": [15, 31], "catch": [15, 25, 31, 57], "pitfal": 15, "execut": [15, 20, 26, 31, 33, 38, 43, 46, 53, 56, 57, 58, 59, 60, 61], "dunder": [15, 31], "callabl": [15, 31], "danger": [15, 28, 31, 36, 53, 55], "zone": [15, 31], "recap": [15, 19, 31], "todo": 15, "diagram": [15, 54, 55, 57], "extens": [15, 31, 46, 54, 55, 56, 58, 59, 61], "impliment": [15, 31], "fold": [15, 31], "scipt": [15, 31], "argpars": [15, 31, 34, 61], "dalitz": 15, "prepar": [15, 31, 32, 47, 54], "regular": [15, 55, 59], "multi": [15, 35, 41, 48], "arithmet": [15, 31, 53], "download": [15, 22, 23, 24, 25, 26, 31, 54, 56, 61], "gb": [15, 31, 53], "tune": [15, 31], "infer": [15, 31], "scope": [15, 31], "sweight": [15, 31], "cours": [15, 31, 32, 33, 34, 35, 36, 37, 42, 44, 45, 47, 49, 54, 58, 61], "beforehand": [15, 42], "appi": [15, 31], "deriv": [15, 28, 31, 39, 60], "option": [15, 16, 19, 22, 24, 28, 31, 32, 36, 38, 42, 43, 47, 53, 54, 55, 56, 58, 59, 60, 61], "linear": 15, "variat": [15, 24, 54, 58], "uncorrelated": 15, "conclus": [15, 16, 19, 20, 31], "formul": [15, 31], "hepunit": [15, 31], "vector": [15, 31, 41], "repetit": [15, 57, 60], "simpler": [15, 37, 53, 57, 60], "columnar": 15, "excel": [15, 16, 28, 37, 40, 41], "sophist": 15, "art": 15, "de": 15, "bia": 15, "intro": 15, "parametr": 15, "harder": [15, 42], "gradientboostingreweight": 15, "repeatedli": 15, "ecosystem": 15, "Not": [15, 18, 36, 41, 60], "70": [15, 42, 59], "smaller": [15, 23, 25, 53], "benefit": [16, 61], "ll": [16, 19, 20, 22, 28, 32, 40, 41, 42, 44, 45, 47, 48, 54, 55, 56, 57, 58, 59, 60], "explor": [16, 22, 30, 31, 34, 54, 55, 59, 60], "collabor": [16, 19, 20, 22, 23, 25, 27, 28, 30, 31], "pile": [16, 54], "jorg": 16, "cham": 16, "phdcomic": 16, "ridicul": 16, "processor": 16, "microsoft": [16, 58], "googl": [16, 40, 53, 59], "doc": [16, 42], "histori": [16, 18, 19, 23, 24, 27, 30, 31, 32, 46, 47, 57, 58], "libreoffic": [16, 58], "displai": [16, 20, 22, 31, 50, 53, 54, 55, 56, 57, 59], "tape": 16, "rewind": 16, "latest": [16, 23, 26], "conflict": [16, 18, 24, 30, 31, 61], "decid": [16, 24, 28, 32, 47, 50, 54, 57, 58, 61], "metadata": 16, "kept": [16, 26], "sync": [16, 23, 30, 31], "across": [16, 23, 46, 54, 61], "facilit": [16, 24], "among": [16, 31, 49], "rc": 16, "cv": 16, "subvers": 16, "earli": [16, 59, 60], "1980": [16, 60], "larg": [16, 19, 20, 24, 25, 30, 34, 37, 42, 55, 56, 60], "compani": [16, 30, 56], "legaci": 16, "modern": [16, 59, 60], "mercuri": 16, "central": [16, 22], "host": [16, 17, 22, 24, 27], "concurr": 16, "imagin": [16, 20, 56, 58, 61], "draft": [16, 55, 59], "paragraph": [16, 23], "ruin": 16, "co": 16, "writer": [16, 58], "accept": [16, 28, 30, 31, 32, 34, 42, 47, 53, 55, 58], "unlimit": 16, "undo": [16, 18, 19, 20], "2016": [16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 54, 55, 56, 57, 58, 59, 60], "2017": [16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 46, 54, 55, 56, 57, 58, 59, 60], "softwar": [16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 34, 35, 44, 46, 49, 54, 55, 56, 57, 58, 59, 60, 61], "foundat": [16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 49, 54, 55, 56, 57, 58, 59, 60], "endright": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 54, 55, 56, 57, 58, 59, 60], "configur": [17, 18, 19, 21, 22, 24, 26, 53, 54, 55, 60], "global": [17, 19, 41, 42, 44, 48, 59], "flag": [17, 18, 19, 22, 32, 38, 42, 47, 54, 55, 56, 58, 59, 60], "verb": [17, 59], "dracula": [17, 18, 19, 20, 25], "laptop": [17, 22, 24, 25, 51, 56], "config": [17, 31], "vlad": [17, 19, 20, 22, 23, 25], "tran": [17, 19, 20], "sylvan": [17, 19, 20], "ia": [17, 19, 20], "ui": 17, "subsequ": [17, 24, 61], "push": [17, 22, 23, 25, 26, 27, 28, 30, 31], "bitbucket": [17, 22], "gitlab": [17, 23, 24, 25, 30, 31, 43], "hit": [17, 46, 54], "keyboard": [17, 54, 56, 58, 60], "encod": [17, 37], "charact": [17, 19, 20, 24, 36, 37, 46, 48, 53, 54, 55, 56, 57, 58, 59, 60], "hear": 17, "newlin": [17, 54, 59], "unexpect": [17, 33, 35, 41, 61], "recogn": [17, 27, 59], "autocrlf": 17, "linux": [17, 31, 46, 54, 55, 61], "window": [17, 23, 31, 38, 43, 52, 54, 55, 57, 60], "favorit": [17, 19, 20, 25, 61], "atom": [17, 24, 25, 56, 58, 59], "nano": [17, 18, 19, 20, 21, 23, 25, 53, 55, 58], "bbedit": 17, "mac": [17, 54, 55], "sublim": 17, "subl": 17, "win": 17, "x86": 17, "sublime_text": 17, "ex": [17, 61], "notepad": [17, 55], "multiinst": 17, "notabbar": 17, "nosess": 17, "noplugin": 17, "kate": 17, "gedit": [17, 53, 55], "scratch": [17, 24, 28], "emac": [17, 53, 54, 55], "vim": [17, 53, 55], "reconfigur": 17, "haven": [17, 19, 20, 55, 57, 59], "esc": [17, 33], "q": [17, 19, 52, 53, 54, 56, 61], "ran": [17, 26, 31, 43, 51, 58, 59, 61], "directori": [18, 19, 20, 21, 24, 26, 28, 31, 40, 43, 50, 51, 53, 56, 57, 58, 59, 60, 61], "mkdir": [18, 19, 21, 22, 24, 26, 40, 43, 55, 57, 60, 61], "planet": [18, 19, 20, 22, 23, 25, 26, 54, 55, 59], "cd": [18, 19, 20, 22, 23, 24, 26, 31, 33, 54, 55, 56, 57, 58, 59, 60, 61], "init": [18, 19, 22, 31], "content": [18, 19, 20, 21, 22, 24, 25, 28, 36, 37, 41, 53, 54, 55, 56, 57, 58, 59, 61], "hidden": [18, 54], "delet": [18, 19, 25, 26, 38, 40, 41, 43, 54, 55, 56, 61], "master": [18, 19, 20, 21, 22, 23, 24, 25, 35, 59, 61], "moon": [18, 19, 20, 25], "despit": [18, 60], "wolfman": [18, 19, 20, 25, 54], "concern": [18, 19, 20, 55, 61], "he": [18, 25], "sequenc": [18, 41, 55, 57, 59, 61], "interfer": 18, "outer": [18, 57], "inner": [18, 57], "fatal": 18, "parent": [18, 35, 54, 55], "touch": [18, 21, 36, 54, 55, 60, 61], "phobo": 18, "deimo": 18, "titan": 18, "stage": [18, 19, 20, 23, 24, 25, 26, 27, 56, 57, 58], "similarli": [18, 45, 54, 57], "gitignor": [18, 19, 21], "texteditor": 18, "cat": [18, 19, 20, 21, 23, 25, 53, 56, 57, 58, 59, 61], "afterward": [18, 22, 31], "recov": [18, 20, 23, 55], "folder": [18, 21, 23, 40, 53, 54, 55, 56], "subdirectori": [18, 53, 54, 55, 59], "rm": [18, 19, 25, 55, 56, 57, 60, 61], "rf": [18, 61], "pwd": [18, 19, 54, 55], "cycl": [19, 54, 60], "workflow": [19, 20, 23, 31, 58, 60], "descript": [19, 24, 26, 32, 47, 53, 54, 56, 60], "mar": [19, 20, 22, 25], "refresh": [19, 23, 31, 46, 49], "unix": [19, 31, 54, 55, 56, 58, 59, 60], "cold": [19, 20, 25, 53], "dry": [19, 20, 25, 57, 61], "my": [19, 20, 24, 25, 26, 27, 33, 36, 38, 43, 48, 55, 59, 61], "untrack": [19, 21, 24], "cach": [19, 50], "unstag": [19, 20], "hasn": [19, 57, 59], "f22b25e": [19, 20], "insert": [19, 23, 24, 25, 41, 48, 58, 59], "100644": [19, 20, 23, 25], "perman": [19, 50], "launch": [19, 38, 43], "brief": 19, "blank": [19, 55, 56, 58], "f22b25e3233b4645dabd0d81e651fe074bd8e73b": [19, 20], "aug": [19, 20], "2013": [19, 20, 29, 54, 58, 59], "0400": [19, 20], "revers": [19, 37, 54, 57], "chronolog": [19, 55], "filesystem": [19, 54], "clutter": [19, 54], "accident": [19, 20, 21], "checkout": [19, 20, 22, 25], "discard": [19, 20, 43], "phrase": [19, 59], "nor": [19, 33, 41, 54], "df0654a": [19, 20], "315bf3a": [19, 20], "cryptic": [19, 59, 60], "seri": [19, 31, 54, 57, 58], "piec": [19, 25, 42, 45, 54, 56, 57], "exactli": [19, 20, 23, 24, 27, 32, 35, 37, 42, 44, 45, 47, 51, 54, 56, 57, 58, 59], "fourth": 19, "whoop": [19, 56], "didn": [19, 23, 32, 40, 41, 47, 54, 55, 60, 61], "34961b1": 19, "insist": [19, 58], "captur": [19, 42, 58, 61], "batch": [19, 46], "citat": [19, 30, 31], "supervisor": [19, 58, 60], "thesi": [19, 55, 59], "bibliographi": 19, "changeset": 19, "snapshot": [19, 24], "life": [19, 24, 28, 43, 55, 60], "prompt": [19, 50, 54, 55, 56, 57, 58], "gather": [19, 22, 43], "incomplet": [19, 24], "makeup": 19, "walk": 19, "watch": 19, "mummi": [19, 20, 25, 54], "appreci": [19, 20, 25], "lack": [19, 20, 25], "humid": [19, 20, 25], "b36abfd": [19, 20], "climat": 19, "005937f": 19, "005937fbe2a98fb83f0ade869025dc2636b4dad5": 19, "07": [19, 20, 29, 54, 56, 57, 58], "34961b159c27df3b475cfe4415d94a6d1fcd064d": [19, 20], "dif": 19, "docum": 19, "wise": 19, "coars": 19, "screen": [19, 20, 24, 31, 49, 53, 55, 56, 57, 60], "pager": 19, "press": [19, 33, 51, 53, 54, 55, 56, 57, 60], "some_word": 19, "onelin": [19, 24], "graph": [19, 24, 58, 60, 61], "gitkeep": [19, 59], "unlik": [19, 41], "sole": 19, "redund": [19, 54], "myfil": 19, "venu": [19, 20], "thought": [19, 59], "friend": [19, 36, 40, 46, 53, 59, 61], "definit": [19, 42, 61], "plan": 19, "cc127c2": 19, "committ": 19, "twice": [19, 40, 54, 56], "bio": 19, "frank": 19, "stein": 19, "franki": 19, "monster": [19, 61], "4162a51": 19, "4162a51b273ba799a9d395dd70c45d96dba4e2ff": 19, "aaa3271e5e26f75f11892718e83a3e2743fab8ea": 19, "restor": 20, "saw": [20, 41, 45, 53, 54, 57, 59, 61], "progress": [20, 24, 26, 30, 61], "0848c8d": 20, "notat": [20, 41, 57], "pronounc": 20, "minu": [20, 36, 43], "123": [20, 34, 40, 48, 57], "digit": [20, 25, 27, 52, 58, 59], "letter": [20, 25, 37, 55, 56, 57, 58, 59, 60], "annoi": [20, 24, 41, 42, 51], "overwrit": [20, 25, 55, 57], "manufactur": 20, "oxygen": 20, "further": [20, 24, 28, 40, 54, 55, 60], "reset": [20, 24, 56], "revert": 20, "detach": [20, 50, 51, 52], "shouldn": [20, 57], "reattach": 20, "rid": [20, 24, 25, 55], "cartoon": 20, "form": [20, 21, 41, 54, 59, 61], "simplifi": 20, "carefulli": 20, "dash": [20, 43, 54, 55], "organ": [20, 28, 55, 56, 57, 60], "imposs": [20, 33, 59], "backward": [20, 46, 53], "forward": [20, 23, 25, 53, 56], "jennif": 20, "she": [20, 27, 54, 55, 56, 57, 58, 59, 60], "week": [20, 22, 60], "modif": [20, 24, 54, 61], "morn": [20, 56], "broke": 20, "spent": [20, 26, 32, 47], "1hr": 20, "luck": [20, 24], "her": [20, 23, 25, 27, 54, 55, 56, 57, 58, 60], "data_crunch": 20, "realiz": [20, 24, 38, 43, 55, 57], "group": [20, 24, 34, 41, 46, 53, 54, 57], "________": 20, "0b1d055": 20, "love": 20, "hot": [20, 36], "unsuit": 20, "wrote": [20, 21, 27, 53, 57, 59, 60], "summar": 20, "month": [20, 29, 46, 54, 60], "ago": [20, 22], "narrow": 20, "backup": [21, 23, 54, 55, 56], "intermedi": [21, 44, 56], "dummi": [21, 25], "dat": [21, 53, 55, 56, 57, 58, 59], "wast": [21, 61], "disk": [21, 31, 49, 54, 55], "distract": 21, "whose": [21, 24, 41, 42, 50, 53, 57, 59], "cleaner": 21, "wouldn": [21, 32, 47, 57], "bonu": [21, 60, 61], "path": [21, 26, 38, 43, 53, 54, 55, 60, 61], "subfold": 21, "handi": [21, 23, 24, 35], "exclam": [21, 46], "previous": [21, 24, 40, 57], "exclud": [21, 41, 56, 58], "entri": [21, 35, 38, 54], "gp": 21, "info": [21, 24, 54, 61], "shortest": [21, 56], "append": [21, 25, 33, 41, 42, 52, 53, 54, 56, 57, 61], "negat": [21, 36], "log_01": 21, "log_02": 21, "log_03": 21, "etc": [21, 25, 33, 35, 53, 57, 58, 61], "neighbor": [21, 27], "resid": [21, 27], "log_": 21, "prerequisit": [22, 60, 61], "ssh": [22, 23, 24, 25, 50, 51, 52], "runn": 22, "7999": [22, 23, 24, 25], "santa": 22, "clau": 22, "machineri": 22, "hub": [22, 27], "programm": [22, 54, 55, 56, 59], "servic": [22, 24, 26], "perspect": [22, 28], "websit": [22, 23, 26, 30, 31, 59], "slightli": [22, 28, 54, 57, 59], "sign": [22, 26, 54, 57], "jira": 22, "click": [22, 23, 24, 26, 31, 55, 60], "icon": [22, 23, 60], "extern": [22, 34, 43, 57, 61], "soon": [22, 25, 27, 33, 46, 51, 53, 54], "url": [22, 24], "equival": [22, 24, 35, 36, 41, 51, 53, 54, 57, 58], "bare": 22, "krb5": 22, "browser": [22, 23, 24], "fetch": [22, 23, 24, 25], "nicknam": 22, "choic": [22, 23, 28, 43, 59], "delta": [22, 23, 24, 25], "compress": [22, 23, 24, 25, 38], "821": 22, "byte": [22, 23, 24, 25, 38, 54, 55, 59], "synonym": 22, "upstream": [22, 24, 25], "fetch_head": [22, 23, 25], "synchron": 22, "gui": [22, 55, 60], "brows": [22, 43], "hover": 22, "button": [22, 24, 31, 54], "clipboard": 22, "green": [22, 24], "shade": 22, "id1": 22, "id2": 22, "a3bf1e5": 22, "041e637": 22, "timestamp": [22, 54], "repo": [22, 23], "hour": [22, 51, 57, 59, 60], "exact": 22, "interact": [22, 32, 33, 38, 46, 47, 55, 58, 59, 60, 61], "typo": [22, 58], "broken": [22, 27, 38, 43], "pair": [23, 37], "owner": [23, 24, 53, 54], "carri": [23, 25], "partner": [23, 25], "anyon": [23, 50, 61], "desktop": [23, 54, 55, 60], "pluto": 23, "306": 23, "9272da5": 23, "29aba7c": [23, 25], "upload": 23, "massiv": 23, "light": 23, "respositori": [23, 24], "benifit": 23, "contributor": [24, 28, 31], "naiv": 24, "adopt": [24, 36], "famou": 24, "incorpor": [24, 28], "builtin": 24, "leverag": [24, 27], "platform": 24, "starter": 24, "kit": 24, "destin": [24, 55], "test_merge_request": 24, "learnt": [24, 41], "your_cern_usernam": 24, "verifi": 24, "dberzano": [24, 43], "pend": [24, 26], "nuclear": 24, "mess": 24, "seamlessli": 24, "destroi": 24, "fxd": 24, "somehow": [24, 34, 35, 45, 55], "bunch": [24, 28, 58], "firstnam": 24, "lastnam": 24, "verbos": [24, 32, 33, 40, 47, 54, 56], "shorter": [24, 43, 56], "concis": 24, "ado": 24, "316": 24, "kib": 24, "protect": [24, 28, 55], "hook": 24, "declin": 24, "ref": [24, 25], "attempt": [24, 55], "forbidden": 24, "764051d": 24, "256c9b6": 24, "tag": 24, "said": [24, 48, 59], "_": [24, 26, 39, 42, 43, 48, 55], "graphic": [24, 55, 59, 60], "polici": 24, "sit": [24, 25, 58], "relax": 24, "notifi": 24, "somebodi": 24, "sequenti": [24, 26, 37, 41, 61], "repli": 24, "proceed": 24, "certifi": 24, "certif": 24, "d09c134": 24, "359": 24, "voil\u00e0": 24, "direct": [24, 58, 61], "static": [24, 33], "simplic": 24, "disappear": [24, 55], "essenc": [24, 37], "scrutini": 24, "abil": [24, 25, 33, 43], "happi": [24, 27, 55], "orang": [24, 48], "overli": 24, "truli": 24, "minor": [24, 51, 54, 61], "major": [24, 46], "buggi": 24, "releas": [24, 28, 46], "wine": 24, "tast": [24, 53], "rush": 24, "pickiest": 24, "controversi": 24, "bear": [24, 56, 58, 59], "mind": [24, 28, 41, 53], "rampag": 24, "prevent": [24, 31, 43, 54, 56, 59, 61], "ensur": [24, 54, 61], "toe": 25, "lab": [25, 27, 31, 54, 56, 60], "overlap": 25, "5ae9631": 25, "352": 25, "dabb4c8": 25, "07ebc69": 25, "counterpart": [25, 33], "detect": [25, 61], "trampl": 25, "affect": [25, 38, 41, 43, 61], "dabb4c8c450e8475aee9b14b4383acc99f42af1d": 25, "preced": [25, 36, 38, 48, 57], "reconcil": 25, "conclud": [25, 53], "2abf2b1": 25, "697": 25, "cost": 25, "effort": [25, 61], "technic": [25, 41, 59], "segreg": 25, "alter": [25, 42], "strategi": [25, 54], "clarifi": 25, "task": [25, 26, 59, 61], "stylist": [25, 40], "churn": 25, "establish": 25, "convent": [25, 26, 31, 34, 36, 41, 54, 55, 56], "govern": 25, "htmltidi": 25, "perltidi": 25, "rubocop": 25, "enforc": 25, "instructor": 25, "textual": 25, "imag": [25, 26, 44, 55, 59], "martian": 25, "jpg": 25, "binari": [25, 59], "dev": 25, "urandom": 25, "lh": [25, 54], "rw": 25, "57095": 25, "0k": 25, "kilobyt": 25, "8e4115c": 25, "meantim": 25, "sky": 25, "familiar": [25, 28, 34, 60], "6a67967": 25, "439dc8c": 25, "439dc8c08869c342438f6dc4a2b615b05b93c76": 25, "439dc8c0": 25, "21032c3": 25, "da21b34": 25, "success": [25, 53, 56], "mv": [25, 55], "94ae08c": 25, "celebr": 25, "beer": [25, 53], "afk": 25, "blindli": 25, "pipelin": [26, 31, 57, 58, 59, 61], "artefact": 26, "job": [26, 56, 60, 61], "deploi": 26, "physicist": [26, 40], "analys": [26, 34, 38, 56, 61], "travi": 26, "circleci": 26, "appveyor": 26, "yml": [26, 31], "interconnect": 26, "my_first_job": 26, "registri": 26, "worker": 26, "cc7": 26, "docker": 26, "offici": [26, 30, 40], "cento": 26, "sidebar": 26, "runner": 26, "enabl": [26, 32, 47, 54], "minut": [26, 27, 60], "prior": 26, "scroll": [26, 35, 53, 57], "examin": [26, 56, 57, 61], "dai": [26, 28, 30, 34, 45, 51, 54, 60], "compil": [26, 46], "first_stag": 26, "second_stag": 26, "artifact": [26, 59], "make_plot": 26, "continuumio": 26, "anaconda3": 26, "before_script": 26, "backend": [26, 38], "agg": [26, 38], "matplotlibrc": 26, "make_docu": 26, "yum": [26, 36], "texliv": 26, "ghostscript": 26, "latexmk": 26, "my_docu": 26, "tex": 26, "successfulli": 26, "debug": [26, 42, 43, 57, 58, 61], "difficult": [26, 35], "interpret": [26, 33, 38, 43, 46, 53, 54, 55, 57, 59, 61], "resourc": [26, 31, 40, 60, 61], "cvmf": [26, 46, 61], "persist": [26, 31, 32, 46, 47, 49], "opposit": 27, "john": 27, "wilbank": 27, "todai": [27, 59], "scientist": [27, 28, 29, 54], "depart": [27, 60], "analyz": [27, 55, 57], "grow": [27, 61], "journal": [27, 29], "send": [27, 53, 54, 56, 58, 60], "anonym": 27, "resubmit": 27, "eventu": 27, "onlin": [27, 29, 51, 54], "paywal": 27, "institut": [27, 28], "figshar": 27, "zenodo": 27, "doi": 27, "dryad": 27, "arxiv": [27, 29], "preprint": 27, "invit": 27, "peer": 27, "research": 27, "acceler": 27, "wide": [27, 34, 60], "cite": [27, 29], "aspect": 27, "book": [27, 59], "dilig": 27, "shareabl": 27, "conceptu": 27, "stamp": 27, "intent": [27, 43], "tie": 27, "rational": 27, "intellectu": [27, 28], "spring": 27, "recover": 27, "archiv": 27, "perpetu": 27, "citabl": 27, "reproduc": [27, 58, 60, 61], "labmat": 27, "surf": 27, "internet": [27, 34], "coupl": [27, 54, 60], "homepag": 27, "scientif": [27, 34, 60], "proper": [28, 35], "social": [28, 30, 31], "manuscript": 28, "clearli": [28, 35, 57], "elig": 28, "sue": 28, "infring": 28, "license": 28, "choosealicens": 28, "suit": 28, "consider": [28, 37], "patent": 28, "licenc": 28, "wade": 28, "jargon": 28, "initit": 28, "articl": [28, 29], "ground": 28, "constitut": 28, "counsel": 28, "guidelin": 28, "doubt": 28, "hesit": 28, "trustworthi": 28, "advic": 28, "chosen": [28, 59], "unilater": 28, "daili": 28, "basi": 28, "workshop": [28, 55], "talk": [28, 43, 46], "cpython": 28, "etherpad": 28, "gpl": 28, "famili": 28, "creation": [28, 41, 59, 61], "lawyer": 28, "greg": 29, "wilson": 29, "product": [29, 57, 59, 60], "scienc": [29, 30, 31, 43], "nov": [29, 61], "dec": [29, 46], "2006": 29, "1307": 29, "5448": 29, "juli": [29, 54], "novemb": [29, 54], "decemb": [29, 54], "year": [29, 40, 54, 59], "eprinttyp": 29, "eprint": 29, "scm": 30, "design": [30, 54, 56, 60], "speed": [30, 59], "benevol": 30, "convinc": 30, "superior": 30, "hope": 30, "diari": 30, "amend": [30, 31], "retir": [30, 31], "side": [30, 31, 33, 41, 45, 59], "ci": [30, 31], "analyst": 31, "taught": 31, "student": [31, 60], "maco": [31, 46], "shut": 31, "mambaforg": 31, "mamba": 31, "conda": [31, 38, 46, 61], "interchang": [31, 54], "forg": [31, 46], "accord": [31, 54, 55], "auto_activate_bas": 31, "jupyterlab": 31, "ipython": [31, 32, 33, 38, 41, 43, 45, 46, 47], "package_nam": 31, "webpag": [31, 49], "loop": [31, 34, 37, 42, 49, 58, 59, 60], "truthi": [31, 34], "pypi": [31, 34], "virtual": [31, 34, 38, 46], "glanc": [31, 34], "nell": [31, 55, 57, 58, 59], "pipe": [31, 49, 58, 59, 60], "filter": [31, 41, 42, 43, 59, 60], "tmux": [31, 49, 51], "lxplu": [31, 38, 43, 46, 49, 51, 52, 54, 60, 61], "kerbero": [31, 49, 51], "token": [31, 49, 51], "keytab": [31, 49], "k5reauth": [31, 49], "redirect": [31, 49, 56, 57, 61], "secur": [31, 49, 54], "viewer": [31, 42, 49], "wire": [31, 49], "bandit": [31, 49], "wargam": [31, 49], "snakemak": 31, "preserv": 31, "pizzaiolo": [32, 47], "make_pizza": [32, 47], "delici": [32, 47, 53], "pizza": [32, 36, 47, 54, 55], "sleep": [32, 40, 47, 51], "chees": [32, 36, 47], "oliv": [32, 36, 47], "filenam": [32, 38, 47, 54, 55, 56, 57, 58, 59, 60], "python2": [32, 43, 47], "dynload": [32, 43, 47], "broccoli": [32, 47], "argv": [32, 47], "whilst": [32, 41, 46, 47], "awesom": [32, 47], "super": [32, 35, 41, 47], "cool": [32, 41, 47], "behaviour": [32, 44, 47, 53, 58, 61], "topping1": [32, 47], "topping2": [32, 47], "hood": [32, 47], "parser": [32, 47, 61], "argumentpars": [32, 47, 61], "add_argu": [32, 47, 61], "narg": [32, 47], "store_tru": [32, 47], "parse_arg": [32, 47, 61], "shorthand": [32, 41, 45, 47], "woah": [32, 46, 47], "alia": [32, 33, 43, 47, 50], "margherita": [32, 47], "tomato": [32, 47], "sauc": [32, 47], "buffalo": [32, 47], "mozzarella": [32, 47], "cleanli": [32, 47], "fundament": [33, 35, 45], "shift": 33, "everythin": 33, "kernel": 33, "timeit": 33, "bool": 33, "vice": [33, 54, 60], "wrap": [33, 41, 48], "e2": 33, "strongli": [33, 46, 54], "oppos": 33, "weakli": 33, "surpris": [33, 56], "mix_str_int": 33, "unsupport": [33, 54], "operand": 33, "mix_str_int2": 33, "strict": 33, "convers": 33, "int_plus_float": 33, "boolean": [33, 36], "principl": [33, 57], "hash": [33, 37], "list1": 33, "Being": 33, "jona": 33, "eschl": 33, "00001": 33, "mayou36": 33, "nation": 33, "accomplish": [33, 41, 52], "hair_color": 33, "frozendict": 33, "frozenset": 33, "tuple1": 33, "tuple_from_list": 33, "list2": 33, "tuple2": 33, "list3": 33, "neither": 33, "mutat": [33, 41], "surpriz": 33, "list_a": 33, "list_b": 33, "spam": 33, "happend": 33, "list_c": 33, "pretti": [33, 36, 41, 43], "nope": 33, "obj_to_return": 33, "broad": 34, "rich": [34, 43], "concentr": 34, "stuff": [34, 38, 41, 42, 43], "ntupl": 34, "believ": 34, "superb": 34, "abc": [34, 42], "oop": [35, 46], "paradigm": 35, "java": [35, 41], "anywai": [35, 43], "ahead": 35, "momenta": 35, "pi1": 35, "pi1_px": 35, "pi1_pi": 35, "pi1_pz": 35, "pi1_": 35, "calc_mass_simpl": 35, "pz": 35, "73618495495704": 35, "alright": 35, "stick": [35, 48, 55], "calc_mass": 35, "critic": 35, "docstr": [35, 42], "formal": 35, "belong": [35, 54], "trial": 35, "blueprint": 35, "make_particl": 35, "e1": 35, "234227": 35, "5113475212892835": 35, "picki": 35, "initialize_particl": 35, "particle1": 35, "284271247461902": 35, "perfect": [35, 42], "feed": [35, 53, 56], "constructor": 35, "acces": 35, "dot": [35, 43, 45, 55, 58], "simpleparticl": 35, "initialis": 35, "16079783099616": 35, "addabl": 35, "new_px": 35, "new_pi": 35, "new_pz": 35, "new_": 35, "particle2": 35, "new_particl": 35, "overtak": 35, "verboseparticl": 35, "momentum_text": 35, "composit": 35, "getter": 35, "setter": 35, "stateless": [35, 42], "classmethod": 35, "staticmethod": 35, "fledg": 35, "mandatori": [35, 48, 54], "asset": 35, "bugfre": 35, "codebas": 35, "sidenot": 35, "isinst": 35, "betterparticl": 35, "superpow": 35, "pineappl": 36, "pepperoni": 36, "dog": 36, "amaz": [36, 48], "weird": 36, "duh": 36, "ternari": 36, "succinct": 36, "impair": 36, "truth": 36, "dude": 36, "reassign": 36, "pointless": 36, "inequ": 36, "magnitud": [36, 41, 44], "parenthes": [36, 41, 42], "hero": [36, 40], "thor": [36, 40, 42], "stdin": [36, 37, 41, 42, 56], "nameerror": [36, 42], "dive": 36, "underscor": [36, 42, 43, 44, 45, 55], "dir": [36, 43, 44, 45, 53, 54], "__contains__": 36, "promis": 36, "iron": [36, 59], "man": [36, 53, 54, 59], "likewis": [36, 54], "placehold": [36, 48], "not_cheesi": 36, "blast": 36, "forev": [36, 55, 59], "jack": 36, "dull": 36, "boi": 36, "stuck": [36, 40], "ctrl": [36, 46, 50, 51, 52, 53, 55, 56, 57, 58], "map": [37, 42], "the_list": 37, "wherea": [37, 41, 43, 57], "sin": [37, 41, 43, 45, 46], "dict_kei": 37, "dict_valu": 37, "unord": [37, 42], "th": [37, 46], "flawlessli": 37, "256": 37, "3125": 37, "dd": 37, "unhash": 37, "trade": 37, "__hash__": 37, "8411828025894108412": 37, "my_dict": 37, "my_kei": 37, "problemat": 37, "worri": [37, 48, 56, 57], "viewitem": 37, "viewkei": 37, "viewvalu": 37, "alphabet": [37, 54, 55, 56], "ascii_lowercas": 37, "abcdefghijklmnopqrstuvwxyz": 37, "alongsid": 37, "alphabet_map": 37, "invers": 37, "swap": 37, "reverse_map": 37, "portal": 38, "eospubl": 38, "opendata": 38, "antimattermatters2017": 38, "b2hhh_magnetdown": 38, "b2hhh_magnetup": 38, "phasespacesimul": 38, "safer": [38, 43], "lb": [38, 61], "pip": [38, 43], "upgrad": [38, 43], "__file__": [38, 43], "deactiv": [38, 43], "lcg": [38, 43, 46], "export": [38, 43, 53], "pythonpath": 38, "prioriti": 38, "pyroot": [38, 39], "tfile": 38, "aforement": [38, 52], "tnetxngfil": 38, "ttree": 38, "contina": 38, "my_tre": 38, "5135823": 38, "945201357": 38, "666480138": 38, "specialis": 38, "tabular": 38, "tleaf": 38, "read_root": 38, "b_flightdist": 38, "b_vertexchi2": 38, "h1_px": 38, "h1_py": 38, "h1_pz": 38, "301004": 38, "497280": 38, "375": 38, "284205": 38, "831": 38, "308481": 38, "51820": 38, "233718": 38, "94": 38, "690700": 38, "383338": 38, "4985": 38, "130785": 38, "5853": 38, "750057": 38, "326157": 38, "454706": 38, "284490": 38, "187101": 38, "1265": 38, "456544": 38, "2330": 38, "050788": 38, "90762": 38, "658032": 38, "590769": 38, "129099": 38, "720": 38, "797259": 38, "3413": 38, "790588": 38, "86793": 38, "058768": 38, "013242": 38, "988701": 38, "397": 38, "754571": 38, "1791": 38, "373059": 38, "40040": 38, "364159": 38, "bulk": 38, "child": [38, 50], "h1": 38, "h2": 38, "h3": 38, "transvers": 38, "h2_px": 38, "h2_py": 38, "1306": 38, "642724": 38, "167": 38, "578904": 38, "1273": 38, "457019": 38, "1146": 38, "299204": 38, "5135820": 38, "430531": 38, "5135821": 38, "762": 38, "344570": 38, "5135822": 38, "1454": 38, "471057": 38, "h2_pt": 38, "meson": 38, "b_p": 38, "h3_px": 38, "h3_py": 38, "h2_pz": 38, "h3_pz": 38, "xwindow": 38, "savefig": 38, "b_flight_dist": 38, "paus": 38, "ion": 38, "mathematica": 38, "matlab": 38, "b_flight_distance_v2": 38, "layer": 38, "flight": 38, "b_flight_distance_v3": 38, "throw": [38, 41, 42, 55], "awai": [38, 42, 43, 45, 55], "commonli": 38, "mm": 38, "df_with_cut": 38, "b_flight_distance_with_cut_compar": 38, "kaon": [38, 41], "argspars": 39, "datetim": 39, "fnmatch": 39, "subprocess": [39, 40], "pathlib": 39, "bootstrap": 39, "jackknif": 39, "jacobi": 39, "propag": 39, "numba": 39, "deprec": 39, "career": 40, "frustrat": 40, "trick": [40, 41], "beyond": [40, 52], "alli": 40, "didact": 40, "vote": 40, "treasur": 40, "trove": 40, "gone": [40, 55, 56], "tini": 40, "tempfil": 40, "mkdtemp": 40, "glob": 40, "localtim": 40, "tm_hour": 40, "namedtupl": 40, "coord": [40, 41], "ordereddict": 40, "321": [40, 58], "defaultdict": 40, "undefin": 40, "wider": 40, "90": [40, 41], "emphasis": 40, "consult": 40, "unsur": 40, "settl": 40, "disput": 40, "lower_case_funct": 40, "versu": 40, "uppercasefunct": 40, "myfunc": 40, "my_func": 40, "summaris": 40, "philosophi": [40, 56, 61], "bracket": [41, 48], "comma": [41, 54], "del": 41, "my_funct": 41, "exclus": [41, 59], "arbitrari": [41, 42, 58, 61], "56": [41, 43], "11d6523211c0": 41, "indentationerror": 41, "complain": 41, "57": [41, 56], "5c3d29e65ad9": 41, "symbol": [41, 45, 54, 56, 57], "endfor": 41, "a_copi": 41, "intuit": [41, 44], "freeli": 41, "ourselv": 41, "a_doubl": 41, "firstli": 41, "sublist": 41, "0x7f5abe5b1190": 41, "item2": 41, "quick": [41, 46, 51, 56], "135": 41, "2025": 41, "succinctli": [41, 54], "attributeerror": 41, "65": 41, "worth": [41, 53, 61], "magsq": 41, "encapsul": 42, "0x7f83b2bc56e0": 42, "colon": [42, 57], "quot": [42, 48, 54, 55, 57, 58, 59], "linebreak": 42, "decent": 42, "top_funct": 42, "silli": 42, "minimis": 42, "elsewher": [42, 54], "implicitli": 42, "no_return": 42, "such_output": 42, "wow": 42, "clever": 42, "213": 42, "convention": [42, 48], "lowercas": [42, 43], "border": [42, 58], "trippl": 42, "un": 42, "unnecessari": 42, "syntaxerror": [42, 43], "remind": [42, 54, 57], "hmm": 42, "aha": 42, "clearer": [42, 57], "run_method": 42, "make_incrementor": 42, "increment": 42, "plu": [42, 45, 60], "increment_on": 42, "make_increment": 42, "increment_two": 42, "caller": 42, "expand": [42, 55, 56, 57, 58, 59], "reverse_arg": 42, "steve": 42, "helen": 42, "zorblax": 42, "9963": 42, "yoda": 42, "necessarili": [42, 43, 46], "bing": 42, "baz": 42, "cube": 42, "div2": 42, "0x7fc6b2207758": 42, "__future__": [42, 44], "divis": [42, 44, 45], "quadratur": 42, "4142135623730951": 42, "downsid": [42, 61], "unwieldi": 42, "idempot": 42, "anyhow": 42, "submodul": 43, "141592653589793": [43, 45], "8414709848078965": 43, "5877109428927353": 43, "4059007502204043": 43, "prefix": [43, 54, 57], "639334770284028": 43, "extent": 43, "clash": 43, "uni": 43, "7288973406605329": 43, "arcco": 43, "alias": 43, "abspath": 43, "af": [43, 54, 61], "getcwd": 43, "basenam": 43, "exp": 43, "floor": 43, "confid": 43, "portabl": 43, "anaconda": [43, 46], "preinstal": 43, "startup": 43, "bashrc": [43, 50, 61], "pythonuserbas": 43, "virtualenv": 43, "cburr": 43, "lcg_virtualenv": 43, "create_lcg_virtualenv": 43, "myvenv": 43, "simplest": [43, 52, 54, 59], "myfirstmodul": 43, "fire": 43, "ef292d9e19f": 43, "yabba": 43, "cp": [43, 55, 56, 57], "ring": 43, "bell": 43, "startswith": [43, 61], "__": [43, 45], "endsolut": [43, 55], "runnabl": 43, "long_format": 43, "print_label": 43, "msg": 43, "__name__": 43, "chmod": [43, 53], "outstand": 43, "notion": 43, "shebang": 43, "secondli": 43, "peculiar": 43, "hei": 43, "printout": 43, "discov": [44, 58, 59], "alic": [44, 46], "bewar": 44, "3333333333333335": 44, "decim": [44, 48], "histor": [44, 58], "unintuit": 44, "everywher": 44, "shortli": 44, "truncat": 44, "66666666667": 44, "__floordiv__": 44, "__truediv__": [44, 45], "4j": 44, "1j": 44, "5j": 44, "conjug": 44, "somewhat": 44, "confusingli": 44, "123105625617661": 44, "0j": 44, "straight": 45, "2246467991473532e": 45, "twopi": 45, "my_sin": 45, "4492935982947064e": 45, "scene": [45, 56], "0x7fdc7ea75980": 45, "shortcut": [45, 50, 54, 57], "__abs__": 45, "__and__": 45, "__bool__": 45, "to_byt": 45, "scan": 45, "__sub__": 45, "__mul__": 45, "__getattribute__": 45, "horribl": 45, "liner": 45, "illustr": [45, 54], "999": [45, 48], "newer": [46, 48, 53], "sft": 46, "setupview": 46, "sh": [46, 53, 58, 59], "lcg_94python3": 46, "x86_64": 46, "slc6": 46, "gcc62": 46, "opt": 46, "miniforg": 46, "migrat": 46, "2020": 46, "gcc": 46, "repl": [46, 60], "ead": 46, "valuat": 46, "rint": 46, "enhanc": 46, "quickref": 46, "arrow": [46, 53, 54, 57], "past": [46, 48, 50], "autocomplet": 46, "middl": [46, 58], "abc_my_var": 46, "abc_": 46, "sinh": 46, "cal": 46, "octob": 46, "su": 46, "mo": 46, "tu": 46, "fr": 46, "sa": 46, "useful": 46, "chapter": 46, "parrot": 48, "join": [48, 56], "carrot": 48, "amazingli": 48, "omg": 48, "omgomgomgomgomgomgomgomgomgomg": 48, "escap": [48, 54, 61], "backslash": 48, "gari": 48, "surround": [48, 55, 58, 59], "quotat": [48, 55], "long_fact": 48, "inde": 48, "nquit": 48, "998": 48, "a_parrot": 48, "interleav": 48, "result1": 48, "result2": 48, "referenc": 48, "template2": 48, "template3": 48, "worst": 48, "front": [48, 54, 56, 57], "3f": 48, "000": 48, "curli": [48, 57], "brace": [48, 57, 61], "innermost": 48, "recip": [50, 53], "ktutil": 50, "confirm": [50, 53, 54, 55, 56], "otg0077802": 50, "lxplus9": 50, "properli": 50, "lxplus7": 50, "lxplus8": 50, "login": [50, 60], "kdestroi": 50, "kt": 50, "klist": 50, "ticket": 50, "renew": [50, 51], "children": 50, "3600": 50, "suffici": 50, "certainli": [50, 61], "ktmux": 50, "fi": [50, 53], "rest": [50, 54], "disconnect": 51, "reconnect": 51, "wifi": 51, "uptim": 51, "apr": 51, "cest": 51, "2015": [51, 56], "25593": 51, "lxplus0234": 51, "socket": 51, "thead": 51, "rd": 51, "ti": 51, "resum": 51, "hostnam": [51, 52], "lxplus0081": 51, "expir": 51, "suddenli": 51, "ganga": 51, "surviv": [51, 59], "node": 52, "snippet": 52, "seq": 52, "04g": 52, "500": [52, 58], "connecttimeout": 52, "preferredauthent": 52, "gssapi": 52, "mic": 52, "gssapiauthent": 52, "stricthostkeycheck": 52, "loglevel": 52, "quiet": [52, 61], "grep": [52, 53, 54, 56, 59, 61], "screenrc": 52, "hardstatu": 52, "alwayslastlin": 52, "bg": 52, "bw": [52, 58], "yr": 52, "predefin": 52, "colour": 52, "layout": 52, "eg": 52, "stand": [52, 54, 56, 58, 59], "visit": 52, "kill": [52, 57], "logout": 52, "tcsh": [53, 60], "apropo": 53, "gfal": 53, "vdir": 53, "ld_library_path": 53, "varnam": 53, "starwar": 53, "star": 53, "war": 53, "anakin": 53, "membership": 53, "chown": 53, "chgrp": 53, "strvar": 53, "intvar": 53, "file1": 53, "file2": 53, "fulfil": 53, "cond1": 53, "cond2": 53, "tempt": 53, "havea": 53, "poem": 53, "suppli": [53, 61], "sentences2": 53, "tee": 53, "stdout": [53, 56, 61], "listoffileswithte": 53, "potenti": [53, 58], "incid": 53, "buffer": 53, "alloc": [53, 54], "malici": 53, "sebastian": 53, "lopienski": 53, "mail": 53, "passwd": 53, "reach": 53, "exhaust": 53, "vi": 53, "du": 53, "mount": 53, "recurs": [53, 54, 55, 59], "depth": [53, 54, 56], "deep": 53, "compet": 53, "earn": 53, "beginn": 53, "panic": 53, "clue": 53, "ps1": 54, "dollar": [54, 57], "whoami": 54, "hypothet": 54, "throughout": 54, "mycommand": 54, "cernus": 54, "slash": [54, 55], "lead": [54, 55, 56, 61], "miscellan": [54, 59], "underneath": 54, "imhotep": 54, "larri": 54, "music": [54, 55], "movi": 54, "arrang": 54, "neatli": 54, "trail": 54, "sort": [54, 56, 58, 59], "cftuvsux": 54, "nongraph": 54, "048": [54, 58], "576": 54, "ctime": 54, "newest": 54, "themselv": [54, 55, 56, 59], "dire": 54, "au": 54, "horizont": 54, "vertic": [54, 56], "iso": 54, "augment": 54, "1k": 54, "234m": 54, "2g": 54, "si": [54, 59], "derefer": 54, "symlink": 54, "hide": [54, 60], "overridden": 54, "inod": 54, "kibibyt": 54, "uid": 54, "gid": 54, "raw": [54, 55, 56, 61], "char": 54, "enclos": [54, 57, 58, 60], "largest": 54, "atim": 54, "format1": 54, "format2": 54, "posix": 54, "tabsiz": 54, "col": 54, "10k": 54, "emit": 54, "ls_color": 54, "dircolor": 54, "seriou": 54, "troubl": 54, "gnu": 54, "coreutil": 54, "www": 54, "lucki": 54, "spacebar": [54, 56], "wikipedia": 54, "accur": [54, 58], "hierarch": 54, "hundr": [54, 57, 58, 59], "desk": 54, "defeat": 54, "creatur": [54, 55, 57, 58], "molecul": [54, 55, 56, 57, 58], "solar": [54, 55], "north": [54, 55, 56, 57, 58, 59, 60], "pacif": [54, 55, 56, 57, 58, 60], "gyre": [54, 55, 56, 57, 58, 60], "cfg": [54, 55, 61], "mislead": [54, 57], "amino": [54, 55], "acid": [54, 55], "pdb": [54, 55, 56, 57, 58, 59], "salmon": [54, 55, 56], "anim": [54, 55, 56, 58, 59], "mors": [54, 55], "sunspot": [54, 55], "bash_profil": 54, "fa": 54, "orthogon": [54, 56], "gotten": 54, "anywher": [54, 61], "tild": 54, "forth": 54, "tv": 54, "protein": [54, 55, 56, 58, 60], "assai": [54, 56, 60], "herself": 54, "came": 54, "2012": [54, 56, 57, 58], "confer": 54, "straw": 54, "june": 54, "ten": [54, 61], "nene01729a": [54, 56, 57], "nene01812a": [54, 56], "1520": [54, 60], "amanda": 54, "unnecessarili": 54, "08": 54, "pnas_fin": 54, "pnas_sub": 54, "ownership": [54, 59], "nevertheless": 54, "ong": 54, "uman": 54, "3k": 54, "5369": 54, "hierarchi": 55, "trash": 55, "pain": 55, "whitespac": [55, 57], "period": 55, "alphanumer": 55, "media": 55, "trait": 55, "menu": [55, 59], "writeout": 55, "tidi": 55, "unhook": 55, "recycl": [55, 58], "descend": 55, "mythesi": 55, "png": [55, 58], "albeit": 55, "whale": 55, "mp3": 55, "whalesong": 55, "player": 55, "statstic": 55, "misspel": 55, "incorrectli": 55, "jami": 55, "recombin": 55, "tricki": [55, 61], "recal": [55, 58], "fructos": 55, "sucros": 55, "0kb": 55, "maltos": 55, "glucos": 55, "___": 55, "safe": 55, "san": 55, "duplic": [55, 56], "wild": 55, "card": 55, "eas": 56, "six": [56, 59, 60], "bank": 56, "cuban": [56, 57, 58], "ethan": [56, 57, 58], "methan": [56, 57, 58], "octan": [56, 57, 58], "pentan": [56, 57, 58], "propan": [56, 57, 58], "wc": [56, 58, 59], "156": 56, "1158": 56, "84": 56, "622": 56, "422": 56, "246": 56, "1828": 56, "165": 56, "1226": 56, "111": 56, "825": 56, "107": 56, "819": 56, "6081": 56, "p5": 56, "ne": 56, "thane": 56, "greater": 56, "overwritten": [56, 57], "caution": 56, "disadvantag": [56, 58], "dump": 56, "greatest": 56, "fewest": 56, "incorrect": [56, 59], "confus": 56, "consecut": 56, "mathematician": 56, "3x": 56, "memor": 56, "stderr": [56, 61], "diagnost": 56, "circumst": [56, 59], "fed": 56, "enorm": 56, "stream": 56, "ammonia": 56, "saniti": 56, "nene01729b": [56, 57, 58], "nene01736a": [56, 57], "nene01751a": 56, "nene01751b": 56, "240": 56, "nene02018b": 56, "mondai": 56, "weekend": 56, "nene02040b": 56, "nene02040z": 56, "nene02043a": [56, 57], "nene02043b": [56, 57], "5040": 56, "nene01971z": 56, "late": 56, "henc": [56, 58], "testfile01": 56, "testfile02": 56, "sam": 56, "calibr": 56, "dataset1": 56, "dataset2": 56, "dataset_overview": 56, "trip": 56, "bob": 56, "____calibration____": 56, "____": 56, "send_to_bob": 56, "all_november_fil": 56, "all_datasets_created_on_a_23rd": 56, "uniq": [56, 58], "adjac": 56, "coho": 56, "steelhead": 56, "deer": [56, 58, 59], "rabbit": [56, 58, 59], "raccoon": [56, 58, 59], "fox": [56, 58], "unneed": 56, "expens": 56, "586": 56, "k2": 56, "difficulti": 56, "animalsupd": 56, "trace": 57, "punctuat": [57, 58, 60], "retyp": [57, 58], "genom": 57, "basilisk": [57, 58], "unicorn": [57, 58], "basiliscu": 57, "vulgari": 57, "1745": 57, "equu": 57, "monocero": 57, "1738": 57, "delimit": 57, "semicolon": 57, "reader": [57, 58], "temperatur": 57, "meaningless": 57, "dragon": 57, "purpl": 57, "judici": 57, "nene": 57, "goostat": [57, 58, 60], "redisplai": 57, "semi": 57, "five": [57, 59], "1518": 57, "coffe": 57, "456": 57, "nene0": 57, "457": 57, "458": 57, "459": 57, "460": 57, "quicker": 57, "alkan": 57, "inter": 57, "preview": 57, "reaction": 57, "compound": 57, "speci": [57, 58, 59], "expans": [57, 59], "502": 58, "681": 58, "785": 58, "254": 58, "537": 58, "357": 58, "252": 58, "895": 58, "009": 58, "741": 58, "467": 58, "172": 58, "337": 58, "206": 58, "docx": [58, 61], "font": 58, "versatil": 58, "324": 58, "350": 58, "332": 58, "271": 58, "378": 58, "074": 58, "384": 58, "288": 58, "362": 58, "205": 58, "183": 58, "412": 58, "259": 58, "420": 58, "112": 58, "608": 58, "407": 58, "130": 58, "540": 58, "303": 58, "404": 58, "393": 58, "ter": 58, "end_lin": 58, "num_lin": 58, "invalu": 58, "caveat": 58, "one_or_more_filenam": 58, "163": 58, "redo": 58, "297": 58, "298": 58, "goodiff": [58, 60], "01729": 58, "ygraph": 58, "301": 58, "serial": 58, "analyt": 58, "antarctica": 58, "adventur": 58, "leah": [58, 59], "csv": 58, "longest": 58, "hang": 58, "investig": 58, "datfil": 58, "meant": 59, "haiku": 59, "1998": 59, "salon": 59, "magazin": 59, "tao": 59, "toner": 59, "presenc": 59, "absenc": 59, "yesterdai": 59, "jeff": 59, "rothenberg": 59, "whichev": 59, "boundari": 59, "insensit": 59, "invert": 59, "bre": 59, "regexp": 59, "er": 59, "perl": 59, "taster": 59, "anchor": 59, "sadli": 59, "littlewomen": 59, "episod": 59, "oldtool": 59, "useless": 59, "21022": 59, "21403": 59, "fe": 59, "heme": 59, "924": 59, "518": 59, "databas": 59, "ish": 59, "spreadsheet": 59, "borrow": 59, "imit": 59, "sincerest": 59, "prais": 59, "Its": 59, "unbeaten": 59, "alfr": 59, "whitehead": 59, "1911": 59, "civil": 59, "explanatori": 59, "net": 59, "temp": [59, 61], "women": 59, "louisa": 59, "alcott": 59, "sister": 59, "jo": 59, "meg": 59, "beth": 59, "ami": 59, "novel": 59, "tabul": 59, "emploi": 59, "eleg": 59, "ow": 59, "inferior": 59, "ocw": 59, "criteria": 59, "ahm": 59, "mtime": 59, "9rkz": 60, "unzip": 60, "hopefulli": 60, "mous": 60, "speech": 60, "recognit": 60, "hardwar": 60, "commonplac": 60, "mice": 60, "touchpad": 60, "pointer": 60, "technologi": 60, "widespread": 60, "doug": 60, "engelbart": 60, "1960": 60, "mother": 60, "rewir": 60, "1950": 60, "cli": 60, "heart": 60, "bourn": 60, "stephen": 60, "IT": 60, "zsh": 60, "ters": 60, "keystrok": 60, "volum": 60, "supercomput": 60, "cluster": 60, "cloud": 60, "crunch": 60, "tackl": 60, "nemo": 60, "marin": 60, "biologist": 60, "survei": 60, "gelatin": 60, "garbag": 60, "abund": 60, "graduat": 60, "upcom": 60, "aquat": 60, "goo": 60, "eight": 60, "370": 60, "deadlin": 60, "mattermost": 61, "cmake": 61, "lbenv": 61, "rcfile": 61, "ongo": 61, "basic_tutori": 61, "noext": 61, "ofil": 61, "declar": 61, "congratul": 61, "scalabl": 61, "took": 61, "parallelis": 61, "reprocess": 61, "snakefil": 61, "monitor": 61, "mynam": 61, "myinput1": 61, "myinput2": 61, "myoutput": 61, "name_fil": 61, "dag": 61, "lhcbdev": 61, "2021": 61, "07_04": 61, "mon": 61, "jobid": 61, "tmpdir": 61, "15t183022": 61, "449488": 61, "15t183344": 61, "711303": 61, "unavoid": 61, "quirk": 61, "nproc": 61, "name_al": 61, "chr": 61, "ord": 61, "forceal": 61, "routin": 61, "reiter": 61, "create_input": 61, "knew": 61, "reqest": 61, "hello_world": 61, "missingruleexcept": 61, "ext": 61, "gif": 61, "advanced_tutori": 61, "tar": 61, "xvf": 61, "phone": 61, "ultim": 61, "luca": 61, "luca_info": 61, "merge_data": 61, "get_address": 61, "get_phon": 61, "waypoint": 61, "fred": 61, "guillaum": 61, "acycl": 61, "get_info": 61, "infil": 61, "outfil": 61, "ln": 61, "recreat": 61, "inconsequenti": 61, "forcerun": 61, "workaround": 61, "cleanest": 61, "failur": 61, "corrupt": 61, "contrast": 61, "mylog": 61, "yaml": 61, "data1": 61, "data2": 61, "configfil": 61, "dosometh": 61, "mycod": 61, "plot1": 61, "plot2": 61, "input_alt": 61, "fit_rul": 61, "snake": 61, "efficiency_rul": 61}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"contributor": [0, 1], "code": [0, 24, 40, 43], "conduct": 0, "contribut": 1, "agreement": 1, "how": [1, 11, 35], "what": [1, 11, 24, 61], "us": [1, 4, 6, 7, 8, 13, 33, 43, 50, 51, 52, 61], "github": 1, "other": [1, 23], "resourc": 1, "instruct": 2, "materi": 2, "softwar": 2, "1": [3, 33], "basic": [3, 33, 61], "markdown": [3, 33], "jupyt": [3, 33], "import": [3, 6, 13, 43], "modul": [3, 6, 43], "advanc": [4, 5, 15, 39, 52, 61], "python": [4, 15, 33, 34, 39, 40, 43, 46], "concept": 4, "pack": 4, "unpack": 4, "valu": 4, "context": 4, "manag": [4, 61], "yield": 4, "where": 4, "i": [4, 24, 61], "thi": [4, 8, 12], "class": [4, 5, 35], "decor": 4, "factori": 4, "except": 4, "custom": 4, "catch": 4, "pitfal": 4, "guarante": 4, "execut": 4, "control": [4, 16], "flow": 4, "dunder": 5, "len": 5, "str": 5, "callabl": 5, "index": 5, "iter": 5, "self": 5, "danger": 5, "zone": 5, "2": 6, "first": [6, 38, 43], "look": [6, 9], "data": [6, 9, 11, 39], "two": [6, 12], "plot": [6, 7, 10, 12, 38], "librari": [6, 39, 43], "recap": 6, "5": [6, 9], "The": [6, 24, 43, 60, 61], "toi": 6, "dataset": [6, 9], "load": [6, 9], "6": [6, 10], "simpl": [6, 11, 13], "histogram": [6, 10, 38], "ad": 6, "variabl": [6, 10, 33, 53], "rectangular": 6, "cut": [6, 38], "compar": [6, 11, 13], "distribut": [6, 9, 11, 13], "3": 7, "multivari": 7, "analysi": [7, 31, 39, 61], "classifi": [7, 9], "todo": 7, "add": 7, "diagram": 7, "decis": 7, "tree": 7, "abov": 7, "evalu": 7, "perform": 7, "collect": 7, "all": 7, "togeth": 7, "4": 8, "extens": 8, "classif": 8, "altern": [8, 13], "impliment": 8, "featur": [8, 9, 24], "engin": 8, "k": 8, "fold": [8, 11], "turn": 8, "scipt": 8, "argpars": [8, 32, 47], "boost": [9, 11], "uniform": 9, "dalitz": 9, "signal": [9, 13], "background": [9, 13, 60], "prepar": [9, 11], "train": [9, 11], "test": [9, 11, 24], "set": [9, 17, 50], "up": [9, 17, 50], "let": 9, "": [9, 54, 56, 60], "result": 9, "roc": 9, "curv": 9, "after": 9, "ax": 10, "regular": 10, "axi": 10, "name": 10, "compat": 10, "mplhep": 10, "hist": 10, "multipl": 10, "dimens": [10, 11], "access": 10, "bin": [10, 11], "get": [10, 12], "densiti": 10, "project": [10, 24], "everyth": 10, "relev": 10, "multi": 10, "dimension": 10, "arithmet": 10, "weight": 10, "7": 11, "demonstr": 11, "reweight": 11, "download": 11, "sampl": 11, "origin": [11, 24], "part": 11, "target": 11, "base": 11, "n": 11, "gradient": 11, "some": 11, "express": [11, 14], "gb": 11, "discrimin": 11, "great": 11, "did": 11, "just": 11, "happen": 11, "tune": 11, "rule": [11, 61], "8": 12, "likelihood": 12, "infer": 12, "scope": 12, "tutori": [12, 15, 61], "start": [12, 60], "differ": [12, 53], "space": [12, 53], "loss": 12, "fix": [12, 35], "paramet": 12, "9": 13, "splot": 13, "exampl": 13, "observ": 13, "appli": [13, 38], "sweight": 13, "more": [13, 39, 40, 53], "complex": [13, 53], "case": 13, "known": 13, "probabl": 13, "build": [13, 31], "over": [13, 53], "mass": 13, "Of": 13, "cours": 13, "we": 13, "don": 13, "t": 13, "have": 13, "label": 13, "which": 13, "event": 13, "ar": 13, "beforehand": 13, "inform": 13, "about": [13, 53], "real": 13, "fit": 13, "doesn": 13, "give": 13, "u": 13, "appi": 13, "reconstruct": 13, "initi": 13, "an": [13, 34], "requir": 13, "deriv": 13, "option": 13, "under": 13, "assumpt": 13, "linear": 13, "minim": 13, "variat": 13, "uncorrelated": 13, "conclus": 13, "10": 14, "scikit": 14, "hep": 14, "formul": 14, "convert": 14, "particl": 14, "hepunit": 14, "vector": 14, "properti": 14, "content": [15, 30, 31, 34, 49, 60], "autom": [16, 61], "version": 16, "git": [17, 30], "creat": [18, 24], "repositori": [18, 23, 24], "track": 19, "chang": [19, 24], "explor": [20, 40], "histori": 20, "ignor": 21, "thing": [21, 51, 59], "remot": [22, 24], "cern": 22, "gitlab": [22, 26], "share": 23, "collabor": 24, "pull": 24, "request": 24, "merg": 24, "fork": 24, "clone": 24, "its": 24, "sync": 24, "your": [24, 38, 43, 50], "local": [24, 31], "implement": 24, "new": 24, "push": 24, "discuss": 24, "amend": 24, "retir": 24, "accept": 24, "social": 24, "side": 24, "automat": [24, 50], "conflict": 25, "ci": 26, "open": 27, "scienc": 27, "licens": 28, "citat": 29, "essenti": 31, "statu": 31, "binder": 31, "prerequisit": 31, "usag": 31, "script": [32, 47, 58, 61], "type": [33, 53], "oper": [33, 45], "strong": 33, "contain": 33, "mutabl": 33, "dynam": 33, "assign": 33, "sugar": 33, "comprehens": [33, 41], "introduct": 34, "welcom": 35, "inherit": 35, "glanc": 35, "condit": [36, 53], "truthi": 36, "loop": [36, 41, 53, 57], "dictionari": 37, "kei": 37, "make": [38, 50], "panda": 38, "topic": [39, 52], "nice": 39, "standard": [39, 43], "root": 39, "learn": 40, "convent": 40, "list": 41, "tupl": 41, "function": 42, "inlin": 42, "method": 42, "from": 43, "pypi": 43, "insid": 43, "virtual": 43, "environ": [43, 53, 61], "write": 43, "structur": 43, "run": [43, 46, 51, 61], "number": 44, "object": 45, "string": 48, "format": 48, "unix": [49, 53], "shell": [49, 53, 58, 60], "persist": 50, "screen": [50, 51, 52], "tmux": 50, "session": 50, "lxplu": 50, "password": 50, "less": 50, "kerbero": 50, "token": 50, "keytab": 50, "k5reauth": 50, "refresh": 50, "keep": 51, "find": [52, 59], "lost": 52, "tab": 52, "manual": 53, "page": 53, "among": 53, "file": [53, 54, 55, 56, 61], "link": 53, "command": [53, 60], "pipe": [53, 56], "redirect": 53, "bash": 53, "secur": 53, "text": 53, "viewer": 53, "editor": 53, "disk": 53, "wire": 53, "bandit": 53, "wargam": 53, "navig": 54, "directori": [54, 55], "nell": [54, 56, 60], "pipelin": [54, 56, 60], "organ": 54, "work": 55, "With": 55, "filter": 56, "check": 56, "introduc": [60, 61], "line": 60, "interfac": 60, "why": [60, 61], "bother": 60, "point": 60, "snakemak": 61, "document": 61, "workflow": 61, "preserv": 61, "system": 61, "re": 61, "chain": 61, "limit": 61, "wildcard": 61, "log": 61, "config": 61, "includ": 61}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"Contributor Code of Conduct": [[0, "contributor-code-of-conduct"]], "Contributing": [[1, "contributing"]], "Contributor Agreement": [[1, "contributor-agreement"]], "How to Contribute": [[1, "how-to-contribute"]], "What to Contribute": [[1, "what-to-contribute"]], "Using GitHub": [[1, "using-github"]], "Other Resources": [[1, "other-resources"]], "Instructional Material": [[2, "instructional-material"]], "Software": [[2, "software"]], "1: Basics": [[3, "1:-Basics"], [33, "1:-Basics"]], "Basics": [[3, "Basics"]], "Markdown": [[3, "Markdown"]], "Jupyter": [[3, "Jupyter"], [33, "Jupyter"]], "Importing modules": [[3, "Importing-modules"]], "Advanced Python Concepts": [[4, "Advanced-Python-Concepts"]], "Packing and unpacking of values": [[4, "Packing-and-unpacking-of-values"]], "Context manager": [[4, "Context-manager"]], "Using yield": [[4, "Using-yield"]], "Where is this useful": [[4, "Where-is-this-useful"]], "Using a class": [[4, "Using-a-class"]], "Decorators and factories": [[4, "Decorators-and-factories"]], "Decorator": [[4, "Decorator"]], "Exceptions": [[4, "Exceptions"]], "Custom Exception": [[4, "Custom-Exception"]], "Catching exceptions": [[4, "Catching-exceptions"]], "pitfall \u201cguaranteed execution\u201d": [[4, "pitfall-%22guaranteed-execution%22"]], "Exceptions as control-flow": [[4, "Exceptions-as-control-flow"]], "Advanced Classes": [[5, "Advanced-Classes"]], "Dunder": [[5, "Dunder"]], "len": [[5, "len"]], "str": [[5, "str"]], "Callable": [[5, "Callable"]], "Indexing (iterating)": [[5, "Indexing-(iterating)"]], "self": [[5, "self"]], "Danger zone": [[5, "Danger-zone"]], "2: First look at data": [[6, "2:-First-look-at-data"]], "Two plotting libraries?": [[6, "Two-plotting-libraries?"]], "Recap: Importing modules": [[6, "Recap:-Importing-modules"]], "5. The toy dataset": [[6, "5.-The-toy-dataset"]], "Loading data": [[6, "Loading-data"], [9, "Loading-data"]], "6. Plotting a simple histogram": [[6, "6.-Plotting-a-simple-histogram"]], "Adding variables": [[6, "Adding-variables"]], "Using rectangular cuts": [[6, "Using-rectangular-cuts"]], "Comparing distributions": [[6, "Comparing-distributions"]], "3: Multivariate Analysis": [[7, "3:-Multivariate-Analysis"]], "Using a classifier": [[7, "Using-a-classifier"]], "TODO Add a diagram of a decision tree for the above plot": [[7, "TODO-Add-a-diagram-of-a-decision-tree-for-the-above-plot"]], "Evaluating classifier performance": [[7, "Evaluating-classifier-performance"]], "Collecting it all together": [[7, "Collecting-it-all-together"]], "4: Extension on Classification": [[8, "4:-Extension-on-Classification"]], "Alternative implimentations": [[8, "Alternative-implimentations"]], "Feature engineering": [[8, "Feature-engineering"]], "k-folding": [[8, "k-folding"]], "Turn this into a scipt using argparse": [[8, "Turn-this-into-a-scipt-using-argparse"]], "5: Boosting to Uniformity": [[9, "5:-Boosting-to-Uniformity"]], "Distributions in the Dalitz features for signal and background": [[9, "Distributions-in-the-Dalitz-features-for-signal-and-background"]], "Preparation of train/test datasets": [[9, "Preparation-of-train/test-datasets"]], "Setting up classifiers, training": [[9, "Setting-up-classifiers,-training"]], "Let\u2019s look at the results of training": [[9, "Let's-look-at-the-results-of-training"]], "ROC curves after training": [[9, "ROC-curves-after-training"]], "6: Histograms": [[10, "6:-Histograms"]], "Axes": [[10, "Axes"]], "Regular": [[10, "Regular"]], "Variable": [[10, "Variable"]], "Axis Name": [[10, "Axis-Name"]], "Compatibility with mplhep": [[10, "Compatibility-with-mplhep"]], "Plotting with hist": [[10, "Plotting-with-hist"]], "Multiple dimensions": [[10, "Multiple-dimensions"]], "Access Bins": [[10, "Access-Bins"]], "Getting Density": [[10, "Getting-Density"]], "Projecting axes": [[10, "Projecting-axes"]], "Accessing everything relevant": [[10, "Accessing-everything-relevant"]], "Multi dimensional": [[10, "Multi-dimensional"]], "Arithmetics": [[10, "Arithmetics"]], "Weights": [[10, "Weights"]], "7: Demonstration of distribution reweighting": [[11, "7:-Demonstration-of-distribution-reweighting"]], "Downloading data": [[11, "Downloading-data"]], "prepare train and test samples": [[11, "prepare-train-and-test-samples"]], "Original distributions": [[11, "Original-distributions"]], "train part of original distribution": [[11, "train-part-of-original-distribution"]], "test part for target distribution": [[11, "test-part-for-target-distribution"]], "Bins-based reweighting in n dimensions": [[11, "Bins-based-reweighting-in-n-dimensions"]], "Gradient Boosted Reweighter": [[11, "Gradient-Boosted-Reweighter"]], "Comparing some simple expressions:": [[11, "Comparing-some-simple-expressions:"]], "GB-discrimination": [[11, "GB-discrimination"]], "Great!": [[11, "Great!"]], "What did just happen?": [[11, "What-did-just-happen?"]], "How to tune": [[11, "How-to-tune"]], "Folding reweighter": [[11, "Folding-reweighter"]], "GB discrimination for reweighting rule": [[11, "GB-discrimination-for-reweighting-rule"]], "8: Likelihood inference": [[12, "8:-Likelihood-inference"]], "Scope of this tutorial": [[12, "Scope-of-this-tutorial"]], "Getting started": [[12, "Getting-started"]], "Difference of the two spaces": [[12, "Difference-of-the-two-spaces"]], "Plotting": [[12, "Plotting"]], "Loss": [[12, "Loss"]], "Fixing parameters": [[12, "Fixing-parameters"]], "9: sPlot": [[13, "9:-sPlot"]], "Simple sPlot example": [[13, "Simple-sPlot-example"]], "Observed distributions": [[13, "Observed-distributions"]], "Applying sWeights": [[13, "Applying-sWeights"]], "Compare": [[13, "Compare"]], "More complex case": [[13, "More-complex-case"]], "Splot": [[13, "Splot"]], "Alternative: Known probabilities": [[13, "Alternative:-Known-probabilities"]], "Building sPlot over mass": [[13, "Building-sPlot-over-mass"]], "Of course we don\u2019t have labels which events are signal and which are background beforehand": [[13, "Of-course-we-don't-have-labels-which-events-are-signal-and-which-are-background-beforehand"]], "We have no information about real labels": [[13, "We-have-no-information-about-real-labels"]], "Fitting doesn\u2019t give us information about real labels": [[13, "Fitting-doesn't-give-us-information-about-real-labels"]], "Appying sPlot": [[13, "Appying-sPlot"]], "Using sWeights to reconstruct initial distribution": [[13, "Using-sWeights-to-reconstruct-initial-distribution"]], "An important requirement of sPlot": [[13, "An-important-requirement-of-sPlot"]], "Derivation of sWeights (optional)": [[13, "Derivation-of-sWeights-(optional)"]], "Under assumption of linearity:": [[13, "Under-assumption-of-linearity:"]], "Minimization of variation": [[13, "Minimization-of-variation"]], "Uncorrelatedness": [[13, "Uncorrelatedness"]], "Conclusion": [[13, "Conclusion"]], "10: Scikit-HEP": [[14, "10:-Scikit-HEP"]], "formulate - converting expressions": [[14, "formulate---converting-expressions"]], "Particle": [[14, "Particle"]], "hepunits": [[14, "hepunits"]], "Vector": [[14, "Vector"]], "Vector properties": [[14, "Vector-properties"]], "Advanced Python Tutorial": [[15, "advanced-python-tutorial"]], "Contents:": [[15, null], [30, null], [31, null], [34, null], [49, null], [60, null]], "Automated Version Control": [[16, "automated-version-control"]], "Setting Up Git": [[17, "setting-up-git"]], "Creating a Repository": [[18, "creating-a-repository"]], "Tracking Changes": [[19, "tracking-changes"]], "Exploring History": [[20, "exploring-history"]], "Ignoring Things": [[21, "ignoring-things"]], "Remotes in CERN GitLab": [[22, "remotes-in-cern-gitlab"]], "Sharing a repository with others": [[23, "sharing-a-repository-with-others"]], "Collaborating with Pull Requests": [[24, "collaborating-with-pull-requests"]], "What is a Pull (or Merge) Request": [[24, "what-is-a-pull-or-merge-request"]], "Fork the original project repository": [[24, "fork-the-original-project-repository"]], "Clone a remote project and its fork": [[24, "clone-a-remote-project-and-its-fork"]], "Sync your local repository with remote changes": [[24, "sync-your-local-repository-with-remote-changes"]], "Implement your new feature": [[24, "implement-your-new-feature"]], "Push changes": [[24, "push-changes"]], "Create a Pull (or Merge) Request": [[24, "create-a-pull-or-merge-request"]], "Discussing, amending, retiring a Merge Request": [[24, "discussing-amending-retiring-a-merge-request"]], "Accepting a Pull Request": [[24, "accepting-a-pull-request"]], "The social side of coding": [[24, "the-social-side-of-coding"]], "Automatic testing": [[24, "automatic-testing"]], "Conflicts": [[25, "conflicts"]], "GitLab CI": [[26, "gitlab-ci"]], "Open Science": [[27, "open-science"]], "Licensing": [[28, "licensing"]], "Citation": [[29, "citation"]], "Git": [[30, "git"]], "Analysis essentials Build Status Binder": [[31, "analysis-essentials-build-status-binder"]], "Prerequisites": [[31, "prerequisites"]], "Local": [[31, "local"]], "Binder": [[31, "binder"]], "Usage": [[31, "usage"]], "Scripting": [[32, "scripting"], [47, "scripting"]], "argparse": [[32, "argparse"], [47, "argparse"]], "Basic types and operations": [[33, "Basic-types-and-operations"]], "strong typing": [[33, "strong-typing"]], "Container types": [[33, "Container-types"]], "Mutability": [[33, "Mutability"]], "dynamic typing": [[33, "dynamic-typing"]], "Assignement and variables": [[33, "Assignement-and-variables"]], "Python variable assignement": [[33, "Python-variable-assignement"]], "Sugar: comprehensions": [[33, "Sugar:-comprehensions"]], "Sugar: using Markdown": [[33, "Sugar:-using-Markdown"]], "An introduction to Python": [[34, "an-introduction-to-python"]], "Classes": [[35, "Classes"]], "Welcome to classes": [[35, "Welcome-to-classes"]], "Inheritance: a glance": [[35, "Inheritance:-a-glance"]], "How to fix": [[35, "How-to-fix"]], "Conditions": [[36, "conditions"]], "Truthiness": [[36, "truthiness"]], "Conditions in loops": [[36, "conditions-in-loops"]], "Dictionaries": [[37, "dictionaries"]], "Dictionary keys": [[37, "dictionary-keys"]], "Making your first histogram": [[38, "making-your-first-histogram"]], "Pandas": [[38, "pandas"]], "Plotting histograms": [[38, "plotting-histograms"]], "Applying cuts": [[38, "applying-cuts"]], "More advanced topics in Python": [[39, "more-advanced-topics-in-python"]], "Nice standard libraries": [[39, "nice-standard-libraries"]], "Nice libraries for data analysis": [[39, "nice-libraries-for-data-analysis"]], "Python and ROOT": [[39, "python-and-root"]], "Learning more": [[40, "learning-more"]], "Exploring Python": [[40, "exploring-python"]], "Conventional coding": [[40, "conventional-coding"]], "Lists and looping": [[41, "lists-and-looping"]], "Looping": [[41, "looping"]], "List comprehension": [[41, "list-comprehension"]], "Tuples": [[41, "tuples"]], "Functions": [[42, "functions"]], "Inline methods": [[42, "inline-methods"]], "Modules": [[43, "modules"]], "Using modules into your code: import": [[43, "using-modules-into-your-code-import"]], "The standard library": [[43, "the-standard-library"]], "Modules from PyPi": [[43, "modules-from-pypi"]], "Modules inside a virtual environment": [[43, "modules-inside-a-virtual-environment"]], "Write your first Python module": [[43, "write-your-first-python-module"]], "Write a structured module": [[43, "write-a-structured-module"]], "Run a module": [[43, "run-a-module"]], "Numbers": [[44, "numbers"]], "Objects and operators": [[45, "objects-and-operators"]], "Objects": [[45, "objects"]], "Running Python": [[46, "running-python"]], "Strings": [[48, "strings"]], "Formatting": [[48, "formatting"]], "UNIX shell": [[49, "unix-shell"]], "Persistent screen or tmux session on lxplus": [[50, "persistent-screen-or-tmux-session-on-lxplus"]], "Setting up password-less kerberos token": [[50, "setting-up-password-less-kerberos-token"]], "Making use of the keytab": [[50, "making-use-of-the-keytab"]], "Using k5reauth to automatically refresh your kerberos token": [[50, "using-k5reauth-to-automatically-refresh-your-kerberos-token"]], "Using screen to keep things running": [[51, "using-screen-to-keep-things-running"]], "Advanced screen topics": [[52, "advanced-screen-topics"]], "Finding lost screens": [[52, "finding-lost-screens"]], "Using tabs in screen": [[52, "using-tabs-in-screen"]], "More about the UNIX shell": [[53, "more-about-the-unix-shell"]], "Types of shell": [[53, "types-of-shell"]], "Manual pages": [[53, "manual-pages"]], "Environment variables": [[53, "environment-variables"]], "Variables": [[53, "variables"]], "Differences among files": [[53, "differences-among-files"]], "Looping over files": [[53, "looping-over-files"]], "Conditionals": [[53, "conditionals"]], "Linking commands": [[53, "linking-commands"]], "Pipes and redirection": [[53, "pipes-and-redirection"]], "Bash security": [[53, "bash-security"]], "Complexity": [[53, "complexity"]], "Text viewers": [[53, "text-viewers"]], "Text editors": [[53, "text-editors"]], "Disk space": [[53, "disk-space"]], "Over the Wire and Bandit wargame": [[53, "over-the-wire-and-bandit-wargame"]], "Navigating Files and Directories": [[54, "navigating-files-and-directories"]], "Nelle\u2019s Pipeline: Organizing Files": [[54, "nelle-s-pipeline-organizing-files"]], "Working With Files and Directories": [[55, "working-with-files-and-directories"]], "Pipes and Filters": [[56, "pipes-and-filters"]], "Nelle\u2019s Pipeline: Checking Files": [[56, "nelle-s-pipeline-checking-files"]], "Loops": [[57, "loops"]], "Shell Scripts": [[58, "shell-scripts"]], "Finding Things": [[59, "finding-things"]], "Introducing the Shell": [[60, "introducing-the-shell"]], "Background": [[60, "background"]], "The Command-Line Interface": [[60, "the-command-line-interface"]], "The Shell": [[60, "the-shell"]], "Why bother?": [[60, "why-bother"]], "Nelle\u2019s Pipeline: Starting Point": [[60, "nelle-s-pipeline-starting-point"]], "Analysis automation with Snakemake": [[61, "analysis-automation-with-snakemake"]], "Documentation and environments": [[61, "documentation-and-environments"]], "Workflow preservation": [[61, "workflow-preservation"]], "Basic Tutorial": [[61, "basic-tutorial"]], "What is a workflow?": [[61, "what-is-a-workflow"]], "Why use a workflow management system?": [[61, "why-use-a-workflow-management-system"]], "Introducing Snakemake": [[61, "introducing-snakemake"]], "Re-running rules": [[61, "re-running-rules"]], "Chaining rules": [[61, "chaining-rules"]], "The limits of wildcards": [[61, "the-limits-of-wildcards"]], "Advanced Tutorial": [[61, "advanced-tutorial"]], "Running scripts": [[61, "running-scripts"]], "Log files": [[61, "log-files"]], "Config files": [[61, "config-files"]], "Includes": [[61, "includes"]]}, "indexentries": {}}) \ No newline at end of file diff --git a/shell-extras/persistent-screen.html b/shell-extras/persistent-screen.html index 9dd664a6..4f76cf6b 100644 --- a/shell-extras/persistent-screen.html +++ b/shell-extras/persistent-screen.html @@ -468,23 +468,39 @@

    Persistent screen or tmux session on lxplus

    Setting up password-less kerberos token

    In order for the kerberos token to be refreshed automatically, it must be possible to do so without a password. -Therefore, we create a keytab (similar to a private ssh key) on lxplus using the keytab utility. After starting it by typing ktutil, type the following three lines into the prompt and confirm the first two steps with your password.

    -
    add_entry -password -p USERNAME@CERN.CH -k 1 -e arcfour-hmac-md5
    -add_entry -password -p USERNAME@CERN.CH -k 1 -e aes256-cts
    -wkt USERNAME.keytab
    +Therefore, we create a keytab (similar to a private ssh key) on lxplus using the provided cern-get-keytab utility. Note it will prompt for your password, in order to generate the keytab.

    +
    +
    +

    The old way

    +
    +
    +

    The former recipe was to start ktutil, then type the following three lines into the prompt and confirm the first two steps with your password.

    +
    cern-get-keytab --user USERNAME --keytab USERNAME.keytab
     

    and close the ktutil prompt with Ctrl+D. -This will create a file called USERNAME.keytab in the current directory. It is strongly recommended to store this file in a directory to which only you have access as anyone who obtains a copy of this file can use it to obtain tokens in your name.

    -

    NOTE that the domain name CERN.CH has to be all uppercase, while the USERNAME should match your case-sensitive CERN username.

    +This would create a file called USERNAME.keytab in the current directory. +Since OTG0077802, this recipe no longer works, and you will have to create a new keytab using these updated instructions.

    +
    +
    +

    CERN provides a shortcut command on lxplus9 (it will not work properly on lxplus7, though you can still use the created keytab from lxplus7 or lxplus8), which will prompt you for your password:

    +
    cern-get-keytab --keytab ~/private/$USER.keytab --user --login $USER
    +
    +
    +

    This will create a file called $USER.keytab (where $USER is your username) in the directory ~/private/. By default, on lxplus, only $USER has access to this directory; anyone who can access this file can use it to obtain tokens in your name, so be careful if you decide to move it to a different directory.

    +

    To test if the keytab works:

    +
    kdestroy; kinit -kt ~/private/$USER.keytab $USER; klist
    +
    +
    +

    This should display information about a ticket cache.

    Making use of the keytab

    This keytab file can now be used to obtain kerberos tokens without having to type a password:

    -
    kinit -k -t USERNAME.keytab USERNAME@CERN.CH
    +
    kinit -k -t ~/private/$USER.keytab $USER@CERN.CH
     
    -

    where -k tells kinit to use a keytab file and -t USERNAME.keytab where this keytab actually is.

    +

    where -k tells kinit to use a keytab file and -t ~/private/$USER.keytab where this keytab actually is.

    Using k5reauth to automatically refresh your kerberos token

    @@ -493,10 +509,17 @@

    Using k5reauth to automatically refresh your kerberos tokenscreen or tmux run:

    -
    k5reauth -f -i 3600 -p USERNAME -k /path/to/USERNAME.keytab -- tmux new-session -s NAME
    +
    k5reauth -f -i 3600 -p $USER -k ~/private/$USER.keytab -- tmux new-session -s NAME
    +
    +
    +

    which will create a tmux session whose kerberos token is refreshed automatically every 3600 seconds.

    +

    This is not enough to actually get a persistent session. From inside the tmux session, run:

    +
    kinit $USER@CERN.CH
     
    -

    which will create a tmux session whose kerberos token is refreshed automatically every 3600 seconds. When attaching back to the process, a simple

    +

    Make a note of which lxplus machine you are on. Then, detach the session (^B D by default) and log out. Finally, log back into the same machine, attach the session using tmux a, and run kinit $USER@CERN.CH again. +Now, you should have a persistent tmux session on the machine you logged in to.

    +

    When attaching back to the process in the future, a simple

    tmux attach-session -t NAME
     
    @@ -508,9 +531,9 @@

    Using k5reauth to automatically refresh your kerberos token~/.bashrc (if you use bash):

    +

    Note that you will still have to follow the rest of the recipe (kinit, detach, log out, log in, attach, kinit) manually to get a persistent session.