diff --git a/_images/advanced-python_31ClassificationExtension_14_2.png b/_images/advanced-python_31ClassificationExtension_14_2.png new file mode 100644 index 00000000..b7a0cbc7 Binary files /dev/null and b/_images/advanced-python_31ClassificationExtension_14_2.png differ diff --git a/_images/advanced-python_31ClassificationExtension_14_3.png b/_images/advanced-python_31ClassificationExtension_14_3.png index b7a0cbc7..c18c8a86 100644 Binary files a/_images/advanced-python_31ClassificationExtension_14_3.png and b/_images/advanced-python_31ClassificationExtension_14_3.png differ diff --git a/_images/advanced-python_31ClassificationExtension_14_4.png b/_images/advanced-python_31ClassificationExtension_14_4.png index c18c8a86..45cd08db 100644 Binary files a/_images/advanced-python_31ClassificationExtension_14_4.png and b/_images/advanced-python_31ClassificationExtension_14_4.png differ diff --git a/_images/advanced-python_31ClassificationExtension_14_5.png b/_images/advanced-python_31ClassificationExtension_14_5.png index 45cd08db..56d5265e 100644 Binary files a/_images/advanced-python_31ClassificationExtension_14_5.png and b/_images/advanced-python_31ClassificationExtension_14_5.png differ diff --git a/_images/advanced-python_31ClassificationExtension_14_6.png b/_images/advanced-python_31ClassificationExtension_14_6.png index 56d5265e..69c21f84 100644 Binary files a/_images/advanced-python_31ClassificationExtension_14_6.png and b/_images/advanced-python_31ClassificationExtension_14_6.png differ diff --git a/_images/advanced-python_31ClassificationExtension_14_7.png b/_images/advanced-python_31ClassificationExtension_14_7.png deleted file mode 100644 index 69c21f84..00000000 Binary files a/_images/advanced-python_31ClassificationExtension_14_7.png and /dev/null differ diff --git a/_images/advanced-python_33ModelTuning_14_2.png b/_images/advanced-python_33ModelTuning_14_2.png index c1f0467a..bb70cc33 100644 Binary files a/_images/advanced-python_33ModelTuning_14_2.png and b/_images/advanced-python_33ModelTuning_14_2.png differ diff --git a/_images/advanced-python_33ModelTuning_14_3.png b/_images/advanced-python_33ModelTuning_14_3.png index 2dc4b826..2d9d7056 100644 Binary files a/_images/advanced-python_33ModelTuning_14_3.png and b/_images/advanced-python_33ModelTuning_14_3.png differ diff --git a/_images/advanced-python_33ModelTuning_15_2.png b/_images/advanced-python_33ModelTuning_15_2.png index 4e657496..486bdcf7 100644 Binary files a/_images/advanced-python_33ModelTuning_15_2.png and b/_images/advanced-python_33ModelTuning_15_2.png differ diff --git a/_images/advanced-python_33ModelTuning_15_3.png b/_images/advanced-python_33ModelTuning_15_3.png index 2df5eaf0..597221a7 100644 Binary files a/_images/advanced-python_33ModelTuning_15_3.png and b/_images/advanced-python_33ModelTuning_15_3.png differ diff --git a/_images/advanced-python_33ModelTuning_15_4.png b/_images/advanced-python_33ModelTuning_15_4.png index cddf5b35..4e650b09 100644 Binary files a/_images/advanced-python_33ModelTuning_15_4.png and b/_images/advanced-python_33ModelTuning_15_4.png differ diff --git a/_images/advanced-python_33ModelTuning_23_2.png b/_images/advanced-python_33ModelTuning_23_2.png index d31dc2f4..226f7dc1 100644 Binary files a/_images/advanced-python_33ModelTuning_23_2.png and b/_images/advanced-python_33ModelTuning_23_2.png differ diff --git a/_images/advanced-python_33ModelTuning_23_3.png b/_images/advanced-python_33ModelTuning_23_3.png index c88fe848..c3961705 100644 Binary files a/_images/advanced-python_33ModelTuning_23_3.png and b/_images/advanced-python_33ModelTuning_23_3.png differ diff --git a/_images/advanced-python_33ModelTuning_23_4.png b/_images/advanced-python_33ModelTuning_23_4.png index b6bb2cbc..0345124c 100644 Binary files a/_images/advanced-python_33ModelTuning_23_4.png and b/_images/advanced-python_33ModelTuning_23_4.png differ diff --git a/_images/advanced-python_33ModelTuning_29_1.png b/_images/advanced-python_33ModelTuning_29_1.png index f6228d62..a9a7688f 100644 Binary files a/_images/advanced-python_33ModelTuning_29_1.png and b/_images/advanced-python_33ModelTuning_29_1.png differ diff --git a/_images/advanced-python_33ModelTuning_30_5.png b/_images/advanced-python_33ModelTuning_30_5.png index 5c3f91ed..bd821fe1 100644 Binary files a/_images/advanced-python_33ModelTuning_30_5.png and b/_images/advanced-python_33ModelTuning_30_5.png differ diff --git a/_images/advanced-python_45DemoReweighting_11_5.png b/_images/advanced-python_45DemoReweighting_11_5.png index fdba9809..f415c57e 100644 Binary files a/_images/advanced-python_45DemoReweighting_11_5.png and b/_images/advanced-python_45DemoReweighting_11_5.png differ diff --git a/_images/advanced-python_45DemoReweighting_13_3.png b/_images/advanced-python_45DemoReweighting_13_3.png index 4cb7b03d..e65c2780 100644 Binary files a/_images/advanced-python_45DemoReweighting_13_3.png and b/_images/advanced-python_45DemoReweighting_13_3.png differ diff --git a/_images/advanced-python_45DemoReweighting_15_3.png b/_images/advanced-python_45DemoReweighting_15_3.png index 9e913cf7..e4c6d917 100644 Binary files a/_images/advanced-python_45DemoReweighting_15_3.png and b/_images/advanced-python_45DemoReweighting_15_3.png differ diff --git a/_images/advanced-python_45DemoReweighting_17_3.png b/_images/advanced-python_45DemoReweighting_17_3.png index 7e485d85..d99e5c06 100644 Binary files a/_images/advanced-python_45DemoReweighting_17_3.png and b/_images/advanced-python_45DemoReweighting_17_3.png differ diff --git a/_images/advanced-python_45DemoReweighting_28_1.png b/_images/advanced-python_45DemoReweighting_28_1.png index b49427b0..8a76423d 100644 Binary files a/_images/advanced-python_45DemoReweighting_28_1.png and b/_images/advanced-python_45DemoReweighting_28_1.png differ diff --git a/_images/advanced-python_45DemoReweighting_32_6.png b/_images/advanced-python_45DemoReweighting_32_6.png index 44b21560..cfdf4c94 100644 Binary files a/_images/advanced-python_45DemoReweighting_32_6.png and b/_images/advanced-python_45DemoReweighting_32_6.png differ diff --git a/_images/advanced-python_45DemoReweighting_35_1.png b/_images/advanced-python_45DemoReweighting_35_1.png index 7b60fa9e..9bf57eae 100644 Binary files a/_images/advanced-python_45DemoReweighting_35_1.png and b/_images/advanced-python_45DemoReweighting_35_1.png differ diff --git a/_images/advanced-python_50LikelihoodInference_16_1.png b/_images/advanced-python_50LikelihoodInference_16_1.png index b63a5724..115791f6 100644 Binary files a/_images/advanced-python_50LikelihoodInference_16_1.png and b/_images/advanced-python_50LikelihoodInference_16_1.png differ diff --git a/_images/advanced-python_50LikelihoodInference_28_1.png b/_images/advanced-python_50LikelihoodInference_28_1.png index ddb7f19f..e280c273 100644 Binary files a/_images/advanced-python_50LikelihoodInference_28_1.png and b/_images/advanced-python_50LikelihoodInference_28_1.png differ diff --git a/_images/advanced-python_60sPlot_10_0.png b/_images/advanced-python_60sPlot_10_0.png index 097ad758..d16040f6 100644 Binary files a/_images/advanced-python_60sPlot_10_0.png and b/_images/advanced-python_60sPlot_10_0.png differ diff --git a/_images/advanced-python_60sPlot_12_0.png b/_images/advanced-python_60sPlot_12_0.png index 224bf7fb..3c0590dd 100644 Binary files a/_images/advanced-python_60sPlot_12_0.png and b/_images/advanced-python_60sPlot_12_0.png differ diff --git a/_images/advanced-python_60sPlot_19_0.png b/_images/advanced-python_60sPlot_19_0.png index 32dab2c7..33cd2bcc 100644 Binary files a/_images/advanced-python_60sPlot_19_0.png and b/_images/advanced-python_60sPlot_19_0.png differ diff --git a/_images/advanced-python_60sPlot_23_1.png b/_images/advanced-python_60sPlot_23_1.png index 5abd0136..e052cda0 100644 Binary files a/_images/advanced-python_60sPlot_23_1.png and b/_images/advanced-python_60sPlot_23_1.png differ diff --git a/_images/advanced-python_60sPlot_28_0.png b/_images/advanced-python_60sPlot_28_0.png index b676b7bc..7840df56 100644 Binary files a/_images/advanced-python_60sPlot_28_0.png and b/_images/advanced-python_60sPlot_28_0.png differ diff --git a/_images/advanced-python_60sPlot_32_0.png b/_images/advanced-python_60sPlot_32_0.png index 3680c216..30112faf 100644 Binary files a/_images/advanced-python_60sPlot_32_0.png and b/_images/advanced-python_60sPlot_32_0.png differ diff --git a/_images/advanced-python_60sPlot_35_0.png b/_images/advanced-python_60sPlot_35_0.png index 0dc6bc57..4bf0f04a 100644 Binary files a/_images/advanced-python_60sPlot_35_0.png and b/_images/advanced-python_60sPlot_35_0.png differ diff --git a/_images/advanced-python_60sPlot_37_1.png b/_images/advanced-python_60sPlot_37_1.png index 2f3d4431..92ac50a1 100644 Binary files a/_images/advanced-python_60sPlot_37_1.png and b/_images/advanced-python_60sPlot_37_1.png differ diff --git a/_images/advanced-python_60sPlot_39_1.png b/_images/advanced-python_60sPlot_39_1.png index 16faac5b..e4001452 100644 Binary files a/_images/advanced-python_60sPlot_39_1.png and b/_images/advanced-python_60sPlot_39_1.png differ diff --git a/_images/advanced-python_60sPlot_42_1.png b/_images/advanced-python_60sPlot_42_1.png index 6b99ac2d..2dcbb749 100644 Binary files a/_images/advanced-python_60sPlot_42_1.png and b/_images/advanced-python_60sPlot_42_1.png differ diff --git a/_images/advanced-python_60sPlot_46_0.png b/_images/advanced-python_60sPlot_46_0.png index 6bad1e7e..7b6d0b2b 100644 Binary files a/_images/advanced-python_60sPlot_46_0.png and b/_images/advanced-python_60sPlot_46_0.png differ diff --git a/_images/advanced-python_60sPlot_48_0.png b/_images/advanced-python_60sPlot_48_0.png index 7a5bceb7..2c8be189 100644 Binary files a/_images/advanced-python_60sPlot_48_0.png and b/_images/advanced-python_60sPlot_48_0.png differ diff --git a/_images/advanced-python_60sPlot_4_1.png b/_images/advanced-python_60sPlot_4_1.png index 782a927d..df020c02 100644 Binary files a/_images/advanced-python_60sPlot_4_1.png and b/_images/advanced-python_60sPlot_4_1.png differ diff --git a/_images/advanced-python_60sPlot_54_0.png b/_images/advanced-python_60sPlot_54_0.png index 65663e80..e82caf60 100644 Binary files a/_images/advanced-python_60sPlot_54_0.png and b/_images/advanced-python_60sPlot_54_0.png differ diff --git a/_images/advanced-python_60sPlot_7_0.png b/_images/advanced-python_60sPlot_7_0.png index d3ad2ed7..f51effb4 100644 Binary files a/_images/advanced-python_60sPlot_7_0.png and b/_images/advanced-python_60sPlot_7_0.png differ diff --git a/advanced-python/10Basics.html b/advanced-python/10Basics.html index 62d96b6a..9e5bd72f 100644 --- a/advanced-python/10Basics.html +++ b/advanced-python/10Basics.html @@ -744,7 +744,7 @@

Jupyter
-CPU times: user 1.31 ms, sys: 0 ns, total: 1.31 ms
-Wall time: 1.32 ms
+CPU times: user 1.35 ms, sys: 0 ns, total: 1.35 ms
+Wall time: 1.35 ms
 

If something takes longer than you expect, you can profile it to find out where it spends it’s time:

diff --git a/advanced-python/10Basics.ipynb b/advanced-python/10Basics.ipynb index 682f6f2e..b2b7e898 100644 --- a/advanced-python/10Basics.ipynb +++ b/advanced-python/10Basics.ipynb @@ -54,10 +54,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.098722Z", - "iopub.status.busy": "2024-01-10T14:36:32.098565Z", - "iopub.status.idle": "2024-01-10T14:36:32.104186Z", - "shell.execute_reply": "2024-01-10T14:36:32.103660Z" + "iopub.execute_input": "2024-02-06T00:26:51.143586Z", + "iopub.status.busy": "2024-02-06T00:26:51.143430Z", + "iopub.status.idle": "2024-02-06T00:26:51.149515Z", + "shell.execute_reply": "2024-02-06T00:26:51.149027Z" } }, "outputs": [ @@ -84,10 +84,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.130917Z", - "iopub.status.busy": "2024-01-10T14:36:32.130721Z", - "iopub.status.idle": "2024-01-10T14:36:32.133885Z", - "shell.execute_reply": "2024-01-10T14:36:32.133478Z" + "iopub.execute_input": "2024-02-06T00:26:51.176583Z", + "iopub.status.busy": "2024-02-06T00:26:51.176259Z", + "iopub.status.idle": "2024-02-06T00:26:51.179348Z", + "shell.execute_reply": "2024-02-06T00:26:51.178897Z" } }, "outputs": [ @@ -114,10 +114,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.135529Z", - "iopub.status.busy": "2024-01-10T14:36:32.135392Z", - "iopub.status.idle": "2024-01-10T14:36:32.138304Z", - "shell.execute_reply": "2024-01-10T14:36:32.137901Z" + "iopub.execute_input": "2024-02-06T00:26:51.181221Z", + "iopub.status.busy": "2024-02-06T00:26:51.180942Z", + "iopub.status.idle": "2024-02-06T00:26:51.183895Z", + "shell.execute_reply": "2024-02-06T00:26:51.183492Z" } }, "outputs": [ @@ -152,10 +152,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.140077Z", - "iopub.status.busy": "2024-01-10T14:36:32.139784Z", - "iopub.status.idle": "2024-01-10T14:36:32.142754Z", - "shell.execute_reply": "2024-01-10T14:36:32.142306Z" + "iopub.execute_input": "2024-02-06T00:26:51.185555Z", + "iopub.status.busy": "2024-02-06T00:26:51.185392Z", + "iopub.status.idle": "2024-02-06T00:26:51.188411Z", + "shell.execute_reply": "2024-02-06T00:26:51.188015Z" } }, "outputs": [ @@ -188,10 +188,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.144542Z", - "iopub.status.busy": "2024-01-10T14:36:32.144237Z", - "iopub.status.idle": "2024-01-10T14:36:32.146842Z", - "shell.execute_reply": "2024-01-10T14:36:32.146389Z" + "iopub.execute_input": "2024-02-06T00:26:51.190034Z", + "iopub.status.busy": "2024-02-06T00:26:51.189880Z", + "iopub.status.idle": "2024-02-06T00:26:51.192516Z", + "shell.execute_reply": "2024-02-06T00:26:51.192056Z" } }, "outputs": [ @@ -213,10 +213,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.148632Z", - "iopub.status.busy": "2024-01-10T14:36:32.148334Z", - "iopub.status.idle": "2024-01-10T14:36:32.151067Z", - "shell.execute_reply": "2024-01-10T14:36:32.150602Z" + "iopub.execute_input": "2024-02-06T00:26:51.194112Z", + "iopub.status.busy": "2024-02-06T00:26:51.193960Z", + "iopub.status.idle": "2024-02-06T00:26:51.196685Z", + "shell.execute_reply": "2024-02-06T00:26:51.196297Z" } }, "outputs": [ @@ -297,10 +297,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.152912Z", - "iopub.status.busy": "2024-01-10T14:36:32.152623Z", - "iopub.status.idle": "2024-01-10T14:36:32.155459Z", - "shell.execute_reply": "2024-01-10T14:36:32.155010Z" + "iopub.execute_input": "2024-02-06T00:26:51.198544Z", + "iopub.status.busy": "2024-02-06T00:26:51.198221Z", + "iopub.status.idle": "2024-02-06T00:26:51.200882Z", + "shell.execute_reply": "2024-02-06T00:26:51.200435Z" } }, "outputs": [ @@ -342,10 +342,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.157137Z", - "iopub.status.busy": "2024-01-10T14:36:32.156995Z", - "iopub.status.idle": "2024-01-10T14:36:32.161716Z", - "shell.execute_reply": "2024-01-10T14:36:32.161324Z" + "iopub.execute_input": "2024-02-06T00:26:51.202747Z", + "iopub.status.busy": "2024-02-06T00:26:51.202321Z", + "iopub.status.idle": "2024-02-06T00:26:51.207152Z", + "shell.execute_reply": "2024-02-06T00:26:51.206681Z" } }, "outputs": [ @@ -369,10 +369,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.163270Z", - "iopub.status.busy": "2024-01-10T14:36:32.163131Z", - "iopub.status.idle": "2024-01-10T14:36:32.165236Z", - "shell.execute_reply": "2024-01-10T14:36:32.164865Z" + "iopub.execute_input": "2024-02-06T00:26:51.208891Z", + "iopub.status.busy": "2024-02-06T00:26:51.208634Z", + "iopub.status.idle": "2024-02-06T00:26:51.210925Z", + "shell.execute_reply": "2024-02-06T00:26:51.210435Z" } }, "outputs": [], @@ -392,10 +392,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.167057Z", - "iopub.status.busy": "2024-01-10T14:36:32.166651Z", - "iopub.status.idle": "2024-01-10T14:36:32.291030Z", - "shell.execute_reply": "2024-01-10T14:36:32.290480Z" + "iopub.execute_input": "2024-02-06T00:26:51.212703Z", + "iopub.status.busy": "2024-02-06T00:26:51.212408Z", + "iopub.status.idle": "2024-02-06T00:26:51.340577Z", + "shell.execute_reply": "2024-02-06T00:26:51.339982Z" } }, "outputs": [ @@ -422,10 +422,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.293120Z", - "iopub.status.busy": "2024-01-10T14:36:32.292776Z", - "iopub.status.idle": "2024-01-10T14:36:32.437619Z", - "shell.execute_reply": "2024-01-10T14:36:32.437145Z" + "iopub.execute_input": "2024-02-06T00:26:51.343073Z", + "iopub.status.busy": "2024-02-06T00:26:51.342620Z", + "iopub.status.idle": "2024-02-06T00:26:51.507730Z", + "shell.execute_reply": "2024-02-06T00:26:51.507202Z" } }, "outputs": [ @@ -433,7 +433,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-01-10 14:36:32-- https://example.com/index.html\r\n", + "--2024-02-06 00:26:51-- https://example.com/index.html\r\n", "Resolving example.com (example.com)... 93.184.216.34, 2606:2800:220:1:248:1893:25c8:1946\r\n", "Connecting to example.com (example.com)|93.184.216.34|:443... connected.\r\n", "HTTP request sent, awaiting response... 200 OK\r\n", @@ -444,7 +444,7 @@ "index.html 0%[ ] 0 --.-KB/s \r", "index.html 100%[===================>] 1.23K --.-KB/s in 0s \r\n", "\r\n", - "2024-01-10 14:36:32 (76.9 MB/s) - ‘index.html’ saved [1256/1256]\r\n", + "2024-02-06 00:26:51 (82.9 MB/s) - ‘index.html’ saved [1256/1256]\r\n", "\r\n" ] } @@ -465,10 +465,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.439752Z", - "iopub.status.busy": "2024-01-10T14:36:32.439382Z", - "iopub.status.idle": "2024-01-10T14:36:32.444668Z", - "shell.execute_reply": "2024-01-10T14:36:32.444183Z" + "iopub.execute_input": "2024-02-06T00:26:51.510265Z", + "iopub.status.busy": "2024-02-06T00:26:51.509916Z", + "iopub.status.idle": "2024-02-06T00:26:51.515266Z", + "shell.execute_reply": "2024-02-06T00:26:51.514763Z" } }, "outputs": [ @@ -476,8 +476,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 494 µs, sys: 130 µs, total: 624 µs\n", - "Wall time: 628 µs\n" + "CPU times: user 482 µs, sys: 112 µs, total: 594 µs\n", + "Wall time: 598 µs\n" ] }, { @@ -507,10 +507,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.446278Z", - "iopub.status.busy": "2024-01-10T14:36:32.446130Z", - "iopub.status.idle": "2024-01-10T14:36:32.450984Z", - "shell.execute_reply": "2024-01-10T14:36:32.450589Z" + "iopub.execute_input": "2024-02-06T00:26:51.516928Z", + "iopub.status.busy": "2024-02-06T00:26:51.516791Z", + "iopub.status.idle": "2024-02-06T00:26:51.521592Z", + "shell.execute_reply": "2024-02-06T00:26:51.521200Z" } }, "outputs": [ @@ -518,8 +518,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1.31 ms, sys: 0 ns, total: 1.31 ms\n", - "Wall time: 1.32 ms\n" + "CPU times: user 1.35 ms, sys: 0 ns, total: 1.35 ms\n", + "Wall time: 1.35 ms\n" ] } ], @@ -562,10 +562,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.452772Z", - "iopub.status.busy": "2024-01-10T14:36:32.452606Z", - "iopub.status.idle": "2024-01-10T14:36:32.455008Z", - "shell.execute_reply": "2024-01-10T14:36:32.454607Z" + "iopub.execute_input": "2024-02-06T00:26:51.523419Z", + "iopub.status.busy": "2024-02-06T00:26:51.523122Z", + "iopub.status.idle": "2024-02-06T00:26:51.525482Z", + "shell.execute_reply": "2024-02-06T00:26:51.525025Z" } }, "outputs": [], @@ -579,10 +579,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.456637Z", - "iopub.status.busy": "2024-01-10T14:36:32.456484Z", - "iopub.status.idle": "2024-01-10T14:36:32.482453Z", - "shell.execute_reply": "2024-01-10T14:36:32.482095Z" + "iopub.execute_input": "2024-02-06T00:26:51.527128Z", + "iopub.status.busy": "2024-02-06T00:26:51.526968Z", + "iopub.status.idle": "2024-02-06T00:26:51.553013Z", + "shell.execute_reply": "2024-02-06T00:26:51.552545Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.484209Z", - "iopub.status.busy": "2024-01-10T14:36:32.483903Z", - "iopub.status.idle": "2024-01-10T14:36:32.487410Z", - "shell.execute_reply": "2024-01-10T14:36:32.487017Z" + "iopub.execute_input": "2024-02-06T00:26:51.554947Z", + "iopub.status.busy": "2024-02-06T00:26:51.554669Z", + "iopub.status.idle": "2024-02-06T00:26:51.558397Z", + "shell.execute_reply": "2024-02-06T00:26:51.557931Z" } }, "outputs": [], @@ -618,10 +618,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.489079Z", - "iopub.status.busy": "2024-01-10T14:36:32.488923Z", - "iopub.status.idle": "2024-01-10T14:36:32.492466Z", - "shell.execute_reply": "2024-01-10T14:36:32.492081Z" + "iopub.execute_input": "2024-02-06T00:26:51.560053Z", + "iopub.status.busy": "2024-02-06T00:26:51.559898Z", + "iopub.status.idle": "2024-02-06T00:26:51.563698Z", + "shell.execute_reply": "2024-02-06T00:26:51.563185Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.494197Z", - "iopub.status.busy": "2024-01-10T14:36:32.493897Z", - "iopub.status.idle": "2024-01-10T14:36:32.496781Z", - "shell.execute_reply": "2024-01-10T14:36:32.496308Z" + "iopub.execute_input": "2024-02-06T00:26:51.565319Z", + "iopub.status.busy": "2024-02-06T00:26:51.565164Z", + "iopub.status.idle": "2024-02-06T00:26:51.567928Z", + "shell.execute_reply": "2024-02-06T00:26:51.567482Z" } }, "outputs": [ @@ -665,10 +665,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.498430Z", - "iopub.status.busy": "2024-01-10T14:36:32.498282Z", - "iopub.status.idle": "2024-01-10T14:36:32.501574Z", - "shell.execute_reply": "2024-01-10T14:36:32.501192Z" + "iopub.execute_input": "2024-02-06T00:26:51.569608Z", + "iopub.status.busy": "2024-02-06T00:26:51.569454Z", + "iopub.status.idle": "2024-02-06T00:26:51.572826Z", + "shell.execute_reply": "2024-02-06T00:26:51.572442Z" } }, "outputs": [ @@ -692,10 +692,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.503130Z", - "iopub.status.busy": "2024-01-10T14:36:32.502984Z", - "iopub.status.idle": "2024-01-10T14:36:32.506212Z", - "shell.execute_reply": "2024-01-10T14:36:32.505813Z" + "iopub.execute_input": "2024-02-06T00:26:51.574582Z", + "iopub.status.busy": "2024-02-06T00:26:51.574254Z", + "iopub.status.idle": "2024-02-06T00:26:51.577541Z", + "shell.execute_reply": "2024-02-06T00:26:51.577038Z" } }, "outputs": [], @@ -725,10 +725,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.507891Z", - "iopub.status.busy": "2024-01-10T14:36:32.507721Z", - "iopub.status.idle": "2024-01-10T14:36:32.510853Z", - "shell.execute_reply": "2024-01-10T14:36:32.510467Z" + "iopub.execute_input": "2024-02-06T00:26:51.579405Z", + "iopub.status.busy": "2024-02-06T00:26:51.579046Z", + "iopub.status.idle": "2024-02-06T00:26:51.582165Z", + "shell.execute_reply": "2024-02-06T00:26:51.581788Z" } }, "outputs": [ @@ -752,10 +752,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.512803Z", - "iopub.status.busy": "2024-01-10T14:36:32.512370Z", - "iopub.status.idle": "2024-01-10T14:36:32.744664Z", - "shell.execute_reply": "2024-01-10T14:36:32.744143Z" + "iopub.execute_input": "2024-02-06T00:26:51.584073Z", + "iopub.status.busy": "2024-02-06T00:26:51.583704Z", + "iopub.status.idle": "2024-02-06T00:26:51.821919Z", + "shell.execute_reply": "2024-02-06T00:26:51.821481Z" }, "tags": [ "raises-exception" @@ -794,10 +794,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.746738Z", - "iopub.status.busy": "2024-01-10T14:36:32.746381Z", - "iopub.status.idle": "2024-01-10T14:36:32.749900Z", - "shell.execute_reply": "2024-01-10T14:36:32.749429Z" + "iopub.execute_input": "2024-02-06T00:26:51.823831Z", + "iopub.status.busy": "2024-02-06T00:26:51.823665Z", + "iopub.status.idle": "2024-02-06T00:26:51.827201Z", + "shell.execute_reply": "2024-02-06T00:26:51.826812Z" } }, "outputs": [ @@ -843,10 +843,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:32.751720Z", - "iopub.status.busy": "2024-01-10T14:36:32.751426Z", - "iopub.status.idle": "2024-01-10T14:36:32.769232Z", - "shell.execute_reply": "2024-01-10T14:36:32.768821Z" + "iopub.execute_input": "2024-02-06T00:26:51.828789Z", + "iopub.status.busy": "2024-02-06T00:26:51.828634Z", + "iopub.status.idle": "2024-02-06T00:26:51.846729Z", + "shell.execute_reply": "2024-02-06T00:26:51.846282Z" }, "tags": [ "raises-exception" diff --git a/advanced-python/11AdvancedPython.ipynb b/advanced-python/11AdvancedPython.ipynb index 02100212..9fea085d 100644 --- a/advanced-python/11AdvancedPython.ipynb +++ b/advanced-python/11AdvancedPython.ipynb @@ -19,10 +19,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.684429Z", - "iopub.status.busy": "2024-01-10T14:36:34.684040Z", - "iopub.status.idle": "2024-01-10T14:36:34.688908Z", - "shell.execute_reply": "2024-01-10T14:36:34.688490Z" + "iopub.execute_input": "2024-02-06T00:26:53.773089Z", + "iopub.status.busy": "2024-02-06T00:26:53.772921Z", + "iopub.status.idle": "2024-02-06T00:26:53.777510Z", + "shell.execute_reply": "2024-02-06T00:26:53.777043Z" } }, "outputs": [], @@ -46,10 +46,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.690913Z", - "iopub.status.busy": "2024-01-10T14:36:34.690522Z", - "iopub.status.idle": "2024-01-10T14:36:34.693070Z", - "shell.execute_reply": "2024-01-10T14:36:34.692607Z" + "iopub.execute_input": "2024-02-06T00:26:53.779408Z", + "iopub.status.busy": "2024-02-06T00:26:53.779038Z", + "iopub.status.idle": "2024-02-06T00:26:53.781555Z", + "shell.execute_reply": "2024-02-06T00:26:53.781096Z" } }, "outputs": [], @@ -62,10 +62,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.694918Z", - "iopub.status.busy": "2024-01-10T14:36:34.694530Z", - "iopub.status.idle": "2024-01-10T14:36:34.699280Z", - "shell.execute_reply": "2024-01-10T14:36:34.698820Z" + "iopub.execute_input": "2024-02-06T00:26:53.783243Z", + "iopub.status.busy": "2024-02-06T00:26:53.783098Z", + "iopub.status.idle": "2024-02-06T00:26:53.787776Z", + "shell.execute_reply": "2024-02-06T00:26:53.787323Z" } }, "outputs": [ @@ -96,10 +96,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.701164Z", - "iopub.status.busy": "2024-01-10T14:36:34.700794Z", - "iopub.status.idle": "2024-01-10T14:36:34.703285Z", - "shell.execute_reply": "2024-01-10T14:36:34.702817Z" + "iopub.execute_input": "2024-02-06T00:26:53.789741Z", + "iopub.status.busy": "2024-02-06T00:26:53.789352Z", + "iopub.status.idle": "2024-02-06T00:26:53.791746Z", + "shell.execute_reply": "2024-02-06T00:26:53.791384Z" } }, "outputs": [], @@ -112,10 +112,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.704942Z", - "iopub.status.busy": "2024-01-10T14:36:34.704695Z", - "iopub.status.idle": "2024-01-10T14:36:34.707788Z", - "shell.execute_reply": "2024-01-10T14:36:34.707314Z" + "iopub.execute_input": "2024-02-06T00:26:53.793605Z", + "iopub.status.busy": "2024-02-06T00:26:53.793254Z", + "iopub.status.idle": "2024-02-06T00:26:53.796175Z", + "shell.execute_reply": "2024-02-06T00:26:53.795772Z" } }, "outputs": [ @@ -146,10 +146,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.709701Z", - "iopub.status.busy": "2024-01-10T14:36:34.709299Z", - "iopub.status.idle": "2024-01-10T14:36:34.711916Z", - "shell.execute_reply": "2024-01-10T14:36:34.711500Z" + "iopub.execute_input": "2024-02-06T00:26:53.798009Z", + "iopub.status.busy": "2024-02-06T00:26:53.797641Z", + "iopub.status.idle": "2024-02-06T00:26:53.799913Z", + "shell.execute_reply": "2024-02-06T00:26:53.799547Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.713567Z", - "iopub.status.busy": "2024-01-10T14:36:34.713412Z", - "iopub.status.idle": "2024-01-10T14:36:34.715622Z", - "shell.execute_reply": "2024-01-10T14:36:34.715256Z" + "iopub.execute_input": "2024-02-06T00:26:53.801523Z", + "iopub.status.busy": "2024-02-06T00:26:53.801368Z", + "iopub.status.idle": "2024-02-06T00:26:53.803581Z", + "shell.execute_reply": "2024-02-06T00:26:53.803223Z" } }, "outputs": [], @@ -192,10 +192,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.717420Z", - "iopub.status.busy": "2024-01-10T14:36:34.717127Z", - "iopub.status.idle": "2024-01-10T14:36:34.719713Z", - "shell.execute_reply": "2024-01-10T14:36:34.719240Z" + "iopub.execute_input": "2024-02-06T00:26:53.805284Z", + "iopub.status.busy": "2024-02-06T00:26:53.805124Z", + "iopub.status.idle": "2024-02-06T00:26:53.807648Z", + "shell.execute_reply": "2024-02-06T00:26:53.807265Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.721498Z", - "iopub.status.busy": "2024-01-10T14:36:34.721146Z", - "iopub.status.idle": "2024-01-10T14:36:34.724127Z", - "shell.execute_reply": "2024-01-10T14:36:34.723646Z" + "iopub.execute_input": "2024-02-06T00:26:53.809275Z", + "iopub.status.busy": "2024-02-06T00:26:53.809122Z", + "iopub.status.idle": "2024-02-06T00:26:53.811635Z", + "shell.execute_reply": "2024-02-06T00:26:53.811266Z" } }, "outputs": [ @@ -237,10 +237,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.725966Z", - "iopub.status.busy": "2024-01-10T14:36:34.725675Z", - "iopub.status.idle": "2024-01-10T14:36:34.728320Z", - "shell.execute_reply": "2024-01-10T14:36:34.727838Z" + "iopub.execute_input": "2024-02-06T00:26:53.813221Z", + "iopub.status.busy": "2024-02-06T00:26:53.813067Z", + "iopub.status.idle": "2024-02-06T00:26:53.815703Z", + "shell.execute_reply": "2024-02-06T00:26:53.815231Z" } }, "outputs": [ @@ -262,10 +262,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.730110Z", - "iopub.status.busy": "2024-01-10T14:36:34.729813Z", - "iopub.status.idle": "2024-01-10T14:36:34.731889Z", - "shell.execute_reply": "2024-01-10T14:36:34.731491Z" + "iopub.execute_input": "2024-02-06T00:26:53.817407Z", + "iopub.status.busy": "2024-02-06T00:26:53.817252Z", + "iopub.status.idle": "2024-02-06T00:26:53.819452Z", + "shell.execute_reply": "2024-02-06T00:26:53.818982Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.733691Z", - "iopub.status.busy": "2024-01-10T14:36:34.733342Z", - "iopub.status.idle": "2024-01-10T14:36:34.736005Z", - "shell.execute_reply": "2024-01-10T14:36:34.735526Z" + "iopub.execute_input": "2024-02-06T00:26:53.821232Z", + "iopub.status.busy": "2024-02-06T00:26:53.821008Z", + "iopub.status.idle": "2024-02-06T00:26:53.823490Z", + "shell.execute_reply": "2024-02-06T00:26:53.823134Z" } }, "outputs": [], @@ -335,10 +335,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.737940Z", - "iopub.status.busy": "2024-01-10T14:36:34.737539Z", - "iopub.status.idle": "2024-01-10T14:36:34.740453Z", - "shell.execute_reply": "2024-01-10T14:36:34.739976Z" + "iopub.execute_input": "2024-02-06T00:26:53.825144Z", + "iopub.status.busy": "2024-02-06T00:26:53.824990Z", + "iopub.status.idle": "2024-02-06T00:26:53.827607Z", + "shell.execute_reply": "2024-02-06T00:26:53.827162Z" } }, "outputs": [ @@ -373,10 +373,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.742170Z", - "iopub.status.busy": "2024-01-10T14:36:34.741918Z", - "iopub.status.idle": "2024-01-10T14:36:34.744522Z", - "shell.execute_reply": "2024-01-10T14:36:34.744072Z" + "iopub.execute_input": "2024-02-06T00:26:53.829214Z", + "iopub.status.busy": "2024-02-06T00:26:53.829063Z", + "iopub.status.idle": "2024-02-06T00:26:53.831653Z", + "shell.execute_reply": "2024-02-06T00:26:53.831257Z" } }, "outputs": [], @@ -397,10 +397,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.746494Z", - "iopub.status.busy": "2024-01-10T14:36:34.746129Z", - "iopub.status.idle": "2024-01-10T14:36:34.748772Z", - "shell.execute_reply": "2024-01-10T14:36:34.748293Z" + "iopub.execute_input": "2024-02-06T00:26:53.833340Z", + "iopub.status.busy": "2024-02-06T00:26:53.833186Z", + "iopub.status.idle": "2024-02-06T00:26:53.835774Z", + "shell.execute_reply": "2024-02-06T00:26:53.835394Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.750734Z", - "iopub.status.busy": "2024-01-10T14:36:34.750349Z", - "iopub.status.idle": "2024-01-10T14:36:34.752901Z", - "shell.execute_reply": "2024-01-10T14:36:34.752515Z" + "iopub.execute_input": "2024-02-06T00:26:53.837504Z", + "iopub.status.busy": "2024-02-06T00:26:53.837163Z", + "iopub.status.idle": "2024-02-06T00:26:53.839553Z", + "shell.execute_reply": "2024-02-06T00:26:53.839070Z" } }, "outputs": [], @@ -456,10 +456,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.754734Z", - "iopub.status.busy": "2024-01-10T14:36:34.754363Z", - "iopub.status.idle": "2024-01-10T14:36:34.757353Z", - "shell.execute_reply": "2024-01-10T14:36:34.756957Z" + "iopub.execute_input": "2024-02-06T00:26:53.841368Z", + "iopub.status.busy": "2024-02-06T00:26:53.841013Z", + "iopub.status.idle": "2024-02-06T00:26:53.843967Z", + "shell.execute_reply": "2024-02-06T00:26:53.843511Z" } }, "outputs": [ @@ -489,10 +489,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.759162Z", - "iopub.status.busy": "2024-01-10T14:36:34.758870Z", - "iopub.status.idle": "2024-01-10T14:36:34.761343Z", - "shell.execute_reply": "2024-01-10T14:36:34.760973Z" + "iopub.execute_input": "2024-02-06T00:26:53.845649Z", + "iopub.status.busy": "2024-02-06T00:26:53.845360Z", + "iopub.status.idle": "2024-02-06T00:26:53.847970Z", + "shell.execute_reply": "2024-02-06T00:26:53.847502Z" } }, "outputs": [], @@ -519,10 +519,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.763101Z", - "iopub.status.busy": "2024-01-10T14:36:34.762798Z", - "iopub.status.idle": "2024-01-10T14:36:34.765644Z", - "shell.execute_reply": "2024-01-10T14:36:34.765274Z" + "iopub.execute_input": "2024-02-06T00:26:53.849761Z", + "iopub.status.busy": "2024-02-06T00:26:53.849402Z", + "iopub.status.idle": "2024-02-06T00:26:53.852396Z", + "shell.execute_reply": "2024-02-06T00:26:53.851924Z" } }, "outputs": [], @@ -547,10 +547,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.767493Z", - "iopub.status.busy": "2024-01-10T14:36:34.767072Z", - "iopub.status.idle": "2024-01-10T14:36:34.769863Z", - "shell.execute_reply": "2024-01-10T14:36:34.769390Z" + "iopub.execute_input": "2024-02-06T00:26:53.854155Z", + "iopub.status.busy": "2024-02-06T00:26:53.853797Z", + "iopub.status.idle": "2024-02-06T00:26:53.856479Z", + "shell.execute_reply": "2024-02-06T00:26:53.856037Z" } }, "outputs": [ @@ -590,10 +590,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.771553Z", - "iopub.status.busy": "2024-01-10T14:36:34.771399Z", - "iopub.status.idle": "2024-01-10T14:36:34.773718Z", - "shell.execute_reply": "2024-01-10T14:36:34.773345Z" + "iopub.execute_input": "2024-02-06T00:26:53.858182Z", + "iopub.status.busy": "2024-02-06T00:26:53.858037Z", + "iopub.status.idle": "2024-02-06T00:26:53.860465Z", + "shell.execute_reply": "2024-02-06T00:26:53.860016Z" } }, "outputs": [], @@ -609,10 +609,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.775383Z", - "iopub.status.busy": "2024-01-10T14:36:34.775104Z", - "iopub.status.idle": "2024-01-10T14:36:34.777494Z", - "shell.execute_reply": "2024-01-10T14:36:34.777015Z" + "iopub.execute_input": "2024-02-06T00:26:53.862347Z", + "iopub.status.busy": "2024-02-06T00:26:53.861994Z", + "iopub.status.idle": "2024-02-06T00:26:53.864196Z", + "shell.execute_reply": "2024-02-06T00:26:53.863829Z" } }, "outputs": [], @@ -625,10 +625,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.779171Z", - "iopub.status.busy": "2024-01-10T14:36:34.778884Z", - "iopub.status.idle": "2024-01-10T14:36:34.782072Z", - "shell.execute_reply": "2024-01-10T14:36:34.781585Z" + "iopub.execute_input": "2024-02-06T00:26:53.866002Z", + "iopub.status.busy": "2024-02-06T00:26:53.865624Z", + "iopub.status.idle": "2024-02-06T00:26:53.868845Z", + "shell.execute_reply": "2024-02-06T00:26:53.868364Z" } }, "outputs": [ @@ -652,10 +652,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.783904Z", - "iopub.status.busy": "2024-01-10T14:36:34.783527Z", - "iopub.status.idle": "2024-01-10T14:36:34.785994Z", - "shell.execute_reply": "2024-01-10T14:36:34.785623Z" + "iopub.execute_input": "2024-02-06T00:26:53.870638Z", + "iopub.status.busy": "2024-02-06T00:26:53.870256Z", + "iopub.status.idle": "2024-02-06T00:26:53.872630Z", + "shell.execute_reply": "2024-02-06T00:26:53.872274Z" } }, "outputs": [], @@ -672,10 +672,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.787568Z", - "iopub.status.busy": "2024-01-10T14:36:34.787415Z", - "iopub.status.idle": "2024-01-10T14:36:34.789605Z", - "shell.execute_reply": "2024-01-10T14:36:34.789231Z" + "iopub.execute_input": "2024-02-06T00:26:53.874411Z", + "iopub.status.busy": "2024-02-06T00:26:53.874043Z", + "iopub.status.idle": "2024-02-06T00:26:53.876259Z", + "shell.execute_reply": "2024-02-06T00:26:53.875892Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.791433Z", - "iopub.status.busy": "2024-01-10T14:36:34.791053Z", - "iopub.status.idle": "2024-01-10T14:36:34.794264Z", - "shell.execute_reply": "2024-01-10T14:36:34.793794Z" + "iopub.execute_input": "2024-02-06T00:26:53.877917Z", + "iopub.status.busy": "2024-02-06T00:26:53.877763Z", + "iopub.status.idle": "2024-02-06T00:26:53.880720Z", + "shell.execute_reply": "2024-02-06T00:26:53.880356Z" } }, "outputs": [ @@ -715,10 +715,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.795875Z", - "iopub.status.busy": "2024-01-10T14:36:34.795718Z", - "iopub.status.idle": "2024-01-10T14:36:34.797887Z", - "shell.execute_reply": "2024-01-10T14:36:34.797503Z" + "iopub.execute_input": "2024-02-06T00:26:53.882324Z", + "iopub.status.busy": "2024-02-06T00:26:53.882173Z", + "iopub.status.idle": "2024-02-06T00:26:53.884239Z", + "shell.execute_reply": "2024-02-06T00:26:53.883868Z" } }, "outputs": [], @@ -758,10 +758,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.799663Z", - "iopub.status.busy": "2024-01-10T14:36:34.799299Z", - "iopub.status.idle": "2024-01-10T14:36:34.802113Z", - "shell.execute_reply": "2024-01-10T14:36:34.801729Z" + "iopub.execute_input": "2024-02-06T00:26:53.885861Z", + "iopub.status.busy": "2024-02-06T00:26:53.885713Z", + "iopub.status.idle": "2024-02-06T00:26:53.888417Z", + "shell.execute_reply": "2024-02-06T00:26:53.888053Z" } }, "outputs": [], @@ -783,10 +783,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.803749Z", - "iopub.status.busy": "2024-01-10T14:36:34.803575Z", - "iopub.status.idle": "2024-01-10T14:36:34.805777Z", - "shell.execute_reply": "2024-01-10T14:36:34.805411Z" + "iopub.execute_input": "2024-02-06T00:26:53.889973Z", + "iopub.status.busy": "2024-02-06T00:26:53.889819Z", + "iopub.status.idle": "2024-02-06T00:26:53.892036Z", + "shell.execute_reply": "2024-02-06T00:26:53.891675Z" } }, "outputs": [], @@ -800,10 +800,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.807351Z", - "iopub.status.busy": "2024-01-10T14:36:34.807202Z", - "iopub.status.idle": "2024-01-10T14:36:34.809375Z", - "shell.execute_reply": "2024-01-10T14:36:34.809006Z" + "iopub.execute_input": "2024-02-06T00:26:53.893757Z", + "iopub.status.busy": "2024-02-06T00:26:53.893456Z", + "iopub.status.idle": "2024-02-06T00:26:53.895619Z", + "shell.execute_reply": "2024-02-06T00:26:53.895260Z" } }, "outputs": [], @@ -816,10 +816,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.811201Z", - "iopub.status.busy": "2024-01-10T14:36:34.810829Z", - "iopub.status.idle": "2024-01-10T14:36:34.813024Z", - "shell.execute_reply": "2024-01-10T14:36:34.812652Z" + "iopub.execute_input": "2024-02-06T00:26:53.897233Z", + "iopub.status.busy": "2024-02-06T00:26:53.897075Z", + "iopub.status.idle": "2024-02-06T00:26:53.899338Z", + "shell.execute_reply": "2024-02-06T00:26:53.898885Z" } }, "outputs": [], @@ -832,10 +832,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.814661Z", - "iopub.status.busy": "2024-01-10T14:36:34.814508Z", - "iopub.status.idle": "2024-01-10T14:36:34.817230Z", - "shell.execute_reply": "2024-01-10T14:36:34.816734Z" + "iopub.execute_input": "2024-02-06T00:26:53.900970Z", + "iopub.status.busy": "2024-02-06T00:26:53.900817Z", + "iopub.status.idle": "2024-02-06T00:26:53.903543Z", + "shell.execute_reply": "2024-02-06T00:26:53.903151Z" } }, "outputs": [ @@ -858,10 +858,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.818915Z", - "iopub.status.busy": "2024-01-10T14:36:34.818762Z", - "iopub.status.idle": "2024-01-10T14:36:34.820959Z", - "shell.execute_reply": "2024-01-10T14:36:34.820570Z" + "iopub.execute_input": "2024-02-06T00:26:53.905099Z", + "iopub.status.busy": "2024-02-06T00:26:53.904950Z", + "iopub.status.idle": "2024-02-06T00:26:53.906966Z", + "shell.execute_reply": "2024-02-06T00:26:53.906585Z" } }, "outputs": [], @@ -883,10 +883,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.822767Z", - "iopub.status.busy": "2024-01-10T14:36:34.822474Z", - "iopub.status.idle": "2024-01-10T14:36:34.824876Z", - "shell.execute_reply": "2024-01-10T14:36:34.824412Z" + "iopub.execute_input": "2024-02-06T00:26:53.908528Z", + "iopub.status.busy": "2024-02-06T00:26:53.908376Z", + "iopub.status.idle": "2024-02-06T00:26:53.910620Z", + "shell.execute_reply": "2024-02-06T00:26:53.910230Z" } }, "outputs": [], @@ -926,10 +926,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.826830Z", - "iopub.status.busy": "2024-01-10T14:36:34.826475Z", - "iopub.status.idle": "2024-01-10T14:36:34.947927Z", - "shell.execute_reply": "2024-01-10T14:36:34.947398Z" + "iopub.execute_input": "2024-02-06T00:26:53.912448Z", + "iopub.status.busy": "2024-02-06T00:26:53.912090Z", + "iopub.status.idle": "2024-02-06T00:26:54.029817Z", + "shell.execute_reply": "2024-02-06T00:26:54.029436Z" }, "tags": [ "raises-exception" @@ -964,10 +964,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.949982Z", - "iopub.status.busy": "2024-01-10T14:36:34.949667Z", - "iopub.status.idle": "2024-01-10T14:36:34.958751Z", - "shell.execute_reply": "2024-01-10T14:36:34.958362Z" + "iopub.execute_input": "2024-02-06T00:26:54.031788Z", + "iopub.status.busy": "2024-02-06T00:26:54.031378Z", + "iopub.status.idle": "2024-02-06T00:26:54.040474Z", + "shell.execute_reply": "2024-02-06T00:26:54.040039Z" }, "tags": [ "raises-exception" @@ -1010,10 +1010,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.960372Z", - "iopub.status.busy": "2024-01-10T14:36:34.960230Z", - "iopub.status.idle": "2024-01-10T14:36:34.962522Z", - "shell.execute_reply": "2024-01-10T14:36:34.962135Z" + "iopub.execute_input": "2024-02-06T00:26:54.042266Z", + "iopub.status.busy": "2024-02-06T00:26:54.041911Z", + "iopub.status.idle": "2024-02-06T00:26:54.044303Z", + "shell.execute_reply": "2024-02-06T00:26:54.043784Z" } }, "outputs": [], @@ -1027,10 +1027,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.964121Z", - "iopub.status.busy": "2024-01-10T14:36:34.963983Z", - "iopub.status.idle": "2024-01-10T14:36:34.972974Z", - "shell.execute_reply": "2024-01-10T14:36:34.972443Z" + "iopub.execute_input": "2024-02-06T00:26:54.046147Z", + "iopub.status.busy": "2024-02-06T00:26:54.045799Z", + "iopub.status.idle": "2024-02-06T00:26:54.054551Z", + "shell.execute_reply": "2024-02-06T00:26:54.054068Z" }, "tags": [ "raises-exception" @@ -1069,10 +1069,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.975108Z", - "iopub.status.busy": "2024-01-10T14:36:34.974692Z", - "iopub.status.idle": "2024-01-10T14:36:34.977102Z", - "shell.execute_reply": "2024-01-10T14:36:34.976711Z" + "iopub.execute_input": "2024-02-06T00:26:54.056337Z", + "iopub.status.busy": "2024-02-06T00:26:54.055990Z", + "iopub.status.idle": "2024-02-06T00:26:54.058227Z", + "shell.execute_reply": "2024-02-06T00:26:54.057858Z" } }, "outputs": [], @@ -1103,10 +1103,10 @@ "execution_count": 40, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.978717Z", - "iopub.status.busy": "2024-01-10T14:36:34.978569Z", - "iopub.status.idle": "2024-01-10T14:36:34.981548Z", - "shell.execute_reply": "2024-01-10T14:36:34.981013Z" + "iopub.execute_input": "2024-02-06T00:26:54.059997Z", + "iopub.status.busy": "2024-02-06T00:26:54.059702Z", + "iopub.status.idle": "2024-02-06T00:26:54.062566Z", + "shell.execute_reply": "2024-02-06T00:26:54.062090Z" } }, "outputs": [ @@ -1152,10 +1152,10 @@ "execution_count": 41, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.983756Z", - "iopub.status.busy": "2024-01-10T14:36:34.983460Z", - "iopub.status.idle": "2024-01-10T14:36:34.985892Z", - "shell.execute_reply": "2024-01-10T14:36:34.985406Z" + "iopub.execute_input": "2024-02-06T00:26:54.064411Z", + "iopub.status.busy": "2024-02-06T00:26:54.064050Z", + "iopub.status.idle": "2024-02-06T00:26:54.066419Z", + "shell.execute_reply": "2024-02-06T00:26:54.065966Z" } }, "outputs": [], @@ -1172,10 +1172,10 @@ "execution_count": 42, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:34.988217Z", - "iopub.status.busy": "2024-01-10T14:36:34.987908Z", - "iopub.status.idle": "2024-01-10T14:36:34.999194Z", - "shell.execute_reply": "2024-01-10T14:36:34.998735Z" + "iopub.execute_input": "2024-02-06T00:26:54.068258Z", + "iopub.status.busy": "2024-02-06T00:26:54.067897Z", + "iopub.status.idle": "2024-02-06T00:26:54.078821Z", + "shell.execute_reply": "2024-02-06T00:26:54.078353Z" }, "tags": [ "raises-exception" @@ -1227,10 +1227,10 @@ "execution_count": 43, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:35.000971Z", - "iopub.status.busy": "2024-01-10T14:36:35.000816Z", - "iopub.status.idle": "2024-01-10T14:36:35.003911Z", - "shell.execute_reply": "2024-01-10T14:36:35.003410Z" + "iopub.execute_input": "2024-02-06T00:26:54.080635Z", + "iopub.status.busy": "2024-02-06T00:26:54.080359Z", + "iopub.status.idle": "2024-02-06T00:26:54.083359Z", + "shell.execute_reply": "2024-02-06T00:26:54.082905Z" }, "pycharm": { "name": "#%%\n" @@ -1275,10 +1275,10 @@ "execution_count": 44, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:35.005758Z", - "iopub.status.busy": "2024-01-10T14:36:35.005472Z", - "iopub.status.idle": "2024-01-10T14:36:35.016408Z", - "shell.execute_reply": "2024-01-10T14:36:35.015926Z" + "iopub.execute_input": "2024-02-06T00:26:54.085196Z", + "iopub.status.busy": "2024-02-06T00:26:54.084842Z", + "iopub.status.idle": "2024-02-06T00:26:54.095443Z", + "shell.execute_reply": "2024-02-06T00:26:54.094968Z" }, "pycharm": { "name": "#%%\n" @@ -1335,10 +1335,10 @@ "execution_count": 45, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:35.018244Z", - "iopub.status.busy": "2024-01-10T14:36:35.017961Z", - "iopub.status.idle": "2024-01-10T14:36:35.027341Z", - "shell.execute_reply": "2024-01-10T14:36:35.026938Z" + "iopub.execute_input": "2024-02-06T00:26:54.097264Z", + "iopub.status.busy": "2024-02-06T00:26:54.096960Z", + "iopub.status.idle": "2024-02-06T00:26:54.106070Z", + "shell.execute_reply": "2024-02-06T00:26:54.105630Z" }, "pycharm": { "name": "#%%\n" @@ -1388,10 +1388,10 @@ "execution_count": 46, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:35.029014Z", - "iopub.status.busy": "2024-01-10T14:36:35.028872Z", - "iopub.status.idle": "2024-01-10T14:36:35.031820Z", - "shell.execute_reply": "2024-01-10T14:36:35.031395Z" + "iopub.execute_input": "2024-02-06T00:26:54.107929Z", + "iopub.status.busy": "2024-02-06T00:26:54.107562Z", + "iopub.status.idle": "2024-02-06T00:26:54.110424Z", + "shell.execute_reply": "2024-02-06T00:26:54.110026Z" }, "pycharm": { "name": "#%%\n" @@ -1419,10 +1419,10 @@ "execution_count": 47, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:35.033738Z", - "iopub.status.busy": "2024-01-10T14:36:35.033349Z", - "iopub.status.idle": "2024-01-10T14:36:35.036949Z", - "shell.execute_reply": "2024-01-10T14:36:35.036545Z" + "iopub.execute_input": "2024-02-06T00:26:54.112146Z", + "iopub.status.busy": "2024-02-06T00:26:54.111862Z", + "iopub.status.idle": "2024-02-06T00:26:54.115154Z", + "shell.execute_reply": "2024-02-06T00:26:54.114704Z" }, "pycharm": { "name": "#%%\n" @@ -1471,10 +1471,10 @@ "execution_count": 48, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:35.038723Z", - "iopub.status.busy": "2024-01-10T14:36:35.038368Z", - "iopub.status.idle": "2024-01-10T14:36:35.040919Z", - "shell.execute_reply": "2024-01-10T14:36:35.040470Z" + "iopub.execute_input": "2024-02-06T00:26:54.116915Z", + "iopub.status.busy": "2024-02-06T00:26:54.116647Z", + "iopub.status.idle": "2024-02-06T00:26:54.119063Z", + "shell.execute_reply": "2024-02-06T00:26:54.118618Z" }, "pycharm": { "name": "#%%\n" @@ -1493,10 +1493,10 @@ "execution_count": 49, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:35.042772Z", - "iopub.status.busy": "2024-01-10T14:36:35.042461Z", - "iopub.status.idle": "2024-01-10T14:36:35.056093Z", - "shell.execute_reply": "2024-01-10T14:36:35.055577Z" + "iopub.execute_input": "2024-02-06T00:26:54.120707Z", + "iopub.status.busy": "2024-02-06T00:26:54.120444Z", + "iopub.status.idle": "2024-02-06T00:26:54.133808Z", + "shell.execute_reply": "2024-02-06T00:26:54.133360Z" }, "pycharm": { "name": "#%%\n" @@ -1528,10 +1528,10 @@ "execution_count": 50, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:35.057889Z", - "iopub.status.busy": "2024-01-10T14:36:35.057528Z", - "iopub.status.idle": "2024-01-10T14:36:35.061046Z", - "shell.execute_reply": "2024-01-10T14:36:35.060570Z" + "iopub.execute_input": "2024-02-06T00:26:54.135613Z", + "iopub.status.busy": "2024-02-06T00:26:54.135260Z", + "iopub.status.idle": "2024-02-06T00:26:54.138759Z", + "shell.execute_reply": "2024-02-06T00:26:54.138286Z" }, "pycharm": { "name": "#%%\n" diff --git a/advanced-python/12AdvancedClasses.ipynb b/advanced-python/12AdvancedClasses.ipynb index 67f2f5a6..e542a3dc 100644 --- a/advanced-python/12AdvancedClasses.ipynb +++ b/advanced-python/12AdvancedClasses.ipynb @@ -22,10 +22,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.005546Z", - "iopub.status.busy": "2024-01-10T14:36:37.005389Z", - "iopub.status.idle": "2024-01-10T14:36:37.011038Z", - "shell.execute_reply": "2024-01-10T14:36:37.010558Z" + "iopub.execute_input": "2024-02-06T00:26:56.192852Z", + "iopub.status.busy": "2024-02-06T00:26:56.192698Z", + "iopub.status.idle": "2024-02-06T00:26:56.198179Z", + "shell.execute_reply": "2024-02-06T00:26:56.197731Z" } }, "outputs": [], @@ -63,10 +63,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.013194Z", - "iopub.status.busy": "2024-01-10T14:36:37.012720Z", - "iopub.status.idle": "2024-01-10T14:36:37.015078Z", - "shell.execute_reply": "2024-01-10T14:36:37.014702Z" + "iopub.execute_input": "2024-02-06T00:26:56.200105Z", + "iopub.status.busy": "2024-02-06T00:26:56.199742Z", + "iopub.status.idle": "2024-02-06T00:26:56.202057Z", + "shell.execute_reply": "2024-02-06T00:26:56.201687Z" } }, "outputs": [], @@ -80,10 +80,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.016866Z", - "iopub.status.busy": "2024-01-10T14:36:37.016564Z", - "iopub.status.idle": "2024-01-10T14:36:37.021332Z", - "shell.execute_reply": "2024-01-10T14:36:37.020906Z" + "iopub.execute_input": "2024-02-06T00:26:56.203732Z", + "iopub.status.busy": "2024-02-06T00:26:56.203574Z", + "iopub.status.idle": "2024-02-06T00:26:56.208503Z", + "shell.execute_reply": "2024-02-06T00:26:56.208069Z" } }, "outputs": [ @@ -134,10 +134,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.023089Z", - "iopub.status.busy": "2024-01-10T14:36:37.022933Z", - "iopub.status.idle": "2024-01-10T14:36:37.026119Z", - "shell.execute_reply": "2024-01-10T14:36:37.025731Z" + "iopub.execute_input": "2024-02-06T00:26:56.210185Z", + "iopub.status.busy": "2024-02-06T00:26:56.210027Z", + "iopub.status.idle": "2024-02-06T00:26:56.213202Z", + "shell.execute_reply": "2024-02-06T00:26:56.212813Z" } }, "outputs": [], @@ -182,10 +182,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.027980Z", - "iopub.status.busy": "2024-01-10T14:36:37.027651Z", - "iopub.status.idle": "2024-01-10T14:36:37.030298Z", - "shell.execute_reply": "2024-01-10T14:36:37.029904Z" + "iopub.execute_input": "2024-02-06T00:26:56.214987Z", + "iopub.status.busy": "2024-02-06T00:26:56.214838Z", + "iopub.status.idle": "2024-02-06T00:26:56.217277Z", + "shell.execute_reply": "2024-02-06T00:26:56.216908Z" } }, "outputs": [], @@ -204,10 +204,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.031921Z", - "iopub.status.busy": "2024-01-10T14:36:37.031777Z", - "iopub.status.idle": "2024-01-10T14:36:37.033936Z", - "shell.execute_reply": "2024-01-10T14:36:37.033547Z" + "iopub.execute_input": "2024-02-06T00:26:56.219149Z", + "iopub.status.busy": "2024-02-06T00:26:56.218793Z", + "iopub.status.idle": "2024-02-06T00:26:56.221116Z", + "shell.execute_reply": "2024-02-06T00:26:56.220734Z" } }, "outputs": [], @@ -221,10 +221,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.035778Z", - "iopub.status.busy": "2024-01-10T14:36:37.035460Z", - "iopub.status.idle": "2024-01-10T14:36:37.037845Z", - "shell.execute_reply": "2024-01-10T14:36:37.037393Z" + "iopub.execute_input": "2024-02-06T00:26:56.222668Z", + "iopub.status.busy": "2024-02-06T00:26:56.222528Z", + "iopub.status.idle": "2024-02-06T00:26:56.225115Z", + "shell.execute_reply": "2024-02-06T00:26:56.224729Z" } }, "outputs": [ @@ -245,10 +245,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.039653Z", - "iopub.status.busy": "2024-01-10T14:36:37.039260Z", - "iopub.status.idle": "2024-01-10T14:36:37.042523Z", - "shell.execute_reply": "2024-01-10T14:36:37.041650Z" + "iopub.execute_input": "2024-02-06T00:26:56.226683Z", + "iopub.status.busy": "2024-02-06T00:26:56.226541Z", + "iopub.status.idle": "2024-02-06T00:26:56.229091Z", + "shell.execute_reply": "2024-02-06T00:26:56.228661Z" } }, "outputs": [ @@ -288,10 +288,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.044530Z", - "iopub.status.busy": "2024-01-10T14:36:37.044169Z", - "iopub.status.idle": "2024-01-10T14:36:37.047286Z", - "shell.execute_reply": "2024-01-10T14:36:37.046893Z" + "iopub.execute_input": "2024-02-06T00:26:56.230725Z", + "iopub.status.busy": "2024-02-06T00:26:56.230586Z", + "iopub.status.idle": "2024-02-06T00:26:56.233542Z", + "shell.execute_reply": "2024-02-06T00:26:56.233176Z" } }, "outputs": [], @@ -315,10 +315,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.048967Z", - "iopub.status.busy": "2024-01-10T14:36:37.048816Z", - "iopub.status.idle": "2024-01-10T14:36:37.050957Z", - "shell.execute_reply": "2024-01-10T14:36:37.050589Z" + "iopub.execute_input": "2024-02-06T00:26:56.235371Z", + "iopub.status.busy": "2024-02-06T00:26:56.235079Z", + "iopub.status.idle": "2024-02-06T00:26:56.237363Z", + "shell.execute_reply": "2024-02-06T00:26:56.236977Z" } }, "outputs": [], @@ -331,10 +331,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.052580Z", - "iopub.status.busy": "2024-01-10T14:36:37.052432Z", - "iopub.status.idle": "2024-01-10T14:36:37.055933Z", - "shell.execute_reply": "2024-01-10T14:36:37.055514Z" + "iopub.execute_input": "2024-02-06T00:26:56.239037Z", + "iopub.status.busy": "2024-02-06T00:26:56.238738Z", + "iopub.status.idle": "2024-02-06T00:26:56.242023Z", + "shell.execute_reply": "2024-02-06T00:26:56.241553Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.057501Z", - "iopub.status.busy": "2024-01-10T14:36:37.057354Z", - "iopub.status.idle": "2024-01-10T14:36:37.060052Z", - "shell.execute_reply": "2024-01-10T14:36:37.059568Z" + "iopub.execute_input": "2024-02-06T00:26:56.243824Z", + "iopub.status.busy": "2024-02-06T00:26:56.243467Z", + "iopub.status.idle": "2024-02-06T00:26:56.246093Z", + "shell.execute_reply": "2024-02-06T00:26:56.245633Z" } }, "outputs": [ @@ -404,10 +404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.061667Z", - "iopub.status.busy": "2024-01-10T14:36:37.061518Z", - "iopub.status.idle": "2024-01-10T14:36:37.064037Z", - "shell.execute_reply": "2024-01-10T14:36:37.063648Z" + "iopub.execute_input": "2024-02-06T00:26:56.247935Z", + "iopub.status.busy": "2024-02-06T00:26:56.247635Z", + "iopub.status.idle": "2024-02-06T00:26:56.250050Z", + "shell.execute_reply": "2024-02-06T00:26:56.249684Z" } }, "outputs": [], @@ -425,10 +425,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.065650Z", - "iopub.status.busy": "2024-01-10T14:36:37.065507Z", - "iopub.status.idle": "2024-01-10T14:36:37.067862Z", - "shell.execute_reply": "2024-01-10T14:36:37.067370Z" + "iopub.execute_input": "2024-02-06T00:26:56.251614Z", + "iopub.status.busy": "2024-02-06T00:26:56.251476Z", + "iopub.status.idle": "2024-02-06T00:26:56.253601Z", + "shell.execute_reply": "2024-02-06T00:26:56.253237Z" } }, "outputs": [], @@ -442,10 +442,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.069492Z", - "iopub.status.busy": "2024-01-10T14:36:37.069343Z", - "iopub.status.idle": "2024-01-10T14:36:37.072524Z", - "shell.execute_reply": "2024-01-10T14:36:37.072070Z" + "iopub.execute_input": "2024-02-06T00:26:56.255404Z", + "iopub.status.busy": "2024-02-06T00:26:56.255117Z", + "iopub.status.idle": "2024-02-06T00:26:56.258085Z", + "shell.execute_reply": "2024-02-06T00:26:56.257723Z" } }, "outputs": [ @@ -469,10 +469,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.074258Z", - "iopub.status.busy": "2024-01-10T14:36:37.073974Z", - "iopub.status.idle": "2024-01-10T14:36:37.077016Z", - "shell.execute_reply": "2024-01-10T14:36:37.076627Z" + "iopub.execute_input": "2024-02-06T00:26:56.259668Z", + "iopub.status.busy": "2024-02-06T00:26:56.259531Z", + "iopub.status.idle": "2024-02-06T00:26:56.262468Z", + "shell.execute_reply": "2024-02-06T00:26:56.262061Z" } }, "outputs": [ @@ -534,10 +534,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.078894Z", - "iopub.status.busy": "2024-01-10T14:36:37.078600Z", - "iopub.status.idle": "2024-01-10T14:36:37.081562Z", - "shell.execute_reply": "2024-01-10T14:36:37.081165Z" + "iopub.execute_input": "2024-02-06T00:26:56.264159Z", + "iopub.status.busy": "2024-02-06T00:26:56.264021Z", + "iopub.status.idle": "2024-02-06T00:26:56.266947Z", + "shell.execute_reply": "2024-02-06T00:26:56.266514Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.083172Z", - "iopub.status.busy": "2024-01-10T14:36:37.083035Z", - "iopub.status.idle": "2024-01-10T14:36:37.086168Z", - "shell.execute_reply": "2024-01-10T14:36:37.085745Z" + "iopub.execute_input": "2024-02-06T00:26:56.268514Z", + "iopub.status.busy": "2024-02-06T00:26:56.268376Z", + "iopub.status.idle": "2024-02-06T00:26:56.271600Z", + "shell.execute_reply": "2024-02-06T00:26:56.271214Z" } }, "outputs": [ @@ -600,10 +600,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.087762Z", - "iopub.status.busy": "2024-01-10T14:36:37.087599Z", - "iopub.status.idle": "2024-01-10T14:36:37.090673Z", - "shell.execute_reply": "2024-01-10T14:36:37.090255Z" + "iopub.execute_input": "2024-02-06T00:26:56.273478Z", + "iopub.status.busy": "2024-02-06T00:26:56.273059Z", + "iopub.status.idle": "2024-02-06T00:26:56.276349Z", + "shell.execute_reply": "2024-02-06T00:26:56.275885Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.092284Z", - "iopub.status.busy": "2024-01-10T14:36:37.092147Z", - "iopub.status.idle": "2024-01-10T14:36:37.095100Z", - "shell.execute_reply": "2024-01-10T14:36:37.094718Z" + "iopub.execute_input": "2024-02-06T00:26:56.278108Z", + "iopub.status.busy": "2024-02-06T00:26:56.277822Z", + "iopub.status.idle": "2024-02-06T00:26:56.280991Z", + "shell.execute_reply": "2024-02-06T00:26:56.280520Z" } }, "outputs": [], @@ -676,10 +676,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.096939Z", - "iopub.status.busy": "2024-01-10T14:36:37.096641Z", - "iopub.status.idle": "2024-01-10T14:36:37.098876Z", - "shell.execute_reply": "2024-01-10T14:36:37.098488Z" + "iopub.execute_input": "2024-02-06T00:26:56.282856Z", + "iopub.status.busy": "2024-02-06T00:26:56.282552Z", + "iopub.status.idle": "2024-02-06T00:26:56.284791Z", + "shell.execute_reply": "2024-02-06T00:26:56.284416Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.100442Z", - "iopub.status.busy": "2024-01-10T14:36:37.100307Z", - "iopub.status.idle": "2024-01-10T14:36:37.103239Z", - "shell.execute_reply": "2024-01-10T14:36:37.102804Z" + "iopub.execute_input": "2024-02-06T00:26:56.286306Z", + "iopub.status.busy": "2024-02-06T00:26:56.286170Z", + "iopub.status.idle": "2024-02-06T00:26:56.289213Z", + "shell.execute_reply": "2024-02-06T00:26:56.288836Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.104899Z", - "iopub.status.busy": "2024-01-10T14:36:37.104658Z", - "iopub.status.idle": "2024-01-10T14:36:37.107768Z", - "shell.execute_reply": "2024-01-10T14:36:37.107298Z" + "iopub.execute_input": "2024-02-06T00:26:56.290780Z", + "iopub.status.busy": "2024-02-06T00:26:56.290630Z", + "iopub.status.idle": "2024-02-06T00:26:56.293692Z", + "shell.execute_reply": "2024-02-06T00:26:56.293310Z" } }, "outputs": [ @@ -746,10 +746,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.109524Z", - "iopub.status.busy": "2024-01-10T14:36:37.109173Z", - "iopub.status.idle": "2024-01-10T14:36:37.111771Z", - "shell.execute_reply": "2024-01-10T14:36:37.111289Z" + "iopub.execute_input": "2024-02-06T00:26:56.295375Z", + "iopub.status.busy": "2024-02-06T00:26:56.295090Z", + "iopub.status.idle": "2024-02-06T00:26:56.297623Z", + "shell.execute_reply": "2024-02-06T00:26:56.297181Z" } }, "outputs": [ @@ -777,10 +777,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.113537Z", - "iopub.status.busy": "2024-01-10T14:36:37.113194Z", - "iopub.status.idle": "2024-01-10T14:36:37.115818Z", - "shell.execute_reply": "2024-01-10T14:36:37.115343Z" + "iopub.execute_input": "2024-02-06T00:26:56.299371Z", + "iopub.status.busy": "2024-02-06T00:26:56.299087Z", + "iopub.status.idle": "2024-02-06T00:26:56.301656Z", + "shell.execute_reply": "2024-02-06T00:26:56.301205Z" } }, "outputs": [ @@ -801,10 +801,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.117578Z", - "iopub.status.busy": "2024-01-10T14:36:37.117216Z", - "iopub.status.idle": "2024-01-10T14:36:37.119505Z", - "shell.execute_reply": "2024-01-10T14:36:37.119049Z" + "iopub.execute_input": "2024-02-06T00:26:56.303324Z", + "iopub.status.busy": "2024-02-06T00:26:56.303186Z", + "iopub.status.idle": "2024-02-06T00:26:56.305457Z", + "shell.execute_reply": "2024-02-06T00:26:56.304968Z" } }, "outputs": [], @@ -831,10 +831,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:37.121393Z", - "iopub.status.busy": "2024-01-10T14:36:37.121031Z", - "iopub.status.idle": "2024-01-10T14:36:37.124028Z", - "shell.execute_reply": "2024-01-10T14:36:37.123550Z" + "iopub.execute_input": "2024-02-06T00:26:56.307280Z", + "iopub.status.busy": "2024-02-06T00:26:56.307040Z", + "iopub.status.idle": "2024-02-06T00:26:56.309939Z", + "shell.execute_reply": "2024-02-06T00:26:56.309490Z" } }, "outputs": [ diff --git a/advanced-python/20DataAndPlotting.html b/advanced-python/20DataAndPlotting.html index a31d7b63..46ac32ee 100644 --- a/advanced-python/20DataAndPlotting.html +++ b/advanced-python/20DataAndPlotting.html @@ -1106,7 +1106,7 @@

Using rectangular cuts
-<matplotlib.legend.Legend at 0x7f09c6ec0950>
+<matplotlib.legend.Legend at 0x7f4691a9d5d0>
 
diff --git a/advanced-python/20DataAndPlotting.ipynb b/advanced-python/20DataAndPlotting.ipynb index 4b8491c5..86cf45f0 100644 --- a/advanced-python/20DataAndPlotting.ipynb +++ b/advanced-python/20DataAndPlotting.ipynb @@ -34,10 +34,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:38.910848Z", - "iopub.status.busy": "2024-01-10T14:36:38.910695Z", - "iopub.status.idle": "2024-01-10T14:36:39.588596Z", - "shell.execute_reply": "2024-01-10T14:36:39.588103Z" + "iopub.execute_input": "2024-02-06T00:26:58.011438Z", + "iopub.status.busy": "2024-02-06T00:26:58.010995Z", + "iopub.status.idle": "2024-02-06T00:26:59.429739Z", + "shell.execute_reply": "2024-02-06T00:26:59.429241Z" } }, "outputs": [], @@ -119,10 +119,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:39.590915Z", - "iopub.status.busy": "2024-01-10T14:36:39.590574Z", - "iopub.status.idle": "2024-01-10T14:36:42.459234Z", - "shell.execute_reply": "2024-01-10T14:36:42.458702Z" + "iopub.execute_input": "2024-02-06T00:26:59.432269Z", + "iopub.status.busy": "2024-02-06T00:26:59.431748Z", + "iopub.status.idle": "2024-02-06T00:27:02.375983Z", + "shell.execute_reply": "2024-02-06T00:27:02.375554Z" } }, "outputs": [ @@ -156,10 +156,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:42.461310Z", - "iopub.status.busy": "2024-01-10T14:36:42.460912Z", - "iopub.status.idle": "2024-01-10T14:36:46.056778Z", - "shell.execute_reply": "2024-01-10T14:36:46.056347Z" + "iopub.execute_input": "2024-02-06T00:27:02.378027Z", + "iopub.status.busy": "2024-02-06T00:27:02.377688Z", + "iopub.status.idle": "2024-02-06T00:27:07.886946Z", + "shell.execute_reply": "2024-02-06T00:27:07.886511Z" } }, "outputs": [ @@ -186,10 +186,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:36:46.058564Z", - "iopub.status.busy": "2024-01-10T14:36:46.058414Z", - "iopub.status.idle": "2024-01-10T14:37:09.666961Z", - "shell.execute_reply": "2024-01-10T14:37:09.666508Z" + "iopub.execute_input": "2024-02-06T00:27:07.888905Z", + "iopub.status.busy": "2024-02-06T00:27:07.888578Z", + "iopub.status.idle": "2024-02-06T00:27:41.446795Z", + "shell.execute_reply": "2024-02-06T00:27:41.446209Z" } }, "outputs": [ @@ -414,10 +414,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:09.668916Z", - "iopub.status.busy": "2024-01-10T14:37:09.668749Z", - "iopub.status.idle": "2024-01-10T14:37:09.672221Z", - "shell.execute_reply": "2024-01-10T14:37:09.671750Z" + "iopub.execute_input": "2024-02-06T00:27:41.448872Z", + "iopub.status.busy": "2024-02-06T00:27:41.448489Z", + "iopub.status.idle": "2024-02-06T00:27:41.452020Z", + "shell.execute_reply": "2024-02-06T00:27:41.451563Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:09.674039Z", - "iopub.status.busy": "2024-01-10T14:37:09.673878Z", - "iopub.status.idle": "2024-01-10T14:37:09.804970Z", - "shell.execute_reply": "2024-01-10T14:37:09.804427Z" + "iopub.execute_input": "2024-02-06T00:27:41.453861Z", + "iopub.status.busy": "2024-02-06T00:27:41.453544Z", + "iopub.status.idle": "2024-02-06T00:27:41.563571Z", + "shell.execute_reply": "2024-02-06T00:27:41.563152Z" } }, "outputs": [ @@ -512,10 +512,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:09.807432Z", - "iopub.status.busy": "2024-01-10T14:37:09.807064Z", - "iopub.status.idle": "2024-01-10T14:37:09.810470Z", - "shell.execute_reply": "2024-01-10T14:37:09.810084Z" + "iopub.execute_input": "2024-02-06T00:27:41.565294Z", + "iopub.status.busy": "2024-02-06T00:27:41.565133Z", + "iopub.status.idle": "2024-02-06T00:27:41.568468Z", + "shell.execute_reply": "2024-02-06T00:27:41.567958Z" }, "pycharm": { "name": "#%%\n" @@ -533,10 +533,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:09.812239Z", - "iopub.status.busy": "2024-01-10T14:37:09.812071Z", - "iopub.status.idle": "2024-01-10T14:37:10.101375Z", - "shell.execute_reply": "2024-01-10T14:37:10.100828Z" + "iopub.execute_input": "2024-02-06T00:27:41.570191Z", + "iopub.status.busy": "2024-02-06T00:27:41.570026Z", + "iopub.status.idle": "2024-02-06T00:27:41.855766Z", + "shell.execute_reply": "2024-02-06T00:27:41.855260Z" }, "pycharm": { "name": "#%%\n" @@ -575,10 +575,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:10.103519Z", - "iopub.status.busy": "2024-01-10T14:37:10.103120Z", - "iopub.status.idle": "2024-01-10T14:37:10.377475Z", - "shell.execute_reply": "2024-01-10T14:37:10.376951Z" + "iopub.execute_input": "2024-02-06T00:27:41.857562Z", + "iopub.status.busy": "2024-02-06T00:27:41.857400Z", + "iopub.status.idle": "2024-02-06T00:27:42.130134Z", + "shell.execute_reply": "2024-02-06T00:27:42.129656Z" }, "pycharm": { "name": "#%%\n" @@ -617,10 +617,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:10.379491Z", - "iopub.status.busy": "2024-01-10T14:37:10.379166Z", - "iopub.status.idle": "2024-01-10T14:37:11.222136Z", - "shell.execute_reply": "2024-01-10T14:37:11.221618Z" + "iopub.execute_input": "2024-02-06T00:27:42.131993Z", + "iopub.status.busy": "2024-02-06T00:27:42.131841Z", + "iopub.status.idle": "2024-02-06T00:27:42.883877Z", + "shell.execute_reply": "2024-02-06T00:27:42.883380Z" }, "pycharm": { "name": "#%%\n" @@ -666,10 +666,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:11.224270Z", - "iopub.status.busy": "2024-01-10T14:37:11.223957Z", - "iopub.status.idle": "2024-01-10T14:37:11.634940Z", - "shell.execute_reply": "2024-01-10T14:37:11.634399Z" + "iopub.execute_input": "2024-02-06T00:27:42.885896Z", + "iopub.status.busy": "2024-02-06T00:27:42.885628Z", + "iopub.status.idle": "2024-02-06T00:27:43.221796Z", + "shell.execute_reply": "2024-02-06T00:27:43.221251Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:11.636988Z", - "iopub.status.busy": "2024-01-10T14:37:11.636804Z", - "iopub.status.idle": "2024-01-10T14:37:11.647652Z", - "shell.execute_reply": "2024-01-10T14:37:11.647246Z" + "iopub.execute_input": "2024-02-06T00:27:43.223828Z", + "iopub.status.busy": "2024-02-06T00:27:43.223564Z", + "iopub.status.idle": "2024-02-06T00:27:43.234947Z", + "shell.execute_reply": "2024-02-06T00:27:43.234466Z" } }, "outputs": [ @@ -749,10 +749,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:11.649605Z", - "iopub.status.busy": "2024-01-10T14:37:11.649286Z", - "iopub.status.idle": "2024-01-10T14:37:11.663106Z", - "shell.execute_reply": "2024-01-10T14:37:11.662611Z" + "iopub.execute_input": "2024-02-06T00:27:43.236877Z", + "iopub.status.busy": "2024-02-06T00:27:43.236437Z", + "iopub.status.idle": "2024-02-06T00:27:43.250601Z", + "shell.execute_reply": "2024-02-06T00:27:43.250103Z" } }, "outputs": [ @@ -853,10 +853,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:11.665241Z", - "iopub.status.busy": "2024-01-10T14:37:11.664917Z", - "iopub.status.idle": "2024-01-10T14:37:12.035526Z", - "shell.execute_reply": "2024-01-10T14:37:12.034989Z" + "iopub.execute_input": "2024-02-06T00:27:43.252494Z", + "iopub.status.busy": "2024-02-06T00:27:43.252195Z", + "iopub.status.idle": "2024-02-06T00:27:43.572402Z", + "shell.execute_reply": "2024-02-06T00:27:43.571875Z" } }, "outputs": [ @@ -882,10 +882,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:12.037618Z", - "iopub.status.busy": "2024-01-10T14:37:12.037439Z", - "iopub.status.idle": "2024-01-10T14:37:12.424518Z", - "shell.execute_reply": "2024-01-10T14:37:12.423961Z" + "iopub.execute_input": "2024-02-06T00:27:43.574410Z", + "iopub.status.busy": "2024-02-06T00:27:43.574236Z", + "iopub.status.idle": "2024-02-06T00:27:43.918944Z", + "shell.execute_reply": "2024-02-06T00:27:43.918430Z" } }, "outputs": [ @@ -922,17 +922,17 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:12.426653Z", - "iopub.status.busy": "2024-01-10T14:37:12.426469Z", - "iopub.status.idle": "2024-01-10T14:37:12.873973Z", - "shell.execute_reply": "2024-01-10T14:37:12.873461Z" + "iopub.execute_input": "2024-02-06T00:27:43.920957Z", + "iopub.status.busy": "2024-02-06T00:27:43.920626Z", + "iopub.status.idle": "2024-02-06T00:27:44.308557Z", + "shell.execute_reply": "2024-02-06T00:27:44.308030Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 16, @@ -979,10 +979,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:12.876066Z", - "iopub.status.busy": "2024-01-10T14:37:12.875882Z", - "iopub.status.idle": "2024-01-10T14:37:12.879694Z", - "shell.execute_reply": "2024-01-10T14:37:12.879277Z" + "iopub.execute_input": "2024-02-06T00:27:44.310646Z", + "iopub.status.busy": "2024-02-06T00:27:44.310436Z", + "iopub.status.idle": "2024-02-06T00:27:44.314199Z", + "shell.execute_reply": "2024-02-06T00:27:44.313797Z" } }, "outputs": [ @@ -1011,10 +1011,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:12.881578Z", - "iopub.status.busy": "2024-01-10T14:37:12.881253Z", - "iopub.status.idle": "2024-01-10T14:37:18.144777Z", - "shell.execute_reply": "2024-01-10T14:37:18.144141Z" + "iopub.execute_input": "2024-02-06T00:27:44.316068Z", + "iopub.status.busy": "2024-02-06T00:27:44.315758Z", + "iopub.status.idle": "2024-02-06T00:27:51.656945Z", + "shell.execute_reply": "2024-02-06T00:27:51.656484Z" } }, "outputs": [ @@ -1077,10 +1077,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:37:18.147002Z", - "iopub.status.busy": "2024-01-10T14:37:18.146668Z", - "iopub.status.idle": "2024-01-10T14:42:39.530431Z", - "shell.execute_reply": "2024-01-10T14:42:39.529899Z" + "iopub.execute_input": "2024-02-06T00:27:51.659007Z", + "iopub.status.busy": "2024-02-06T00:27:51.658669Z", + "iopub.status.idle": "2024-02-06T00:35:40.179063Z", + "shell.execute_reply": "2024-02-06T00:35:40.178602Z" } }, "outputs": [], @@ -1111,10 +1111,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:42:39.532806Z", - "iopub.status.busy": "2024-01-10T14:42:39.532516Z", - "iopub.status.idle": "2024-01-10T14:42:39.850602Z", - "shell.execute_reply": "2024-01-10T14:42:39.850072Z" + "iopub.execute_input": "2024-02-06T00:35:40.181226Z", + "iopub.status.busy": "2024-02-06T00:35:40.180972Z", + "iopub.status.idle": "2024-02-06T00:35:40.499742Z", + "shell.execute_reply": "2024-02-06T00:35:40.499250Z" } }, "outputs": [ @@ -1155,17 +1155,17 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:42:39.852675Z", - "iopub.status.busy": "2024-01-10T14:42:39.852360Z", - "iopub.status.idle": "2024-01-10T14:42:40.194339Z", - "shell.execute_reply": "2024-01-10T14:42:40.193793Z" + "iopub.execute_input": "2024-02-06T00:35:40.501567Z", + "iopub.status.busy": "2024-02-06T00:35:40.501416Z", + "iopub.status.idle": "2024-02-06T00:35:40.795975Z", + "shell.execute_reply": "2024-02-06T00:35:40.795519Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 21, @@ -1201,17 +1201,17 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:42:40.196401Z", - "iopub.status.busy": "2024-01-10T14:42:40.196077Z", - "iopub.status.idle": "2024-01-10T14:42:40.564881Z", - "shell.execute_reply": "2024-01-10T14:42:40.564368Z" + "iopub.execute_input": "2024-02-06T00:35:40.797926Z", + "iopub.status.busy": "2024-02-06T00:35:40.797600Z", + "iopub.status.idle": "2024-02-06T00:35:41.114070Z", + "shell.execute_reply": "2024-02-06T00:35:41.113546Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 22, @@ -1252,10 +1252,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:42:40.566964Z", - "iopub.status.busy": "2024-01-10T14:42:40.566647Z", - "iopub.status.idle": "2024-01-10T14:42:40.569998Z", - "shell.execute_reply": "2024-01-10T14:42:40.569611Z" + "iopub.execute_input": "2024-02-06T00:35:41.116086Z", + "iopub.status.busy": "2024-02-06T00:35:41.115759Z", + "iopub.status.idle": "2024-02-06T00:35:41.119058Z", + "shell.execute_reply": "2024-02-06T00:35:41.118686Z" } }, "outputs": [], @@ -1291,10 +1291,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:42:40.571869Z", - "iopub.status.busy": "2024-01-10T14:42:40.571556Z", - "iopub.status.idle": "2024-01-10T14:42:51.670201Z", - "shell.execute_reply": "2024-01-10T14:42:51.669701Z" + "iopub.execute_input": "2024-02-06T00:35:41.120938Z", + "iopub.status.busy": "2024-02-06T00:35:41.120626Z", + "iopub.status.idle": "2024-02-06T00:35:51.020621Z", + "shell.execute_reply": "2024-02-06T00:35:51.020149Z" } }, "outputs": [ @@ -1302,7 +1302,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_3549/3447827755.py:2: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.\n", + "/tmp/ipykernel_3589/3447827755.py:2: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.\n", " plt.figure() # creates a new figure\n" ] }, @@ -1661,10 +1661,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T14:42:51.672314Z", - "iopub.status.busy": "2024-01-10T14:42:51.671970Z", - "iopub.status.idle": "2024-01-10T14:42:52.349230Z", - "shell.execute_reply": "2024-01-10T14:42:52.348702Z" + "iopub.execute_input": "2024-02-06T00:35:51.022851Z", + "iopub.status.busy": "2024-02-06T00:35:51.022525Z", + "iopub.status.idle": "2024-02-06T00:35:51.698450Z", + "shell.execute_reply": "2024-02-06T00:35:51.697917Z" }, "pycharm": { "name": "#%%\n" diff --git a/advanced-python/30Classification.html b/advanced-python/30Classification.html index ddfa04c5..b1c92949 100644 --- a/advanced-python/30Classification.html +++ b/advanced-python/30Classification.html @@ -525,7 +525,7 @@

Using a classifier
-<matplotlib.legend.Legend at 0x7f7414d1b950>
+<matplotlib.legend.Legend at 0x7fd57e00c650>
 
@@ -627,7 +627,411 @@

TODO Add a diagram of a decision tree for the above plot -
XGBClassifier(base_score=None, booster=None, callbacks=None,
+
XGBClassifier(base_score=None, booster=None, callbacks=None,
               colsample_bylevel=None, colsample_bynode=None,
               colsample_bytree=None, device=None, early_stopping_rounds=None,
               enable_categorical=False, eval_metric=None, feature_types=None,
@@ -637,7 +1041,7 @@ 

TODO Add a diagram of a decision tree for the above plot

-20057.8610038471
+20032.647966127202
 

@@ -991,7 +991,7 @@

Splot
-118184.86140987206
+118232.76333840188
 

@@ -1048,7 +1048,7 @@

Splot
-Correlation between m and t: 0.03252041347505456
+Correlation between m and t: 0.03522752374174872
 

@@ -1192,7 +1192,7 @@

We have no information about real labels
-<matplotlib.legend.Legend at 0x7f2f45e9d110>
+<matplotlib.legend.Legend at 0x7ff65c899990>
 

@@ -1328,7 +1328,7 @@

An important requirement of sPlot
--0.3450503205921056
+-0.34344490966851315
 

But within each class there is no correlation, so the requirement is satisfied:

@@ -1346,7 +1346,7 @@

An important requirement of sPlot
--0.017799548266771503
+0.01243138520386182
 
diff --git a/advanced-python/60sPlot.ipynb b/advanced-python/60sPlot.ipynb index d7f57bd4..4a37ef27 100644 --- a/advanced-python/60sPlot.ipynb +++ b/advanced-python/60sPlot.ipynb @@ -17,10 +17,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:44.482935Z", - "iopub.status.busy": "2024-01-10T15:12:44.482777Z", - "iopub.status.idle": "2024-01-10T15:12:47.563137Z", - "shell.execute_reply": "2024-01-10T15:12:47.562594Z" + "iopub.execute_input": "2024-02-06T01:09:36.477270Z", + "iopub.status.busy": "2024-02-06T01:09:36.477113Z", + "iopub.status.idle": "2024-02-06T01:09:39.547698Z", + "shell.execute_reply": "2024-02-06T01:09:39.547189Z" } }, "outputs": [ @@ -45,10 +45,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:47.565578Z", - "iopub.status.busy": "2024-01-10T15:12:47.565231Z", - "iopub.status.idle": "2024-01-10T15:12:47.568497Z", - "shell.execute_reply": "2024-01-10T15:12:47.568039Z" + "iopub.execute_input": "2024-02-06T01:09:39.550114Z", + "iopub.status.busy": "2024-02-06T01:09:39.549542Z", + "iopub.status.idle": "2024-02-06T01:09:39.553033Z", + "shell.execute_reply": "2024-02-06T01:09:39.552574Z" } }, "outputs": [], @@ -75,17 +75,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:47.570552Z", - "iopub.status.busy": "2024-01-10T15:12:47.570174Z", - "iopub.status.idle": "2024-01-10T15:12:47.816544Z", - "shell.execute_reply": "2024-01-10T15:12:47.816048Z" + "iopub.execute_input": "2024-02-06T01:09:39.554662Z", + "iopub.status.busy": "2024-02-06T01:09:39.554499Z", + "iopub.status.idle": "2024-02-06T01:09:39.927856Z", + "shell.execute_reply": "2024-02-06T01:09:39.927342Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 3, @@ -94,7 +94,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGxCAYAAACTN+exAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsOUlEQVR4nO3dfVjUdb7/8dfIzQgEg2AwUWNS0Y2imdCyYiUd77Yya2vTPZppmWkixqKrmd2QufBLT+KmRze7PMJqZp3Kbs5xW60WOi5WRtGNmlmR94R2aFAjRuH7+6Of89sRdUUHZz7wfFzXXJffz7xn5j2MMi8/n++NzbIsSwAAAIbpEOgGAAAATgchBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASKGBbqC1NDU1ac+ePYqOjpbNZgt0OwAA4BRYlqUDBw4oKSlJHTqcfK6lzYaYPXv2yOVyBboNAABwGnbu3KkLLrjgpDVtNsRER0dL+vmHEBMTE+BuAADAqairq5PL5fJ+j59Mmw0xR5eQYmJiCDEAABjmVHYFYcdeAABgJEIMAAAwEiEGAAAYqc3uEwMAaL+amprk8XgC3QaOIywsTCEhIX55LkIMAKBN8Xg8qqqqUlNTU6BbwQnExsbK6XSe8XncCDEAgDbDsizt3btXISEhcrlc//RkaTi7LMvSjz/+qJqaGknSeeedd0bPR4gBALQZR44c0Y8//qikpCRFRkYGuh0cR0REhCSppqZGCQkJZ7S0REQFALQZjY2NkqTw8PAAd4KTORowDx8+fEbPQ4gBALQ5XDMvuPnr8yHEAAAAIxFiAACAkdixFwDQ5uXnm/16paWluv7661VbW6vY2Fj/PrnBmIkBAKCdKS0tlc1m0w8//BDoVs4IIQYAABxXsJ/1mBADAEAQsCxLc+bM0UUXXaSIiAhdeeWVeumll05YX15eruuuu04RERFyuVyaPHmyDh065L2/oaFB06ZNk8vlkt1uV0pKipYuXapvv/1W119/vSSpU6dOstlsGjNmjCQpKytLkyZNUl5enjp37qyBAwdKksrKyvSLX/xCdrtd5513nh588EEdOXLE+1pZWVmaPHmypk2bpri4ODmdTuWfhTU89okBgpzpa/kATs3DDz+sV155RYsXL1ZKSoreffdd3XnnnTr33HOb1X722WcaPHiwnnjiCS1dulT79u3TpEmTNGnSJC1btkySdNddd2nDhg16+umndeWVV6qqqkr79++Xy+XSyy+/rNtvv11bt25VTEyM9wR0klRSUqL7779ff//732VZlnbv3q0bb7xRY8aM0Z///Gd98cUXGjdunDp27OgTVEpKSpSXl6f3339fGzZs0JgxY9S3b19vEGoNhBgAAALs0KFDmjdvnt555x316dNHknTRRRdp/fr1euaZZ3Tffff51M+dO1cjRoxQbm6uJCklJUVPP/20+vXrp8WLF2vHjh168cUXtW7dOg0YMMD7fEfFxcVJkhISEprtKHzJJZdozpw53u2ZM2fK5XJp4cKFstlsuvzyy7Vnzx5Nnz5djz76qPfSDj179tRjjz3m7WfhwoV6++23CTEAALRlmzdv1k8//dTsC9/j8eiqq65qVl9RUaGvvvpKzz33nHfMsiw1NTWpqqpKn332mUJCQtSvX78W95Kenu6zvWXLFvXp08fnBHV9+/bVwYMHtWvXLnXp0kXSzyHmH5133nneayS1FkIMAAABdvSK2//93/+t888/3+c+u92ur7/+uln9+PHjNXny5GbP1aVLF3311Ven3UtUVJTPtmVZzc6wa1mWJN8z74aFhfnU2Gy2Vr+SOCEGAIAA69atm+x2u3bs2HHc2ZNjQ0zv3r21adMmXXLJJcd9vh49eqipqUllZWXe5aR/dPTaUkevNfXPenv55Zd9wkx5ebmio6ObBa6zjaOTAAAIsOjoaE2dOlW/+93vVFJSoq+//loff/yx/v3f/10lJSXN6qdPn64NGzYoOztblZWV2rZtm15//XXl5ORIkrp27arRo0frnnvu0auvvqqqqiqVlpbqxRdflCRdeOGFstls+q//+i/t27dPBw8ePGFvEydO1M6dO5WTk6MvvvhCr732mh577DHl5eV594cJFGZiAABtnglH3T3xxBNKSEhQYWGhvvnmG8XGxqp379566KGHmi3L9OzZU2VlZZo5c6auvfZaWZaliy++WMOHD/fWLF68WA899JAmTpyo77//Xl26dNFDDz0kSTr//PP1+OOP68EHH9Tdd9+tu+66S8XFxcft6/zzz9eaNWv0+9//XldeeaXi4uI0duxYPfzww632szhVNuvowlYbU1dXJ4fDIbfbrZiYmEC3A5w2DrEGTt1PP/2kqqoqJScnq2PHjoFuBydwss+pJd/fLCcBAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAA0IaVlpbKZrPphx9+CHQrfsdlBwAAbV87PvV1Zmam9u7dK4fDIUkqLi5Wbm5umwg1zMQAANCGhYeHy+l0eq9Afao8Hk8rdeQ/hBgAAAIsKytLkyZN0qRJkxQbG6v4+Hg9/PDDOnp5w9raWt11113q1KmTIiMjdcMNN2jbtm3ex2/fvl0333yzOnXqpKioKHXv3l1r1qyR5LucVFpaqrvvvltut1s2m002m035/2/WqGvXrpo9e7bGjBkjh8OhcePGSZJefvllde/eXXa7XV27dtVTTz3l03vXrl1VUFCge+65R9HR0erSpYuWLFlyFn5qLCcBOMbpzoIH0ew5YKSSkhKNHTtW77//vj788EPdd999uvDCCzVu3DiNGTNG27Zt0+uvv66YmBhNnz5dN954ozZv3qywsDBlZ2fL4/Ho3XffVVRUlDZv3qxzzjmn2WtkZmZq/vz5evTRR7V161ZJ8qmbO3euHnnkEe8VqisqKjRs2DDl5+dr+PDhKi8v18SJExUfH68xY8Z4H/fUU0/piSee0EMPPaSXXnpJ999/v6677jpdfvnlrfozI8QAABAEXC6XioqKZLPZdNlll+mzzz5TUVGRsrKy9Prrr+vvf/+7MjMzJUnPPfecXC6XXn31Vd1xxx3asWOHbr/9dvXo0UOSdNFFFx33NcLDw+VwOGSz2eR0Opvd/y//8i+aOnWqd3vkyJHq37+/HnnkEUnSpZdeqs2bN2vu3Lk+IebGG2/UxIkTJUnTp09XUVGRSktLWz3EsJwEAEAQ+OUvf+mz30qfPn20bds2bd68WaGhocrIyPDeFx8fr8suu0xbtmyRJE2ePFmzZ89W37599dhjj+nTTz89rR7S09N9trds2aK+ffv6jPXt21fbtm1TY2Ojd6xnz57ePx8NSDU1NafVQ0sQYgAAMJBlWd7Qc++99+qbb77RqFGj9Nlnnyk9PV0LFixo8XNGRUWd8DX+cexYYWFhPts2m01NTU0tfv2WIsQAABAE3nvvvWbbKSkp6tatm44cOaL333/fe9/333+vL7/8UldccYV3zOVyacKECXrllVc0ZcoUPfvss8d9nfDwcJ9ZlJPp1q2b1q9f7zNWXl6uSy+9VCEhIaf61loNIQYAgCCwc+dO5eXlaevWrXr++ee1YMECPfDAA0pJSdEtt9yicePGaf369frkk09055136vzzz9ctt9wiScrNzdVf//pXVVVV6aOPPtI777zjE3D+UdeuXXXw4EG9/fbb2r9/v3788ccT9jRlyhS9/fbbeuKJJ/Tll1+qpKRECxcu9NlvJpAIMQAABIG77rpL9fX1+sUvfqHs7Gzl5OTovvvukyQtW7ZMaWlpGjJkiPr06SPLsrRmzRrvMk5jY6Oys7N1xRVX6Fe/+pUuu+wyLVq06Livk5mZqQkTJmj48OE699xzNWfOnBP21Lt3b7344otatWqVUlNT9eijj2rWrFk+O/UGks063uJWG1BXVyeHwyG3262YmJhAtwOcNlMOXTalT7RtP/30k6qqqpScnKyOHTsGup1TlpWVpV69emn+/PmBbuWsONnn1JLvb2ZiAACAkQgxAADASJzsDgCAACstLQ10C0ZiJgYAABiJEAMAaHPa6DErbYa/Pp8Wh5h3331XN998s5KSkmSz2fTqq682ayw/P19JSUmKiIhQVlaWNm3a5FPT0NCgnJwcde7cWVFRURo6dKh27drlU1NbW6tRo0bJ4XDI4XBo1KhR+uGHH1r8BgEA7cfRE7B5PJ4Ad4KTOXpummPP9NtSLd4n5tChQ7ryyit199136/bbb292/5w5czRv3jwVFxfr0ksv1ezZszVw4EBt3bpV0dHRkn4+Kc8bb7yhVatWKT4+XlOmTNGQIUNUUVHh/Qs4YsQI7dq1S2+++aYk6b777tOoUaP0xhtvnMn7BQC0YaGhoYqMjNS+ffsUFhamDh1YcAgmlmXpxx9/VE1NjWJjY8/4rL9ndJ4Ym82m1atX69Zbb/U2l5SUpNzcXE2fPl3Sz7MuiYmJevLJJzV+/Hi53W6de+65Wr58uYYPHy5J2rNnj1wul9asWaPBgwdry5Yt6tatm9577z3vBa/ee+899enTR1988YUuu+yyZr00NDSooaHBu11XVyeXy8V5YmA8U86/YkqfaPs8Ho+qqqrOyrV7cHpiY2PldDqbXZdJatl5Yvx6dFJVVZWqq6s1aNAg75jdble/fv1UXl6u8ePHq6KiQocPH/apSUpKUmpqqsrLyzV48GBt2LBBDofD54qdv/zlL+VwOFReXn7cEFNYWKjHH3/cn28HAGCg8PBwpaSksKQUpMLCwvx23SW/hpjq6mpJUmJios94YmKitm/f7q0JDw9Xp06dmtUcfXx1dbUSEhKaPX9CQoK35lgzZsxQXl6ed/voTAwAoP3p0KGDUWfsxelplfPEHO+y3cebMjpZzfHqT/Y8drtddrv9NLoFAAAm8useT06nU5KazZbU1NR4Z2ecTqc8Ho9qa2tPWvPdd981e/59+/Y1m+UBAADtk19DTHJyspxOp9atW+cd83g8KisrU2ZmpiQpLS1NYWFhPjV79+7V559/7q3p06eP3G63PvjgA2/N+++/L7fb7a0BAADtW4uXkw4ePKivvvrKu11VVaXKykrFxcWpS5cuys3NVUFBgVJSUpSSkqKCggJFRkZqxIgRkiSHw6GxY8dqypQpio+PV1xcnKZOnaoePXpowIABkuS9lPi4ceP0zDPPSPr5EOshQ4Ycd6deAADQ/rQ4xHz44Ye6/vrrvdtHd6YdPXq0iouLNW3aNNXX12vixImqra1VRkaG1q5d6z1HjCQVFRUpNDRUw4YNU319vfr376/i4mKfvZWfe+45TZ482XsU09ChQ7Vw4cLTfqMAAKBtOaPzxASzlhxnDgQzU86/YkqfAIJbS76/OZUhAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRWuXaSQDQ5rT0GHKOOQdaHTMxAADASMzEAEAwOJ2ZG2Z70M4RYgCgNRAwgFbHchIAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACNxdBJwlrT1g1VO9/219Z8LgNbDTAwAADASIQYAABiJEAMAAIzEPjEAYCouSol2jpkYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJFCA90AAAREfn6gOwBwhpiJAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABgpNNANAKbJzw90BwAAqRVmYo4cOaKHH35YycnJioiI0EUXXaRZs2apqanJW2NZlvLz85WUlKSIiAhlZWVp06ZNPs/T0NCgnJwcde7cWVFRURo6dKh27drl73YBAICh/B5innzySf3pT3/SwoULtWXLFs2ZM0dz587VggULvDVz5szRvHnztHDhQm3cuFFOp1MDBw7UgQMHvDW5ublavXq1Vq1apfXr1+vgwYMaMmSIGhsb/d0yAAAwkN+XkzZs2KBbbrlFN910kySpa9euev755/Xhhx9K+nkWZv78+Zo5c6Zuu+02SVJJSYkSExO1cuVKjR8/Xm63W0uXLtXy5cs1YMAASdKKFSvkcrn01ltvafDgwc1et6GhQQ0NDd7turo6f781AAAQRPw+E3PNNdfo7bff1pdffilJ+uSTT7R+/XrdeOONkqSqqipVV1dr0KBB3sfY7Xb169dP5eXlkqSKigodPnzYpyYpKUmpqanemmMVFhbK4XB4by6Xy99vDQAABBG/z8RMnz5dbrdbl19+uUJCQtTY2Kg//OEP+td//VdJUnV1tSQpMTHR53GJiYnavn27tyY8PFydOnVqVnP08ceaMWOG8vLyvNt1dXUEGQAA2jC/h5gXXnhBK1as0MqVK9W9e3dVVlYqNzdXSUlJGj16tLfOZrP5PM6yrGZjxzpZjd1ul91uP/M3AAAAjOD3EPP73/9eDz74oH77299Kknr06KHt27ersLBQo0ePltPplPTzbMt5553nfVxNTY13dsbpdMrj8ai2ttZnNqampkaZmZn+bhkAABjI7/vE/Pjjj+rQwfdpQ0JCvIdYJycny+l0at26dd77PR6PysrKvAElLS1NYWFhPjV79+7V559/TogBAACSWmEm5uabb9Yf/vAHdenSRd27d9fHH3+sefPm6Z577pH08zJSbm6uCgoKlJKSopSUFBUUFCgyMlIjRoyQJDkcDo0dO1ZTpkxRfHy84uLiNHXqVPXo0cN7tBIAAGjf/B5iFixYoEceeUQTJ05UTU2NkpKSNH78eD366KPemmnTpqm+vl4TJ05UbW2tMjIytHbtWkVHR3trioqKFBoaqmHDhqm+vl79+/dXcXGxQkJC/N0yAAAwkM2yLCvQTbSGuro6ORwOud1uxcTEBLodtCFcdsC/AvbzbI8fZHt8zzBOS76/uQAkAAAwEiEGAAAYiRADAACMRIgBAABG8vvRSQDQEqe7ryn7qAIgxABAe9HS5EdSRJBjOQkAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMFBroBgDAL/LzA90BgLOMmRgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEbi6CQAwPG19IgvjhDDWcZMDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADBSaKAbAAIlPz/QHQAAzgQhBoCRjg2hWaWn/tisLD82AiBgWE4CAABGIsQAAAAjtUqI2b17t+68807Fx8crMjJSvXr1UkVFhfd+y7KUn5+vpKQkRUREKCsrS5s2bfJ5joaGBuXk5Khz586KiorS0KFDtWvXrtZoFwAAGMjvIaa2tlZ9+/ZVWFiY/vKXv2jz5s166qmnFBsb662ZM2eO5s2bp4ULF2rjxo1yOp0aOHCgDhw44K3Jzc3V6tWrtWrVKq1fv14HDx7UkCFD1NjY6O+WAQCAgfy+Y++TTz4pl8ulZcuWece6du3q/bNlWZo/f75mzpyp2267TZJUUlKixMRErVy5UuPHj5fb7dbSpUu1fPlyDRgwQJK0YsUKuVwuvfXWWxo8eHCz121oaFBDQ4N3u66uzt9vDQAABBG/z8S8/vrrSk9P1x133KGEhARdddVVevbZZ733V1VVqbq6WoMGDfKO2e129evXT+Xl5ZKkiooKHT582KcmKSlJqamp3ppjFRYWyuFweG8ul8vfbw0AAAQRv4eYb775RosXL1ZKSor++te/asKECZo8ebL+/Oc/S5Kqq6slSYmJiT6PS0xM9N5XXV2t8PBwderU6YQ1x5oxY4bcbrf3tnPnTn+/NQAAEET8vpzU1NSk9PR0FRQUSJKuuuoqbdq0SYsXL9Zdd93lrbPZbD6Psyyr2dixTlZjt9tlt9vPsHsAAGAKv8/EnHfeeerWrZvP2BVXXKEdO3ZIkpxOpyQ1m1Gpqanxzs44nU55PB7V1taesAYAALRvfg8xffv21datW33GvvzyS1144YWSpOTkZDmdTq1bt857v8fjUVlZmTIzMyVJaWlpCgsL86nZu3evPv/8c28NAABo3/y+nPS73/1OmZmZKigo0LBhw/TBBx9oyZIlWrJkiaSfl5Fyc3NVUFCglJQUpaSkqKCgQJGRkRoxYoQkyeFwaOzYsZoyZYri4+MVFxenqVOnqkePHt6jlQAAQPvm9xBz9dVXa/Xq1ZoxY4ZmzZql5ORkzZ8/XyNHjvTWTJs2TfX19Zo4caJqa2uVkZGhtWvXKjo62ltTVFSk0NBQDRs2TPX19erfv7+Ki4sVEhLi75YBAICBbJZlWYFuojXU1dXJ4XDI7XYrJiYm0O0gCHEV67YlqzT/1GuzWq2N9o1/VPCDlnx/c+0kAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADCS36+dBAD+0JLLCABon5iJAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkrmINAPCP/PzWrQeOwUwMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAI4UGugEA7UNWaX6gWwDQxjATAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASK0eYgoLC2Wz2ZSbm+sdsyxL+fn5SkpKUkREhLKysrRp0yafxzU0NCgnJ0edO3dWVFSUhg4dql27drV2uwAAwBCteoj1xo0btWTJEvXs2dNnfM6cOZo3b56Ki4t16aWXavbs2Ro4cKC2bt2q6OhoSVJubq7eeOMNrVq1SvHx8ZoyZYqGDBmiiooKhYSEtGbbMEx+fqA7AAAEQquFmIMHD2rkyJF69tlnNXv2bO+4ZVmaP3++Zs6cqdtuu02SVFJSosTERK1cuVLjx4+X2+3W0qVLtXz5cg0YMECStGLFCrlcLr311lsaPHhwa7UNoB0oLT29x2Vl+bMLAGeq1ZaTsrOzddNNN3lDyFFVVVWqrq7WoEGDvGN2u139+vVTeXm5JKmiokKHDx/2qUlKSlJqaqq35lgNDQ2qq6vzuQEAgLarVWZiVq1apY8++kgbN25sdl91dbUkKTEx0Wc8MTFR27dv99aEh4erU6dOzWqOPv5YhYWFevzxx/3RPgAAMIDfZ2J27typBx54QCtWrFDHjh1PWGez2Xy2LctqNnask9XMmDFDbrfbe9u5c2fLmwcAAMbwe4ipqKhQTU2N0tLSFBoaqtDQUJWVlenpp59WaGiodwbm2BmVmpoa731Op1Mej0e1tbUnrDmW3W5XTEyMzw0AALRdfg8x/fv312effabKykrvLT09XSNHjlRlZaUuuugiOZ1OrVu3zvsYj8ejsrIyZWZmSpLS0tIUFhbmU7N37159/vnn3hoAANC++X2fmOjoaKWmpvqMRUVFKT4+3juem5urgoICpaSkKCUlRQUFBYqMjNSIESMkSQ6HQ2PHjtWUKVMUHx+vuLg4TZ06VT169Gi2ozAAAGifWvU8MScybdo01dfXa+LEiaqtrVVGRobWrl3rPUeMJBUVFSk0NFTDhg1TfX29+vfvr+LiYs4RAwAAJEk2y7KsQDfRGurq6uRwOOR2u9k/po3jZHdmyCrND3QLZ4zzxPgZ/3hxHC35/ubaSQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARgrIeWIAAGjxIdYcko1jMBMDAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMFJooBsAYJ6s0vxAtwAAzMQAAAAzEWIAAICRCDEAAMBIhBgAAGAkQgwAADASRycBwCkqLT29x2Vl+bMLAEcxEwMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBLniUHQyM8PdAcAAJMwEwMAAIxEiAEAAEYixAAAACOxTwwAwAwt3XGOHe3aPGZiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkv4eYwsJCXX311YqOjlZCQoJuvfVWbd261afGsizl5+crKSlJERERysrK0qZNm3xqGhoalJOTo86dOysqKkpDhw7Vrl27/N0uAAAwlN9DTFlZmbKzs/Xee+9p3bp1OnLkiAYNGqRDhw55a+bMmaN58+Zp4cKF2rhxo5xOpwYOHKgDBw54a3Jzc7V69WqtWrVK69ev18GDBzVkyBA1Njb6u2UAAGAgv1/F+s033/TZXrZsmRISElRRUaHrrrtOlmVp/vz5mjlzpm677TZJUklJiRITE7Vy5UqNHz9ebrdbS5cu1fLlyzVgwABJ0ooVK+RyufTWW29p8ODB/m4bAAAYxu8h5lhut1uSFBcXJ0mqqqpSdXW1Bg0a5K2x2+3q16+fysvLNX78eFVUVOjw4cM+NUlJSUpNTVV5eflxQ0xDQ4MaGhq823V1da31loA2J6s0P9AtAECLteqOvZZlKS8vT9dcc41SU1MlSdXV1ZKkxMREn9rExETvfdXV1QoPD1enTp1OWHOswsJCORwO783lcvn77QAAgCDSqiFm0qRJ+vTTT/X88883u89ms/lsW5bVbOxYJ6uZMWOG3G6397Zz587TbxwAAAS9VgsxOTk5ev311/W3v/1NF1xwgXfc6XRKUrMZlZqaGu/sjNPplMfjUW1t7QlrjmW32xUTE+NzAwAAbZffQ4xlWZo0aZJeeeUVvfPOO0pOTva5Pzk5WU6nU+vWrfOOeTwelZWVKTMzU5KUlpamsLAwn5q9e/fq888/99YAAID2ze879mZnZ2vlypV67bXXFB0d7Z1xcTgcioiIkM1mU25urgoKCpSSkqKUlBQVFBQoMjJSI0aM8NaOHTtWU6ZMUXx8vOLi4jR16lT16NHDe7QSAABo3/weYhYvXixJysrK8hlftmyZxowZI0maNm2a6uvrNXHiRNXW1iojI0Nr165VdHS0t76oqEihoaEaNmyY6uvr1b9/fxUXFyskJMTfLQMAAAPZLMuyAt1Ea6irq5PD4ZDb7Wb/GEPk5we6g/aLQ6xb1zH/p8PZwi8VI7Xk+5trJwEAACO1+snu0P7wnx8AwNnATAwAADASIQYAABiJ5SQAQNt0OmvbrIcbhZkYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkztgLAK2stPT0HpeV5c8ugLaHmRgAAGAkZmKANiirND/QLQBAq2MmBgAAGIkQAwAAjESIAQAARmKfGAAAjsrPb916+BUzMQAAwEiEGAAAYCSWk3BCzJICAIIZMzEAAMBIhBgAAGAkQgwAADASIQYAABiJHXsBIEhx9Wvg5JiJAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYifPEAAbIKs0PdAsAEHSYiQEAAEZiJqYdyM8PdAcA0Ea19Bcsv5D9ipkYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjcYg1EACcvA6tqbT09B6XleXPLoDWR4gBAOBs4bwyfsVyEgAAMBIhBgAAGInlJADAGWEfHAQKIcYgLI0CaE2nG0aAQCHEAH7A0UYAcPYFfYhZtGiR5s6dq71796p79+6aP3++rr322kC3BQBA6+NoppMK6hDzwgsvKDc3V4sWLVLfvn31zDPP6IYbbtDmzZvVpUuXQLd32trZ3zEAAFqFzbIsK9BNnEhGRoZ69+6txYsXe8euuOIK3XrrrSosLDzpY+vq6uRwOOR2uxUTE9Mq/RFGzMBSD9C2sEOwHwXhF1lLvr+DdibG4/GooqJCDz74oM/4oEGDVF5e3qy+oaFBDQ0N3m232y1Jys+vk93eur0iuB060vDPiwAY47/fOruv16b3YJgxo3XrJemfTDocqy47W5J0KnMsQRti9u/fr8bGRiUmJvqMJyYmqrq6ull9YWGhHn/88WbjRUWuVusRANAO/D3QDQSR//N/ztprHDhwQA6H46SlQRtijrLZbD7blmU1G5OkGTNmKC8vz7vd1NSk//3f/1V8fPxx601RV1cnl8ulnTt3ttqyGE4Nn0Xw4LMIHnwWwaUtfB6WZenAgQNKSkr6p7VBG2I6d+6skJCQZrMuNTU1zWZnJMlut8t+zLpRbGxsa7Z4VsXExBj7F7Kt4bMIHnwWwYPPIriY/nn8sxmYo4L2sgPh4eFKS0vTunXrfMbXrVunzMzMAHUFAACCRdDOxEhSXl6eRo0apfT0dPXp00dLlizRjh07NGHChEC3BgAAAiyoQ8zw4cP1/fffa9asWdq7d69SU1O1Zs0aXXjhhYFu7ayx2+167LHHmi2V4ezjswgefBbBg88iuLS3zyOozxMDAABwIkG7TwwAAMDJEGIAAICRCDEAAMBIhBgAAGAkQoyBGhoa1KtXL9lsNlVWVga6nXbn22+/1dixY5WcnKyIiAhdfPHFeuyxx+TxeALdWruxaNEiJScnq2PHjkpLS9P//M//BLqldqewsFBXX321oqOjlZCQoFtvvVVbt24NdFvQz5+NzWZTbm5uoFtpdYQYA02bNu2UTseM1vHFF1+oqalJzzzzjDZt2qSioiL96U9/0kMPPRTo1tqFF154Qbm5uZo5c6Y+/vhjXXvttbrhhhu0Y8eOQLfWrpSVlSk7O1vvvfee1q1bpyNHjmjQoEE6dOhQoFtr1zZu3KglS5aoZ8+egW7lrOAQa8P85S9/UV5enl5++WV1795dH3/8sXr16hXottq9uXPnavHixfrmm28C3Uqbl5GRod69e2vx4sXesSuuuEK33nqrClt4tVz4z759+5SQkKCysjJdd911gW6nXTp48KB69+6tRYsWafbs2erVq5fmz58f6LZaFTMxBvnuu+80btw4LV++XJGRkYFuB//A7XYrLi4u0G20eR6PRxUVFRo0aJDP+KBBg1ReXh6griD9/G9AEv8OAig7O1s33XSTBgwYEOhWzpqgPmMv/j/LsjRmzBhNmDBB6enp+vbbbwPdEv6fr7/+WgsWLNBTTz0V6FbavP3796uxsbHZRWATExObXSwWZ49lWcrLy9M111yj1NTUQLfTLq1atUofffSRNm7cGOhWzipmYgIsPz9fNpvtpLcPP/xQCxYsUF1dnWbMmBHoltusU/0s/tGePXv0q1/9SnfccYfuvffeAHXe/thsNp9ty7KajeHsmTRpkj799FM9//zzgW6lXdq5c6ceeOABrVixQh07dgx0O2cV+8QE2P79+7V///6T1nTt2lW//e1v9cYbb/j8om5sbFRISIhGjhypkpKS1m61zTvVz+LoL4k9e/bo+uuvV0ZGhoqLi9WhA/8naG0ej0eRkZH6z//8T/3617/2jj/wwAOqrKxUWVlZALtrn3JycvTqq6/q3XffVXJycqDbaZdeffVV/frXv1ZISIh3rLGxUTabTR06dFBDQ4PPfW0JIcYQO3bsUF1dnXd7z549Gjx4sF566SVlZGToggsuCGB37c/u3bt1/fXXKy0tTStWrGizvyCCUUZGhtLS0rRo0SLvWLdu3XTLLbewY+9ZZFmWcnJytHr1apWWliolJSXQLbVbBw4c0Pbt233G7r77bl1++eWaPn16m17iY58YQ3Tp0sVn+5xzzpEkXXzxxQSYs2zPnj3KyspSly5d9G//9m/at2+f9z6n0xnAztqHvLw8jRo1Sunp6erTp4+WLFmiHTt2aMKECYFurV3Jzs7WypUr9dprryk6Otq7T5LD4VBERESAu2tfoqOjmwWVqKgoxcfHt+kAIxFigBZbu3atvvrqK3311VfNAiQTm61v+PDh+v777zVr1izt3btXqampWrNmjS688MJAt9auHD3EPSsry2d82bJlGjNmzNlvCO0Sy0kAAMBI7IkIAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAIat99951sNpv++Mc/6qqrrlLHjh3VvXt3rV+/PtCtAQgwQgyAoPbxxx9LkhYtWqSioiJ98skn6tq1q0aOHKmmpqYAdwcgkLiKNYCg9sknnygsLExvvvmmkpOTJUmzZs1Senq6du/eLZfLFeAOAQQKMzEAglplZaVuu+02b4CRJLvdHsCOAAQLQgyAoFZZWalevXr5jH300Ufq3Lmzzj//fGVkZOjDDz+UJI0ePVqLFy8OQJcAAoHlJABBq76+Xtu2bVNjY6N3rKmpSX/84x81evRodejQQY888ogKCgrUt29fnXPOObr//vsD2DGAs8lmWZYV6CYA4Hg++OAD9e3bV5dccon+4z/+Q7GxsXr00Uf10UcfqaKiQrGxsZKkXr16KSEhQWvWrFFoKP83A9oLlpMABK3Kykpdfvnlevjhh/Wb3/xG6enp6tChgzZs2OANMB988IF++OEHxcbGEmCAdoYQAyBoffLJJ+rRo4dGjhyp3bt369ChQ3rhhReUkJAgSdq9e7fuvfde/e1vf9O2bdu0ZcuWAHcM4GwixAAIWpWVlerZs+dx76uvr9dvfvMbLVy4UMnJyZo2bZpmz559ljsEEEjsEwMgKFmWJYfDoVWrVunGG28MdDsAghAhBgAAGInlJAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAw0v8F0Dxu/Aln5q4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAG3CAYAAABFbgSsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvcElEQVR4nO3dfVyUdb7/8ffInUg4Ci6MFCbtsqaiqVik1krrXTdmraeso1luZrooRuhqHrPIbeFkm9jK0bLjUY5mtmdbzd3jumIFLYumoZiamRZ5C2FFgyiBwvz+6Hj9dkQtaGDmC6/n4zGPh9f3+lwzn2HEefu97mwul8slAAAAw7TxdgMAAACNQYgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEZqcIh59913deeddyoqKko2m03r16+31p09e1azZ89Wr169FBISoqioKD344IM6ceKE23NUV1crOTlZnTp1UkhIiEaNGqVjx4651ZSXl2v8+PGy2+2y2+0aP368vv7660a9SQAA0PI0OMScPn1a1113nbKysuqtO3PmjHbu3Kl58+Zp586d+tOf/qSPP/5Yo0aNcqtLSUnRunXrtHbtWuXn56uyslIjR45UbW2tVTN27FgVFRVp06ZN2rRpk4qKijR+/PhGvEUAANAS2X7IDSBtNpvWrVunu++++5I1O3bs0A033KDDhw+rS5cucjqd+tGPfqRVq1bpvvvukySdOHFC0dHR2rhxo0aMGKH9+/erR48e2rZtmxISEiRJ27Zt04ABA/TRRx+pW7dujW0ZAAC0EP5N/QJOp1M2m00dOnSQJBUWFurs2bMaPny4VRMVFaW4uDgVFBRoxIgR2rp1q+x2uxVgJOnGG2+U3W5XQUHBRUNMdXW1qqurreW6ujp99dVXCg8Pl81ma7o3CAAAPMblcunUqVOKiopSmzaX32HUpCHmm2++0RNPPKGxY8eqffv2kqTS0lIFBgaqY8eObrWRkZEqLS21aiIiIuo9X0REhFVzoYyMDD3zzDMefgcAAMAbjh49qquuuuqyNU0WYs6ePav7779fdXV1WrJkyXfWu1wutxmTi82eXFjzz+bMmaPU1FRr2el0qkuXLjp69KgVoAAAgG+rqKhQdHS0QkNDv7O2SULM2bNnNWbMGBUXF+vtt992CxEOh0M1NTUqLy93m40pKyvTwIEDrZrPP/+83vOePHlSkZGRF33NoKAgBQUF1Rtv3749IQYAAMN8n0NBPH6dmPMB5uDBg9qyZYvCw8Pd1sfHxysgIEA5OTnWWElJifbu3WuFmAEDBsjpdGr79u1WzXvvvSen02nVAACA1q3BMzGVlZU6dOiQtVxcXKyioiKFhYUpKipK99xzj3bu3Km//OUvqq2ttY5hCQsLU2BgoOx2uyZOnKgZM2YoPDxcYWFhmjlzpnr16qWhQ4dKkrp3765bb71VkyZN0ssvvyxJevTRRzVy5EjOTAIAAJIacYp1bm6ubrnllnrjDz30kNLS0hQTE3PR7d555x0lJiZK+vaA31//+tdas2aNqqqqNGTIEC1ZskTR0dFW/VdffaXp06drw4YNkqRRo0YpKyvLOsvpu1RUVMhut8vpdLI7CQAAQzTk+/sHXSfGlxFiAKD1qqurU01NjbfbwEUEBATIz8/vkusb8v3d5NeJAQCgOdXU1Ki4uFh1dXXebgWX0KFDBzkcjh98HTdCDACgxXC5XCopKZGfn5+io6O/82JpaF4ul0tnzpxRWVmZJKlz584/6PkIMQCAFuPcuXM6c+aMoqKi1K5dO2+3g4sIDg6W9O2lVSIiIi67a+m7EFEBAC3G+RsJBwYGerkTXM75gHn27Nkf9DyEGABAi8M983ybpz4fQgwAADASIQYAAB+Xm5srm82mr7/+2tut+BQO7AUAtHhpaS379Rrq/IVry8vLv/dFZH0RMzEAAOCifP2CgYQYAAB8gMvl0oIFC3TNNdcoODhY1113nf74xz9esr6goEA/+9nPFBwcrOjoaE2fPl2nT5+21ldXV2vWrFmKjo5WUFCQYmNjtXz5cn322WfW7YM6duwom82mCRMmSJISExM1bdo0paamqlOnTho2bJgkKS8vTzfccIOCgoLUuXNnPfHEEzp37pz1WomJiZo+fbpmzZqlsLAwORwOpTXDdBQhBgAAH/Dkk09qxYoVWrp0qfbt26fHH39cDzzwgPLy8urV7tmzRyNGjNDo0aP1wQcf6PXXX1d+fr6mTZtm1Tz44INau3atfv/732v//v166aWXdMUVVyg6OlpvvPGGJOnAgQMqKSnRiy++aG2XnZ0tf39//eMf/9DLL7+s48eP6/bbb9f111+v3bt3a+nSpVq+fLmeffZZt56ys7MVEhKi9957TwsWLND8+fOVk5PTRD+tb3HvJABobj/kf6i+frCFl33zzTcqLi5WTEyM2rZta437+jExp0+fVqdOnfT2229rwIAB1vgjjzyiM2fO6NFHH3U7huXBBx9UcHCwXn75Zas2Pz9fgwcP1unTp3XkyBF169ZNOTk5Gjp0aL3Xu9QxMYmJiXI6ndq1a5c1NnfuXL3xxhvav3+/dWr0kiVLNHv2bDmdTrVp00aJiYmqra3V3//+d2u7G264QT//+c/17//+7/Ve/1Kfk8S9kwAAMMqHH36ob775xtp9c15NTY369u1br76wsFCHDh3Sq6++ao25XC7V1dWpuLhYe/bskZ+fnwYPHtzgXvr37++2vH//fg0YMMDt2i6DBg1SZWWljh07pi5dukiSevfu7bZd586drdsLNBVCDAA0FrMi8JDzN6v83//9X1155ZVu64KCgvTJJ5/Uq588ebKmT59e77m6dOmiQ4cONbqXkJAQt2WXy1Xv4nTnd+L883hAQIBbjc1ma/KbcBJiAADwsh49eigoKEhHjhy56OzJhSGmX79+2rdvn37yk59c9Pl69eqluro65eXlXXR30vnbMpy/TcN39fbGG2+4hZmCggKFhobWC1zNjQN7AQDwstDQUM2cOVOPP/64srOz9cknn2jXrl36j//4D2VnZ9ernz17trZu3aqpU6eqqKhIBw8e1IYNG5ScnCxJ6tq1qx566CE9/PDDWr9+vYqLi5Wbm6s//OEPkqSrr75aNptNf/nLX3Ty5ElVVlZesrekpCQdPXpUycnJ+uijj/Tmm2/q6aefVmpqqtfvEk6IAQDAB/zmN7/RU089pYyMDHXv3l0jRozQn//8Z8XExNSr7d27t/Ly8nTw4EHdfPPN6tu3r+bNm6fOnTtbNUuXLtU999yjpKQkXXvttZo0aZJ1CvaVV16pZ555Rk888YQiIyPdzmq60JVXXqmNGzdq+/btuu666zRlyhRNnDhRTz75pOd/CA3E2UkA0FjeOCaG43Au63JnvcB3eOrsJGZiAACAkQgxAADASIQYAABgJEIMAAAwEteJAQCTNPbAXg4IRgvETAwAADASIQYAABiJEAMAAIxEiAEAAEYixAAA0ILl5ubKZrPp66+/9nYrHsfZSUAL0pgTUDhpBa1Cc/9F96FfrIEDB6qkpER2u12StHLlSqWkpLSIUMNMDAAALVhgYKAcDodsNluDtqupqWmijjyHEAMAgJclJiZq2rRpmjZtmjp06KDw8HA9+eSTOn+P5vLycj344IPq2LGj2rVrp9tuu00HDx60tj98+LDuvPNOdezYUSEhIerZs6c2btwoyX13Um5urn75y1/K6XTKZrPJZrMp7f9mjbp27apnn31WEyZMkN1u16RJkyRJb7zxhnr27KmgoCB17dpVL7zwglvvXbt2VXp6uh5++GGFhoaqS5cuWrZsWTP81AgxAAD4hOzsbPn7++u9997T73//e2VmZuo///M/JUkTJkzQ+++/rw0bNmjr1q1yuVy6/fbbdfbsWUnS1KlTVV1drXfffVd79uzRc889pyuuuKLeawwcOFCLFi1S+/btVVJSopKSEs2cOdNa//zzzysuLk6FhYWaN2+eCgsLNWbMGN1///3as2eP0tLSNG/ePK1cudLteV944QX1799fu3btUlJSkn71q1/po48+arof1v/hmBgAAHxAdHS0MjMzZbPZ1K1bN+3Zs0eZmZlKTEzUhg0b9I9//EMDBw6UJL366quKjo7W+vXrde+99+rIkSP6l3/5F/Xq1UuSdM0111z0NQIDA2W322Wz2eRwOOqt//nPf+4WasaNG6chQ4Zo3rx5kqSf/vSn+vDDD/X8889rwoQJVt3tt9+upKQkSdLs2bOVmZmp3NxcXXvttR752VwKMzEAAPiAG2+80e24lQEDBujgwYP68MMP5e/vr4SEBGtdeHi4unXrpv3790uSpk+frmeffVaDBg3S008/rQ8++KBRPfTv399tef/+/Ro0aJDb2KBBg3Tw4EHV1tZaY71797b+fD4glZWVNaqHhiDEAABgIJfLZYWeRx55RJ9++qnGjx+vPXv2qH///lq8eHGDnzMkJOSSr/HPYxcKCAhwW7bZbKqrq2vw6zcUIQYAAB+wbdu2esuxsbHq0aOHzp07p/fee89a9+WXX+rjjz9W9+7drbHo6GhNmTJFf/rTnzRjxgy98sorF32dwMBAt1mUy+nRo4fy8/PdxgoKCvTTn/5Ufn5+3/etNRlCDAAAPuDo0aNKTU3VgQMH9Nprr2nx4sV67LHHFBsbq7vuukuTJk1Sfn6+du/erQceeEBXXnml7rrrLklSSkqK/va3v6m4uFg7d+7U22+/7RZw/lnXrl1VWVmpt956S1988YXOnDlzyZ5mzJiht956S7/5zW/08ccfKzs7W1lZWW7HzXgTIQYAAB/w4IMPqqqqSjfccIOmTp2q5ORkPfroo5KkFStWKD4+XiNHjtSAAQPkcrm0ceNGazdObW2tpk6dqu7du+vWW29Vt27dtGTJkou+zsCBAzVlyhTdd999+tGPfqQFCxZcsqd+/frpD3/4g9auXau4uDg99dRTmj9/vttBvd5kc11s51YLUFFRIbvdLqfTqfbt23u7HaBZcMXeZmbSD8+kXn+Ab775RsXFxYqJiVHbtm293c73lpiYqD59+mjRokXebqVZXO5zasj3NzMxAADASIQYAABgJC52BwCAl+Xm5nq7BSMxEwMAAIxEiAEAtDgt9JyVFsNTnw8hBgDQYpy/AFtNTY2XO8HlnL82zYVX+m0ojokBALQY/v7+ateunU6ePKmAgAC1acP/1X2Jy+XSmTNnVFZWpg4dOvzgq/4SYgAALYbNZlPnzp1VXFysw4cPe7sdXEKHDh0uehfthiLEAABalMDAQMXGxrJLyUcFBAR47L5LhBgAQIvTpk0bo67Yi8ZhZyEAADASIQYAABipwSHm3Xff1Z133qmoqCjZbDatX7/ebb3L5VJaWpqioqIUHBysxMRE7du3z62murpaycnJ6tSpk0JCQjRq1CgdO3bMraa8vFzjx4+X3W6X3W7X+PHj9fXXXzf4DQIAgJapwSHm9OnTuu6665SVlXXR9QsWLNDChQuVlZWlHTt2yOFwaNiwYTp16pRVk5KSonXr1mnt2rXKz89XZWWlRo4cqdraWqtm7NixKioq0qZNm7Rp0yYVFRVp/PjxjXiLAACgJWrwgb233Xabbrvttouuc7lcWrRokebOnavRo0dLkrKzsxUZGak1a9Zo8uTJcjqdWr58uVatWqWhQ4dKklavXq3o6Ght2bJFI0aM0P79+7Vp0yZt27ZNCQkJkqRXXnlFAwYM0IEDB9StW7fGvl8AANBCePSYmOLiYpWWlmr48OHWWFBQkAYPHqyCggJJUmFhoc6ePetWExUVpbi4OKtm69atstvtVoCRpBtvvFF2u92quVB1dbUqKircHgAAoOXy6CnWpaWlkqTIyEi38cjISOuiQ6WlpQoMDFTHjh3r1ZzfvrS0VBEREfWePyIiwqq5UEZGhp555pkf/B6A1iYtrXm2AQBPa5Kzk2w2m9uyy+WqN3ahC2suVn+555kzZ46cTqf1OHr0aCM6BwAApvBoiDl/CeELZ0vKysqs2RmHw6GamhqVl5dftubzzz+v9/wnT56sN8tzXlBQkNq3b+/2AAAALZdHdyfFxMTI4XAoJydHffv2lfTtnUTz8vL03HPPSZLi4+MVEBCgnJwcjRkzRpJUUlKivXv3asGCBZKkAQMGyOl0avv27brhhhskSe+9956cTqcGDhzoyZYBgP1jgKEaHGIqKyt16NAha7m4uFhFRUUKCwtTly5dlJKSovT0dMXGxio2Nlbp6elq166dxo4dK0my2+2aOHGiZsyYofDwcIWFhWnmzJnq1auXdbZS9+7ddeutt2rSpEl6+eWXJUmPPvqoRo4cyZlJAABAUiNCzPvvv69bbrnFWk5NTZUkPfTQQ1q5cqVmzZqlqqoqJSUlqby8XAkJCdq8ebNCQ0OtbTIzM+Xv768xY8aoqqpKQ4YM0cqVK91uCPXqq69q+vTp1llMo0aNuuS1aQAAQOtjc7lcLm830RQqKipkt9vldDo5PgatRnPtFWlxe19a3Bu6iNbwHtEiNOT7m7tYAz6K7xwAuDxuAAkAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABG8vd2A0BrkJbm7Q48qzHvp6X9DAB4HzMxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABG4hRrAGgNGnuOO+fGw4cxEwMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYyd/bDQCAx6SlebsDAM2ImRgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACN5PMScO3dOTz75pGJiYhQcHKxrrrlG8+fPV11dnVXjcrmUlpamqKgoBQcHKzExUfv27XN7nurqaiUnJ6tTp04KCQnRqFGjdOzYMU+3CwAADOXxEPPcc8/ppZdeUlZWlvbv368FCxbo+eef1+LFi62aBQsWaOHChcrKytKOHTvkcDg0bNgwnTp1yqpJSUnRunXrtHbtWuXn56uyslIjR45UbW2tp1sGAAAG8vjF7rZu3aq77rpLd9xxhySpa9eueu211/T+++9L+nYWZtGiRZo7d65Gjx4tScrOzlZkZKTWrFmjyZMny+l0avny5Vq1apWGDh0qSVq9erWio6O1ZcsWjRgxwtNtAwAAw3h8Juamm27SW2+9pY8//liStHv3buXn5+v222+XJBUXF6u0tFTDhw+3tgkKCtLgwYNVUFAgSSosLNTZs2fdaqKiohQXF2fVAACA1s3jMzGzZ8+W0+nUtddeKz8/P9XW1uq3v/2t/vVf/1WSVFpaKkmKjIx02y4yMlKHDx+2agIDA9WxY8d6Nee3v1B1dbWqq6ut5YqKCo+9JwAA4Hs8PhPz+uuva/Xq1VqzZo127typ7Oxs/e53v1N2drZbnc1mc1t2uVz1xi50uZqMjAzZ7XbrER0d/cPeCAAA8GkeDzG//vWv9cQTT+j+++9Xr169NH78eD3++OPKyMiQJDkcDkmqN6NSVlZmzc44HA7V1NSovLz8kjUXmjNnjpxOp/U4evSop98aAADwIR4PMWfOnFGbNu5P6+fnZ51iHRMTI4fDoZycHGt9TU2N8vLyNHDgQElSfHy8AgIC3GpKSkq0d+9eq+ZCQUFBat++vdsDAAC0XB4/JubOO+/Ub3/7W3Xp0kU9e/bUrl27tHDhQj388MOSvt2NlJKSovT0dMXGxio2Nlbp6elq166dxo4dK0my2+2aOHGiZsyYofDwcIWFhWnmzJnq1auXdbYSAABo3TweYhYvXqx58+YpKSlJZWVlioqK0uTJk/XUU09ZNbNmzVJVVZWSkpJUXl6uhIQEbd68WaGhoVZNZmam/P39NWbMGFVVVWnIkCFauXKl/Pz8PN0yAAAwkM3lcrm83URTqKiokN1ul9PpZNcSvC4tzdsdmKnBPzd+0J7HzxTNrCHf39w7CQAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABG8vgNIIGWjlvJAIBvYCYGAAAYiRADAACMRIgBAABGIsQAAAAjcWAvAODSGnskO0fAoxkwEwMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYyd/bDQDAhRJz0779Q5o3uwDg65iJAQAARiLEAAAAI7E7CYDPys1t+DaJiZ7uAoCvYiYGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEhNEmKOHz+uBx54QOHh4WrXrp369OmjwsJCa73L5VJaWpqioqIUHBysxMRE7du3z+05qqurlZycrE6dOikkJESjRo3SsWPHmqJdAABgII+HmPLycg0aNEgBAQH661//qg8//FAvvPCCOnToYNUsWLBACxcuVFZWlnbs2CGHw6Fhw4bp1KlTVk1KSorWrVuntWvXKj8/X5WVlRo5cqRqa2s93TIAADCQv6ef8LnnnlN0dLRWrFhhjXXt2tX6s8vl0qJFizR37lyNHj1akpSdna3IyEitWbNGkydPltPp1PLly7Vq1SoNHTpUkrR69WpFR0dry5YtGjFihKfbBgAAhvH4TMyGDRvUv39/3XvvvYqIiFDfvn31yiuvWOuLi4tVWlqq4cOHW2NBQUEaPHiwCgoKJEmFhYU6e/asW01UVJTi4uKsmgtVV1eroqLC7QEAAFouj4eYTz/9VEuXLlVsbKz+9re/acqUKZo+fbr++7//W5JUWloqSYqMjHTbLjIy0lpXWlqqwMBAdezY8ZI1F8rIyJDdbrce0dHRnn5rAADAh3g8xNTV1alfv35KT09X3759NXnyZE2aNElLly51q7PZbG7LLper3tiFLlczZ84cOZ1O63H06NEf9kYAAIBP83iI6dy5s3r06OE21r17dx05ckSS5HA4JKnejEpZWZk1O+NwOFRTU6Py8vJL1lwoKChI7du3d3sAAICWy+MhZtCgQTpw4IDb2Mcff6yrr75akhQTEyOHw6GcnBxrfU1NjfLy8jRw4EBJUnx8vAICAtxqSkpKtHfvXqsGAAC0bh4/O+nxxx/XwIEDlZ6erjFjxmj79u1atmyZli1bJunb3UgpKSlKT09XbGysYmNjlZ6ernbt2mns2LGSJLvdrokTJ2rGjBkKDw9XWFiYZs6cqV69ellnKwEAgNbN4yHm+uuv17p16zRnzhzNnz9fMTExWrRokcaNG2fVzJo1S1VVVUpKSlJ5ebkSEhK0efNmhYaGWjWZmZny9/fXmDFjVFVVpSFDhmjlypXy8/PzdMsAAMBANpfL5fJ2E02hoqJCdrtdTqeT42PgUWlp3u6g5UvMTWv8tokeawM/BL8oaKSGfH9z7yQAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCSP33YAMAkXFQUAczETAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASJydBADwvMae+scpg2gAZmIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIm7WANoUXJzG75NYqKnuwDQHJiJAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABG4oq9AJpMYm6at1sA0IIxEwMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARmryEJORkSGbzaaUlBRrzOVyKS0tTVFRUQoODlZiYqL27dvntl11dbWSk5PVqVMnhYSEaNSoUTp27FhTtwsAAAzRpCFmx44dWrZsmXr37u02vmDBAi1cuFBZWVnasWOHHA6Hhg0bplOnTlk1KSkpWrdundauXav8/HxVVlZq5MiRqq2tbcqWAQCAIZosxFRWVmrcuHF65ZVX1LFjR2vc5XJp0aJFmjt3rkaPHq24uDhlZ2frzJkzWrNmjSTJ6XRq+fLleuGFFzR06FD17dtXq1ev1p49e7Rly5amahkAABikyULM1KlTdccdd2jo0KFu48XFxSotLdXw4cOtsaCgIA0ePFgFBQWSpMLCQp09e9atJioqSnFxcVYNAABo3fyb4knXrl2rnTt3aseOHfXWlZaWSpIiIyPdxiMjI3X48GGrJjAw0G0G53zN+e0vVF1drerqamu5oqLiB70HAADg2zw+E3P06FE99thjWr16tdq2bXvJOpvN5rbscrnqjV3ocjUZGRmy2+3WIzo6uuHNAwAAY3h8JqawsFBlZWWKj4+3xmpra/Xuu+8qKytLBw4ckPTtbEvnzp2tmrKyMmt2xuFwqKamRuXl5W6zMWVlZRo4cOBFX3fOnDlKTU21lisqKggyrUxamrc7AAA0J4/PxAwZMkR79uxRUVGR9ejfv7/GjRunoqIiXXPNNXI4HMrJybG2qampUV5enhVQ4uPjFRAQ4FZTUlKivXv3XjLEBAUFqX379m4PAADQcnl8JiY0NFRxcXFuYyEhIQoPD7fGU1JSlJ6ertjYWMXGxio9PV3t2rXT2LFjJUl2u10TJ07UjBkzFB4errCwMM2cOVO9evWqd6AwAABonZrkwN7vMmvWLFVVVSkpKUnl5eVKSEjQ5s2bFRoaatVkZmbK399fY8aMUVVVlYYMGaKVK1fKz8/PGy0DAAAfY3O5XC5vN9EUKioqZLfb5XQ62bXUSnBMjO9JzE3zdgvfS2KitzuAhV/kVq8h39/cOwkAABjJK7uTAAC4qMbOxDCD0yoxEwMAAIxEiAEAAEYixAAAACMRYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkbgBJIBWLze34dskJnq6CwANxUwMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJ2w4AuKzE3DRvtwAAF8VMDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkTjFGj4pLc3bHQAAfB0zMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkj4eYjIwMXX/99QoNDVVERITuvvtuHThwwK3G5XIpLS1NUVFRCg4OVmJiovbt2+dWU11dreTkZHXq1EkhISEaNWqUjh075ul2AQCAoTweYvLy8jR16lRt27ZNOTk5OnfunIYPH67Tp09bNQsWLNDChQuVlZWlHTt2yOFwaNiwYTp16pRVk5KSonXr1mnt2rXKz89XZWWlRo4cqdraWk+3DAAADOTv6SfctGmT2/KKFSsUERGhwsJC/exnP5PL5dKiRYs0d+5cjR49WpKUnZ2tyMhIrVmzRpMnT5bT6dTy5cu1atUqDR06VJK0evVqRUdHa8uWLRoxYoSn2wYAAIbxeIi5kNPplCSFhYVJkoqLi1VaWqrhw4dbNUFBQRo8eLAKCgo0efJkFRYW6uzZs241UVFRiouLU0FBwUVDTHV1taqrq63lioqKpnpLAABfk5bmnW3hVU16YK/L5VJqaqpuuukmxcXFSZJKS0slSZGRkW61kZGR1rrS0lIFBgaqY8eOl6y5UEZGhux2u/WIjo729NsBAAA+pElDzLRp0/TBBx/otddeq7fOZrO5LbtcrnpjF7pczZw5c+R0Oq3H0aNHG984AADweU0WYpKTk7Vhwwa98847uuqqq6xxh8MhSfVmVMrKyqzZGYfDoZqaGpWXl1+y5kJBQUFq37692wMAALRcHj8mxuVyKTk5WevWrVNubq5iYmLc1sfExMjhcCgnJ0d9+/aVJNXU1CgvL0/PPfecJCk+Pl4BAQHKycnRmDFjJEklJSXau3evFixY4OmWgVYhMTfN2y0AgEd5PMRMnTpVa9as0ZtvvqnQ0FBrxsVutys4OFg2m00pKSlKT09XbGysYmNjlZ6ernbt2mns2LFW7cSJEzVjxgyFh4crLCxMM2fOVK9evayzlQDAm3JzG75NYqKnuwBaN4+HmKVLl0qSEi/4bV2xYoUmTJggSZo1a5aqqqqUlJSk8vJyJSQkaPPmzQoNDbXqMzMz5e/vrzFjxqiqqkpDhgzRypUr5efn5+mWAQCAgWwul8vl7SaaQkVFhex2u5xOJ8fHGIgzHj2P3Unex0yMj+IfHJ/SkO9v7p0EAACMRIgBAABGavIr9gLM1AIAmgIzMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjESIAQAARuIUawBoJtxvCfAsZmIAAICRCDEAAMBIhBgAAGAkjokBALRujb03CvdU8TpmYgAAgJEIMQAAwEiEGAAAYCRCDAAAMBIhBgAAGIkQAwAAjMQp1mgQzigEAPgKZmIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEbiOjGAYRJz07zdAgD4BGZiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYibOTWjHuSA34vtzchm+TmOjpLgDfxEwMAAAwEjMxgJdwvRcA+GGYiQEAAEZiJgYAgMZo7IGFHJDoMczEAAAAIxFiAACAkQgxAADASIQYAABgJA7sBYAWhgvkobUgxLQQHOwOAIbgrCaPYXcSAAAwEiEGAAAYiRADAACMxDExwA/EPZAAwDuYiQEAAEayuVwul7ebuJwlS5bo+eefV0lJiXr27KlFixbp5ptv/s7tKioqZLfb5XQ61b59+2bo1HM4AN07mFEBGobTsg1h2JdKQ76/fXom5vXXX1dKSormzp2rXbt26eabb9Ztt92mI0eOeLs1AADgZT49E5OQkKB+/fpp6dKl1lj37t119913KyMj47Lb+spMjGEB2HjMpgDNh5kYQxj2RdSQ72+fPbC3pqZGhYWFeuKJJ9zGhw8froKCAq/0ZNjfAwBoUo25MnBzIWC1Dj4bYr744gvV1tYqMjLSbTwyMlKlpaX16qurq1VdXW0tO51OSVJaWoWCgpq2V5Pc9PfLz2B5Wv7Ncxq1XWP7PN2orQC0NBXV313Tasxp3L/DXjFnjioqKiRJ32dHkc+GmPNsNpvbssvlqjcmSRkZGXrmmWfqjWdmRjdZb/ge/vHv3u4AQGv0D283gEb59///nXHq1CnZ7fbLlvtsiOnUqZP8/PzqzbqUlZXVm52RpDlz5ig1NdVarqur01dffaXw8PCLhh5TVFRUKDo6WkePHjXuLKuWhs/Cd/BZ+A4+C9/SEj4Pl8ulU6dOKSoq6jtrfTbEBAYGKj4+Xjk5OfrFL35hjefk5Oiuu+6qVx8UFKSgC/YbdejQoanbbDbt27c39i9kS8Nn4Tv4LHwHn4VvMf3z+K4ZmPN8NsRIUmpqqsaPH6/+/ftrwIABWrZsmY4cOaIpU6Z4uzUAAOBlPh1i7rvvPn355ZeaP3++SkpKFBcXp40bN+rqq6/2dmsAAMDLfDrESFJSUpKSkpK83YbXBAUF6emnn663qwzNj8/Cd/BZ+A4+C9/S2j4Pn77YHQAAwKX49G0HAAAALoUQAwAAjESIAQAARiLEGKi6ulp9+vSRzWZTUVGRt9tpdT777DNNnDhRMTExCg4O1o9//GM9/fTTqqmp8XZrrcaSJUsUExOjtm3bKj4+Xn//+9+93VKrk5GRoeuvv16hoaGKiIjQ3XffrQMHDni7Lejbz8ZmsyklJcXbrTQ5QoyBZs2a9b2uZIim8dFHH6murk4vv/yy9u3bp8zMTL300kv6t3/7N2+31iq8/vrrSklJ0dy5c7Vr1y7dfPPNuu2223TkyBFvt9aq5OXlaerUqdq2bZtycnJ07tw5DR8+XKdPcwczb9qxY4eWLVum3r17e7uVZsHZSYb561//qtTUVL3xxhvq2bOndu3apT59+ni7rVbv+eef19KlS/Xpp596u5UWLyEhQf369dPSpUutse7du+vuu+9WRkbz3uAU/9/JkycVERGhvLw8/exnP/N2O61SZWWl+vXrpyVLlujZZ59Vnz59tGjRIm+31aSYiTHI559/rkmTJmnVqlVq166dt9vBP3E6nQoLC/N2Gy1eTU2NCgsLNXz4cLfx4cOHq6CgwEtdQfr2d0ASvwdeNHXqVN1xxx0aOnSot1tpNj5/sTt8y+VyacKECZoyZYr69++vzz77zNst4f988sknWrx4sV544QVvt9LiffHFF6qtra13E9jIyMh6N4tF83G5XEpNTdVNN92kuLg4b7fTKq1du1Y7d+7Ujh07vN1Ks2ImxsvS0tJks9ku+3j//fe1ePFiVVRUaM6cOd5uucX6vp/FPztx4oRuvfVW3XvvvXrkkUe81Hnrc+Gd6V0ul9F3qzfdtGnT9MEHH+i1117zdiut0tGjR/XYY49p9erVatu2rbfbaVYcE+NlX3zxhb744ovL1nTt2lX333+//vznP7v9Q11bWys/Pz+NGzdO2dnZTd1qi/d9P4vz/0icOHFCt9xyixISErRy5Uq1acP/CZpaTU2N2rVrp//5n/9xu7v9Y489pqKiIuXl5Xmxu9YpOTlZ69ev17vvvquYmBhvt9MqrV+/Xr/4xS/k5+dnjdXW1spms6lNmzaqrq52W9eSEGIMceTIEVVUVFjLJ06c0IgRI/THP/5RCQkJuuqqq7zYXetz/Phx3XLLLYqPj9fq1atb7D8QvighIUHx8fFasmSJNdajRw/dddddHNjbjFwul5KTk7Vu3Trl5uYqNjbW2y21WqdOndLhw4fdxn75y1/q2muv1ezZs1v0Lj6OiTFEly5d3JavuOIKSdKPf/xjAkwzO3HihBITE9WlSxf97ne/08mTJ611DofDi521DqmpqRo/frz69++vAQMGaNmyZTpy5IimTJni7dZalalTp2rNmjV68803FRoaah2TZLfbFRwc7OXuWpfQ0NB6QSUkJETh4eEtOsBIhBigwTZv3qxDhw7p0KFD9QIkE5tN77777tOXX36p+fPnq6SkRHFxcdq4caOuvvpqb7fWqpw/xT0xMdFtfMWKFZowYULzN4RWid1JAADASByJCAAAjESIAQAARiLEAAAAIxFiAACAkQgxAADASIQYAABgJEIMAAAwEiEGAAAYiRADAACMRIgBAABGIsQA8Gmff/65bDabXnzxRfXt21dt27ZVz549lZ+f7+3WAHgZIQaAT9u1a5ckacmSJcrMzNTu3bvVtWtXjRs3TnV1dV7uDoA3cRdrAD5t9+7dCggI0KZNmxQTEyNJmj9/vvr376/jx48rOjrayx0C8BZmYgD4tKKiIo0ePdoKMJIUFBTkxY4A+ApCDACfVlRUpD59+riN7dy5U506ddKVV16phIQEvf/++5Kkhx56SEuXLvVClwC8gd1JAHxWVVWVDh48qNraWmusrq5OL774oh566CG1adNG8+bNU3p6ugYNGqQrrrhCv/rVr7zYMYDmZHO5XC5vNwEAF7N9+3YNGjRIP/nJT/Rf//Vf6tChg5566int3LlThYWF6tChgySpT58+ioiI0MaNG+Xvz//NgNaC3UkAfFZRUZGuvfZaPfnkk7rnnnvUv39/tWnTRlu3brUCzPbt2/X111+rQ4cOBBiglSHEAPBZu3fvVq9evTRu3DgdP35cp0+f1uuvv66IiAhJ0vHjx/XII4/onXfe0cGDB7V//34vdwygORFiAPisoqIi9e7d+6LrqqqqdM899ygrK0sxMTGaNWuWnn322WbuEIA3cUwMAJ/kcrlkt9u1du1a3X777d5uB4APIsQAAAAjsTsJAAAYiRADAACMRIgBAABGIsQAAAAjEWIAAICRCDEAAMBIhBgAAGAkQgwAADASIQYAABiJEAMAAIxEiAEAAEb6fw0sD81yt5o7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -130,10 +130,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:47.818633Z", - "iopub.status.busy": "2024-01-10T15:12:47.818239Z", - "iopub.status.idle": "2024-01-10T15:12:47.821340Z", - "shell.execute_reply": "2024-01-10T15:12:47.820872Z" + "iopub.execute_input": "2024-02-06T01:09:39.929799Z", + "iopub.status.busy": "2024-02-06T01:09:39.929628Z", + "iopub.status.idle": "2024-02-06T01:09:39.932920Z", + "shell.execute_reply": "2024-02-06T01:09:39.932526Z" } }, "outputs": [], @@ -149,16 +149,16 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:47.823192Z", - "iopub.status.busy": "2024-01-10T15:12:47.822800Z", - "iopub.status.idle": "2024-01-10T15:12:48.245370Z", - "shell.execute_reply": "2024-01-10T15:12:48.244847Z" + "iopub.execute_input": "2024-02-06T01:09:39.934534Z", + "iopub.status.busy": "2024-02-06T01:09:39.934347Z", + "iopub.status.idle": "2024-02-06T01:09:40.173395Z", + "shell.execute_reply": "2024-02-06T01:09:40.172888Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAIiCAYAAACJywLeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrv0lEQVR4nO3deZxO9f//8ec1+2J2ZrOMwYQM2SJbRrasH5UkvkKUsiXJEmVIRIUQ2WJKok0fshNSVHYGKftuxDS2McPM+f3hM9dvLrPjuAyP++123W6uc97nnNc51zWXa57zPu+3xTAMQwAAAAAAAMAd5mDvAgAAAAAAAHB/IngCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHjKx2bPni2LxWJ9ODk5qUiRIurcubNOnDhh7/Ju2Z49exQdHa3Dhw9nWNepUycVL178rteUF+fPn1fbtm0VGBgoi8WiVq1a2buk2zJy5Ej98MMPd2x/ae/bzZs33/F9ZvaeuResXbtWFotFa9eutVsNUVFRioqKsll2+PBhNWvWTP7+/rJYLOrTp48OHz4si8Wi2bNn37Fj3wvnDwDA3XTz93Q3NzcFBwerXr16GjVqlOLi4mzaR0dHy2Kx5OkYV65cUXR0dJ7/f83sWMWLF1fz5s3ztJ+czJ07V+PHj890ncViUXR09B09HoB7l5O9C8DtmzVrlsqUKaPExET9/PPPGjVqlNatW6ddu3bJ09PT3uXl2Z49ezRs2DBFRUVlCJnefvttvfbaa/YpLJfeffddLViwQJ999plKliwpf39/e5d0W0aOHKnWrVvf0wFas2bNtHHjRoWEhNi7lHvW5MmTMyx7/fXX9fvvv+uzzz5TcHCwQkJCFBwcrI0bN6pkyZJ2qBIAgPtL2vf0a9euKS4uTr/88otGjx6tDz/8UPPnz1eDBg0kSV27dtWTTz6Zp31fuXJFw4YNk6QMf1zKzq0c61bMnTtXsbGx6tOnT4Z1GzduVJEiRUyvAcC9geDpPhAZGamqVatKkurVq6eUlBS9++67+uGHH9S+fftMt7ly5Yo8PDzuZpk5unbtWo5/6ckPvwzHxsaqZMmSWV573HmFChVSoUKF7F3GPe3hhx/OsCw2NlbVqlXLECo+9thjd6kqAADub+m/p0vSM888o9dff121a9fW008/rb///ltBQUEqUqSI6UFM2vf/u3GsnPBdA3iwcKvdfSjtg/zIkSOSbtyeVqBAAe3atUuNGjWSl5eX6tevL+nGbWHdu3dX4cKF5eLiohIlSmjw4MFKSkqy2afFYlHPnj01depUPfTQQ3J1ddXDDz+sefPmZTh+bGys/vOf/8jPz09ubm6qWLGiYmJibNqk3XrzxRdf6I033lDhwoXl6uqqGTNm6Nlnn5V0I0RL656cdttPZrfaXb16VYMGDVJ4eLhcXFxUuHBh9ejRQ//++69Nu7QuxMuWLVPlypXl7u6uMmXK6LPPPsvVdc3pWqXdorRq1Srt3bvXWntO3Z/nz5+vGjVqyNPTUwUKFFDjxo21bds26/rx48fLYrFo//79GbYdMGCAXFxc9M8//1iXrVq1SvXr15e3t7c8PDxUq1YtrV692ma7tC7Wu3fv1vPPPy8fHx8FBQXpxRdfVEJCgrWdxWLR5cuXFRMTYz2ftL+oXblyRf369VN4eLjc3Nzk7++vqlWr6quvvsrV9YyPj1fnzp3l7+8vT09PtWjRQgcPHszQLjfnk9mtdlFRUYqMjNSmTZtUp04deXh4qESJEnr//feVmppqs/3u3bvVqFEjeXh4qFChQurRo4cWL16c69vD/vzzTz3//PMKCgqSq6urihUrphdeeCHDz1F6mzdvVtu2bVW8eHG5u7urePHiev75560/t2lyc50PHjyotm3bKjQ0VK6urgoKClL9+vW1fft2m+uR9tql/fzt379fS5cutb62hw8fzvJWu7///lvt2rVTYGCgXF1dVbZsWX3yySeZXosnn3xSHh4eKliwoF555RVdvHgxx2soSfv371fnzp0VEREhDw8PFS5cWC1atNCuXbts2qWmpmrEiBEqXbq03N3d5evrqwoVKujjjz/O1XEAALCnYsWK6aOPPtLFixc1depUSZnf/vbTTz8pKipKAQEBcnd3V7FixfTMM8/oypUrOnz4sPWPbsOGDbP+X96pUyeb/W3dulWtW7eWn5+f9Q+42d3Wt2DBAlWoUEFubm4qUaKEJkyYYLM+q+ENbr6tPioqSosXL9aRI0dsbjlMk9mtdnn5HeKrr77S4MGDFRoaKm9vbzVo0ED79u2zabtt2zY1b97c+t0lNDRUzZo10/HjxzM9dwDmocfTfSgtoEjfAyQ5OVktW7ZUt27dNHDgQF2/fl1Xr15VvXr1dODAAQ0bNkwVKlTQ+vXrNWrUKG3fvl2LFy+22e/ChQu1Zs0aDR8+XJ6enpo8ebKef/55OTk5qXXr1pKkffv2qWbNmgoMDNSECRMUEBCgOXPmqFOnTjpz5oz69+9vs89BgwapRo0a+vTTT+Xg4KCqVasqPj5eb731lj755BNVrlxZUtY9nQzDUKtWrbR69WoNGjRIderU0c6dOzV06FBt3LhRGzdulKurq7X9jh079MYbb2jgwIEKCgrSjBkz1KVLF5UqVUqPP/54ltc0N9cqJCREGzduVPfu3ZWQkKAvv/xSUuY9TdKMHDlSQ4YMUefOnTVkyBAlJyfrgw8+UJ06dfTHH3/o4Ycf1v/93/9pwIABmj17tkaMGGHdNiUlRXPmzFGLFi1UsGBBSdKcOXP0wgsv6D//+Y9iYmLk7OysqVOnqnHjxlq+fLk1cEzzzDPP6LnnnlOXLl20a9cuDRo0SJKsYdzGjRv1xBNPqF69enr77bclSd7e3pKkvn376osvvtCIESNUqVIlXb58WbGxsTp37lyW55tely5d1LBhQ82dO1fHjh3TkCFDFBUVpZ07d8rX1/eWzudmp0+fVvv27fXGG29o6NChWrBggQYNGqTQ0FC98MILkqRTp06pbt268vT01JQpUxQYGKivvvpKPXv2zNV57NixQ7Vr11bBggU1fPhwRURE6NSpU1q4cKGSk5Nt3n/pHT58WKVLl1bbtm3l7++vU6dOacqUKXr00Ue1Z88e62uam+vctGlTpaSkaMyYMSpWrJj++ecfbdiwIUP4mqZy5crauHGjnnrqKZUsWVIffvihJCkkJESnTp3K0H7Pnj2qWbOm9YtycHCwli9frt69e+uff/7R0KFDJUlnzpxR3bp15ezsrMmTJysoKEhffvllrq/lyZMnFRAQoPfff1+FChXS+fPnFRMTo+rVq2vbtm0qXbq0JGnMmDGKjo7WkCFD9Pjjj+vatWv6888/szxfAADuNU2bNpWjo6N+/vnnTNenjcNYp04dffbZZ/L19dWJEye0bNkyJScnKyQkRMuWLdOTTz6pLl26qGvXrpKUoQf4008/rbZt2+qVV17R5cuXs61p+/bt6tOnj6KjoxUcHKwvv/xSr732mpKTk9WvX788nd/kyZP18ssv68CBA1qwYEGO7fP6O8Rbb72lWrVqacaMGbpw4YIGDBigFi1aaO/evXJ0dNTly5fVsGFDhYeH65NPPlFQUJBOnz6tNWvW5PoPYgDuIAP51qxZswxJxm+//WZcu3bNuHjxovHjjz8ahQoVMry8vIzTp08bhmEYHTt2NCQZn332mc32n376qSHJ+Prrr22Wjx492pBkrFixwrpMkuHu7m7dp2EYxvXr140yZcoYpUqVsi5r27at4erqahw9etRmn02aNDE8PDyMf//91zAMw1izZo0hyXj88ccznNc333xjSDLWrFmTYV3Hjh2NsLAw6/Nly5YZkowxY8bYtJs/f74hyZg2bZp1WVhYmOHm5mYcOXLEuiwxMdHw9/c3unXrluFY6eXlWtWtW9coV65ctvszDMM4evSo4eTkZPTq1ctm+cWLF43g4GCjTZs21mVPP/20UaRIESMlJcW6bMmSJYYkY9GiRYZhGMbly5cNf39/o0WLFjb7S0lJMR555BGjWrVq1mVDhw7N9Lp1797dcHNzM1JTU63LPD09jY4dO2aoPzIy0mjVqlWO53mztPftU089ZbP8119/NSQZI0aMyPP5pO3z0KFD1mV169Y1JBm///67zfYPP/yw0bhxY+vzN99807BYLMbu3btt2jVu3DjL92F6TzzxhOHr62vExcVl2Sbt/Z7dvq5fv25cunTJ8PT0ND7++GPr8pyu8z///GNIMsaPH59tnXXr1jXq1q1rsywsLMxo1qyZzbJDhw4ZkoxZs2ZZlzVu3NgoUqSIkZCQYNO2Z8+ehpubm3H+/HnDMAxjwIABhsViMbZv327TrmHDhrm6lje7fv26kZycbERERBivv/66dXnz5s2NihUr5mlfAADcTWnfTTZt2pRlm6CgIKNs2bKGYfz/72Zpvv32W0NShv9T0zt79qwhyRg6dGiGdWn7e+edd7Jcl15YWFiW/4d7e3sbly9ftjmv9N+5DCPz7zrNmjWz+d6e3s115/V3iKZNm9q0+/rrrw1JxsaNGw3DMIzNmzcbkowffvgh0+MDuLu41e4+8Nhjj8nZ2VleXl5q3ry5goODtXTpUgUFBdm0e+aZZ2ye//TTT/L09LT2VkqT1kX35tuZ6tevb7NPR0dHPffcc9q/f7+1y+pPP/2k+vXrq2jRohn2eeXKFW3cuDHbmvLqp59+sqk5zbPPPitPT88M51CxYkUVK1bM+tzNzU0PPfRQhtubMjtOXq5VbixfvlzXr1/XCy+8oOvXr1sfbm5uqlu3rs0tXp07d9bx48e1atUq67JZs2YpODhYTZo0kSRt2LBB58+fV8eOHW32l5qaqieffFKbNm3K8Jeuli1b2jyvUKGCrl69mmGmlcxUq1ZNS5cu1cCBA7V27VolJibm6fxvHgOrZs2aCgsL05o1a275fG4WHBysatWqZTjH9K/3unXrFBkZmaFn2vPPP5/jOVy5ckXr1q1TmzZt8jzG1KVLlzRgwACVKlVKTk5OcnJyUoECBXT58mXt3bvX2i6n6+zv76+SJUvqgw8+0NixY7Vt27YMtxLejqtXr2r16tV66qmn5OHhYfNaNG3aVFevXtVvv/0mSVqzZo3KlSunRx55xGYf7dq1y9Wxrl+/rpEjR+rhhx+Wi4uLnJyc5OLior///jvDNdmxY4e6d++u5cuX68KFC3fsfAEAuFsMw8hyXcWKFeXi4qKXX35ZMTExmQ5HkBt5+a6d1f/hFy5c0NatW2/p+LmV198hMvsOK/3/oUZKlSolPz8/DRgwQJ9++qn27NljYvUAckLwdB/4/PPPtWnTJm3btk0nT57Uzp07VatWLZs2Hh4e1luk0pw7d07BwcEZ7vEODAyUk5NThlumgoODMxw7bVla23PnzmU6s1hoaKhNuzS3OwvZuXPn5OTklOGXfovFouDg4AzHCwgIyLAPV1fXHEOTvF6r3Dhz5owk6dFHH5Wzs7PNY/78+TbjNjVp0kQhISGaNWuWpBvjIy1cuFAvvPCCHB0dbfbXunXrDPsbPXq0DMPQ+fPnbWq4+Xqk3RaWmxBpwoQJGjBggH744QfVq1dP/v7+atWqlf7+++9cnX9W76e0a3kr53Oz3Lze586dyxDSSsp02c3i4+OVkpJySwN0tmvXTpMmTVLXrl21fPly/fHHH9q0aZMKFSpkU19O19lisWj16tVq3LixxowZo8qVK6tQoULq3bv3HelKfu7cOV2/fl0TJ07M8Do0bdpUkqzv1bSfk5tltiwzffv21dtvv61WrVpp0aJF+v3337Vp0yY98sgjNtdk0KBB+vDDD/Xbb7+pSZMmCggIUP369bV58+bbPl8AAO6Gy5cv69y5c9bvyDcrWbKkVq1apcDAQPXo0UMlS5ZUyZIl8zyeYV6+a+fmu75Z8vo7RE7fYX18fLRu3TpVrFhRb731lsqVK6fQ0FANHTpU165dM+MUAGSDMZ7uA2XLlrWZLSMzmQ0gGBAQoN9//12GYdisj4uL0/Xr161jzKQ5ffp0hn2kLUv78A8ICMh0jJiTJ09KUoZ95jSLXU4CAgJ0/fp1nT171iZ8MgxDp0+f1qOPPnpb+09/nLxcq9xI2+bbb79VWFhYtm0dHR3VoUMHTZgwQf/++6/mzp2rpKQkde7cOcP+Jk6cmOVMIbkJU3LL09NTw4YN07Bhw3TmzBlrr5wWLVrozz//zHH7rN5PpUqVknT3zicgIMAacuVU3838/f3l6OiY50EqExIS9OOPP2ro0KEaOHCgdXlSUlKGMC031zksLEwzZ86UJP3111/6+uuvFR0dreTkZH366ad5qu1mfn5+1vdfjx49Mm0THh4u6ca1zO5zIidpY3qNHDnSZvk///xjHfdLkpycnNS3b1/17dtX//77r1atWqW33npLjRs31rFjx+65GTsBALjZ4sWLlZKSYp34IzN16tRRnTp1lJKSos2bN2vixInq06ePgoKC1LZt21wdJy/ftXPzXd/NzU2SMkygkv4Pprcir79D5Eb58uU1b948GYahnTt3avbs2Ro+fLjc3d1tvn8BMB89nh5g9evX16VLl/TDDz/YLP/888+t69NbvXq1zS/oKSkpmj9/vkqWLGnt8VG/fn399NNP1v8k0u/Tw8MjV1On5qXXTVqNc+bMsVn+3Xff6fLlyzkOPp1beb1WudG4cWM5OTnpwIEDqlq1aqaP9Dp37qyrV6/qq6++0uzZs1WjRg2VKVPGur5WrVry9fXVnj17styfi4tLnuvMTY+woKAgderUSc8//7z27dunK1eu5LjftMHX02zYsEFHjhyxfgEz63xuVrduXcXGxmbogp3ZjI03c3d3V926dfXNN9/k6QuXxWKRYRgZBh6fMWOGUlJSstwuN9f5oYce0pAhQ1S+fPk70i3ew8ND9erV07Zt21ShQoVMX4e0L6P16tXT7t27tWPHDpt9zJ07N1fHslgsGa7J4sWLdeLEiSy38fX1VevWrdWjRw+dP38+wyw7AADca44ePap+/frJx8dH3bp1y7G9o6Ojqlevbp1NNu3/97x8Z86NrP4P9/Lysk74kza79M6dO23aLVy4MMP+cvMdMs2d+B0iKxaLRY888ojGjRsnX19f028bBJARPZ4eYC+88II++eQTdezYUYcPH1b58uX1yy+/aOTIkWratKkaNGhg075gwYJ64okn9Pbbb1tntfvzzz9tfkEfOnSofvzxR9WrV0/vvPOO/P399eWXX2rx4sUaM2aMfHx8cqwrMjJSkjRt2jR5eXnJzc1N4eHhmd421bBhQzVu3FgDBgzQhQsXVKtWLeusdpUqVVKHDh1u8yrdkNdrlRvFixfX8OHDNXjwYB08eFBPPvmk/Pz8dObMGf3xxx/Wni5pypQpoxo1amjUqFE6duyYpk2bZrO/AgUKaOLEierYsaPOnz+v1q1bKzAwUGfPntWOHTt09uxZTZkyJc91li9fXmvXrtWiRYsUEhIiLy8vlS5dWtWrV1fz5s1VoUIF+fn5ae/evfriiy9Uo0aNXPU42bx5s7p27apnn31Wx44d0+DBg1W4cGF1797d1PO5WZ8+ffTZZ5+pSZMmGj58uIKCgjR37lxrbyIHh+zz+bFjx6p27dqqXr26Bg4cqFKlSunMmTNauHChpk6dKi8vrwzbeHt76/HHH9cHH3ygggULqnjx4lq3bp1mzpxp07NHUo7XeefOnerZs6eeffZZRUREyMXFRT/99JN27tx5x/6a9/HHH6t27dqqU6eOXn31VRUvXlwXL17U/v37tWjRIutYa2nXslmzZhoxYoR1Vrvc9ICTpObNm2v27NkqU6aMKlSooC1btuiDDz7IcCtjixYtFBkZqapVq6pQoUI6cuSIxo8fr7CwMEVERNyRcwYA4E6IjY21jo0YFxen9evXa9asWXJ0dNSCBQuyHCPy008/1U8//aRmzZqpWLFiunr1qnXW4bTvnV5eXgoLC9N///tf1a9fX/7+/tbvFbciNDRULVu2VHR0tEJCQjRnzhytXLlSo0ePtn63e/TRR1W6dGn169dP169fl5+fnxYsWKBffvklw/7Kly+v77//XlOmTFGVKlWsM1hn5k78DpHejz/+qMmTJ6tVq1YqUaKEDMPQ999/r3///VcNGzbM+8UBcHvsNqw5bltuZsswjBszwXl6ema67ty5c8Yrr7xihISEGE5OTkZYWJgxaNAg4+rVqzbtJBk9evQwJk+ebJQsWdJwdnY2ypQpY3z55ZcZ9rlr1y6jRYsWho+Pj+Hi4mI88sgjNjNkGcb/n5Him2++ybSu8ePHG+Hh4Yajo6PNDFs3z2pnGDdmphswYIARFhZmODs7GyEhIcarr75qxMfH27TLbAYvw8h8tq/M5PZa5XZWuzQ//PCDUa9ePcPb29twdXU1wsLCjNatWxurVq3K0HbatGnWGQZvnmEszbp164xmzZoZ/v7+hrOzs1G4cGGjWbNmNtc6bTaTs2fP2myb2Uwl27dvN2rVqmV4eHgYkqzXauDAgUbVqlUNPz8/w9XV1ShRooTx+uuvG//880+255t2jBUrVhgdOnQwfH19DXd3d6Np06bG33//fUvnk9Wsdpm9Dpm9h2JjY40GDRoYbm5uhr+/v9GlSxcjJibGkGTs2LEj2/MxDMPYs2eP8eyzzxoBAQGGi4uLUaxYMaNTp07W90ZmM70cP37ceOaZZww/Pz/Dy8vLePLJJ43Y2FgjLCzMZhbBnK7zmTNnjE6dOhllypQxPD09jQIFChgVKlQwxo0bZ1y/ft3metzqrHZpy1988UWjcOHChrOzs1GoUCGjZs2a1lkI01+Lhg0b2lzL//73v7ma1S4+Pt7o0qWLERgYaHh4eBi1a9c21q9fn6H2jz76yKhZs6ZRsGBB6/Xu0qWLcfjw4Wz3DwDA3ZL23STt4eLiYgQGBhp169Y1Ro4cmWE23Jtnmtu4caPx1FNPGWFhYYarq6sREBBg1K1b11i4cKHNdqtWrTIqVapkuLq6GpKs3yGy+q6X2bEM4/9/J/j222+NcuXKGS4uLkbx4sWNsWPHZtj+r7/+Mho1amR4e3sbhQoVMnr16mUsXrw4w//158+fN1q3bm34+voaFovF5pjKZDa+2/kd4ubvL3/++afx/PPPGyVLljTc3d0NHx8fo1q1asbs2bMznA8A81kMI5vpFID/sVgs6tGjhyZNmmTvUoC74uWXX9ZXX32lc+fO3ZFb+gAAAADgQcStdgAeeMOHD1doaKhKlCihS5cu6ccff9SMGTM0ZMgQQicAAAAAuA0ETwAeeM7Ozvrggw90/PhxXb9+XRERERo7dqxee+01e5cGAAAAAPkat9oBAAAAAADAFNlP1wQAAAAAAADcIoInAAAAAAAAmILgCQAAAAAAAKZgcHEAAIAHWGpqqk6ePCkvLy9ZLBZ7lwMAAPIBwzB08eJFhYaGysEh+z5NBE8AAAAPsJMnT6po0aL2LgMAAORDx44dU5EiRbJtQ/AEAADwAPPy8pJ044ujt7e3nasBAAD5wYULF1S0aFHr94jsEDwBAAA8wNJur/P29iZ4AgAAeZKb2/QZXBwAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYArGeAIAAAAAAJKklJQUXbt2zd5l4B7g6OgoJyenXI3jlB2CJwAAAAAAoEuXLun48eMyDMPepeAe4eHhoZCQELm4uNzyPgieAAAAAAB4wKWkpOj48ePy8PBQoUKFbruXC/I3wzCUnJyss2fP6tChQ4qIiJCDw62N1kTwBAAAAADAA+7atWsyDEOFChWSu7u7vcvBPcDd3V3Ozs46cuSIkpOT5ebmdkv7YXBxAAAAAAAgSfR0go1b7eVks487UAcAAAAAAACQAcETAAAAAAAATMEYTwAAAAAAIFMzomPv6vG6Rkfe1ePl1eHDhxUeHq5t27apYsWK9i4nX6DHEwAAAAAAgB0cPnxYFotF27dvt3cppiF4AgAAAAAAuIclJyfbu4RbRvAEAAAAAADypWXLlql27dry9fVVQECAmjdvrgMHDljXJycnq2fPngoJCZGbm5uKFy+uUaNGZbvPWbNmqWzZsnJzc1OZMmU0efLkbNvv2bNHTZs2VYECBRQUFKQOHTron3/+sa5PTU3V6NGjVapUKbm6uqpYsWJ67733JEnh4eGSpEqVKslisSgqKkqS1KlTJ7Vq1UqjRo1SaGioHnroIUnSrl279MQTT8jd3V0BAQF6+eWXdenSJeux0rb78MMPFRISooCAAPXo0UPXrl2ztpk8ebIiIiLk5uamoKAgtW7dOhdX+tYRPAEAAAAAgHzp8uXL6tu3rzZt2qTVq1fLwcFBTz31lFJTUyVJEyZM0MKFC/X1119r3759mjNnjooXL57l/qZPn67Bgwfrvffe0969ezVy5Ei9/fbbiomJybT9qVOnVLduXVWsWFGbN2/WsmXLdObMGbVp08baZtCgQRo9erTefvtt7dmzR3PnzlVQUJAk6Y8//pAkrVq1SqdOndL3339v3W716tXau3evVq5cqR9//FFXrlzRk08+KT8/P23atEnffPONVq1apZ49e9rUtGbNGh04cEBr1qxRTEyMZs+erdmzZ0uSNm/erN69e2v48OHat2+fli1bpscffzzP1z0vGFwcAAAAAADkS88884zN85kzZyowMFB79uxRZGSkjh49qoiICNWuXVsWi0VhYWHZ7u/dd9/VRx99pKefflrSjR5Je/bs0dSpU9WxY8cM7adMmaLKlStr5MiR1mWfffaZihYtqr/++kshISH6+OOPNWnSJOv2JUuWVO3atSVJhQoVkiQFBAQoODjYZt+enp6aMWOGXFxcJN0IxRITE/X555/L09NTkjRp0iS1aNFCo0ePtoZZfn5+mjRpkhwdHVWmTBk1a9ZMq1ev1ksvvaSjR4/K09NTzZs3l5eXl8LCwlSpUqXcXexbRI8nAAAAAACQLx04cEDt2rVTiRIl5O3tbb117ejRo5Ju3Hq2fft2lS5dWr1799aKFSuy3NfZs2d17NgxdenSRQUKFLA+RowYYXP7XnpbtmzRmjVrbNqXKVPGWtvevXuVlJSk+vXr5/ncypcvbw2dJGnv3r165JFHrKGTJNWqVUupqanat2+fdVm5cuXk6OhofR4SEqK4uDhJUsOGDRUWFqYSJUqoQ4cO+vLLL3XlypU815YX9HgCAAAAAAD5UosWLVS0aFFNnz5doaGhSk1NVWRkpHUw7sqVK+vQoUNaunSpVq1apTZt2qhBgwb69ttvM+wr7fa86dOnq3r16jbr0gc5N2+T1uPoZiEhITp48OAtn1v6gEmSDMOQxWLJtG365c7OzhnWpZ2bl5eXtm7dqrVr12rFihV65513FB0drU2bNsnX1/eWa80OPZ4AAAAAAEC+c+7cOe3du1dDhgxR/fr1VbZsWcXHx2do5+3treeee07Tp0/X/Pnz9d133+n8+fMZ2gUFBalw4cI6ePCgSpUqZfNI60l1s8qVK2v37t0qXrx4hm08PT0VEREhd3d3rV69OtPt03o0paSk5Hi+Dz/8sLZv367Lly9bl/36669ycHCwDj6eG05OTmrQoIHGjBmjnTt36vDhw/rpp59yvX1e5b7HU3S0aUUgH+L9gPR4PyA93g+Afv75Z33wwQfasmWLTp06pQULFqhVq1bW9YZhaNiwYZo2bZri4+NVvXp1ffLJJypXrpy1TVJSkvr166evvvpKiYmJql+/viZPnqwiRYpY28THx6t3795auHChJKlly5aaOHGiaX+xBJB7M6Jjb3sfXaMj70AlwP3Lz89PAQEBmjZtmkJCQnT06FENHDjQps24ceMUEhKiihUrysHBQd98842Cg4Oz/L8yOjpavXv3lre3t5o0aaKkpCRt3rxZ8fHx6tu3b4b2PXr00PTp0/X888/rzTffVMGCBbV//37NmzdP06dPl5ubmwYMGKD+/fvLxcVFtWrV0tmzZ7V792516dJFgYGBcnd317Jly1SkSBG5ubnJx8cn09rat2+voUOHqmPHjoqOjtbZs2fVq1cvdejQwTq+U05+/PFHHTx4UI8//rj8/Py0ZMkSpaamqnTp0rna/lZwqx0AAMAddvnyZT3yyCPq3LlzhkFPJWnMmDEaO3asZs+erYceekgjRoxQw4YNtW/fPnl5eUmS+vTpo0WLFmnevHkKCAjQG2+8oebNm2vLli3W7v7t2rXT8ePHtWzZMknSyy+/rA4dOmjRokV372QBAPe1ezkAdXBw0Lx589S7d29FRkaqdOnSmjBhgqKioqxtChQooNGjR+vvv/+Wo6OjHn30US1ZskQODpnfANa1a1d5eHjogw8+UP/+/eXp6any5curT58+mbYPDQ3Vr7/+qgEDBqhx48ZKSkpSWFiYnnzySesx3n77bTk5Oemdd97RyZMnFRISoldeeUXSjd5HEyZM0PDhw/XOO++oTp06Wrt2babH8vDw0PLly/Xaa6/p0UcflYeHh5555hmNHTs219fM19dX33//vaKjo3X16lVFREToq6++svnj151mMQzDyFVL/oKN9Hg/ID3eD0iP9wNgw2Kx2PR4MgxDoaGh6tOnjwYMGCDpRu+moKAgjR49Wt26dVNCQoIKFSqkL774Qs8995wk6eTJkypatKiWLFmixo0ba+/evXr44Yf122+/Wceh+O2331SjRg39+eefuf7L5YULF+Tj46OEhAR5e3vf+QsAPKDo8YT85urVqzp06JDCw8Pl5uZm73Jwj8jqfZGX7w+M8QQAAHAXHTp0SKdPn1ajRo2sy1xdXVW3bl1t2LBB0o0Zcq5du2bTJjQ0VJGRkdY2GzdulI+Pj83gp4899ph8fHysbTKTlJSkCxcu2DwAAADMQvAEAABwF50+fVqSMozFEBQUZF13+vRpubi4yM/PL9s2gYGBGfYfGBhobZOZUaNGycfHx/ooWrTobZ0PAABAdgieAAAA7ODm6ZCzmyI5qzaZtc9pP4MGDVJCQoL1cezYsTxWDgAAkHsETwAAAHdRcHCwJGXolRQXF2ftBRUcHKzk5OQMU0Lf3ObMmTMZ9n/27NlsZ7ZxdXWVt7e3zQMAAMAszGoHAABwF4WHhys4OFgrV65UpUqVJEnJyclat26dRo8eLUmqUqWKnJ2dtXLlSrVp00aSdOrUKcXGxmrMmDGSpBo1aighIUF//PGHqlWrJkn6/ffflZCQoJo1a9rhzADg1sRGz7it7SOju96hSgCYgeAJAADgDrt06ZL2799vfX7o0CFt375d/v7+KlasmPr06aORI0cqIiJCERERGjlypDw8PNSuXTtJko+Pj7p06aI33nhDAQEB8vf3V79+/VS+fHk1aNBAklS2bFk9+eSTeumllzR16lRJ0ssvv6zmzZvnekY7AAAAsxE8AQAA3GGbN29WvXr1rM/79u0rSerYsaNmz56t/v37KzExUd27d1d8fLyqV6+uFStWyMvLy7rNuHHj5OTkpDZt2igxMVH169fX7Nmz5ejoaG3z5Zdfqnfv3tbZ71q2bKlJkybdpbMEAADIGcETAADAHRYVFSXDMLJcb7FYFB0drejo6CzbuLm5aeLEiZo4cWKWbfz9/TVnzpzbKRUAAMBUDC4OAAAAAAAAU9DjCQAAAAAAZOp2B3/Pq/t9sPjDhw8rPDxc27ZtU8WKFe1dzl1B8AQAAAAA6cyIjrV3CQDuU0WLFtWpU6dUsGBBSdLatWtVr149xcfHy9fX177FmYRb7QAAAAAAAO4CR0dHBQcHy8kpb/2AkpOTTarIfARPAAAAAAAgX1q2bJlq164tX19fBQQEqHnz5jpw4IB1fXJysnr27KmQkBC5ubmpePHiGjVqVJb769Spk1q1aqVhw4YpMDBQ3t7e6tatm03wk5SUpN69eyswMFBubm6qXbu2Nm3aZF0fHx+v9u3bq1ChQnJ3d1dERIRmzZol6catdhaLRdu3b9fhw4ets+D6+fnJYrGoU6dOkm5MVNKzZ0/17dtXBQsWVMOGDSVJ69atU7Vq1eTq6qqQkBANHDhQ169ftx47KipKvXv3Vv/+/eXv76/g4OAMk5lER0erWLFicnV1VWhoqHr37n1rFz+XuNUOAAAAAADkS5cvX1bfvn1Vvnx5Xb58We+8846eeuopbd++XQ4ODpowYYIWLlyor7/+WsWKFdOxY8d07NixbPe5evVqubm5ac2aNTp8+LA6d+6sggUL6r333pMk9e/fX999951iYmIUFhamMWPGqHHjxtq/f7/8/f319ttva8+ePVq6dKkKFiyo/fv3KzExMcNxihYtqu+++07PPPOM9u3bJ29vb7m7u1vXx8TE6NVXX9Wvv/4qwzB04sQJNW3aVJ06ddLnn3+uP//8Uy+99JLc3NxswqWYmBj17dtXv//+uzZu3KhOnTqpVq1aatiwob799luNGzdO8+bNU7ly5XT69Gnt2LHjzrwYWSB4AgAAAAAA+dIzzzxj83zmzJkKDAzUnj17FBkZqaNHjyoiIkK1a9eWxWJRWFhYjvt0cXHRZ599Jg8PD5UrV07Dhw/Xm2++qXfffVeJiYmaMmWKZs+erSZNmkiSpk+frpUrV2rmzJl68803dfToUVWqVElVq1aVJBUvXjzT4zg6Osrf31+SFBgYmGGMp1KlSmnMmDHW54MHD1bRokU1adIkWSwWlSlTRidPntSAAQP0zjvvyMHhxk1tFSpU0NChQyVJERERmjRpklavXq2GDRvq6NGjCg4OVoMGDeTs7KxixYqpWrVqOV/o28CtdgAAAAAAIF86cOCA2rVrpxIlSsjb21vh4eGSpKNHj0q6cevc9u3bVbp0afXu3VsrVqzIcZ+PPPKIPDw8rM9r1KihS5cu6dixYzpw4ICuXbumWrVqWdc7OzurWrVq2rt3ryTp1Vdf1bx581SxYkX1799fGzZsuKVzSwuu0uzdu1c1atSQxWKxLqtVq5YuXbqk48ePW5dVqFDBZruQkBDFxcVJkp599lklJiaqRIkSeumll7RgwQKbW/XMQI8nAAAAALgH3e7sel2jI+9QJcC9q0WLFipatKimT5+u0NBQpaamKjIy0jomU+XKlXXo0CEtXbpUq1atUps2bdSgQQN9++23eT6WxWKRYRjWf6dnGIZ1WZMmTXTkyBEtXrxYq1atUv369dWjRw99+OGHeTqep6dnlsdIv+zmepydnTPUnZqaKunG7X379u3TypUrtWrVKnXv3l0ffPCB1q1bl2G7O4UeTwAAAAAAIN85d+6c9u7dqyFDhqh+/foqW7as4uPjM7Tz9vbWc889p+nTp2v+/Pn67rvvdP78+Sz3u2PHDpsxmX777TcVKFBARYoUUalSpeTi4qJffvnFuv7atWvavHmzypYta11WqFAhderUSXPmzNH48eM1bdq0TI/l4uIiSUpJScnxfB9++GFt2LDBGjZJ0oYNG+Tl5aXChQvnuH0ad3d3tWzZUhMmTNDatWu1ceNG7dq1K9fb5xU9ngAAAAAAQL7j5+engIAATZs2TSEhITp69KgGDhxo02bcuHEKCQlRxYoV5eDgoG+++UbBwcEZxlNKLzk5WV26dNGQIUN05MgRDR06VD179pSDg4M8PT316quv6s0335S/v7+KFSumMWPG6MqVK+rSpYsk6Z133lGVKlVUrlw5JSUl6ccff7QJpdILCwuTxWLRjz/+qKZNm8rd3V0FChTItG337t01fvx49erVSz179tS+ffs0dOhQ9e3b1zq+U05mz56tlJQUVa9eXR4eHvriiy/k7u6eq7GvbhXBEwAAAAAg34qNnnFb20dGd71Dldyf7uXr4+DgoHnz5ql3796KjIxU6dKlNWHCBEVFRVnbFChQQKNHj9bff/8tR0dHPfroo1qyZEm2QU39+vUVERGhxx9/XElJSWrbtq3NrHHvv/++UlNT1aFDB128eFFVq1bV8uXL5efnJ+lGL6ZBgwbp8OHDcnd3V506dTRv3rxMj1W4cGENGzZMAwcOVOfOnfXCCy9o9uzZWbZdsmSJ3nzzTT3yyCPy9/e3BmS55evrq/fff199+/ZVSkqKypcvr0WLFikgICDX+8gri5G+j1Z20l1kgPcDbPB+QHq8H4B85cKFC/Lx8VFCQoK8vb3tXQ5wT7jdsZXuFflljKfbDY5u170crNxNV69e1aFDhxQeHi43Nzd7l2M3nTp10r///qsffvjB3qXcE7J6X+Tl+wNjPAEAAAAAAMAUBE8AAAAAAAAwBWM8AQAAAAAASFmOr4RbR/AEAAAA4L5yv4zRhLvjdsaYYnwoIGfcagcAAAAAACRJuZ1/DA+GO/F+IHgCAAAAAOAB5+joKElKTk62cyW4l1y5ckWS5OzsfMv74FY7AAAAAAAecE5OTvLw8NDZs2fl7OwsBwf6qTzIDMPQlStXFBcXJ19fX2sweSsIngAAAAAAeMBZLBaFhITo0KFDOnLkiL3LwT3C19dXwcHBt7UPgicAAAAAACAXFxdFRERwux0k3bi97nZ6OqUheAIAAAAAAJIkBwcHubm52bsM3Ee4aRMAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJjCyd4FAAAAAADyr9joGfYuAcA9jB5PAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTONm7AAAAAAAA8qPY6Bm3tX1kdNc7VAlw76LHEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMIWTvQsAAAAAANx5M6Jjb3sfXaMj70AlAB5k9HgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAMAOrl+/riFDhig8PFzu7u4qUaKEhg8frtTUVGsbwzAUHR2t0NBQubu7KyoqSrt377bZT1JSknr16qWCBQvK09NTLVu21PHjx+/26QAAAGTKKbcNoxVtYhnIb6LtXQAAAPnc6NGj9emnnyomJkblypXT5s2b1blzZ/n4+Oi1116TJI0ZM0Zjx47V7Nmz9dBDD2nEiBFq2LCh9u3bJy8vL0lSnz59tGjRIs2bN08BAQF644031Lx5c23ZskWOjo72PEUAAIDcB08AAAC4czZu3Kj//Oc/atasmSSpePHi+uqrr7R582ZJN3o7jR8/XoMHD9bTTz8tSYqJiVFQUJDmzp2rbt26KSEhQTNnztQXX3yhBg0aSJLmzJmjokWLatWqVWrcuLF9Tg4AAOB/uNUOAADADmrXrq3Vq1frr7/+kiTt2LFDv/zyi5o2bSpJOnTokE6fPq1GjRpZt3F1dVXdunW1YcMGSdKWLVt07do1mzahoaGKjIy0trlZUlKSLly4YPMAAAAwCz2eAAAA7GDAgAFKSEhQmTJl5OjoqJSUFL333nt6/vnnJUmnT5+WJAUFBdlsFxQUpCNHjljbuLi4yM/PL0ObtO1vNmrUKA0bNuxOnw4AAECm6PEEAABgB/Pnz9ecOXM0d+5cbd26VTExMfrwww8VExNj085isdg8Nwwjw7KbZddm0KBBSkhIsD6OHTt2eycCAACQDXo8AQAA2MGbb76pgQMHqm3btpKk8uXL68iRIxo1apQ6duyo4OBgSTd6NYWEhFi3i4uLs/aCCg4OVnJysuLj4216PcXFxalmzZqZHtfV1VWurq5mnRYAAIANejwBAADYwZUrV+TgYPtVzNHRUampqZKk8PBwBQcHa+XKldb1ycnJWrdunTVUqlKlipydnW3anDp1SrGxsVkGTwAAAHcTPZ4AAADsoEWLFnrvvfdUrFgxlStXTtu2bdPYsWP14osvSrpxi12fPn00cuRIRUREKCIiQiNHjpSHh4fatWsnSfLx8VGXLl30xhtvKCAgQP7+/urXr5/Kly9vneUOAADAngieAAAA7GDixIl6++231b17d8XFxSk0NFTdunXTO++8Y23Tv39/JSYmqnv37oqPj1f16tW1YsUKeXl5WduMGzdOTk5OatOmjRITE1W/fn3Nnj1bjo6O9jgtAAAAGwRPAAAAduDl5aXx48dr/PjxWbaxWCyKjo5WdHR0lm3c3Nw0ceJETZw48c4XCQAAcJsY4wkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJjCyd4FAAAAAECaGdGx9i4BAHAH0eMJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCmc7F0AAAAAAMB+XNYuzHJdbPRvd7ESAPcjejwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAEzBGE8AAAAAgExtXRt32/uoHBV4ByoBkF/R4wkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiCwcUBAAAAALCD2OgZt7V9ZHTXO1QJYB56PAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATOFk7wIAAAAA3B9mRMfauwQAwD2G4AkAAAAA8jGXtQvtXQIAZIlb7QAAAAAAAGAKgicAAAAAAACYguAJAADATk6cOKH/+7//U0BAgDw8PFSxYkVt2bLFut4wDEVHRys0NFTu7u6KiorS7t27bfaRlJSkXr16qWDBgvL09FTLli11/Pjxu30qAAAAmSJ4AgAAsIP4+HjVqlVLzs7OWrp0qfbs2aOPPvpIvr6+1jZjxozR2LFjNWnSJG3atEnBwcFq2LChLl68aG3Tp08fLViwQPPmzdMvv/yiS5cuqXnz5kpJSbHDWQEAANhicHEAAAA7GD16tIoWLapZs2ZZlxUvXtz6b8MwNH78eA0ePFhPP/20JCkmJkZBQUGaO3euunXrpoSEBM2cOVNffPGFGjRoIEmaM2eOihYtqlWrVqlx48Z39ZwAAABuRo8nAAAAO1i4cKGqVq2qZ599VoGBgapUqZKmT59uXX/o0CGdPn1ajRo1si5zdXVV3bp1tWHDBknSli1bdO3aNZs2oaGhioyMtLa5WVJSki5cuGDzAAAAMAvBEwAAgB0cPHhQU6ZMUUREhJYvX65XXnlFvXv31ueffy5JOn36tCQpKCjIZrugoCDrutOnT8vFxUV+fn5ZtrnZqFGj5OPjY30ULVr0Tp8aAACAFcETAACAHaSmpqpy5coaOXKkKlWqpG7duumll17SlClTbNpZLBab54ZhZFh2s+zaDBo0SAkJCdbHsWPHbu9EAAAAskHwBAAAYAchISF6+OGHbZaVLVtWR48elSQFBwdLUoaeS3FxcdZeUMHBwUpOTlZ8fHyWbW7m6uoqb29vmwcAAIBZCJ4AAADsoFatWtq3b5/Nsr/++kthYWGSpPDwcAUHB2vlypXW9cnJyVq3bp1q1qwpSapSpYqcnZ1t2pw6dUqxsbHWNgAAAPbErHYAAAB28Prrr6tmzZoaOXKk2rRpoz/++EPTpk3TtGnTJN24xa5Pnz4aOXKkIiIiFBERoZEjR8rDw0Pt2rWTJPn4+KhLly564403FBAQIH9/f/Xr10/ly5e3znIHAABgTwRPAAAAdvDoo49qwYIFGjRokIYPH67w8HCNHz9e7du3t7bp37+/EhMT1b17d8XHx6t69epasWKFvLy8rG3GjRsnJycntWnTRomJiapfv75mz54tR0dHe5wWAACADYInAAAAO2nevLmaN2+e5XqLxaLo6GhFR0dn2cbNzU0TJ07UxIkTTagQAG7f1rVxt7V95ajAO1QJAHtgjCcAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYwsneBQAAAAAAgLyLjZ5xW9tHRne9Q5UAWaPHEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMIWTvQsAAAAAgAeZy9qF9i4BAExDjycAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApnCydwEAAAAAAGRl69q4295H5ajAO1AJgFtBjycAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAOxs1KhRslgs6tOnj3WZYRiKjo5WaGio3N3dFRUVpd27d9tsl5SUpF69eqlgwYLy9PRUy5Ytdfz48btcPQAAQNYIngAAAOxo06ZNmjZtmipUqGCzfMyYMRo7dqwmTZqkTZs2KTg4WA0bNtTFixetbfr06aMFCxZo3rx5+uWXX3Tp0iU1b95cKSkpd/s0AAAAMkXwBAAAYCeXLl1S+/btNX36dPn5+VmXG4ah8ePHa/DgwXr66acVGRmpmJgYXblyRXPnzpUkJSQkaObMmfroo4/UoEEDVapUSXPmzNGuXbu0atWqLI+ZlJSkCxcu2DwAAADMQvAEAABgJz169FCzZs3UoEEDm+WHDh3S6dOn1ahRI+syV1dX1a1bVxs2bJAkbdmyRdeuXbNpExoaqsjISGubzIwaNUo+Pj7WR9GiRe/wWQEAAPx/BE8AAAB2MG/ePG3dulWjRo3KsO706dOSpKCgIJvlQUFB1nWnT5+Wi4uLTU+pm9tkZtCgQUpISLA+jh07drunAgAAkCUnexcAAADwoDl27Jhee+01rVixQm5ublm2s1gsNs8Nw8iw7GY5tXF1dZWrq2veCgYAALhF9HgCAAC4y7Zs2aK4uDhVqVJFTk5OcnJy0rp16zRhwgQ5OTlZezrd3HMpLi7Oui44OFjJycmKj4/Psg0AAIC90eMJAADgLqtfv7527dpls6xz584qU6aMBgwYoBIlSig4OFgrV65UpUqVJEnJyclat26dRo8eLUmqUqWKnJ2dtXLlSrVp00aSdOrUKcXGxmrMmDF394SAB5zL2oX2LgEA7lkETwAAAHeZl5eXIiMjbZZ5enoqICDAurxPnz4aOXKkIiIiFBERoZEjR8rDw0Pt2rWTJPn4+KhLly564403FBAQIH9/f/Xr10/ly5fPMFg5AACAvRA8AQAA3IP69++vxMREde/eXfHx8apevbpWrFghLy8va5tx48bJyclJbdq0UWJiourXr6/Zs2fL0dHRjpUDAAD8fwRPAAAA94C1a9faPLdYLIqOjlZ0dHSW27i5uWnixImaOHGiucUBAADcIgYXBwAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApnCydwEAAAAA7g0zomPtXQIA4D5DjycAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYglntAAAAAAD3ta1r4257H5WjAu9AJcCDhx5PAAAAAAAAMAU9ngAAAAAAeADFRs+4re0jo7veoUpwP6PHEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMIWTvQsAAAAAAHtzWbvQ3iUAwH2JHk8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUTvYuAAAAAACAe93WtXG3tX3lqMA7VAmQv9DjCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKZgVjsAAAAA+Z7L2oX2LgEAkAl6PAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUTvYuAAAAAMDtmxEda+8SADxgYqNn3Nb2kdFd71AluJfR4wkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAACwg1GjRunRRx+Vl5eXAgMD1apVK+3bt8+mjWEYio6OVmhoqNzd3RUVFaXdu3fbtElKSlKvXr1UsGBBeXp6qmXLljp+/PjdPBUAAIAsETwBAADYwbp169SjRw/99ttvWrlypa5fv65GjRrp8uXL1jZjxozR2LFjNWnSJG3atEnBwcFq2LChLl68aG3Tp08fLViwQPPmzdMvv/yiS5cuqXnz5kpJSbHHaQEAANhwsncBAAAAD6Jly5bZPJ81a5YCAwO1ZcsWPf744zIMQ+PHj9fgwYP19NNPS5JiYmIUFBSkuXPnqlu3bkpISNDMmTP1xRdfqEGDBpKkOXPmqGjRolq1apUaN258188LAAAgPYInALctWtH2LgH3kGh7FwDkUwkJCZIkf39/SdKhQ4d0+vRpNWrUyNrG1dVVdevW1YYNG9StWzdt2bJF165ds2kTGhqqyMhIbdiwIdPgKSkpSUlJSdbnFy5cMOuUAAAACJ4AAADszTAM9e3bV7Vr11ZkZKQk6fTp05KkoKAgm7ZBQUE6cuSItY2Li4v8/PwytEnb/majRo3SsGHD7vQpAABysHVt3G3vo3JU4B2oBLi7GOMJAADAznr27KmdO3fqq6++yrDOYrHYPDcMI8Oym2XXZtCgQUpISLA+jh07duuFAwAA5IDgCQAAwI569eqlhQsXas2aNSpSpIh1eXBwsCRl6LkUFxdn7QUVHBys5ORkxcfHZ9nmZq6urvL29rZ5AAAAmIXgCQAAwA4Mw1DPnj31/fff66efflJ4eLjN+vDwcAUHB2vlypXWZcnJyVq3bp1q1qwpSapSpYqcnZ1t2pw6dUqxsbHWNgAAAPbEGE8AAAB20KNHD82dO1f//e9/5eXlZe3Z5OPjI3d3d1ksFvXp00cjR45URESEIiIiNHLkSHl4eKhdu3bWtl26dNEbb7yhgIAA+fv7q1+/fipfvrx1ljsAAAB7IngCAACwgylTpkiSoqKibJbPmjVLnTp1kiT1799fiYmJ6t69u+Lj41W9enWtWLFCXl5e1vbjxo2Tk5OT2rRpo8TERNWvX1+zZ8+Wo6Pj3ToVAACALBE8AQAA2IFhGDm2sVgsio6OVnR0dJZt3NzcNHHiRE2cOPEOVgcAAHBnMMYTAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBYOLAwAAAACQD2xdG3fb+6gcFXgHKgFyjx5PAAAAAAAAMAU9ngAAAADYncvahfYuAQBgAno8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBRO9i4AAAAAeNDNiI61dwkAAJiC4AkAAADAbXNZu9DeJQAA7kHcagcAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFE72LgAAAAAAADx4YqNn3Nb2kdFd71AlMBM9ngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKJ3sXAAAAAAAA7o6ta+Nua/vKUYF3qBI8KOjxBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATMHg4gAAAADksnahvUsAANyH6PEEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUzCrHQAAAHCbZkTH2rsEAADuSfR4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCmY1Q4AAAAAAOQ7sdEzbmv7yOiud6gSZIceTwAAAAAAADAFwRMAAAAAAABMwa12AAAAwH3AZe1Ce5cAAEAG9HgCAAAAAACAKejxBAAAAAAAcmXr2rjb3kflqMA7UAnyC3o8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMwRhPAAAAAADgrmGcqAcLPZ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKZgjCcAAAA80GZEx9q7BAAA7lsETwAAAMA9wGXtQnuXAADAHcetdgAAAAAAADAFwRMAAAAAAABMwa12AAAAAADggRMbPeOWt42M7noHK7m/0eMJAAAAAAAApiB4AgAAAAAAgCm41Q4AAAC4A5iVDgCAjOjxBAAAAAAAAFPQ4wkAAAD51ozoWHuXAACwg61r425r+8pRgXeoEuSEHk8AAAAAAAAwBT2eAAAAgP9hnCYAeDDcbo+prVEjb6vXVGR019s6fn5CjycAAIB8bvLkyQoPD5ebm5uqVKmi9evX27skAAAASfR4AgAAyNfmz5+vPn36aPLkyapVq5amTp2qJk2aaM+ePSpWrJi9y8sRYzQBAHB/I3gCAADIx8aOHasuXbqoa9cbXfbHjx+v5cuXa8qUKRo1apSpxyY0AgA8yG7ndr2tUSMl3fog5/npVj2CJwAAgHwqOTlZW7Zs0cCBA22WN2rUSBs2bMh0m6SkJCUlJVmfJyQkSJI+jd4kd1dP84q9S1zWL7mt7RPvUB0AAOTGpaRb+5/nwoULt3XcPaNibmv7Ij2ekiQZhpFjW4uRm1YAAAC455w8eVKFCxfWr7/+qpo1a1qXjxw5UjExMdq3b1+GbaKjozVs2LC7WSYAALhPHTt2TEWKFMm2DT2eAAAA8jmLxWLz3DCMDMvSDBo0SH379rU+T01N1fnz5xUQEJDlNvnNhQsXVLRoUR07dkze3t72LgdZ4HW69/Ea5Q+8TvnD/fY6GYahixcvKjQ0NMe2BE8AAAD5VMGCBeXo6KjTp0/bLI+Li1NQUFCm27i6usrV1dVmma+vr1kl2pW3t/d98eX+fsfrdO/jNcofeJ3yh/vpdfLx8clVOweT6wAAAIBJXFxcVKVKFa1cudJm+cqVK21uvQMAALAXejwBAADkY3379lWHDh1UtWpV1ahRQ9OmTdPRo0f1yiuv2Ls0AAAAgicAAID87LnnntO5c+c0fPhwnTp1SpGRkVqyZInCwsLsXZrduLq6aujQoRluKcS9hdfp3sdrlD/wOuUPD/LrxKx2AAAAAAAAMAVjPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAOC+l5SUpIoVK8pisWj79u32LgfpHD58WF26dFF4eLjc3d1VsmRJDR06VMnJyfYu7YE3efJkhYeHy83NTVWqVNH69evtXRLSGTVqlB599FF5eXkpMDBQrVq10r59++xdFrIxatQoWSwW9enTx96l3FUETwAAALjv9e/fX6GhofYuA5n4888/lZqaqqlTp2r37t0aN26cPv30U7311lv2Lu2BNn/+fPXp00eDBw/Wtm3bVKdOHTVp0kRHjx61d2n4n3Xr1qlHjx767bfftHLlSl2/fl2NGjXS5cuX7V0aMrFp0yZNmzZNFSpUsHcpd53FMAzD3kUAAAAAZlm6dKn69u2r7777TuXKldO2bdtUsWJFe5eFbHzwwQeaMmWKDh48aO9SHljVq1dX5cqVNWXKFOuysmXLqlWrVho1apQdK0NWzp49q8DAQK1bt06PP/64vctBOpcuXVLlypU1efJkjRgxQhUrVtT48ePtXdZdQ4+nB1Dx4sVlsVjUqVMne5cCABlYLBZZLBZFR0fbuxQA94EzZ87opZde0hdffCEPDw97l4NcSkhIkL+/v73LeGAlJydry5YtatSokc3yRo0aacOGDXaqCjlJSEiQJH527kE9evRQs2bN1KBBA3uXYhdO9i4AAAAAMINhGOrUqZNeeeUVVa1aVYcPH7Z3SciFAwcOaOLEifroo4/sXcoD659//lFKSoqCgoJslgcFBen06dN2qgrZMQxDffv2Ve3atRUZGWnvcpDOvHnztHXrVm3atMnepdgNPZ5wz4mKipLFYlFUVJS9SwFwj1m7dq21R9TatWvtXQ4AO4mOjrZ+FmT12Lx5syZOnKgLFy5o0KBB9i75gZTb1ym9kydP6sknn9Szzz6rrl272qlypLFYLDbPDcPIsAz3hp49e2rnzp366quv7F0K0jl27Jhee+01zZkzR25ubvYux27o8QQAuKcw9CCAnPTs2VNt27bNtk3x4sU1YsQI/fbbb3J1dbVZV7VqVbVv314xMTFmlvnAy+3rlObkyZOqV6+eatSooWnTpplcHbJTsGBBOTo6ZujdFBcXl6EXFOyvV69eWrhwoX7++WcVKVLE3uUgnS1btiguLk5VqlSxLktJSdHPP/+sSZMmKSkpSY6Ojnas8O4geAIAAEC+UrBgQRUsWDDHdhMmTNCIESOsz0+ePKnGjRtr/vz5ql69upklQrl/nSTpxIkTqlevnqpUqaJZs2bJwYEbM+zJxcVFVapU0cqVK/XUU09Zl69cuVL/+c9/7FgZ0jMMQ7169dKCBQu0du1ahYeH27sk3KR+/fratWuXzbLOnTurTJkyGjBgwAMROkkETwAAALhPFStWzOZ5gQIFJEklS5akV8A95OTJk4qKilKxYsX04Ycf6uzZs9Z1wcHBdqzswda3b1916NBBVatWtfZCO3r0qF555RV7l4b/6dGjh+bOnav//ve/8vLysvZQ8/Hxkbu7u52rgyR5eXllGHPL09NTAQEBD9RYXPwp4SaxsbEaMWKEGjdurCJFisjV1VUFChRQRESEOnbsqN9++y3HfZw8eVIDBw5U5cqV5ePjIxcXFwUHB6t8+fJ6/vnnNXv2bF24cOG26oyPj9eIESNUo0YNFSxYUK6urgoNDdV//vMfff/997e17zTHjx/XoEGDVLlyZfn5+cnNzU3FihXTc889pzVr1uRqH2fPntXw4cNVq1YtBQYGytXVVUWLFlWtWrU0fPhw7du3z9q2U6dOslgsWrdunSRp3bp1GcYBSN8dW8o4+9VPP/2kZ599VkWLFpWzs3OG9pL0yy+/qEOHDipevLjc3Nzk6+urSpUqaciQITZfdG6W2dgyX3/9terXr69ChQrJ3d1dpUuXVv/+/XX+/PlcXR/kP/fyZ8Thw4et79HZs2dLkr755hs1aNBAgYGBcnd3V5kyZTRw4EDFx8fnuL/k5GRNnjxZ9erVU6FChax1Nm3aVHPmzFFqamq22//111/q1auXIiMjVaBAAbm4uCg0NFQVK1bUiy++qPnz5yspKSnDdpnNapd2bvXq1bMuq1evXobPiLTzlmzHFpFuzPTy7rvvqlKlSvL19c3QXrox1e3777+vGjVqyN/fX66uripSpIhat26tH3/8MdvzvXl8uhMnTqhv374qVaqU3N3dFRAQoMaNG2vp0qXZ7gcAHjQrVqzQ/v379dNPP6lIkSIKCQmxPmA/zz33nMaPH6/hw4erYsWK+vnnn7VkyRKFhYXZuzT8z5QpU5SQkKCoqCibn5v58+fbuzTAlgGrNWvWGJJyfAwcODDLffz888+Gt7d3jvtYtGjRLde5ePFiw9fXN9v9N2vWzLh48WKm24eFhRmSjI4dO2Z5jBkzZhju7u7ZHqNLly7GtWvXstzHnDlzDE9Pz2z3ERYWZm3fsWPHHK9b+vaGYViXDx061HjrrbeybZ+SkmL06NEj2/37+PgYK1asyPR80r8/Vq1aZbRr1y7L/ZQqVco4depUltcG+dO9/hlx6NAh6/azZs0yXnzxxSz3HxISYuzevTvLfR0+fNgoW7ZstjXWrl3bOHfuXKbbf/3114aLi0uO57lr164M26b/uc7s3LJ7zJo1y7rN0KFDrcv/+usvo3jx4tm237p1qxEaGprt/p9++mkjMTEx03OuW7euIcmoW7eusX79eiMgICDL/XzwwQfZv5gAAADAfYJb7dK5fv26PD091axZMz3xxBMqU6aMvL29FRcXp927d2vChAk6cuSI3n//fT300EPq3LmzzfZJSUlq27atLly4IC8vL7366quqV6+eAgMDde3aNR05ckQbN27Ud999d8s1rly5Ui1btlRKSoqKFy+uV199VdWrV5e3t7dOnDih+fPna86cOVq8eLE6dux4S8f67LPPrLOIREZGqlu3bqpUqZI8PDx06NAhzZw5U0uWLNHMmTPl4+OT6VS3n3/+uTp27ChJcnNz00svvaQmTZooODhYly5d0s6dO7Vo0SL9/fff1m3ee+899evXT507d9bmzZtVtWpVzZo1y2a/Li4umda8YMEC7dy5U+XLl9frr7+uyMhIJSYmavv27dY2AwcO1CeffCJJCg8P14ABA1S5cmVdvnxZCxcu1KRJk5SQkKDmzZvrjz/+0COPPJLlNXrnnXe0YcMGtWrVSi+88ILCwsJ05swZffLJJ1q8eLH279+v119/nVkl7jP54TMizeTJk7Vp0yZVq1ZNr7/+uiIiIhQXF6eYmBjNnz9fp06dUuPGjbV79255e3vbbHvp0iU98cQTOnjwoCSpVatWevHFFxUaGqpDhw5p0qRJWrdunX755Rc1b95c69evt7k//cyZM+rcubOSk5MVGBionj176rHHHlPBggV19epVHTx4UD///HOeemcWLlxYu3bt0qZNm/Tiiy9KuvFZ9eijj9q0y+rWmdatW+vEiRPq1auXWrZsKT8/P/3999/Wv9qeOHFC9evXV3x8vCwWizp16qS2bdsqICBAe/bs0UcffaQdO3bo+++/V8eOHbP9S+KpU6f01FNPydHRUe+//75q164tFxcX/fLLLxo+fLj+/fdfDRo0SE2aNFG5cuVyfQ0AAACAfMneyde95OzZs0Z8fHyW65OSkoyGDRtae9Jcv37dZv3q1atz1Vvh2rVrRkJCQp7ru3TpkhEUFGRIMho1amRcvnw503bTpk2z6Zlzs+x6PB09etTw8PCwrs+qR1Na7yIHBwdj3759NutOnDhh3UdgYGCmPRrSHDt2LMOy9L0GcqJ0PQjq169vXL16NdN2O3fuNBwcHAxJRmRkZKav89KlS61tqlWrlmH9zb1dRowYkaFNamqq0ahRI0OS4eTkZMTFxeV4Dsg/7vXPiJt7BTVt2jTTn+Hhw4db2/Tr1y/D+n79+lnXDxkyJMP61NRUo3379tY2kydPtlk/c+bMbHs0pUlMTDSuXLmSYXnatul7PKVJ/3O4Zs2aLPdtGLY9nhwcHLLszWgYhtG6dWtr2xkzZmRYf/XqVaNevXrWNkuWLMnQJu2zK+31P378eIY269evNywWiyHJ6N27d7b1AwAAAPcDxnhKp2DBgvL19c1yvYuLiz744ANJ0pEjR2x600iymW708ccfz3I/Tk5OGXoY5MasWbN05swZubm56YsvvpCHh0em7V566SVVq1bNuk1efPzxx7py5YpCQ0P16aefyskp805xw4YNU+HChZWamqrPP//cZt3EiRN15coVSdLUqVOzHTTtTg3s6eDgoBkzZmSYLjnNlClTrOPRTJ8+PdPX+cknn7T2pPjjjz+0adOmLI9XpUoVvfXWWxmWWywW9e3bV9KN3jEbN27M66ngHnavf0ak5+rqqunTp2f6Mzx48GDrz+XMmTNtxllKSkrSjBkzJEkPP/ywzThLaSwWiyZPnqyAgABJ0qRJk2zWp52nn59ftj//bm5ud23gy06dOqlhw4aZrjt16pQWLFggSWrcuLG6dOmSoY2rq6s+++wz6/W8+ZxvNnHiRBUuXDjD8tq1a1tn0lq/fn2ezgEAAADIjwiespGUlKSjR49qz549io2NVWxsrAzDsK7fsWOHTfv0AyDmNfDJjf/+97+SpLp16yowMDDbtmm/1OY1+Eg7RosWLeTm5pZlOycnJ9WoUSPTYyxevFjSjdvZ7tZ0q7Vq1cp0IPE0q1atknTjF+nHHnssy3YvvfRShm0y065dO+uAxTerUqWK9d9ptyrh/nSvfUak16hRI4WGhma6zsHBwXorbHx8vLZu3Wpdt2XLFv3777+SboQ1WU3x6u3trTZt2kiS9uzZo1OnTlnXpZ1nfHy89TPF3tq3b5/lujVr1iglJUWSMg2d0hQvXtwaXq1du9a6zc18fX3VrFmzLPeT9hnB5wMAAAAeBARPN7l8+bJGjRqlRx55RJ6engoLC1O5cuVUvnx5lS9fXpUqVbK2/eeff2y2rV27tkqUKCFJ6tOnj6pVq6ZRo0Zpw4YNSk5Ovu3aNm/eLElavnx5hpmcbn58+OGHkmx7WOQkISFB+/fvl3Sjp1JOx/j2228zHOPatWuKjY2VJNWpUyfLcOZOq1ChQpbrkpKSrGNJpfU0yEqlSpXk7OwsSdbzyEyZMmWyXOfv72/998WLF7M9HvKfe/kzIr2bxz66WVqvSMn2vZ7+3zn9vKRfn367li1bWnuGPfXUU3riiSc0btw4bdmyJcuwxmzZfUbcyjlfuXIly+AoIiJCDg5Z//ea9hnB5wMAAAAeBAwuns7hw4f1xBNP6NChQ7lqn5iYaPPc2dlZixYtUuvWrbV3715t2rTJeruWu7u76tatqw4dOui5557LshdBVq5du2bthZAXabe85UZcXFye93/zMc6fP2/t8XE3p8D18/PLcl36aeODgoKy3Y+zs7MCAgJ0+vRpnT9/Pst2Wd3mKMnmF057/ZINc9zLnxE3y6lXZPqfhfTv9fT/zunnJTg4ONPtAgICtHDhQj3//PM6ceKE1qxZozVr1ki60VOqQYMG6ty5s5o3b567k7kDsvuMuBPnnF52nw/S//+MSLv9FwAAALifETyl06FDBx06dEgWi0WdO3dW27ZtVbZsWRUqVMg6dlBqaqr1F8L0t9Skefjhh7Vr1y4tWrRIixYt0rp163TgwAElJiZq2bJlWrZsmcaOHaslS5bk+ItheukDjDZt2ujtt9++zbPN/hh9+vTJ9paT9LKaae5u9XaSlOtf0nNTU2avKyDd258RN8vpvZ6b9/nt7KNOnTrav3+/vvvuOy1ZskQ///yzjh8/rgsXLuj777/X999/r8aNG+v777/PMai5E243yEvD5wMAAACQNwRP//Pnn3/ql19+kSQNGjRI7733Xqbt0veeyYqjo6NatWqlVq1aSboxcO3SpUs1efJkbdmyRVu2bFG3bt2sg9nmhpubmzw8PHTlyhX9+++/2Q7Ye6vSBgqWbvRiupVj+Pv7y8HBQampqTp58uSdLO+Wpe/pkNOth9evX7f2Ykh/yxxwr39G3OzMmTPZrk/fwzH9ez39v0+fPq2HHnooV8fI7OfFzc1N7du3t46vdPDgQS1evFiTJk3SX3/9peXLl2vw4MEaN25czidkovS1nzlzRsWKFcuybU7nDAAAAMAWYzz9z+7du63/btu2bZbt0sZZyouQkBC9+OKL2rhxoypXrixJ+vHHHzPchpOTtLFjfv311zzdQpdbhQoVss7CtGrVqlv6y76zs7M1sFq/fv0t7eNO95RydXVVRESEJOn333/Ptu22bdt07do1STIl3EP+lR8+I9LLblbGm9enf6+n/3dOPy9//PFHpttlpUSJEurVq5c2bdpkndHy66+/znG79MzoSXkr5+zh4aHw8PA7XgsAAABwvyF4+p/r169b/51dqPPpp5/e8jGcnZ1Vt25d6/HyOmZTy5YtJd0Y3PiTTz655Tpyc4yDBw9aBw/PqxYtWkiSDh06dEszWqXNppd+ivfb1aBBA0k3Zt/67bffsmyXNo18+m0AKX98RqS3YsUKm5nm0ktNTVVMTIykGz0C08Iu6caMa2kDg8fExGQ5TtnFixetodHDDz+cpzHdvL29rYOf3zwAe07Sz7Z5pz4joqKirLfizZw5M8t2R48e1cqVK63bODnRaRgAAADICcHT/6T1iJFk/YXsZlOmTNEPP/yQ5T7Wr19vnRUuM8nJyVq3bp0kqUCBAipUqFCeanzllVdUsGBBSdLbb7+tpUuXZtv+119/1c8//5ynY7z55pvWsWpeeeWVHHtvLFmyRDt37rRZ1rNnT3l6ekqSunXrlu3scMePH8+wLO0X2IMHD96x8VReffVV64C+L7/8shISEjK0WbFihfWXzmrVquU4KxgeLPnhMyK9pKQkdevWLdPg6P3339euXbskSS+++KL1Z1660UOwa9eukm708ho2bFiG7Q3DUM+ePa2hUc+ePW3WL1++PMvQS7oxg2Zaz6G89hpKH3AdOHAgT9tmJTQ0VE899ZSkG7V/9tlnGdokJyfrxRdftPaIvPmcAQDI786cOSOLxaKPP/5YlSpVkpubm8qVK2cdagAAbhV/rv2fSpUqKTIyUrGxsZoyZYr+/fdftW/fXiEhITp27JjmzJmjb7/9VrVq1dKvv/6a6T5Wr16td999V3Xq1FGzZs1UoUIFFSpUSImJifrrr7/06aefauvWrZKkrl275vmv5d7e3vrqq6/UpEkTJSUlqXnz5nrmmWf0zDPPqGTJkpJujBWzZcsWLViwQDt37tTEiRP1+OOP5/oY4eHh+vTTT9W5c2edP39etWrVUocOHdS8eXMVK1ZM169f1/Hjx/XHH3/o22+/1YEDB7Ro0SKbqcqDg4M1ZcoUvfDCC4qLi1O1atX00ksvqUmTJgoODtalS5cUGxurhQsXat++fRl+eaxZs6ZmzZqluLg49e3bV//3f/8nHx8fSTd6hISFheXpuklS+fLl9cYbb+iDDz7Qrl27VLlyZQ0YMECVKlXSlStXtGjRIk2YMEEpKSlycXHR1KlT83wM3N/yw2dEelWrVtWiRYtUq1Ytvf7664qIiFBcXJxiYmI0b948SVKRIkUynajgnXfe0ffff6+DBw/q3XffVWxsrF588UWFhobq0KFDmjRpktauXStJqlGjhl5++WWb7b/66iu1aNFCDRs2VKNGjRQZGSl/f39dvHhRsbGxmjRpkk6cOCHpRiicF8WKFVORIkV0/PhxffjhhypcuLBKly5tvVZBQUHy8vLK6+XSuHHjtHr1asXHx6tr16769ddf1bZtW/n7++vPP//Uhx9+qO3bt0u6McFDkyZN8nwMAADuZdu2bZMkTZ48WVOnTlVISIj69u2r9u3b69ChQzYzNwNAnhiw2rZtm+Hn52dIyvRRvnx54+TJk9bnQ4cOtdl+6NChWW6b/vH0008biYmJt1zn6tWrjeDg4FwdKyYmJsP2YWFhhiSjY8eOWR5j3rx5hre3d477d3BwMH766adM9zF79mzD3d092+3DwsIybHfx4kWjRIkSuWqf1WuRmZSUFKN79+7Z1uPj42MsX7480+3XrFljbbdmzZpsj5WXupB/3OufEYcOHbLuY9asWUanTp2yPEZISIixe/fubPdVpkyZbOusVauWce7cuQzbduzYMVfn2aNHDyMlJSXD9jn9/EyePDnLfc6aNSvT650bW7duNUJDQ2/5talbt64hyahbt262x8lrXQAA3A3vv/++4ezsbBw8eNC6bPPmzYYk4+jRo3asDEB+R4+ndCpWrKjt27dr1KhRWrp0qU6ePCkvLy+VKlVKbdq0UY8ePWzGF7lZ//79Vb16da1cuVIbN27UyZMnrTNHBQcHq3r16nrhhRfUtGnT26rziSee0IEDBzRr1iz9+OOP2rFjh86dOycHBwcVKlRIZcuWVd26dfXMM8+odOnSt3SM5557To0aNdK0adO0bNky7dmzR/Hx8XJ2dlZwcLDKlSunevXqqXXr1ipatGim++jYsaMaNWqkTz75RMuWLdOBAwd05coVBQcHq1ixYmrSpImef/75DNsVKFBAGzZs0KhRo7RixQodOXLkjgym7uDgoE8++URt27bV1KlTtX79ep05c0aurq4qUaKEmjZtqj59+tzW7U24v+WXz4g0s2bNsv4c79q1S5cuXVJYWJhatWqlgQMH2sz4eLPixYtrx44dmj59ur755hvFxsbqwoUL8vf3V6VKldS+fXu1a9cu079+jh8/Xi1bttTKlSu1efNmnTp1SmfPnpWjo6OKFi2qmjVrqmvXrqpVq9Ytnderr76qoKAgTZ06Vdu3b9f58+dtxuC6VZUqVdK+ffs0adIk/fDDD9q3b5+uXLmiggUL6rHHHlOnTp2sY9gBAHC/2b59u55++mmb2+DT344PALfKYhh3aBAdAIBdHT582PplcdasWerUqZN9CwIAAPlG2bJl1bFjRw0cONC67PPPP9cbb7yhM2fOqEaNGvrkk09UtWpVdezYUY899lieb5kH8GCixxMAAAAAPMASExP1999/20xKkpqaqo8//lgdO3aUg4OD3n77bY0cOVK1atVSgQIFCJ0A5BojxAEAAADAA2zXrl2yWCyaM2eONm7cqL179+q5557Tv//+qyFDhkiSmjdvroMHD2r58uX6+OOP7VwxgPyE4AkAAAAAHmDbt29XmTJlNGTIELVu3VpVq1aVg4ODNm7cKF9fX0nSH3/8oX///Ve+vr63NfMugAcPwRMAAAAAPMB27Nih8uXLq3379jpx4oQuX76s+fPnKzAwUJJ04sQJde3aVWvWrNHff/+tvXv32rliAPkJwRMAAAAAPMC2b9+uChUqZLouMTFRrVu31qRJkxQeHq7+/ftrxIgRd7lCAPkZs9oBAAAAwAPKMAz5+Pho3rx5atq0qb3LAXAfIngCAAAAAACAKbjVDgAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIAp/h+o4M1iHSa3gwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAIiCAYAAACJywLeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsEklEQVR4nO3deZyN5f/H8feZfTE7s1nGNiFDtsjWjMaS9atI4idEKVuSLFGGRFTIWpZQEm36UrKGEpWdQcq+jhFjbGOGcf/+8Jvzm2N25nYsr+fjcR4P576v+7o/933OHGfec93XbTEMwxAAAAAAAACQzxzsXQAAAAAAAADuTwRPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARP97DZs2fLYrFYH05OTipSpIg6d+6s48eP27u8W7Z7927FxMTo0KFDGdZ16tRJxYsXv+M15cXZs2fVtm1bBQYGymKxqGXLlvYu6baMHDlS33//fb71l/a+3bRpU773mdl75m6wZs0aWSwWrVmzxm41REVFKSoqymbZoUOH1LRpU/n7+8tisahPnz46dOiQLBaLZs+enW/7vhuOHwCAO+nm7+lubm4KDg5WvXr1NGrUKMXHx9u0j4mJkcViydM+Ll++rJiYmDz//5rZvooXL65mzZrlqZ+czJs3T+PHj890ncViUUxMTL7uD8Ddy8neBeD2zZo1S2XLllVSUpJ++eUXjRo1SmvXrtXOnTvl6elp7/LybPfu3Ro2bJiioqIyhExvvfWWXn31VfsUlkvvvPOOFi5cqE8//VSlSpWSv7+/vUu6LSNHjlTr1q3v6gCtadOm2rBhg0JCQuxdyl1rypQpGZa99tpr+uOPP/Tpp58qODhYISEhCg4O1oYNG1SqVCk7VAkAwP0l7Xv61atXFR8fr3Xr1mn06NH64IMPtGDBAtWvX1+S1LVrVz355JN56vvy5csaNmyYJGX441J2bmVft2LevHmKjY1Vnz59MqzbsGGDihQpYnoNAO4OBE/3gYiICFWrVk2SVK9ePaWmpuqdd97R999/r/bt22e6zeXLl+Xh4XEny8zR1atXc/xLz73wy3BsbKxKlSqV5blH/itUqJAKFSpk7zLuag8//HCGZbGxsapevXqGUPGxxx67Q1UBAHB/S/89XZJatWql1157TXXq1NHTTz+tf/75R0FBQSpSpIjpQUza9/87sa+c8F0DeLBwqd19KO2D/PDhw5JuXJ5WoEAB7dy5Uw0bNpSXl5eio6Ml3bgsrHv37ipcuLBcXFxUsmRJDR48WMnJyTZ9WiwW9ezZU5988okeeughubq66uGHH9b8+fMz7D82Nlb/+c9/5OfnJzc3N1WqVElz5syxaZN26c3nn3+u119/XYULF5arq6tmzJihZ555RtKNEC1teHLaZT+ZXWp35coVDRo0SCVKlJCLi4sKFy6sHj166Ny5czbt0oYQL126VFWqVJG7u7vKli2rTz/9NFfnNadzlXaJ0sqVK7Vnzx5r7TkNf16wYIFq1qwpT09PFShQQI0aNdLWrVut68ePHy+LxaJ9+/Zl2HbAgAFycXHRv//+a122cuVKRUdHy9vbWx4eHqpdu7ZWrVpls13aEOtdu3bpueeek4+Pj4KCgvTCCy8oMTHR2s5isejSpUuaM2eO9XjS/qJ2+fJl9evXTyVKlJCbm5v8/f1VrVo1ffnll7k6nwkJCercubP8/f3l6emp5s2b68CBAxna5eZ4MrvULioqShEREdq4caPq1q0rDw8PlSxZUu+9956uX79us/2uXbvUsGFDeXh4qFChQurRo4d+/PHHXF8e9tdff+m5555TUFCQXF1dVaxYMT3//PMZfo7S27Rpk9q2bavixYvL3d1dxYsX13PPPWf9uU2Tm/N84MABtW3bVqGhoXJ1dVVQUJCio6O1bds2m/OR9tql/fzt27dPP/30k/W1PXToUJaX2v3zzz9q166dAgMD5erqqnLlymny5MmZnosnn3xSHh4eKliwoF5++WVduHAhx3MoSfv27VPnzp0VHh4uDw8PFS5cWM2bN9fOnTtt2l2/fl0jRoxQmTJl5O7uLl9fX1WsWFEfffRRrvYDAIA9FStWTB9++KEuXLigTz75RFLml7/9/PPPioqKUkBAgNzd3VWsWDG1atVKly9f1qFDh6x/dBs2bJj1//JOnTrZ9Ldlyxa1bt1afn5+1j/gZndZ38KFC1WxYkW5ubmpZMmSmjBhgs36rKY3uPmy+qioKP344486fPiwzSWHaTK71C4vv0N8+eWXGjx4sEJDQ+Xt7a369etr7969Nm23bt2qZs2aWb+7hIaGqmnTpjp27Fimxw7APIx4ug+lBRTpR4CkpKSoRYsW6tatmwYOHKhr167pypUrqlevnvbv369hw4apYsWK+vXXXzVq1Cht27ZNP/74o02/ixYt0urVqzV8+HB5enpqypQpeu655+Tk5KTWrVtLkvbu3atatWopMDBQEyZMUEBAgObOnatOnTrp1KlT6t+/v02fgwYNUs2aNfXxxx/LwcFB1apVU0JCgt58801NnjxZVapUkZT1SCfDMNSyZUutWrVKgwYNUt26dbVjxw4NHTpUGzZs0IYNG+Tq6mptv337dr3++usaOHCggoKCNGPGDHXp0kWlS5fW448/nuU5zc25CgkJ0YYNG9S9e3clJibqiy++kJT5SJM0I0eO1JAhQ9S5c2cNGTJEKSkpev/991W3bl39+eefevjhh/U///M/GjBggGbPnq0RI0ZYt01NTdXcuXPVvHlzFSxYUJI0d+5cPf/88/rPf/6jOXPmyNnZWZ988okaNWqkZcuWWQPHNK1atdKzzz6rLl26aOfOnRo0aJAkWcO4DRs26IknnlC9evX01ltvSZK8vb0lSX379tXnn3+uESNGqHLlyrp06ZJiY2N15syZLI83vS5duqhBgwaaN2+ejh49qiFDhigqKko7duyQr6/vLR3PzeLi4tS+fXu9/vrrGjp0qBYuXKhBgwYpNDRUzz//vCTp5MmTioyMlKenp6ZOnarAwEB9+eWX6tmzZ66OY/v27apTp44KFiyo4cOHKzw8XCdPntSiRYuUkpJi8/5L79ChQypTpozatm0rf39/nTx5UlOnTtWjjz6q3bt3W1/T3JznJk2aKDU1VWPGjFGxYsX077//av369RnC1zRVqlTRhg0b9NRTT6lUqVL64IMPJEkhISE6efJkhva7d+9WrVq1rF+Ug4ODtWzZMvXu3Vv//vuvhg4dKkk6deqUIiMj5ezsrClTpigoKEhffPFFrs/liRMnFBAQoPfee0+FChXS2bNnNWfOHNWoUUNbt25VmTJlJEljxoxRTEyMhgwZoscff1xXr17VX3/9leXxAgBwt2nSpIkcHR31yy+/ZLo+bR7GunXr6tNPP5Wvr6+OHz+upUuXKiUlRSEhIVq6dKmefPJJdenSRV27dpWkDCPAn376abVt21Yvv/yyLl26lG1N27ZtU58+fRQTE6Pg4GB98cUXevXVV5WSkqJ+/frl6fimTJmil156Sfv379fChQtzbJ/X3yHefPNN1a5dWzNmzND58+c1YMAANW/eXHv27JGjo6MuXbqkBg0aqESJEpo8ebKCgoIUFxen1atX5/oPYgDykYF71qxZswxJxu+//25cvXrVuHDhgvHDDz8YhQoVMry8vIy4uDjDMAyjY8eOhiTj008/tdn+448/NiQZX331lc3y0aNHG5KM5cuXW5dJMtzd3a19GoZhXLt2zShbtqxRunRp67K2bdsarq6uxpEjR2z6bNy4seHh4WGcO3fOMAzDWL16tSHJePzxxzMc19dff21IMlavXp1hXceOHY2wsDDr86VLlxqSjDFjxti0W7BggSHJmDZtmnVZWFiY4ebmZhw+fNi6LCkpyfD39ze6deuWYV/p5eVcRUZGGuXLl8+2P8MwjCNHjhhOTk5Gr169bJZfuHDBCA4ONtq0aWNd9vTTTxtFihQxUlNTrcuWLFliSDIWL15sGIZhXLp0yfD39zeaN29u019qaqrxyCOPGNWrV7cuGzp0aKbnrXv37oabm5tx/fp16zJPT0+jY8eOGeqPiIgwWrZsmeNx3iztffvUU0/ZLP/tt98MScaIESPyfDxpfR48eNC6LDIy0pBk/PHHHzbbP/zww0ajRo2sz9944w3DYrEYu3btsmnXqFGjLN+H6T3xxBOGr6+vER8fn2WbtPd7dn1du3bNuHjxouHp6Wl89NFH1uU5ned///3XkGSMHz8+2zojIyONyMhIm2VhYWFG06ZNbZYdPHjQkGTMmjXLuqxRo0ZGkSJFjMTERJu2PXv2NNzc3IyzZ88ahmEYAwYMMCwWi7Ft2zabdg0aNMjVubzZtWvXjJSUFCM8PNx47bXXrMubNWtmVKpUKU99AQBwJ6V9N9m4cWOWbYKCgoxy5coZhvH/383SfPPNN4akDP+npnf69GlDkjF06NAM69L6e/vtt7Ncl15YWFiW/4d7e3sbly5dsjmu9N+5DCPz7zpNmza1+d6e3s115/V3iCZNmti0++qrrwxJxoYNGwzDMIxNmzYZkozvv/8+0/0DuLO41O4+8Nhjj8nZ2VleXl5q1qyZgoOD9dNPPykoKMimXatWrWye//zzz/L09LSOVkqTNkT35suZoqOjbfp0dHTUs88+q3379lmHrP7888+Kjo5W0aJFM/R5+fJlbdiwIdua8urnn3+2qTnNM888I09PzwzHUKlSJRUrVsz63M3NTQ899FCGy5sy209ezlVuLFu2TNeuXdPzzz+va9euWR9ubm6KjIy0ucSrc+fOOnbsmFauXGldNmvWLAUHB6tx48aSpPXr1+vs2bPq2LGjTX/Xr1/Xk08+qY0bN2b4S1eLFi1snlesWFFXrlzJcKeVzFSvXl0//fSTBg4cqDVr1igpKSlPx3/zHFi1atVSWFiYVq9efcvHc7Pg4GBVr149wzGmf73Xrl2riIiIDCPTnnvuuRyP4fLly1q7dq3atGmT5zmmLl68qAEDBqh06dJycnKSk5OTChQooEuXLmnPnj3WdjmdZ39/f5UqVUrvv/++xo4dq61bt2a4lPB2XLlyRatWrdJTTz0lDw8Pm9eiSZMmunLlin7//XdJ0urVq1W+fHk98sgjNn20a9cuV/u6du2aRo4cqYcfflguLi5ycnKSi4uL/vnnnwznZPv27erevbuWLVum8+fP59vxAgBwpxiGkeW6SpUqycXFRS+99JLmzJmT6XQEuZGX79pZ/R9+/vx5bdmy5Zb2n1t5/R0is++w0v9PNVK6dGn5+flpwIAB+vjjj7V7924TqweQE4Kn+8Bnn32mjRs3auvWrTpx4oR27Nih2rVr27Tx8PCwXiKV5syZMwoODs5wjXdgYKCcnJwyXDIVHBycYd9py9LanjlzJtM7i4WGhtq0S3O7dyE7c+aMnJycMvzSb7FYFBwcnGF/AQEBGfpwdXXNMTTJ67nKjVOnTkmSHn30UTk7O9s8FixYYDNvU+PGjRUSEqJZs2ZJujE/0qJFi/T888/L0dHRpr/WrVtn6G/06NEyDENnz561qeHm85F2WVhuQqQJEyZowIAB+v7771WvXj35+/urZcuW+ueff3J1/Fm9n9LO5a0cz81y83qfOXMmQ0grKdNlN0tISFBqauotTdDZrl07TZo0SV27dtWyZcv0559/auPGjSpUqJBNfTmdZ4vFolWrVqlRo0YaM2aMqlSpokKFCql37975MpT8zJkzunbtmiZOnJjhdWjSpIkkWd+raT8nN8tsWWb69u2rt956Sy1bttTixYv1xx9/aOPGjXrkkUdszsmgQYP0wQcf6Pfff1fjxo0VEBCg6Ohobdq06baPFwCAO+HSpUs6c+aM9TvyzUqVKqWVK1cqMDBQPXr0UKlSpVSqVKk8z2eYl+/aufmub5a8/g6R03dYHx8frV27VpUqVdKbb76p8uXLKzQ0VEOHDtXVq1fNOAQA2WCOp/tAuXLlbO6WkZnMJhAMCAjQH3/8IcMwbNbHx8fr2rVr1jlm0sTFxWXoI21Z2od/QEBApnPEnDhxQpIy9JnTXexyEhAQoGvXrun06dM24ZNhGIqLi9Ojjz56W/2n309ezlVupG3zzTffKCwsLNu2jo6O6tChgyZMmKBz585p3rx5Sk5OVufOnTP0N3HixCzvFJKbMCW3PD09NWzYMA0bNkynTp2yjspp3ry5/vrrrxy3z+r9VLp0aUl37ngCAgKsIVdO9d3M399fjo6OeZ6kMjExUT/88IOGDh2qgQMHWpcnJydnCNNyc57DwsI0c+ZMSdLff/+tr776SjExMUpJSdHHH3+cp9pu5ufnZ33/9ejRI9M2JUqUkHTjXGb3OZGTtDm9Ro4cabP833//tc77JUlOTk7q27ev+vbtq3PnzmnlypV688031ahRIx09evSuu2MnAAA3+/HHH5Wammq98Udm6tatq7p16yo1NVWbNm3SxIkT1adPHwUFBalt27a52k9evmvn5ru+m5ubJGW4gUr6P5jeirz+DpEbFSpU0Pz582UYhnbs2KHZs2dr+PDhcnd3t/n+BcB8jHh6gEVHR+vixYv6/vvvbZZ/9tln1vXprVq1yuYX9NTUVC1YsEClSpWyjviIjo7Wzz//bP1PIn2fHh4eubp1al5G3aTVOHfuXJvl3377rS5dupTj5NO5lddzlRuNGjWSk5OT9u/fr2rVqmX6SK9z5866cuWKvvzyS82ePVs1a9ZU2bJlretr164tX19f7d69O8v+XFxc8lxnbkaEBQUFqVOnTnruuee0d+9eXb58Ocd+0yZfT7N+/XodPnzY+gXMrOO5WWRkpGJjYzMMwc7sjo03c3d3V2RkpL7++us8feGyWCwyDCPDxOMzZsxQampqltvl5jw/9NBDGjJkiCpUqJAvw+I9PDxUr149bd26VRUrVsz0dUj7MlqvXj3t2rVL27dvt+lj3rx5udqXxWLJcE5+/PFHHT9+PMttfH191bp1a/Xo0UNnz57NcJcdAADuNkeOHFG/fv3k4+Ojbt265dje0dFRNWrUsN5NNu3/97x8Z86NrP4P9/Lyst7wJ+3u0jt27LBpt2jRogz95eY7ZJr8+B0iKxaLRY888ojGjRsnX19f0y8bBJARI54eYM8//7wmT56sjh076tChQ6pQoYLWrVunkSNHqkmTJqpfv75N+4IFC+qJJ57QW2+9Zb2r3V9//WXzC/rQoUP1ww8/qF69enr77bfl7++vL774Qj/++KPGjBkjHx+fHOuKiIiQJE2bNk1eXl5yc3NTiRIlMr1sqkGDBmrUqJEGDBig8+fPq3bt2ta72lWuXFkdOnS4zbN0Q17PVW4UL15cw4cP1+DBg3XgwAE9+eST8vPz06lTp/Tnn39aR7qkKVu2rGrWrKlRo0bp6NGjmjZtmk1/BQoU0MSJE9WxY0edPXtWrVu3VmBgoE6fPq3t27fr9OnTmjp1ap7rrFChgtasWaPFixcrJCREXl5eKlOmjGrUqKFmzZqpYsWK8vPz0549e/T555+rZs2auRpxsmnTJnXt2lXPPPOMjh49qsGDB6tw4cLq3r27qcdzsz59+ujTTz9V48aNNXz4cAUFBWnevHnW0UQODtnn82PHjlWdOnVUo0YNDRw4UKVLl9apU6e0aNEiffLJJ/Ly8sqwjbe3tx5//HG9//77KliwoIoXL661a9dq5syZNiN7JOV4nnfs2KGePXvqmWeeUXh4uFxcXPTzzz9rx44d+fbXvI8++kh16tRR3bp19corr6h48eK6cOGC9u3bp8WLF1vnWks7l02bNtWIESOsd7XLzQg4SWrWrJlmz56tsmXLqmLFitq8ebPef//9DJcyNm/eXBEREapWrZoKFSqkw4cPa/z48QoLC1N4eHi+HDMAAPkhNjbWOjdifHy8fv31V82aNUuOjo5auHBhlnNEfvzxx/r555/VtGlTFStWTFeuXLHedTjte6eXl5fCwsL03//+V9HR0fL397d+r7gVoaGhatGihWJiYhQSEqK5c+dqxYoVGj16tPW73aOPPqoyZcqoX79+unbtmvz8/LRw4UKtW7cuQ38VKlTQd999p6lTp6pq1arWO1hnJj9+h0jvhx9+0JQpU9SyZUuVLFlShmHou+++07lz59SgQYO8nxwAt8du05rjtuXmbhmGceNOcJ6enpmuO3PmjPHyyy8bISEhhpOTkxEWFmYMGjTIuHLlik07SUaPHj2MKVOmGKVKlTKcnZ2NsmXLGl988UWGPnfu3Gk0b97c8PHxMVxcXIxHHnnE5g5ZhvH/d6T4+uuvM61r/PjxRokSJQxHR0ebO2zdfFc7w7hxZ7oBAwYYYWFhhrOzsxESEmK88sorRkJCgk27zO7gZRiZ3+0rM7k9V7m9q12a77//3qhXr57h7e1tuLq6GmFhYUbr1q2NlStXZmg7bdo06x0Gb77DWJq1a9caTZs2Nfz9/Q1nZ2ejcOHCRtOmTW3OddrdTE6fPm2zbWZ3Ktm2bZtRu3Ztw8PDw5BkPVcDBw40qlWrZvj5+Rmurq5GyZIljddee834999/sz3etH0sX77c6NChg+Hr62u4u7sbTZo0Mf75559bOp6s7mqX2euQ2XsoNjbWqF+/vuHm5mb4+/sbXbp0MebMmWNIMrZv357t8RiGYezevdt45plnjICAAMPFxcUoVqyY0alTJ+t7I7M7vRw7dsxo1aqV4efnZ3h5eRlPPvmkERsba4SFhdncRTCn83zq1CmjU6dORtmyZQ1PT0+jQIECRsWKFY1x48YZ165dszkft3pXu7TlL7zwglG4cGHD2dnZKFSokFGrVi3rXQjTn4sGDRrYnMv//ve/ubqrXUJCgtGlSxcjMDDQ8PDwMOrUqWP8+uuvGWr/8MMPjVq1ahkFCxa0nu8uXboYhw4dyrZ/AADulLTvJmkPFxcXIzAw0IiMjDRGjhyZ4W64N99pbsOGDcZTTz1lhIWFGa6urkZAQIARGRlpLFq0yGa7lStXGpUrVzZcXV0NSdbvEFl918tsX4bx/98JvvnmG6N8+fKGi4uLUbx4cWPs2LEZtv/777+Nhg0bGt7e3kahQoWMXr16GT/++GOG/+vPnj1rtG7d2vD19TUsFovNPpXJ3fhu53eIm7+//PXXX8Zzzz1nlCpVynB3dzd8fHyM6tWrG7Nnz85wPADMZzGMbG6nAPwfi8WiHj16aNKkSfYuBbgjXnrpJX355Zc6c+ZMvlzSBwAAAAAPIi61A/DAGz58uEJDQ1WyZEldvHhRP/zwg2bMmKEhQ4YQOgEAAADAbSB4AvDAc3Z21vvvv69jx47p2rVrCg8P19ixY/Xqq6/auzQAAAAAuKdxqR0AAAAAAABMkf3tmgAAAAAAAIBbRPAEAAAAAAAAUxA8AQAAAAAAwBRMLg4AAPAAu379uk6cOCEvLy9ZLBZ7lwMAAO4BhmHowoULCg0NlYND9mOaCJ4AAAAeYCdOnFDRokXtXQYAALgHHT16VEWKFMm2DcETAADAA8zLy0vSjS+O3t7edq4GAADcC86fP6+iRYtav0dkh+AJAADgAZZ2eZ23tzfBEwAAyJPcXKbP5OIAAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMwxxMAAAAAAJAkpaam6urVq/YuA3cBR0dHOTk55Woep+wQPAEAAAAAAF28eFHHjh2TYRj2LgV3CQ8PD4WEhMjFxeWW+yB4AgAAAADgAZeamqpjx47Jw8NDhQoVuu1RLri3GYahlJQUnT59WgcPHlR4eLgcHG5ttiaCJwAAAAAAHnBXr16VYRgqVKiQ3N3d7V0O7gLu7u5ydnbW4cOHlZKSIjc3t1vqh8nFAQAAAACAJDHSCTZudZSTTR/5UAcAAAAAAACQAcETAAAAAAAATMEcTwAAAAAAIFMzYmLv6P66xkTc0f3l1aFDh1SiRAlt3bpVlSpVsnc59wRGPAEAAAAAANjBoUOHZLFYtG3bNnuXYhqCJwAAAAAAgLtYSkqKvUu4ZQRPAAAAAADgnrR06VLVqVNHvr6+CggIULNmzbR//37r+pSUFPXs2VMhISFyc3NT8eLFNWrUqGz7nDVrlsqVKyc3NzeVLVtWU6ZMybb97t271aRJExUoUEBBQUHq0KGD/v33X+v669eva/To0SpdurRcXV1VrFgxvfvuu5KkEiVKSJIqV64si8WiqKgoSVKnTp3UsmVLjRo1SqGhoXrooYckSTt37tQTTzwhd3d3BQQE6KWXXtLFixet+0rb7oMPPlBISIgCAgLUo0cPXb161dpmypQpCg8Pl5ubm4KCgtS6detcnOlbR/AEAAAAAADuSZcuXVLfvn21ceNGrVq1Sg4ODnrqqad0/fp1SdKECRO0aNEiffXVV9q7d6/mzp2r4sWLZ9nf9OnTNXjwYL377rvas2ePRo4cqbfeektz5szJtP3JkycVGRmpSpUqadOmTVq6dKlOnTqlNm3aWNsMGjRIo0eP1ltvvaXdu3dr3rx5CgoKkiT9+eefkqSVK1fq5MmT+u6776zbrVq1Snv27NGKFSv0ww8/6PLly3ryySfl5+enjRs36uuvv9bKlSvVs2dPm5pWr16t/fv3a/Xq1ZozZ45mz56t2bNnS5I2bdqk3r17a/jw4dq7d6+WLl2qxx9/PM/nPS+YXBwAAAAAANyTWrVqZfN85syZCgwM1O7duxUREaEjR44oPDxcderUkcViUVhYWLb9vfPOO/rwww/19NNPS7oxImn37t365JNP1LFjxwztp06dqipVqmjkyJHWZZ9++qmKFi2qv//+WyEhIfroo480adIk6/alSpVSnTp1JEmFChWSJAUEBCg4ONimb09PT82YMUMuLi6SboRiSUlJ+uyzz+Tp6SlJmjRpkpo3b67Ro0dbwyw/Pz9NmjRJjo6OKlu2rJo2bapVq1bpxRdf1JEjR+Tp6almzZrJy8tLYWFhqly5cu5O9i1ixBMAAAAAALgn7d+/X+3atVPJkiXl7e1tvXTtyJEjkm5cerZt2zaVKVNGvXv31vLly7Ps6/Tp0zp69Ki6dOmiAgUKWB8jRoywuXwvvc2bN2v16tU27cuWLWutbc+ePUpOTlZ0dHSej61ChQrW0EmS9uzZo0ceecQaOklS7dq1df36de3du9e6rHz58nJ0dLQ+DwkJUXx8vCSpQYMGCgsLU8mSJdWhQwd98cUXunz5cp5rywtGPAEAAAAAgHtS8+bNVbRoUU2fPl2hoaG6fv26IiIirJNxV6lSRQcPHtRPP/2klStXqk2bNqpfv76++eabDH2lXZ43ffp01ahRw2Zd+iDn5m3SRhzdLCQkRAcOHLjlY0sfMEmSYRiyWCyZtk2/3NnZOcO6tGPz8vLSli1btGbNGi1fvlxvv/22YmJitHHjRvn6+t5yrdlhxBMAAAAAALjnnDlzRnv27NGQIUMUHR2tcuXKKSEhIUM7b29vPfvss5o+fboWLFigb7/9VmfPns3QLigoSIULF9aBAwdUunRpm0faSKqbValSRbt27VLx4sUzbOPp6anw8HC5u7tr1apVmW6fNqIpNTU1x+N9+OGHtW3bNl26dMm67LfffpODg4N18vHccHJyUv369TVmzBjt2LFDhw4d0s8//5zr7fMq9yOeYmJMKwL3IN4PSI/3A9Lj/QAAAOwgNmbGbfcREdM1HyrBneLn56eAgABNmzZNISEhOnLkiAYOHGjTZty4cQoJCVGlSpXk4OCgr7/+WsHBwVmO7omJiVHv3r3l7e2txo0bKzk5WZs2bVJCQoL69u2boX2PHj00ffp0Pffcc3rjjTdUsGBB7du3T/Pnz9f06dPl5uamAQMGqH///nJxcVHt2rV1+vRp7dq1S126dFFgYKDc3d21dOlSFSlSRG5ubvLx8cm0tvbt22vo0KHq2LGjYmJidPr0afXq1UsdOnSwzu+Ukx9++EEHDhzQ448/Lj8/Py1ZskTXr19XmTJlcrX9reBSOwAAAAAAkKmuMRH2LiFLDg4Omj9/vnr37q2IiAiVKVNGEyZMUFRUlLVNgQIFNHr0aP3zzz9ydHTUo48+qiVLlsjBIfMLwLp27SoPDw+9//776t+/vzw9PVWhQgX16dMn0/ahoaH67bffNGDAADVq1EjJyckKCwvTk08+ad3HW2+9JScnJ7399ts6ceKEQkJC9PLLL0u6MfpowoQJGj58uN5++23VrVtXa9asyXRfHh4eWrZsmV599VU9+uij8vDwUKtWrTR27NhcnzNfX1999913iomJ0ZUrVxQeHq4vv/xS5cuXz3UfeWUxDMPIVUv+go30eD8gPd4PSI/3A3BPOX/+vHx8fJSYmChvb297lwMAt4wRT7fnypUrOnjwoEqUKCE3Nzd7l4O7RFbvi7x8f2COJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJjCyd4FAAAAAACAu1NszIw7ur+ImK53dH932qFDh1SiRAlt3bpVlSpVsnc5dwQjngAAAAAAAO6AokWL6uTJk4qIiJAkrVmzRhaLRefOnbNvYSYieAIAAAAAALgDHB0dFRwcLCenvF2AlpKSYlJF5iN4AgAAAAAA96SlS5eqTp068vX1VUBAgJo1a6b9+/db16ekpKhnz54KCQmRm5ubihcvrlGjRmXZX6dOndSyZUsNGzZMgYGB8vb2Vrdu3WyCn+TkZPXu3VuBgYFyc3NTnTp1tHHjRuv6hIQEtW/fXoUKFZK7u7vCw8M1a9YsSTcutbNYLNq2bZsOHTqkevXqSZL8/PxksVjUqVMnSVJUVJR69uypvn37qmDBgmrQoIEkae3atapevbpcXV0VEhKigQMH6tq1a9Z9R0VFqXfv3urfv7/8/f0VHBysmJgYm2OMiYlRsWLF5OrqqtDQUPXu3fvWTn4uMccTAAAAAAC4J126dEl9+/ZVhQoVdOnSJb399tt66qmntG3bNjk4OGjChAlatGiRvvrqKxUrVkxHjx7V0aNHs+1z1apVcnNz0+rVq3Xo0CF17txZBQsW1LvvvitJ6t+/v7799lvNmTNHYWFhGjNmjBo1aqR9+/bJ399fb731lnbv3q2ffvpJBQsW1L59+5SUlJRhP0WLFtW3336rVq1aae/evfL29pa7u7t1/Zw5c/TKK6/ot99+k2EYOn78uJo0aaJOnTrps88+019//aUXX3xRbm5uNuHSnDlz1LdvX/3xxx/asGGDOnXqpNq1a6tBgwb65ptvNG7cOM2fP1/ly5dXXFyctm/fnj8vRhYIngAAAAAAwD2pVatWNs9nzpypwMBA7d69WxERETpy5IjCw8NVp04dWSwWhYWF5dini4uLPv30U3l4eKh8+fIaPny43njjDb3zzjtKSkrS1KlTNXv2bDVu3FiSNH36dK1YsUIzZ87UG2+8oSNHjqhy5cqqVq2aJKl48eKZ7sfR0VH+/v6SpMDAQPn6+tqsL126tMaMGWN9PnjwYBUtWlSTJk2SxWJR2bJldeLECQ0YMEBvv/22HBxuXNRWsWJFDR06VJIUHh6uSZMmadWqVWrQoIGOHDmi4OBg1a9fX87OzipWrJiqV6+e84m+DVxqBwAAAAAA7kn79+9Xu3btVLJkSXl7e6tEiRKSpCNHjki6cenctm3bVKZMGfXu3VvLly/Psc9HHnlEHh4e1uc1a9bUxYsXdfToUe3fv19Xr15V7dq1reudnZ1VvXp17dmzR5L0yiuvaP78+apUqZL69++v9evX39KxpQVXafbs2aOaNWvKYrFYl9WuXVsXL17UsWPHrMsqVqxos11ISIji4+MlSc8884ySkpJUsmRJvfjii1q4cKHNpXpmIHgCAAAAAAD3pObNm+vMmTOaPn26/vjjD/3xxx+S/n8y7ipVqujgwYPW0Upt2rRR69atb2lfFotFhmFY/52eYRjWZY0bN9bhw4fVp08fnThxQtHR0erXr1+e9+fp6ZnlPtIvu7keZ2fnDHVfv35d0o3L+/bu3avJkyfL3d1d3bt31+OPP66rV6/mub7cIngCAAAAAAD3nDNnzmjPnj0aMmSIoqOjVa5cOSUkJGRo5+3trWeffVbTp0/XggUL9O233+rs2bNZ9rt9+3abOZl+//13FShQQEWKFFHp0qXl4uKidevWWddfvXpVmzZtUrly5azLChUqpE6dOmnu3LkaP368pk2blum+XFxcJEmpqak5Hu/DDz+s9evXW8MmSVq/fr28vLxUuHDhHLdP4+7urhYtWmjChAlas2aNNmzYoJ07d+Z6+7xijicAAAAAD6wZMbG3tX3XmIh8qgRAXvn5+SkgIEDTpk1TSEiIjhw5ooEDB9q0GTdunEJCQlSpUiU5ODjo66+/VnBwcIb5lNJLSUlRly5dNGTIEB0+fFhDhw5Vz5495eDgIE9PT73yyit644035O/vr2LFimnMmDG6fPmyunTpIkl6++23VbVqVZUvX17Jycn64YcfbEKp9MLCwmSxWPTDDz+oSZMmcnd3V4ECBTJt2717d40fP169evVSz549tXfvXg0dOlR9+/a1zu+Uk9mzZys1NVU1atSQh4eHPv/8c7m7u+dq7qtbRfAEAAAAAICk2JgZt91HREzXfKjk7nE3H4+Dg4Pmz5+v3r17KyIiQmXKlNGECRMUFRVlbVOgQAGNHj1a//zzjxwdHfXoo49qyZIl2QY10dHRCg8P1+OPP67k5GS1bdvW5q5x7733nq5fv64OHTrowoULqlatmpYtWyY/Pz9JN0YxDRo0SIcOHZK7u7vq1q2r+fPnZ7qvwoULa9iwYRo4cKA6d+6s559/XrNnz86y7ZIlS/TGG2/okUcekb+/vzUgyy1fX1+999576tu3r1JTU1WhQgUtXrxYAQEBue4jryxG+jFa2Ul3kgHeD7DB+wHp8X4A7innz5+Xj4+PEhMT5e3tbe9ygDuOEU/3j/wIjfLD3RzUZOfKlSs6ePCgSpQoITc3N3uXYzedOnXSuXPn9P3339u7lLtCVu+LvHx/YI4nAAAAAAAAmILgCQAAAAAAAKZgjicAAAAAAAApy/mVcOsIngAAAADgFt3uHFES80QBuL9xqR0AAAAAAJAk5fb+Y3gw5Mf7geAJAAAgn/3yyy9q3ry5QkNDZbFYMtwZxzAMxcTEKDQ0VO7u7oqKitKuXbts2iQnJ6tXr14qWLCgPD091aJFCx07dsymTUJCgjp06CAfHx/5+PioQ4cOOnfunMlHBwC4Hzk6OkqSUlJS7FwJ7iaXL1+WJDk7O99yH1xqBwAAkM8uXbqkRx55RJ07d1arVq0yrB8zZozGjh2r2bNn66GHHtKIESPUoEED7d27V15eXpKkPn36aPHixZo/f74CAgL0+uuvq1mzZtq8ebP1l4N27drp2LFjWrp0qSTppZdeUocOHbR48eI7d7AAgPuCk5OTPDw8dPr0aTk7O8vBgXEqDzLDMHT58mXFx8fL19fX+t3jVhA8AQAA5LPGjRurcePGma4zDEPjx4/X4MGD9fTTT0uS5syZo6CgIM2bN0/dunVTYmKiZs6cqc8//1z169eXJM2dO1dFixbVypUr1ahRI+3Zs0dLly7V77//rho1akiSpk+frpo1a2rv3r0qU6bMnTlYAMB9wWKxKCQkRAcPHtThw4ftXQ7uEr6+vgoODr6tPgieAAAA7qCDBw8qLi5ODRs2tC5zdXVVZGSk1q9fr27dumnz5s26evWqTZvQ0FBFRERo/fr1atSokTZs2CAfHx9r6CRJjz32mHx8fLR+/fosg6fk5GQlJydbn58/f96EowQA3ItcXFwUHh7O5XaQdOPyutsZ6ZSG4AkAAOAOiouLkyQFBQXZLA8KCrL+hTkuLk4uLi7y8/PL0CZt+7i4OAUGBmboPzAw0NomM6NGjdKwYcNu6xgAAPcvBwcHubm52bsM3Ee4aBMAAMAOLBaLzXPDMDIsu9nNbTJrn1M/gwYNUmJiovVx9OjRPFYOAACQewRPAAAAd1DaPAk3j0qKj4+3joIKDg5WSkqKEhISsm1z6tSpDP2fPn06w2iq9FxdXeXt7W3zAAAAMAuX2gEAANxBJUqUUHBwsFasWKHKlStLunHr6rVr12r06NGSpKpVq8rZ2VkrVqxQmzZtJEknT55UbGysxowZI0mqWbOmEhMT9eeff6p69eqSpD/++EOJiYmqVauWHY4MAG5PbMwMe5cAwAQETwAAAPns4sWL2rdvn/X5wYMHtW3bNvn7+6tYsWLq06ePRo4cqfDwcIWHh2vkyJHy8PBQu3btJEk+Pj7q0qWLXn/9dQUEBMjf31/9+vVThQoVrHe5K1eunJ588km9+OKL+uSTTyRJL730kpo1a8Yd7QAAwF2D4AkAACCfbdq0SfXq1bM+79u3rySpY8eOmj17tvr376+kpCR1795dCQkJqlGjhpYvXy4vLy/rNuPGjZOTk5PatGmjpKQkRUdHa/bs2TZ3l/niiy/Uu3dv693vWrRooUmTJt2howQAAMgZwRMAAEA+i4qKkmEYWa63WCyKiYlRTExMlm3c3Nw0ceJETZw4Mcs2/v7+mjt37u2UCgAAYComFwcAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmMLJ3gUAAAAAwINsRkzsbffRNSYiHyoBgPzHiCcAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYwsneBQAAAADArZgRE2vvEgAAOWDEEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFE72LgAAAAAAcG+LjZlh7xIA3KUY8QQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFE65bRijGBPLwL0mxt4FAAAAAACAux4jngAAAAAAAGAKgicAAAAAAACYIteX2gEAAAAA7k4zYmJva/uuMRH5VAkA2GLEEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFE72LgAAAOBBdO3aNcXExOiLL75QXFycQkJC1KlTJw0ZMkQODjf+NmgYhoYNG6Zp06YpISFBNWrU0OTJk1W+fHlrP8nJyerXr5++/PJLJSUlKTo6WlOmTFGRIkXsdWgA8ECLjZlx231ExHTNh0qAuwMjngAAAOxg9OjR+vjjjzVp0iTt2bNHY8aM0fvvv6+JEyda24wZM0Zjx47VpEmTtHHjRgUHB6tBgwa6cOGCtU2fPn20cOFCzZ8/X+vWrdPFixfVrFkzpaam2uOwAAAAbDDiCQAAwA42bNig//znP2ratKkkqXjx4vryyy+1adMmSTdGO40fP16DBw/W008/LUmaM2eOgoKCNG/ePHXr1k2JiYmaOXOmPv/8c9WvX1+SNHfuXBUtWlQrV65Uo0aNMuw3OTlZycnJ1ufnz583+1ABAMADjBFPAAAAdlCnTh2tWrVKf//9tyRp+/btWrdunZo0aSJJOnjwoOLi4tSwYUPrNq6uroqMjNT69eslSZs3b9bVq1dt2oSGhioiIsLa5majRo2Sj4+P9VG0aFGzDhEAAIARTwAAAPYwYMAAJSYmqmzZsnJ0dFRqaqreffddPffcc5KkuLg4SVJQUJDNdkFBQTp8+LC1jYuLi/z8/DK0Sdv+ZoMGDVLfvn2tz8+fP0/4BAAATEPwBAAAYAcLFizQ3LlzNW/ePJUvX17btm1Tnz59FBoaqo4dO1rbWSwWm+0Mw8iw7GbZtXF1dZWrq+vtHwAAAEAuEDwBAADYwRtvvKGBAweqbdu2kqQKFSro8OHDGjVqlDp27Kjg4GBJst7xLk18fLx1FFRwcLBSUlKUkJBgM+opPj5etWrVuoNHAwAAkDmCJwAAADu4fPmyHBxsp9t0dHTU9evXJUklSpRQcHCwVqxYocqVK0uSUlJStHbtWo0ePVqSVLVqVTk7O2vFihVq06aNJOnkyZOKjY3VmDFj7uDRALjXzYiJva3tXdbEq0pUYD5VA+B+QvAEAABgB82bN9e7776rYsWKqXz58tq6davGjh2rF154QdKNS+z69OmjkSNHKjw8XOHh4Ro5cqQ8PDzUrl07SZKPj4+6dOmi119/XQEBAfL391e/fv1UoUIF613uAAAA7IngCQAAwA4mTpyot956S927d1d8fLxCQ0PVrVs3vf3229Y2/fv3V1JSkrp3766EhATVqFFDy5cvl5eXl7XNuHHj5OTkpDZt2igpKUnR0dGaPXu2HB0d7XFYAAAANgieAAAA7MDLy0vjx4/X+PHjs2xjsVgUExOjmJiYLNu4ublp4sSJmjhxYv4XCQAAcJsccm4CAAAAAAAA5B0jngAAAADgAeayZpG9SwBwH2PEEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAEzhZO8CAAAAADyYZsTE2rsEAIDJGPEEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBRO9i4AAAAAAAD8v9iYGbfdR0RM13yoBLh9jHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmcLJ3AQAAAACAW+OyZpG9SwCAbBE8AQAAAABu25Y18be1fZWowHyqBMDdhEvtAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAADs5fvy4/ud//kcBAQHy8PBQpUqVtHnzZut6wzAUExOj0NBQubu7KyoqSrt27bLpIzk5Wb169VLBggXl6empFi1a6NixY3f6UAAAADJF8AQAAGAHCQkJql27tpydnfXTTz9p9+7d+vDDD+Xr62ttM2bMGI0dO1aTJk3Sxo0bFRwcrAYNGujChQvWNn369NHChQs1f/58rVu3ThcvXlSzZs2Umppqh6MCAACw5WTvAgAAAB5Eo0ePVtGiRTVr1izrsuLFi1v/bRiGxo8fr8GDB+vpp5+WJM2ZM0dBQUGaN2+eunXrpsTERM2cOVOff/656tevL0maO3euihYtqpUrV6pRo0Z39JgAAABuxognAAAAO1i0aJGqVaumZ555RoGBgapcubKmT59uXX/w4EHFxcWpYcOG1mWurq6KjIzU+vXrJUmbN2/W1atXbdqEhoYqIiLC2uZmycnJOn/+vM0DAADALARPAAAAdnDgwAFNnTpV4eHhWrZsmV5++WX17t1bn332mSQpLi5OkhQUFGSzXVBQkHVdXFycXFxc5Ofnl2Wbm40aNUo+Pj7WR9GiRfP70AAAAKwIngAAAOzg+vXrqlKlikaOHKnKlSurW7duevHFFzV16lSbdhaLxea5YRgZlt0suzaDBg1SYmKi9XH06NHbOxAAAIBsEDwBAADYQUhIiB5++GGbZeXKldORI0ckScHBwZKUYeRSfHy8dRRUcHCwUlJSlJCQkGWbm7m6usrb29vmAQAAYBaCJwAAADuoXbu29u7da7Ps77//VlhYmCSpRIkSCg4O1ooVK6zrU1JStHbtWtWqVUuSVLVqVTk7O9u0OXnypGJjY61tAAAA7Im72gEAANjBa6+9plq1amnkyJFq06aN/vzzT02bNk3Tpk2TdOMSuz59+mjkyJEKDw9XeHi4Ro4cKQ8PD7Vr106S5OPjoy5duuj1119XQECA/P391a9fP1WoUMF6lzsAAAB7IngCAACwg0cffVQLFy7UoEGDNHz4cJUoUULjx49X+/btrW369++vpKQkde/eXQkJCapRo4aWL18uLy8va5tx48bJyclJbdq0UVJSkqKjozV79mw5Ojra47AAAABsEDwBAADYSbNmzdSsWbMs11ssFsXExCgmJibLNm5ubpo4caImTpxoQoUAAAC3hzmeAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmcLJ3AQAAAADwIHJZs8jeJQCA6RjxBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFM42bsAAAAAAPeeGTGx9i4BAHAPYMQTAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATMFd7QAAAAAAdrdlTfxt91ElKjAfKgGQnxjxBAAAAAAAAFMQPAEAAAAAAMAUXGoHAAAAAMB9JjZmxm1tHxHTNZ8qwYOOEU8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFM42bsAAACAB92oUaP05ptv6tVXX9X48eMlSYZhaNiwYZo2bZoSEhJUo0YNTZ48WeXLl7dul5ycrH79+unLL79UUlKSoqOjNWXKFBUpUsRORwI8WFzWLLJ3CQBw12PEEwAAgB1t3LhR06ZNU8WKFW2WjxkzRmPHjtWkSZO0ceNGBQcHq0GDBrpw4YK1TZ8+fbRw4ULNnz9f69at08WLF9WsWTOlpqbe6cMAAADIFMETAACAnVy8eFHt27fX9OnT5efnZ11uGIbGjx+vwYMH6+mnn1ZERITmzJmjy5cva968eZKkxMREzZw5Ux9++KHq16+vypUra+7cudq5c6dWrlxpr0MCAACwQfAEAABgJz169FDTpk1Vv359m+UHDx5UXFycGjZsaF3m6uqqyMhIrV+/XpK0efNmXb161aZNaGioIiIirG0yk5ycrPPnz9s8AAAAzMIcTwAAAHYwf/58bdmyRRs3bsywLi4uTpIUFBRkszwoKEiHDx+2tnFxcbEZKZXWJm37zIwaNUrDhg273fIBAAByhRFPAAAAd9jRo0f16quvau7cuXJzc8uyncVisXluGEaGZTfLqc2gQYOUmJhofRw9ejRvxQMAAOQBwRMAAMAdtnnzZsXHx6tq1apycnKSk5OT1q5dqwkTJsjJyck60unmkUvx8fHWdcHBwUpJSVFCQkKWbTLj6uoqb29vmwcAAIBZCJ4AAADusOjoaO3cuVPbtm2zPqpVq6b27dtr27ZtKlmypIKDg7VixQrrNikpKVq7dq1q1aolSapataqcnZ1t2pw8eVKxsbHWNgAAAPbGHE8AAAB3mJeXlyIiImyWeXp6KiAgwLq8T58+GjlypMLDwxUeHq6RI0fKw8ND7dq1kyT5+PioS5cuev311xUQECB/f3/169dPFSpUyDBZOQA8KLasib+t7atEBeZTJQDSEDwBAADchfr376+kpCR1795dCQkJqlGjhpYvXy4vLy9rm3HjxsnJyUlt2rRRUlKSoqOjNXv2bDk6OtqxcgAAgP9H8AQAAHAXWLNmjc1zi8WimJgYxcTEZLmNm5ubJk6cqIkTJ5pbHAAAwC1ijicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYwsneBQAAAAC482bExNq7BADAA4ARTwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBRMLg4AAAAAAGzExsy47T4iYrrmQyW41zHiCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApCJ4AAAAAAABgCid7FwAAAAAAd5rLmkX2LgF3oS1r4m+7jypRgflQCXD/YMQTAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUTvYuAAAAAADywmXNInuXAADIJUY8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMwRxPAAAAAADkky1r4m+7jypRgflQCXB3YMQTAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATOFk7wIA3PtiFGPvEnAXibF3AQAAAADuGox4AgAAAAAAgCkIngAAAAAAAGAKgicAAAA7GDVqlB599FF5eXkpMDBQLVu21N69e23aGIahmJgYhYaGyt3dXVFRUdq1a5dNm+TkZPXq1UsFCxaUp6enWrRooWPHjt3JQwEAAMgSczwBAADYwdq1a9WjRw89+uijunbtmgYPHqyGDRtq9+7d8vT0lCSNGTNGY8eO1ezZs/XQQw9pxIgRatCggfbu3SsvLy9JUp8+fbR48WLNnz9fAQEBev3119WsWTNt3rxZjo6O9jxEmGhGTKy9SwAAIFcIngAAAOxg6dKlNs9nzZqlwMBAbd68WY8//rgMw9D48eM1ePBgPf3005KkOXPmKCgoSPPmzVO3bt2UmJiomTNn6vPPP1f9+vUlSXPnzlXRokW1cuVKNWrUKMN+k5OTlZycbH1+/vx5E48SAAA86LjUDgAA4C6QmJgoSfL395ckHTx4UHFxcWrYsKG1jaurqyIjI7V+/XpJ0ubNm3X16lWbNqGhoYqIiLC2udmoUaPk4+NjfRQtWtSsQwIAACB4AgAAsDfDMNS3b1/VqVNHERERkqS4uDhJUlBQkE3boKAg67q4uDi5uLjIz88vyzY3GzRokBITE62Po0eP5vfhAAAAWHGpHQAAgJ317NlTO3bs0Lp16zKss1gsNs8Nw8iw7GbZtXF1dZWrq+utFwvcJpc1i+xdAgDgDmLEEwAAgB316tVLixYt0urVq1WkSBHr8uDgYEnKMHIpPj7eOgoqODhYKSkpSkhIyLINAACAPRE8AQAA2IFhGOrZs6e+++47/fzzzypRooTN+hIlSig4OFgrVqywLktJSdHatWtVq1YtSVLVqlXl7Oxs0+bkyZOKjY21tgEAALAnLrUDAACwgx49emjevHn673//Ky8vL+vIJh8fH7m7u8tisahPnz4aOXKkwsPDFR4erpEjR8rDw0Pt2rWztu3SpYtef/11BQQEyN/fX/369VOFChWsd7kDAACwJ4InAAAAO5g6daokKSoqymb5rFmz1KlTJ0lS//79lZSUpO7duyshIUE1atTQ8uXL5eXlZW0/btw4OTk5qU2bNkpKSlJ0dLRmz54tR0fHO3UoAAAAWSJ4AgAAsAPDMHJsY7FYFBMTo5iYmCzbuLm5aeLEiZo4cWI+VgcAAJA/mOMJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApnCydwEAAAAAAOD/bVkTf1vbV4kKzKdKgNvHiCcAAAAAAACYguAJAAAAAAAApuBSOwAAAAAAkO9iY2bcdh8RMV3zoRLYEyOeAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmYI4nAAAAALnismaRvUsAANxjGPEEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUzjZuwAAAAAAAJB/tqyJv+0+qkQF5kMlACOeAAAAAAAAYBKCJwAAAAAAAJiCS+0AAACAO2xGTKy9SwAA4I5gxBMAAAAAAABMQfAEAAAAAAAAUxA8AQAAAAAAwBQETwAAAAAAADAFwRMAAAAAAABMQfAEAAAAAAAAUzjZuwAAAAAAAIDMxMbMuO0+ImK65kMluFWMeAIAAAAAAIApCJ4AAAAAAABgCoInAAAAAAAAmILgCQAAAAAAAKYgeAIAAAAAAIApuKsdAAAA8IBwWbPI3iUAAB4wjHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiCOZ4AAACAPJgRE2vvEgAAuGcw4gkAAAAAAACmYMQTAAAAAACwsWVN/G1tXyUqMJ8qwb2OEU8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATOFk7wIAAAAA5MxlzSJ7lwAAubZlTfxt91ElKjAfKoG9MeIJAAAAAAAApiB4AgAAAAAAgCm41A4AAAAAANy3YmNm3HYfETFd86GSBxMjngAAAAAAAGAKgicAAAAAAACYgkvtAAAA8MCYERNr7xIAAHigEDwBAAAAJnNZs8jeJQAAYBcETwAAAAAA4K6zZU38bW1fJSownyrB7WCOJwAAAAAAAJiC4AkAAAAAAACm4FI7AAAAAACAbMTGzLit7SNiuuZTJfceRjwBAAAAAADAFIx4AgAAwD1jRkzsHd8nd6QDAODWMeIJAAAAAAAApmDEEwAAwD1uypQpev/993Xy5EmVL19e48ePV926de1dFgAAdrVlTfxt91ElKjAfKnmwMeIJAADgHrZgwQL16dNHgwcP1tatW1W3bl01btxYR44csXdpAAAAjHgCAAC4l40dO1ZdunRR16437pYzfvx4LVu2TFOnTtWoUaPsXJ2tW5mf6eb5lVzyqxgAAO6AtFFXW6JG3nIfaaOu7tU74xE8AQAA3KNSUlK0efNmDRw40GZ5w4YNtX79+ky3SU5OVnJysvV5YmKiJOnjmI1yd/XM1/pcfl1y230k5UMdAADcqt9W2n8E8cXkG/8b/j5oop0rueHhQR11/vx5SZJhGDm2z3XwFBNzyzUBuM/x+QAA9vHvv/8qNTVVQUFBNsuDgoIUFxeX6TajRo3SsGHDMiwfMK6+KTUCAIDb9Ju9C7jJe72t/7xw4YJ8fHyybc6IJwAAgHucxWKxeW4YRoZlaQYNGqS+fftan1+/fl1nz55VQEBAltvca86fP6+iRYvq6NGj8vb2tnc5yAKv092P1+jewOt0b7jfXifDMHThwgWFhobm2JbgCQAA4B5VsGBBOTo6ZhjdFB8fn2EUVBpXV1e5urraLPP19TWrRLvy9va+L77c3+94ne5+vEb3Bl6ne8P99DrlNNIpDXe1AwAAuEe5uLioatWqWrFihc3yFStWqFatWnaqCgAA4P8x4gkAAOAe1rdvX3Xo0EHVqlVTzZo1NW3aNB05ckQvv/yyvUsDAAAgeAIAALiXPfvsszpz5oyGDx+ukydPKiIiQkuWLFFYWJi9S7MbV1dXDR06NMMlhbi78Drd/XiN7g28TveGB/l1shi5ufcdAAAAAAAAkEfM8QQAAAAAAABTEDwBAAAAAADAFARPAAAAAAAAMAXBEwAAAAAAAExB8AQAAID7XnJysipVqiSLxaJt27bZuxykc+jQIXXp0kUlSpSQu7u7SpUqpaFDhyolJcXepT3wpkyZohIlSsjNzU1Vq1bVr7/+au+SkM6oUaP06KOPysvLS4GBgWrZsqX27t1r77KQjVGjRslisahPnz72LuWOIngCAADAfa9///4KDQ21dxnIxF9//aXr16/rk08+0a5duzRu3Dh9/PHHevPNN+1d2gNtwYIF6tOnjwYPHqytW7eqbt26aty4sY4cOWLv0vB/1q5dqx49euj333/XihUrdO3aNTVs2FCXLl2yd2nIxMaNGzVt2jRVrFjR3qXccRbDMAx7FwEAAACY5aefflLfvn317bffqnz58tq6dasqVapk77KQjffff19Tp07VgQMH7F3KA6tGjRqqUqWKpk6dal1Wrlw5tWzZUqNGjbJjZcjK6dOnFRgYqLVr1+rxxx+3dzlI5+LFi6pSpYqmTJmiESNGqFKlSho/fry9y7pjGPH0ACpevLgsFos6depk71IAIAOLxSKLxaKYmBh7lwLgPnDq1Cm9+OKL+vzzz+Xh4WHvcpBLiYmJ8vf3t3cZD6yUlBRt3rxZDRs2tFnesGFDrV+/3k5VISeJiYmSxM/OXahHjx5q2rSp6tevb+9S7MLJ3gUAAAAAZjAMQ506ddLLL7+satWq6dChQ/YuCbmwf/9+TZw4UR9++KG9S3lg/fvvv0pNTVVQUJDN8qCgIMXFxdmpKmTHMAz17dtXderUUUREhL3LQTrz58/Xli1btHHjRnuXYjeMeMJdJyoqShaLRVFRUfYuBcBdZs2aNdYRUWvWrLF3OQDsJCYmxvpZkNVj06ZNmjhxos6fP69BgwbZu+QHUm5fp/ROnDihJ598Us8884y6du1qp8qRxmKx2Dw3DCPDMtwdevbsqR07dujLL7+0dylI5+jRo3r11Vc1d+5cubm52bscu2HEEwDgrsLUgwBy0rNnT7Vt2zbbNsWLF9eIESP0+++/y9XV1WZdtWrV1L59e82ZM8fMMh94uX2d0pw4cUL16tVTzZo1NW3aNJOrQ3YKFiwoR0fHDKOb4uPjM4yCgv316tVLixYt0i+//KIiRYrYuxyks3nzZsXHx6tq1arWZampqfrll180adIkJScny9HR0Y4V3hkETwAAALinFCxYUAULFsyx3YQJEzRixAjr8xMnTqhRo0ZasGCBatSoYWaJUO5fJ0k6fvy46tWrp6pVq2rWrFlycODCDHtycXFR1apVtWLFCj311FPW5StWrNB//vMfO1aG9AzDUK9evbRw4UKtWbNGJUqUsHdJuEl0dLR27txps6xz584qW7asBgwY8ECEThLBEwAAAO5TxYoVs3leoEABSVKpUqUYFXAXOXHihKKiolSsWDF98MEHOn36tHVdcHCwHSt7sPXt21cdOnRQtWrVrKPQjhw5opdfftnepeH/9OjRQ/PmzdN///tfeXl5WUeo+fj4yN3d3c7VQZK8vLwyzLnl6empgICAB2ouLv6UcJPY2FiNGDFCjRo1UpEiReTq6qoCBQooPDxcHTt21O+//55jHydOnNDAgQNVpUoV+fj4yMXFRcHBwapQoYKee+45zZ49W+fPn7+tOhMSEjRixAjVrFlTBQsWlKurq0JDQ/Wf//xH33333W31nebYsWMaNGiQqlSpIj8/P7m5ualYsWJ69tlntXr16lz1cfr0aQ0fPly1a9dWYGCgXF1dVbRoUdWuXVvDhw/X3r17rW07deoki8WitWvXSpLWrl2bYR6A9MOxpYx3v/r555/1zDPPqGjRonJ2ds7QXpLWrVunDh06qHjx4nJzc5Ovr68qV66sIUOG2HzRuVlmc8t89dVXio6OVqFCheTu7q4yZcqof//+Onv2bK7OD+49d/NnxKFDh6zv0dmzZ0uSvv76a9WvX1+BgYFyd3dX2bJlNXDgQCUkJOTYX0pKiqZMmaJ69eqpUKFC1jqbNGmiuXPn6vr169lu//fff6tXr16KiIhQgQIF5OLiotDQUFWqVEkvvPCCFixYoOTk5AzbZXZXu7Rjq1evnnVZvXr1MnxGpB23ZDu3iHTjTi/vvPOOKleuLF9f3wztpRu3un3vvfdUs2ZN+fv7y9XVVUWKFFHr1q31ww8/ZHu8N89Pd/z4cfXt21elS5eWu7u7AgIC1KhRI/3000/Z9gMAD5rly5dr3759+vnnn1WkSBGFhIRYH7CfZ599VuPHj9fw4cNVqVIl/fLLL1qyZInCwsLsXRr+z9SpU5WYmKioqCibn5sFCxbYuzTAlgGr1atXG5JyfAwcODDLPn755RfD29s7xz4WL158y3X++OOPhq+vb7b9N23a1Lhw4UKm24eFhRmSjI4dO2a5jxkzZhju7u7Z7qNLly7G1atXs+xj7ty5hqenZ7Z9hIWFWdt37Ngxx/OWvr1hGNblQ4cONd58881s26empho9evTItn8fHx9j+fLlmR5P+vfHypUrjXbt2mXZT+nSpY2TJ09meW5wb7rbPyMOHjxo3X7WrFnGCy+8kGX/ISEhxq5du7Ls69ChQ0a5cuWyrbFOnTrGmTNnMt3+q6++MlxcXHI8zp07d2bYNv3PdWbHlt1j1qxZ1m2GDh1qXf73338bxYsXz7b9li1bjNDQ0Gz7f/rpp42kpKRMjzkyMtKQZERGRhq//vqrERAQkGU/77//fvYvJgAAAHCf4FK7dK5duyZPT081bdpUTzzxhMqWLStvb2/Fx8dr165dmjBhgg4fPqz33ntPDz30kDp37myzfXJystq2bavz58/Ly8tLr7zyiurVq6fAwEBdvXpVhw8f1oYNG/Ttt9/eco0rVqxQixYtlJqaquLFi+uVV15RjRo15O3trePHj2vBggWaO3eufvzxR3Xs2PGW9vXpp59a7yISERGhbt26qXLlyvLw8NDBgwc1c+ZMLVmyRDNnzpSPj0+mt7r97LPP1LFjR0mSm5ubXnzxRTVu3FjBwcG6ePGiduzYocWLF+uff/6xbvPuu++qX79+6ty5szZt2qRq1app1qxZNv26uLhkWvPChQu1Y8cOVahQQa+99poiIiKUlJSkbdu2WdsMHDhQkydPliSVKFFCAwYMUJUqVXTp0iUtWrRIkyZNUmJiopo1a6Y///xTjzzySJbn6O2339b69evVsmVLPf/88woLC9OpU6c0efJk/fjjj9q3b59ee+017ipxn7kXPiPSTJkyRRs3blT16tX12muvKTw8XPHx8ZozZ44WLFigkydPqlGjRtq1a5e8vb1ttr148aKeeOIJHThwQJLUsmVLvfDCCwoNDdXBgwc1adIkrV27VuvWrVOzZs3066+/2lyffurUKXXu3FkpKSkKDAxUz5499dhjj6lgwYK6cuWKDhw4oF9++SVPozMLFy6snTt3auPGjXrhhRck3fisevTRR23aZXXpTOvWrXX8+HH16tVLLVq0kJ+fn/755x/rX22PHz+u6OhoJSQkyGKxqFOnTmrbtq0CAgK0e/duffjhh9q+fbu+++47dezYMdu/JJ48eVJPPfWUHB0d9d5776lOnTpycXHRunXrNHz4cJ07d06DBg1S48aNVb58+VyfAwAAAOCeZO/k625y+vRpIyEhIcv1ycnJRoMGDawjaa5du2azftWqVbkarXD16lUjMTExz/VdvHjRCAoKMiQZDRs2NC5dupRpu2nTptmMzLlZdiOejhw5Ynh4eFjXZzWiKW10kYODg7F3716bdcePH7f2ERgYmOmIhjRHjx7NsCz9qIGcKN0IgujoaOPKlSuZttuxY4fh4OBgSDIiIiIyfZ1/+ukna5vq1atnWH/zaJcRI0ZkaHP9+nWjYcOGhiTDycnJiI+Pz/EYcO+42z8jbh4V1KRJk0x/hocPH25t069fvwzr+/XrZ10/ZMiQDOuvX79utG/f3tpmypQpNutnzpyZ7YimNElJScbly5czLE/bNv2IpzTpfw5Xr16dZd+GYTviycHBIcvRjIZhGK1bt7a2nTFjRob1V65cMerVq2dts2TJkgxt0j670l7/Y8eOZWjz66+/GhaLxZBk9O7dO9v6AQAAgPsBczylU7BgQfn6+ma53sXFRe+//74k6fDhwzajaSTZ3G708ccfz7IfJyenDCMMcmPWrFk6deqU3Nzc9Pnnn8vDwyPTdi+++KKqV69u3SYvPvroI12+fFmhoaH6+OOP5eSU+aC4YcOGqXDhwrp+/bo+++wzm3UTJ07U5cuXJUmffPJJtpOm5dfEng4ODpoxY0aG2yWnmTp1qnU+munTp2f6Oj/55JPWkRR//vmnNm7cmOX+qlatqjfffDPDcovFor59+0q6MTpmw4YNeT0U3MXu9s+I9FxdXTV9+vRMf4YHDx5s/bmcOXOmzTxLycnJmjFjhiTp4YcftplnKY3FYtGUKVMUEBAgSZo0aZLN+rTj9PPzy/bn383N7Y5NfNmpUyc1aNAg03UnT57UwoULJUmNGjVSly5dMrRxdXXVp59+aj2fNx/zzSZOnKjChQtnWF6nTh3rnbR+/fXXPB0DAAAAcC8ieMpGcnKyjhw5ot27dys2NlaxsbEyDMO6fvv27Tbt00+AmNfAJzf++9//SpIiIyMVGBiYbdu0X2rzGnyk7aN58+Zyc3PLsp2Tk5Nq1qyZ6T5+/PFHSTcuZ7tTt1utXbt2phOJp1m5cqWkG79IP/bYY1m2e/HFFzNsk5l27dpZJyy+WdWqVa3/TrtUCfenu+0zIr2GDRsqNDQ003UODg7WS2ETEhK0ZcsW67rNmzfr3Llzkm6ENVnd4tXb21tt2rSRJO3evVsnT560rks7zoSEBOtnir21b98+y3WrV69WamqqJGUaOqUpXry4Nbxas2aNdZub+fr6qmnTpln2k/YZwecDAAAAHgQETze5dOmSRo0apUceeUSenp4KCwtT+fLlVaFCBVWoUEGVK1e2tv33339ttq1Tp45KliwpSerTp4+qV6+uUaNGaf369UpJSbnt2jZt2iRJWrZsWYY7Od38+OCDDyTZjrDISWJiovbt2yfpxkilnPbxzTffZNjH1atXFRsbK0mqW7duluFMfqtYsWKW65KTk61zSaWNNMhK5cqV5ezsLEnW48hM2bJls1zn7+9v/feFCxey3R/uPXfzZ0R6N899dLO0UZGS7Xs9/b9z+nlJvz79di1atLCODHvqqaf0xBNPaNy4cdq8eXOWYY3ZsvuMuJVjvnz5cpbBUXh4uBwcsv7vNe0zgs8HAAAAPAiYXDydQ4cO6YknntDBgwdz1T4pKcnmubOzsxYvXqzWrVtrz5492rhxo/VyLXd3d0VGRqpDhw569tlnsxxFkJWrV69aRyHkRdolb7kRHx+f5/5v3sfZs2etIz7u5C1w/fz8slyX/rbxQUFB2fbj7OysgIAAxcXF6ezZs1m2y+oyR0k2v3Da65dsmONu/oy4WU6jItP/LKR/r6f/d04/L8HBwZluFxAQoEWLFum5557T8ePHtXr1aq1evVrSjZFS9evXV+fOndWsWbPcHUw+yO4zIj+OOb3sPh+k//+MSLv8FwAAALifETyl06FDBx08eFAWi0WdO3dW27ZtVa5cORUqVMg6d9D169etvxCmv6QmzcMPP6ydO3dq8eLFWrx4sdauXav9+/crKSlJS5cu1dKlSzV27FgtWbIkx18M00sfYLRp00ZvvfXWbR5t9vvo06dPtpecpJfVnebu1GgnSbn+JT03NWX2ugLS3f0ZcbOc3uu5eZ/fTh9169bVvn379O2332rJkiX65ZdfdOzYMZ0/f17fffedvvvuOzVq1EjfffddjkFNfrjdIC8Nnw8AAABA3hA8/Z+//vpL69atkyQNGjRI7777bqbt0o+eyYqjo6Natmypli1bSroxce1PP/2kKVOmaPPmzdq8ebO6detmncw2N9zc3OTh4aHLly/r3Llz2U7Ye6vSJgqWboxiupV9+Pv7y8HBQdevX9eJEyfys7xbln6kQ06XHl67ds06iiH9JXPA3f4ZcbNTp05luz79CMf07/X0/46Li9NDDz2Uq31k9vPi5uam9u3bW+dXOnDggH788UdNmjRJf//9t5YtW6bBgwdr3LhxOR+QidLXfurUKRUrVizLtjkdMwAAAABbzPH0f3bt2mX9d9u2bbNslzbPUl6EhITohRde0IYNG1SlShVJ0g8//JDhMpycpM0d89tvv+XpErrcKlSokPUuTCtXrrylv+w7OztbA6tff/31lvrI75FSrq6uCg8PlyT98ccf2bbdunWrrl69KkmmhHu4d90LnxHpZXdXxpvXp3+vp/93Tj8vf/75Z6bbZaVkyZLq1auXNm7caL2j5VdffZXjdumZMZLyVo7Zw8NDJUqUyPdaAAAAgPsNwdP/uXbtmvXf2YU6H3/88S3vw9nZWZGRkdb95XXOphYtWki6Mbnx5MmTb7mO3OzjwIED1snD86p58+aSpIMHD97SHa3S7qaX/hbvt6t+/fqSbtx96/fff8+yXdpt5NNvA0j3xmdEesuXL7e501x6169f15w5cyTdGBGYFnZJN+64ljYx+Jw5c7Kcp+zChQvW0Ojhhx/O05xu3t7e1snPb56APSfp77aZX58RUVFR1kvxZs6cmWW7I0eOaMWKFdZtnJwYNAwAAADkhODp/6SNiJFk/YXsZlOnTtX333+fZR+//vqr9a5wmUlJSdHatWslSQUKFFChQoXyVOPLL7+sggULSpLeeust/fTTT9m2/+233/TLL7/kaR9vvPGGda6al19+OcfRG0uWLNGOHTtslvXs2VOenp6SpG7dumV7d7hjx45lWJb2C+yBAwfybT6VV155xTqh70svvaTExMQMbZYvX279pbN69eo53hUMD5Z74TMiveTkZHXr1i3T4Oi9997Tzp07JUkvvPCC9WdeujFCsGvXrpJujPIaNmxYhu0Nw1DPnj2toVHPnj1t1i9btizL0Eu6cQfNtJFDeR01lD7g2r9/f562zUpoaKieeuopSTdq//TTTzO0SUlJ0QsvvGAdEXnzMQMAcK87deqULBaLPvroI1WuXFlubm4qX768daoBALhV/Ln2/1SuXFkRERGKjY3V1KlTde7cObVv314hISE6evSo5s6dq2+++Ua1a9fWb7/9lmkfq1at0jvvvKO6deuqadOmqlixogoVKqSkpCT9/fff+vjjj7VlyxZJUteuXfP813Jvb299+eWXaty4sZKTk9WsWTO1atVKrVq1UqlSpSTdmCtm8+bNWrhwoXbs2KGJEyfq8ccfz/U+SpQooY8//lidO3fW2bNnVbt2bXXo0EHNmjVTsWLFdO3aNR07dkx//vmnvvnmG+3fv1+LFy+2uVV5cHCwpk6dqueff17x8fGqXr26XnzxRTVu3FjBwcG6ePGiYmNjtWjRIu3duzfDL4+1atXSrFmzFB8fr759++p//ud/5OPjI+nGiJCwsLA8nTdJqlChgl5//XW9//772rlzp6pUqaIBAwaocuXKunz5shYvXqwJEyYoNTVVLi4u+uSTT/K8D9zf7oXPiPSqVaumxYsXq3bt2nrttdcUHh6u+Ph4zZkzR/Pnz5ckFSlSJNMbFbz99tv67rvvdODAAb3zzjuKjY3VCy+8oNDQUB08eFCTJk3SmjVrJEk1a9bUSy+9ZLP9l19+qebNm6tBgwZq2LChIiIi5O/vrwsXLig2NlaTJk3S8ePHJd0IhfOiWLFiKlKkiI4dO6YPPvhAhQsXVpkyZaznKigoSF5eXnk9XRo3bpxWrVqlhIQEde3aVb/99pvatm0rf39//fXXX/rggw+0bds2STdu8NC4ceM87wMAgLvZ1q1bJUlTpkzRJ598opCQEPXt21ft27fXwYMHbe7cDAB5YsBq69athp+fnyEp00eFChWMEydOWJ8PHTrUZvuhQ4dmuW36x9NPP20kJSXdcp2rVq0ygoODc7WvOXPmZNg+LCzMkGR07Ngxy33Mnz/f8Pb2zrF/BwcH4+eff860j9mzZxvu7u7Zbh8WFpZhuwsXLhglS5bMVfusXovMpKamGt27d8+2Hh8fH2PZsmWZbr969Wpru9WrV2e7r7zUhXvH3f4ZcfDgQWsfs2bNMjp16pTlPkJCQoxdu3Zl21fZsmWzrbN27drGmTNnMmzbsWPHXB1njx49jNTU1Azb5/TzM2XKlCz7nDVrVqbnOze2bNlihIaG3vJrExkZaUgyIiMjs91PXusCAOBOeO+99wxnZ2fjwIED1mWbNm0yJBlHjhyxY2UA7nWMeEqnUqVK2rZtm0aNGqWffvpJJ06ckJeXl0qXLq02bdqoR48eNvOL3Kx///6qUaOGVqxYoQ0bNujEiRPWO0cFBwerRo0aev7559WkSZPbqvOJJ57Q/v37NWvWLP3www/avn27zpw5IwcHBxUqVEjlypVTZGSkWrVqpTJlytzSPp599lk1bNhQ06ZN09KlS7V7924lJCTI2dlZwcHBKl++vOrVq6fWrVuraNGimfbRsWNHNWzYUJMnT9bSpUu1f/9+Xb58WcHBwSpWrJgaN26s5557LsN2BQoU0Pr16zVq1CgtX75chw8fzpfJ1B0cHDR58mS1bdtWn3zyiX799VedOnVKrq6uKlmypJo0aaI+ffrc1uVNuL/dK58RaWbNmmX9Od65c6cuXryosLAwtWzZUgMHDrS54+PNihcvru3bt2v69On6+uuvFRsbq/Pnz8vf31+VK1dW+/bt1a5du0z/+jl+/Hi1aNFCK1as0KZNm3Ty5EmdPn1ajo6OKlq0qGrVqqWuXbuqdu3at3Rcr7zyioKCgvTJJ59o27ZtOnv2rM0cXLeqcuXK2rt3ryZNmqTvv/9ee/fu1eXLl1WwYEE99thj6tSpk3UOOwAA7jfbtm3T008/bXMZfPrL8QHgVlkMI58m0QEA2NWhQ4esXxZnzZqlTp062bcgAABwzyhXrpw6duyogQMHWpd99tlnev3113Xq1CnVrFlTkydPVrVq1dSxY0c99thjeb5kHsCDiRFPAAAAAPAAS0pK0j///GNzU5Lr16/ro48+UseOHeXg4KC33npLI0eOVO3atVWgQAFCJwC5xgxxAAAAAPAA27lzpywWi+bOnasNGzZoz549evbZZ3Xu3DkNGTJEktSsWTMdOHBAy5Yt00cffWTnigHcSwieAAAAAOABtm3bNpUtW1ZDhgxR69atVa1aNTk4OGjDhg3y9fWVJP355586d+6cfH19b+vOuwAePARPAAAAAPAA2759uypUqKD27dvr+PHjunTpkhYsWKDAwEBJ0vHjx9W1a1etXr1a//zzj/bs2WPnigHcSwieAAAAAOABtm3bNlWsWDHTdUlJSWrdurUmTZqkEiVKqH///hoxYsQdrhDAvYy72gEAAADAA8owDPn4+Gj+/Plq0qSJvcsBcB8ieAIAAAAAAIApuNQOAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCn+FzOuxCpVrMVfAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -218,10 +218,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:48.247459Z", - "iopub.status.busy": "2024-01-10T15:12:48.247054Z", - "iopub.status.idle": "2024-01-10T15:12:48.250444Z", - "shell.execute_reply": "2024-01-10T15:12:48.249923Z" + "iopub.execute_input": "2024-02-06T01:09:40.175222Z", + "iopub.status.busy": "2024-02-06T01:09:40.175053Z", + "iopub.status.idle": "2024-02-06T01:09:40.178172Z", + "shell.execute_reply": "2024-02-06T01:09:40.177768Z" } }, "outputs": [], @@ -238,16 +238,16 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:48.252226Z", - "iopub.status.busy": "2024-01-10T15:12:48.251916Z", - "iopub.status.idle": "2024-01-10T15:12:48.459123Z", - "shell.execute_reply": "2024-01-10T15:12:48.458725Z" + "iopub.execute_input": "2024-02-06T01:09:40.179870Z", + "iopub.status.busy": "2024-02-06T01:09:40.179708Z", + "iopub.status.idle": "2024-02-06T01:09:40.344256Z", + "shell.execute_reply": "2024-02-06T01:09:40.343750Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGwCAYAAACKOz5MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBsElEQVR4nO3de1yUdf7//+cAcfAAuaiIKyIphmgqggm4mrWK2uGr1X5kq8UsD0tpK1Jfi/WEdCDLFE+YdpCoRLZVs/pQiq3nU0pgpqauSZhCin1l1BQS5veHP+fWBCKDh7mAx/12m9utec/7es/rGsJ58r6u632ZLBaLRQAAAAbm5OgCAAAArobAAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADM/F0QVcLxUVFTp+/LiaNm0qk8nk6HIAAEANWCwWnTlzRq1bt5aT05XnUepNYDl+/Lj8/PwcXQYAAKiFo0ePqk2bNld8vd4ElqZNm0q6tMOenp4OrgYAANSE2WyWn5+f9Xv8SupNYLl8GMjT05PAAgBAHXO10zk46RYAABgegQUAABgegQUAABhevTmHpSYqKipUVlbm6DKAOsPV1bXaywwB4GZpMIGlrKxMR44cUUVFhaNLAeoMJycnBQQEyNXV1dGlAGjgGkRgsVgsKiwslLOzs/z8/PiLEaiBy4sxFhYWqm3btizICMChahVYUlNT9frrr6uwsFCdO3dWSkqK+vTpc9XttmzZorvuuktdunRRXl6ezWvLly/XlClTdPjwYbVv314vv/yyHnzwwdqUV8nFixf1yy+/qHXr1mrUqNF1GRNoCFq0aKHjx4/r4sWLuuWWWxxdDoAGzO6phszMTMXFxWnSpEnKzc1Vnz59NHjwYBUUFFS7XUlJiYYPH64///nPlV7btm2boqOjFRMTo927dysmJkbDhg3Tjh077C2vSuXl5ZLEtDZgp8u/M5d/hwDAUUwWi8Vizwa9evVSjx49tHDhQmtbp06dNHToUCUnJ19xu7/+9a8KDAyUs7OzPv74Y5sZlujoaJnNZn3++efWtkGDBqlZs2bKyMiocrzS0lKVlpZan19eKa+kpKTSwnEXLlzQkSNHFBAQIHd3d3t2F2jQ+N0BcKOZzWZ5eXlV+f39W3bNsJSVlSknJ0dRUVE27VFRUdq6desVt1uyZIkOHz6sadOmVfn6tm3bKo05cODAasdMTk6Wl5eX9cF9hAAAqL/sCizFxcUqLy+Xj4+PTbuPj4+Kioqq3ObQoUN64YUX9OGHH8rFpepTZoqKiuwaU5ISEhJUUlJifRw9etSeXQEAAHVIrU66/f3VAhaLpcorCMrLy/Xoo49q+vTp6tix43UZ8zI3Nze5ubnZUXVls7MPXtP29powoPrPAI6Vn5+vgIAA5ebmqnv37rUaIy0tTXFxcTp9+vR1rQ0AGjq7ZliaN28uZ2fnSjMfJ06cqDRDIklnzpzRrl27NG7cOLm4uMjFxUVJSUnavXu3XFxc9J///EeS1KpVqxqPCePr16+f4uLibsp75efny2QyVbrqrL5IS0vTrbfe6ugyAMDh7Aosrq6uCg0NVXZ2tk17dna2IiMjK/X39PTUnj17lJeXZ33Exsbq9ttvV15ennr16iVJioiIqDTmmjVrqhyzIatPq/RaLBZdvHjR0WXUG/Xp/w0AqIrdlzXHx8fr7bff1rvvvqv9+/drwoQJKigoUGxsrKRL55YMHz780uBOTurSpYvNo2XLlnJ3d1eXLl3UuHFjSdL48eO1Zs0azZgxQ999951mzJihtWvX3rS/0o2qX79+GjdunOLj49W8eXMNGDBAkrRv3z7de++9atKkiXx8fBQTE6Pi4mLrdhUVFZoxY4Y6dOggNzc3tW3bVi+//LL19T179uiee+6Rh4eHvL29NWbMGJ09e9b6+ogRIzR06FDNnDlTvr6+8vb21tixY/Xrr79a+6SmpiowMFDu7u7y8fHRX/7yF+u2GzZs0Jw5c2QymWQymZSfn6/169fLZDJp9erVCgsLk5ubmzZt2mR9r9+Ki4tTv379arQ/AQEBkqSQkBCZTCab7ZYsWaJOnTrJ3d1dQUFBSk1NtXmfr776SiEhIXJ3d1dYWJhyc3Ov+jMpKyvTxIkT9cc//lGNGzdWr169tH79+mq3+fTTTxUaGip3d3fddtttmj59uk1YO336tMaMGSMfHx/r78Znn32m9evX64knnlBJSYn1s0xMTJQktWvXTi+99JJGjBghLy8vjR49WtKl9Yw6d+4sNzc3tWvXTm+88YZNLe3atdMrr7yiJ598Uk2bNlXbtm21ePHiq+43aikxsfYPADbsPoclOjpap06dUlJSkgoLC9WlSxdlZWXJ399fklRYWHjVNVl+LzIyUsuWLdPkyZM1ZcoUtW/fXpmZmdYZmIbsvffe01NPPaUtW7ZYV+y96667NHr0aM2aNUvnz5/X888/r2HDhlkPsSUkJOitt97S7Nmz9ac//UmFhYX67rvvJEm//PKLBg0apPDwcO3cuVMnTpzQqFGjNG7cOKWlpVnfd926dfL19dW6dev03//+V9HR0erevbtGjx6tXbt26R//+Ifef/99RUZG6ueff9amTZskSXPmzNHBgwfVpUsXJSUlSbq0+Fh+fr4kaeLEiZo5c6Zuu+22Gh/qqG5/vvrqK915551au3atOnfubF035K233tK0adM0f/58hYSEKDc3V6NHj1bjxo31+OOP69y5c7r//vt1zz336IMPPtCRI0c0fvz4q9byxBNPKD8/X8uWLVPr1q21cuVKDRo0SHv27FFgYGCl/qtXr9bf/vY3zZ07V3369NHhw4c1ZswYSdK0adNUUVGhwYMH68yZM/rggw/Uvn177du3T87OzoqMjFRKSoqmTp2qAwcOSJKaNGliHfv111/XlClTNHnyZElSTk6Ohg0bpsTEREVHR2vr1q16+umn5e3trREjRli3e+ONN/Tiiy/qn//8p/7973/rqaeeUt++fRUUFFSjnwcAOILd67AYVXXXcV9pLQmjn3Tbr18/lZSU2PzlP3XqVO3YsUOrV6+2tv3444/y8/PTgQMH5OvrqxYtWmj+/PkaNWpUpTHfeustPf/88zp69Kh1hisrK0sPPPCAjh8/Lh8fH40YMULr16/X4cOH5ezsLEkaNmyYnJyctGzZMq1YsUJPPPGEfvzxRzVt2rTKurt3766UlBRr2/r163X33Xfr448/1pAhQ6ztI0aM0OnTp/Xxxx9b2+Li4pSXl6f169frzJkz1e7PlU6Ubdu2rWbMmKFHHnnE2vbSSy8pKytLW7du1eLFi5WQkKCjR49aVz9+88039dRTT13xpNvDhw8rMDBQP/74o1q3bm1t79+/v+6880698sorlU667du3rwYPHqyEhARr/w8++EATJ07U8ePHtWbNGg0ePFj79++v8sT0K53E265dO4WEhGjlypXWtscee0wnT57UmjVrrG0TJ07U//7v/2rv3r3W7fr06aP3339f0qVDc61atdL06dOts6S/xTos1+haZkqYZUEDUdN1WBrEvYTqsrCwMJvnOTk5Wrdunc1f2pcdPnxYp0+fVmlpaZUrCkvS/v371a1bN2tYkaTevXuroqJCBw4csJ7o3LlzZ2tYkSRfX1/t2bNHkjRgwAD5+/vrtttu06BBgzRo0CA9+OCDNbrtwe/352r2799f7f5U5eTJkzp69KhGjhxpPVQiXbpFg5eXl3Xcbt262dQcERFR7bhff/21LBZLpWBRWloqb2/vKrfJycnRzp07bQ7JlZeX68KFC/rll1+Ul5enNm3aXPUquqr8/rPcv3+/TRiULv1sU1JSVF5ebv15du3a1fq6yWRSq1atdOLECbvfHwBuJgKLwf02WEiXzud44IEHNGPGjEp9fX199f3331c7XnWXi/+2/ff3jTGZTNY7XTdt2lRff/211q9frzVr1mjq1KlKTEzUzp07r3qY5/f74+TkpN9P8v32XBkPD49qx6vK5TrfeuutSocVL39p12ZisaKiQs7OzsrJybEJc5KqDJCXt5k+fboeeuihSq+5u7vXav8u+/1nWdXPtqr9rO5nCwBGxW2L65gePXpo7969ateunTp06GDzaNy4sQIDA+Xh4aEvv/yyyu2Dg4OVl5enc+fOWdu2bNkiJycnu/7Kd3FxUf/+/fXaa6/pm2++UX5+vvUcGldX1xrfe6ZFixYqLCy0afvtJcpX25+q7nXj4+OjP/7xj/r+++8rfUaXT9INDg7W7t27df78eet227dvr7bWkJAQlZeX68SJE5XGbdWqVZXb9OjRQwcOHKjUv0OHDnJyclLXrl31448/6uDBqg9P2vNZBgcHa/PmzTZtW7duVceOHSsFLACoawgsdczYsWP1888/65FHHtFXX32l77//XmvWrNGTTz6p8vJyubu76/nnn9fEiROVnp6uw4cPa/v27XrnnXckXTrPwd3dXY8//ri+/fZbrVu3Ts8884xiYmJqvO7NZ599prlz5yovL08//PCD0tPTVVFRodtvv13SpfMkduzYofz8fBUXF1f71/s999yjXbt2KT09XYcOHdK0adP07bffWl+/2v60bNlSHh4e+uKLL/TTTz+ppKREkpSYmKjk5GTrScB79uzRkiVLNGvWLEnSo48+KicnJ40cOVL79u1TVlaWZs6cWe1+d+zYUY899piGDx+uFStW6MiRI9q5c6dmzJihrKysKreZOnWq0tPTlZiYqL1792r//v3KzMy0nih71113qW/fvnr44YeVnZ2tI0eO6PPPP9cXX3xh/SzPnj2rL7/8UsXFxfrll1+uWN+zzz6rL7/8Ui+++KIOHjyo9957T/Pnz9dzzz1X7X4BQF3QoA8J1cWVZ1u3bq0tW7bo+eef18CBA1VaWip/f38NGjRITk6X8ueUKVPk4uKiqVOn6vjx4/L19bWeUNmoUSOtXr1a48ePV8+ePdWoUSM9/PDD1i/ymrj11lu1YsUKJSYm6sKFCwoMDFRGRoY6d+4sSXruuef0+OOPKzg4WOfPn9eRI0euONbAgQM1ZcoUTZw4URcuXNCTTz6p4cOHW8+Xudr+uLi4aO7cuUpKStLUqVPVp08frV+/XqNGjVKjRo30+uuva+LEiWrcuLHuuOMO66XyTZo00aeffqrY2FiFhIQoODhYM2bM0MMPP1ztvi9ZskQvvfSSnn32WR07dkze3t6KiIjQvffee8X9++yzz5SUlKTXXntNt9xyi4KCgmxOIF6+fLmee+45PfLIIzp37pw6dOigV199VdKlK+hiY2OtV+dNmzbNemnz7/Xo0UP/+te/NHXqVL344ovy9fVVUlKSzRVCAFBXNeirhABUj9+da8RVQsBV3ZC7NQMAADgCgQUAABhegz6HBQCuikMzgCEQWIAG6CfzhRr1+7WsVObzvyptyxGdr7h0aXRdPFkdQN3HISEAAGB4zLAAsMu13IOL2RkAtcUMCwAAMDxmWADAiFjDBbDBDAvw/8vPz5fJZLK5l9HNlpaWdtUbSAJAQ9SwZ1hu9l8hDeSvnn79+ql79+5KSUm54e+Vn5+vgIAA5ebmqnv37jf8/W606Ohom2X+ExMT9fHHHzs0RAGAETDDUoeUlZU5uoTrxmKx6OLFi44uw3A8PDzUsmVLu7f79ddfb0A1AGAcBBYD69evn8aNG6f4+Hg1b95cAwYMkCTt27dP9957r5o0aSIfHx/FxMSouLjYul1FRYVmzJihDh06yM3NTW3bttXLL79sfX3Pnj2655575OHhIW9vb40ZM0Znz561vj5ixAgNHTpUM2fOlK+vr7y9vTV27FibL8XU1FQFBgbK3d1dPj4++stf/mLddsOGDZozZ45MJpNMJpPy8/O1fv16mUwmrV69WmFhYXJzc9OmTZus7/VbcXFx6tevX432JyAgQJIUEhIik8lks92SJUvUqVMnubu7KygoSKmpqTbv89VXXykkJETu7u4KCwtTbm7uVX8m7dq104svvqhHH31UTZo0UevWrTVv3jybPgUFBRoyZIiaNGkiT09PDRs2TD/99JP19d27d+vuu+9W06ZN5enpqdDQUO3atUuS7SGhtLQ0TZ8+Xbt377Z+lmlpaZIkk8mk12bP06D7HlCjxo31wpRE/WS+oBmz5qpdwG1ydXVVh8COmr/4Xf1kvmB9mEwmzZq3UE88NkwBrf6giJAuWp312VX3GwAcjcBicO+9955cXFy0ZcsWLVq0SIWFhbrrrrvUvXt37dq1S1988YV++uknDRs2zLpNQkKCZsyYoSlTpmjfvn1aunSpfHx8JEm//PKLBg0apGbNmmnnzp366KOPtHbtWo0bN87mfdetW6fDhw9r3bp1eu+995SWlmb9sty1a5f+8Y9/KCkpSQcOHNAXX3yhvn37SpLmzJmjiIgIjR49WoWFhSosLJSfn5913IkTJyo5OVn79+9X165da/QZVLc/X331lSRp7dq1Kiws1IoVKyRJb731liZNmqSXX35Z+/fv1yuvvKIpU6bovffekySdO3dO999/v26//Xbl5OQoMTFRzz33XI3qef3119W1a1d9/fXXSkhI0IQJE5SdnS3p0szR0KFD9fPPP2vDhg3Kzs7W4cOHFR0dbd3+scceU5s2bbRz507l5OTohRde0C233FLpfaKjo/Xss8+qc+fO1s/yt+O8nvySBt57v9Zv3aVH/jZcWZ+u0pQXnlPsuPFavz1HMU+MVNzTY7R54wabcd+Y8bL+z4MP6z9bdurPUQP19Ogn9P9+/rlG+w4AjtKwz2GpAzp06KDXXnvN+nzq1Knq0aOHXnnlFWvbu+++Kz8/Px08eFC+vr6aM2eO5s+fr8cff1yS1L59e/3pT3+SJH344Yc6f/680tPT1bhxY0nS/Pnz9cADD2jGjBnWINCsWTPNnz9fzs7OCgoK0n333acvv/xSo0ePVkFBgRo3bqz7779fTZs2lb+/v0JCQiRJXl5ecnV1VaNGjdSqVatK+5OUlGSdKaqJM2fOVLs/LVq0kCR5e3vbvN+LL76oN954Qw899JCkSzMx+/bt06JFi/T444/rww8/VHl5ud599101atRInTt31o8//qinnnrqqjX17t1bL7zwgiSpY8eO2rJli2bPnq0BAwZo7dq1+uabb3TkyBFrUHv//ffVuXNn7dy5Uz179lRBQYH+7//9vwoKCpIkBQYGVvk+Hh4eatKkiVxcXKr8LB/6n2F6NOZx6/OnR41Q9KMxemL03y99TuPGK2fnV1o4L0V/6nuXtV/0ozF68C+Xgk/C1CS9s2ihcr/epXv6R1113wHAUZhhMbiwsDCb5zk5OVq3bp2aNGlifVz+4jt8+LD279+v0tJS/fnPf65yvP3796tbt27WsCJd+gKuqKjQgQMHrG2dO3eWs7Oz9bmvr69OnDghSRowYID8/f112223KSYmRh9++KF++eWXWu3P1Vxtf6py8uRJHT16VCNHjrT5nF566SUdPnzYOm63bt3UqFEj63YRERE1Gv/3/SIiIrR//37ruH5+fjazSsHBwbr11lutfeLj4zVq1Cj1799fr776qrUme3UL6WHz/NCBA+oZblvbneEROnTgO5u2Tp27WP+7cePGatK0qYpPnqxVDQBwsxBYDO63wUK6dD7HAw88oLy8PJvHoUOH1LdvX3l4eFQ7nsVikclkqvK137b//hCFyWRSRUWFJKlp06b6+uuvlZGRIV9fX02dOlXdunXT6dOn7d4fJycnWSwWm7bfnitztf2pyuU633rrLZvP6Ntvv9X27dslqdJ7XqvLn92VPt/fticmJmrv3r2677779J///EfBwcFauXKl3e/ZqFHjSm2/f++q6qnuZwsARkVgqWN69OihvXv3ql27durQoYPNo3HjxgoMDJSHh4e+/PLLKrcPDg5WXl6ezp07Z23bsmWLnJyc1LFjzZdNd3FxUf/+/fXaa6/pm2++UX5+vv7zn/9IklxdXVVeXl6jcVq0aKHCwkKbtt9ewnu1/XF1dZUkm/fz8fHRH//4R33//feVPqPLJ+kGBwdr9+7dOn/+vHW7y2Hman7fb/v27dZZruDgYBUUFOjo0aPW1/ft26eSkhJ16tTJ2taxY0dNmDBBa9as0UMPPaQlS5Zccf9q+lkG3n67vtq21aZt547tCrw9qEbbA4CREVjqmLFjx+rnn3/WI488oq+++krff/+91qxZoyeffFLl5eVyd3fX888/r4kTJyo9PV2HDx/W9u3b9c4770i6dMKnu7u7Hn/8cX377bdat26dnnnmGcXExFjPX7mazz77THPnzlVeXp5++OEHpaenq6KiQrfffrukS1fS7NixQ/n5+SouLq72r/d77rlHu3btUnp6ug4dOqRp06bp22+/tb5+tf1p2bKlPDw8rCcfl5SUSLo0i5GcnKw5c+bo4MGD2rNnj5YsWaJZs2ZJkh599FE5OTlp5MiR2rdvn7KysjRz5swa7f+WLVv02muv6eDBg1qwYIE++ugjjR8/XpLUv39/de3aVY899pi+/vprffXVVxo+fLjuuusuhYWF6fz58xo3bpzWr1+vH374QVu2bNHOnTttwsxvtWvXTkeOHFFeXp6Ki4tVWlp6xbqe/scEZS59X++985a+P/xfvTl/jrI+XaWnnomr0X4BgJERWOqY1q1ba8uWLSovL9fAgQPVpUsXjR8/Xl5eXnJyuvTjnDJlip599llNnTpVnTp1UnR0tPX8k0aNGmn16tX6+eef1bNnT/3lL3/Rn//8Z82fP7/GNdx6661asWKF7rnnHnXq1ElvvvmmMjIy1LlzZ0nSc889J2dnZwUHB6tFixYqKCi44lgDBw7UlClTNHHiRPXs2VNnzpzR8OHDbfpUtz8uLi6aO3euFi1apNatW2vIkCGSpFGjRuntt99WWlqa7rjjDt11111KS0uzzrA0adJEn376qfbt26eQkBBNmjRJM2bMqNH+P/vss8rJyVFISIj15N6BAwdKunR45eOPP1azZs3Ut29f9e/fX7fddpsyMzMlSc7Ozjp16pSGDx+ujh07atiwYRo8eLCmT59e5Xs9/PDDGjRokO6++261aNFCGRkZV6xr8P3/Ry++OlOpc2frrl499P6Sd5SSuli9+/St0X4BgJGZLNf7YL6DmM1meXl5qaSkRJ6enjavXbhwQUeOHFFAQIDc3d0dVCHqg3bt2ikuLk5xcXGOLkU/mS/c8Pf4taxUxwp+UO7/u0XnK5yvvsFV1Mm7NdfFFarrYs1osKr7/v4tZlgAAIDhEVgAAIDhsXAcYIf8/HxHlwAADRIzLAAAwPAaVGCpJ+cXAzeP9Xem6sUGAeBmqVVgSU1NtV5xExoaqk2bNl2x7+bNm9W7d295e3vLw8NDQUFBmj17tk2ftLQ0691of/u4cOH6XAVxeYn5srKy6zIe0FCUX7yoCotFF8n6ABzM7nNYMjMzFRcXp9TUVPXu3VuLFi3S4MGDtW/fPrVt27ZS/8aNG2vcuHHq2rWrGjdurM2bN+vvf/+7GjdurDFjxlj7eXp62tzLRtJ1uwTZxcVFjRo10smTJ3XLLbdY1ysB6rJfy668iNz1YLFU6PTPxfq51KRfLcywAHAsuwPLrFmzNHLkSI0aNUqSlJKSotWrV2vhwoVKTk6u1D8kJMR6J1/p0joWK1as0KZNm2wCi8lkqvKOtNeDyWSSr6+vjhw5oh9++OGGvAdws5nP/3r1TtfAIqn0okX5v7iJQ0IAHM2uwFJWVqacnBy98MILNu1RUVHaunXrFbaylZubq61bt+qll16yaT979qz8/f1VXl6u7t2768UXX7QJOr9XWlpqs0y52Wyu9n1dXV0VGBjIYSHUG2lbjtzQ8S0yqbTCJAthBYAB2BVYiouLVV5eXumeMz4+PioqKqp22zZt2ujkyZO6ePGiEhMTrTM0khQUFGRdQt1sNmvOnDnq3bu3du/ercDAwCrHS05OvuJy5lfi5OTESreoN67HyrMAUFfUah2WmtzC/vc2bdqks2fPavv27XrhhRfUoUMHPfLII5Kk8PBwhYeHW/v27t1bPXr00Lx58zR37twqx0tISFB8fLz1udlslp+fX212BwAAGJxdgaV58+ZydnauNJty4sSJq97p9/JN5+644w799NNPSkxMtAaW33NyclLPnj116NChK47n5uYmNzc3e8oHAAB1lF2Xy7i6uio0NFTZ2dk27dnZ2YqMjKzxOBaLxeb8k6pez8vLk6+vrz3lAQCAesruQ0Lx8fGKiYlRWFiYIiIitHjxYhUUFCg2NlbSpUM1x44dU3p6uiRpwYIFatu2rYKCgiRdWpdl5syZeuaZZ6xjTp8+XeHh4QoMDJTZbNbcuXOVl5enBQsWXI99BAAAdZzdgSU6OlqnTp1SUlKSCgsL1aVLF2VlZcnf31+SVFhYqIKCAmv/iooKJSQk6MiRI3JxcVH79u316quv6u9//7u1z+nTpzVmzBgVFRXJy8tLISEh2rhxo+68887rsIsAAKCuM1nqyXr1ZrNZXl5eKikpkaenp6PLAW642dkHHV2C3SYM6OjoEuyXmOjoCuxXF2tGg1XT72+WfAUAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIbn4ugCADQcs7MP1nrbCQM6XsdKANQ1zLAAAADDI7AAAADD45AQgPovMdHRFQC4RsywAAAAw2OGBQDqm2uZUWI2CgbFDAsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8Fo4DHOha7l4MAA1JrWZYUlNTFRAQIHd3d4WGhmrTpk1X7Lt582b17t1b3t7e8vDwUFBQkGbPnl2p3/LlyxUcHCw3NzcFBwdr5cqVtSkNAADUQ3YHlszMTMXFxWnSpEnKzc1Vnz59NHjwYBUUFFTZv3Hjxho3bpw2btyo/fv3a/LkyZo8ebIWL15s7bNt2zZFR0crJiZGu3fvVkxMjIYNG6YdO3bUfs8AAEC9YbJYLBZ7NujVq5d69OihhQsXWts6deqkoUOHKjk5uUZjPPTQQ2rcuLHef/99SVJ0dLTMZrM+//xza59BgwapWbNmysjIqNGYZrNZXl5eKikpkaenpx17BDgOh4RqbsKAjrXfmPvj1ByfFW6ymn5/2zXDUlZWppycHEVFRdm0R0VFaevWrTUaIzc3V1u3btVdd91lbdu2bVulMQcOHFjtmKWlpTKbzTYPAABQP9kVWIqLi1VeXi4fHx+bdh8fHxUVFVW7bZs2beTm5qawsDCNHTtWo0aNsr5WVFRk95jJycny8vKyPvz8/OzZFQAAUIfU6qRbk8lk89xisVRq+71NmzZp165devPNN5WSklLpUI+9YyYkJKikpMT6OHr0qJ17AQAA6gq7Lmtu3ry5nJ2dK818nDhxotIMye8FBARIku644w799NNPSkxM1COPPCJJatWqld1jurm5yc3NzZ7yAQBAHWXXDIurq6tCQ0OVnZ1t056dna3IyMgaj2OxWFRaWmp9HhERUWnMNWvW2DUmAACov+xeOC4+Pl4xMTEKCwtTRESEFi9erIKCAsXGxkq6dKjm2LFjSk9PlyQtWLBAbdu2VVBQkKRL67LMnDlTzzzzjHXM8ePHq2/fvpoxY4aGDBmiVatWae3atdq8efP12EcAAFDH2R1YoqOjderUKSUlJamwsFBdunRRVlaW/P39JUmFhYU2a7JUVFQoISFBR44ckYuLi9q3b69XX31Vf//73619IiMjtWzZMk2ePFlTpkxR+/btlZmZqV69el2HXQQAAHWd3euwGBXrsKAuYh2WmmMdlpuEzwo32Q1ZhwUAAMARCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwahVYUlNTFRAQIHd3d4WGhmrTpk1X7LtixQoNGDBALVq0kKenpyIiIrR69WqbPmlpaTKZTJUeFy5cqE15AACgnnGxd4PMzEzFxcUpNTVVvXv31qJFizR48GDt27dPbdu2rdR/48aNGjBggF555RXdeuutWrJkiR544AHt2LFDISEh1n6enp46cOCAzbbu7u612CUA9dHs7IO13nbCdawDgGPYHVhmzZqlkSNHatSoUZKklJQUrV69WgsXLlRycnKl/ikpKTbPX3nlFa1atUqffvqpTWAxmUxq1apVjesoLS1VaWmp9bnZbLZzTwAAQF1h1yGhsrIy5eTkKCoqyqY9KipKW7durdEYFRUVOnPmjP7whz/YtJ89e1b+/v5q06aN7r//fuXm5lY7TnJysry8vKwPPz8/e3YFAADUIXYFluLiYpWXl8vHx8em3cfHR0VFRTUa44033tC5c+c0bNgwa1tQUJDS0tL0ySefKCMjQ+7u7urdu7cOHTp0xXESEhJUUlJifRw9etSeXQEAAHWI3YeEpEuHb37LYrFUaqtKRkaGEhMTtWrVKrVs2dLaHh4ervDwcOvz3r17q0ePHpo3b57mzp1b5Vhubm5yc3OrTfkAAKCOsSuwNG/eXM7OzpVmU06cOFFp1uX3MjMzNXLkSH300Ufq379/tX2dnJzUs2fPamdYAABAw2HXISFXV1eFhoYqOzvbpj07O1uRkZFX3C4jI0MjRozQ0qVLdd999131fSwWi/Ly8uTr62tPeQAAoJ6y+5BQfHy8YmJiFBYWpoiICC1evFgFBQWKjY2VdOnckmPHjik9PV3SpbAyfPhwzZkzR+Hh4dbZGQ8PD3l5eUmSpk+frvDwcAUGBspsNmvu3LnKy8vTggULrtd+AgCAOszuwBIdHa1Tp04pKSlJhYWF6tKli7KysuTv7y9JKiwsVEFBgbX/okWLdPHiRY0dO1Zjx461tj/++ONKS0uTJJ0+fVpjxoxRUVGRvLy8FBISoo0bN+rOO++8xt0DAAD1gclisVgcXcT1YDab5eXlpZKSEnl6ejq6HKBGrmUxNNTchC1LHV1C3ZGY6OgK0MDU9Pu7VlcJAQDqqWsJLIQd3EDc/BAAABgegQUAABgegQUAABgegQUAABgegQUAABgegQUAABgegQUAABge67AAqBPC0+fVfuP23tevEAAOwQwLAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPNZhAa7R7OyDji4BAOo9ZlgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDh1SqwpKamKiAgQO7u7goNDdWmTZuu2HfFihUaMGCAWrRoIU9PT0VERGj16tWV+i1fvlzBwcFyc3NTcHCwVq5cWZvSAABAPWR3YMnMzFRcXJwmTZqk3Nxc9enTR4MHD1ZBQUGV/Tdu3KgBAwYoKytLOTk5uvvuu/XAAw8oNzfX2mfbtm2Kjo5WTEyMdu/erZiYGA0bNkw7duyo/Z4BAIB6w2SxWCz2bNCrVy/16NFDCxcutLZ16tRJQ4cOVXJyco3G6Ny5s6KjozV16lRJUnR0tMxmsz7//HNrn0GDBqlZs2bKyMiocozS0lKVlpZan5vNZvn5+amkpESenp727BJwTWZnH3R0CQ1CePq8Wm8b0d77OlaCK0pMdHQFqIPMZrO8vLyu+v1t1wxLWVmZcnJyFBUVZdMeFRWlrVu31miMiooKnTlzRn/4wx+sbdu2bas05sCBA6sdMzk5WV5eXtaHn5+fHXsCAADqErsCS3FxscrLy+Xj42PT7uPjo6KiohqN8cYbb+jcuXMaNmyYta2oqMjuMRMSElRSUmJ9HD161I49AQAAdYlLbTYymUw2zy0WS6W2qmRkZCgxMVGrVq1Sy5Ytr2lMNzc3ubm52VE1AACoq+wKLM2bN5ezs3OlmY8TJ05UmiH5vczMTI0cOVIfffSR+vfvb/Naq1atajUmAABoGOw6JOTq6qrQ0FBlZ2fbtGdnZysyMvKK22VkZGjEiBFaunSp7rvvvkqvR0REVBpzzZo11Y4JAAAaDrsPCcXHxysmJkZhYWGKiIjQ4sWLVVBQoNjYWEmXzi05duyY0tPTJV0KK8OHD9ecOXMUHh5unUnx8PCQl5eXJGn8+PHq27evZsyYoSFDhmjVqlVau3atNm/efL32EwAA1GF2r8MSHR2tlJQUJSUlqXv37tq4caOysrLk7+8vSSosLLRZk2XRokW6ePGixo4dK19fX+tj/Pjx1j6RkZFatmyZlixZoq5duyotLU2ZmZnq1avXddhFAABQ19m9DotR1fQ6buB6Yx2Wm4N1WOoA1mFBLdyQdVgAAAAcgcACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMj8ACAAAMz8XRBQDAjbbt8KlabxvR3vs6VgKgtphhAQAAhkdgAQAAhkdgAQAAhkdgAQAAhkdgAQAAhkdgAQAAhkdgAQAAhkdgAQAAhsfCcQBumvD0eY4uAUAdxQwLAAAwPAILAAAwvFoFltTUVAUEBMjd3V2hoaHatGnTFfsWFhbq0Ucf1e233y4nJyfFxcVV6pOWliaTyVTpceHChdqUBwAA6hm7A0tmZqbi4uI0adIk5ebmqk+fPho8eLAKCgqq7F9aWqoWLVpo0qRJ6tat2xXH9fT0VGFhoc3D3d3d3vIAAEA9ZHdgmTVrlkaOHKlRo0apU6dOSklJkZ+fnxYuXFhl/3bt2mnOnDkaPny4vLy8rjiuyWRSq1atbB4AAACSnYGlrKxMOTk5ioqKsmmPiorS1q1br6mQs2fPyt/fX23atNH999+v3NzcavuXlpbKbDbbPAAAQP1kV2ApLi5WeXm5fHx8bNp9fHxUVFRU6yKCgoKUlpamTz75RBkZGXJ3d1fv3r116NChK26TnJwsLy8v68PPz6/W7w8AAIytVifdmkwmm+cWi6VSmz3Cw8P1t7/9Td26dVOfPn30r3/9Sx07dtS8eVdesyEhIUElJSXWx9GjR2v9/gAAwNjsWjiuefPmcnZ2rjSbcuLEiUqzLtfCyclJPXv2rHaGxc3NTW5ubtftPQEA1ygx0THbokGwa4bF1dVVoaGhys7OtmnPzs5WZGTkdSvKYrEoLy9Pvr6+121MAABQd9m9NH98fLxiYmIUFhamiIgILV68WAUFBYqNjZV06VDNsWPHlJ6ebt0mLy9P0qUTa0+ePKm8vDy5uroqODhYkjR9+nSFh4crMDBQZrNZc+fOVV5enhYsWHAddhEAANR1dgeW6OhonTp1SklJSSosLFSXLl2UlZUlf39/SZcWivv9miwhISHW/87JydHSpUvl7++v/Px8SdLp06c1ZswYFRUVycvLSyEhIdq4caPuvPPOa9g1AABQX5gsFovF0UVcD2azWV5eXiopKZGnp6ejy0EDMjv7oKNLqDPq4s0PI9p7O7qEhoFzWBqsmn5/cy8hAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeHavdAvURyz+BgDGxgwLAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPBdHFwAARrbt8KlabxvR3vs6VgI0bMywAAAAwyOwAAAAwyOwAAAAwyOwAAAAw6tVYElNTVVAQIDc3d0VGhqqTZs2XbFvYWGhHn30Ud1+++1ycnJSXFxclf2WL1+u4OBgubm5KTg4WCtXrqxNaQAAoB6yO7BkZmYqLi5OkyZNUm5urvr06aPBgweroKCgyv6lpaVq0aKFJk2apG7dulXZZ9u2bYqOjlZMTIx2796tmJgYDRs2TDt27LC3PAAAUA+ZLBaLxZ4NevXqpR49emjhwoXWtk6dOmno0KFKTk6udtt+/fqpe/fuSklJsWmPjo6W2WzW559/bm0bNGiQmjVrpoyMjBrVZTab5eXlpZKSEnl6etZ8hwBJs7MPOrqEBiE8fZ6jS7ipuKzZDomJjq4ADlLT72+7ZljKysqUk5OjqKgom/aoqCht3bq1dpXq0gzL78ccOHBgtWOWlpbKbDbbPAAAQP1kV2ApLi5WeXm5fHx8bNp9fHxUVFRU6yKKiorsHjM5OVleXl7Wh5+fX63fHwAAGFutTro1mUw2zy0WS6W2Gz1mQkKCSkpKrI+jR49e0/sDAADjsmtp/ubNm8vZ2bnSzMeJEycqzZDYo1WrVnaP6ebmJjc3t1q/JwAAqDvsmmFxdXVVaGiosrOzbdqzs7MVGRlZ6yIiIiIqjblmzZprGhMAANQfdt/8MD4+XjExMQoLC1NERIQWL16sgoICxcbGSrp0qObYsWNKT0+3bpOXlydJOnv2rE6ePKm8vDy5uroqODhYkjR+/Hj17dtXM2bM0JAhQ7Rq1SqtXbtWmzdvvg67CAAwvGu5SogrjBoEuwNLdHS0Tp06paSkJBUWFqpLly7KysqSv7+/pEsLxf1+TZaQkBDrf+fk5Gjp0qXy9/dXfn6+JCkyMlLLli3T5MmTNWXKFLVv316ZmZnq1avXNewaAACoL+xeh8WoWIcF14J1WG4O1mHBDcEMS512Q9ZhAQAAcAQCCwAAMDwCCwAAMDwCCwAAMDy7rxIC0LA1tBNnARgDMywAAMDwCCwAAMDwCCwAAMDwOIcF9QILvwFA/cYMCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMDwCCwAAMLxaBZbU1FQFBATI3d1doaGh2rRpU7X9N2zYoNDQULm7u+u2227Tm2++afN6WlqaTCZTpceFCxdqUx4AAKhn7A4smZmZiouL06RJk5Sbm6s+ffpo8ODBKigoqLL/kSNHdO+996pPnz7Kzc3VP//5T/3jH//Q8uXLbfp5enqqsLDQ5uHu7l67vQIAAPWKi70bzJo1SyNHjtSoUaMkSSkpKVq9erUWLlyo5OTkSv3ffPNNtW3bVikpKZKkTp06adeuXZo5c6Yefvhhaz+TyaRWrVrVuI7S0lKVlpZan5vNZnt3BQAA1BF2zbCUlZUpJydHUVFRNu1RUVHaunVrldts27atUv+BAwdq165d+vXXX61tZ8+elb+/v9q0aaP7779fubm51daSnJwsLy8v68PPz8+eXQEAAHWIXTMsxcXFKi8vl4+Pj027j4+PioqKqtymqKioyv4XL15UcXGxfH19FRQUpLS0NN1xxx0ym82aM2eOevfurd27dyswMLDKcRMSEhQfH299bjabCS0ADGXb4VO13jaivfd1rASo++w+JCRdOnzzWxaLpVLb1fr/tj08PFzh4eHW13v37q0ePXpo3rx5mjt3bpVjurm5yc3NrTblAwCAOsauwNK8eXM5OztXmk05ceJEpVmUy1q1alVlfxcXF3l7V/0XhJOTk3r27KlDhw7ZUx7quNnZBx1dQoMRnj7P0SUAgF3sCiyurq4KDQ1Vdna2HnzwQWt7dna2hgwZUuU2ERER+vTTT23a1qxZo7CwMN1yyy1VbmOxWJSXl6c77rjDnvIAAA1RYqJjtsVNZfdlzfHx8Xr77bf17rvvav/+/ZowYYIKCgoUGxsr6dK5JcOHD7f2j42N1Q8//KD4+Hjt379f7777rt555x0999xz1j7Tp0/X6tWr9f333ysvL08jR45UXl6edUwAANCw2X0OS3R0tE6dOqWkpCQVFhaqS5cuysrKkr+/vySpsLDQZk2WgIAAZWVlacKECVqwYIFat26tuXPn2lzSfPr0aY0ZM0ZFRUXy8vJSSEiINm7cqDvvvPM67CIAAKjrTJbLZ8DWcWazWV5eXiopKZGnp6ejy0EtcA7LzcM5LMbHVUI3CYeEHK6m39/cSwgAABgegQUAABgegQUAABgegQUAABgegQUAABgegQUAABgegQUAABgegQUAABgegQUAABgegQUAABie3fcSAmAMLK8PoCFhhgUAABgeMywAYEDbDp+q9bbcOBH1ETMsAADA8JhhwXU1O/ugo0sAANRDzLAAAADDY4YFANBwJSY6ZlvYjRkWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeAQWAABgeCzNj0q4gSEAwGiYYQEAAIbHDAsAwGrb4VO13jaivfd1rASwRWABAKA2uNPzTVWrwJKamqrXX39dhYWF6ty5s1JSUtSnT58r9t+wYYPi4+O1d+9etW7dWhMnTlRsbKxNn+XLl2vKlCk6fPiw2rdvr5dfflkPPvhgbcoD7BaePs8h77t9+DMOeV/Ub9cySwIYld2BJTMzU3FxcUpNTVXv3r21aNEiDR48WPv27VPbtm0r9T9y5IjuvfdejR49Wh988IG2bNmip59+Wi1atNDDDz8sSdq2bZuio6P14osv6sEHH9TKlSs1bNgwbd68Wb169br2vWyAOHEWQEPBYayGwWSxWCz2bNCrVy/16NFDCxcutLZ16tRJQ4cOVXJycqX+zz//vD755BPt37/f2hYbG6vdu3dr27ZtkqTo6GiZzWZ9/vnn1j6DBg1Ss2bNlJGRUWUdpaWlKi0ttT43m83y8/NTSUmJPD097dmlq7qWL/8JAzo65H1hn7o4w+KomoEb4VqCQ4MLLPXscJLZbJaXl9dVv7/tmmEpKytTTk6OXnjhBZv2qKgobd26tcpttm3bpqioKJu2gQMH6p133tGvv/6qW265Rdu2bdOECRMq9UlJSbliLcnJyZo+fbo95dfahC1La7/xlmt439pvWjc58njw+4758o+4lo0HEFhQf1zTH4aJtf/DsC5y1B+z1/IH+PVgV2ApLi5WeXm5fHx8bNp9fHxUVFRU5TZFRUVV9r948aKKi4vl6+t7xT5XGlOSEhISFB8fb31+eYblhqhnafaqOJEMAAzL0cHBUWp10q3JZLJ5brFYKrVdrf/v2+0d083NTW5ubjWuGXaoi6GjLtYMAKgxuwJL8+bN5ezsXGnm48SJE5VmSC5r1apVlf1dXFzk7e1dbZ8rjQkAqF8a6qwBas6ulW5dXV0VGhqq7Oxsm/bs7GxFRkZWuU1ERESl/mvWrFFYWJhuueWWavtcaUwAANCw2H1IKD4+XjExMQoLC1NERIQWL16sgoIC67oqCQkJOnbsmNLT0yVduiJo/vz5io+P1+jRo7Vt2za98847Nlf/jB8/Xn379tWMGTM0ZMgQrVq1SmvXrtXmzZuv024CAIC6zO7AEh0drVOnTikpKUmFhYXq0qWLsrKy5O/vL0kqLCxUQUGBtX9AQICysrI0YcIELViwQK1bt9bcuXOta7BIUmRkpJYtW6bJkydrypQpat++vTIzM1mDBQAASKrFOixGVdPruAEAgHHU9PubuzUDAADDI7AAAADDI7AAAADDI7AAAADDI7AAAADDI7AAAADDI7AAAADDI7AAAADDI7AAAADDI7AAAADDI7AAAADDs/vmh0Z1+ZZIZrPZwZUAAICauvy9fbVbG9abwHLmzBlJkp+fn4MrAQAA9jpz5oy8vLyu+Hq9uVtzRUWFjh8/rqZNm8pkMjm6nDrLbDbLz89PR48e5a7X1xmf7Y3DZ3tj8fneOHy2l2ZWzpw5o9atW8vJ6cpnqtSbGRYnJye1adPG0WXUG56eng32l+dG47O9cfhsbyw+3xunoX+21c2sXMZJtwAAwPAILAAAwPAILLDh5uamadOmyc3NzdGl1Dt8tjcOn+2Nxed74/DZ1ly9OekWAADUX8ywAAAAwyOwAAAAwyOwAAAAwyOwAAAAwyOw4KpKS0vVvXt3mUwm5eXlObqcOi8/P18jR45UQECAPDw81L59e02bNk1lZWWOLq3OSk1NVUBAgNzd3RUaGqpNmzY5uqQ6Lzk5WT179lTTpk3VsmVLDR06VAcOHHB0WfVScnKyTCaT4uLiHF2KoRFYcFUTJ05U69atHV1GvfHdd9+poqJCixYt0t69ezV79my9+eab+uc//+no0uqkzMxMxcXFadKkScrNzVWfPn00ePBgFRQUOLq0Om3Dhg0aO3astm/fruzsbF28eFFRUVE6d+6co0urV3bu3KnFixera9euji7F8LisGdX6/PPPFR8fr+XLl6tz587Kzc1V9+7dHV1WvfP6669r4cKF+v777x1dSp3Tq1cv9ejRQwsXLrS2derUSUOHDlVycrIDK6tfTp48qZYtW2rDhg3q27evo8upF86ePasePXooNTVVL730krp3766UlBRHl2VYzLDgin766SeNHj1a77//vho1auTocuq1kpIS/eEPf3B0GXVOWVmZcnJyFBUVZdMeFRWlrVu3Oqiq+qmkpESS+P/0Oho7dqzuu+8+9e/f39Gl1An15uaHuL4sFotGjBih2NhYhYWFKT8/39El1VuHDx/WvHnz9MYbbzi6lDqnuLhY5eXl8vHxsWn38fFRUVGRg6qqfywWi+Lj4/WnP/1JXbp0cXQ59cKyZcv09ddfa+fOnY4upc5ghqWBSUxMlMlkqvaxa9cuzZs3T2azWQkJCY4uuc6o6Wf7W8ePH9egQYP0P//zPxo1apSDKq/7TCaTzXOLxVKpDbU3btw4ffPNN8rIyHB0KfXC0aNHNX78eH3wwQdyd3d3dDl1BuewNDDFxcUqLi6utk+7du3017/+VZ9++qnNP/rl5eVydnbWY489pvfee+9Gl1rn1PSzvfwP1PHjx3X33XerV69eSktLk5MTfz/Yq6ysTI0aNdJHH32kBx980No+fvx45eXlacOGDQ6srn545pln9PHHH2vjxo0KCAhwdDn1wscff6wHH3xQzs7O1rby8nKZTCY5OTmptLTU5jVcQmBBlQoKCmQ2m63Pjx8/roEDB+rf//63evXqpTZt2jiwurrv2LFjuvvuuxUaGqoPPviAf5yuQa9evRQaGqrU1FRrW3BwsIYMGcJJt9fAYrHomWee0cqVK7V+/XoFBgY6uqR648yZM/rhhx9s2p544gkFBQXp+eef57DbFXAOC6rUtm1bm+dNmjSRJLVv356wco2OHz+ufv36qW3btpo5c6ZOnjxpfa1Vq1YOrKxuio+PV0xMjMLCwhQREaHFixeroKBAsbGxji6tThs7dqyWLl2qVatWqWnTptZzgry8vOTh4eHg6uq2pk2bVgoljRs3lre3N2GlGgQW4CZbs2aN/vvf/+q///1vpfDHhKf9oqOjderUKSUlJamwsFBdunRRVlaW/P39HV1anXb5MvF+/frZtC9ZskQjRoy4+QWhweOQEAAAMDzO8gMAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAEAAIZHYAFgCP369dO4ceM0btw43XrrrfL29tbkyZNlsVj03XffqVGjRlq6dKm1/4oVK+Tu7q49e/Y4sGoANwuBBYBhvPfee3JxcdGOHTs0d+5czZ49W2+//baCgoI0c+ZMPf300/rhhx90/PhxjR49Wq+++qruuOMOR5cN4Cbgbs0ADKFfv346ceKE9u7dK5PJJEl64YUX9Mknn2jfvn2SpPvvv19ms1murq5ycnLS6tWrrX0B1G8uji4AAC4LDw+3CSARERF64403VF5eLmdnZ7377rvq2LGjnJyc9O233xJWgAaEQ0IA6ozdu3fr3LlzOnfunIqKihxdDoCbiBkWAIaxffv2Ss8DAwPl7Oysn3/+WSNGjNCkSZNUVFSkxx57TF9//bU8PDwcVC2Am4kZFgCGcfToUcXHx+vAgQPKyMjQvHnzNH78eElSbGys/Pz8NHnyZM2aNUsWi0XPPfecgysGcLMwwwLAMIYPH67z58/rzjvvlLOzs5555hmNGTNG6enpysrKUm5urlxcXOTi4qIPP/xQkZGRuu+++3Tvvfc6unQANxhXCQEwhH79+ql79+5KSUlxdCkADIhDQgAAwPAILAAAwPA4JAQAAAyPGRYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4BBYAAGB4/x8JU7DDjk1uPQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAy5ElEQVR4nO3de1RVdf7/8dcB4ipgg0pYiHhLwVSExtC8ZIq3+mU3nXS8lFrkJYn8mn4dFbEiy7uGaaVIpeO3yWmmFqNSqWOYqYhlQdqoiCmm6DcwM0g4vz/8cpZHQQEvH8/h+VjrrOX5nH15fzbofvnZn72PxWq1WgUAAGCIi+kCAABA7UYYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRbqYLqIqysjIdPXpUvr6+slgspssBAABVYLVadfr0aTVs2FAuLpWPfzhEGDl69KiCg4NNlwEAAGrg8OHDuuOOOyr93CHCiK+vr6TznfHz8zNcDQAAqIqioiIFBwfbzuOVcYgwUn5pxs/PjzACAICDudIUCyawAgAAowgjAADAKMIIAAAwyiHmjFRVaWmpfv/9d9NlAA7B3d39srfaAcCN4hRhxGq16tixY/r5559NlwI4DBcXF4WGhsrd3d10KQBqOacII+VBpEGDBvL29ubBaMAVlD9IMD8/X40aNeLvDACjHD6MlJaW2oJIQECA6XIAh1G/fn0dPXpU586d0y233GK6HAC1mMNfMC6fI+Lt7W24EsCxlF+eKS0tNVwJgNrO4cNIOYaZgerh7wyAm4XThBEAAOCYCCMAAMAoh5/AWpl56ftu6P6e79nihu4P1ZObm6vQ0FBlZWWpXbt2NdpGSkqK4uLiuIUcAK4xRkZQLd26dVNcXNwN2Vdubq4sFot27959Q/Z3o6WkpKhu3bqmywAA4wgjN4mSkhLTJVwzVqtV586dM12G03Cm3w0AqEiNwkhycrJCQ0Pl6empyMhIbdmypUrrZWRkyM3NrcbD5M6kW7duGjt2rOLj41WvXj317NlTkpSdna2+ffuqTp06CgwM1JAhQ1RQUGBbr6ysTLNmzVKzZs3k4eGhRo0a6eWXX7Z9vmfPHnXv3l1eXl4KCAjQ008/rV9++cX2+fDhw9W/f3/Nnj1bQUFBCggI0JgxY+weo5+cnKzmzZvL09NTgYGBeuyxx2zrbt68WQsWLJDFYpHFYlFubq42bdoki8Wi9evXKyoqSh4eHtqyZYttXxeKi4tTt27dqtSf0NBQSVJERIQsFovdeitWrFCrVq3k6empli1bKjk52W4/27dvV0REhDw9PRUVFaWsrKwr/kxKSko0ceJE3X777fLx8VGHDh20adOmy67z8ccfKzIyUp6enmrSpIlmzJhhF8R+/vlnPf300woMDJSnp6dat26tTz75RJs2bdKTTz6pwsJC27FMSEiQJDVu3FgvvfSShg8fLn9/f40aNUqS9OGHHyo8PFweHh5q3Lix5syZY1dL48aN9corr+ipp56Sr6+vGjVqpGXLll2x36ihhISavwDYqXYYWbNmjeLi4jRlyhRlZWWpc+fO6tOnj/Ly8i67XmFhoYYOHar777+/xsU6m5UrV8rNzU0ZGRlaunSp8vPz1bVrV7Vr1047d+7UunXr9NNPP2nAgAG2dSZPnqxZs2Zp6tSpys7O1qpVqxQYGChJ+vXXX9W7d2/deuut2rFjhz744AN9+umnGjt2rN1+N27cqP3792vjxo1auXKlUlJSlJKSIknauXOnnnvuOSUmJmrv3r1at26dunTpIklasGCBoqOjNWrUKOXn5ys/P1/BwcG27U6cOFFJSUnKyclRmzZtqnQMLtef7du3S5I+/fRT5efna+3atZKkt956S1OmTNHLL7+snJwcvfLKK5o6dapWrlwpSTpz5oweeOAB3XnnncrMzFRCQoImTJhwxVqefPJJZWRk6K9//au++eYbPf744+rdu7d++OGHCpdfv369/vznP+u5555Tdna2li5dqpSUFFuYKisrU58+fbR161a99957ys7O1quvvipXV1d17NhR8+fPl5+fn+1YXljj66+/rtatWyszM1NTp05VZmamBgwYoD/96U/as2ePEhISNHXqVNvPrdycOXNs4Wv06NF69tln9f3331fpZwEAplR7AuvcuXM1YsQIjRw5UpI0f/58rV+/XkuWLFFSUlKl6z3zzDMaNGiQXF1d9dFHH112H8XFxSouLra9Lyoqqm6ZDqFZs2Z67bXXbO+nTZum9u3b65VXXrG1LV++XMHBwdq3b5+CgoK0YMECLV68WMOGDZMkNW3aVPfee68k6f3339fZs2eVmpoqHx8fSdLixYv14IMPatasWbaT/K233qrFixfL1dVVLVu2VL9+/fTZZ59p1KhRysvLk4+Pjx544AH5+voqJCREERERkiR/f3+5u7vL29tbt9122yX9SUxMtI3wVMXp06cv25/69etLkgICAuz2N3PmTM2ZM0ePPPKIpPMjKOVhYNiwYXr//fdVWlqq5cuXy9vbW+Hh4frxxx/17LPPVlrL/v37tXr1av34449q2LChJGnChAlat26dVqxYYfczKffyyy9r0qRJttqbNGmimTNnauLEiZo+fbo+/fRTbd++XTk5OWrRooVtmXL+/v6yWCwVHsvu3bvbhZPBgwfr/vvv19SpUyVJLVq0UHZ2tl5//XUNHz7ctlzfvn01evRoSdKLL76oefPmadOmTWrZsmWlfQcA06oVRkpKSpSZmalJkybZtcfExGjr1q2VrrdixQrt379f7733nl566aUr7icpKUkzZsyoTmkOKSoqyu59ZmamNm7cqDp16lyy7P79+/Xzzz+ruLi40tGlnJwctW3b1hZEJKlTp04qKyvT3r17bWEkPDxcrq6utmWCgoK0Z88eSVLPnj0VEhKiJk2aqHfv3urdu7cefvjhKj3h9uL+XElOTs5l+1OREydO6PDhwxoxYoTt8oUknTt3Tv7+/rbttm3b1q7m6Ojoy253165dslqtttBQrri4uNKvGcjMzNSOHTvsLpOVlpbqt99+06+//qrdu3frjjvuuGSbVXHxsczJydFDDz1k19apUyfNnz9fpaWltp9nmzZt9FPRb7Zl6jUI1IHDR+3ayv1eUqyis78rJeOgzpadX5+7wgCYUK0wUlBQoNLSUttJrVxgYKCOHTtW4To//PCDJk2apC1btsjNrWq7mzx5suLj423vi4qK7C4HOIsLQ4N0fli/fBTjYkFBQTpw4MBlt2e1Wit9quaF7Rd/D4nFYlFZWZkkydfXV7t27dKmTZu0YcMGTZs2TQkJCdqxY8cV7/y4uD8uLi6yWq12bRfOTfHy8rrs9ipSXudbb72lDh062H1WfkK+eJ9V3a6rq6syMzPtgpqkCsNh+TozZsywjdBcyNPTs0b9K3fxsazoZ1tRPy/3swWAm1WNnjNS0T+KFZ0ES0tLNWjQIM2YMaNa/zv08PCQh4dHTUpzaO3bt9eHH36oxo0bVxjcmjdvLi8vL3322We2y2QXCgsL08qVK3XmzBnbySwjI0MuLi7VOv5ubm7q0aOHevTooenTp6tu3br6/PPP9cgjj8jd3b3K32VSv359ffvtt3Ztu3fvtp0wr9Sfir47JTAwULfffrsOHDigwYMHV7jfsLAwvfvuuzp79qwtEGzbtu2ytUZERKi0tFTHjx9X586dq9S/9u3ba+/evWrWrFmFn7dp00Y//vij9u3bV+Hxr86xDAsL0xdffGHXtnXrVrVo0eKS8AQAjqZaE1jr1asnV1fXS0ZBjh8/fsloiXR+TsDOnTs1duxYubm5yc3NTYmJifr666/l5uamzz///OqqdzJjxozRqVOn9MQTT2j79u06cOCANmzYoKeeekqlpaXy9PTUiy++qIkTJyo1NVX79+/Xtm3b9M4770g6P6/A09NTw4YN07fffquNGzdq3LhxGjJkSIU/n4p88sknWrhwoXbv3q1Dhw4pNTVVZWVluvPOOyWdv2Pjq6++Um5urgoKCi77v+7u3btr586dSk1N1Q8//KDp06fbhZMr9adBgwby8vKyTeQtLCyUJCUkJCgpKUkLFizQvn37tGfPHq1YsUJz586VJA0aNEguLi4aMWKEsrOzlZaWptmzZ1+23y1atNDgwYM1dOhQrV27VgcPHtSOHTs0a9YspaWlVbjOtGnTlJqaqoSEBH333XfKycnRmjVr9Je//EWS1LVrV3Xp0kWPPvqo0tPTdfDgQf3rX//SunXrbMfyl19+0WeffaaCggL9+uuvldb3wgsv6LPPPtPMmTO1b98+rVy5UosXL67SxFwAuNlVa2TE3d1dkZGRSk9P18MPP2xrT09Pv+R6tiT5+fnZ5iKUS05O1ueff66//e1vtls3rwdHvPbdsGFDZWRk6MUXX1SvXr1UXFyskJAQ9e7dWy4u53Pj1KlT5ebmpmnTpuno0aMKCgpSbGyspPPfXLx+/XqNHz9ed999t7y9vfXoo4/aTtJVUbduXa1du1YJCQn67bff1Lx5c61evVrh4eGSzk/qHDZsmMLCwnT27FkdPHiw0m316tVLU6dO1cSJE/Xbb7/pqaee0tChQ+1+Jy7XHzc3Ny1cuFCJiYmaNm2aOnfurE2bNmnkyJHy9vbW66+/rokTJ8rHx0d33XWX7WFsderU0ccff6zY2FhFREQoLCxMs2bN0qOPPnrZvq9YsUIvvfSSXnjhBR05ckQBAQGKjo5W3759K+3fJ598osTERL322mu65ZZb1LJlS7tRng8//FATJkzQE088oTNnzqhZs2Z69dVXJUkdO3ZUbGysBg4cqJMnT2r69Om223sv1r59e/3P//yPpk2bppkzZyooKEiJiYl2k1cBwFFZrNW8wL5mzRoNGTJEb775pqKjo7Vs2TK99dZb+u677xQSEqLJkyfryJEjSk1NrXD9hIQEffTRR9V6qmZRUZH8/f1VWFgoPz8/u89+++03HTx40PbcE6C2q2iyakV+LynWkbxDyvrfW5jAWhNX87wQnjWCWuJy5+8LVXvOSPn/4hITE5Wfn6/WrVsrLS1NISEhkqT8/PwrPnMEAACgXLVHRkxgZASoOkZGbhBGRoArqurICN9NAwAAjCKMAAAAowgjAADAKMIIAAAwqkZPYAVwfVV1EioAOANGRgAAgFGEEdQKubm5slgs1XrY3rWWkpJyxS8bBIDayHkv09zo+/hryXMDunXrpnbt2mn+/PnXfV+5ubkKDQ1VVlaW2rVrd933d70NHDjQ7tHyNXkaMQA4I0ZGbhIlJSWmS7hmrFarzp07Z7qMm46Xl5caNGhQ7fV+//3361ANANw8CCOGdOvWTWPHjlV8fLzq1aunnj17SpKys7PVt29f1alTR4GBgRoyZIgKCgps65WVlWnWrFlq1qyZPDw81KhRI7388su2z/fs2aPu3bvLy8tLAQEBevrpp/XLL7/YPh8+fLj69++v2bNnKygoSAEBARozZozdCS85OVnNmzeXp6enAgMD9dhjj9nW3bx5sxYsWCCLxSKLxaLc3Fxt2rRJFotF69evV1RUlDw8PLRlyxbbvi4UFxenbt26Vak/5V+kGBERIYvFYrfeihUr1KpVK3l6eqply5ZKTk6228/27dsVEREhT09PRUVFKSsr64o/k8aNG2vmzJkaNGiQ6tSpo4YNG2rRokV2y+Tl5emhhx5SnTp15OfnpwEDBuinn36yff7111/rvvvuk6+vr/z8/BQZGamdO3dKsr9Mk5KSohkzZujrr7+2HcuUlBRJksVi0cp33tKwJx5XaFCA5r1+/ov1Ut5epg5twxRcz0+dItvog7+usqvtNn8vvb9yhZ4cPECht/1B0RGttT7tkyv2GwYkJNT8BTghwohBK1eulJubmzIyMrR06VLl5+era9euateunXbu3Kl169bpp59+0oABA2zrTJ48WbNmzdLUqVOVnZ2tVatWKTAwUJL066+/qnfv3rr11lu1Y8cOffDBB/r00081duxYu/1u3LhR+/fv18aNG7Vy5UqlpKTYToQ7d+7Uc889p8TERO3du1fr1q1Tly5dJEkLFixQdHS0Ro0apfz8fOXn5ys4ONi23YkTJyopKUk5OTlq06ZNlY7B5fqzfft2SdKnn36q/Px8rV27VpL01ltvacqUKXr55ZeVk5OjV155RVOnTtXKlSslSWfOnNEDDzygO++8U5mZmUpISNCECROqVM/rr7+uNm3aaNeuXZo8ebKef/55paenSzo/4tO/f3+dOnVKmzdvVnp6uvbv36+BAwfa1h88eLDuuOMO7dixQ5mZmZo0aZJuueWWS/YzcOBAvfDCCwoPD7cdywu383rSS+rV9wFt2rpTT/x5qNI+/oemTpqg2LHjtWlbpoY8OUJxo5/WF//ebLfdObNe1v97+FF9nrFD98f00uhRT+p/T52qUt8BwBTnnTPiAJo1a6bXXnvN9n7atGlq3769XnnlFVvb8uXLFRwcrH379ikoKEgLFizQ4sWLNWzYMElS06ZNde+990qS3n//fZ09e1apqany8fGRJC1evFgPPvigZs2aZTvJ33rrrVq8eLFcXV3VsmVL9evXT5999plGjRqlvLw8+fj46IEHHpCvr69CQkIUEREhSfL395e7u7u8vb112223XdKfxMRE2whPVZw+ffqy/alfv74kKSAgwG5/M2fO1Jw5c/TII49IOj+Ckp2draVLl2rYsGF6//33VVpaquXLl8vb21vh4eH68ccf9eyzz16xpk6dOmnSpEmSpBYtWigjI0Pz5s1Tz5499emnn+qbb77RwYMHbSHs3XffVXh4uHbs2KG7775beXl5+q//+i+1bNlSktS8efMK9+Pl5aU6derIzc2twmP5yOMDNGjIMNv70SOHa+CgIXpy1DPnj9PY8crcsV1LFs3XvV262pYbOGiIHn7sfKiZPC1R7yxdoqxdO9W9R8wV+w4AphBGDIqKirJ7n5mZqY0bN6pOnTqXLLt//379/PPPKi4u1v3331/h9nJyctS2bVtbEJHOn1zLysq0d+9eWxgJDw+Xq6urbZmgoCDt2bNHktSzZ0+FhISoSZMm6t27t3r37q2HH35Y3t7e1e7PleTk5Fy2PxU5ceKEDh8+rBEjRmjUqFG29nPnzsnf39+23bZt29rVHB0dXaXtX7xcdHS0bbJuTk6OgoOD7UaDwsLCVLduXeXk5Ojuu+9WfHy8Ro4cqXfffVc9evTQ448/rqZNm1a5f+XaRrS3e//D3r368/ARdm1/vCdaby15w66tVXhr2599fHxUx9dXBSdOVHv/tQaXPYCbApdpDLowNEjn5088+OCD2r17t93rhx9+UJcuXeTl5XXZ7VmtVlkslgo/u7D94ssGFotFZWVlkiRfX1/t2rVLq1evVlBQkKZNm6a2bdvq559/rnZ/XFxcdPGXQl84N+VK/alIeZ1vvfWW3TH69ttvtW3bNkm6ZJ9Xq/zYVXZ8L2xPSEjQd999p379+unzzz9XWFiY/v73v1d7n97ePpe0Xbzviuq53M8WAG5WhJGbSPv27fXdd9+pcePGatasmd3Lx8dHzZs3l5eXlz777LMK1w8LC9Pu3bt15swZW1tGRoZcXFzUokXVvxrezc1NPXr00GuvvaZvvvlGubm5+vzzzyVJ7u7uKi0trdJ26tevr/z8fLu2C29jvVJ/3N3dJcluf4GBgbr99tt14MCBS45R+YTXsLAwff311zp79qxtvfKgciUXL7dt2zbbJZewsDDl5eXp8OHDts+zs7NVWFioVq1a2dpatGih559/Xhs2bNAjjzyiFStWVNq/qh7L5nfeqe1fbrVr2/HVNjW/s2WV1geAmxlh5CYyZswYnTp1Sk888YS2b9+uAwcOaMOGDXrqqadUWloqT09Pvfjii5o4caJSU1O1f/9+bdu2Te+8846k85MnPT09NWzYMH377bfauHGjxo0bpyFDhtgu0VzJJ598ooULF2r37t06dOiQUlNTVVZWpjvvvFPS+TtOvvrqK+Xm5qqgoOCy/+vu3r27du7cqdTUVP3www+aPn26vv32W9vnV+pPgwYN5OXlZZvIW1hYKOn86ENSUpIWLFigffv2ac+ePVqxYoXmzp0rSRo0aJBcXFw0YsQIZWdnKy0tTbNnz65S/zMyMvTaa69p3759euONN/TBBx9o/PjxkqQePXqoTZs2Gjx4sHbt2qXt27dr6NCh6tq1q6KionT27FmNHTtWmzZt0qFDh5SRkaEdO3bYBZULNW7cWAcPHtTu3btVUFCg4uLiSusa/dzzWrPqXa185y0d2P8fvbl4gdI+/oeeHRdXpX4BwM2MMHITadiwoTIyMlRaWqpevXqpdevWGj9+vPz9/eXicv5HNXXqVL3wwguaNm2aWrVqpYEDB+r48eOSJG9vb61fv16nTp3S3Xffrccee0z333+/Fi9eXOUa6tatq7Vr16p79+5q1aqV3nzzTa1evVrh4eGSpAkTJsjV1VVhYWGqX7++8vLyKt1Wr169NHXqVE2cOFF33323Tp8+raFDh9otc7n+uLm5aeHChVq6dKkaNmyohx56SJI0cuRIvf3220pJSdFdd92lrl27KiUlxTYyUqdOHX388cfKzs5WRESEpkyZolmzZlWp/y+88IIyMzMVERFhmyjbq1cvSecveXz00Ue69dZb1aVLF/Xo0UNNmjTRmjVrJEmurq46efKkhg4dqhYtWmjAgAHq06ePZsyYUeG+Hn30UfXu3Vv33Xef6tevr9WrV1daV58H/p9mvjpbyQvnqWuH9np3xTuan7xMnTp3qVK/AOBmZrFe6wvs10FRUZH8/f1VWFgoPz8/u89+++03HTx4UKGhofL09DRUIZxB48aNFRcXp7i4ONOl3JAvyvu9pFhH8g4p639v0dmy8xOan+9Z9ct5TsERJ7A6Ys2otS53/r4QIyMAAMAowggAADCK54wA/yc3N9d0CQBQKzEyAgAAjHKaMOIA83CBm4vt70zFD8oDgBvF4cNI+RMnf/31V8OVAI6l9Nw5lVmtOkeOB2CYw88ZcXV1Vd26de2etVHZI9EBR/F7SeUPQLsWrNYy/XyqQKeKLfrdyt8XAGY5fBiRZPvW0/JAAji6orO/X3mhq2CVVHzOqtxfPcRlGgCmOUUYsVgsCgoKUoMGDey+iA1wVCkZB6/r9q2yqLjMIitBBMBNwCnCSDlXV1e5urqaLgO4auVPRAWA2sDhJ7ACAADHRhgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGOVUT2AFcHXmpe+r8brP92xxDSsBUJswMgIAAIwijAAAAKMIIwAAwCjCCAAAMIoJrMB1cjWTQQGgNmFkBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGMW39gJwbAkJpisAcJUYGQEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEbVKIwkJycrNDRUnp6eioyM1JYtWypd9osvvlCnTp0UEBAgLy8vtWzZUvPmzatxwQAAwLm4VXeFNWvWKC4uTsnJyerUqZOWLl2qPn36KDs7W40aNbpkeR8fH40dO1Zt2rSRj4+PvvjiCz3zzDPy8fHR008/fU06AQAAHFe1R0bmzp2rESNGaOTIkWrVqpXmz5+v4OBgLVmypMLlIyIi9MQTTyg8PFyNGzfWn//8Z/Xq1euyoykAAKD2qFYYKSkpUWZmpmJiYuzaY2JitHXr1iptIysrS1u3blXXrl0rXaa4uFhFRUV2LwAA4JyqdZmmoKBApaWlCgwMtGsPDAzUsWPHLrvuHXfcoRMnTujcuXNKSEjQyJEjK102KSlJM2bMqE5pAAybl76vxus+37PFNawEgKOp0QRWi8Vi995qtV7SdrEtW7Zo586devPNNzV//nytXr260mUnT56swsJC2+vw4cM1KRMAADiAao2M1KtXT66urpeMghw/fvyS0ZKLhYaGSpLuuusu/fTTT0pISNATTzxR4bIeHh7y8PCoTmkAAMBBVWtkxN3dXZGRkUpPT7drT09PV8eOHau8HavVquLi4ursGgAAOKlq39obHx+vIUOGKCoqStHR0Vq2bJny8vIUGxsr6fwlliNHjig1NVWS9MYbb6hRo0Zq2bKlpPPPHZk9e7bGjRt3DbsBAAAcVbXDyMCBA3Xy5EklJiYqPz9frVu3VlpamkJCQiRJ+fn5ysvLsy1fVlamyZMn6+DBg3Jzc1PTpk316quv6plnnrl2vQAAAA7LYrVaraaLuJKioiL5+/ursLBQfn5+pssBquRq7i6pba7qbpqEhGtWh0Oobf2FQ6vq+ZvvpgEAAEYRRgAAgFHVnjMCADDoai7TcIkHNylGRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFFupgsAbmbz0veZLgEAnB5hBIB5CQmmKwBgEJdpAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBSPgwdg3Jf7T9Z43eimAdewEgAmMDICAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwii/KA4DaIiHBzLrAFTAyAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMqlEYSU5OVmhoqDw9PRUZGaktW7ZUuuzatWvVs2dP1a9fX35+foqOjtb69etrXDAAAHAu1Q4ja9asUVxcnKZMmaKsrCx17txZffr0UV5eXoXL//vf/1bPnj2VlpamzMxM3XfffXrwwQeVlZV11cUDAADHZ7FardbqrNChQwe1b99eS5YssbW1atVK/fv3V1JSUpW2ER4eroEDB2ratGlVWr6oqEj+/v4qLCyUn59fdcoFrsq89H2mS6gV7kldVON1o5sGXMNKUKmEBNMVwAFV9fxdrZGRkpISZWZmKiYmxq49JiZGW7durdI2ysrKdPr0af3hD3+odJni4mIVFRXZvQAAgHOqVhgpKChQaWmpAgMD7doDAwN17NixKm1jzpw5OnPmjAYMGFDpMklJSfL397e9goODq1MmAABwIDWawGqxWOzeW63WS9oqsnr1aiUkJGjNmjVq0KBBpctNnjxZhYWFttfhw4drUiYAAHAAbtVZuF69enJ1db1kFOT48eOXjJZcbM2aNRoxYoQ++OAD9ejR47LLenh4yMPDozqlAQAAB1WtkRF3d3dFRkYqPT3drj09PV0dO3asdL3Vq1dr+PDhWrVqlfr161ezSgEAgFOq1siIJMXHx2vIkCGKiopSdHS0li1bpry8PMXGxko6f4nlyJEjSk1NlXQ+iAwdOlQLFizQPffcYxtV8fLykr+//zXsCgAAcETVDiMDBw7UyZMnlZiYqPz8fLVu3VppaWkKCQmRJOXn59s9c2Tp0qU6d+6cxowZozFjxtjahw0bppSUlKvvAQAAcGjVDiOSNHr0aI0ePbrCzy4OGJs2barJLgAAQC3Bd9MAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCg30wUAcA73pC4yXQIAB8XICAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjeM4InN689H2mSwAAXAYjIwAAwCjCCAAAMIowAgAAjCKMAAAAo5jACgC4soQEM+uiViCMAHBoX+4/WeN1o5sGXMNKANQUl2kAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAY5Wa6AAA3j3tSF5kuAUAtxMgIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIzi1l44hHnp+0yXAAC4ThgZAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGBUjcJIcnKyQkND5enpqcjISG3ZsqXSZfPz8zVo0CDdeeedcnFxUVxcXE1rBQAATqjaYWTNmjWKi4vTlClTlJWVpc6dO6tPnz7Ky8urcPni4mLVr19fU6ZMUdu2ba+6YAAA4FyqHUbmzp2rESNGaOTIkWrVqpXmz5+v4OBgLVmypMLlGzdurAULFmjo0KHy9/ev0j6Ki4tVVFRk9wIAAM6pWmGkpKREmZmZiomJsWuPiYnR1q1br1lRSUlJ8vf3t72Cg4Ov2bYBAMDNpVphpKCgQKWlpQoMDLRrDwwM1LFjx65ZUZMnT1ZhYaHtdfjw4Wu2bQAAcHOp0RflWSwWu/dWq/WStqvh4eEhDw+Pa7Y9AABw86rWyEi9evXk6up6ySjI8ePHLxktAQAAqIpqhRF3d3dFRkYqPT3drj09PV0dO3a8poUBAIDaodqXaeLj4zVkyBBFRUUpOjpay5YtU15enmJjYyWdn+9x5MgRpaam2tbZvXu3JOmXX37RiRMntHv3brm7uyssLOza9AIAADisaoeRgQMH6uTJk0pMTFR+fr5at26ttLQ0hYSESDr/kLOLnzkSERFh+3NmZqZWrVqlkJAQ5ebmXl31AADA4dVoAuvo0aM1evToCj9LSUm5pM1qtdZkNwAAoBbgu2kAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGFWj54wAAFBlCQlm1oXDIIwAqLW+3H+yxutGNw24hpUAtRuXaQAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFF8ay/gZO5JXWS6BACoFkZGAACAUYyM4IaZl77PdAkAgJsQIyMAAMAowggAADCKMAIAAIwijAAAAKOYwAoANfDl/pM1Xje6acA1rARwfIyMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCgeBw8AuHklJJhZFzcUIyMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjOI5I6iWeen7TJcAAHAyjIwAAACjCCMAAMAowggAADCKMAIAAIxiAitwE7ondZHpEgDghmFkBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYxd00tRCPdAdQKyQkmFkX1UYYAa4Tbs9FZb7cf7LG60Y3DbiGlQA3By7TAAAAowgjAADAKMIIAAAwijkjAOBAmG8CZ0QYgdO7momk24aOu4aVAAAqQhgBLoM7YoBaituCbyjmjAAAAKMIIwAAwCgu0zggnqAKAHAmNRoZSU5OVmhoqDw9PRUZGaktW7ZcdvnNmzcrMjJSnp6eatKkid58880aFQsAAJxPtUdG1qxZo7i4OCUnJ6tTp05aunSp+vTpo+zsbDVq1OiS5Q8ePKi+fftq1KhReu+995SRkaHRo0erfv36evTRR69JJwAAzolbmWsHi9VqtVZnhQ4dOqh9+/ZasmSJra1Vq1bq37+/kpKSLln+xRdf1D//+U/l5OTY2mJjY/X111/ryy+/rNI+i4qK5O/vr8LCQvn5+VWn3JuWo15qccTbZLkjBjjPEU/OtS6MONmdOFU9f1drZKSkpESZmZmaNGmSXXtMTIy2bt1a4TpffvmlYmJi7Np69eqld955R7///rtuueWWS9YpLi5WcXGxXWduRlcTKBzxpA4AuLKrClBXs2MHvh25WmGkoKBApaWlCgwMtGsPDAzUsWPHKlzn2LFjFS5/7tw5FRQUKCgo6JJ1kpKSNGPGjOqUZsTzPVvUfOWeNQ8jV/XLKl3dL927V1G3qV/2q6gZcCamRmSv5t/Kq/n3zlh/E67i3HA1HHhUpUZ301gsFrv3Vqv1krYrLV9Re7nJkycrPj7e9r6oqEjBwcE1KRUVMfUL68CpHYDjuar/MOKGqlYYqVevnlxdXS8ZBTl+/Pglox/lbrvttgqXd3NzU0BAxdfzPDw85OHhUZ3S4OwII8BVu5qTs6POc4NjqNatve7u7oqMjFR6erpde3p6ujp27FjhOtHR0Zcsv2HDBkVFRVU4XwQAANQu1X7OSHx8vN5++20tX75cOTk5ev7555WXl6fY2FhJ5y+xDB061LZ8bGysDh06pPj4eOXk5Gj58uV65513NGHChGvXCwAA4LCqPWdk4MCBOnnypBITE5Wfn6/WrVsrLS1NISEhkqT8/Hzl5eXZlg8NDVVaWpqef/55vfHGG2rYsKEWLlzIM0YAAICkGjxnxARnfM4IAADOrqrnb74oDwAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUW6mC6gKq9UqSSoqKjJcCQAAqKry83b5ebwyDhFGTp8+LUkKDg42XAkAAKiu06dPy9/fv9LPLdYrxZWbQFlZmY4ePSpfX19ZLBbT5dyUioqKFBwcrMOHD8vPz890OU6JY3xjcJyvP47xjcFxPj8icvr0aTVs2FAuLpXPDHGIkREXFxfdcccdpstwCH5+frX2l/5G4RjfGBzn649jfGPU9uN8uRGRckxgBQAARhFGAACAUYQRJ+Hh4aHp06fLw8PDdClOi2N8Y3Ccrz+O8Y3Bca46h5jACgAAnBcjIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjTqy4uFjt2rWTxWLR7t27TZfjVHJzczVixAiFhobKy8tLTZs21fTp01VSUmK6NIeWnJys0NBQeXp6KjIyUlu2bDFdklNJSkrS3XffLV9fXzVo0ED9+/fX3r17TZfl1JKSkmSxWBQXF2e6lJsaYcSJTZw4UQ0bNjRdhlP6/vvvVVZWpqVLl+q7777TvHnz9Oabb+q///u/TZfmsNasWaO4uDhNmTJFWVlZ6ty5s/r06aO8vDzTpTmNzZs3a8yYMdq2bZvS09N17tw5xcTE6MyZM6ZLc0o7duzQsmXL1KZNG9Ol3PS4tddJ/etf/1J8fLw+/PBDhYeHKysrS+3atTNdllN7/fXXtWTJEh04cMB0KQ6pQ4cOat++vZYsWWJra9Wqlfr376+kpCSDlTmvEydOqEGDBtq8ebO6dOliuhyn8ssvv6h9+/ZKTk7WSy+9pHbt2mn+/Pmmy7ppMTLihH766SeNGjVK7777rry9vU2XU2sUFhbqD3/4g+kyHFJJSYkyMzMVExNj1x4TE6OtW7caqsr5FRYWShK/t9fBmDFj1K9fP/Xo0cN0KQ7BIb4oD1VntVo1fPhwxcbGKioqSrm5uaZLqhX279+vRYsWac6cOaZLcUgFBQUqLS1VYGCgXXtgYKCOHTtmqCrnZrVaFR8fr3vvvVetW7c2XY5T+etf/6pdu3Zpx44dpktxGIyMOIiEhARZLJbLvnbu3KlFixapqKhIkydPNl2yQ6rqcb7Q0aNH1bt3bz3++OMaOXKkocqdg8VisXtvtVovacO1MXbsWH3zzTdavXq16VKcyuHDhzV+/Hi999578vT0NF2Ow2DOiIMoKChQQUHBZZdp3Lix/vSnP+njjz+2+we8tLRUrq6uGjx4sFauXHm9S3VoVT3O5f/IHD16VPfdd586dOiglJQUubiQ72uipKRE3t7e+uCDD/Twww/b2sePH6/du3dr8+bNBqtzPuPGjdNHH32kf//73woNDTVdjlP56KOP9PDDD8vV1dXWVlpaKovFIhcXFxUXF9t9hvMII04mLy9PRUVFtvdHjx5Vr1699Le//U0dOnTQHXfcYbA653LkyBHdd999ioyM1Hvvvcc/MFepQ4cOioyMVHJysq0tLCxMDz30EBNYrxGr1apx48bp73//uzZt2qTmzZubLsnpnD59WocOHbJre/LJJ9WyZUu9+OKLXBKrBHNGnEyjRo3s3tepU0eS1LRpU4LINXT06FF169ZNjRo10uzZs3XixAnbZ7fddpvByhxXfHy8hgwZoqioKEVHR2vZsmXKy8tTbGys6dKcxpgxY7Rq1Sr94x//kK+vr20+jr+/v7y8vAxX5xx8fX0vCRw+Pj4KCAggiFwGYQSogQ0bNug///mP/vOf/1wS8hhsrJmBAwfq5MmTSkxMVH5+vlq3bq20tDSFhISYLs1plN823a1bN7v2FStWaPjw4Te+IOD/cJkGAAAYxWw7AABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGANwQ3bp109ixYzV27FjVrVtXAQEB+stf/iKr1arvv/9e3t7eWrVqlW35tWvXytPTU3v27DFYNYAbgTAC4IZZuXKl3Nzc9NVXX2nhwoWaN2+e3n77bbVs2VKzZ8/W6NGjdejQIR09elSjRo3Sq6++qrvuust02QCuM761F8AN0a1bNx0/flzfffedLBaLJGnSpEn65z//qezsbEnSAw88oKKiIrm7u8vFxUXr16+3LQvAebmZLgBA7XHPPffYhYvo6GjNmTNHpaWlcnV11fLly9WiRQu5uLjo22+/JYgAtQSXaQDcNL7++mudOXNGZ86c0bFjx0yXA+AGYWQEwA2zbdu2S943b95crq6uOnXqlIYPH64pU6bo2LFjGjx4sHbt2iUvLy9D1QK4URgZAXDDHD58WPHx8dq7d69Wr16tRYsWafz48ZKk2NhYBQcH6y9/+Yvmzp0rq9WqCRMmGK4YwI3AyAiAG2bo0KE6e/as/vjHP8rV1VXjxo3T008/rdTUVKWlpSkrK0tubm5yc3PT+++/r44dO6pfv37q27ev6dIBXEfcTQPghujWrZvatWun+fPnmy4FwE2GyzQAAMAowggAADCKyzQAAMAoRkYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARv1/bOGowdcehX8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -277,16 +277,16 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:48.460911Z", - "iopub.status.busy": "2024-01-10T15:12:48.460754Z", - "iopub.status.idle": "2024-01-10T15:12:48.627209Z", - "shell.execute_reply": "2024-01-10T15:12:48.626786Z" + "iopub.execute_input": "2024-02-06T01:09:40.346220Z", + "iopub.status.busy": "2024-02-06T01:09:40.345719Z", + "iopub.status.idle": "2024-02-06T01:09:40.498912Z", + "shell.execute_reply": "2024-02-06T01:09:40.498393Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+NUlEQVR4nO3de1yUZf7/8fcAAoIymRpiIuIpRSoRFJAs2008VKtum2wH7OAh8pDItirrmQ5kWaIZpq1JdkB218zaB6XY1zN4IrA2NU1RTCHFNkYrIWB+f/hztomDDGrc4Ov5eNyPh3PNdV/zuQdx3l73PddtslqtVgEAABiYU30XAAAAcCkEFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHgu9V3AlVJRUaGTJ0+qefPmMplM9V0OAACoBavVqrNnz6pt27Zycqp+HqXRBJaTJ0/K19e3vssAAAB1cPz4cbVr167a5xtNYGnevLmkCwfs5eVVz9UAAIDasFgs8vX1tX2OV6fRBJaLp4G8vLwILAAANDCXupyDi24BAIDhEVgAAIDhEVgAAIDhNZprWADgaisvL9fPP/9c32UADYqzs7NcXFwue8kRAgsA1MK5c+f0zTffyGq11ncpQIPj4eEhHx8fubq61nmMOgWW5ORkvfTSSyooKFCPHj2UlJSkfv36XXK/7du364477lBgYKByc3Ptnlu9erVmzpypw4cPq1OnTnruuec0fPjwupQHAFdUeXm5vvnmG3l4eKh169YsTgnUktVqVWlpqU6fPq28vDx16dKlxsXhauJwYElLS1NsbKySk5MVERGhpUuXavDgwdq3b5/at29f7X7FxcUaOXKkfv/73+vbb7+1ey4rK0tRUVF65plnNHz4cK1Zs0YjRozQtm3bFBoa6vhRAcAV9PPPP8tqtap169Zq2rRpfZcDNChNmzZVkyZNdOzYMZWWlsrd3b1O45isDs5vhoaGqlevXlqyZImtrXv37ho2bJgSExOr3e/Pf/6zunTpImdnZ33wwQd2MyxRUVGyWCz6+OOPbW2DBg1SixYtlJqaWqu6LBaLzGaziouLWYcFwBV1/vx55eXlyd/fv87/2ALXspp+h2r7+e3QvExpaamys7MVGRlp1x4ZGanMzMxq91uxYoUOHz6s2bNnV/l8VlZWpTEHDhxY45glJSWyWCx2GwAAaJwcCixFRUUqLy+Xt7e3Xbu3t7cKCwur3OfQoUOaNm2a3n33Xbm4VH0GqrCw0KExJSkxMVFms9m2cR8hAAAarzpddPvrC86sVmuVF6GVl5frwQcf1Ny5c9W1a9crMuZF8fHxiouLsz2+eC8CAPitLMg4+Ju+3uQBNf87ivp19OhR+fv7KycnRz179qzTGCkpKYqNjdX3339/RWtrDByaYWnVqpWcnZ0rzXycOnWq0gyJJJ09e1Z79uzRhAkT5OLiIhcXFyUkJGjv3r1ycXHR//3f/0mS2rRpU+sxL3Jzc7PdN4j7BwFA49G/f3/Fxsb+Jq919OhRmUymSt9cbSxSUlJ03XXX1XcZV4RDgcXV1VXBwcHKyMiwa8/IyFDfvn0r9ffy8tIXX3yh3Nxc2xYTE6ObbrpJubm5tm8AhYeHVxpz/fr1VY4JAKib0tLS+i7hirFarSorK6vvMvAbcvjL0HFxcfr73/+uN998U/v379fkyZOVn5+vmJgYSRdO1YwcOfLC4E5OCgwMtNtuuOEGubu7KzAwUJ6enpKkSZMmaf369Zo3b54OHDigefPmacOGDb9ZwgYanY2Jjm1olPr3768JEyYoLi5OrVq10oABAyRJ+/bt05AhQ9SsWTN5e3srOjpaRUVFtv0qKio0b948de7cWW5ubmrfvr2ee+452/NffPGFfve736lp06Zq2bKlxo4dq3Pnztmef/TRRzVs2DDNnz9fPj4+atmypcaPH2+3SnBycrK6dOkid3d3eXt7609/+pNt382bN2vhwoUymUwymUw6evSoNm3aJJPJpHXr1ikkJERubm7aunWr7bV+KTY2Vv3796/V8fj7+0uSgoKCZDKZ7PZbsWKFunfvLnd3d3Xr1k3Jycl2r7Nr1y4FBQXJ3d1dISEhysnJueTPpLS0VFOmTNGNN94oT09PhYaGatOmTTXu89FHHyk4OFju7u7q2LGj5s6daxfWvv/+e40dO1be3t62z9d///vf2rRpkx577DEVFxfb3ss5c+ZIkv773/9q5MiRatGihTw8PDR48GAdOnTINubFmZl169ape/fuatasmQYNGqSCggJbn02bNqlPnz7y9PTUddddp4iICB07duyS70FdOXwNS1RUlM6cOaOEhAQVFBQoMDBQ6enp8vPzkyQVFBQoPz/foTH79u2rVatWacaMGZo5c6Y6deqktLQ01mABfit1CS13xl/5OnDFvfXWW3ryySe1fft2Wa1WFRQU6I477tCYMWP0yiuv6KefftLUqVM1YsQI22n6+Ph4vfHGG1qwYIFuu+02FRQU6MCBA5KkH3/8UYMGDVJYWJh2796tU6dOafTo0ZowYYJSUlJsr7tx40b5+Pho48aN+vrrrxUVFaWePXtqzJgx2rNnj5566im9/fbb6tu3r7777jtt3bpVkrRw4UIdPHhQgYGBSkhIkCS1bt1aR48elSRNmTJF8+fPV8eOHWt9qqOm49m1a5f69OmjDRs2qEePHraVWN944w3Nnj1bixcvVlBQkHJycjRmzBh5enrqkUce0Q8//KB77rlHv/vd7/TOO+8oLy9PkyZNumQtjz32mI4ePapVq1apbdu2WrNmjQYNGqQvvvhCXbp0qdR/3bp1evjhh7Vo0SL169dPhw8f1tixYyVJs2fPVkVFhQYPHqyzZ8/qnXfeUadOnbRv3z45Ozurb9++SkpK0qxZs/TVV19Jkpo1aybpQjA8dOiQPvzwQ3l5eWnq1KkaMmSI9u3bpyZNmth+1vPnz9fbb78tJycnPfzww3r66af17rvvqqysTMOGDdOYMWOUmpqq0tJS7dq166ouqlini27HjRuncePGVfncL//CVmXOnDm2hPdLf/rTn2wJGwBwZXTu3Fkvvvii7fGsWbPUq1cvPf/887a2N998U76+vjp48KB8fHy0cOFCLV68WI888ogkqVOnTrrtttskSe+++65++uknrVy50jZLvnjxYt17772aN2+e7drDFi1aaPHixXJ2dla3bt10991369NPP9WYMWOUn58vT09P3XPPPWrevLn8/PwUFBQkSTKbzXJ1dZWHh4fatGlT6XgSEhJsM0W1cfbs2RqPp3Xr1pKkli1b2r3eM888o5dffll//OMfJV2Yidm3b5+WLl2qRx55RO+++67Ky8v15ptvysPDQz169NA333yjJ598stpaDh8+rNTUVH3zzTdq27atJOnpp5/WJ598ohUrVtj9TC567rnnNG3aNFvtHTt21DPPPKMpU6Zo9uzZ2rBhg3bt2qX9+/fbvtzSsWNH2/5ms1kmk8nu2C4Gle3bt9suvXj33Xfl6+urDz74QPfff7+kCwsmvv766+rUqZMkacKECbYQabFYVFxcrHvuucf2fPfu3WvxE6k77iUEAI1YSEiI3ePs7Gxt3LjR9j/tXzp8+LC+//57lZSU6Pe//32V4+3fv1+33nqrLaxIUkREhCoqKvTVV1/ZAkuPHj3k7Oxs6+Pj46MvvvhCkjRgwAD5+fmpY8eOGjRokAYNGqThw4fLw8PD4eO5lP3799d4PFU5ffq0jh8/rlGjRmnMmDG29rKyMpnNZtu4t956q13N4eHhNY772WefyWq1VvrWbElJiVq2bFnlPtnZ2dq9e7fdKbny8nKdP39eP/74o3Jzc9WuXbtLfhP3l/bv3y8XFxe7sxgtW7bUTTfdpP3799vaPDw8bGFEuvAzPHXqlCTp+uuv16OPPqqBAwdqwIABuuuuuzRixAj5+PjUug5HEVgAoBH7ZbCQLlzPcXE25Nd8fHx05MiRGseracmJX7ZfPK3wy+cqKiokSc2bN9dnn32mTZs2af369Zo1a5bmzJmj3bt3X/I0z6+Px8nJqdINKX95rUxdbqVwsc433nij0qUJF0NYXW6CWVFRIWdnZ2VnZ9uFOUlVBsiL+8ydO9c20/NL7u7udTq+6mr/9c+2qp/hL/ddsWKFnnrqKX3yySdKS0vTjBkzlJGRobCwMIdrqo263YEIANAg9erVS19++aU6dOigzp07222enp7q0qWLmjZtqk8//bTK/QMCApSbm6sffvjB1rZ9+3Y5OTk59L98FxcX3XXXXXrxxRf1+eef6+jRo7ZraFxdXVVeXl6rcVq3bm13Iagku68oX+p4Ll6z8svX8/b21o033qgjR45Ueo8uXqQbEBCgvXv36qeffrLtt2PHjhprDQoKUnl5uU6dOlVp3KpOf0kXfl5fffVVpf6dO3eWk5OTbrnlFn3zzTc6eLDqNYGqei8DAgJUVlamnTt32trOnDmjgwcPOnxaJygoSPHx8crMzFRgYKDee+89h/Z3BIEFAK4h48eP13fffacHHnhAu3bt0pEjR7R+/Xo9/vjjKi8vl7u7u6ZOnaopU6Zo5cqVOnz4sHbs2KHly5dLkh566CG5u7vrkUce0X/+8x9t3LhREydOVHR0dI1rZ/3Sv//9by1atEi5ubk6duyYVq5cqYqKCt10002SpA4dOmjnzp06evSoioqKbDMeVfnd736nPXv2aOXKlTp06JBmz56t//znP7bnL3U8N9xwg5o2bapPPvlE3377rYqLiyVduN4yMTHRdhHwF198oRUrVuiVV16RJD344INycnLSqFGjtG/fPqWnp2v+/Pk1HnfXrl310EMPaeTIkXr//feVl5en3bt3a968eUpPT69yn1mzZmnlypWaM2eOvvzyS+3fv982myFJd9xxh26//Xbdd999ysjIUF5enj7++GN98skntvfy3Llz+vTTT1VUVKQff/xRXbp00dChQzVmzBht27ZNe/fu1cMPP6wbb7xRQ4cOrc2PUHl5eYqPj1dWVpaOHTum9evX1ynwOIJTQgBQRw1x5dm2bdtq+/btmjp1qgYOHKiSkhL5+flp0KBBcnK68H/YmTNnysXFRbNmzdLJkyfl4+NjW7rCw8ND69at06RJk9S7d295eHjovvvus32Q18Z1112n999/X3PmzNH58+fVpUsXpaamqkePHpIuXIj6yCOPKCAgQD/99JPy8vKqHWvgwIGaOXOmpkyZovPnz+vxxx/XyJEjbdfLXOp4XFxctGjRIiUkJGjWrFnq16+fNm3apNGjR8vDw0MvvfSSpkyZIk9PT91888225TaaNWumjz76SDExMQoKClJAQIDmzZun++67r8ZjX7FihZ599ln95S9/0YkTJ9SyZUuFh4dryJAh1R7fv//9byUkJOjFF19UkyZN1K1bN40ePdrWZ/Xq1Xr66af1wAMP6IcfflDnzp31wgsvSLrwLdyYmBjbN3xnz56tOXPmaMWKFZo0aZLuuecelZaW6vbbb1d6enql00DV8fDw0IEDB/TWW2/pzJkz8vHx0YQJE/TEE0/Uav+6cPhuzUbF3ZqBX/gt1la5hr7WzN2agcvzm9+tGQAAoD4QWAAAgOERWAAAgOERWAAAgOHxLSHgGpR15Eyd9w3vWPWKnABwNRFYADjkYtjZUVb1QlU1aYhfAwZgDJwSAgAAhkdgAQAAhkdgAQDYmTNnjnr27OnQPv3797etAlufdfza1agL9YNrWACgrn6LFYV/6TdaXfjpp5/WxIkTHdrn/fffr/Wy7g1Z//791bNnTyUlJdV3KdccAgsAQJJktVpVXl6uZs2aqVmzZg7te/3111+lqoALOCUENFALMg5Wu2UdOVPjdiWE5S9zaMNvr6SkRE899ZRuuOEGubu767bbbtPu3bttz2/atEkmk0nr1q1TSEiI3NzctHXr1kqnYsrKyvTUU0/puuuuU8uWLTV16lQ98sgjGjZsmK3Pr0+9dOjQQc8//7wef/xxNW/eXO3bt9eyZfZ/D6ZOnaquXbvKw8NDHTt21MyZM/Xzzz87dIz79u3TkCFD1KxZM3l7eys6OlpFRUXV9i8tLdWUKVN04403ytPTU6Ghodq0aZNdn+3bt+uOO+6Qh4eHWrRooYEDB+q///2vHn30UW3evFkLFy6UyWSSyWTS0aNHJUmbN29Wnz595ObmJh8fH02bNk1lZWV2789TTz2lKVOm6Prrr1ebNm00Z84cu9edM2eO2rdvLzc3N7Vt21ZPPfWUQ+9FY0dgAYBGasqUKVq9erXeeustffbZZ+rcubMGDhyo7777rlK/xMRE7d+/X7fcckulcebNm6d3331XK1as0Pbt22WxWPTBBx9c8vVffvllhYSEKCcnR+PGjdOTTz6pAwcO2J5v3ry5UlJStG/fPi1cuFBvvPGGFixYUOvjKygo0B133KGePXtqz549+uSTT/Ttt99qxIgR1e7z2GOPafv27Vq1apU+//xz3X///Ro0aJAOHTokScrNzdXvf/979ejRQ1lZWdq2bZvuvfdelZeXa+HChQoPD9eYMWNUUFCggoIC+fr66sSJExoyZIh69+6tvXv3asmSJVq+fLmeffZZu9d+66235OnpqZ07d+rFF19UQkKCMjIyJEn/+te/tGDBAi1dulSHDh3SBx98oJtvvrnW78W1gFNCANAI/fDDD1qyZIlSUlI0ePBgSdIbb7yhjIwMLV++XH/9619tfRMSEjRgwIBqx3r11VcVHx+v4cOHS5IWL16s9PT0S9YwZMgQjRs3TtKF2ZQFCxZo06ZN6tatmyRpxowZtr4dOnTQX/7yF6WlpWnKlCm1OsYlS5aoV69eev75521tb775pnx9fXXw4EF17Wq/7s/hw4eVmpqqb775Rm3btpV04XqdTz75RCtWrNDzzz+vF198USEhIUpOTrbt16NHD9ufXV1d5eHhoTZt2tjakpOT5evrq8WLF8tkMqlbt246efKkpk6dqlmzZsnJ6cLcwC233KLZs2dLkrp06aLFixfr008/1YABA5Sfn682bdrorrvuUpMmTdS+fXv16dOnVu/DtYLAAgCN0OHDh/Xzzz8rIiLC1takSRP16dNH+/fvt+sbEhJS7TjFxcX69ttv7T48nZ2dFRwcrIqKihpr+OVsjclkUps2bXTq1Clb27/+9S8lJSXp66+/1rlz51RWViYvL69aH2N2drY2btxY5fU2hw8frhRYPvvsM1mt1krtJSUlatnywgrOubm5uv/++2tdgyTt379f4eHhMplMtraIiAidO3dO33zzjdq3by9JlWavfHx8bO/H/fffr6SkJHXs2FGDBg3SkCFDdO+998rFhY/pi3gnAKARslqtkmT3IXqx/ddtnp6elxyvqnEu5dffGjKZTLaQs2PHDv35z3/W3LlzNXDgQJnNZq1atUovv/zyJce9qKKiQvfee6/mzZtX6TkfH58q+zs7Oys7O1vOzs52z10MPU2bNq31619U1Xta1ftf0/vh6+urr776ShkZGdqwYYPGjRunl156SZs3b74mvn1VG1zDAgCNUOfOneXq6qpt27bZ2n7++Wft2bNH3bt3r/U4ZrNZ3t7e2rVrl62tvLxcOTk5l1Xf9u3b5efnp+nTpyskJERdunTRsWPHHBqjV69e+vLLL9WhQwd17tzZbqsqhAUFBam8vFynTp2q1P/iKZ5bbrlFn376abWv6erqqvLycru2gIAAZWZm2oW4zMxMNW/eXDfeeGOtj6dp06b6wx/+oEWLFmnTpk3KysrSF198Uev9GzsCCwA0Qp6ennryySf117/+VZ988on27dunMWPG6Mcff9SoUaMcGmvixIlKTEzU2rVr9dVXX2nSpEn673//W2lWwRGdO3dWfn6+Vq1apcOHD2vRokVas2aNQ2OMHz9e3333nR544AHt2rVLR44c0fr16/X4449XChWS1LVrVz300EMaOXKk3n//feXl5Wn37t2aN2+e7Zqc+Ph47d69W+PGjdPnn3+uAwcOaMmSJbZvHnXo0EE7d+7U0aNHVVRUpIqKCo0bN07Hjx/XxIkTdeDAAa1du1azZ89WXFyc7fqVS0lJSdHy5cv1n//8R0eOHNHbb7+tpk2bys/Pz6H3pDEjsABAI/XCCy/ovvvuU3R0tHr16qWvv/5a69atU4sWLRwaZ+rUqXrggQc0cuRIhYeHq1mzZho4cKDc3d3rXNvQoUM1efJkTZgwQT179lRmZqZmzpzp0Bht27bV9u3bVV5eroEDByowMFCTJk2S2WyuNiisWLFCI0eO1F/+8hfddNNN+sMf/qCdO3fK19dX0oVQs379eu3du1d9+vRReHi41q5da7uW5Omnn5azs7MCAgLUunVr5efn68Ybb1R6erp27dqlW2+9VTExMRo1apTdRcWXct111+mNN95QRESEbZbno48+sl1bA8lkrc2JyAbAYrHIbDaruLjYoYu2gIZqQUb1d0s24ronO9qPbbB3az5//rzy8vLk7+9/WR/SjUVFRYW6d++uESNG6JlnnqnvctAA1PQ7VNvPby66BQDU6NixY1q/fr3uuOMOlZSUaPHixcrLy9ODDz5Y36XhGsIpIQBAjZycnJSSkqLevXsrIiJCX3zxhTZs2ODQxbvA5WKGBQBQI19fX23fvr2+y8A1jhkWAABgeAQWAABgeHUKLMnJybYrfYODg7V169Zq+27btk0RERFq2bKlmjZtqm7dulW6uVVKSortzpe/3M6fP1+X8gDgqmgkX6oEfnNX4nfH4WtY0tLSFBsbq+TkZEVERGjp0qUaPHiw9u3bZ7tfwi95enpqwoQJuuWWW+Tp6alt27bpiSeekKenp8aOHWvr5+Xlpa+++spuX74+CMAILi7jXlpaWqel24Fr3Y8//iip8u0JHOFwYHnllVc0atQojR49WpKUlJSkdevWacmSJUpMTKzUPygoSEFBQbbHHTp00Pvvv6+tW7faBZaLN8YCAKNxcXGRh4eHTp8+rSZNmtR69VLgWme1WvXjjz/q1KlTuu666yrdw8kRDgWW0tJSZWdna9q0aXbtkZGRyszMrNUYOTk5yszM1LPPPmvXfu7cOfn5+am8vFw9e/bUM888Yxd0fq2kpEQlJSW2xxaLxYEjAYDaM5lM8vHxUV5ensP3uwFwYSXfy52UcCiwFBUVqby8XN7e3nbt3t7eKiwsrHHfdu3a6fTp0yorK9OcOXNsMzSS1K1bN6WkpOjmm2+WxWLRwoULFRERob1796pLly5VjpeYmKi5c+c6Uj4A1Jmrq6u6dOmi0tLS+i4FaFCaNGlyWTMrF9VpHZba3K7817Zu3apz585px44dmjZtmjp37qwHHnhAkhQWFqawsDBb34iICPXq1UuvvvqqFi1aVOV48fHxiouLsz22WCy2e0EAwNXg5OTEtXVAPXEosLRq1UrOzs6VZlNOnTpVadbl1/z9/SVJN998s7799lvNmTPHFlh+zcnJSb1799ahQ4eqHc/NzU1ubm6OlA8AABooh64cc3V1VXBwsDIyMuzaMzIy1Ldv31qPY7Va7a4/qer53Nxc+fj4OFIeAABopBw+JRQXF6fo6GiFhIQoPDxcy5YtU35+vmJiYiRdOFVz4sQJrVy5UpL02muvqX379urWrZukC+uyzJ8/XxMnTrSNOXfuXIWFhalLly6yWCxatGiRcnNz9dprr12JYwQAAA2cw4ElKipKZ86cUUJCggoKChQYGKj09HT5+flJkgoKCpSfn2/rX1FRofj4eOXl5cnFxUWdOnXSCy+8oCeeeMLW5/vvv9fYsWNVWFgos9msoKAgbdmyRX369LkChwgAABo6k7WRLN1osVhkNptVXFwsLy+v+i4HuOoWZBys9rmw/GW/YSW1s6P9WE0e0LW+ywBgMLX9/Gb1IwAAYHgEFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHgO360ZQD3YmFipKSz/TD0UUndh+cukjS1rv8Od8VevGAANDjMsAADA8AgsAADA8AgsAADA8LiGBcBvJutI7a+72VF20O7x5AFdr3Q5ABoQZlgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhEVgAAIDhudRlp+TkZL300ksqKChQjx49lJSUpH79+lXZd9u2bZo6daoOHDigH3/8UX5+fnriiSc0efJku36rV6/WzJkzdfjwYXXq1EnPPfechg8fXpfygAZjQcbBWvULyz9zlSsBAGNzeIYlLS1NsbGxmj59unJyctSvXz8NHjxY+fn5Vfb39PTUhAkTtGXLFu3fv18zZszQjBkztGzZMlufrKwsRUVFKTo6Wnv37lV0dLRGjBihnTt31v3IAABAo2GyWq1WR3YIDQ1Vr169tGTJEltb9+7dNWzYMCUmJtZqjD/+8Y/y9PTU22+/LUmKioqSxWLRxx9/bOszaNAgtWjRQqmpqbUa02KxyGw2q7i4WF5eXg4cEVB/aj/DsuzSnRqZHe3H2j2ePKBrPVUC4Gqq7ee3QzMspaWlys7OVmRkpF17ZGSkMjMzazVGTk6OMjMzdccdd9jasrKyKo05cODAGscsKSmRxWKx2wAAQOPkUGApKipSeXm5vL297dq9vb1VWFhY477t2rWTm5ubQkJCNH78eI0ePdr2XGFhocNjJiYmymw22zZfX19HDgUAADQgdfqWkMlksntstVortf3a1q1btWfPHr3++utKSkqqdKrH0THj4+NVXFxs244fP+7gUQAAgIbCoW8JtWrVSs7OzpVmPk6dOlVphuTX/P39JUk333yzvv32W82ZM0cPPPCAJKlNmzYOj+nm5iY3NzdHygcAAA2UQzMsrq6uCg4OVkZGhl17RkaG+vbtW+txrFarSkpKbI/Dw8Mrjbl+/XqHxgQAAI2Xw+uwxMXFKTo6WiEhIQoPD9eyZcuUn5+vmJgYSRdO1Zw4cUIrV66UJL322mtq3769unXrJunCuizz58/XxIkTbWNOmjRJt99+u+bNm6ehQ4dq7dq12rBhg7Zt23YljhEAADRwDgeWqKgonTlzRgkJCSooKFBgYKDS09Pl5+cnSSooKLBbk6WiokLx8fHKy8uTi4uLOnXqpBdeeEFPPPGErU/fvn21atUqzZgxQzNnzlSnTp2Ulpam0NDQK3CIAACgoXN4HRajYh0WNESsw1I91mEBrg1XZR0WAACA+kBgAQAAhkdgAQAAhlenuzUDuAwb/3fPLe7CDAC1wwwLAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPJf6LgAAqhKWv8y+YWPLS+90Z/zVKQZAvWOGBQAAGB6BBQAAGB6BBQAAGB6BBQAAGB6BBQAAGB6BBQAAGB6BBQAAGB6BBQAAGB6BBQAAGB6BBQAAGB6BBQAAGF6dAktycrL8/f3l7u6u4OBgbd26tdq+77//vgYMGKDWrVvLy8tL4eHhWrdunV2flJQUmUymStv58+frUh4AAGhkHA4saWlpio2N1fTp05WTk6N+/fpp8ODBys/Pr7L/li1bNGDAAKWnpys7O1t33nmn7r33XuXk5Nj18/LyUkFBgd3m7u5et6MCAACNisN3a37llVc0atQojR49WpKUlJSkdevWacmSJUpMTKzUPykpye7x888/r7Vr1+qjjz5SUFCQrd1kMqlNmzaOlgMAAK4BDgWW0tJSZWdna9q0aXbtkZGRyszMrNUYFRUVOnv2rK6//nq79nPnzsnPz0/l5eXq2bOnnnnmGbtAA+DalnXkzCX77Cg7WGX75AFdr3Q5AH5jDp0SKioqUnl5uby9ve3avb29VVhYWKsxXn75Zf3www8aMWKEra1bt25KSUnRhx9+qNTUVLm7uysiIkKHDh2qdpySkhJZLBa7DQAANE4OnxKSLpy++SWr1VqprSqpqamaM2eO1q5dqxtuuMHWHhYWprCwMNvjiIgI9erVS6+++qoWLVpU5ViJiYmaO3duXcoHAAANjEMzLK1atZKzs3Ol2ZRTp05VmnX5tbS0NI0aNUr/+Mc/dNddd9VclJOTevfuXeMMS3x8vIqLi23b8ePHa38gAACgQXEosLi6uio4OFgZGRl27RkZGerbt2+1+6WmpurRRx/Ve++9p7vvvvuSr2O1WpWbmysfH59q+7i5ucnLy8tuAwAAjZPDp4Ti4uIUHR2tkJAQhYeHa9myZcrPz1dMTIykCzMfJ06c0MqVKyVdCCsjR47UwoULFRYWZpudadq0qcxmsyRp7ty5CgsLU5cuXWSxWLRo0SLl5ubqtddeu1LHCQAAGjCHA0tUVJTOnDmjhIQEFRQUKDAwUOnp6fLz85MkFRQU2K3JsnTpUpWVlWn8+PEaP368rf2RRx5RSkqKJOn777/X2LFjVVhYKLPZrKCgIG3ZskV9+vS5zMMDAACNgclqtVrru4grwWKxyGw2q7i4mNNDMLaN/1uvqDZf1UXt7Wg/tsp2vtYMGFdtP7+5lxAAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8l/ouAGjospY/Xd8lAECjR2AB0GiE5S+r+omNLatuvzP+6hUD4IrilBAAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADA8AgsAADC8OgWW5ORk+fv7y93dXcHBwdq6dWu1fd9//30NGDBArVu3lpeXl8LDw7Vu3bpK/VavXq2AgAC5ubkpICBAa9asqUtpAACgEXI4sKSlpSk2NlbTp09XTk6O+vXrp8GDBys/P7/K/lu2bNGAAQOUnp6u7Oxs3Xnnnbr33nuVk5Nj65OVlaWoqChFR0dr7969io6O1ogRI7Rz5866HxkAAGg0TFar1erIDqGhoerVq5eWLFlia+vevbuGDRumxMTEWo3Ro0cPRUVFadasWZKkqKgoWSwWffzxx7Y+gwYNUosWLZSamlqrMS0Wi8xms4qLi+Xl5eXAEQGXJ2v50/VdAi4hvGPLqp+4M/63LQRAJbX9/HZohqW0tFTZ2dmKjIy0a4+MjFRmZmatxqioqNDZs2d1/fXX29qysrIqjTlw4MAaxywpKZHFYrHbAABA4+RQYCkqKlJ5ebm8vb3t2r29vVVYWFirMV5++WX98MMPGjFihK2tsLDQ4TETExNlNpttm6+vrwNHAgAAGpI6XXRrMpnsHlut1kptVUlNTdWcOXOUlpamG2644bLGjI+PV3FxsW07fvy4A0cAAAAaEhdHOrdq1UrOzs6VZj5OnTpVaYbk19LS0jRq1Cj985//1F133WX3XJs2bRwe083NTW5ubo6UDwAAGiiHZlhcXV0VHBysjIwMu/aMjAz17du32v1SU1P16KOP6r333tPdd99d6fnw8PBKY65fv77GMQEAwLXDoRkWSYqLi1N0dLRCQkIUHh6uZcuWKT8/XzExMZIunKo5ceKEVq5cKelCWBk5cqQWLlyosLAw20xK06ZNZTabJUmTJk3S7bffrnnz5mno0KFau3atNmzYoG3btl2p4wQAAA2Yw9ewREVFKSkpSQkJCerZs6e2bNmi9PR0+fn5SZIKCgrs1mRZunSpysrKNH78ePn4+Ni2SZMm2fr07dtXq1at0ooVK3TLLbcoJSVFaWlpCg0NvQKHCAAAGjqH12ExKtZhQX1hHRbjYx0WwLiuyjosAAAA9YHAAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADI/AAgAADM+lvgsAgKst68iZKtt3lB285L6TB3S90uUAqANmWAAAgOERWAAAgOERWAAAgOERWAAAgOERWAAAgOERWAAAgOERWAAAgOERWAAAgOERWAAAgOERWAAAgOERWAAAgOHVKbAkJyfL399f7u7uCg4O1tatW6vtW1BQoAcffFA33XSTnJycFBsbW6lPSkqKTCZTpe38+fN1KQ8AADQyDgeWtLQ0xcbGavr06crJyVG/fv00ePBg5efnV9m/pKRErVu31vTp03XrrbdWO66Xl5cKCgrsNnd3d0fLAwAAjZDDgeWVV17RqFGjNHr0aHXv3l1JSUny9fXVkiVLquzfoUMHLVy4UCNHjpTZbK52XJPJpDZt2thtAAAAkoOBpbS0VNnZ2YqMjLRrj4yMVGZm5mUVcu7cOfn5+aldu3a65557lJOTU2P/kpISWSwWuw0AADRODgWWoqIilZeXy9vb267d29tbhYWFdS6iW7duSklJ0YcffqjU1FS5u7srIiJChw4dqnafxMREmc1m2+br61vn1wcAAMZWp4tuTSaT3WOr1VqpzRFhYWF6+OGHdeutt6pfv376xz/+oa5du+rVV1+tdp/4+HgVFxfbtuPHj9f59QEAgLG5ONK5VatWcnZ2rjSbcurUqUqzLpfDyclJvXv3rnGGxc3NTW5ublfsNQEAgHE5NMPi6uqq4OBgZWRk2LVnZGSob9++V6woq9Wq3Nxc+fj4XLExAQBAw+XQDIskxcXFKTo6WiEhIQoPD9eyZcuUn5+vmJgYSRdO1Zw4cUIrV6607ZObmyvpwoW1p0+fVm5urlxdXRUQECBJmjt3rsLCwtSlSxdZLBYtWrRIubm5eu21167AIQIAgIbO4cASFRWlM2fOKCEhQQUFBQoMDFR6err8/PwkXVgo7tdrsgQFBdn+nJ2drffee09+fn46evSoJOn777/X2LFjVVhYKLPZrKCgIG3ZskV9+vS5jEMD6mhjYn1XAAD4FZPVarXWdxFXgsVikdlsVnFxsby8vOq7HDRkDgaWrCNnrlIhMILwji3/9+DO+PorBGikavv5zb2EAACA4RFYAACA4RFYAACA4RFYAACA4RFYAACA4RFYAACA4RFYAACA4RFYAACA4RFYAACA4Tm8ND/QGC3IOGj7c1g+K9cCgNEwwwIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAzPpb4LAAAjyzpyxvbnHWUHHdp38oCuV7oc4JrFDAsAADA8AgsAADA8AgsAADA8AgsAADC8OgWW5ORk+fv7y93dXcHBwdq6dWu1fQsKCvTggw/qpptukpOTk2JjY6vst3r1agUEBMjNzU0BAQFas2ZNXUoDAACNkMOBJS0tTbGxsZo+fbpycnLUr18/DR48WPn5+VX2LykpUevWrTV9+nTdeuutVfbJyspSVFSUoqOjtXfvXkVHR2vEiBHauXOno+UBAIBGyGS1Wq2O7BAaGqpevXppyZIltrbu3btr2LBhSkxMrHHf/v37q2fPnkpKSrJrj4qKksVi0ccff2xrGzRokFq0aKHU1NRa1WWxWGQ2m1VcXCwvL6/aHxAgaUHG/76uGpa/rB4rgZHtaD/Wof58rRm4tNp+fju0Dktpaamys7M1bdo0u/bIyEhlZmbWrVJdmGGZPHmyXdvAgQMrBZtfKikpUUlJie2xxWKp8+sDQG04HGY3tpTujL86xQDXGIdOCRUVFam8vFze3t527d7e3iosLKxzEYWFhQ6PmZiYKLPZbNt8fX3r/PoAAMDY6nTRrclksntstVortV3tMePj41VcXGzbjh8/flmvDwAAjMuhU0KtWrWSs7NzpZmPU6dOVZohcUSbNm0cHtPNzU1ubm51fk0AANBwODTD4urqquDgYGVkZNi1Z2RkqG/fvnUuIjw8vNKY69evv6wxAQBA4+HwzQ/j4uIUHR2tkJAQhYeHa9myZcrPz1dMTIykC6dqTpw4oZUrV9r2yc3NlSSdO3dOp0+fVm5urlxdXRUQECBJmjRpkm6//XbNmzdPQ4cO1dq1a7VhwwZt27btChwiAABo6BwOLFFRUTpz5owSEhJUUFCgwMBApaeny8/PT9KFheJ+vSZLUFCQ7c/Z2dl677335Ofnp6NHj0qS+vbtq1WrVmnGjBmaOXOmOnXqpLS0NIWGhl7GoQEAgMbC4XVYjIp1WFCljTWvDXRR1pEzV7kQXIvCO/K1ZuBSavv5zb2EAACA4RFYAACA4RFYAACA4RFYAACA4RFYAACA4RFYAACA4RFYAACA4RFYAACA4Tm80i1gRAsyDlbZHpbPgnAA0BgwwwIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAzPpb4LAByyMbHK5rD8M79xIQCA3xIzLAAAwPAILAAAwPAILAAAwPAILAAAwPAILAAAwPDqFFiSk5Pl7+8vd3d3BQcHa+vWrTX237x5s4KDg+Xu7q6OHTvq9ddft3s+JSVFJpOp0nb+/Pm6lAcAABoZhwNLWlqaYmNjNX36dOXk5Khfv34aPHiw8vPzq+yfl5enIUOGqF+/fsrJydHf/vY3PfXUU1q9erVdPy8vLxUUFNht7u7udTsqAADQqDi8Dssrr7yiUaNGafTo0ZKkpKQkrVu3TkuWLFFiYuU1Ml5//XW1b99eSUlJkqTu3btrz549mj9/vu677z5bP5PJpDZt2tTxMAAAQGPm0AxLaWmpsrOzFRkZadceGRmpzMzMKvfJysqq1H/gwIHas2ePfv75Z1vbuXPn5Ofnp3bt2umee+5RTk5OjbWUlJTIYrHYbQAAoHFyKLAUFRWpvLxc3t7edu3e3t4qLCyscp/CwsIq+5eVlamoqEiS1K1bN6WkpOjDDz9Uamqq3N3dFRERoUOHDlVbS2Jiosxms23z9fV15FAAAEADUqel+U0mk91jq9Vaqe1S/X/ZHhYWprCwMNvzERER6tWrl1599VUtWrSoyjHj4+MVFxdne2yxWAgtAAwl68gZ7Sg7WKd9Jw/oeoWrARo2hwJLq1at5OzsXGk25dSpU5VmUS5q06ZNlf1dXFzUsmXLKvdxcnJS7969a5xhcXNzk5ubmyPlAwCABsqhwOLq6qrg4GBlZGRo+PDhtvaMjAwNHTq0yn3Cw8P10Ucf2bWtX79eISEhatKkSZX7WK1W5ebm6uabb3akPDRwCzIu/T9RbnKIhiYsf5lD/Xe0H3uVKgEaNoe/1hwXF6e///3vevPNN7V//35NnjxZ+fn5iomJkXThVM3IkSNt/WNiYnTs2DHFxcVp//79evPNN7V8+XI9/fTTtj5z587VunXrdOTIEeXm5mrUqFHKzc21jQkAAK5tDl/DEhUVpTNnzighIUEFBQUKDAxUenq6/Pz8JEkFBQV2a7L4+/srPT1dkydP1muvvaa2bdtq0aJFdl9p/v777zV27FgVFhbKbDYrKChIW7ZsUZ8+fa7AIQIAgIbOZL14BWwDZ7FYZDabVVxcLC8vr/ouB3VQu1NCjk2vAw3NxVNCXHSLa0VtP7+5lxAAADA8AgsAADA8AgsAADA8AgsAADC8Oq10C1wxG/93w0zWWAEAVIcZFgAAYHgEFgAAYHgEFgAAYHhcwwIABmJbHHFj1TeHreTO+KtXDGAgzLAAAADDI7AAAADDI7AAAADDI7AAAADD46JbADCgrCO1W0hxR1nlu5xzp2c0RsywAAAAw2OGBVfUgozK/9urCcvxAwBqgxkWAABgeAQWAABgeJwSwpWzMZFTPACAq4IZFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHgEFgAAYHh8rRkAGrCw/GWVGze2rHmnO+OvTjHAVcQMCwAAMDwCCwAAMDxOCaESR29geBGr3AIArhYCCwBcazYmVvtU1pG6/8cjvOP/v3aGa2RwFRBYUK0qL+YDAKAe1OkaluTkZPn7+8vd3V3BwcHaunVrjf03b96s4OBgubu7q2PHjnr99dcr9Vm9erUCAgLk5uamgIAArVmzpi6lAQCARsjhGZa0tDTFxsYqOTlZERERWrp0qQYPHqx9+/apffv2lfrn5eVpyJAhGjNmjN555x1t375d48aNU+vWrXXfffdJkrKyshQVFaVnnnlGw4cP15o1azRixAht27ZNoaGhl3+U16CqrkOp7YxJ2JUuBsBv6nJO6zREdb3uTpImD+h6BSvB1WSyWq1WR3YIDQ1Vr169tGTJEltb9+7dNWzYMCUmVj4vOnXqVH344Yfav3+/rS0mJkZ79+5VVlaWJCkqKkoWi0Uff/yxrc+gQYPUokULpaam1qoui8Uis9ms4uJieXl5OXJIhlXTLyGnawAYTX1dw0Jgadhq+/nt0AxLaWmpsrOzNW3aNLv2yMhIZWZmVrlPVlaWIiMj7doGDhyo5cuX6+eff1aTJk2UlZWlyZMnV+qTlJRUbS0lJSUqKSmxPbZYLI4cikOylj/t8D472o91qH9VAYSZDgANiW1m54jj/2aGj5p/haupncsJO5eDoOQ4hwJLUVGRysvL5e3tbdfu7e2twsLCKvcpLCyssn9ZWZmKiork4+NTbZ/qxpSkxMREzZ0715Hy66wuv0jhDu9RP7+sAGAEzJLgUup00a3JZLJ7bLVaK7Vdqv+v2x0dMz4+XsXFxbbt+PHjta4fAAA0LA7NsLRq1UrOzs6VZj5OnTpVaYbkojZt2lTZ38XFRS1btqyxT3VjSpKbm5vc3NwcKR8AYFDMkuBSHJphcXV1VXBwsDIyMuzaMzIy1Ldv3yr3CQ8Pr9R//fr1CgkJUZMmTWrsU92YAADg2uLw15rj4uIUHR2tkJAQhYeHa9myZcrPz1dMTIykC6dqTpw4oZUrV0q68I2gxYsXKy4uTmPGjFFWVpaWL19u9+2fSZMm6fbbb9e8efM0dOhQrV27Vhs2bNC2bduu0GECAICGzOHAEhUVpTNnzighIUEFBQUKDAxUenq6/Pz8JEkFBQXKz8+39ff391d6eromT56s1157TW3bttWiRYtsa7BIUt++fbVq1SrNmDFDM2fOVKdOnZSWlsYaLAAAQFId1mExqsa4DgsAAI1dbT+/6/QtIQAAgN8SgQUAABgegQUAABgegQUAABgegQUAABgegQUAABgegQUAABgegQUAABgegQUAABgegQUAABgegQUAABiewzc/NKqLt0SyWCz1XAkAAKiti5/bl7q1YaMJLGfPnpUk+fr61nMlAADAUWfPnpXZbK72+UZzt+aKigqdPHlSzZs3l8lkqu9yGiyLxSJfX18dP36cu15fYby3Vw/v7dXF+3v18N5emFk5e/as2rZtKyen6q9UaTQzLE5OTmrXrl19l9FoeHl5XbO/PFcb7+3Vw3t7dfH+Xj3X+ntb08zKRVx0CwAADI/AAgAADI/AAjtubm6aPXu23Nzc6ruURof39urhvb26eH+vHt7b2ms0F90CAIDGixkWAABgeAQWAABgeAQWAABgeAQWAABgeAQWXFJJSYl69uwpk8mk3Nzc+i6nwTt69KhGjRolf39/NW3aVJ06ddLs2bNVWlpa36U1WMnJyfL395e7u7uCg4O1devW+i6pwUtMTFTv3r3VvHlz3XDDDRo2bJi++uqr+i6rUUpMTJTJZFJsbGx9l2JoBBZc0pQpU9S2bdv6LqPROHDggCoqKrR06VJ9+eWXWrBggV5//XX97W9/q+/SGqS0tDTFxsZq+vTpysnJUb9+/TR48GDl5+fXd2kN2ubNmzV+/Hjt2LFDGRkZKisrU2RkpH744Yf6Lq1R2b17t5YtW6ZbbrmlvksxPL7WjBp9/PHHiouL0+rVq9WjRw/l5OSoZ8+e9V1Wo/PSSy9pyZIlOnLkSH2X0uCEhoaqV69eWrJkia2te/fuGjZsmBITE+uxssbl9OnTuuGGG7R582bdfvvt9V1Oo3Du3Dn16tVLycnJevbZZ9WzZ08lJSXVd1mGxQwLqvXtt99qzJgxevvtt+Xh4VHf5TRqxcXFuv766+u7jAantLRU2dnZioyMtGuPjIxUZmZmPVXVOBUXF0sSf0+voPHjx+vuu+/WXXfdVd+lNAiN5uaHuLKsVqseffRRxcTEKCQkREePHq3vkhqtw4cP69VXX9XLL79c36U0OEVFRSovL5e3t7ddu7e3twoLC+upqsbHarUqLi5Ot912mwIDA+u7nEZh1apV+uyzz7R79+76LqXBYIblGjNnzhyZTKYatz179ujVV1+VxWJRfHx8fZfcYNT2vf2lkydPatCgQbr//vs1evToeqq84TOZTHaPrVZrpTbU3YQJE/T5558rNTW1vktpFI4fP65JkybpnXfekbu7e32X02BwDcs1pqioSEVFRTX26dChg/785z/ro48+svtHv7y8XM7OznrooYf01ltvXe1SG5zavrcX/4E6efKk7rzzToWGhiolJUVOTvz/wVGlpaXy8PDQP//5Tw0fPtzWPmnSJOXm5mrz5s31WF3jMHHiRH3wwQfasmWL/P3967ucRuGDDz7Q8OHD5ezsbGsrLy+XyWSSk5OTSkpK7J7DBQQWVCk/P18Wi8X2+OTJkxo4cKD+9a9/KTQ0VO3atavH6hq+EydO6M4771RwcLDeeecd/nG6DKGhoQoODlZycrKtLSAgQEOHDuWi28tgtVo1ceJErVmzRps2bVKXLl3qu6RG4+zZszp27Jhd22OPPaZu3bpp6tSpnHarBtewoErt27e3e9ysWTNJUqdOnQgrl+nkyZPq37+/2rdvr/nz5+v06dO259q0aVOPlTVMcXFxio6OVkhIiMLDw7Vs2TLl5+crJiamvktr0MaPH6/33ntPa9euVfPmzW3XBJnNZjVt2rSeq2vYmjdvXimUeHp6qmXLloSVGhBYgN/Y+vXr9fXXX+vrr7+uFP6Y8HRcVFSUzpw5o4SEBBUUFCgwMFDp6eny8/Or79IatItfE+/fv79d+4oVK/Too4/+9gXhmscpIQAAYHhc5QcAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAyPwAIAAAzv/wGUpHI6nFXEPwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwDElEQVR4nO3de1hVdb7H8c8G5aqgoiEaIN7ywhgKqWiO2iReqlGnU04XL2UWeUWm0RhnFK2JsSy1HEw9ptnFfKbr1MOo1FEzL6mEaUlqCuIFU6xAs0A26/zhcZ92XGQT+nPD+/U8+3nYv73W2t+1trI//NZv/ZbNsixLAAAAhniYLgAAANRthBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARtUzXUBVlJaW6sSJE2rYsKFsNpvpcgAAQBVYlqWzZ8+qRYsW8vCouP/DLcLIiRMnFBoaaroMAABQDUePHtX1119f4etuEUYaNmwo6eLOBAQEGK4GAABURWFhoUJDQx3f4xVxizBy6dRMQEAAYQQAADdzuSEWDGAFAABGEUYAAIBRhBEAAGCUW4wZAYArzW6368KFC6bLANyKp6en6tWr96un3SCMAKjzzp07p2PHjsmyLNOlAG7Hz89PISEh8vLyqvY2CCMA6jS73a5jx47Jz89PzZo1Y2JFoIosy1JxcbFOnz6t7OxstWvXrtKJzSpDGAFQp124cEGWZalZs2by9fU1XQ7gVnx9fVW/fn0dOXJExcXF8vHxqdZ2GMAKALr8PAgAylfd3hCnbdRAHQAAANVGGAEAAEYxZgQAyjE//cBVfb+pA9pf1feDa3JychQREaHMzExFRUVVaxsrV65UQkKCvv/++xqtrTagZwQAcNX069dPCQkJV+W9cnJyZLPZtHv37qvyflfbypUr1ahRI9Nl1AjCCADUAsXFxaZLqDGWZamkpMR0GbiKCCOAu9uQUvUHao1+/fpp4sSJSkxMVNOmTTVgwABJ0r59+zRkyBA1aNBAwcHBGjlypPLz8x3rlZaWau7cuWrbtq28vb0VFhamv//9747X9+7dq1tuuUW+vr4KCgrSww8/rHPnzjleHzNmjIYNG6Z58+YpJCREQUFBmjBhgtPstampqWrXrp18fHwUHBys//qv/3Ksu2nTJi1cuFA2m002m005OTnauHGjbDab1q1bp5iYGHl7e2vz5s2O9/q5hIQE9evXr0r7ExERIUnq2rWrbDab03orVqxQx44d5ePjow4dOig1NdXpfXbs2KGuXbvKx8dHMTExyszMvOxnUlxcrGnTpqlly5by9/dXjx49tHHjxkrXef/99xUdHS0fHx+1bt1as2fPdgpi33//vR5++GEFBwfLx8dHkZGR+uCDD7Rx40Y98MADKigocBzL5ORkSdJ3332nUaNGqXHjxvLz89PgwYN18OBBxzYv9aisW7dOHTt2VIMGDTRo0CDl5eU5ltm4caO6d+8uf39/NWrUSL1799aRI0cuewyqizEjAOCmXn75ZT366KPasmWLLMtSXl6e+vbtq3Hjxum5557Tjz/+qOnTp+vuu+/W//zP/0iSkpKStGzZMs2fP18333yz8vLy9NVXX0mSzp8/r0GDBqlnz57auXOnTp06pYceekgTJ07UypUrHe+7YcMGhYSEaMOGDfr66681YsQIRUVFady4cdq1a5cmT56sV155Rb169dK3336rzZs3S5IWLlyoAwcOKDIyUnPmzJEkNWvWTDk5OZKkadOmad68eWrdunWVTz9Utj87duxQ9+7d9eGHH6pz586OGUKXLVumWbNmadGiReratasyMzM1btw4+fv7a/To0frhhx90++2365ZbbtGrr76q7OxsTZky5bK1PPDAA8rJydEbb7yhFi1a6J133tGgQYO0d+9etWvXrszy69at0/3336/nn39effr00aFDh/Twww9LkmbNmqXS0lINHjxYZ8+e1auvvqo2bdpo37598vT0VK9evbRgwQLNnDlT+/fvlyQ1aNBA0sXQd/DgQf373/9WQECApk+friFDhmjfvn2qX7++47OeN2+eXnnlFXl4eOj+++/XY489ptdee00lJSUaNmyYxo0bp9WrV6u4uFg7duy4ope/E0YAwE21bdtWTz/9tOP5zJkz1a1bNz311FOOtpdeekmhoaE6cOCAQkJCtHDhQi1atEijR4+WJLVp00Y333yzJOm1117Tjz/+qFWrVsnf31+StGjRIt1xxx2aO3eugoODJUmNGzfWokWL5OnpqQ4dOui2227TRx99pHHjxik3N1f+/v66/fbb1bBhQ4WHh6tr166SpMDAQHl5ecnPz0/Nmzcvsz9z5sxx9PBUxdmzZyvdn2bNmkmSgoKCnN7viSee0LPPPqs//OEPki72oOzbt09LlizR6NGj9dprr8lut+ull16Sn5+fOnfurGPHjunRRx+tsJZDhw5p9erVOnbsmFq0aCFJeuyxx7R27VqtWLHC6TO55O9//7sef/xxR+2tW7fWE088oWnTpmnWrFn68MMPtWPHDmVlZal9+/aOZS4JDAyUzWZz2rdLIWTLli3q1auXpIufa2hoqN59913dddddki5O9vfiiy+qTZs2kqSJEyc6AmJhYaEKCgp0++23O17v2LFjFT6R6iOMAICbiomJcXqekZGhDRs2OP5C/rlDhw7p+++/V1FRkX73u9+Vu72srCzdeOONjiAiSb1791Zpaan279/vCCOdO3eWp6enY5mQkBDt3btXkjRgwACFh4erdevWGjRokAYNGqThw4fLz8/P5f25nKysrEr3pzynT5/W0aNHNXbsWI0bN87RXlJSosDAQMd2b7zxRqeaY2NjK93uZ599JsuyHKHhkqKiIgUFBZW7TkZGhnbu3Ol0msxut+unn37S+fPntXv3bl1//fVltlmZrKws1atXTz169HC0BQUF6YYbblBWVpajzc/PzxE0pIuf4alTpyRJTZo00ZgxYzRw4EANGDBAt956q+6++26FhIRUuQ5XEUYAwE39PDRIF8dPXOrF+KWQkBAdPny40u1ZllVhV/zP2y919f/8tdLSUklSw4YN9dlnn2njxo1av369Zs6cqeTkZO3cufOyp15+uT8eHh5lbl7487Ep1Zm+/1Kdy5Ytc/rCluQIWNW5YWJpaak8PT2VkZHhFNQklRsOL60ze/ZsRw/Nz/n4+FRr/yqq/ZefbXmf4c/XXbFihSZPnqy1a9dqzZo1+utf/6r09HT17NnT5ZqqggGsAFBLdOvWTV9++aVatWqltm3bOj38/f3Vrl07+fr66qOPPip3/U6dOmn37t364YcfHG1btmyRh4eHS3+d16tXT7feequefvpp7dmzRzk5OY4xK15eXrLb7VXaTrNmzZwGVUpyukz3cvtzaYzIz98vODhYLVu21OHDh8sco0sDXjt16qTPP/9cP/74o2O97du3V1pr165dZbfbderUqTLbLe+UlHTx89q/f3+Z5du2bSsPDw916dJFx44d04ED5c95U96x7NSpk0pKSvTpp5862s6cOaMDBw64fKqla9euSkpK0tatWxUZGanXX3/dpfVdQRgBgFpiwoQJ+vbbb3XPPfdox44dOnz4sNavX68HH3xQdrtdPj4+mj59uqZNm6ZVq1bp0KFD2r59u5YvXy5Juu++++Tj46PRo0friy++0IYNGzRp0iSNHDnScYrmcj744AM9//zz2r17t44cOaJVq1aptLRUN9xwgySpVatW+vTTT5WTk6P8/HxHT0V5brnlFu3atUurVq3SwYMHNWvWLH3xxReO1y+3P9ddd518fX21du1affPNNyooKJAkJScnKyUlxTGgdu/evVqxYoWee+45SdK9994rDw8PjR07Vvv27VNaWprmzZtX6X63b99e9913n0aNGqW3335b2dnZ2rlzp+bOnau0tLRy15k5c6ZWrVql5ORkffnll8rKynL0QkhS37599dvf/lZ33nmn0tPTlZ2drf/85z9au3at41ieO3dOH330kfLz83X+/Hm1a9dOQ4cO1bhx4/TJJ5/o888/1/3336+WLVtq6NChVfkIlZ2draSkJG3btk1HjhzR+vXrqxVmXGK5gYKCAkuSVVBQYLoU4NrzP09V/YEyfvzxR2vfvn3Wjz/+aLoUl/Tt29eaMmVKmfYDBw5Yw4cPtxo1amT5+vpaHTp0sBISEqzS0lLLsizLbrdbTz75pBUeHm7Vr1/fCgsLs5566v//bezZs8fq37+/5ePjYzVp0sQaN26cdfbsWcfro0ePtoYOHer0nlOmTLH69u1rWZZlbd682erbt6/VuHFjy9fX1+rSpYu1Zs0ax7L79++3evbsafn6+lqSrOzsbGvDhg2WJOu7774rsz8zZ860goODrcDAQGvq1KnWxIkTHe9Vlf1ZtmyZFRoaanl4eDit99prr1lRUVGWl5eX1bhxY+u3v/2t9fbbbzte37Ztm3XjjTdaXl5eVlRUlPXWW29ZkqzMzMwKP5Pi4mJr5syZVqtWraz69etbzZs3t4YPH27t2bPHsizLWrFihRUYGOi0ztq1a61evXpZvr6+VkBAgNW9e3dr6dKljtfPnDljPfDAA1ZQUJDl4+NjRUZGWh988IHj9fj4eCsoKMiSZM2aNcuyLMv69ttvrZEjR1qBgYGWr6+vNXDgQOvAgQOOdcqr45133rEuRYKTJ09aw4YNs0JCQiwvLy8rPDzcmjlzpmW328vd78r+D1X1+9tmWa6fHEtNTdUzzzyjvLw8de7cWQsWLFCfPn0uu96WLVvUt29fRUZGujQjXmFhoQIDA1VQUKCAgABXywVqN1fmD+mfdOXqcFM//fSTsrOzFRERUe3bnwN1WWX/h6r6/e3yaZo1a9YoISFBM2bMUGZmpvr06aPBgwcrNze30vUKCgo0atQol0Y9AwCA2s/lMPLcc89p7Nixeuihh9SxY0ctWLBAoaGhWrx4caXrPfLII7r33nsve3kUAACoW1wKI8XFxcrIyFBcXJxTe1xcnLZu3VrheitWrNChQ4c0a9asKr1PUVGRCgsLnR4AAKB2cmmekfz8fNnt9jKjqoODg3Xy5Mly1zl48KAef/xxbd68WfXqVe3tUlJSNHv2bFdKA/B/th0+U+Fr20vKv0TwEm5jD8CEal3a+8tJcawKJsqx2+269957NXv2bJeuUU9KSlJBQYHjcfTo0eqUCQAA3IBLPSNNmzaVp6dnmV6QU6dOlXsN+tmzZ7Vr1y5lZmZq4sSJki7OOGdZlurVq6f169frlltuKbOet7e3vL29XSkNAAC4KZd6Rry8vBQdHa309HSn9vT0dMcNeX4uICBAe/fu1e7dux2P+Ph43XDDDdq9e3eZqXgBAEDd4/K9aRITEzVy5EjFxMQoNjZWS5cuVW5uruLj4yVdPMVy/PhxrVq1Sh4eHoqMjHRa/7rrrpOPj0+ZdgAAUDe5PGZkxIgRWrBggebMmaOoqCh9/PHHSktLU3h4uCQpLy/vsnOOAADMSE5OVlRUlEvr9OvXTwkJCcbr+KUrURfMqNZde8ePH6/x48eX+9rKlSsrXTc5OVnJycnVeVsAuHpcmdm2Jlyl2XEfe+wxTZo0yaV13n777TJ3ea2N+vXrp6ioKC1YsMB0KXVOtcIIAMC9WJYlu92uBg0aVHhL+4o0adLkClUFXMRdewHADRUVFWny5MmOcXg333yzdu7c6Xh948aNstlsWrdunWJiYuTt7a3NmzeXOT1SUlKiyZMnq1GjRgoKCtL06dM1evRoDRs2zLHML0+HtGrVSk899ZQefPBBNWzYUGFhYVq6dKlTfdOnT1f79u3l5+en1q1b629/+5suXLjg0j7u27dPQ4YMUYMGDRQcHKyRI0cqPz+/wuWLi4s1bdo0tWzZUv7+/urRo4c2btzotMyle6T5+fmpcePGGjhwoL777juNGTNGmzZt0sKFC2Wz2WSz2ZSTkyNJ2rRpk7p37y5vb2+FhITo8ccfV0lJidPxmTx5sqZNm6YmTZqoefPmZc4AJCcnKywsTN7e3mrRooUmT57s0rGo7QgjAOCGpk2bprfeeksvv/yyPvvsM7Vt21YDBw7Ut99+W2a5lJQUZWVlqUuXLmW2M3fuXL322mtasWKFtmzZosLCQr377ruXff9nn31WMTExyszM1Pjx4/Xoo4/qq6++crzesGFDrVy5Uvv27dPChQu1bNkyzZ8/v8r7l5eXp759+yoqKkq7du3S2rVr9c033+juu++ucJ0HHnhAW7Zs0RtvvKE9e/borrvu0qBBg3Tw4EFJ0u7du/W73/1OnTt31rZt2/TJJ5/ojjvukN1u18KFCxUbG6tx48YpLy9PeXl5Cg0N1fHjxzVkyBDddNNN+vzzz7V48WItX75cTz75pNN7v/zyy/L399enn36qp59+WnPmzHFcefrmm29q/vz5WrJkiQ4ePKh3331Xv/nNb6p8LOoCTtMAgJv54YcftHjxYq1cuVKDBw+WJC1btkzp6elavny5/vznPzuWnTNnjgYMGFDhtl544QUlJSVp+PDhkqRFixYpLS3tsjUMGTLEMXZw+vTpmj9/vjZu3KgOHTpIkv761786lm3VqpX+9Kc/ac2aNZo2bVqV9nHx4sXq1q2bnnrqKUfbSy+9pNDQUB04cKDMRJqHDh3S6tWrdezYMbVo0ULSxfExa9eu1YoVK/TUU0/p6aefVkxMjFJTUx3rde7c2fGzl5eX/Pz81Lx5c0dbamqqQkNDtWjRItlsNnXo0EEnTpzQ9OnTNXPmTHl4XPybvkuXLo5bnrRr106LFi3SRx99pAEDBig3N1fNmzfXrbfeqvr16yssLEzdu3ev0nGoKwgjwDVofnrl07b/XM/ciqd/R+106NAhXbhwQb1793a01a9fX927d1dWVpbTsjExMRVup6CgQN98843TF6Onp6eio6NVWlpaaQ0/72Wx2Wxq3ry5Tp065Wh78803tWDBAn399dc6d+6cSkpKKr2F/C9lZGRow4YN5Y5vOXToUJkw8tlnn8myrDLtRUVFCgoKknSxZ+Suu+6qcg2SlJWVpdjYWKdZxnv37q1z587p2LFjCgsLk6QyvU4hISGO43HXXXdpwYIFat26tQYNGqQhQ4bojjvuqPItUuoCjgQAuBnLsiRV7dYc/v7+l91eedu5nF9eXWOz2RwBZvv27frjH/+o2bNna+DAgQoMDNQbb7yhZ5999rLbvaS0tFR33HGH5s6dW+a1kJCQcpf39PRURkaGPD09nV67FGh8fX2r/P6XlHdMyzv+lR2P0NBQ7d+/X+np6frwww81fvx4PfPMM9q0aVOduEqpKhgzAgBupm3btvLy8tInn3ziaLtw4YJ27dqljh07Vnk7gYGBCg4O1o4dOxxtdrtdmZmZv6q+LVu2KDw8XDNmzFBMTIzatWunI0eOuLSNbt266csvv1SrVq3Utm1bp0d5Aatr166y2+06depUmeUvnXbp0qWLPvroowrf08vLS3a73amtU6dO2rp1q1NA27p1qxo2bKiWLVtWeX98fX31+9//Xs8//7w2btyobdu2ae/evVVev7YjjACAm/H399ejjz6qP//5z1q7dq327duncePG6fz58xo7dqxL25o0aZJSUlL03nvvaf/+/ZoyZYq+++67cm9+WlVt27ZVbm6u3njjDR06dEjPP/+83nnnHZe2MWHCBH377be65557tGPHDh0+fFjr16/Xgw8+WCYwSFL79u113333adSoUXr77beVnZ2tnTt3au7cuY4xMElJSdq5c6fGjx+vPXv26KuvvtLixYsdV+i0atVKn376qXJycpSfn6/S0lKNHz9eR48e1aRJk/TVV1/pvffe06xZs5SYmOgYL3I5K1eu1PLly/XFF1/o8OHDeuWVV+Tr6+uYLBSEEQBwS//4xz905513auTIkerWrZu+/vprrVu3To0bN3ZpO9OnT9c999yjUaNGKTY2Vg0aNNDAgQPl4+NT7dqGDh2qqVOnauLEiYqKitLWrVv1t7/9zaVttGjRQlu2bJHdbtfAgQMVGRmpKVOmKDAwsMIQsGLFCo0aNUp/+tOfdMMNN+j3v/+9Pv30U4WGhkq6GFjWr1+vzz//XN27d1dsbKzee+89x9iNxx57TJ6enurUqZOaNWum3NxctWzZUmlpadqxY4duvPFGxcfHa+zYsU4DdC+nUaNGWrZsmXr37u3onXn//fcdY1kg2ayqnBw0rLCwUIGBgSooKHBpABTgrlwbwLr08gtVUWzrX/xyvEqzgpr0008/KTs7WxEREb/qC7i2KC0tVceOHXX33XfriSeeMF0O3EBl/4eq+v3NAFYAqMOOHDmi9evXq2/fvioqKtKiRYuUnZ2te++913RpqEM4TQMAdZiHh4dWrlypm266Sb1799bevXv14YcfujQQFvi16BkBgDosNDRUW7ZsMV0G6jh6RgAAgFGEEQAAYBRhBABUtVlHAZRVE/93GDMCXGs2pHC/mavo0tThxcXF1ZouHKjrzp8/L6nslPiuIIwAqNPq1asnPz8/nT59WvXr16/yrJpAXWdZls6fP69Tp06pUaNGZe4J5ArCCIA6zWazKSQkRNnZ2S7fPwXAxRlmL93/p7oIIwDqPC8vL7Vr107FxcWmSwHcSv369X9Vj8glhBEA0MXJv5gOHjCDk6MAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAo7toLoGIbUlxbvn/SlakDQK1GGAGuNFe/0AGgjiGMAHDYdvhMtdeNbR1Ug5UAqEsYMwIAAIwijAAAAKMIIwAAwCjCCAAAMIoBrMAVMj/9gCSpZ271B4UCQF1AzwgAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKOqFUZSU1MVEREhHx8fRUdHa/PmzRUu+8knn6h3794KCgqSr6+vOnTooPnz51e7YAAAULvUc3WFNWvWKCEhQampqerdu7eWLFmiwYMHa9++fQoLCyuzvL+/vyZOnKguXbrI399fn3zyiR555BH5+/vr4YcfrpGdAAAA7stmWZblygo9evRQt27dtHjxYkdbx44dNWzYMKWkpFRpG3/4wx/k7++vV155pUrLFxYWKjAwUAUFBQoICHClXMCY+ekHJEk9c5caruTqiG0dJPVPMl0GgGtIVb+/XTpNU1xcrIyMDMXFxTm1x8XFaevWrVXaRmZmprZu3aq+fftWuExRUZEKCwudHgAAoHZy6TRNfn6+7Ha7goODndqDg4N18uTJSte9/vrrdfr0aZWUlCg5OVkPPfRQhcumpKRo9uzZrpQGwLBth89oe8mBaq07dUD7Gq4GgDup1gBWm83m9NyyrDJtv7R582bt2rVLL774ohYsWKDVq1dXuGxSUpIKCgocj6NHj1anTAAA4AZc6hlp2rSpPD09y/SCnDp1qkxvyS9FRERIkn7zm9/om2++UXJysu65555yl/X29pa3t7crpQG4Brg6PmZ7GIPYAbjYM+Ll5aXo6Gilp6c7taenp6tXr15V3o5lWSoqKnLlrQEAQC3l8qW9iYmJGjlypGJiYhQbG6ulS5cqNzdX8fHxki6eYjl+/LhWrVolSfrnP/+psLAwdejQQdLFeUfmzZunSZMm1eBuAAAAd+VyGBkxYoTOnDmjOXPmKC8vT5GRkUpLS1N4eLgkKS8vT7m5uY7lS0tLlZSUpOzsbNWrV09t2rTRP/7xDz3yyCM1txcAAMBtuTzPiAnMMwJ3VNfmGamOS2NGuJoGqJ2uyDwjAAAANY0wAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMcnmeEaDO25BSpcV65p65woUAQO1AzwgAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAo+qZLgC4ls1PP1CmrWfuGQOVAEDtRc8IAAAwijACAACMIowAAACjCCMAAMAoBrACMKZn7tKLP2wIuvzC/ZOubDEAjKFnBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGcWkvAOO2Hb78/X62l5S9T5AkTR3QvqbLAXCV0TMCAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACj6pkuALgmbEgpt7ln7pmrXAgA1D30jAAAAKMIIwAAwKhqhZHU1FRFRETIx8dH0dHR2rx5c4XLvv322xowYICaNWumgIAAxcbGat26ddUuGAAA1C4uh5E1a9YoISFBM2bMUGZmpvr06aPBgwcrNze33OU//vhjDRgwQGlpacrIyFD//v11xx13KDMz81cXDwAA3J/NsizLlRV69Oihbt26afHixY62jh07atiwYUpJKX8Q4C917txZI0aM0MyZM6u0fGFhoQIDA1VQUKCAgABXygWqpoIBrNsOM4D1WrE97OFy26cOaH+VKwFQVVX9/napZ6S4uFgZGRmKi4tzao+Li9PWrVurtI3S0lKdPXtWTZo0qXCZoqIiFRYWOj0AAEDt5FIYyc/Pl91uV3BwsFN7cHCwTp48WaVtPPvss/rhhx909913V7hMSkqKAgMDHY/Q0FBXygQAAG6kWgNYbTab03PLssq0lWf16tVKTk7WmjVrdN1111W4XFJSkgoKChyPo0ePVqdMAADgBlya9Kxp06by9PQs0wty6tSpMr0lv7RmzRqNHTtW//rXv3TrrbdWuqy3t7e8vb1dKQ0AALgpl3pGvLy8FB0drfT0dKf29PR09erVq8L1Vq9erTFjxuj111/XbbfdVr1KAQBAreTydPCJiYkaOXKkYmJiFBsbq6VLlyo3N1fx8fGSLp5iOX78uFatWiXpYhAZNWqUFi5cqJ49ezp6VXx9fRUYGFiDuwIAANyRy2FkxIgROnPmjObMmaO8vDxFRkYqLS1N4eHhkqS8vDynOUeWLFmikpISTZgwQRMmTHC0jx49WitXrvz1ewAAANyay/OMmMA8I7jimGfkmsc8I4D7uSLzjAAAANQ0wggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMMrleUYAwISeuUvLf2FDUPnt/ZOuXDEAahQ9IwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMqme6AOBKm59+4LLL9Mw9cxUqAQCUh54RAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUV9MAcGvbDpd/JdT2kstfRTV1QPuaLgdANRBGUDttSHH8yGW7AHBt4zQNAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCqnukCAOBK6Jm79PILbQj6/5/7J125YgBUip4RAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGMV08HAL89MPuLR8z9wzV6gSAEBNo2cEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEZVK4ykpqYqIiJCPj4+io6O1ubNmytcNi8vT/fee69uuOEGeXh4KCEhobq1AgCAWsjleUbWrFmjhIQEpaamqnfv3lqyZIkGDx6sffv2KSwsrMzyRUVFatasmWbMmKH58+fXSNGoe3rmLjVdAgDgCnG5Z+S5557T2LFj9dBDD6ljx45asGCBQkNDtXjx4nKXb9WqlRYuXKhRo0YpMDDwVxcMAABqF5fCSHFxsTIyMhQXF+fUHhcXp61bt9ZYUUVFRSosLHR6AACA2smlMJKfny+73a7g4GCn9uDgYJ08ebLGikpJSVFgYKDjERoaWmPbBgAA15ZqDWC12WxOzy3LKtP2ayQlJamgoMDxOHr0aI1tGwAAXFtcGsDatGlTeXp6lukFOXXqVJnekl/D29tb3t7eNbY9AABw7XKpZ8TLy0vR0dFKT093ak9PT1evXr1qtDAAAFA3uHxpb2JiokaOHKmYmBjFxsZq6dKlys3NVXx8vKSLp1iOHz+uVatWOdbZvXu3JOncuXM6ffq0du/eLS8vL3Xq1Klm9gIAALgtl8PIiBEjdObMGc2ZM0d5eXmKjIxUWlqawsPDJV2c5Cw3N9dpna5duzp+zsjI0Ouvv67w8HDl5OT8uuoBAIDbs1mWZZku4nIKCwsVGBiogoICBQQEmC4HBmxb/pjpElALxbYO+v8n/ZPMFQLUUlX9/ubeNAAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjXJ6BFQBqi22Hzzh+3l5ywKV1pw5oX9PlAHUWPSMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjGKeEQCQ1DN3qYtrzLsidQB1ET0jAADAKMIIAAAwijACAACMIowAAACjGMAKMzakmK4AAHCNoGcEAAAYRRgBAABGcZoGV8389AOOn3vmnjFYCQDgWkLPCAAAMIowAgAAjCKMAAAAoxgzAgDV4crl6f2TrlwdQC1AGAGAath2uOqDsLeXHHB6PnVA+5ouB3BrnKYBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARjEDK2rOZabH7plb9RkrAQB1Bz0jAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIxinhG4ZH76gQpfYx4RAEB10DMCAACMIowAAACjCCMAAMAowggAADCKAawAcIX1zF3q3LAhqPIV+idduWKAaxBhBBUr5y68XDEDAKhpnKYBAABGEUYAAIBRhBEAAGAUYQQAABjFANY6qLIp3X+OwaoAgKuBMAIAV9m2w5UH/e0lFf/BMHVA+5ouBzCO0zQAAMAoekYA4BpTZpK0nytvwjQmSYObI4zUJf83iRljQQAA1xLCCAC4kfLGm1Q2xuTnGG+CaxVjRgAAgFGEEQAAYBRhBAAAGMWYETdU1UnLfomBqwCAa1G1wkhqaqqeeeYZ5eXlqXPnzlqwYIH69OlT4fKbNm1SYmKivvzyS7Vo0ULTpk1TfHx8tYvGRZVe/gegzqjy74INQVwGjGuSy6dp1qxZo4SEBM2YMUOZmZnq06ePBg8erNzc3HKXz87O1pAhQ9SnTx9lZmbqL3/5iyZPnqy33nrrVxcPAADcn82yLMuVFXr06KFu3bpp8eLFjraOHTtq2LBhSklJKbP89OnT9e9//1tZWVmOtvj4eH3++efatm1bld6zsLBQgYGBKigoUEBAgCvlup8NZY/hL11uKmkAKE9sa/frGanuaWmJS5mvBVX9/nbpNE1xcbEyMjL0+OOPO7XHxcVp69at5a6zbds2xcXFObUNHDhQy5cv14ULF1S/fn1XSnA/FYQLAgUAI6rwB89V5WbhCFeGS2EkPz9fdrtdwcHBTu3BwcE6efJkueucPHmy3OVLSkqUn5+vkJCQMusUFRWpqKjI8bywsNCVMl2ybfljV2zbAIDK//iq6oRt7oTeHNdVawCrzWZzem5ZVpm2yy1fXvslKSkpmj17dnVKc1ns2HlX5X0AwLRf8yX5a0wdW/EXbOxVrONqqauB4tdwaQBr06ZN5enpWaYX5NSpU2V6Py5p3rx5ucvXq1dPQUHl3PBJUlJSkgoKChyPo0ePulImAABwIy71jHh5eSk6Olrp6ekaPny4oz09PV1Dhw4td53Y2Fi9//77Tm3r169XTExMheNFvL295e3t7UppAIDL+DV/sZvqVUHd4PKlvYmJifrv//5vvfTSS8rKytLUqVOVm5vrmDckKSlJo0aNciwfHx+vI0eOKDExUVlZWXrppZe0fPlyPfYYYzUAAEA1xoyMGDFCZ86c0Zw5c5SXl6fIyEilpaUpPDxckpSXl+c050hERITS0tI0depU/fOf/1SLFi30/PPP684776y5vQAAAG7L5XlGTKhT84wAAFBLVPX7mxvlAQAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwqp7pAqrCsixJUmFhoeFKAABAVV363r70PV4RtwgjZ8+elSSFhoYargQAALjq7NmzCgwMrPB1m3W5uHINKC0t1YkTJ9SwYUPZbDbT5VyTCgsLFRoaqqNHjyogIMB0ObUSx/jq4DhfeRzjq4PjfLFH5OzZs2rRooU8PCoeGeIWPSMeHh66/vrrTZfhFgICAursP/qrhWN8dXCcrzyO8dVR149zZT0ilzCAFQAAGEUYAQAARhFGaglvb2/NmjVL3t7epkuptTjGVwfH+crjGF8dHOeqc4sBrAAAoPaiZwQAABhFGAEAAEYRRgAAgFGEEQAAYBRhpBYrKipSVFSUbDabdu/ebbqcWiUnJ0djx45VRESEfH191aZNG82aNUvFxcWmS3NrqampioiIkI+Pj6Kjo7V582bTJdUqKSkpuummm9SwYUNdd911GjZsmPbv32+6rFotJSVFNptNCQkJpku5phFGarFp06apRYsWpsuolb766iuVlpZqyZIl+vLLLzV//ny9+OKL+stf/mK6NLe1Zs0aJSQkaMaMGcrMzFSfPn00ePBg5ebmmi6t1ti0aZMmTJig7du3Kz09XSUlJYqLi9MPP/xgurRaaefOnVq6dKm6dOliupRrHpf21lL/+c9/lJiYqLfeekudO3dWZmamoqKiTJdVqz3zzDNavHixDh8+bLoUt9SjRw9169ZNixcvdrR17NhRw4YNU0pKisHKaq/Tp0/ruuuu06ZNm/Tb3/7WdDm1yrlz59StWzelpqbqySefVFRUlBYsWGC6rGsWPSO10DfffKNx48bplVdekZ+fn+ly6oyCggI1adLEdBluqbi4WBkZGYqLi3Nqj4uL09atWw1VVfsVFBRIEv9ur4AJEybotttu06233mq6FLfgFjfKQ9VZlqUxY8YoPj5eMTExysnJMV1SnXDo0CG98MILevbZZ02X4pby8/Nlt9sVHBzs1B4cHKyTJ08aqqp2syxLiYmJuvnmmxUZGWm6nFrljTfe0GeffaadO3eaLsVt0DPiJpKTk2Wz2Sp97Nq1Sy+88IIKCwuVlJRkumS3VNXj/HMnTpzQoEGDdNddd+mhhx4yVHntYLPZnJ5bllWmDTVj4sSJ2rNnj1avXm26lFrl6NGjmjJlil599VX5+PiYLsdtMGbETeTn5ys/P7/SZVq1aqU//vGPev/9951+gdvtdnl6euq+++7Tyy+/fKVLdWtVPc6XfsmcOHFC/fv3V48ePbRy5Up5eJDvq6O4uFh+fn7617/+peHDhzvap0yZot27d2vTpk0Gq6t9Jk2apHfffVcff/yxIiIiTJdTq7z77rsaPny4PD09HW12u102m00eHh4qKipyeg0XEUZqmdzcXBUWFjqenzhxQgMHDtSbb76pHj166PrrrzdYXe1y/Phx9e/fX9HR0Xr11Vf5BfMr9ejRQ9HR0UpNTXW0derUSUOHDmUAaw2xLEuTJk3SO++8o40bN6pdu3amS6p1zp49qyNHjji1PfDAA+rQoYOmT5/OKbEKMGaklgkLC3N63qBBA0lSmzZtCCI16MSJE+rXr5/CwsI0b948nT592vFa8+bNDVbmvhITEzVy5EjFxMQoNjZWS5cuVW5uruLj402XVmtMmDBBr7/+ut577z01bNjQMR4nMDBQvr6+hqurHRo2bFgmcPj7+ysoKIggUgnCCFAN69ev19dff62vv/66TMijs7F6RowYoTNnzmjOnDnKy8tTZGSk0tLSFB4ebrq0WuPSZdP9+vVzal+xYoXGjBlz9QsC/g+naQAAgFGMtgMAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABj1v9hnjIaU8IBPAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -315,10 +315,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:48.628978Z", - "iopub.status.busy": "2024-01-10T15:12:48.628812Z", - "iopub.status.idle": "2024-01-10T15:12:48.661578Z", - "shell.execute_reply": "2024-01-10T15:12:48.661098Z" + "iopub.execute_input": "2024-02-06T01:09:40.500826Z", + "iopub.status.busy": "2024-02-06T01:09:40.500519Z", + "iopub.status.idle": "2024-02-06T01:09:40.536503Z", + "shell.execute_reply": "2024-02-06T01:09:40.536023Z" } }, "outputs": [ @@ -376,10 +376,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:48.663554Z", - "iopub.status.busy": "2024-01-10T15:12:48.663229Z", - "iopub.status.idle": "2024-01-10T15:12:48.699956Z", - "shell.execute_reply": "2024-01-10T15:12:48.699411Z" + "iopub.execute_input": "2024-02-06T01:09:40.538366Z", + "iopub.status.busy": "2024-02-06T01:09:40.538200Z", + "iopub.status.idle": "2024-02-06T01:09:40.574465Z", + "shell.execute_reply": "2024-02-06T01:09:40.574045Z" } }, "outputs": [], @@ -395,10 +395,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:48.702043Z", - "iopub.status.busy": "2024-01-10T15:12:48.701878Z", - "iopub.status.idle": "2024-01-10T15:12:48.716739Z", - "shell.execute_reply": "2024-01-10T15:12:48.716251Z" + "iopub.execute_input": "2024-02-06T01:09:40.576225Z", + "iopub.status.busy": "2024-02-06T01:09:40.576062Z", + "iopub.status.idle": "2024-02-06T01:09:40.591478Z", + "shell.execute_reply": "2024-02-06T01:09:40.591103Z" } }, "outputs": [], @@ -425,16 +425,16 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:48.718573Z", - "iopub.status.busy": "2024-01-10T15:12:48.718407Z", - "iopub.status.idle": "2024-01-10T15:12:50.109662Z", - "shell.execute_reply": "2024-01-10T15:12:50.109119Z" + "iopub.execute_input": "2024-02-06T01:09:40.593109Z", + "iopub.status.busy": "2024-02-06T01:09:40.592948Z", + "iopub.status.idle": "2024-02-06T01:09:41.953917Z", + "shell.execute_reply": "2024-02-06T01:09:41.953389Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABSIAAAINCAYAAAAqdQFKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABe9ElEQVR4nO3de1hVZd7/8c8OAZFgKxIgiYcaMhUqM0PUSSfzlEg+zqRFMTn5mOUpSq0cm7JmgtFKLSlNH580kXSeytIOpHbAvBQ1jPLAmI3mKQg13HggIFi/P/yxcgPiJllsDu/Xde2rWOu7177XukG+fNe97ttmGIYhAAAAAAAAALDQZe5uAAAAAAAAAIDGj0IkAAAAAAAAAMtRiAQAAAAAAABgOQqRAAAAAAAAACxHIRIAAAAAAACA5ShEAgAAAAAAALAchUgAAAAAAAAAlqMQCQAAAAAAAMByzdzdAHcqKyvTDz/8ID8/P9lsNnc3BwAAoMYMw9CpU6cUGhqqyy7jHnNDQz4KAAAauprko026EPnDDz8oLCzM3c0AAAC4ZIcPH1bbtm3d3QzUEPkoAABoLFzJR5t0IdLPz0/SuQvl7+/v5tYAAADUXEFBgcLCwsy8Bg0L+SgAAGjoapKPNulCZPnjL/7+/iR+AACgQeOx3oaJfBQAADQWruSjTCQEAAAAAAAAwHIUIgEAAAAAAABYjkIkAAAAAAAAAMtRiAQAAAAAAABgOQqRAAAAAAAAACxHIRIAAAAAAACA5Zq5uwEAAFRUUlKi0tJSdzcDqHMeHh7y9PR0dzMAAGjyyEfRlFmZk1KIBADUGwUFBTp+/LiKiorc3RTAbby9vRUYGCh/f393NwUAgCaHfBQ4x6qclEIkAKBeKCgo0NGjR3X55ZcrMDBQnp6estls7m4WUGcMw1BJSYkcDoeOHj0qSRQjAQCoQ+SjgPU5KYVIAEC9cPz4cV1++eVq27YtCR+aLB8fH/n5+enIkSM6fvw4hUgAAOoQ+ShwjpU5KYvVAADcrqSkREVFRbLb7SR9aPJsNpvsdruKiopUUlLi7ubUSxs3btSwYcMUGhoqm82md99912m/YRiaOXOmQkND5ePjo379+mn37t1OMUVFRZo0aZICAwPl6+ur2NhYHTlyxCkmPz9f8fHxstvtstvtio+P18mTJ51iDh06pGHDhsnX11eBgYGaPHmyiouLrThtAICFyEcBZ1blpBQiAQBuVz4ROIt0AOeU/ywwSX7Vzpw5o+uvv17JyclV7p89e7bmzJmj5ORkbd++XSEhIRowYIBOnTplxiQkJGj16tVauXKlNm3apNOnTysmJsbpmsfFxSkrK0tpaWlKS0tTVlaW4uPjzf2lpaUaOnSozpw5o02bNmnlypV6++23NWXKFOtOHgBgCfJRoDIrclIezQYA1BvcfQbO4WehekOGDNGQIUOq3GcYhubNm6cZM2ZoxIgRkqRly5YpODhYqampGjdunBwOh5YsWaLly5frtttukySlpKQoLCxMGzZs0KBBg5Sdna20tDRlZGQoKipKkrR48WJFR0dr79696tSpk9atW6c9e/bo8OHDCg0NlSS9+OKLGj16tJ577jkerQeABojfwcCvrPh5YEQkAAAAGo0DBw4oNzdXAwcONLd5e3urb9++2rx5syQpMzNTJSUlTjGhoaGKiIgwY7Zs2SK73W4WISWpZ8+estvtTjERERFmEVKSBg0apKKiImVmZlp6ngAAAA0RIyIBAADQaOTm5kqSgoODnbYHBwfr4MGDZoyXl5datWpVKab8/bm5uQoKCqp0/KCgIKeYip/TqlUreXl5mTEVFRUVqaioyPy6oKCgJqcHAADQoDEiEgAAAI1OxUeJDMO46ONFFWOqiv8tMedLSkoyF7+x2+0KCwurtk0AAACNCYVIAADqoe+//142m039+vVzd1NM/fr1k81m0/fff+/upjRINptNHTp0cHczGr2QkBBJqjQiMS8vzxy9GBISouLiYuXn51cb8+OPP1Y6/rFjx5xiKn5Ofn6+SkpKKo2ULDd9+nQ5HA7zdfjw4d9wlgAAWI98tPGpD/koj2YDABqEMUu3u7sJLlkyuoe7mwA0aR07dlRISIjWr1+vbt26SZKKi4uVnp6uWbNmSZK6d+8uT09PrV+/XiNHjpQk5eTkaNeuXZo9e7YkKTo6Wg6HQ9u2bdPNN98sSdq6dascDod69eplxjz33HPKyclRmzZtJEnr1q2Tt7e3unfvXmX7vL295e3tbd0FAABYhnwUuHQUIgEAANCgnD59Wt9995359YEDB5SVlaWAgAC1a9dOCQkJSkxMVHh4uMLDw5WYmKgWLVooLi5OkmS32zVmzBhNmTJFrVu3VkBAgKZOnarIyEhzFe3OnTtr8ODBGjt2rF577TVJ0gMPPKCYmBh16tRJkjRw4EB16dJF8fHxev755/XTTz9p6tSpGjt2LCtmAwAAVIFCJOAuqaNci4tbZW07AABoYL788kv94Q9/ML9+9NFHJUn33Xefli5dqscee0yFhYUaP3688vPzFRUVpXXr1snPz898z9y5c9WsWTONHDlShYWF6t+/v5YuXSoPDw8zZsWKFZo8ebK5unZsbKySk5PN/R4eHvrggw80fvx49e7dWz4+PoqLi9MLL7xg9SX4bcg9AACAmzFHJAAA9VxBQYEefvhhhYWFqXnz5urcubPmzp2rsrIyp7isrCw99thj6t69u6644gp5e3vrqquu0vjx4/XDDz9c8PiHDh3SxIkTFR4erubNm6t169a6+eablZiYqMLCwou2z+Fw6JZbbpHNZlNCQoIMwzD37d+/XyNHjlRAQIAuv/xy9enTRx9//LE+//xz2Ww2jR492ulYo0ePls1m0+eff66PP/5Yf/jDH9SyZUvZbDadPHlSkvTLL79o/vz56t69uy6//HJdfvnluvnmm7VgwQKVlpZWal+HDh0uuHCIK+3YuHGjbr31Vvn5+cnf319Dhw7Vnj17qjzemTNn9Pjjj6tdu3Zq3ry5rr32Ws2ZM8fpmuDS9evXT4ZhVHotXbpU0rn5j2bOnKmcnBz9/PPPSk9PV0REhNMxmjdvrvnz5+vEiRM6e/as1q5dW2nhmICAAKWkpKigoEAFBQVKSUlRy5YtnWLatWun999/X2fPntWJEyc0f/58Hr0GADQ65KPko7WFQiQAAPVYUVGRbr31Vr3xxhu6+eabNWDAAB08eFCPPvqoxowZ4xT7z3/+U3PmzFFpaal69+6t22+/XYZhaMGCBbrpppuqTP42btyo6667Tq+88orKysp0xx13KDo6WsePH9eMGTOqXKzjfD/++KP69eunL774Qs8884zmzZtnJln79u1TVFSU/u///k9BQUEaNmyYSktLdfvtt+vtt9+u9ripqakaMmSIzpw5oyFDhqhHjx6y2WwqLS3VHXfcocmTJ+u7777Tbbfdpttuu03//ve/NX78eN15552VEuJLsXbtWt1666366aefNGjQILVp00YffvihbrnllkqLlBQVFWngwIGaPXu2CgsLNWzYMHXo0EFPPPGEJk6cWGttAgAAqEvko+SjtanGhciNGzdq2LBhCg0Nlc1m07vvvuu03zAMzZw5U6GhofLx8VG/fv20e/dup5iioiJNmjRJgYGB8vX1VWxsrI4cOeIUk5+fr/j4eNntdtntdsXHx5uV53KHDh3SsGHD5Ovrq8DAQE2ePFnFxcU1PSUAAOqtjIwMlZSUaN++fXr77be1du1a7dy5U6GhoVq6dKnWrFljxj7wwAM6fPiwsrKy9O6772r16tX6z3/+o2eeeUY5OTl68sknnY6dn5+vP/3pT3I4HJo7d66+++47rVq1Su+//77279+v9PR0tWrV6oJt+/7779WnTx99/fXXmj9/vp566imn/Q899JCOHz+uSZMmac+ePXrzzTe1ZcsWLV261Onx1qosXrxYb775prZt22b+1263a968efrwww8VGRmpffv26d1339W7776rvXv3qlOnTlq9erUWLlz4G6501ebNm6fly5crKytLb731lvbs2aM//vGPOnHihF599VWn2Dlz5mjz5s26+eab9d133+n//u//lJaWpoyMDKWkpNRamwAAAOoS+Sj5aG2qcSHyzJkzuv766y/YYbNnz9acOXOUnJys7du3KyQkRAMGDNCpU6fMmISEBK1evVorV67Upk2bdPr0acXExDgNX42Li1NWVpbS0tKUlpamrKwsxcfHm/tLS0s1dOhQnTlzRps2bdLKlSv19ttva8qUKTU9JQAA6rUXXnhBgYGB5tdXX321/va3v0mSXnnlFXP7rbfeaq7cW+6yyy7TU089pSuvvFLvvfee077Fixfr2LFjiomJUUJCQqXHRW655RbZ7fYq27R792717t1b33//vZYvX17pDut3332nTz75RAEBAUpKStJll/2acsTHx+uWW26p9pyHDh2qUaMqz2f38ssvSzqXkAUFBZnb27Rpo+eff94ppjbExcXp7rvvNr/28PDQX//6V0nnbs6eb8GCBZLOzT14/nW78cYbNWHChFprEwAAQF0jH/0V+eilqfFiNUOGDNGQIUOq3GcYhubNm6cZM2ZoxIgRkqRly5YpODhYqampGjdunBwOh5YsWaLly5ebqxKmpKQoLCxMGzZs0KBBg5SdnW1WbKOioiSd++aMjo42K8zr1q3Tnj17dPjwYYWGhkqSXnzxRY0ePVrPPfccKxUCABqFgIAADRgwoNL2uLg4PfTQQ9q8ebMMwzCTthMnTmjNmjXatWuXTp48ad7kKykp0U8//aSffvpJAQEBkqQNGzZIksaNG1ejNmVkZGjChAkqLCzUu+++q6FDh1aK2bx5syTp9ttvl6+vb6X9d955Z6XE6XyxsbGVth06dEiHDh1SSEiIbr311kr7Y2Ji1LJlS+3du1fHjh3TFVdcUZPTqlL5IiXnu+aaayRJOTk5Tm07fPiwrrzySvXq1avSe+6++24lJSVdcnsAAADqGvnor8hHL12trpp94MAB5ebmOl0kb29v9e3bV5s3b9a4ceOUmZmpkpISp5jQ0FBFRERo8+bNGjRokLZs2SK73W4WISWpZ8+estvt2rx5szp16qQtW7YoIiLCLEJK0qBBg1RUVKTMzEynlRQBAGio2rdvX+V2f39/tWzZUidPnlRBQYHsdrvefPNNPfDAAzp9+vQFj3fq1Ckz8Tt8+LCkc3e0ayI+Pl6//PKLVq1aVWXSJ8mc/6fi4h/l2rVrV+1nVLW//JgdOnSo8j02m03t27fXyZMn9cMPP9RK4te2bdtK2y6//HJJ56aaqdi2C53Xxc4XAACgviIfrXxM8tHfrlYXqymfJDM4ONhpe3BwsLkvNzdXXl5elZ7xrxhz/vDWckFBQU4xFT+nVatW8vLyqjRZZ7mioiJz1cPyFwAADdX5K98dPHhQo0ePVlFRkebNm6d9+/bp7Nmz5mrC0dHRld5T7kIr+F1I+aMhTz311AV/517s2Bdbta958+Y1PmZNYyRddCJxV49Tfj4Xiq/pNQYAAGgIyEdr/rkVNbV81JJVsyue3PlDdC+kYkxV8b8l5nxJSUnm4jd2u/2CVXEAAOqLQ4cOVbm9oKBADodDvr6+8vf314cffqji4mJNnjxZDz/8sH73u9/Jx8fHjN+/f3+lY5T/Hvzuu+9q1KZnn31Wjz/+uPbu3av+/fsrLy+vUkz53EAXan/53e+aKH8K4sCBAxeMKf+88+cm8vLykqQq78z/lnZU17aDBw9Wuf9C2wEAAOo78tFfkY9eulotRIaEhEhSpWp0Xl6eOXoxJCRExcXFys/PrzamquXZjx075hRT8XPy8/NVUlJSaaRkuenTp8vhcJiv2upsAACscuLECXPunPO9+eabkqRevXrJZrOZv1erusm2cePGKn+vls/VvGjRohq365///KemTZumPXv2qH///jp+/LjT/vJ5aT788EOdPXu20vvfeuutGn9mu3bt1K5dO+Xm5urTTz+ttP+DDz5Qfn6+OnXq5PQYTHkS+O2331Z6z7p162rcjqq0b99ebdu21dGjR7Vly5ZK+1euXFkrnwMAAFDXyEd/RT566Wq1ENmxY0eFhIRo/fr15rbi4mKlp6eb3wDdu3eXp6enU0xOTo527dplxkRHR8vhcGjbtm1mzNatW+VwOJxidu3a5TQx57p16+Tt7a3u3btX2T5vb2/5+/s7vQAAqO+mTZumEydOmF8fOHBAf//73yVJ48ePl/TrhNUpKSk6c+aMGXv06FE9+OCDVR73v//7vxUYGKi1a9cqOTm50uMpX3zxhRwOxwXbNXv2bD366KPatWuX+vfv79TG8PBw/eEPf9BPP/2kv/71r07HXrFihdLT0109fSeTJk2SJD3yyCM6duyYuT03N1fTpk1ziinXt29fSeeejCifLF06d61qMyErn2R9ypQpTtO/ZGVlOa0mCQAA0NCQj/6KfPTS1LgQefr0aWVlZSkrK0vSuW++rKwsHTp0SDabTQkJCUpMTNTq1au1a9cujR49Wi1atFBcXJwkyW63a8yYMZoyZYo++eQTffXVV7r33nsVGRlpVsI7d+6swYMHa+zYscrIyFBGRobGjh2rmJgYderUSdK5VYO6dOmi+Ph4ffXVV/rkk080depUjR07lgIjAKDR6Nmzpy677DKFh4frT3/6k2JjYxUREaGjR4/q3nvv1fDhwyWdW9Wva9eu+vLLL/W73/1Of/rTnxQTE6NrrrlGrVq1qnLlvICAAP3rX/+Sn5+fJk2apPDwcI0aNUrDhg3TVVddpVtuuaXSEwwVvfjii0pISNA333yj2267zSl+wYIFCggI0EsvvaQuXbooLi5OvXr1Unx8vJmwlj+m4qpHHnlEQ4YM0TfffKPw8HCNGDFC//Vf/6VrrrlG2dnZGj58uB566CGn90yYMEFXXHGF3nrrLXXp0kV33nmnbrjhBo0ePVoPP/xwjT6/OtOmTVNUVJS2bNmiq6++WiNHjtSQIUMUFRVl5kEAAAANDfmoM/LRS2TU0GeffWZIqvS67777DMMwjLKyMuPpp582QkJCDG9vb+OWW24xdu7c6XSMwsJCY+LEiUZAQIDh4+NjxMTEGIcOHXKKOXHihHHPPfcYfn5+hp+fn3HPPfcY+fn5TjEHDx40hg4davj4+BgBAQHGxIkTjZ9//tnlc3E4HIYkw+Fw1PQyAJduxUjXXkATUFhYaOzZs8coLCx0d1PqjQMHDhiSjL59+xonT540xo8fb4SGhhpeXl5Gp06djBdeeMH45ZdfnN7z008/GQ899JDRoUMHw9vb27jqqquMxx9/3Dhz5ozRt29fQ5Jx4MCBSp/1n//8x3jggQeM9u3bG15eXkZgYKARFRVlJCUlOfVJdceYNGmSIcno3r270+/rffv2GX/605+Mli1bGi1atDCio6ONDz74wEhJSTEkGU888YTTce677z5DkvHZZ59d8NqUlJQYL730ktGtWzejRYsWRosWLYybbrrJeOWVVypdk3LZ2dlGTEyM4efnZ/j6+hq33HKL8emnn5p5TXke42o7JBnt27evtP3UqVPG1KlTjSuvvNLw8vIyrrnmGmP27NlGaWnpBd9TlZr8TJDPNGx12n/kHgBwQeSjlZGPfnbBa9MU8lHDcP3noib5jO3/N75JKl9e3uFwMIoSdS91lGtxcausbQdQD/z88886cOCAOnbsWO3qdGg8HnroIS1cuFArV67UqFEu/nvYhNTkZ4J8pmGr0/4j9wCACyIfbXrIRy/O1Z+LmuQzlqyaDQAA8PPPPys7O7vS9rffflv/8z//I7vdrqFDh7qhZQAAAGgKyEfrn2bubgAAAGicTp48qS5duujaa69VeHi4PD09lZ2drezsbF122WV69dVXdfnll7u7mQAAAGikyEfrH0ZEAgAAS9jtdk2ZMkVeXl7atGmT1qxZoxMnTuiOO+5Qenp6/ZkwGwAAAI0S+Wj9w4hIAABgCR8fH73wwgvubgYAAACaKPLR+ocRkQAAAAAAAAAsx4hIoL5jhUsAAAAAANAIMCISAAAAAAAAgOUoRAIAAAAAAACwHIVIAAAAAAAAAJajEAkAAAAAAADAchQiAQAAAAAAAFiOQiQAAAAAAAAAy1GIBAAAAAAAAGA5CpEAADRQ33//vWw2m/r16+fuprjs888/l81m0+jRo93dFAAAANQCclLURDN3NwAAAJekjnJ3C1wTt8rdLQAAAIAVyEeBS0YhEgCABurKK69Udna2WrRo4e6mAAAAoIkiJ0VNUIgEAKCB8vT01LXXXuvuZgAAAKAJIydFTTBHJAAA9VB2drbi4+N19dVXq3nz5rriiit0ww03KCEhQTk5OZKqn4+npKREzz33nH73u9+pefPmuuqqqzRz5kyVlJSoQ4cOstlsTvHnz5Pz008/6aGHHlKbNm3k7e2tiIgI/e///m+V7fzggw90//33q3PnzvL395evr6+uv/56JSYmqqioqNavCwAAAOoOOSlqGyMiAQCoZ3bs2KE+ffro559/1s0336ybb75Zp06d0v79+/XSSy9p+PDhatOmzQXfbxiG7rzzTr333nvy8/PTkCFDVFZWphdffFFZWVnVfvbJkycVHR0th8Ohm2++WadPn9bGjRs1ZswYlZWV6b//+7+d4seMGaMzZ86oa9euioyMVEFBgbZt26YZM2bok08+0bp16+Th4VEblwUAAAB1iJwUVqAQCQBAPfPyyy+rsLBQb7/9tkaMGOG0Lzs7Wy1btqz2/StWrNB7772n3/3ud9q4caOZIB4+fFi///3vdfDgwQu+97333tMf//hHLVu2TL6+vua24cOH6+9//3ulpG/hwoUaMGCAGStJp06dUlxcnN5//32tWLFCf/7zn2ty+gAAAKgHyElhBR7NBgCgnsnLy5Mk3XrrrZX2de7cudo7z9K5REyS/v73vzvFhoWF6emnn672vf7+/lq0aJFTEnfHHXcoMjJShw4d0vfff+8UP3z4cKdYSfLz89PcuXMlnUsYATQwqaNcfwEAGi1yUliBEZEAANQz3bt310cffaQ///nPevLJJ3XTTTfpsstcu3dYUlKi7du367LLLqt051qS7rzzTt1///0XfP9NN92kgICAStuvueYa7dy5Uzk5OerQoYPTvn379unDDz/Ud999pzNnzqisrEyGYZj7AAAA0PCQk8IKFCIBAKhnpk2bpk2bNmnt2rVau3at7Ha7oqKiFBMTo9GjR8vPz++C7z1x4oSKi4vVpk0beXl5Vdp/+eWXq1WrVsrPz6/y/W3btq1y++WXXy5JTpN9G4ahqVOnau7cuWaSV9GpU6cu2FYAAADUX+SksAKPZgMAUM/4+/vr008/1RdffKHHHntMnTp10ieffKLJkyerU6dO+s9//nPRY1RcgfB8F0rQLva+ilatWqU5c+boyiuv1FtvvaWjR4+quLhYhmGYyWF1nwUAAID6i5wUVqAQCQBAPWSz2dSnTx/NmjVLW7duVU5Oju6++27l5OTor3/96wXf17p1a3l6eio3N1fFxcWV9p8+fVonT56slTauXr1akrRgwQL98Y9/VGhoqDw9PSVJ+/fvr5XPAAAAgPuQk6K2UYgEAKABuOKKKzRz5kxJ0s6dOy8Y5+npqR49eqisrMxMys731ltv1Vqbyh+lCQsLq7TvX//6V619DgAAAOoHclJcKgqRAADUMwsXLtSBAwcqbf/oo48kSe3atav2/ePGjZMkPfXUU8rNzTW3HzlyRM8++2yttfOaa66RJC1atMjpcZcvvvhCzz//fK19DgAAAOoeOSmsQCESAIB6ZuHChbrqqqvUtWtX/elPf9Jdd92lbt26KSEhQT4+Pnr66aerfX98fLyGDRumb7/9Vp06ddKIESM0fPhwde7cWREREWrXrp35uMqlmDx5snx9ffXqq68qIiJCd999t2655Rb17dtXDz744CUfHwAAAO5DTgorUIgEAKCe+fvf/677779fNptNn3zyidauXauzZ8/qgQce0DfffKPo6Ohq32+z2fTWW2/p2WefVWBgoD744AN9/fXXSkhI0L/+9S/9+OOPat269SW385prrtH27ds1bNgwHT9+XGvWrNHp06f12muvcfcZAACggSMnhRVsRhNeOqigoEB2u10Oh0P+/v7ubg6amtRRtXu8uFW1ezygDv388886cOCAOnbsqObNm7u7OY3a1q1b1bNnTw0ePNh8rAb1T01+JshnGrY67b/azj0k8g8AjQb5aN0iJ20YXP25qEk+w4hIAAAaoZ07d6qkpMRp2/fff6+HHnpIkhQXF+eOZgEAAKAJISdFRc3c3QAAAFD7pk2bpi+//FLXX3+9goKCdOTIEX355Zf6+eefdfvtt+vee+91dxMBAADQyJGToiIKkQAANEKjR49WWVmZdu7cqU2bNsnLy0uRkZGKi4vThAkTZLPZ3N1EAAAANHLkpKiIQiQAAI3QXXfdpbvuusvdzQAAAEATRk6KipgjEgAAAAAAAIDlKEQCAAAAAAAAsByPZgMAAAD4bVJHuRYXt8radgAAgAaBEZEAgHrDMAx3NwGoF/hZAADAPfgdDPzKip8HCpEAALfz8PCQJJWUlLi5JUD9UP6zUP6zAQAArEU+ClRmRU5KIRIA4Haenp7y9vaWw+HgLjSaPMMw5HA45O3tLU9PT3c3BwCAJoF8FHBmVU7KHJEAgHohMDBQR48e1ZEjR2S32+Xp6SmbzebuZgF1xjAMlZSUyOFw6PTp07ryyivd3SQAAJoU8lHA+pyUQiQAoF7w9/eXJB0/flxHjx51c2sA9/H29taVV15p/kwAAIC6QT4K/MqqnJRCJACg3vD395e/v79KSkpUWlrq7uYAdc7Dw4PHsQEAcCPyUcDanJRCJACg3vH09KQYAwAAALchHwWswWI1AAAAAAAAACxHIRIAAAAAAACA5ShEAgAAAAAAALAchUgAAAAAAAAAlqMQCQAAAAAAAMByFCIBAAAAAAAAWI5CJAAAAAAAAADLUYgEAAAAAAAAYDkKkQAAAAAAAAAsRyESAAAAAAAAgOUoRAIAAAAAAACwHIVIAAAAAAAAAJajEAkAAAAAAADAchQiAQAAAAAAAFiOQiQAAAAAAAAAy1GIBAAAAAAAAGA5CpEAAAAAAAAALEchEgAAAAAAAIDlmrm7AQAAAAAaudRRrsXFrbK2HQAAwK0YEQkAAAAAAADAchQiAQAAAAAAAFiOQiQAAAAAAAAAy1GIBAAAQKPyyy+/6Mknn1THjh3l4+Ojq666Ss8++6zKysrMGMMwNHPmTIWGhsrHx0f9+vXT7t27nY5TVFSkSZMmKTAwUL6+voqNjdWRI0ecYvLz8xUfHy+73S673a74+HidPHmyLk4TAACgwaEQCQAAgEZl1qxZWrhwoZKTk5Wdna3Zs2fr+eef1/z5882Y2bNna86cOUpOTtb27dsVEhKiAQMG6NSpU2ZMQkKCVq9erZUrV2rTpk06ffq0YmJiVFpaasbExcUpKytLaWlpSktLU1ZWluLj4+v0fAEAABoKVs0GAABAo7JlyxbdcccdGjp0qCSpQ4cOevPNN/Xll19KOjcact68eZoxY4ZGjBghSVq2bJmCg4OVmpqqcePGyeFwaMmSJVq+fLluu+02SVJKSorCwsK0YcMGDRo0SNnZ2UpLS1NGRoaioqIkSYsXL1Z0dLT27t2rTp06ueHsAQAA6i8KkQAAAGhU+vTpo4ULF+rbb7/VNddco6+//lqbNm3SvHnzJEkHDhxQbm6uBg4caL7H29tbffv21ebNmzVu3DhlZmaqpKTEKSY0NFQRERHavHmzBg0apC1btshut5tFSEnq2bOn7Ha7Nm/eXGUhsqioSEVFRebXBQUFFlyBBix1lGtxcausbQcAALAEhUgAAAA0Ko8//rgcDoeuvfZaeXh4qLS0VM8995zuvvtuSVJubq4kKTg42Ol9wcHBOnjwoBnj5eWlVq1aVYopf39ubq6CgoIqfX5QUJAZU1FSUpKeeeaZSztBAACABoo5IgEAANCorFq1SikpKUpNTdWOHTu0bNkyvfDCC1q2bJlTnM1mc/raMIxK2yqqGFNVfHXHmT59uhwOh/k6fPiwq6cFAADQ4DEiEgAAAI3KtGnT9MQTT+iuu+6SJEVGRurgwYNKSkrSfffdp5CQEEnnRjS2adPGfF9eXp45SjIkJETFxcXKz893GhWZl5enXr16mTE//vhjpc8/duxYpdGW5by9veXt7V07JwoAANDAMCISAAAAjcrZs2d12WXOaa6Hh4fKysokSR07dlRISIjWr19v7i8uLlZ6erpZZOzevbs8PT2dYnJycrRr1y4zJjo6Wg6HQ9u2bTNjtm7dKofDYcYAAADgV4yIBAAAQKMybNgwPffcc2rXrp26du2qr776SnPmzNH9998v6dzj1AkJCUpMTFR4eLjCw8OVmJioFi1aKC4uTpJkt9s1ZswYTZkyRa1bt1ZAQICmTp2qyMhIcxXtzp07a/DgwRo7dqxee+01SdIDDzygmJgYVswGAACoAoVIAAAANCrz58/X3/72N40fP155eXkKDQ3VuHHj9NRTT5kxjz32mAoLCzV+/Hjl5+crKipK69atk5+fnxkzd+5cNWvWTCNHjlRhYaH69++vpUuXysPDw4xZsWKFJk+ebK6uHRsbq+Tk5Lo72abK1dW1JVbYBgCgHqn1R7N/+eUXPfnkk+rYsaN8fHx01VVX6dlnnzUfhZHOTeA9c+ZMhYaGysfHR/369dPu3budjlNUVKRJkyYpMDBQvr6+io2N1ZEjR5xi8vPzFR8fL7vdLrvdrvj4eJ08ebK2TwkAAAANiJ+fn+bNm6eDBw+qsLBQ//nPf/SPf/xDXl5eZozNZtPMmTOVk5Ojn3/+Wenp6YqIiHA6TvPmzTV//nydOHFCZ8+e1dq1axUWFuYUExAQoJSUFBUUFKigoEApKSlq2bJlXZwmAABAg1PrhchZs2Zp4cKFSk5OVnZ2tmbPnq3nn39e8+fPN2Nmz56tOXPmKDk5Wdu3b1dISIgGDBigU6dOmTEJCQlavXq1Vq5cqU2bNun06dOKiYlRaWmpGRMXF6esrCylpaUpLS1NWVlZio+Pr+1TAgAAAAAAAHCJav3R7C1btuiOO+7Q0KFDJUkdOnTQm2++qS+//FLSudGQ8+bN04wZMzRixAhJ0rJlyxQcHKzU1FSNGzdODodDS5Ys0fLly805eFJSUhQWFqYNGzZo0KBBys7OVlpamjIyMhQVFSVJWrx4saKjo7V3717m5QEAAAAAAADqkVofEdmnTx998skn+vbbbyVJX3/9tTZt2qTbb79dknTgwAHl5uaa8+hIkre3t/r27avNmzdLkjIzM1VSUuIUExoaqoiICDNmy5YtstvtZhFSknr27Cm73W7GVFRUVGQ+NlP+AgAAAAAAAGC9Wh8R+fjjj8vhcOjaa6+Vh4eHSktL9dxzz+nuu++WJOXm5kqSgoODnd4XHBysgwcPmjFeXl5q1apVpZjy9+fm5iooKKjS5wcFBZkxFSUlJemZZ565tBMEAAAAAAAAUGO1PiJy1apVSklJUWpqqnbs2KFly5bphRde0LJly5zibDab09eGYVTaVlHFmKriqzvO9OnT5XA4zNfhw4ddPS0AAAAAAAAAl6DWR0ROmzZNTzzxhO666y5JUmRkpA4ePKikpCTdd999CgkJkXRuRGObNm3M9+Xl5ZmjJENCQlRcXKz8/HynUZF5eXnq1auXGfPjjz9W+vxjx45VGm1ZztvbW97e3rVzogAAAAAAAABcVusjIs+ePavLLnM+rIeHh8rKyiRJHTt2VEhIiNavX2/uLy4uVnp6ullk7N69uzw9PZ1icnJytGvXLjMmOjpaDodD27ZtM2O2bt0qh8NhxgAAAAAAAACoH2p9ROSwYcP03HPPqV27duratau++uorzZkzR/fff7+kc49TJyQkKDExUeHh4QoPD1diYqJatGihuLg4SZLdbteYMWM0ZcoUtW7dWgEBAZo6daoiIyPNVbQ7d+6swYMHa+zYsXrttdckSQ888IBiYmJYMRsAAAAAAACoZ2q9EDl//nz97W9/0/jx45WXl6fQ0FCNGzdOTz31lBnz2GOPqbCwUOPHj1d+fr6ioqK0bt06+fn5mTFz585Vs2bNNHLkSBUWFqp///5aunSpPDw8zJgVK1Zo8uTJ5urasbGxSk5Oru1TAgAAAAAAAHCJbIZhGO5uhLsUFBTIbrfL4XDI39/f3c1BU5M6qnaPF7eqdo8HAGgQyGcatjrtv9rOPRoKciQAACxVk3ym1ueIBAAAAAAAAICKKEQCAAAAAAAAsByFSAAAAAAAAACWoxAJAAAAAAAAwHK1vmo2AAAAADQ4ri7mw+I3AAD8ZoyIBAAAAAAAAGA5CpEAAAAAAAAALEchEgAAAAAAAIDlKEQCAAAAAAAAsByL1QAAAABovFxdhAYAAFiOEZEAAAAAAAAALEchEgAAAAAAAIDlKEQCAAAAAAAAsByFSAAAAAAAAACWoxAJAAAAAAAAwHIUIgEAAAAAAABYjkIkAAAAAAAAAMtRiAQAAAAAAABguWbubgAAAAAANBipo1yLi1tlbTsAAGiAGBEJAAAAAAAAwHIUIgEAAAAAAABYjkIkAAAAAAAAAMtRiAQAAAAAAABgOQqRAAAAAAAAACxHIRIAAAAAAACA5ShEAgAAAAAAALAchUgAAAAAAAAAlqMQCQAAAAAAAMByFCIBAAAAAAAAWI5CJAAAAAAAAADLUYgEAAAAAAAAYDkKkQAAAAAAAAAsRyESAAAAAAAAgOUoRAIAAAAAAACwHIVIAAAAAAAAAJZr5u4GAAAAAECjkzrK9di4Vda1AwCAeoRCJAAAAIAmb0zxVJfilni9YHFLAABovHg0GwAAAAAAAIDlKEQCAAAAAAAAsByFSAAAAAAAAACWY45IAAAAAHARc0kCAPDbMSISAAAAAAAAgOUoRAIAAAAAAACwHIVIAAAAAAAAAJZjjkgAAAAADYqr8zRKzNUIAEB9wohIAAAAAAAAAJajEAkAAAAAAADAcjyaDQAAAKDRqslj3AAAwFqMiAQAAAAAAABgOQqRAAAAAAAAACxHIRIAAAAAAACA5ShEAgAAAAAAALAci9UAAAAAgDuljnItLm6Vte0AAMBiFCIBAAAA1AuscA0AQONGIRIAAAAAallNiqpLvF6wsCUAANQfzBEJAAAAAAAAwHIUIgEAAAAAAABYjkIkAAAAAAAAAMtRiAQAAAAAAABgOQqRAAAAAAAAACxHIRIAAAAAAACA5ShEAgAAAAAAALAchUgAAAAAAAAAlmvm7gYAAAAAQFM2pniqS3FLLG4HAABWY0QkAAAAAAAAAMsxIhIAAAAAGoLUUa7Fxa2yth0AAPxGjIgEAAAAAAAAYDlGRAK1zdU71QAAAAAAAE0IIyIBAADQ6Bw9elT33nuvWrdurRYtWuiGG25QZmamud8wDM2cOVOhoaHy8fFRv379tHv3bqdjFBUVadKkSQoMDJSvr69iY2N15MgRp5j8/HzFx8fLbrfLbrcrPj5eJ0+erItTBAAAaHAoRAIAAKBRyc/PV+/eveXp6amPPvpIe/bs0YsvvqiWLVuaMbNnz9acOXOUnJys7du3KyQkRAMGDNCpU6fMmISEBK1evVorV67Upk2bdPr0acXExKi0tNSMiYuLU1ZWltLS0pSWlqasrCzFx8fX5ekCAAA0GDyaDQAAgEZl1qxZCgsL0+uvv25u69Chg/n/hmFo3rx5mjFjhkaMGCFJWrZsmYKDg5Wamqpx48bJ4XBoyZIlWr58uW677TZJUkpKisLCwrRhwwYNGjRI2dnZSktLU0ZGhqKioiRJixcvVnR0tPbu3atOnTrV3UnXc2OKp7q7CQAAoB5gRCQAAAAalTVr1uimm27SnXfeqaCgIHXr1k2LFy829x84cEC5ubkaOHCguc3b21t9+/bV5s2bJUmZmZkqKSlxigkNDVVERIQZs2XLFtntdrMIKUk9e/aU3W43YyoqKipSQUGB0wsAAKCpoBAJAACARmX//v1asGCBwsPD9fHHH+vBBx/U5MmT9cYbb0iScnNzJUnBwcFO7wsODjb35ebmysvLS61atao2JigoqNLnBwUFmTEVJSUlmfNJ2u12hYWFXdrJAgAANCAUIgEAANColJWV6cYbb1RiYqK6deumcePGaezYsVqwYIFTnM1mc/raMIxK2yqqGFNVfHXHmT59uhwOh/k6fPiwq6cFAADQ4DFHJAAAABqVNm3aqEuXLk7bOnfurLfffluSFBISIunciMY2bdqYMXl5eeYoyZCQEBUXFys/P99pVGReXp569eplxvz444+VPv/YsWOVRluW8/b2lre39yWcHZoyV+faXGJxOwAA+K0sGRF59OhR3XvvvWrdurVatGihG264QZmZmeZ+wzA0c+ZMhYaGysfHR/369dPu3budjlFUVKRJkyYpMDBQvr6+io2N1ZEjR5xi8vPzFR8fbz7aEh8fr5MnT1pxSgAAAGggevfurb179zpt+/bbb9W+fXtJUseOHRUSEqL169eb+4uLi5Wenm4WGbt37y5PT0+nmJycHO3atcuMiY6OlsPh0LZt28yYrVu3yuFwmDEAAAD4Va0XIvPz89W7d295enrqo48+0p49e/Tiiy+qZcuWZszs2bM1Z84cJScna/v27QoJCdGAAQN06tQpMyYhIUGrV6/WypUrtWnTJp0+fVoxMTEqLS01Y+Li4pSVlaW0tDSlpaUpKytL8fHxtX1KAAAAaEAeeeQRZWRkKDExUd99951SU1O1aNEiTZgwQdK5x6kTEhKUmJio1atXa9euXRo9erRatGihuLg4SZLdbteYMWM0ZcoUffLJJ/rqq6907733KjIy0lxFu3Pnzho8eLDGjh2rjIwMZWRkaOzYsYqJiWHFbAAAgCrU+qPZs2bNUlhYmF5//XVzW4cOHcz/NwxD8+bN04wZMzRixAhJ0rJlyxQcHKzU1FSNGzdODodDS5Ys0fLly81ELyUlRWFhYdqwYYMGDRqk7OxspaWlKSMjw1ypcPHixYqOjtbevXtJ/gAAAJqoHj16aPXq1Zo+fbqeffZZdezYUfPmzdM999xjxjz22GMqLCzU+PHjlZ+fr6ioKK1bt05+fn5mzNy5c9WsWTONHDlShYWF6t+/v5YuXSoPDw8zZsWKFZo8ebK5unZsbKySk5Pr7mQBAAAaEJthGEZtHrBLly4aNGiQjhw5ovT0dF155ZUaP368xo4dK+ncKoZXX321duzYoW7dupnvu+OOO9SyZUstW7ZMn376qfr376+ffvrJaU6e66+/XsOHD9czzzyj//3f/9Wjjz5a6VHsli1bau7cufrLX/5SqW1FRUUqKioyvy4oKFBYWJgcDof8/f1r8zKgKUsd5Z7PjVvlns8FALhVQUGB7HY7+UwDVaf9Z0GO4uqchahbS0b3cHcTAABNSE3ymVp/NHv//v1asGCBwsPD9fHHH+vBBx/U5MmT9cYbb0g6Nym4pEoTeAcHB5v7cnNz5eXl5VSErComKCio0ucHBQWZMRUlJSWZ80na7XaFhYVd2skCAAAAAAAAcEmtFyLLysp04403KjExUd26ddO4ceM0duxYLViwwCnOZrM5fW0YRqVtFVWMqSq+uuNMnz5dDofDfB0+fNjV0wIAAAAAAABwCWq9ENmmTRt16dLFaVvnzp116NAhSVJISIgkVRq1mJeXZ46SDAkJUXFxsfLz86uN+fHHHyt9/rFjxyqNtizn7e0tf39/pxcAAAAAAAAA69V6IbJ3797au3ev07Zvv/1W7du3lyR17NhRISEhWr9+vbm/uLhY6enp6tWrlySpe/fu8vT0dIrJycnRrl27zJjo6Gg5HA5t27bNjNm6dascDocZAwAAAAAAAKB+qPVVsx955BH16tVLiYmJGjlypLZt26ZFixZp0aJFks49Tp2QkKDExESFh4crPDxciYmJatGiheLi4iRJdrtdY8aM0ZQpU9S6dWsFBARo6tSpioyMNFfR7ty5swYPHqyxY8fqtddekyQ98MADiomJYcVsAAAAAAAAoJ6p9UJkjx49tHr1ak2fPl3PPvusOnbsqHnz5umee+4xYx577DEVFhZq/Pjxys/PV1RUlNatWyc/Pz8zZu7cuWrWrJlGjhypwsJC9e/fX0uXLpWHh4cZs2LFCk2ePFkDBw6UJMXGxio5Obm2TwkAAAAAAADAJbIZhmG4uxHuUpPlxQGXpY5yz+fGrXLP5wIA3Ip8pmGr0/6zIEcZUzy11o+JS7dkdA93NwEA0ITUJJ+p9RGRAAAAAAA3crXozI1sAEAdq/XFagAAAAAAAACgIgqRAAAAAAAAACxHIRIAAAAAAACA5ShEAgAAAAAAALAchUgAAAAAAAAAlqMQCQAAAAAAAMByzdzdAAAAAABA7RlTPNWluCUWtwMAgIoYEQkAAAAAAADAcoyIBAAAAGBydTQdAABATTEiEgAAAAAAAIDlKEQCAAAAAAAAsByFSAAAAAAAAACWoxAJAAAAAAAAwHIsVgMAAAAATVHqKNdj41ZZ1w4AQJPBiEgAAAAAAAAAlmNEJNBYcEcbAAAAAADUY4yIBAAAAAAAAGA5CpEAAAAAAAAALEchEgAAAAAAAIDlKEQCAAAAAAAAsByL1QAAAABAEzSmeKrLsUssbAcAoOlgRCQAAAAAAAAAyzEiso6MWbrdpbglo3tY3BIAAAAAAACg7jEiEgAAAAAAAIDlKEQCAAAAAAAAsByFSAAAAAAAAACWY45IAAAAoAmoyQrJAAAAVmBEJAAAAAAAAADLUYgEAAAAAAAAYDkKkQAAAAAAAAAsxxyR9cyYpdtdilsyuofFLQEAAAAAAABqDyMiAQAAAAAAAFiOQiQAAAAAAAAAy1GIBAAAAAAAAGA5CpEAAAAAAAAALMdiNQAAAACA6qWOci0ubpW17QAANGiMiAQAAAAAAABgOQqRAAAAAAAAACxHIRIAAAAAAACA5ShEAgAAAAAAALAci9UAAAAAAKo1pniqS3FLLG4HAKBhY0QkAAAAAAAAAMsxIrKBGrN0u0txS0b3sLglAAAAAAAAwMUxIhIAAAAAAACA5ShEAgAAAAAAALAcj2Y3cq4+wi3xGDcAAAAAAACsw4hIAAAAAAAAAJajEAkAAAAAAADAchQiAQAAAAAAAFiOQiQAAAAAAAAAy1GIBAAAAAAAAGA5Vs2GydUVtlldGwAAAAAAADXFiEgAAAAAAAAAlqMQCQAAAAAAAMByFCIBAAAAAAAAWI5CJAAAAAAAAADLUYgEAAAAAAAAYDlWzQYAAAAA1I7UUa7Fxa2yth0AgHqJEZEAAAAAAAAALMeISAAAAABArRhTPNWluCUWtwMAUD8xIhIAAAAAAACA5ShEAgAAAAAAALAchUgAAAAAAAAAlqMQCQAAAAAAAMByLFaDGhuzdLtLcUtG97C4JQAAAAAAAGgoGBEJAAAAAAAAwHIUIgEAAAAAAABYjkIkAAAAAAAAAMtRiAQAAAAAAABgOQqRAAAAAAAAACxHIRKWGbN0u0svAAAAKyUlJclmsykhIcHcZhiGZs6cqdDQUPn4+Khfv37avXu30/uKioo0adIkBQYGytfXV7GxsTpy5IhTTH5+vuLj42W322W32xUfH6+TJ0/WwVkBAAA0PBQiAQAA0Ght375dixYt0nXXXee0ffbs2ZozZ46Sk5O1fft2hYSEaMCAATp16pQZk5CQoNWrV2vlypXatGmTTp8+rZiYGJWWlpoxcXFxysrKUlpamtLS0pSVlaX4+Pg6Oz8AAICGhEIkAAAAGqXTp0/rnnvu0eLFi9WqVStzu2EYmjdvnmbMmKERI0YoIiJCy5Yt09mzZ5WamipJcjgcWrJkiV588UXddttt6tatm1JSUrRz505t2LBBkpSdna20tDT9z//8j6KjoxUdHa3Fixfr/fff1969e91yzgAAAPUZhUgAAAA0ShMmTNDQoUN12223OW0/cOCAcnNzNXDgQHObt7e3+vbtq82bN0uSMjMzVVJS4hQTGhqqiIgIM2bLli2y2+2KiooyY3r27Cm73W7GVFRUVKSCggKnFwAAQFPRzN0NAAAAAGrbypUrtWPHDm3fXnk+6tzcXElScHCw0/bg4GAdPHjQjPHy8nIaSVkeU/7+3NxcBQUFVTp+UFCQGVNRUlKSnnnmmZqfEAAAQCNg+YhIJgcHAABAXTp8+LAefvhhpaSkqHnz5heMs9lsTl8bhlFpW0UVY6qKr+4406dPl8PhMF+HDx+u9vMAAAAaE0sLkUwODgAAgLqWmZmpvLw8de/eXc2aNVOzZs2Unp6ul19+Wc2aNTNHQlYctZiXl2fuCwkJUXFxsfLz86uN+fHHHyt9/rFjxyqNtizn7e0tf39/pxcAAEBTYdmj2edPDv6Pf/zD3F5xcnBJWrZsmYKDg5Wamqpx48aZk4MvX77cnNMnJSVFYWFh2rBhgwYNGmRODp6RkWHOy7N48WJFR0dr79696tSpk1Wnhlo2ZmnlR6YuZMnoHha2BAAANAb9+/fXzp07nbb95S9/0bXXXqvHH39cV111lUJCQrR+/Xp169ZNklRcXKz09HTNmjVLktS9e3d5enpq/fr1GjlypCQpJydHu3bt0uzZsyVJ0dHRcjgc2rZtm26++WZJ0tatW+VwONSrV6+6Ol0AAIAGw7IRkUwODgAAAHfw8/NTRESE08vX11etW7dWRESEOW1QYmKiVq9erV27dmn06NFq0aKF4uLiJEl2u11jxozRlClT9Mknn+irr77Svffeq8jISDO/7dy5swYPHqyxY8cqIyNDGRkZGjt2rGJiYrgpDgAAUAVLRkQyOTgAAADqs8cee0yFhYUaP3688vPzFRUVpXXr1snPz8+MmTt3rpo1a6aRI0eqsLBQ/fv319KlS+Xh4WHGrFixQpMnTzZvoMfGxio5ObnOzwdocFJHuRYXt8radgAA6lStFyLLJwdft25dvZwc/NFHHzW/LigoUFhYWLWfCQAAgIbv888/d/raZrNp5syZmjlz5gXf07x5c82fP1/z58+/YExAQIBSUlJqqZUAAACNW60XIs+fHLxcaWmpNm7cqOTkZO3du1fSuRGNbdq0MWMuNDn4+aMi8/LyzPl2fuvk4N7e3pd+kgAAAACA32xM8VSX4pZY3A4AQN2q9UIkk4OjUXL10REAAAAAAABUqdYLkeWTg5/v/MnBJZmTg4eHhys8PFyJiYkXnBy8devWCggI0NSpUy84Ofhrr70mSXrggQeYHBwAAAAAAACohyxZrOZimBwcv9WYpZUXQKrKktE9LG4JAAAAAAAAaqJOCpFMDg4AAAAAAAA0bZe5uwEAAAAAAAAAGj8KkQAAAAAAAAAs55Y5IgGrMZckAAAAAABA/cKISAAAAAAAAACWoxAJAAAAAAAAwHIUIgEAAAAAAABYjkIkAAAAAAAAAMtRiAQAAAAAAABgOQqRAAAAAAAAACxHIRIAAAAAAACA5ShEAgAAAAAAALBcM3c3AAAAAACAKqWOcj02bpV17QAA1ApGRAIAAAAAAACwHCMi0bTV5A4rAAAAgDo1pniqy7FLLGwHAKB2UIhEk+ZqYrPE6wWLWwIAAAAAANC48Wg2AAAAAAAAAMsxIhJwQY0eCWH0JAAAAAAAQCWMiAQAAAAAAABgOQqRAAAAAAAAACxHIRIAAAAAAACA5ShEAgAAAAAAALAci9UAtczVhW1Y1AYAAAAAADQljIgEAAAAAAAAYDkKkQAAAAAAAAAsx6PZQFOUOsq1uLhV1rYDAAAAAAA0GYyIBAAAAAAAAGA5RkQCbsKiNgAAAAAAoClhRCQAAAAAAAAAy1GIBAAAAAAAAGA5CpEAAAAAAAAALMcckQAAAACAhi91lGtxcausbQcA4IIoRAIAAAAAGjyXF4O0uB0AgAvj0WwAAAAAAAAAlqMQCQAAAAAAAMByPJoN1HMuP2Li9YLFLQEAAAAAAPjtGBEJAAAAAAAAwHIUIgEAAAAAAABYjkezgUbC1Ue4JR7jBgAAAAAAdY8RkQAAAAAAAAAsRyESAAAAAAAAgOUoRAIAAAAAAACwHHNEAk2Qq/NJLrG4HQAAAAAAoOlgRCQAAAAAAAAAy1GIBAAAAAAAAGA5CpEAAAAAAAAALEchEgAAAAAAAIDlWKwGwIWljnItLm6Vte0AAAAAAAANHoVIABfE6toAAAAAAKC28Gg2AAAAAAAAAMtRiAQAAAAAAABgOR7NBgAAAAA0HcyDDgBuQyESAAAAANBkMA86ALgPj2YDAAAAAAAAsByFSAAAAAAAAACWoxAJAAAAAAAAwHIUIgEAAAAAAABYjkIkAAAAAAAAAMtRiAQAAAAAAABgOQqRAAAAAAAAACzXzN0NANB0jFm63eXYJaN7WNgSAAAAAABQ1yhEArhkNSkw1vYxKVgCAAAAANAw8Gg2AAAAAAAAAMtRiAQAAAAAAABgOQqRAAAAAAAAACxHIRIAAAAAAACA5ShEAgAAAAAAALAcq2YDaBJYhRsAAAA1kjrKtbi4Vda2AwAaEQqRAAAAAABUMKZ4qktxSyxuBwA0JjyaDQAAAAAAAMByFCIBAAAAAAAAWI5HswE0aK7O/QgAAAAAANyLEZEAAAAAAAAALMeISAA4T01GWLLCNgAAAAAArmNEJAAAABqVpKQk9ejRQ35+fgoKCtLw4cO1d+9epxjDMDRz5kyFhobKx8dH/fr10+7du51iioqKNGnSJAUGBsrX11exsbE6cuSIU0x+fr7i4+Nlt9tlt9sVHx+vkydPWn2KAAAADRKFSAAAADQq6enpmjBhgjIyMrR+/Xr98ssvGjhwoM6cOWPGzJ49W3PmzFFycrK2b9+ukJAQDRgwQKdOnTJjEhIStHr1aq1cuVKbNm3S6dOnFRMTo9LSUjMmLi5OWVlZSktLU1pamrKyshQfH1+n5wsAANBQ1Pqj2UlJSXrnnXf073//Wz4+PurVq5dmzZqlTp06mTGGYeiZZ57RokWLlJ+fr6ioKL3yyivq2rWrGVNUVKSpU6fqzTffVGFhofr3769XX31Vbdu2NWPy8/M1efJkrVmzRpIUGxur+fPnq2XLlrV9WgDwm7n6uDePegNA7UhLS3P6+vXXX1dQUJAyMzN1yy23yDAMzZs3TzNmzNCIESMkScuWLVNwcLBSU1M1btw4ORwOLVmyRMuXL9dtt90mSUpJSVFYWJg2bNigQYMGKTs7W2lpacrIyFBUVJQkafHixYqOjtbevXud8l8AAABYUIgsvwPdo0cP/fLLL5oxY4YGDhyoPXv2yNfXV9Kvd6CXLl2qa665Rv/4xz80YMAA7d27V35+fpLO3YFeu3atVq5cqdatW2vKlCmKiYlRZmamPDw8JJ27A33kyBEz2XzggQcUHx+vtWvX1vZpAUAlrNgNAA2Dw+GQJAUEBEiSDhw4oNzcXA0cONCM8fb2Vt++fbV582aNGzdOmZmZKikpcYoJDQ1VRESENm/erEGDBmnLli2y2+1mEVKSevbsKbvdrs2bN1dZiCwqKlJRUZH5dUFBQa2fLwAAQH1V64VI7kADAACgvjAMQ48++qj69OmjiIgISVJubq4kKTg42Ck2ODhYBw8eNGO8vLzUqlWrSjHl78/NzVVQUFClzwwKCjJjKkpKStIzzzxzaScFAADQQFk+R2RN70BLuugdaEkXvQNdlaKiIhUUFDi9AAAA0HhNnDhR33zzjd58881K+2w2m9PXhmFU2lZRxZiq4qs7zvTp0+VwOMzX4cOHXTkNAACARsHSQmRN70Cff3fZqjvQ5Ssa2u12hYWFXdoJAgAAoN6aNGmS1qxZo88++8xpnvGQkBBJqpQz5uXlmTlqSEiIiouLlZ+fX23Mjz/+WOlzjx07VinXLeft7S1/f3+nFwAAQFNhaSGSO9AAAACoa4ZhaOLEiXrnnXf06aefqmPHjk77O3bsqJCQEK1fv97cVlxcrPT0dPXq1UuS1L17d3l6ejrF5OTkaNeuXWZMdHS0HA6Htm3bZsZs3bpVDofDjAEAAMCvan2OyHLld6A3btx4wTvQbdq0Mbdf6A70+aMi8/LyzKTut96B9vb2vvSTAwAAQL01YcIEpaam6r333pOfn5858tFut8vHx0c2m00JCQlKTExUeHi4wsPDlZiYqBYtWiguLs6MHTNmjKZMmaLWrVsrICBAU6dOVWRkpDmHeefOnTV48GCNHTtWr732mqRziyfGxMQwXzkAAEAVan1EJHegAQAA4E4LFiyQw+FQv3791KZNG/O1atUqM+axxx5TQkKCxo8fr5tuuklHjx7VunXr5OfnZ8bMnTtXw4cP18iRI9W7d2+1aNFCa9eulYeHhxmzYsUKRUZGauDAgRo4cKCuu+46LV++vE7PFwAAoKGwGYZh1OYBx48fb96BPv9OcPkdaEmaNWuWkpKS9Prrr5t3oD///HPt3bvXTP4eeughvf/++1q6dKl5B/rEiRPKzMw0k78hQ4bohx9+cLoD3b59e61du9althYUFMhut8vhcFg+P8+YpdstPT6Ahm/J6B7ubgKABqgu8xnUPvJRoOEjhwPQ1NUkn6n1R7MXLFggSerXr5/T9tdff12jR4+WdO4OdGFhocaPH6/8/HxFRUVVeQe6WbNmGjlypAoLC9W/f38tXbq00h3oyZMnm6trx8bGKjk5ubZPCQDqhBV/IJIYAwAAWCx1lOuxcasuHgMAjVitj4hsSLgDDaCxoxAJNH6MiGzYyEeBpoXcDEBjVJN8xtJVswEAAAAAAABAohAJAAAAAAAAoA5QiAQAAAAAAABgOQqRAAAAAAAAACxX66tmAwDqD1cXJmDidAAAAACA1RgRCQAAAAAAAMByFCIBAAAAAAAAWI5CJAAAAAAAAADLUYgEAAAAAAAAYDkKkQAAAAAAAAAsx6rZAABW1wYAAAAAWI4RkQAAAAAAAAAsx4hIAIDLGDkJAADw25FLAWjqGBEJAAAAAAAAwHKMiAQA1DpX7/ZL3PEHAAAAgKaCQiQAoEHgUSYAAAAAaNh4NBsAAAAAAACA5ShEAgAAAAAAALAcj2YDANyqJvNJAgAAAAAaLkZEAgAAAAAAALAchUgAAAAAAAAAluPRbABAo8Lq2gAAAABQPzEiEgAAAAAAAIDlKEQCAAAAAAAAsByPZgMAmiQrVuvmcW8AAFAbmGoGQGNFIRIAgFrCHw0AAAAAcGE8mg0AAAAAAADAcoyIBACgjjFyEgAAAEBTxIhIAAAAAAAAAJajEAkAAAAAAADAchQiAQAAAAAAAFiOOSIBAKinXJ1LUmI+SQAAAAD1H4VIAAAaARbAAQAAAFDf8Wg2AAAAAAAAAMtRiAQAAAAAAABgOR7NBgCgCeERbgAAGg9+rwNoaBgRCQAAAAAAAMByjIgEAACVMMICAAAAQG2jEAkAAH4zVwuWEkVLAAAAoKmjEAkAAOoVRmMCAAAAjRNzRAIAAAAAAACwHCMiAQBAnajJY9wAAKAWpY5yPTZulXXtANDkUYgEAACNGvNYAgCaujHFU12OXWJhOwCAR7MBAAAAAAAAWI5CJAAAAAAAAADL8Wg2AABokJhzEgAAAGhYKEQCAAD8f64WN5lLEgAAAKg5Hs0GAAAAAAAAYDlGRAIAANQQIycBAACAmmNEJAAAAAAAAADLUYgEAAAAAAAAYDkKkQAAAAAAAAAsxxyRAAAAAABAEvMgA7AWIyIBAAAAAAAAWI5CJAAAAAAAAADLUYgEAAAAAAAAYDkKkQAAAAAAAAAsRyESAAAAAAAAgOVYNRsAAAAAANQIq2sD+C0YEQkAAAAAAADAchQiAQAAAAAAAFiOQiQAAAAAAAAAy1GIBAAAAAAAAGA5FqsBAAAAAACWYFEbAOdjRCQAAAAAAAAAy1GIBAAAAAAAAGA5CpEAAAAAAAAALMcckQAAAAAAwK1cnUtSYj5JoCFjRCQAAAAAAAAAy1GIBAAAAAAAAGA5Hs0GAAAAAAANhquPcfMIN1D/MCISAAAAAAAAgOUYEQkAAAAAABodRk4C9Q8jIgEAAAAAAABYjhGRAAAAAACgyWLkJFB3GBEJAAAAAAAAwHINfkTkq6++queff145OTnq2rWr5s2bp9///vfubhYAAACaEHJSAGj8XB05KTF6EriQBl2IXLVqlRISEvTqq6+qd+/eeu211zRkyBDt2bNH7dq1c3fzAAAA0ASQkwIAKqpJ0dIVFDbRWNgMwzDc3YjfKioqSjfeeKMWLFhgbuvcubOGDx+upKSki76/oKBAdrtdDodD/v7+Vja11v8RAgAA9V9d/NFQl/kMqnYpOSn5KACgNlGwhDvUJJ9psCMii4uLlZmZqSeeeMJp+8CBA7V58+Yq31NUVKSioiLza4fDIencBbNaceFpyz8DAADUL3WRY5R/RgO+t9yg1TQnJR8FAFgpfsFnbvvsV+7p7lLchBWZtXo8uF9N8tEGW4g8fvy4SktLFRwc7LQ9ODhYubm5Vb4nKSlJzzzzTKXtYWFhlrQRAAA0bSnj6+6zTp06JbvdXncfCEk1z0nJRwEAjVVt5z11mUehdriSjzbYQmQ5m83m9LVhGJW2lZs+fboeffRR8+uysjL99NNPat269QXfUxsKCgoUFhamw4cP88hUPUK/1F/0Tf1Ev9Rf9E39VFf9YhiGTp06pdDQUMs+Axfnak5KPlp/cY1cw3W6OK7RxXGNLo5rdHFcI9fUxXWqST7aYAuRgYGB8vDwqHSnOS8vr9Id6XLe3t7y9vZ22tayZUurmliJv78/Pxz1EP1Sf9E39RP9Un/RN/VTXfQLIyHdp6Y5Kflo/cc1cg3X6eK4RhfHNbo4rtHFcY1cY/V1cjUfvcyyFljMy8tL3bt31/r16522r1+/Xr169XJTqwAAANCUkJMCAAC4rsGOiJSkRx99VPHx8brpppsUHR2tRYsW6dChQ3rwwQfd3TQAAAA0EeSkAAAArmnQhchRo0bpxIkTevbZZ5WTk6OIiAh9+OGHat++vbub5sTb21tPP/10pcdw4F70S/1F39RP9Ev9Rd/UT/RL09EQclK+Hy+Oa+QartPFcY0ujmt0cVyji+Mauaa+XSeb4cra2gAAAAAAAABwCRrsHJEAAAAAAAAAGg4KkQAAAAAAAAAsRyESAAAAAAAAgOUoRAIAAAAAAACwHIVIF8ycOVM2m83pFRISYu43DEMzZ85UaGiofHx81K9fP+3evdvpGEVFRZo0aZICAwPl6+ur2NhYHTlyxCkmPz9f8fHxstvtstvtio+P18mTJ+viFBus6vqmpKREjz/+uCIjI+Xr66vQ0FD9+c9/1g8//OB0DPqm9l3sZ+Z848aNk81m07x585y20y+1z5V+yc7OVmxsrOx2u/z8/NSzZ08dOnTI3E+/WONifXP69GlNnDhRbdu2lY+Pjzp37qwFCxY4HYO+scbRo0d17733qnXr1mrRooVuuOEGZWZmmvvJAdBQvPrqq+rYsaOaN2+u7t2764svvnB3k+qNpKQk9ejRQ35+fgoKCtLw4cO1d+9edzerXktKSpLNZlNCQoK7m1KvXOx3BqRffvlFTz75pDp27CgfHx9dddVVevbZZ1VWVubuprnNxo0bNWzYMIWGhspms+ndd9912u9KrtHYVXeNXP27v7G72PfR+S70N3hdoRDpoq5duyonJ8d87dy509w3e/ZszZkzR8nJydq+fbtCQkI0YMAAnTp1yoxJSEjQ6tWrtXLlSm3atEmnT59WTEyMSktLzZi4uDhlZWUpLS1NaWlpysrKUnx8fJ2eZ0N0ob45e/asduzYob/97W/asWOH3nnnHX377beKjY11ej99Y43qfmbKvfvuu9q6datCQ0Mr7aNfrFFdv/znP/9Rnz59dO211+rzzz/X119/rb/97W9q3ry5GUO/WKe6vnnkkUeUlpamlJQUZWdn65FHHtGkSZP03nvvmTH0Te3Lz89X79695enpqY8++kh79uzRiy++qJYtW5ox5ABoCFatWqWEhATNmDFDX331lX7/+99ryJAhTjeamrL09HRNmDBBGRkZWr9+vX755RcNHDhQZ86ccXfT6qXt27dr0aJFuu6669zdlHrFld8ZkGbNmqWFCxcqOTlZ2dnZmj17tp5//nnNnz/f3U1zmzNnzuj6669XcnJylftdyTUau+qukat/9zd2F/s+Klfd3+B1xsBFPf3008b1119f5b6ysjIjJCTE+Oc//2lu+/nnnw273W4sXLjQMAzDOHnypOHp6WmsXLnSjDl69Khx2WWXGWlpaYZhGMaePXsMSUZGRoYZs2XLFkOS8e9//9uCs2ocquubqmzbts2QZBw8eNAwDPrGKq70y5EjR4wrr7zS2LVrl9G+fXtj7ty55j76xRoX65dRo0YZ99577wX30y/WuVjfdO3a1Xj22Wedtt14443Gk08+aRgGfWOVxx9/3OjTp88F95MDoKG4+eabjQcffNBp27XXXms88cQTbmpR/ZaXl2dIMtLT093dlHrn1KlTRnh4uLF+/Xqjb9++xsMPP+zuJtUbF/udgXOGDh1q3H///U7bRowYUW0O2pRIMlavXm1+7Uqu0dRUvEZVqfh3f1NzoWtU3d/gdYkRkS7at2+fQkND1bFjR911113av3+/JOnAgQPKzc3VwIEDzVhvb2/17dtXmzdvliRlZmaqpKTEKSY0NFQRERFmzJYtW2S32xUVFWXG9OzZU3a73YxB1S7UN1VxOByy2WzmnUn6xjrV9UtZWZni4+M1bdo0de3atdJ76RfrXKhfysrK9MEHH+iaa67RoEGDFBQUpKioKKch/fSLtar7menTp4/WrFmjo0ePyjAMffbZZ/r22281aNAgSfSNVdasWaObbrpJd955p4KCgtStWzctXrzY3E8OgIaguLhYmZmZTt+DkjRw4EC+vy7A4XBIkgICAtzckvpnwoQJGjp0qG677TZ3N6XeudjvDJzTp08fffLJJ/r2228lSV9//bU2bdqk22+/3c0tq59cyTVQWcW/+3Hxv8HrEoVIF0RFRemNN97Qxx9/rMWLFys3N1e9evXSiRMnlJubK0kKDg52ek9wcLC5Lzc3V15eXmrVqlW1MUFBQZU+OygoyIxBZdX1TUU///yznnjiCcXFxcnf318SfWOVi/XLrFmz1KxZM02ePLnK99Mv1qiuX/Ly8nT69Gn985//1ODBg7Vu3Tr913/9l0aMGKH09HRJ9IuVLvYz8/LLL6tLly5q27atvLy8NHjwYL366qvq06ePJPrGKvv379eCBQsUHh6ujz/+WA8++KAmT56sN954Q5LIAdAgHD9+XKWlpdV+n+JXhmHo0UcfVZ8+fRQREeHu5tQrK1eu1I4dO5SUlOTuptRLF/udgXMef/xx3X333br22mvl6empbt26KSEhQXfffbe7m1YvuZJrwFlVf/fj4n+D16Vm7m5AQzBkyBDz/yMjIxUdHa2rr75ay5YtU8+ePSVJNpvN6T2GYVTaVlHFmKriXTlOU1Zd3zz66KPmvpKSEt11110qKyvTq6++etHj0jeXprp+6du3r1566SXt2LGjxtePfrk01fXLXXfdJUm644479Mgjj0iSbrjhBm3evFkLFy5U3759L3hc+uXSXezfspdfflkZGRlas2aN2rdvr40bN2r8+PFq06ZNtaNS6JtLU1ZWpptuukmJiYmSpG7dumn37t1asGCB/vznP5tx5ABoCH7L92lTNHHiRH3zzTfatGmTu5tSrxw+fFgPP/yw1q1b5zR3NH7l6u+Mpm7VqlVKSUlRamqqunbtqqysLCUkJCg0NFT33Xefu5tXb/FvuGtq+nd/U5GZmfmb/wa3AiMifwNfX19FRkZq37595qqmFe9G5OXlmXctQkJCVFxcrPz8/Gpjfvzxx0qfdezYsUp3P3Bh5/dNuZKSEo0cOVIHDhzQ+vXrne6K0Dd14/x++eKLL5SXl6d27dqpWbNmatasmQ4ePKgpU6aoQ4cOkuiXunJ+vwQGBqpZs2bq0qWLU0znzp3NxQzol7pzft8UFhbqr3/9q+bMmaNhw4bpuuuu08SJEzVq1Ci98MILkugbq7Rp0+aiPxMSOQDqt8DAQHl4eFT7fYpzJk2apDVr1uizzz5T27Zt3d2ceiUzM1N5eXnq3r27mb+lp6fr5ZdfVrNmzZwW32qqLvY7A+dMmzZNTzzxhO666y5FRkYqPj5ejzzyCCNtL8CVXAPnVPd3f1Pnyt/gdYlC5G9QVFSk7OxstWnTRh07dlRISIjWr19v7i8uLlZ6erp69eolSerevbs8PT2dYnJycrRr1y4zJjo6Wg6HQ9u2bTNjtm7dKofDYcbg4s7vG+nXf4z27dunDRs2qHXr1k7x9E3dOL9f4uPj9c033ygrK8t8hYaGatq0afr4448l0S915fx+8fLyUo8ePbR3716nmG+//Vbt27eXRL/UpfP7pqSkRCUlJbrsMudf2R4eHiorK5NE31ild+/e1f5MkAOgIfDy8lL37t2dvgclaf369Xx//X+GYWjixIl655139Omnn6pjx47ublK9079/f+3cudMpf7vpppt0zz33KCsrSx4eHu5uottd7HcGzjl79my1OQ2cuZJr4OJ/9zd1rvwNXqfqeHGcBmnKlCnG559/buzfv9/IyMgwYmJiDD8/P+P77783DMMw/vnPfxp2u9145513jJ07dxp333230aZNG6OgoMA8xoMPPmi0bdvW2LBhg7Fjxw7j1ltvNa6//nrjl19+MWMGDx5sXHfddcaWLVuMLVu2GJGRkUZMTEydn29DUl3flJSUGLGxsUbbtm2NrKwsIycnx3wVFRWZx6Bvat/FfmYqqmrFLvql9l2sX9555x3D09PTWLRokbFv3z5j/vz5hoeHh/HFF1+Yx6BfrHGxvunbt6/RtWtX47PPPjP2799vvP7660bz5s2NV1991TwGfVP7tm3bZjRr1sx47rnnjH379hkrVqwwWrRoYaSkpJgx5ABoCFauXGl4enoaS5YsMfbs2WMkJCQYvr6+F/y93NQ89NBDht1uNz7//HOnfPHs2bPublq9xqrZzlz5nQHDuO+++4wrr7zSeP/9940DBw4Y77zzjhEYGGg89thj7m6a25w6dcr46quvjK+++sqQZMyZM8f46quvzBWfXck1GrvqrpGrf/c3dhf7PqrInatmU4h0wahRo4w2bdoYnp6eRmhoqDFixAhj9+7d5v6ysjLj6aefNkJCQgxvb2/jlltuMXbu3Ol0jMLCQmPixIlGQECA4ePjY8TExBiHDh1yijlx4oRxzz33GH5+foafn59xzz33GPn5+XVxig1WdX1z4MABQ1KVr88++8w8Bn1T+y72M1NRVf8I0i+1z5V+WbJkifG73/3OaN68uXH99dcb7777rtN++sUaF+ubnJwcY/To0UZoaKjRvHlzo1OnTsaLL75olJWVmTH0jTXWrl1rREREGN7e3sa1115rLFq0yGk/OQAaildeecVo37694eXlZdx4441Genq6u5tUb1woX3z99dfd3bR6jUJkZRf7nQHDKCgoMB5++GGjXbt2RvPmzY2rrrrKmDFjRpMqGFX02WefVflv0H333WcYhmu5RmNX3TVy9e/+xu5i30cVubMQaTMMw7B2zCUAAAAAAACApo45IgEAAAAAAABYjkIkAAAAAAAAAMtRiAQAAAAAAABgOQqRAAAAAAAAACxHIRIAAAAAAACA5ShEAgAAAAAAALAchUgAAAAAAAAAlqMQCQAAAAAAAMByFCIBAAAAAGik+vXrp4SEBHc3AwAkUYgEAAAAAAAAUAcoRAJALenXr58mTZqkhIQEtWrVSsHBwVq0aJHOnDmjv/zlL/Lz89PVV1+tjz76yN1NBQAAQBMwevRopaen66WXXpLNZpPNZtP333/v7mYBaMIoRAJALVq2bJkCAwO1bds2TZo0SQ899JDuvPNO9erVSzt27NCgQYMUHx+vs2fPurupAAAAaOReeuklRUdHa+zYscrJyVFOTo7CwsLc3SwATZjNMAzD3Y0AgMagX79+Ki0t1RdffCFJKi0tld1u14gRI/TGG29IknJzc9WmTRtt2bJFPXv2dGdzAQAA0AT069dPN9xwg+bNm+fupgAAIyIBoDZdd9115v97eHiodevWioyMNLcFBwdLkvLy8uq8bQAAAAAAuBOFSACoRZ6enk5f22w2p202m02SVFZWVqftAgAAAADA3ShEAgAAAADQSHl5eam0tNTdzQAASRQiAQAAAABotDp06KCtW7fq+++/1/Hjx3kyB4BbUYgEAAAAAKCRmjp1qjw8PNSlSxddccUVOnTokLubBKAJY9VsAAAAAAAAAJZjRCQAAAAAAAAAy1GIBAAAAAAAAGA5CpEAAAAAAAAALEchEgAAAAAAAIDlKEQCAAAAAAAAsByFSAAAAAAAAACWoxAJAAAAAAAAwHIUIgEAAAAAAABYjkIkAAAAAAAAAMtRiAQAAAAAAABgOQqRAAAAAAAAACxHIRIAAAAAAACA5f4fSQlKOA1KVXcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAAINCAYAAAA9V5GDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgu0lEQVR4nO3de1yUdf7//+fESSQYBQIkMa3IVKxMDTE3LY8lUutn06Jm85MftTSNPJVrB3MLVsvDJqul66aFhPvdsrQDqW1p3jyGsamxVpt5WhAtHEQJCK7fH/68akRxyBkuDo/77Ta3W3Ndr7nmdc0b4uVr3tf7shmGYQgAAAAAAAAALHCJ1QkAAAAAAAAAaLpoUAIAAAAAAACwDA1KAAAAAAAAAJahQQkAAAAAAADAMjQoAQAAAAAAAFiGBiUAAAAAAAAAy9CgBAAAAAAAAGAZGpQAAAAAAAAALONrdQJWqqqq0n//+18FBwfLZrNZnQ4AAECtGYahEydOKDo6WpdcwnfPDQ31KAAAaOg8UY826Qblf//7X8XExFidBgAAwEU7ePCgWrdubXUaqCXqUQAA0FhcTD3apBuUwcHBkk5/gCEhIRZnAwAAUHvFxcWKiYkx6xo0LNSjAACgofNEPdqkG5RnLqMJCQmhIAQAAA0alwc3TNSjAACgsbiYepSFigAAANCgbNy4UUOGDFF0dLRsNpvefvttl/2GYWjGjBmKjo5WYGCg+vTpoz179rjElJWVafz48QoPD1dQUJCSkpJ06NAhl5iioiI5HA7Z7XbZ7XY5HA4dP37cJebAgQMaMmSIgoKCFB4ergkTJqi8vNwbpw0AANBo0aAEAABAg3Ly5Eldf/31Sk9PP+f+2bNna+7cuUpPT9eOHTsUFRWl/v3768SJE2ZMSkqKVq1apaysLG3atEklJSVKTExUZWWlGZOcnKzc3FxlZ2crOztbubm5cjgc5v7KykoNHjxYJ0+e1KZNm5SVlaU333xTkyZN8t7JAwAANEI2wzAMq5OwSnFxsex2u5xOJ5fUAACABqmp1zM2m02rVq3SXXfdJen07Mno6GilpKTo8ccfl3R6tmRkZKRmzZqlMWPGyOl06rLLLtPrr7+u4cOHS/r5ZjXvv/++Bg4cqLy8PHXs2FFbt25VfHy8JGnr1q1KSEjQv//9b7Vv314ffPCBEhMTdfDgQUVHR0uSsrKyNGLECBUWFro1Hk19/AAAQMPniXqGGZQAAABoNPbt26eCggINGDDA3BYQEKDevXtr8+bNkqScnBxVVFS4xERHRysuLs6M2bJli+x2u9mclKQePXrIbre7xMTFxZnNSUkaOHCgysrKlJOTc878ysrKVFxc7PIAAABo6mhQAgAAoNEoKCiQJEVGRrpsj4yMNPcVFBTI399fLVu2rDEmIiKi2vEjIiJcYs5+n5YtW8rf39+MOVtaWpq5pqXdbldMTMyvOEsAAIDGhQYlAAAAGp2z7yJpGMYF7yx5dsy54n9NzC9NmzZNTqfTfBw8eLDGnAAAAJoCX6sTAADgbBUVFS43qgCaCh8fH/n5+VmdRoMWFRUl6fTsxlatWpnbCwsLzdmOUVFRKi8vV1FRkcssysLCQvXs2dOMOXLkSLXjHz161OU427Ztc9lfVFSkioqKajMrzwgICFBAQMBFnCEAoC5Qj6Ips6ImpUEJAKg3iouLdezYMZWVlVmdCmCZgIAAhYeHc8OUX6ldu3aKiorSunXr1KVLF0lSeXm5NmzYoFmzZkmSunbtKj8/P61bt07Dhg2TJOXn52v37t2aPXu2JCkhIUFOp1Pbt2/XTTfdJEnatm2bnE6n2cRMSEjQ888/r/z8fLMZunbtWgUEBKhr1651et4AAM+gHgVOq+ualAYlAKBeKC4u1uHDh3XppZcqPDxcfn5+F7wcE2hMDMNQRUWFnE6nDh8+LEk0Kc+jpKRE33zzjfl83759ys3NVWhoqNq0aaOUlBSlpqYqNjZWsbGxSk1NVfPmzZWcnCxJstvtGjlypCZNmqSwsDCFhoZq8uTJ6ty5s/r16ydJ6tChgwYNGqRRo0bplVdekSSNHj1aiYmJat++vSRpwIAB6tixoxwOh1544QX98MMPmjx5skaNGsXYAUADRD0KWFeT0qAEANQLx44d06WXXqrWrVtTCKLJCgwMVHBwsA4dOqRjx47R5DqPzz77TLfeeqv5fOLEiZKkBx54QMuWLdPUqVNVWlqqsWPHqqioSPHx8Vq7dq2Cg4PN18ybN0++vr4aNmyYSktL1bdvXy1btkw+Pj5mzIoVKzRhwgTzbt9JSUlKT0839/v4+Oi9997T2LFjdfPNNyswMFDJycl68cUXvf0RAAC8gHoUOM2KmtRmGIbh9Xepp4qLi2W32+V0OvkHAABYqKKiQt98840uv/xy/n8M6OcZHFdfffUF1/+hnmnYGD8AqB+oR4Hq3K1JPVHPcBdvAIDlzixAzs1BgNPO/C6wOD8AAHWDehSori5rUhqUAIB6g0tpgNP4XQAAwBr8DQZ+Vpe/DzQoAQAAAAAAAFiGBiUAAAAAAAAAy9CgBAAAAAAAAGAZGpQAANRD3333nWw2m/r06WN1KqY+ffrIZrPpu+++szqVBslms6lt27ZWpwEAAOAW6tHGpz7Xo75WJwAAgDtGLtthdQpuWTqiu9UpAAAAwAuoRwHvYQYlAAAAAAAAAMswgxKwSuZw9+KSV3o3DwAA0DRQewAAgHqKGZQAANRzxcXFevTRRxUTE6NmzZqpQ4cOmjdvnqqqqlzicnNzNXXqVHXt2lWXXXaZAgICdOWVV2rs2LH673//e97jHzhwQI888ohiY2PVrFkzhYWF6aabblJqaqpKS0svmJ/T6dQtt9wim82mlJQUGYZh7vv22281bNgwhYaG6tJLL1WvXr304Ycf6pNPPpHNZtOIESNcjjVixAjZbDZ98skn+vDDD3XrrbeqRYsWstlsOn78uCTpp59+0oIFC9S1a1ddeumluvTSS3XTTTdp0aJFqqysrJZf27ZtZbPZzpm7O3ls3LhRt912m4KDgxUSEqLBgwfryy+/POfxTp48qccff1xt2rRRs2bNdO2112ru3LkunwkAAEBDQz1KPeptNCgBAKjHysrKdNttt+m1117TTTfdpP79+2v//v2aOHGiRo4c6RL7pz/9SXPnzlVlZaVuvvlm3XHHHTIMQ4sWLVK3bt3OWRRu3LhR1113nf7yl7+oqqpKd955pxISEnTs2DFNnz5dR44cqTG/I0eOqE+fPvr000/17LPPav78+Wbx9fXXXys+Pl7/7//9P0VERGjIkCGqrKzUHXfcoTfffLPG42ZmZur222/XyZMndfvtt6t79+6y2WyqrKzUnXfeqQkTJuibb75Rv3791K9fP/373//W2LFjdffdd1crlC/GmjVrdNttt+mHH37QwIED1apVK73//vu65ZZbVFBQ4BJbVlamAQMGaPbs2SotLdWQIUPUtm1bPfHEE3rkkUc8lhMAAEBdoh6lHq0LXOINAEA9tnXrVl133XX6+uuvFR4eLkn6z3/+o1tuuUXLli3Tb3/7WyUlJUmSRo8erXnz5qlVq1bm66uqqvTcc8/pmWee0ZNPPqm//e1v5r6ioiL97ne/k9Pp1Lx58/Too4+6fLO7ceNGtWzZ8ry5fffdd+rfv7/+85//aMGCBdWKnocffljHjh3T+PHjNX/+fF1yyenvRV9//XX9/ve/r/G8lyxZoqysLA0f7npJ6pw5c/T++++rc+fOWr9+vSIiIiRJ+fn5uvXWW7Vq1Sq9/PLLGjt2bI3Hd9f8+fOVkZGhe++9V5JUWVmp4cOH680339TChQs1c+ZMM3bu3LnavHmzbrrpJq1du1Z2u12StHPnTt16660eyQcAAKCuUY9Sj9YFZlACAFDPvfjii2YxKElXXXWVnnrqKUnSX/7yF3P7bbfd5lIMStIll1yip59+Wpdffrneeecdl31LlizR0aNHlZiYqJSUlGqXndxyyy1mUXO2PXv26Oabb9Z3332n119/vVox+M033+ijjz5SaGio0tLSzGJQkhwOh2655ZYaz3nw4MHVikFJeumllySdLtTOFIOS1KpVK73wwgsuMZ6QnJxsFoOS5OPjoz/84Q+SThfMv7Ro0SJJ0rx581w+txtvvFHjxo3zWE4AAAB1jXr0Z9Sj3sEMSgAA6rHQ0FD179+/2vbk5GQ9/PDD2rx5swzDMIu577//XqtXr9bu3bt1/Phxcw2ciooK/fDDD/rhhx8UGhoqSVq/fr0kacyYMbXKaevWrRo3bpxKS0v19ttva/DgwdViNm/eLEm64447FBQUVG3/3XffXa2g+qUz38L/0oEDB3TgwAFFRUXptttuq7Y/MTFRLVq00N69e3X06FFddtlltTmtcxowYEC1bddcc42k09+S/zK3gwcP6vLLL1fPnj2rvebee+9VWlraRecDAABQ16hHf0Y96j21nkG5ceNGDRkyRNHR0bLZbHr77bdd9huGoRkzZig6OlqBgYHq06eP9uzZ4xJTVlam8ePHKzw8XEFBQUpKStKhQ4dcYoqKiuRwOGS322W32+VwOMzFSM84cOCAhgwZoqCgIIWHh2vChAkqLy+v7SkBAFBvXXHFFefcHhISohYtWqikpETFxcWSpDfeeENt27bVgw8+qLlz5+pvf/ubli9fruXLl6uwsFCSdOLECfMYBw8elHT6G/DacDgc+uGHH7Rs2bJzFoOSzPWFYmJizrm/TZs2Nb7HufafOWbbtm3P+RqbzWZ+XjUtwl4brVu3rrbt0ksvlXS6njk7t/Od14XOFwAAoL6iHq1+TOpRz6t1g/LkyZO6/vrrlZ6efs79s2fP1ty5c5Wenq4dO3YoKipK/fv3d/kBTElJ0apVq5SVlaVNmzappKREiYmJLnc6Sk5OVm5urrKzs5Wdna3c3Fw5HA5zf2VlpQYPHqyTJ09q06ZNysrK0ptvvqlJkybV9pQAAGiQfnknvv3792vEiBEqKyvT/Pnz9fXXX+vUqVMyDEOGYSghIaHaa8443x0Fz+fMJSZPP/10tYW53T32he4i2KxZs1ofs7Yxki64gLm7xzlzPueLr+1nDAAA0BBQj9b+fc9GPXparRuUt99+u5577jkNHTq02j7DMDR//nxNnz5dQ4cOVVxcnJYvX65Tp04pMzNT0ulbvy9dulRz5sxRv3791KVLF2VkZGjXrl3m1N68vDxlZ2frr3/9qxISEpSQkKAlS5bo3Xff1d69eyVJa9eu1ZdffqmMjAx16dJF/fr105w5c7RkyRKzcw8AQEN34MCBc24vLi6W0+lUUFCQQkJC9P7776u8vFwTJkzQo48+qquvvlqBgYFm/LffflvtGGe+Tf7mm29qldPMmTP1+OOPa+/everbt6/5bfgvnVl76Hz5n/m2vDaio6MlSfv27TtvzJn3++XaR/7+/pKkkpISj+RRU2779+8/5/7zbQcAAKjvqEd/Rj3qPR69Sc6+fftUUFDgcn18QECAevfubV77n5OTo4qKCpeY6OhoxcXFmTFbtmyR3W5XfHy8GdOjRw/Z7XaXmLi4OHMAJGngwIEqKytTTk6OJ08LAADLfP/99+YXeL/0xhtvSJJ69uwpm82moqIiSee+hGXjxo06cuRIte39+vWTJC1evLjWef3pT3/SlClT9OWXX6pv3746duyYy/4z6968//77OnXqVLXX/+Mf/6j1e7Zp00Zt2rRRQUGB/vnPf1bb/95776moqEjt27d3We/nTHH41VdfVXvN2rVra53HuVxxxRVq3bq1Dh8+rC1btlTbn5WV5ZH3AQAAqGvUoz+jHvUejzYoz0yrjYyMdNkeGRlp7isoKJC/v3+128SfHfPLOyGdERER4RJz9vu0bNlS/v7+553eW1ZWpuLiYpcHAAD13ZQpU/T999+bz/ft26c//vGPkqSxY8dK+nmh7IyMDJ08edKMPXz4sB566KFzHvf//u//FB4erjVr1ig9Pb3aZS6ffvqpnE7nefOaPXu2Jk6cqN27d6tv374uOcbGxurWW2/VDz/8oD/84Q8ux16xYoU2bNjg7um7GD9+vCTpscce09GjR83tBQUFmjJlikvMGb1795YkpaWluSwnk5GR4dFC7czi7pMmTXKpMXJzc13ubgkAANDQUI/+jHrUOzzaoDzj7Ovaf3k3p/M5O+Zc8b8m5pfS0tLMm+7Y7fbzLpQKAEB90aNHD11yySWKjY3V7373OyUlJSkuLk6HDx/W/fffr7vuukvS6bsMdurUSZ999pmuvvpq/e53v1NiYqKuueYatWzZ8px38gsNDdXf//53BQcHa/z48YqNjdXw4cM1ZMgQXXnllbrlllvMb8LPZ86cOUpJSdEXX3yhfv36ucQvWrRIoaGh+vOf/6yOHTsqOTlZPXv2lMPhMAvZM5e7uOuxxx7T7bffri+++EKxsbEaOnSofvvb3+qaa65RXl6e7rrrLj388MMurxk3bpwuu+wy/eMf/1DHjh11991364YbbtCIESP06KOP1ur9azJlyhTFx8dry5YtuuqqqzRs2DDdfvvtio+PV3JyssfeBwAAoC5Rj7qiHvUOX08eLCoqStLprvEvr7UvLCw0ZztGRUWpvLxcRUVFLrMoCwsLzR/WqKioc079PXr0qMtxtm3b5rK/qKhIFRUV1WZWnjFt2jRNnDjRfF5cXEyTEgAaiKUjuludgiUCAgKUnZ2tP/zhD3r77bd17NgxtWvXTqNGjVJKSooZ5+/vr08//VTTp0/XBx98oHfffVeXX365xo8fr6efflp33HHHOY9/6623Kjc3V7NmzdKHH36ot99+WyEhIbrqqqs0evRo8297TebNm6fKykotWLBA/fv31/r169WiRQu1b99e27Zt07Rp07R+/Xq98847uv766/Xuu++qqKhICxcuVFhYWK0+Dx8fH61evVoLFy7UsmXL9OGHH0qSOnbsqP/93//VmDFjdMklrt+/RkZGauPGjZoyZYo2bNigw4cPq2vXrlq3bp1sNpvmzZtXqxzOJyAgQOvXr9ezzz6rN954Q++8847atm2r5557TpMmTdKiRYs88j4AAMAa1KPUoxL1qLfYjAvdtqimF9tsWrVqldktNwxD0dHReuyxxzR16lRJUnl5uSIiIjRr1iyNGTNGTqdTl112mTIyMjRs2DBJUn5+vlq3bq33339fAwcOVF5enjp27Kht27bppptukiRt27ZNPXr00L///W+1b99eH3zwgRITE3Xo0CGzGbpy5Uo98MADKiwsVEhIyAXzLy4ult1ul9PpdCse8KjM4e7FJa/0bh5APfDjjz9q3759ateuXY13y0Pj8fDDD+vll19WVlaWhg938/+HTUhtfieoZxq2Oh0/ag8AOC/q0aaHevTC3P298EQ9U+sZlCUlJS53V9q3b59yc3MVGhqqNm3aKCUlRampqYqNjVVsbKxSU1PVvHlzcyqp3W7XyJEjNWnSJIWFhSk0NFSTJ09W586dzcVRO3TooEGDBmnUqFF65ZVXJEmjR49WYmKi2rdvL0kaMGCAOnbsKIfDoRdeeEE//PCDJk+erFGjRlGcAwBQD5wpaDp06OCy/c0339Rf//pX2e12DR482KLsAAAA0NhRjzYctW5QfvbZZ7r11lvN52cumX7ggQe0bNkyTZ06VaWlpRo7dqyKiooUHx+vtWvXKjg42HzNvHnz5Ovrq2HDhqm0tFR9+/bVsmXL5OPjY8asWLFCEyZMMO/2nZSUpPT0dHO/j4+P3nvvPY0dO1Y333yzAgMDlZycrBdffLH2nwIAAPC448ePq2PHjrr22msVGxsrPz8/5eXlKS8vT5dccokWLlyoSy+91Oo0AQAA0EhRjzYcF3WJd0PHJVGwFJdZASYuqWmcSktL9dRTT2ndunU6ePCgTpw4odDQUCUkJGjy5Mnq1auX1SnWW1zi3XRwiTcA1A/Uo40T9ejFqdeXeAMAALgjMDCQKxsAAABgGerRhuOSC4cAAAAAAAAAgHfQoAQAAAAAAABgGRqUAAAAAAAAACxDgxIAAAAAAACAZWhQAgAAAAAAALAMDUoAAAAAAAAAlqFBCQAAAAAAAMAyNCgBAAAAAAAAWMbX6gQAXEDmcPfikld6Nw8AAAAAAAAvYAYlAAAN1HfffSebzaY+ffpYnYrbPvnkE9lsNo0YMcLqVAAAAOAB1KTwBGZQAgAaBndnE1uN2cwAAACNE/Uo4DU0KAEAaKAuv/xy5eXlqXnz5lanAgAAgCaKmhSeQIMSAIAGys/PT9dee63VaQAAAKAJoyaFJ7AGJQAA9VBeXp4cDoeuuuoqNWvWTJdddpluuOEGpaSkKD8/X1LN6/1UVFTo+eef19VXX61mzZrpyiuv1IwZM1RRUaG2bdvKZrO5xP9yHZ4ffvhBDz/8sFq1aqWAgADFxcXpb3/72znzfO+99/Tggw+qQ4cOCgkJUVBQkK6//nqlpqaqrKzM458LAAAA6g41KeoKMygBAKhndu7cqV69eunHH3/UTTfdpJtuukknTpzQt99+qz//+c+666671KpVq/O+3jAM3X333XrnnXcUHBys22+/XVVVVZozZ45yc3NrfO/jx48rISFBTqdTN910k0pKSrRx40aNHDlSVVVV+r//+z+X+JEjR+rkyZPq1KmTOnfurOLiYm3fvl3Tp0/XRx99pLVr18rHx8cTHwsAAADqEDUp6hINSgAA6pmXXnpJpaWlevPNNzV06FCXfXl5eWrRokWNr1+xYoXeeecdXX311dq4caNZOB48eFC/+c1vtH///vO+9p133tH//M//aPny5QoKCjK33XXXXfrjH/9YrRh8+eWX1b9/fzNWkk6cOKHk5GS9++67WrFihX7/+9/X5vQBAABQD1CToi5xiTcAAPVMYWGhJOm2226rtq9Dhw41flMtnS7QJOmPf/yjS2xMTIyeeeaZGl8bEhKixYsXuxR3d955pzp37qwDBw7ou+++c4m/6667XGIlKTg4WPPmzZN0upAEAABAw0NNirrEDEoAAOqZrl276oMPPtDvf/97Pfnkk+rWrZsuucS97xQrKiq0Y8cOXXLJJdW+6Zaku+++Ww8++OB5X9+tWzeFhoZW237NNddo165dys/PV9u2bV32ff3113r//ff1zTff6OTJk6qqqpJhGOY+AA1M5nD3Y5NXei8PAIClqElRl2hQAgBQz0yZMkWbNm3SmjVrtGbNGtntdsXHxysxMVEjRoxQcHDweV/7/fffq7y8XK1atZK/v3+1/ZdeeqlatmypoqKic76+devW59x+6aWXSpLLIuOGYWjy5MmaN2+eWfyd7cSJE+fNFQAAAPUXNSnqEpd4AwBQz4SEhOif//ynPv30U02dOlXt27fXRx99pAkTJqh9+/b6z3/+c8FjnH1HxF86X+F2odedbeXKlZo7d64uv/xy/eMf/9Dhw4dVXl4uwzDMorGm9wIAAED9RU2KukSDEgCAeshms6lXr16aNWuWtm3bpvz8fN17773Kz8/XH/7wh/O+LiwsTH5+fiooKFB5eXm1/SUlJTp+/LhHcly1apUkadGiRfqf//kfRUdHy8/PT5L07bffeuQ9AAAAYB1qUtQVGpQAADQAl112mWbMmCFJ2rVr13nj/Pz81L17d1VVVZnF2i/94x//8FhOZy7JiYmJqbbv73//u8feBwAAAPUDNSm8hQYlAAD1zMsvv6x9+/ZV2/7BBx9Iktq0aVPj68eMGSNJevrpp1VQUGBuP3TokGbOnOmxPK+55hpJ0uLFi10um/n000/1wgsveOx9AAAAUPeoSVGXaFACAFDPvPzyy7ryyivVqVMn/e53v9M999yjLl26KCUlRYGBgXrmmWdqfL3D4dCQIUP01VdfqX379ho6dKjuuusudejQQXFxcWrTpo152cvFmDBhgoKCgrRw4ULFxcXp3nvv1S233KLevXvroYceuujjAwAAwDrUpKhLNCgBAKhn/vjHP+rBBx+UzWbTRx99pDVr1ujUqVMaPXq0vvjiCyUkJNT4epvNpn/84x+aOXOmwsPD9d577+lf//qXUlJS9Pe//11HjhxRWFjYRed5zTXXaMeOHRoyZIiOHTum1atXq6SkRK+88grfVgMAADRw1KSoSzajCd/KqLi4WHa7XU6nUyEhIVang6Ymc7hnj5e80rPHA+rQjz/+qH379qldu3Zq1qyZ1ek0atu2bVOPHj00aNAg8/Ic1D+1+Z2gnmnY6nT8PF17SNQfABoN6tG6RU3aMLj7e+GJeoYZlAAANEK7du1SRUWFy7bvvvtODz/8sCQpOTnZirQAAADQhFCTwl2+VicAAAA8b8qUKfrss890/fXXKyIiQocOHdJnn32mH3/8UXfccYfuv/9+q1MEAABAI0dNCnfRoAQAoBEaMWKEqqqqtGvXLm3atEn+/v7q3LmzkpOTNW7cONlsNqtTBAAAQCNHTQp30aAEAKARuueee3TPPfdYnQYAAACaMGpSuIs1KAEAAAAAAABYhgYlAAAAAAAAAMvQoAQAAAAAAABgGRqUAIB6wzAMq1MA6gV+FwAAsAZ/g4Gf1eXvAw1KAIDlfHx8JEkVFRUWZwLUD2d+F878bgAAAO+iHgWqq8ualAYlAMByfn5+CggIkNPp5FtrNHmGYcjpdCogIEB+fn5WpwMAQJNAPQq4quua1Nfr7wAAgBvCw8N1+PBhHTp0SHa7XX5+frLZbFanBdQZwzBUUVEhp9OpkpISXX755VanBABAk0I9ClhXk9KgBADUCyEhIZKkY8eO6fDhwxZnA1gnICBAl19+ufk7AQAA6gb1KPCzuq5JaVACAOqNkJAQhYSEqKKiQpWVlVanA9Q5Hx8fLusGAMBC1KOANTUpDUoAQL3j5+dHkwYAAACWoR4F6hY3yQEAAAAAAABgGRqUAAAAAAAAACxDgxIAAAAAAACAZWhQAgAAAAAAALAMDUoAAAAAAAAAlqFBCQAAAAAAAMAyNCgBAAAAAAAAWIYGJQAAAAAAAADL+FqdAAAAAIAGKnO4e3HJK72bBwAAaNCYQQkAAAAAAADAMjQoAQAAAAAAAFiGBiUAAAAAAAAAy9CgBAAAAAAAAGAZGpQAAAAAAAAALEODEgAAAI3KTz/9pCeffFLt2rVTYGCgrrzySs2cOVNVVVVmjGEYmjFjhqKjoxUYGKg+ffpoz549LscpKyvT+PHjFR4erqCgICUlJenQoUMuMUVFRXI4HLLb7bLb7XI4HDp+/HhdnCYAAECjQYMSAAAAjcqsWbP08ssvKz09XXl5eZo9e7ZeeOEFLViwwIyZPXu25s6dq/T0dO3YsUNRUVHq37+/Tpw4YcakpKRo1apVysrK0qZNm1RSUqLExERVVlaaMcnJycrNzVV2drays7OVm5srh8NRp+cLAADQ0PlanQAAAADgSVu2bNGdd96pwYMHS5Latm2rN954Q5999pmk07Mn58+fr+nTp2vo0KGSpOXLlysyMlKZmZkaM2aMnE6nli5dqtdff139+vWTJGVkZCgmJkbr16/XwIEDlZeXp+zsbG3dulXx8fGSpCVLlighIUF79+5V+/btLTh7AACAhocZlAAAAGhUevXqpY8++khfffWVJOlf//qXNm3apDvuuEOStG/fPhUUFGjAgAHmawICAtS7d29t3rxZkpSTk6OKigqXmOjoaMXFxZkxW7Zskd1uN5uTktSjRw/Z7XYz5mxlZWUqLi52eQAAADR1zKAEAABAo/L444/L6XTq2muvlY+PjyorK/X888/r3nvvlSQVFBRIkiIjI11eFxkZqf3795sx/v7+atmyZbWYM68vKChQREREtfePiIgwY86WlpamZ5999uJOEAAAoJFhBiUAAAAalZUrVyojI0OZmZnauXOnli9frhdffFHLly93ibPZbC7PDcOotu1sZ8ecK76m40ybNk1Op9N8HDx40N3TAgAAaLSYQQkAAIBGZcqUKXriiSd0zz33SJI6d+6s/fv3Ky0tTQ888ICioqIknZ4B2apVK/N1hYWF5qzKqKgolZeXq6ioyGUWZWFhoXr27GnGHDlypNr7Hz16tNrszDMCAgIUEBDgmRNtSDKHuxeXvNK7eQAAgHqJGZQAAABoVE6dOqVLLnEtc318fFRVVSVJateunaKiorRu3Tpzf3l5uTZs2GA2H7t27So/Pz+XmPz8fO3evduMSUhIkNPp1Pbt282Ybdu2yel0mjEAAAC4MGZQAgAAoFEZMmSInn/+ebVp00adOnXS559/rrlz5+rBBx+UdPqy7JSUFKWmpio2NlaxsbFKTU1V8+bNlZycLEmy2+0aOXKkJk2apLCwMIWGhmry5Mnq3LmzeVfvDh06aNCgQRo1apReeeUVSdLo0aOVmJjIHbwBAABqgQYlAAAAGpUFCxboqaee0tixY1VYWKjo6GiNGTNGTz/9tBkzdepUlZaWauzYsSoqKlJ8fLzWrl2r4OBgM2bevHny9fXVsGHDVFpaqr59+2rZsmXy8fExY1asWKEJEyaYd/tOSkpSenp63Z0sAABAI2AzDMOwOgmrFBcXy263y+l0KiQkxOp00NS4uxaTu1izCQCaJOqZhq1Ox8/TtYc3UM8AANDgeKKeYQ1KAAAAAAAAAJahQQkAAAAAAADAMjQoAQAAAAAAAFiGBiUAAAAAAAAAy3AXbwAAAAD1g7s38uFmOgAANCrMoAQAAAAAAABgGRqUAAAAAAAAACxDgxIAAAAAAACAZWhQAgAAAAAAALCMxxuUP/30k5588km1a9dOgYGBuvLKKzVz5kxVVVWZMYZhaMaMGYqOjlZgYKD69OmjPXv2uBynrKxM48ePV3h4uIKCgpSUlKRDhw65xBQVFcnhcMhut8tut8vhcOj48eOePiUAAAAAAAAAXuLxBuWsWbP08ssvKz09XXl5eZo9e7ZeeOEFLViwwIyZPXu25s6dq/T0dO3YsUNRUVHq37+/Tpw4YcakpKRo1apVysrK0qZNm1RSUqLExERVVlaaMcnJycrNzVV2drays7OVm5srh8Ph6VMCAAAAAAAA4CW+nj7gli1bdOedd2rw4MGSpLZt2+qNN97QZ599Jun07Mn58+dr+vTpGjp0qCRp+fLlioyMVGZmpsaMGSOn06mlS5fq9ddfV79+/SRJGRkZiomJ0fr16zVw4EDl5eUpOztbW7duVXx8vCRpyZIlSkhI0N69e9W+fXtPnxoAAAAAAAAAD/P4DMpevXrpo48+0ldffSVJ+te//qVNmzbpjjvukCTt27dPBQUFGjBggPmagIAA9e7dW5s3b5Yk5eTkqKKiwiUmOjpacXFxZsyWLVtkt9vN5qQk9ejRQ3a73YwBAAAAAAAAUL95fAbl448/LqfTqWuvvVY+Pj6qrKzU888/r3vvvVeSVFBQIEmKjIx0eV1kZKT2799vxvj7+6tly5bVYs68vqCgQBEREdXePyIiwow5W1lZmcrKysznxcXFv/IsAQAAAAAAAHiCx2dQrly5UhkZGcrMzNTOnTu1fPlyvfjii1q+fLlLnM1mc3luGEa1bWc7O+Zc8TUdJy0tzbyhjt1uV0xMjLunBQAAAAAAAMALPN6gnDJlip544gndc8896ty5sxwOhx577DGlpaVJkqKioiSp2izHwsJCc1ZlVFSUysvLVVRUVGPMkSNHqr3/0aNHq83OPGPatGlyOp3m4+DBgxd3sgAAAAAAAAAuiscblKdOndIll7ge1sfHR1VVVZKkdu3aKSoqSuvWrTP3l5eXa8OGDerZs6ckqWvXrvLz83OJyc/P1+7du82YhIQEOZ1Obd++3YzZtm2bnE6nGXO2gIAAhYSEuDwAAAAAAAAAWMfja1AOGTJEzz//vNq0aaNOnTrp888/19y5c/Xggw9KOn1ZdkpKilJTUxUbG6vY2FilpqaqefPmSk5OliTZ7XaNHDlSkyZNUlhYmEJDQzV58mR17tzZvKt3hw4dNGjQII0aNUqvvPKKJGn06NFKTEzkDt4AAAAAAABAA+HxBuWCBQv01FNPaezYsSosLFR0dLTGjBmjp59+2oyZOnWqSktLNXbsWBUVFSk+Pl5r165VcHCwGTNv3jz5+vpq2LBhKi0tVd++fbVs2TL5+PiYMStWrNCECRPMu30nJSUpPT3d06cEAAAAoD7JHO5+bPJK7+UBAAA8wmYYhmF1ElYpLi6W3W6X0+nkcm/UvdoU1u6g+AaAJol6pmGr0/HzdO3RUFAjAQDgVZ6oZzy+BiUAAAAAAAAAuIsGJQAAAAAAAADL0KAEAAAAAAAAYBkalAAAAAAAAAAsQ4MSAAAAAAAAgGVoUAIAAAAAAACwDA1KAAAAAAAAAJahQQkAAAAAAADAMjQoAQAAAAAAAFjG1+oEAAAAAMBrMoe7F5e80rt5AACA82IGJQAAAAAAAADL0KAEAAAAAAAAYBku8QYAAAAALgUHAMAyzKAEAAAAAAAAYBkalAAAAAAAAAAsQ4MSAAAAAAAAgGVoUAIAAAAAAACwDA1KAAAAAAAAAJbhLt4AAAAA4C7u9g0AgMcxgxIAAAAAAACAZWhQAgAAAAAAALAMDUoAAAAAAAAAlqFBCQAAAAAAAMAyNCgBAAAAAAAAWIYGJQAAAAAAAADL0KAEAAAAAAAAYBkalAAAAAAAAAAsQ4MSAAAAAAAAgGV8rU4AAAAAABqdzOHuxyav9F4eAAA0AMygBAAAAAAAAGAZGpQAAAAAAAAALEODEgAAAAAAAIBlaFACAAAAAAAAsAwNSgAAAAAAAACWoUEJAAAAAAAAwDI0KAEAAAAAAABYhgYlAAAAAAAAAMvQoAQAAAAAAABgGRqUAAAAAAAAACxDgxIAAAAAAACAZWhQAgAAAAAAALAMDUoAAAAAAAAAlqFBCQAAAAAAAMAyNCgBAAAAAAAAWMbX6gQAAAAAoKEYWT7Zrbil/i96ORMAABoPGpQAAAAAYKXM4e7FJa/0bh4AAFiEBiUAAACAJs/dmZEAAMDzWIMSAAAAAAAAgGWYQQkAAAAAHlabGZmsVwkAaOqYQQkAAAAAAADAMsygBAAAANBosbYkAAD1HzMoAQAAAAAAAFiGBiUAAAAAAAAAy3CJNwAAAIAGhcu2AQBoXJhBCQAAAAAAAMAyNCgBAAAAAAAAWIZLvAEAAACgIcgc7l5c8krv5gEAgIcxgxIAAAAAAACAZZhBCQAAAKBe4OY3AAA0TcygBAAAAAAAAGAZGpQAAABodA4fPqz7779fYWFhat68uW644Qbl5OSY+w3D0IwZMxQdHa3AwED16dNHe/bscTlGWVmZxo8fr/DwcAUFBSkpKUmHDh1yiSkqKpLD4ZDdbpfdbpfD4dDx48fr4hTRiIwsn+zWAwCAxooGJQAAABqVoqIi3XzzzfLz89MHH3ygL7/8UnPmzFGLFi3MmNmzZ2vu3LlKT0/Xjh07FBUVpf79++vEiRNmTEpKilatWqWsrCxt2rRJJSUlSkxMVGVlpRmTnJys3NxcZWdnKzs7W7m5uXI4HHV5ugAAAA0ea1ACAACgUZk1a5ZiYmL06quvmtvatm1r/rdhGJo/f76mT5+uoUOHSpKWL1+uyMhIZWZmasyYMXI6nVq6dKlef/119evXT5KUkZGhmJgYrV+/XgMHDlReXp6ys7O1detWxcfHS5KWLFmihIQE7d27V+3bt6+7kwYAAGjAmEEJAACARmX16tXq1q2b7r77bkVERKhLly5asmSJuX/fvn0qKCjQgAEDzG0BAQHq3bu3Nm/eLEnKyclRRUWFS0x0dLTi4uLMmC1btshut5vNSUnq0aOH7Ha7GXO2srIyFRcXuzwAAACaOhqUAAAAaFS+/fZbLVq0SLGxsfrwww/10EMPacKECXrttdckSQUFBZKkyMhIl9dFRkaa+woKCuTv76+WLVvWGBMREVHt/SMiIsyYs6WlpZnrVdrtdsXExFzcyQIAADQCNCgBAADQqFRVVenGG29UamqqunTpojFjxmjUqFFatGiRS5zNZnN5bhhGtW1nOzvmXPE1HWfatGlyOp3m4+DBg+6eFgAAQKNFgxIAAACNSqtWrdSxY0eXbR06dNCBAwckSVFRUZJUbZZjYWGhOasyKipK5eXlKioqqjHmyJEj1d7/6NGj1WZnnhEQEKCQkBCXBwAAQFNHgxIAAACNys0336y9e/e6bPvqq690xRVXSJLatWunqKgorVu3ztxfXl6uDRs2qGfPnpKkrl27ys/PzyUmPz9fu3fvNmMSEhLkdDq1fft2M2bbtm1yOp1mDAAAAC6Mu3gDnpY53OoMAABo0h577DH17NlTqampGjZsmLZv367Fixdr8eLFkk5flp2SkqLU1FTFxsYqNjZWqampat68uZKTkyVJdrtdI0eO1KRJkxQWFqbQ0FBNnjxZnTt3Nu/q3aFDBw0aNEijRo3SK6+8IkkaPXq0EhMTuYM3vGJk+WS34pZ6OQ8AADyNBiUAAAAale7du2vVqlWaNm2aZs6cqXbt2mn+/Pm67777zJipU6eqtLRUY8eOVVFRkeLj47V27VoFBwebMfPmzZOvr6+GDRum0tJS9e3bV8uWLZOPj48Zs2LFCk2YMMG823dSUpLS09Pr7mQBAAAaAZthGIbVSViluLhYdrtdTqeT9X/gOVbNoExeac37AgAsRT3TsNXp+Fl4lYe7M//gGUtHdLc6BQBAE+KJeoY1KAEAAAAAAABYhgYlAAAAAAAAAMvQoAQAAAAAAABgGRqUAAAAAAAAACzjlQbl4cOHdf/99yssLEzNmzfXDTfcoJycHHO/YRiaMWOGoqOjFRgYqD59+mjPnj0uxygrK9P48eMVHh6uoKAgJSUl6dChQy4xRUVFcjgcstvtstvtcjgcOn78uDdOCQAAAAAAAIAX+Hr6gEVFRbr55pt166236oMPPlBERIT+85//qEWLFmbM7NmzNXfuXC1btkzXXHONnnvuOfXv31979+5VcHCwJCklJUVr1qxRVlaWwsLCNGnSJCUmJionJ0c+Pj6SpOTkZB06dEjZ2dmSpNGjR8vhcGjNmjWePi0AAAAAaBjcvWN78krv5gEAgJs83qCcNWuWYmJi9Oqrr5rb2rZta/63YRiaP3++pk+frqFDh0qSli9frsjISGVmZmrMmDFyOp1aunSpXn/9dfXr10+SlJGRoZiYGK1fv14DBw5UXl6esrOztXXrVsXHx0uSlixZooSEBO3du1ft27f39KkBAAAAAAAA8DCPX+K9evVqdevWTXfffbciIiLUpUsXLVmyxNy/b98+FRQUaMCAAea2gIAA9e7dW5s3b5Yk5eTkqKKiwiUmOjpacXFxZsyWLVtkt9vN5qQk9ejRQ3a73Yw5W1lZmYqLi10eAAAAAAAAAKzj8Qblt99+q0WLFik2NlYffvihHnroIU2YMEGvvfaaJKmgoECSFBkZ6fK6yMhIc19BQYH8/f3VsmXLGmMiIiKqvX9ERIQZc7a0tDRzvUq73a6YmJiLO1kAAAAAAAAAF8XjDcqqqirdeOONSk1NVZcuXTRmzBiNGjVKixYtcomz2Wwuzw3DqLbtbGfHnCu+puNMmzZNTqfTfBw8eNDd0wIAAAAAAADgBR5vULZq1UodO3Z02dahQwcdOHBAkhQVFSVJ1WY5FhYWmrMqo6KiVF5erqKiohpjjhw5Uu39jx49Wm125hkBAQEKCQlxeQAAAAAAAACwjscblDfffLP27t3rsu2rr77SFVdcIUlq166doqKitG7dOnN/eXm5NmzYoJ49e0qSunbtKj8/P5eY/Px87d6924xJSEiQ0+nU9u3bzZht27bJ6XSaMQAAAAAAAADqN4/fxfuxxx5Tz549lZqaqmHDhmn79u1avHixFi9eLOn0ZdkpKSlKTU1VbGysYmNjlZqaqubNmys5OVmSZLfbNXLkSE2aNElhYWEKDQ3V5MmT1blzZ/Ou3h06dNCgQYM0atQovfLKK5Kk0aNHKzExkTt4AwAAAAAAAA2ExxuU3bt316pVqzRt2jTNnDlT7dq10/z583XfffeZMVOnTlVpaanGjh2roqIixcfHa+3atQoODjZj5s2bJ19fXw0bNkylpaXq27evli1bJh8fHzNmxYoVmjBhgnm376SkJKWnp3v6lAAAAAAAAAB4ic0wDMPqJKxSXFwsu90up9PJepTwnMzh1rxv8kpr3hcAYCnqmYatTsfPCzXKyPLJHj8m6s7SEd2tTgEA0Ah4op7x+BqUAAAAAAAAAOAuGpQAAAAAAAAALEODEgAAAAAAAIBlaFACAAAAAAAAsAwNSgAAAAAAAACWoUEJAAAAAAAAwDI0KAEAAAAAAABYhgYlAAAAAAAAAMvQoAQAAAAAAABgGRqUAAAAAAAAACzja3UCAAAAAAALZA53PzZ5pffyAAA0ecygBAAAAAAAAGAZZlACAAAAMI0sn2x1CgAAoIlhBiUAAAAAAAAAy9CgBAAAAAAAAGAZGpQAAAAAAAAALMMalEBjwV0YAQAAUAu1WW90qRfzAACAGZQAAAAAAAAALEODEgAAAAAAAIBlaFACAAAAAAAAsAwNSgAAAAAAAACWoUEJAAAAAAAAwDI0KAEAAAAAAABYhgYlAAAAAAAAAMv4Wp0AAAAAAO8bWT7Z6hQAAADOiQYlAAAAAKBmmcPdi0te6d08AACNEpd4AwAAAAAAALAMMyjryMhlO9yKWzqiu5czAQAAAAAAAOoPZlACAAAAAAAAsAwzKOsZZloCAAAAqG/cvcnSUi/nAQBonJhBCQAAAAAAAMAyNCgBAAAAAAAAWIYGJQAAAAAAAADL0KAEAAAAAAAAYBkalAAAAAAAAAAsQ4MSAAAAAAAAgGVoUAIAAAAAAACwjK/VCeDXGblsh1txS0d093ImAAAAAAAAwK/HDEoAAAAAAAAAlqFBCQAAAAAAAMAyNCgBAAAAAAAAWIYGJQAAAAAAAADL0KAEAAAAAAAAYBkalAAAAAAAAAAsQ4MSAAAAAAAAgGVoUAIAAAAAAACwDA1KAAAAAAAAAJahQQkAAAAAAADAMjQoAQAAAAAAAFiGBiUAAAAAAAAAy/hanQC8a+SyHW7HLh3R3YuZAAAAAGj0Moe7F5e80rt5AAAaFGZQAgAAAAAAALAMDUoAAAAAAAAAlqFBCQAAAAAAAMAyrEEJAAAAAPCIkeWT3Ypb6uU8AAANCw1KmNy9oQ430wEAAAAAAICncIk3AAAAAAAAAMvQoAQAAAAAAABgGRqUAAAAAAAAACxDgxIAAAAAAACAZWhQAgAAAAAAALAMDUoAAAAAAAAAlvG1OgE0PCOX7XArbumI7l7OBAAAAAAAAA0dMygBAAAAAAAAWIYGJQAAAAAAAADL0KAEAABAo5aWliabzaaUlBRzm2EYmjFjhqKjoxUYGKg+ffpoz549Lq8rKyvT+PHjFR4erqCgICUlJenQoUMuMUVFRXI4HLLb7bLb7XI4HDp+/HgdnBXQwGUOd+8BAGgSaFACAACg0dqxY4cWL16s6667zmX77NmzNXfuXKWnp2vHjh2KiopS//79deLECTMmJSVFq1atUlZWljZt2qSSkhIlJiaqsrLSjElOTlZubq6ys7OVnZ2t3NxcORyOOjs/AACAxoAGJQAAABqlkpIS3XfffVqyZIlatmxpbjcMQ/Pnz9f06dM1dOhQxcXFafny5Tp16pQyMzMlSU6nU0uXLtWcOXPUr18/denSRRkZGdq1a5fWr18vScrLy1N2drb++te/KiEhQQkJCVqyZIneffdd7d2715JzBgAAaIhoUAIAAKBRGjdunAYPHqx+/fq5bN+3b58KCgo0YMAAc1tAQIB69+6tzZs3S5JycnJUUVHhEhMdHa24uDgzZsuWLbLb7YqPjzdjevToIbvdbsacraysTMXFxS4PAACAps7X6gQAAAAAT8vKytLOnTu1Y8eOavsKCgokSZGRkS7bIyMjtX//fjPG39/fZeblmZgzry8oKFBERES140dERJgxZ0tLS9Ozzz5b+xMCGpmR5ZPdilvq5TwAAPUDDUp4zchl1f9BcC5LR3T3ciYAAKApOXjwoB599FGtXbtWzZo1O2+czWZzeW4YRrVtZzs75lzxNR1n2rRpmjhxovm8uLhYMTExNb4nAABAY8cl3gAAAGhUcnJyVFhYqK5du8rX11e+vr7asGGDXnrpJfn6+pozJ8+e5VhYWGjui4qKUnl5uYqKimqMOXLkSLX3P3r0aLXZmWcEBAQoJCTE5QEAANDU0aAEAABAo9K3b1/t2rVLubm55qNbt2667777lJubqyuvvFJRUVFat26d+Zry8nJt2LBBPXv2lCR17dpVfn5+LjH5+fnavXu3GZOQkCCn06nt27ebMdu2bZPT6TRjAAAAcGFc4g0AAIBGJTg4WHFxcS7bgoKCFBYWZm5PSUlRamqqYmNjFRsbq9TUVDVv3lzJycmSJLvdrpEjR2rSpEkKCwtTaGioJk+erM6dO5s33enQoYMGDRqkUaNG6ZVXXpEkjR49WomJiWrfvn0dnjEAAEDDRoMSAAAATc7UqVNVWlqqsWPHqqioSPHx8Vq7dq2Cg4PNmHnz5snX11fDhg1TaWmp+vbtq2XLlsnHx8eMWbFihSZMmGDe7TspKUnp6el1fj4AAAANmdcv8U5LS5PNZlNKSoq5zTAMzZgxQ9HR0QoMDFSfPn20Z88el9eVlZVp/PjxCg8PV1BQkJKSknTo0CGXmKKiIjkcDtntdtntdjkcDh0/ftzbpwQAAIAG5pNPPtH8+fPN5zabTTNmzFB+fr5+/PFHbdiwodqsy2bNmmnBggX6/vvvderUKa1Zs6baDW1CQ0OVkZGh4uJiFRcXKyMjQy1atKiDMwIAAGg8vNqg3LFjhxYvXqzrrrvOZfvs2bM1d+5cpaena8eOHYqKilL//v114sQJMyYlJUWrVq1SVlaWNm3apJKSEiUmJqqystKMSU5OVm5urrKzs5Wdna3c3Fw5HA5vnhIAAAAAAAAAD/Jag7KkpET33XeflixZopYtW5rbDcPQ/PnzNX36dA0dOlRxcXFavny5Tp06pczMTEmS0+nU0qVLNWfOHPXr109dunRRRkaGdu3apfXr10uS8vLylJ2drb/+9a9KSEhQQkKClixZonfffVd79+711mkBAAAAAAAA8CCvrUE5btw4DR48WP369dNzzz1nbt+3b58KCgrMdXokKSAgQL1799bmzZs1ZswY5eTkqKKiwiUmOjpacXFx2rx5swYOHKgtW7bIbrcrPj7ejOnRo4fsdrs2b958zoXJy8rKVFZWZj4vLi729GnjVxi5bIfbsUtHdPdiJgAAAAAAAKhrXmlQZmVlaefOndqxo3rjqaCgQJIUGRnpsj0yMlL79+83Y/z9/V1mXp6JOfP6goICRUREVDt+RESEGXO2tLQ0Pfvss7U/IQAAAAAAAABe4fFLvA8ePKhHH31UGRkZatas2XnjbDaby3PDMKptO9vZMeeKr+k406ZNk9PpNB8HDx6s8f0AAAAAAAAAeJfHG5Q5OTkqLCxU165d5evrK19fX23YsEEvvfSSfH19zZmTZ89yLCwsNPdFRUWpvLxcRUVFNcYcOXKk2vsfPXq02uzMMwICAhQSEuLyAAAAAAAAAGAdjzco+/btq127dik3N9d8dOvWTffdd59yc3N15ZVXKioqSuvWrTNfU15erg0bNqhnz56SpK5du8rPz88lJj8/X7t37zZjEhIS5HQ6tX37djNm27ZtcjqdZgwAAAAAAACA+s3ja1AGBwcrLi7OZVtQUJDCwsLM7SkpKUpNTVVsbKxiY2OVmpqq5s2bKzk5WZJkt9s1cuRITZo0SWFhYQoNDdXkyZPVuXNn9evXT5LUoUMHDRo0SKNGjdIrr7wiSRo9erQSExPPeYMcAAAAAAAAAPWP1+7iXZOpU6eqtLRUY8eOVVFRkeLj47V27VoFBwebMfPmzZOvr6+GDRum0tJS9e3bV8uWLZOPj48Zs2LFCk2YMMG823dSUpLS09Pr/HzQBGQOtzoDAAAAAACARqlOGpSffPKJy3ObzaYZM2ZoxowZ531Ns2bNtGDBAi1YsOC8MaGhocrIyPBQlgAAAAAAAADqmiUzKAEAAAAAuKDaXMmUvNJ7eQAAvMrjN8kBAAAAAAAAAHcxgxIAAAAAUC+NLJ/sduxSL+YBAPAuGpRoUEYu2+HR4y0d0d2jxwMAAAAAAEDtcIk3AAAAAAAAAMvQoAQAAAAAAABgGRqUAAAAAAAAACxDgxIAAAAAAACAZWhQAgAAAAAAALAMDUoAAAAAAAAAlvG1OgHAUpnDrc4AAAAAAACgSaNBiSZtZPlkt+KW+r/o5UwAAAAAAACaJi7xBgAAAAAAAGAZGpQAAAAAAAAALEODEgAAAAAAAIBlWIMSAAAAANDwuXsDzOSV3s0DAFBrzKAEAAAAAAAAYBlmUAIAAAAAGryR5ZPdilvq5TwAALXHDEoAAAAAAAAAlmEGJeAGd7+NlaSl/i96MRMAAAAAAIDGhQYl4GFuX1pCIxMAAAAAAIBLvAEAAAAAAABYhwYlAAAAAAAAAMvQoAQAAAAAAABgGRqUAAAAAAAAACzDTXKApihzuHtxySu9mwcAAAAAAGjyaFACFuFu3wAAAAAAAFziDQAAAAAAAMBCNCgBAAAAAAAAWIYGJQAAAAAAAADL0KAEAAAAAAAAYBkalAAAAAAAAAAsQ4MSAAAAAAAAgGVoUAIAAAAAAACwDA1KAAAAAAAAAJahQQkAAAAAAADAMr5WJwCgZiPLJ7sVt9T/RS9nAgAAAAAA4HnMoAQAAAAAAABgGRqUAAAAAAAAACzDJd5AI+HupeASl4MDAACgCcsc7l5c8krv5gEAMNGgBAAAAAA0GW6v8e7lPAAAP6NBCTRBFGUAAAAAAKC+YA1KAAAAAAAAAJahQQkAAAAAAADAMjQoAQAAAAAAAFiGBiUAAAAAAAAAy3CTHADnlzncvbjkld7NAwAAAAAANFo0KAGcF3f7BgAAAAAA3sYl3gAAAAAAAAAsQ4MSAAAAAAAAgGVoUAIAAAAAAACwDA1KAAAAAAAAAJahQQkAAAAAAADAMjQoAQAAAAAAAFiGBiUAAAAAAAAAy/hanQCAhm/ksh1uxS0d0d3LmQAAAAAekjncvbjkld7NAwCaABqUAAAAAACcZWT5ZLfilno5DwBoCrjEGwAAAAAAAIBlmEEJoM64eym4xOXgAAAAAAA0FcygBAAAAAAAAGAZZlACqJe48Q4AAAAAAE0DMygBAAAAAAAAWIYGJQAAAAAAAADL0KAEAAAAAAAAYBkalAAAAAAAAAAsQ4MSAAAAAAAAgGVoUAIAAAAAAACwjK/VCQDAxRi5bIdHj7d0RHePHg8AAAAAANSMGZQAAAAAAAAALMMMSgAAAAAAfq3M4e7HJq/0Xh4A0IDRoAQAAECjkpaWprfeekv//ve/FRgYqJ49e2rWrFlq3769GWMYhp599lktXrxYRUVFio+P11/+8hd16tTJjCkrK9PkyZP1xhtvqLS0VH379tXChQvVunVrM6aoqEgTJkzQ6tWrJUlJSUlasGCBWrRoUWfnC8BaI8snux271It5AEBDxiXeAAAAaFQ2bNigcePGaevWrVq3bp1++uknDRgwQCdPnjRjZs+erblz5yo9PV07duxQVFSU+vfvrxMnTpgxKSkpWrVqlbKysrRp0yaVlJQoMTFRlZWVZkxycrJyc3OVnZ2t7Oxs5ebmyuFw1On5AgAANHTMoAQAAECjkp2d7fL81VdfVUREhHJycnTLLbfIMAzNnz9f06dP19ChQyVJy5cvV2RkpDIzMzVmzBg5nU4tXbpUr7/+uvr16ydJysjIUExMjNavX6+BAwcqLy9P2dnZ2rp1q+Lj4yVJS5YsUUJCgvbu3esyYxMAAADnxwxKAAAANGpOp1OSFBoaKknat2+fCgoKNGDAADMmICBAvXv31ubNmyVJOTk5qqiocImJjo5WXFycGbNlyxbZ7XazOSlJPXr0kN1uN2POVlZWpuLiYpcHAABAU0eDEgAAAI2WYRiaOHGievXqpbi4OElSQUGBJCkyMtIlNjIy0txXUFAgf39/tWzZssaYiIiIau8ZERFhxpwtLS1NdrvdfMTExFzcCQIAADQCHr/Em0XJATRkI5ftcDt26YjuXswEAOAJjzzyiL744gtt2rSp2j6bzeby3DCMatvOdnbMueJrOs60adM0ceJE83lxcTFNSgAA0OR5vEF5ZlHy7t2766efftL06dM1YMAAffnllwoKCpL086Lky5Yt0zXXXKPnnntO/fv31969exUcHCzp9KLka9asUVZWlsLCwjRp0iQlJiYqJydHPj4+kk4vSn7o0CFznaHRo0fL4XBozZo1nj4tAKjG3WYmjUwAsMb48eO1evVqbdy40eVL7qioKEmnZ0C2atXK3F5YWGjOqoyKilJ5ebmKiopcZlEWFhaqZ8+eZsyRI0eqve/Ro0erzc48IyAgQAEBARd/cgAAAI2Ixy/xzs7O1ogRI9SpUyddf/31evXVV3XgwAHl5ORIUrVFyePi4rR8+XKdOnVKmZmZkmQuSj5nzhz169dPXbp0UUZGhnbt2qX169dLkrko+V//+lclJCQoISFBS5Ys0bvvvqu9e/d6+rQAAADQQBiGoUceeURvvfWW/vnPf6pdu3Yu+9u1a6eoqCitW7fO3FZeXq4NGzaYzceuXbvKz8/PJSY/P1+7d+82YxISEuR0OrV9+3YzZtu2bXI6nWYMAAAALszra1CyKDkAAADq0rhx45SRkaHMzEwFBweroKBABQUFKi0tlXT6suyUlBSlpqZq1apV2r17t0aMGKHmzZsrOTlZkmS32zVy5EhNmjRJH330kT7//HPdf//96ty5s3lX7w4dOmjQoEEaNWqUtm7dqq1bt2rUqFFKTEzkDt4AAAC14PFLvH+ptouS79+/34zx1qLkzz777MWdFAB4CZeMA4BnLFq0SJLUp08fl+2vvvqqRowYIUmaOnWqSktLNXbsWHNN9LVr15rLDUnSvHnz5Ovrq2HDhplroi9btsxcbkiSVqxYoQkTJphfrCclJSk9Pd27JwgAANDIeLVByaLkAFC7G+8AAC6eYRgXjLHZbJoxY4ZmzJhx3phmzZppwYIFWrBgwXljQkNDlZGR8WvSBAAAwP/Pa5d4n1mU/OOPPz7vouS/dL5FyWuK+TWLkoeEhLg8AAAAAAAAAFjH4w1KFiUHAAAAAAAA4C6PX+I9btw4ZWZm6p133jEXJZdOLzQeGBjosih5bGysYmNjlZqaet5FycPCwhQaGqrJkyefd1HyV155RZI0evRoFiUHAAAAAAAAGhCPNyhZlBwAAAAAgOq4KSIAnJvNcGcV8UaquLhYdrtdTqfT6+tRcpMMAJ5CwQrgl+qynoHnUY8COBfqPQANiSfqGa/dJAcAAAAAAAAALsTjl3gDAOoPLiMCAAAAANR3zKAEAAAAAAAAYBlmUAJAA8MaYgAAAACAxoQGJQCAS8EBAAAAAJbhEm8AAAAAAAAAlqFBCQAAAAAAAMAyNCgBAAAAAAAAWIY1KAEAHlebG/mwriUAAAAANG3MoAQAAAAAAABgGWZQAgDcVpuZkQAAAAAAuIMZlAAAAAAAAAAsQ4MSAAAAAAAAgGW4xBsAAAAAgHrE3WV1uNkggMaCBiUAwFIU4AAAAADQtHGJNwAAAAAAAADL0KAEAAAAAAAAYBkalAAAAAAAAAAswxqUAIAGgbUqAQAAAKBxYgYlAAAAAAAAAMvQoAQAAAAAAABgGS7xBgA0Ku5eCu4NXF4OAAAAALXHDEoAAAAAAAAAlqFBCQAAAAAAAMAyNCgBAAAAAAAAWIY1KAEA8BB3179krUoAAOAJ1B4AGgtmUAIAAAAAAACwDA1KAAAAAAAAAJahQQkAAAAAAADAMjQoAQAAAAAAAFiGm+QAAFDHWNAeAAAAAH7GDEoAAAAAAAAAlmEGJQAA9ZS7My0l92dbMnsTAAAAQH3DDEoAAAAAAAAAlmEGJQAAjUBtZlsCAIAmJnO4+7HJK72XBwCcBw1KAAAAAAAasZHlk92OXerFPADgfGhQAgCAarwxI5N1LQEAAACcC2tQAgAAAAAAALAMDUoAAAAAAAAAluESbwAAUCfcvWycS8EBAACApoUZlAAAAAAAAAAswwxKAABQrzDTEgAAAGhaaFACAIAGiUYmAAAA0DjQoAQAAI2au41MiWYmAAAAYAUalAAAAP8/ZmUCAJo6/hYCsAI3yQEAAAAAAABgGRqUAAAAAAAAACzDJd4AAAC1xOVvAAAAgOcwgxIAAAAAAACAZWhQAgAAAAAAALAMDUoAAAAAAAAAlqFBCQAAAAAAAMAy3CQHAAAAAADUCjeMA+BJzKAEAAAAAAAAYBkalAAAAAAAAAAsQ4MSAAAAAAAAgGVYgxIAAAAAAHgFa1UCcAczKAEAAAAAAABYhgYlAAAAAAAAAMvQoAQAAAAAAABgGRqUAAAAAAAAACzDTXIAAAAAAICl3L2ZjsQNdYDGiBmUAAAAAAAAACxDgxIAAAAAAACAZWhQAgAAAAAAALAMa1ACAAAAAIAGw931KlmrEmg4mEEJAAAAAAAAwDI0KAEAAAAAAABYhku8AQAAAABAo8Ol4EDDwQxKAAAAAAAAAJahQQkAAAAAAADAMlziDQAAAAAAmiwuBQesxwxKAAAAAAAAAJZhBiUAAAAAAMAFuDvTUmK2JVBbzKAEAAAAAAAAYJkGP4Ny4cKFeuGFF5Sfn69OnTpp/vz5+s1vfmN1WgAAAGhCqEkBAL9Um9mW7mBGJhq7Bj2DcuXKlUpJSdH06dP1+eef6ze/+Y1uv/12HThwwOrUAAAA0ERQkwIAAFwcm2EYhtVJ/Frx8fG68cYbtWjRInNbhw4ddNdddyktLe2Cry8uLpbdbpfT6VRISIg3U/X4tycAAKD+q4vZDnVZz+DcLqYmpR4FAFiFWZnwFE/UMw32Eu/y8nLl5OToiSeecNk+YMAAbd68+ZyvKSsrU1lZmfnc6XRKOv1Belt5aYnX3wMAANQvdVFjnHmPBvydc4NW25qUehQAUF84Fn1sdQo1+st9Xd2OHbcix+PHhPs8UY822AblsWPHVFlZqcjISJftkZGRKigoOOdr0tLS9Oyzz1bbHhMT45UcAQBA05Yxtu7e68SJE7Lb7XX3hpBU+5qUehQAAPd4o46qy9qsKbqYerTBNijPsNlsLs8Nw6i27Yxp06Zp4sSJ5vOqqir98MMPCgsLO+9rPKG4uFgxMTE6ePAgl17VI4xL/cXY1E+MS/3F2NRPdTUuhmHoxIkTio6O9tp74MLcrUmpRxsOPrPa4fOqPT6z2uHzqh0+r9rjM6udX35ewcHBF12PNtgGZXh4uHx8fKp9M11YWFjtG+wzAgICFBAQ4LKtRYsW3kqxmpCQEH7I6yHGpf5ibOonxqX+Ymzqp7oYF2ZOWqe2NSn1aMPDZ1Y7fF61x2dWO3xetcPnVXt8ZrVz5vO62Hq0wd7F29/fX127dtW6detctq9bt049e/a0KCsAAAA0JdSkAAAAF6/BzqCUpIkTJ8rhcKhbt25KSEjQ4sWLdeDAAT300ENWpwYAAIAmgpoUAADg4jToBuXw4cP1/fffa+bMmcrPz1dcXJzef/99XXHFFVan5iIgIEDPPPNMtct5YC3Gpf5ibOonxqX+YmzqJ8al6WgINSk/j7XHZ1Y7fF61x2dWO3xetcPnVXt8ZrXj6c/LZlzMPcABAAAAAAAA4CI02DUoAQAAAAAAADR8NCgBAAAAAAAAWIYGJQAAAAAAAADL0KAEAAAAAAAAYBkalG6YMWOGbDabyyMqKsrcbxiGZsyYoejoaAUGBqpPnz7as2ePyzHKyso0fvx4hYeHKygoSElJSTp06JBLTFFRkRwOh+x2u+x2uxwOh44fP14Xp9hg1TQ2FRUVevzxx9W5c2cFBQUpOjpav//97/Xf//7X5RiMjedd6Hfml8aMGSObzab58+e7bGdcPM+dccnLy1NSUpLsdruCg4PVo0cPHThwwNzPuHjHhcampKREjzzyiFq3bq3AwEB16NBBixYtcjkGY+Mdhw8f1v3336+wsDA1b95cN9xwg3Jycsz91ABoKBYuXKh27dqpWbNm6tq1qz799FOrU6qX0tLS1L17dwUHBysiIkJ33XWX9u7da3VaDUZaWppsNptSUlKsTqVeu9DfFrj66aef9OSTT6pdu3YKDAzUlVdeqZkzZ6qqqsrq1OqFjRs3asiQIYqOjpbNZtPbb7/tst+dWqWpqekzc7eP0JRc6Gfsl87373t30KB0U6dOnZSfn28+du3aZe6bPXu25s6dq/T0dO3YsUNRUVHq37+/Tpw4YcakpKRo1apVysrK0qZNm1RSUqLExERVVlaaMcnJycrNzVV2drays7OVm5srh8NRp+fZEJ1vbE6dOqWdO3fqqaee0s6dO/XWW2/pq6++UlJSksvrGRvvqOl35oy3335b27ZtU3R0dLV9jIt31DQu//nPf9SrVy9de+21+uSTT/Svf/1LTz31lJo1a2bGMC7eU9PYPPbYY8rOzlZGRoby8vL02GOPafz48XrnnXfMGMbG84qKinTzzTfLz89PH3zwgb788kvNmTNHLVq0MGOoAdAQrFy5UikpKZo+fbo+//xz/eY3v9Htt9/u8gUUTtuwYYPGjRunrVu3at26dfrpp580YMAAnTx50urU6r0dO3Zo8eLFuu6666xOpV5z528LXM2aNUsvv/yy0tPTlZeXp9mzZ+uFF17QggULrE6tXjh58qSuv/56paenn3O/O7VKU1PTZ+ZuH6EpudDP2Bk1/fveLQYu6JlnnjGuv/76c+6rqqoyoqKijD/96U/mth9//NGw2+3Gyy+/bBiGYRw/ftzw8/MzsrKyzJjDhw8bl1xyiZGdnW0YhmF8+eWXhiRj69atZsyWLVsMSca///1vL5xV41DT2JzL9u3bDUnG/v37DcNgbLzFnXE5dOiQcfnllxu7d+82rrjiCmPevHnmPsbFOy40LsOHDzfuv//+8+5nXLznQmPTqVMnY+bMmS7bbrzxRuPJJ580DIOx8ZbHH3/c6NWr13n3UwOgobjpppuMhx56yGXbtddeazzxxBMWZdRwFBYWGpKMDRs2WJ1KvXbixAkjNjbWWLdundG7d2/j0UcftTqleutCf1tQ3eDBg40HH3zQZdvQoUNrrFubKknGqlWrzOfu1CpN3dmf2bmc3Udoys73edX073t3MYPSTV9//bWio6PVrl073XPPPfr2228lSfv27VNBQYEGDBhgxgYEBKh3797avHmzJCknJ0cVFRUuMdHR0YqLizNjtmzZIrvdrvj4eDOmR48estvtZgzO7Xxjcy5Op1M2m838hpKx8Z6axqWqqkoOh0NTpkxRp06dqr2WcfGe841LVVWV3nvvPV1zzTUaOHCgIiIiFB8f7zJ9n3Hxrpp+Z3r16qXVq1fr8OHDMgxDH3/8sb766isNHDhQEmPjLatXr1a3bt109913KyIiQl26dNGSJUvM/dQAaAjKy8uVk5Pj8jMoSQMGDODnyw1Op1OSFBoaanEm9du4ceM0ePBg9evXz+pU6r0L/W1Bdb169dJHH32kr776SpL0r3/9S5s2bdIdd9xhcWb1nzu1Ci7s7D4CXF3o3/fuokHphvj4eL322mv68MMPtWTJEhUUFKhnz576/vvvVVBQIEmKjIx0eU1kZKS5r6CgQP7+/mrZsmWNMREREdXeOyIiwoxBdTWNzdl+/PFHPfHEE0pOTlZISIgkxsZbLjQus2bNkq+vryZMmHDO1zMu3lHTuBQWFqqkpER/+tOfNGjQIK1du1a//e1vNXToUG3YsEES4+JNF/qdeemll9SxY0e1bt1a/v7+GjRokBYuXKhevXpJYmy85dtvv9WiRYsUGxurDz/8UA899JAmTJig1157TZKoAdAgHDt2TJWVlTX+nOLcDMPQxIkT1atXL8XFxVmdTr2VlZWlnTt3Ki0tzepUGoQL/W1BdY8//rjuvfdeXXvttfLz81OXLl2UkpKie++91+rU6j13ahXU7Fx9BLi60L/v3eXroXwatdtvv938786dOyshIUFXXXWVli9frh49ekiSbDaby2sMw6i27Wxnx5wr3p3jNGU1jc3EiRPNfRUVFbrnnntUVVWlhQsXXvC4jM3FqWlcevfurT//+c/auXNnrT8/xuXi1DQu99xzjyTpzjvv1GOPPSZJuuGGG7R582a9/PLL6t2793mPy7hcvAv9v+yll17S1q1btXr1al1xxRXauHGjxo4dq1atWtU4W4WxuThVVVXq1q2bUlNTJUldunTRnj17tGjRIv3+978346gB0BD8mp/Tpu6RRx7RF198oU2bNlmdSr118OBBPfroo1q7dq3LmtU4P3f/tuBnK1euVEZGhjIzM9WpUyfl5uYqJSVF0dHReuCBB6xOr0Hgb8CvU9s+QlOUk5Pzq/99fzZmUP4KQUFB6ty5s77++mvzLqtnf/tQWFhofksRFRWl8vJyFRUV1Rhz5MiRau919OjRat924Px+OTZnVFRUaNiwYdq3b5/WrVvn8q0HY1M3fjkun376qQoLC9WmTRv5+vrK19dX+/fv16RJk9S2bVtJjEtd+eW4hIeHy9fXVx07dnSJ6dChg3kTBcal7vxybEpLS/WHP/xBc+fO1ZAhQ3TdddfpkUce0fDhw/Xiiy9KYmy8pVWrVhf8nZCoAVC/hYeHy8fHp8afU1Q3fvx4rV69Wh9//LFat25tdTr1Vk5OjgoLC9W1a1ezrtuwYYNeeukl+fr6utwMDKdd6G8LqpsyZYqeeOIJ3XPPPercubMcDocee+wxZu26wZ1aBedWUx8BP3Pn3/fuokH5K5SVlSkvL0+tWrVSu3btFBUVpXXr1pn7y8vLtWHDBvXs2VOS1LVrV/n5+bnE5Ofna/fu3WZMQkKCnE6ntm/fbsZs27ZNTqfTjMGF/XJspJ//p/L1119r/fr1CgsLc4lnbOrGL8fF4XDoiy++UG5urvmIjo7WlClT9OGHH0piXOrKL8fF399f3bt31969e11ivvrqK11xxRWSGJe69MuxqaioUEVFhS65xPVPto+Pj6qqqiQxNt5y88031/g7QQ2AhsDf319du3Z1+RmUpHXr1vHzdQ6GYeiRRx7RW2+9pX/+859q166d1SnVa3379tWuXbtc6rpu3brpvvvuU25urnx8fKxOsd650N8WVHfq1Kka6yCcnzu1Cqq7UB8BP3Pn3/duq/VtdZqgSZMmGZ988onx7bffGlu3bjUSExON4OBg47vvvjMMwzD+9Kc/GXa73XjrrbeMXbt2Gffee6/RqlUro7i42DzGQw89ZLRu3dpYv369sXPnTuO2224zrr/+euOnn34yYwYNGmRcd911xpYtW4wtW7YYnTt3NhITE+v8fBuSmsamoqLCSEpKMlq3bm3k5uYa+fn55qOsrMw8BmPjeRf6nTnbue7yxbh43oXG5a233jL8/PyMxYsXG19//bWxYMECw8fHx/j000/NYzAu3nGhsendu7fRqVMn4+OPPza+/fZb49VXXzWaNWtmLFy40DwGY+N527dvN3x9fY3nn3/e+Prrr40VK1YYzZs3NzIyMswYagA0BFlZWYafn5+xdOlS48svvzRSUlKMoKCg8/5dbsoefvhhw263G5988olL7Xjq1CmrU2swuIt3zdz52wJXDzzwgHH55Zcb7777rrFv3z7jrbfeMsLDw42pU6danVq9cOLECePzzz83Pv/8c0OSMXfuXOPzzz837zjtTq3S1NT0mbnbR2hKLvQzdrZfexdvGpRuGD58uNGqVSvDz8/PiI6ONoYOHWrs2bPH3F9VVWU888wzRlRUlBEQEGDccsstxq5du1yOUVpaajzyyCNGaGioERgYaCQmJhoHDhxwifn++++N++67zwgODjaCg4ON++67zygqKqqLU2ywahqbffv2GZLO+fj444/NYzA2nneh35mznet/YIyL57kzLkuXLjWuvvpqo1mzZsb1119vvP322y77GRfvuNDY5OfnGyNGjDCio6ONZs2aGe3btzfmzJljVFVVmTGMjXesWbPGiIuLMwICAoxrr73WWLx4sct+agA0FH/5y1+MK664wvD39zduvPFGY8OGDVanVC+dr3Z89dVXrU6twaBBeWEX+tsCV8XFxcajjz5qtGnTxmjWrJlx5ZVXGtOnT2+yzaKzffzxx+f8/9YDDzxgGIZ7tUpTU9Nn5m4foSm50M/Y2X5tg9JmGIZR+0mcAAAAAAAAAHDxWIMSAAAAAAAAgGVoUAIAAAAAAACwDA1KAAAAAAAAAJahQQkAAAAAAADAMjQoAQAAAAAAAFiGBiUAAAAAAAAAy9CgBAAAAAAAAGAZGpQAAAAAAAAALEODEgAAAACARqpPnz5KSUmxOg0AqBENSgAAAAAAAACWoUEJAB7Sp08fjR8/XikpKWrZsqUiIyO1ePFinTx5Uv/7v/+r4OBgXXXVVfrggw+sThUAAABNwIgRI7Rhwwb9+c9/ls1mk81m03fffWd1WgBQDQ1KAPCg5cuXKzw8XNu3b9f48eP18MMP6+6771bPnj21c+dODRw4UA6HQ6dOnbI6VQAAADRyf/7zn5WQkKBRo0YpPz9f+fn5iomJsTotAKjGZhiGYXUSANAY9OnTR5WVlfr0008lSZWVlbLb7Ro6dKhee+01SVJBQYFatWqlLVu2qEePHlamCwAAgCagT58+uuGGGzR//nyrUwGA82IGJQB40HXXXWf+t4+Pj8LCwtS5c2dzW2RkpCSpsLCwznMDAAAAAKA+okEJAB7k5+fn8txms7lss9lskqSqqqo6zQsAAAAAgPqKBiUAAAAAAI2Uv7+/KisrrU4DAGpEgxIAAAAAgEaqbdu22rZtm7777jsdO3aMK3kA1Es0KAEAAAAAaKQmT54sHx8fdezYUZdddpkOHDhgdUoAUA138QYAAAAAAABgGWZQAgAAAAAAALAMDUoAAAAAAAAAlqFBCQAAAAAAAMAyNCgBAAAAAAAAWIYGJQAAAAAAAADL0KAEAAAAAAAAYBkalAAAAAAAAAAsQ4MSAAAAAAAAgGVoUAIAAAAAAACwDA1KAAAAAAAAAJahQQkAAAAAAADAMjQoAQAAAAAAAFjm/wMmgVTSIVP4ZQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -487,10 +487,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:50.111676Z", - "iopub.status.busy": "2024-01-10T15:12:50.111348Z", - "iopub.status.idle": "2024-01-10T15:12:51.146411Z", - "shell.execute_reply": "2024-01-10T15:12:51.145899Z" + "iopub.execute_input": "2024-02-06T01:09:41.955830Z", + "iopub.status.busy": "2024-02-06T01:09:41.955660Z", + "iopub.status.idle": "2024-02-06T01:09:43.037128Z", + "shell.execute_reply": "2024-02-06T01:09:43.036682Z" } }, "outputs": [ @@ -500,7 +500,7 @@ "text": [ "name value (rounded) at limit\n", "--------- ------------------ ----------\n", - "bkg_yield 118185 False" + "bkg_yield 118233 False" ] }, { @@ -508,7 +508,7 @@ "output_type": "stream", "text": [ "\n", - "sig_yield 20057.9 False" + "sig_yield 20032.7 False" ] }, { @@ -516,7 +516,7 @@ "output_type": "stream", "text": [ "\n", - "lambda -0.00199439 False" + "lambda -0.00197586 False" ] }, { @@ -524,7 +524,7 @@ "output_type": "stream", "text": [ "\n", - "mu 5279 False" + "mu 5278.98 False" ] }, { @@ -554,10 +554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:51.148326Z", - "iopub.status.busy": "2024-01-10T15:12:51.148022Z", - "iopub.status.idle": "2024-01-10T15:12:51.152687Z", - "shell.execute_reply": "2024-01-10T15:12:51.152180Z" + "iopub.execute_input": "2024-02-06T01:09:43.039090Z", + "iopub.status.busy": "2024-02-06T01:09:43.038768Z", + "iopub.status.idle": "2024-02-06T01:09:43.043309Z", + "shell.execute_reply": "2024-02-06T01:09:43.042910Z" } }, "outputs": [], @@ -596,10 +596,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:51.154636Z", - "iopub.status.busy": "2024-01-10T15:12:51.154265Z", - "iopub.status.idle": "2024-01-10T15:12:51.371092Z", - "shell.execute_reply": "2024-01-10T15:12:51.370603Z" + "iopub.execute_input": "2024-02-06T01:09:43.044977Z", + "iopub.status.busy": "2024-02-06T01:09:43.044680Z", + "iopub.status.idle": "2024-02-06T01:09:43.236540Z", + "shell.execute_reply": "2024-02-06T01:09:43.236047Z" } }, "outputs": [ @@ -615,7 +615,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGxCAYAAACOSdkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACE+ElEQVR4nO3deVyU1f4H8M8zw74NIiKgKCYo5lZpokYuqaWFy21xK4rAsiyXm1pZv1t2703LSistl0KtXEszzcqlxe0qbkW5IiaoqIgKDIusM+f3xzCPDMwM28AsfN6vF9fL85x5njM+0nz5nu85RxJCCBARERE1QQprd4CIiIjIWhgIERERUZPFQIiIiIiaLAZCRERE1GQxECIiIqImi4EQERERNVkMhIiIiKjJYiBERERETRYDISIiImqyGAgRERFRk8VAiIiIiJosBkJERETUZDEQIqJGMXv2bEiShL/++guPPfYYVCoV/Pz88NJLL6GsrAzJyckYOnQovL29ERoainnz5smvLSoqwvTp03HHHXfIr+vTpw82b95c5T7ffPMNIiMjoVKp4OHhgdtuuw1xcXHyea1Wi//+97/o2LEj3N3d4evri27duuGjjz5qlL8HIrItTtbuABE1LaNHj8YTTzyBiRMnYufOnZg3bx5KS0vx888/Y9KkSZgxYwbWrFmDV155BWFhYXj44YdRXFyMrKwszJgxA61atUJJSQl+/vlnPPzww1ixYgWefPJJAMCBAwcwZswYjBkzBrNnz4abmxvOnz+PX3/9Vb7/vHnzMHv2bPzf//0f+vXrh9LSUpw+fRo5OTlW+hshImuShBDC2p0gIsc3e/ZsvPXWW/jggw/w0ksvycfvvPNOJCUl4dtvv8U//vEPAEBZWRmCg4Nx7733YuPGjVWupdFoIITAc889h99//x2///47AOCDDz7AjBkzkJOTA5VKZbQfw4cPR3p6Ov74448GeJdEZG84NEZEjSo6Otrg+06dOkGSJAwbNkw+5uTkhLCwMJw/f14+9s033+Cee+6Bl5cXnJyc4OzsjISEBJw6dUpuc/fddwPQZZ2+/vprXLp0qcr9e/XqhT///BOTJk3C9u3bkZuba+m3SER2hIEQETUqPz8/g+9dXFzg4eEBNze3KseLiooAAN9++y1Gjx6NVq1aYdWqVThw4AAOHz6MuLg4uQ0A9OvXD9999x3Kysrw5JNPonXr1ujSpQvWrl0rt5k1axbef/99JCYmYtiwYWjevDkGDRqEI0eONOC7JiJbxUCIiGzeqlWr0K5dO6xfvx6jRo1C79690bNnTxQXF1dpO3LkSPzyyy9Qq9XYtWsXWrdujfHjx+PAgQMAdNmml156Cb///juysrKwdu1aXLx4EQ888ABu3rzZ2G+NiKyMgRAR2TxJkuDi4gJJkuRjGRkZRmeN6bm6uqJ///549913AcBoTZCvry8effRRvPDCC8jKykJaWprF+05Eto2zxojI5kVHR+Pbb7/FpEmT8Oijj+LixYv4z3/+g6CgIKSkpMjt3njjDaSnp2PQoEFo3bo1cnJy8NFHH8HZ2Rn9+/cHoCuW7tKlC3r27IkWLVrg/Pnz+PDDD9G2bVuEh4db6y0SkZUwECIim/f0008jMzMTS5YswfLly3Hbbbfh1VdfRXp6Ot566y25XWRkJI4cOYJXXnkF165dg6+vL3r27Ilff/0VnTt3BgAMHDgQGzduxOeff47c3FwEBgZiyJAh+Ne//gVnZ2drvUUishJOnyciIqImizVCRERE1GQxECIiIqImi4EQERERNVkMhIiIiKjJYiBERERETRYDISIiImqyHHYdIa1Wi8uXL8Pb29tgNVoiIiKyXUII5OXlITg4GApFw+drHDYQunz5MkJCQqzdDSIiIqqDixcvonXr1g1+H4cNhLy9vQHo/iJ9fHys3BsiIiKqidzcXISEhMif4w3NYQMh/XCYj48PAyEiIiI701hlLSyWJiIioiaLgRARERE1WQyEiIiIqMliIERERERNFgMhIiIiarIYCBEREVGT5bDT54mIbEVpaSk0Go21u0FkFUqlEs7OztbuhkkMhIiIGkhubi6uX7+O4uJia3eFyKpcXV3h7+9vk+v6MRAiImoAubm5uHTpEry8vODv7w9nZ2fue0hNjhACpaWlUKvVuHTpEgDYXDDEQIiIqAFcv34dXl5eaN26NQMgatLc3d3h7e2N9PR0XL9+3eYCIRZLExFZWGlpKYqLi6FSqRgEEUG3XYZKpUJxcTFKS0ut3R0DDISIiCxMXxhtywWiRI1N//NgaxMHGAgRETUQZoOIbrHVnwcGQtSk/fC/fLy8MBMHjhVauytERGQFLJamJutUajE+WJ0FAPgzpQjL/y8IrQI4lEFE1JQwI0RN1qZdefL/Ly3TZYeIiKhpYSBETZJGI3DguG447LFB3gCAvUkcHiNqynbt2gVJkhAbG2vtrlAjYiBETdKZCyUoKBTw9lDg8aE+UEjApWtluJZdZu2uETmktLQ0SJKEAQMGWOR6DFrIUhgIUZN0MlW35YFzWRoKcjMRHuICADj+N7dCICJqSlgsTU3S/w6dwt+JX+Jg2s94Td0XQV0nAWiJlPRSDOxp7d4REVFjYUaImpwVK1bgw9f64kLSUtzMPoOvvvoK78zsjSunv0HKhRJrd4/I4cyePRvt2rUDAOzevRuSJMlfFYe2Tp48iccffxxBQUFwcXFBq1at8OSTTyI5OdngerGxsRg4cCAA4IsvvjC43uzZs+V2P/zwA+Li4tCpUyf4+PjA09MT3bt3x5w5c7gRLsmYEaImJSUlBRMmTIAQWvmYfpXT07texm0RkQACrNQ7Isd0xx134JFHHsHGjRvRsmVLDB06VD4XFRUFAPjll18wfPhwFBYW4q677sKAAQNw+vRpfPXVV9i0aRN+/PFH3HvvvfJrMjIysH37drRv316+hv5eevHx8SgoKEDnzp3RtWtX5Obm4tChQ3j99dfxyy+/YMeOHVAqlY3zl0A2i4EQNSnLly83s7qphOOJa1Fc0heuLkyWUsMQQqCoRFi7G7Xi5iLVa1XgUaNG4Y477sDGjRsRERGBlStXGpwvKCjA448/jsLCQixevBjPPfecfG7BggV46aWXMH78eJw9exaurq6YMGECwsLCsH37dkRFRVW5nt6SJUswZMgQeHp6ysfy8vIwfvx4bN26FatXr8aTTz5Z5/dFjoGBEDUpaWlpEMLUh5BAUV46Ll8vQ7tgl0btFzUdRSUCD/0z3drdqJUfFrSGu2vDbY/w9ddf4+rVq7j33nsNgiAA+Oc//4nVq1fj6NGj2LRpE8aOHVvj644aNarKMW9vbyxYsABbt27F5s2bGQgRAyFqWkJDQwEY/w+6BAlu3q2RnslAiKgx7d27FwDw+OOPGz3/xBNP4OjRo9i7d2+tAiFANxz+448/4uzZsygoKIBWq5V/GUpJSalfx8khMBCiJiUuLg7vvjvPxFmBoE5jcCmTawlRw3FzkfDDgtbW7katuLk07GaZly9fBqD/RaUq/XF9u5oQQmDGjBlYsGCBySxwXl6e0ePUtDAQoiYlPDwcD4xbgG1r/wmFJEGr1UCpVEIIgacnL8S5klCkXyu1djfJgUmS1KDDTPasujqk2tQprV+/HvPnz0fr1q3x4Ycfok+fPmjRogWcnZ1RUlICV1dXM8Pk1JQwEKImxz/sUUSOuwO3Kb/GsT92Y8CAAZg6dSrSsoIwZ+UNZoSIGllwcDAAIDU11ej58+fPAwCCgoJqfM1NmzYBABYvXozo6GiDc+fOnatLN8lBcWoMNSlCCGRml8FDFYoP5n+IY8eOYeHChQgLC0NLP9002uS/r+HKlStW7imRY3Fx0dXdlZVV/UVDPy1+9erVRl+rP65vV931ACA7OxsAEBISUuXc119/XdNuUxPAQIialJx8LUrLAEkC/H0N1w/Jy0rF34nv4si2V/Haa6+xkJLIgvz9/eHs7Iy///5bXrtLb/To0WjZsiX27t2LZcuWGZz7+OOPcfjwYbRu3Rr/+Mc/5OP6LFLlxRb1OnToAABYtmyZwRDY3r178d5771nkPZFjYCBETcq1bN1/gP18lHB2ulVvsGLFCtzbpwsuJC3FtXM/4cuvvjK63gkR1Y2LiwuGDh2KjIwMdO/eHU8++SQmTJiAFStWwNPTE6tXr4a7uzsmTpyInj17Yvz48bjrrrswdepUeHp6Ys2aNXB1dZWvFxoaim7duuHIkSPo1asXnn76aUyYMAFbtmwBAEyZMgWenp749NNP0aVLF4wbNw79+vVD//79q0zRp6aNgRA1KZlZujR6i2a3skH61aa1Wi0gNIDQQqvRQKvVIj4+HmfPnrVWd4kcyueff46YmBjcuHEDa9asQUJCAnbv3g0AGDRoEA4fPoxx48YhPT0dGzZsQEZGhjx1vuKwmN7GjRsxatQonDt3Dl9++SUSEhLw+++/A9BlhA4fPozhw4fj+vXr2LJlC/Lz87F06VJmhMgAi6WpSckszwgFVAiEzK02LUkSEhISMHfu3EbpH5EjCwgIwJdffmnyfOfOnbFmzZoaXy8sLEwuijamU6dOcoaoMmMzxgYMGMCZZE0QM0LUpGRm6zJCAc1u/Q5gbrVpIQTS0tIao2tERGQFDISoScnM0mWEKg6NhYaGms0ImVrkjYiI7B8DIWpSruXoa4RuZYTi4uLMZoTi4+MbpW9ERNT4GAhRk5KVqwUA+KtuZYTCw8ORkJAAhUIBhUIJSApIkhIKhQIJCQkICwuzVneJiKiBMRCiJkMIgSy1bmismY/hP/3Y2FgkJydj9PjnENA+Gp36TERycjJiY2Ot0FMiImosnDVGTcbNIoHiUt0QmJ+Pssr5sLAwzHl3PuL/mwEfTwXCwuxrY0wiIqo9ZoSoycjK1WWDPNwkuLsa/6evD5ByC7QoLeM0WiIiR8dAiJoMfSBkLBuk5+2hgLL8pyInT2OyHREROQYGQtRkZOfq64NMB0IKhQRfb9357Dxto/SLiIish4EQNRn6GWPmMkLArUJqfQaJiIgcFwMhajJuDY2Z/2fvJ2eEGAgRETk6BkLUZNSkRgi4NXSWrWYgRETk6BgIUZMhB0KqmgVCWawRIiJyeLUKhGbPng1Jkgy+AgMD5fNCCMyePRvBwcFwd3fHgAEDcOLECYNrFBcXY/LkyfD394enpydGjBiB9PR0gzbZ2dmIiYmBSqWCSqVCTEwMcnJy6v4uiQDklAc2zbyqCYS8dT8WHBojsqy0tDRIkoQBAwZYuyuyAQMGQJIkbq5cR46wH2OtM0KdO3fGlStX5K9jx47J5+bNm4f58+dj0aJFOHz4MAIDAzFkyBDk5eXJbaZNm4ZNmzZh3bp12LdvH/Lz8xEdHQ2N5taHzvjx45GUlIRt27Zh27ZtSEpKQkxMTD3fKjV1Ofm6f2Mq72pqhPRDYyyWJiJyeLVeWdrJyckgC6QnhMCHH36I119/HQ8//DAA4IsvvkDLli2xZs0aTJw4EWq1GgkJCfjqq68wePBgAMCqVasQEhKCn3/+GQ888ABOnTqFbdu2ITExEZGRkQCAzz77DH369EFycjI6duxYn/dLTVhuvi4jpKomI6TyUhi0JyIix1XrjFBKSgqCg4PRrl07jB07FufOnQMApKamIiMjA/fff7/c1tXVFf3798f+/fsBAEePHkVpaalBm+DgYHTp0kVuc+DAAahUKjkIAoDevXtDpVLJbYwpLi5Gbm6uwReRXlGJFkUlupWifb3M/7PXB0rqAgZCRESOrlaBUGRkJL788kts374dn332GTIyMtC3b1/cuHEDGRkZAICWLVsavKZly5byuYyMDLi4uKBZs2Zm2wQEBFS5d0BAgNzGmLlz58o1RSqVCiEhIbV5a+Tg1OXZHWcnwN1VMtvWx7M8I1SggRDcZoOoIeTm5mLq1KkICQmBm5sbOnXqhAULFkCrNfwFJCkpCS+//DJ69OiBFi1awNXVFbfddhsmTZqEy5cvm7z+hQsX8OKLLyI8PBxubm5o3rw5evXqhTlz5qCwsLDa/qnVavTr1w+SJGHatGkG/y04d+4cRo8eDT8/P3h5eSEqKgrbt2/Hrl27IElSlc2aY2NjIUkSdu3ahe3bt2PgwIHw9fWFJEly/WtZWRkWLlyIHj16wMvLC15eXujVqxcWL15sUDqiFxoaCkky/t+ymvRjz549uO++++Dt7Q0fHx889NBDOHnypNHrFRQU4JVXXkGbNm3g5uaGiIgIzJ8/32H++1irQGjYsGF45JFH0LVrVwwePBg//PADAN0QmF7lByOEMPmwTLUx1r6668yaNQtqtVr+unjxYo3eEzUN6grDYtX9e9QPjZWWAYXFjvGDTmRLiouLcd999+HLL79Er169MGTIEJw/fx4vvfQS4uPjDdq+8847mD9/PjQaDe655x48+OCDEEJg8eLF6Nmzp9FgaM+ePejWrRs++eQTaLVajBw5En369MH169fx+uuv4+rVq2b7d/XqVQwYMAB79+7FW2+9hQ8//FD+70ZKSgoiIyPxzTffICAgAMOHD4dGo8GDDz6IjRs3mr3umjVrMGzYMBQUFGDYsGG4++67IUkSNBoNRo4ciSlTpuDs2bMYPHgwBg8ejNOnT2PSpEl47LHHqgSI9fH999/jvvvuQ1ZWFh544AEEBQXhxx9/RL9+/aokHIqLi3H//fdj3rx5KCwsxPDhwxEaGopXX30VL774osX6ZFWingYPHiyee+458ffffwsA4vfffzc4P2LECPHkk08KIYT45ZdfBACRlZVl0KZbt27ijTfeEEIIkZCQIFQqVZX7qFQqsXz58hr3S61WCwBCrVbX8h2RIzp04qYY+Px5MeHtyzVqP3TKBTHw+fPi8rXSBu4ZOaLCwkJx8uRJUVhYaO2u2JTU1FQBQAAQ3bp1E9euXZPPnT17VgQHBwsAYvPmzfLxX375RVy+bPhzq9FoxFtvvSUAiKefftrgXFZWlmjRooUAIBYsWCC0Wq3B+d27d4ucnBz5+/79+wsAIjU1Ve5jWFiYkCRJLFy4sMp7GDRokAAgJk+eLDQajXz8yy+/lN/bU089ZfCap556Sj63bt26Ktd8//33BQDRtWtXcfXqVfn45cuXRceOHQUA8cknnxi8pm3btsLUR/hvv/1mth8KhUKsWbNGPl5WViYeeeQRAUD861//MnjNnDlzBADRq1cvg7+3o0ePCh8fHwFAtG3b1mg/Kqvpz0Vjf37Xax2h4uJinDp1CkFBQWjXrh0CAwOxc+dO+XxJSQl2796Nvn37AgB69OgBZ2dngzZXrlzB8ePH5TZ9+vSBWq3GoUOH5DYHDx6EWq2W2xDVln7qvG81hdJ6csF0AWeOkWUJIXCz5KZdfYkGGAJ5//334e/vL3/fvn17/Otf/wIAfPLJJ/Lx++67D0FBQQavVSgUeOONN9CqVSts3rzZ4Nxnn32Ga9euITo6GtOmTauSAe7Xrx9UKpXRPp04cQL33HMP0tLS8NVXX1XJeJw9exa//PIL/Pz8MHfuXCgUtz5CY2Ji0K9fP7Pv+aGHHsKYMWOqHP/4448BAB9++KFBaUhQUBDee+89gzaWMH78eIwbN07+XqlU4rXXXgOgy6ZVtHjxYgDAggULDP7e7rrrLrzwwgsW65M11WrW2IwZMzB8+HC0adMGmZmZ+O9//4vc3Fw89dRT8jjqnDlzEB4ejvDwcMyZMwceHh4YP348AEClUiE+Ph7Tp09H8+bN4efnhxkzZshDbQDQqVMnDB06FM888wyWLl0KAHj22WcRHR3NGWNUZ+rygManmkJpPR9PBTKzNfKQGpGlFJYWouvHXa3djVo5NuUYPFw8LHY9Pz8/DBkypMrx8ePH4/nnn8f+/fsNyiFu3LiBLVu24Pjx48jJyZFrZkpLS5GVlYWsrCz4+fkBAH7++WcAwMSJE2vVp8TERLzwwgsoLCzEd999h4ceeqhKG/2EnQcffBCenp5Vzj/22GNVAomKRowYUeXYhQsXcOHCBQQGBuK+++6rcj46Ohq+vr5ITk7GtWvX0KJFi9q8LaMqTljS69ChAwBdcqJi3y5evIhWrVoZTUSMGzcOc+fOrXd/rK1WgVB6ejrGjRuH69evo0WLFujduzcSExPRtm1bAMDLL7+MwsJCTJo0CdnZ2YiMjMSOHTvg7e0tX2PBggVwcnLC6NGjUVhYiEGDBmHlypVQKm/9pr569WpMmTJFflgjRozAokWLLPF+qYlSyxmhmgVCupljpQyEiBqA/jOjMh8fH/j6+iInJwe5ublQqVRYu3Ytnn32WeTn55u8Xl5enhwI6etD27dvX6s+xcTEoKysDOvXrzcaBAGQ65FMTcZp06aN2XsYO6+/pqlFCSVJQtu2bZGTk4PLly9bJBBq3bp1lWNeXl4AdCM9lftm6n1V937tRa0CoXXr1pk9L0kSZs+ejdmzZ5ts4+bmhoULF2LhwoUm2/j5+WHVqlW16RqRWfqp8NWtIaSnzxypOTRGFubu7I5jU45V39CGuDu7N9q9Kg7DnT9/HrGxsfI6dQ899BBatWoFd3ddf/r27YsDBw4YHbqrblJEZePGjcNXX32FN954A/369TO6Xl51165uCNHNza3W16xtGwDVFlbX9Dr692OqfW3/jm1VrRdUJLJHOeXbZag8az40BgC5XEuILEySJIsOM9mjCxcuGD2em5sLtVoNT09P+Pj4YM2aNSgpKcH06dMxderUKu3169hVFBISgtOnT+Ps2bOIiIiocZ/+/e9/Izg4GO+++y4GDRqE3377rcpSLvpaJVP9r8ts5eDgYAC6tfhM0d+vYq2Ui4sLACA/P1/O5tSnH+b6dv78eaPnTR23N9x0lZoEOSPkXcNi6fJAiENjRJZ348YNuZanorVr1wLQZXokSUJ2djYA40NRe/bsMToNXl9vumzZslr365133sHMmTNx8uRJDBo0CNevXzc4r6+T+fHHH3Hz5s0qr9+wYUOt79mmTRu0adMGGRkZ+PXXX6uc/+GHH5CdnY2OHTsaDIvpg6IzZ85Uec2OHTtq3Q9j2rZti9atW+PSpUs4cOBAlfPVjRLZCwZC1CSoa5kRkleXzufQGFFDmDlzJm7cuCF/n5qaiv/85z8AgEmTJgG4VcC7atUqFBQUyG0vXbqE5557zuh1J0yYAH9/f3z//fdYtGhRleGqvXv3Qq1Wm+zXvHnz8NJLL+H48eMYNGiQQR/Dw8MxcOBAZGVl4bXXXjO49urVq7F79+6avn0DkydPBgD885//xLVr1+TjGRkZmDlzpkEbvf79+wPQLSZcccHFVatWWTRA0RedT58+3WDHhqSkJIPZffaMgRA1CfqMkG81G67qcWiMqOH07t0bCoUC4eHhePTRRzFixAh06dIFly5dwhNPPIFRo0YB0E2U6dy5M44cOYKwsDA8+uijiI6ORocOHdCsWTOjM5n8/Pzw9ddfw9vbG5MnT0Z4eDjGjBmD4cOH47bbbkO/fv3kTJMpH3zwAaZNm4a//voLgwcPNmi/ePFi+Pn54aOPPsLtt9+O8ePHo2/fvoiJiZEDOP2wVU3985//xLBhw/DXX38hPDwcDz/8MP7xj3+gQ4cOOHXqFEaNGoXnn3/e4DUvvPACWrRogQ0bNuD222/HY489hjvuuAOxsbFGhxHraubMmYiMjMSBAwfQvn17jB49GsOGDUNkZKQ8I9zeMRAih6fRCjmgUXnWch0hDo0RWZyrqyt+/fVXjBs3DgcOHMD27dsREhKC999/HytXrpTbubi4YO/evXj++efh5uaGrVu34tSpU5g8eTJ27twJZ2dno9cfOHAgkpKS8Oyzz6KsrAzfffcdEhMTERAQgLlz55othNZbsGABJk+ejKSkJAwZMkTeCqNjx444ePAgHn30UWRkZMjrGG3dulUOzJo3b16rvw+lUoktW7bgo48+wm233Ybt27djx44d6NixIz755BNs2LDBYM0iQLc11Z49exAdHY0rV67gp59+gkqlws6dO41O068rV1dX/Pzzz5gxYwZcXV2xefNmnDt3Dv/9738dZja3JBpipSwboJ96qVar4ePjY+3ukBX9nnQa/4hbiKK8dDz6QBtMmzoF4eHhZl+TcrEEE+dmoLlKiW/mtmqknpKjKCoqQmpqKtq1a2d2phA5lueffx5LlizBunXrjC6c2NTV9OeisT+/mREih7ZixQrc3aMzLiQtRebfW7F0yWJEREQY/NZpjI9cLM2NV4nolqKiIpw6darK8Y0bN+Lzzz+HSqUyuQ4R2SZOnyeHlZKSggkTJhisqaGvKYyPj0dUVBTCwsKMvlY/NFam0W286uHmGOtlEFH95OTk4Pbbb0dERATCw8Ph7OyMU6dO4dSpU1AoFPj000+rTGcn28aMEDms5cuXm10ILCEhweRr3VwUcHXWvZZT6IlIT6VSYfr06XBxccG+ffuwZcsW3LhxAyNHjsTu3bsdpoC4KWFGiBxWWlqayWEtIQTS0tLMvl7lpd9vTIMgf/6oEBHg7u6O999/39rdIAtiRogcVmhoqNmMkKm9ffS8y+uE8m4yI0RE5KgYCJHDiouLM5sRio+PN/t6b3cGQkREjo6BEDms8PBwJCQkQJIUgKQEIEGpVEKhUCAhIcFkobSel0d5IMRFFYmIHBYLH8ihxcbGIunK7dj0zRdwKkzCg4PvwtSpU6sNggDA24MZISIiR8dAiByei1co2vd+Ba886YcHetd8WitrhIiIHB+Hxsjh6QMZfYanpvTt8xkIERE5LAZC5PDqGgh5cWiMiMjhMRAih6fP6HjXcMNVPWaEiIgcHwMhcmharZAzOj51HBrLZSBEROSwGAiRQ7tZJKBfSsirjkNjzAgRETkuBkLk0PTZHDcXCS7Otds41Yc1QkSNLi0tDZIkYcCAAdbuSo3t2rULkiQhNjbW2l2hOmAgRA4tr0C33Xxts0EVX1NYLFCmMb5CNRER2TeuI0QOra71QYBh8JR/Uwtf79oVWxNR7bVq1QqnTp2Ch4eHtbtCTQQzQuTQ9Ntj1CUjpFRIEIVp+DvxXfTp3ROTJ09GSkqKpbtIRBU4OzsjIiICbdq0sXZXqIlgIEQOTV5DyLP2/9RXrFiBXV8MxIWkpTh9MgmLFy9GREQEVq5caeFeEjUNp06dQkxMDNq3bw83Nze0aNECd9xxB6ZNm4YrV64AMF8jVFpairfffhthYWFwc3PDbbfdhtmzZ6O0tBShoaGQJMM6wIq1O1lZWXj++ecRFBQEV1dXdOnSBcuXLzfazx9++AFxcXHo1KkTfHx84Onpie7du2POnDkoLi62+N8LWReHxsih1XUxxZSUFEyYMAEQtwqlNRpdvVF8fDyioqJqtF8ZEen8/vvviIqKQlFREXr16oVevXohLy8P586dw0cffYRRo0YhKCjI5OuFEHjsscewefNmeHt7Y9iwYdBqtfjggw+QlJRk9t45OTno06cP1Go1evXqhfz8fOzZswfx8fHQarW6n/UK4uPjUVBQgM6dO6Nr167Izc3FoUOH8Prrr+OXX37Bjh07oFRyqNxRMBAih1bXQGj58uVVfrvUkyQJCQkJmDt3br37R02PEALiZpG1u1ErkoebyZ+Hmvr4449RWFiIjRs34uGHHzY4d+rUKfj6+pp9/erVq7F582aEhYVhz549ctB08eJF3HvvvTh//rzJ127evBmPPPIIvvjiC3h6esrHRo0ahf/85z9VAqElS5ZgyJAhclsAyMvLw/jx47F161asXr0aTz75ZG3ePtkwBkLk0PQ1QrUNhNLS0iCE8ZliQgikpaXVt2vURImbRUgNvd/a3aiVdmk7IHm61+samZmZAID77ruvyrlOnTpV+/olS5YAAP7zn/8YZI5CQkLw5ptvIi4uzuRrfXx8sGzZMoPAZuTIkejatSuOHTuGtLQ0hIaGyudGjRpV5Rre3t5YsGABtm7dis2bNzMQciAMhMih1bVGyFi9gZ4kSQb/0SSi6vXo0QM//fQTnnzySfzf//0fevbsCYWiZj+XpaWlOHz4MBQKRZVsEgA89thjZgOhnj17ws/Pr8rxDh064NixY7hy5UqVn+mUlBT8+OOPOHv2LAoKCqDVauVfjjhpwrEwECKHVtehsbi4OMybN8/oOSEE4uPj6903apokDze0S9th7W7UiuThVu9rzJw5E/v27cP333+P77//HiqVCpGRkYiOjkZsbCy8vb1NvvbGjRsoKSlBUFAQXFxcqpz38vJCs2bNkJ2dbfT1rVu3Nnrcy8sLAAwKoIUQmDFjBhYsWGAyK5yXl2eyr2R/GAiRQ6vr0Fh4eDgSEhIQFxcPAQkQWiiVCgghkJCQwEJpqjNJkuo9zGSPfHx88Ouvv+J///sfvv/+e+zatUsuPJ47dy727t2L9u3bm72GuTolU0FLda+rbP369Zg/fz5at26NDz/8EH369EGLFi3g7OyMkpISuLq6mr0X2R8GQuTQ5AUV6zB9PjY2FsWud2DOe59BFCRj5P2dMHXqVAZBRHUkSRKioqIQFRUFALh27RqmTp2KtWvX4rXXXsP69euNvq558+ZwdnZGRkYGSkpKqmSF8vPzkZOTY5E+btq0CQCwePFiREdHG5w7d+6cRe5BtoXrCJFD0wdCdVlQEQA6dghH+96v4OGJq7Fw4UIGQUQW1KJFC8yePRsAcOzYMZPtnJ2dcffdd0Or1cqBSkUbNmywWJ/0w2shISFVzn399dcWuw/ZDgZC5LBKSgWKSnQpbB/Puq35wR3oiSxjyZIlSE1NrXL8p59+AoBqV5KeOHEiAOCNN95ARkaGfDw9PR3//ve/LdbPDh06AACWLVtmMAS2d+9evPfeexa7D9kOBkLksPTBiyQBnm51WwPFmzvQE1nEkiVLcNttt6Fz58549NFHMXbsWNx5552YNm0a3N3d8eabb5p9fUxMDIYPH44zZ86gY8eOePjhhzFq1Ch06tQJXbp0QZs2beDs7Fzvfk6ZMgWenp749NNP0aVLF4wbNw79+vVD//798dxzz9X7+mR7GAiRw5KHxdwVUCjqFgh5MRAisoj//Oc/iIuLgyRJ+OWXX/D999/j5s2bePbZZ/HXX3+hT58+Zl8vSRI2bNiAf//73/D398cPP/yAP//8E9OmTcPXX3+Nq1evonnz5vXuZ4cOHXD48GEMHz4c169fx5YtW5Cfn4+lS5cyI+SgJOGg5e+5ublQqVRQq9Xw8fGxdnfICo7/XYwpH1xFkL8TVv87uE7XyLupxcgZ6QCA7R+HwNmpfqvrUtNQVFSE1NRUtGvXDm5u9Z96TuYdPHgQvXv3xtChQ+WhNrI9Nf25aOzPb2aEyGHJM8bqWCgN6IbU9DNvmRUisq5jx46htLTU4FhaWhqef/55AMD48eOt0S2yc5w+Tw4rr0C3SWpdZ4wBgEIhwdNNQn6hQP5NLfx8uNEikbXMnDkTR44cQffu3REQEID09HQcOXIERUVFePDBB/HEE09Yu4tkhxgIkcPKrccaQhV5eyiQX6hhRojIymJjY6HVanHs2DHs27cPLi4u6Nq1K8aPH48XXnih3hvDUtPEQIgcVn491xDS8/JQADcYCBFZ29ixYzF27Fhrd4McDGuEyGHlFtS/Rgi4NYWeawkRETkeBkLksPLruPN8ZfKiioUMhIiIHA0DIXJYuXXceb4yriVEROS4GAiRw8q3UCDk7c6hMSIiR8VAiByWvkbIUhkhBkJERI6HgRA5LEvXCHFojIjI8TAQIockhLBcjZA7i6WJiBwVAyFySDeLBLTlcUt9M0KcPk/24MqVK5g9ezauXLli7a4Q2RUGQuSQ9MNYzk6Aq3P9Vpv15tAY2YErV67grbfeYiBEVEtcWZocUl6FYbH6LrvvyXWEiCyi8s+ik5MTVCoVgoKC0KNHDwwfPhwjR46EkxM/mqjxMCNEDinPQvVBFa9RUCig0Yp6X4+oqXvqqafw1FNPYdy4cbjnnntQVlaGL7/8Eo8++ig6deqEQ4cOWeQ+K1euhCRJmD17tkWuR46pXp8Sc+fOhSRJmDZtmnxMCIHZs2cjODgY7u7uGDBgAE6cOGHwuuLiYkyePBn+/v7w9PTEiBEjkJ6ebtAmOzsbMTExUKlUUKlUiImJQU5OTn26S01Inn7qvGf9d4vXF0sDQAGzQkT1tnLlSqxcuRJffvklNm/ejFOnTiElJQWjR4/G2bNnMXDgQCQlJVm7m9RE1DkQOnz4MJYtW4Zu3boZHJ83bx7mz5+PRYsW4fDhwwgMDMSQIUOQl5cnt5k2bRo2bdqEdevWYd++fcjPz0d0dDQ0Go3cZvz48UhKSsK2bduwbds2JCUlISYmpq7dpSbGkhkhZycJbi66lH5+ITNCRA2hffv2WL9+PeLj43Hz5k3ExcVZu0vUVIg6yMvLE+Hh4WLnzp2if//+YurUqUIIIbRarQgMDBTvvPOO3LaoqEioVCqxZMkSIYQQOTk5wtnZWaxbt05uc+nSJaFQKMS2bduEEEKcPHlSABCJiYlymwMHDggA4vTp0zXqo1qtFgCEWq2uy1skO7dmu1oMfP68mLvyukWu99isdDHw+fMi+XyxRa5Hjq2wsFCcPHlSFBYWNsr9zpw5I2JjYwUAERsbK86cOdMo960tAKK6j52cnBzh6ekpAIi9e/canNu6dat4+umnRUREhPD29hYeHh6iW7du4u233xZFRUUGbfv37y/fr/LXihUrhBC6z6w1a9aIMWPGiPDwcOHh4SG8vLzE3XffLT755BOh0Wgs+v6bupr+XDT253edfl1+4YUX8NBDD2Hw4MEGx1NTU5GRkYH7779fPubq6or+/ftj//79AICjR4+itLTUoE1wcDC6dOkitzlw4ABUKhUiIyPlNr1794ZKpZLbVFZcXIzc3FyDL2q68gp02cXqps4X7NiPS9EvIHvRGrPtOHOMbNWKFSsQERGBr776CgDw1VdfISIiAitXrrRux+pIpVJh2LBhAIDffvvN4Fx8fDy++eYbqFQqDB06FPfeey8uXryI119/HQ8++KDBqMLQoUNxzz33AAC6d+8u1yU99dRTCAsLA6D73Bg/fjx27NiBgIAADB8+HJGRkThx4gReeOEFZqWaiFqX5q9btw6///47Dh8+XOVcRkYGAKBly5YGx1u2bInz58/LbVxcXNCsWbMqbfSvz8jIQEBAQJXrBwQEyG0qmzt3Lt56663avh1yUDUZGiu7nImrz7wJcbMIRQf/gmun9vAYFGm0rRf3GyMblJKSggkTJkCrvfXvUh8MxMfHIyoqSv7Qtyd33HEHNmzYgFOnThkcX7JkCYYMGQJPT0/5WF5eHsaPH4+tW7di9erVePLJJwEAr776KgIDA/G///0Po0aNMlow7eTkhI0bNyI6OhouLi7y8WvXruHBBx/EF198gbi4OPTr169h3ijZhFplhC5evIipU6di1apVcHNzM9mu8hRJIUS1U5grtzHW3tx1Zs2aBbVaLX9dvHjR7P3IsdUkEMpd+yPEzSL5e/VnG0y25TYbZIuWL19u8r+JkiQhISGhkXtkGf7+/gB0k2YqGjVqlEEQBADe3t5YsGABAGDz5s21uo+TkxMefvhhgyAIAFq0aIG5c+fW6Zpkf2qVETp69CgyMzPRo0cP+ZhGo8GePXuwaNEiJCcnA9BldIKCguQ2mZmZcpYoMDAQJSUlyM7ONsgKZWZmom/fvnKbq1evVrn/tWvXqmSb9FxdXeHq6lqbt0MOrCaBUMHWPQAA38mPI2fhatzcexTagkIoPN2rtPVy1xdLMxAi25GWlgYhjBfwCyGQlpbWuB2yEP17MhbkpaSk4Mcff8TZs2dRUFAArVYrt09JSanT/ZKSkrBjxw6cP38eN2/ehBBCnuBT12uS/ahVIDRo0CAcO3bM4NjTTz+NiIgIvPLKK7jtttsQGBiInTt34s477wQAlJSUYPfu3Xj33XcBAD169ICzszN27tyJ0aNHA9CtiHr8+HHMmzcPANCnTx+o1WocOnQIvXr1AgAcPHgQarVaDpaIzLk1fd54IKTJyUPJibMAANXEx5C/+VeUXbiCosS/jA6PcZsNskWhoaFmM0KhoaGN2yELuX79OgDAz89PPiaEwIwZM7BgwQKTwV/F2ck1UVJSgtjYWKxdu9Zkm9pek+xPrYbGvL290aVLF4MvT09PNG/eHF26dJHXFJozZw42bdqE48ePIzY2Fh4eHhg/fjwAXSFcfHw8pk+fjl9++QV//PEHnnjiCXTt2lUuvu7UqROGDh2KZ555BomJiUhMTMQzzzyD6OhodOzY0fJ/C+RwqssIFR0+DggB5/YhcGrZHG6RXXXHfz9ptD2HxsgWxcXFmc0IxcfHN3KPLEO/htDtt98uH1u/fj3mz5+PVq1aYcOGDbh06RJKSkoghEBxcTEAmPy7MGX+/PlYu3YtunTpgp9++glXr16Vr6kf4ajtNcn+WHwd85dffhmFhYWYNGkSsrOzERkZiR07dsDb21tus2DBAjg5OWH06NEoLCzEoEGDsHLlSiiVtxa/W716NaZMmSLPLhsxYgQWLVpk6e6Sg6ouECr56wwAwPWuTgAAt7tuR/43O1BcTSDEoTGyJeHh4UhISEB8fDwkSYJGo4FSqYQQAgkJCXZZKK1Wq7Ft2zYAwMCBA+XjmzZtAgAsXrwY0dHRBq85d+5cne6lv6Y+GLLENcn+1DsQ2rVrl8H3+uXMzS1p7ubmhoULF2LhwoUm2/j5+WHVqlX17R41QWUagZtFut/iTAVCxcd04/6uXcIBAC7lf5Ykpxltz6ExslWxsbGIiorC22+/jZUrVyImJgavv/66XQZBADB9+nQUFBTg7rvvRp8+feTj+sLpkJCQKq/5+uuvjV5LXwRdVlZm9HxdrkmOh3uNkcOpGKyYzAidSQMAuNzeXvdnmO4/hGXpV6GtMJNMj0NjZMvCwsIwefJkAMDkyZPtMgg6d+4cxowZg4SEBHh6elaZ8dahQwcAwLJlywyGq/bu3Yv33nvP6DWDg4MBQB7mqkx/zSVLlhgc37BhA7788su6vRGyO9zilxyOPljxcJOgVBpZhkGjQen5ywAA5/a6AEjR3BcKX29oc/JQei4drl0MP0i4jhCR5cTGxgIAtFotcnNzcebMGZw+fRpCCISHh2PNmjXo2rWrwWumTJmClStX4tNPP8WuXbvQrVs3XLp0Cfv27cP06dPx/vvvV7lP7969ERAQgA0bNmDAgAG47bbboFAoEBcXh759++Lll1/Gtm3b8Oqrr+Kbb75Bhw4dkJKSgiNHjmDGjBlGr0mOhxkhcjjV1QeVXcoESkoBF2c4BbcAoBvSdQ5vCwAoPXuhyms4NEZkOV988QW++OILrF27Fnv37oVSqcSTTz6JjRs34uTJk+jZs2eV13To0AGHDx/G8OHDcf36dWzZsgX5+flYunSpyYyQm5sbfvjhBwwZMgRJSUlYuXIlEhIScOaMrkawX79+2LdvH+677z6cO3cOW7duhYuLCzZu3IgXXnihQf8OyHYwI0QORw6ETEydLz2XDgBwbhsMqUKBvkv7EBQfPo6Ss+ervKbiFhs1WSCUiKqq7wysTp06YcuWLbW6ds+ePbFjxw6T1+zduzd++eWXWl2THAszQuRw5DWETGSESlPLA6HbWhscdw5rozt/tuqq5PqhMY0WKCrhfxyJiBwFAyFyONUNjckZoXatDI7LgVD5+YrcXCUoyy/H4TEiIsfBQIgcTo0DocoZoda67VvKLlXd3kWSJO5ATzYtKCgIb775psH2RkRUPdYIkcO5VSOkNHq+7GIGAMC5TbDBcadWAQAATWYWRHEJJFfDjRi9PBTIyddyUUWySUFBQWbXbyMi45gRIodTXY1Q2eVMALcCHz1Fc19IbuULsF25XuV1XEuIiMjxMBAih2NuaEybfxNadT4AQFk+dV5PkiQ4BeuCI2PDY/qC6QIGQkREDoOBEDkcc4FQWYYu0yN5eUDp41XlvD5LZCwQYo0QEZHjYSBEDsfcOkLysFilbJCeUyt9wXRmlXMcGqPa4jo0RLfY6s8DAyFyOHkFGgAmMkKXrwGAPARW2a2MkJFASL/NRqFt/jCT7VCWL9RZWlpq5Z4Q2Q79z4NSaXwii7UwECKHIoQwOzSm0QdCQaYyQuWBULrpoTGuI0TVcXZ2hqurK9Rqtc3+FkzUmIQQUKvVcHV1hbOzs7W7Y4DT58mhnDh5Bqf3fYyivHTMRhtM/+cUhIeHy+fLrpgfGlMGlQdCV29UOcehMaoNf39/XLp0Cenp6VCpVHB2dubWLNTkCCFQWloKtVqN/Px8tGrVqvoXNTIGQuQwVqxYgQkTJkArJAACn6dK+Gzpp0hISJB3u652aCzADwCgyTQdCHEdIaoJHx8fAMD169dx6dIlK/eGyLpcXV3RqlUr+efCljAQIoeQkpKiC4K0t4IUja5UCPHx8YiKikJYWJg8a0wZ2NzodZT6QOh6DoRGY7ApK4fGqLZ8fHzg4+OD0tJSaPT/IImaGKVSaXPDYRUxECKHsHz5cpPDDpIkISEhAXPnzoXmWjYAQBlgIhDy9wUkCdBqobmhljNEAKfPU905Ozvb9AcBUVPGYmlyCGlpaSaLUoUQuvNaLTTXsgAATi2aGW0rOTnpgiHottqoyNNdF2hxaIyIyHEwECKHEBoaajYjFBoaCm1OHlCmG55Q+hsPhIBb2aLKdUL6jFBRsUCZhjOBiIgcAQMhcghxcXFmM0Lx8fFyNkjh611lQ9WK9HVCZVUyQrd+XDg8RkTkGBgIkUMIDw9HQkICJEkBSEoAEpRKJRQKBRISEhAWFnarPqiFn9lryTPHKk2hVyokeLqVD48xECIicggsliaHERsbi5TsLlj11Qoobh5D9JDumDp1KsLCwgAAZeUZIaWJ+iC9W0NjWVXOeXkoUFCkYSBEROQgGAiRQ3HzCUX73q9g0qO+ePQ+w/UqNFf1gZD5jJCymrWErmZpODRGROQgODRGDkUfoPgY215DP2MsoJpAqKXxGiEA8HbnoopERI6EgRA5lLwCXYDiZTQQ0tcIVTM01txX1z5LXeUct9kgInIsDITIoeSVZ2p8PKvubqy5VsOhMT9fAID2hulAqICBEBGRQ2AgRA7FbEaoPLCpNiOkX1AxSw2hNQx4uLo0EZFjYSBEDkOrFXLtjtEaoawcALeGvkxRNisvstZooM0tMDgnD42xRoiIyCEwECKHUVAkoF9T0VxGSNHM/O7HkqsLJC+P8tfkGJzz0hdLMyNEROQQGAiRw9APV7m5SHBxNtxuQxSXQOTfBFB9RkjXRgUA0FYKhLgDPRGRY2EgRA4jr0C3j5jRbFB2ru7/KJVQ+HhWey1TM8c4a4yIyLEwECKHkVteKK3yMjYslgMAUPr5QFJU/89e6acqf12lQEheR4ibrhIROQIGQuQw1Pn6qfPGCqXL64PKA5zqKMqn0FeuEeLQGBGRY2EgRA5DzggZWUNIm6UbGlM2q1kgdGsKfY7BcTkQKtRCq2VWiIjI3jEQIoehztfVCBnPCOUAuFUEXR390FjlRRX1NUJCADeLGQgREdk7BkLkMMzWCNVyaOxWjVCOwXEX51sz0jg8RkRk/xgIkcPQ1wipvIwMjelXla5pIFRhdenKvNx1gRBnjhER2T8GQuQwcgvMDY2VB0I1HBpTmJg1BrBgmojIkTAQIoehrtH0ed8aXUu/jlDlBRUBriVERORIGAiRwzA3fV5bvqBiddtr6MmBUF4BREmpwTn9WkIF3G+MiMjuOVm7A0SWIISoUCxdtUao1kNjKi9AoQC0Wmiy1HAK9AcApKSkYP+Pi3D6TBqWZrdHWIvnER4ebqF3QUREjY0ZIXIIRSUCJaW66ewqYzVCcrG0b42uJykUUPjpskf6IGrFihWIiIjAvm2fIPPvrfj+648RERGBlStX1v8NEBGRVTAQIoegzwY5OwFuroYbrmoLiyFuFgIAFDXMCAGGU+hTUlIwYcIEaLVaaLUaQOj+1Gq1iI+Px9mzZy30ToiIqDExECKHcKs+SAlJqhQIZZfP/HJSQuFd/YarekpfXUZIm5OH5cuXV7muniRJSEhIqEOviYjI2hgIkUPQT503PyymMhnMGKPw9QagC4TS0tIghPGVpIUQSEtLq2WPiYjIFjAQIocgZ4SMTZ0vzwjVdMaYnqI8I6TJyUVoaKjZjFBoaGitrk1ERLaBgRA5BLOrSufkAbg11FVTymblGaHsPMTFxZnNCMXHx9fq2kREZBsYCJFDMLeqtD4Q0g911ZQ8NKbOQ3h4OBISEqBQKKBQKAFJAUlSQqFQICEhAWFhYfV8B0REZA1cR4gcgtlVpfWBkKp2gZA+g6QpX4wxNjYWUVFRmPvuR9i66wI8fVpjx/p/MggiIrJjDITIIeinz5vLCClrmxFqpp81lisfCwsLw8cff4TU6ekAgJA2revUXyIisg0cGiOHkKuvEfI0UiOkruPQWHkGSZ9R0nN3laAor5vmfmNERPaNgRA5BLV++rwlh8aa3Zo+X5FCIXHjVSIiB1GrQGjx4sXo1q0bfHx84OPjgz59+uCnn36SzwshMHv2bAQHB8Pd3R0DBgzAiRMnDK5RXFyMyZMnw9/fH56enhgxYgTS09MN2mRnZyMmJgYqlQoqlQoxMTHIycmp+7skh5drbsNVtX5ozKtW11RUWFCxMm8GQkREDqFWgVDr1q3xzjvv4MiRIzhy5Ajuu+8+jBw5Ug525s2bh/nz52PRokU4fPgwAgMDMWTIEOTl3fogmTZtGjZt2oR169Zh3759yM/PR3R0NDQajdxm/PjxSEpKwrZt27Bt2zYkJSUhJibGQm+ZHFFNps/XdmhMX1OkzSuAKC0zOKfPPOkDMCIisk+1KpYePny4wfdvv/02Fi9ejMTERNx+++348MMP8frrr+Phhx8GAHzxxRdo2bIl1qxZg4kTJ0KtViMhIQFfffUVBg8eDABYtWoVQkJC8PPPP+OBBx7AqVOnsG3bNiQmJiIyMhIA8Nlnn6FPnz5ITk5Gx44djfatuLgYxcXF8ve5ublG25HjKSrRorh8w1VjGSGNum5DYwrVrQySVp0HpX8z+Xv9ffSz1YiIyD7VuUZIo9Fg3bp1KCgoQJ8+fZCamoqMjAzcf//9chtXV1f0798f+/fvBwAcPXoUpaWlBm2Cg4PRpUsXuc2BAwegUqnkIAgAevfuDZVKJbcxZu7cufJQmkqlQkhISF3fGtkZfVbGSQl4uFVd/bmus8YkJyd5bzJ9MKWnzzzlMhAiIrJrtQ6Ejh07Bi8vL7i6uuK5557Dpk2bcPvttyMjIwMA0LJlS4P2LVu2lM9lZGTAxcUFzZo1M9smICCgyn0DAgLkNsbMmjULarVa/rp48WJt3xrZKXWFqfOVt8EQWi206nwAt2p+akOeQp9tGAjJGaF8TZXXEBGR/aj1OkIdO3ZEUlIScnJysHHjRjz11FPYvXu3fL7KB5EQ1W50WbmNsfbVXcfV1RWurq41fRvkQHLydMGIr7eR+qC8AqB8a4zaZoSA8rqiC1fkRRX19Ju7MiNERGTfap0RcnFxQVhYGHr27Im5c+eie/fu+OijjxAYGAgAVbI2mZmZcpYoMDAQJSUlyM7ONtvm6tWrVe577dq1KtkmIgDIztUFQs2MBULlw2KSuyskV5daX1tZYZuNinzKh8bULJYmIrJr9V5HSAiB4uJitGvXDoGBgdi5c6d8rqSkBLt370bfvn0BAD169ICzs7NBmytXruD48eNymz59+kCtVuPQoUNym4MHD0KtVsttiCrKztMFI818zOwzVstCaT15Cn2ljJCPnBHi0BgRkT2r1dDYa6+9hmHDhiEkJAR5eXlYt24ddu3ahW3btkGSJEybNg1z5sxBeHg4wsPDMWfOHHh4eGD8+PEAAJVKhfj4eEyfPh3NmzeHn58fZsyYga5du8qzyDp16oShQ4fimWeewdKlSwEAzz77LKKjo03OGKOmLTvPdEZIU8ep83rK8hqhyqtLq+QaIWaEiIjsWa0CoatXryImJgZXrlyBSqVCt27dsG3bNgwZMgQA8PLLL6OwsBCTJk1CdnY2IiMjsWPHDnh73/oQWrBgAZycnDB69GgUFhZi0KBBWLlyJZTKWx9iq1evxpQpU+TZZSNGjMCiRYss8X7JAeXoM0JmhsaUdc0IlU+hr7yooo8Xa4SIiBxBrQKhhIQEs+clScLs2bMxe/Zsk23c3NywcOFCLFy40GQbPz8/rFq1qjZdoyYsWy6WNr2qdF0zQgo5I1S5WFoXdOXd1EKjFVAqzE8IICIi28S9xsjuycXSPmaGxuqYEVKa2GZDnxESAsjnNhtERHaLgRDZveyaDI3VNSOknzVWqVjaSSnBs3zxRq4uTURkvxgIkV3TaoW8jlCzBhgaM1UsDdyaQs/9xoiI7BcDIbJr+YVaaMrjEGMLKtZ3aEz/OmM70N/ab4xT6ImI7BUDIbJr2bm6KMjLXYKzk5F9xtT6oTGvKudqQtlMFwhpcnIhyleo1uMO9ERE9o+BENk1eQ0hI4XSQIUFFetcI1S+P1lpGURBocE57kBPRGT/GAiRXTO3zxhwa9f4ug6NSR5ugLNulYnK22zIO9Bz41UiIrvFQIjsWlaufsaY8X/K9Z01JkmSPIVeY2IHei6qSERkv2q9+7y90WqrfkilpKRg+fLlSEtLQ2hoKOLi4hAeHm6F3lF95eSb3l5DaLXQqvMB1D0jBOiG1TTXsqCtsqgit9kgIrJ3Dh8IDf10Ir54+kN0DAoCAKxYsQITJkyAJEnQarVQKBSYN28eEhISEBsba93OUq2kpKRg5acfIvlsOpwuh+DBHlMNAlptXoFuxUPUvUao4msrT6GXp88zI0REZLccfmjsqvYQhn81DO/8sAEpKSmYMGECtFotNBoNhBDQaDTQarWIj4/H2bNnrd1dqqEVK1YgIiIC+3YsRebfW/HL90sQERGBlStXym205UNZkrsrFG6udb6X0sR+Y7cyQqwRIiKyVw4fCHmJMGgUefjs1CsY8vxoSJLxPaEkSap2LzWyDRUDWqHVAEILrbZqQKutZ6G0nry6tJo1QkREjsbhA6Fl9/8Xbj+3wtVVmbh87AQ0WuO/vQshkJaW1ridozpZvnx5jQJaTT2nzuvpA6nKQ2OqCjvQa7WiyuuIiMj2OXyN0D19+kChUECjMT98IUkSQkNDG6dTVC9paWlVFjfUqxjQyjPG6pkR0m+zUTUjpKsR0gqgoEjA24M70BMR2RuHzwjp64Cqo9VqkZ2djXHjxmHWrFlISUlphN5RXYSGhprNCOkD2vruM6ZnapsNF2cJ7q7lG6+yToiIyC45fCBklgSDv4HPP/8c69evx3vvvVel8JZsR1xcnNmMUHx8PID67zOmZ2rWGAD4lg+P5eSxToiIyB41yUBIkiTc1r49mnduB++7vQHpVuaIM8lsX3h4OBISEqBQKABJCUgKKJVKKBQKJCQkICwsDED9F1PUU5oolgZurWit3+qDiIjsS5MMhBQKBUY/9hiuHzuHe8OidZkhE2JiYjhcZoNiY2Ox6MujaHPHRHTuMRIzZ85EcnKywVpQDT00Btza4yw7l4EQEZE9cvhiaWMqDp/4aAQUUECLqkMbWq0WBw8exMGDB7nwog1y8QpF+96vYGR/L0wd41flvMWHxoxkhPRbe+RwdWkiIrvk8BkhSZKgVCrlPysPn5grvAV0QROHy2zTdbUuC9NCZWLnebV+aMyrXveRh8Zy8qvUJjEjRERk3xw+EDp69ChmzpyJMWPGGB0+MVd4awwXXrQd13N0wYe/r4lAyMLrCEGjgSgoNDjn68UaISIie+bwQ2Pt27fH3LlzTZ7XF97Gx8fL+48BqNE6NWRd+oxQc1/j/4w1FlpZWnJ3BVycgZJSaHLyoPDykM/5+eh+l8jO5dAYEZE9cviMUE3ExsYiOTlZzhxFRkZCqTSeZRAA2rRp07gdJKNu5JQBAPxNDY1ZaNaYJEnyoozabMMd6Jtx1hgRkV1z+IxQTYWFhcmZo5SUFERERBhtJ7RaJOxej8MPHkNk9+6Ii4sz2PFc//rly5cjLS0NoaGhRttQ/RSVaJFfqMvaNTcyNCa0WmjV+QDqnxECdMNrmmtZVabQyzVCDISIiOwSM0JGVFynpmKhtd6Nw+fx27af8O68d6ssvKjfFf29997j4owNSF8f5OYiwdOtarG7NrcAKB/erG+NUMVrVF5U0bd81lhBoUBJKfcbIyKyNwyETKg8XBYfH69bwA8AtAAEILQCWq0WceUzySruis7FGRtWZpYuEApopjQ6608/LCa5uUDh5lrv+ylVXgbX1fP2UMCpPEbOYVaIiMjuMBAyQz9ctnbtWvj5+ZmcZi+gxZDnR+ODhQtrtCs61d+VG7r6oEB/46O7txZT9LHI/RQmVpeWJImrSxMR2THWCNWQuR3PoQUu/XUcCUeOm9zglbPNLCtDHwj5mZgxZqGp83r6OiNj+40181bgeo6GM8eIiOwQA6Eaqm7hxdLMUrOvr7grOtXfVX0g1NxERkg/Y8wChdIAoGymyywZ229MN3OslBkhIiI7xKGxGqrtwouVVdzWQy8lJQWTJ09G165dMXnyZO5lVgsZ5TVCgc3Nrypt6YyQ2f3GGAgREdkdBkI1ZGwmmbkMkUyhywZ99tln8rYewK3ZZYsXL8bx48exePFizi6rBf3QWEsTGSFL7TOmZ2rWGHBrv7HsPA6NERHZGw6N1UJsbCyioqKQkJCAtLQ0/Pnnn0hOTpZXo67MydcVXne6w7uXNz468w1+fTYRmrw8+Pj44PPPPzd4nb62KD4+HlFRUQZBExkqKRW4odZnhKoZGrNQRkhpolga4H5jRET2jIFQLVVceHHWrFl47733jLZTKpWYMmEy1F1aYsvWD/DXxm34SwIgJEgwvYWHfnaZuW1BmrrM7DIIoVtDyNfLeFKzMYfGbuak4u/EZbiUeBkFKRFcQJOIyI5waKwezNUNCSHw/MSJeKXvSNz4NlO3N4cWQPlu9qZwdln1Kg6LmRqebLChsUoZoRUrViBu9F24kLQUZ5K2cAFNIiI7w0CoHkytQK1QKJCQkICwsDAsX768ZrVE5Ti7rHoZN8qHxfyMF0oDtzJCSl8vi9xTHhrLyZcD2YoLaEJoAKHlAppERHaGgVA9VV6BeubMmUhOTkZsbCyAatYfMkKr1SI7Oxvjxo3DrFmzOJPMiIxqps4Dt4awLD00Bo0GoqAQAMwGuVxAk4jIPrBGyAIq1g1VVt36QwAAqfyrvHZaX0itUCgwb948JCQkyIEV3VpV2tSMMeDWEJalhsYkd1fAxRkoKYUmJw8KLw+zQS6HOImI7AMzQg3MXB2RJEm4d/iD8OkWAO+7vQEJ8v5k3KfMtEuZukCodYvqM0KWmjUmSZK8OKM2OxeA+SCXQ5xERPaBgVADM1dHtHz5cuzZ8gMyDl1Ex5Z9dVkhIzjMcosQAhev6lbxbt3S2XgbrRZadT4Ay2WEgKr7jVVXLF95AU0iIrI9HBprBJXXHwoNDUV8fLy8VpC7iwvCPJrhdyigRdU1ibRaLTZv3iy/tilPz76h1qCwWEAhAcGmNlzNLQDKAxRL1QhVvJZ+Rpo+yI2Pj4eABCEEFJIEQMjF8kREZNsYCDUSc3VEgPlhFiEETp0+jdOnTzf5uqGLV2/tOu/ibPzvSz8sJrm5QOHmarF7K1VeBtcHbgW5U1/9BEf+PIeut7fDkg9eZBBERGQnODRmI6rdy6x8/aGmXjeUXr65bUiAmfogCxdK61UeGtMLCwvDxCn/RuchC9Fn2OsMgoiI7AgDIRtR273MBICYmJgmN81enxEyVR8EVFhM0YLDYsCtwMrYfmPNfXVrGl3P4TYbRET2hIGQDam8JlFERAQUCuOPSGi1SExMxPr165vUasbnM3QZoTYtazBjzMIZIXP7jbXw1fXnupqBEBGRPWEgZGP0tURr167FyJEjq12DqLrhspSUFMyaNcthMkfnLukCodtauZhsIw+NNfOx6L0VvrrrGdtvzF91a+NVjabmC2gSEZF1MRCyYdXWDVUiACz77DP5+xUrViAiIgLvvfcevv76a7vPHKnzNfKu8+2CazA01kA1QsaGxny9FVAqAK0AsvKYFSIishecNWbDKk7PliRJt6cVTO9cL4QWy7Z/gQ4PDkH/4La39sGqJC4uDomJiVCr1XY1HV+fDQpqroSHm+kY3tKLKeqZGxpTKCT4+ypxNUuDzCyNPFRGRES2jf+1tnGV1yBKS0vD4cOHodEYzzoUZedg2rRRQLbpaeNCCCxbtgwA7Go6furl6ofFgApDYw1ULG1saAzQ7X12NUuDjBtl6Hyb5abtExFRw2EgZAcqrkGUkpKCiIgI4w0FUHyxBMUXiwFRYPaa+qySPqCKj49HVFSUTU/9/ju9BABwWyvTw2JAIwyNGckIAbpA6M+UYnlTWCIisn2sEbIzxqbZG8wsE0JXLFRL9rCNR/J5XSAUHlKzjJDS18ui95eHxnLyjQ5PBpZvAstAiIjIfjAjZIdqO1xWE7a+W/qx48n4+duPUZiXjg1uEWjpOcFkXZO2gdcRgkYDUVAIycvD4Hxgc93MsYwbLJYmIrIXzAjZqYrT7ENDQ6ufXWZ+Fr5N75a+YsUK3NH9dpxPWorMv7di0ccfmJ39pmmglaUld1fARTcsZ2zmGDNCRET2p1aB0Ny5c3H33XfD29sbAQEBGDVqFJKTkw3aCCEwe/ZsBAcHw93dHQMGDMCJEycM2hQXF2Py5Mnw9/eHp6cnRowYgfT0dIM22dnZiImJgUqlgkqlQkxMDHJycur2Lh2cuX3KFAoFevfujTGjx6Bf9EMmAyJju6XbwhpEKSkpt2a/CQ0gtNVuM9JQs8YkSZIXadRm51Y5rw+ErmaVQavlWkJERPagVoHQ7t278cILLyAxMRE7d+5EWVkZ7r//fhQU3CrMnTdvHubPn49Fixbh8OHDCAwMxJAhQ5CXd+s36GnTpmHTpk1Yt24d9u3bh/z8fERHRxsM7YwfPx5JSUnYtm0btm3bhqSkJMTExFjgLTue6tYb+uqrr7Bu3Trs/n4rEj5P0AVNCuiCovI/Bz/7BFq2ai2/puIaRNZcvXr58uUmgzxjdU1Cq4VWnQ/A8hkhwPR+YwDg76uEUgGUaSCvd0RERDZO1ENmZqYAIHbv3i2EEEKr1YrAwEDxzjvvyG2KioqESqUSS5YsEUIIkZOTI5ydncW6devkNpcuXRIKhUJs27ZNCCHEyZMnBQCRmJgotzlw4IAAIE6fPl2jvqnVagFAqNXq+rxFu7FixQqhUCiEUqk0+HPFihVV2qakpIgZM2eK2++JFH4DgkXIKyEi5OUQ4TcgSET0vVs8HR8vFAqFgK7s2uBLoVCIlJQUg+udOXNGvPrqq2Ls2LHi1VdfFWfOnLHY+xo7dqzZvowdO9agfVlOrjjrHyXO+kcJTWGRxfqhd3HYc+Ksf5TI+36X0fPj/3VJDHz+vPgrpdDi9yYiagoa+/O7XjVCarUaAODn5wcASE1NRUZGBu6//365jaurK/r374/9+/cDAI4ePYrS0lKDNsHBwejSpYvc5sCBA1CpVIiMjJTb9O7dGyqVSm5TWXFxMXJzcw2+mpKK+5SNHj0aM2fORHJystG1gcLCwvDevHk4sS8RF7adQ5e8wbj43kVk7bmC0wcOY0VCgtGFGIGqWZiGzhyZG/YzVtekHxaT3FygcLP8Wj5KlZfBfSrTF0xfYcE0EZFdqPOsMSEEXnrpJURFRaFLly4AgIyMDABAy5YtDdq2bNkS58+fl9u4uLigWbNmVdroX5+RkYGAgIAq9wwICJDbVDZ37ly89dZbdX07DqHiekM1dfnCBWxf8sWtPEs1RIXZZQb1O+UsvS5RXFwc3n13nsm+VK5r0jbQGkJ65obGACDQzwlAMa6yYJqIyC7UOSP04osv4q+//sLatWurnKv8G7wQokabh1ZsY6y9uevMmjULarVa/rp48WJN3kaTZ64Gx5iKWZja1u/URXh4OAY+Nh+QFFAodOsmKZVKKBQKJCQkVAm0NA20qrSePsAyNmsMAAL9db9bXL7OQIiIyB7UKSM0efJkbNmyBXv27EHr1rcKbAMDAwHoMjpBQUHy8czMTDlLFBgYiJKSEmRnZxtkhTIzM9G3b1+5zdWrV6vc99q1a1WyTXqurq5wdeW2BrWVlpZWq41dtVotxpUXrZt7rajHukQpKSlYvnw50tLSEBDYBgXKBxE57jdEBvyAzIwLCA0NRXx8vNFskzxjrIEyQub2GwOA1i10P1LpmaUNcn8iIrKsWgVCQghMnjwZmzZtwq5du9CuXTuD8+3atUNgYCB27tyJO++8EwBQUlKC3bt349133wUA9OjRA87Ozti5cydGjx4NALhy5QqOHz+OefN0QyB9+vSBWq3GoUOH0KtXLwDAwYMHoVar5WCJLMNcDQ5wKzMnJN2K1b5DfTHwhSEIKGkF7zKpVvU7NbFixQpMmDBB3mRWkhTQivcx6LH5+GjBu9W+vqH2GdOTh8ZMZITaBOrWGbqQUVajTCgREVlXrQKhF154AWvWrMHmzZvh7e0t1+uoVCq4u7tDkiRMmzYNc+bMQXh4OMLDwzFnzhx4eHhg/Pjxctv4+HhMnz4dzZs3h5+fH2bMmIGuXbti8ODBAIBOnTph6NCheOaZZ7B06VIAwLPPPovo6Gh07NjRku+/yYuLi5MD0MokScKzzz4LtVqNlkHBOHT5LA58vQWQspElLusamUgmGavfqY6xmiMhdDVHv254CWfPPlRtzZGmgVaV1lP4+hjcp7JWAU6QJCDvphbqfC18vZUN0g8iIrKMWgVCixcvBgAMGDDA4PiKFSvk2Ukvv/wyCgsLMWnSJGRnZyMyMhI7duyAt/etD6YFCxbAyckJo0ePRmFhIQYNGoSVK1dCqbz1obF69WpMmTJFnl02YsQILFq0qC7vkczQ710WHx8vZ2EUCgWEEAY70qekpGBhRITJompJIQECBq+tbaG0uZojRXnNUXXF4NYeGnNzUaClnxIZNzS4cLWUgRARkY2r9dBYdSRJwuzZszF79myTbdzc3LBw4UIsXLjQZBs/Pz+sWrWqNt2jOqq8d5mxGhyzRdUS4NLaBc7N3NC2VXcsemMeBlRY+qCmLFFzJC+m2MDF0qaGxgCgTUtnXSCUUYZu9Zs0R0REDYybrhKA6qfemwtSJEmCWzMVmj/hhUKkY8LuOIRvH4hWVyUUZF1HaGgo4uLiTG6SqlfbNYOM0TTS9HmNiYwQAIQEOuPQySJcyGDBNBGRreOmq1QjZvczkxSY+EAsXuy2AN6iA3KPXsO22Z8gYckirFu/HvPm1WyRRXNbhdS05kg/ZGXpfcb05KGxnHyTfW3TUvf7xYWrDISIiGwdAyGqkeqClGeeeQb/vH8E1o/4ENc3XNfVEWkBCAGtVrdJalx8PE6eMr1xa3h4OD7//HNIkgKQlICkMLtmkDHygorNGnZoDBoNREGh0TZtWupmjl1kRoiIyOYxEKIa0RdVKxS64MTUwoYrV66EQjL+z0oILXo+EIkOkf3w9LMzcOLkGYPzWbkaXMFw9Br3G9rcMRH33f+w2a1CjGnooTHJ3RVwcTa4V2VtgnTnM7I0KC4xvlUJERHZBtYIUY3VpKja7AKNAii8mI2U9L1IObwXKz+fj7vvfwVOogDXr15EqTIYLTuOhlezdvjk43cRHeVV6z429NCYJElQqryhuZYFbXYu0LrqAp++Xgr4eCqQW6DF+YwydGjj0iB9ISKi+mMgRLVSXVF1dQs0Aqgw/V7g8PZ3AEkCoPs6/8cS/OedJYiOeqbWfRNa7a1ZYw2UEQJ0BdOaa1kmp9BLkgQ/14v445dVeCYuE33vDqtRsTgRETU+Do2RRZmrJTJJCEBoAaGBEFq8Mes5nD17ttb31ubfBMoXY2yo6fMVr21qaGzFihVYOScKF5KWYs+vG/HeezUrFiciosbHQIgsylgtUW23mRAQePujt2t9b32htOTmAoVbw+07p1R5GdyvIv3q2KI8sIMQ0Gh0xeLx8fF1CvCIiKjhMBAii4uNjUVycjJmzpyJMWPGIDIy0mDV8OoIIfDNvm/wyOpH8P3p71GqqdnsK20DF0rrKcysLm1u4UmpfHVsIiKyHawRogZRsZYoJSUFERERNX6tJElw9XNF0pUkTNs6DUHeQYi5MwZju42Fyk1l8nWa7FwAgKKZT/06Xw19oGVsaMwSq2MTEVHjYUaIGlzl4TKFQgGFwvQ/PQkSflrwE6b0mQI/dz9cybuCeXvmIWppFGb/PBup2alGX6fNUgMAlA0cCJnbb8wSq2MTEVHjYSBEjaLicNno0aPx8ssv45133jG5LlGvbr0w9Z6p2DdxH9554B109O+Im6U38VXSVxiSMATPfPsM9qTugVbcWqdHnxFS+pnOGlmCPDRmJCNkidWxiYio8XBojBqNsan3jzzyiNl1iVydXPFY18fwaJdHsf/Cfiw/shy7Unfh13O/4tdzvyK0WSieuOMJPNL5EWiydRmhBh8a89Vd39jQmD77FR8fD0gStFoBCRIkSdR4dWwiImo8kqj1XGf7kJubC5VKBbVaDR+fhv1gpMaVmpWKVUmrsOH4BuSX6NYNcndyx5yjXdB52yX4Tn4czd94rsHuX7BtHzJiZsH1rk5ovX2Z0TZnz57Fp4s/w+otp+Hm3RrfrZiCO7t3bLA+ERE5isb+/GZGiOxOO792+Nd9/8JLUS9h88nN+PKPL5FyIwVXLqagMzyw7sJWtEtugyFhQ+CsdLb4/fXF0saGxvTCwsIw/4N3keN7BWlXSqHW+Fu8H0REVH+sESK75eniifF3jMdPsT9hzZg1aK/QbXdxoiQNk7+fjP6f9cfC/QtxreCaRe8rL6hoYmXpinp2cgMAHD1lfINWIiKyLgZCZPckSUJkSCQinFsDAO7tPgzNPZrjav5VfLj/Q9y79F5M/n4y9l/YX/tVr42QZ43l5Fd7vR7lgdCRU0UWuTcREVkWAyFyGNpsXYZm1D0x2PvsXix4aAHuCr4LpdpS/Jj8I2K+jsHg5YOx7NAy3Lh5o873kRds1GggCsxnerqFucLZCbiapcH5jLI635OIiBoGa4TIYehnjSn9fODi5IoRnUZgRKcROHH1BNb9tQ5bTm1BWnYa3t3zLubvm4/7w+/HuO7j0Dukd622AZHcXQEXZ6CkFJqcPCi8PEy2dXdV4K6Objh4ogjf/HAMWX9/I8+Q40asRETWx1lj5BCERoNzQQMBIdD25BY4tWhWpU1BSQG2nt6KtX+uxbGrx+Tjoc1CMbbbWDzc+WE092heo/ul3T4SmmtZaP3rcrh2NR/M/HQgHy+9vgTJu16BQiFBq9VCoVBACN2U+tjY2Fq9VyIiR9bYn98cGiOHoM3J0+1iD0DZzPheY54unhjTbQy+i/kOm2M2Y1z3cfB09kRadhre2f0OopZGYerWqThw4UC19TyK5rpFG/VZKHNauqfj9K5XIIQWGo0GghuxEhHZDAZC5BDkfcZ8vCA5VT/i26VlF/x3yH9x4PkDePv+t9G1ZVeUaEqw9fRWPPH1Exi8fDCWHFyCq/lXjb5ev3q19kb1gdA367/gRqxERDaKgRA5BP0+Ywq/2qVRPV08MbbbWKNZovf2voeopVGI3xiPbWe2oURTIr9OHwhpsqoPhNLS0iCBG7ESEdkiFkuTQ5D3GWtW933G9FmiV/u/ip+Sf8KG4xtw5NIR7ErdhV2pu9DMvRlGdhqJR7s8Cv/mvrr71iAQMrcRK6ALlMaNG8cCaiIiK2CxNDmE3LU/4tqUuXC/LxLB69+32HVTs1Kx8cRGfHviW4NhshlHb8P9PxfBLTYard57xew1UlJSEBERAa1Wa/S8UqmEEAKSJLGAmoiaPBZLE9WBVt553rI/NO382mHGvTOw59k9SHg4AcM6DIOzwhl/a3VB0Y6DGzH5+8nYk7oHGq3G6DX0G7EqFApIkhKQFJCkWz96+sJpFlATETU+BkLkEPRDVPUZGjPHSeGEAbcNwKIRi7D/uf0Y2HMEAMDrJvBj8o94euPTiFoahTm75uBU5qkqr4+NjUVycjIefXwqAtpHQ9WyO5RKpdF7sYCaiKjxMBAih6DPCNW2WLou/Dz8MPCu4QCAO9zaI+bOGPi6+SKzIBMJRxIQ/WU0Hlz5IJYdWoaMvAz5dWFhYVj3xfsYPXEpXLxCoNWygJqIyNoYCJFDaOiMUGVKf18AgHNuMWYPmo0Dzx/A4pGL8UD4A3BRuiD5ejLe3fMuopZGIebrGGw4vgH5JflQKCS8/rQ/fJq1hoDpKfWhoaGN8j6IiJo6FkuTQ7g0agqK/vcHApa9Ce9/DG7w+5VezMCFux6D5OqCdhd/NpgVpi5S48fkH/Hdye9w5NIR+bibkxuGhA3ByNtH4soxXzz+j56AqFpArVAokJycjLCwsAZ/H0REtqaxP785fZ4cgja7kTNC5esIieISiIJCSBX2G1O5qTCu+ziM6z4OF3MuYvOpzfju5HdIzU7F96e/x/env0dzj+bo92w09iz7HrrErIBScWvWGIMgIqLGwUCIHIImS7+OUONk/yQPN0huLhBFJdBkqU1uvBriG4IX+7yIF3q/gGMZx7Dp5CZsPb0VN27eAMJuIOTl1ihI1EJ7TQWV1x345/Mz8PgTdzTKeyAiIg6NkQMQQiA1ZDBEcQna/P4NnEMCG+W+ad0fgeZyJlrt/Axud0TU+HWlmlLsS9uH7059h1/O/oLCskL5nHNJW3he7Q7/y7lQSQVo374dF1kkoiaFQ2NEtSRuFkEU67a/aKyMEKAbHtNczqzRfmMVOSudMbD9QAxsPxA3S27it3O/4fvTW/Hb37uQ9edxJH/zGyABEIAkKTBv3jx8/vnnePrppxvmjRARNWEMhMju6bfXgIszJE/3RruvUr8DfVZOna/h4eKBhyIewkMRD+GPE3+gx8s9AAHotyYTQgsBIC4+Dr9mXcTMxyagW5vgevediIh0GAiR3dPKU+d9zO7pZWnyxqs3cixyva9XfQ2FpIAGRlaoloCtPyzAfu2X8EU3RLW6HxPujUbXkNYWuTcRUVPFQIjsnj4Q0a/t01gUciBUu6ExU9LS0mCqZE8SEhTZnoAkkIM/sfXyn9i6/j34ojPuaXU/4u95CN3btLNIP4iImhIGQmT3NNezAQBK/2aNel9l+Q702hrsQF8T5napVygUeHZoDJ4cPwmf7duKvRd24mrmEZw7shfJ2b/iq2b/QlDPbugecA+cz95AqTpX3s0eAJYvX460tDSzx1iQTURNEWeNkd3LWbwON974BF6PDEHLJW802n3VCd/i+qsL4PlQfwSu/G+9r2dul/rKiyyuWLECEyZM0JUTCa2uuFr/Mt2yRLqNXct/vBUKhbzDvf76FY9x13sishWcNUZUS5prOQAaf2hMrhGqR7F0Rfpd6uPj4+XgRP/n22+/jYSEBKSlpcHHxweff/65YcBU8deZ8sOiwqrVGk3VuqPKx+Li4pCYmAi1Ws0sERE1GQyEyO7JNULlQ1WNRSHPGrPM0Big26U+KipKDnpCQ0OhUqnw+uuvG2RzGiKRK4TAsmXLAOiyRfPmzatxliglJYVDbURklxgIkd1zlBohvbCwMMydOxeA+eGyhqAPsPTZovj4eERFRZnd8kM/TFcxi1WbIIqIyJq4+zzZPTkQamGdQEiTlQvRQIHK8uXLG3VJgMokSUJCQoLJ8ykpKZgwYQK0Wi00Go3Bn/Hx8Th79mwj9paIqPYYCJHd01zPAWCFjJB+FWuNBtrcgga5h7kp9Y1BKwTOpaaaPG8uUKsuiCIisgUcGiO7J2eEGrlGSHJ1geTlAZF/E5ob2VD6elv8Huam1AOQzykUCqOzwao7Vl3NkYAWO6/uwgMLX8Tg8PsQ0+c+5GVek+uB/vzzT5Ov1Wq12Lx5M+uGiMimcfo82TVtQSFSQ+8HALRL3W5yF/iGcv7uMShLu4zg7z+Be+9uFr++uRohSZLw7LPPyrO84uPjAcCg0Lomx4zOQpNvAoS8HAJnf2cAQN6hfFzbkAlJUui2QxPCbMZKkiT5i1P0iagmGvvzm4EQ2bXSC1dwocdoSG4uaHfh50avp7n04PMoOnwcLZf/B17DBzTIPVauXGl0Sr0lgwpT95j973/j0OlT+DP5T+RLN5B9+IrhVP1aqhy8MUtERJVxHSGiWqg4Y8waRcXKAD9dPzKzGuwexqbUx8fHm53JZYl7VJy2L2d+qguCJElexNEY/RR9fZZo3rx5ePvtt6FWq+s0hMZp+0RUX8wIkV0r2PE/ZDz+Kly7d0Trnz9v9Ptfe/kD5K74Ds2mPwW/Vyc0+v0bSl2m7TsHOMMl2AUll0tQeq20VpkjpVJZZQHJ6oIjY9P2OfxGZP+YESKqBWvNGNNTttBlhMoaMCNkDbWdtq9UKvHYyCfhO6ArNiUsxpVdybUKhCqvcj1r1iyD4KjyukQVp+1XVpO1j4iI9BgIkV27FQj5WuX+8tDYtWyr3L+h1HbavhACb738KsLCwjDt7gd12STUb20lc1uApKWlmQ3UYmJiEBoayuEyIqoWAyGya9ZaTFHPqfy+mswbVrl/Q6nJtP3Ks8H0GRhje6ZphTBbO1QTFeuLzM1W02q1OHjwIA4dOsRVromoWrVeUHHPnj0YPnw4goODIUkSvvvuO4PzQgjMnj0bwcHBcHd3x4ABA3DixAmDNsXFxZg8eTL8/f3h6emJESNGID093aBNdnY2YmJioFKpoFKpEBMTg5ycnFq/QXJs+kBI0chrCOkpA5rr+uFgGaG4uDiTgYZ+5tfo0aMxc+ZMJCcnVwkyYmNjkZycjJkzZ2L06NF49plnoFDUf/1WIQS0Wm212Sp9O65yTUTVqfV/mQoKCtC9e3csWrTI6Pl58+Zh/vz5WLRoEQ4fPozAwEAMGTIEeXl5cptp06Zh06ZNWLduHfbt24f8/HxER0cbpMLHjx+PpKQkbNu2Ddu2bUNSUhJiYmLq8BbJkelnazmV1+o0NqWcEcqy6grQlqbP6igUCiiVSoM/ly9fjiVLlmDt2rWYO3euyVoc/Z5pa9euxdKlS6tczxKBUU1xlWsiMqVes8YkScKmTZswatQoALrfwoKDgzFt2jS88sorAHTZn5YtW+Ldd9/FxIkToVar0aJFC3z11VcYM2YMAODy5csICQnBjz/+iAceeACnTp3C7bffjsTERERGRgIAEhMT0adPH5w+fRodO3astm+cNdY0XLj3SZSeTkXQhgXw6N+z0e+vvVmE1LZDAAChf/8EpY9Xo/ehIZ09e9ai0/YrX8/X1xevvfaaPNwFoNYbzFYcojOXxYqIiED37t3N1g1xOj6R9dn1rLHU1FRkZGTg/vvvl4+5urqif//+2L9/PyZOnIijR4+itLTUoE1wcDC6dOmC/fv344EHHsCBAwegUqnkIAgAevfuDZVKhf379xsNhIqLi1FcXCx/n5uba8m3RjZKc1VXm+PUsrlV7q/wcLu1zUZmlsMFQvqsTkNe75FHHjEbHJmtL5IA1xAPqJoHQZkvkPF3qtFASgiB06dPIzk52WTdkLHp+KwvInJ8Fg2EMjIyAAAtW7Y0ON6yZUucP39ebuPi4oJmzZpVaaN/fUZGBgICAqpcPyAgQG5T2dy5c/HWW2/V+z2Q/dAWFUObrQt4lVYKhADAKcAPpeWBEMLaWK0f9qq64MjsFiAAWozzg7O/FqXXSqF9z3Q2qXLGqOI0e07HJ2q6GmTWWOXZJvrfrsyp3MZYe3PXmTVrFl566SX5+9zcXISEhNSm22Rn9PVBkqsLFA2w4WlNKVv4ofRceoOuLt3UVA6O+vTpY3QLkE8WL4FX13D8nHwAJ3EYRY+V4to3GdBthIZq1zLST7M3Nx1fX19kycwYEdkOiwZCgYGBAHQZnaCgIPl4ZmamnCUKDAxESUkJsrOzDbJCmZmZ6Nu3r9zm6tWrVa5/7dq1KtkmPVdXV7i6ulrsvZDt02RcB6DLBlljew29W2sJMRBqKNVtM/JEnwEAAPXNm/js4c348stluHT5b+RdvorSayVGAyKtVovE8mn25uqLNBoN1qxZA0A3mw4A64iIHImoBwBi06ZN8vdarVYEBgaKd999Vz5WXFwsVCqVWLJkiRBCiJycHOHs7CzWr18vt7l8+bJQKBRi27ZtQgghTp48KQCIgwcPym0SExMFAHH69Oka9U2tVgsAQq1W1+ctkg3L2/KbOOsfJdKHPWfVfmS+PF+c9Y8S1/+71Kr9oKpemjFDKJRKfW6ozl+SJAmlUikkSZL/v0KhkP9csWKFtd8qkcNo7M/vWs9fzc/PR1JSEpKSkgDoCqSTkpJw4cIFSJKEadOmYc6cOdi0aROOHz+O2NhYeHh4YPz48QAAlUqF+Ph4TJ8+Hb/88gv++OMPPPHEE+jatSsGDx4MAOjUqROGDh2KZ555BomJiUhMTMQzzzyD6OjoGs0Yo6ZBXyhtzfogQFcjBDAjZIuee/bZei/kCOiG5TUajZw50q9PxHWKiOxfrYfGjhw5goEDB8rf6+tynnrqKaxcuRIvv/wyCgsLMWnSJGRnZyMyMhI7duyAt/etGo4FCxbAyckJo0ePRmFhIQYNGoSVK1dCqVTKbVavXo0pU6bIs8tGjBhhcu0iaprKyofGnAL9rdoPfSCmyXCs1aUdgbFVroWZYbD64LYeRPaJu8+T3cqcPAd5636C3+vPotk06y22efOXg7gydgZcOrdHyK6VVusHmVZx/aK0tDQcPny4yl5mAKBQKNCle3ecT78I9bXrtbqHsW1HOO2eqPbseh0hosZUVqFY2pqUwS0AAGWXr1m1H2RaxVloKSkpiIiIMNl249dfIyEhAe+9957RYMmUypmmipvEMktEZLsab417IgvTb3Rq7aExp/JASJudC+3NIqv2hapnbvsQ/eax5vZaqykhBJYuXYp169dj3rx5iIiIwMqVKy3zJojIYjg0RnYrtWM0tFlqtN69Eq63t7daP4QQSA19AOJmIUIS18ClPdevsgfVbR+ycuXKKmsX6RdcVCgUda43CuoTAU/hgU5ht+P1l2bAz8uD0/GJKmjsz28GQmSXREkpzrW6DwAQmrwVSj+VVftzoc/jKD17AcHffQz3e+60al/IcowFSwBqVG9kllT+Vb6QtaSQAAFICgXQSPVF3FeNbBUDIQthIOTYStOv4sKdjwIuzrgt/RerLqgIAJcfmYbCPUcR8On/wfuxB6zaF2o8+nqj2m4UWxOhUd3hCTd07dgZr//zJbi6uFgscDG2rxoLvMlWMBCyEAZCjq3o0DFcemgSnEIC0fb3b6zdHWS++Dby1m+D3/9NRLOpT1i7O9SIKg+hWXR6fjWZo7fffhtqtbpWwZG54E2hUCA5OZn7qpFVcdYYUQ2Upuu2YHFqbXzLlcamDOLMsaaq8vYf1W0SWyuV9ksTWt03onwobtasWXI2VFIoMG/evGqzOsuXLzebQeV6SNTUMBAiu1R2MQMA4BQSaOWe6OhnjpVdybRyT8gaqtsktqEWcQQgX1cfHD399NN44/MP4CncERHeEa9O/Sf8vLzlYbU///zTZF+0Wi0Olu+/JklSjQIrInvHQIjsUtklXUbIubWtBEIBAADNldotwkeOqUGzRDVw8X/HAQk4nXgY332xSndQIUESqDYgqxy0xcfHIyoqymC4jIXW5EgYCJFdkjNCrQOs3BMdJ3lojBkh0qkuS2Sp6fgmVRpWg1agLleWJAkJCQnyezFWaM3MEdkzBkJkl8ou6QIOJ5vJCOkCIc21bIiSUkguzlbuEdmaylkiY9PxGztzBEBXjG0mQhJCIC0tDYAuEzRhwgSj/TOWOSKyB5w1RnZHCIHU24ZC5N9EyP5VcAlva+0uQQiBc60HASWlaHP0azi3CbJ2l8hO1WQhRwD1DpYkSYJfcCDcglTIzszAzYs5xgMiCXAL8YCHX3NArUH2+QwIEzPOevXqVW2hNYfVqDqcPm8hDIQcl0adh7SwBwEA7c7vhMLDzco90rkQOQ6l59K5qCLVW3ULOYaGhsLX1xevvfZanQuylUolZs6ciblz51a/HpJ+kll1l5ckKMxsPFub9YsYMDVdDIQshIGQ4yo+fhbpA5+GorkK7U5vtXZ3ZJdHT0fhb4fQ4qNX4TP+IWt3h5qAigFTbYfVKq8ZVDkTBdQ/6wQAfR68Hx6SE0KDgrBi+Qqj15QkCc8++6y8Qa1KpcLrr79eJWCq6bpJDKLsGwMhC2Eg5LgKtv8PGU+8CtfuHdH658+t3R3ZtZnvI3flZjR76Sn4zZpg7e5QE1STYTVzWZiKgVWdtw8xppo6JEAXDOnXNzIXgCmVSrPvg6tm2z8uqEhUjVszxmxjMUU9p7bBAIDS85et3BNqqmpSkG1sg1m9ijPdxo0bh0OHDpm8l1RhCKza36dr8Ot2TYf2KgdmcXFxSExMlD80TWXFWMxNpjAQIrtTmm6bgZAzAyGyAZWn7esZO2ZOaGioyRWoKxZGWzRzVAdCCCxbtqxGQVl1q2ZzSK1p4tAY2Z2M+DdQsOU3NP/Pi/B9boy1uyMr/usM0gfFQ9miGUJPbrF2d4jqpaZ7kjXkxrOWps9iGRsu45Ca7Wjsz29Fg9+ByMJKU9MBAM6hrazcE0NOobqMkOZaNrT5N63cG6L6CQ8PR0JCAhQKBZRKpcGfCQkJ8hCTsXbm9jIDdAFJTdpZmhACWq0WGo0GWq0WcXFxeO655xAdHY34+HiDc/o/4+Pjcfbs2UbtJzUuZoTIrhisIfS/r+DSIdTaXTKQ2uEhaLNz0Xr3Srje3t7a3SGqN2NT+Y3V2dR0BlvFGWLVzXTTF0YDlpnBZkzFWXLGcH2kxsdZYxbCQMgxlV3LxvnbRwCShHYXdkLh5mrtLhlIH/IMipNOI/DLOfAcdq+1u0NkNcZmsBkbajLVbs6cOcjJyan7uklS+f9Y4CPO3JAawGE1S+OsMSIzSs9dBKArlLa1IAjQzRwrTjrNgmlq8kzNYKucTappOwB45JFHap11skQxd+Wg6+mnn8ba77+HixAI8vdHQkKC0X5UnNGmzxIBYObIxjAjRHYld91PuDZ5Dtz79UDwxg+t3Z0qbvxnCXI+Xg2fuIfR4t1/Wrs7RA6tJlmnBi3mrsX6SObWdDK2UCRQNWAydswRh+k4NGYhDIQcU9bcz5E9/wv4PDUSLd6fYe3uVJG7aiuu/fNduPfvieANC6zdHSKHV5MapsoBU3XDavoi7sb8eKy4UKSxgKmmC2OaGqar6arctoCBkIUwEHJMGRPeRMHmX9H8rRfgO2mstbtTRdGRE7g07DkoA/0RemyTtbtDROVqsx3JQw89hBs3blh1faSaqs1SBtWtym0rWCNEZEbpmTQAgLMN7DhvjHMHXb80GdehUedBqfK2co+ICKi60GSfPn3MDqvpgwpbJ0kSEhISMHfuXCxfvtzskgSVg7qarrZtbKgNcJxaJ2aEyG6IsjKcazMEKC1Dm6Nfw7lNkLW7ZFRa90eguZyJVj98CrdeXa3dHSIyobphtboMqdV42xELcg3wgHdwCxRl5CH/anaNZ8oplUrMnDnT7KrjxobaarN/XV1waMxCGAg5npKU87jY9wlIHu5ol7oNksI21wOVd6GfPxM+MSOs3R0iqoeGWB+pQdSgcLvqayS0a38betx5F8Lat6+S6ant+6j4d1CfLBGHxohMKElOAwC4dGhrs0EQALh0DEXhb4fk/hKR/artkJq5dpUzKYAFF4qsS0pDCKSe/Rupf/8NSMA777wDAJAUEiBqXyxecd83SZIwb968GhdpVxx+Cwpq3Gw/AyGyGyXJqQB0gYYtc+nYDgAYCBE5oPqujwTA4FjlhSJrOmuspsN0QA2CLQGDQEpo6z5QVLlfs2bNMijSnjdvXrUz3Robh8bIbuhnjPm98RyaTX7c2t0xSZ45FtQCoX99a+3uEJGNM1arBMDssT///BPJyckmh+kiIiLQvXv3uq3K3cAkSUJcfBwK8gvMDr+xRqieGAg5ngu9xqE0NR1B38yHx4C7rd0dkzS5+UhrPwwAEHr2R84cIyKLmzVrFt577z2j0/uNFUFXDLbMBVGNqpq6Ju4+T1SBJjdf3nXetattT9FU+njBKSQQAFBynLtWE5HlxcXFmczqCCHkDJKevtZp7dq1GDlypNlp9sZIkgSFQgGlUikPuymVSigUilpf61ZH6/YyS2MgRHah5FgKAN0eY8rmvtbtTA24du8IACj645SVe0JEjig8PBwJCQlycFLxz4SEBLNrA5kLoozRzwYbPXo0Zs6ciTNnzuDMmTOYOXMmRo8ejWeeeQYKG57AUh0WS5NdKP4rGQDg2q2DlXtSM653dkLB1t0o/uO0tbtCRA6qNhvWVqQPoqqb1Vbd+kDmZtMBFpwR18AYCJFdKE7SBUIu9hII3aHLCBX/yUCIiBpO5en9NVXTWW01CaxMXa+2Rdq1mulmQSyWJrtw/s5HUZZ+FUEbF8CjX09rd6daGnUe0sIeBACEntoCpX8zK/eIiKjx1WVByqCgICxYsIALKhLplaZfRVn6VUCphNtdt1u7OzWiVHnDuWMoSpPTUHjwGLwe6mftLhERNbq6LEiZm5uLBQsWNFofGQiRzSs6dAyAbraYwsvDyr2pOfe+d6A0OQ1F+5MYCBERoe51TQ2JgRDZvKLEPwEAbpH2tYGpe987kbviOxT+7w9rd4WIyGbUta6podjvfDdqEoQQuPnbIQCAe9RdVu5N7bj16Q4AKDn5NzRZaiv3hoiIjGEgRDat9NxFlKVdBpyd7C4QcmrZHC6dbgOEwM1fD1q7O0REZAQDIbJpN3/WBRDuvbvZVX2Qnsf9fQEAN7f/z8o9ISIiYxgIkU0r+GkvAMBjcB8r96RuPB+4BwBw89dDEKVlVu4NERFVxkCIbFbZlWso2p8EAPAcPsCqfakr17s6QdnCD9rcfA6PERHZIAZCZLPyN/8KCAG3Xl3hXL6Jqb2RlEp4PTIYAJC3fpuVe0NERJUxECKbJLRa5H6xBQDg9egQK/emfrxHDwUAFGz/HzTXs63cGyIiqoiBENmkwl2HUXr2AiQvD3g/9oC1u1MvLl3C4HpHBFBSCvWK76zdHSIiqoCBENkcIQSyF3wFAPAZ/5BdzharSJIk+E4aCwBQJ2yENv+mlXtERER6DITI5tzcsR9FiX9CcnOB7wtjrd0di/Ac3h/Ot7WG9oYa2R9+Ze3uEBFROQZCZFM06jxce3k+AED1zGNwCg6wco8sQ3JyQvPZkwAAOYvXo/j4WSv3iIiIAAZCZEOERoPMF+dAczkTTqGt0Gz6U9bukkV5DI2CxwP3ACWluPrMm9Bk51q7S0RETZ7NB0Kffvop2rVrBzc3N/To0QN79+61dpeoAYjiEmS+8DZubtsHydUFLZf8CwpPd2t3y6IkSULAh69AGdQCpWcv4Mro6Si7esPa3SIiatJsOhBav349pk2bhtdffx1//PEH7r33XgwbNgwXLlywdtfIQoQQuLn3KNIfmIj8jTsBJyUCFv8Lbj06W7trDULp3wzB33wAhZ8KxUmnkT4wDrlrf4TQaKzdNSKiJkkSQghrd8KUyMhI3HXXXVi8eLF8rFOnThg1ahTmzp1r9rW5ublQqVRQq9Xw8fFp6K5SDWmLiqHJzELJ6VQU/3EKBT/tQ8kJXb2Mwk+FlkvfhMeAu63cy4ZX8vcFZDz1OkqT0wAAyqAW8IruD7deXeHSuT2cglrY/Ww5IqK6aOzPb5sNhEpKSuDh4YFvvvkG//jHP+TjU6dORVJSEnbv3m3Qvri4GMXFxfL3arUabdq0weGBMfBycgEqvU1z3xm0rfzXI0y0q/R9lb/W2lwHNbu/2XuYuWTVtubuX/llwni76u6v0UCTkw9xsxCVSW4u8H70AfhOGQ+nFn5VzjsqUVyCnJXfQb3ka2hz8qqclzzdofBwg+TmCsnVBZKrMySFApCk8gYSIOn/lPSvgqQ/R0Rkh/LLSnD3b18hJycHKpWqwe/n1OB3qKPr169Do9GgZcuWBsdbtmyJjIyMKu3nzp2Lt956q8rxu3/jVGW78PEe4OPXrd0L25Jl7Q4QEVnPjRs3mnYgpCdV+s1WCFHlGADMmjULL730kvx9Tk4O2rZtiwsXLjTKXySZlpubi5CQEFy8eJHDlDaAz8N28FnYDj4L26Ef0fHza5wRApsNhPz9/aFUKqtkfzIzM6tkiQDA1dUVrq6uVY6rVCr+o7YRPj4+fBY2hM/DdvBZ2A4+C9uhUDTOfC6bnTXm4uKCHj16YOfOnQbHd+7cib59+1qpV0RERORIbDYjBAAvvfQSYmJi0LNnT/Tp0wfLli3DhQsX8Nxzz1m7a0REROQAbDoQGjNmDG7cuIF///vfuHLlCrp06YIff/wRbdu2rfa1rq6uePPNN40Ol1Hj4rOwLXwetoPPwnbwWdiOxn4WNjt9noiIiKih2WyNEBEREVFDYyBERERETRYDISIiImqyGAgRERFRk8VAiIiIiJosmw6EZs+eDUmSDL4CAwPl80IIzJ49G8HBwXB3d8eAAQNw4sQJg2sUFxdj8uTJ8Pf3h6enJ0aMGIH09HSDNtnZ2YiJiYFKpYJKpUJMTAxycnIa4y3aDXPPorS0FK+88gq6du0KT09PBAcH48knn8Tly5cNrsFnYRnV/VxUNHHiREiShA8//NDgOJ+FZdTkWZw6dQojRoyASqWCt7c3evfujQsXLsjn+Swso7pnkZ+fjxdffBGtW7eGu7s7OnXqhMWLFxtcg8/Cci5duoQnnngCzZs3h4eHB+644w4cPXpUPm9Tn9/Chr355puic+fO4sqVK/JXZmamfP6dd94R3t7eYuPGjeLYsWNizJgxIigoSOTm5sptnnvuOdGqVSuxc+dO8fvvv4uBAweK7t27i7KyMrnN0KFDRZcuXcT+/fvF/v37RZcuXUR0dHSjvldbZ+5Z5OTkiMGDB4v169eL06dPiwMHDojIyEjRo0cPg2vwWVhGdT8Xeps2bRLdu3cXwcHBYsGCBQbn+Cwso7pncfbsWeHn5ydmzpwpfv/9d/H333+LrVu3iqtXr8pt+Cwso7pnMWHCBNG+fXvx22+/idTUVLF06VKhVCrFd999J7fhs7CMrKws0bZtWxEbGysOHjwoUlNTxc8//yzOnj0rt7Glz2+bD4S6d+9u9JxWqxWBgYHinXfekY8VFRUJlUollixZIoTQfUA7OzuLdevWyW0uXbokFAqF2LZtmxBCiJMnTwoAIjExUW5z4MABAUCcPn26Ad6VfTL3LIw5dOiQACDOnz8vhOCzsKSaPIv09HTRqlUrcfz4cdG2bVuDQIjPwnKqexZjxowRTzzxhMnzfBaWU92z6Ny5s/j3v/9tcOyuu+4S//d//yeE4LOwpFdeeUVERUWZPG9rn982PTQGACkpKQgODka7du0wduxYnDt3DgCQmpqKjIwM3H///XJbV1dX9O/fH/v37wcAHD16FKWlpQZtgoOD0aVLF7nNgQMHoFKpEBkZKbfp3bs3VCqV3IZ0TD0LY9RqNSRJgq+vLwA+C0sz9yy0Wi1iYmIwc+ZMdO7cucpr+Swsy9Sz0Gq1+OGHH9ChQwc88MADCAgIQGRkJL777jv5tXwWlmXu5yIqKgpbtmzBpUuXIITAb7/9hjNnzuCBBx4AwGdhSVu2bEHPnj3x2GOPISAgAHfeeSc+++wz+bytfX7bdCAUGRmJL7/8Etu3b8dnn32GjIwM9O3bFzdu3JB3pa+8E33Lli3lcxkZGXBxcUGzZs3MtgkICKhy74CAALkNmX8WlRUVFeHVV1/F+PHj5V2c+Swsp7pn8e6778LJyQlTpkwx+no+C8sx9ywyMzORn5+Pd955B0OHDsWOHTvwj3/8Aw8//DB2794NgM/Ckqr7ufj4449x++23o3Xr1nBxccHQoUPx6aefIioqCgCfhSWdO3cOixcvRnh4OLZv347nnnsOU6ZMwZdffgkANvf5bdN7jQ0bNkz+/127dkWfPn3Qvn17fPHFF+jduzcAQJIkg9cIIaocq6xyG2Pta3KdpsTcs3jppZfkc6WlpRg7diy0Wi0+/fTTaq/LZ1F75p5F//798dFHH+H333+v9d8Zn0XtmXsWY8eOBQCMHDkS//znPwEAd9xxB/bv348lS5agf//+Jq/LZ1F71f036uOPP0ZiYiK2bNmCtm3bYs+ePZg0aRKCgoIwePBgk9fls6g9rVaLnj17Ys6cOQCAO++8EydOnMDixYvx5JNPyu1s5fPbpjNClXl6eqJr165ISUmRZwNUjvoyMzPlKDMwMBAlJSXIzs422+bq1atV7nXt2rUq0SrdUvFZ6JWWlmL06NFITU3Fzp075WwQwGfRkCo+i7179yIzMxNt2rSBk5MTnJyccP78eUyfPh2hoaEA+CwaUsVn4e/vDycnJ9x+++0GbTp16iTPGuOzaDgVn0VhYSFee+01zJ8/H8OHD0e3bt3w4osvYsyYMXj//fcB8FlYUlBQULX/7gHb+fy2q0CouLgYp06dQlBQENq1a4fAwEDs3LlTPl9SUoLdu3ejb9++AIAePXrA2dnZoM2VK1dw/PhxuU2fPn2gVqtx6NAhuc3BgwehVqvlNlRVxWcB3AqCUlJS8PPPP6N58+YG7fksGk7FZxETE4O//voLSUlJ8ldwcDBmzpyJ7du3A+CzaEgVn4WLiwvuvvtuJCcnG7Q5c+YM2rZtC4DPoiFVfBalpaUoLS2FQmH4kadUKqHVagHwWVjSPffcY/bfvc19fte4rNoKpk+fLnbt2iXOnTsnEhMTRXR0tPD29hZpaWlCCN30O5VKJb799ltx7NgxMW7cOKPT71q3bi1+/vln8fvvv4v77rvP6PS7bt26iQMHDogDBw6Irl27cjpkJeaeRWlpqRgxYoRo3bq1SEpKMpi+WlxcLF+Dz8Iyqvu5qKzyrDEh+Cwspbpn8e233wpnZ2exbNkykZKSIhYuXCiUSqXYu3evfA0+C8uo7ln0799fdO7cWfz222/i3LlzYsWKFcLNzU18+umn8jX4LCzj0KFDwsnJSbz99tsiJSVFrF69Wnh4eIhVq1bJbWzp89umAyH9ugLOzs4iODhYPPzww+LEiRPyea1WK958800RGBgoXF1dRb9+/cSxY8cMrlFYWChefPFF4efnJ9zd3UV0dLS4cOGCQZsbN26Ixx9/XHh7ewtvb2/x+OOPi+zs7MZ4i3bD3LNITU0VAIx+/fbbb/I1+Cwso7qfi8qMBUJ8FpZRk2eRkJAgwsLChJubm+jevbvBujVC8FlYSnXP4sqVKyI2NlYEBwcLNzc30bFjR/HBBx8IrVYrt+GzsJzvv/9edOnSRbi6uoqIiAixbNkyg/O29PktCSFELTJeRERERA7DrmqEiIiIiCyJgRARERE1WQyEiIiIqMliIERERERNFgMhIiIiarIYCBEREVGTxUCIiIiImiwGQkRERNRkMRAiIiKiJouBEBERETVZDISIiIioyfp//rTnXlDo+38AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGxCAYAAACOSdkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFhklEQVR4nO3deVxUVf8H8M+dYd8GERFwQwXFxKU0tyy1suzJLSu3oghssbJ8TCvt9zxpPalpZWWPWonYYpplpi2PaVZmuaZZpqagoKIgKjAsss49vz+GuTIwMzAwMNvn/XrxKu89c+8Zrjhfzvme75GEEAJEREREbkhl7w4QERER2QsDISIiInJbDISIiIjIbTEQIiIiIrfFQIiIiIjcFgMhIiIiclsMhIiIiMhtMRAiIiIit8VAiIiIiNwWAyEiIiJyWwyEiIiIyG0xECIiIiK3xUCIiJrF3LlzIUkS/vzzT9x7773QaDQICQnBjBkzUFlZiePHj2PEiBEIDAxEVFQUFi1apLy2tLQUzzzzDHr37q28buDAgdi0aVOt+3z22Wfo378/NBoN/Pz80KlTJyQmJirnZVnGf/7zH3Tt2hW+vr4IDg5Gz5498dZbbzXL94GIHIuHvTtARO5l/PjxuP/++/Hoo49i27ZtWLRoESoqKvD999/j8ccfx8yZM/HJJ5/gueeeQ3R0NMaNG4eysjLk5uZi5syZaNOmDcrLy/H9999j3LhxSElJwQMPPAAA2L17NyZMmIAJEyZg7ty58PHxwenTp/HDDz8o91+0aBHmzp2L//u//8NNN92EiooK/P3338jPz7fTd4SI7EkSQgh7d4KIXN/cuXMxb948vP7665gxY4Zy/Nprr8WhQ4fwxRdf4K677gIAVFZWIjIyEjfeeCM2bNhQ61o6nQ5CCDz22GM4ePAgDh48CAB4/fXXMXPmTOTn50Oj0Zjsx6hRo5CZmYnff/+9Cd4lETkbTo0RUbMaOXKk0Z+7desGSZJwxx13KMc8PDwQHR2N06dPK8c+++wz3HDDDQgICICHhwc8PT2RnJyMY8eOKW2uv/56APpRp/Xr1+PcuXO17t+vXz/88ccfePzxx/Hdd9+hoKDA1m+RiJwIAyEialYhISFGf/by8oKfnx98fHxqHS8tLQUAfPHFFxg/fjzatGmDjz/+GLt378b+/fuRmJiotAGAm266CV9++SUqKyvxwAMPoG3btoiLi8PatWuVNrNnz8Zrr72GPXv24I477kDLli1xyy234LfffmvCd01EjoqBEBE5vI8//hgdO3bEp59+irFjx2LAgAHo27cvysrKarUdM2YMtm/fDq1Wi59++glt27bF5MmTsXv3bgD60aYZM2bg4MGDyM3Nxdq1a3H27FncfvvtuHLlSnO/NSKyMwZCROTwJEmCl5cXJElSjmVnZ5tcNWbg7e2NIUOG4NVXXwUAkzlBwcHBuOeee/DEE08gNzcXGRkZNu87ETk2rhojIoc3cuRIfPHFF3j88cdxzz334OzZs3j55ZcRERGB1NRUpd2///1vZGZm4pZbbkHbtm2Rn5+Pt956C56enhgyZAgAfbJ0XFwc+vbti1atWuH06dN488030aFDB8TExNjrLRKRnTAQIiKH99BDDyEnJwcrVqzAqlWr0KlTJzz//PPIzMzEvHnzlHb9+/fHb7/9hueeew4XL15EcHAw+vbtix9++AHdu3cHAAwbNgwbNmzAypUrUVBQgPDwcAwfPhz/+te/4Onpaa+3SER2wuXzRERE5LaYI0RERERui4EQERERuS0GQkREROS2GAgRERGR22IgRERERG6LgRARERG5LZetIyTLMs6fP4/AwECjarRERETkuIQQKCwsRGRkJFSqph+vcdlA6Pz582jXrp29u0FEREQNcPbsWbRt27bJ7+OygVBgYCAA/TcyKCjIzr0hIiKi+igoKEC7du2Uz/Gm5rKBkGE6LCgoiIEQERGRk2mutBYmSxMREZHbYiBEREREbouBEBEREbktBkJERETkthgIERERkdtiIERERERuy2WXzxMROYqKigrodDp7d4PILtRqNTw9Pe3dDbMYCBERNZGCggJcunQJZWVl9u4KkV15e3sjNDTUIev6MRAiImoCBQUFOHfuHAICAhAaGgpPT0/ue0huRwiBiooKaLVanDt3DgAcLhhiIERE1AQuXbqEgIAAtG3blgEQuTVfX18EBgYiMzMTly5dcrhAiMnSREQ2VlFRgbKyMmg0GgZBRNBvl6HRaFBWVoaKigp7d8cIAyEiIhszJEY7coIoUXMz/Dw42sIBBkJERE2Eo0FEVznqzwMDISIiInJbDITIbWVlZWHu3LnIysqyd1eIiMhOGAiRW0pNTcWcOXMwb948zJkzB6mpqfbuEhER2QEDIXI7KSkpiI2NxUcffQQA+PDDjxAbG4vVq1fbt2NEZFc//fQTJElCQkKCvbtCzYiBELmV1NRUTJkyBbIsKysXZFkHWZaRlJSEtLQ0O/eQyDVlZGRAkiQMHTrUJtdj0EK2wkCI3MqqVavMr1yQJCQnJzdvh4iIyK4YCJFbycjIgBDC5DkhC2RkZDRvh4iIyK4YCJFbiYqKslDLQkL79h2atT9E7mDu3Lno2LEjAGDHjh2QJEn5qj61dfToUdx3332IiIiAl5cX2rRpgwceeADHjx83ul5CQgKGDRsGAPjggw+Mrjd37lyl3TfffIPExER069YNQUFB8Pf3R69evTB//nxuhEsK7jVGbiUxMRGLFi0yeU5AYNgdDzRzj4hcX+/evXH33Xdjw4YNaN26NUaMGKGcGzx4MABg+/btGDVqFEpKSnDddddh6NCh+Pvvv/HRRx9h48aN+Pbbb3HjjTcqr8nOzsZ3332Hzp07K9cw3MsgKSkJxcXF6N69O3r06IGCggLs27cPL7zwArZv346tW7dCrVY3zzeBHBYDIXIrMTExSE5ORmJiEgQkQMhQq1WQZYGuQxehTGpn7y6SixNCoLTc9PSso/LxkhpVFXjs2LHo3bs3NmzYYHKFZnFxMe677z6UlJRg+fLleOyxx5RzS5YswYwZMzB58mSkpaXB29sbU6ZMQXR0NL777jsMHjzY7IrPFStWYPjw4fD391eOFRYWYvLkyfj666+xZs0aPPAAf/lxdwyEyO0kJCTg5xOx2L7lI+SkfYWJd9+CLgOmYdsfoThxptze3SMXV1oucOc/M+3dDat8s6QtfL2bbnuE9evX48KFC7jxxhuNgiAA+Oc//4k1a9bgwIED2LhxIyZOnFjv644dO7bWscDAQCxZsgRff/01Nm3axECIGAiRe9Lq2qLzgOdwzx2xmPnkPUjN1mDbH5dw8pxj7YpM5A527twJALjvvvtMnr///vtx4MAB7Ny506pACNCXzPj222+RlpaG4uJiyLKsLJhgIVUCGAiRGyq6IiOvUAYAvPyvJ+Dno0Kp0I8EncupgBDCYTcHJOfn4yXhmyVt7d0Nq/h4Ne3Pw/nz5wHoFzOYYjhuaFcfQgjMnDkTS5YsMbtStLCw0Kp+kmtiIERu5+wF/ahPaLAafj76hZNtWnlCkoDiUoH8IhktAplASU1DkqQmnWZyZnX9AmLNLyiffvop3njjDbRt2xZvvvkmBg4ciFatWsHT0xPl5eXw9vY2GyCRe2EgRG7nTFUg1K711b/+Xp4SwlqocSFXh8wLFQyEiJpRZGQkACA9Pd3k+dOnTwMAIiIi6n3NjRs3AgCWL1+OkSNHGp07depUQ7pJLop1hMjtnL1QCQBoF+ZpdLxt1Z8zL1Y2e5+IXJ2XlxcAoLKy9s+XYVn8mjVrTL7WcNzQrq7rAUBeXh4AoF272itB169fX99ukxtgIERuxzA11j68ZiCkHyHKvMBAiMjWQkND4enpiZMnTyr7/BmMHz8erVu3xs6dO/Hee+8ZnXv77bexf/9+tG3bFnfddZdy3DCKVLPYokGXLl0AAO+9957RFNjOnTuxePFim7wncg0MhMjtnL+kD3TahBnPDBv+fO4iV44R2ZqXlxdGjBiB7Oxs9OrVCw888ACmTJmClJQU+Pv7Y82aNfD19cWjjz6Kvn37YvLkybjuuuvw9NNPw9/fH5988gm8vb2V60VFRaFnz5747bff0K9fPzz00EOYMmUKNm/eDAB46qmn4O/vj2XLliEuLg6TJk3CTTfdhCFDhtRaok/ujYEQuZ2cXP1vo61DagRCrfQjRIZAiYhsa+XKlYiPj8fly5fxySefIDk5GTt27AAA3HLLLdi/fz8mTZqEzMxMfP7558jOzlaWzlefFjPYsGEDxo4di1OnTuHDDz9EcnIyDh48CEA/IrR//36MGjUKly5dwubNm1FUVIR3332XI0JkhMnS5FZKSmUUXtEvnQ9rYZwQbfjzpTxdrdcRUeOFhYXhww8/NHu+e/fu+OSTT+p9vejoaCUp2pRu3bopI0Q1mVoxNnToUK4kc0McESK3klMV5AT4SsrSeYPQYH0glF8ko7yC/xgSEbkDBkLkVnLy9NNeYS1qD4YG+avgVXX46Ims5uwWERHZCafGyK1cqMoPCgupXScoLS0Np/e/gdxL5zHvYigWzX8eMTExzd1FIiJqRhwRIrdibkQoJSUFsbGxOL73feSc/Bqbv/jA5C7ZRETkWhgIkVu5WJUjVD1ROjU1FVOmTKnajFEHCBmyrIMsy0hKSkJaWpq9uktERE2MgRC5lQu5+hGhVtVGhFatWmV2DyNJkpCcnNwsfSMioubHQIjcSq5WPyJkWCEGABkZGWaXzAohkJGR0RxdIyIiO2AgRG7lcoE+EGqpuRoIRUVFWRwRioqKao6uERGRHTAQIrdRVi6juEQ/8hMSdDUQSkxMtDgilJSU1Cz9IyKi5sdAiNxGboG+orSXpwR/36sjQDExMUhOToZKpYJKrQYkFSCpoVKpkJycjOjoaHt1mYiImhjrCJHbyK2aFgsJUtWaCktISMDgwYPxxpK3sGHrGfgEtsWmD55G7x5d7NFVIiJqJgyEyG1c1hoCodrFFAH9vkXL/rsUmc+cRVGJQIvQiObsHhER2QGnxsht5BVYDoQMWlSdzyvk5qtERK6OgRC5jVwTK8ZMMQRKhvZEZBsZGRmQJAlDhw61d1cUQ4cOhSRJLJPRQK6wspaBELmNy/UdEQqsGhFiIERE5PIYCJHbMBRTbFHn1Jj+xyKvUG7yPhERkX1ZFQjNnTsXkiQZfYWHhyvnhRCYO3cuIiMj4evri6FDh+LIkSNG1ygrK8O0adMQGhoKf39/jB49GpmZmUZt8vLyEB8fD41GA41Gg/j4eOTn5zf8XRLhamATEmT5rz2nxoiI3IfVI0Ldu3dHVlaW8nX48GHl3KJFi/DGG2/gnXfewf79+xEeHo7hw4ejsLBQaTN9+nRs3LgR69atwy+//IKioiKMHDkSOt3VD53Jkyfj0KFD2LJlC7Zs2YJDhw4hPj6+kW+V3J22SP93LDiQU2NE9lZQUICnn34a7dq1g4+PD7p164YlS5ZAlo1HYg8dOoRnn30Wffr0QatWreDt7Y1OnTrh8ccfx/nz581e/8yZM3jyyScRExMDHx8ftGzZEv369cP8+fNRUlJSZ/+0Wi1uuukmSJKE6dOnGxVdPXXqFMaPH4+QkBAEBARg8ODB+O677/DTTz9BkiQkJCQYXSshIQGSJOGnn37Cd999h2HDhiE4OBiSJCm/5FdWVmLp0qXo06cPAgICEBAQgH79+mH58uVGn48Gliri16cfP//8M26++WYEBgYiKCgId955J44ePWryesXFxXjuuefQvn17+Pj4IDY2Fm+88YbZQrROR1jhxRdfFL169TJ5TpZlER4eLhYuXKgcKy0tFRqNRqxYsUIIIUR+fr7w9PQU69atU9qcO3dOqFQqsWXLFiGEEEePHhUAxJ49e5Q2u3fvFgDE33//Xe++arVaAUBotVpr3iK5sDumnxHDpp4WmRfKLbbb9ecVMWzqafHYwqxm6hm5mpKSEnH06FFRUlJi7644lPT0dAFADBgwQPTp00cEBweLcePGiZEjRwpfX18BQCQkJBi9ZsKECUKtVotevXqJMWPGiLFjx4qoqCgBQERERIhz587Vus+OHTuERqMRAESnTp3E+PHjxZ133ik6duwoAIj09HSl7ZAhQ2ody87OFr179xYAxLx584yufeLECREaGioAiK5du4qJEyeKAQMGCJVKJZ588kkBQDz44INGr3nwwQcFAPHwww8LSZLE9ddfLyZOnCiuv/56kZ+fLyorK8U//vEPAUAEBQWJMWPGiDFjxojAwEABQNx1111Cp9MZXbNDhw7C3Ef4jz/+aLEfM2bMUL6nd999t+jSpYsAIFq2bCmysoz/3SstLRWDBg0SAERoaKi45557xO233y48PT3F448/LgCIDh06mOxHTfX9uWjuz2+rAyE/Pz8REREhoqKixIQJE8TJkyeFEEKcPHlSABAHDx40es3o0aPFAw88IIQQYvv27QKAyM3NNWrTs2dP8e9//1sIIURycrLQaDS17q3RaMSqVavM9q20tFRotVrl6+zZswyESFFaphPDpp4Ww6aeFoVXdBbb/nWyVAybelpM/r/MZuoduRoGQqYZAiEAomfPnuLixYvKubS0NBEZGSkAiE2bNinHt2/fLs6fP290HZ1OJ+bNmycAiIceesjoXG5urmjVqpUAIJYsWSJkWTY6v2PHDpGfn6/8uWYglJ6eLqKjo4UkSWLp0qW13sMtt9wiAIhp06YZBScffvih8t7MBSAAjAYCDF577TUBQPTo0UNcuHBBOX7+/HnRtWtXAUD897//NXpNYwIhlUolPvnkE+V4ZWWluPvuuwUA8a9//cvoNfPnzxcARL9+/Yy+bwcOHBBBQUEuEQhZNTXWv39/fPjhh/juu+/w/vvvIzs7G4MGDcLly5eRnZ0NAGjdurXRa1q3bq2cy87OhpeXF1q0aGGxTVhYWK17h4WFKW1MWbBggZJTpNFo0K5dO2veGrk4bZF+uN1DDfj7mB5ONtAE6H8stMVMlibbE0LgSvkVp/oSTTAF8tprryE0NFT5c+fOnfGvf/0LAPDf//5XOX7zzTcjIsK4uKlKpcK///1vtGnTBps2bTI69/777+PixYsYOXIkpk+fXmv66KabboJGozHZpyNHjuCGG25ARkYGPvroIzz55JNG59PS0rB9+3aEhIRgwYIFUKmufoTGx8fjpptusvie77zzTkyYMKHW8bfffhsA8Oabbxp9/kVERGDx4sVGbWxh8uTJmDRpkvJntVqNOXPmAAB+/vlno7bLly8HACxZssTo+3bdddfhiSeesFmf7MmqytJ33HGH8v89evTAwIED0blzZ3zwwQcYMGAAANT6SyeEMDuPaa6NqfZ1XWf27NmYMWOG8ueCggIGQ6TIrwqENAHqOv8+agL0OUJXSgXKKwS8PC23J7JGSUUJerzdw97dsMrhpw7Dz8vPZtcLCQnB8OHDax2fPHkypk6dil27dhn9m3/58mVs3rwZf/31F/Lz85WcmYqKCuTm5iI3NxchISEAgO+//x4A8Oijj1rVpz179uCJJ55ASUkJvvzyS9x555212uzatQsA8I9//AP+/v61zt977721AonqRo8eXevYmTNncObMGYSHh+Pmm2+udX7kyJEIDg7G8ePHcfHiRbRq1cqat2XSbbfdVutYly767YSysrKM+nb27Fm0adMGgwYNqvWaSZMmYcGCBY3uj701aosNf39/9OjRA6mpqRg7diwA/YhO9eg9JydHGSUKDw9HeXk58vLyjEaFcnJylG9yeHg4Lly4UOteFy9erDXaVJ23tze8vb0b83bIhRkSpQ2jPZb4+0hQqQBZBgqKdQgN5k40RLbUoUMHk8eDgoIQHByM/Px8FBQUQKPRYO3atXjkkUdQVFRk9nqFhYVKIHT27FkA+hEma8THx6OyshKffvqpySAIgJKcbe6X7Pbt21u8h6nzhmuaK0ooSRI6dOiA/Px8nD9/3iaBUNu2bWsdCwgIAKBf2V2zb+beV13v11k06l/4srIyHDt2DDfeeCM6duyI8PBwbNu2Dddeey0AoLy8HDt27MCrr74KAOjTpw88PT2xbds2jB8/HoA++vzrr7+waNEiAMDAgQOh1Wqxb98+9OvXDwCwd+9eaLVakxEpUX3kVy2dD65HIKRSSdD4q5BXKENbJCM0uIk7R27F19MXh586XHdDB+Lr6dts96o+DXf69GkkJCRACIE333wTd955J9q0aQNfX31/Bg0ahN27d5ucuqtr5LemSZMm4aOPPsK///1v3HTTTUalYep77bqmEH18fKy+prVtANRaedfQ6xjej7n21n6PHZVVgdDMmTMxatQotG/fHjk5OfjPf/6DgoICPPjgg8oSw/nz5yMmJgYxMTGYP38+/Pz8MHnyZACARqNBUlISnnnmGbRs2RIhISGYOXMmevTogVtvvRUA0K1bN4wYMQIPP/ww3n33XQDAI488gpEjR6Jr1642fvvkLrTFVSNCdSydNwgKUOsDIeYJkY1JkmTTaSZndObMGZPHCwoKoNVq4e/vj6CgIHzyyScoLy/HM888g6effrpW+1OnTtU61q5dO/z9999IS0tDbGxsvfv00ksvITIyEq+++ipuueUW/Pjjj7XyVQ2zHeb6bxiNskZkZCQAID093Wwbw/2qz7Z4eXkBAIqKipTRnMb0w1LfTp8+bfK8uePOxqpk6czMTEyaNAldu3bFuHHj4OXlhT179ijDnM8++yymT5+Oxx9/HH379sW5c+ewdetWBAYGKtdYsmQJxo4di/Hjx+OGG26An58fvvrqK6jVVz+g1qxZgx49euC2227Dbbfdhp49e+Kjjz6y0Vsmd6StGhHS+Nfvr7yhXQEDISKbu3z5spLLU93atWsB6Ed6JElCXl4eANNTUT///LPJNArDL9Xvvfee1f1auHAhZs2ahaNHj+KWW27BpUuXjM4bZiW+/fZbXLlypdbrP//8c6vv2b59e7Rv3x7Z2dn44Ycfap3/5ptvkJeXh65duxpNixmCohMnTtR6zdatW63uhykdOnRA27Ztce7cOezevbvW+XXr1tnkPnbXLGvT7IB1hKi61z6+JIZNPS0++Ca/7sZCiH+/myOGTT0tvtxR0MQ9I1fE5fOmVV8+37t3b3Hp0iXl3KlTp0SbNm0EALFx40YhhBCfffaZACD69u0rioqKlLaZmZmiW7duyrWq1wC6fPmyUudn6dKltZbP//zzzxaXzwshxIwZM5Ql/tX7KIQQw4YNEwDE008/bXTtjz/+uM7l8z/++KPJ78vixYuV++Xk5CjHs7KylPf5zjvvGL3mX//6lwAg7rnnHlFZWakc/+ijj4RKpWpQP2BiKfzLL78sAIiBAwcafZ7+/vvvSq0mt1o+T+Ssrq4aq99f+SDDiFARR4SIbG3AgAFQqVSIiYnBPffcg9GjRyMuLg7nzp3D/fffryy+GT16NLp3747ffvsN0dHRuOeeezBy5Eh06dIFLVq0MJk3GhISgvXr1yMwMBDTpk1DTEwMJkyYgFGjRqFTp0646aablJEmc15//XVMnz4df/75J2699Vaj9suXL0dISAjeeustXHPNNZg8eTIGDRqE+Ph4PP744wCuTlvV1z//+U/ccccd+PPPPxETE4Nx48bhrrvuQpcuXXDs2DGMHTsWU6dONXrNE088gVatWuHzzz/HNddcg3vvvRe9e/dGQkKCyWnEhpo1axb69++P3bt3o3Pnzhg/fjzuuOMO9O/fX0l7cXYMhMgtFFRbPl8fhnaG1WZEZDve3t744YcfMGnSJOzevRvfffcd2rVrh9deew2rV69W2nl5eWHnzp2YOnUqfHx88PXXX+PYsWOYNm0atm3bBk9PT5PXHzZsGA4dOoRHHnkElZWV+PLLL7Fnzx6EhYVhwYIFFhOhDZYsWYJp06bh0KFDGD58uLIVRteuXbF3717cc889yM7OVuoYff3110pg1rJlS6u+H2q1Gps3b8Zbb72FTp064bvvvsPWrVvRtWtX/Pe//8Xnn39uVLMI0Nff+/nnnzFy5EhkZWXhf//7HzQaDbZt22ZymX5DeXt74/vvv8fMmTPh7e2NTZs24dSpU/jPf/6Dd955x2b3sSdJCFfZLMSYYemlVqtFUFCQvbtDdvbgvPM4e6ESb0wPQ+8u5lduGHy2vQDLN+Tjluv98MJDoXW2J6qutLQU6enp6Nixo8WVQuRapk6dihUrVmDdunUmCye6u/r+XDT35zdHhMgtaK2cGjMkS2s5NUZE1ZSWluLYsWO1jm/YsAErV66ERqMxW4eIHBMrxZHL0+kECq9U1RGyYvk8wKkxIjKWn5+Pa665BrGxsYiJiYGnpyeOHTuGY8eOQaVSYdmyZbWWs5Nj44gQubyCKzIME8BBfvUcEeJ+Y0RkgkajwTPPPAMvLy/88ssv2Lx5My5fvowxY8Zgx44dLpNA7E44IkQuL79QP6rjIZUiJye71gaOphiSpblqjIiq8/X1xWuvvWbvbpANcUSIXN7hv07g5J5XcfDrxzBnzhykpqbW+RpDjlBpuUBpOYMhIiJXxUCIXFpKSgruuqMXzhx6F5fP/ISPPvoIsbGxRkt0TfHzkaCu+ungqBARketiIEQuKzU1FVOmTNFvQCh0AAR0Oh1kWUZSUhLS0tLMvlaSJCVPiNtsEBG5LgZC5LJWrVplcdfk5ORki68P8q9aOcZAiIjIZTEQIpeVkZEBc/VChRDIyMiw+PrAqjwhw9J7IiJyPQyEyGVFRUVZHBGKioqy+PrAqqX2RQyEiIhcFgMhclmJiYkWR4SSkpIsvt4QCBUUs6giEZGrYiBELismJgbJycmQJBUg6fN91Go1VCoVkpOTER0dbfH1HBEiInJ9LKhILi0hIQFb/uqC3T+sgXfpftx+S388/fTTdQZBwNVAiDlCRESui4EQuTyVbwd0HvAc3pnVGtd09K736wIYCBERuTxOjZHLK6xa/h5Yz33GDIK4aoyo2WVkZECSJAwdOtTeXam3n376CZIkISEhwd5doQZgIEQuTacTKC7VJ0xbGwhxRIiIyPVxaoxcWlHJ1SDG2kBIyRFiQUWiZtOmTRscO3YMfn5+9u4KuQkGQuTSDNtj+PtIUKtN1xQyh6vGiJqfp6cnYmNj7d0NciOcGiOXZpjWMlSJtoYhECouFdDpTNcjIqL6O3bsGOLj49G5c2f4+PigVatW6N27N6ZPn46srCwAlnOEKioq8MorryA6Oho+Pj7o1KkT5s6di4qKCpMFVKvn7uTm5mLq1KmIiIiAt7c34uLisGrVKpP9/Oabb5CYmIhu3bohKCgI/v7+6NWrF+bPn4+ysjKbf1/IvjgiRC7NMCIUYOW0GGA8lVZUIkMToLZZv4jczcGDBzF48GCUlpaiX79+6NevHwoLC3Hq1Cm89dZbGDt2LCIiIsy+XgiBe++9F5s2bUJgYCDuuOMOyLKM119/HYcOHbJ47/z8fAwcOBBarRb9+vVDUVERfv75ZyQlJUGWZUyZMsWofVJSEoqLi9G9e3f06NEDBQUF2LdvH1544QVs374dW7duhVrNfw9cBQMhcmmGaa2gBgRCarUEPx8JV0oFCq8wECLbEEJAXCm1dzesIvn5mN2upr7efvttlJSUYMOGDRg3bpzRuWPHjiE4ONji69esWYNNmzYhOjoaP//8sxI0nT17FjfeeCNOnz5t9rWbNm3C3XffjQ8++AD+/v7KsbFjx+Lll1+uFQitWLECw4cPV9oCQGFhISZPnoyvv/4aa9aswQMPPGDN2ycHxkCIXJphRCjQv2FBTICfCldKdVw5RjYjrpQiPeo2e3fDKh0ztkLy923UNXJycgAAN998c61z3bp1q/P1K1asAAC8/PLLRiNH7dq1w4svvojExESzrw0KCsJ7771nFNiMGTMGPXr0wOHDh5GRkWG09+DYsWNrXSMwMBBLlizB119/jU2bNjEQciHMESKXVtiIESEAEFcycHLPqxjzjxsxbdo0pKam2rJ7RG6jT58+AIAHHngA+/btgyzX/5eLiooK7N+/HyqVqtZoEgDce++9Fl/ft29fhISE1DrepUsXAFDyk6pLTU3FW2+9hWnTpiExMREJCQl4+eWXlXPkOjgiRC6tsGrD1IbkCKWkpOCzN6dAQAKEDqdOHMSyZcuQnJzMwmnUYJKfDzpmbLV3N6wi+fk0+hqzZs3CL7/8gq+++gpfffUVNBoN+vfvj5EjRyIhIQGBgYFmX3v58mWUl5cjIiICXl5etc4HBASgRYsWyMvLM/n6tm3bmjweEBAAAEYJ0EIIzJw5E0uWLDG7aXNhYaHZvpLzYSBELq2hq8ZSU1MxZcoUCHH1t1adTh9UJSUlYfDgwfXar4yoJkmSGj3N5IyCgoLwww8/4Ndff8VXX32Fn376SUk8XrBgAXbu3InOnTtbvIalPCVzQUtdr6vp008/xRtvvIG2bdvizTffxMCBA9GqVSt4enqivLwc3t7eFu9FzodTY+TSGjo1tmrVKrP/eEqShOTk5Eb3jcjdSJKEwYMH49VXX8XevXuRlZWFSZMmISsrC3PmzDH7upYtW8LT0xPZ2dkoLy+vdb6oqAj5+fk26ePGjRsBAMuXL8fdd9+NyMhIeHp6AgBOnTplk3uQY2EgRC6tocvnMzIyzP7WJ4RARkZGY7tG5PZatWqFuXPnAgAOHz5stp2npyeuv/56yLKsBCrVff755zbrk2F6rV27drXOrV+/3mb3IcfBQIhcmjIiZOXUmKnibAaSJBmtMCGiuq1YsQLp6em1jv/vf/8DALRv397i6x999FEAwL///W9kZ2crxzMzM/HSSy/ZrJ+GBOr33nvP6JehnTt3YvHixTa7DzkOBkLk0gx1hKzdZywxMdHiiFBSUlKj+0bkTlasWIFOnTqhe/fuuOeeezBx4kRce+21mD59Onx9ffHiiy9afH18fDxGjRqFEydOoGvXrhg3bhzGjh2Lbt26IS4uDu3bt1emsBrjqaeegr+/P5YtW4a4uDhMmjQJN910E4YMGYLHHnus0dcnx8NAiFyWEEKZGrN2RCgmJgbJyclQqVSApAYgQa1WQ6VSITk5mYnSRFZ6+eWXkZiYCEmSsH37dnz11Ve4cuUKHnnkEfz5558YOHCgxddLkoTPP/8cL730EkJDQ/HNN9/gjz/+wPTp07F+/XpcuHABLVu2bHQ/u3Tpgv3792PUqFG4dOkSNm/ejKKiIrz77rscEXJRknDR9PeCggJoNBpotVoEBQXZuztkB1dKZYyckQkA+GZJW/h6Wx/3b9zyF6bPWY7KopMYd3sMnn76aQZBVKfS0lKkp6ejY8eO8PFp/NJzsmzv3r0YMGAARowYoUy1keOp789Fc39+c/k8uSzDaJCnB+Dj1bDtAbpf0wWdBzyH0GA1ls5vY8vuEZGVDh8+jNjYWKMpsIyMDEydOhUAMHnyZHt1jZwYAyFyWdXzgxq6T5JhtVkRt9ggsrtZs2bht99+Q69evRAWFobMzEz89ttvKC0txT/+8Q/cf//99u4iOSEGQuSyCq40bp8x4GqSdWm5QHmFgJdn4zaeJKKGS0hIgCzLOHz4MH755Rd4eXmhR48emDx5Mp544olGbwxL7omBELmswuKGrRirzt9HgiQBQuhHhUI03IGeyF4mTpyIiRMn2rsb5GK4aoxcVmEDl85Xp1JJCPBVGV2PiIhcBwMhclkNLaZYkyFPiIEQEZHrYSBELqsxO89XF8iEaSIil8VAiFxWQQM3XK0pkCNCREQui4EQuSwlWZpTY0REZAYDIXJZtkiWrv76ohIGQkREroaBELksWwVCHBEiInJdDITIZdlsasxXX6SNydLkyLKysjB37lxkZWXZuytEToWBELksWydLMxAiR5aVlYV58+YxECKyEitLk0uqqBQoLRMAGj8ixFVjRLZRcwsMDw8PaDQaREREoE+fPhg1ahTGjBkDDw9+NFHz4YgQuaTqQYu/r21yhDgiRGQbDz74IB588EFMmjQJN9xwAyorK/Hhhx/innvuQbdu3bBv3z6b3Gf16tWQJAlz5861yfXINTHsJpdkyA8K8JWgVjVuI0aOCBHZ1urVq2sdO3nyJObMmYP169dj2LBh+PXXX9G7d+9m7xu5H44IkUsqtMHO8wbKqjEunydqMp07d8ann36KpKQkXLlyBYmJifbuErkJBkLkkgptlCgNQNl0tbRMoFInGn09IltLTU3F0qVLAQBLly5FamqqnXvUcK+//jr8/f3x+++/45dffjE698033yAxMRHdunVDUFAQ/P390atXL8yfPx9lZWVGbYcOHYqHHnoIADBv3jxIkqR8GUakhBBYu3YtJk6ciC5dusDf3x+BgYHo168fli1bBlnmLz/uoFGfEgsWLIAkSZg+fbpyTAiBuXPnIjIyEr6+vhg6dCiOHDli9LqysjJMmzYNoaGh8Pf3x+jRo5GZmWnUJi8vD/Hx8dBoNNBoNIiPj0d+fn5juktuxFb7jNW8BvOEyNGkpKQgNjYWH330EQDgo48+QmxsrMnpJ2eg0Whwxx13AAB+/PFHo3NJSUn47LPPoNFoMGLECNx44404e/YsXnjhBfzjH/+ATqdT2o4YMQI33HADAKBXr15KXtKDDz6I6OhoAPrPosmTJ2Pr1q0ICwvDqFGj0L9/fxw5cgRPPPEER6XchWigffv2iaioKNGzZ0/x9NNPK8cXLlwoAgMDxYYNG8Thw4fFhAkTREREhCgoKFDaPPbYY6JNmzZi27Zt4uDBg2LYsGGiV69eorKyUmkzYsQIERcXJ3bt2iV27dol4uLixMiRI+vdP61WKwAIrVbb0LdITuyz7VoxbOpp8dLKiza53sh/nhHDpp4WZ7LLbXI9cm0lJSXi6NGjoqSkpEnvc+LECaFSqQSAWl8qlUqkpqY26f2tZehbXf7zn/8IAGLSpElGxzdu3CiKioqMjhUUFIiRI0cKAOKDDz4wOpeSkiIAiBdffNHkfSoqKsSGDRtEWVmZ0fGcnBzRt29fAUDs2LGjHu+M6qO+PxfN/fndoF+Xi4qKcN999+H9999HixYtqgdVePPNN/HCCy9g3LhxiIuLwwcffIArV67gk08+AQBotVokJyfj9ddfx6233oprr70WH3/8MQ4fPozvv/8eAHDs2DFs2bIFK1euxMCBAzFw4EC8//77+Prrr3H8+PGGRXzkVorqWVVaCIHytDOQS8sstuPKMXJEq1atqrUk3UCSJCQnJzdzj2wjNDQUgH5moLqxY8fC39/f6FhgYCCWLFkCANi0aZNV9/Hw8MC4cePg5eVldLxVq1ZYsGBBg65JzqdBq8aeeOIJ3Hnnnbj11lvxn//8Rzmenp6O7Oxs3Hbbbcoxb29vDBkyBLt27cKjjz6KAwcOoKKiwqhNZGQk4uLisGvXLtx+++3YvXs3NBoN+vfvr7QZMGAANBoNdu3aha5du9bqU1lZmdEccUFBQUPeGrmIguK6AyEhBHIeewlFX3wPr+7RaPP1f6EK8DPZNtBPhQu5Oq4cI4eSkZEBIUznrQkhkJGR0bwdshHDezIV5KWmpuLbb79FWloaiouLIcuy0r6huVGHDh3C1q1bcfr0aVy5cgVCCBQWFjbqmuQ8rA6E1q1bh4MHD2L//v21zmVnZwMAWrdubXS8devWOH36tNLGy8vLaCTJ0Mbw+uzsbISFhdW6flhYmNKmpgULFmDevHnWvh1yUVdXjZkPhEp+2o+iL/SjkOVH0lDwwSYEPzHJZFtDwjQDIXIkUVFRFkeEoqKimrdDNnLp0iUAQEhIiHJMCIGZM2diyZIlZoM/Q/BSX+Xl5UhISMDatWvNtrH2muR8rJoaO3v2LJ5++ml8/PHH8PHxMduu5g+mEMLsD6u5NqbaW7rO7NmzodVqla+zZ89avB+5tsJ6jAgVfroFACD56IfFC9Z+a7Ytp8bIESUmJlocEUpKSmrmHtnGoUOHAADXXHONcuzTTz/FG2+8gTZt2uDzzz/HuXPnUF5eDiGEMhtg7nthzhtvvIG1a9ciLi4O//vf/3DhwgXlmoY0DGuvSc7HqkDowIEDyMnJQZ8+feDh4QEPDw/s2LEDb7/9Njw8PJSRoJqjNjk5Ocq58PBwlJeX15r7rdnmwoULte5/8eLFWqNNBt7e3ggKCjL6IvelLJ83MyIkZBlXftgLAGid/BKgUqHieAYqzpoecVT2G2MtIXIgMTExSE5Ohkqlglqtr5mlVquhUqmQnJysrI5yJlqtFlu26H9JGTZsmHJ848aNAIDly5fj7rvvRmRkJDw9PQEAp06datC9DNdcu3YtRowYgbCwsEZfk5yPVYHQLbfcgsOHD+PQoUPKV9++fXHffffh0KFD6NSpE8LDw7Ft2zblNeXl5dixYwcGDRoEAOjTpw88PT2N2mRlZeGvv/5S2gwcOBBardaozPrevXuh1WqVNkSWGAIhc8vny4+dgpxXAMnPF37D+sP7um4AgNI9f5hsH8Dq0uSgEhIScPz4ccTHxwMA4uPjcfz4cSQkJNi3Yw30zDPPoLi4GNdffz0GDhyoHDf88tyuXbtar1m/fr3JaxmSoCsrK02eb8g1yfVYFQgFBgYiLi7O6Mvf3x8tW7ZEXFycUlNo/vz52LhxI/766y8kJCTAz88PkydPBqCvEZGUlIRnnnkG27dvx++//477778fPXr0wK233goA6NatG0aMGIGHH34Ye/bswZ49e/Dwww9j5MiRJhOliWoyJEubGxEqO3gMAODTpxskTw/49LnG6HhN3IGeHFl0dDSmTZsGAJg2bZpTjgSdOnUKEyZMQHJyMvz9/WuteOvSpQsA4L333jOartq5cycWL15s8pqRkZEAYHa1seGaK1asMDr++eef48MPP2zYGyGnY/O9xp599lmUlJTg8ccfR15eHvr374+tW7ciMDBQabNkyRJ4eHhg/PjxKCkpwS233ILVq1crQ7sAsGbNGjz11FPK6rLRo0fjnXfesXV3yQXJsqhz+XzZ4RMAAO9e+sDa+zp9IFT6h+l/MLnfGJHtGEarZFlGQUEBTpw4gb///htCCMTExOCTTz5Bjx49jF7z1FNPYfXq1Vi2bBl++ukn9OzZE+fOncMvv/yCZ555Bq+99lqt+wwYMABhYWH4/PPPMXToUHTq1AkqlQqJiYkYNGgQnn32WWzZsgXPP/88PvvsM3Tp0gWpqan47bffMHPmTJPXJBfULNWK7IAFFd1X4RWdGDb1tBg29bQoLdOZbJN5x2MiLXSwKNiwTQghROmRNJEWOlicir5DyLJcq/33+4rEsKmnxT+XZDdp38k1NFdBxeoOHDggAIgDBw402z2thRpFHz08PERISIiIi4sTDz74oNiwYYOoqKgw+/qjR4+KUaNGibCwMOHn5yeuvfZa8d577ynX7tChQ63X7N+/XwwfPlxoNBohSZIAIFJSUpTzu3fvFjfffLNo0aKFCAwMFIMGDRIbNmwQ6enpAoAYMmSIjb8L7stRCypy93lyOYYVY16eEry9zOQIndSvKvSK6QAA8OzYFpAkyPmF0F3Kh0cr4/IOAUyWJmo00cgVWN26dcPmzZutunbfvn2xdetWs9ccMGAAtm/fbtU1ybVw01VyOYV1TIvp8gsh52oBAJ4d2wAAVL7e8GgfDgCoSDtT6zXMESIick0MhMjl1LV0vuKUfjRI3bqlUSVpz87t9efTTtd6DVeNERG5JgZC5HLq2nm+4lQmAMCzs/GSWa8YfSBUnmp+RKi4REAnc7icHE9ERARefPFFRERE2LsrRE6FOULkcpSl83UFQp3aGh33jK4aEUo1MSLke/VaxSUygvzVtdoQ2VNERATmzp1r724QOR2OCJHLKapjnzGzgVBH/Z8rzmTVeo2nhwQfL/32LpweIyJyHQyEyOUU1JEsXZFeFQh1NA6EPNrqN/qtPJdjcrVIQLXpMSIicg0MhMjl1LXhauX5iwAAz3bhRsc9IvSBkCgugawtqvU6FlUkInI9DITI5RRamBoTFZXQXbgMAFBHtDI6p/LzgaqlBgBQmVl701+uHCNrsQ4N0VWO+vPAQIhcjqU6QpUXLgNCAJ4eUIcG1zrv0aa1vt352oEQawlRfRm2C6qoqLBzT4gch+Hnofp2Wo6AgRC5HEtTY5Xn9AGOR2QrSKra5z3aVOUJZebUOmdYOcYRIaqLp6cnvL29odVqHfa3YKLmJISAVquFt7c3PD097d0dI1w+Ty7HUkFFXVV+kCEfqCZPw4gQp8aokUJDQ3Hu3DlkZmZCo9HA09MTkiTZu1tEzUoIgYqKCmi1WhQVFaFNmzb27lItDITI5VzNEao9/FqZVRUIRbaqdQ4APNoapsZqjwgpRRUZCFE9BAUFAQAuXbqEc+fO2bk3RPbl7e2NNm3aKD8XjoSBELmU8gqB0nL9VITpqTF9gGOYAqvJI9IwNWY+R4gjQlRfQUFBCAoKQkVFBXQ6nb27Q2QXarXa4abDqmMgRC7lj8PHcXLPUpQWnsXs5zrg6aeeQkxMjHLeMNLjEWF6REjduiUAQJeTW+scp8aooTw9PR36g4DInTFZmlxGSkoKBlzfHWcOvYuck99gxfLliI2NxerVq5U2ldmXANReOm9gCIQqcy7XOsdVY0REroeBELmE1NRUTJkyBbIsA0IHCBk6nQ6yLCMpKQlpaWkAro70eFQFPDUZjoviEshFV4zOBfhWbbFRwkCIiMhVMBAil7Bq1SqzK3IkSUJycjKEENBVjfSoW4WYbuvvC8nPB0Dt6bEAjggREbkcBkLkEjIyMszWaxFC6M8XXYEoLQcAqFu1MNlWkiSowwzTY8aBUPWpMdaGISJyDQyEyCVERUVZHBGKiopS8n6kAD+o/H3NXssjTD9apKuRJ2QIhGQBXCllIERE5AoYCJFLSExMtDgilJSUBF1OHgDAw8y0mIFaCYSMR4S8vVTwrFpnyZVjRESugYEQuYSYmBgkJydDklSApIYkqaBWq6FSqZCcnIzo6GglsDEEOuZcXTlWewk9V44REbkW1hEil5GQkIA/sq7BF599gLbBF3BT/xgkJSUhOjoaAKC7WBUImckPMvCoyhEy7FJfXYCvCrkFMkeEiIhcBAMhcilegVHoPOA5PBsfghEDA4zOVSojQqaXzhsoU2OmAiHDiBCX0BMRuQROjZFLubrPmIkNVw0jQmGWR4QM53WX82ud49QYEZFrYSBELqWwuGrneRP7jCnFFOvKEQoJ1re3EAhxaoyIyDUwECKXYghQAkwFQpf0q8bUoXWMCLUM1re/rK11jvuNERG5FgZC5DJkWShTVkH+6lrndbn6wMYQ6JijaqkBAIgrJZBLyozOsbo0EZFrYSBELuNKqYBcVUoo0MSIkFw1wmMIdMxRBfrDUDBIzs03OsepMSIi18JAiFxGQVVw4uMlwcvTuMq0KK+AXFgM4GoOkDmSJEEdog+WdJfyjc5x1RgRkWthIEQuo7BYB8BMflDVtBhUKqg0AbXO16QODTZ+XZVAX06NERG5EgZC5DIKqlaMaQLMB0KqkCBIqrr/2isjQjVWjnFqjIjItTAQIpehLTIkSpvIDzIkSodYzg8yMLdyjMnSRESuhYEQuQxlRMjUirHLhkAouF7XUpmpJVR9+by5TV6JiMh5MBAil6Et0ucImZ4aywcAqOtYMWZgyBGSa+YIVQVClTqgtJyBEBGRs2MgRC7DMDVmKUeorhpCBuZWjfl6SzCkGHHlGBGR82MgRC5DW2y+mKJSQ8jaHKEadYQkSeJ+Y0RELoSBELmMgmILU2NVuT71nRozFF3kfmNERK6NgRC5DEurxnQNXTWWy/3GiIhcGQMhchlXc4RMrRrLB3B1NVhdDAGTnFsAIRsHPAEsqkhE5DIYCJFLEEJYnBpT6gjVd9WYIalaliHnFxqd49QYEZHr8LB3B4hsobRMoKJS//+2mBqTPD2gCgqAXFAE3eV8o9eVaNNxcs9qvHYkGwe2dUFiYiJiYmIa/yaIiKjZcUSIXIJhxZiXpwQfL+MNV+UrpRAlZQDqv3weuLrCrHp16ZSUFCycOQBnDr2LvTs3YvHixYiNjcXq1asb9waIiMguGAiRS1CKKfqrIEnGgZCS8OzlCcnft97XVIcEAQDk/AIAQGpqKqZMmQIhZEDoACGg0+kgyzKSkpKQlpZmg3dCRETNiYEQuQRLxRRlw9L5EE2tIMkSVbA+ENLl6QOhVatWmX29JElITk62pstEROQAGAiRSygotrB0viqQMYzw1Je6RdWIkFafLJ2RkWF2fzEhBDIyMqy6PhER2R8DIXIJV/cZM1FVuioQUmkCrbqmob2cpw+EoqKiLI4IRUVFWXV9IiKyPwZC5BKU7TVMVZWuGtExjPDUl7qFPhAyjCglJiZaHBFKSkqy6vpERGR/DITIJSg5Qiamxgx1gKweEQo2TpaOiYlBcnIyVCoVIKkBSQW1Wg2VSoXk5GRER0c35i0QEZEdsI4QuQRDjpDJqtJVgYwq2LpAyDCCZBgRAoCEhARc22cQRj/4FkoLM3HPbe3xz38+zSCIiMhJMRAil2DIETKVLG0YEVJbOyJUNTUma4uMjvfoHoPogc9BCODl+W0QoqkdfBERkXOwamps+fLl6NmzJ4KCghAUFISBAwfif//7n3JeCIG5c+ciMjISvr6+GDp0KI4cOWJ0jbKyMkybNg2hoaHw9/fH6NGjkZmZadQmLy8P8fHx0Gg00Gg0iI+PR35+fsPfJbm8AkvL5/P1gYzKyhwhw1Ra9REhAFCpJPj76JOmuc0GEZFzsyoQatu2LRYuXIjffvsNv/32G26++WaMGTNGCXYWLVqEN954A++88w7279+P8PBwDB8+HIWFV/dqmj59OjZu3Ih169bhl19+QVFREUaOHAmdTqe0mTx5Mg4dOoQtW7Zgy5YtOHToEOLj4230lskVaS1NjVUlSzd0asyQI1RdUNV9GAgRETk3q6bGRo0aZfTnV155BcuXL8eePXtwzTXX4M0338QLL7yAcePGAQA++OADtG7dGp988gkeffRRaLVaJCcn46OPPsKtt94KAPj444/Rrl07fP/997j99ttx7NgxbNmyBXv27EH//v0BAO+//z4GDhyI48ePo2vXrrZ43+RCjDZcNTU1Zqgj1NBkaW0RhE4HSX01yAryV+H8xatTckRE5JwavGpMp9Nh3bp1KC4uxsCBA5Geno7s7GzcdtttShtvb28MGTIEu3btAgAcOHAAFRUVRm0iIyMRFxentNm9ezc0Go0SBAHAgAEDoNFolDamlJWVoaCgwOiL3ENJ9Q1XTU2NKSNCAVZdV20YQRICckGx0TlDwGVI0iYiIudkdSB0+PBhBAQEwNvbG4899hg2btyIa665BtnZ2QCA1q1bG7Vv3bq1ci47OxteXl5o0aKFxTZhYWG17hsWFqa0MWXBggVKTpFGo0G7du2sfWvkpAxL5709Jfh4magjZFg+H2xdjpBUbW8yQ8K1gWEKznBvIiJyTlYHQl27dsWhQ4ewZ88eTJ06FQ8++CCOHj2qnK9ZeVcIUef+TjXbmGpf13Vmz54NrVarfJ09e7a+b4mcXL5SVbr2X2dRUQlRdAVAtREeKxheo6uRJ2S4F6fGiIicm9WBkJeXF6Kjo9G3b18sWLAAvXr1wltvvYXw8HAAqDVqk5OTo4wShYeHo7y8HHl5eRbbXLhwodZ9L168WGu0qTpvb29lNZvhi9xDfqF+VKZFoIntNbRXR3JUGuumxoBqeUI1Vo4ZlulrOTVGROTUGl1ZWgiBsrIydOzYEeHh4di2bZtyrry8HDt27MCgQYMAAH369IGnp6dRm6ysLPz1119Km4EDB0Kr1WLfvn1Km71790Kr1SptiKrLK9CPygQHmt9eQwrwg+Rhfdksw5J7nZmpMeYIERE5N6s+GebMmYM77rgD7dq1Q2FhIdatW4effvoJW7ZsgSRJmD59OubPn4+YmBjExMRg/vz58PPzw+TJkwEAGo0GSUlJeOaZZ9CyZUuEhIRg5syZ6NGjh7KKrFu3bhgxYgQefvhhvPvuuwCARx55BCNHjuSKMTIpr1AfCLUIMjEilN+wfcYMDFNjZkeEODVGROTUrAqELly4gPj4eGRlZUGj0aBnz57YsmULhg8fDgB49tlnUVJSgscffxx5eXno378/tm7disDAq7kZS5YsgYeHB8aPH4+SkhLccsstWL16NdTVliavWbMGTz31lLK6bPTo0XjnnXds8X7JBRlGhExNjenyGrbPmIFKqSVUY0RICYQ4IkRE5MysCoSSk5MtnpckCXPnzsXcuXPNtvHx8cHSpUuxdOlSs21CQkLw8ccfW9M1cmN5VcFIiyBLS+cbFgipgw1TYzVGhAK4fJ6IyBVw93lyepZGhBq6z5iByszUmKZaZWmdLBp0bSIisj8GQuT08iytGjPUEGrRwBGhFobl88ZTY4YcISGAIm6zQUTktBgIkdNTRoRMTI0ZprQaUkMIML983kMtwd9XX9eKeUJERM6LgRA5tUqdUPJ0LI4INXBqTN3CdI4QUL26NFeOERE5KwZC5NQMozEqCQg0seFqQ3eeN1BGhGpMjQHcb4yIyBUwECKnZpgW0wSqoFbV3oJFSZa2cp8xA1Xw1RwhIYyToq9us8FAiIjIWTEQIqemFFM0MS0GVJsaa/Dy+arXlVdAXCk1OhfkXzU1xhEhIiKnxUCInJqlpfNA9Z3nGxYISf6+gKe+3JbMjVeJiFwOAyFyarnK0nnTf5UNBRUbWkdIkqSrRRXzTFeXZo4QEZHzYiBETi3fwj5joqxcmc5SNXCvMaBaUcVa1aUNq8YYCBEROSvrt+N2Muu3bcPJ335DRkYGoqKikJiYiJiYmFrtUlNTsWrVqjrbkWOxuM+YYaWXJEEV5N/ge1RPmK6OG68SETk/lw+EHr7nHkgqFSAEVCoVFi1ahOTkZCQkJChtUlJSMGXKFEiSBFmWzbYjx5Kamoov1yxFRsZpfFkUjT4dHzMKXpV9xoL89X8HGkjZgb7mxqvcb4yIyOm5xdSYkGUIIaDT6SDLMpKSkpCWlgZA/2E6ZcoUyLIMnU5nth05lpSUFMTGxmL/9mXIOfk1PvvkLcTGxmL16tVKm8auGDNQpsa0NQMh/SgUAyEiIuflFoFQTZIkITk5GQCwatUqSFLt+jM125HjqB68CqEDhAzZRPCqa2QNIQNDorW5qbHCKzJ0Om68SkTkjNwyENLJOuz94w8AQEZGRq1CeQZCCGRkZDRjz6g+6hu8GpKbbTYiVDNZutrGq4XceJWIyCm5ZSAECfi9dA8e/vB1tG3XzuKHalRUVPP2jepU3+BVl18EoOH7jBmY22bDQy0hgBuvEhE5NZdPljZJAIH9AvBDzjJ4oQ1kCx+qSUlJzdw5qktUVFS9glelhlAjR4TUZlaNAUBwoBpFJZXIL9ShQ4Rno+5DRETNz+VHhCRJglqtVv6rUqkw/5X5iEq7Djkf5yL7t8NocXsLwES75ORkREdH2/stUA2JiYkWR4QMwaucZ+OpMW1RrXOGZfuGrT6IiMi5uPyI0IEDB7B+/XqlPpBGo8ELL7ygLJUXEgAhEDIiBKqSAMR4xGBI3+uRlJTEIMhBxcTEIDk5GYmJSRCQIEFApZIghDAKXhu787yBYWpNl1dQ61yLIP3vErkFnBojInJGLh8Ide7cGQsWLACgX20UGxsLWa72oVU1sJC7JRftnvXHhdB0/OXXG34tQ+3QW6qvhIQEpBfEYfXqFLT2z8Ytg7vUCl6v7jzfyKmxFqaXzwMcESIicnYuHwhVZ2m1kVqlhtfBcIjbLuPolY24+f2f8Uiv/8OM20c3cy+pviTfDug84Dk8eW8LjBtWO9hR6gg1Nllac3VqTMiyUXFGw9YeDISIiJyTWwVCda02ur5lZ4wa9Dpe+eVfKFWdxZs/PIk3F/8f4gI6oVe3bkhMTAQAbsXhIC7l64OP0GBzO89X5Qg1Yp8xoNrUmixDLroCdVCAcs6w2Wsep8aIiJySWwVC9VltNHnQjRh17Rbc/sR92L36C0A6i7PiMLZ89RVeffVVAIBKpTLaiuOVV16BVqtlcNTMLmktB0LK1FhjR4R8vCH5eEGUlkPOK6gRCHFEiIjImbn8qrHq6rvaKDvzLPZ+8KU+f0gGIK5u02HYgqP6VhyzZ8/G4sWL8emnn2Lx4sW1tnog25NlgcuGESGNmUCoapVXY5Ol9dcwXUtImRorYCBEROSM3CoQMqw2UqlUUKv1H2CmlspbyiUyh/uUNa/8Ihk6GZAkIMREICSXlEGUlQOwVSBUtXJMayYQKpTNBtlEROS43CoQAvSrjY4fP46pU6ciLi4OU6dOxfHjx412mbeUS1Rf3KesaRnyg1oEquChrh20KtthqNVQBfo3+n6G6bVaI0JVOULlFQJXShkIERE5G7fKETKIjo7G0qVLzZ63lEtUX9ynrGllX64EAIS3NP1XWKesGAto9LMEqu83ZhwI+Xqr4OMtobRMIK9QB39ft/vdgojIqfFfbRMs5RLVF/cpa1pZlywHQrZKlDawtM2GkjDNPCEiIqfDQMiEmrlE1bfpqPn/5nCfsqaVnVtHIGSjqtIG5kaEgGpL6Au5hJ6IyNm45dRYfSQkJGDw4MFITk5WlsUbApvqxzQaDebMmQMhCf0qMwmADAy44QbcddddGDp0KJ566ikup7exC3VNjdlonzGDq/uN1Q6EQrhyjIjIaTEQsiA6OlrZnqO6msfuuecevPXf/2LjL1uQW3QaJcdLsOvXnYAMHDt2DMuWLUNycrJRQjY1TtZlfdAR3tLc0nnbbK9hoLa43xhrCREROStOjdlAdHQ0li5Zgh8/2YzSE2VX6w8BXE7fBIQQdY4IKdtr2GpEqKo6ten9xlhdmojIWXFEyIZWrVoFlSTB1LiADIH5b7yBVcuWKcdSU1PrtV1Hfdu5i/wiGaXlApIEhLWoa9WYjQIhjflk6dKCdJzcsxIr92ch53BXt38+RETOhIGQDVmsPyQLfLwhGT8e+BVjbxyO1qGheOGFFyBJktF2HTWn0FJSUjBlypQ627kTw9L5lho1vDxNJ6wrq8Yauc+YgdpMjlBKSgqemDIFspAACBz/XXL750NE5EwYCNlQXfWHKnLKkXHxT7y5/0/99Fk1Op1+HCkpKQmDBw9GdHQ0UlNTMWXKFMiybLGdu6lrWgyw3c7zBkqydN7VQMj089H/152fDxGRM2GOkA3Vq/6QQK0gqLrqFaktbfXhzpWr60qUBq5uhWG7VWNVOUIFRRBV0Q6fDxGR82MgZEOm6g9ZW9W4ekVqS1Nt7ly5uq6q0kC1qTFbrRqrdh25oBgAnw8RkStgIGRjhr3MZs2ahQkTJiA2NhYqlXXf5oyMDEyaNAkZGRkWRxzctXL1+Yv6QCgi1HwgpKvaa8xWU2OSpwckP18AV4MsS1Oh7vx8iIicCQOhJmCoP7R27VqMGTPGqlEhWZaxd98+fPrpp9i3b5+SE1STO1euPnuhAgDQLszT5HkhRLVkadsEQkC1HeirgixLU6Hu/HyIiJwJA6EmVlfekGEKDdWCJSHL+g/zakm41bf6UKlUSE5OdstE3JIyGTl5+uCwXWvTI0KiuASo1Lex1YgQcDWoMgRZ1adCJZUakFRQqdz7+RARORuuGmtihg/LpKQkoyXwQgjMnz8f+fn5yMjIQEZGBvbv329yBEilUuH6669HVFSUstWHu37IZubop8WC/FXQBFiuKg0PNSR/X5vd2xBUVd9vzLAVy+Oz/os//jqF63p2wtJXn3Db50NE5GwYCDUDc/uWVf+wnDRpEvbt22fy9bKQkSVfweZ330WrIPN1cdyh8KIyLWZmNAioVkwxONDqZHVLlB3oa9QSio6ORuLj8/Dexnzc2M8P0dGhNrsnERE1LQZCzcTcvmUGFmsQSYDW/wwGr7gZo6IexbwxD8Df29uoibsUXjx7QT8i1K616fwgoPqKMdsUUzRQRoRM7DfWKlg/OnUpn/uNERE5E+YIOQhLuUSSkBDaNwaVqjxsPLMQ1781HK9+uwGVVdNo1Qv76XQ6CCFcdo+zM8qIkPlASGfjfcYMDPuN1RwRAoBQDQMhIiJnxEDIQZiqQWRIjF61ahX+/M8vuLvDHHjIIShTncN7R59F3zdG4YNffnKrwn7p5/SBUMfIeowI2TBRuvr1ZBP7jYVWGxGqs6gmERE5DE6NOZC6cokW3ZuE5wrG47mN72LHhdUoVB3HS3uSoN1SCdnFC/ulpqbi/feT8e2Xx+Ad0BZS4pMAuplsK9u4qrSBss1GflGtc4ZAqLRcoLhEIMDPdrlJRETUdBgIOZi6colaBgVi5YMzcTLnATz7xZs4VLgBuha5EJBNtneFwn7V8590soAECYP6rzCb/2TrnecNatYRqs7bS4UgfxUKimVczK9EgJ+XTe9NRERNg1NjTkrWatHltEDnn7vAvyzC7P5lzl7Yr2b+E4QMISznP8lVgYotiykC1XagNzE1BgCtQ/SjQtmXmSdEROQsOCLkhEytEAMkAEIf2grDHyW89vbSWjVtnGmZfX3yn2qOoMlNlSxtCIRMJEsD+r3PUs9WIOtSpU3vS0RETYeBkJOpPkJiYCjCKEkSbrrzH/jjzAEgpBSB/QKxrPhdHP2wBAvHPoKWQYFOt8y+IRubNtnUmMYwNWY+EAKubgpLRESOj1NjTsbSCIlKpcLA7j1w+eA5vPj8h9CEdEHZ5Tx8vvo/iLqpPeJuucHpltk3ZGNTw4iNrXaeNzBcTxRdgaioHewYNoHNYiBEROQ0GAg5mfqMkKhUKky/bRSeCpmIzMWZyN+Rj6I/83Hkh11GI0nVOeoy+4ZsbHp1aszWBRUDrt7DxPQYR4SIiJyPVYHQggULcP311yMwMBBhYWEYO3Ysjh8/btRGCIG5c+ciMjISvr6+GDp0KI4cOWLUpqysDNOmTUNoaCj8/f0xevRoZGZmGrXJy8tDfHw8NBoNNBoN4uPjkZ+f37B36ULqO0KSmpqKxx59VB9EyDCbTG3gqMvsDfWVJJUKkPQbm9a18WxTFVSUPDygCvTX38NEIBRhCIQuVbKWEBGRk7AqENqxYweeeOIJ7NmzB9u2bUNlZSVuu+02FBcXK20WLVqEN954A++88w7279+P8PBwDB8+HIWFVz84pk+fjo0bN2LdunX45ZdfUFRUhJEjRxptODp58mQcOnQIW7ZswZYtW3Do0CHEx8fb4C07t/qOkFiaQjPFkZfZJyQkYOare9C+96PoN3gsZs2ahePHj5vMaRJCQNbq6/zYemoMqF5LqHYg1LqlftVYcalA4RXTI29ERORgRCPk5OQIAGLHjh1CCCFkWRbh4eFi4cKFSpvS0lKh0WjEihUrhBBC5OfnC09PT7Fu3Tqlzblz54RKpRJbtmwRQghx9OhRAUDs2bNHabN7924BQPz999/16ptWqxUAhFarbcxbdEgpKSlCpVIJtVotJEkSarVaqFQqkZKSorSZOHGiUKlUAvqxoHp99bn9ZnHv+PHi+eefFydOnLDfG6xBlmUx4YVMMWzqabHvyBWLbXUFRSItdLBICx0sdMUlNu/LmaEPibTQwaJo226T58c9d1YMm3paHD9dZvN7ExG5g+b+/G5UjpBWqwUAhISEAADS09ORnZ2N2267TWnj7e2NIUOGYNeuXQCAAwcOoKKiwqhNZGQk4uLilDa7d++GRqNB//79lTYDBgyARqNR2tRUVlaGgoICoy9XlZCQgOPHj2PWrFmYMGGCyRESi5u4Qj8CJEkSJNXVNge2/YDPPluPVxctQmxsLFavXt2E76L+zl+sRE6uDh5qIK6zt8W2yoouL09IvpbbNoShNpG5JfQRzBMiInIqDV4+L4TAjBkzMHjwYMTFxQEAsrOzAQCtW7c2atu6dWucPn1aaePl5YUWLVrUamN4fXZ2NsLCwmrdMywsTGlT04IFCzBv3ryGvh2nU1cF6sTERCxatMjkOUmS8Mgjj0Cr1SIoKAgrV67UJ1FXzeYIIUMAeOihh7Dz119xpajIYr2hpq5LdPB4KQDgmo7e8PW2HLtf3Xk+0KqpwfpSWdhvDNAnTB9NL2ctISIiJ9HgEaEnn3wSf/75J9auXVvrXM0PICFEnR9KNduYam/pOrNnz4ZWq1W+zp49W5+34bLq2sR1xYoVWLt2LUJCQiw+m1UrV2Ldp59i8eLFJkeJUlJSEBsbi8WLF+NTC+0aY99RfSB0XaxPnW0N21/YOlHawFKOEMCVY0REzqZBgdC0adOwefNm/Pjjj2jbtq1yPDw8HABqjdrk5OQoo0Th4eEoLy9HXl6exTYXLlyodd+LFy/WGm0y8Pb2RlBQkNGXu6vPFJql5fgKM/WGam5/IZqgLlFJqYz9VYHQDT1962zfVDvPG6gt7DcGAG1a6QOhzBwGQkREzsCqQEgIgSeffBJffPEFfvjhB3Ts2NHofMeOHREeHo5t27Ypx8rLy7Fjxw4MGjQIANCnTx94enoatcnKysJff/2ltBk4cCC0Wi327duntNm7dy+0Wq3ShurHMIW2du1aLFiwoNZy87pyiWqSIWPCjMdxqaCwXttfNNbeIyUorxBo08oDndp41t2/Jlo6b2CoTWRuRKhda30fz2RXNMn9iYjItqzKEXriiSfwySefYNOmTQgMDFRGfjQaDXx9fSFJEqZPn4758+cjJiYGMTExmD9/Pvz8/DB58mSlbVJSEp555hm0bNkSISEhmDlzJnr06IFbb70VANCtWzeMGDECDz/8MN59910AwCOPPIKRI0eia9eutnz/bs9SLpFJAjh+dhcGrbgJFT8Iq7e/sNb3+68AAG681q9eAZuhvo+qRdOMCCo70JtJlm4frv+Rupivw5VSGX4+rFlKROTIrAqEli9fDgAYOnSo0fGUlBRluuXZZ59FSUkJHn/8ceTl5aF///7YunUrAgOv/oa+ZMkSeHh4YPz48SgpKcEtt9yC1atXQ61WK23WrFmDp556SlldNnr0aLzzzjsNeY9kgSGXKCkpSdl/DIDZAEeSVPAJDoFOVYB8/1zIMF+pumZdImuTqi/kVmLP4RIAwIgB/vV6P00+NVZHsnSQvxotAlXIK5Rx9kIFunaw/co1IiKyHasCoTpzSaD/AJw7dy7mzp1rto2Pjw+WLl2KpUuXmm0TEhKCjz/+2JruUQMlJCRg8ODBSE5ORkZGhvFKspqEwF0xI/Db18eQX1oOiHyT15RlGXl5eZg0aRKioqKg0WjwwgsvQJIkJem9rs1eN/9cBFkA13b1RvvwuqfFgOaYGrMcCAFA+3BP5BWW4XR2JQMhIiIHx93nCUDt5fgDBw40GiVSqVRKYJSyapVyTKGCviyjBGUZ/sqVK5Xg2dweZ0lJSRg8eHCt3KVcrQ4bf9IHG+OG1j+oaaqd5w3UVVNu5nagB/SB0B+pZcwTIiJyAkxgIJNqrjgzBEWGlWGG/0LoRwGHjx2LVr2jEHh9ICDBaAWZuSAIMJ9U/e7GPJSWC3SL8sKgeqwWM2iqnecNlDpCZnKEAKB9a/3vF6cZCBEROTwGQmRW9RVnluoNqVQq9OkSi5yD6RjVY7xVq9BMJVWnfHYIK95+EUe3TUPZqdetWoavTI21aNqpMXGlFKKs3GQbwzTeWQZCREQOj4EQ1YulekPVgxm5qBgSGrbZqxACTz2/HIkT+uDMoXeRc/JrrF65xKoCjU09NaYK8geqAj1z02MdqgKhcxcrUanjLvRERI6MgRDVi6V6Q9WDGWvrEul0Mvb/eQH9brwb3fo9gKWvPgkIGRA6CCFbXaCxqafGJJUKKk2A0b1qatVCDV9vCToZOHuBo0JERI6MgRDVS2JiosURoaSkpDrbAdAnU0uo9jdPYPv/PsD+X7/E8d/WABaW49dVoFHI8tWpsSYaEQLqXjkmSRI6t/UCAKSdZSBEROTIGAhRvdTcu6z6f5OTk5VVX5b2OFu4cCGee/Y53Hznzeh4UzSUGTQh679gPoCqT4FGubAYqArCmmr5PHC1lpCllWMx7fTTY6lnTecRERGRY+Dyeaq3mvWGoqKikJSUVGvpe33azZ49G4t3LtavPKsHUwUaazKM0Ei+3lD5NF39nqsjQqb3GwMAP5zByT3v460953H2QGydxSOJiMg+GAiRVWrWG2pou3pt9lpN9ek3c5pjWgy4ut+YLr/I5PmUlBQ8MmUKZCEBEFj851d1Fo8kIiL74NQY2UW9kqqrcokkScLMBTPRqXMni811efoRGnUT7TNmYEjENpUsnZqaiilTpuhrJwkd0ICEbyIiaj4MhMguLCVVS5KEsfeNRecbOiN4SDDaPtsWn6s+x63Jt2L1wdUoLDOdm6PL0wIAVCGaJus3gKurxkzkCK1atcri6rq6Er6JiKh5MRAiu7CUVL1q1Sps/Hgj0nam4c8v/sRjIx5DoHcgTuefxss/vIwbVtyAedvnIT033eiacm7zjAgpO9CbyBGqb70lIiJyDMwRIrupT1J1u+B2mDN0Dp4e9DS+PPolPjj4AU7mnsSHv3+ID3//EDd0uAH39boPt0TfAl2ufkRI3cQjQuqqHCFTI0L1rbdERESOQRLWZKw6kYKCAmg0Gmi1WgQFNe0IATUfIQR+Pf0rPjj4AX489SNE1ZL71gGt8dKeruj4TRqCn74fLf/v0SbrQ9FXP+FC4r/g068H2nyzzOhcamoqYmNjTe6vplKpcPz48Vqr7IiI6Krm/vzm1Bg5FUmSMDhqMN4f9z5+evgnTO0/FS39WuJC0QWkp/8JAPjy/Pf4JeMXyML8Zq+NoUyNmUiWrj3lpwKk2vWWiIjIMXBEiJxeua4c36V+B49H3kKXY2VY/I88bOtRgqgWUZjcazLu7n43gn2DbXa/sj9PIPOWJKjDQhB1ZJPJNmlpaUhOTsa2nSdw8Uo4Jt2XgIXPXG+zPhARuarm/vxmIEQuI3P4wyg79Dd+mNUL7/jsRFG5vs6Pt4c37ux6Jyb1moRrI661ai80UyrOZuPMdfdC8vZCp8ztFtvuO1KC5/97EWEhaqx9ObLR9yYicnWcGiNqIMPy+fhhj2HXY7vwn+H/wTVh16CssgxfHPkC935yL+5YfQdSDqQg90pug+9jqCMkysohl5RZbNszxhueHkBOrg7p57nvGBGRo+GIELmM9E4jIBcWo92eNfDq3B6APrn6UNYhfPLHJ/j2+LcorSwFAHipvTA8ejgm9JyAge0HQiXV/3cCIQRORQwDdDp0OLwRHuGhFtu/sPwidh8uwW29L0Kb/rmyQo7bbhAR1capMRthIOReRHkFTrW5GQAQdfxrk0voC8sKsfnYZnx6+FMcuXBEOd5O0w739rgXd3e/G+GB4fW6X3rXkZBztWj78wfw7ma54vXWvcV4evZyHP/pOahUEoQQkCT9f7ntBhGRMQZCNsJAyL1UXriM03FjAUlCp6wfIanVFtv/deEvfHb4M2w6tkmpVK2SVBjacSgm9JyAoZ2GwkNlvszWmYH3oSLtDCK/fBu+N1xr8V6H/jyOa3tfA5hYxcYl9URExpgjRNQActU+Y6rgwDqDIACIax2HebfOw+7HduO1O15Dv7b9IAsZP5z6AY9++ShufPdGLP55MU7lnjL5esOIk6GIoyWfrl3NbTeIiBwUK0uTS2hoVWlfT1/c1f0u3NX9LpzKPYX1h9djw18bkFOcgxX7VmDFvhXoHdEbd3e/G3fG3gmNj/76qpZVgdDl/DrvkZGRAUkp/WiM224QEdkXAyFyCYad5xuz4WqnkE54fsjzmDF4Bn44+QM2/LUBO9J34FDWIRzKOoSXf3wZt3a+FeO6j8M1VfuZyZfrHhHithtERI6LU2PkEmTDiJANNlz1UnthRJcReH/c+9j12C7MGToHXUO7olxXjm9PfIspG6fgk7NfAQAuncuo83qJiYkWN2JNSkpqdJ+JiKhhGAiRSzCMCNl65/lQ/1Ak9U3CNw9+g83xm5FwXQJCfEOQ5aEv1vjTgc0Y/dForD642mxtourbbkiSGpBUUKm47QYRkSPg1Bi5BF1uPoDGTY1ZIkkSurfuju6tu+P5Ic/jQOVbwI+boCnxwJELR3DkwhEs+GkBhnQcgtHdRuOWzrfA19NXeX1CQgIGDx6Mlxa+i+92nIBfUFssf+0JjBh2TZP0l4iI6oeBELkEObdpRoRM8VR7osc1NyAbm9DPvxtevPlmfHHkCxy+cBjbT27H9pPb4e/pj+ExwzGm2xgM6jAIHioPREdH48OVizFv5SXsOHgFH2xXY1A/HYL8jVe5paamYtWqVSy8SETUDBgIkUtQpsZaBjfL/dRVq8akvEI8cN0DeOC6B5B6KRWb/96Mr459hbPas/jy6Jf48uiXaOnXEnd2vRNjrhmDXuG98Mx9IUg9W47zFyvxxEt70VrejHOZpxEVFQWNRoMXXnhBKbgoSRIWLVrEwotERE2EBRXJJZy783GU7juM1qteRsCooU1+v4qM8zhz/QRIvt7odOZ7o3NCCBw8fxBfHfsK3xz/BrklV3OH2ge3x+jY0bg25B+Y/s+v8ce2ZyFJEqSqxfWyXLvoIsDCi0TkPlhQkagBlBGhJsoRqkkdGgwAECVlkK+UGp2TJAl92vTB3FvnYtdju7By3EqM6TYGvh6+OJN/Bu/seQcPfDAcf2ybCQgZQtZBlmWzQZDhmiy8SERke5waI5dg2Hle1Qw5QgAg+fsCXp5AeQV0l/Oh8jO9R5mn2hPDOg3DsE7DcKX8Cr4/+T02H9uML/73BSABJqssmsDCi0RETYMjQuT0hCxDztPvF9ZcI0KSJCn3kuuxzQYA+Hn5YXS30Vg5biWGhgyFBNNFFs3JyMjApEmTMHv2bKSmplrdZyIiqo2BEDk9uaAY0OkANM+qMQNDYnZ9ttmoqWt0V6ik+v/4ybKM/fv3Y/369Vi8eDFiY2OxevVqq+9LRETGGAiR0zOMyEj+vpC8vZrtvmor9huryVK1aQCAJOmnzqoNGul0+lwiw3+TkpKQlpZm9b2JiOgqBkLk9Az5Qc01LWag7EBfj/3GaqpebVqtVuun2tT6atMLFy7E8889h5FjRyMypiPMzaAJAAvffLPhb4CIiJgsTc5PdykfAKBu1aJZ76sKCdbfv545QjUZqk0nJycrxROTkpKMlshPmjQJ69NOQxa1V5QJWcaHn72HDb9sRMd23TD76WfRu0NHFmMkIrICAyFyerqLeQCar5iigWEJvdyAqTGD6OhoLFiwwOx5SzvXA0BFTgXyL57H74fPY/zX2wEAkkoChL720KJFi/DKK69Aq9UaBUcAGDAREYGBELkA3aWqQCi0eUeEGjM1Vl+JiYlYtGiR5UYCRsvwhaz/g64qgXz27NlQq9VKpepXX30VgD5Qql692lTAxOCIiFwdAyFyenYPhKo2fG0KhlyipKQkSJKkFF20tiC8ISiydKxmwMStPYjIHTAQIqd3NUcouFnvq6qaGmvIqjFr1Mwl+uOPP3D8+HGLlagbqmZwlJSUhMGDBxvlLXFTWCJyJVw1Rk7P/iNCTTc1ZmDIJVq7di3GjBljMW/Ilmpu7ZGSkoLY2FgsXryYNY2IyCVwRIicnt0CoarkbDm3AEKWIama5/eKeuUN2Uj1rT1SU1MxZcoUkyNRiYmJ2LNnD7RaLUeJiMipcESInJ6yasxOI0KQZcj5hc1235o1iKrXIqpej0hlg8BMhsCZsiL8ff48Vq1aZXYkSgiB9957j6NEROR0OCJETk3IsrJqq7nrCElenlAF+kMuLIbucn6zFnQ0V4MIgNGx4OBgzJkzR0m0VqlUyoiO4f+rJ2HXIgTOdvkDd35yI3L/dwU6C3lJQgijJG6OEhGRM5CEtctPnERBQQE0Gg20Wi2Cgppv/ylqXrpcLTK6jgQAdDr3AyQvz2a9/5l+k1CRnonITUvhO6h3s967vtLS0qwKmAyrxmQhcN244Th7ORXFeRdQmVuJsrNlRkv162IYpTJcl6vQiKguzf35zUCInFr5iQycvSEequBAdEz9ttnvf27kEyjd+ydar3wJAWOGNfv9balmwKTRaPDCCy8oQYwsBNDIfy5UKhWOHz9utAqNiKi65v785tQYOTV75QcZqMNC9P3IuWyX+9tS9SrXqampiI2NNTtlplKpGhQYGVahWaqmTUTUnBgIkVNTagjZORCqzMm1y/2biqXEaJVKhX79+iEqKgpBQUFYuXJlvWsaybKMTZs21VmDiLWKiKi5MBAip3Z16XywXe7v0apqROiiawVCGRkZFqtXR0VFYe3atQCAgQMHKpWv65pCE0Lg2LFj+PvvvyFV7YVWM28oJSUFU6ZMMcpXamyVawZWRGQOAyFyakog1MwrxgyuTo25ViBkabNXSZIQFRWl/LnmCrb6jBIJISCqqlg/9NBDWLImBa28A9EpMhLJyckmX9vQKtdNEVgRketgsjQ5tYuzXkPB6k1oMeshhDyb2Oz3L976K7Lvex7evbqi7fcrm/3+TcVSjlB9Ep5Xr15tNEpUc2m9SRIsrkirPiVnKpnb1Mq0xr4PImp+zf35bXXFtZ9//hmjRo1CZGQkJEnCl19+aXReCIG5c+ciMjISvr6+GDp0KI4cOWLUpqysDNOmTUNoaCj8/f0xevRoZGZmGrXJy8tDfHw8NBoNNBoN4uPjkZ+fb/UbJNemJEtXVXlubuqwlgBcL0fIXNFGlUqF5OTkOoOHhIQEHD9+HLNmzcL48eMRGxtbd4HHOuIkWZaxd+9erF+/HosWLcLs2bMhyzJ0Op3Rf5OSkpCWlgbAcq5Tze1DiMg9WR0IFRcXo1evXnjnnXdMnl+0aBHeeOMNvPPOO9i/fz/Cw8MxfPhwFBZerbw7ffp0bNy4EevWrcMvv/yCoqIijBw50mjDx8mTJ+PQoUPYsmULtmzZgkOHDiE+Pr4Bb5FcWeUF/WotdeuWdrm/R9WUnO5SHkQTbIJqTzWDmVmzZuH48eP1nk5qiv3RhBCQZdnitFv1AMdSrlP17UOIyI2JRgAgNm7cqPxZlmURHh4uFi5cqBwrLS0VGo1GrFixQgghRH5+vvD09BTr1q1T2pw7d06oVCqxZcsWIYQQR48eFQDEnj17lDa7d+8WAMTff/9dr75ptVoBQGi12sa8RXJwGdfeI9JCB4uS/X/Z5f5yaZlICx0s0kIHi8rL+XbpgzM4ceKEUKlUAvpxnyb9UqlUYuLEiUIIIZ5//nmhVqvNthswYICYOHGieP7558WJEyfs/F0iIiGa//PbpnuNpaenIzs7G7fddptyzNvbG0OGDMGuXbsAAAcOHEBFRYVRm8jISMTFxSltdu/eDY1Gg/79+yttBgwYAI1Go7SpqaysDAUFBUZf5NqEEKjMvgQAUIeH2qUPkrcXVC30c9iuljBtS6am2uoaIZIkqV7tahIQuAwdzufmITEx0eyIkCzL2L9/P/dHI3JzNl01lp2dDQBo3bq10fHWrVvj9OnTShsvLy+0aNGiVhvD67OzsxEWFlbr+mFhYUqbmhYsWIB58+Y1+j2Q85BztUBFJQDAo2r1lj2ow0Ig5xWg8mIuvGI72q0fjs6a1WWSJOGRRx6BVqtFRkYG9u/fbzR1bomQBfZkbEGXm9vDLyQU3UbfiKObfoZKpVKCIsM9a17T1Mq0mrgUn8i1NMny+Zq/wYmqFR2W1Gxjqr2l68yePRszZsxQ/lxQUIB27dpZ021yMob8IFVLTbPvMVadR1gIKo5ncESoHqpXrwZq1yCytPLLHLVarbzWENgU7isEBFAsFeGiyEDIiBDIpTLkXA9IWg8UnMkxmdNVV+VrLsUncj02DYTCw8MB6Ed0IiIilOM5OTnKKFF4eDjKy8uRl5dnNCqUk5ODQYMGKW0uXLhQ6/oXL16sNdpk4O3tDW9vb5u9F3J8uqppMQ87TYsZqFu5zjYbza3mKJFhU9jqIzKGaTVTAdP8+fORn59fe4TJEONUzYrlbslFu1nt4dnKAxfWXIA4bTrZ2lLl69TUVEyZMqXeNY6IyDnYNBDq2LEjwsPDsW3bNlx77bUAgPLycuzYsQOvvvoqAKBPnz7w9PTEtm3bMH78eABAVlYW/vrrLyxatAiA/rdErVaLffv2oV+/fgCAvXv3QqvVKsESkZIfFGafFWMGrlpUsbnUHCUypT4B0+zZs82OGKtVaowpvxs9+t6Bt3/4D478udNk9WtRvfJ1jdEeS0vxASA+Pl6pccTpMiLnYXUgVFRUpNToAPQJ0ocOHUJISAjat2+P6dOnY/78+YiJiUFMTAzmz58PPz8/TJ48GQCg0WiQlJSEZ555Bi1btkRISAhmzpyJHj164NZbbwUAdOvWDSNGjMDDDz+Md999FwDwyCOPYOTIkejatast3je5AF3V1JjdR4RcdL8xR1NXwFTXUvlL2Vl4ZOhwDGsTpS+yaKFwkahWAPKhhx7Cc6+/BDm/zOyyfUONo3379ikB1CuvvKLkOBmCIwDMLyJyNNYuM/vxxx9NLkV98MEHhRD6JfQvvviiCA8PF97e3uKmm24Shw8fNrpGSUmJePLJJ0VISIjw9fUVI0eOFGfOnDFqc/nyZXHfffeJwMBAERgYKO677z6Rl5dX735y+bzry3n2DZEWOlhceuU9u/ajYP0WkRY6WJwb97Rd++HuLC2VV6vV4vnnn1fapqSkCJVKJdRqtVCpVEKSpCZZym+4vlqtFpIkCUmSjI6pVCqRkpJiv28akQNq7s9vbrFBTis74f9Q/M0OhC78JzRJ4+zWj5Jff8f5sU/BM7o92u9eY7d+uDtrt9NIS0tTptr++OMPHD9+3GKhxqZS360+uFqN3EVzf35z01VyWpUX7FtDyMAjohUAoPL8xXqtkKSmYSmp2tS2INWn2mbPno3FixfX/2aGZ2yD3yNNrVSrGfSY2lfN3PQbgyMi63BEiJzW6WvvQWXmBbT53wr49O1ut37IpWVIb6fPb4tK/Rbq4EC79YWMR3pMJVWbYmk0qSZJkhAbG4tevXohIyMD+/bvh1zPGkemqFQqjB8/HmvXrgVQe4k+AIv9ql4+QNQoPUDkjJr785uBEDklIQROtbkZqKhE+98/h2db02UVmkt67EjIl7Vou2M1vK/pbNe+UMOsXr1aGU2yVLxRrVZj1qxZWLBggVUBlFkSEBHdCdGdYhDTth1Wp6xq1PXqO9VG5Kgcfvd5IkfgKFWlDTwi9JXQK89ftHNPqKGqbzJ75513mp3iFEIgKSkJgOmtQ1QqK/9ZFUBW2ins3PodViWbrrRtjeqbzhJR3ZgjRE6pMkufH2TvqtIGHpGtUP5XKnRZOfbuCjVC9byh6iNElvKNTNU4Cg4Oxpw5c4xeawhwTG31YWElv9WEEMjIyDA6xkRrIvMYCJFTqjynrzzu0ca+U2IGHpFXE6bJNdSniKOBqRpHd999d63XAlCOWbuHmjUyMjIwadIkJloT1QNzhMgpaVduwKXZb8L/zpsQvvoVe3cHeW98iNwF7yNw0j8Q9vZse3eHnMCkSZOwfv1666bCJAnK8JGFf7kllQRAggQmWpPz4fJ5onqoyMwGAHjYOUnawKNNVY5QFkeEqH6ioqIsllqQJEn5EtX2VUtPT4d/y5bIKS3C1ykfARKuLuM3/EfW13Ss67fcmqNR9d0zzdRUG8Cq2eScGAiRU6o8WzU11jbczj3RUytTY8wRovpJTExU9lesSZIkPPLII9BqtRan5NJm/0uZajt24gT+PHQIopHJ1nXtmVZzeb8kScpekob8p5r7tNWFOUxkV81Sv9oOuMWGazt728MiLXSwKPx6h727IoQQoizttEgLHSxORt1m766QE6m51Udjtt2YOHGiUKlUNtkaRJIkoVKphEqlEu+vXKnc48SJE1bdQ6VSidTUVIv9XrVqlc2+B+QamvvzmyNC5JQqM/UjQvauH2TgEa4fERJFVyAXFkMV6G/nHpEzsCYhuy51TbVZQ1TbdPbhh6fgjRMfokO7nsjZ+rfV16o5wgRcnUILCgrCypWmSwbUd5qOqLGYLE1Ox6iS899fQd0y2L4dqpLe5U7IeQUsqkh2UVdxR0NiNGA5gboWFRA8JBgh/wjBhTUXUPxHsVXL/avnOtUsIVA94DLVX0PhSnIvTJYmqkPlOX0ejuTnA1WIxs69ucqzfQTK8gpQeSaLgRA1O0t7rRkSrc3VObIUkEhCgndaAMTnQVDnFQEotqpfpq5dn5IBgvWQqJkwECKnY5gW82jb2qE2OPWIaoOyP46jIuOcvbtCbsqaqbbqdY4s1TQSQiAn8xykc+erDjT1u7iqPvWQTCVkM2Aia3BqjJxOwcdf4+I/X4Xvzf0R+elr9u6O4vLLK5D/9hoEJY1Dq4X/tHd3iOqtIXumVa9BVHPKq7HbhNS8B2B+Oq/m3mqmVrUJ1khyKtxrjKgOlVU1hBwlUdrAMyoSAFB5+ryde0JkHVN7plkabVWpVLj++usxfvx4zJo1CydOnMCJEycwa9YsjB8/HgMGDIBarba+I1LVVxWdTgdZli0GVtX3VktNTcWUKVMgy7LyWsN/k5KSkJaWZn2fyOVxaoycTsXZq1NjjsQjqg0AoCKDgRA5n5rTan/88QeOHz9uNgiJiorC2rVrjY4ZEpsNI0zW6DZsIPK0l1Bw6SKunM2v9xScLMv4bvevuPXoX/gm5QOLAVxdNZLqi1NvLqZZFunbAesIua7MOx8XaaGDRcGGbfbuipHy0+dFWuhgkRY5TMg6nb27Q9Qozz//vFCr1SbrA6nVavH8889bfL2pGkmSJAlJkizWDLK6HpIE4d3eW/j39heeYZ4CUt31kRpTq4h1j5pec39+M0eInE7GNWOgu5iLNtveh09v637rbEqishKn2t0KVOrQ4Y8N8IgMs3eXiBrMUt5Qzbwcc9LS0ixuPGsqmXv27NlYvHixdZvRGgaBrP00k4BxEydBrdOhc6dOJkd2qo/+WKp7ZOp70piRI3cedWruz28GQuRU5MJipHcaAQCIOvk/qIMC7NwjY2f6TUJFeiYiv3wbvjdca+/uEDXK6tWrTS7Hb8rE4yarh2SJITdJBlp374SgoGC0b98RURFtkfL20nqVGVCpVOjXr58y9WZqlVt9v3funvDNQMhGGAi5prI/TyDzliSoQoPR8dhX9u5OLefvnYGSn/aj1VvPI2jynfbuDlGjmRrVaepqz+YCsOr1kCwt+QdgtGGt1R9zDRxhMtwTqP8qt5osBYI196Bz1VEiFlQksqDiVCYAwKtjWzv3xDTPjm1Q8tN+JkyTy4iOjm726s71qYc0adIk7Nu3z+TrJUlCbGwsevXqVWfAZFIDhwfqE3QZVrmZ+56uWrXKbMK3EALvvfeeEnBZs7EtmcdAiJyKIRDycNRAqEPVEvr0TDv3hMi51RWAWdpbTaVSYcyYMViwYEGDVrA1JZ1Oh9WfrMG+P/9Aj9hueOKxxwBc3X/tjz/+sBhM1Qy2uCdb4zEQIqdSceosAMCrk4MGQjEdAADlxzPs2xEiF5eYmIhFixaZPCeEUBKzTW090qDpshqU/dOEAKy8VvaZs8g+exY/bPkf3nrjDf1BlVS1ts26a5kaYapvorU7J2RXx0CInEp56mkAgGdMezv3xDSv2I4AgPK0MxAVlZA8+SNG1BQs7a2WnJxsNEJSc6rN0uqv+qieq9OgqTfg6qJ+A7lhgZmosSebqUTrRYsW4ZVXXlH6a+2WJa6OydLkNIQQSO94O0RxCdr9+hG8ukTZu0u1CFlGeqcRDt1HIlfS0GTu6gnZsixbHCGqvp1IzdVb9V3l1uBRKAmWc5YkwKddAPxCguHrF4hzu/82O6rUkC1LzGnK0SSuGrMRBkKup+JsNs5cdy/g6YFOp7c57GhL5u2PoOzgMbROfgkBo4fZuztEZEb1IKqgoABbtmyxuFLNXKBVn1VudVXqrkmSJETHxKBt504oV0vY9c0W84FUQ+somVCzDEBiYiIAGAU95koD1Bx1MvXa+gRMDIRshIGQ6ynethvZk5+FZ2xHtN/5ob27Y1bOUwtQuPZbtHg2ESGzHrJ3d4ionhpTKqCu11pbKFKtVmPWrFlK7k/NYAuwYR0lUwzlB2QZkiQpG+rWdV9Lm/FaCpiqB0cMhGyEgZDryXvnE+TOWw7/MTcjfOU8e3fHrPxl63D5xf/Cf9RQhK962d7dISIHUNcUWk2mpqiqB1sNzk1yEJamG1lHiMiMir/TAQBesVH27UgdvLpWJUwfT7dzT4jIUZhL7jY3alIz4RswLilgqY6SM6gZwCUmJmLPnj3QarWIiIho1r4wECKnUXb4BADAu7tj18vw6qYPhCpOZUKUV0Dy8rRzj4jIEZgrFAlY3n/NFEt1lID6VbkGbJDMbSNCCLz73ruQqnbNbU6cGiOnIJeUIb3j7YDO8Tc0FUIgI/ofkAuK0PaHVfDu4X51OYioaVmzFUdwcDDmzJnTqC1L7IFTY0TVlB9NA3Q6qFu1gDqilb27Y5EkSfDu3RUlPx9A2aFjDISIyObqqqNUsxbQ3XffbXHUqSEVuJtkA1w7YCBETqHsD/20mFePLhaHgx2Fd+9YlPx8AKW//42g+NH27g4RuaD67MlmUNeWJdbmMNUsK2Bq1KnmawHHDJgYCJFTKDv0NwDAu2cXO/ekfryv7QYAKDt4zM49ISJXZstNcRubw2Rq1Knma2sGTPbOTQKYI0RO4syAyag4eRbhaxbC/7Yb7N2dOlWez8HpXncDajU6ntoClZ+PvbtEROQQqpcBsLTdCXOEiKpUXsxDxUn9Zqs+1/ewc2/qRx3RCurwUOiyL6Hs4FH4Dr7O3l0iInIINUexBg4c2LzFImtQNdudiBqodO+fAACvbp2gbuEco3uSJMH3hmsBACW//m7n3hAROa6EhAQcP34cs2bNwvjx4/H000836/05IkQOr3TPHwAAn/7OMRpk4HtDbxRt2MZAiIioDtVHiQoKCrBkyZJmuzdHhMjhXflpPwDAd9C1du6JdXyq+lt64CjkK6V27g0REZnCQIgcWsXZbFQczwBUKvgO62fv7ljFs1NbeLQJA8orUPLLQXt3h4iITGAgRA7tyvY9AACfvt2hDg60c2+sI0kS/KpWuF357lc794aIiExhIEQOrfjbnQAAv1sH2LknDeM/Qh8IFW/dBeGAhcSIiNwdAyFyWJUX81Dy8wEAgP/oYXbuTcP43nAtpAA/6LIvoXTPn/buDhER1cBAiBxW8eYfAZ0O3r1j4dW5nb270yCStxcCqoK4wk+32Lk3RERUEwMhckhCCBR8uAkAEHD3rXbuTeMETrwDAFC06QfIRVfs3BsiIqqOgRA5pNJff0f50VOQ/HwQOPEf9u5Oo/gM6AnP6PYQxSUo+Pgre3eHiIiqYSBEDkcIgbwlHwIAAieMcLrVYjVJkoTgxycAAPKXr4dcWmbnHhERkQEDIXI4JT/u0ydJe3ki+MnJ9u6OTQSOHwF1RCvozudAu2K9vbtDRERVGAiRQ5ELi3Fx1usAAE3SOHi2j7Bzj2xD8vZCy389CgDIW/Ihyk+esXOPiIgIYCBEDkTodMh5agEqz2TBo30EQmY9ZO8u2VTAPbfBZ/B1EFdKcSHpRciFxfbuEhGR23P4QGjZsmXo2LEjfHx80KdPH+zcudPeXaImIMorkPPUQhR/vQPw8kTYsv+DKtDf3t2yKUmS0Hr5v6AKDUb5kTRkTXoWusv59u4WEZFbc+hA6NNPP8X06dPxwgsv4Pfff8eNN96IO+64A2fOcFrBVQghUPLr78gc8SiK1m8B1Gq0fucF+Pbvae+uNQmP8FBErnsNqqAAlO79E2eHJaLwi+9ZdZqIyE4kIYSwdyfM6d+/P6677josX75cOdatWzeMHTsWCxYssPjagoICaDQaaLVaBAUFNXVXqZ5EWTkqc3JR/nc6yn4/huL//YLyv1IBAKoWQQhb9i/4O+l2GtYoO3YKFx58ARXpmQAAj7at4T9yCHyuj4PXNZ3hER4KVYCfnXtJRNT8mvvz26PJ79BA5eXlOHDgAJ5//nmj47fddht27dpVq31ZWRnKyq4uS9ZqtQCAE2OfRICHF1Aj3rP0J6O2NeNEYaZdjT/Xii+tuQ7qd3+L97BwydptLd2/5suE6XZ13V+ngy6/COJKCWqSvL0QeM9waJ66H7qwEBQUFNRq43LahCLoq7ehTf4C2vc/h3zmHPKWfWLURPL3hcrPB5KPNyRvL0jenpBUKkCSqhpIgATjP0P//xKqHSciciJFleUATHzGNRGHDYQuXboEnU6H1q1bGx1v3bo1srOza7VfsGAB5s2bV+v49T9+1GR9JBta+jOw9F/27oVjybV3B4iI7Ofy5cvQaDRNfh+HDYQMpBq/1Qohah0DgNmzZ2PGjBnKn/Pz89GhQwecOXOmWb6RZF5BQQHatWuHs2fPcprSAfB5OA4+C8fBZ+E4tFot2rdvj5CQkGa5n8MGQqGhoVCr1bVGf3JycmqNEgGAt7c3vL29ax3XaDT8S+0ggoKC+CwcCJ+H4+CzcBx8Fo5DpWqe9VwOu2rMy8sLffr0wbZt24yOb9u2DYMGDbJTr4iIiMiVOOyIEADMmDED8fHx6Nu3LwYOHIj33nsPZ86cwWOPPWbvrhEREZELcOhAaMKECbh8+TJeeuklZGVlIS4uDt9++y06dOhQ52u9vb3x4osvmpwuo+bFZ+FY+DwcB5+F4+CzcBzN/Swcuo4QERERUVNy2BwhIiIioqbGQIiIiIjcFgMhIiIiclsMhIiIiMhtMRAiIiIit+XQgdDcuXMhSZLRV3h4uHJeCIG5c+ciMjISvr6+GDp0KI4cOWJ0jbKyMkybNg2hoaHw9/fH6NGjkZmZadQmLy8P8fHx0Gg00Gg0iI+PR35+fnO8Radh6VlUVFTgueeeQ48ePeDv74/IyEg88MADOH/+vNE1+Cxso66fi+oeffRRSJKEN9980+g4n4Vt1OdZHDt2DKNHj4ZGo0FgYCAGDBiAM2fOKOf5LGyjrmdRVFSEJ598Em3btoWvry+6deuG5cuXG12Dz8J2zp07h/vvvx8tW7aEn58fevfujQMHDijnHerzWziwF198UXTv3l1kZWUpXzk5Ocr5hQsXisDAQLFhwwZx+PBhMWHCBBERESEKCgqUNo899pho06aN2LZtmzh48KAYNmyY6NWrl6isrFTajBgxQsTFxYldu3aJXbt2ibi4ODFy5Mhmfa+OztKzyM/PF7feeqv49NNPxd9//y12794t+vfvL/r06WN0DT4L26jr58Jg48aNolevXiIyMlIsWbLE6ByfhW3U9SzS0tJESEiImDVrljh48KA4efKk+Prrr8WFCxeUNnwWtlHXs5gyZYro3Lmz+PHHH0V6erp49913hVqtFl9++aXShs/CNnJzc0WHDh1EQkKC2Lt3r0hPTxfff/+9SEtLU9o40ue3wwdCvXr1MnlOlmURHh4uFi5cqBwrLS0VGo1GrFixQgih/4D29PQU69atU9qcO3dOqFQqsWXLFiGEEEePHhUAxJ49e5Q2u3fvFgDE33//3QTvyjlZeham7Nu3TwAQp0+fFkLwWdhSfZ5FZmamaNOmjfjrr79Ehw4djAIhPgvbqetZTJgwQdx///1mz/NZ2E5dz6J79+7ipZdeMjp23XXXif/7v/8TQvBZ2NJzzz0nBg8ebPa8o31+O/TUGACkpqYiMjISHTt2xMSJE3Hq1CkAQHp6OrKzs3Hbbbcpbb29vTFkyBDs2rULAHDgwAFUVFQYtYmMjERcXJzSZvfu3dBoNOjfv7/SZsCAAdBoNEob0jP3LEzRarWQJAnBwcEA+CxszdKzkGUZ8fHxmDVrFrp3717rtXwWtmXuWciyjG+++QZdunTB7bffjrCwMPTv3x9ffvml8lo+C9uy9HMxePBgbN68GefOnYMQAj/++CNOnDiB22+/HQCfhS1t3rwZffv2xb333ouwsDBce+21eP/995Xzjvb57dCBUP/+/fHhhx/iu+++w/vvv4/s7GwMGjQIly9fVnalr7kTfevWrZVz2dnZ8PLyQosWLSy2CQsLq3XvsLAwpQ1ZfhY1lZaW4vnnn8fkyZOVXZz5LGynrmfx6quvwsPDA0899ZTJ1/NZ2I6lZ5GTk4OioiIsXLgQI0aMwNatW3HXXXdh3Lhx2LFjBwA+C1uq6+fi7bffxjXXXIO2bdvCy8sLI0aMwLJlyzB48GAAfBa2dOrUKSxfvhwxMTH47rvv8Nhjj+Gpp57Chx9+CAAO9/nt0HuN3XHHHcr/9+jRAwMHDkTnzp3xwQcfYMCAAQAASZKMXiOEqHWsppptTLWvz3XciaVnMWPGDOVcRUUFJk6cCFmWsWzZsjqvy2dhPUvPYsiQIXjrrbdw8OBBq79nfBbWs/QsJk6cCAAYM2YM/vnPfwIAevfujV27dmHFihUYMmSI2evyWVivrn+j3n77bezZswebN29Ghw4d8PPPP+Pxxx9HREQEbr31VrPX5bOwnizL6Nu3L+bPnw8AuPbaa3HkyBEsX74cDzzwgNLOUT6/HXpEqCZ/f3/06NEDqampymqAmlFfTk6OEmWGh4ejvLwceXl5FttcuHCh1r0uXrxYK1qlq6o/C4OKigqMHz8e6enp2LZtmzIaBPBZNKXqz2Lnzp3IyclB+/bt4eHhAQ8PD5w+fRrPPPMMoqKiAPBZNKXqzyI0NBQeHh645pprjNp069ZNWTXGZ9F0qj+LkpISzJkzB2+88QZGjRqFnj174sknn8SECRPw2muvAeCzsKWIiIg6/94DjvP57VSBUFlZGY4dO4aIiAh07NgR4eHh2LZtm3K+vLwcO3bswKBBgwAAffr0gaenp1GbrKws/PXXX0qbgQMHQqvVYt++fUqbvXv3QqvVKm2oturPArgaBKWmpuL7779Hy5YtjdrzWTSd6s8iPj4ef/75Jw4dOqR8RUZGYtasWfjuu+8A8Fk0perPwsvLC9dffz2OHz9u1ObEiRPo0KEDAD6LplT9WVRUVKCiogIqlfFHnlqthizLAPgsbOmGG26w+Pfe4T6/651WbQfPPPOM+Omnn8SpU6fEnj17xMiRI0VgYKDIyMgQQuiX32k0GvHFF1+Iw4cPi0mTJplcfte2bVvx/fffi4MHD4qbb77Z5PK7nj17it27d4vdu3eLHj16cDlkDZaeRUVFhRg9erRo27atOHTokNHy1bKyMuUafBa2UdfPRU01V40JwWdhK3U9iy+++EJ4enqK9957T6SmpoqlS5cKtVotdu7cqVyDz8I26noWQ4YMEd27dxc//vijOHXqlEhJSRE+Pj5i2bJlyjX4LGxj3759wsPDQ7zyyisiNTVVrFmzRvj5+YmPP/5YaeNIn98OHQgZ6gp4enqKyMhIMW7cOHHkyBHlvCzL4sUXXxTh4eHC29tb3HTTTeLw4cNG1ygpKRFPPvmkCAkJEb6+vmLkyJHizJkzRm0uX74s7rvvPhEYGCgCAwPFfffdJ/Ly8prjLToNS88iPT1dADD59eOPPyrX4LOwjbp+LmoyFQjxWdhGfZ5FcnKyiI6OFj4+PqJXr15GdWuE4LOwlbqeRVZWlkhISBCRkZHCx8dHdO3aVbz++utClmWlDZ+F7Xz11VciLi5OeHt7i9jYWPHee+8ZnXekz29JCCGsGPEiIiIichlOlSNEREREZEsMhIiIiMhtMRAiIiIit8VAiIiIiNwWAyEiIiJyWwyEiIiIyG0xECIiIiK3xUCIiIiI3BYDISIiInJbDISIiIjIbTEQIiIiIrf1/6zn7kZrdaOcAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -657,10 +657,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:51.373217Z", - "iopub.status.busy": "2024-01-10T15:12:51.372929Z", - "iopub.status.idle": "2024-01-10T15:12:51.475229Z", - "shell.execute_reply": "2024-01-10T15:12:51.474700Z" + "iopub.execute_input": "2024-02-06T01:09:43.238279Z", + "iopub.status.busy": "2024-02-06T01:09:43.238117Z", + "iopub.status.idle": "2024-02-06T01:09:43.340011Z", + "shell.execute_reply": "2024-02-06T01:09:43.339540Z" } }, "outputs": [ @@ -668,9 +668,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "{: array([-0.05956155, -0.20393773, 0.0341005 , ..., 1.12261654,\n", - " 1.12029648, 1.12260669]), : array([ 1.05955902, 1.20393396, 0.96589775, ..., -0.12260904,\n", - " -0.12028901, -0.12259919])}" + "{: array([0.74522237, 0.17454325, 0.07409398, ..., 1.12220893, 1.12220893,\n", + " 1.12220893]), : array([ 0.25477958, 0.8254534 , 0.92590173, ..., -0.12220347,\n", + " -0.12220347, -0.12220347])}" ] }, { @@ -694,10 +694,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:51.477664Z", - "iopub.status.busy": "2024-01-10T15:12:51.477474Z", - "iopub.status.idle": "2024-01-10T15:12:51.483438Z", - "shell.execute_reply": "2024-01-10T15:12:51.482921Z" + "iopub.execute_input": "2024-02-06T01:09:43.342148Z", + "iopub.status.busy": "2024-02-06T01:09:43.341918Z", + "iopub.status.idle": "2024-02-06T01:09:43.354135Z", + "shell.execute_reply": "2024-02-06T01:09:43.353692Z" } }, "outputs": [ @@ -719,7 +719,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "20057.8610038471" + "20032.647966127202" ] }, { @@ -747,7 +747,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "118184.86140987206" + "118232.76333840188" ] }, { @@ -775,16 +775,16 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:51.486454Z", - "iopub.status.busy": "2024-01-10T15:12:51.486265Z", - "iopub.status.idle": "2024-01-10T15:12:52.641937Z", - "shell.execute_reply": "2024-01-10T15:12:52.641417Z" + "iopub.execute_input": "2024-02-06T01:09:43.356141Z", + "iopub.status.busy": "2024-02-06T01:09:43.355972Z", + "iopub.status.idle": "2024-02-06T01:09:44.488281Z", + "shell.execute_reply": "2024-02-06T01:09:44.487824Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABRcAAAINCAYAAACkr0g2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC6+ElEQVR4nOzdeXiTZfr+/zNN03RP99ICsiibgsqwSBkFVAQZUXEZdVAQRYWPDC6IOuqMP1z5jqigKLig4jaIGyrKgCiyCSggjIooKPtSoAW6t2nT/P5In0DoQtMmTdO+X8fRI+mTZ7mfVEt79rrvy+R0Op0CAAAAAAAAAC+FBHoAAAAAAAAAAIIT4SIAAAAAAACAOiFcBAAAAAAAAFAnhIsAAAAAAAAA6oRwEQAAAAAAAECdEC4CAAAAAAAAqBPCRQAAAAAAAAB1QrgIAAAAAAAAoE5CAz0AXysvL9e+ffsUExMjk8kU6OEAAAB4zel0Ki8vT+np6QoJ4W/BwYifSQEAQDDz5ufRJhcu7tu3T61btw70MAAAAOpt9+7datWqVaCHgTrgZ1IAANAU1Obn0SYXLsbExEhy3XxsbGyARwMAAOC93NxctW7d2v1zDYIPP5MCAIBg5s3Po00uXDSmncTGxvKDHAAACGpMpw1e/EwKAACagtr8PMoiPgAAAAAAAADqhHARAAAAAAAAQJ0QLgIAAAAAAACoE8JFAAAAAAAAAHVCuAgAAAAAAACgTggXAQAAAAAAANRJaKAHAAAAAAAAPJWWlsrhcAR6GACaCLPZLIvF4pdzEy4CAAAAANBI5ObmKisrSyUlJYEeCoAmxmq1KikpSbGxsT49L+EiAAAAAACNQG5urvbu3avo6GglJSXJYrHIZDIFelgAgpzT6VRpaalycnK0d+9eSfJpwEi4CAAAAABAI5CVlaXo6Gi1atWKUBGAT0VERCgmJkZ79uxRVlaWT8NFGroAAAAAABBgpaWlKikpkc1mI1gE4Bcmk0k2m00lJSUqLS312XkJFwEAAAAACDCjeYu/Gi4AgHTse4wvG0YRLgIAAAAA0EhQtQjAn/zxPYZwEQAAAAAAAECdEC4CAAAAAAAAqBO/hovLly/XpZdeqvT0dJlMJn3yySc17v/xxx/roosuUnJysmJjY5WRkaFFixb5c4gAAAAAAAAA6siv4WJBQYHOOussvfDCC7Xaf/ny5brooou0YMECrV+/Xueff74uvfRSbdiwwZ/DBNDElTrKtXH3UX3z60HtPlwY6OEAAAAAaMSWLl0qk8mkUaNG1ftcs2fPlslk0qRJk+p9Ln9q27atV2vxjRo1SiaTSUuXLq31McHyXsB7of48+ZAhQzRkyJBa7z9t2jSPz5988kl9+umnmj9/vrp37+7j0QFoDv770349/sVm7T1a5N7Wr2OyHr+8q05JjAzgyAAAAADvTF28JdBDqJW7L+oY6CEEtaVLl+r888/XjTfeqNmzZwd6OI3KgAEDtGzZMm3fvl1t27YN9HBQwa/hYn2Vl5crLy9PCQkJ1e5TUlKikpIS9+e5ubkNMTQAQeCFJVv19JeuH8BsERal2cK15UCelm85pGEzvtWbN/VWt1a2AI8SAIC6q0vQwC/9AFCz3r17a/PmzbLZ+F3Bl6644gr16dNHSUlJgR4KfKxRh4vPPPOMCgoKdM0111S7z+TJk/XII4804KgABIM53+9yB4tj+rXX3Rd1VLjFrB1ZBRo/Z4N+2pujm2av1fzxf1aaLSLAowUAAADQWERGRqpz586BHkaTY7PZCGybqEbbLXrOnDmaNGmS5s6dq5SUlGr3e+CBB5STk+P+2L17dwOOEkBj9PvBPE36bJMk6c4LO+iBv3RRuMUsSWqbFKU5t/VR5xYxysov0Z1zNqq83BnI4QIAAAA4QXFxscLDw9WuXbtKrw0dOlQmk0nnn39+pde6du2q0NDQSrMad+zYoTFjxqht27ayWq1KTk7W1VdfrR9//LHSOWpaczE/P18TJ05U69atFRERodNPP13PP/+8nE6nTCZTjVN1d+3apeHDhys5OVkRERHq2bOn5s+f77HPqFGj3Pf15ptvymQyuT9OXKvQm3uSpLKyMk2ePFkdOnRQeHi42rdvr3/961+y2+3Vjrk2li9frgsuuEAxMTGKjY3VJZdcol9++aXSftWtuVhaWqqXX35ZvXv3VlJSkiIjI9W2bVsNHTpU7733nvteTSaTli1bJklq166dx3tzvMLCQj322GPq2rWrIiIiZLPZ1K9fP/e5qrJhwwYNGTLEHYAOHjxYa9eurXbMAwYMkMlk0o4dO/Sf//xHffr0UUxMjOLi4tz7fPHFF7r55pvVpUsXxcbGKioqSmeddZaefPJJjxm4Vb0/f/zxh6655holJSUpNjZWQ4YMcb+nZWVlevLJJ9WxY0eFh4frtNNO04wZM6q9t4bQKCsX586dq9GjR+uDDz7QwIEDa9zXarXKarU20MgANHZOp1P3ffijSsrK1a9jsu4a2KHSPtHWUL06sqcGT1uu73cc1py1u3T9OW0CMFoAAAAAVQkPD9c555yj5cuXa8eOHe7QzuFwaOXKlZKk1atXu0NIScrKytIvv/yiP/3pT4qNjXWfa+XKlbrkkkuUm5urM844Q5dddpn27t2rjz/+WAsWLNAXX3xRZVB5ouLiYl144YX6/vvvlZycrKFDhyo/P1/33nuv/vjjjxqP3bFjh3r16qXw8HCde+65OnDggFavXq1hw4bpv//9rwYNGiRJOvfcc5WZmalFixbp1FNP1bnnnus+x9lnn12ve/rb3/6mDz/8UNHR0br44ovldDr17LPPasOGDXI661ZwMX/+fD333HPq2rWrBg8erJ9++kkLFizQd999p59//lktWrQ46TlGjBihuXPnKikpSX379lVkZKT27t2rFStWKD8/X9ddd52io6N14403auHChTpw4ICuuuoqRUdHVzpXXl6ezj//fK1fv979NSooKNCSJUu0YsUKrVmzplK/j1WrVmngwIEqKipS9+7d1alTJ/3yyy8699xzddNNN9U49smTJ2vWrFn685//rKFDh3oUvI0ePVoFBQU644wz1K1bN+Xm5ur777/XQw89pK+//lpffvmlzGZzpXNu375dvXv3VlxcnPr376+tW7dq4cKFWr9+vX788UeNHTtWS5YsUUZGhtq3b69vvvlG48aNk8Vi0a233nrS99sfGl24OGfOHN18882aM2eOLrnkkkAPB0CQ+e/Pmfph11FFhpn11FVnVtvxrHVCpCYO6qRHP/9Fz3y5RZef3VLR1kb3LREAgKo5nVJpoUIdRSff90T2AskSKXnRFRQAAmHAgAFavny5li5d6q4i3LBhg3JycnTGGWdo06ZNWrNmjQYMGCDJVXHodDrdn0uuvgx//etfVVRUpA8++EBXX321+7WvvvpKl1xyiUaMGKFt27YpLCysxvE8/fTT+v7775WRkaGFCxe6A8wff/zR45pVefPNNzV+/Hg9++yzCg11/d7x3HPP6a677tLjjz/uDhdvueUWnXbaaVq0aJHOPffcKhu61OWe5syZow8//FDt27fX8uXL1bJlS0muIKtfv37as2dPjeOvzrRp0/TOO+/ob3/7myRX+Hvttdfqo48+0owZM/Too4/WePyOHTs0d+5c9erVS8uXL3cHxZJUVFSkjRs3SpKSkpI0e/ZsDRgwQAcOHNDTTz9dZZXogw8+qPXr12vgwIGaN2+eO4D89ddf1b9/fz333HMaNGiQ/vKXv0hy9fq46aabVFRUpKeeekr33nuv+1yPPfaYHn744RrH/9Zbb2nJkiXq379/pddeeuklXXTRRYqKinJvy8vL0/Dhw/X555/r3Xff1ciRI6s854QJEzRlyhSFhITI6XTq5ptv1uzZs3XhhRcqJCREv/zyi1q1aiVJ+vrrrzVw4EA98cQTAQsX/TotOj8/Xxs3bnT/x7B9+3Zt3LhRu3btkuSa0nz8GzlnzhyNHDlSzzzzjPr06aPMzExlZmYqJyfHn8ME0ESUOcr11MJfJUm3ntdeLWzhNe4/MqON2iVF6XCBXW+s3N4QQwQAwDdKC6Un0zV+TT+vP/Rkuut4AGjkjMBm6dKl7m3GtFgj9KnqteODvtdff12ZmZmaOHGiRwgnSQMHDtTtt9+uvXv36vPPPz/peF5++WVJ0rPPPutRGXnmmWdq/PjxNR7bvn17PfPMM+5gUZLGjRun+Ph4rVmzxqupyXW5p5kzZ0pyBWZGsCi5phf/61//qvW1TzR8+HB3sChJZrNZDz74oCTXdOmTOXjwoCSpb9++HsGiJEVERCgjI6PWYykoKNBrr72mkJAQzZgxw6OysXPnzvrnP/8pSXr++efd25csWaItW7aoc+fOmjhxosf5HnzwwSqn5R9v9OjRVQaLkjRs2DCPYFGSYmJiNHXqVEnSp59+WuVxp556qv79738rJMQV2ZlMJk2YMEGS9Msvv+j55593B4uSdOGFF6p79+7auXOnduzYUeN4/cWv4eK6devUvXt3de/eXZI0YcIEde/e3f1NYP/+/e6gUXL9j1pWVqZx48YpLS3N/XHnnXf6c5gAmogvfzmgHdmFio+06NZ+7U+6f6g5xD1t+tUV21RoL/P3EAEAAADUUt++fWW1Wj0CxKVLlyouLk5XX321WrVqVem1kJAQj6nEixcvluQKeqpi7Lt27doax7Jr1y7t2bNHrVq1Up8+fSq9/te//rXG4wcMGCCLxeKxLTQ0VO3bt1dpaamys7NrPP543t5TaWmpvvvuO4WEhFQKIyV5hIPeMiouj9exY0dJrsznZDp37qyoqCi98cYbevXVV716H060fv16FRUVqXfv3urQofLyWCNGjJAkffvtt+5p4KtWrZIkXX311ZVmvZnNZl155ZU1XvOyyy6r8fWtW7fqueee0/jx43XzzTdr1KhReuyxx9yvVWXAgAEeIbTkCqclKSwsrMow89RTT5VUu/fcH/w6B3DAgAE1zts/sbz3+G8KAOCt1yqqD2/o06bWU5yHnpmuZxdv0c7sQs3bsJe1FwEAQeelXotUao446X4WR5HGrh3cACMCAN8IDw9X7969tWLFCu3YsUOnnHKKVq5cqX79+ikkJET9+/fXhx9+qOLiYuXn52vTpk3q3r27R1MNo5LrnHPOqfFaWVlZNb6+b98+SVLr1q2rfP2UU06p8fjjK82OZ1TXVdXgozre3lN2drbsdrvS0tKqnPptNCI5evRorcdgqOq+vLmn2NhYvfrqq7rtttt02223acyYMerUqZPOP/98jRw5ssogtzrG16i6pjpxcXGy2WzKyclRbm6ubDZbvb+u1b3udDo1ceJETZ06tdpcLC8vr8rtx1eWGowKyBYtWrgrGqt63Zv/jnyJBcYANAn/231U63cekcVs0og+tQ8IzSGu/R//YrPeXLVDw3ufUu06jQAANEal5giV1SJcBIBg1L9/f61YsUJLly7VmWeeqaNHj7qnPQ8YMEDvvvuu1qxZo8OHD1dab1FyrQEouSoLIyMjq73OyYI6Q11/V/Dl7xje3pMRbvnj9xxfnPNvf/ubBg4cqE8//VRffvmlli1bppkzZ2rmzJm699579dRTT/l8TCfuU90xJ2t0c+JUbsPcuXP17LPPqlWrVpo2bZoyMjKUnJwsi8Uiu90uq9Va7blrGn9j/V2VcBFAk/D+OldXrku6pSkltua1Fk/0156t9eziLdpyIF/rdh5Rr7YJ/hgiAAAAAC8NGDBAjz/+uJYuXarDhw+7tx3/ePxrJ04ZbdWqlX777Tf985//1JlnnlnncaSlpUmSx9Jux6tuuz94e09JSUkKCwtTZmam7HZ7perFvLy8OlUt+lJycrJuueUW3XLLLXI6nVq0aJGuvfZaTZkyRaNGjdLpp59+0nOkp6dLcvX7qEpOTo5ycnIUFRWlmJgYSSf/uh7f/dkb8+bNk+Ra63Lo0KEer23btq1O52zM/LrmIgA0hJIyhz7/0bW2xNU9qi5nr4ktwqIhXV3/qHyyYa9PxwYAAACg7vr27auwsDAtXbpUS5cuVXx8vM466yxJ0mmnneZed9FYb7Ffv34exw8cOFCS9Mknn9RrHG3atFF6err27Nmj7777rtLrH374Yb3Ofzwj/Csrq3pNeG/vyWKxqHfv3iovL9dHH31U6fX33nuvbgP1E5PJpIsvvliXXHKJJOnnn392v1bTe9OjRw9FRETo+++/r3I9w3feeUeSa01KowKwb9++kqSPPvqoUiVheXm5OyT01pEjRyRVPd36/fffr9M5GzPCRQBB75tfDyqnqFQtYsOVcWpinc5xRXfXuhaf/7hf9rJyXw4PAAAAQB1FRESoV69e2rlzpxYvXuxeb9HQv39/rV69Wj///LPOOussj/UWJWnMmDFKTk7Wk08+qTfeeKNSgFRQUKC33npLe/bsOelYxowZI0m65557PNbL+/nnnzV9+vR63KUnowLvt99+q3Yc3t6TMfaHH37Yo+nHzp073Q1GAmHDhg36+OOPVVpa6rH9yJEj7hD3+HUNa3pvoqKidPPNN6u8vFzjxo1TQUGB+7UtW7bo8ccflySPzt4XXHCBTjvtNG3evNndxdnw//7f/6tzlaHR1OaVV17x+PqsWLFCU6ZMqdM5GzPCRQBB7+MfXNWGw7q3lDmkbmtQZJyaqJQYq3KKSvXNbwd9OTwAAAAA9WBMfy4uLq60puKAAQNkt9vldDqr7KIbHx+vefPmuYOndu3aaejQobrqqqvUq1cvpaam6sYbbzxpQxdJuvfee9WzZ099++23OvXUU3XNNdfoL3/5i3r27Knhw4dLUpUNU7zVtm1bnXnmmVq3bp169+6tm266Sbfccos+++yzOt/T9ddfryuuuEK///67OnXqpCuuuELDhg3TGWecoW7dup20cYm/7Ny5U1dddZWSk5M1cOBA3XDDDRo6dKjatm2rbdu26YorrvBo6mJ0Zx4+fLj++te/uqdSGyZPnqwePXpo8eLFat++va655hpdcsklOuuss5SZmak77rjDXREpuTpCv/HGGwoPD9c999yjHj16aPjw4Tr77LP1yCOP6NZbb5Xk/df1jjvuUFRUlGbMmKGuXbvqb3/7m/r166f+/ftr7Nix9XnLGiXWXAQQ1IrsDi3fekiSdOlZaXU+jznEpEvPStdrK7dr0c+ZGnxGC18NEQAAAPCJuy/qGOghBMSAAQP0xBNPuJ+f+FpVz4/35z//WT/99JOeffZZffHFF1qyZInMZrPS09M1dOhQXXnllbVa0y8iIkJff/21Jk2apPfff1+ffvqp2rVrpyeffFLXXHONXnjhBSUm1m0m1Yk++ugj3XvvvVqxYoXWr1+v8vJytWrVyh2ueXtPJpNJc+fO1ZQpU/Taa69pwYIFSktL0/jx4zVp0iR16tTJJ+P2Vp8+ffT4449ryZIl+u2337RixQrFx8frzDPP1K233uoObQ1XXnmlpk6dqldffVXz5893d0eeNWuWJFfn62XLlumZZ57R3Llz9dlnnyksLEw9e/bU7bffrr/97W+VxnDuuedq5cqVeuihh7Rq1Spt3bpVvXv31rJly/T1119Lktdf144dO2rt2rW6//779d133+mzzz5Tp06d9PLLL+vWW2/V008/XZe3q9EyOU/W+ibIGO3Ec3JyFBsbG+jhAPCzLzdl6ra316tlXIRW3n9+vbpnfbctW9e+skZxkRate2igQs0UdwMIDH6eCX5+/xraC6QnXVPDpvdZXqtu0aGOIo1fU7EW2YP7pLAo348LQJ0VFxdr+/btateuXbUdaNF4zZ07V9ddd53Gjh2rmTNnBno48JEhQ4Zo4cKFWrNmTa07ijd2tf1e483PMvzmDCCofbX5gCTpotNT6xUsSlKPNvGKi7ToaGGp1u884ovhAQAAAGhCNm7cqPJyzzXaf/rpJ913332SVKnSDo3f4cOHtXPnTo9tTqdT06dP18KFC3Xaaaepd+/eARpdcGBaNICg5Sh36uvNrvURLzo9td7nCzWH6IJOKfp4w159tfmAzmnvmykNAAAAAJqG6667Trm5uerWrZvi4+O1Y8cOrVu3Tg6HQ2PHjtV5550X6CHCS1u2bFHfvn115plnqn379nI4HPr555+1bds2RURE6NVXX613IUtTR+UigKC1cfdRZRfYFRMeqt7tEnxyTiOkNEJLAAAAADCMHz9ep556qjZu3KiPP/5Yv/76q/r27avZs2czHTpItW/fXmPHjlVJSYm+/vpr/fe//1VJSYmGDx+u7777rtq1PHEMlYsAgta3v7u6n517WpIsPlof8c8dkhRikrZlFWjf0SKlx518DSsAAAAAzcO4ceM0bty4QA8DPpSSkqIZM2YEehhBjcpFAEHLCBf7npbks3PGhlt0Zqs4j/MDAAAAAICqES4CCEpFdoc27DoqSfrzqb5dG/HcirCScBEAAAAAgJoRLgIISmt3HJbdUa40W7jaJUX59Nx9T3OFld/+kS2n0+nTcwMAAAAA0JQQLgIISqv+yJYk9T01yeedu/50SrysoSE6lFei3w/m+/TcAAAAAAA0JU23ocvkVpK1qsChmhCi2nCihtDC22Oa9TW8fKHGsMhH4wqqa5gkS7gUFiWFRVc8RklRyVJsuhTbUoo7RUo9Q7LG1HDNpmP1HxXrLfp4SrQkhVvM6tU2QSt/z9KabdnqkNoM3lOnU8rdKx36TTq8Tco/IOUflAoOSfZ8yV4olRZJpYVSWbFUXiY5y6Vyh+vR/fy4z+syBu8PqsMxQBAo4b9tAAAABIemGy5Wq5of1uvySy0/96PRMUmJp0qnZEidhkjtz5fCIgM9KJ8rsju0aV+uJOmc9gl+uUbPtvFa+XuW1u88ohEZbf1yjYDL2Sv98qm0Y4W081upOCfQIwIAAAAABJmmGy6O3yDFnlBtVG2AWENKyDF1DF4DPbYmdoyz3FUtZi+oqCIrkErypYKDroAod6+U/YeUt0/K/t31seFtyWqTut8g9RnrqmxsIn7cc1Rl5U6lxFjVMi7CL9fo0SZekrR+1xG/nD9gnE5p21Lp22nStmXy+O8xJFRKaC8ldpBiWkjRKa7q2HCbZImQLJEVH+GufU0hkskshZhdFbcms2tbiFmS6SSVu9WpwzE+nhYPNAq5edL/Oy3QowAAAABOqumGi9HJUnRsoEcBNKyCLGnvD9IfX0u/LpBydklrXpTWzpL6/l3qd68rJApyP1R0ie7RJt7n6y0azm4dJ5NJ2n24SAdzi5USG+6X6zSorN+lz+9yVSoaTukrdbpYanue1KKbZLYEbHgAjlPeBL7nAAAAoFlouuEi0BxFJUkdB7k+Bk92hYzfPucKk1Y8I/32X+mvs6XkToEeab2s3+mqJvzTKfF+u0ZMuEWdUmP0a2ae1u88oiHd0vx2rQaxfrb03/tdFbBmq9TzJqnP/0nxbQM9MgAAAJyM0+la+zqYWCKZYQI0E4SLQFMVEiJ1uEg6baD06xfS53dLB3+RZg2Uhr8vtckI9AjrxOl0akPFVOU/tfFfuCi5KiODPlx0OqUv/ymtfsH1efvzpUufk+LbBHZcAAAAqL3SQunJ9ECPwjsP7nM1oYTatm2rnTt3yunFkmOjRo3Sm2++qW+++UYDBgzw3+AAHwgJ9AAA+JnJJHUZKo1d6Wr0UpIrvX2FtHN1oEdWJ7sOFyq7wK4wc4i6tvTv0gc927rCy3U7g3TdxRODxfP/KY2YR7AIAACAoLBjxw6ZTCbCtToymUxq27ZtoIeBZoDKRaC5iEmVbvhYen+E9PtX0nvDpVu+cnWXDiLGlOiuLWNlDTX79VrdW7vCxV/256rUUS6LOcj+HrP6xWPB4mUvSH8aEdjxAAAAoP4m/i6FRQZ6FFWzF0pP05DMFyZPnqx//OMfOuWUptOYE00X4SLQnIRFSte8Lc2+RNr3gzR3hHTrElf33yDx454cSdJZreP8fq02iZGKCQ9VXnGZthzI0xnpNr9f02d2rpYWP+x6PvhJgkUAAICmIiyS6cbNQFpamtLSgnRpJjQ7QVaGA6DewiKlv70nRSZJBzdJXz8a6BF5ZdM+V7jYraX/gz6TyaSuFYHiz3tz/H49nynJlz6+VXI6pK5XS31uD/SIAAAAAK9MmjRJ7dq1kyQtW7ZMJpPJ/TFq1Cj3fsbUX7vdrkcffVSdO3eW1WrVsGHD3OcxmUyaPXt2lddp27atTNU0nvnpp590/fXXq2XLlrJarUpPT9dNN92kHTt21Pm+Zs2apTPPPFMRERFq0aKFxowZo6NHj1bab9SoUTKZTFq6dKnH9uzsbD344IM644wzFB0dLZvNpo4dO2rkyJH6/vvvJUmzZ89239POnTs93rsTp5jv3r1bY8aMUZs2bWS1WpWSkqIrr7xSa9eurfYe3n//ffXq1UsRERFKTU3VTTfdpAMHDlQ75pN9jYqLi/Xaa6/p8ssvV/v27RUREaG4uDj169dP7733XpVjOP5aX331lfr376+YmBilpKTo1ltvVU6O6/e3gwcPasyYMUpPT1d4eLh69+5daXyoPyoXgeYoJlW6/AVpznXSmhnSmX+V0rsHelQnVV7u1C/7ciVJXRsgXJSkbq1sWr0tWz/vzdW1vRrkkvW3dLKUs1uKO8XVvIUufQAAAAgyZ599tq666ip99NFHSk1N1cUXX+x+7dxzz/XYt7y8XMOGDdPy5cvVv39/nXnmmUpMTKzX9T/66CMNHz5cdrtdPXr0UN++ffXHH39o9uzZmj9/vpYtW6YzzjjDq3Ped999eu6559SrVy9dfPHFWrVqlV555RVt3rzZHaDWJD8/X3369NHvv/+uDh06aPDgwZKkXbt2ac6cOWrfvr169+6t0047TTfeeKPefPNNRUVF6eqrr3afo3Pnzu7nP/30ky644AJlZWWpc+fOuvLKK7Vr1y7NmzdP8+fP13/+8x/99a9/9RjDtGnTdPfdd8tsNmvAgAFKSkrS4sWLtXTpUp155pnVjr2mr9GOHTt0yy23KDU1VZ07d1bv3r2VmZmpVatWacWKFfr11181adKkKs87b948vfDCC+revbsGDRqk77//XrNmzdLWrVv14YcfKiMjQ8XFxTrnnHO0f/9+fffdd7r44ou1du1adevWrcb3G7VHuAg0V52GSN3+Kv30gfTff0g3L2z0IdSO7AIV2B0Kt4SofVLDTAUxQsyfgqVy8cAv0pqZrueXPCtZowM7HgAAAKAOhg0bprPPPlsfffSROnfuXG3loeSqvrNarfrtt9/UsmXLel97+/btGjlypCIiIrR48WL169fP/dpbb72lG2+8UTfddJO7UrC23nnnHX333Xc6++yzJUlZWVnKyMjQihUr9M033+iCCy6o8fgPP/xQv//+u8aPH6/nn3/e47WDBw/q4MGDklzh67nnnqs333xTSUlJVb53TqdT119/vbKysvTAAw/oiSeecIebH374oa699lqNHj1a/fr1U2pqqiRp27Ztuv/++xUeHq4vv/xS5513niRX5eHVV1+tzz77rNqx1/Q1Sk5O1qJFizRw4ECFhBybYLt9+3ZdcMEFeuyxxzRq1Kgqm9O8+OKLev/993XVVVdJkvLy8tS3b18tW7ZM/fv3V69evTR79myFh7uWAvvXv/6lxx9/XE8//bTefPPNmt5ueIFp0UBzNvARyRIp7V4jba7+H4LG4ueKqsUuabEKbaDmKl3TXR2pN+/PVZmjvEGuWS/fPOGaDt15qNThokCPBgAAAGgQkydP9kmwKEnPPfecCgsL9dRTT3kEi5I0cuRIDRs2TGvXrtUPP/zg1Xkfe+wxd7AoSUlJSfq///s/SdLy5ctPerwRHlYVQqakpKhr1661HsvSpUv1008/qV27dnrsscc8qiavvvpqDRs2THl5eXrjjTfc219//XXZ7XbdeOON7mBRksLDw/Xcc895BINVqe5rlJiYqEGDBlU6vl27dnrooYdUXl6u+fPnV3nO66+/3h0sSlJMTIxuu+02SdLevXv10ksvuYNFSZo4caJMJpOWLVtW41jhHcJFoDmztZQy/u56vmyK5HQGdjwnsamievCMisCvIbRNjFK0NVQlZeXaejC/wa5bJ/s2Sr9+LskkXfCvQI8GAAAAaBAmk0mXXnqpz863ePFiSdLll19e5evGtOya1iWsyqBBgypt69ixoyRp//79Jz2+R48ekqQHH3xQn3/+uYqLi726/vFWrFghSbr22mtlNpsrvT5ixAiP/SRp1apVklRpqrQknXrqqerevfqltmrzNVq5cqUef/xx/d///Z9uuukmjRo1Sh988IEkaevWrVUec9FFlQsq2rdvL0nq2bOn4uLiPF6z2WxKTEys1fuN2mNaNNDc9fk/17qLB36Stn4pdRwc6BFVa5Ox3mIDdm0OCTHpjPRYfbf9sH7em6MuaQ0XbHptxTOux25/lVI617wvAAAA0ESkpKTIarX67HxGw5YWLVrUuF9WVpZX523VqlWlbdHRrmWMSkpKTnr8hRdeqLvvvlvTpk3TpZdeqrCwMJ199tkaNGiQRo8eXeW04ers27dPkqo9xthu7Hf889atW1d5zCmnnKL169dX+VpNX6OcnBxdeeWVWrJkSbXjzcvLq3J7VZWQUVFR1b5mvO7t1w41I1wEmrvIBKnnzdKq56VV0xttuOh0OvVzRafohmrmYuja0qbvth/WL/tzG/S6Xjm6u6JqUdJ5EwI7FgAAAKABHT/t1Vvl5ZWXPnI4HDKZTBo5cmSNx3rb0OVkDVtq49lnn9WYMWP06aef6uuvv9a3336r77//Xk899ZTmzp3r7sDsqzFV9Xp1xzhrmAlX09fo/vvv15IlS9SvXz89+uij6tq1q+Li4mQ2m/Xll19q8ODB1Z67pvH74v1G7RAuApB63yatfkHasUI6tEVK7hjoEVWy92iRjhaWymI2qUNqwzYp6dQiRpL0W2bVfy1rFNa9LjnLpbbnSSldAj0aAAAAoFEICwuT5Oq0fCKHw6HMzMxK21u1aqU//vhDzz//vGJjG9/MpU6dOum+++7Tfffdp+LiYr344ouaOHGixowZU+twMT09XZKraUpVdu7cKUlKS0tzb0tLS9Nvv/2mXbt2qUOHDpWO2b17t5d34jJv3jyZzWZ99tlnstk8C0m2bdtWp3OiYbHmIgAprrXUoaJicf3sgA6lOlsOuIK9U5OjZQ2tvCaIP3VKjfEYQ6NTZpd+qOh0ds6YwI4FAAAA8BEjGCwrK6vzOYxwbMuWLZVeW7JkiUpLSyttHzhwoCTpk08+qfN1G0p4eLjuuecepaWleXSMliSLxVLte2c0ZJk7d64cDkel19955x2P/SSpb9++klzdpE+0bds2bdiwoU73cOTIEcXExFQKFiXp/fffr9M50bAIFwG49LzZ9bjxXVdY1cj8lun6S2PHiqCvIXVMjZHJJGXl25WVf/K1UBrc719JhdlSdAup45BAjwYAAADwiaSkJFksFv3xxx9VBmC10b9/f0musMxYS1FyhWHjx4+v8ph77rlHERERuvvuu6vsUnz48GHNmDFDRUVFdRpTXX3yySdas2ZNpe0bNmzQgQMHFBMTo/j4ePf29PR0HThwQEePHq10zIABA9StWzdt375dDz/8sMe0408++UQff/yxoqOjNWrUKPf2m266SRaLRbNnz3Y3d5Gk4uJi3XXXXVVOMa+Njh076ujRo5o7d67H9qlTp+qbb76p0znRsAgXAbicdqErnCo+Km1rfN/At1ZUDXZs4CnRkhQRZlabhEhJjXRq9E8Vf83repVkZrULAE3X5MmT1atXL8XExCglJUXDhg3Tb7/95rHPqFGjZDKZPD769OnjsU9JSYnGjx+vpKQkRUVF6bLLLtOePXs89jly5IhGjBghm80mm82mESNGVPnLGQA0OHuhZC9opB+FPr3VsLAwXXzxxcrMzNRZZ52lkSNH6pZbbtEbb7xR63O0b99eI0eO1JEjR3T22Wfrsssu04UXXqhu3brpzDPPVJs2bSod06FDB73zzjsqKirSZZddps6dO+uKK67QsGHD1L17d6WlpWncuHG1asLiS0uXLlVGRoZatWqlSy+9VNdff73OP/989e7dW+Xl5XrsscdksVjc+1922WUqKyvTn/70J91www265ZZbNGXKFEmu9QjfffddJSYm6sknn9QZZ5yh4cOH69xzz9UVV1yhkJAQvf766x5NbU477TQ9+eSTKi4uVr9+/XTRRRfpuuuuU4cOHfS///3P3Q3aqDitrQceeECSdN1116lfv34aPny4zjjjDE2cOFF33313fd82NAB+CwXgEmKWzhgmffeS9PNHja6xy2/ucLHhKxeN6+7ILtSvmXn682lJARlDlUrypN/+63p+5l8DOxYA8LNly5Zp3Lhx6tWrl8rKyvTQQw9p0KBB+uWXX9ydISXp4osv9vjF88Rfcu666y7Nnz9f7733nhITE3XPPfdo6NChWr9+vcxm19Ibw4cP1549e7Rw4UJJ0m233aYRI0ZUWcECAA3q6dMCPYIGNWvWLE2cOFGLFy/Wf/7zHzkcDpWVlemmm26q9TleffVVpaen691339WiRYvUunVrPfjgg/rHP/6hU089tcpjrrzySv3vf//TM888o8WLF+u///2vwsPDlZ6eruuvv15XXXVVldN4/WnUqFEKDQ3V8uXL9f333ysnJ0ctWrTQX/7yF919990aMGCAx/6TJ0+W0+nUp59+qrlz56qsrEz9+/fXvffeK0nq1q2bfvjhBz3++ONauHChPvzwQ9lsNg0bNkwPPPCAevfuXWkMEydOVKtWrTRlyhStWLFCsbGxuvjii/Xvf//b3QAnMTHRq/u6/vrrFR8fr8cee0wbN27UTz/9pJ49e2rGjBlyOp2aOnVq3d4wNBiTs6Z2PkEoNzdXNptNOTk5jXLhVaBR2/Wd9PogKSxGunerZIkI9IgkSY5yp05/eKFKysq1dOIAtU2KOvlBPvbsl7/p+SW/69qerfXvq89s8OtX639zpXm3SYkdpL+vleiIBjQJ/DxTO4cOHVJKSoqWLVumfv36SXL94nX06NFq18nKyclRcnKy3n77bV177bWSpH379ql169ZasGCBBg8erM2bN+v000/XmjVrdM4550iS1qxZo4yMDP3666/q1KnTScfm96+hvUB60rUY//Q+y1VmPvm/2aGOIo1f43qf9OA+Kazh/z0FUL3i4mJt375d7dq1q9xZ97j/54MG32ealYKCArVt21ZFRUXKyclx/7EOjU+N32uO483PMlQuAjimVS/J1lrK2S39/rXUZWigRyRJ2nW4UCVl5Qq3hKh1xfTkhtaxomP0r42tqctvX7gezxhGsAig2cnJyZEkJSQkeGxfunSpUlJSFBcXp/79++uJJ55QSkqKJGn9+vUqLS3VoEGD3Punp6era9euWrVqlQYPHqzVq1fLZrO5g0VJ6tOnj2w2m1atWlWrcBEAfMoS6QrrgoklMD+3w7+2bdumxMREj6rN/Px8/d///Z+ysrJ08803Eyw2Q4SLAI4JCZE6/UX6/mVp65eNJlw01jk8LSVa5pDABGidK8LFrQfyVF7uVEiAxuGhzC79vsT1nEYuAJoZp9OpCRMm6Nxzz1XXrl3d24cMGaK//vWvatOmjbZv365//etfuuCCC7R+/XpZrVZlZmYqLCzMY8F7SUpNTVVmZqYkKTMz0x1GHi8lJcW9z4lKSko81t7Kzc31xW0CgIvJRBUgGoX3339fkyZNUo8ePdSqVSsdOXJEGzZsUFZWltq2basnn3wy0ENEABAuAvDUYVBFuLhYcjobRTXc1gCvtyhJbROjFGYOUaHdod1HCtUmsRH8cLdrlWTPk6KSpfTugR4NADSov//97/rxxx+1cuVKj+3GVGdJ6tq1q3r27Kk2bdroiy++0JVXXlnt+ZxOp0zH/ZtnquLfvxP3Od7kyZP1yCOPeHsbAAAElQsvvFAbN27UmjVrtGHDBjmdTp1yyim68cYbdf/99ys5OTnQQ0QAEC4C8NT2z1JohJS3TzqwSWrR9eTH+Fmgm7lIUqg5RO2To/RrZp7+OJTfOMLFLYtcjx0Gu6pOAaCZGD9+vD777DMtX75crVq1qnHftLQ0tWnTRlu3bpUktWjRQna7XUeOHPGoXjx48KD69u3r3ufAgQOVznXo0CGlpqZWeZ0HHnhAEyZMcH+em5ur1q1be31vAAA0Zr169dJ7770X6GGgkeG3UQCeLBFS+/6u51u/DOxYKmw9kC9J6pgaHdBxtE92BYrbDhUEdBxuxtenkXX2BgB/cTqd+vvf/66PP/5YS5YsUbt27U56THZ2tnbv3q20tDRJUo8ePWSxWLR48WL3Pvv379fPP//sDhczMjKUk5Oj77//3r3Pd999p5ycHPc+J7JarYqNjfX4AAAAaA4IFwFUdtpA1+MfSwI7DklljnJty3KFix1SAle5KEmnJrvCzT8aQ7iYu0/K/l0yhUjt+gV6NADQIMaNG6d33nlH//nPfxQTE6PMzExlZmaqqKhIkmtB+YkTJ2r16tXasWOHli5dqksvvVRJSUm64oorJEk2m02jR4/WPffco6+//lobNmzQDTfcoG7dumngQNe/f126dNHFF1+sW2+9VWvWrNGaNWt06623aujQoTRzAQAAOAHTogFUZoRVe9ZKZSVSqDVgQ9l7tEilDqesoSFqGRcRsHFIxyoX/ziUH9BxSJJ2VKwx1uJMKSIuoEMBgIYyc+ZMSdKAAQM8tr/xxhsaNWqUzGazfvrpJ7311ls6evSo0tLSdP7552vu3LmKiTn2B6qpU6cqNDRU11xzjYqKinThhRdq9uzZHt0t3333Xd1xxx3urtKXXXaZXnjhBf/fJAAAQJAhXARQWVJHV5OQgkPS3h+kNhkBG4oxBbldUlTAOzQblYuNYlr0jhWux7bnBnYcANCAnE5nja9HRERo0aJFJz1PeHi4pk+frunTp1e7T0JCgt555x2vxwgA9XWy73UAUB/++B7DtGgAlZlMUpuKNaV2rqx5Xz/blnUsXAw0YwxZ+SXKKSoN7GCMysW25wV2HAAAAPAJo3q6tDTAP2cCaNKM7zHHz9ioL8JFAFVrU1ERtyOw4eL2ivUWG0O4GBNuUWqsa4r4tkBOjc7ZKx3e5lpvMYBVpQAAAPAdi8Uiq9WqnJwcqhcB+IXT6VROTo6sVqssFovPzsu0aABVM6bb7v5ecpRKZt994/HG9kZUuShJ7ZOidSC3RH8cKlD3U+IDM4hdq12PLc6Uwm2BGQMAAAB8LikpSXv37tWePXtks9lksVhkMgV2aSAAwc/pdKq0tFQ5OTnKz89Xy5YtfXp+v4aLy5cv15QpU7R+/Xrt379f8+bN07Bhw2o8ZtmyZZowYYI2bdqk9PR03XfffRo7dqw/hwmgKsmdXcFVcY50YJOUfnZAhrG9Yn3D9hXrHQbaqSlRWr0tO7CVi3vWuR5bnxO4MQAAAMDnYmNjJUlZWVnau3dvgEcDoKmxWq1q2bKl+3uNr/g1XCwoKNBZZ52lm266SVddddVJ99++fbv+8pe/6NZbb9U777yjb7/9VrfffruSk5NrdTwAHwoJkdL/JG37Rtq7PiDhYpHdoX05xZKk9o2oclEKcFOXvRXhYssegRsDAAAA/CI2NlaxsbEqLS2Vw+EI9HAANBFms9mnU6GP59dwcciQIRoyZEit93/ppZd0yimnaNq0aZKkLl26aN26dXr66acJF4FAaNWzIlz8Qeo1usEvvyPbFeDFRVoUHxXW4NevSvtkV8j5R6AqF8vs0v4fXc9b9QzMGAAAAOB3FovFb0EAAPhSo1pzcfXq1Ro0aJDHtsGDB+u1115TaWmpV99YX3rpJYWHh/t6iEDzcmCP9EOJtOlzaVenBr/8pr05yl2/R7HxEXr++V8b/PpVOVJgV+66rfpfiEnTzBsV0tBr4BzdLa3OlUIjpXc+d3X2BtDkFBcXB3oIAAAAQK00qnAxMzNTqampHttSU1NVVlamrKwspaWlVTqmpKREJSUl7s9zc3MlSffff79/Bws0K7ukD+8M2NWPSLrzw4Bdvlp3Lw7k1Uukz+8K5AAAAAAAAGhc4aKkSp2wnE5nldsNkydP1iOPPFJp+1VXXUUJOeALv/1XKi2Q2vaTolMa9NIbdh3R7iNF6tIiRh1SYxr02jX5evMBFdgd6ntqopKirQ178T1rpaM7peTTpdTTG/baABpMaWmpPvroo0APAwAAADipRhUutmjRQpmZmR7bDh48qNDQUCUmJlZ5zAMPPKAJEya4P8/NzVXr1q31+uuv+7z7DdAsvX+j9Msn0sCh0rl3N+ilr5jxrYp3HdWj1/9Jf+lWuXI5UEa+/r2Wbzmk0Vd203W9T2nYi7/QW8o6JA1/Suo4uGGvDaDB5ObmEi4CAAAgKDSqcDEjI0Pz58/32Pbll1+qZ8+e1VYhWq1WWa0NXDkENCdpZ7nCxcyfG/zSO7MLJUltEiMb/No1aZPgGs/Ow4UNe+HSIil7q+t52lkNe20AAAAAAKoQ4s+T5+fna+PGjdq4caMkafv27dq4caN27dolyVV1OHLkSPf+Y8eO1c6dOzVhwgRt3rxZr7/+ul577TVNnDjRn8MEUJPUrq7HAw0bLuaXlOlwgV2SdEpCIwsXK8LOXdkNHC4e3Cw5y6XIRCk69eT7AwAAAADgZ36tXFy3bp3OP/989+fG9OUbb7xRs2fP1v79+91BoyS1a9dOCxYs0N13360XX3xR6enpev7553XVVVf5c5gAatKiIlzM2iqVFkuWhunCvruiKjA+0qKY8Ma1fuop7srFgoa9sBHwpnalSzQAAAAAoFHwa7g4YMAAd0OWqsyePbvStv79++uHH37w46gAeCUmTYpIkIoOS4c2S+ndG+SyuyrCxcZWtShJbRKjJLmmbTudzmobTvmcMTW9RbeGuR4AAAAAACfRqNZcBNAImUyu6sXty13hVgOFi0blYutGGC4agWdecZmOFpYqPiqsYS7srlw8o2GuBwBosqYv+V1l5oha73/3RR39OBoAABDM/LrmIoAmIrWiUq4B113c1YjDxYgws1JjXY2kGqypi9PpOS0aAAAAAIBGgHARwMkZlXIN2DF6dyOeFi1JbRKMqdENtO5izh6pOEcKCZWSOzXMNQEAAAAAOAmmRQM4uRbHdYx2OhukmUhjXnNRkk5JjNT3Ow43XMdoo2oxqZMUam2YawIAmiyLo8i7A+wFkiWShmIAAKASwkUAJ5fUSZJJKj4q5R+UYlL9ernycqd2H3H90tNYw8U27o7RDRQuHtzsekw9vWGuBwBo0sauHezdAWskPbhPCovyy3gAAEDwYlo0gJOzhEvxbVzPs7b4/XIH80pkLyuXOcSkNFu4369XF6ckusLFBqtczNrqekxiSjQAAAAAoPGgchFA7SR1ko7skLJ+k9qd59dLGVOi0+PCFWpunH8DMRrN7DnSUOHib67HpA4Ncz0AQJNTFhKu6X2We3WMxVHkfZUjAABoVggXAdROckdp6yLpkP8rFxt7MxdJahUXIUnKzC1WqaNcFn+GoE7ncZWLHf13HQBA02YyqcwcEehRAACAJqZxlgQBaHyMUMuooPMjo3KxdXzjDReToq0KM4eo3Cll5hT792L5B6SSXMkUIiWe6t9rAQAAAADgBcJFALVjrPVnVND5kVG52LoRVy6GhJjUMt5V/bHniJcdN71lrHMZ35ZO0QAAAACARoVwEUDtJFdULubulUry/HqpXUEwLVqSWlZMjd571M/h4iFjvUWmRAMAAAAAGhfCRQC1ExEvRaW4nvu5Y7RRCdgqvnGvC9XKXbno56Yu7vUWaeYCAAAAAGhcCBcB1J5ROefHpi6ljnIdyHOtYdiykYeL7srFhpoWbUxNBwAAAACgkSBcBFB7xtRoP1YuZuYUy+mUwswhSopq3OsLGuGn36dF0ykaAAAAANBIES4CqL2E9q7HI9v9dol9FUFdWly4QkJMfruOL7Sq6Gbt14Yu9gIpd4/rOdOiAQAAAACNDOEigNozwsXDfgwXc1xBXbqtcU+Jlo5VLu7PKZKj3OmfixjvdUS8FJngn2sAAAAAAFBHhIsAau/4cNHpnzBt31HXeovpcY0/XEyNscocYlKpw6mDFetE+pxRJRrfzj/nBwAAAACgHggXAdRefFvXY0mOVHjYL5cw1i9sGRful/P7Uqg5RGk21zj91tTFqFxMIFwEAAAAADQ+hIsAas8SIcWku577ad1FY83Fxt4p2uDuGO2vpi7uysW2/jk/AAAAAAD1QLgIwDvuqdHb/HJ6I1wMhmnR0rEQ1G9NXQ4zLRoAAAAA0HgRLgLwTkJb16Mfmro4nU739OJgCRf93jH6CNOiAQAAAACNF+EiAO/4sXIxt7hMBXaHpODoFi1JreKMysVC35/cUSod3e16TuUiAAAAAKARIlwE4B0/hovGlOiEqDBFhJl9fn5/MCosM3P80C06Z7fkdEhmqxST5vvzAwAAAABQT4SLALxjVND5oaHLsfUWG3+naEOLim7RfgkXDx/XzCWEb9cAAAAAgMaH31YBeMdY+6/gkFSc69NTu8PFIJkSLR0LF/NKypRXXOrbk7PeIgAAAACgkSNcBOCdcJsUkeB6fnSXT0+996ir+i9YmrlIUrQ1VDHhoZKkA7k+rl6kUzQAAAAAoJEjXATgvbhTXI8+DheNysWWQRQuSscqLfcd9XG4eGSH65HKRQAAAABAI0W4CMB7ca1djzm7fXraY2suBle46Ld1F41wkcpFAAAAAEAjRbgIwHtxbVyPPp8WHXwNXSQprSJc3O/rcNEIb41KUQAAAAAAGhnCRQDes1VULvowXCxzlLvXLAzaysXcIt+dtDhXKs5xPbe18t15AQAAAADwIcJFAN7zw5qLWfl2lTslc4hJSdFWn523IRiViz5dc9GoWoyIl6zRvjsvAAAAAAA+RLgIwHt+WHMxs6JqMSXGKnOIyWfnbQhpFQ1dfLrmYs4e16NRJQoAAAAAQCNEuAjAe0bgVZgt2Qt8ckojmEuNDa71FqXj11z04bRooyqUcBEAAAAA0IgRLgLwXkScZLW5nh/1TfWisd5iiyAMF401F3OLy1RQUuabk7qbuRAuAgAAAAAaL8JFAHXj43UXjWnRRlAXTGLCLYq2hko6dh/15p4WTTMXAAAAAEDjRbgIoG7c6y76Jlw8EMTToqVjoeh+XzV1MSpCmRYNAAAAAGjECBcB1I3fKheDq1O0wefrLjItGgAAAAAQBAgXAdSNUVHnozUXjXAxWCsXjXDRJx2jy+xSXqbrOZWLAAAAAIBGjHARQN0YFXU+qlw0pkUHY0MXSWphi5Ak7ffFmou5eyU5pdBwKSq5/ucDAAAAAMBPCBcB1I1RUZdT/8rFvOJSFdgdkoKzoYt03LTooz6YFn18MxeTqf7nAwAAAADAT0IDPQAAQcroYpx/UHKUSmZLnU91oKLaLyY8VJFhwfltyd3QxRfToo3Alk7RAIBGZPqS31Vmjqj1/ndf1NGPowEAAI1FcP4WDyDwIpOkEItUXupaH7AejUcyc0okBe+UaOnY2A/mldT/ZHSKBgA0QhaHl9X59gLJEkkVPgAATRzhIoC6CQmRYtNcay7m7qtfuOjuFB284WJKjKvL9eECu+xl5QoLrceqE+5O0af4YGQAAPjG2LWDvTtgjaQH90lhUX4ZDwAAaBxYcxFA3cW2dD3m7q3XaQ4EeadoSYqPDJPF7KrMOJRfz+pFY81F4/0FAAAAAKCRonIRQN3Fprsec/fV6zSZQd4pWpJCQkxKiQnX3qNFOpBbrJZxtV+TqpK8/a5H4/0FACBAykLCNb3Pcq+OsTiKvK9yBAAAQYtwEUDd+SpcNCoXg3hatCQlx1i192iRDubWs3Ixl3ARANBImExeNXEBAADND9OiAdRdbEU3Yx9Niw7mykVJSo11rbt4MK8eHaNL8qWSHNfzmDQfjAoAAAAAAP8hXARQd0yL9mCsGWmEpXViTIkOi5HCY30wKgAAAAAA/IdwEUDduRu61D1cLHOUK6uiAUqqzeqLUQWM0TG6XtOijfcylqpFAAAAAEDj1yDh4owZM9SuXTuFh4erR48eWrFiRY37v/vuuzrrrLMUGRmptLQ03XTTTcrOzm6IoQLwhlG5mLdfKnfU6RSH8ktU7pRCQ0xKigrycNGoXMyrR7hoVC4yJRoAAAAAEAT8Hi7OnTtXd911lx566CFt2LBB5513noYMGaJdu3ZVuf/KlSs1cuRIjR49Wps2bdIHH3ygtWvX6pZbbvH3UAF4KzpFMpklp0PKP1inUxhTolNirAoJMflydA3OmBZ9sD7Tot2VizRzAYATTZ48Wb169VJMTIxSUlI0bNgw/fbbbx77OJ1OTZo0Senp6YqIiNCAAQO0adMmj31KSko0fvx4JSUlKSoqSpdddpn27Nnjsc+RI0c0YsQI2Ww22Ww2jRgxQkePHvX3LQIAAAQdv4eLzz77rEaPHq1bbrlFXbp00bRp09S6dWvNnDmzyv3XrFmjtm3b6o477lC7du107rnnasyYMVq3bp2/hwrAWyHmYxV2dZwafaBiCnFKkK+3KB03LdoXlYuEiwBQybJlyzRu3DitWbNGixcvVllZmQYNGqSCggL3Pk899ZSeffZZvfDCC1q7dq1atGihiy66SHl5ee597rrrLs2bN0/vvfeeVq5cqfz8fA0dOlQOx7Eq/OHDh2vjxo1auHChFi5cqI0bN2rEiBENer8AAADBwK/hot1u1/r16zVo0CCP7YMGDdKqVauqPKZv377as2ePFixYIKfTqQMHDujDDz/UJZdcUuX+JSUlys3N9fgA0IDcTV3q1jH6UN6xysVgZ1QuHi6wy15WXreTGCEt06IBoJKFCxdq1KhROuOMM3TWWWfpjTfe0K5du7R+/XpJrqrFadOm6aGHHtKVV16prl276s0331RhYaH+85//SJJycnL02muv6ZlnntHAgQPVvXt3vfPOO/rpp5/01VdfSZI2b96shQsXatasWcrIyFBGRoZeffVVff7555UqJQEAAJo7v4aLWVlZcjgcSk1N9diempqqzMzMKo/p27ev3n33XV177bUKCwtTixYtFBcXp+nTp1e5/+TJk93TVWw2m1q3bu3z+wBQg3p2jD6UZ1QuBn+4GB9pkcXsmtp9KL+O1YtMiwaAWsvJyZEkJSQkSJK2b9+uzMxMjz9sW61W9e/f3/2H7fXr16u0tNRjn/T0dHXt2tW9z+rVq2Wz2XTOOee49+nTp49sNlu1fyDnD94AAKC5apCGLiaT5zpqTqez0jbDL7/8ojvuuEMPP/yw1q9fr4ULF2r79u0aO3Zslfs/8MADysnJcX/s3r3b5+MHUAN3x+i6VS4aU4iTo4N/WrTJZFJKTEVTl7quu0hDFwCoFafTqQkTJujcc89V165dJcn9x+ua/rCdmZmpsLAwxcfH17hPSkpKpWumpKRU+wdy/uANAACaq1B/njwpKUlms7nSD2EHDx6s9EOfYfLkyfrzn/+se++9V5J05plnKioqSuedd54ef/xxpaV5/sJttVpltQZ/xRMQtHxUuZjcBKZFS64KzL1Hi+rW1MVRJuUfcD03QlsAQJX+/ve/68cff9TKlSsrvebNH7ar26eq/Ws6zwMPPKAJEya4P8/NzSVgBAAAzYJfKxfDwsLUo0cPLV682GP74sWL1bdv3yqPKSwsVEiI57DMZrMk1w90ABqZeq65aFQuNoU1FyUptaJysU5NXQoOSs5yKSRUikr28cgAoOkYP368PvvsM33zzTdq1aqVe3uLFi0kqcY/bLdo0UJ2u11HjhypcZ8DBw5Uuu6hQ4eq/QO51WpVbGysxwcAAEBz4Pdp0RMmTNCsWbP0+uuva/Pmzbr77ru1a9cu9zTnBx54QCNHjnTvf+mll+rjjz/WzJkztW3bNn377be644471Lt3b6WnswYZ0OgY03fzqp4mdjJNsXJRquO0aKP6M7qFFNIgq1YAQFBxOp36+9//ro8//lhLlixRu3btPF5v166dWrRo4fGHbbvdrmXLlrn/sN2jRw9ZLBaPffbv36+ff/7ZvU9GRoZycnL0/fffu/f57rvvlJOTU+0fyAEAAJorv06LlqRrr71W2dnZevTRR7V//3517dpVCxYsUJs2bSS5fpjbtWuXe/9Ro0YpLy9PL7zwgu655x7FxcXpggsu0L///W9/DxVAXcS4qkSUlyk5ndJJpp0dr7zcqaz8ptPQRTrWMfpAbh0qF93NXFhvEQCqMm7cOP3nP//Rp59+qpiYGHeFos1mU0REhEwmk+666y49+eST6tChgzp06KAnn3xSkZGRGj58uHvf0aNH65577lFiYqISEhI0ceJEdevWTQMHDpQkdenSRRdffLFuvfVWvfzyy5Kk2267TUOHDlWnTp0Cc/MAAACNlN/DRUm6/fbbdfvtt1f52uzZsyttGz9+vMaPH+/nUQHwCSNcLCuSSnKlcFutDz1SaFdZuWu5g8SophEuGtO76zQtmmYuAFCjmTNnSpIGDBjgsf2NN97QqFGjJEn33XefioqKdPvtt+vIkSM655xz9OWXXyomJsa9/9SpUxUaGqprrrlGRUVFuvDCCzV79mz3UjyS9O677+qOO+5wd5W+7LLL9MILL/j3BgEAAIJQg4SLAJowS4RktUklOVLeAa/CxUMVVYsJUWEKC20a04CNysU6NXRxVy7SzAUAqlKb9bdNJpMmTZqkSZMmVbtPeHi4pk+frunTp1e7T0JCgt555526DBMAAKBZaRq/zQMIrJiKxe2NyrtaOlgxdTg5umlULUr1XHPReP+YFg0AAAAACBKEiwDqz5ganV+5s2ZNjGYuTWW9RelYt+gjhaUqKXN4d7BRuRhD8yoAAAAAQHAgXARQf9HHNXXxgrEuYVOqXIyLtCjM7PrWesjbdRepXAQAAAAABBnCRQD1554W7V24aIRvyU2octFkMim5oqmL1+Fi/kHXoxHWAgAAAADQyBEuAqg/o7txvreVi651CZtS5aIkJUWHSZKy8u21P8he6Oq2LUnRKX4YFQAAAAAAvke4CKD+oo3KxbquuRju6xEFVJ0qF431Ki2RkjXGD6MCAAAAAMD3CBcB1J/R0MXLbtGHmuCai5KUVHE/Wfl1CBejUySTyQ+jAgAAAADA9wgXAdSfe1o03aKlelYuGlWgAAAAAAAEAcJFAPVnBGL2fKkkr1aHFNkdyispk3QsjGsq6hQu5hEuAgAAAACCD+EigPqzRkth0a7ntVx30Qjewi0hirGG+mtkAVG/adGEiwAAAACA4EG4CMA3jHUXa9kx2t0pOsYqUxNbY9BduViXcDGGcBEAAAAAEDwIFwH4RrTR1KV24aJ7vcWYptUpWjqucpE1FwEAAAAATRzhIgDfMCruahkuHmyinaKlY5WLBXaHCirWlTwpd7jYwk+jAgAAAADA9wgXAfhGtHfToptqp2hJigozK8JiluTFuovuhi4pfhoVAAAAAAC+R7gIwDeMNRe9bOjSFCsXTSaTkmLCJNUyXCx3SAWHXM+ZFg0AAAAACCKEiwB8wx0u7q/V7kZDl6ZYuSgdC00P1WbdxcJsyemQZJKikv07MAAAAAAAfIhwEYBvGBV3+bWsXKyo6DPWJ2xqjKYuh/LtJ9/ZeM+ikiRzqB9HBQAAAACAbxEuAvCNmDTXYy2nRR/MbbrdoqVjoWmtKhfzaOYCAAAAAAhOhIsAfCO6YjpvSY5UWlzjruXlTmUXuCr6kprgmovSsXCxVmsu5tPMBQAAAAAQnAgXAfhGeJxkdjUxUcHBGnc9WlQqR7lTkpQYHebngQVGkjdrLhodtmOoXAQAAAAABBfCRQC+YTJJURWVd/mHatzVqOaLi7TIYm6a34a8mhadXxHGUrkIAAAAAAgyTfO3egCBYUyNPknlohEuNtUp0dKxe/NuWnSqH0cEAAAAAIDvES4C8B135eLJwkXXeouJUU1zSrQkpRxXueh0OmveOY9wEQAAAAAQnAgXAfiOUbl4knAx26hcjGn6lYslZeXKLymreWcqFwEAAAAAQYpwEYDvGOFYbadFN+HKxYgws6KtoZJqse6iES7S0AUAAAAAEGRCAz0AAE1ILadFZ1dMi27Kay5KrqYu+SVlysq3q31yNTuV5Ev2fNdzGrpUqbS0VA6HI9DDAOrFbDbLYrEEehgAAACAzxEuAvAdd0OX2nWLTmzi4WJSdJi2ZxXUXLloVC1aoiRrTMMMLEjk5uYqKytLJSW1aIoDBAGr1aqkpCTFxsYGeigAAACAzxAuAvAdd+XigRp3y3JXLjbdadGSq3JRkg7lFVe/k1HlSdWih9zcXO3du1fR0dFKSkqSxWKRyWQK9LCAOnE6nSotLVVOTo727t0rSQSMAAAAaDIIFwH4jrHmYj6Vi9Kxad9GmFql/EzXI81cPGRlZSk6OlqtWrUiVESTEBERoZiYGO3Zs0dZWVmEiwAAAGgyaOgCwHeMadElOVJp9dV6xpqLyU08XDTur8Zp0QVZrsfo6hZlbH5KS0tVUlIim81GsIgmxWQyyWazqaSkRKWlpYEeDgAAAOAThIsAfCc8TjJXTHWuZt3FgpIyFZW6mnMkNpNp0UalZpWMadFRTIs2GM1baH6Bpsj475omRQAAAGgqCBcB+I7JJEVVVOBV0zHaqFqMsJgVZW3aKzMY06IP1RQuGiFsFJWLJ6JqEU0R/10DAACgqSFcBOBbRmOSgqrDxUPu9RabdtWiJCVVVC5m17TmohEuMi0aAAAAABCEmnbZEICG5+4YXV3loitcTGri6y1KUmKUK0DNyi+R0+msumLJWHORykUAQFNkL/T+GEukazYEAAAICoSLAHzLqMCrpnLR6Jyc1AwqF43qzJKychXYHYquahq48T4RLgIAmqKnT/P+mAf3SWFRvh8LAADwC6ZFA/AtKhfdIsNCFRlmlnTsviuhchEAAAAAEMSoXATgW9GprsdqwsWsZrTmouS6z8LDRcrKL1GbxBOqMEqLpZJc13PCRQBAE1EWEq7pfZZ7dYzFUaSxawf7aUQAAMCfCBcB+JZ7WvShKl/OKjCmRTf9ykVJSoyyavfhIvd0cA+FFVWLIRYp3NawAwMAwF9MJpWZIwI9CgAA0ECYFg3At04yLTorz6hcbB7hohGiVtkxOv+49RZZuB4nsW7dOplMJl1//fUe28vLy9WxY0eZTCbde++9Hq8dPXpUUVFROv300+V0OhtyuAAAAACaCcJFAL4VXREuVtPQJbug+TR0kY7dZ5VrLrrXW0xqwBEhWMXHx0uS8vLyPLZ//vnn2rp1qyTpyJEjHq/Nnj1bhYWFuuOOO6ruVg4AAAAA9cS0aAC+ZYSLxTmuNQUt4R4vZzWjhi7SsbUljVDVgzF13HjPgBrExcVJkvLz8z22T506Venp6QoJCfEIF51Op2bOnKm4uDiNGDGiIYcKAAAAoBkhXATgW+FxkjlMcthd4Vlca/dLpY5yHS0slSQlRjWPysXEKFeImlVl5WJFuEgzl1pzOp0qKnUEehheibCYfVI1GBcXJ5PJ5FG5uHHjRi1dulRPPPGEPvjgA49wcfHixdqyZYvuvfdeRUVFVXVKAAAAAKg3wkUAvmUyucKy3L2uqdHHhYuHK6r3QkxSfGQzCRfd06JrqFxkWnStFZU6dPrDiwI9DK/88uhgRYbV/59bs9msmJgYj8rFqVOnKiIiQmPGjNGiRYs8wsUXX3xRZrNZ48aNq9X5R40apR07dmjp0qX1HisAAACA5oNwEYDvGeFivmfHaKN6LyHKqpCQ5rH+m7uhSwGVi6i/uLg4d+ViZmam3nvvPY0aNUqJiYmy2WzauXOnJGnnzp364osvNGzYMLVp06ZW537uuefkcARXVSgAAACAwCNcBOB70amux/wDHpuz8ptXMxeptpWLrLlYWxEWs355dHCgh+GVCIvZZ+eKj4/Xjh07JLkqE+12u+68805JUmxsrLty8aWXXpLD4XC/Vhs2m81n4wQAAADQfBAuAvC96IpKvBM6Rmc3s2Yu0rE1Fw8X2lXmKFeoOeTYi1Ques1kMvlkinGwio+P188//6yioiK99NJLGjRokE4//XRJrnAwNzdXhYWFeu2119S9e3edd955HsevXLlS999/v3788UdJUvv27fXUU09p8ODBlaZFFxUV6Y477tD777+vkJAQ/e1vf5PNZtOcOXPcAScA+IW90PtjLJGupVkAAECDa76/oQHwH6MSr5pp0c2pcjE+0iKTSXI6pSOFpUqOOS5YzWfNRXgnLi5ODodDr776qrKysnT33Xe7X4uNjZUkvfLKKzp06JCmTJnicazD4dBll12mESNG6I033pDJZNKmTZsUGRlZ5bUmTpyoTz/9VG+99ZY6d+6s2bNna8aMGYqPj/ffDQKAJD19mvfHPLhPCqN5FQAAgUC4CMD3oivCxQLPcNGYGpzYjCoXQ80hSogMU3aBXdkFJcfCxfJyqTDL9ZzKRdSSEew99dRT6ty5swYPPjZF3JjWPGXKFKWkpOi6667zODYnJ0dHjhzRVVddpY4dO0qSOnToUOV18vPzNWvWLD3//PO6/PLLJUmTJ0/WN998o8zMTJ/fFwAAAIDg1SDh4owZMzRlyhTt379fZ5xxhqZNm1ZpqtbxSkpK9Oijj+qdd95RZmamWrVqpYceekg333xzQwwXQH0ZYdkJ4eKhZjgtWnKtu5hdYPdcd7H4qFRe5npOuIhaMsLFvXv3aubMmTIdNwXQqFzct2+fHn74YVmtnv+fJSQkaPTo0Ro0aJAGDBigAQMG6IorrlCnTp0qXeePP/6Q3W5Xnz59PLZnZGRo3rx5vr4tAFBZSLim91nu1TEWR5HGrg2udXgBAGiKQk6+S/3MnTtXd911lx566CFt2LBB5513noYMGaJdu3ZVe8w111yjr7/+Wq+99pp+++03zZkzR507d/b3UAH4SmSi67Egy2PzscrF5jMtWjq27qIxLVzSsfcm3CaFNq/3A3VnhIsJCQkaOXKkx2tG5aLFYtHYsWOrPH7WrFlat26dBg0apGXLlqlr16566aWXqr2eifXLADQUk0ll5givPkrNEYEeNQAAUAOEi88++6xGjx6tW265RV26dNG0adPUunVrzZw5s8r9Fy5cqGXLlmnBggUaOHCg2rZtq969e6tv377+HioAX6mmctEI15KbYeWidELHaJq5oA7++c9/yul0Kjs7u9Jaiddff72cTqfsdrvS0tKqPUfXrl01YcIE/fe//9Xo0aOr/Pf41FNPVVhYmFavXu2xfc2aNb65EQAAAABNhl/DRbvdrvXr12vQoEEe2wcNGqRVq1ZVecxnn32mnj176qmnnlLLli3VsWNHTZw4UUVFRVXuX1JSotzcXI8PAAFmBGZFh6Vyh3tzc61cNKaBZxccX7lY0UmbcBEN5Pfff9f999+vlStXaufOnVq9erVWrFjh7jZ9vOjoaN1yyy16+OGH9dlnn2nLli166KGHtHnzZqoZAQAAAHjw65qLWVlZcjgcSk1N9diemppa7YLw27Zt08qVKxUeHq558+YpKytLt99+uw4fPqzXX3+90v6TJ0/WI4884pfxA6gjY1q0s1wqOiJFJbmqrQqa6ZqLUVVVLtLMBQ0rKipKW7du1XXXXadDhw4pMTFRQ4YM0dNPP13l/lOmTFFJSYluuOEGhYSEaPjw4Ro1apQWLVrUwCMHAAAA0Jg1SEOXE6scnE5ntZUP5eXlMplMevfdd93rRz377LO6+uqr9eKLLyoiwnNtlQceeEATJkxwf56bm6vWrVv7+A4AeMUcKkUkuCoXCw5JUUnKLSpTqcMpSUqIal6Vi0Z37CymRSOA0tLS9PHHH1f7+uzZsz0+j4yM1KxZszRr1iz3tgsuuMDdaRoAAAAAJD+Hi0lJSTKbzZWqFA8ePFipmtGQlpamli1buoNFSerSpYucTqf27NmjDh06eOxvtVordcQE0AhEJR8LF9VFWRVVizHhoQq3mAM7tgZmTAP3bOhCuIjGbdOmTVq7dq369u0ru92ut99+W998843mz58f6KEBAAAAaET8uuZiWFiYevToocWLF3tsX7x4cbUNWv785z9r3759ys/Pd2/bsmWLQkJC1KpVK38OF4AvndDUJSuveU6JlqpZczHfWHMxKQAjAk4uJCREL7/8snr16qWMjAx9/fXX+uijjzR06NBADw0AAABAI+L3adETJkzQiBEj1LNnT2VkZOiVV17Rrl27NHbsWEmuac179+7VW2+9JUkaPny4HnvsMd1000165JFHlJWVpXvvvVc333xzpSnRABoxIzSrWFswu8A1JTipmTVzkY7dc5VrLkanBGBEwMl16dKlUrdoAAAAADiR38PFa6+9VtnZ2Xr00Ue1f/9+de3aVQsWLFCbNm0kSfv379euXbvc+0dHR2vx4sUaP368evbsqcTERF1zzTV6/PHH/T1UAL50YuVixZTgxKjmV7lorLlYaHeo0F6myLBQpkUDAAAAAJqEBmnocvvtt+v222+v8rUTF5CXpM6dO1eaSg0gyFQKFysqF2OaX+ViVJhZ1tAQlZSVKzvfrsiEULpFAwAAAACaBL+uuQigGTthWnRzrlw0mUzHrbtol0qLpZIc14usuQgAAAAACGKEiwD844TKxeyKcDEppvmFi9KxjtHZ+SVSYUXVYohFCo8L3KAAAAAAAKinBpkWDaAZqm5adFTzmxYtSYlRxzV1OX5KtMkUwFEBAAAAAFA/VC4C8A93uFjRLbrZVy667juroOS4cJEp0QAAAACA4Ea4CMA/ohJdjyW5UlmJu3IxsblWLlZMi87Ks0v5B10baeYCAF5Zvny5Lr30UqWnp8tkMumTTz7xeH3UqFEymUweH3369PHYp6SkROPHj1dSUpKioqJ02WWXac+ePR77HDlyRCNGjJDNZpPNZtOIESN09OhRP98dAABAcCJcBOAf4XFSiGvlheKcA8ovKZPUfCsXk90NXUrcU8UJFwHAOwUFBTrrrLP0wgsvVLvPxRdfrP3797s/FixY4PH6XXfdpXnz5um9997TypUrlZ+fr6FDh8rhcLj3GT58uDZu3KiFCxdq4cKF2rhxo0aMGOG3+wIAAAhmrLkIwD9MJld4lrdfedn7JUkWs0kx1ub5bedYQxf7sXAxmnARALwxZMgQDRkypMZ9rFarWrRoUeVrOTk5eu211/T2229r4MCBkqR33nlHrVu31ldffaXBgwdr8+bNWrhwodasWaNzzjlHkvTqq68qIyNDv/32mzp16uTbmwIAAAhyVC4C8J+KNQXzszMlSYlRVpmaaQOTxKiKNRfzSzwbugAAfGrp0qVKSUlRx44ddeutt+rgwYPu19avX6/S0lINGjTIvS09PV1du3bVqlWrJEmrV6+WzWZzB4uS1KdPH9lsNvc+VSkpKVFubq7HBwAAQHNAuAjAfyrCs6KcinAxunmutygdV7lYYJcKWHMRAPxhyJAhevfdd7VkyRI988wzWrt2rS644AKVlLiaimVmZiosLEzx8fEex6WmpiozM9O9T0pKSqVzp6SkuPepyuTJk91rNNpsNrVu3dqHdwYAANB4Nc/5iQAaRkV4VpZ7UFIrd8fk5iip4t4PF9jlLDgkk0S4CAA+du2117qfd+3aVT179lSbNm30xRdf6Morr6z2OKfT6VFZX1WV/Yn7nOiBBx7QhAkT3J/n5uYSMAIAgGaBykUA/lMRnpXnuSr1kpppp2hJio903buj3ClnPg1dAKAhpKWlqU2bNtq6daskqUWLFrLb7Tpy5IjHfgcPHlRqaqp7nwMHDlQ616FDh9z7VMVqtSo2NtbjAwAAoDkgXATgPxVrLoYUudYYbM7TosNCQ2SLsEhyylTImosA0BCys7O1e/dupaWlSZJ69Oghi8WixYsXu/fZv3+/fv75Z/Xt21eSlJGRoZycHH3//ffufb777jvl5OS49wEAAMAxTIsG4D8V4ZmlOFuSmvW0aKkiXC06IlN5mWtDRfgKAKid/Px8/f777+7Pt2/fro0bNyohIUEJCQmaNGmSrrrqKqWlpWnHjh168MEHlZSUpCuuuEKSZLPZNHr0aN1zzz1KTExUQkKCJk6cqG7durm7R3fp0kUXX3yxbr31Vr388suSpNtuu01Dhw6lUzQAAEAVCBcB+E9FuBhuPyxJSmzG06IlKSnKKlNWjusTq00Kbd5hKwB4a926dTr//PPdnxtrHN54442aOXOmfvrpJ7311ls6evSo0tLSdP7552vu3LmKiYlxHzN16lSFhobqmmuuUVFRkS688ELNnj1bZrPZvc+7776rO+64w91V+rLLLtMLL7zQQHcJAAAQXAgXAfhPRWVeVNlRSceamjRXSTFhknJdn0QzJRreWbdunXr16qXhw4fr3XffdW8vLy9X586dtXXrVk2cOFFTpkxxv3b06FG1bNlSbdq00aZNm2psRgEEgwEDBsjpdFb7+qJFi056jvDwcE2fPl3Tp0+vdp+EhAS98847dRojAABAc0O4CMB/KioXbeVHJTmb9ZqLkpQYZZXTVBEust4ivBQfHy9JysvL89j++eefu5tVnNikYvbs2SosLNQdd9xBsAgAAADALwgXAfhPpKty0apSRauINRejw44LF1lvEd6Ji4uT5Fpz7nhTp05Venq6QkJCPMJFp9OpmTNnKi4uTiNGjGjIoQIAAABoRggXAfhPWKScliiZSguUaMpt9msuJkZbZTJVrLlI5WLdOJ1SaWGgR+EdS6Tkg6rBuLg4mUwmj8rFjRs3aunSpXriiSf0wQcfeISLixcv1pYtW3TvvfcqKiqq3tcHAAAAgKoQLgLwq7KIRFlKC9TSUqBwi/nkBzRhSVFhMskIF1MCO5hgVVooPZke6FF458F9Ulj9wz2z2ayYmBiPysWpU6cqIiJCY8aM0aJFizzCxRdffFFms1njxo1zbxs1apR27NihpUuXVnud2uwDAAAAAIaQQA8AQNNWYk2QJLUND7JqMz9IjLYqkWnRqIe4uDh35WJmZqbee+89jRgxQomJibLZbO5wcefOnfriiy80bNgwtWnTJpBDBgAAANDEUbkIwK8KQ+MVLamVtSDQQwm4pOgwiYYu9WOJdFUCBhNLpM9OFR8frx07dkhyVSba7XbdeeedkqTY2Fh3uPjSSy/J4XC4XwMAAAAAf6FyEYBf5ZpdHW7TQvNPsmfTlxhtVVLFtOiS8MQAjyZImUyuKcbB9OHDLs3x8fHKz89XUVGRXnrpJQ0aNEinn366JMlmsyk3N1eFhYV67bXX1L17d5133nlVnufFF1/UKaecovDwcF188cXauXNntdfMzMxUjx49NHjwYOXl5amoqEi33nqrbDab4uPjdfvtt+uBBx5Q27ZtfXafAAAAAIIH4SIAvzpqskmSUkJyAzySwIsND1VSReXiUVNcYAeDoBQXFyeHw6FXX31VWVlZuvvuu92vxcbGSpJeeeUVHTp0qNqqxR9++EHz58/XZ599pm+++UYHDhzQFVdcIafTWWnfX3/9VRkZGerWrZs+//xzxcTEaOLEifr000/11ltvac2aNbLZbJoxY4Z/bhgAAABAo0e4CMCvspyuwCPBaGTSjJkcdsWaXGtPGu8L4I34eFcl8FNPPaXOnTtr8ODB7tdsNleQP2XKFKWkpOi6666r8hxlZWV69913dfbZZysjI0Nvv/22NmzYoCVLlnjst3LlSv35z3/W8OHDNXv2bFksFuXn52vWrFl67LHHdPnll6tTp06aPHmyunTp4qc7BgAAANDYES4C8KvMsmhJkq2ccFEFWZKkUqdZB+3hAR4MgpERLu7du1d33nmnTMdNuTYqF/ft26exY8fKarVWeY5OnTopMfHYtPyuXbvKZrNp06ZN7m2//PKLBg4cqH/84x964okn3Nv/+OMP2e129enTx+OcGRkZ9b85AAAAAEGJcBGAX+0tdYWL0Y4jAR5JI1BwUJKUrVhlFdgDPBgEIyNcTEhI0MiRIz1eMyoXLRaLxo4dW+05TNWsAXn89tatW6tHjx6aM2eOsrKyan0OAAAAAM0P4SIAv9pV4uqUG24/HOCRNAIVlYtZTpuyCRdRB//85z/ldDqVnZ2tyEjPLtTXX3+9nE6n7Ha70tLSqj3Hr7/+qsOHj/3/uGnTJuXk5HhMbY6JidGXX36puLg4DRgwQJmZmZKkU089VWFhYVq9erXHOdesWeOL2wMAAAAQhAgXAfjV9kJXAGIpOSKVOwI8mgArOCRJynbGKiuvJMCDQXMVGhqqG264Qf/73/+0Zs0ajRw5UmeddZYuvPBCj/2ioqK0YMECnXLKKerfv7/27Nmj6Oho3XLLLXr44Yf12WefacuWLXrooYe0efNmqhkBBJa9ULIX1P6jiiZWAACgbkIDPQAATZej3KltReGSVTI5y6WiI1JUUqCHFTgV4WKWYqlcRMD86U9/0uDBg3XJJZcoKytL/fr108svv1xlOBgeHq5PPvlE1157rfr166clS5ZoypQpKikp0Q033KCQkBANHz5co0aN0qJFiwJwNwBQ4enTvNv/wX1SWJR/xgIAQDNDuAjAb44U2lXmNOuwM1oJpnxXuEa4qMPOWGXlU7mIhjd79mz38zvvvPOk+0hSWFiY5s2b57Ft1qxZmjVrlvvzCy64QB07dvTZOAEAAAAED8JFAH6Tne+qzssx2ZSginBRXWo+qCnLr6hcdNrc7w0QbDZt2qS1a9eqb9++stvtevvtt/XNN99o/vz5gR4agGamLCRc0/ssr/X+FkeRxq4d7McRAQDQPBEuAvCb7IrqvFxznOTY625o0mwVHAsXqVxEsAoJCdHLL7+sO++8U+Xl5erUqZM++ugjDR06NNBDA9DcmEwqM0cEehQAADR7hIsA/MZYV7DIEi85RLhoNHRRrA4X2FVe7lRICE0wEFy6dOlSqVs0AAAAgOaLbtEA/MaoXCyxJro2VIRrzVZFuJrljFVZuVO5xaUBHhAAAAAAAPVDuAjAb4zKRUdERROX5hwuOp3u+y+xJkiSslh3EQAAAAAQ5AgXAfiNOzyLSnY9NudwsThHKndVKoZUvB+suwgAAAAACHaEiwD8xpgWbY4xwsVmvOaice/WWNliYiSJjtEAAAAAgKBHuAjAb4xp0eG2VNeG5ly5aNx7VJISo8MkSdkFVC4CAAAAAIIb4SIAvzEqFyMTWrg2NOvKxYOux6hkd7jImosAAAAAgGBHuAjAb4xpvzEJaa4NJTlSWTOt1nNXLiYrMcoqiTUXAQAAAADBj3ARgF8UlzqUV1ImSYpPTJFCQl0vNNep0UbVZlSykmJc4WI24SIAAAAAIMgRLgLwi8MV6y1azCbFRliO6xjdTKdGH1e5mBRVseYi06IBAAAAAEGOcBGAXxjBWWKUVSaTSYpKcr3QbCsXj5sWHV1RuVhAuAgAAAAACG6EiwD8IquiE7LRvERRKa7HZhsuGtOij3WLzspjWjQAAAAAILgRLgLwC6NyMSHKCBcrpkXnHwzQiALMY1q0q3Ixr6RMxaWOAA4KAAAAAID6IVwE4BdGs5KkiinAijbWXGyulYvHwsXYiFBZzCZJx9amBAAAAAAgGBEuAvALIzRLPLFysTmGi45SqeiI63lUskwmkxKjjI7RhIsAAAAAgOBFuAjAL7KMhi5G5WJzXnPRWG/RZJYi4iUdW4syK591FwEAAAAAwatBwsUZM2aoXbt2Cg8PV48ePbRixYpaHfftt98qNDRUZ599tn8HCMDnsis1dDHWXGyO4aIxJTpJCnF92zVCV8JFNBc7duyQyWTSqFGjAj0UAAAAAD7k93Bx7ty5uuuuu/TQQw9pw4YNOu+88zRkyBDt2rWrxuNycnI0cuRIXXjhhf4eIgA/MKb7JhnhYnNec/G49RYNxvuSzZqLqKV169bJZDLp+uuv99heXl6ujh07ymQy6d577/V47ejRo4qKitLpp58up9PZkMP1ueZ+/wAAAEBj5fdw8dlnn9Xo0aN1yy23qEuXLpo2bZpat26tmTNn1njcmDFjNHz4cGVkZPh7iAD8wGjoYqwt6LHmYnl5gEYVIMa06Kgk9yaj0U02lYuopfh415T6vLw8j+2ff/65tm7dKkk6cuSIx2uzZ89WYWGh7rjjDplMpoYZqJ809/sHAAAAGiu/hot2u13r16/XoEGDPLYPGjRIq1atqva4N954Q3/88Yf+v//v//Pn8AD4idPpVJbR0MWoXIysCNacDqn4aGAGFihVVC4ajW6yaOiCWoqLi5Mk5efne2yfOnWq0tPT1apVK49wzel0aubMmYqLi9OIESMacqh+0dzvHwAAAGisQv158qysLDkcDqWmpnpsT01NVWZmZpXHbN26Vf/4xz+0YsUKhYaefHglJSUqKTlW+ZObm1u/QQOot/ySMtnLXNWJ7srF0DApPM4VLOYflCITAja+BldVuMiai3XidDpVWFgY6GF4JTIy0idVc3FxcTKZTB6Vexs3btTSpUv1xBNP6IMPPvAI1xYvXqwtW7bo3nvvVVRUVL2vH2jN/f4BAACAxsqv4aLhxF+qnE5nlb9oORwODR8+XI888og6duxYq3NPnjxZjzzyiE/GCcA3jPUWo8LMiggzH3shOsUVLhYcktQ5IGMLiCqnRVesuUjlolcKCwsVHR0d6GF4JT8/3yfhltlsVkxMjEfl3tSpUxUREaExY8Zo0aJFHuHaiy++KLPZrHHjxtXq/KNGjdKOHTu0dOnSeo/1//2//6dff/3VY5sx7pUrV1bZ1OUf//iHOneu/vuCL+6/Nvfoy/cBAAAAaA78Gi4mJSXJbDZXqlI8ePBgpWpGybWO0rp167Rhwwb9/e9/l+RaqN3pdCo0NFRffvmlLrjgAo9jHnjgAU2YMMH9eW5urlq3bu2HuwFQW8c6RVs9X4hKlrK2SAUHAzCqAKqyoUvFmosFVC6i9uLi4tyVe5mZmXrvvfc0atQoJSYmymazaefOnZKknTt36osvvtCwYcPUpk2bWp37ueeek8Ph8Mk4Fy5cqGXLllX52h9//KE//vij0vZRo0bVGC5K/r1/AAAAAHXj13AxLCxMPXr00OLFi3XFFVe4ty9evFiXX355pf1jY2P1008/eWybMWOGlixZog8//FDt2rWrdIzVapXVaq20HUDgGOsIutdbNBiVe0YlX3NR5bToY5WL1VVzo7LIyMhKa+41dpGRkT47V3x8vHbs2CHJVZlnt9t15513SnL9G2pU7r300ktyOBzu12rDZrP5bJxVVf3t2LFD7dq104033qjZs2fX6bz+vH8AAAAAdeP3adETJkzQiBEj1LNnT2VkZOiVV17Rrl27NHbsWEmuysO9e/fqrbfeUkhIiLp27epxfEpKisLDwyttB9B4GVN93estGqJSXI/5VC4mVDR0KSt3KqeoVHGRYVUdiROYTKZmvX5efHy8fv75ZxUVFemll17SoEGDdPrpp0tyhYO5ubkqLCzUa6+9pu7du+u8887zOH7lypW6//779eOPP0qS2rdvr6eeekqDBw+uNB24qKhId9xxh95//32FhITob3/7m2w2m+bMmeMO+Bpafe/f8OKLL+rf//63Dh48qAEDBujll1+utsIxMzNTl1xyiZKSkvThhx8qNDS00b0vAAAAQCD5tVu0JF177bWaNm2aHn30UZ199tlavny5FixY4P4hfv/+/dq1a5e/hwGgAWVXNCkxOiK7GeGaEbY1B05nleGiNdSs2HDX33foGI3aiouLk8Ph0KuvvqqsrCzdfffd7tdiY2MlSa+88ooOHTpUqWrP4XDosssuU8+ePbV+/Xr98MMPeuSRR6qtrJw4caI+/fRTvfXWW1qzZo1sNptmzJjhv5urhfrcv+GHH37Q/Pnz9dlnn+mbb77RgQMHdMUVV8jpdFba99dff1VGRoa6deumzz//XDExMY3yfQEAAAACqUEautx+++26/fbbq3ztZFOjJk2apEmTJvl+UAD8xuiAnBRzQrgY3QzDRXu+VFbsen5cQxfJte5ibnGZsvNLdFpKcDUpQWDEx8dLkp566il17txZgwcPdr9mTGueMmWKUlJSdN1113kcm5OToyNHjuiqq65yN03r0KFDldfJz8/XrFmz9Pzzz7uXMZk8ebK++eabSusoN6T63L+hrKxM7777rhITEyVJb7/9trp166YlS5bowgsvdO+3cuVKXX755Ro7dqyeeOIJSY33fQFQB/ZC74+xREosYwIAQCUNEi4CaF6MSrykqhq6SM0rXDTu1RIlhXlO502MDtO2rAJlF1C5iNoxwrW9e/dq5syZHmt1GpV7+/bt08MPP1xpPeKEhASNHj1agwYN0oABAzRgwABdccUV6tSpU6Xr/PHHH7Lb7erTp4/H9oyMDM2bN8/Xt1Vr9bl/Q6dOndzBoiR17dpVNptNmzZtcoeLv/zyiwYOHKjHHntM9957r3vfxvq+AKiDp0/z/pgH91X6txwAADTAtGgAzc8ho3KxUrjYDNdcNJrXnFC1KB1bk9Ko9AROxgjXEhISNHLkSI/XjMo9i8XiXtf4RLNmzdK6des0aNAgLVu2TF27dtVLL71U7fUaW6Oh+t6/VP09Hb+9devW6tGjh+bMmaOsrMoNqBrb+wIAAAAEEpWLAHwuK88VliXHnBguNsNu0VWst2gwpo2z5iJq65///Kf++c9/Vvna9ddfr+uvv/6k5+jatau6du2qCRMmaOzYsZo5c2alMO7UU09VWFiYVq9erTPPPNO9fc2aNXUee9u2batc19Abvrj/X3/9VYcPH1ZCQoIkadOmTcrJyVGXLl3c+8TExOiLL77QpZdeqgEDBuirr75SixYt/PK+AGg4ZSHhmt5nuVfHWBxFGrt28Ml3BACgGSNcBOBz1VYuRldULpYWSPaC5jG1qIZw0ahczKZyEQ3g999/16uvvqpLL71UrVu31r59+7RixQqPkMwQHR2tW265RQ8//LDS0tLUuXNnvfnmm9q8ebO7ejBYhYaG6oYbbtDkyZNVVFSkcePG6ayzzvJYb1GSoqKitGDBAl155ZXq37+/vv76a7Vq1arJvi9As2AyqcwcEehRAADQ5DAtGoBPFZc6lFdcJklKPjFcDIuWQsNdz5vLuovucLHytOikaFflYjaVi2gAUVFR2rp1q6677jp17NhRV111lfr06VNtp+MpU6bo0ksv1Q033KDevXvryJEjGjVqlMLDwxt45L71pz/9SYMHD9Yll1yiAQMGKDExUfPmzatyqnN4eLg++eQTnX766erXr5927NjRZN8XAAAAoK6oXATgU0ZzkjBziGIjTvgWYzK51l3M2SXlH5Li2zb8ABtafg2Vi9GsuYiGk5aWpo8//rja12fPnu3xeWRkpGbNmqVZs2a5t11wwQXuTtPB6Ph7vPPOO0+6jySFhYVVatbS1N4XAAAAoD4IFwH41KE8Y0p0WNVND6KSXOFis6tcrGLNxYpwkW7RaIw2bdqktWvXqm/fvrLb7Xr77bf1zTffaP78+YEeWkDxvgAAAACeCBcB+JTRzCXpxGYuBmPdxYJm0jHaCBeN+z5OYrTR0IXKRTQ+ISEhevnll3XnnXeqvLxcnTp10kcffaShQ4cGemgBxfsCAAAAeCJcBOBTWdU1czG4O0Y3l8rFis7YVa25WNHQJa+4TCVlDllDzQ05MqBGXbp00erVqwM9jEaH9wUAAADwREMXAD51LFwMq3qHKKNyMauBRhRgNUyLjo0IlcXsmjpOUxcAAAAAQDAiXATgU8fWXKyucrEiZMtvBtOiyx1SYbbreRXhoslkUmJF9SLhIgAAAAAgGBEuAvCprIqQLPmkay42g2nRhYclOSWZpIiEKndxr7tYwLqLAAAAAIDgQ7gIwKcOsebiMcY9RiZI5qqXuE2MpnIRAAAAABC8CBcB+NTJG7o0o8pFoyN2ZOVmLoakKDpGAwAAAACCF+EiAJ8y1lxMjqmuoUvF2oOFhyVHWQONKkDyKwJUYyp4FYxp0dmEiwAAAACAIES4CMBniksdyit2BYbJ0eFV7xSZIJlCJDmPNTtpqvIPuB6jU6vdJYlp0dVyOp2BHgLgc/x3DQAAgKaGcBGAz2QXuAKyMHOIYiOqXmNQIWYpMtH1vKCJd4w27q/GykVXuHiIykU3s9ksSSotLQ3wSADfM/67Nv47BwAAAIId4SIAn8mqmBKdGB0mk8lU/Y7NZd3F/JOHi0ZXbWM6OSSLxSKr1aqcnByqvNCkOJ1O5eTkyGq1ymKxBHo4AAAAgE9UU1oEAN4zArJqm7kYjI7R+c0kXIyqPlxMqQgXaejiKSkpSXv37tWePXtks9lksVhqDqyBRszpdKq0tFQ5OTnKz89Xy5YtAz0kAAAAwGcIFwH4zLFO0dU0czFEN7fKxerXXDQqF7ML7CpzlCvUTEG5JMXGxkqSsrKytHfv3gCPBvANq9Wqli1buv/7BgAAAJoCwkUAPmOEi0ZgVi2jY3RTX3PR3dCl+srFhMgwmUNMcpQ7lV1gV2psNY1wmqHY2FjFxsaqtLRUDocj0MMB6sVsNjMV2geWL1+uKVOmaP369dq/f7/mzZunYcOGuV93Op165JFH9Morr+jIkSM655xz9OKLL+qMM85w71NSUqKJEydqzpw5Kioq0oUXXqgZM2aoVatW7n2OHDmiO+64Q5999pkk6bLLLtP06dMVFxfXULcKAAAQNAgXAfhMVkXH45NPizbCxSw/jyiAyh1SYcX91RAuhoSYlBQdpgO5JTqYW0K4WAWLxUIoA0CSVFBQoLPOOks33XSTrrrqqkqvP/XUU3r22Wc1e/ZsdezYUY8//rguuugi/fbbb4qJiZEk3XXXXZo/f77ee+89JSYm6p577tHQoUO1fv16d6Od4cOHa8+ePVq4cKEk6bbbbtOIESM0f/78hrtZAACAIEG4CMBnDuXXds3FinAxvwlXLhZmS85ySSYpMqnGXZNjrDqQW6JD+cWSbA0yPAAIRkOGDNGQIUOqfM3pdGratGl66KGHdOWVV0qS3nzzTaWmpuo///mPxowZo5ycHL322mt6++23NXDgQEnSO++8o9atW+urr77S4MGDtXnzZi1cuFBr1qzROeecI0l69dVXlZGRod9++02dOnVqmJsFAAAIEizuBcBn3A1dTjYtujmsuWgEp5GJkrnmv+OkxLiqFQ/m0tQFAOpq+/btyszM1KBBg9zbrFar+vfvr1WrVkmS1q9fr9LSUo990tPT1bVrV/c+q1evls1mcweLktSnTx/ZbDb3PlUpKSlRbm6uxwcAAEBzQLgIwGfcay7Wtlt0kw4XjfUWq2/mYjDeLyOcBQB4LzMzU5KUmur5fTc1NdX9WmZmpsLCwhQfH1/jPikplZezSElJce9TlcmTJ8tms7k/WrduXa/7AQAACBaEiwB8JivPaOhykm7RUcdVLjqdfh5VgBjBaQ3rLRpSYl3h4kHCRQCoN5PJ5PG50+mstO1EJ+5T1f4nO88DDzygnJwc98fu3bu9HDkAAEBwIlwE4BMlZQ7lFpdJ8mLNRYddKs7x88gCpBadog1Gd20qFwGg7lq0aCFJlaoLDx486K5mbNGihex2u44cOVLjPgcOHKh0/kOHDlWqijye1Wp1d7k3PgAAAJoDwkUAPmF0iraYTbJFnKSzryVcslb80tVUp0Ybay7WpnLRCBfzCRcBoK7atWunFi1aaPHixe5tdrtdy5YtU9++fSVJPXr0kMVi8dhn//79+vnnn937ZGRkKCcnR99//717n++++045OTnufdBM2Qsle4F3H011hgYAAMehWzQAnzCq7pKjrSedfibJtRZhSa6UlykldfDz6ALACBejal+5eDCv2J8jAoCgl5+fr99//939+fbt27Vx40YlJCTolFNO0V133aUnn3xSHTp0UIcOHfTkk08qMjJSw4cPlyTZbDaNHj1a99xzjxITE5WQkKCJEyeqW7du7u7RXbp00cUXX6xbb71VL7/8siTptttu09ChQ+kU3dw9fZr3xzy4TwqL8v1YAABoRAgXAfjEgVxXMJYcG167A6JTpeytx6YPNzVeNHQxukUfyiup1dpgANBcrVu3Tueff7778wkTJkiSbrzxRs2ePVv33XefioqKdPvtt+vIkSM655xz9OWXXyomJsZ9zNSpUxUaGqprrrlGRUVFuvDCCzV79myZzWb3Pu+++67uuOMOd1fpyy67TC+88EID3SUAAEBwIVwE4BNGMxJjiu9JxVSEbk01XHQ3dEk+6a7GGpXFpeXKKylTbPhJppUDQDM1YMAAOWuYZmoymTRp0iRNmjSp2n3Cw8M1ffp0TZ8+vdp9EhIS9M4779RnqGgiykLCNb3Pco2/wIuqRXth3aocAQAIUoSLAHziUEXlYmpsLcPF6CYeLnpRuRgRZlaMNVR5JWU6lFdCuAgAQGNhMqnMHMHUZgAAakC4CMAnDuQalYteTIuWpLwmGC46SqXCbNfzWoSLkpQca1XeoTIdzC3RqcnRfhwcAADw1tTFW2q9b6ijSOP9OBYAABobukUD8AmjGUmtp0U35crFgizXo8ksRSTU6pDkaDpGAwAAAACCD+EiAJ8w1lxMrW1Dl6a85qJxT1HJUkjtvs2mxB5r6gIAAAAAQLAgXATgE8a06GQqF71q5mIwKheNClAAAAAAAIIB4SKAeitzlCu7oGLNxVo3dGnheizMlsrsfhpZgHjRzMVgvG9ULgIAAAAAggnhIoB6yy6wy+mUzCEmJUbVMlyMiJdCKnpKGZV+TYV7WnRKrQ9xr7lIuAgAAAAACCKEiwDq7UCuaypvUnSYzCGm2h0UEnIsfMvP9NPIAiTfmBZd+3CRykUAAAAAQDAiXARQbwcr1ltMiallMxeDu6nLQR+PKMDqMC3aWKvyIOEiAAAAACCIEC4CqLdjnaJrOSXaYIRveU2scrGgDpWLFcHs4QK7Sh3l/hgVAAAAAAA+R7gIoN6MDsfJ3lYuRjf1ysXah4txERaFVkwpz85vYg1uAAAAAABNVmigBwAg+B1wT4uuY+Vik1tz0fuGLiEhJiVFW5WZW6yDecVqYfMyqAUAAI3O9CW/q8wcUev9776oox9HAwCAfxAuAqi3QxWVi6mxrLmo0iKpOMf1PKb2ay5KrmnlmbnF7rAWAAAEN4ujyLsD7AWSJVIy1bJBHgAAjQDhIoB6M9ZcrHPlYlNac9GoWgwNl8LjvDrUFc7mKLOi+zYAAAhuY9cO9u6ANZIe3CeFRfllPAAA+ANrLgKotwMVYViK1w1dWrgem1LlohGUxrTwuurAmAp9IIdwEQAAAAAQHKhcBFAvjnKnsioakHg9LdpoeJKfKTmdTWMKUN5+16MRnHrBeP/2Ey4CABC0ykLCNb3Pcq+OsTiKvK9yBACgkSBcBFAvhwvscpQ7ZTJJiVFh3h1sTIt22KXio1JEvM/H1+DyKqZFx3gfLraoCBcPMC0aAIDgZTJ51cQFAIBgx7RoAPViBGGJUVaFmr38lmIJl8JtrudGKBfsjMrFuoSLFdOiWXMRAAAAABAsGiRcnDFjhtq1a6fw8HD16NFDK1asqHbfjz/+WBdddJGSk5MVGxurjIwMLVq0qCGGCaAODtW1mYvBve5iUwkXj1tz0UusuQgAAAAACDZ+Dxfnzp2ru+66Sw899JA2bNig8847T0OGDNGuXbuq3H/58uW66KKLtGDBAq1fv17nn3++Lr30Um3YsMHfQwVQB0aVXZrNy/UWDe51F5tIuJhvhItpXh9qTIvOKylTfkmZL0cFAAAAAIBf+D1cfPbZZzV69Gjdcsst6tKli6ZNm6bWrVtr5syZVe4/bdo03XffferVq5c6dOigJ598Uh06dND8+fP9PVQAdWA0H2lR13AxpolWLhrrSXohyhqqGKtrKdxMqhcBAAAAAEHAr+Gi3W7X+vXrNWjQII/tgwYN0qpVq2p1jvLycuXl5SkhIaHK10tKSpSbm+vxAaDhZOYUSapP5WJFCGeEcsHOveai95WLkpRqo6kLAAAAACB4+DVczMrKksPhUGqqZwVPamqqMjNrFyQ888wzKigo0DXXXFPl65MnT5bNZnN/tG7dut7jBlB7xyoX69gV0QgX8w/6aEQBVFokFee4ntdhzUXp2NRoKhcBAAAAAMGgQRq6mEwmj8+dTmelbVWZM2eOJk2apLlz5yolJaXKfR544AHl5OS4P3bv3u2TMQOoHSNcrHflYn4TqFw0qi9Dj+uC7SU6RgMAAAAAgkmoP0+elJQks9lcqUrx4MGDlaoZTzR37lyNHj1aH3zwgQYOHFjtflarVVZrHbvUAqi3zHqvuWhMi24Cay4e3ym6Fn9AqQqViwAAAACAYOLXcDEsLEw9evTQ4sWLdcUVV7i3L168WJdffnm1x82ZM0c333yz5syZo0suucSfQwRQD3nFpe6uxkYo5rWY9IqT7ffRqAKoHp2iDalULgIA0KxNX/K7ysy1X27m7os6+nE0AACcnF/DRUmaMGGCRowYoZ49eyojI0OvvPKKdu3apbFjx0pyTWveu3ev3nrrLUmuYHHkyJF67rnn1KdPH3fVY0REhGy2uk0zBOAfRnVdbHiooqx1/HYSWxHEleRKJfmSNdpHowuAenSKNhghLQ1dAAAAAADBwO/h4rXXXqvs7Gw9+uij2r9/v7p27aoFCxaoTZs2kqT9+/dr165d7v1ffvlllZWVady4cRo3bpx7+4033qjZs2f7e7gAvHBsvcU6NnORJGuMFBYj2fNc1YvWDj4aXQDUs1O0xLRoAAAAAEBw8Xu4KEm33367br/99ipfOzEwXLp0qf8HBMAnjAAsLa6OU6INsWlSVp6Uu09KCuZwsWLdyDp2ipakVJtrDdlD+SUqdZTLYm6QvlsAAAAAANRJg4SLAJqmeneKNsSkSVlbgn/dRXflYt3DxaQoq0JDTCord+pQXonS4+pRFQoAAIKOxVHk3QH2AskSWedmcgAA1BfhIoA6y8x1/fDbIraeAVhsRVOX3H31HFGAHd8tuo5CQkxKjQ3X3qNFyswtJlwEAKCZGbt2sHcHrJH04D4pLMov4wEA4GSYbwegznxauSgFf+WiD7pFS1JqrGtq9AHWXQQAAAAANHJULgKoM2PNxRb1DRebQuWivVAqznE9r0e3aMlokHNU+wgXAQBoFspCwjW9z3KvjrE4iryvcgQAwA8IFwHUGZWLxzGqFkMjpHBbvU7VMt41FXrvES/XXAIAAMHJZFKZmaVQAADBiWnRAOqk0F6mnKJSSb6oXKwIF3ODOFx0r7eYWu8F1dMr3s99RwkXAQAAAACNG+EigDoxqhajraGKCbfU72QxFdOi8w9I5Y56jixAjCndsS3rfaqW8ZGSpL2EiwAAAACARo5wEUCdGFV19a5alKToFMlklpwOKf9g/c8XCO5wMb3ep2pZ0SGaykUAAAAAQGNHuAigToz1AFvF+2B9oBDzsSYoeUHa1CV3r+vRh+FidoFdRfYgreQEAAAAADQLhIsA6mRPRbhoBGH1FuzrLrrDxVb1PlVsRKiira5+W0yNBgAAAAA0ZoSLAOrECL1aVawPWG/B3jHah9OiTSYTU6MBAAAAAEGBcBFAnew5UihJaumLadHSsVAuN1inRfsuXJSk9DjXWpZULgIAAAAAGjPCRQB14tM1F6Xgrlx0lEp5ma7nPugWLR0LbY33GQAAAACAxohwEYDXSh3lyswtliS18tmai0FcuZiXKckphVikqGSfnLJlnGu6OdOiAQAAAACNGeEiAK9l5hSr3CmFhYYoKdrqm5MGc+Wie0p0mhTim2+rxrToPYSLAAAAAIBGjHARgNeO7xQdEmLyzUndlYvBGC4anaJ9MyVaOjbdnGnRAAAAAIDGLDTQAwAQfIxmLj5bb1E6Vrloz5NK8iRrjO/O7W8+buYiSekV080zc4vlKHfK7KsQFwAAND32Qu/2t0RKJn62AAD4BuEiAK8ZHYxb+mq9RUmyRktWm1SSI+XslVI6++7c/uauXPRduJgSE67QEJPKyp06kFvsDhsBAAAqefo07/Z/cJ8UFuWfsQAAmh2mRQPw2h5fd4o22Fq5HnP3+Pa8/uYOF1v57JTmEJPSKtZd3Mu6iwAAAACARorKRQBeM9YBbOmPcPHgJikn2MJF30+LlqRWcZHafbhIuw8XqlfbBJ+eGwAABLeykHBN77Nc4y+oZdWivdD7CkcAAGqBcBGA1/YcNdZcjPTtiY3KxaANF33X0EWS2iRGavW2bO3M9nIdJQAA0PSZTCozRzC9GQAQcEyLBuCVMke59h8tluTjNRel4AwXHWVSXqbruY8rF09JdIW3uw4TLgIAAAAAGicqFwF4Zd/RYpWVOxUWGqIWseG+Pbmttevx6G7fntef8g9ITocUEipFp/j01G0SXJUIO7MLfHpeAADQdExdvKVW+4U6ijTez2MBADRPVC4C8MqOiqCrTUKkQkJMvj25u3IxiMJFY0p0TJoUYvbpqdtQuQgAAAAA/397dx4fZXnvffw7mWQSEpJhyQ4hgICAICrIphbrAmIRtx7XIp5jbTlWFNG2ovWR+uoR2uNCi0WqotWn9sFzTtGjBYVYFrUQ1iA7ooSEJSEkhiSQkPV6/hgyErLNTDJzzySf9+s1rwkz131fv/kxSe785loQ5CguAvBKztlCV33hq125d4s+JtXVtv/5/aF+p+jYlHY/df206MJTVTpVWdPu5wcAAAAAoK0oLgLwSk7h2ZGLPf2weHhsimSzS3XV0qmC9j+/P9SPsuyW1u6njouKUPfoCElSLpu6AAAAAACCEMVFAF45VOTHkYv28O82RQmVTV1O5rrune1fXJSkPmeLuLnfsu4iAAAAACD4UFwE4JX6IpdfRi5KobfuYv3mM936+OX06T1cRdwcRi4CAAAAAIIQxUUAHqurM+4iV19/jFyUzikuhsjIxRI/FxfP5jmHTV0AAAAAAEGI4iIAjx0vO6PKmjrZw2xK7dbFP52EWnGxflq0n4qLaWdHLrLmIgAAAAAgGFFcBOCx+lGLvbt3UYTdTz8+Qqm4WHFSqix1fV0fdztzT4tmzUUAAAAAQBAKtzoAAKEjp8jP6y1K322MEgprLtbHGN1TcvgnJ/W5PnbyjKpq6uQI5zMhAADQRlU+zIiIiJZstvaPBQAQ8iguAvCYe6foHn5ab1EKrZGLfp4SLUlJcZGKdthVXlWr3G/LNSCxq9/6AgAAncQLA7w/5qljfvswFQAQ2hgCA8BjB0+ckiT1jffnyMWzxcWKb6WqIJ8KXL9TdP1oSz+w2Wy6IMFVUPy64JTf+gEAAAAAwBcUFwF47JsTrmKfX0fPRTmlyDjX18E+ejEAIxcl6YIEVzH3mxMUFwGgNXPnzpXNZmtwS05Odj9vjNHcuXOVmpqqLl266Oqrr9bu3bsbnKOyslIzZ85UfHy8YmJiNHXqVB05EuS/k4BW1IRFaeHYz1wjED29PfG11WEDAEIAxUUAHqmurdOhwgAUF6XvRi/WF++CVUlgiov1+aa4CACeueiii5SXl+e+7dy50/3c7373O7300kt65ZVXtHnzZiUnJ+v6669XWVmZu82sWbP0/vvva+nSpfriiy906tQpTZkyRbW1tVa8HKB92GyqsXdxTW32+ObHpXAAAB0GxUUAHskpKldNnVG0w66UuCj/dta9r+u++JB/+2mrAEyLluSeFl0/chQA0LLw8HAlJye7bwkJCZJcoxYXLFigp59+WrfddpuGDRumt99+W+Xl5frrX/8qSSopKdGSJUv04osv6rrrrtOll16qv/zlL9q5c6c+/fRTK18WAABAUGJDFwAeqV/vr39CjMLC/LxTYMgUFwM0Lbp+5GLBKRljZGOnRgBo0YEDB5SamqrIyEiNGTNGzz//vPr376/s7Gzl5+dr4sSJ7raRkZGaMGGC1q9fr5/+9KfaunWrqqurG7RJTU3VsGHDtH79ek2aNKnJPisrK1VZWen+d2lpqf9eINAGL2d85XHb8NoKzfRjLACAjoGRiwA8Uj8ld0BCAHYrri8unszxf1++qjrt2nRGkrr5d+Ries9ohdmkU5U1KiirbP0AAOjExowZo3feeUcrV67U66+/rvz8fI0fP15FRUXKz8+XJCUlJTU4Jikpyf1cfn6+HA6Hunfv3mybpsybN09Op9N9S0vz7+8GAACAYEFxEYBHvjk7ctHv6y1KUrd0130wj1ysnxId6XRtQuNHkeF2pfc8u6kLO0YDQIsmT56s22+/XcOHD9d1112n5cuXS5Lefvttd5vzR4B7Miq8tTZz5sxRSUmJ+3b48OE2vAoAAIDQQXERgEe+PhHA4qJ7WnSOZIz/+/OFe0p0YEamsGM0APgmJiZGw4cP14EDB9y7Rp8/ArGgoMA9mjE5OVlVVVUqLi5utk1TIiMjFRcX1+AGAADQGVBcBNAqY4x7xNwFgZgWXb+GYWWpVFHcclurFGe77usLoX5Wn/evGbkIAF6prKzU3r17lZKSon79+ik5OVkZGRnu56uqqrRu3TqNHz9ekjRy5EhFREQ0aJOXl6ddu3a52wAAAOA7bOgCoFV5JWd0uqpW9jCbe3quXzmipa7J0ql819To6B7+79Nb354tLvboF5Du6jd1+eo4xUUAaMkTTzyhm266SX369FFBQYF+85vfqLS0VNOnT5fNZtOsWbP0/PPPa+DAgRo4cKCef/55RUdH65577pEkOZ1OPfDAA3r88cfVs2dP9ejRQ0888YR7mjUAAAAaorgIoFX78l07Xl6QECNHeIAGPHdP/6642OuywPTpDffIxcAUF4cku6bX7csvZcdoAGjBkSNHdPfdd6uwsFAJCQkaO3asMjMzlZ7uWs/3F7/4hSoqKvTQQw+puLhYY8aM0apVqxQbG+s+x8svv6zw8HDdcccdqqio0LXXXqs///nPstvtVr0sAACAoEVxEUCr9uaVSZKGpARw/ajufaXDG4N3U5cAj1wcmNRV9jCbisurdby0UsnOqID0CwChZunSpS0+b7PZNHfuXM2dO7fZNlFRUVq4cKEWLlzYztEBAAB0PBQXAbRqT55r5OLg5AAXFyXpZE7g+vRUXd13Rc8AjVyMirCrf3yMDhSc0t68UoqLAAAgsKrKvT8mIlpitgUAdHgUFwG0at/Z4uKQlNhWWrYj947RhwLXp6fK8qTaSiksXHIGZrdoyTVy9EDBKe3JK9X3BycGrF8AAAC9MMD7Y546JjkCsF43AMBS7BYNoEVnqmuVXXhakjQ00NOipeAsLtavt+hMk+yB+4xm8Nni7r78soD1CQAAAABASxi5CKBF+/PLVGeknjEOJcRGBq7jbq6F93XysFRbE9AiXqsCvN5ivfo1L/eeHUkKAADgTzVhUVo49jOvjomordCMzZP8FBEAIBgFZOTiokWL1K9fP0VFRWnkyJH6/PPPW2y/bt06jRw5UlFRUerfv78WL14ciDABNGGve0p0XGB3KI5NkewOydRKpUcD168nArxTdL36kaMHT5zSmeragPYNAAA6IZtNNfYuXt2q7V2sjhoAEGB+Ly6+9957mjVrlp5++mllZWXpqquu0uTJk5Wbm9tk++zsbN1444266qqrlJWVpaeeekqPPPKI/va3v/k7VABN2GvFeouSFBb23ejFbw8Gtu/WWDRyMTE2Uj1iHKoz0lfHmRoNAAAAALCe3+cZvvTSS3rggQf04x//WJK0YMECrVy5Uq+++qrmzZvXqP3ixYvVp08fLViwQJI0ZMgQbdmyRS+88IJuv/12j/utqqpSVVVVu7wGoDPbefhbhatWQ5KiA/891X2gVJQtFRyQ0q4IbN8tKcqRFC7F9pECnJNhydFa/02Fsg4VanBidED7BhA4XMMAAAAgVPi1uFhVVaWtW7fqySefbPD4xIkTtX79+iaP2bBhgyZOnNjgsUmTJmnJkiWqrq5WREREg+cqKytVWVnp/ndpqWuU1YsvvqioqKj2eBlApzZC0ogu0s7lWdq5PNC9D5Zsg6VVedKqxh9GWGeCZJsgLdsuaXtAe75A0gVdpEP/yNK8fwS0awABdObMGatDAIC2qyr3/piIaCmQS/EAANrMr8XFwsJC1dbWKikpqcHjSUlJys/Pb/KY/Pz8JtvX1NSosLBQKSkpDZ6bN2+efv3rX7dv4AAAAACAtnlhgPfHPHVMcsS0fywAAL8JyPar528CYYxpcWOIpto39bgkzZkzR7Nnz3b/u7S0VGlpaXr88ccVFxfXlrCBTu+vG3P0m+V7ddXAeP1p2qjAB5CzQXr3NqlbX+mhDYHvvylHs6S3b5RikqRHtwe8+6LTlbrqt2tks0mZc65VbFRE6wcBCDmlpaWaP3++1WEAAAAArfJrcTE+Pl52u73RKMWCgoJGoxPrJScnN9k+PDxcPXv2bNQ+MjJSkZGRjR53OBxyOBxtiB7AjmOnVSO7Lu4Tb833U/KFkmqkkoOu7afCg+B7ujRbUo2U0F+yICcpDoeSu3fVkeIK7T1eoSsH8sk+0BFxDQMgVNWERWnh2M+8OiaitkIzNk/yU0QAAH/z627RDodDI0eOVEZGRoPHMzIyNH78+CaPGTduXKP2q1at0qhRoxqttwjAv7YfOSlJuiStmzUBdE2SHF0lUycVH7ImhvMVfuW6jx9oWQj1/x9fnv3/AQAACBo2m2rsXby6Vdu7WB01AKAN/FpclKTZs2frjTfe0Jtvvqm9e/fqscceU25urmbMmCHJNa35vvvuc7efMWOGcnJyNHv2bO3du1dvvvmmlixZoieeeMLfoQI4x8nyKh08cVqSdHFvpzVB2GxSzwtcXxcdsCaG8xWejaOn9cXFrNxiy2IAAAAAAEAKwJqLd955p4qKivTcc88pLy9Pw4YN04oVK5Seni5JysvLU25urrt9v379tGLFCj322GP64x//qNTUVP3hD3/Q7bff7u9QAZxjY/a3kqQLEmLUs2vjpQcCpucAKe9Lqehr62I4V31x0cKRi5eld5ckbckpVl2dUVgYOyoCAAAAAKwRkA1dHnroIT300ENNPvfnP/+50WMTJkzQtm3b/BwVgJZsPOgqLo7t33it04DqeXaXwWAoLtbVSt9+4/rawuLi8F5ORTvsOllerX35ZRqayuZVAACgY1icsdOradIzrxkgRUS7ZrwAACwRkOIigNCzMbtIkjQmaIqL31gbhySdzJFqqyR7pORMsyyMCHuYLu/bQ+u+OqENB4soLgIAgA7D641dMiU9dUxysMkdAFjF72suAgg9JRXV2pNXKkka26+HtcEE08jFwrMx9BwghdktDaV+RGnmwSJL4wAAAAAAdG6MXATQyJZD38oYqX98jBLjoqwNpn5Dl1PHpTMlUpRFm8tI5+wUPcC6GM4a299V9N14sEi1dUZ21l0EAAAhqiYsSgvHfubVMRG1Fd6PcgQA+AUjFwE08vmBQklBMCVachUTuya7vi60eMfo+h2r4wdZG4dc6y7GOOwqPVOjPcdKrQ4HAADAdzabauxdvLp5sy4jAMC/KC4CaMAYo9X7CiRJ378wweJozkoc7Lov2GNtHPXFzZ7WbeZSL9wepnEXxEuS1u4vsDgaAAAAAEBnRXERQAMHC08r99tyOexhumJAvNXhuCQOdd0X7LM2jiCaFi1J1w5JlCT9Yx/FRQAAAACANSguAmhgzdlC1Zj+PRQTGSTLsiYEwcjFUyek0ycaxmOxawa7iotfHjmpE2WVFkcDAAAAAOiMKC4CaOAfe13FxasvTLQ4knPUj1w8YeHIxfrCZve+kiPGujjOkRQXpeG9nDKGqdEAAAAAAGtQXATgdqKsUhuziyRJ1w9JsjiacyRc6Lovy5Mqiq2JoWCv6z7xImv6b0b96MWVu49bHAkAAAAAoDMKkjmPAILBx7vyVGekEWnd1KdntNXhfCcqTnKmSSWHXesupo8LfAwFu133SUMD33cLfnBxin7/jwNa91WBTpZXqVu0w+qQAAAAAmpxxk6Pd4+eec0AKSJastn8HBUAdB4UFwG4/f3LPEnSTRenWBxJExIGu4qLJ/ZaU1w8fnZadOKQwPfdgkFJsRqcHKt9+WVasTNf94zpY3VIAAAAATVj8yTPG2dKeupY0CxzAwAdAdOiAUiSjhSXa9OhbyVJNw4PwuJifVGvfnpyINXVfbfeY5BNi5akWy7tJUn63+1HLY4EAAAAANDZMHIRgCRp6abDkqTxF/RUajfPppUElJXFxZJcqeqUZHdIPS8IfP+tmDoiVb/9ZJ82Zn+rQ4Wn1TeeT+IBAEDHVhMWpYVjP/O4fURthXcjHAEAHmPkIgBV19Zp6WZXcfFHY9MtjqYZ7uLiHsmYwPZdX9CMHyTZIwLbtwdSu3XRhEEJkqT/m5ljcTQAAAABYLOpxt7F45unazICALzHyEUAWrk7X4WnKpUQG6nrhwbRLtHnShgi2exSeZFUekxy9gpc38fPbuaSGFybuZxr+vi+Wrv/hP5ry2HNvn6QYiL58Q4AANCkqnKvmi9c/bVqwqK82gTmsesHeRsVAIQs/voEOjljjF5d+40k6e7RfRRhD9IBzRFRrtGLx3dJeV8GuLi4y3UfZDtFn2vCwAT17RmtQ0Xl+p+tRzR9fF+rQwIAAAhOLwzwqvlMSYsvX+nd6Meq0+xKDaDToLgIdHJr95/Q7mOlinbY9a/BXpBKvthV6MvfIQ2+MXD9Htvuuk+5JHB9eikszKYHruynZ/53t/645mvdeXmaoiLsVocFAADQIXi9XiO7UgPoRCguAp1YXZ3Rixn7JUnTxqare4zD4ohakTJC+vKvrpGLgVJxUirO/q7/IHbH5Wl6de03OlZyRn/JzNGPr+pvdUgAAABBwdsNYCQ2gQEAT1FcBDqx/956WLuOlio2KlwPfi8EClH1xb1AFhfr++rWR4ruEbh+fRAZbtfMawdqzrKdWrj6a91yaS/Fd420OiwAAADrnd0AxhsUJAHAM0G6uBoAfys6VanffeIatfjotQNDowiVPEySTSo9Kp06EZg+87a77oN4SvS5/mVkbw1NiVNJRbWeX77X6nAAAABCl5c7UrMrNYDOiuIi0AkZY/Tksp0qOl2lQUlddd+4vlaH5JnIWKnnBa6v8wM0erF+5GLqJYHpr43C7WF6/rbhstmkZVlH9cmufKtDAgAAAAB0YBQXgU7ojc+zlbHnuBz2MC2481I5wkPoR0Ggp0aHwGYu57skrZsePLve4s//+0sdKjxtcUQAAAAAgI4qhCoKANrDip15ev5j13TZOTcO1tDUOIsj8lJ9cfFYlv/7OlMiffvN2X4v8X9/7ejnky7UyPTuKqus0fS3Nqmg9IzVIQEAAAAAOiA2dAE6kfezjuiJ/94hY1y7Q98/vq/VIXmv9+Wu+8ObJGMkm81/fdWPWnSmSTE9/dePH0TYw7To3sv0w8XrlVNUrrtfz9Rb949Wn57RVocGAADQKSxc/bVXm8g8dv0gP0YDAP7DyEWgE6iqqdNzH+3RY+99qdo6o9su66Vnbxoqmz8Lc/6SeqkUFi6dOi6dzPVvX4c3uu7TRvu3Hz9JiovSX388VinOKH1z4rRuWfRPrdlXYHVYAAAAAIAOhOIi0IEZY7Rqd74mLfhMb/4zW5L00+/11ws/HKFwe4h++0d0kZIvdn19ZLN/+3IXF8f4tx8/SusRrfcfukLDezn17ekq/eufN2vm/8tSNuswAgAA+FVEbYXCvbip6rRrZg4AhBimRQMdUG5RuVbtyddfN+Xq4AlXESm+a6Tm3TZc1w9Nsji6dpA2Wjq2zVX8G/5D//RRVycdPlu8DOHioiQlO6P0Xz8dpxdX7deSf2broy+PafmOY7puSJJuu6yXvjcoQdEOfh0AAAC0pxmbJ3l3QKakp45Jjhi/xAMA/sJfk0CIMsbo29NVyis5o7ySMzpUeFq7jpVo55ESHTxnVFrXyHDdNy5dD31/gLpGdpBv+bTR0sbFrnUX/aVwv1RZIkVES0nD/NdPgHRx2PWrKUN18yW99PKnX2n1vgKt2nNcq/YcV4TdphG9u2l4b6cGJHZV//iuSoqLVHxspGIjw0Nz+jwAAAAAICA6SKWhsZ//95dyRHdt8JhpZoh5iwPPm3nStHBUcyPZWxrh3tz5Wj7G+36aO8q3flrIQbPHtG8/zZ6rvXPdnu+D5rtp8f1WUV2r8spana6qcd/XNdPeHmbT5X276wfDU3TrZb07TlGxXu+zayDm73RNH/HHp7u5ma77XiMle8fJ3/DeTr15/+Xan1+mZduO6O878nT0ZIW25BRrS05xo/aR4WGKjQpXVIRd0Q67ukTYFRVhlz3MpjCbTWFhNtltcn8dZnO9/2yyST7UJH0pY/pS/KRcimBXVX7K6hAAAD6oCYvSwrGfeXVMRG2F96McASCIdJy/mM/z8a58hUWyKyo6NpvNNd05xRmlXt266KLUOF2U6tRlfbrLGR1hdXj+4+wtxaZKZceko1ulft9r/z7qR0X2Gdv+5w4CFybHas6NQ/Tk5ME6UlyhzINF2p9fpq9PnNKhwtM6UVap01W1qqypU+WpKqvDBTqduspyq0MAAPjCZvNqh+hGqnz4+R8R7frDAAAs0mGLi7+84UJ1iYlt9HhzP3Ob+1Hc0ogYb8/V3AEt/Rpovo9mzuVtTD704eXDZ/vw7rW39LuxvXLSkvaKt9kctnhM06IcdsU4whXtsCsmMlwxDru6RTvkCA/RjVnawmaT0sdLu/5Hyv6s/YuLxkiHvnB9ndYxi4v1bDab0npEK61H4w9jyqtqVHSqyjVatqpWZ6pqVVHtutXWGRkj1dYZ1RojY4xq6+T+uq65YbUt8GX5cl/WPGeZdISCitNlmrnA6igAAAH3wgDvj2GdRgAW67DFxWnj+iouLs7qMAD4S/8JruLiwXXSNb9q33MXZ0sluVJYhJQ+rn3PHUKiHeGK7tFhf00AQa20tFQzrQ4CAAAA8AB/NQIITf0muO6PbpUqy6TIxiOVfXZwres+bTSfAgMAAMCv2rxOo7dTqZlGDaCdUVwEEJq6p0vd0qWTOVLOemlQOy6CfXCd676+gAkAAAD4S1vXafR2KvUTX0sOL/cnoCAJoAUUFwGErv4TpG3vuIqB7VVcrKtzreNYf34AAACgI2FdRwDtjOIigNDVr764uKb9zpm/Q6r4VnJ0lXqNbL/zAgAAAO2kfir1zGs8LBRWlftWVAQAD1BcBBC6LrhGstmlgj1S8SGpe9+2n/OrT1z3/a+W7BFtPx8AAADQ3uqnUns6mjAiWnrqmBau/trjLhqs6wgALaC4CCB0RfeQ+oyTcr6Q9n8sjf33tp9z/wrX/YWT234uAAAAIBjYbJIjxve1Hb3dNEbyfJ1GY6RqH87vbT8A/IbiIoDQduHks8XFFW0vLpYclfK+lGSTBt3QLuEBAAAAIc+XKdWebhzT1inbrAcJWI7iIoDQNvhGadXT0qF/ShXFUpfuvp/rq49d92ljpJj49okPAAAA6IwCtcajP0dVAvAIxUUAoa1HfylhiHRir2tq9CX3+H6u3R+47pkSDQAAgE6uftMYb7R1ncbFl69UtQdTtxv0489Rle4OKUYCLaG4CCD0DbtdWvMb6culvhcXTx6WDn3+3fkAAACAIPdyxlf+O3n9pjFe8HoX63MsXP21asKiAlPE87YgydRroEUUFwGEvovvcBUXsz+TSo5Izt7en2PX/7ju06+UuqW1b3wAAABAZ3C2IPnyuqPeH+tFITPQoyoXrv7aq0LrY9cP8qkfIFRRXAQQ+rqnS+lXSDn/lHb8l3TVbO+ON8Y16lFyFSoBAAAABK82jKr0VFuneAOdCcVFAB3DiLtcxcWtf5aueFQKs3t+7KEvpBP7XGupDL3ZbyECAAAAsIgPBcl6EbUV3h1QdZp1GtGpUFwE0DEMu11a9Yx0Mkfav0IacpPnx25c7LofcZfUpZtfwgMAAAAQmrwewZgp1mlEp0JxEUDH4IiRRv2r9MXL0oZFnhcXvz3oKkZK0uif+C8+AAAAAJ1HVblXzb3a0MYYhded8WnjHJ94OQrTl42GWKcytFFcBNBxjP6JtP4VKXe9dHCt1P/q1o9Z+1vJ1EkDrpcSh/g7QgAAAAAhoM2bxni5I/VMSYsvX6lqD6Zuu/vJ9KoL3zEKE63wa3GxuLhYjzzyiD788ENJ0tSpU7Vw4UJ169atyfbV1dX61a9+pRUrVujgwYNyOp267rrrNH/+fKWmpvozVAAdQVyqNOrfpE1/kjL+j/TgWiksrPn2x3dLO95zfX3N0wEJEQAQOhYtWqT//M//VF5eni666CItWLBAV111ldVhAQACoQ1rNPoqaDeQ8XIUZri3a1RKrnUqfcHalkHBr8XFe+65R0eOHNEnn3wiSfrJT36iadOm6aOPPmqyfXl5ubZt26ZnnnlGI0aMUHFxsWbNmqWpU6dqy5Yt/gwVQEcx4RfS9r9KeV9KW5ZIox9sul1drfThI5KMNGSqlHppQMMEAAS39957T7NmzdKiRYt0xRVX6E9/+pMmT56sPXv2qE+fPlaHBwAIQm0e7eiLJ76WHNEeN1+4+muP2rV1FKbXfB2F6eXrD2ohXCi1GWOMP068d+9eDR06VJmZmRozZowkKTMzU+PGjdO+fft04YUXenSezZs3a/To0crJyfHoQq60tFROp1MlJSWKi4tr02sAEKI2/kn6+BdSeBfpwdVS0tDGbdbMk9bNlyLjpJ9tdI16BIAgwfWM9caMGaPLLrtMr776qvuxIUOG6JZbbtG8efNaPd7v/4dVp6XnXb+7Fo79LOCjawAA7eTs+om+mHnNAL+thxheW6GZmd/zKS74xtNp8fV8+f/3hjfXMn4bubhhwwY5nU53YVGSxo4dK6fTqfXr13tcXCwpKZHNZmt2KnVlZaUqKyvd/y4tLW1T3AA6gMsflPZ/LB1cI/3ldmn6R1L8OZ+2bXnTVViUpMm/o7AIAGigqqpKW7du1ZNPPtng8YkTJ2r9+vUWRQUA6JDaMP365XVH2zmY7/gyCjNQ2jzaM0iF8q7kfisu5ufnKzExsdHjiYmJys/P9+gcZ86c0ZNPPql77rmn2SrpvHnz9Otf/7pNsQLoYMLCpB++Kb01WTqxT3rtamnMT6SeA6R9y6V9f3e1G/ewdMndloYKAAg+hYWFqq2tVVJSUoPHk5KSmr2O5QNvAECHYsGak54KZOHT7ztyV5V7Pe08GHldXJw7d26rxbzNmzdLkmxNDM00xjT5+Pmqq6t11113qa6uTosWLWq23Zw5czR79mz3v0tLS5WWltbq+QF0cNE9pPs+lP7nX6Wcf0qfv/jdcza7NOGXrvUZAQBoxvnXrC1dxwb8A29HjDS3RJKPa1sBAIBWeTqN/FyPXT/I88YR0a7Rh74IghGL9bwuLj788MO66667WmzTt29f7dixQ8ePH2/03IkTJxp9Cny+6upq3XHHHcrOztbq1atbnNsdGRmpyMhIz4IH0LnEJrmmRO/5QNr7d6m8SEoYLI2cLiVdZHV0AIAgFR8fL7vd3miUYkFBQbPXsXzgDQBAx+NVodAXNltQFQl95XVxMT4+XvHx8a22GzdunEpKSrRp0yaNHj1akrRx40aVlJRo/PjxzR5XX1g8cOCA1qxZo549e3obIgB8J8wuDbvddQMAwAMOh0MjR45URkaGbr31VvfjGRkZuvnmm5s8hg+8AQBAZxXmrxMPGTJEN9xwgx588EFlZmYqMzNTDz74oKZMmdJgM5fBgwfr/ffflyTV1NTohz/8obZs2aJ3331XtbW1ys/PV35+vqqqqvwVKgAAANDA7Nmz9cYbb+jNN9/U3r179dhjjyk3N1czZsywOjQAAICg4rcNXSTp3Xff1SOPPKKJEydKkqZOnapXXnmlQZv9+/erpMS1XsyRI0f04YcfSpIuueSSBu3WrFmjq6++2p/hAgAAAJKkO++8U0VFRXruueeUl5enYcOGacWKFUpPT7c6NAAAgKBiM8YYq4NoT6WlpXI6nSopKWlxrUYAAIBgxfVM6OP/EAAAhDJvrmX8Ni0aAAAAAAAAQMdGcREAAAAAAACATyguAgAAAAAAAPAJxUUAAAAAAAAAPqG4CAAAAAAAAMAnFBcBAAAAAAAA+ITiIgAAAAAAAACfUFwEAAAAAAAA4BOKiwAAAAAAAAB8QnERAAAAAAAAgE8oLgIAAAAAAADwCcVFAAAAAAAAAD6huAgAAAAAAADAJxQXAQAAAAAAAPiE4iIAAAAAAAAAn4RbHUB7M8ZIkkpLSy2OBAAAwDf11zH11zUIPVyTAgCAUObN9WiHKy4WFRVJktLS0iyOBAAAoG2KiorkdDqtDgM+KCsrk8Q1KQAACG1lZWWtXo92uOJijx49JEm5ublcjAdQaWmp0tLSdPjwYcXFxVkdTqdB3q1B3q1B3q1B3q1RUlKiPn36uK9rEHpSU1N1+PBhxcbGymaz+aUPvj/9g7y2P3LqH+S1/ZHT9kdO/SMQeTXGqKysTKmpqa227XDFxbAw1zKSTqeTN64F4uLiyLsFyLs1yLs1yLs1yLs16q9rEHrCwsLUu3fvgPTF96d/kNf2R079g7y2P3La/sipf/g7r54O2uOKFQAAAAAAAIBPKC4CAAAAAAAA8EmHKy5GRkbq2WefVWRkpNWhdCrk3Rrk3Rrk3Rrk3Rrk3RrkHZ7gfeIf5LX9kVP/IK/tj5y2P3LqH8GWV5vxZE9pAAAAAAAAADhPhxu5CAAAAAAAACAwKC4CAAAAAAAA8AnFRQAAAAAAAAA+obgIAAAAAAAAwCdBWVycO3eubDZbg1tycrL7eWOM5s6dq9TUVHXp0kVXX321du/e3eAclZWVmjlzpuLj4xUTE6OpU6fqyJEjDdoUFxdr2rRpcjqdcjqdmjZtmk6ePBmIlxiUWsv7smXLNGnSJMXHx8tms2n79u2NzkHevddS3qurq/XLX/5Sw4cPV0xMjFJTU3Xffffp2LFjDc5B3r3X2vt97ty5Gjx4sGJiYtS9e3ddd9112rhxY4NzkHfvtZb3c/30pz+VzWbTggULGjxO3r3TWs7vv//+Rs+PHTu2wTnIufc8ea/v3btXU6dOldPpVGxsrMaOHavc3Fz38+QdrVm0aJH69eunqKgojRw5Up9//rnVIYW0zz77TDfddJNSU1Nls9n0wQcfWB1SyJs3b54uv/xyxcbGKjExUbfccov2799vdVgh7dVXX9XFF1+suLg4xcXFady4cfr444+tDqtDmTdvnmw2m2bNmmV1KCHNm+t+eO7o0aP60Y9+pJ49eyo6OlqXXHKJtm7danVYwVlclKSLLrpIeXl57tvOnTvdz/3ud7/TSy+9pFdeeUWbN29WcnKyrr/+epWVlbnbzJo1S++//76WLl2qL774QqdOndKUKVNUW1vrbnPPPfdo+/bt+uSTT/TJJ59o+/btmjZtWkBfZ7BpKe+nT5/WFVdcofnz5zd7PHn3TXN5Ly8v17Zt2/TMM89o27ZtWrZsmb766itNnTq1wfHk3Tctvd8HDRqkV155RTt37tQXX3yhvn37auLEiTpx4oS7DXn3TUt5r/fBBx9o48aNSk1NbfQcefdeazm/4YYbGjy/YsWKBs+Tc9+0lPdvvvlGV155pQYPHqy1a9fqyy+/1DPPPKOoqCh3G/KOlrz33nuaNWuWnn76aWVlZemqq67S5MmTGxSo4Z3Tp09rxIgReuWVV6wOpcNYt26dfvaznykzM1MZGRmqqanRxIkTdfr0aatDC1m9e/fW/PnztWXLFm3ZskXXXHONbr755kaDbeCbzZs367XXXtPFF19sdSgdgifX/fBccXGxrrjiCkVEROjjjz/Wnj179OKLL6pbt25WhyaZIPTss8+aESNGNPlcXV2dSU5ONvPnz3c/dubMGeN0Os3ixYuNMcacPHnSREREmKVLl7rbHD161ISFhZlPPvnEGGPMnj17jCSTmZnpbrNhwwYjyezbt88Pryr4tZT3c2VnZxtJJisrq8Hj5N03nua93qZNm4wkk5OTY4wh777yNu8lJSVGkvn000+NMeTdV57k/ciRI6ZXr15m165dJj093bz88svu58i791rL+fTp083NN9/c7PPk3Det5f3OO+80P/rRj5p9nryjNaNHjzYzZsxo8NjgwYPNk08+aVFEHYsk8/7771sdRodTUFBgJJl169ZZHUqH0r17d/PGG29YHUbIKysrMwMHDjQZGRlmwoQJ5tFHH7U6pJDm7d9baN0vf/lLc+WVV1odRpOCduTigQMHlJqaqn79+umuu+7SwYMHJUnZ2dnKz8/XxIkT3W0jIyM1YcIErV+/XpK0detWVVdXN2iTmpqqYcOGudts2LBBTqdTY8aMcbcZO3asnE6nu01n1FzePUHefedN3ktKSmSz2dyfTpB333ma96qqKr322mtyOp0aMWKEJPLeFi3lva6uTtOmTdPPf/5zXXTRRY2OJe++ae29vnbtWiUmJmrQoEF68MEHVVBQ4H6OnPuuubzX1dVp+fLlGjRokCZNmqTExESNGTOmwRRM8o6WVFVVaevWrQ3eH5I0ceJE/u8R1EpKSiRJPXr0sDiSjqG2tlZLly7V6dOnNW7cOKvDCXk/+9nP9IMf/EDXXXed1aF0GG2pL6CxDz/8UKNGjdK//Mu/KDExUZdeeqlef/11q8OSFKTToseMGaN33nlHK1eu1Ouvv678/HyNHz9eRUVFys/PlyQlJSU1OCYpKcn9XH5+vhwOh7p3795im8TExEZ9JyYmutt0Ni3l3RPk3Tfe5P3MmTN68skndc899yguLk4SefeVJ3n/+9//rq5duyoqKkovv/yyMjIyFB8fL4m8+6q1vP/2t79VeHi4HnnkkSaPJ+/eay3nkydP1rvvvqvVq1frxRdf1ObNm3XNNdeosrJSEjn3VUt5Lygo0KlTpzR//nzdcMMNWrVqlW699VbddtttWrdunSTyjpYVFhaqtra2xethINgYYzR79mxdeeWVGjZsmNXhhLSdO3eqa9euioyM1IwZM/T+++9r6NChVocV0pYuXapt27Zp3rx5VofSYbS1voDGDh48qFdffVUDBw7UypUrNWPGDD3yyCN65513rA5N4VYH0JTJkye7vx4+fLjGjRunCy64QG+//bZ7kXmbzdbgGGNMo8fOd36bptp7cp6OqqW8z5492+fzkveWeZr36upq3XXXXaqrq9OiRYtaPS95b5knef/+97+v7du3q7CwUK+//rruuOMObdy4sck/5uuR95a1lPcJEybo97//vbZt2+Z1fsh781p7r995553u54cNG6ZRo0YpPT1dy5cv12233dbsecl5y1rK+1133SVJuvnmm/XYY49Jki655BKtX79eixcv1oQJE5o9L3nHuXy5Hgas8vDDD2vHjh364osvrA4l5F144YXavn27Tp48qb/97W+aPn261q1bR4HRR4cPH9ajjz6qVatWNVj7GG3jr/pCZ1ZXV6dRo0bp+eeflyRdeuml2r17t1599VXdd999lsYWlCMXzxcTE6Phw4frwIED7t2Fzv9UtqCgwP3pbXJysqqqqlRcXNxim+PHjzfq68SJE40+Be6szs27J8h7+2gq79XV1brjjjuUnZ2tjIwM96hFiby3l6byHhMTowEDBmjs2LFasmSJwsPDtWTJEknkvb2cm/fPP/9cBQUF6tOnj8LDwxUeHq6cnBw9/vjj6tu3ryTy3h5a+9mekpKi9PR09/PkvH2cm/f4+HiFh4c3+iNwyJAh7s04yDtaEh8fL7vd3uL1MBBMZs6cqQ8//FBr1qxR7969rQ4n5DkcDg0YMECjRo3SvHnzNGLECP3+97+3OqyQtXXrVhUUFGjkyJHua9B169bpD3/4g8LDwxtspAbfeVtfQGMpKSktXj9aKSSKi5WVldq7d69SUlLUr18/JScnKyMjw/18VVWV1q1bp/Hjx0uSRo4cqYiIiAZt8vLytGvXLnebcePGqaSkRJs2bXK32bhxo0pKStxtOrtz8+4J8t4+zs97fWHxwIED+vTTT9WzZ88G7cl7+/Dk/W6McU8VJe/t49y8T5s2TTt27ND27dvdt9TUVP385z/XypUrJZH39tDae72oqEiHDx92P0/O28e5eXc4HLr88su1f//+Bm2++uorpaenSyLvaJnD4dDIkSMbvD8kKSMjg/97BBVjjB5++GEtW7ZMq1evVr9+/awOqUM69xoV3rv22mu1c+fOBtego0aN0r333qvt27fLbrdbHWKH4G19AY1dccUVLV4/Wiqw+8d45vHHHzdr1641Bw8eNJmZmWbKlCkmNjbWHDp0yBhjzPz5843T6TTLli0zO3fuNHfffbdJSUkxpaWl7nPMmDHD9O7d23z66adm27Zt5pprrjEjRowwNTU17jY33HCDufjii82GDRvMhg0bzPDhw82UKVMC/nqDRWt5LyoqMllZWWb58uVGklm6dKnJysoyeXl57nOQd++1lPfq6mozdepU07t3b7N9+3aTl5fnvlVWVrrPQd6911LeT506ZebMmWM2bNhgDh06ZLZu3WoeeOABExkZaXbt2uU+B3n3Xms/Z853/m7RxpB3b7WU87KyMvP444+b9evXm+zsbLNmzRozbtw406tXL36ntlFr7/Vly5aZiIgI89prr5kDBw6YhQsXGrvdbj7//HP3Ocg7WrJ06VITERFhlixZYvbs2WNmzZplYmJimv15itaVlZWZrKwsk5WVZSSZl156yWRlZZmcnByrQwtZ//7v/26cTqdZu3Ztg+vY8vJyq0MLWXPmzDGfffaZyc7ONjt27DBPPfWUCQsLM6tWrbI6tA6F3aLbztvrfrRu06ZNJjw83PzHf/yHOXDggHn33XdNdHS0+ctf/mJ1aCYoi4t33nmnSUlJMRERESY1NdXcdtttZvfu3e7n6+rqzLPPPmuSk5NNZGSk+d73vmd27tzZ4BwVFRXm4YcfNj169DBdunQxU6ZMMbm5uQ3aFBUVmXvvvdfExsaa2NhYc++995ri4uJAvMSg1Fre33rrLSOp0e3ZZ591tyHv3msp79nZ2U3mXJJZs2aN+xzk3Xst5b2iosLceuutJjU11TgcDpOSkmKmTp1qNm3a1OAc5N17rf2cOV9TxUXy7p2Wcl5eXm4mTpxoEhISTEREhOnTp4+ZPn16o3ySc+958l5fsmSJGTBggImKijIjRowwH3zwQYPnyTta88c//tGkp6cbh8NhLrvsMrNu3TqrQwppa9asafKaa/r06VaHFrKau4596623rA4tZP3bv/2b+/s+ISHBXHvttRQW/YDiYtt5e90Pz3z00Udm2LBhJjIy0gwePNi89tprVodkjDHGZowxgRsnCQAAAAAAAKCjCIk1FwEAAAAAAAAEH4qLAAAAAAAAAHxCcREAAAAAAACATyguAgAAAAAAAPAJxUUAAAAAAAAAPqG4CAAAAAAAAMAnFBcBAAAAAAAA+ITiIgAAAAAAAACfUFwEAAAAACCEXH311Zo1a5bVYQCAJIqLAAAAAAAAAHxkM8YYq4MAAAAAAACtu//++/X22283eCw7O1t9+/a1JiAAnR7FRQAAAAAAQkRJSYkmT56sYcOG6bnnnpMkJSQkyG63WxwZgM4q3OoAAAAAAACAZ5xOpxwOh6Kjo5WcnGx1OADAmosAAAAAAAAAfENxEQAAAAAAAIBPKC4CAAAAABBCHA6HamtrrQ4DACRRXAQAAAAAIKT07dtXGzdu1KFDh1RYWKi6ujqrQwLQiVFcBAAAAAAghDzxxBOy2+0aOnSoEhISlJuba3VIADoxmzHGWB0EAAAAAAAAgNDDyEUAAAAAAAAAPqG4CAAAAAAAAMAnFBcBAAAAAAAA+ITiIgAAAAAAAACfUFwEAAAAAAAA4BOKiwAAAAAAAAB8QnERAAAAAAAAgE8oLgIAAAAAAADwCcVFAAAAAAAAAD6huAgAAAAAAADAJxQXAQAAAAAAAPiE4iIAAAAAAAAAn/x/HwpYvkcrmKUAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRcAAAINCAYAAACkr0g2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7GklEQVR4nOzdeXiTZfr28TNN23RPN1rKIouyKYgMi4AKKMgyIuIy6qAgCgo/GFARHdEZX9xgRhxBUXDBERUX3FBRBkSRTUQRQREVUVmkUKCldG/Tpnn/SJ9A6ELTJk3Tfj/H0SPpk2e5n1RLe/a678vkcDgcAgAAAAAAAAAPBfl7AAAAAAAAAAACE+EiAAAAAAAAgBohXAQAAAAAAABQI4SLAAAAAAAAAGqEcBEAAAAAAABAjRAuAgAAAAAAAKgRwkUAAAAAAAAANUK4CAAAAAAAAKBGgv09AG8rLS3VwYMHFR0dLZPJ5O/hAAAAeMzhcCgnJ0fNmjVTUBB/Cw5E/EwKAAACmSc/jza4cPHgwYNq2bKlv4cBAABQa3/88YdatGjh72GgBviZFAAANATV+Xm0wYWL0dHRkpw3HxMT4+fRAAAAeC47O1stW7Z0/VyDwMPPpAAAIJB58vNogwsXjWknMTEx/CAHAAACGtNpAxc/kwIAgIagOj+PsogPAAAAAAAAgBohXAQAAAAAAABQI4SLAAAAAAAAAGqEcBEAAAAAAABAjRAuAgAAAAAAAKgRwkUAAAAAAAAANRLs7wEAAAAAAAB3xcXFstvt/h4GgAbCbDYrJCTEJ+cmXAQAAAAAoJ7Izs5Wenq6ioqK/D0UAA2MxWJRYmKiYmJivHpewkUAAAAAAOqB7OxspaamKioqSomJiQoJCZHJZPL3sAAEOIfDoeLiYmVlZSk1NVWSvBowEi4CAAAAAFAPpKenKyoqSi1atCBUBOBV4eHhio6O1oEDB5Senu7VcJGGLgAAAAAA+FlxcbGKiopktVoJFgH4hMlkktVqVVFRkYqLi712XsJFAAAAAAD8zGje4quGCwAgnfge482GUYSLAAAAAADUE1QtAvAlX3yPIVwEAAAAAAAAUCM+DRfXr1+vyy+/XM2aNZPJZNL7779f5f7vvfeeLr30UjVp0kQxMTHq06ePVq1a5cshAgAAAAAAAKghn4aLeXl56tq1q55++ulq7b9+/XpdeumlWrFihbZu3aqLL75Yl19+ubZt2+bLYQIAAAAAAACoAZ+Gi8OGDdMjjzyiq666qlr7z5s3T/fcc4969uypdu3aadasWWrXrp2WL1/uy2ECaOCK7aX6dn+mPv/5iA5k5vt7OAAAAADqsbVr18pkMmns2LG1PtfixYtlMpk0c+bMWp/Ll1q3bu3RWnxjx46VyWTS2rVrq31MoLwX8FywvwdQldLSUuXk5Cg+Pt7fQwEQoD7YnqrZK35WWnaha9vAjkl6aGRnNY8N9+PIAACoBYdDKq7FH8xCIiSaRgABZ+7qX/w9hGq589L2/h5CQFu7dq0uvvhi3XTTTVq8eLG/h1OvDBgwQOvWrdOePXvUunVrfw8HZep1uPif//xHeXl5uvbaayvdp6ioSEVFRa7Ps7Oz62JoAALA46t26enPf5UkxUWEKDkmTLsO5+izn4/ou6e/0JLxvdSxaYyfRwkAQA0U50uzmtX8+PsOSqGR3hsPADQgvXr10k8//SSr1ervoTQoV155pXr37q3ExER/DwVeVm/DxTfeeEMzZ87UBx98oKSkpEr3mz17th588ME6HBmAQLD4iz2uYHHKJWfpb5ecJUuwWb8eydXfXv9WP6flaOx/t+jDKRcoKTrMz6MFAAAAUF9ERESoY8eO/h5Gg2O1WglsGyifrrlYU0uXLtW4ceP01ltvadCgQVXuO2PGDGVlZbk+/vjjjzoaJYD66qdD2Zq14mdJ0j1DO+iuwR1kCTZLks5KitLS2/rozCaRSssu1F1vfSeHw+HP4QIAUCvP9lyl+b3Xn/bj2Z6r/D1UAKi2wsJChYWFqU2bNuVeGz58uEwmky6++OJyr3Xu3FnBwcHlZjXu3btXEyZMUOvWrWWxWNSkSRNdc801+v7778udo6o1F3NzczV9+nS1bNlS4eHhOvvss/XUU0/J4XDIZDJVOVV3//79GjVqlJo0aaLw8HD16NGjXI+JsWPHuu7r5Zdflslkcn2culahJ/ckSSUlJZo9e7batWunsLAwtW3bVv/85z9ls9kqHXN1rF+/Xpdccomio6MVExOjyy67TD/++GO5/Spbc7G4uFjPPfecevXqpcTEREVERKh169YaPny43nzzTde9mkwmrVu3TpLUpk0bt/fmZPn5+Xr44YfVuXNnhYeHy2q1ql+/fq5zVWTbtm0aNmyYKwAdMmSItmzZUumYBwwYIJPJpL179+r1119X7969FR0drdjYWNc+H3/8sW655RZ16tRJMTExioyMVNeuXTVr1iy3GbgVvT+//fabrr32WiUmJiomJkbDhg1zvaclJSWaNWuW2rdvr7CwMJ111llasGBBpfdWF+pd5eIbb7yhW265RW+88YYuu+yy0+5vsVhksVjqYGQAAkFpqUN3v/OdbPZSDeqUrP/rf2a5fawRIXp+TA/9+ckN2rA7Xcu2peqqP7Xww2gBAKi9YnO4SsysIwygYQkLC9P555+v9evXa+/eva7Qzm63a+PGjZKkL7/80hVCSlJ6erp+/PFH/elPf1JMzInljzZu3KjLLrtM2dnZOuecczRixAilpqbqvffe04oVK/Txxx9XGFSeqrCwUAMHDtTXX3+tJk2aaPjw4crNzdXdd9+t3377rcpj9+7dq549eyosLEwXXnihDh8+rC+//FIjR47U//73Pw0ePFiSdOGFFyotLU2rVq3SmWeeqQsvvNB1jvPOO69W9/TXv/5V77zzjqKiojR06FA5HA498cQT2rZtW40LLpYvX64nn3xSnTt31pAhQ7Rjxw6tWLFCX331lX744Qc1bdr0tOcYPXq0li5dqsTERPXt21cRERFKTU3Vhg0blJubq+uvv15RUVG66aabtHLlSh0+fFhXX321oqKiyp0rJydHF198sbZu3er6GuXl5WnNmjXasGGDNm/erHnz5rkds2nTJg0aNEgFBQXq1q2bOnTooB9//FEXXnihbr755irHPnv2bC1atEgXXHCBhg8f7lbwNm7cOOXl5emcc85Rly5dlJ2dra+//lr333+/PvvsM33yyScym83lzrlnzx716tVLsbGx6t+/v3bv3q2VK1dq69at+v777zVx4kStWbNGffr0Udu2bfX5559r8uTJCgkJ0a233nra99sXfBou5ubm6tdff3V9vmfPHm3fvl3x8fE644wzNGPGDKWmpuqVV16R5AwWx4wZoyeffFK9e/dWWlqaJLmSZgA4nQ++S9UPqdmKtgTrX1d3qbTj2ZlNojR1YDvNWbVL//rfz/pzlxSFhZT/xg4AAADAPwYMGKD169dr7dq1rirCbdu2KSsrS+ecc4527typzZs3a8CAAZKcFYcOh8P1ueTsy/CXv/xFBQUFevvtt3XNNde4Xvv000912WWXafTo0fr9998VGhpa5Xgef/xxff311+rTp49WrlzpCjC///57t2tW5OWXX9aUKVP0xBNPKDjYGcU8+eSTuuOOO/TII4+4wsXx48frrLPO0qpVq3ThhRdW2NClJvf0xhtv6J133lHbtm21fv16NW/eXJIzp+nXr58OHDhQ5fgrM2/ePC1ZskR//etfJTnD3+uuu07vvvuuFixYoIceeqjK4/fu3aulS5eqZ8+eWr9+vSsolqSCggJt375dkpSYmKjFixdrwIABOnz4sB5//PEKq0Tvu+8+bd26VYMGDdKyZctcAeTPP/+s/v3768knn9TgwYP15z//WZKzkfDNN9+sgoICPfbYY7r77rtd53r44Yf1wAMPVDn+V155RWvWrFH//v3Lvfbss8/q0ksvVWTkiTWOc3JyNGrUKH300Ud67bXXNGbMmArPOW3aNM2ZM0dBQUFyOBy65ZZbtHjxYg0cOFBBQUH68ccf1aKFs0Dms88+06BBg/Too4/6LVz06bTob775Rt26dVO3bt0kSdOmTVO3bt1cX5xDhw5p//79rv2fe+45lZSUaPLkyUpJSXF93H777b4cJoAGwlZSqsdXOTvo/d/FZyoxquqq5vEXtVHz2HAdySnSks376mKIAAAAAKrJCGzWrl3r2mZMizVyhYpeOzno++9//6u0tDRNnz7dLYSTpEGDBmnSpElKTU3VRx99dNrxPPfcc5KkJ554wq0y8txzz9WUKVOqPLZt27b6z3/+4woWJWny5MmKi4vT5s2bPZqaXJN7WrhwoSRnYGYEi5JzevE///nPal/7VKNGjXIFi5JkNpt13333SXJOlz6dI0eOSJL69u3rFixKzkKzPn36VHsseXl5evHFFxUUFKQFCxa4VTZ27NhR//jHPyRJTz31lGv7mjVr9Msvv6hjx46aPn262/nuu+++Cqfln2zcuHEVBouSNHLkSLdgUZKio6M1d+5cSdIHH3xQ4XFnnnmm/v3vfysoyBnZmUwmTZs2TZL0448/6qmnnnIFi5I0cOBAdevWTfv27dPevXurHK+v+DRcHDBggBwOR7kPI3lfvHix2zcC468Mle0PAFX5eMdBpR4vUJNoi265oOp/BCTJEmzW1IFnSZKeXfebikrsvh4iAAAAgGrq27evLBZLudwgNjZW11xzjVq0aFHutaCgILepxKtXr5bkDHoqYuy7ZcuWKseyf/9+HThwQC1atFDv3r3Lvf6Xv/ylyuMHDBigkJAQt23BwcFq27atiouLlZGRUeXxJ/P0noqLi/XVV18pKCioXBgpyS0c9JRRcXmy9u3bS3IWlJ1Ox44dFRkZqZdeekkvvPCCR+/DqbZu3aqCggL16tVL7dq1K/f66NGjJUlffPGFaxr4pk2bJEnXXHNNuVlvZrNZV111VZXXHDFiRJWv7969W08++aSmTJmiW265RWPHjtXDDz/seq0iAwYMcAuhJWc4LUmhoaEVhplnnulcDqw677kv1Ls1FwGgJhwOhxZt2CNJuqlPq2pPcb7qTy0079PdOpRVqI+/P8TaiwAAAEA9ERYWpl69emnDhg3au3evzjjjDG3cuFH9+vVTUFCQ+vfvr3feeUeFhYXKzc3Vzp071a1bN7emGkYl1/nnn1/ltdLT06t8/eDBg5Kkli1bVvj6GWecUeXxJ1eancyorquowUdlPL2njIwM2Ww2paSkVDj122hEcvz48WqPwVDRfXlyTzExMXrhhRd022236bbbbtOECRPUoUMHXXzxxRozZkyFQW5ljK9RZU11YmNjZbValZWVpezsbFmt1lp/XSt73eFwaPr06Zo7d26l61nm5ORUuP3kylKDUQHZtGlTV0VjRa978t+RNxEuAmgQvt5zTDsPZissJEijzm9V7eNCzEG6sXcrzVm1Sy9v2ku4CAAAANQj/fv314YNG7R27Vqde+65On78uGva84ABA/Taa69p8+bNOnbsWLn1FiXnGoCSs7IwIiKi0uucLqgzVLamu6+Oq4in92SEW94cg8Eb5/zrX/+qQYMG6YMPPtAnn3yidevWaeHChVq4cKHuvvtuPfbYY14f06n7VHbM6RrdnDqV27B06VI98cQTatGihebNm6c+ffqoSZMmCgkJkc1mk8ViqfTcVY3fF19DbyBcBNAgvL3VuQDxFV2bKz6y6oWYT3V9z5Z68rPd+u5Aln5IzVLn5jSQAgAAAOqDAQMG6JFHHtHatWt17Ngx17aTH09+7dQpoy1atNCuXbv0j3/8Q+eee26Nx5GSkiJJbn0jTlbZdl/w9J4SExMVGhqqtLQ02Wy2ctWLOTk5Napa9KYmTZpo/PjxGj9+vBwOh1atWqXrrrtOc+bM0dixY3X22Wef9hzNmjWT5GxSU5GsrCxlZWUpMjJS0dHRkk7/dT25+7Mnli1bJsm51uXw4cPdXvv9999rdM76zKdrLgJAXSiw2fW/Hc61Ja7p4XnlYUKURZeenSxJen9bqlfHBgAAAKDm+vbtq9DQUK1du1Zr165VXFycunbtKkk666yzXOsuGust9uvXz+34QYMGSZLef//9Wo2jVatWatasmQ4cOKCvvvqq3OvvvPNOrc5/MiP8KykpqfB1T+8pJCREvXr1Umlpqd59991yr7/55ps1G6iPmEwmDR06VJdddpkk6YcffnC9VtV70717d4WHh+vrr7+ucD3DJUuWSHKuSWlUAPbt21eS9O6775arJCwtLXWFhJ7KzMyUVPF067feeqtG56zPCBcBBLxPfkxTns2ulvHh6tEqrkbnGHmec12LD747KHtp1aXvAAAAAOpGeHi4evbsqX379mn16tWu9RYN/fv315dffqkffvhBXbt2dVtvUZImTJigJk2aaNasWXrppZfKBUh5eXl65ZVXdODAgdOOZcKECZKku+66y229vB9++EHz58+vxV26Myrwdu3aVek4PL0nY+wPPPCAW9OPffv2uRqM+MO2bdv03nvvqbi42G17ZmamK8Q9eV3Dqt6byMhI3XLLLSotLdXkyZOVl5fneu2XX37RI488Iklunb0vueQSnXXWWfrpp59cXZwN//rXv2pcZWg0tXn++efdvj4bNmzQnDlzanTO+oxwEUDAW1ZWbXhVtxY1XoOif/smio0I0dGcIm36rerFnAEAAADUHWP6c2FhYbk1FQcMGCCbzSaHw1FhF924uDgtW7bMFTy1adNGw4cP19VXX62ePXsqOTlZN91002kbukjS3XffrR49euiLL77QmWeeqWuvvVZ//vOf1aNHD40aNUqSKmyY4qnWrVvr3HPP1TfffKNevXrp5ptv1vjx4/Xhhx/W+J5uuOEGXXnllfr111/VoUMHXXnllRo5cqTOOeccdenS5bSNS3xl3759uvrqq9WkSRMNGjRIN954o4YPH67WrVvr999/15VXXunW1MXozjxq1Cj95S9/cU2lNsyePVvdu3fX6tWr1bZtW1177bW67LLL1LVrV6WlpWnq1KmuikjJ2RH6pZdeUlhYmO666y51795do0aN0nnnnacHH3xQt956qyTPv65Tp05VZGSkFixYoM6dO+uvf/2r+vXrp/79+2vixIm1ecvqJdZcBBDQcgqL9cWvzn80L+/arMbnCQ0O0p+7pOj1r/ZrxY40XdSuibeGCAAAAHjFnZe29/cQ/GLAgAF69NFHXc9Pfa2i5ye74IILtGPHDj3xxBP6+OOPtWbNGpnNZjVr1kzDhw/XVVddVa01/cLDw/XZZ59p5syZeuutt/TBBx+oTZs2mjVrlq699lo9/fTTSkhIqOltunn33Xd19913a8OGDdq6datKS0vVokULV7jm6T2ZTCYtXbpUc+bM0YsvvqgVK1YoJSVFU6ZM0cyZM9WhQwevjNtTvXv31iOPPKI1a9Zo165d2rBhg+Li4nTuuefq1ltvdYW2hquuukpz587VCy+8oOXLl7u6Iy9atEiSs/P1unXr9J///EdLly7Vhx9+qNDQUPXo0UOTJk3SX//613JjuPDCC7Vx40bdf//92rRpk3bv3q1evXpp3bp1+uyzzyTJ469r+/bttWXLFv3973/XV199pQ8//FAdOnTQc889p1tvvVWPP/54Td6uesvkOF3rmwBjtBPPyspSTEyMv4cDwMc++v6g/vb6NrVNjNSa6QNqda51vxzVTf/9WknRFm2eMVBBQfWzExeAho+fZwKfz7+GtjxplvOPavN7r1eJOfy0hwTbCzRlc9laZPcdlEIjvT8uADVWWFioPXv2qE2bNpV2oEX9tXTpUl1//fWaOHGiFi5c6O/hwEuGDRumlStXavPmzdXuKF7fVfd7jSc/yzAtGkBAW/3jYUlyNWSpjd5t4xUZataRnCLtSM2q9fkAAAAANCzbt29XaWmp27YdO3bonnvukaRylXao/44dO6Z9+/a5bXM4HJo/f75Wrlyps846S7169fLT6AID06IBBKxie6k+//mIJO+Ei5Zgs/p3aKIVO9L06U+H1bVlbK3PCQAAAKDhuP7665Wdna0uXbooLi5Oe/fu1TfffCO73a6JEyfqoosu8vcQ4aFffvlFffv21bnnnqu2bdvKbrfrhx9+0O+//67w8HC98MILNV7bv7GgchFAwPpmb6ayC0uUEBmqbmfUrEv0qQZ1coaURkUkAAAAABimTJmiM888U9u3b9d7772nn3/+WX379tXixYuZDh2g2rZtq4kTJ6qoqEifffaZ/ve//6moqEijRo3SV199VelanjiBykUAActo5HJRu0SZvbQ+Yv/2zkYuP6flKD23SIlRFq+cFwAAAEDgmzx5siZPnuzvYcCLkpKStGDBAn8PI6BRuQggYH3xmzNc7HtWotfOmRBlUcem0ZKkTb9leO28AAAAAAA0RISLAAJSdmGxvvvjuCTpAi+Giyefb1NZZSQAAAAAAKgY4SKAgPTV78dU6pBaJ0SoeWy4V899wVkJkk5URgIAAAAAgIo13DUXj/8hlUZX8EIl67JV2fmHYyo/VX0YWyM4xmSSgsxVHNP4GOstenNKtKFXmwQFB5n0x7EC/XEsXy3jI7x+jYDlcEh2m1RqlxylkqPssbS07POTttX0/DU7sIbHAfVUdo6/RwAAAABUS8MNFxf2kSy0CkcDYg6VQiOl0Kiyx0gpsokU08z5EdtaatpFSmzXKILIzb8710Pse2aC188dZQlW15ax2rovU1/+ntE4wsW8DOnoT9LRXdKx36XcI1LeESkvXSrKlooLyj7yax4cAqi+IgJzAAAABIaGGy6aw6TgU2d9V/KDepWVMgF4DBomu00qsEkFmVXvFxIhndFbaj9U6nS5M3hsYLILi7XrsLOqp1freJ9co0frOG3dl6lv92Xq2h4tfXINvyotlf7YLO1cJu3Z4AwWvcEUdOKjssrd056jpn8Y4g9KaEBKSiVRvQgAAID6r+GGi/f8KsXE+HsU9U9lYWV9Dks5xnlMcb5ky5Nsuc7HolxnZVlWqpR9UMrYLaX9IBXnSb+tcX6snCF1vEy68E6p+Z+quG5g+e6P43I4pBZx4UqKCfPJNbqfESdJ2rrvNGFuoCkpkra9Kn3xlHR8n/trca2lxA5SwllSdFMpKkmKTJQsVikkvOwjQgoJk4JCnAFikLksTDQ7Q8EaB4MA3GRnS49a/T0KAAAA4LQabriIilX2iz+BQACoRoVeqd05rfXXT6WfP3ZWpv30ofOj61+lIbOkCN9U+tUlI/Dr3irOZ9f4U9m5dx/JVVZ+sawRIT67Vp357XNp+e0nQsXQaOnsEc4q11YXSJHen2IOAAAAAGjYCBeBhiTILCWf7fy4YKp0eKf0xZPS90ul796Q9qyXrvmvc9p0APt2/3FJvg0XE6Msap0Qob0Z+fr2j0xd3CHJZ9fyuVK7tPoB6cunnZ9Hp0gXTpO63SiFNoL1JAEAAAKdMZMpkIREUMQCNBKEi0BDlnyOdNXzUq/bpGUTpIxfpZdHSH95yTldOgCVljq0bb+zcvFPZ/guXJSk7q3ineHivgAOF4sLpbfHSr/8z/l5r9ukgf9PskT5dVgAAADwQHG+NCvA1lK/76CzCSXUunVr7du3T44ql8hyN3bsWL388sv6/PPPNWDAAN8NDvCCUzueAGiIWvSQblsndRwu2YukpaOlXSv9Paoa+fVornIKSxQeYlbHptE+vZZRGRmw6y7ai6V3bnEGi8Fh0jUvSX+eQ7AIAACAgLB3716ZTCbCtRoymUxq3bq1v4eBRoDKRaCxsERJf3lZev//pB1vOUOnW/4npXT198g88m1Z0Hdey1gFm33795E/tYqV5GwgU1rqUFBQgE3rWDlD2vWxM1i84W2pTT9/jwgAAAC1Nf3X+ru0jS1fevwsf4+iQZg9e7buvfdenXHGGf4eCnBahItAY2IOlkYucHaZ/n2t9NZN0sSNAVXJtiM1S5J0bkvfd1E9q0mUwkKClGeza29Gnto2CZz3STvekba84Hx+zUsEiwAAAA1FaATTjRuBlJQUpaSk+HsYQLUwLRpobMwhzgrGmBZS5h5p1Qx/j8gjPxzMliR1ae77cDHYHKROKTGSToSaASH7kPTRnc7n/e6WOv7Zv+MBAAAAPDRz5ky1adNGkrRu3TqZTCbXx9ixY137GVN/bTabHnroIXXs2FEWi0UjR450ncdkMmnx4sUVXqd169YyVdJ4ZseOHbrhhhvUvHlzWSwWNWvWTDfffLP27t1b4/tatGiRzj33XIWHh6tp06aaMGGCjh8/Xm6/sWPHymQyae3atW7bMzIydN999+mcc85RVFSUrFar2rdvrzFjxujrr7+WJC1evNh1T/v27XN7706dYv7HH39owoQJatWqlSwWi5KSknTVVVdpy5Ytld7DW2+9pZ49eyo8PFzJycm6+eabdfjw4UrHfLqvUWFhoV588UVdccUVatu2rcLDwxUbG6t+/frpzTffrHAMJ1/r008/Vf/+/RUdHa2kpCTdeuutyspy/v525MgRTZgwQc2aNVNYWJh69epVbnyoPSoXgcYoPFa68lnp5culb1+Ruo6SWvXx96hOq9heqp8OOcPFzs18Hy4a19m2/7h+SM3SFec1r5Nr1trKe6WibKl5d2lAYIXHAAAAgCSdd955uvrqq/Xuu+8qOTlZQ4cOdb124YUXuu1bWlqqkSNHav369erfv7/OPfdcJSQk1Or67777rkaNGiWbzabu3burb9+++u2337R48WItX75c69at0znnnOPROe+55x49+eST6tmzp4YOHapNmzbp+eef108//eQKUKuSm5ur3r1769dff1W7du00ZMgQSdL+/fv1xhtvqG3bturVq5fOOuss3XTTTXr55ZcVGRmpa665xnWOjh07up7v2LFDl1xyidLT09WxY0ddddVV2r9/v5YtW6bly5fr9ddf11/+8he3McybN0933nmnzGazBgwYoMTERK1evVpr167VueeeW+nYq/oa7d27V+PHj1dycrI6duyoXr16KS0tTZs2bdKGDRv0888/a+bMmRWed9myZXr66afVrVs3DR48WF9//bUWLVqk3bt365133lGfPn1UWFio888/X4cOHdJXX32loUOHasuWLerSpUuV7zeqj3ARaKzaXCR1v0naulha+Xfp1rVSUP0uZv7taK5sJaWKtgTrjPi6WWfGqJD8ITW7Tq5Xa7+vk358XzKZpeHzpCCzv0cEAAAAeGzkyJE677zz9O6776pjx46VVh5Kzuo7i8WiXbt2qXnz2hcE7NmzR2PGjFF4eLhWr16tfv1OLDH0yiuv6KabbtLNN9/sqhSsriVLluirr77SeeedJ0lKT09Xnz59tGHDBn3++ee65JJLqjz+nXfe0a+//qopU6boqaeecnvtyJEjOnLkiCRn+HrhhRfq5ZdfVmJiYoXvncPh0A033KD09HTNmDFDjz76qCvcfOedd3Tddddp3Lhx6tevn5KTkyVJv//+u/7+978rLCxMn3zyiS666CJJzsrDa665Rh9++GGlY6/qa9SkSROtWrVKgwYNUtBJv5Pu2bNHl1xyiR5++GGNHTu2wuY0zzzzjN566y1dffXVkqScnBz17dtX69atU//+/dWzZ08tXrxYYWFhkqR//vOfeuSRR/T444/r5Zdfrurthgfqd5IAwLcu+adksUqHvpN+eMffozktI+A7u1lMnTVX6WyEiwez5HA46uSaNeZwSGsedj7vOU5KqfwvhwAAAEBDMnv2bK8Ei5L05JNPKj8/X4899phbsChJY8aM0ciRI7VlyxZ9++23Hp334YcfdgWLkpSYmKj/+7//kyStX7/+tMcb4WFFIWRSUpI6d+5c7bGsXbtWO3bsUJs2bfTwww+7VU1ec801GjlypHJycvTSSy+5tv/3v/+VzWbTTTfd5AoWJSksLExPPvmkWzBYkcq+RgkJCRo8eHC549u0aaP7779fpaWlWr58eYXnvOGGG1zBoiRFR0frtttukySlpqbq2WefdQWLkjR9+nSZTCatW7euyrHCM4SLQGMWmShdeLvz+frHpdJS/47nNH4oW/ewcx2st2holxyl0OAg5RSWaP+x/Dq7bo3sXi0d2CIFh0sXTff3aAAAAIA6YTKZdPnll3vtfKtXr5YkXXHFFRW+bkzLrmpdwooMHjy43Lb27dtLkg4dOnTa47t37y5Juu+++/TRRx+psLDQo+ufbMOGDZKk6667TmZz+dlOo0ePdttPkjZt2iRJ5aZKS9KZZ56pbt26VXq96nyNNm7cqEceeUT/93//p5tvvlljx47V22+/LUnavXt3hcdceuml5ba1bdtWktSjRw/Fxsa6vWa1WpWQkFCt9xvVx7RooLHrOV7a+KSUvkv6ebl0dsX/gNYHOw8a4WJMnV0zxBykTk2j9d2BLO1IzVKrhHrcmW/jE87HXuOl6GT/jgUAAACoI0lJSbJYLF47n9GwpWnTplXul56e7tF5W7RoUW5bVFSUJKmoqOi0xw8cOFB33nmn5s2bp8svv1yhoaE677zzNHjwYI0bN67CacOVOXjwoCRVeoyx3djv5OctW7as8JgzzjhDW7durfC1qr5GWVlZuuqqq7RmzZpKx5uTk1Ph9ooqISMjIyt9zXjd068dqka4CDR2YVbp/Nuk9XOkLxfU23CxtNShnQfrtpmL4ZzmVn13IEs7D2Zr+LnN6vTa1Xboe2n/l1JQsNR7sr9HAwAAANSZk6e9eqq0gtlbdrtdJpNJY8aMqfJYTxu6nK5hS3U88cQTmjBhgj744AN99tln+uKLL/T111/rscce09KlS10dmL01poper+yYqpaRqupr9Pe//11r1qxRv3799NBDD6lz586KjY2V2WzWJ598oiFDhlR67qrG7433G9VDuAhA6jFO2vCE9Mdm6chPUlInf4+onD0Zecq32RUWEqS2TaLq9NqdmkZLkn5Jq/ivZfXC1885H8++QopJ8e9YAAAAgHoiNDRUkrPT8qnsdrvS0tLKbW/RooV+++03PfXUU4qJqbtZU9XVoUMH3XPPPbrnnntUWFioZ555RtOnT9eECROqHS42a+YsmtizZ0+Fr+/bt0+SlJJy4neLlJQU7dq1S/v371e7du3KHfPHH394eCdOy5Ytk9ls1ocffiir1b2Q5Pfff6/ROVG3WHMRgDOM6vhn5/NvXqp6Xz8xgr32ydEy11EzF0P7ZGe4+HN9DRcLs6QdZQ15ek3w71gAAAAALzGCwZKSkhqfwwjHfvnll3KvrVmzRsXFxeW2Dxo0SJL0/vvv1/i6dSUsLEx33XWXUlJS3DpGS1JISEil753RkGXp0qWy2+3lXl+yZInbfpLUt29fSc5u0qf6/ffftW3bthrdQ2ZmpqKjo8sFi5L01ltv1eicqFuEiwCcut/sfPzuTank9Ot91LVfDjv/0mgEfXWpQ1nlYurxAuUUlv/hw+9+/FAqKZSadJJa9vL3aADAZ2bPnq2ePXsqOjpaSUlJGjlypHbt2uW2z9ixY2Uymdw+evfu7bZPUVGRpkyZosTEREVGRmrEiBE6cOCA2z6ZmZkaPXq0rFarrFarRo8erePHj/v6FgEAJ0lMTFRISIh+++23CgOw6ujfv78kZ1hmrKUoOcOwKVOmVHjMXXfdpfDwcN15550Vdik+duyYFixYoIKCghqNqabef/99bd68udz2bdu26fDhw4qOjlZcXJxre7NmzXT48OEK//0aMGCAunTpoj179uiBBx5wm3b8/vvv67333lNUVJTGjh3r2n7zzTcrJCREixcvdjV3kaTCwkLdcccdFU4xr4727dvr+PHjWrp0qdv2uXPn6vPPP6/ROVG3CBcBOLW9WIpuJhVlSb9+5u/RlPPLYaNysW6nREtSbESokmMsZeMoP53C73aU/TXv3L9IrCsCoAFbt26dJk+erM2bN2v16tUqKSnR4MGDlZeX57bf0KFDdejQIdfHihUr3F6/4447tGzZMr355pvauHGjcnNzNXz4cLdfXEeNGqXt27dr5cqVWrlypbZv3+7qnAkAfmXLl2x59fQj36u3GhoaqqFDhyotLU1du3bVmDFjNH78eL30UvVnW7Vt21ZjxoxRZmamzjvvPI0YMUIDBw5Uly5ddO6556pVq1bljmnXrp2WLFmigoICjRgxQh07dtSVV16pkSNHqlu3bkpJSdHkyZOr1YTFm9auXas+ffqoRYsWuvzyy3XDDTfo4osvVq9evVRaWqqHH35YISEhrv1HjBihkpIS/elPf9KNN96o8ePHa86cOZKc6xG+9tprSkhI0KxZs3TOOedo1KhRuvDCC3XllVcqKChI//3vf92a2px11lmaNWuWCgsL1a9fP1166aW6/vrr1a5dO3333XeubtBGxWl1zZgxQ5J0/fXXq1+/fho1apTOOeccTZ8+XXfeeWdt3zbUAdZcBOAUFCSdM1LavEDa+d6JadL1xIlwse4rFyWpQ9MYHc4+ql8O56h7q7jTH1BXsg9KezY4n3e+xr9jAQAfW7lypdvnL730kpKSkrR161b169fPtd1isVTa4TMrK0svvviiXn31Vde0tyVLlqhly5b69NNPNWTIEP30009auXKlNm/erPPPP1+S9MILL6hPnz7atWuXOnTo4KM7BIBqePwsf4+gTi1atEjTp0/X6tWr9frrr8tut6ukpEQ333xztc/xwgsvqFmzZnrttde0atUqtWzZUvfdd5/uvfdenXnmmRUec9VVV+m7777Tf/7zH61evVr/+9//FBYWpmbNmumGG27Q1VdfXeE0Xl8aO3asgoODtX79en399dfKyspS06ZN9ec//1l33nmnBgwY4Lb/7Nmz5XA49MEHH2jp0qUqKSlR//79dffdd0uSunTpom+//VaPPPKIVq5cqXfeeUdWq1UjR47UjBkz1KtX+VlR06dPV4sWLTRnzhxt2LBBMTExGjp0qP7973+7GuAkJCR4dF833HCD4uLi9PDDD2v79u3asWOHevTooQULFsjhcGju3Lk1e8NQZ0yOqtr5BKDs7GxZrVZlZWXVy4VXgXrtjy3Si4OkkEjp7l+l0Ah/j0iSZCsp1dkPrFRJqUOb7r1EzWLD63wMj378o17YsEdj+7bWzBGedYXzqc0LpZX3Si17S+NW+Xs0ALyEn2eq59dff1W7du20Y8cOde7cWZLzF6/3339foaGhio2NVf/+/fXoo48qKSlJknN9rYEDB+rYsWNuU8e6du2qkSNH6sEHH9R///tfTZs2rdw0stjYWM2dO7fCX2iLiorcKliys7PVsmVL330NbXnSLOdi/PN7r1eJ+fT/NgbbCzRlc1kIe99BKTTS++MCUGOFhYXas2eP2rRpU76z7kn/zwcMvs80Knl5eWrdurUKCgqUlZUls9ns7yGhElV+rzmJJz+PUrkI4IQWPSTrGVLWfum3z6ROl/t7RJKkPel5Kil1KNoSrBRr5d/8fKlDU+c30131ranLrrKpfmeP8O84AKCOORwOTZs2TRdeeKErWJSkYcOG6S9/+YtatWqlPXv26J///KcuueQSbd26VRaLRWlpaQoNDXULFiUpOTnZ1TE0LS3NFUaeLCkpqcKuopKzOuTBBx/04h0CwElCIpxhXSAJqR+FCvCu33//XQkJCW5Vm7m5ufq///s/paen65ZbbiFYbIQIFwGcYDI5p0N/9ay0+5N6Ey7uMqZEN42WyU9rCnYom46963COHA6H38bhpjBL2le2kHL7of4dCwDUsb/97W/6/vvvtXHjRrft1113net5586d1aNHD7Vq1Uoff/yxrrrqqkrPd+r39oq+z1f1/X/GjBmaNm2a63OjchEAvMJkogoQ9cJbb72lmTNnqnv37mrRooUyMzO1bds2paenq3Xr1po1a5a/hwg/oKELAHftLnU+7v5UqierJuz2YzMXQ7vkKJlM0rE8m47m1pNu2r9+JpWWSAntpISK14oBgIZoypQp+vDDD/X555+rRYsWVe6bkpKiVq1aaffu3ZKkpk2bymazKTMz022/I0eOKDk52bXP4cOHy53r6NGjrn1OZbFYFBMT4/YBAEBDM3DgQI0cOVKpqalavny5NmzYoPj4eN111136+uuvK/13Eg0b4SIAd60ulILDpZyD0uGd/h6NpBNTkf3VzEWSwkLMahXvnNrx25G80+xdR34pW2OxA1WLABoHh8Ohv/3tb3rvvfe0Zs0atWnT5rTHZGRk6I8//lBKSookqXv37goJCdHq1atd+xw6dEg//PCD+vbtK0nq06ePsrKy9PXXX7v2+eqrr5SVleXaBwCAxqhnz5568803tXfvXuXn56ugoEC7du3S448/riZNmvh7ePATwkUA7kLCpLb9nc93148GIbuP5Eryb7goSW2bOCsnfzua69dxSHJWlf76qfN5uyH+HQsA1JHJkydryZIlev311xUdHa20tDSlpaWpoKBAknPNp+nTp+vLL7/U3r17tXbtWl1++eVKTEzUlVdeKUmyWq0aN26c7rrrLn322Wfatm2bbrzxRnXp0sXVPbpTp04aOnSobr31Vm3evFmbN2/WrbfequHDh9MpGgAA4BSEiwDKO8v5y5V+X+vXYUhSUYld+zKclYLtkvw3LVqS2iY617n5/Wg9qFw8+rOUn+6sMm3Zy9+jAYA6sXDhQmVlZWnAgAFKSUlxfSxdulSSZDabtWPHDl1xxRVq3769brrpJrVv315ffvmloqNP/IFq7ty5GjlypK699lpdcMEFioiI0PLly90WoH/ttdfUpUsXDR48WIMHD9a5556rV199tc7vGQAAoL6joQuA8lpf5Hz8Y4tUYpOCQ/02lP0Z+Sp1SNGWYDWJtvhtHNKJysXf0+tB5eLesgYGLXtJwf59XwCgrjhOsxZweHi4Vq06fdV9WFiY5s+fr/nz51e6T3x8vJYsWeLxGAEAABobKhcBlNekgxSRKJUUSAe/9etQfk93Vgm2aRLp9w7NZzZxVi7Wi2nRe9Y7H9tc5N9xAAAAwKtO94cUAKgNX3yPIVwEUJ7JJLUqW7B+7wa/DmWPES6WTUn2J6Ny8UBmgQqL7f4bSGmptO8L5/PWhIsAAAANgbE0Q3FxsZ9HAqAhM77HnLwcTG0RLgKomBFa7f3Cr8PYc7T+hIuJUaGKDguWwyHtzfDjuotHf5byM6SQCKnZn/w3DgAAAHhNSEiILBaLsrKyqF4E4BMOh0NZWVmyWCwKCQnx2nlZcxFAxVpf4Hz84yvJXiyZvfeNxxPG+oZG1aA/mUwmndkkStv/OK7fj+apY9MY/wxk/ybnY4uefl0PEwAAAN6VmJio1NRUHThwQFarVSEhIX5fGghA4HM4HCouLlZWVpZyc3PVvHlzr57fp+Hi+vXrNWfOHG3dulWHDh3SsmXLNHLkyCqPWbdunaZNm6adO3eqWbNmuueeezRx4kRfDhNARZp0kixWqShLOvKTlHKuX4ZhTItuWw8qFyWpbZPIsnDRj+suppatg0mXaABADc1f86tKzOHV3v/OS9v7cDQADDExzj9ep6enKzU11c+jAdDQWCwWNW/e3PW9xlt8Gi7m5eWpa9euuvnmm3X11Vefdv89e/boz3/+s2699VYtWbJEX3zxhSZNmqQmTZpU63gAXhQUJDXvJv2+Vkrd6pdwMaugWOm5NklS63oSLp5ZVkH521E/Tos+8I3zsXkP/40BAAAAPhETE6OYmBgVFxfLbvfjOt8AGhSz2ezVqdAn82m4OGzYMA0bNqza+z/77LM644wzNG/ePElSp06d9M033+jxxx8nXAT8oXn3E+Fij5vr/PJ7y6oWk6ItirLUj1UcjI7RfqtcLMyS0n9xPm/e3T9jAAAEvBB7gWcH2PKca/0yPROoMyEhIT4LAgDAm+rHb+tlvvzySw0ePNht25AhQ/Tiiy+quLi4wm+sRUVFKioqcn2enZ0tSZowYYJCQ1mLDKiVrAPS3gJp5VvSezl1fvn9x/KVvveYFGXRTb+8WufXr0h2QbHSfzqs9UFBumlLs7ofQE6a9Hu+FBIp7Zle99cHUCdsNpu/h4AGbuKWIZ4dsFnSfQel0PoxkwAAANQf9SpcTEtLU3Jystu25ORklZSUKD09XSkpKeWOmT17th588MFy2998802fjRNofI5KX73it6vnSXpls98uX6lXvvfn1Y9L3/jvawIAAAAAgFTPwkVJ5TphORyOCrcbZsyYoWnTprk+z87OVsuWLfXwww8rLCzMdwMFGot1c5xNXXqMk+Lb1Omll207oB8P5mhQpySd3zahTq9dlac+262cwhKN7dtKzeMi6vbi216Tjv4kdRgmtbqgbq8NoM4UFhbqn//8p7+HgQamJChM83uv9+iYEHuB51WOAACgUalX4WLTpk2Vlpbmtu3IkSMKDg5WQkLFwYLFYpHFYim3ferUqV7vfgM0Si2/k376ULq0g3TB1Dq99OdPbZD1YLZuG9NDl56dfPoD6sjXUV/q673HNOAv5+mK85rX7cX/s0jKsUi3/F06o3fdXhtAncnOziZchPeZTB51iAYAAKiOIH8P4GR9+vTR6tWr3bZ98skn6tGjBwvZAv5idIk+/EOdXtbhcGh/Rr4kqU1iHVcHnsYZCc7x7CsbX53Jy5ByDjmfJ59Tt9cGAAAAAKACPg0Xc3NztX37dm3fvl2StGfPHm3fvl379++X5JzSPGbMGNf+EydO1L59+zRt2jT99NNP+u9//6sXX3xR06fTtADwm+Quzse0ug0Xj+cXK6eoRJLUoq6nHp9Gq3g/hYuHdzgf49pIlui6vTYAAAAAABXw6bTob775RhdffLHrc2NtxJtuukmLFy/WoUOHXEGjJLVp00YrVqzQnXfeqWeeeUbNmjXTU089pauvvtqXwwRQFaNCLn2XVFIkBZdfhsAX9h9zBnfJMRaFhZjr5JrVZVQu7j+WV7cXPrzT+di0c91eFwAAAACASvg0XBwwYICrIUtFFi9eXG5b//799e233/pwVAA8Ym0hhVmlwizp6K4T06R9zAgXW9azqkVJapUQKckPlYtG9Wgy4SIAAAAAoH6oV2suAqiHTKYTU6PrcN3FPzKdwd0Z8fUwXCwb05GcIhXY7HV3YWNaNOEiAAAAAKCeIFwEcHrG1GhjWm4d+MOoXKyH4WJsRIiiw5yF30aFpc/Zi52VoxLTogEAAAAA9QbhIoDTM8KstB11dkkjtKuPlYsmk0mtXB2j62jdxfRfJLtNCo2WYlvVzTUBAAAAADgNwkUAp2dMw63DadGucDGh/oWLktQq3rnuYp1VLhpVo8nnOKeqAwAAAABQDxAuAji9Jh2cj/kZUl6Gzy9XbC/VweOFkupn5aJ0IvSss6YuR35yPiafXTfXAwAAAACgGggXAZxeaKRkPcP5PH2Xzy936Hih7KUOWYKD1CTK4vPr1YTR1GVfXVUupv/ifEzsUDfXAwAAAACgGggXAVRPYjvnoxFy+ZDRKbpFXLiCgurnFGCjovJAZl2Fi7udj8bXAQAAAACAeoBwEUD1GFOjj/o+XKzPzVwMzePCJUmpmQVyOBy+vZi9WDr2u/N5YnvfXgsAAAAAAA8QLgKoHiPUqoNp0YEQLqZYw2UySUUlpUrPtfn2Ypl7pdJiKSRCimnu22sBAAAAAOABwkUA1WOEi3VYudiyHoeLocFBSo4OkySlHi/w7cVc6y22k4L4tg0AAAAAqD/4LRVA9RjTorP2SzbfrjP4RwCEi5L71GifcoWLTIkGAAAAANQvhIsAqicyUQqPdz7P2O3TSxlhXcu4+h0utigLF33e1MXVzIVwEQAAAABQvxAuAqi+OpgaXVhsV0aecw3D5rHhPruONxjj8/m06KNl61zSKRoAAAAAUM8QLgKoviZGUxffhYsHy4K6yFCzYsKDfXYdb6iTadEOB5WLAAAAAIB6i3ARQPXFt3U+Zu7x2SUOHi+UJDWLDZfJZPLZdbzBqFw84MtwMe+oVJQlySTFn+m76wAAAAAAUAOEiwCqzwgXj/kyXHQGdc3q+ZRoSWpRtiZk6vECORwO31zk2O/OR2sLKSTMN9cAAAAAAKCGCBcBVF9cG+ejEXj5QGoAhYtG5WJuUYmyC0p8cxEjyI1r7ZvzAwAAAABQC4SLAKovvixcLDgmFRz3ySWMcNHoxFyfhYealRAZKkk6cNxHHaONKejGew8AAAAAQD1CuAig+izRUmSS87mP1l08MS06MKYAGyGoz9ZdzNzrfIwjXAQAAAAA1D+EiwA8E+/bqdGucNFa/ysXpTroGH2MykUAAAAAQP1FuAjAMz5s6lJa6tDBrBPdogOBse6iMZ3b64wKUSoXAQAAAAD1EOEiAM/4MFzMyLPJVlIqk0lqag2MadFGuHgg0wdrLhblSHlHnc+pXAQAAAAA1EOEiwA8Y1TQ+WDNRWNKdHJ0mELMgfHtqXlchCTpUFnFpVcZ6y2Gx0thVu+fHwAAAACAWgqM394B1B+uykXvr7kYaM1cJCmlrMLSJ+Ei6y0CAAAAAOo5wkUAnjGCrpxDks27U4GNdQuNasBAYEzfTs8tkq2k1LsnZ71FAAAAAEA9R7gIwDPhcZKlbIru8X1ePXVqAFYuxkeEKtQcJIdDOpLj5epFKhcBAAAAAPUc4SIAz5hMUuwZzufH//DqqY1p0c0DpFO0JAUFmVzVi2nenhpN5SIAAAAAoJ4jXATgudiWzses/V497cHjznCumTVwwkXpxNRor6+7aDR0iWvt3fMCAAAAAOAlhIsAPGctCxd9VLmYEkDToqWTm7oUeO+kpaVSVqrzuVEpCgAAAABAPUO4CMBzrmnR3qtcLCqxKyPPJonKRUlS7mGptFgymaXoFO+dFwAAAAAALyJcBOA517Ro71UuHskukiSFBgcpNiLEa+etCykxPlhz0XhvY5pJ5mDvnRcAAAAAAC8iXATgOR9ULqZlO4O5pjFhMplMXjtvXWhaVmnp1cpF4701pqADAAAAAFAPES4C8Jy1LFzMPSwVeydQM4K5pjGBtd6iJDWL9UXl4gHno7WF984JAAAAAICXES4C8FxEvBQS6XxuhGC1dLgsmEu2Bl64aKy5eCSnUCX2Uu+c1JgWHUvlIgAAAACg/iJcBOA5k+mkdRe9MzX6xLRoi1fOV5cSIy0KDjKp1CEdzS3yzkmNTtxMiwYAAAAA1GOEiwBqxgi9jnunqYsRLiYH4LTooCCTa9wHj3tparRREUrlIgAAAACgHiNcBFAzXm7qYkyLbhqA06IlKcXq5XUXs6hcBAAAAADUf4SLAGrGNS3au5WLgdjQRToRih7KKqj9yQqOS0XZzuc0dAEAAAAA1GPB/h4AgADlxcpFh8OhI9nOtQoDtXKxWWy4JC9VLhpToiMSpNDI2p8PAAAvmL/mV5WYw6u9/52XtvfhaAAAQH1B5SKAmrEa4WLtKxeP5dlkK+uynBQdmOGiUXF5KNsb4aIxJZqqRQAAAABA/Ua4CKBmYpo5H3PTpFJ7rU5lTIlOjApVaHBgflsy1lw8dNwL06LpFA0AAAAACBCB+Vs8AP+LSpZMQVJpiZR3tFanOhzAnaINyWXh4uGy6d21YlQuGlPPAQAAAACopwgXAdSMOViKaup8np1aq1OlZZWttxjI4WLZ2I/mFMnhcNTuZEyLBgAAAAAECMJFADVnTI3OPlir0xjTopMDtJmLJDWJskiSbPZSHc8vrt3JjIYuhIsAAAAAgHqOcBFAzXkpXDxc1mE5kCsXQ4ODFB8ZKkk6nFPLpi7Zh5yPMc1rOSoAAAAAAHyLcBFAzRnhV22nRWcHfrgoSUnRzurFWq27WFrqbJIjSdEpXhgVAAAAAAC+E+zvAQAIYN6qXGwA06IlKSkmTD+n5ehIdi0qF/OOOpvkmIKcTXMAAKgnQuwFnh1gy5NCIiSTyTcDAgAA9QLhIoCa8/Kai4FeuZhcVrl4JKcWlYs5Ze9lZJKzaQ4AAPXExC1DPDtgs6T7DkqhkT4ZDwAAqB+YFg2g5rwwLbqw2O5qgBLo4WJSjDEtuhaVi671Fpt5YUQAAAAAAPhWnYSLCxYsUJs2bRQWFqbu3btrw4YNVe7/2muvqWvXroqIiFBKSopuvvlmZWRk1MVQAXji5MpFh6NGpzCCuLCQIMWEB3alXnJZOHqkNmsuGkEt4SIAlDN79mz17NlT0dHRSkpK0siRI7Vr1y63fRwOh2bOnKlmzZopPDxcAwYM0M6dO932KSoq0pQpU5SYmKjIyEiNGDFCBw4ccNsnMzNTo0ePltVqldVq1ejRo3X8+HFf32K9UxIUpvm913v08WzPVf4eNgAAqEM+DxeXLl2qO+64Q/fff7+2bdumiy66SMOGDdP+/fsr3H/jxo0aM2aMxo0bp507d+rtt9/Wli1bNH78eF8PFYCnjIYjdpuUX7M/AKSd1CnaFOBrMiVFO8PFWnWLzimrXKSZCwCUs27dOk2ePFmbN2/W6tWrVVJSosGDBysvL8+1z2OPPaYnnnhCTz/9tLZs2aKmTZvq0ksvVU5OjmufO+64Q8uWLdObb76pjRs3Kjc3V8OHD5fdbnftM2rUKG3fvl0rV67UypUrtX37do0ePbpO77deMJlUYg736KPYHO7vUQMAgDrk8zKhJ554QuPGjXOFg/PmzdOqVau0cOFCzZ49u9z+mzdvVuvWrTV16lRJUps2bTRhwgQ99thjvh4qAE8FhzrXBsw74qy4i0z0+BTG+oRJAT4lWjoxLbp2lYvGtGjCRQA41cqVK90+f+mll5SUlKStW7eqX79+cjgcmjdvnu6//35dddVVkqSXX35ZycnJev311zVhwgRlZWXpxRdf1KuvvqpBgwZJkpYsWaKWLVvq008/1ZAhQ/TTTz9p5cqV2rx5s84//3xJ0gsvvKA+ffpo165d6tChQ93eOAAAQD3m08pFm82mrVu3avDgwW7bBw8erE2bNlV4TN++fXXgwAGtWLFCDodDhw8f1jvvvKPLLruswv2LioqUnZ3t9gGgDtWyqYsRLjYpa4YSyFzTonMK5ajhNHFXQ5dopkUDwOlkZWVJkuLj4yVJe/bsUVpamtvPnhaLRf3793f97Ll161YVFxe77dOsWTN17tzZtc+XX34pq9XqChYlqXfv3rJarZX+DMvPpAAAoLHyabiYnp4uu92u5ORkt+3JyclKS0ur8Ji+ffvqtdde03XXXafQ0FA1bdpUsbGxmj9/foX7z54927UWjtVqVcuWLb1+HwCqUMumLkeNysUGEC42iXLeQ7HdocyyJjUeo3IRAKrF4XBo2rRpuvDCC9W5c2dJcv18WdXPnmlpaQoNDVVcXFyV+yQlJZW7ZlJSUqU/w/IzKQAAaKzqpKHLqeuoORyOStdW+/HHHzV16lQ98MAD2rp1q1auXKk9e/Zo4sSJFe4/Y8YMZWVluT7++OMPr48fQBVqXbnoXJ+wIVQuhgYHKT4yVNKJ+/KYseaiEdoCACr0t7/9Td9//73eeOONcq958rNnZftUtH9V5+FnUgAA0Fj5dM3FxMREmc3mcn/hPXLkSLm/KBtmz56tCy64QHfffbck6dxzz1VkZKQuuugiPfLII0pJca/msVgsslgCP5QAAlYtw8UTlYuBv+ai5KzAPJZn0+HsInVs6uHBRTlSUdk0Ohq6AEClpkyZog8//FDr169XixYtXNubNnV+401LS3P7mfHknz2bNm0qm82mzMxMt+rFI0eOqG/fvq59Dh8+XO66R48erfRnWH4mBQAAjZVPKxdDQ0PVvXt3rV692m376tWrXT+8nSo/P19BQe7DMpvNklTzNcwA+I5RYZd1oEaHH21Aay5KJxrTHM6uQeWiMSXaEiNZorw4KgBoGBwOh/72t7/pvffe05o1a9SmTRu319u0aaOmTZu6/exps9m0bt0618+e3bt3V0hIiNs+hw4d0g8//ODap0+fPsrKytLXX3/t2uerr75SVlZWpT/DAgAANFY+7xY9bdo0jR49Wj169FCfPn30/PPPa//+/a5pzjNmzFBqaqpeeeUVSdLll1+uW2+9VQsXLtSQIUN06NAh3XHHHerVq5eaNaPBAVDvGGsD5lS8BtXpNKQ1FyUpuew+jPvyiKuZC1WLAFCRyZMn6/XXX9cHH3yg6Oho1+wYq9Wq8PBwmUwm3XHHHZo1a5batWundu3aadasWYqIiNCoUaNc+44bN0533XWXEhISFB8fr+nTp6tLly6u7tGdOnXS0KFDdeutt+q5556TJN12220aPnw4naIBAABO4fNw8brrrlNGRoYeeughHTp0SJ07d9aKFSvUqlUrSc6/FO/fv9+1/9ixY5WTk6Onn35ad911l2JjY3XJJZfo3//+t6+HCqAmosrm/uaWnz52OsX2UmXk2SQ1nMrFZG9ULtLMBQAqtHDhQknSgAED3La/9NJLGjt2rCTpnnvuUUFBgSZNmqTMzEydf/75+uSTTxQdHe3af+7cuQoODta1116rgoICDRw4UIsXL3bNlpGk1157TVOnTnV1lR4xYoSefvpp394gAABAAPJ5uChJkyZN0qRJkyp8bfHixeW2TZkyRVOmTPHxqAB4RXTZ2lNF2ZItXwqNqPahGbnOYNEcZFJ8RKgvRlfnkmKcIWmNwkWjcpFmLgBQoeoskWMymTRz5kzNnDmz0n3CwsI0f/58zZ8/v9J94uPjtWTJkpoMEwAAoFGpk27RABowS4wUHO58nuvZ1Gijo3JiVKiCgqru4hkojMY0R2oyLdqoXGRaNAAAAAAgQBAuAqgdk0mKLpsa7eG6iw2tU7R0onLxSHZNwkWjcpFwEQAAAAAQGAgXAdReDcPFIw2smYt0Ys3FIzmFnne4dzV0oXkVAAAAACAwEC4CqL2osnUXPWzqYlQuNpRmLpLUJMp5L8V2hzLziz072AhnqVwEAAAAAAQIwkUAtVfjykXnmosNqXIxNDhI8ZHO5jTG/VVLaamUe8T53OjADQAAAABAPUe4CKD2arnmYkOqXJScDWokKT3HVv2D8jMkh12SSYps4puBAQAAAADgZYSLAGrPqLTzuFu0ES42nIYu0omw9GiuB5WLxpTyyETJHOyDUQEAAAAA4H2EiwBqL7pszcUc1lyUpMSydRc9qlw0gllj/UoAAAAAAAIA4SKA2osua0DiQeWiw+FokN2ipRNNXY7mFlX/INd6i0k+GBEAAAAAAL5BuAig9oxqu4JMqbh6U4GzC0tkKymV1AArF6ONykUPwkVjvUqauQAAAAAAAgjhIoDaC4+TzGUBYW71pkYfLeukHBMWrLAQs69G5hdULgIAAAAAGgvCRQC1ZzKdqF6sZrh4pIGutyidqFw86knlojGlPJrKRQAAAABA4CBcBOAdRiiWU711F4+61ltsWJ2ipROVi+lULgIAAAAAGjjCRQDe4eoY7Vm42DArF0MlSRl5NpXYS6t3kFHxSbdoAAAAAEAAIVwE4B1GI5JqdoxuqJ2iJSkh0qIgk+RwSMfybdU7KMcIF5kWDQAAAAAIHISLALzDVblYzTUXs50NXRpi5aI5yKT4SA/WXbTlSbYc53OmRQMAAAAAAgjhIgDviE5xPlazctHopJwU0/DCRUlKjHJOjU7PrUblojElOjhcskT7cFQAAAAAAHgX4SIA74jyrKHLkeyyNRejGl5DF+lERWa1KheNZi7Ryc7O2wAAAAAABAjCRQDe4WlDl9yG29BF8rBjtPGe0cwFAAAAABBgCBcBeIcRjOVnSPaSKncttpfqeH6xpAYcLtakcpFwEQAAAAAQYAgXAXhHRIJkCpLkkPLTq9z1WJ5zHUJzkEmx4SF1MLi6l+hJ5WIulYsAAAAAgMBEuAjAO4LMUkSi87lRiVcJo5ovPjJUQUENc41BzyoXyxq6EC4CAAAAAAIM4SIA74lKcj7mVR0uZpRVLhrVfQ2RZ5WLJzV0AQAAAAAggBAuAvCeyCbOx9yjVe6WXlbNlxgV6usR+Y1HlYs0dAEAAAAABKhgfw8AQANiVC4a03wrYVTzNezKRWdwmplfrGJ7qULMVfwth4YuAICGypbv+TEhEZKpYS6bAgBAQ0S4CMB7XNOiq65cNKZFJ0Q23MrFuIhQmYNMspc6lJFrU1NrWMU7ltpPTCMnXAQANDSPn+X5MfcdlEIjvT8WAADgE4SLALwn0qhcrHrNRde06OiGW7kYFGRSYlSoDmcXKT23qPJwMT9DcpRKMp2YVg43xcXFstvt/h4GUCtms1khISH+HgYAAADgdYSLALynmg1d0htB5aLknPZ9OLuo6nUXjfUWIxMlM9+ST5adna309HQVFVVj3UogAFgsFiUmJiomJsbfQwF8qiQoTPN7r9eUSzyoWrTl16zKEQAA+B2/yQLwHk8bujTgykXppKYuVXWMZr3FCmVnZys1NVVRUVFKTExUSEiITKy/hQDlcDhUXFysrKwspaamShIBIxo2k0kl5nDNXZda7UOC7QWa4sMhAQAA3yFcBOA9RkB2moYuGXll4WJkww4XjYY1VVYu5tIpuiLp6emKiopSixYtCBXRIISHhys6OloHDhxQeno64SIAAAAajCralwKAh4xp0fkZkr2kwl1KyxqcSFJidMOeFu2qXKwqXDSa37DeoktxcbGKiopktVoJFtGgmEwmWa1WFRUVqbi42N/DAQAAALyCcBGA90QkSKYgSQ5nwFiB7MJilZQ6JEnxjWDNRUlKr3JadFm4GEW4aDCat9D8Ag2R8d81TYoAAADQUBAuAvCeILMzYJQqbepiBG0xYcGyBJvramR+QeVi7VC1iIaI/64BAADQ0BAuAvCuyLKp0ZWsu5jumhLdsNdblKTEKGdlZpWVi65wMakORgQAAAAAgHcRLgLwLmPdxUo6RhtBW0Nv5iKdmBadkWerfKe8dOcjlYsAAAAAgABEuAjAu4xwsZJp0Y2lmYt0Ilw8nl+sYntpxTsZ71NkYh2NCgAAAAAA7yFcBOBdRgVebtVrLiY0gsrF2PAQBZUtr5ZZUfViaSmViwAAAACAgEa4CMC7XJWLlU2LLqtcjGr44WJQkEnxkUbH6ArCxcLjkqOsYyzhIgAAAAAgABEuAvCuqGTnY6UNXcoqF6Ma/rRo6URTl4y8Cpq6GAFsmFUKbhzvBwAAAACgYSFcBOBdrmnRFVcuZhgNXRpB5aJ0IkTNqKhy0dUpmqpFnN4333wjk8mkG264wW17aWmp2rdvL5PJpLvvvtvttePHjysyMlJnn322HA5HXQ4XAAAAQCNBuAjAu07T0OXEtOjGUamX4JoWXUHlorEuJeEiqiEuLk6SlJOT47b9o48+0u7duyVJmZmZbq8tXrxY+fn5mjp1qkwmU90MFAAAAECjEuzvAQBoYCLLwsX8DKnULgWZ3V5Ob6yVixU1dKGZCzwQGxsrScrNzXXbPnfuXDVr1kxBQUFu4aLD4dDChQsVGxur0aNH1+VQAQAAADQihIsAvCsyUTIFSY6yTsjRya6X8m0lyrc5G5g0njUXnSFqRkWVi0yL9pjD4VBBsd3fw/BIeIjZK1WDsbGxMplMbpWL27dv19q1a/Xoo4/q7bffdgsXV69erV9++UV33323IiMja319AAAAAKgI4SIA7woySxEJzuAs74hbuGisO2gJDlKUpXF8+0mIZM1FbyootuvsB1b5exge+fGhIYoIrf1/72azWdHR0W6Vi3PnzlV4eLgmTJigVatWuYWLzzzzjMxmsyZPnlyt848dO1Z79+7V2rVraz1WAAAAAI1H4/jtHkDdikxyBme57usunjwlurGs/5YQVcWai65wMbEOR4RAFhsb66pcTEtL05tvvqmxY8cqISFBVqtV+/btkyTt27dPH3/8sUaOHKlWrVpV69xPPvmk7PbAqgoFAAAA4H+EiwC8L6qJdEQnwrMyja2Zi3TiXtOrqlw0muDgtMJDzPrxoSH+HoZHwkPMp9+pmuLi4rR3715JzspEm82m22+/XZIUExPjqlx89tlnZbfbXa9Vh9Vq9do4AQAAADQehIsAvM9o6pJ72G1zRiNr5iKdtOZiXpEcDod7xSbToj1mMpm8MsU4UMXFxemHH35QQUGBnn32WQ0ePFhnn322JGc4mJ2drfz8fL344ovq1q2bLrroIrfjN27cqL///e/6/vvvJUlt27bVY489piFDhpSbFl1QUKCpU6fqrbfeUlBQkP7617/KarXqjTfecAWcAAAAABDk7wEAaICMSrxKpkU3lmYu0ol7LSwudTWzcaFbNDwUGxsru92uF154Qenp6brzzjtdr8XExEiSnn/+eR09erRc1aLdbteIESPUo0cPbd26Vd9++60efPBBRUREVHit6dOn64MPPtArr7yizZs3y2q1asGCBb67OQAAAAABqfGWfwDwHSNcNMKzMiemRTeeysWI0GCFh5hVUGxXRq5NkUYjm+JCqSjb+Zw1F1FNcXFxkqTHHntMHTt21JAhJ6aIG9Oa58yZo6SkJF1//fVux2ZlZSkzM1NXX3212rdvL0lq165dhdfJzc3VokWL9NRTT+mKK66QJM2ePVuff/650tLSvH5fAAAAAAJXnVQuLliwQG3atFFYWJi6d++uDRs2VLl/UVGR7r//frVq1UoWi0Vnnnmm/vvf/9bFUAF4g1GJV27NRaNysfGEi9KJ6sX0vJOauhjvTVCIFBZb94NCQDLCxdTUVN1+++1u0+yNysWDBw9q4sSJsljc/z+Lj4/XuHHjNHjwYA0dOlT/+te/tGvXrgqv89tvv8lms6l3795u2/v06ePN2wEAAADQAPg8XFy6dKnuuOMO3X///dq2bZsuuugiDRs2TPv376/0mGuvvVafffaZXnzxRe3atUtvvPGGOnbs6OuhAvCWSsLFjEbY0EU6EaZmnNzU5eT1FhtJ52zUnhEuxsfHa8yYMW6vGZWLISEhmjhxYoXHL1q0SN98840GDx6sdevWqXPnznr22WcrvV5j6eoOAAAAoOZ8Hi4+8cQTGjdunMaPH69OnTpp3rx5atmypRYuXFjh/itXrtS6deu0YsUKDRo0SK1bt1avXr3Ut29fXw8VgLdEJDgfy02LbnwNXSQpMdIZphoNbSSdtN4iU6JRff/4xz/kcDiUkZFRbq3EG264QQ6HQzabTSkpKZWeo3Pnzpo2bZr+97//ady4cRX+e3zmmWcqNDRUX375pdv2zZs3e+dGAAAAADQYPg0XbTabtm7dqsGDB7ttHzx4sDZt2lThMR9++KF69Oihxx57TM2bN1f79u01ffp0FRQUVLh/UVGRsrOz3T4A+JlRuZifLjkcrs0ZeY1vzUXpxLRo4/4l0Skade7XX3/V3//+d23cuFH79u3Tl19+qQ0bNri6TZ8sKipK48eP1wMPPKAPP/xQv/zyi+6//3799NNPVDMCAAAAcOPThi7p6emy2+1KTk52256cnFzpgvC///67Nm7cqLCwMC1btkzp6emaNGmSjh07VuG6i7Nnz9aDDz7ok/EDqCGjGs9uczYtCbOqxF6qzHxnuNaYukVLJ6ZFp7tVLpZ10jaa3wA+FhkZqd27d+v666/X0aNHlZCQoGHDhunxxx+vcP85c+aoqKhIN954o4KCgjRq1CiNHTtWq1atquORAwAAAKjP6qRb9KlVDg6Ho9LKh9LSUplMJr322muu9aOeeOIJXXPNNXrmmWcUHh7utv+MGTM0bdo01+fZ2dlq2bKll+8AgEdCwqXQaMmW45z+G2bVsXybHA4pyCTFRTSycLFsWnS625qLTItG3UpJSdF7771X6euLFy92+zwiIkKLFi3SokWLXNsuueQSV6dpAAAAAJB8HC4mJibKbDaXq1I8cuRIuWpGQ0pKipo3b+4KFiWpU6dOcjgcOnDggNq1a+e2v8ViKdcRE0A9EJlYFi4elRLOVHqOM1iLjwyVOahxTatsEm00dKmgWzTTolFP7dy5U1u2bFHfvn1ls9n06quv6vPPP9fy5cv9PTQAAAAA9YhP11wMDQ1V9+7dtXr1arftq1evrrRBywUXXKCDBw8qNzfXte2XX35RUFCQWrRo4cvhAvCmUzpGZ+Q1zmYukpQQeZpu0UA9FBQUpOeee049e/ZUnz599Nlnn+ndd9/V8OHD/T00AAAAAPWIz6dFT5s2TaNHj1aPHj3Up08fPf/889q/f78mTpwoyTmtOTU1Va+88ookadSoUXr44Yd1880368EHH1R6erruvvtu3XLLLeWmRAOox04JF431BhvbeovSyQ1dTqpczDXCRdZcRP3UqVOnct2iAQAAAOBUPg8Xr7vuOmVkZOihhx7SoUOH1LlzZ61YsUKtWrWSJB06dEj79+937R8VFaXVq1drypQp6tGjhxISEnTttdfqkUce8fVQAXiTsZZg2dqCxrToRlm5WBYuHsuzyV7qcE4Ld1UusuYiAAAAACBw1UlDl0mTJmnSpEkVvnbqAvKS1LFjx3JTqQEEmFMrF8uq9owpwo1JfFkDm1KHdDzfpoSIECnfaOjCtGgAAAAAQODy6ZqLABqxU8NFo3IxuvFNiw42BykuIkSSlJFnkwqPS6UlzhepXAQAAAAABDDCRQC+ccq06Mbc0EWSEsruOz23yPWeKMwqBTfO9wMAAAAA0DAQLgLwjVPXXMw1wsXGV7koSQmRZU1dcm1S3hHnRqZEAwAAAAACXJ2suQigETplWnRGrnNadGNcc1E6UbGZkVskBRvNXAgXAQAAAACBjcpFAL5hBGf5GXLYS5xrDepE5+TGxrjv9FzbiWnRrLcIAB5Zv369Lr/8cjVr1kwmk0nvv/++2+tjx46VyWRy++jdu7fbPkVFRZoyZYoSExMVGRmpESNG6MCBA277ZGZmavTo0bJarbJarRo9erSOHz/u47sDAAAITISLAHwjPF6SSZJDecePyFZSKonKxYy8Ilc1pyKT/DgiAAg8eXl56tq1q55++ulK9xk6dKgOHTrk+lixYoXb63fccYeWLVumN998Uxs3blRubq6GDx8uu93u2mfUqFHavn27Vq5cqZUrV2r79u0aPXq0z+4LAAAgkDEtGoBvmIOliHgpP0NZ6YckSZGhZoWHmv08MP9wq1wMYc1FAKiJYcOGadiwYVXuY7FY1LRp0wpfy8rK0osvvqhXX31VgwYNkiQtWbJELVu21KeffqohQ4bop59+0sqVK7V582adf/75kqQXXnhBffr00a5du9ShQwfv3hQAAECAI1wE4DuRTaT8DOUdOyTJ5OqY3BgZFZsZuUVSqFG5yLRoAPC2tWvXKikpSbGxserfv78effRRJSU5K8W3bt2q4uJiDR482LV/s2bN1LlzZ23atElDhgzRl19+KavV6goWJal3796yWq3atGlTpeFiUVGRioqKXJ9nZ2f76A4bvmdX71CxObza+0+55CwpJEIymXw4KgAAUBnCRQC+E9lEOvqzCo4fltS00a63KJ3okp2RZ5MsxpqLVC4CgDcNGzZMf/nLX9SqVSvt2bNH//znP3XJJZdo69atslgsSktLU2hoqOLi4tyOS05OVlpamiQpLS3NFUaeLCkpybVPRWbPnq0HH3zQuzfUSE3cMsSzAzZLuu+gFBrpk/EAAICqES4C8J2yyrzi7COSmjba9RYluao2M3JtkqWscjGKNRcBwJuuu+461/POnTurR48eatWqlT7++GNdddVVlR7ncDhkOqnqzVRBBdyp+5xqxowZmjZtmuvz7OxstWzZ0tNbAAAACDiEiwB8p6wyz5HrXGMwsRFXLhpVm7lFJXLkHZFJonIRAHwsJSVFrVq10u7duyVJTZs2lc1mU2Zmplv14pEjR9S3b1/XPocPHy53rqNHjyo5ObnSa1ksFlksjfePaLVVEhSm+b3Xe3RMiL3A8ypHAADgdXSLBuA7ZeFZUL5zGnBjnhYdbQlWqDlIFtlkKspxbmTNRQDwqYyMDP3xxx9KSUmRJHXv3l0hISFavXq1a59Dhw7phx9+cIWLffr0UVZWlr7++mvXPl999ZWysrJc+8AHTCaVmMM9+vBkXUYAAOA7VC4C8J2IBElScGGGJDXqadEmk8kZrmaVTYkOCpHCYv06JgAINLm5ufr1119dn+/Zs0fbt29XfHy84uPjNXPmTF199dVKSUnR3r17dd999ykxMVFXXnmlJMlqtWrcuHG66667lJCQoPj4eE2fPl1dunRxdY/u1KmThg4dqltvvVXPPfecJOm2227T8OHD6RQNAABQAcJFAL5TVrkYZsuU1LgrF6Wy+8/Ocn4S2YSulgDgoW+++UYXX3yx63NjjcObbrpJCxcu1I4dO/TKK6/o+PHjSklJ0cUXX6ylS5cqOjradczcuXMVHBysa6+9VgUFBRo4cKAWL14ss9ns2ue1117T1KlTXV2lR4wYoaeffrqO7hIAACCwEC4C8J2ycDHK7gwXE6Mab+WiVHb/pmznJ0yJhoe++eYb9ezZU6NGjdJrr73m2l5aWqqOHTtq9+7dmj59uubMmeN67fjx42revLlatWqlnTt3VtmMAggEAwYMkMPhqPT1VatWnfYcYWFhmj9/vubPn1/pPvHx8VqyZEmNxggAANDYEC4C8J2ycNFa6qzWi49s5JWLkRaZTCdVLgIeMJpP5OTkuG3/6KOPXM0qMjMz3V5bvHix8vPzNXXqVIJFAAAAAD5BuAjAd8qq86KUL4tsjX5atLNbtlG5SLgIz8TGxkpyrjl3srlz56pZs2YKCgpyCxcdDocWLlyo2NhYjR49ui6HCgAAAKARIVwE4DthVjmCQmQqLVa8chQf0bjDxYSo0BPToqMIF2vE4ZCK8/09Cs+ERHhlfc3Y2FiZTCa3ysXt27dr7dq1evTRR/X222+7hYurV6/WL7/8orvvvluRkZG1vj4AAAAAVIRwEYDvmEwqCU9QSF6a2oTnKdgc5O8R+VVCpEViWnTtFOdLs5r5exSeue+gFFr7cM9sNis6OtqtcnHu3LkKDw/XhAkTtGrVKrdw8ZlnnpHZbNbkyZNd28aOHau9e/dq7dq1lV6nOvsAAAAAgKFx/6YPwOeKLAmSpFZhBX4eif8lRIWqiQgXUXOxsbGuysW0tDS9+eabGj16tBISEmS1Wl3h4r59+/Txxx9r5MiRatWqlT+HDAAAAKCBo3IRgE/lB8cpSlKL0NzT7tvQJUZZZDKx5mKthEQ4KwEDSUiE104VFxenvXv3SnJWJtpsNt1+++2SpJiYGFe4+Oyzz8put7teAwAAAABfoXIRgE9lm2MlSc1CCBcToyxKKAsXSyMS/TyaAGUyOacYB9KHF7s0x8XFKTc3VwUFBXr22Wc1ePBgnX322ZIkq9Wq7Oxs5efn68UXX1S3bt100UUXVXieZ555RmeccYbCwsI0dOhQ7du3r9JrpqWlqXv37hoyZIhycnJUUFCgW2+9VVarVXFxcZo0aZJmzJih1q1be+0+AQAAAAQOwkUAPnXcZJUkNQnK9vNI/C8+IkQJZd2ic4Lj/DwaBKLY2FjZ7Xa98MILSk9P15133ul6LSYmRpL0/PPP6+jRo5VWLX777bdavny5PvzwQ33++ec6fPiwrrzySjkcjnL7/vzzz+rTp4+6dOmijz76SNHR0Zo+fbo++OADvfLKK9q8ebOsVqsWLFjgmxsGAAAAUO8RLgLwqaOl0ZKkeOWcZs+GL7QkWyEmuyTpaGmUn0eDQBQX5wylH3vsMXXs2FFDhgxxvWa1OoP8OXPmKCkpSddff32F5ygpKdFrr72m8847T3369NGrr76qbdu2ac2aNW77bdy4URdccIFGjRqlxYsXKyQkRLm5uVq0aJEefvhhXXHFFerQoYNmz56tTp06+eiOAQAAANR3hIsAfOqw3RkuWkuP+3cg9UHuUUlStiNC6QXemyqLxsMIF1NTU3X77bfLdNKUa6Ny8eDBg5o4caIsFkuF5+jQoYMSEhJcn3fu3FlWq1U7d+50bfvxxx81aNAg3XvvvXr00Udd23/77TfZbDb17t3b7Zx9+vSp/c0BAAAACEiEiwB8KrXYWaEXVZLp55HUA3nOcPGow6qMXJufB4NAZISL8fHxGjNmjNtrRuViSEiIJk6cWOk5TJWsAXny9pYtW6p79+564403lJ6eXu1zAAAAAGh8CBcB+NQfRZGSpLBiwkUjXMxQjDLyivw8GASif/zjH3I4HMrIyFBEhHsX6htuuEEOh0M2m00pKSmVnuPnn3/WsWPHXJ/v3LlTWVlZblObo6Oj9cknnyg2NlYDBgxQWlqaJOnMM89UaGiovvzyS7dzbt682Ru3BwAAACAAES4C8KnfC8IlSSGFGVIFDSMaFSNcdMQoPYdwEf4RHBysG2+8Ud999502b96sMWPGqGvXrho4cKDbfpGRkVqxYoXOOOMM9e/fXwcOHFBUVJTGjx+vBx54QB9++KF++eUX3X///frpp5+oZgQAAAAaKcJFAD5TVGLX/kJndVWQvUgqauRNXU4OF/OYFg3/+NOf/qQhQ4bosssu04ABA5SQkKBly5ZVGA6GhYXp/fff19lnn61+/fpp7969mjNnji6//HLdeOON6tWrlzIzMzV27FiFhYX54W4AAAAA+FuwvwcAoOE6lmdToSzKdYQpylToDNfCYvw9LP8pCxfTZVVGLpWLqHuLFy92Pb/99ttPu48khYaGatmyZW7bFi1apEWLFrk+v+SSS9S+fXuvjRMAAABA4CBcBOAzRtOS4yarolQo5aVLCWf6eVR+ZISLNHRBANu5c6e2bNmivn37ymaz6dVXX9Xnn3+u5cuX+3toABozW75n+4dESCznAACAVxAuAvCZ9LLqvBxzrGQ/7ArXGq08Z9fdDEeM670BAk1QUJCee+453X777SotLVWHDh307rvvavjw4f4eGoDG7PGzPNv/voNSaKRvxgIAQCNDuAjAZ4zqvPyQeMkuwsWT1lykchGBqlOnTuW6RQMAAABovAgXAfhMRp6zOq/YEi8VylW512gZ4aJilFNUosJiu8JCzH4eFAAAgakkKEzze6+v9v4h9gJN3DLEhyMCAKBxIlwE4DNGdZ49PEHKkpTfiMPFEptUmCVJygqKlezOhjfNYsP9Oy4AAAKVyaQSM/+OAgDgb0H+HgCAhivdmPob2cT52JinRRvBalCwQiLiJImp0QAAAACAgEe4CMBnjGnR5ugk54bGHC4a9x6RqPjoMEmiqQsAAAAAIOAxLRqAzxzLc1bmhVqNcLERT4s2wsXIJkqwWCQRLgIAAAAAAh/hIgCfMab9RsSnODc05srFXCNcTFRiWKgkKSOPadEAAAAAgMDGtGgAPuFwOFyVedFGuJifIZXa/TgqPzKC1agkJUY5KxczqFwEAAAAAAQ4wkUAPpFns6uopFSSFNekqXOjo1QqyPTjqPzo5GnRkc7KxXQaugAAAAAAAhzhIgCfMKryIkLNiggLk8LjnS801qnRxnqTkYlKiGLNRQAAAABAw0C4CMAnjKq8hChnlZ4imzgfc4/4aUR+dnLlYtl7kkHlIgAAAAAgwBEuAvAJo3IxIdJZpecKFxtt5eKJcLGJseZiHpWLAAAAAIDARrgIwCeMTsiJrsrFROejMT24sXGbFn2icrG01OHHQQEAAAAAUDuEiwB8olzlYlSS8zGvEU6LdjjcKhfjyxq6lJQ6lF1Y7MeBAQAAAABQO4SLAHzCWHMx3lW5aISLjXBadFGOZC+bAh2RKEuwWdFhwZLoGA0AAAAACGyEiwB84ljZtOiEyFOmRec2wnDRCFRDo6TQCEk6se4iHaMBAAAAAAGsTsLFBQsWqE2bNgoLC1P37t21YcOGah33xRdfKDg4WOedd55vBwjA64xmJYlRp06LbsThohGw6kQXbSoX0Vjs3btXJpNJY8eO9fdQAAAAAHiRz8PFpUuX6o477tD999+vbdu26aKLLtKwYcO0f//+Ko/LysrSmDFjNHDgQF8PEYAPZJSFZgmuadFGt+hGuOaiK1xMcm0y1qKkYzSq65tvvpHJZNINN9zgtr20tFTt27eXyWTS3Xff7fba8ePHFRkZqbPPPlsOR2A3D2rs9w8AAADUVz4PF5944gmNGzdO48ePV6dOnTRv3jy1bNlSCxcurPK4CRMmaNSoUerTp4+vhwjAB4yKPFdDF1e42Ai7RZ/UzMVA5SI8FRcXJ0nKyclx2/7RRx9p9+7dkqTMzEy31xYvXqz8/HxNnTpVJpOpbgbqI439/gEAAID6yqfhos1m09atWzV48GC37YMHD9amTZsqPe6ll17Sb7/9pv/3//6fL4cHwEdKSx065poWfUrlYnG+VJTrp5H5iRGonjQtOpE1F+Gh2NhYSVJurvv/P3PnzlWzZs3UokULt3DN4XBo4cKFio2N1ejRo+tyqD7R2O8fAAAAqK+CfXny9PR02e12JScnu21PTk5WWlpahcfs3r1b9957rzZs2KDg4NMPr6ioSEVFJ345z87Ort2gAdTa8YJilZbNQIwzGrpYoqSQCGe4mHfU+XljUUHlYqKrcpFw0RMOh0P5+fn+HoZHIiIivFI1FxsbK5PJ5Fa5t337dq1du1aPPvqo3n77bbdwbfXq1frll1909913KzIystbX97fGfv8AAABAfeXTcNFw6i9VDoejwl+07Ha7Ro0apQcffFDt27ev1rlnz56tBx980CvjBOAdRjVebESIQswnFUhHJkrH9zvDtvg2fhqdH1Q4LdqoXGRatCfy8/MVFRVYwXRubq5Xwi2z2azo6Gi3yr25c+cqPDxcEyZM0KpVq9zCtWeeeUZms1mTJ0+u1vnHjh2rvXv3au3atbUe67/+9S/9/PPPbtuMcW/cuLHCpi733nuvOnbsWOk5vXH/1blHb74PAAAAQGPg03AxMTFRZrO5XJXikSNHylUzSs51lL755htt27ZNf/vb3yQ5F2p3OBwKDg7WJ598oksuucTtmBkzZmjatGmuz7Ozs9WyZUsf3A2A6jqx3mKo+wuRSSfCxcakgmnRxnuTkUe4iOqLjY11Ve6lpaXpzTff1NixY5WQkCCr1ap9+/ZJkvbt26ePP/5YI0eOVKtWrap17ieffFJ2u90r41y5cqXWrVtX4Wu//fabfvvtt3Lbx44dW2W4KPn2/gEAAADUjE/DxdDQUHXv3l2rV6/WlVde6dq+evVqXXHFFeX2j4mJ0Y4dO9y2LViwQGvWrNE777yjNm3KVzpZLBZZLBbvDx5AjRkdkI3qPBejci+3kXWMrqJykWnRnomIiCi35l59FxER4bVzxcXFae/evZKclXk2m0233367JOe/oUbl3rPPPiu73e56rTqsVqvXxllR1d/evXvVpk0b3XTTTVq8eHGNzuvL+wcAAABQMz6fFj1t2jSNHj1aPXr0UJ8+ffT8889r//79mjhxoiRn5WFqaqpeeeUVBQUFqXPnzm7HJyUlKSwsrNx2APWXMdXX1czFENVIO0ZXEC42KQsXcwpLVFhsV1iI2R8jCzgmk6lRr58XFxenH374QQUFBXr22Wc1ePBgnX322ZKc4WB2drby8/P14osvqlu3brrooovcjt+4caP+/ve/6/vvv5cktW3bVo899piGDBlSbjpwQUGBpk6dqrfeektBQUH661//KqvVqjfeeMMV8NW12t6/4ZlnntG///1vHTlyRAMGDNBzzz1XaYVjWlqaLrvsMiUmJuqdd95RcHBwvXtfAAAAAH/yabdoSbruuus0b948PfTQQzrvvPO0fv16rVixwvVD/KFDh7R//35fDwNAHTLWXIwvNy3aCBcbUeWivUTKP+Z8flK4GBMerOAg59qzx5gajWqKjY2V3W7XCy+8oPT0dN15552u12JiYiRJzz//vI4ePVquas9ut2vEiBHq0aOHtm7dqm+//VYPPvhgpZWV06dP1wcffKBXXnlFmzdvltVq1YIFC3x3c9VQm/s3fPvtt1q+fLk+/PBDff755zp8+LCuvPJKORyOcvv+/PPP6tOnj7p06aKPPvpI0dHR9fJ9AQAAAPypThq6TJo0SZMmTarwtdNNjZo5c6Zmzpzp/UEB8JmjrsrFU6dFJzkfG9O06PwMSQ7JFCRFxLs2m0wmJUSF6nB2kTJybWoWG+6/MSJgxMXFSZIee+wxdezYUUOGDHG9ZkxrnjNnjpKSknT99de7HZuVlaXMzExdffXVrqZp7dq1q/A6ubm5WrRokZ566inXMiazZ8/W559/Xm4d5bpUm/s3lJSU6LXXXlNCQoIk6dVXX1WXLl20Zs0aDRw40LXfxo0bdcUVV2jixIl69NFHJdXf9wUAAADwJ59XLgJofI7mOCsXy4eLZQ1NGtO0aGNKdESCFOQ+9TkhsmzdxTzWXUT1GOFaamqqbr/9dplMJtdrRuXewYMHNXHixHLrEcfHx2vcuHEaPHiwhg4dqn/961/atWtXhdf57bffZLPZ1Lt3b7ftffr08ebteKw292/o0KGDK1iUpM6dO8tqtWrnzp2ubT/++KMGDRqke++91xUsSvX3fQEAAAD8iXARgNcZTUqaRJ/yy31UWeViY5oWXcF6i4bEsvcnPYdwEdVjhGvx8fEaM2aM22tG5V5ISIhrXeNTLVq0SN98840GDx6sdevWqXPnznr22Wcrvd7J4V19UNv7lyq/p5O3t2zZUt27d9cbb7yh9PTyfwypb+8LAAAA4E+EiwC8zggXy1cuGmsuHq3jEfmRUaVpVG2eJLFsTcoM1lxENf3jH/+Qw+FQRkZGubUSb7jhBjkcDtlsNqWkpFR6js6dO2vatGn63//+p3HjxmnhwoXl9jnzzDMVGhqqL7/80m375s2bazz21q1by+Fw1LhTtOSd+//555917Ngx1+c7d+5UVlaWOnXq5NoWHR2tTz75RLGxsRowYIBryrMv3hcAAAAg0NXJmosAGg+Hw3GicrGyNRcLMiV7sWQOqePR+UEVlYsJZd20jQY4gC/9+uuveuGFF3T55ZerZcuWOnjwoDZs2KBzzz233L5RUVEaP368HnjgAaWkpKhjx456+eWX9dNPP7mqBwNVcHCwbrzxRs2ePVsFBQWaPHmyunbt6rbeoiRFRkZqxYoVuuqqq9S/f3999tlnatGiRYN9XwAAAICaonIRgFfl2ewqLC6VJCVGn9ItOjxOMpWtO9hY1l2sMlx0hq8ZuVQuwvciIyO1e/duXX/99Wrfvr2uvvpq9e7du9JOx3PmzNHll1+uG2+8Ub169VJmZqbGjh2rsLCwOh65d/3pT3/SkCFDdNlll2nAgAFKSEjQsmXLKpzqHBYWpvfff19nn322+vXrp7179zbY9wUAAACoKSoXAXiV0cwlMtSsiNBTvsUEBTmnB+cedq67GFP51MUGwxUulp8WnVA2LfoolYuoAykpKXrvvfcqff3U6coRERFatGiRFi1a5Np2ySWXuDpNB6KT7/H2228/7T6SFBoaqmXLlrlta2jvC9Ao2fI9PyYkQmLNVQAAyiFcBOBVrvUWT23mYohMKgsXG8m6i641Fytv6ELlIuqjnTt3asuWLerbt69sNpteffVVff7551q+fLm/h+ZXvC9AA/H4WZ4fc99BKTTS+2MBACDAES4C8Cqj83G5Zi4Go4Ivt7GEi1V0i44sCxfzqFxE/RMUFKTnnntOt99+u0pLS9WhQwe9++67Gj58uL+H5le8LwAAAIA7wkUAXnWiU3RoxTtElTV1aTSVi0ecj1U2dLHJ4XBUuOYb4C+dOnUq1xUZvC9AICsJCtP83us9OibEXqCJW4b4aEQAADQMhIsAvOroaSsXy0I2I3Rr6FzTosuvuRhftuZiSalDWQXFio2oJJAFAAC1ZzKpxBzu71EAANDg0C0agFcdLVs/sEmlay4a4WIj6BZty5OKyxaMj0wq93JYiFnRYc6/8aSz7iIAAAAAIAARLgLwqhPTok8TLuY2gspFY+p3cHilC8Ab71MGHaMBAAAAAAGIcBGAV502XGxMay6e3Cm6kvUUE8qmRmfkUbkIAAAAAAg8hIsAvMpYc7FJdCXrBxprDzaGcNGozqxgvUWD0dQlncpFAAAAAEAAIlwE4DUOh8MVkjWJCqt4p8iTKhdLS+toZH5iNK2JSq50F6PCkzUXAQAAAACBiHARgNfk2ewqLHYGhomnq1wsLZEKj9fNwPzFqFyMalLpLgmsuVgph8Ph7yEAXsd/1wAAAGhoCBcBeE162ZToiFCzIkKDK94p2CKFWZ3PG/rU6NzqVC4yLfpUZrNZklRcXOznkQDeZ/x3bfx3DgAAAAQ6wkUAXnPaZi4Go2N0gw8XDzsfjangFWhS9l4Za1VCCgkJkcViUVZWFlVeaFAcDoeysrJksVgUEhLi7+EAAAAAXlFJaREAeM4IyIxqvEpFJkkZv56o7GuoXJWLVYSL0WXhIpWLbhITE5WamqoDBw7IarUqJCREpko6bgP1ncPhUHFxsbKyspSbm6vmzZv7e0gAAACA1xAuAvAaVzOX6NNVLhodo9N9PCI/yzt9uJgU7Wx8cyS7SA6HgwCtTExMjCQpPT1dqampfh4N4B0Wi0XNmzd3/fcNz61fv15z5szR1q1bdejQIS1btkwjR450ve5wOPTggw/q+eefV2Zmps4//3w988wzOuecc1z7FBUVafr06XrjjTdUUFCggQMHasGCBWrRooVrn8zMTE2dOlUffvihJGnEiBGaP3++YmNj6+pWAQAAAgbhIgCvOVrW8fi006KNsC2vsVQuVr7mohHEFpWUKqeoRDFhTJU0xMTEKCYmRsXFxbLb7f4eDlArZrOZqdBekJeXp65du+rmm2/W1VdfXe71xx57TE888YQWL16s9u3b65FHHtGll16qXbt2KTo6WpJ0xx13aPny5XrzzTeVkJCgu+66S8OHD9fWrVtda2GOGjVKBw4c0MqVKyVJt912m0aPHq3ly5fX3c0CAAAECMJFAF5T/TUXjXCxAa+5aMuTbLnO55GVd4sODzUr2hKsnKISHckuIlysQEhICKEMAEnSsGHDNGzYsApfczgcmjdvnu6//35dddVVkqSXX35ZycnJev311zVhwgRlZWXpxRdf1KuvvqpBgwZJkpYsWaKWLVvq008/1ZAhQ/TTTz9p5cqV2rx5s84//3xJ0gsvvKA+ffpo165d6tChQ93cLAAAQIAgXATgNa41F6s7LTq3AYeLRtVicLhkia5y1ybRFuUUlehoTpHOSoqqg8EBQMOzZ88epaWlafDgwa5tFotF/fv316ZNmzRhwgRt3bpVxcXFbvs0a9ZMnTt31qZNmzRkyBB9+eWXslqtrmBRknr37i2r1apNmzZVGi4WFRWpqOjE+rnZ2dk+uEv40/w1v6rEHF7t/e+8tL0PRwMAQP1Bt2gAXuNac7Ha06IbcLho3FtUE+k06yjS1AUAai8tLU2SlJzsvhRFcnKy67W0tDSFhoYqLi6uyn2SksqvlZuUlOTapyKzZ8+W1Wp1fbRs2bJW94P6J8ReoGAPPmTLkxwOfw8bAACfo3IRgNecaOhyum7RZdOEG/Kai7mHnY9VrLdoMMLFI9mFvhwRADQKpzbGqk6zrFP3qWj/051nxowZmjZtmuvz7OxsAsYGZuKWIZ4dsFnSfQel0EifjAcAgPqCykUAXuFwOJSeU82GLq5wsQF3izamRUdW3inaYHSMpnIRAGquadOmklSuuvDIkSOuasamTZvKZrMpMzOzyn0OHz5c7vxHjx4tVxV5MovF4mpEZXwAAAA0BlQuAvCKPJtdBcXOjr7VDhdtuZItXwqN8PHo/MDVKfr04aJrWnQ24SIA1FSbNm3UtGlTrV69Wt26dZMk2Ww2rVu3Tv/+978lSd27d1dISIhWr16ta6+9VpJ06NAh/fDDD3rsscckSX369FFWVpa+/vpr9erVS5L01VdfKSsrS3379vXDncGfSoLCNL/3eo+OCbEXeF7lCABAACNcBOAV6WXNXMJDzIq0nOZbiyVaCg6TSgqdU6NDW/t+gHUtr/rhYhJrLgJAteTm5urXX391fb5nzx5t375d8fHxOuOMM3THHXdo1qxZateundq1a6dZs2YpIiJCo0aNkiRZrVaNGzdOd911lxISEhQfH6/p06erS5curu7RnTp10tChQ3XrrbfqueeekyTddtttGj58OJ2iGyOTyaMmLgAANEaEiwC84khZuJgUc5qqRcnZ4CQqSTq+31nhF9fat4Pzh5pULuYQLgJAVb755htdfPHFrs+NNQ5vuukmLV68WPfcc48KCgo0adIkZWZm6vzzz9cnn3yi6Oho1zFz585VcHCwrr32WhUUFGjgwIFavHixzGaza5/XXntNU6dOdXWVHjFihJ5++uk6uksAAIDAQrgIwCuO5DibkRhVeKcVlVwWLpZf16pB8GDNRVdDF8JFAKjSgAED5Kii+67JZNLMmTM1c+bMSvcJCwvT/PnzNX/+/Er3iY+P15IlS2ozVAAAgEaDhi4AvOJItlG5GFa9A4wuyjlpVe8XqDzoFm0EssfybCq2l/pyVAAAAAAAeBXhIgCvOFyTykXpRIVfQ+JweDQtOi4iVMFBJklSRq7NlyMDAAAAAMCrCBcBeIXR6TgpupqVi9FNnY+5DbBy0ZYrlRQ4n1cjXAwKMrk6bBvTywEAAAAACASEiwC8wtXQpdqVi2WhW0OsXDTuKTRKCo2s1iE0dQEAAAAABCLCRQBeYVTcJVd7zcWyysWGuOaiq5lLk2ofkkRTFwAAAABAACJcBOAVh10NXahc9KSZi4HKRQAAAABAICJcBFBrhcV2ZRUUS/JgWrSx5mLeEam0gXVIzjvqfIzyvHKRcBEAAAAAEEgIFwHUmhGIhQYHyRoeUr2DIptIMkmlJVLBMd8Nzh9qUblIQxcAAAAAQCAhXARQa0YglhRtkclkqt5B5hApIsH5vKGtu+hac/H0naINTIsGAAAAAAQiwkUAtXYk28NO0Qajsi+3gYaLUZ6Ei85GODR0AQAAAAAEEsJFALVmBGJJ0dXsFG2INsLFBtbUJc/zcPHkNRcdDocvRgUAAAAAgNcRLgKoNde06Op2ijYYlYsNdVp0DdZcLCopVU5RiS9GBQAAAACA1xEuAqi1w2XTopNjPKxcjGqAlYsOx4mGLpHV7xYdFmJWdFiwpBPTzAEAAAAAqO8IFwHUmjEtuglrLkoFmZLd5nwe3dSjQ42p0Uey6RgNAAAAAAgMhIsAas0Iwzxu6NIQ11w0pniHx0vBnr0fKdZwSVIa4SIAAAAAIEAQLgKotaM1bejSENdczDnkfPSwalE6Ma2ccBEAAAAAECgIFwHUiq2kVBl5zmnAyR43dCkL4BpS5aKx3mINwsWmVuf7dziLcBEAAAAAEBgIFwHUSnqus2oxOMikuIhQzw6OSnI+2nIkW56XR+YnrsrFFI8PbVpWuXiIcBEAAAAAECCC/T0AAIHt5GYuQUEmzw62REshEVJxvrPiL76tD0ZYx4wp3saUbw8Y06IPMy0aAICGwZbv+TEhEZLJw5+pAADwozoJFxcsWKA5c+bo0KFDOuecczRv3jxddNFFFe773nvvaeHChdq+fbuKiop0zjnnaObMmRoyZEhdDBWAhw7XtJmL5PzBOSpJytwr5TSwcLEmlYtW1lwEAKBBefwsz4+576AUGun9sQAA4CM+nxa9dOlS3XHHHbr//vu1bds2XXTRRRo2bJj2799f4f7r16/XpZdeqhUrVmjr1q26+OKLdfnll2vbtm2+HiqAGjDCRSMY85hr3cXDXhqRn7nCxRqsuVhWuXg0p0gl9lJvjgoAAAAAAJ/weeXiE088oXHjxmn8+PGSpHnz5mnVqlVauHChZs+eXW7/efPmuX0+a9YsffDBB1q+fLm6devm6+EC8JCxPmCKNbxmJzDWXWwo4WJuzcPFhCiLgoNMKil1KD3XVvPAFgAA+E1JUJjm917v0TEh9gJN3MJMLQBAYPJpuGiz2bR161bde++9btsHDx6sTZs2VescpaWlysnJUXx8fIWvFxUVqaioyPV5dnZ2zQcMwGNpWbWsXIxuQJWLDketKhfNQSYlRVt0MKtQh7IKCBcBAAhEJpNKzDX8oysAAAHIp9Oi09PTZbfblZzs3tggOTlZaWlp1TrHf/7zH+Xl5enaa6+t8PXZs2fLarW6Plq2bFnrcQOovkNZBZKklBpPiy6rXMxpAOFiQaZktzmf16ChiyQlW2nqAgAAAAAIHD5fc1GSTKd0O3M4HOW2VeSNN97QzJkztXTpUiUlJVW4z4wZM5SVleX6+OOPP7wyZgDV46pcjGHNRVfVYni8FFyDBjc68T4a7ysAAAAAAPWZT6dFJyYmymw2l6tSPHLkSLlqxlMtXbpU48aN09tvv61BgwZVup/FYpHFUrNf4gHUjsPh8MKai2XfC3KqV81cr+Uccj7WoFO0IdkIF7OLTrMnAAAAAAD+59PKxdDQUHXv3l2rV69227569Wr17du30uPeeOMNjR07Vq+//rouu+wyXw4RQC0czy9WUYmzq3FSTA1D/piyIM4I5gKZa73Fmk2Jlk6sXcm0aAAAAABAIPB5t+hp06Zp9OjR6tGjh/r06aPnn39e+/fv18SJEyU5pzWnpqbqlVdekeQMFseMGaMnn3xSvXv3dlU9hoeHy2q1+nq4ADxgVC0mRIYqLMRcs5NEN3M+5qdLJUU1nk5cL7g6Rde8ctFYu5Jp0QAAAACAQODzcPG6665TRkaGHnroIR06dEidO3fWihUr1KpVK0nSoUOHtH//ftf+zz33nEpKSjR58mRNnjzZtf2mm27S4sWLfT1cAB5Iy3Y2c6lVV+OIeMlskexFzsq/uFZeGp0f1KJTtOHEtGjCRQAAAABA/efzcFGSJk2apEmTJlX42qmB4dq1a30/IABecWK9xVqEiyaTM4w7vs85NbohhItRNQ8XT27oUt3mVwAAAAAA+EuddIsG0DC5OkXXJlyUpJiyqdHZB2s5Ij/zQuWi8V4WFNuVXVjijVEBAAAAAOAzhIsAaqzWnaIN0Q2kqYsXwsWwELOs4SGSaOoCAAAAAKj/CBcB1JircjGGykU5HCc1dKl5uCi5T40GAAAAAKA+I1wEUGOHspwNXWq15qLUMCoXCzIlu835PCq5VqcypkYb7y8AAAAAAPUV4SKAGnE4HCemRcfWclp0TFm4mB3A4aIxJTo8Xgq21OpUzeOc72dqJuEiAAAAAKB+q5Nu0QAanpyiEuXb7JK8MC06umxadE4AT4s2xm5UYdZC87KwNvU406IBAGh0bPmeHxMSIZlM3h8LAADVQLgIoEaM9QBjI0IUHmqu3clOrlx0OALzh2NjvUhj/chaOBEu1uCXCwAAENgeP8vzY+47KIVGen8sAABUA9OiAdRI6nHnlN1aVy1KJ6r97EVS/rHan88fvBkuGtOijzMtGgAAAABQv1G5CKBGDpStB9giLqL2Jwu2SBEJUn6Gc3pxZELtz1nXslOdj9YWtT6VUbmYllUoe6lD5qAArOQEAADVVhIUpvm912vKJR5ULdrya1blCACAlxEuAqiRVFe4WMtmLoboZs5wMfuQ1LSLd85Zl7xYuZgUbZE5yKRiu0NHc4pc3aMBAEADZTKpxBzO1GYAQEBiWjSAGjmQ6VwP0GvhorHuYqA2dfFiuBhsDnJNN2fdRQAAAABAfUblIoAaMdYDNKbw1lr0SU1dAlFW2bTomOZeOV3zuHClHi/QgcwCdW/llVMCAIB6bu7qX6q9b7C9QFN8OBYAAKqLykUANeLVNRelExV/gVi5WJQjFWU5n3uhclE6EdoePF7olfMBAAAAAOALhIsAPFZYbNfRnCJJJzob15oRygVi5aIxZkuMZIn2yimNcJFp0QAAAACA+oxwEYDHDmU5q+nCQ8yKiwjxzkmjjcrFQAwXjSnR3qlalE6EtkbjHAAAAAAA6iPCRQAeO7mZi8lk8s5JjYYu2QE4LdrVzMU76y1KTIsGAAAAAAQGwkUAHjOq6bw2JVo60dCl4JhUHGCBmhc7RRuauaZFF8jhcHjtvAAAAAAAeBPhIgCPnWjm4sVwMTxOCi47X6A1dck+4Hz0QeViblGJsgtKvHZeAAAAAAC8iXARgMdSj5dVLsZ6qVO0JJlMkrUsnMtK9d5564IPKhfDQ81KiAyVJB2gqQsAAAAAoJ4K9vcAAASek9dc9CprCynjVynrgHfP62s+WHNRcr6/GXk2/XGsQOc0s3r13AAAoOF4dvUOFZur93PZlEvOkkIinH/YBQDACwgXAXjMJ2suSs5wUQrAcNH73aIlqWV8hL47kKX9x/K8el4AANCwTNwypPo7b5Z030EpNNJn4wEANC5MiwbgkaISu9KynQ1XvF+52NL5mPWHd8/rS7Z8qSDT+dzL4WKrBOe0830ZTIsGAAAAANRPVC4C8MiBzAKVOqSIULOaRFm8e/JArFw0pkSHRklh3p263CreWVGw/xjhIgAAcFcSFKb5vddXe/8Qe4FnFY4AAFQT4SIAj+wvq6I7Iz5CJm+v1ROQ4eJJU6K9/H6cQeUiAACojMmkkmquswgAgC8xLRqAR/ZmONf/a53gg3V6Tp4W7XB4//y+4KP1FqUT06JTjxeo2F7q9fMDAAAAAFBbhIsAPGJU0RnBl1cZ3ZaLT1rHsL47XrY+pBGMelFydJhCg4NkL3Xo4PECr58fAAAAAIDaIlwE4JF9ZZWLrXxRuRgSJkUmOZ8HSlOXrP3Ox9gzvH7qoCCTzohnajQAAAAAoP4iXATgEZ9WLkqBt+7i8bJw0QeVi5LUyggX/397dx4fZXnuf/w72UlIBkLIxhoEZI8KsrgUi8hSEau2ggvSU+spxwpFsKeox5/UX49Qj1uLBTesevS88Jxf0aMVlVAWtRCWEAQRkCUQlsSQEJKQfbl/f0wyEsgyM2TmmUk+79crrwkzz/PcV64M4eHKdd83m7oAAAAAAPwQxUUALqutMzpeSHGxkYZp0V7oXJS+39TlOMVFAAAAAIAforgIwGWnzparutYoLDhISXYv7U54/qYu/q6u7vsNXbp4uXOxfjo6AAAAAAD+hOIiAJdl13fP9YztpOAgm3cGCaTOxXPfSbVVki1Yim773aKl79e2ZM1FAAAAAIA/orgIwGVH67vn+npjM5cGDR2AZwOgc7FhvcWYHlJwiFeGaJgWnX2mTMYYr4wBAAAAAICnvPO/YQDtUkP3XMMOxl4RSJ2LDVO3vTQlWpJ6dY1UcJBNZVW1+q64Uon2CK+NBQAAOogqD2ZEhEZKNi/NXAEABDSKiwBcduT0OUlSSpwXOxcb1lw8lyvVVEoh4d4b61J5eadoSQoLCVKf2EgdyS/V4dPnKC4CAIBL92x/98957JQU5sV7QABAwGJaNACXHT7tmBbdP76z9waJ7CaF1BfQik95b5y20FBc9GLnoiT16+7I9+H64i4AoHmLFy+WzWZr9JGYmOh83RijxYsXKzk5WZ06ddINN9ygvXv3NrpGZWWl5s6dq7i4OEVFRWn69Ok6cSIAOuoBAAAsQOciAJdU1tQ6dyz2anHRZnNMjS445Jh2HJvivbEulXNadG+vDnNZfJTW7ZMO51FcBABXDB06VOvWrXP+OTg42Pn5M888o+eff15vvvmmBg4cqN///ve66aabdODAAUVHR0uS5s+fr48++kirVq1St27dtHDhQk2bNk0ZGRmNrgUEkpqgCC0b+7lb54TWlmvO9sleiggA0F5QXATgkqP5ZaozUufwEMVHe3mqcpc+juJi4THJj2uLzk1nvDgtWpIuq+9cPETnIgC4JCQkpFG3YgNjjF588UU9/vjjuv322yVJb731lhISEvRf//Vf+uUvf6mioiKtXLlS//mf/6mJEydKkt555x316tVL69at0+TJFFoQoGw21QR3sjoKAEA7xLRoAC5pmJJ7WXxn2by9mHfXvo7HwqPeHedSGOOzzsWGTtHDeaVeHQcA2ouDBw8qOTlZKSkpmjlzpo4cOSJJysrKUm5uriZNmuQ8Njw8XOPHj9fmzZslSRkZGaqurm50THJysoYNG+Y8pimVlZUqLi5u9AEAANARUFwE4JJD9VNy+3f34pToBoFQXCwrkKrrd1ps2OHaSy6Lc+Q8t7hC5yprvDoWAAS6MWPG6O2339Znn32m1157Tbm5ubrmmmtUUFCg3NxcSVJCQkKjcxISEpyv5ebmKiwsTF27dm32mKYsWbJEdrvd+dGrl3e72gEAAPwFxUUALnEWF7253mKDQCguNmzm0jnR6zta2yNDFdfZMcYRpkYDQIumTp2qO+64Q8OHD9fEiRP18ccfS3JMf25wYQe+MabVrvzWjnn00UdVVFTk/Dh+/PglfBUAAACBg+IiAJc4p0V3j/L+YA3FxbPHvD+Wp3y0U3SDhryzYzQAuCcqKkrDhw/XwYMHneswXtiBmJeX5+xmTExMVFVVlQoLC5s9pinh4eGKiYlp9AEAANARsKELgFbV1RlnUcs3nYt9HI+lp6XKc1K4D8Z0V2GW47Grb3acuSy+s7ZmnXF2kAIAXFNZWal9+/bp+uuvV0pKihITE5WWlqYrr7xSklRVVaVNmzbpD3/4gyRp5MiRCg0NVVpamu68805JUk5Ojr7++ms988wzln0dgNWWrT/k1oYwD9800IvRAAD8CcVFAK06ebZcFdV1Cg22qXdspPcHjLBLnbpK5YWO7sWEod4f011n6ouLsb4pLjasdfntdxQXAaAljzzyiG655Rb17t1beXl5+v3vf6/i4mLNnj1bNptN8+fP19NPP60BAwZowIABevrppxUZGam7775bkmS323X//fdr4cKF6tatm2JjY/XII484p1kDAACgMYqLAFq1P7dEknRZ984KCfbRagpd+zqKi4VH/bO46OPOxUFJ0ZKk/bnsPgoALTlx4oTuuusu5efnq3v37ho7dqzS09PVp4+jK/5f//VfVV5ergcffFCFhYUaM2aM1q5dq+joaOc1XnjhBYWEhOjOO+9UeXm5brzxRr355psKDg626ssCLBdaW+7eCVWlUmik1Mp6pgCAwEdxEUCr9uU4ClpDkny4flTXvtKpTP/d1OXMUcejjzoXByc6cn/8TLlKKqoVHRHqk3EBINCsWrWqxddtNpsWL16sxYsXN3tMRESEli1bpmXLlrVxdEDgmrN9snsnpEt67JQU5oP1ugEAlmJDFwCtaiguDvZ1cVHyz+JiTZVUfMLxuY86F7tGhSkxJkKSdKC+kxQAAAAAAKvRuQigVQ3Toq0pLvrhjtFnsyVTJ4VGSZ3jfTbs4KRo5RZXaF9OsUb1jfXZuAAAoGOqCYrQsrGfu3VOaG25+12OAICARnERQIvKqmp0tKBU0vfr/vlEl/odo/2xc9G53mJfn64jNDgpRhsOnNY3OXQuAgAAH7DZ3NohGgDQMTEtGkCL9ueWyBipe3S44jqH+27ghs7Fs8ekujrfjesKH+8U3aChc5RNXQAAAAAA/sInxcXly5crJSVFERERGjlypL744osWj9+0aZNGjhypiIgI9evXTy+//LIvwgTQBEvWW5Qke0/JFizVVEjnvvPt2K05v3PRhxq+BwdyS1RXZ3w6NgAAAAAATfF6cfG9997T/Pnz9fjjjyszM1PXX3+9pk6dquzs7CaPz8rK0o9+9CNdf/31yszM1GOPPaZ58+bpr3/9q7dDBdCE74uLPpwSLUnBoY4Co/R9Mc9fWNS52LdbpMJDglRWVatjZ8p8OjYAAAAAAE3x+pqLzz//vO6//3794he/kCS9+OKL+uyzz7RixQotWbLkouNffvll9e7dWy+++KIkafDgwdqxY4eeffZZ3XHHHS6PW1VVpaqqqjb5GoCObO/xMwpRrQbHR/r+71TXAdLZk9J3B6WkUb4duyVnsiWFSNG9JR/nZGhilHafOKvMo6fVIybUp2MD8B3uYQAAABAovFpcrKqqUkZGhhYtWtTo+UmTJmnz5s1NnrNlyxZNmjSp0XOTJ0/WypUrVV1drdDQxv+ZrqysVGVlpfPPxcWOLqvnnntOERERbfFlAB3aFZKu6CR99bdMffU3X48+QrKNkD45Kn1y8S8jrDNZsk2W3tsiaYtPR06VlNpJ2vNxpvZ87NOhAfhQRUWF1SEAwKWr8mCmRWikTzfMAwBcOq8WF/Pz81VbW6uEhIRGzyckJCg3N7fJc3Jzc5s8vqamRvn5+UpKSmr02pIlS/S73/2ubQMHAAAAAFyaZ/u7f85jp6SwqLaPBQDgNV6fFi1Jtgt+82SMuei51o5v6nlJevTRR7VgwQLnn4uLi9WrVy8tXLhQMTE+3oACaGfeST+qp9fs1/iB3bXi3pG+D+DIRmnVXVLc5dI/b/T9+E05+g/pv34idekrPejbrkVJOlpQqh/98QuFhgRp+2MTFRbik325APhYcXGxli5danUYAAAAQKu8WlyMi4tTcHDwRV2KeXl5F3UnNkhMTGzy+JCQEHXr1u2i48PDwxUeHn7R82FhYQoLC7uE6AHsySlTjYI1onecNX+fEi6XVCMVHpRCgqWgYN/HcKGiI5JqpO6XSRbkZEBiqDpHRuhsWbWOnKnQiJ5dfB4DAO/jHgZAoKoJitCysZ+7dU5obbnmbJ/spYgAAN7m1ZaXsLAwjRw5UmlpaY2eT0tL0zXXXNPkOePGjbvo+LVr12rUqFEXrbcIwLu+On5WkpTay25NAPaeUnC4VFslFR23JoYL5R90PMYNsGR4m82m1PqC4q767w8AAIDfsNlUE9zJrY/q4E5WRw0AuARen0+3YMECvf7663rjjTe0b98+Pfzww8rOztacOXMkOaY133fffc7j58yZo2PHjmnBggXat2+f3njjDa1cuVKPPPKIt0MFcJ7C0iodyS+VJGcxy+eCgqXYfo7PCw5ZE8OFCqwtLkpSaq8ukqRd2WctiwEAAAAAAMkHay7OmDFDBQUFeuqpp5STk6Nhw4ZpzZo16tOnjyQpJydH2dnZzuNTUlK0Zs0aPfzww/rzn/+s5ORk/elPf9Idd9zh7VABnGfb0TOSpP7xndU1ysLpeXH9pdP7pPxDUv+J1sXRoKFzsZt1xcWreneRJG0/dsayGAAAAAAAkHy0ocuDDz6oBx98sMnX3nzzzYueGz9+vHbu3OnlqAC0JP1IgSRpTEqstYF0q99l0B86F6srpLP1vwyxsHNxVN9YBQfZdPxMuU4Ulqln10jLYgEAAAAAdGxsMwqgSVuPOLrixva7eCMln/Kn4uKZw5KMFGGXorpbFkbn8BAN7+FYBzP9CN2LAACgHakqk6pK3fswxuqoAaBD80nnIoDAUlRWrX25xZKkMf38pXPxsLVxSI2nRNtsloYy7rJu2nX8rNKPFOgnI3taGgsAAECbeba/++c8dkoKi2r7WAAALqFzEcBFth89I2OkfnFRio+OsDaYhrUNi45L1eXWxuIHm7k0aOgo3XK4wOJIAAAAAAAdGZ2LAC7y5aF8SdLYyyyeEi1JkbFSp65SeaGjczBphHWx5PtPcXFUn64KDrLp5NlyHT9Tpl6xrLsIAAACU01QhJaN/VxzJ7jRtVhV5lmXIwCgzVFcBNCIMUbr9+dJkm4YaN26gk42m9R9sJS9WTq93z+KixbuFN0gKjxEV/Xuou1HC7XxQJ5mjetrdUgAAACesdlUE9xJL2w66fIpIbXlmlv/+ctpe1Qd3Mml8+ZO6C+FRlq+xA0AtCcUFwE0kpVfquwzZQoNtuna/nFWh+MQP8hRXMzbZ10MxpzXuTjQujjOM2FQgrYfLdTf91NcBAAAHdec7ZNdPzhdrNEIAG2MNRcBNLLhwGlJ0piUbooK95PfP8QPcTxaWVwsOi5VlUhBoVK3y6yL4zw3Do6XJG0+XKCyqhqLowEAAAAAdER+UjkA4C/W7/9OknTD5X4wJbpB90GOx7xvrIvhu/qx4wZKwaHWxXGeAfGd1Su2k46fKdc/DhXopiEJVocEAADgEw3rNLoqtLbcvQ5HAIDL6FwE4FRwrlLpR85IkiYO9qNCVfxgx+PZY1JVqTUxNBQ2E4ZYM34TbDabbhzk+D6t3ZtrcTQAAAA+VL9Oo6sfrq7JCABwH8VFAE6ffJ2r2jqj4T3s6hvnR+vQRMVJUY4pwDq935oYGoqLDYVOPzF5aKIk6dO9uaqorrU4GgAAgABQVeb4hbU7H8ZYHTUA+C2mRQNw+uirU5KkW1KTLI6kCfGDpKw8KW+/1GOk78dvWO8xfqjvx27BmJRYJdkjlFNUoY0H8jRlmB9+7wAAAPzJs/3dP4dNYACgWXQuApAk5RSVa9tRx5Tom0ckWxxNE5ybuliw7mJttXT6QH0c/tW5GBRk0/RUx/frf3edsjgaAAAAAEBHQ+ciAEnSqm3HZYyjE65HFz9ck8a5qYsFO0YXHJbqqqWwzlKX3r4fvxW3XtFDr3x+RH/fn6czpVWKjQqzOiQAAAC/4u4GMBKbwACAq+hcBKCa2jq9t/24JOnuMf5XPJN0XueiBcXFvL31MQyWbDbfj9+KwUnRGtYjRlU1dVq1PdvqcAAAAPyPmxvAsAkMALiO4iIA/X1/nnKLKxQbFaYpwxKtDqdpDbs0l5ySSvN9O7ZzvUX/2Sn6fDabTbPH9ZUkvZuerZraOmsDAgAAAAB0GBQXgQ7OGKMVGw9LkmZc3UvhIcEWR9SM8GipW/3i2zlf+XbsnN2OxwT/2szlfLekJqtrZKhOni3X2m++szocAAAAAEAHQXER6OA2Hy7QruNnFR4SpJ9fm2J1OC1LSnU8+ry4WD9e0hW+HdcNEaHBmjW2jyTpj+sOqq7OWBwRAAAAAKAjoLgIdGDGGD2f9q0k6a7RvdU9OtziiFphRXGxJFc6lyvZgqTEYb4b1wP3X9dP0REhOvBdiT7ek2N1OAAAAACADoDiItCBfbQ7RxnHCtUpNFhzxl9mdTitSxzhePRlcfHULsdj3EApLMp343rAHhmqX1zXT5L0H58dUEV1rcURAQAAAADaO4qLQAdVXFGtJWscG5U8eMNlSrRHWByRCxo6FwuzpPKzvhkzAKZEn+/+61OUZI9Q9pkyLVt/0OpwAAAA2oeqMqmq1L0PwzI1ADqGEKsDAGCNxR/uVU5RhXrHRuqBH/SzOhzXRMZK9t5SUbaUu0dKud77Y+bscjwmX+H9sdpA5/AQPXnLUM15J0OvbDqiSUMSldqri9VhAQAABLZn+7t/ziOHpLBI984JjZRsNvfHAgALUVwEOqD/2XFcq3eeVJBNemFGqiJC/XSH6KYkjXAUF3O+8k1xsWFadEPXZACYPDRBPxqeqDV7cvXguzv18bzr1CUyzOqwAAAAOhZPCpKPnfL7pXgA4EIUF4EOZvOhfD32/h5J0rwbB2hkn1iLI3JT0hXS/r9JpzK9P9a5PKnklCSblDjc++O1EZvNpiW3j9DeU8U6VlCmB97eobd+PlqRYfzIBwAAcFVNUISWjf3crXNCa8s1Z/tkL0UEAP6J/2kCHcjGA3ma806GqmuNpo1I0rwJA6wOyX09RzoeT2z3/lgndzoe4wZI4dHeH68N2TuF6pVZI/XTl7do+9FC/eKtHXp51kjFRIRaHRoAAEBgsNlUE9zJrVMoSALoiNjQBegA6uqMXtl0WL94a4cqquv0w8u769mfpiooKADXc+kxSpJNOntMKsn17ljH0x2PvUZ7dxwvGZQYozf/abQiw4K1+XCBbl++WQe/K7E6LAAAgParviDpzke1mwVMAPA3FBeBdm7PiSLNeHWLlnyyXzV1Rj++IlmvzBoVWOssni8iRoof4vj8+DbvjtVw/V5jvDuOF43s01X//ctxSoyJ0KG8c7r5T1/q+bRvVVxRbXVoAAAAuBC7UgMIQEyLBtqh0soabfr2tN7dekz/OFQgSYoIDdL/mTZUd43uJVug70DXa7SUt1c6sU0aMt07Y9RWSycz6scL3OKiJA3rYdeHD12rR1fv0d/35+lPfz+oN/+RpZmje+u2K3toUGJ04L8nAAAA2gM2gQEQgCguAgHMGKOi8mrlFFUoK79UX58s0u4TRdqWdUZVtXWSpCCbdOsVPfSvUy5Xkr2dTLnoNVrK+It3Oxdzd0s1FVJEF6lbAK5NeYH4mAi9PnuU1uzJ1fNpB3T4dKle/fyIXv38iJLtERrbr5tG9LSrf3y0+nWPUvfocIUG09wOAAAAAGhZuy0uvpj2rSKiOjd6rrlm8ea6yE2zZzR/sebHaPqVljrY2ypeT7rkm43XzZgc57gXlydjNHdWs2NYHG+z761mnq4zRhXVdSqtqlFZVa1KK2tUWlWj/JIqlVfXNnlOr9hOunl4su4Z01u9YiObDyYQNXQSnsqUaiqlkPC2H8M5JXq0FNQ+imw2m003j0jSlGGJ+vu+77R650mt35+nU0UVWp15UqszTzY6vktkqOI6h6tzeIg6hQarU1iwOoUGKyI0WCFBNgUFSUE2m4JsNgUH2WSzScE2m4LqP7fJs25IT5soPe29pGkT/qii9JzVIQAAfIRNYAAEunZbXHz9yywFhbezggrQjG5RYerZtZOGJNs1NDlGY1Ji1T++c/ud6hrbT4rsJpUVSDlfeWfDleyGzVwCe0p0U4KDbJo0NFGThiaqrKpGO4+d1dasAh3ILdGh0+eUXVCmmjqjs2XVOlvG2oyAFeoqy6wOAQDgKx7sSt1IlZv/ZoRG8ttVAG2q3RYX7x3bRxGRnS96vrmfoS39aG32nBZ+IDf7SgsDNdfl09LP/eZeavmcthunpZOsjq3Fczz4x7T5904LOWjD91unsBBFhQUrMizE0UkWFqzuncMVHxMeuJuzeMpmk3qPk/b/Tcr6vO2Li8ZIx/7h+Lz3uLa9tp+JDAvRdQPidN2AOOdzdXVGZ8urlX+uUvkllSqtqlV5da0q6h/Lq2tVW2dUV2dUZ6RaY2SMcTxnHJ22dXWeLSzu6XLknq5j3mKHOmChirJzWmp1EACAwODuOo2s0QigjbXb4uKiqYMUExNjdRgAvKXfDfXFxU3SDx5p22vnfSOVnpZCOkk9r27baweAoCCbYqPCFBsVpoEJ0VaHA3RIxcXFFBcBAAAQENptcRFAO5cy3vGYvVWqLpdC23CzmiObHI99xkkhYW13XQAAAKANNKzTOHeCi12LVWWe7UQNAC6guAggMMUNkKKTpJIc6fhWRydjW8mqLy42FDABAAAAf9KwTiPTmwH4AYqLAAKTzeYo/u1e5eg0bKviYm2NdLR+vcV+FBcBAADgv15I+9al40JqyzW3/vOX0/ao2o0NZOZO6M8mMABaRHERQODq11Bc3CDpyba55ontUlWJFNFFShzRNtcEAAAA/MSc7ZPdOyFdbAIDoEUUFwEErssmOB5PZUrFOVJM0qVf89tPHI/9J0pBHWwXbgAAAKApVWXun0O3I9BhUFwEELiiE6Ueo6STOxxFwVE/v/RrHvjU8TjoR5d+LQAAAMAPNGwA447Q2vLvuxw92QyGbkegw6C4CCCwDfqRo7i4f82lFxcLDkv5B6SgEEfnIgAAANAeNGwA40t0OwIdBsVFAIHt8pulvz/l2OG5skQKj/b8Wgfqp0T3vU6KsLdNfAAAAEAAauh2nDvBja7FqrLvuxzpdgQ6DIqLAAJb98ul2H7SmSPSwbXSsDs8v9be1Y7Hy29um9gAAACAQNXQ7ejLYh/djkBAorgIILDZbNLQ26UvnpW+es/z4mL+IelkhmQLlobe1rYxAgAAAAHqhbRvXT/YGIXQ7Qh0OBQXAQS+1JmO4uKhddK5PKlzvPvX2PPfjsfLJkidu7dtfAAAAEBHYEW3o6uMkao96IyU6I4EWkFxEUDgixvw/a7Re/6fNO5B986vq5N2v+f4fMSdbR8fAAAAgKaFRjq6D91xfrejq1Opzz/HXY8cksIi3TuHgiQ6EIqLANqH1JmO4mLGm9LYf3HvH/JD66TCo1K4XRrEeosAAACAz9hsl9bp6GnB0NtjeFKQ9ARFTPgBiosA2ocRd0rrfiflH5AO/V0aMNH1c7e94ni88l7/nMIBAAAABBC31mms9/BNA70QSdNevvozVQd3avGY0Npyzdk+2fNBfFH0lFhzEn6B4iKA9iHCLl11n5T+Z2nLS64XF/P2OToXZZNG/8KrIQIAAABoA/VTqZetP+TR6TVBEa12+9UERWjZpWxO4yPL1h9yrHPpIl8WcdFxUFwE0H6M+aW0dYV0ZIOUnS71Htv6ORuedjwOvkWK7efd+AAAAAA0yZNuR7lRVHObJ5vTeLJ+ZD13CqXnd1WG1pa7N1BVKVOp0eYoLgJoP7r2ka6cJe18S1r7hHT/2pb/0TyZIe37UJJN+uFjPgsTAAAAQGDw1RRvd7oPz+f21O10+W49SDcsW3/IpY5SSZIxCqmrcK+r9HyuFFcvZXdxV8doR7xaXCwsLNS8efP04YcfSpKmT5+uZcuWqUuXLk0eX11drX/7t3/TmjVrdOTIEdntdk2cOFFLly5VcnKyN0MF0F788DFpz/9IJ7ZJme9IV81q+rjaaumjXzs+HzFDih/suxgBAAFh+fLl+o//+A/l5ORo6NChevHFF3X99ddbHRYAwM951IXpSz6euu2KuXJtLUzpvM7NdA8Hc6W4eqlT3DvYWpheLS7efffdOnHihD799FNJ0j//8z9r1qxZ+uijj5o8vqysTDt37tQTTzyh1NRUFRYWav78+Zo+fbp27NjhzVABtBfRidINi6S0/yN9ukjqPU6Ka+IfhfX/V8rdI3XqKk36ve/jBAD4tffee0/z58/X8uXLde211+qVV17R1KlT9c0336h3795WhwcA6MAa1oN0xyVvUOMDPovPF8XVqkvoenSHn3RI2owxxhsX3rdvn4YMGaL09HSNGTNGkpSenq5x48Zp//79uvzyy126zvbt2zV69GgdO3bMpRu54uJi2e12FRUVKSYm5pK+BgABqq5WeusW6dg/JHtvafaHUmzK96+nr3AUHiXpJ3+Rht1uTZwA0AzuZ6w3ZswYXXXVVVqxYoXzucGDB+vHP/6xlixZ0ur5Xv8eVpVKTztm9iwb+7nH0+kAAB1E/VRiX/DlJjhudzv66Rge82KHpDv3Ml7rXNyyZYvsdruzsChJY8eOld1u1+bNm10uLhYVFclmszU7lbqyslKVlZXOPxcXF19S3ADagaBg6advSm9Mkc4cll4Z79jsJTZF+uZ/pW8d3dT6wW8oLAIALlJVVaWMjAwtWrSo0fOTJk3S5s2bmzyHe1IAgF9r2KDGB17YdNL1g41RiJtdmOdzdZ1GT7o93R2jI/NacTE3N1fx8fEXPR8fH6/c3FyXrlFRUaFFixbp7rvvbrZKumTJEv3ud7+7pFgBtEOd46XZH0n/M1s6sV36/JnvXwsKkSY8IV37a+viAwD4rfz8fNXW1iohIaHR8wkJCc3ex/r8njQsSlpcJMmxThUAALCYMdKEU27t/N3Ao81p/GhNR7eLi4sXL271xmn79u2SJFsTlV1jTJPPX6i6ulozZ85UXV2dli9f3uxxjz76qBYsWOD8c3FxsXr16tXq9QF0APYe0j99Ku19X9r/N6nirBQ/RLpqthQ/yOroAAB+7sJ71pbuY7knBQCgg7PZpLAozZ2SanUkPud2cfGhhx7SzJkzWzymb9++2r17t7777ruLXjt9+vRFvwW+UHV1te68805lZWVp/fr1Lc7tDg8PV3h4uGvBA+h4gkOkET91fAAA4IK4uDgFBwdf1KWYl5fX7H0s96QAAKCjcru4GBcXp7i4uFaPGzdunIqKirRt2zaNHj1akrR161YVFRXpmmuuafa8hsLiwYMHtWHDBnXr1s3dEAEAAACPhYWFaeTIkUpLS9Ntt93mfD4tLU233nqrhZEBAAD4nyBvXXjw4MGaMmWKHnjgAaWnpys9PV0PPPCApk2b1mgzl0GDBun999+XJNXU1OgnP/mJduzYoXfffVe1tbXKzc1Vbm6uqqqqvBUqAAAA0MiCBQv0+uuv64033tC+ffv08MMPKzs7W3PmzLE6NAAAAL/itQ1dJOndd9/VvHnzNGnSJEnS9OnT9dJLLzU65sCBAyoqcixGfeLECX344YeSpCuuuKLRcRs2bNANN9zgzXABAAAASdKMGTNUUFCgp556Sjk5ORo2bJjWrFmjPn36WB0aAACAX7EZY4zVQbSl4uJi2e12FRUVtbhWIwAAgL/ifibw8T0EAACBzJ17Ga9NiwYAAAAAAADQvlFcBAAAAAAAAOARiosAAAAAAAAAPEJxEQAAAAAAAIBHKC4CAAAAAAAA8AjFRQAAAAAAAAAeobgIAAAAAAAAwCMUFwEAAAAAAAB4hOIiAAAAAAAAAI9QXAQAAAAAAADgEYqLAAAAAAAAADxCcREAAAAAAACARyguAgAAAAAAAPAIxUUAAAAAAAAAHgmxOoC2ZoyRJBUXF1scCQAAgGca7mMa7msQeLgnBQAAgcyd+9F2V1wsKCiQJPXq1cviSAAAAC5NQUGB7Ha71WHAAyUlJZK4JwUAAIGtpKSk1fvRdldcjI2NlSRlZ2dzM+5DxcXF6tWrl44fP66YmBirw+kwyLs1yLs1yLs1yLs1ioqK1Lt3b+d9DQJPcnKyjh8/rujoaNlsNq+Mwd9P7yCvbY+cegd5bXvktO2RU+/wRV6NMSopKVFycnKrx7a74mJQkGMZSbvdzhvXAjExMeTdAuTdGuTdGuTdGuTdGg33NQg8QUFB6tmzp0/G4u+nd5DXtkdOvYO8tj1y2vbIqXd4O6+uNu1xxwoAAAAAAADAIxQXAQAAAAAAAHik3RUXw8PD9eSTTyo8PNzqUDoU8m4N8m4N8m4N8m4N8m4N8g5X8D7xDvLa9sipd5DXtkdO2x459Q5/y6vNuLKnNAAAAAAAAABcoN11LgIAAAAAAADwDYqLAAAAAAAAADxCcREAAAAAAACARyguAgAAAAAAAPCIXxYXFy9eLJvN1ugjMTHR+boxRosXL1ZycrI6deqkG264QXv37m10jcrKSs2dO1dxcXGKiorS9OnTdeLEiUbHFBYWatasWbLb7bLb7Zo1a5bOnj3riy/RL7WW99WrV2vy5MmKi4uTzWbTrl27LroGeXdfS3mvrq7Wb3/7Ww0fPlxRUVFKTk7Wfffdp1OnTjW6Bnl3X2vv98WLF2vQoEGKiopS165dNXHiRG3durXRNci7+1rL+/l++ctfymaz6cUXX2z0PHl3T2s5/9nPfnbR62PHjm10DXLuPlfe6/v27dP06dNlt9sVHR2tsWPHKjs72/k6eUdrli9frpSUFEVERGjkyJH64osvrA4poH3++ee65ZZblJycLJvNpg8++MDqkALekiVLdPXVVys6Olrx8fH68Y9/rAMHDlgdVkBbsWKFRowYoZiYGMXExGjcuHH65JNPrA6rXVmyZIlsNpvmz59vdSgBzZ37frju5MmTuvfee9WtWzdFRkbqiiuuUEZGhtVh+WdxUZKGDh2qnJwc58eePXucrz3zzDN6/vnn9dJLL2n79u1KTEzUTTfdpJKSEucx8+fP1/vvv69Vq1bpyy+/1Llz5zRt2jTV1tY6j7n77ru1a9cuffrpp/r000+1a9cuzZo1y6dfp79pKe+lpaW69tprtXTp0mbPJ++eaS7vZWVl2rlzp5544gnt3LlTq1ev1rfffqvp06c3Op+8e6al9/vAgQP10ksvac+ePfryyy/Vt29fTZo0SadPn3YeQ94901LeG3zwwQfaunWrkpOTL3qNvLuvtZxPmTKl0etr1qxp9Do590xLeT98+LCuu+46DRo0SBs3btRXX32lJ554QhEREc5jyDta8t5772n+/Pl6/PHHlZmZqeuvv15Tp05tVKCGe0pLS5WamqqXXnrJ6lDajU2bNulXv/qV0tPTlZaWppqaGk2aNEmlpaVWhxawevbsqaVLl2rHjh3asWOHJkyYoFtvvfWiZht4Zvv27Xr11Vc1YsQIq0NpF1y574frCgsLde211yo0NFSffPKJvvnmGz333HPq0qWL1aFJxg89+eSTJjU1tcnX6urqTGJiolm6dKnzuYqKCmO3283LL79sjDHm7NmzJjQ01Kxatcp5zMmTJ01QUJD59NNPjTHGfPPNN0aSSU9Pdx6zZcsWI8ns37/fC1+V/2sp7+fLysoykkxmZmaj58m7Z1zNe4Nt27YZSebYsWPGGPLuKXfzXlRUZCSZdevWGWPIu6dcyfuJEydMjx49zNdff2369OljXnjhBedr5N19reV89uzZ5tZbb232dXLumdbyPmPGDHPvvfc2+zp5R2tGjx5t5syZ0+i5QYMGmUWLFlkUUfsiybz//vtWh9Hu5OXlGUlm06ZNVofSrnTt2tW8/vrrVocR8EpKSsyAAQNMWlqaGT9+vPn1r39tdUgBzd3/b6F1v/3tb811111ndRhN8tvOxYMHDyo5OVkpKSmaOXOmjhw5IknKyspSbm6uJk2a5Dw2PDxc48eP1+bNmyVJGRkZqq6ubnRMcnKyhg0b5jxmy5YtstvtGjNmjPOYsWPHym63O4/piJrLuyvIu+fcyXtRUZFsNpvztxPk3XOu5r2qqkqvvvqq7Ha7UlNTJZH3S9FS3uvq6jRr1iz95je/0dChQy86l7x7prX3+saNGxUfH6+BAwfqgQceUF5envM1cu655vJeV1enjz/+WAMHDtTkyZMVHx+vMWPGNJqCSd7RkqqqKmVkZDR6f0jSpEmT+N7DrxUVFUmSYmNjLY6kfaitrdWqVatUWlqqcePGWR1OwPvVr36lm2++WRMnTrQ6lHbjUuoLuNiHH36oUaNG6ac//ani4+N15ZVX6rXXXrM6LEl+Oi16zJgxevvtt/XZZ5/ptddeU25urq655hoVFBQoNzdXkpSQkNDonISEBOdrubm5CgsLU9euXVs8Jj4+/qKx4+Pjncd0NC3l3RXk3TPu5L2iokKLFi3S3XffrZiYGEnk3VOu5P1vf/ubOnfurIiICL3wwgtKS0tTXFycJPLuqdby/oc//EEhISGaN29ek+eTd/e1lvOpU6fq3Xff1fr16/Xcc89p+/btmjBhgiorKyWRc0+1lPe8vDydO3dOS5cu1ZQpU7R27Vrddtttuv3227Vp0yZJ5B0ty8/PV21tbYv3w4C/McZowYIFuu666zRs2DCrwwloe/bsUefOnRUeHq45c+bo/fff15AhQ6wOK6CtWrVKO3fu1JIlS6wOpd241PoCLnbkyBGtWLFCAwYM0GeffaY5c+Zo3rx5evvtt60OTSFWB9CUqVOnOj8fPny4xo0bp8suu0xvvfWWc5F5m83W6BxjzEXPXejCY5o63pXrtFct5X3BggUeX5e8t8zVvFdXV2vmzJmqq6vT8uXLW70ueW+ZK3n/4Q9/qF27dik/P1+vvfaa7rzzTm3durXJ/8w3IO8taynv48eP1x//+Eft3LnT7fyQ9+a19l6fMWOG8/Vhw4Zp1KhR6tOnjz7++GPdfvvtzV6XnLespbzPnDlTknTrrbfq4YcfliRdccUV2rx5s15++WWNHz++2euSd5zPk/thwCoPPfSQdu/erS+//NLqUALe5Zdfrl27duns2bP661//qtmzZ2vTpk0UGD10/Phx/frXv9batWsbrX2MS+Ot+kJHVldXp1GjRunpp5+WJF155ZXau3evVqxYofvuu8/S2Pyyc/FCUVFRGj58uA4ePOjcXejC38rm5eU5f3ubmJioqqoqFRYWtnjMd999d9FYp0+fvui3wB3V+Xl3BXlvG03lvbq6WnfeeaeysrKUlpbm7FqUyHtbaSrvUVFR6t+/v8aOHauVK1cqJCREK1eulETe28r5ef/iiy+Ul5en3r17KyQkRCEhITp27JgWLlyovn37SiLvbaG1n+1JSUnq06eP83Vy3jbOz3tcXJxCQkIu+k/g4MGDnZtxkHe0JC4uTsHBwS3eDwP+ZO7cufrwww+1YcMG9ezZ0+pwAl5YWJj69++vUaNGacmSJUpNTdUf//hHq8MKWBkZGcrLy9PIkSOd96CbNm3Sn/70J4WEhDTaSA2ec7e+gIslJSW1eP9opYAoLlZWVmrfvn1KSkpSSkqKEhMTlZaW5ny9qqpKmzZt0jXXXCNJGjlypEJDQxsdk5OTo6+//tp5zLhx41RUVKRt27Y5j9m6dauKioqcx3R05+fdFeS9bVyY94bC4sGDB7Vu3Tp169at0fHkvW248n43xjinipL3tnF+3mfNmqXdu3dr165dzo/k5GT95je/0WeffSaJvLeF1t7rBQUFOn78uPN1ct42zs97WFiYrr76ah04cKDRMd9++6369OkjibyjZWFhYRo5cmSj94ckpaWl8b2HXzHG6KGHHtLq1au1fv16paSkWB1Su3T+PSrcd+ONN2rPnj2N7kFHjRqle+65R7t27VJwcLDVIbYL7tYXcLFrr722xftHS/l2/xjXLFy40GzcuNEcOXLEpKenm2nTppno6Ghz9OhRY4wxS5cuNXa73axevdrs2bPH3HXXXSYpKckUFxc7rzFnzhzTs2dPs27dOrNz504zYcIEk5qaampqapzHTJkyxYwYMcJs2bLFbNmyxQwfPtxMmzbN51+vv2gt7wUFBSYzM9N8/PHHRpJZtWqVyczMNDk5Oc5rkHf3tZT36upqM336dNOzZ0+za9cuk5OT4/yorKx0XoO8u6+lvJ87d848+uijZsuWLebo0aMmIyPD3H///SY8PNx8/fXXzmuQd/e19nPmQhfuFm0MeXdXSzkvKSkxCxcuNJs3bzZZWVlmw4YNZty4caZHjx78m3qJWnuvr1692oSGhppXX33VHDx40CxbtswEBwebL774wnkN8o6WrFq1yoSGhpqVK1eab775xsyfP99ERUU1+/MUrSspKTGZmZkmMzPTSDLPP/+8yczMNMeOHbM6tID1L//yL8Zut5uNGzc2uo8tKyuzOrSA9eijj5rPP//cZGVlmd27d5vHHnvMBAUFmbVr11odWrvCbtGXzt37frRu27ZtJiQkxPz7v/+7OXjwoHn33XdNZGSkeeedd6wOzfhlcXHGjBkmKSnJhIaGmuTkZHP77bebvXv3Ol+vq6szTz75pElMTDTh4eHmBz/4gdmzZ0+ja5SXl5uHHnrIxMbGmk6dOplp06aZ7OzsRscUFBSYe+65x0RHR5vo6Ghzzz33mMLCQl98iX6ptbz/5S9/MZIu+njyySedx5B397WU96ysrCZzLsls2LDBeQ3y7r6W8l5eXm5uu+02k5ycbMLCwkxSUpKZPn262bZtW6NrkHf3tfZz5kJNFRfJu3taynlZWZmZNGmS6d69uwkNDTW9e/c2s2fPviif5Nx9rrzXV65cafr3728iIiJMamqq+eCDDxq9Tt7Rmj//+c+mT58+JiwszFx11VVm06ZNVocU0DZs2NDkPdfs2bOtDi1gNXcf+5e//MXq0ALWz3/+c+ff++7du5sbb7yRwqIXUFy8dO7e98M1H330kRk2bJgJDw83gwYNMq+++qrVIRljjLEZY4zv+iQBAAAAAAAAtBcBseYiAAAAAAAAAP9DcREAAAAAAACARyguAgAAAAAAAPAIxUUAAAAAAAAAHqG4CAAAAAAAAMAjFBcBAAAAAAAAeITiIgAAAAAAAACPUFwEAAAAAAAA4BGKiwAAAAAABJAbbrhB8+fPtzoMAJBEcREAAAAAAACAh2zGGGN1EAAAAAAAoHU/+9nP9NZbbzV6LisrS3379rUmIAAdHsVFAAAAAAACRFFRkaZOnaphw4bpqaeekiR1795dwcHBFkcGoKMKsToAAAAAAADgGrvdrrCwMEVGRioxMdHqcACANRcBAAAAAAAAeIbiIgAAAAAAAACPUFwEAAAAACCAhIWFqba21uowAEASxUUAAAAAAAJK3759tXXrVh09elT5+fmqq6uzOiQAHRjFRQAAAAAAAsgjjzyi4OBgDRkyRN27d1d2drbVIQHowGzGGGN1EAAAAAAAAAACD52LAAAAAAAAADxCcREAAAAAAACARyguAgAAAAAAAPAIxUUAAAAAAAAAHqG4CAAAAAAAAMAjFBcBAAAAAAAAeITiIgAAAAAAAACPUFwEAAAAAAAA4BGKiwAAAAAAAAA8QnERAAAAAAAAgEcoLgIAAAAAAADwCMVFAAAAAAAAAB75/9DivJGTB1lPAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -825,10 +825,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:52.643937Z", - "iopub.status.busy": "2024-01-10T15:12:52.643610Z", - "iopub.status.idle": "2024-01-10T15:12:52.648113Z", - "shell.execute_reply": "2024-01-10T15:12:52.647611Z" + "iopub.execute_input": "2024-02-06T01:09:44.490318Z", + "iopub.status.busy": "2024-02-06T01:09:44.489987Z", + "iopub.status.idle": "2024-02-06T01:09:44.494407Z", + "shell.execute_reply": "2024-02-06T01:09:44.494039Z" } }, "outputs": [ @@ -836,7 +836,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Correlation between m and t: 0.03252041347505456" + "Correlation between m and t: 0.03522752374174872" ] }, { @@ -863,16 +863,16 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:52.649887Z", - "iopub.status.busy": "2024-01-10T15:12:52.649531Z", - "iopub.status.idle": "2024-01-10T15:12:53.031889Z", - "shell.execute_reply": "2024-01-10T15:12:53.031373Z" + "iopub.execute_input": "2024-02-06T01:09:44.496133Z", + "iopub.status.busy": "2024-02-06T01:09:44.495971Z", + "iopub.status.idle": "2024-02-06T01:09:44.656101Z", + "shell.execute_reply": "2024-02-06T01:09:44.655586Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGdCAYAAADjWSL8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqBUlEQVR4nO3df3BV5Z3H8c+V/ACyySkBci+3RMy2WRZMQBqcEHQLLeGHY4ytOwUbvNVZyo9FYFNBkLozUmc3/NgVqJuRAnWKIpb+seKylQbCrE1lkwCGzRQQEJcoILmEupeb4KZJSp79w+GsN8EkFzDJE96vmTPjPed7z33Od66ej0/OOddjjDECAACwzB09PQAAAIAbQYgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFgppqcH8GVpbW3VhQsXlJiYKI/H09PDAQAAXWCMUUNDg/x+v+64o+O5lj4bYi5cuKDU1NSeHgYAALgB586d0/Dhwzus6bMhJjExUdJnTUhKSurh0QAAgK6or69Xamqqex7vSJ8NMdf+hJSUlESIAQDAMl25FIQLewEAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYqc/+ijVwK9z1zFsRrz9c82APjQQA0BYzMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASjyxF4hC2yf4SjzFFwB6CjMxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVog4xH3/8sR577DENHjxYAwcO1D333KOqqip3uzFGq1atkt/v14ABAzR58mQdP348Yh9NTU1avHixhgwZooSEBOXn5+v8+fMRNaFQSIFAQI7jyHEcBQIBXb58+caOEgAA9DlRhZhQKKT77rtPsbGx+s1vfqP33ntPL7zwgr7yla+4NevWrdP69etVXFysw4cPy+fzaerUqWpoaHBrCgsLtWvXLu3cuVMHDhzQlStXlJeXp6tXr7o1BQUFqq6uVklJiUpKSlRdXa1AIHDzRwwAAPoEjzHGdLX4mWee0X/+53/qnXfeue52Y4z8fr8KCwu1YsUKSZ/Nuni9Xq1du1bz589XOBzW0KFDtX37ds2aNUuSdOHCBaWmpmrPnj2aPn26Tpw4odGjR6uyslLZ2dmSpMrKSuXk5OjkyZMaOXJkp2Otr6+X4zgKh8NKSkrq6iECEa73MwNt8bMDAHDrRHP+jmomZvfu3Ro/fry+973vKSUlRePGjdPWrVvd7TU1NQoGg5o2bZq7Lj4+XpMmTVJ5ebkkqaqqSi0tLRE1fr9fGRkZbk1FRYUcx3EDjCRNmDBBjuO4NW01NTWpvr4+YgEAAH1XVCHmzJkz2rRpk9LT07V3714tWLBAS5Ys0auvvipJCgaDkiSv1xvxPq/X624LBoOKi4vToEGDOqxJSUlp9/kpKSluTVurV692r59xHEepqanRHBoAALBMVCGmtbVV3/jGN1RUVKRx48Zp/vz5mjt3rjZt2hRR5/F4Il4bY9qta6ttzfXqO9rPypUrFQ6H3eXcuXNdPSwAAGChqELMsGHDNHr06Ih1o0aN0tmzZyVJPp9PktrNltTV1bmzMz6fT83NzQqFQh3WXLx4sd3nX7p0qd0szzXx8fFKSkqKWAAAQN8VVYi57777dOrUqYh177//vkaMGCFJSktLk8/nU2lpqbu9ublZZWVlmjhxoiQpKytLsbGxETW1tbU6duyYW5OTk6NwOKxDhw65NQcPHlQ4HHZrAADA7S0mmuIf/ehHmjhxooqKijRz5kwdOnRIW7Zs0ZYtWyR99iegwsJCFRUVKT09Xenp6SoqKtLAgQNVUFAgSXIcR3PmzNHSpUs1ePBgJScna9myZcrMzFRubq6kz2Z3ZsyYoblz52rz5s2SpHnz5ikvL69LdyYBAIC+L6oQc++992rXrl1auXKlnn/+eaWlpWnjxo2aPXu2W7N8+XI1NjZq4cKFCoVCys7O1r59+5SYmOjWbNiwQTExMZo5c6YaGxs1ZcoUbdu2Tf369XNrduzYoSVLlrh3MeXn56u4uPhmjxcAAPQRUT0nxiY8Jwa3As+JAYDu9aU9JwYAAKC3IMQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFaK6ekBAL3FXc+81dNDAABEgZkYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWiirErFq1Sh6PJ2Lx+XzudmOMVq1aJb/frwEDBmjy5Mk6fvx4xD6ampq0ePFiDRkyRAkJCcrPz9f58+cjakKhkAKBgBzHkeM4CgQCunz58o0fJQAA6HOinom5++67VVtb6y5Hjx51t61bt07r169XcXGxDh8+LJ/Pp6lTp6qhocGtKSws1K5du7Rz504dOHBAV65cUV5enq5everWFBQUqLq6WiUlJSopKVF1dbUCgcBNHioAAOhLon5OTExMTMTsyzXGGG3cuFHPPvusHnnkEUnSK6+8Iq/Xq9dff13z589XOBzWyy+/rO3btys3N1eS9Nprryk1NVX79+/X9OnTdeLECZWUlKiyslLZ2dmSpK1btyonJ0enTp3SyJEjb+Z4AQBAHxH1TMzp06fl9/uVlpamRx99VGfOnJEk1dTUKBgMatq0aW5tfHy8Jk2apPLycklSVVWVWlpaImr8fr8yMjLcmoqKCjmO4wYYSZowYYIcx3FrrqepqUn19fURCwAA6LuiCjHZ2dl69dVXtXfvXm3dulXBYFATJ07UJ598omAwKEnyer0R7/F6ve62YDCouLg4DRo0qMOalJSUdp+dkpLi1lzP6tWr3WtoHMdRampqNIcGAAAsE1WIeeCBB/TXf/3XyszMVG5urt5667PHtL/yyitujcfjiXiPMabdurba1lyvvrP9rFy5UuFw2F3OnTvXpWMCAAB2uqlbrBMSEpSZmanTp0+718m0nS2pq6tzZ2d8Pp+am5sVCoU6rLl48WK7z7p06VK7WZ7Pi4+PV1JSUsQCAAD6rpsKMU1NTTpx4oSGDRumtLQ0+Xw+lZaWutubm5tVVlamiRMnSpKysrIUGxsbUVNbW6tjx465NTk5OQqHwzp06JBbc/DgQYXDYbcGAAAgqruTli1bpoceekh33nmn6urq9A//8A+qr6/X448/Lo/Ho8LCQhUVFSk9PV3p6ekqKirSwIEDVVBQIElyHEdz5szR0qVLNXjwYCUnJ2vZsmXun6ckadSoUZoxY4bmzp2rzZs3S5LmzZunvLw87kwCAACuqELM+fPn9f3vf19/+MMfNHToUE2YMEGVlZUaMWKEJGn58uVqbGzUwoULFQqFlJ2drX379ikxMdHdx4YNGxQTE6OZM2eqsbFRU6ZM0bZt29SvXz+3ZseOHVqyZIl7F1N+fr6Ki4tvxfECAIA+wmOMMT09iC9DfX29HMdROBzm+hh0yV3PvHVD7/twzYO3eCQAcPuK5vwd9cPuAERqG34INQDQPfgBSAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWuqkQs3r1ank8HhUWFrrrjDFatWqV/H6/BgwYoMmTJ+v48eMR72tqatLixYs1ZMgQJSQkKD8/X+fPn4+oCYVCCgQCchxHjuMoEAjo8uXLNzNcAADQh9xwiDl8+LC2bNmiMWPGRKxft26d1q9fr+LiYh0+fFg+n09Tp05VQ0ODW1NYWKhdu3Zp586dOnDggK5cuaK8vDxdvXrVrSkoKFB1dbVKSkpUUlKi6upqBQKBGx0uAADoY24oxFy5ckWzZ8/W1q1bNWjQIHe9MUYbN27Us88+q0ceeUQZGRl65ZVX9L//+796/fXXJUnhcFgvv/yyXnjhBeXm5mrcuHF67bXXdPToUe3fv1+SdOLECZWUlOjnP/+5cnJylJOTo61bt+rXv/61Tp06dQsOGwAA2O6GQsyTTz6pBx98ULm5uRHra2pqFAwGNW3aNHddfHy8Jk2apPLycklSVVWVWlpaImr8fr8yMjLcmoqKCjmOo+zsbLdmwoQJchzHrWmrqalJ9fX1EQsAAOi7YqJ9w86dO3XkyBEdPny43bZgMChJ8nq9Eeu9Xq8++ugjtyYuLi5iBudazbX3B4NBpaSktNt/SkqKW9PW6tWr9ZOf/CTawwEAAJaKaibm3Llz+ru/+zu99tpr6t+//xfWeTyeiNfGmHbr2mpbc736jvazcuVKhcNhdzl37lyHnwcAAOwWVYipqqpSXV2dsrKyFBMTo5iYGJWVlenFF19UTEyMOwPTdrakrq7O3ebz+dTc3KxQKNRhzcWLF9t9/qVLl9rN8lwTHx+vpKSkiAUAAPRdUYWYKVOm6OjRo6qurnaX8ePHa/bs2aqurtaf//mfy+fzqbS01H1Pc3OzysrKNHHiRElSVlaWYmNjI2pqa2t17NgxtyYnJ0fhcFiHDh1yaw4ePKhwOOzWAACA21tU18QkJiYqIyMjYl1CQoIGDx7sri8sLFRRUZHS09OVnp6uoqIiDRw4UAUFBZIkx3E0Z84cLV26VIMHD1ZycrKWLVumzMxM90LhUaNGacaMGZo7d642b94sSZo3b57y8vI0cuTImz5oAABgv6gv7O3M8uXL1djYqIULFyoUCik7O1v79u1TYmKiW7NhwwbFxMRo5syZamxs1JQpU7Rt2zb169fPrdmxY4eWLFni3sWUn5+v4uLiWz1cAABgKY8xxvT0IL4M9fX1chxH4XCY62PQJXc989Yt2c+Hax68JfsBgNtRNOdvfjsJAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKwU09MDAHrCXc+81dNDAADcJGZiAACAlQgxAADASoQYAABgJUIMAACwUlQhZtOmTRozZoySkpKUlJSknJwc/eY3v3G3G2O0atUq+f1+DRgwQJMnT9bx48cj9tHU1KTFixdryJAhSkhIUH5+vs6fPx9REwqFFAgE5DiOHMdRIBDQ5cuXb/woAQBAnxNViBk+fLjWrFmjd999V++++66+/e1v6+GHH3aDyrp167R+/XoVFxfr8OHD8vl8mjp1qhoaGtx9FBYWateuXdq5c6cOHDigK1euKC8vT1evXnVrCgoKVF1drZKSEpWUlKi6ulqBQOAWHTIAAOgLPMYYczM7SE5O1j/90z/pb/7mb+T3+1VYWKgVK1ZI+mzWxev1au3atZo/f77C4bCGDh2q7du3a9asWZKkCxcuKDU1VXv27NH06dN14sQJjR49WpWVlcrOzpYkVVZWKicnRydPntTIkSO7NK76+no5jqNwOKykpKSbOUT0QV/mLdYfrnnwS9s3APR10Zy/b/iamKtXr2rnzp369NNPlZOTo5qaGgWDQU2bNs2tiY+P16RJk1ReXi5JqqqqUktLS0SN3+9XRkaGW1NRUSHHcdwAI0kTJkyQ4zhuzfU0NTWpvr4+YgEAAH1X1CHm6NGj+rM/+zPFx8drwYIF2rVrl0aPHq1gMChJ8nq9EfVer9fdFgwGFRcXp0GDBnVYk5KS0u5zU1JS3JrrWb16tXsNjeM4Sk1NjfbQAACARaIOMSNHjlR1dbUqKyv1t3/7t3r88cf13nvvuds9Hk9EvTGm3bq22tZcr76z/axcuVLhcNhdzp0719VDAgAAFoo6xMTFxenrX/+6xo8fr9WrV2vs2LH66U9/Kp/PJ0ntZkvq6urc2Rmfz6fm5maFQqEOay5evNjucy9dutRulufz4uPj3bumri0AAKDvuunnxBhj1NTUpLS0NPl8PpWWlrrbmpubVVZWpokTJ0qSsrKyFBsbG1FTW1urY8eOuTU5OTkKh8M6dOiQW3Pw4EGFw2G3BgAAIKofgPzxj3+sBx54QKmpqWpoaNDOnTv129/+ViUlJfJ4PCosLFRRUZHS09OVnp6uoqIiDRw4UAUFBZIkx3E0Z84cLV26VIMHD1ZycrKWLVumzMxM5ebmSpJGjRqlGTNmaO7cudq8ebMkad68ecrLy+vynUkAAKDviyrEXLx4UYFAQLW1tXIcR2PGjFFJSYmmTp0qSVq+fLkaGxu1cOFChUIhZWdna9++fUpMTHT3sWHDBsXExGjmzJlqbGzUlClTtG3bNvXr18+t2bFjh5YsWeLexZSfn6/i4uJbcbwAAKCPuOnnxPRWPCcGHeE5MQDQO3XLc2IAAAB6EiEGAABYiRADAACsRIgBAABWIsQAAAArRXWLNYDOXe/OJ+5YAoBbj5kYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKUYWY1atX695771ViYqJSUlL0ne98R6dOnYqoMcZo1apV8vv9GjBggCZPnqzjx49H1DQ1NWnx4sUaMmSIEhISlJ+fr/Pnz0fUhEIhBQIBOY4jx3EUCAR0+fLlGztKAADQ50QVYsrKyvTkk0+qsrJSpaWl+tOf/qRp06bp008/dWvWrVun9evXq7i4WIcPH5bP59PUqVPV0NDg1hQWFmrXrl3auXOnDhw4oCtXrigvL09Xr151awoKClRdXa2SkhKVlJSourpagUDgFhwyAADoCzzGGHOjb7506ZJSUlJUVlamb37zmzLGyO/3q7CwUCtWrJD02ayL1+vV2rVrNX/+fIXDYQ0dOlTbt2/XrFmzJEkXLlxQamqq9uzZo+nTp+vEiRMaPXq0KisrlZ2dLUmqrKxUTk6OTp48qZEjR3Y6tvr6ejmOo3A4rKSkpBs9RPRRdz3zVrd+3odrHuzWzwMAW0Vz/r6pa2LC4bAkKTk5WZJUU1OjYDCoadOmuTXx8fGaNGmSysvLJUlVVVVqaWmJqPH7/crIyHBrKioq5DiOG2AkacKECXIcx61pq6mpSfX19RELAADou244xBhj9NRTT+n+++9XRkaGJCkYDEqSvF5vRK3X63W3BYNBxcXFadCgQR3WpKSktPvMlJQUt6at1atXu9fPOI6j1NTUGz00AABggRsOMYsWLdLvf/97/fKXv2y3zePxRLw2xrRb11bbmuvVd7SflStXKhwOu8u5c+e6chgAAMBSNxRiFi9erN27d+vtt9/W8OHD3fU+n0+S2s2W1NXVubMzPp9Pzc3NCoVCHdZcvHix3edeunSp3SzPNfHx8UpKSopYAABA3xVViDHGaNGiRXrjjTf0H//xH0pLS4vYnpaWJp/Pp9LSUnddc3OzysrKNHHiRElSVlaWYmNjI2pqa2t17NgxtyYnJ0fhcFiHDh1yaw4ePKhwOOzWAACA21tMNMVPPvmkXn/9df3bv/2bEhMT3RkXx3E0YMAAeTweFRYWqqioSOnp6UpPT1dRUZEGDhyogoICt3bOnDlaunSpBg8erOTkZC1btkyZmZnKzc2VJI0aNUozZszQ3LlztXnzZknSvHnzlJeX16U7kwAAQN8XVYjZtGmTJGny5MkR63/xi1/oiSeekCQtX75cjY2NWrhwoUKhkLKzs7Vv3z4lJia69Rs2bFBMTIxmzpypxsZGTZkyRdu2bVO/fv3cmh07dmjJkiXuXUz5+fkqLi6+kWMEAAB90E09J6Y34zkx6AjPiQGA3qnbnhMDAADQUwgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYKWYnh4A0B3ueuatnh4CAOAWYyYGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFbit5OAbtD2t5s+XPNgD40EAPoOZmIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFaKOsT87ne/00MPPSS/3y+Px6M333wzYrsxRqtWrZLf79eAAQM0efJkHT9+PKKmqalJixcv1pAhQ5SQkKD8/HydP38+oiYUCikQCMhxHDmOo0AgoMuXL0d9gAAAoG+KOsR8+umnGjt2rIqLi6+7fd26dVq/fr2Ki4t1+PBh+Xw+TZ06VQ0NDW5NYWGhdu3apZ07d+rAgQO6cuWK8vLydPXqVbemoKBA1dXVKikpUUlJiaqrqxUIBG7gEAEAQF/kMcaYG36zx6Ndu3bpO9/5jqTPZmH8fr8KCwu1YsUKSZ/Nuni9Xq1du1bz589XOBzW0KFDtX37ds2aNUuSdOHCBaWmpmrPnj2aPn26Tpw4odGjR6uyslLZ2dmSpMrKSuXk5OjkyZMaOXJkp2Orr6+X4zgKh8NKSkq60UNEH9H2ibk9jSf2AsD1RXP+vqXXxNTU1CgYDGratGnuuvj4eE2aNEnl5eWSpKqqKrW0tETU+P1+ZWRkuDUVFRVyHMcNMJI0YcIEOY7j1rTV1NSk+vr6iAUAAPRdtzTEBINBSZLX641Y7/V63W3BYFBxcXEaNGhQhzUpKSnt9p+SkuLWtLV69Wr3+hnHcZSamnrTxwMAAHqvL+XuJI/HE/HaGNNuXVtta65X39F+Vq5cqXA47C7nzp27gZEDAABb3NIQ4/P5JKndbEldXZ07O+Pz+dTc3KxQKNRhzcWLF9vt/9KlS+1mea6Jj49XUlJSxAIAAPquWxpi0tLS5PP5VFpa6q5rbm5WWVmZJk6cKEnKyspSbGxsRE1tba2OHTvm1uTk5CgcDuvQoUNuzcGDBxUOh90aAABwe4uJ9g1XrlzRBx984L6uqalRdXW1kpOTdeedd6qwsFBFRUVKT09Xenq6ioqKNHDgQBUUFEiSHMfRnDlztHTpUg0ePFjJyclatmyZMjMzlZubK0kaNWqUZsyYoblz52rz5s2SpHnz5ikvL69LdyYBAIC+L+oQ8+677+pb3/qW+/qpp56SJD3++OPatm2bli9frsbGRi1cuFChUEjZ2dnat2+fEhMT3fds2LBBMTExmjlzphobGzVlyhRt27ZN/fr1c2t27NihJUuWuHcx5efnf+GzaQAAwO3npp4T05vxnBh8Hs+JAQA79NhzYgAAALoLIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVYnp6AMCtdtczb/X0EAAA3YCZGAAAYCVCDAAAsBJ/TgJ6wPX+5PXhmgd7YCQAYC9mYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwUq8PMS+99JLS0tLUv39/ZWVl6Z133unpIQEAgF6gV4eYX/3qVyosLNSzzz6r//qv/9Jf/dVf6YEHHtDZs2d7emgAAKCH9eoQs379es2ZM0c//OEPNWrUKG3cuFGpqanatGlTTw8NAAD0sF4bYpqbm1VVVaVp06ZFrJ82bZrKy8vb1Tc1Nam+vj5iAQAAfVdMTw/gi/zhD3/Q1atX5fV6I9Z7vV4Fg8F29atXr9ZPfvKT7hqe7nrmrW77LETnwzUP9vQQbgjfKQC26en/3vbaEHONx+OJeG2MabdOklauXKmnnnrKfV1fX6/U1NQvfXzoeT39L9Gt0vY4CDUA0LFeG2KGDBmifv36tZt1qaurazc7I0nx8fGKj4/vruEBANCn2fA/Vr02xMTFxSkrK0ulpaX67ne/664vLS3Vww8/3IMjAwD0Jl052faVGdue1Bt72GtDjCQ99dRTCgQCGj9+vHJycrRlyxadPXtWCxYs6OmhAYD1euNJ6Vboq8eF9np1iJk1a5Y++eQTPf/886qtrVVGRob27NmjESNG9PTQANzmOFECPa9XhxhJWrhwoRYuXNjTwwDQw/iTAYC2en2IAW5X1zsh9+SFdb0tIPS28QDofoQYwCKcuAHg/xFiYBVO4gCAa3rtzw4AAAB0hJkY9BrMsgAAokGIwU0jfAAAegIh5jZG+AAA2IwQY6Gu3HpLQAEA9HWEmB52q8IGoQUAcLshxNwgQgMAAD2LW6wBAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAVorp6QF8WYwxkqT6+voeHgkAAOiqa+fta+fxjvTZENPQ0CBJSk1N7eGRAACAaDU0NMhxnA5rPKYrUcdCra2tunDhghITE+XxeG7pvuvr65Wamqpz584pKSnplu4b/48+dw/63D3oc/egz93ny+q1MUYNDQ3y+/26446Or3rpszMxd9xxh4YPH/6lfkZSUhL/knQD+tw96HP3oM/dgz53ny+j153NwFzDhb0AAMBKhBgAAGAlQswNiI+P13PPPaf4+PieHkqfRp+7B33uHvS5e9Dn7tMbet1nL+wFAAB9GzMxAADASoQYAABgJUIMAACwEiEGAABY6bYMMatWrZLH44lYfD6fu90Yo1WrVsnv92vAgAGaPHmyjh8/HrGPpqYmLV68WEOGDFFCQoLy8/N1/vz5iJpQKKRAICDHceQ4jgKBgC5fvtwdh9grdNTnlpYWrVixQpmZmUpISJDf79cPfvADXbhwIWIf9LlznX2fP2/+/PnyeDzauHFjxHr63DVd6fWJEyeUn58vx3GUmJioCRMm6OzZs+52et25zvp85coVLVq0SMOHD9eAAQM0atQobdq0KWIf9LlrPv74Yz322GMaPHiwBg4cqHvuuUdVVVXu9l5/PjS3oeeee87cfffdpra21l3q6urc7WvWrDGJiYnmX//1X83Ro0fNrFmzzLBhw0x9fb1bs2DBAvPVr37VlJaWmiNHjphvfetbZuzYseZPf/qTWzNjxgyTkZFhysvLTXl5ucnIyDB5eXndeqw9qaM+X7582eTm5ppf/epX5uTJk6aiosJkZ2ebrKysiH3Q58519n2+ZteuXWbs2LHG7/ebDRs2RGyjz13TWa8/+OADk5ycbJ5++mlz5MgR89///d/m17/+tbl48aJbQ68711mff/jDH5qvfe1r5u233zY1NTVm8+bNpl+/fubNN990a+hz5/7nf/7HjBgxwjzxxBPm4MGDpqamxuzfv9988MEHbk1vPx/etiFm7Nix193W2tpqfD6fWbNmjbvuj3/8o3Ecx/zsZz8zxnx2Ao6NjTU7d+50az7++GNzxx13mJKSEmOMMe+9956RZCorK92aiooKI8mcPHnySziq3qejPl/PoUOHjCTz0UcfGWPoc1d1pc/nz583X/3qV82xY8fMiBEjIkIMfe66zno9a9Ys89hjj33hdnrdNZ31+e677zbPP/98xLpvfOMb5u///u+NMfS5q1asWGHuv//+L9xuw/nwtvxzkiSdPn1afr9faWlpevTRR3XmzBlJUk1NjYLBoKZNm+bWxsfHa9KkSSovL5ckVVVVqaWlJaLG7/crIyPDramoqJDjOMrOznZrJkyYIMdx3JrbwRf1+XrC4bA8Ho++8pWvSKLP0eioz62trQoEAnr66ad19913t3svfY7OF/W6tbVVb731lv7iL/5C06dPV0pKirKzs/Xmm2+676XXXdfRd/r+++/X7t279fHHH8sYo7ffflvvv/++pk+fLok+d9Xu3bs1fvx4fe9731NKSorGjRunrVu3utttOB/eliEmOztbr776qvbu3autW7cqGAxq4sSJ+uSTTxQMBiVJXq834j1er9fdFgwGFRcXp0GDBnVYk5KS0u6zU1JS3Jq+rqM+t/XHP/5RzzzzjAoKCtwfEqPPXdNZn9euXauYmBgtWbLkuu+nz13XUa/r6up05coVrVmzRjNmzNC+ffv03e9+V4888ojKysok0euu6uw7/eKLL2r06NEaPny44uLiNGPGDL300ku6//77JdHnrjpz5ow2bdqk9PR07d27VwsWLNCSJUv06quvSpIV58M++yvWHXnggQfcf87MzFROTo6+9rWv6ZVXXtGECRMkSR6PJ+I9xph269pqW3O9+q7sp6/oqM9PPfWUu62lpUWPPvqoWltb9dJLL3W6X/ocqaM+T5o0ST/96U915MiRqPtBn9vrqNePPvqoJOnhhx/Wj370I0nSPffco/Lycv3sZz/TpEmTvnC/9DpSZ//tePHFF1VZWandu3drxIgR+t3vfqeFCxdq2LBhys3N/cL90udIra2tGj9+vIqKiiRJ48aN0/Hjx7Vp0yb94Ac/cOt68/nwtpyJaSshIUGZmZk6ffq0ewV823RYV1fnplGfz6fm5maFQqEOay5evNjusy5dutQu1d4uPt/na1paWjRz5kzV1NSotLQ04ufc6fON+Xyf33nnHdXV1enOO+9UTEyMYmJi9NFHH2np0qW66667JNHnm/H5Xg8ZMkQxMTEaPXp0RM2oUaPcu5Po9Y35fJ8bGxv14x//WOvXr9dDDz2kMWPGaNGiRZo1a5b++Z//WRJ97qphw4Z1+n2Vevf5kBCjz24PO3HihIYNG6a0tDT5fD6Vlpa625ubm1VWVqaJEydKkrKyshQbGxtRU1tbq2PHjrk1OTk5CofDOnTokFtz8OBBhcNht+Z28/k+S/8fYE6fPq39+/dr8ODBEfX0+cZ8vs+BQEC///3vVV1d7S5+v19PP/209u7dK4k+34zP9zouLk733nuvTp06FVHz/vvva8SIEZLo9Y36fJ9bWlrU0tKiO+6IPH3169dPra2tkuhzV913330dfl+tOB/e1GXBllq6dKn57W9/a86cOWMqKytNXl6eSUxMNB9++KEx5rNbyhzHMW+88YY5evSo+f73v3/dW8qGDx9u9u/fb44cOWK+/e1vX/eWsjFjxpiKigpTUVFhMjMzb6vb9zrqc0tLi8nPzzfDhw831dXVEbdSNjU1ufugz53r7PvcVtu7k4yhz13VWa/feOMNExsba7Zs2WJOnz5t/uVf/sX069fPvPPOO+4+6HXnOuvzpEmTzN13323efvttc+bMGfOLX/zC9O/f37z00kvuPuhz5w4dOmRiYmLMP/7jP5rTp0+bHTt2mIEDB5rXXnvNrent58PbMsRcu889NjbW+P1+88gjj5jjx4+721tbW81zzz1nfD6fiY+PN9/85jfN0aNHI/bR2NhoFi1aZJKTk82AAQNMXl6eOXv2bETNJ598YmbPnm0SExNNYmKimT17tgmFQt1xiL1CR32uqakxkq67vP322+4+6HPnOvs+t3W9EEOfu6YrvX755ZfN17/+ddO/f38zduzYiGeXGEOvu6KzPtfW1ponnnjC+P1+079/fzNy5EjzwgsvmNbWVreGPnfNv//7v5uMjAwTHx9v/vIv/9Js2bIlYntvPx96jDHm5uZyAAAAuh/XxAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgpf8Dv7RpcN2bftQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGdCAYAAADjWSL8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqNUlEQVR4nO3df3BV5Z3H8c+V/ACyySkBcy+3RMzalAUTkQYnCbqFlp+OMbbOFGz0VmcpPxaBTQFB6s6ITjcBuoJ1M1JgneIPXPrHistWGgmzNpVNAhg3U0BAXKKA5BLqXm6CmyYpefYPh7PeBJPcAEme8H7NnBnuOd977nO+EzgfnpxzrscYYwQAAGCZm/p6AAAAAD1BiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWCmmrwdwvbS1tens2bNKTEyUx+Pp6+EAAIBuMMaosbFRfr9fN93U+VzLgA0xZ8+eVWpqal8PAwAA9MDp06c1atSoTmsGbIhJTEyU9EUTkpKS+ng0AACgOxoaGpSamuqexzszYEPM5V8hJSUlEWIAALBMdy4F4cJeAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYasN9iDVwLtz75VsTrj9fe10cjAQC0x0wMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArBTT1wMAbHLrk291WPfx2vv6YCQAAGZiAACAlQgxAADASoQYAABgJUIMAACwUtQh5tNPP9Ujjzyi4cOHa+jQobrzzjtVXV3tbjfGaM2aNfL7/RoyZIimTJmiI0eOROyjublZS5Ys0YgRI5SQkKD8/HydOXMmoiYUCikQCMhxHDmOo0AgoAsXLvTsKAEAwIATVYgJhUK6++67FRsbq9/+9rf64IMP9Nxzz+lrX/uaW7N+/Xpt2LBBJSUlOnjwoHw+n6ZPn67Gxka3prCwUDt37tSOHTu0b98+Xbx4UXl5ebp06ZJbU1BQoJqaGpWWlqq0tFQ1NTUKBAJXf8QAAGBA8BhjTHeLn3zySf3nf/6n3n333StuN8bI7/ersLBQq1atkvTFrIvX69W6deu0YMEChcNh3XzzzXr11Vc1Z84cSdLZs2eVmpqq3bt3a+bMmTp69KjGjRunqqoqZWdnS5KqqqqUm5urY8eOacyYMV2OtaGhQY7jKBwOKykpqbuHCES40i3V7XGLNQBcO9Gcv6Oaidm1a5cmTpyoH/zgB0pJSdGECRO0detWd3ttba2CwaBmzJjhrouPj9fkyZNVUVEhSaqurlZra2tEjd/vV0ZGhltTWVkpx3HcACNJOTk5chzHrWmvublZDQ0NEQsAABi4ogoxJ0+e1KZNm5Senq63335bCxcu1NKlS/XKK69IkoLBoCTJ6/VGvM/r9brbgsGg4uLiNGzYsE5rUlJSOnx+SkqKW9NecXGxe/2M4zhKTU2N5tAAAIBlogoxbW1t+ta3vqWioiJNmDBBCxYs0Lx587Rp06aIOo/HE/HaGNNhXXvta65U39l+Vq9erXA47C6nT5/u7mEBAAALRRViRo4cqXHjxkWsGzt2rE6dOiVJ8vl8ktRhtqS+vt6dnfH5fGppaVEoFOq05ty5cx0+//z58x1meS6Lj49XUlJSxAIAAAauqELM3XffrePHj0es+/DDDzV69GhJUlpamnw+n8rKytztLS0tKi8v16RJkyRJWVlZio2Njaipq6vT4cOH3Zrc3FyFw2EdOHDArdm/f7/C4bBbAwAAbmxRfQHkT37yE02aNElFRUWaPXu2Dhw4oC1btmjLli2SvvgVUGFhoYqKipSenq709HQVFRVp6NChKigokCQ5jqO5c+dq+fLlGj58uJKTk7VixQplZmZq2rRpkr6Y3Zk1a5bmzZunzZs3S5Lmz5+vvLy8bt2ZBAAABr6oQsxdd92lnTt3avXq1Xr22WeVlpam559/Xg8//LBbs3LlSjU1NWnRokUKhULKzs7Wnj17lJiY6NZs3LhRMTExmj17tpqamjR16lRt27ZNgwYNcmu2b9+upUuXuncx5efnq6Sk5GqPFwAADBBRPSfGJjwnBtcCz4kBgN513Z4TAwAA0F8QYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlWL6egBAf3Hrk2/19RAAAFFgJgYAAFiJEAMAAKwUVYhZs2aNPB5PxOLz+dztxhitWbNGfr9fQ4YM0ZQpU3TkyJGIfTQ3N2vJkiUaMWKEEhISlJ+frzNnzkTUhEIhBQIBOY4jx3EUCAR04cKFnh8lAAAYcKKeibn99ttVV1fnLocOHXK3rV+/Xhs2bFBJSYkOHjwon8+n6dOnq7Gx0a0pLCzUzp07tWPHDu3bt08XL15UXl6eLl265NYUFBSopqZGpaWlKi0tVU1NjQKBwFUeKgAAGEiivrA3JiYmYvblMmOMnn/+eT311FN68MEHJUkvv/yyvF6vXn/9dS1YsEDhcFgvvfSSXn31VU2bNk2S9Nprryk1NVV79+7VzJkzdfToUZWWlqqqqkrZ2dmSpK1btyo3N1fHjx/XmDFjruZ4AQDAABH1TMyJEyfk9/uVlpamhx56SCdPnpQk1dbWKhgMasaMGW5tfHy8Jk+erIqKCklSdXW1WltbI2r8fr8yMjLcmsrKSjmO4wYYScrJyZHjOG4NAABAVDMx2dnZeuWVV/TNb35T586d089+9jNNmjRJR44cUTAYlCR5vd6I93i9Xn3yySeSpGAwqLi4OA0bNqxDzeX3B4NBpaSkdPjslJQUt+ZKmpub1dzc7L5uaGiI5tAAAIBlogox9957r/vnzMxM5ebm6rbbbtPLL7+snJwcSZLH44l4jzGmw7r22tdcqb6r/RQXF+uZZ57p1nEAAAD7XdUt1gkJCcrMzNSJEyfc62Taz5bU19e7szM+n08tLS0KhUKd1pw7d67DZ50/f77DLM+XrV69WuFw2F1Onz59NYcGAAD6uasKMc3NzTp69KhGjhyptLQ0+Xw+lZWVudtbWlpUXl6uSZMmSZKysrIUGxsbUVNXV6fDhw+7Nbm5uQqHwzpw4IBbs3//foXDYbfmSuLj45WUlBSxAACAgSuqXyetWLFC999/v2655RbV19frZz/7mRoaGvToo4/K4/GosLBQRUVFSk9PV3p6uoqKijR06FAVFBRIkhzH0dy5c7V8+XINHz5cycnJWrFihTIzM927lcaOHatZs2Zp3rx52rx5syRp/vz5ysvL484kAADgiirEnDlzRj/84Q/1xz/+UTfffLNycnJUVVWl0aNHS5JWrlyppqYmLVq0SKFQSNnZ2dqzZ48SExPdfWzcuFExMTGaPXu2mpqaNHXqVG3btk2DBg1ya7Zv366lS5e6dzHl5+erpKTkWhwvAAAYIDzGGNPXg7geGhoa5DiOwuEwv1pCt/T0CyA/XnvfNR4JANy4ojl/891JAADASoQYAABgJUIMAACwUtTfnQQgUvtrabhGBgB6BzMxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGClqwoxxcXF8ng8KiwsdNcZY7RmzRr5/X4NGTJEU6ZM0ZEjRyLe19zcrCVLlmjEiBFKSEhQfn6+zpw5E1ETCoUUCATkOI4cx1EgENCFCxeuZrgAAGAA6XGIOXjwoLZs2aI77rgjYv369eu1YcMGlZSU6ODBg/L5fJo+fboaGxvdmsLCQu3cuVM7duzQvn37dPHiReXl5enSpUtuTUFBgWpqalRaWqrS0lLV1NQoEAj0dLgAAGCA6VGIuXjxoh5++GFt3bpVw4YNc9cbY/T888/rqaee0oMPPqiMjAy9/PLL+t///V+9/vrrkqRwOKyXXnpJzz33nKZNm6YJEybotdde06FDh7R3715J0tGjR1VaWqp//ud/Vm5urnJzc7V161b95je/0fHjx6/BYQMAANv1KMQ8/vjjuu+++zRt2rSI9bW1tQoGg5oxY4a7Lj4+XpMnT1ZFRYUkqbq6Wq2trRE1fr9fGRkZbk1lZaUcx1F2drZbk5OTI8dx3Jr2mpub1dDQELEAAICBKybaN+zYsUPvv/++Dh482GFbMBiUJHm93oj1Xq9Xn3zyiVsTFxcXMYNzueby+4PBoFJSUjrsPyUlxa1pr7i4WM8880y0hwMAACwV1UzM6dOn9Xd/93d67bXXNHjw4K+s83g8Ea+NMR3Wtde+5kr1ne1n9erVCofD7nL69OlOPw8AANgtqhBTXV2t+vp6ZWVlKSYmRjExMSovL9cLL7ygmJgYdwam/WxJfX29u83n86mlpUWhUKjTmnPnznX4/PPnz3eY5bksPj5eSUlJEQsAABi4ogoxU6dO1aFDh1RTU+MuEydO1MMPP6yamhr95V/+pXw+n8rKytz3tLS0qLy8XJMmTZIkZWVlKTY2NqKmrq5Ohw8fdmtyc3MVDod14MABt2b//v0Kh8NuDQAAuLFFdU1MYmKiMjIyItYlJCRo+PDh7vrCwkIVFRUpPT1d6enpKioq0tChQ1VQUCBJchxHc+fO1fLlyzV8+HAlJydrxYoVyszMdC8UHjt2rGbNmqV58+Zp8+bNkqT58+crLy9PY8aMueqDBgAA9ov6wt6urFy5Uk1NTVq0aJFCoZCys7O1Z88eJSYmujUbN25UTEyMZs+eraamJk2dOlXbtm3ToEGD3Jrt27dr6dKl7l1M+fn5KikpudbDBQAAlvIYY0xfD+J6aGhokOM4CofDXB+Dbrn1ybeuyX4+XnvfNdkPANyIojl/891JAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKMX09AKAv3PrkW309BADAVWImBgAAWIkQAwAArESIAQAAViLEAAAAK0UVYjZt2qQ77rhDSUlJSkpKUm5urn7729+6240xWrNmjfx+v4YMGaIpU6boyJEjEftobm7WkiVLNGLECCUkJCg/P19nzpyJqAmFQgoEAnIcR47jKBAI6MKFCz0/SgAAMOBEFWJGjRqltWvX6r333tN7772n7373u3rggQfcoLJ+/Xpt2LBBJSUlOnjwoHw+n6ZPn67GxkZ3H4WFhdq5c6d27Nihffv26eLFi8rLy9OlS5fcmoKCAtXU1Ki0tFSlpaWqqalRIBC4RocMAAAGAo8xxlzNDpKTk/Xzn/9cf/M3fyO/36/CwkKtWrVK0hezLl6vV+vWrdOCBQsUDod1880369VXX9WcOXMkSWfPnlVqaqp2796tmTNn6ujRoxo3bpyqqqqUnZ0tSaqqqlJubq6OHTumMWPGdGtcDQ0NchxH4XBYSUlJV3OIGICu5y3WH6+977rtGwAGumjO3z2+JubSpUvasWOHPv/8c+Xm5qq2tlbBYFAzZsxwa+Lj4zV58mRVVFRIkqqrq9Xa2hpR4/f7lZGR4dZUVlbKcRw3wEhSTk6OHMdxa66kublZDQ0NEQsAABi4og4xhw4d0l/8xV8oPj5eCxcu1M6dOzVu3DgFg0FJktfrjaj3er3utmAwqLi4OA0bNqzTmpSUlA6fm5KS4tZcSXFxsXsNjeM4Sk1NjfbQAACARaIOMWPGjFFNTY2qqqr0t3/7t3r00Uf1wQcfuNs9Hk9EvTGmw7r22tdcqb6r/axevVrhcNhdTp8+3d1DAgAAFoo6xMTFxekb3/iGJk6cqOLiYo0fP16/+MUv5PP5JKnDbEl9fb07O+Pz+dTS0qJQKNRpzblz5zp87vnz5zvM8nxZfHy8e9fU5QUAAAxcV/2cGGOMmpublZaWJp/Pp7KyMndbS0uLysvLNWnSJElSVlaWYmNjI2rq6up0+PBhtyY3N1fhcFgHDhxwa/bv369wOOzWAAAARPUFkD/96U917733KjU1VY2NjdqxY4d+97vfqbS0VB6PR4WFhSoqKlJ6errS09NVVFSkoUOHqqCgQJLkOI7mzp2r5cuXa/jw4UpOTtaKFSuUmZmpadOmSZLGjh2rWbNmad68edq8ebMkaf78+crLy+v2nUkAAGDgiyrEnDt3ToFAQHV1dXIcR3fccYdKS0s1ffp0SdLKlSvV1NSkRYsWKRQKKTs7W3v27FFiYqK7j40bNyomJkazZ89WU1OTpk6dqm3btmnQoEFuzfbt27V06VL3Lqb8/HyVlJRci+MFAAADxFU/J6a/4jkx6AzPiQGA/qlXnhMDAADQlwgxAADASoQYAABgJUIMAACwEiEGAABYKapbrAF07Up3PnHHEgBce8zEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsFFWIKS4u1l133aXExESlpKToe9/7no4fPx5RY4zRmjVr5Pf7NWTIEE2ZMkVHjhyJqGlubtaSJUs0YsQIJSQkKD8/X2fOnImoCYVCCgQCchxHjuMoEAjowoULPTtKAAAw4EQVYsrLy/X444+rqqpKZWVl+vOf/6wZM2bo888/d2vWr1+vDRs2qKSkRAcPHpTP59P06dPV2Njo1hQWFmrnzp3asWOH9u3bp4sXLyovL0+XLl1yawoKClRTU6PS0lKVlpaqpqZGgUDgGhwyAAAYCDzGGNPTN58/f14pKSkqLy/Xt7/9bRlj5Pf7VVhYqFWrVkn6YtbF6/Vq3bp1WrBggcLhsG6++Wa9+uqrmjNnjiTp7NmzSk1N1e7duzVz5kwdPXpU48aNU1VVlbKzsyVJVVVVys3N1bFjxzRmzJgux9bQ0CDHcRQOh5WUlNTTQ8QAdeuTb/Xq53289r5e/TwAsFU05++ruiYmHA5LkpKTkyVJtbW1CgaDmjFjhlsTHx+vyZMnq6KiQpJUXV2t1tbWiBq/36+MjAy3prKyUo7juAFGknJycuQ4jlvTXnNzsxoaGiIWAAAwcPU4xBhjtGzZMt1zzz3KyMiQJAWDQUmS1+uNqPV6ve62YDCouLg4DRs2rNOalJSUDp+ZkpLi1rRXXFzsXj/jOI5SU1N7emgAAMACPQ4xixcv1h/+8Af9y7/8S4dtHo8n4rUxpsO69trXXKm+s/2sXr1a4XDYXU6fPt2dwwAAAJbqUYhZsmSJdu3apXfeeUejRo1y1/t8PknqMFtSX1/vzs74fD61tLQoFAp1WnPu3LkOn3v+/PkOszyXxcfHKykpKWIBAAADV1QhxhijxYsX64033tB//Md/KC0tLWJ7WlqafD6fysrK3HUtLS0qLy/XpEmTJElZWVmKjY2NqKmrq9Phw4fdmtzcXIXDYR04cMCt2b9/v8LhsFsDAABubDHRFD/++ON6/fXX9W//9m9KTEx0Z1wcx9GQIUPk8XhUWFiooqIipaenKz09XUVFRRo6dKgKCgrc2rlz52r58uUaPny4kpOTtWLFCmVmZmratGmSpLFjx2rWrFmaN2+eNm/eLEmaP3++8vLyunVnEgAAGPiiCjGbNm2SJE2ZMiVi/a9+9Ss99thjkqSVK1eqqalJixYtUigUUnZ2tvbs2aPExES3fuPGjYqJidHs2bPV1NSkqVOnatu2bRo0aJBbs337di1dutS9iyk/P18lJSU9OUYAADAAXdVzYvoznhODzvCcGADon3rtOTEAAAB9hRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAK8X09QCA3nDrk2/19RAAANcYMzEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEo8sRfoBe2fGPzx2vv6aCQAMHAwEwMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsFLUIeb3v/+97r//fvn9fnk8Hr355psR240xWrNmjfx+v4YMGaIpU6boyJEjETXNzc1asmSJRowYoYSEBOXn5+vMmTMRNaFQSIFAQI7jyHEcBQIBXbhwIeoDBAAAA1PUIebzzz/X+PHjVVJScsXt69ev14YNG1RSUqKDBw/K5/Np+vTpamxsdGsKCwu1c+dO7dixQ/v27dPFixeVl5enS5cuuTUFBQWqqalRaWmpSktLVVNTo0Ag0INDBAAAA5HHGGN6/GaPRzt37tT3vvc9SV/Mwvj9fhUWFmrVqlWSvph18Xq9WrdunRYsWKBwOKybb75Zr776qubMmSNJOnv2rFJTU7V7927NnDlTR48e1bhx41RVVaXs7GxJUlVVlXJzc3Xs2DGNGTOmy7E1NDTIcRyFw2ElJSX19BAxQLR/Ym5f44m9AHBl0Zy/r+k1MbW1tQoGg5oxY4a7Lj4+XpMnT1ZFRYUkqbq6Wq2trRE1fr9fGRkZbk1lZaUcx3EDjCTl5OTIcRy3pr3m5mY1NDRELAAAYOC6piEmGAxKkrxeb8R6r9frbgsGg4qLi9OwYcM6rUlJSemw/5SUFLemveLiYvf6GcdxlJqaetXHAwAA+q/rcneSx+OJeG2M6bCuvfY1V6rvbD+rV69WOBx2l9OnT/dg5AAAwBbXNMT4fD5J6jBbUl9f787O+Hw+tbS0KBQKdVpz7ty5Dvs/f/58h1mey+Lj45WUlBSxAACAgeuahpi0tDT5fD6VlZW561paWlReXq5JkyZJkrKyshQbGxtRU1dXp8OHD7s1ubm5CofDOnDggFuzf/9+hcNhtwYAANzYYqJ9w8WLF/XRRx+5r2tra1VTU6Pk5GTdcsstKiwsVFFRkdLT05Wenq6ioiINHTpUBQUFkiTHcTR37lwtX75cw4cPV3JyslasWKHMzExNmzZNkjR27FjNmjVL8+bN0+bNmyVJ8+fPV15eXrfuTAIAAANf1CHmvffe03e+8x339bJlyyRJjz76qLZt26aVK1eqqalJixYtUigUUnZ2tvbs2aPExET3PRs3blRMTIxmz56tpqYmTZ06Vdu2bdOgQYPcmu3bt2vp0qXuXUz5+flf+WwaAABw47mq58T0ZzwnBl/Gc2IAwA599pwYAACA3kKIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEoxfT0A4Fq79cm3+noIAIBewEwMAACwEiEGAABYiRADAACsxDUxQB+40nU7H6+9rw9GAgD2YiYGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFbq9yHmxRdfVFpamgYPHqysrCy9++67fT0kAADQD/TrEPPrX/9ahYWFeuqpp/Rf//Vf+uu//mvde++9OnXqVF8PDQAA9LF+HWI2bNiguXPn6sc//rHGjh2r559/Xqmpqdq0aVNfDw0AAPSxfhtiWlpaVF1drRkzZkSsnzFjhioqKvpoVAAAoL+I6esBfJU//vGPunTpkrxeb8R6r9erYDDYob65uVnNzc3u64aGhus+RgAA0Hf6bYi5zOPxRLw2xnRYJ0nFxcV65plnemtYuvXJt3rtsxCdj9fe19dD6BF+pgDYpq//ve23IWbEiBEaNGhQh1mX+vr6DrMzkrR69WotW7bMfd3Q0KDU1NTrPk70vb7+S3SttD8OQg0AdK7fhpi4uDhlZWWprKxM3//+9931ZWVleuCBBzrUx8fHKz4+vjeHCAC4wXTnP03d+Q/IQPnPV1/rtyFGkpYtW6ZAIKCJEycqNzdXW7Zs0alTp7Rw4cK+HhoAWO9KJ9LrNQN4I520b6Rj7Wv9OsTMmTNHn332mZ599lnV1dUpIyNDu3fv1ujRo/t6aAAQtZ7+L743T4qcgGGTfh1iJGnRokVatGhRXw8DgAW6c11Rfz9J9/fxAf1Jvw8xwI2qN6f6u6M74+lvJ+D+Nh4A1xYhBrBYX5+k+/rzAdzYCDGwyo1+0rzRjx8Avqzffu0AAABAZ5iJQb/BLAMAIBqEGFw1wgcAoC8QYm5gNt5tAgDAZYQYC13PYEFoAQDYghDTiwgIAABcO4SYHiKQAADQt7jFGgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGClmL4ewPVijJEkNTQ09PFIAABAd10+b18+j3dmwIaYxsZGSVJqamofjwQAAESrsbFRjuN0WuMx3Yk6Fmpra9PZs2eVmJgoj8dzTffd0NCg1NRUnT59WklJSdd03/h/9Ll30OfeQZ97B33uPder18YYNTY2yu/366abOr/qZcDOxNx0000aNWrUdf2MpKQk/pL0AvrcO+hz76DPvYM+957r0euuZmAu48JeAABgJUIMAACwEiGmB+Lj4/X0008rPj6+r4cyoNHn3kGfewd97h30uff0h14P2At7AQDAwMZMDAAAsBIhBgAAWIkQAwAArESIAQAAVrohQ8yaNWvk8XgiFp/P5243xmjNmjXy+/0aMmSIpkyZoiNHjkTso7m5WUuWLNGIESOUkJCg/Px8nTlzJqImFAopEAjIcRw5jqNAIKALFy70xiH2C531ubW1VatWrVJmZqYSEhLk9/v1ox/9SGfPno3YB33uWlc/z1+2YMECeTwePf/88xHr6XP3dKfXR48eVX5+vhzHUWJionJycnTq1Cl3O73uWld9vnjxohYvXqxRo0ZpyJAhGjt2rDZt2hSxD/rcPZ9++qkeeeQRDR8+XEOHDtWdd96p6upqd3u/Px+aG9DTTz9tbr/9dlNXV+cu9fX17va1a9eaxMRE86//+q/m0KFDZs6cOWbkyJGmoaHBrVm4cKH5+te/bsrKysz7779vvvOd75jx48ebP//5z27NrFmzTEZGhqmoqDAVFRUmIyPD5OXl9eqx9qXO+nzhwgUzbdo08+tf/9ocO3bMVFZWmuzsbJOVlRWxD/rcta5+ni/buXOnGT9+vPH7/Wbjxo0R2+hz93TV648++sgkJyebJ554wrz//vvmv//7v81vfvMbc+7cObeGXnetqz7/+Mc/Nrfddpt55513TG1trdm8ebMZNGiQefPNN90a+ty1//mf/zGjR482jz32mNm/f7+pra01e/fuNR999JFb09/PhzdsiBk/fvwVt7W1tRmfz2fWrl3rrvvTn/5kHMcxv/zlL40xX5yAY2NjzY4dO9yaTz/91Nx0002mtLTUGGPMBx98YCSZqqoqt6aystJIMseOHbsOR9X/dNbnKzlw4ICRZD755BNjDH3uru70+cyZM+brX/+6OXz4sBk9enREiKHP3ddVr+fMmWMeeeSRr9xOr7unqz7ffvvt5tlnn41Y961vfcv8/d//vTGGPnfXqlWrzD333POV2204H96Qv06SpBMnTsjv9ystLU0PPfSQTp48KUmqra1VMBjUjBkz3Nr4+HhNnjxZFRUVkqTq6mq1trZG1Pj9fmVkZLg1lZWVchxH2dnZbk1OTo4cx3FrbgRf1ecrCYfD8ng8+trXviaJPkejsz63tbUpEAjoiSee0O23397hvfQ5Ol/V67a2Nr311lv65je/qZkzZyolJUXZ2dl688033ffS6+7r7Gf6nnvu0a5du/Tpp5/KGKN33nlHH374oWbOnCmJPnfXrl27NHHiRP3gBz9QSkqKJkyYoK1bt7rbbTgf3pAhJjs7W6+88orefvttbd26VcFgUJMmTdJnn32mYDAoSfJ6vRHv8Xq97rZgMKi4uDgNGzas05qUlJQOn52SkuLWDHSd9bm9P/3pT3ryySdVUFDgfpEYfe6ervq8bt06xcTEaOnSpVd8P33uvs56XV9fr4sXL2rt2rWaNWuW9uzZo+9///t68MEHVV5eLoled1dXP9MvvPCCxo0bp1GjRikuLk6zZs3Siy++qHvuuUcSfe6ukydPatOmTUpPT9fbb7+thQsXaunSpXrllVckyYrz4YD9FuvO3Hvvve6fMzMzlZubq9tuu00vv/yycnJyJEkejyfiPcaYDuvaa19zpfru7Geg6KzPy5Ytc7e1trbqoYceUltbm1588cUu90ufI3XW58mTJ+sXv/iF3n///aj7QZ876qzXDz30kCTpgQce0E9+8hNJ0p133qmKigr98pe/1OTJk79yv/Q6Ulf/drzwwguqqqrSrl27NHr0aP3+97/XokWLNHLkSE2bNu0r90ufI7W1tWnixIkqKiqSJE2YMEFHjhzRpk2b9KMf/cit68/nwxtyJqa9hIQEZWZm6sSJE+4V8O3TYX19vZtGfT6fWlpaFAqFOq05d+5ch886f/58h1R7o/hyny9rbW3V7NmzVVtbq7Kysoivc6fPPfPlPr/77ruqr6/XLbfcopiYGMXExOiTTz7R8uXLdeutt0qiz1fjy70eMWKEYmJiNG7cuIiasWPHuncn0eue+XKfm5qa9NOf/lQbNmzQ/fffrzvuuEOLFy/WnDlz9I//+I+S6HN3jRw5ssufV6l/nw8JMfri9rCjR49q5MiRSktLk8/nU1lZmbu9paVF5eXlmjRpkiQpKytLsbGxETV1dXU6fPiwW5Obm6twOKwDBw64Nfv371c4HHZrbjRf7rP0/wHmxIkT2rt3r4YPHx5RT5975st9DgQC+sMf/qCamhp38fv9euKJJ/T2229Los9X48u9jouL01133aXjx49H1Hz44YcaPXq0JHrdU1/uc2trq1pbW3XTTZGnr0GDBqmtrU0Sfe6uu+++u9OfVyvOh1d1WbClli9fbn73u9+ZkydPmqqqKpOXl2cSExPNxx9/bIz54pYyx3HMG2+8YQ4dOmR++MMfXvGWslGjRpm9e/ea999/33z3u9+94i1ld9xxh6msrDSVlZUmMzPzhrp9r7M+t7a2mvz8fDNq1ChTU1MTcStlc3Ozuw/63LWufp7ba393kjH0ubu66vUbb7xhYmNjzZYtW8yJEyfMP/3TP5lBgwaZd999190Hve5aV32ePHmyuf32280777xjTp48aX71q1+ZwYMHmxdffNHdB33u2oEDB0xMTIz5h3/4B3PixAmzfft2M3ToUPPaa6+5Nf39fHhDhpjL97nHxsYav99vHnzwQXPkyBF3e1tbm3n66aeNz+cz8fHx5tvf/rY5dOhQxD6amprM4sWLTXJyshkyZIjJy8szp06diqj57LPPzMMPP2wSExNNYmKiefjhh00oFOqNQ+wXOutzbW2tkXTF5Z133nH3QZ+71tXPc3tXCjH0uXu60+uXXnrJfOMb3zCDBw8248ePj3h2iTH0uju66nNdXZ157LHHjN/vN4MHDzZjxowxzz33nGlra3Nr6HP3/Pu//7vJyMgw8fHx5q/+6q/Mli1bIrb39/Ohxxhjrm4uBwAAoPdxTQwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAVvo/Pg9lhLUOlvoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -903,10 +903,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:53.033991Z", - "iopub.status.busy": "2024-01-10T15:12:53.033666Z", - "iopub.status.idle": "2024-01-10T15:12:53.036225Z", - "shell.execute_reply": "2024-01-10T15:12:53.035825Z" + "iopub.execute_input": "2024-02-06T01:09:44.657860Z", + "iopub.status.busy": "2024-02-06T01:09:44.657697Z", + "iopub.status.idle": "2024-02-06T01:09:44.659952Z", + "shell.execute_reply": "2024-02-06T01:09:44.659590Z" } }, "outputs": [], @@ -919,16 +919,16 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:53.037798Z", - "iopub.status.busy": "2024-01-10T15:12:53.037652Z", - "iopub.status.idle": "2024-01-10T15:12:53.306354Z", - "shell.execute_reply": "2024-01-10T15:12:53.305859Z" + "iopub.execute_input": "2024-02-06T01:09:44.661560Z", + "iopub.status.busy": "2024-02-06T01:09:44.661404Z", + "iopub.status.idle": "2024-02-06T01:09:45.110437Z", + "shell.execute_reply": "2024-02-06T01:09:45.109973Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMcAAAINCAYAAAA6MBi/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJsklEQVR4nO3df5CV5X03/vcKYbE87iYRXXQEpAQDBBNxUVmov2pcQ03GH02lSYNJo1Ee1Edk5mnYqk+ETFxtE10xgtKmobQV18ZYzQRH1lQDBJImFGy+MY0+qWYduiuBfsNqWpcC5/uH436zLiAHdznA/XrN3DPe17nOZ6/rrGavvM9133dVqVQqBQAAAAAK6KhKDwAAAAAAKkU4BgAAAEBhCccAAAAAKCzhGAAAAACFJRwDAAAAoLCEYwAAAAAUlnAMAAAAgMISjgEAAABQWIMrPYD+snv37vz7v/97jjnmmFRVVVV6OADAYaBUKuXVV1/NiSeemKOO8p3hoco6DwAoVznrvCMmHPv3f//3jBw5stLDAAAOQy+//HJOOumkSg+DvbDOAwAO1P6s846YcOyYY45J8saka2pqKjwaAOBw0NXVlZEjR/asIzg0WecBAOUqZ513xIRjb26xr6mpsWgCAMriUr1Dm3UeAHCg9med5+YaAAAAABSWcAwAAACAwhKOAQAAAFBYwjEAAHosXrw4Y8aMydChQ1NfX581a9bs1/u+973vZfDgwTnttNP6vPbII49k4sSJqa6uzsSJE/Poo4/286gBAA6ccAwAgCRJa2tr5s6dm5tvvjkbN27M2WefnRkzZqS9vX2f79u+fXuuvPLKXHDBBX1eW79+fWbOnJlZs2bl2WefzaxZs3LFFVfkBz/4wUBNAwCgLFWlUqlU6UH0h66urtTW1mb79u2eYgQA7Bfrh97OOuusnH766VmyZElP24QJE3LppZemubl5r+/7wz/8w4wbNy6DBg3KP/zDP2TTpk09r82cOTNdXV154okneto+8pGP5D3veU9WrFixX+PyewIAylXO+sHOMQAAsmPHjmzYsCGNjY292hsbG7Nu3bq9vu/rX/96fv7zn+cLX/jCHl9fv359n5oXXXTRPmt2d3enq6ur1wEAMFCEYwAAZOvWrdm1a1fq6up6tdfV1aWzs3OP73nhhRcyf/78/N3f/V0GDx68xz6dnZ1l1UyS5ubm1NbW9hwjR44sczYAAPtPOAYAQI+qqqpe56VSqU9bkuzatSuf/OQns2DBgpxyyin9UvNNTU1N2b59e8/x8ssvlzEDAIDy7PkrPgAACmX48OEZNGhQnx1dW7Zs6bPzK0leffXV/OhHP8rGjRtz/fXXJ0l2796dUqmUwYMHZ9WqVfnd3/3djBgxYr9rvqm6ujrV1dX9MCsAgLdn5xgAABkyZEjq6+vT1tbWq72trS3Tpk3r07+mpiY//vGPs2nTpp5j9uzZef/7359NmzblrLPOSpI0NDT0qblq1ao91gQAqAQ7xwAASJLMmzcvs2bNypQpU9LQ0JClS5emvb09s2fPTvLG5Y6bN2/O8uXLc9RRR2XSpEm93n/88cdn6NChvdpvvPHGnHPOObnzzjtzySWX5LHHHstTTz2VtWvXHtS5AQDsjXAMAIAkycyZM7Nt27YsXLgwHR0dmTRpUlauXJnRo0cnSTo6OtLe3l5WzWnTpuWhhx7KLbfckltvvTVjx45Na2trz84yAIBKqyqVSqVKD6I/dHV1pba2Ntu3b09NTU2lhwMAHAasHw4Pfk8AQLnKWT+45xgAAAAAhSUcAwAAAKCwhGMAAAAAFJZwDAAAAIDCOqBwbPHixRkzZkyGDh2a+vr6rFmzZr/e973vfS+DBw/Oaaed1ue1Rx55JBMnTkx1dXUmTpyYRx999ECGBgAAAAD7bXC5b2htbc3cuXOzePHiTJ8+PQ888EBmzJiR5557LqNGjdrr+7Zv354rr7wyF1xwQV555ZVer61fvz4zZ87MF7/4xVx22WV59NFHc8UVV2Tt2rUe8w396OT53+6XOi/dcXG/1AEAgD3pr3VrYu0KvL2yd47dddddueqqq3L11VdnwoQJaWlpyciRI7NkyZJ9vu/aa6/NJz/5yTQ0NPR5raWlJRdeeGGampoyfvz4NDU15YILLkhLS0u5wwMAAACA/VZWOLZjx45s2LAhjY2NvdobGxuzbt26vb7v61//en7+85/nC1/4wh5fX79+fZ+aF1100T5rdnd3p6urq9cBAAAAAOUoKxzbunVrdu3albq6ul7tdXV16ezs3ON7XnjhhcyfPz9/93d/l8GD93wVZ2dnZ1k1k6S5uTm1tbU9x8iRI8uZCgAAAACUf8+xJKmqqup1XiqV+rQlya5du/LJT34yCxYsyCmnnNIvNd/U1NSUefPm9Zx3dXUJyAAAgIPv6eaBrX9+08DW7yf9eZ8wgIOprHBs+PDhGTRoUJ8dXVu2bOmz8ytJXn311fzoRz/Kxo0bc/311ydJdu/enVKplMGDB2fVqlX53d/93YwYMWK/a76puro61dXV5QwfAAAAAHop67LKIUOGpL6+Pm1tbb3a29raMm3atD79a2pq8uMf/zibNm3qOWbPnp33v//92bRpU8+TKBsaGvrUXLVq1R5rAgAAAEB/Kfuyynnz5mXWrFmZMmVKGhoasnTp0rS3t2f27NlJ3rjccfPmzVm+fHmOOuqoTJo0qdf7jz/++AwdOrRX+4033phzzjknd955Zy655JI89thjeeqpp7J27dp3OD0AAAAA2Luyw7GZM2dm27ZtWbhwYTo6OjJp0qSsXLkyo0ePTpJ0dHSkvb29rJrTpk3LQw89lFtuuSW33nprxo4dm9bW1p6dZQAAAAAwEKpKpVKp0oPoD11dXamtrc327dtTU1NT6eHAIam/bpL60h0X90sdgEqzfjg8+D1xyHND/iSH7g35rV2hmMpZP5R1zzEAAAAAOJIIxwAAAAAorLLvOQbg8kwA4LAy0Jc9AnBYs3MMAAAAgMISjgEAAABQWMIxAAAAAApLOAYAAABAYQnHAAAAACgs4RgAAAAAhSUcAwAAAKCwhGMAAAAAFJZwDAAAAIDCEo4BAAAAUFjCMQAAAAAKSzgGAAAAQGEJxwAAAAAoLOEYAAAAAIUlHAMAAACgsIRjAAAAABSWcAwAAACAwhKOAQAAAFBYwjEAAAAACks4BgAAAEBhCccAAAAAKCzhGAAAAACFJRwDAAAAoLAGV3oAAAAAMFBOnv/tfqv10h0X91st4NBh5xgAAAAAhSUcAwAAAKCwhGMAAAAAFJZwDACAHosXL86YMWMydOjQ1NfXZ82aNXvtu3bt2kyfPj3HHntsjj766IwfPz533313rz7Lli1LVVVVn+P1118f6KkAAOwXN+QHACBJ0tramrlz52bx4sWZPn16HnjggcyYMSPPPfdcRo0a1af/sGHDcv311+eDH/xghg0blrVr1+baa6/NsGHDcs011/T0q6mpyc9+9rNe7x06dOiAzwcAYH8IxwAASJLcddddueqqq3L11VcnSVpaWvLkk09myZIlaW5u7tN/8uTJmTx5cs/5ySefnG9+85tZs2ZNr3CsqqoqI0aMGPgJAAAcAJdVAgCQHTt2ZMOGDWlsbOzV3tjYmHXr1u1XjY0bN2bdunU599xze7W/9tprGT16dE466aR89KMfzcaNG/tt3AAA75SdYwAAZOvWrdm1a1fq6up6tdfV1aWzs3Of7z3ppJPyy1/+Mjt37sxtt93Ws/MsScaPH59ly5bl1FNPTVdXV+65555Mnz49zz77bMaNG7fHet3d3enu7u457+rqegczAwDYN+EYAAA9qqqqep2XSqU+bW+1Zs2avPbaa/n+97+f+fPn533ve18+8YlPJEmmTp2aqVOn9vSdPn16Tj/99Nx7771ZtGjRHus1NzdnwYIF73AmAAD7RzgGAECGDx+eQYMG9dkltmXLlj67yd5qzJgxSZJTTz01r7zySm677baecOytjjrqqJxxxhl54YUX9lqvqakp8+bN6znv6urKyJEj93cqAABlcc8xAAAyZMiQ1NfXp62trVd7W1tbpk2btt91SqVSr0si9/T6pk2bcsIJJ+y1T3V1dWpqanodAAADxc4xAACSJPPmzcusWbMyZcqUNDQ0ZOnSpWlvb8/s2bOTvLGja/PmzVm+fHmS5L777suoUaMyfvz4JMnatWvz5S9/OTfccENPzQULFmTq1KkZN25curq6smjRomzatCn33XffwZ8gAMAeCMcAAEiSzJw5M9u2bcvChQvT0dGRSZMmZeXKlRk9enSSpKOjI+3t7T39d+/enaamprz44osZPHhwxo4dmzvuuCPXXnttT59f/epXueaaa9LZ2Zna2tpMnjw5q1evzplnnnnQ5wcAsCdVpVKpVOlB9Ieurq7U1tZm+/bttt7DXpw8/9uVHkIvL91xcaWHABSc9cPhwe+Jd+zp5kqP4J05v6nSI9gvh9pacyBYv8Lho5z1g3uOAQAAAFBYwjEAAAAACks4BgAAAEBhHVA4tnjx4owZMyZDhw5NfX191qxZs9e+a9euzfTp03Psscfm6KOPzvjx43P33Xf36rNs2bJUVVX1OV5//fUDGR4AAAAA7Jeyn1bZ2tqauXPnZvHixZk+fXoeeOCBzJgxI88991xGjRrVp/+wYcNy/fXX54Mf/GCGDRuWtWvX5tprr82wYcNyzTXX9PSrqanJz372s17vHTp06AFMCQAAAAD2T9nh2F133ZWrrroqV199dZKkpaUlTz75ZJYsWZLm5r5PgZk8eXImT57cc37yySfnm9/8ZtasWdMrHKuqqsqIESMOZA4AAAAAcEDKuqxyx44d2bBhQxobG3u1NzY2Zt26dftVY+PGjVm3bl3OPffcXu2vvfZaRo8enZNOOikf/ehHs3Hjxn3W6e7uTldXV68DAAAAAMpR1s6xrVu3ZteuXamrq+vVXldXl87Ozn2+96STTsovf/nL7Ny5M7fddlvPzrMkGT9+fJYtW5ZTTz01XV1dueeeezJ9+vQ8++yzGTdu3B7rNTc3Z8GCBeUMHw5bJ8//dqWHAAAAAEeksi+rTN64BPI3lUqlPm1vtWbNmrz22mv5/ve/n/nz5+d973tfPvGJTyRJpk6dmqlTp/b0nT59ek4//fTce++9WbRo0R7rNTU1Zd68eT3nXV1dGTly5IFMBwAAAICCKiscGz58eAYNGtRnl9iWLVv67CZ7qzFjxiRJTj311Lzyyiu57bbbesKxtzrqqKNyxhln5IUXXthrverq6lRXV5czfAAAAADopax7jg0ZMiT19fVpa2vr1d7W1pZp06btd51SqZTu7u59vr5p06accMIJ5QwPAAAAAMpS9mWV8+bNy6xZszJlypQ0NDRk6dKlaW9vz+zZs5O8cbnj5s2bs3z58iTJfffdl1GjRmX8+PFJkrVr1+bLX/5ybrjhhp6aCxYsyNSpUzNu3Lh0dXVl0aJF2bRpU+67777+mCMAAAAA7FHZ4djMmTOzbdu2LFy4MB0dHZk0aVJWrlyZ0aNHJ0k6OjrS3t7e03/37t1pamrKiy++mMGDB2fs2LG54447cu211/b0+dWvfpVrrrkmnZ2dqa2tzeTJk7N69eqceeaZ/TBFAAAAANizqlKpVKr0IPpDV1dXamtrs3379tTU1FR6ONCvjtSnVb50x8WVHgJQcNYPhwe/J96xp5srPYJ35vymSo9gvxypa9bfZP0Kh49y1g9l3XMMAAAAAI4kwjEAAAAACks4BgAAAEBhCccAAAAAKCzhGAAAAACFJRwDAAAAoLCEYwAAAAAUlnAMAAAAgMISjgEAAABQWMIxAAAAAApLOAYAAABAYQnHAAAAACgs4RgAAAAAhSUcAwAAAKCwhGMAAAAAFJZwDAAAAIDCEo4BAAAAUFjCMQAAAAAKSzgGAAAAQGEJxwAAAAAoLOEYAAAAAIUlHAMAAACgsIRjAAAAABSWcAwAAACAwhKOAQAAAFBYwjEAAAAACmtwpQcAAADAPjzdPLD1z28a2PoAhzg7xwAAAAAoLOEYAAAAAIUlHAMAAACgsNxzDAAAqKyBvqcWAOyDnWMAAAAAFJadY0DFnDz/2++4xkt3XNwPIwHgTYsXL86f//mfp6OjIx/4wAfS0tKSs88+e499165dm89//vP513/91/znf/5nRo8enWuvvTY33XRTr36PPPJIbr311vz85z/P2LFj86UvfSmXXXbZwZgOAMDbsnMMAIAkSWtra+bOnZubb745GzduzNlnn50ZM2akvb19j/2HDRuW66+/PqtXr85Pf/rT3HLLLbnllluydOnSnj7r16/PzJkzM2vWrDz77LOZNWtWrrjiivzgBz84WNMCANinqlKpVKr0IPpDV1dXamtrs3379tTU1FR6ONCv+mOH1ZHKzjHgnbB+6O2ss87K6aefniVLlvS0TZgwIZdeemmam/fvnlCXX355hg0blr/5m79JksycOTNdXV154oknevp85CMfyXve856sWLFiv2r6PRWAe45V1vlN/VKmCGtWa084fJSzfrBzDACA7NixIxs2bEhjY2Ov9sbGxqxbt26/amzcuDHr1q3Lueee29O2fv36PjUvuuiifdbs7u5OV1dXrwMAYKAIxwAAyNatW7Nr167U1dX1aq+rq0tnZ+c+33vSSSeluro6U6ZMyXXXXZerr76657XOzs6yazY3N6e2trbnGDly5AHMCABg/wjHAADoUVVV1eu8VCr1aXurNWvW5Ec/+lHuv//+tLS09LlcstyaTU1N2b59e8/x8ssvlzkLAID952mVAABk+PDhGTRoUJ8dXVu2bOmz8+utxowZkyQ59dRT88orr+S2227LJz7xiSTJiBEjyq5ZXV2d6urqA5kGAEDZ7BwDACBDhgxJfX192traerW3tbVl2rRp+12nVCqlu7u757yhoaFPzVWrVpVVEwBgINk5BgBAkmTevHmZNWtWpkyZkoaGhixdujTt7e2ZPXt2kjcud9y8eXOWL1+eJLnvvvsyatSojB8/Pkmydu3afPnLX84NN9zQU/PGG2/MOeeckzvvvDOXXHJJHnvssTz11FNZu3btwZ8gAMAeCMcAAEiSzJw5M9u2bcvChQvT0dGRSZMmZeXKlRk9enSSpKOjI+3t7T39d+/enaamprz44osZPHhwxo4dmzvuuCPXXnttT59p06bloYceyi233JJbb701Y8eOTWtra84666yDPj8AgD2pKpVKpUoPoj90dXWltrY227dvT01NTaWHA/3q5PnfrvQQDlkv3XFxpYcAHMasHw4Pfk8F8HRzpUdQbOc39UuZIqxZrT3h8FHO+uGA7jm2ePHijBkzJkOHDk19fX3WrFmz175r167N9OnTc+yxx+boo4/O+PHjc/fdd/fp98gjj2TixImprq7OxIkT8+ijjx7I0AAAAABgv5V9WWVra2vmzp2bxYsXZ/r06XnggQcyY8aMPPfccxk1alSf/sOGDcv111+fD37wgxk2bFjWrl2ba6+9NsOGDcs111yTJFm/fn1mzpyZL37xi7nsssvy6KOP5oorrsjatWttuQcAAOCQ0J+74+xCg0NH2ZdVnnXWWTn99NOzZMmSnrYJEybk0ksvTXPz/m2HvvzyyzNs2LD8zd/8TZI37m/R1dWVJ554oqfPRz7ykbznPe/JihUr9qum7fYcyYqwRf1AWVQA74T1w+HB76kAXFZZWS6rrAjrWBhYA3ZZ5Y4dO7Jhw4Y0Njb2am9sbMy6dev2q8bGjRuzbt26nHvuuT1t69ev71Pzoosu2mfN7u7udHV19ToAAAAAoBxlhWNbt27Nrl27UldX16u9rq4unZ2d+3zvSSedlOrq6kyZMiXXXXddrr766p7XOjs7y67Z3Nyc2tranmPkyJHlTAUAAAAADuyG/FVVVb3OS6VSn7a3WrNmTX70ox/l/vvvT0tLS5/LJcut2dTUlO3bt/ccL7/8cpmzAAAAAKDoyroh//DhwzNo0KA+O7q2bNnSZ+fXW40ZMyZJcuqpp+aVV17Jbbfdlk984hNJkhEjRpRds7q6OtXV1eUMHwAAAAB6KWvn2JAhQ1JfX5+2trZe7W1tbZk2bdp+1ymVSunu7u45b2ho6FNz1apVZdUEAAAAgHKVtXMsSebNm5dZs2ZlypQpaWhoyNKlS9Pe3p7Zs2cneeNyx82bN2f58uVJkvvuuy+jRo3K+PHjkyRr167Nl7/85dxwww09NW+88cacc845ufPOO3PJJZfksccey1NPPZW1a9f2xxwBAADYg5bvPJ+WJz1lEii2ssOxmTNnZtu2bVm4cGE6OjoyadKkrFy5MqNHj06SdHR0pL29vaf/7t2709TUlBdffDGDBw/O2LFjc8cdd+Taa6/t6TNt2rQ89NBDueWWW3Lrrbdm7NixaW1tzVlnndUPUwQAAACAPasqlUqlSg+iP3R1daW2tjbbt29PTU1NpYcD/erk+b7N25uX7ri40kMADmPWD4cHv6cCeLq50iMorJbvPJ+WnR+v9DAKyToWBlY564cDelolAAAAABwJhGMAAAAAFJZwDAAAAIDCEo4BAAAAUFjCMQAAAAAKSzgGAAAAQGEJxwAAAAAoLOEYAAAAAIUlHAMAAACgsIRjAAAAABSWcAwAAACAwhKOAQAAAFBYwjEAAAAACks4BgAAAEBhCccAAAAAKCzhGAAAAACFJRwDAAAAoLCEYwAAAAAUlnAMAAAAgMIaXOkBwJHu5PnfrvQQAAAAgL2wcwwAAACAwhKOAQAAAFBYwjEAAAAACks4BgAAAEBhCccAAAAAKCzhGAAAAACFJRwDAAAAoLCEYwAAAAAUlnAMAAAAgMISjgEAAABQWMIxAAAAAAprcKUHcFh5unlg65/fNLD1AQAAAOjFzjEAAAAACks4BgAAAEBhCccAAOixePHijBkzJkOHDk19fX3WrFmz177f/OY3c+GFF+a4445LTU1NGhoa8uSTT/bqs2zZslRVVfU5Xn/99YGeCgDAfhGOAQCQJGltbc3cuXNz8803Z+PGjTn77LMzY8aMtLe377H/6tWrc+GFF2blypXZsGFDzj///HzsYx/Lxo0be/WrqalJR0dHr2Po0KEHY0oAAG/LDfkBAEiS3HXXXbnqqqty9dVXJ0laWlry5JNPZsmSJWlu7vtgopaWll7nt99+ex577LF861vfyuTJk3vaq6qqMmLEiAEdOwDAgbJzDACA7NixIxs2bEhjY2Ov9sbGxqxbt26/auzevTuvvvpq3vve9/Zqf+211zJ69OicdNJJ+ehHP9pnZxkAQCUJxwAAyNatW7Nr167U1dX1aq+rq0tnZ+d+1fjKV76SX//617niiit62saPH59ly5bl8ccfz4oVKzJ06NBMnz49L7zwwl7rdHd3p6urq9cBADBQXFYJAECPqqqqXuelUqlP256sWLEit912Wx577LEcf/zxPe1Tp07N1KlTe86nT5+e008/Pffee28WLVq0x1rNzc1ZsGDBAc4AAKA8do4BAJDhw4dn0KBBfXaJbdmypc9usrdqbW3NVVddlYcffjgf/vCH99n3qKOOyhlnnLHPnWNNTU3Zvn17z/Hyyy/v/0QAAMokHAMAIEOGDEl9fX3a2tp6tbe1tWXatGl7fd+KFSvymc98Jg8++GAuvvjit/05pVIpmzZtygknnLDXPtXV1ampqel1AAAMFJdVAgCQJJk3b15mzZqVKVOmpKGhIUuXLk17e3tmz56d5I0dXZs3b87y5cuTvBGMXXnllbnnnnsyderUnl1nRx99dGpra5MkCxYsyNSpUzNu3Lh0dXVl0aJF2bRpU+67777KTBIA4C2EYwAAJElmzpyZbdu2ZeHCheno6MikSZOycuXKjB49OknS0dGR9vb2nv4PPPBAdu7cmeuuuy7XXXddT/unP/3pLFu2LEnyq1/9Ktdcc006OztTW1ubyZMnZ/Xq1TnzzDMP6twAAPbmgC6rXLx4ccaMGZOhQ4emvr4+a9as2Wvfb37zm7nwwgtz3HHHpaamJg0NDXnyySd79Vm2bFmqqqr6HK+//vqBDA8AgAM0Z86cvPTSS+nu7s6GDRtyzjnn9Ly2bNmyPPPMMz3nzzzzTEqlUp/jzWAsSe6+++784he/SHd3d7Zs2ZInn3wyDQ0NB3FGAAD7VnY41tramrlz5+bmm2/Oxo0bc/bZZ2fGjBm9vkX8TatXr86FF16YlStXZsOGDTn//PPzsY99LBs3buzVr6amJh0dHb2OoUOHHtisAAAAAGA/lH1Z5V133ZWrrroqV199dZKkpaUlTz75ZJYsWZLm5uY+/VtaWnqd33777XnsscfyrW99K5MnT+5pr6qqyogRI8odDgAAAAAcsLJ2ju3YsSMbNmxIY2Njr/bGxsasW7duv2rs3r07r776at773vf2an/ttdcyevTonHTSSfnoRz/aZ2fZW3V3d6erq6vXAQAAAADlKCsc27p1a3bt2pW6urpe7XV1dT1PJ3o7X/nKV/LrX/86V1xxRU/b+PHjs2zZsjz++ONZsWJFhg4dmunTp+eFF17Ya53m5ubU1tb2HCNHjixnKgAAAABwYDfkr6qq6nVeKpX6tO3JihUrctttt6W1tTXHH398T/vUqVPzqU99Kh/60Idy9tln5+GHH84pp5ySe++9d6+1mpqasn379p7j5ZdfPpCpAAAAAFBgZd1zbPjw4Rk0aFCfXWJbtmzps5vsrVpbW3PVVVfl7//+7/PhD394n32POuqonHHGGfvcOVZdXZ3q6ur9HzwAAAAAvEVZO8eGDBmS+vr6tLW19Wpva2vLtGnT9vq+FStW5DOf+UwefPDBXHzxxW/7c0qlUjZt2pQTTjihnOEBAAAAQFnKflrlvHnzMmvWrEyZMiUNDQ1ZunRp2tvbM3v27CRvXO64efPmLF++PMkbwdiVV16Ze+65J1OnTu3ZdXb00UentrY2SbJgwYJMnTo148aNS1dXVxYtWpRNmzblvvvu6695AgAAAEAfZYdjM2fOzLZt27Jw4cJ0dHRk0qRJWblyZUaPHp0k6ejoSHt7e0//Bx54IDt37sx1112X6667rqf905/+dJYtW5Yk+dWvfpVrrrkmnZ2dqa2tzeTJk7N69eqceeaZ73B6AAAAALB3ZYdjSTJnzpzMmTNnj6+9GXi96ZlnnnnbenfffXfuvvvuAxkKAAAAABywA3paJQAAAAAcCYRjAAAAABSWcAwAAACAwhKOAQAAAFBYwjEAAAAACuuAnlYJcKg4ef63+6XOS3dc3C91AAAAOLzYOQYAAABAYQnHAAAAACgs4RgAAAAAhSUcAwAAAKCwhGMAAAAAFJZwDAAAAIDCEo4BAAAAUFjCMQAAAAAKSzgGAAAAQGEJxwAAAAAoLOEYAAAAAIUlHAMAAACgsIRjAAAAABSWcAwAAACAwhKOAQAAAFBYwjEAAAAACks4BgAAAEBhCccAAAAAKKzBlR4Av+Hp5oGtf37TwNYHAAAAOMzYOQYAAABAYQnHAAAAACgs4RgAAAAAhSUcAwAAAKCwhGMAAAAAFJZwDAAAAIDCEo4BAAAAUFjCMQAAAAAKSzgGAAAAQGEJxwAAAAAoLOEYAAAAAIUlHAMAoMfixYszZsyYDB06NPX19VmzZs1e+37zm9/MhRdemOOOOy41NTVpaGjIk08+2affI488kokTJ6a6ujoTJ07Mo48+OpBTAAAoi3AMAIAkSWtra+bOnZubb745GzduzNlnn50ZM2akvb19j/1Xr16dCy+8MCtXrsyGDRty/vnn52Mf+1g2btzY02f9+vWZOXNmZs2alWeffTazZs3KFVdckR/84AcHa1oAAPskHAMAIEly11135aqrrsrVV1+dCRMmpKWlJSNHjsySJUv22L+lpSV/8id/kjPOOCPjxo3L7bffnnHjxuVb3/pWrz4XXnhhmpqaMn78+DQ1NeWCCy5IS0vLQZoVAMC+Da70AAAAqLwdO3Zkw4YNmT9/fq/2xsbGrFu3br9q7N69O6+++mre+9739rStX78+N910U69+F1100T7Dse7u7nR3d/ecd3V17dfPBzicnDz/2/1a76U7Lu7XelAkdo4BAJCtW7dm165dqaur69VeV1eXzs7O/arxla98Jb/+9a9zxRVX9LR1dnaWXbO5uTm1tbU9x8iRI8uYCQBAeYRjAAD0qKqq6nVeKpX6tO3JihUrctttt6W1tTXHH3/8O6rZ1NSU7du39xwvv/xyGTMAACiPyyoBAMjw4cMzaNCgPju6tmzZ0mfn11u1trbmqquuyt///d/nwx/+cK/XRowYUXbN6urqVFdXlzkDAIADc0A7xzziGwDgyDJkyJDU19enra2tV3tbW1umTZu21/etWLEin/nMZ/Lggw/m4ov73u+moaGhT81Vq1btsyYAwMFUdjjmEd8AAEemefPm5S//8i/zV3/1V/npT3+am266Ke3t7Zk9e3aSNy53vPLKK3v6r1ixIldeeWW+8pWvZOrUqens7ExnZ2e2b9/e0+fGG2/MqlWrcuedd+Zf//Vfc+edd+app57K3LlzD/b0AAD2qKpUKpXKecNZZ52V008/vdcjvSdMmJBLL700zc3N+1XjAx/4QGbOnJn/83/+T5Jk5syZ6erqyhNPPNHT5yMf+Uje8573ZMWKFftVs6urK7W1tdm+fXtqamrKmFEZnt6/+R2yzm+q9AgKqb+fQsPA8HQfKKaDsn44zCxevDh/9md/lo6OjkyaNCl33313zjnnnCTJZz7zmbz00kt55plnkiTnnXdevvvd7/ap8elPfzrLli3rOf/GN76RW265Jf/2b/+WsWPH5ktf+lIuv/zy/R6T31MBHO7r7MNYy3eeT8vOj1d6GPQD61norZz1Q1n3HPOIbwCAI9ucOXMyZ86cPb72m4FXkp6Q7O18/OMfz8c/7v98AwCHprIuq/SIbwAAAACOJAd0Q36P+AYAAADgSFDWZZUe8Q0AAADAkaSsnWMe8Q0AAADAkaSsnWPJG4/4njVrVqZMmZKGhoYsXbq0zyO+N2/enOXLlyf5/x/xfc899/Q84jtJjj766NTW1iZ54xHf55xzTu68885ccskleeyxx/LUU09l7dq1/TVPkoF/CpCnYQIAAACHmbLvOTZz5sy0tLRk4cKFOe2007J69eqsXLkyo0ePTpJ0dHSkvb29p/8DDzyQnTt35rrrrssJJ5zQc9x44409faZNm5aHHnooX//61/PBD34wy5YtS2tra84666x+mCIAAAAA7FnZO8cSj/gGAAAA4MhwQE+rBAAAAIAjgXAMAAAAgMI6oMsqAQAAqIyW7zxf6SEAHFHsHAMAAACgsIRjAAAAABSWcAwAAACAwnLPMQAAgAKbO/gbA1q/ZefHB7Q+wDtl5xgAAAAAhSUcAwAAAKCwhGMAAAAAFJZwDAAAAIDCckN+AABg355urvQIAGDA2DkGAAAAQGEJxwAAAAAoLOEYAAAAAIUlHAMAAACgsIRjAAAAABSWp1XSfwb6KUbnNw1sfQAAAKBw7BwDAAAAoLDsHIO9OHn+tys9BAAAAGCA2TkGAAAAQGEJxwAAAAAoLOEYAAAAAIUlHAMAAACgsIRjAAAAABSWcAwAAACAwhKOAQAAAFBYwjEAAAAACks4BgAAAEBhCccAAAAAKKzBlR4AwKHg5Pnf7pc6L91xcb/UAQAA4OCwcwwAAACAwhKOAQAAAFBYwjEAAAAACks4BgAAAEBhCccAAAAAKCzhGAAAAACFJRwDAAAAoLCEYwAA9Fi8eHHGjBmToUOHpr6+PmvWrNlr346Ojnzyk5/M+9///hx11FGZO3dunz7Lli1LVVVVn+P1118fwFkAAOw/4RgAAEmS1tbWzJ07NzfffHM2btyYs88+OzNmzEh7e/se+3d3d+e4447LzTffnA996EN7rVtTU5OOjo5ex9ChQwdqGgAAZRGOAQCQJLnrrrty1VVX5eqrr86ECRPS0tKSkSNHZsmSJXvsf/LJJ+eee+7JlVdemdra2r3WraqqyogRI3odAACHCuEYAADZsWNHNmzYkMbGxl7tjY2NWbdu3Tuq/dprr2X06NE56aST8tGPfjQbN27cZ//u7u50dXX1OgAABopwDACAbN26Nbt27UpdXV2v9rq6unR2dh5w3fHjx2fZsmV5/PHHs2LFigwdOjTTp0/PCy+8sNf3NDc3p7a2tucYOXLkAf98AIC3M7jSA4D99nTzwNY/v2lg6wPAYaCqqqrXealU6tNWjqlTp2bq1Kk959OnT8/pp5+ee++9N4sWLdrje5qamjJv3rye866uLgEZADBgDmjnmKcYAQAcWYYPH55Bgwb12SW2ZcuWPrvJ3omjjjoqZ5xxxj53jlVXV6empqbXAQAwUMoOxzzFCADgyDNkyJDU19enra2tV3tbW1umTZvWbz+nVCpl06ZNOeGEE/qtJgDAO1H2ZZW/+RSjJGlpacmTTz6ZJUuWpLm572Vvbz7FKEn+6q/+aq9133yKEQAAlTFv3rzMmjUrU6ZMSUNDQ5YuXZr29vbMnj07yRuXO27evDnLly/vec+mTZuSvHHT/V/+8pfZtGlThgwZkokTJyZJFixYkKlTp2bcuHHp6urKokWLsmnTptx3330HfX4AAHtSVjj25lOM5s+f36u9P59itGvXrpx22mn54he/mMmTJ++1f3d3d7q7u3vOPcUIAOCdmTlzZrZt25aFCxemo6MjkyZNysqVKzN69Ogkb9wu461XC/zmem3Dhg158MEHM3r06Lz00ktJkl/96le55ppr0tnZmdra2kyePDmrV6/OmWeeedDmBQCwL2WFYwP9FKNTTz01XV1dueeeezJ9+vQ8++yzGTdu3B7f09zcnAULFhzwzwQAoK85c+Zkzpw5e3xt2bJlfdpKpdI+69199925++67+2NoAAAD4oBuyD8QTzH61Kc+lQ996EM5++yz8/DDD+eUU07Jvffeu9f3NDU1Zfv27T3Hyy+/fMA/HwAAAIBiKmvn2KH2FKPq6up++5kAAAAAFE9ZO8c8xQgAAACAI0nZT6v0FCMAAAAAjhRlh2OeYgQAAADAkaLscCzxFCMAAAAAjgwH9LRKAAAAADgSCMcAAAAAKCzhGAAAAACFJRwDAAAAoLCEYwAAAAAUlnAMAAAAgMISjgEAAABQWMIxAAAAAAprcKUHAIeMp5t7nc4d/Hy/lm/Z+fF+rQcAAAC8c3aOAQAAAFBYwjEAAAAACks4BgAAAEBhCccAAAAAKCzhGAAAAACFJRwDAAAAoLCEYwAAAAAUlnAMAAAAgMISjgEAAABQWMIxAAAAAApLOAYAAABAYQnHAAAAACgs4RgAAAAAhSUcAwAAAKCwhGMAAAAAFJZwDAAAAIDCEo4BAAAAUFjCMQAAAAAKa3ClBwAAAAC8MyfP/3a/1Xrpjov7rRYcDuwcAwAAAKCwhGMAAAAAFJZwDAAAAIDCEo4BAAAAUFjCMQAAAAAKy9Mq4SCZO/gbA1q/ZefHB7Q+AAAAHImEYxxxWr7zfKWHAAAAABwmXFYJAAAAQGEJxwAAAAAoLOEYAAAAAIUlHAMAAACgsIRjAAAAABSWcAwAgB6LFy/OmDFjMnTo0NTX12fNmjV77dvR0ZFPfvKTef/735+jjjoqc+fO3WO/Rx55JBMnTkx1dXUmTpyYRx99dIBGDwBQvsGVHgAAAIeG1tbWzJ07N4sXL8706dPzwAMPZMaMGXnuuecyatSoPv27u7tz3HHH5eabb87dd9+9x5rr16/PzJkz88UvfjGXXXZZHn300VxxxRVZu3ZtzjrrrIGeEhwyWr7zfKWHAMBe2DkGAECS5K677spVV12Vq6++OhMmTEhLS0tGjhyZJUuW7LH/ySefnHvuuSdXXnllamtr99inpaUlF154YZqamjJ+/Pg0NTXlggsuSEtLywDOBABg/x1QOGa7PQDAkWXHjh3ZsGFDGhsbe7U3NjZm3bp1B1x3/fr1fWpedNFF+6zZ3d2drq6uXgcAwEApOxx7c7v9zTffnI0bN+bss8/OjBkz0t7evsf+v7nd/kMf+tAe+7y53X7WrFl59tlnM2vWrFxxxRX5wQ9+UO7wAAA4AFu3bs2uXbtSV1fXq72uri6dnZ0HXLezs7Psms3Nzamtre05Ro4cecA/HwDg7ZQdjtluDwBw5Kqqqup1XiqV+rQNdM2mpqZs376953j55Zff0c8HANiXsm7I/+Z2+/nz5/dq74/t9jfddFOvtosuukg4BmWYO/gbA1q/ZefHB7Q+AJU1fPjwDBo0qM+Ori1btvTZ+VWOESNGlF2zuro61dXVB/wzAQDKUdbOsUNpu717UQAA9J8hQ4akvr4+bW1tvdrb2toybdq0A67b0NDQp+aqVaveUU0AgP5U1s6xNx0K2+2bm5uzYMGCd/QzAQD4/82bNy+zZs3KlClT0tDQkKVLl6a9vT2zZ89O8sbljps3b87y5ct73rNp06YkyWuvvZZf/vKX2bRpU4YMGZKJEycmSW688cacc845ufPOO3PJJZfksccey1NPPZW1a9ce9PkBAOxJWeHYobTdvqmpKfPmzes57+rqcrNWAIB3YObMmdm2bVsWLlyYjo6OTJo0KStXrszo0aOTvPEU8rc+hGny5Mk9/7xhw4Y8+OCDGT16dF566aUkybRp0/LQQw/llltuya233pqxY8emtbU1Z5111kGbVyE83VzpEQDAYauscOw3t9tfdtllPe1tbW255JJLDngQb263/837jr3ddnv3ogAA6H9z5szJnDlz9vjasmXL+rSVSqW3rfnxj388H/+4e1cCAIemsi+rtN0eAAAAgCNF2eGY7fZQTJ6GCQAAwJHogG7Ib7s9AAAAAEeCoyo9AAAAAAColAPaOQbAnp08/9v9UuelOy7ulzoAAADsm51jAAAAABSWcAwAAACAwhKOAQAAAFBYwjEAAAAACks4BgAAAEBhCccAAAAAKCzhGAAAAACFNbjSAwBIkrmDvzGg9Vt2fnxA6wMAAHB4snMMAAAAgMISjgEAAABQWC6rBAAAYMC4fQZwqLNzDAAAAIDCEo4BAAAAUFjCMQAAAAAKSzgGAAAAQGEJxwAAAAAoLE+rBArBU5IAAADYEzvHAAAAACgs4RgAAAAAhSUcAwAAAKCwhGMAAAAAFJZwDAAAAIDCEo4BAAAAUFjCMQAAAAAKSzgGAAAAQGEJxwAAAAAoLOEYAAAAAIUlHAMAAACgsIRjAAAAABSWcAwAAACAwhKOAQAAAFBYgys9AIAjwdzB3+jfgk//S+/z85v6tz4AAABJ7BwDAAAAoMDsHAMAAAB6nDz/2/1W66U7Lu63WjBQ7BwDAAAAoLDsHAM4HDzdPLD13dMMAAAoKDvHAAAAACgs4RgAAAAAheWySg4ZLd95vtJDAAAAAArGzjEAAAAACks4BgBAj8WLF2fMmDEZOnRo6uvrs2bNmn32/+53v5v6+voMHTo0v/3bv53777+/1+vLli1LVVVVn+P1118fyGkAAOw3l1UCAJAkaW1tzdy5c7N48eJMnz49DzzwQGbMmJHnnnsuo0aN6tP/xRdfzO/93u/lc5/7XP72b/823/ve9zJnzpwcd9xx+f3f//2efjU1NfnZz37W671Dhw4d8PnAO+GWHwDFcUA7x3yjCABw5Lnrrrty1VVX5eqrr86ECRPS0tKSkSNHZsmSJXvsf//992fUqFFpaWnJhAkTcvXVV+ezn/1svvzlL/fqV1VVlREjRvQ6AAAOFWXvHPONIsDA649vq+decEo/jAQoih07dmTDhg2ZP39+r/bGxsasW7duj+9Zv359Ghsbe7VddNFF+drXvpb//u//zrve9a4kyWuvvZbRo0dn165dOe200/LFL34xkydP3utYuru7093d3XPe1dV1oNMCAHhbZe8c840iAMCRZ+vWrdm1a1fq6up6tdfV1aWzs3OP7+ns7Nxj/507d2br1q1JkvHjx2fZsmV5/PHHs2LFigwdOjTTp0/PCy+8sNexNDc3p7a2tucYOXLkO5wdAMDelbVzzDeKAEeop5sHtv75TQNbH+g3VVVVvc5LpVKftrfr/5vtU6dOzdSpU3tenz59ek4//fTce++9WbRo0R5rNjU1Zd68eT3nXV1dAjIAYMCUtXPMN4oAAEem4cOHZ9CgQX3WdFu2bOmzlnvTiBEj9th/8ODBOfbYY/f4nqOOOipnnHHGPtd51dXVqamp6XUAAAyUA7oh/0B8o/ipT30qH/rQh3L22Wfn4YcfzimnnJJ77713rzWbmpqyffv2nuPll18+kKkAAJBkyJAhqa+vT1tbW6/2tra2TJs2bY/vaWho6NN/1apVmTJlSs/VAW9VKpWyadOmnHDCCf0zcACAd6isyyoPtW8Uq6uryxk+AAD7MG/evMyaNStTpkxJQ0NDli5dmvb29syePTvJG19Obt68OcuXL0+SzJ49O1/96lczb968fO5zn8v69evzta99LStWrOipuWDBgkydOjXjxo1LV1dXFi1alE2bNuW+++6ryBwBAN6qrHDsN79RvOyyy3ra29racskll+zxPQ0NDfnWt77Vq21/v1E89dRTyxkeAADvwMyZM7Nt27YsXLgwHR0dmTRpUlauXJnRo0cnSTo6OtLe3t7Tf8yYMVm5cmVuuumm3HfffTnxxBOzaNGiXk8k/9WvfpVrrrkmnZ2dqa2tzeTJk7N69eqceeaZB31+AAB7UlY4lvhGEYAD4Ib/cNiYM2dO5syZs8fXli1b1qft3HPPzT//8z/vtd7dd9+du+++u7+GBwDQ78oOx3yjCAAAAMCRouxwLPGNIgAAAABHhgN6WiUAAAAAHAmEYwAAAAAUlnAMAAAAgMISjgEAAABQWMIxAAAAAApLOAYAAABAYQ2u9AAA4JD3dPPA1j+/aWDrAwAAeyUcA+DwN9DhFQAAcMRyWSUAAAAAhSUcAwAAAKCwhGMAAAAAFJZwDAAAAIDCEo4BAAAAUFieVgkAAMBha+7gbwxo/ZadHx/Q+kDlCccAAGCgPd1c6REAAHvhskoAAAAACsvOMQAAAGBAnDz/2/1W66U7Lu63WvCb7BwDAAAAoLDsHAOAI91A3+vo/KaBrQ8AAAPIzjEAAAAACks4BgAAAEBhuawSACptoC97BCiIlu88X+khAHAYEo7RLyxEAAAAgMORyyoBAAAAKCw7xwCAd8bTMAEAOIwJxwCOUP11ufPcC07plzoAAACHIpdVAgAAAFBYwjEAAAAACks4BgAAAEBhCccAAAAAKCzhGAAAAACFJRwDAAAAoLCEYwAAAAAUlnAMAAAAgMIaXOkBAAAAALydk+d/u99qvXTHxf1Wi8OfnWMAAAAAFJadYwXX8p3nKz0EAIDKe7q50iMADlFzB39jQOu37Pz4gNYH3p6dYwAAAAAUlp1jAABAxbiSAYBKs3MMAAAAgMKycwyAfeqvb/TnXnBKv9QBAADoT3aOAQAAAFBYdo4dptybAQAAAOCds3MMAAAAgMI6oJ1jixcvzp//+Z+no6MjH/jAB9LS0pKzzz57r/2/+93vZt68efnJT36SE088MX/yJ3+S2bNn9+rzyCOP5NZbb83Pf/7zjB07Nl/60pdy2WWXHcjwAAA4QNZ5ABTByfO/3W+1Xrrj4n6rRWWUHY61trZm7ty5Wbx4caZPn54HHnggM2bMyHPPPZdRo0b16f/iiy/m937v9/K5z30uf/u3f5vvfe97mTNnTo477rj8/u//fpJk/fr1mTlzZr74xS/msssuy6OPPporrrgia9euzVlnnfXOZwlAxbmxPxz6rPPYX27xAcCRpKpUKpXKecNZZ52V008/PUuWLOlpmzBhQi699NI0Nzf36f/5z38+jz/+eH7605/2tM2ePTvPPvts1q9fnySZOXNmurq68sQTT/T0+chHPpL3vOc9WbFixX6Nq6urK7W1tdm+fXtqamrKmdL+e7rv/MplIQHwzgjHCuj8pgErfVDWD4cR6zz2lzUtHD5adn680kOgDHah9Z9y1g9l7RzbsWNHNmzYkPnz5/dqb2xszLp16/b4nvXr16exsbFX20UXXZSvfe1r+e///u+8613vyvr163PTTTf16dPS0rLXsXR3d6e7u7vnfPv27UnemPyA+fXr77jE6907+mEgAMV1x8r/5x3XmHPu+/phJBw0A/i3/c11Q5nfFR6RrPPe+TrvULf4u/+30kMAKmB2HhzQ+ot3Xjqg9Ytm1E1/32+1/p8FF/VbrcNROeu8ssKxrVu3ZteuXamrq+vVXldXl87Ozj2+p7Ozc4/9d+7cma1bt+aEE07Ya5+91UyS5ubmLFiwoE/7yJEj93c6ABRU05crPQLKs3DAf8Krr76a2traAf85hzLrPAAOzMCGbxy42pZKj+DQsD/rvAO6IX9VVVWv81Kp1Kft7fq/tb3cmk1NTZk3b17P+e7du/Mf//EfOfbYY/f5vgPV1dWVkSNH5uWXX3bZRQX4/CvL519ZPv/K8vlX1kB//qVSKa+++mpOPPHEfq99uLLO89/5webzryyff2X5/CvL519Zh9I6r6xwbPjw4Rk0aFCfb/q2bNnS5xvBN40YMWKP/QcPHpxjjz12n332VjNJqqurU11d3avt3e9+9/5O5YDV1NT4j6aCfP6V5fOvLJ9/Zfn8K2sgP/+i7xh7k3We/84rzedfWT7/yvL5V5bPv7IOhXXeUeUUHTJkSOrr69PW1tarva2tLdOmTdvjexoaGvr0X7VqVaZMmZJ3vetd++yzt5oAAPQv6zwAoKjKvqxy3rx5mTVrVqZMmZKGhoYsXbo07e3tmT17dpI3tsFv3rw5y5cvT/LGE4u++tWvZt68efnc5z6X9evX52tf+1qvpxPdeOONOeecc3LnnXfmkksuyWOPPZannnoqa9eu7adpAgDwdqzzAIAiKjscmzlzZrZt25aFCxemo6MjkyZNysqVKzN69OgkSUdHR9rb23v6jxkzJitXrsxNN92U++67LyeeeGIWLVqU3//93+/pM23atDz00EO55ZZbcuutt2bs2LFpbW3NWWed1Q9T7B/V1dX5whe+0GeLPweHz7+yfP6V5fOvLJ9/Zfn8Dy7rPP+eVYLPv7J8/pXl868sn39lHUqff1XJs8sBAAAAKKiy7jkGAAAAAEcS4RgAAAAAhSUcAwAAAKCwhGMAAAAAFJZwbD8sXrw4Y8aMydChQ1NfX581a9ZUekiF0NzcnDPOOCPHHHNMjj/++Fx66aX52c9+VulhFVZzc3Oqqqoyd+7cSg+lUDZv3pxPfepTOfbYY/Nbv/VbOe2007Jhw4ZKD6sQdu7cmVtuuSVjxozJ0Ucfnd/+7d/OwoULs3v37koP7Yi0evXqfOxjH8uJJ56Yqqqq/MM//EOv10ulUm677baceOKJOfroo3PeeeflJz/5SWUGyxHFOq8yrPMOLdZ5lWGdVznWeQfX4bDOE469jdbW1sydOzc333xzNm7cmLPPPjszZszo9RhzBsZ3v/vdXHfddfn+97+ftra27Ny5M42Njfn1r39d6aEVzg9/+MMsXbo0H/zgBys9lEL5f//f/zfTp0/Pu971rjzxxBN57rnn8pWvfCXvfve7Kz20Qrjzzjtz//3356tf/Wp++tOf5s/+7M/y53/+57n33nsrPbQj0q9//et86EMfyle/+tU9vv5nf/Znueuuu/LVr341P/zhDzNixIhceOGFefXVVw/ySDmSWOdVjnXeocM6rzKs8yrLOu/gOizWeSX26cwzzyzNnj27V9v48eNL8+fPr9CIimvLli2lJKXvfve7lR5Kobz66qulcePGldra2krnnntu6cYbb6z0kArj85//fOl3fud3Kj2Mwrr44otLn/3sZ3u1XX755aVPfepTFRpRcSQpPfrooz3nu3fvLo0YMaJ0xx139LS9/vrrpdra2tL9999fgRFypLDOO3RY51WGdV7lWOdVlnVe5Ryq6zw7x/Zhx44d2bBhQxobG3u1NzY2Zt26dRUaVXFt3749SfLe9763wiMpluuuuy4XX3xxPvzhD1d6KIXz+OOPZ8qUKfmDP/iDHH/88Zk8eXL+4i/+otLDKozf+Z3fyXe+8508//zzSZJnn302a9euze/93u9VeGTF8+KLL6azs7PX3+Pq6uqce+65/h5zwKzzDi3WeZVhnVc51nmVZZ136DhU1nmDD9pPOgxt3bo1u3btSl1dXa/2urq6dHZ2VmhUxVQqlTJv3rz8zu/8TiZNmlTp4RTGQw89lH/+53/OD3/4w0oPpZD+7d/+LUuWLMm8efPyp3/6p/mnf/qn/K//9b9SXV2dK6+8stLDO+J9/vOfz/bt2zN+/PgMGjQou3btype+9KV84hOfqPTQCufNv7l7+nv8i1/8ohJD4ghgnXfosM6rDOu8yrLOqyzrvEPHobLOE47th6qqql7npVKpTxsD6/rrr8+//Mu/ZO3atZUeSmG8/PLLufHGG7Nq1aoMHTq00sMppN27d2fKlCm5/fbbkySTJ0/OT37ykyxZssSi6SBobW3N3/7t3+bBBx/MBz7wgWzatClz587NiSeemE9/+tOVHl4h+XvMQPDvVeVZ5x181nmVZ51XWdZ5h55K/z0Wju3D8OHDM2jQoD7fHm7ZsqVPqsnAueGGG/L4449n9erVOemkkyo9nMLYsGFDtmzZkvr6+p62Xbt2ZfXq1fnqV7+a7u7uDBo0qIIjPPKdcMIJmThxYq+2CRMm5JFHHqnQiIrlf//v/5358+fnD//wD5Mkp556an7xi1+kubnZoukgGzFiRJI3vlk84YQTetr9PeadsM47NFjnVYZ1XuVZ51WWdd6h41BZ57nn2D4MGTIk9fX1aWtr69Xe1taWadOmVWhUxVEqlXL99dfnm9/8Zv7xH/8xY8aMqfSQCuWCCy7Ij3/842zatKnnmDJlSv7oj/4omzZtsmA6CKZPn97nsfbPP/98Ro8eXaERFct//ud/5qijev+ZHDRokEd8V8CYMWMyYsSIXn+Pd+zYke9+97v+HnPArPMqyzqvsqzzKs86r7Ks8w4dh8o6z86xtzFv3rzMmjUrU6ZMSUNDQ5YuXZr29vbMnj270kM74l133XV58MEH89hjj+WYY47p+Wa3trY2Rx99dIVHd+Q75phj+tz3Y9iwYTn22GPdD+QguemmmzJt2rTcfvvtueKKK/JP//RPWbp0aZYuXVrpoRXCxz72sXzpS1/KqFGj8oEPfCAbN27MXXfdlc9+9rOVHtoR6bXXXsv//b//t+f8xRdfzKZNm/Le9743o0aNyty5c3P77bdn3LhxGTduXG6//fb81m/9Vj75yU9WcNQc7qzzKsc6r7Ks8yrPOq+yrPMOrsNinXfQnot5GLvvvvtKo0ePLg0ZMqR0+umne8T0QZJkj8fXv/71Sg+tsDzi++D71re+VZo0aVKpurq6NH78+NLSpUsrPaTC6OrqKt14442lUaNGlYYOHVr67d/+7dLNN99c6u7urvTQjkhPP/30Hv83/9Of/nSpVHrjMd9f+MIXSiNGjChVV1eXzjnnnNKPf/zjyg6aI4J1XmVY5x16rPMOPuu8yrHOO7gOh3VeValUKh28KA4AAAAADh3uOQYAAABAYQnHAAAAACgs4RgAAAAAhSUcAwAAAKCwhGMAAAAAFJZwDAAAAIDCEo4BAAAAUFjCMQAAAAAKSzgGAAAAQGEJxwAAAAAoLOEYcMg777zzcsMNN2Tu3Ll5z3vek7q6uixdujS//vWv88d//Mc55phjMnbs2DzxxBNJkl27duWqq67KmDFjcvTRR+f9739/7rnnnl41n3nmmZx55pkZNmxY3v3ud2f69On5xS9+kSR59tlnc/755+eYY45JTU1N6uvr86Mf/eigzxsAgD0777zzcv311+f666/Pu9/97hx77LG55ZZbUiqVKj004DAkHAMOC3/913+d4cOH55/+6Z9yww035H/+z/+ZP/iDP8i0adPyz//8z7nooosya9as/Od//md2796dk046KQ8//HCee+65/J//83/yp3/6p3n44YeTJDt37syll16ac889N//yL/+S9evX55prrklVVVWS5I/+6I9y0kkn5Yc//GE2bNiQ+fPn513velclpw8AwFv89V//dQYPHpwf/OAHWbRoUe6+++785V/+ZaWHBRyGqkqideAQd95552XXrl1Zs2ZNkjd2htXW1ubyyy/P8uXLkySdnZ054YQTsn79+kydOrVPjeuuuy6vvPJKvvGNb+Q//uM/cuyxx+aZZ57Jueee26dvTU1N7r333nz6058e2IkBAHBAzjvvvGzZsiU/+clPer7gnD9/fh5//PE899xzFR4dcLixcww4LHzwgx/s+edBgwbl2GOPzamnntrTVldXlyTZsmVLkuT+++/PlClTctxxx+V//I//kb/4i79Ie3t7kuS9731vPvOZz+Siiy7Kxz72sdxzzz3p6OjoqTVv3rxcffXV+fCHP5w77rgjP//5zw/GFAEAKMPUqVN7grEkaWhoyAsvvJBdu3ZVcFTA4Ug4BhwW3npZY1VVVa+2NxdGu3fvzsMPP5ybbropn/3sZ7Nq1aps2rQpf/zHf5wdO3b09P/617+e9evXZ9q0aWltbc0pp5yS73//+0mS2267LT/5yU9y8cUX5x//8R8zceLEPProowdhlgAAABxswjHgiLNmzZpMmzYtc+bMyeTJk/O+971vj7u/Jk+enKampqxbty6TJk3Kgw8+2PPaKaeckptuuimrVq3K5Zdfnq9//esHcwoAALyNN7/Y/M3zcePGZdCgQRUaEXC4Eo4BR5z3ve99+dGPfpQnn3wyzz//fG699db88Ic/7Hn9xRdfTFNTU9avX59f/OIXWbVqVZ5//vlMmDAh//Vf/5Xrr78+zzzzTH7xi1/ke9/7Xn74wx9mwoQJFZwRAABv9fLLL2fevHn52c9+lhUrVuTee+/NjTfeWOlhAYehwZUeAEB/mz17djZt2pSZM2emqqoqn/jEJzJnzpw88cQTSZLf+q3fyr/+67/mr//6r7Nt27accMIJuf7663Pttddm586d2bZtW6688sq88sorGT58eC6//PIsWLCgwrMCAOA3XXnllfmv//qvnHnmmRk0aFBuuOGGXHPNNZUeFnAY8rRKAAAADivnnXdeTjvttLS0tFR6KMARwGWVAAAAABSWcAwAAACAwnJZJQAAAACFZecYAAAAAIUlHAMAAACgsIRjAAAAABSWcAwAAACAwhKOAQAAAFBYwjEAAAAACks4BgAAAEBhCccAAAAAKCzhGAAAAACF9f8BEku9+qZuLZoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMcAAAINCAYAAAA6MBi/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFKklEQVR4nO3df3SV1Z0v/k8gJbFck7agARc/TC0WKP6AoJCk+OO2hlLb5Y86pu2I/YFVLmKJmXWnpOhU6K3RqdWIGpRpK2V6xTi1VLuKS2JrBUraakqYfmtvZVptXEwihbkSdWoo4Xz/8HqmMQE5IeGEPK/XWs9ann3288l+TqrZfZ/9PDsnlUqlAgAAAAASaFi2BwAAAAAA2SIcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABIrNxsD6C/HDhwIP793/89jj/++MjJycn2cACAY0AqlYpXXnklTjrppBg2zHeGg5V5HgCQqUzmeUMmHPv3f//3GD9+fLaHAQAcg1588cUYN25ctofBQZjnAQB9dTjzvCETjh1//PER8cZFFxQUZHk0AMCxoKOjI8aPH5+eRzA4mecBAJnKZJ43ZMKxN5fYFxQUmDQBABlxq97gZp4HAPTV4czzPFwDAAAAgMQSjgEAkFZfXx/FxcWRn58fJSUlsXnz5sM672c/+1nk5ubGmWee2eO9hx9+OKZOnRp5eXkxderUWL9+fT+PGgCg74RjAABERERDQ0NUVVXFsmXLYtu2bTFnzpyYN29etLa2HvK8vXv3xpVXXhkf+tCHerzX1NQUlZWVMX/+/Ni+fXvMnz8/Lr/88vjFL34xUJcBAJCRnFQqlcr2IPpDR0dHFBYWxt69ez2LAgA4LOYP3c2aNStmzJgRq1atSrdNmTIlLr744qitrT3oeZ/85Cdj0qRJMXz48PjBD34QLS0t6fcqKyujo6MjHnvssXTbRz7ykXj3u98d69atO6xx+T0BAJnKZP5g5RgAALFv375obm6OioqKbu0VFRWxdevWg553//33x+9///v4yle+0uv7TU1NPWrOnTv3kDU7Ozujo6Oj2wEAMFCEYwAAxO7du6OrqyuKioq6tRcVFUV7e3uv5+zYsSOWLl0a//t//+/Ize19E/T29vaMakZE1NbWRmFhYfoYP358hlcDAHD4hGMAAKS9dbvzVCrV6xboXV1d8elPfzqWL18ep556ar/UfFNNTU3s3bs3fbz44osZXAEAQGZ6/4oPAIBEGT16dAwfPrzHiq5du3b1WPkVEfHKK6/EM888E9u2bYvFixdHRMSBAwcilUpFbm5ubNy4Mf77f//vMWbMmMOu+aa8vLzIy8vrh6sCAHh7Vo4BABAjRoyIkpKSaGxs7Nbe2NgYZWVlPfoXFBTEr3/962hpaUkfCxcujPe///3R0tISs2bNioiI0tLSHjU3btzYa00AgGywcgwAgIiIqK6ujvnz58fMmTOjtLQ0Vq9eHa2trbFw4cKIeON2x507d8batWtj2LBhMW3atG7nn3jiiZGfn9+tfcmSJXHOOefErbfeGhdddFE88sgj8cQTT8SWLVuO6rUBABxMn1aO1dfXR3FxceTn50dJSUls3rz5sM772c9+Frm5uXHmmWf2eO/hhx+OqVOnRl5eXkydOjXWr1/fl6EBANBHlZWVUVdXFytWrIgzzzwzNm3aFBs2bIiJEydGRERbW1u0trZmVLOsrCwefPDBuP/+++P000+PNWvWRENDQ3plGQBAtuWkUqlUJic0NDTE/Pnzo76+PsrLy+O+++6Lb37zm/Hss8/GhAkTDnre3r17Y8aMGfG+970vXnrppWhpaUm/19TUFHPmzImvfvWrcckll8T69evjH/7hH2LLli2HPXHq6OiIwsLC2Lt3bxQUFGRySQBAQpk/HBv8ngCATGUyf8g4HJs1a1bMmDEjVq1alW6bMmVKXHzxxVFbW3vQ8z75yU/GpEmTYvjw4fGDH/ygWzhWWVkZHR0d8dhjj6XbPvKRj8S73/3uWLdu3WGNy6QJAMiU+cOxwe8JAMhUJvOHjG6r3LdvXzQ3N0dFRUW39oqKiti6detBz7v//vvj97//fXzlK1/p9f2mpqYeNefOnXvImgAAAABwpDJ6IP/u3bujq6urx9bbRUVFPbboftOOHTti6dKlsXnz5sjN7f3Htbe3Z1QzIqKzszM6OzvTrzs6Og73MgAAAAAgIvr4QP6cnJxur1OpVI+2iIiurq749Kc/HcuXL49TTz21X2q+qba2NgoLC9PH+PHjM7gCAAAAAMgwHBs9enQMHz68x4quXbt29Vj5FRHxyiuvxDPPPBOLFy+O3NzcyM3NjRUrVsT27dsjNzc3fvKTn0RExJgxYw675ptqampi79696ePFF1/M5FIAAAAAILNwbMSIEVFSUhKNjY3d2hsbG6OsrKxH/4KCgvj1r38dLS0t6WPhwoXx/ve/P1paWtI7UZaWlvaouXHjxl5rvikvLy8KCgq6HQAAAACQiYyeORYRUV1dHfPnz4+ZM2dGaWlprF69OlpbW2PhwoUR8caKrp07d8batWtj2LBhMW3atG7nn3jiiZGfn9+tfcmSJXHOOefErbfeGhdddFE88sgj8cQTT8SWLVuO8PIAAAAA4OAyDscqKytjz549sWLFimhra4tp06bFhg0bYuLEiRER0dbWFq2trRnVLCsriwcffDBuuOGGuPHGG+OUU06JhoaG9Moy4MicvPRH/VLnhVsu7Jc6AABH1ZO1A1v//JqBrQ/AgMpJpVKpbA+iP3R0dERhYWHs3bvXLZbwFsIxgN6ZPxwb/J44YsIxgMTJZP7Qp90qAQAAAGAoEI4BAAAAkFjCMQAAAAASK+MH8gPJ5dllAAAADDVWjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiWW3SgAAgCPxZO3A1j+/ZmDrAySclWMAAAAAJJZwDAAAAIDEEo4BAAAAkFieOQYAAEDWnLz0R/1W64VbLuy3WkByWDkGAAAAQGIJxwAAAABILOEYAAAAAInlmWMAAAAMCf31/DLPLoNksXIMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgBAWn19fRQXF0d+fn6UlJTE5s2bD9p3y5YtUV5eHqNGjYrjjjsuJk+eHHfccUe3PmvWrImcnJwex+uvvz7QlwIAcFhysz0AAAAGh4aGhqiqqor6+vooLy+P++67L+bNmxfPPvtsTJgwoUf/kSNHxuLFi+P000+PkSNHxpYtW+Kaa66JkSNHxtVXX53uV1BQEL/73e+6nZufnz/g1wMAcDiEYwAARETE7bffHgsWLIirrroqIiLq6uri8ccfj1WrVkVtbW2P/tOnT4/p06enX5988snx/e9/PzZv3twtHMvJyYkxY8YM/AUAAPSB2yoBAIh9+/ZFc3NzVFRUdGuvqKiIrVu3HlaNbdu2xdatW+Pcc8/t1v7qq6/GxIkTY9y4cfGxj30stm3bdsg6nZ2d0dHR0e0AABgowjEAAGL37t3R1dUVRUVF3dqLioqivb39kOeOGzcu8vLyYubMmXHttdemV55FREyePDnWrFkTjz76aKxbty7y8/OjvLw8duzYcdB6tbW1UVhYmD7Gjx9/ZBcHAHAIbqsEACAtJyen2+tUKtWj7a02b94cr776avz85z+PpUuXxvve97741Kc+FRERs2fPjtmzZ6f7lpeXx4wZM+Kuu+6KlStX9lqvpqYmqqur0687OjoEZADAgBGOAQAQo0ePjuHDh/dYJbZr164eq8neqri4OCIiTjvttHjppZfipptuSodjbzVs2LA466yzDrlyLC8vL/Ly8jK8AgCAvnFbJQAAMWLEiCgpKYnGxsZu7Y2NjVFWVnbYdVKpVHR2dh7y/ZaWlhg7dmyfxwoA0J/6FI7V19dHcXFx5OfnR0lJSWzevPmgfbds2RLl5eUxatSoOO6442Ly5Mlxxx13dOuzZs2ayMnJ6XG8/vrrfRkeAAB9UF1dHd/85jfj29/+dvz2t7+N66+/PlpbW2PhwoUR8cbtjldeeWW6/z333BM//OEPY8eOHbFjx464//7747bbbosrrrgi3Wf58uXx+OOPxx/+8IdoaWmJBQsWREtLS7omAEC2ZXxbZUNDQ1RVVUV9fX2Ul5fHfffdF/PmzYtnn302JkyY0KP/yJEjY/HixXH66afHyJEjY8uWLXHNNdfEyJEju23xXVBQEL/73e+6nZufn9+HSwIAoC8qKytjz549sWLFimhra4tp06bFhg0bYuLEiRER0dbWFq2tren+Bw4ciJqamnj++ecjNzc3TjnllLjlllvimmuuSfd5+eWX4+qrr4729vYoLCyM6dOnx6ZNm+Lss88+6tcHANCbnFQqlcrkhFmzZsWMGTNi1apV6bYpU6bExRdfHLW1tYdV49JLL42RI0fGP//zP0fEGyvHqqqq4uWXX85kKN10dHREYWFh7N27NwoKCvpcB4aik5f+KNtD6OaFWy7M9hAAIsL84Vjh98QRe/Lw/n/KoHV+TbZHMKAG21w1wnwVhoJM5g8Z3Va5b9++aG5ujoqKim7tFRUVsXXr1sOqsW3btti6dWuce+653dpfffXVmDhxYowbNy4+9rGPxbZt2w5Zp7OzMzo6OrodAAAAAJCJjG6r3L17d3R1dfXYsaioqKjHzkZvNW7cuPjTn/4U+/fvj5tuuimuuuqq9HuTJ0+ONWvWxGmnnRYdHR1x5513Rnl5eWzfvj0mTZrUa73a2tpYvnx5JsMHAACgnwzGFV8AfZHxM8ciInJycrq9TqVSPdreavPmzfHqq6/Gz3/+81i6dGm8733vS2/xPXv27Jg9e3a6b3l5ecyYMSPuuuuuWLlyZa/1ampqorq6Ov26o6Mjxo8f35fLAQAAACChMgrHRo8eHcOHD++xSmzXrl09VpO9VXFxcUREnHbaafHSSy/FTTfdlA7H3mrYsGFx1llnxY4dOw5aLy8vL/Ly8jIZPgAAAAB0k9Ezx0aMGBElJSXR2NjYrb2xsTHKysoOu04qlYrOzs5Dvt/S0hJjx47NZHgAAAAAkJGMb6usrq6O+fPnx8yZM6O0tDRWr14dra2tsXDhwoh443bHnTt3xtq1ayMi4p577okJEybE5MmTIyJiy5Ytcdttt8V1112Xrrl8+fKYPXt2TJo0KTo6OmLlypXR0tIS99xzT39cIwAAAAD0KuNwrLKyMvbs2RMrVqyItra2mDZtWmzYsCEmTpwYERFtbW3R2tqa7n/gwIGoqamJ559/PnJzc+OUU06JW265Ja655pp0n5dffjmuvvrqaG9vj8LCwpg+fXps2rQpzj777H64RAAAAADoXU4qlUplexD9oaOjIwoLC2Pv3r1RUFCQ7eHAoDLYdhJ64ZYLsz0EgIgwfzhW+D1xxJ6szfYIjsz5NdkeQa8G2xyzP5mvwrEvk/lDRs8cAwAAAIChRDgGAAAAQGJl/MwxAAAAGMr685ZRt2jC4Cccg0FsKD/HAQAAAAYDt1UCAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsXKzPQAgeU5e+qN+qfPCLRf2Sx0AAACSy8oxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAkVm62BwAAAMAhPFk7sPXPrxnY+gCDnJVjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAANLq6+ujuLg48vPzo6SkJDZv3nzQvlu2bIny8vIYNWpUHHfccTF58uS44447evR7+OGHY+rUqZGXlxdTp06N9evXD+QlAABkRDgGAEBERDQ0NERVVVUsW7Ystm3bFnPmzIl58+ZFa2trr/1HjhwZixcvjk2bNsVvf/vbuOGGG+KGG26I1atXp/s0NTVFZWVlzJ8/P7Zv3x7z58+Pyy+/PH7xi18crcsCADiknFQqlcr2IPpDR0dHFBYWxt69e6OgoCDbw4F+cfLSH2V7CIPaC7dcmO0hAMc484fuZs2aFTNmzIhVq1al26ZMmRIXX3xx1NYe3m55l156aYwcOTL++Z//OSIiKisro6OjIx577LF0n4985CPx7ne/O9atW3dYNf2eOGIDvdvjsa6Pu1Waqx4ec1bIjkzmD1aOAQAQ+/bti+bm5qioqOjWXlFREVu3bj2sGtu2bYutW7fGueeem25ramrqUXPu3LmHXRMAYKDlZnsAAABk3+7du6OrqyuKioq6tRcVFUV7e/shzx03blz86U9/iv3798dNN90UV111Vfq99vb2jGt2dnZGZ2dn+nVHR0cmlwIAkBErxwAASMvJyen2OpVK9Wh7q82bN8czzzwT9957b9TV1fW4XTLTmrW1tVFYWJg+xo8fn+FVAAAcPivHAACI0aNHx/Dhw3us6Nq1a1ePlV9vVVxcHBERp512Wrz00ktx0003xac+9amIiBgzZkzGNWtqaqK6ujr9uqOjQ0AGAAyYPq0cs8U3AMDQMmLEiCgpKYnGxsZu7Y2NjVFWVnbYdVKpVLdbIktLS3vU3Lhx4yFr5uXlRUFBQbcDAGCgZLxy7M0tvuvr66O8vDzuu+++mDdvXjz77LMxYcKEHv3f3OL79NNPj5EjR8aWLVvimmuuiZEjR8bVV18dEf+1xfdXv/rVuOSSS2L9+vVx+eWXx5YtW2LWrFlHfpUAALyt6urqmD9/fsycOTNKS0tj9erV0draGgsXLoyIN1Z07dy5M9auXRsREffcc09MmDAhJk+eHBFvfCl62223xXXXXZeuuWTJkjjnnHPi1ltvjYsuuigeeeSReOKJJ2LLli1H/wIBAHqRcTh2++23x4IFC9IPWq2rq4vHH388Vq1a1esW39OnT4/p06enX5988snx/e9/PzZv3pwOx+rq6uKCCy6Impo3thCuqamJp556qtdnVgAAMDAqKytjz549sWLFimhra4tp06bFhg0bYuLEiRER0dbWFq2tren+Bw4ciJqamnj++ecjNzc3TjnllLjlllvimmuuSfcpKyuLBx98MG644Ya48cYb45RTTomGhgZfgAIAg0ZG4dibW3wvXbq0W3tftvj+X//rf6Xbmpqa4vrrr+/Wb+7cuVFXV5fJ8AAAOEKLFi2KRYsW9fremjVrur2+7rrruq0SO5jLLrssLrvssv4YHgBAv8soHLPFNwAAAABDSZ8eyG+LbwAAAACGgoxWjtniGwAAAIChJKNw7K+3+L7kkkvS7Y2NjXHRRRcddp2DbfH9188dO5wtvvPy8jIZPgAAMBg92XNjLwA4WjLerdIW3wAAAAAMFRmHY7b4BgAAAGCoyEmlUqlsD6I/dHR0RGFhYezduzcKCgqyPRzoFycv/VG2hzCovXDLhdkeAnCMM384Nvg9JYDbKrPr/Jo+nWauenjMWSE7Mpk/9Gm3SgAAAAAYCoRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABIrNxsDwAAAICjo+7Hz/Vse/xHWRgJwOBh5RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFh2qwSOWScv7Z+dlV645cJ+qQMAAMCxx8oxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFi52R4ADEUnL/1RtocAAAAAHAYrxwAASKuvr4/i4uLIz8+PkpKS2Lx580H7fv/7348LLrggTjjhhCgoKIjS0tJ4/PHHu/VZs2ZN5OTk9Dhef/31gb4UAIDDIhwDACAiIhoaGqKqqiqWLVsW27Ztizlz5sS8efOitbW11/6bNm2KCy64IDZs2BDNzc1x/vnnx8c//vHYtm1bt34FBQXR1tbW7cjPzz8alwQA8LbcVgkAQERE3H777bFgwYK46qqrIiKirq4uHn/88Vi1alXU1tb26F9XV9ft9c033xyPPPJI/PCHP4zp06en23NycmLMmDEDOnYAgL6ycgwAgNi3b180NzdHRUVFt/aKiorYunXrYdU4cOBAvPLKK/Ge97ynW/urr74aEydOjHHjxsXHPvaxHivL3qqzszM6Ojq6HQAAA0U4BgBA7N69O7q6uqKoqKhbe1FRUbS3tx9WjW984xvx2muvxeWXX55umzx5cqxZsyYeffTRWLduXeTn50d5eXns2LHjoHVqa2ujsLAwfYwfP75vFwUAcBiEYwAApOXk5HR7nUqlerT1Zt26dXHTTTdFQ0NDnHjiien22bNnxxVXXBFnnHFGzJkzJx566KE49dRT46677jporZqamti7d2/6ePHFF/t+QQAAb6NP4ZhdjAAAhpbRo0fH8OHDe6wS27VrV4/VZG/V0NAQCxYsiIceeig+/OEPH7LvsGHD4qyzzjrkyrG8vLwoKCjodgAADJSMwzG7GAEADD0jRoyIkpKSaGxs7Nbe2NgYZWVlBz1v3bp18dnPfjYeeOCBuPDCC9/256RSqWhpaYmxY8ce8ZgBAPpDxrtV2sUIAGBoqq6ujvnz58fMmTOjtLQ0Vq9eHa2trbFw4cKIeON2x507d8batWsj4o1g7Morr4w777wzZs+enV51dtxxx0VhYWFERCxfvjxmz54dkyZNio6Ojli5cmW0tLTEPffck52LBAB4i4zCsTd3MVq6dGm39v7cxairqyvOPPPM+OpXv9otPHurzs7O6OzsTL8+KrsYPdkz/OtX59cMbH0AgEOorKyMPXv2xIoVK6KtrS2mTZsWGzZsiIkTJ0ZERFtbW7e7Be67777Yv39/XHvttXHttdem2z/zmc/EmjVrIiLi5Zdfjquvvjra29ujsLAwpk+fHps2bYqzzz77qF4bAMDBZBSODfQuRqeddlp0dHTEnXfeGeXl5bF9+/aYNGlSr3Vqa2tj+fLlmQwfAIC3sWjRoli0aFGv770ZeL3ppz/96dvWu+OOO+KOO+7oh5EBAAyMPj2Q3y5GAAAAAAwFGa0c649djP7lX/6l33YxysvLO/zBAwAAAMBbZLRyzC5GAAAAAAwlGe9WaRcjAAAAAIaKjMMxuxgBAAAAMFRkHI5F2MUIAAAAgKGhT7tVAgAAAMBQIBwDAAAAILGEYwAAAAAkVp+eOQYAAAC8vZOX/qhf6rxwy4X9UgfoycoxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAImVm+0B8FeerB3Y+ufXDGx9AAAAgGOMlWMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAgrb6+PoqLiyM/Pz9KSkpi8+bNB+37/e9/Py644II44YQToqCgIEpLS+Pxxx/v0e/hhx+OqVOnRl5eXkydOjXWr18/kJcAAJAR4RgAABER0dDQEFVVVbFs2bLYtm1bzJkzJ+bNmxetra299t+0aVNccMEFsWHDhmhubo7zzz8/Pv7xj8e2bdvSfZqamqKysjLmz58f27dvj/nz58fll18ev/jFL47WZQEAHJJwDACAiIi4/fbbY8GCBXHVVVfFlClToq6uLsaPHx+rVq3qtX9dXV38/d//fZx11lkxadKkuPnmm2PSpEnxwx/+sFufCy64IGpqamLy5MlRU1MTH/rQh6Kuru4oXRUAwKEJxwAAiH379kVzc3NUVFR0a6+oqIitW7ceVo0DBw7EK6+8Eu95z3vSbU1NTT1qzp0795A1Ozs7o6Ojo9sBADBQ+hSOeRYFAMDQsnv37ujq6oqioqJu7UVFRdHe3n5YNb7xjW/Ea6+9Fpdffnm6rb29PeOatbW1UVhYmD7Gjx+fwZUAAGQm43DMsygAAIaunJycbq9TqVSPtt6sW7cubrrppmhoaIgTTzzxiGrW1NTE3r1708eLL76YwRUAAGQm43DMsygAAIae0aNHx/Dhw3us6Nq1a1ePlV9v1dDQEAsWLIiHHnooPvzhD3d7b8yYMRnXzMvLi4KCgm4HAMBAySgcG0zPogAAoP+MGDEiSkpKorGxsVt7Y2NjlJWVHfS8devWxWc/+9l44IEH4sILL+zxfmlpaY+aGzduPGRNAICjKTeTzoPpWRSdnZ3R2dmZfu1BrQAAR6a6ujrmz58fM2fOjNLS0li9enW0trbGwoULI+KN2x137twZa9eujYg3grErr7wy7rzzzpg9e3Z67nbcccdFYWFhREQsWbIkzjnnnLj11lvjoosuikceeSSeeOKJ2LJlS3YuEgDgLfr0QP7B8CwKD2oFAOhflZWVUVdXFytWrIgzzzwzNm3aFBs2bIiJEydGRERbW1u358zed999sX///rj22mtj7Nix6WPJkiXpPmVlZfHggw/G/fffH6effnqsWbMmGhoaYtasWUf9+gAAepPRyrH+eBbFv/zLv/TLsyhqamqiuro6/bqjo0NABgBwhBYtWhSLFi3q9b01a9Z0e/3Tn/70sGpedtllcdlllx3hyAAABkZGK8cG07MoPKgVAAAAgCOV0cqxCM+iAAAAAGDoyPiZY55FAQAAAMBQkfHKsQjPogAAAABgaOjTbpUAAAAAMBQIxwAAAABIrD7dVgkAACTIk7XZHgEADBgrxwAAAABILOEYAAAAAInltsokGejl8OfXDGx9AAAAgH5m5RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFh2qwQAABjk6n78XLaHADBkWTkGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsTyQHwAAIMGqcr83oPXr9l82oPUBjpRwjP7zZO3A1j+/ZmDrAwAAAInjtkoAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILHsVgl/5eSlP8r2EAAAAICjyMoxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgBAWn19fRQXF0d+fn6UlJTE5s2bD9q3ra0tPv3pT8f73//+GDZsWFRVVfXos2bNmsjJyelxvP766wN4FQAAh084BgBAREQ0NDREVVVVLFu2LLZt2xZz5syJefPmRWtra6/9Ozs744QTTohly5bFGWeccdC6BQUF0dbW1u3Iz88fqMsAAMhIbrYHAJBtJy/9Ub/UeeGWC/ulDkC23H777bFgwYK46qqrIiKirq4uHn/88Vi1alXU1tb26H/yySfHnXfeGRER3/72tw9aNycnJ8aMGTMwgwYAOEJWjgEAEPv27Yvm5uaoqKjo1l5RURFbt249otqvvvpqTJw4McaNGxcf+9jHYtu2bUdUDwCgP/Vp5Vh9fX18/etfj7a2tvjABz4QdXV1MWfOnF77trW1xd/93d9Fc3Nz7NixI774xS9GXV1dtz5r1qyJz33ucz3O/fOf/2zJPf/lyZ7fWPer82sGtj4ADGK7d++Orq6uKCoq6tZeVFQU7e3tfa47efLkWLNmTZx22mnR0dERd955Z5SXl8f27dtj0qRJvZ7T2dkZnZ2d6dcdHR19/vkAAG8n45VjnkUBADB05eTkdHudSqV6tGVi9uzZccUVV8QZZ5wRc+bMiYceeihOPfXUuOuuuw56Tm1tbRQWFqaP8ePH9/nnAwC8nYxXjnkWBQDA0DN69OgYPnx4j1Viu3bt6rGa7EgMGzYszjrrrNixY8dB+9TU1ER1dXX6dUdHh4AMSLz+ek5uhGflwltltHJsMD2LorOzMzo6OrodAAD0zYgRI6KkpCQaGxu7tTc2NkZZWVm//ZxUKhUtLS0xduzYg/bJy8uLgoKCbgcAwEDJKBwb6GdRPProo7Fu3brIz8+P8vLyQ36jaLk9AED/qq6ujm9+85vx7W9/O37729/G9ddfH62trbFw4cKIeGNF15VXXtntnJaWlmhpaYlXX301/vSnP0VLS0s8++yz6feXL18ejz/+ePzhD3+IlpaWWLBgQbS0tKRrAgBkW58eyD8Qz6KYPXt2+nV5eXnMmDEj7rrrrli5cmWv51huDwDQvyorK2PPnj2xYsWKaGtri2nTpsWGDRti4sSJEfHGRktvfc7s9OnT0//c3NwcDzzwQEycODFeeOGFiIh4+eWX4+qrr4729vYoLCyM6dOnx6ZNm+Lss88+atcFAHAoGYVjg+lZFHl5eZGXl9dvPxMAgIhFixbFokWLen1vzZo1PdpSqdQh691xxx1xxx139MfQAAAGREa3VQ6mZ1EAAAAAwJHK+LbK6urqmD9/fsycOTNKS0tj9erVPZ5FsXPnzli7dm36nJaWloiIbs+iGDFiREydOjUi3ngWxezZs2PSpEnR0dERK1eujJaWlrjnnnv64RIBAAAAoHcZh2OeRQEAAADAUNGnB/J7FgUAAAAAQ0FGzxwDAAAAgKFEOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEys32AGDQeLI2qnKfG7DydfsvG7DaAAAAQN9YOQYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILGEYwAAAAAkVm62BwBJUZX7vQGtX7f/sgGtDwAAAEORlWMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACRWbrYHAPSPqtzvDWj9uv2XDWh9AAAAyAYrxwAAAABILOEYAAAAAInltkoAANLq6+vj61//erS1tcUHPvCBqKurizlz5vTat62tLf7u7/4umpubY8eOHfHFL34x6urqevR7+OGH48Ybb4zf//73ccopp8TXvva1uOSSSwb4SiD76n78XLaHAMBhsHIMAICIiGhoaIiqqqpYtmxZbNu2LebMmRPz5s2L1tbWXvt3dnbGCSecEMuWLYszzjij1z5NTU1RWVkZ8+fPj+3bt8f8+fPj8ssvj1/84hcDeSkAAIetT+FYfX19FBcXR35+fpSUlMTmzZsP2retrS0+/elPx/vf//4YNmxYVFVV9drv4YcfjqlTp0ZeXl5MnTo11q9f35ehAQDQR7fffnssWLAgrrrqqpgyZUrU1dXF+PHjY9WqVb32P/nkk+POO++MK6+8MgoLC3vtU1dXFxdccEHU1NTE5MmTo6amJj70oQ/1usIMACAbMg7HfKMIADD07Nu3L5qbm6OioqJbe0VFRWzdurXPdZuamnrUnDt37iFrdnZ2RkdHR7cDAGCgZByO+UYRAGDo2b17d3R1dUVRUVG39qKiomhvb+9z3fb29oxr1tbWRmFhYfoYP358n38+AMDbySgcG0zfKAIA0P9ycnK6vU6lUj3aBrpmTU1N7N27N328+OKLR/TzAQAOJaPdKgfTN4qdnZ3R2dmZfm25PQysqtzvDWj9uv2XDWh9AA5t9OjRMXz48B7zr127dvWYp2VizJgxGdfMy8uLvLy8Pv9MAIBM9OmB/IPhG0XL7QEA+s+IESOipKQkGhsbu7U3NjZGWVlZn+uWlpb2qLlx48YjqgkA0J8yWjk2mL5RrKmpierq6vTrjo4OARkAwBGorq6O+fPnx8yZM6O0tDRWr14dra2tsXDhwoh4Y/61c+fOWLt2bfqclpaWiIh49dVX409/+lO0tLTEiBEjYurUqRERsWTJkjjnnHPi1ltvjYsuuigeeeSReOKJJ2LLli1H/foAAHqTUTj2198oXnLJJen2xsbGuOiii/o8iDe/Ubz++uvTbW/3jaLl9gAA/auysjL27NkTK1asiLa2tpg2bVps2LAhJk6cGBERbW1tPXYonz59evqfm5ub44EHHoiJEyfGCy+8EBERZWVl8eCDD8YNN9wQN954Y5xyyinR0NAQs2bNOmrXBQBwKBmFYxG+UQQAGMoWLVoUixYt6vW9NWvW9GhLpVJvW/Oyyy6Lyy7zbEkAYHDKOBzzjSIAAAAAQ0XG4ViEbxQBAAAAGBr6tFslAAAAAAwFwjEAAAAAEks4BgAAAEBi9emZYzDY1P34uWwPAQAA6EVV7vcGtH7dfs+uztTJS3/UL3VeuOXCfqkD2WblGAAAAACJZeUYQD/xDRwAAMCxx8oxAAAAABJLOAYAAABAYgnHAAAAAEgszxwDAIBj3ZO12R4BAByzrBwDAAAAILGEYwAAAAAklnAMAAAAgMQSjgEAAACQWMIxAAAAABJLOAYAAABAYuVmewAAERFVud8b0Pp1+y8b0PoAAAAcm6wcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABIrNxsDwDgaKjK/d6A1q/bf9mA1gcAAGBgWDkGAAAAQGIJxwAAAABILOEYAAAAAIklHAMAAAAgsYRjAAAAACSWcAwAAACAxBKOAQAAAJBYwjEAAAAAEis32wMAGAqqcr/Xf8We/NeebefX9F99AAAA0qwcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYAAAAAImVm+0BADAIPFk7sPXPrxnY+gAAAH1k5RgAAAAAiWXlGMCxYKBXdgH8P/X19fH1r3892tra4gMf+EDU1dXFnDlzDtr/qaeeiurq6vjNb34TJ510Uvz93/99LFy4MP3+mjVr4nOf+1yP8/785z9Hfn7+gFwDAEAm+rRyrL6+PoqLiyM/Pz9KSkpi8+bNh+z/1FNPRUlJSeTn58d73/veuPfee7u9v2bNmsjJyelxvP76630ZHgAAfdDQ0BBVVVWxbNmy2LZtW8yZMyfmzZsXra2tvfZ//vnn46Mf/WjMmTMntm3bFl/+8pfji1/8Yjz88MPd+hUUFERbW1u3QzAGAAwWGa8ce3PSVF9fH+Xl5XHffffFvHnz4tlnn40JEyb06P/mpOkLX/hCfPe7342f/exnsWjRojjhhBPiE5/4RLpfQUFB/O53v+t2rknT0Ff34+eyPQQA4P+5/fbbY8GCBXHVVVdFRERdXV08/vjjsWrVqqit7bmC9d57740JEyZEXV1dRERMmTIlnnnmmbjtttu6zfNycnJizJgxR+UaAAAylfHKsb+eNE2ZMiXq6upi/PjxsWrVql77//WkacqUKXHVVVfF5z//+bjtttu69Xtz0vTXBwAAR8e+ffuiubk5KioqurVXVFTE1q1bez2nqampR/+5c+fGM888E3/5y1/Sba+++mpMnDgxxo0bFx/72Mdi27ZthxxLZ2dndHR0dDsAAAZKRivH3pw0LV26tFt7XyZN3/rWt+Ivf/lLvOMd74iI/5o0dXV1xZlnnhlf/epXY/r06QcdS2dnZ3R2dqZfmzQBAPTd7t27o6urK4qKirq1FxUVRXt7e6/ntLe399p///79sXv37hg7dmxMnjw51qxZE6eddlp0dHTEnXfeGeXl5bF9+/aYNGlSr3Vra2tj+fLl/XNh0AfubgBIloxWjg3EpCki0pOmRx99NNatWxf5+flRXl4eO3bsOOhYamtro7CwMH2MHz8+k0sBAKAXOTk53V6nUqkebW/X/6/bZ8+eHVdccUWcccYZMWfOnHjooYfi1FNPjbvuuuugNWtqamLv3r3p48UXX+zr5QAAvK0+7VY5EJOm2bNnp98vLy+PGTNmxF133RUrV67stWZNTU1UV1enX3d0dAjIgCGhv76trvrQqf1SB0iG0aNHx/Dhw3t84blr164eX3S+acyYMb32z83NjVGjRvV6zrBhw+Kss8465JegeXl5kZeXl+EVAAD0TUYrxwbbpKmgoKDbAQBA34wYMSJKSkqisbGxW3tjY2OUlZX1ek5paWmP/hs3boyZM2emH53xVqlUKlpaWmLs2LH9M3AAgCOU0cqxv540XXLJJen2xsbGuOiii3o9p7S0NH74wx92azvcSdNpp52WyfAAGKye7LnLXb86v2Zg60NCVFdXx/z582PmzJlRWloaq1evjtbW1li4cGFEvLFyf+fOnbF27dqIiFi4cGHcfffdUV1dHV/4wheiqakpvvWtb8W6devSNZcvXx6zZ8+OSZMmRUdHR6xcuTJaWlrinnvuyco1AgC8Vca3VZo0AQAMTZWVlbFnz55YsWJFtLW1xbRp02LDhg0xceLEiIhoa2uL1tbWdP/i4uLYsGFDXH/99XHPPffESSedFCtXroxPfOIT6T4vv/xyXH311dHe3h6FhYUxffr02LRpU5x99tlH/foAAHqTcThm0gQAMHQtWrQoFi1a1Ot7a9as6dF27rnnxq9+9auD1rvjjjvijjvu6K/hAQD0uz49kN+kCQAAAIChIKMH8gMAAADAUCIcAwAAACCx+nRbJQAAAJBsJy/9Ub/VeuGWC/utFmTKyjEAAAAAEks4BgAAAEBiCccAAAAASCzhGAAAAACJJRwDAAAAILHsVgkAAMAxqyr3ewNav27/ZQNaH8g+4RgAx74na7M9giNzfk22RwAAAInltkoAAAAAEsvKMQAAGGjH+gpXABjCrBwDAAAAILGsHAOAbBvoFSWeaQYAAAdl5RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFh2qwSAoc5umAAAcFDCMQDgyAjfAAA4hrmtEgAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGJ5ID99Uvfj57I9BAAASDM/BaCvrBwDAAAAILGsHAMYovrrG/SqD53aL3UAAAAGIyvHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEslslAAAAkFUnL/1Rv9R54ZYL+6UOyWLlGAAAAACJZeUYAAAAHERV7vcGtH7d/ssGtD7w9oRjAADwZG22RwAAZInbKgEAAABILOEYAAAAAInltkoAACBr6n78XLaHAEDCWTkGAAAAQGJZOQbAIfXXN/pVHzq1X+oAAAD0J+FYwli2DgAAAPBf3FYJAAAAQGJZOQbAUeH2TAAABtrJS3/Ub7VeuOXCfqvF4NanlWP19fVRXFwc+fn5UVJSEps3bz5k/6eeeipKSkoiPz8/3vve98a9997bo8/DDz8cU6dOjby8vJg6dWqsX7++L0MDAOAImOcBAEmT8cqxhoaGqKqqivr6+igvL4/77rsv5s2bF88++2xMmDChR//nn38+PvrRj8YXvvCF+O53vxs/+9nPYtGiRXHCCSfEJz7xiYiIaGpqisrKyvjqV78al1xySaxfvz4uv/zy2LJlS8yaNevIr3II8KwwAGCgmedxuMxNgSTor1VoVqANfjmpVCqVyQmzZs2KGTNmxKpVq9JtU6ZMiYsvvjhqa2t79P/Sl74Ujz76aPz2t79Nty1cuDC2b98eTU1NERFRWVkZHR0d8dhjj6X7fOQjH4l3v/vdsW7dusMaV0dHRxQWFsbevXujoKAgk0s6fE/2vL6jxQQEoH+5PfMYcn7NgJU+KvOHY4h5HofL3BSOHXX7L8v2EBJPOJYdmcwfMlo5tm/fvmhubo6lS5d2a6+oqIitW7f2ek5TU1NUVFR0a5s7d25861vfir/85S/xjne8I5qamuL666/v0aeuru6gY+ns7IzOzs70671790bEGxc/YF57PeNT6p/6twEYCABHqqMP/00nSwbwb/ub84YMvysckszz/DchE6937sv2EIDDtDAeGND69fsvHtD6Q8GE6/8l20Po4f9bPjfbQxhwmczzMgrHdu/eHV1dXVFUVNStvaioKNrb23s9p729vdf++/fvj927d8fYsWMP2udgNSMiamtrY/ny5T3ax48ff7iXA0CC1dyW7RFw+FYM+E945ZVXorCwcMB/zmBmngdA3wxs+MbAKKzL9giOnsOZ5/Vpt8qcnJxur1OpVI+2t+v/1vZMa9bU1ER1dXX69YEDB+I//uM/YtSoUYc8r686Ojpi/Pjx8eKLL7rtIgt8/tnl888un392+fyza6A//1QqFa+88kqcdNJJ/V77WGWe59/zo83nn10+/+zy+WeXzz+7BtM8L6NwbPTo0TF8+PAe3/Tt2rWrxzeCbxozZkyv/XNzc2PUqFGH7HOwmhEReXl5kZeX163tXe961+FeSp8VFBT4lyaLfP7Z5fPPLp9/dvn8s2sgP/+krxh7k3mef8+zzeefXT7/7PL5Z5fPP7sGwzxvWCZFR4wYESUlJdHY2NitvbGxMcrKyno9p7S0tEf/jRs3xsyZM+Md73jHIfscrCYAAP3LPA8ASKqMb6usrq6O+fPnx8yZM6O0tDRWr14dra2tsXDhwoh4Yxn8zp07Y+3atRHxxo5Fd999d1RXV8cXvvCFaGpqim9961vddidasmRJnHPOOXHrrbfGRRddFI888kg88cQTsWXLln66TAAA3o55HgCQRBmHY5WVlbFnz55YsWJFtLW1xbRp02LDhg0xceLEiIhoa2uL1tbWdP/i4uLYsGFDXH/99XHPPffESSedFCtXroxPfOIT6T5lZWXx4IMPxg033BA33nhjnHLKKdHQ0BCzZs3qh0vsH3l5efGVr3ylxxJ/jg6ff3b5/LPL559dPv/s8vkfXeZ5/neWDT7/7PL5Z5fPP7t8/tk1mD7/nJS9ywEAAABIqIyeOQYAAAAAQ4lwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzh2GOrr66O4uDjy8/OjpKQkNm/enO0hJUJtbW2cddZZcfzxx8eJJ54YF198cfzud7/L9rASq7a2NnJycqKqqirbQ0mUnTt3xhVXXBGjRo2Kd77znXHmmWdGc3NztoeVCPv3748bbrghiouL47jjjov3vve9sWLFijhw4EC2hzYkbdq0KT7+8Y/HSSedFDk5OfGDH/yg2/upVCpuuummOOmkk+K4446L8847L37zm99kZ7AMKeZ52WGeN7iY52WHeV72mOcdXcfCPE849jYaGhqiqqoqli1bFtu2bYs5c+bEvHnzum1jzsB46qmn4tprr42f//zn0djYGPv374+Kiop47bXXsj20xHn66adj9erVcfrpp2d7KInyf//v/43y8vJ4xzveEY899lg8++yz8Y1vfCPe9a53ZXtoiXDrrbfGvffeG3fffXf89re/jX/8x3+Mr3/963HXXXdle2hD0muvvRZnnHFG3H333b2+/4//+I9x++23x9133x1PP/10jBkzJi644IJ45ZVXjvJIGUrM87LHPG/wMM/LDvO87DLPO7qOiXleikM6++yzUwsXLuzWNnny5NTSpUuzNKLk2rVrVyoiUk899VS2h5Ior7zySmrSpEmpxsbG1LnnnptasmRJtoeUGF/60pdSH/zgB7M9jMS68MILU5///Oe7tV166aWpK664IksjSo6ISK1fvz79+sCBA6kxY8akbrnllnTb66+/niosLEzde++9WRghQ4V53uBhnpcd5nnZY56XXeZ52TNY53lWjh3Cvn37orm5OSoqKrq1V1RUxNatW7M0quTau3dvRES85z3vyfJIkuXaa6+NCy+8MD784Q9neyiJ8+ijj8bMmTPjb/7mb+LEE0+M6dOnxz/90z9le1iJ8cEPfjB+/OMfx3PPPRcREdu3b48tW7bERz/60SyPLHmef/75aG9v7/b3OC8vL84991x/j+kz87zBxTwvO8zzssc8L7vM8waPwTLPyz1qP+kYtHv37ujq6oqioqJu7UVFRdHe3p6lUSVTKpWK6urq+OAHPxjTpk3L9nAS48EHH4xf/epX8fTTT2d7KIn0hz/8IVatWhXV1dXx5S9/OX75y1/GF7/4xcjLy4srr7wy28Mb8r70pS/F3r17Y/LkyTF8+PDo6uqKr33ta/GpT30q20NLnDf/5vb29/iPf/xjNobEEGCeN3iY52WHeV52medll3ne4DFY5nnCscOQk5PT7XUqlerRxsBavHhx/Ou//mts2bIl20NJjBdffDGWLFkSGzdujPz8/GwPJ5EOHDgQM2fOjJtvvjkiIqZPnx6/+c1vYtWqVSZNR0FDQ0N897vfjQceeCA+8IEPREtLS1RVVcVJJ50Un/nMZ7I9vETy95iB4H9X2Weed/SZ52WfeV52mecNPtn+eywcO4TRo0fH8OHDe3x7uGvXrh6pJgPnuuuui0cffTQ2bdoU48aNy/ZwEqO5uTl27doVJSUl6baurq7YtGlT3H333dHZ2RnDhw/P4giHvrFjx8bUqVO7tU2ZMiUefvjhLI0oWf7n//yfsXTp0vjkJz8ZERGnnXZa/PGPf4za2lqTpqNszJgxEfHGN4tjx45Nt/t7zJEwzxsczPOywzwv+8zzsss8b/AYLPM8zxw7hBEjRkRJSUk0NjZ2a29sbIyysrIsjSo5UqlULF68OL7//e/HT37ykyguLs72kBLlQx/6UPz617+OlpaW9DFz5sz427/922hpaTFhOgrKy8t7bGv/3HPPxcSJE7M0omT5z//8zxg2rPufyeHDh9viOwuKi4tjzJgx3f4e79u3L5566il/j+kz87zsMs/LLvO87DPPyy7zvMFjsMzzrBx7G9XV1TF//vyYOXNmlJaWxurVq6O1tTUWLlyY7aENeddee2088MAD8cgjj8Txxx+f/ma3sLAwjjvuuCyPbug7/vjjezz3Y+TIkTFq1CjPAzlKrr/++igrK4ubb745Lr/88vjlL38Zq1evjtWrV2d7aInw8Y9/PL72ta/FhAkT4gMf+EBs27Ytbr/99vj85z+f7aENSa+++mr827/9W/r1888/Hy0tLfGe97wnJkyYEFVVVXHzzTfHpEmTYtKkSXHzzTfHO9/5zvj0pz+dxVFzrDPPyx7zvOwyz8s+87zsMs87uo6Jed5R2xfzGHbPPfekJk6cmBoxYkRqxowZtpg+SiKi1+P+++/P9tASyxbfR98Pf/jD1LRp01J5eXmpyZMnp1avXp3tISVGR0dHasmSJakJEyak8vPzU+9973tTy5YtS3V2dmZ7aEPSk08+2et/8z/zmc+kUqk3tvn+yle+khozZkwqLy8vdc4556R+/etfZ3fQDAnmedlhnjf4mOcdfeZ52WOed3QdC/O8nFQqlTp6URwAAAAADB6eOQYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFjCMQAAAAASSzgGAAAAQGIJxwAAAABILOEYMOidd955cd1110VVVVW8+93vjqKioli9enW89tpr8bnPfS6OP/74OOWUU+Kxxx6LiIiurq5YsGBBFBcXx3HHHRfvf//748477+xW86c//WmcffbZMXLkyHjXu94V5eXl8cc//jEiIrZv3x7nn39+HH/88VFQUBAlJSXxzDPPHPXrBgCgd+edd14sXrw4Fi9eHO9617ti1KhRccMNN0Qqlcr20IBjkHAMOCZ85zvfidGjR8cvf/nLuO666+J//I//EX/zN38TZWVl8atf/Srmzp0b8+fPj//8z/+MAwcOxLhx4+Khhx6KZ599Nv7hH/4hvvzlL8dDDz0UERH79++Piy++OM4999z413/912hqaoqrr746cnJyIiLib//2b2PcuHHx9NNPR3NzcyxdujTe8Y53ZPPyAQB4i+985zuRm5sbv/jFL2LlypVxxx13xDe/+c1sDws4BuWkROvAIHfeeedFV1dXbN68OSLeWBlWWFgYl156aaxduzYiItrb22Ps2LHR1NQUs2fP7lHj2muvjZdeeim+973vxX/8x3/EqFGj4qc//Wmce+65PfoWFBTEXXfdFZ/5zGcG9sIAAOiT8847L3bt2hW/+c1v0l9wLl26NB599NF49tlnszw64Fhj5RhwTDj99NPT/zx8+PAYNWpUnHbaaem2oqKiiIjYtWtXRETce++9MXPmzDjhhBPiv/23/xb/9E//FK2trRER8Z73vCc++9nPxty5c+PjH/943HnnndHW1pauVV1dHVdddVV8+MMfjltuuSV+//vfH41LBAAgA7Nnz04HYxERpaWlsWPHjujq6sriqIBjkXAMOCa89bbGnJycbm1vTowOHDgQDz30UFx//fXx+c9/PjZu3BgtLS3xuc99Lvbt25fuf//990dTU1OUlZVFQ0NDnHrqqfHzn/88IiJuuumm+M1vfhMXXnhh/OQnP4mpU6fG+vXrj8JVAgAAcLQJx4AhZ/PmzVFWVhaLFi2K6dOnx/ve975eV39Nnz49ampqYuvWrTFt2rR44IEH0u+deuqpcf3118fGjRvj0ksvjfvvv/9oXgIAAG/jzS82//r1pEmTYvjw4VkaEXCsEo4BQ8773ve+eOaZZ+Lxxx+P5557Lm688cZ4+umn0+8///zzUVNTE01NTfHHP/4xNm7cGM8991xMmTIl/vznP8fixYvjpz/9afzxj3+Mn/3sZ/H000/HlClTsnhFAAC81YsvvhjV1dXxu9/9LtatWxd33XVXLFmyJNvDAo5BudkeAEB/W7hwYbS0tERlZWXk5OTEpz71qVi0aFE89thjERHxzne+M/7P//k/8Z3vfCf27NkTY8eOjcWLF8c111wT+/fvjz179sSVV14ZL730UowePTouvfTSWL58eZavCgCAv3bllVfGn//85zj77LNj+PDhcd1118XVV1+d7WEBxyC7VQIAAHBMOe+88+LMM8+Murq6bA8FGALcVgkAAABAYgnHAAAAAEgst1UCAAAAkFhWjgEAAACQWMIxAAAAABJLOAYAAABAYgnHAAAAAEgs4RgAAAAAiSUcAwAAACCxhGMAAAAAJJZwDAAAAIDEEo4BAAAAkFj/P9SmV3kFOj1FAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -976,10 +976,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:53.308415Z", - "iopub.status.busy": "2024-01-10T15:12:53.308097Z", - "iopub.status.idle": "2024-01-10T15:12:53.524885Z", - "shell.execute_reply": "2024-01-10T15:12:53.524414Z" + "iopub.execute_input": "2024-02-06T01:09:45.112241Z", + "iopub.status.busy": "2024-02-06T01:09:45.112088Z", + "iopub.status.idle": "2024-02-06T01:09:45.300286Z", + "shell.execute_reply": "2024-02-06T01:09:45.299780Z" } }, "outputs": [ @@ -995,7 +995,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAISCAYAAADSjEh/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1KElEQVR4nO3df5TV9X0n/ucUZAAXrg44M8wRkW6JJYEkBhJ+mEaMBKUgh5INNjZEW1eTCpgJ2gRjs8VuA8Y9UbvQ2Oh61IhU892NiS6GSGLEWEAJlUaNUbMFxYQRY3AQpYPi/f6Rj7cZEQVkuMPM43HOPcf7ue/58Prcy2FePj/v+37XlMvlcgAAAACA/F61CwAAAACAzkJYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAABZtGhRPvjBD6Zfv36pr6/P9OnT8/jjj7cbc84556SmpqbdY+zYse3GtLW1Ze7cuRk4cGCOPPLITJs2Lc8880y7Mdu2bcusWbNSKpVSKpUya9asvPDCCx19iQAA+0RYBgBAVq1aldmzZ2ft2rVZuXJlXn311UyaNCkvvfRSu3Gnn356tmzZUnncdddd7V5vbm7O7bffnltvvTX3339/duzYkalTp2b37t2VMWeddVY2bNiQFStWZMWKFdmwYUNmzZp1SK4TAODt1JTL5XK1iwAAoHN57rnnUl9fn1WrVuUjH/lIkt/OLHvhhRfyne98501/prW1Ncccc0xuvvnmnHnmmUmSX/3qVxk8eHDuuuuunHbaaXnsscfy7ne/O2vXrs2YMWOSJGvXrs24cePy85//PCeccMIhuT4AgL3pWe0COsprr72WX/3qV+nXr19qamqqXQ4AcJgol8t58cUX09TUlN/7ve47Cb+1tTVJUldX1+74vffem/r6+hx11FE5+eST85WvfCX19fVJkvXr1+eVV17JpEmTKuObmpoyYsSIrF69OqeddlrWrFmTUqlUCcqSZOzYsSmVSlm9evWbhmVtbW1pa2urPH/ttdfym9/8JgMGDNDnAQD7bF/7vC4blr1+FxMA4EBs3rw5xx57bLXLqIpyuZx58+blwx/+cEaMGFE5Pnny5HziE5/IkCFDsnHjxnz5y1/ORz/60axfvz61tbVpaWlJr169cvTRR7c7X0NDQ1paWpIkLS0tlXDtd9XX11fGvNGiRYty2WWXHcQrBAC6s7fr87psWNavX78kv30D+vfvX+VqAIDDxfbt2zN48OBKL9EdzZkzJz/96U9z//33tzv++lcrk2TEiBEZPXp0hgwZkuXLl2fGjBl7PV+5XG43A+zNZoO9cczvuuSSSzJv3rzK89bW1hx33HH6PABgv+xrn9dlw7LXm63+/ftrogCA/dZdv943d+7c3HHHHbnvvvvedmbdoEGDMmTIkDz55JNJksbGxuzatSvbtm1rN7ts69atGT9+fGXMs88+u8e5nnvuuTQ0NLzpn1NbW5va2to9juvzAIAD8XZ93n4txGFLcQCArqlcLmfOnDn59re/nXvuuSdDhw592595/vnns3nz5gwaNChJMmrUqBxxxBFZuXJlZcyWLVvyyCOPVMKycePGpbW1NQ8++GBlzAMPPJDW1tbKGACAatqvsMyW4gAAXdPs2bOzdOnSLFu2LP369UtLS0taWlqyc+fOJMmOHTty8cUXZ82aNdm0aVPuvffenHHGGRk4cGD+5E/+JElSKpVy7rnn5qKLLsoPf/jDPPTQQ/nUpz6VkSNHZuLEiUmS4cOH5/TTT895552XtWvXZu3atTnvvPMydepUO2ECAJ1CTblcLh/oD3fmLcW3b9+eUqmU1tZW0/MBgH3WXXuIvX0d4YYbbsg555yTnTt3Zvr06XnooYfywgsvZNCgQTnllFPy3//7f2+3qdK///u/56/+6q+ybNmy7Ny5M6eeemq+/vWvtxvzm9/8JhdeeGHuuOOOJMm0adOyZMmSHHXUUftUa3f9jACAd2Zfe4h3tGZZZ95SfPv27e/k0gAAupW3u3/ap0+ffP/733/b8/Tu3TuLFy/O4sWL9zqmrq4uS5cu3e8aAQAOhf36GubveqstxW+55Zbcc889+drXvpZ169blox/9aCXI6sgtxV9f36xUKrW7ewkAAAAA++KAZ5Z19i3FX98OFAAAAAD21QHNLHt9S/Ef/ehH72hL8d+1devWynbhB7ql+Ovbh9tGHAAAAIADsV9hmS3FAQAAAOjK9utrmLNnz86yZcvy3e9+t7KlePLbbcL79OmTHTt2ZMGCBfn4xz+eQYMGZdOmTfnSl7601y3FBwwYkLq6ulx88cV73VL8G9/4RpLk/PPPt6U4AAAAAB1qv8Kya665JkkyYcKEdsdf31K8R48eefjhh/PNb36z3Zbit912W/r161cZf9VVV6Vnz56ZOXNmZUvxG2+8MT169KiMueWWW3LhhRdWds18fUtxAAAAAOgoNeW32yf8MLV9+/aUSqW0trZavwwA2Gd6iM7PZwQAHIh97SEOaIF/AAAAAOiKhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAACFntUuAOgYx89f3qHn33T5lA49PwAAXVNH96mJXhV4Z8wsAwAAAICCsAwAAAAACsIyAAAAAChYswwAAIAuxfq9wDthZhkAAAAAFIRlAAAAAFDwNUzggJjaDgAAQFdkZhkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEChZ7ULAAAAoPM4fv7yapcAUFVmlgEAAABAQVgGAAAAAAVhGQAAAAAUrFkGAABwGLGmGEDHMrMMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAo9Kx2AQAAAHA4OX7+8g49/6bLp3To+YG3ZmYZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAEAWLVqUD37wg+nXr1/q6+szffr0PP744+3GlMvlLFiwIE1NTenTp08mTJiQRx99tN2Ytra2zJ07NwMHDsyRRx6ZadOm5Zlnnmk3Ztu2bZk1a1ZKpVJKpVJmzZqVF154oaMvEQBgnwjLAADIqlWrMnv27KxduzYrV67Mq6++mkmTJuWll16qjLniiity5ZVXZsmSJVm3bl0aGxvzsY99LC+++GJlTHNzc26//fbceuutuf/++7Njx45MnTo1u3fvrow566yzsmHDhqxYsSIrVqzIhg0bMmvWrEN6vQAAe9Oz2gUAAFB9K1asaPf8hhtuSH19fdavX5+PfOQjKZfLufrqq3PppZdmxowZSZKbbropDQ0NWbZsWT7zmc+ktbU1119/fW6++eZMnDgxSbJ06dIMHjw4P/jBD3Laaaflsccey4oVK7J27dqMGTMmSXLddddl3Lhxefzxx3PCCScc2gsHAHgDM8sAANhDa2trkqSuri5JsnHjxrS0tGTSpEmVMbW1tTn55JOzevXqJMn69evzyiuvtBvT1NSUESNGVMasWbMmpVKpEpQlydixY1MqlSpj3qitrS3bt29v9wAA6CjCMgAA2imXy5k3b14+/OEPZ8SIEUmSlpaWJElDQ0O7sQ0NDZXXWlpa0qtXrxx99NFvOaa+vn6PP7O+vr4y5o0WLVpUWd+sVCpl8ODB7+wCAQDegrAMAIB25syZk5/+9Kf5p3/6pz1eq6mpafe8XC7vceyN3jjmzca/1XkuueSStLa2Vh6bN2/el8sAADgg+xWW2SUJAKBrmzt3bu6444786Ec/yrHHHls53tjYmCR7zP7aunVrZbZZY2Njdu3alW3btr3lmGeffXaPP/e5557bY9ba62pra9O/f/92DwCAjrJfYZldkgAAuqZyuZw5c+bk29/+du65554MHTq03etDhw5NY2NjVq5cWTm2a9eurFq1KuPHj0+SjBo1KkcccUS7MVu2bMkjjzxSGTNu3Li0trbmwQcfrIx54IEH0traWhkDAFBNNeVyuXygP/zcc8+lvr4+q1atquyS1NTUlObm5nzxi19M8ttZZA0NDfnqV79a2SXpmGOOyc0335wzzzwzSfKrX/0qgwcPzl133VXZJend7353u12S1q5dm3HjxuXnP//5Pu2StH379pRKpbS2trr7SKd0/Pzl1S6hU9t0+ZRqlwB0U921h7jggguybNmyfPe7323Xa5VKpfTp0ydJ8tWvfjWLFi3KDTfckGHDhmXhwoW599578/jjj6dfv35Jkr/8y7/M//2//zc33nhj6urqcvHFF+f555/P+vXr06NHjyTJ5MmT86tf/Srf+MY3kiTnn39+hgwZkjvvvHOfau2unxG8Th/Z9emFoWPsaw/xjtYss0sSAEDXcM0116S1tTUTJkzIoEGDKo/bbrutMuYLX/hCmpubc8EFF2T06NH55S9/mbvvvrsSlCXJVVddlenTp2fmzJk56aST0rdv39x5552VoCxJbrnllowcOTKTJk3KpEmT8t73vjc333zzIb1eAIC96XmgP7i/uyQ99dRTlTEdtUvSZZdddqCXAwDQre3Llw1qamqyYMGCLFiwYK9jevfuncWLF2fx4sV7HVNXV5elS5ceSJkAAB3ugGeW2SUJAAAAgK7mgMIyuyQBAAAA0BXtV1hmlyQAAAAAurL9WrNs9uzZlV2S+vXrV5lB9vouSTU1NWlubs7ChQszbNiwyi5Jffv2zVlnnVUZe+655+aiiy7KgAEDKrskjRw5MhMnTkySDB8+PKeffnrOO++8drskTZ06dZ92wgQAAACAA7FfYdk111yTJJkwYUK74zfccEPOOeecJL/dJWnnzp254IILsm3btowZM+ZNd0nq2bNnZs6cmZ07d+bUU0/NjTfeuMcuSRdeeGFl18xp06ZlyZIlB3KNAAAAALBPasr7svXRYWj79u0plUppbW21fhmd0vHzl1e7hE5t0+VTql0C0E3pITo/nxHdnT6y69MLQ8fY1x7igHfDBAAAAICuRlgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQ6FntAgAAALqS4+cvr3YJALwDZpYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQKFntQsAeDPHz1/eoeffdPmUDj0/AAAAhyczywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACj2rXQAAAADwH46fv7xDz7/p8ikden443JlZBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAASZL77rsvZ5xxRpqamlJTU5PvfOc77V4/55xzUlNT0+4xduzYdmPa2toyd+7cDBw4MEceeWSmTZuWZ555pt2Ybdu2ZdasWSmVSimVSpk1a1ZeeOGFDr46AIB9IywDACBJ8tJLL+V973tflixZstcxp59+erZs2VJ53HXXXe1eb25uzu23355bb701999/f3bs2JGpU6dm9+7dlTFnnXVWNmzYkBUrVmTFihXZsGFDZs2a1WHXBQCwP3pWuwAAADqHyZMnZ/LkyW85pra2No2NjW/6Wmtra66//vrcfPPNmThxYpJk6dKlGTx4cH7wgx/ktNNOy2OPPZYVK1Zk7dq1GTNmTJLkuuuuy7hx4/L444/nhBNOOLgXBQCwn8wsAwBgn917772pr6/Pu971rpx33nnZunVr5bX169fnlVdeyaRJkyrHmpqaMmLEiKxevTpJsmbNmpRKpUpQliRjx45NqVSqjHmjtra2bN++vd0DAKCj7HdYZi0LAIDuafLkybnllltyzz335Gtf+1rWrVuXj370o2lra0uStLS0pFevXjn66KPb/VxDQ0NaWloqY+rr6/c4d319fWXMGy1atKjSE5ZKpQwePPggXxkAwH/Y77DMWhYAAN3TmWeemSlTpmTEiBE544wz8r3vfS9PPPFEli9f/pY/Vy6XU1NTU3n+u/+9tzG/65JLLklra2vlsXnz5nd2IQAAb2G/1yyzlgUAAEkyaNCgDBkyJE8++WSSpLGxMbt27cq2bdvazS7bunVrxo8fXxnz7LPP7nGu5557Lg0NDW/659TW1qa2trYDrgAAYE8dsmaZtSwAALq+559/Pps3b86gQYOSJKNGjcoRRxyRlStXVsZs2bIljzzySCUsGzduXFpbW/Pggw9WxjzwwANpbW2tjAEAqKaDvhvm5MmT84lPfCJDhgzJxo0b8+Uvfzkf/ehHs379+tTW1nboWhaXXXbZwb4cAIBuY8eOHfnFL35Reb5x48Zs2LAhdXV1qaury4IFC/Lxj388gwYNyqZNm/KlL30pAwcOzJ/8yZ8kSUqlUs4999xcdNFFGTBgQOrq6nLxxRdn5MiRlW8UDB8+PKeffnrOO++8fOMb30iSnH/++Zk6dapvDwAAncJBD8vOPPPMyn+PGDEio0ePzpAhQ7J8+fLMmDFjrz93MNaymDdvXuX59u3bLf4KALAffvKTn+SUU06pPH+9tzr77LNzzTXX5OGHH843v/nNvPDCCxk0aFBOOeWU3HbbbenXr1/lZ6666qr07NkzM2fOzM6dO3PqqafmxhtvTI8ePSpjbrnlllx44YWVbxpMmzbtLdfDBQA4lA56WPZG1rIAADg8TJgwIeVyea+vf//733/bc/Tu3TuLFy/O4sWL9zqmrq4uS5cuPaAaAQA6WoeHZW+1lsXMmTOT/MdaFldccUWS9mtZfOhDH0piLQsOvePnv/XOXgAAAEDXs99hmbUsAAAAAOiq9jsss5YFAAAAAF3Vfodl1rIAAAAAoKv6vWoXAAAAAACdhbAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgELPahcAAABwKB0/f3m1SwCgEzOzDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgELPahcAUA3Hz1/eoeffdPmUDj0/AAAAHcPMMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKDQs9oFHM6On7+8Q8+/6fIpHXp+AAAAANozswwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoNCz2gXAgTp+/vJqlwAAAAB0MWaWAQAAAEDBzDIAAADoRjr6WzqbLp/SoeeHjmZmGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAJEnuu+++nHHGGWlqakpNTU2+853vtHu9XC5nwYIFaWpqSp8+fTJhwoQ8+uij7ca0tbVl7ty5GThwYI488shMmzYtzzzzTLsx27Zty6xZs1IqlVIqlTJr1qy88MILHXx1AAD7RlgGAECS5KWXXsr73ve+LFmy5E1fv+KKK3LllVdmyZIlWbduXRobG/Oxj30sL774YmVMc3Nzbr/99tx66625//77s2PHjkydOjW7d++ujDnrrLOyYcOGrFixIitWrMiGDRsya9asDr8+AIB90bPaBbB3x89f3qHn33T5lA49PwBweJk8eXImT578pq+Vy+VcffXVufTSSzNjxowkyU033ZSGhoYsW7Ysn/nMZ9La2prrr78+N998cyZOnJgkWbp0aQYPHpwf/OAHOe200/LYY49lxYoVWbt2bcaMGZMkue666zJu3Lg8/vjjOeGEEw7NxQIA7MV+zywzPR8AoPvZuHFjWlpaMmnSpMqx2tranHzyyVm9enWSZP369XnllVfajWlqasqIESMqY9asWZNSqVQJypJk7NixKZVKlTFv1NbWlu3bt7d7AAB0lP0Oy0zPBwDoflpaWpIkDQ0N7Y43NDRUXmtpaUmvXr1y9NFHv+WY+vr6Pc5fX19fGfNGixYtqtxALZVKGTx48Du+HgCAvdnvr2Gang8A0H3V1NS0e14ul/c49kZvHPNm49/qPJdccknmzZtXeb59+3aBGQDQYQ7qAv+m5wMAdE2NjY1Jssfsr61bt1ZmmzU2NmbXrl3Ztm3bW4559tln9zj/c889t8estdfV1tamf//+7R4AAB3loIZlpucDAHRNQ4cOTWNjY1auXFk5tmvXrqxatSrjx49PkowaNSpHHHFEuzFbtmzJI488Uhkzbty4tLa25sEHH6yMeeCBB9La2loZAwBQTR2yG6bp+QAAh58dO3bkF7/4ReX5xo0bs2HDhtTV1eW4445Lc3NzFi5cmGHDhmXYsGFZuHBh+vbtm7POOitJUiqVcu655+aiiy7KgAEDUldXl4svvjgjR46sLL8xfPjwnH766TnvvPPyjW98I0ly/vnnZ+rUqZbaAAA6hYMalv3u9PxBgwZVju9tev7vzi7bunVr5W7igU7Pr62tPWjXAgDQ3fzkJz/JKaecUnn++o3Is88+OzfeeGO+8IUvZOfOnbnggguybdu2jBkzJnfffXf69etX+ZmrrroqPXv2zMyZM7Nz586ceuqpufHGG9OjR4/KmFtuuSUXXnhhZVmOadOm7XXzKACAQ+2gfg3T9HwAgMPXhAkTUi6X93jceOONSX4783/BggXZsmVL/v3f/z2rVq3KiBEj2p2jd+/eWbx4cZ5//vm8/PLLufPOO/eY7V9XV5elS5dW1pldunRpjjrqqEN0lQAAb22/Z5aZng8AAABAV7XfYZnp+eyr4+cvr3YJAAAAAPtlv8Oy16fn783r0/MXLFiw1zGvT89fvHjxXse8Pj0fAAAAAA6Vg7pmGQAAAAAczoRlAAAAAFDY769h0nVYUwwAAACgPTPLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAQs9qFwAAAPC7jp+/vNolANCNmVkGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABR6VrsAgK6oo7e833T5lA49PwAAQHdlZhkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAAhZ7VLgAAAADoOo6fv7xDz7/p8ikden4wswwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAIB9smDBgtTU1LR7NDY2Vl4vl8tZsGBBmpqa0qdPn0yYMCGPPvpou3O0tbVl7ty5GThwYI488shMmzYtzzzzzKG+FACAvRKWAQCwz97znvdky5YtlcfDDz9cee2KK67IlVdemSVLlmTdunVpbGzMxz72sbz44ouVMc3Nzbn99ttz66235v7778+OHTsyderU7N69uxqXAwCwh4MelrnjCADQdfXs2TONjY2VxzHHHJPktz3e1VdfnUsvvTQzZszIiBEjctNNN+Xll1/OsmXLkiStra25/vrr87WvfS0TJ07MiSeemKVLl+bhhx/OD37wg2peFgBARYfMLHPHEQCga3ryySfT1NSUoUOH5k//9E/zb//2b0mSjRs3pqWlJZMmTaqMra2tzcknn5zVq1cnSdavX59XXnml3ZimpqaMGDGiMubNtLW1Zfv27e0eAAAdpUPCMnccAQC6njFjxuSb3/xmvv/97+e6665LS0tLxo8fn+effz4tLS1JkoaGhnY/09DQUHmtpaUlvXr1ytFHH73XMW9m0aJFKZVKlcfgwYMP8pUBAPyHDgnL3HEEAOh6Jk+enI9//OMZOXJkJk6cmOXLlydJbrrppsqYmpqadj9TLpf3OPZGbzfmkksuSWtra+WxefPmd3AVAABv7aCHZe44AgB0D0ceeWRGjhyZJ598srJG7Rv7ta1bt1Z6v8bGxuzatSvbtm3b65g3U1tbm/79+7d7AAB0lIMelrnjCADQPbS1teWxxx7LoEGDMnTo0DQ2NmblypWV13ft2pVVq1Zl/PjxSZJRo0bliCOOaDdmy5YteeSRRypjAACqrUO+hvm73HEEAOgaLr744qxatSobN27MAw88kP/yX/5Ltm/fnrPPPjs1NTVpbm7OwoULc/vtt+eRRx7JOeeck759++ass85KkpRKpZx77rm56KKL8sMf/jAPPfRQPvWpT1VusgIAdAYdHpa54wgA0DU888wz+eQnP5kTTjghM2bMSK9evbJ27doMGTIkSfKFL3whzc3NueCCCzJ69Oj88pe/zN13351+/fpVznHVVVdl+vTpmTlzZk466aT07ds3d955Z3r06FGtywIAaKfnwT7hxRdfnDPOOCPHHXdctm7dmr/7u7970zuOw4YNy7Bhw7Jw4cK93nEcMGBA6urqcvHFF7vjCABQZbfeeutbvl5TU5MFCxZkwYIFex3Tu3fvLF68OIsXLz7I1QEAHBwHPSx7/Y7jr3/96xxzzDEZO3bsHnccd+7cmQsuuCDbtm3LmDFj3vSOY8+ePTNz5szs3Lkzp556am688UZ3HAEAAADoUDXlcrlc7SI6wvbt21MqldLa2tph65cdP395h5wX4O1sunxKtUuALutQ9BC8Mz6jrk+fDbwVvTAHal97iIM+swyAjtfR/xOhAQEAALqrDl/gHwAAAAAOF8IyAAAAACgIywAAAACgICwDAAAAgIIF/gEAgP1it0oAujIzywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACg0LPaBQAAAADsq+PnL+/Q82+6fEqHnp/Oz8wyAAAAACiYWQbAHjr6bl3ijh0AANA5mVkGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAACFntUuAIDu6fj5yzv0/Jsun9Kh5wcAALomM8sAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKPSsdgEA0BGOn7+82iW8I5sun1LtEgAAoFsyswwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKPSsdgEAAMDBdfz85dUuAQAOW2aWAQAAAEDBzDIA6IY6etbJpsundOj5AQCgo5hZBgAAAAAFM8sAoBOy3hAAAFSHmWUAAAAAUDCzDAAAAKBgbVeEZQDAQafJBADgcOVrmAAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUela7AAAA6G6On7+82iUAAHthZhkAAAAAFMwsAwAAADhEOnp28abLp3To+bsDM8sAAAAAoCAsAwAAAIBCpw/Lvv71r2fo0KHp3bt3Ro0alR//+MfVLgkAgINAnwcAdEadOiy77bbb0tzcnEsvvTQPPfRQ/uiP/iiTJ0/O008/Xe3SAAB4B/R5AEBnVVMul8vVLmJvxowZkw984AO55pprKseGDx+e6dOnZ9GiRW/5s9u3b0+pVEpra2v69+/fIfXZ8hsAqqMjF649FD0E+jwAOFwdzhsI7GsP0Wl3w9y1a1fWr1+f+fPntzs+adKkrF69eo/xbW1taWtrqzxvbW1N8ts3oqO81vZyh50bANi7jvz9/vq5O/H9xMOePg8ADl/Hff7/69DzP3LZaR127n3t8zptWPbrX/86u3fvTkNDQ7vjDQ0NaWlp2WP8okWLctlll+1xfPDgwR1WIwBQHaWrO/7PePHFF1MqlTr+D+qG9HkAwN50hj6v04Zlr6upqWn3vFwu73EsSS655JLMmzev8vy1117Lb37zmwwYMOBNx79T27dvz+DBg7N582Zf0agC7391ef+ry/tffT6D6uro979cLufFF19MU1PTQT837XXWPu9Q8O9I5+Lz6Dx8Fp2Lz6Pz8FkcHPva53XasGzgwIHp0aPHHncXt27dusddyCSpra1NbW1tu2NHHXVUR5aYJOnfv7+/qFXk/a8u7391ef+rz2dQXR35/ptR1rEOlz7vUPDvSOfi8+g8fBadi8+j8/BZvHP70ud12t0we/XqlVGjRmXlypXtjq9cuTLjx4+vUlUAALxT+jwAoDPrtDPLkmTevHmZNWtWRo8enXHjxuXaa6/N008/nc9+9rPVLg0AgHdAnwcAdFadOiw788wz8/zzz+dv//Zvs2XLlowYMSJ33XVXhgwZUu3SUltbm7/5m7/Z4ysBHBre/+ry/leX97/6fAbV5f3vGjpzn3co+Hvcufg8Og+fRefi8+g8fBaHVk3ZvugAAAAAkKQTr1kGAAAAAIeasAwAAAAACsIyAAAAACgIywAAAACgICw7QF//+tczdOjQ9O7dO6NGjcqPf/zjapfULSxatCgf/OAH069fv9TX12f69Ol5/PHHq11Wt7Vo0aLU1NSkubm52qV0G7/85S/zqU99KgMGDEjfvn3z/ve/P+vXr692Wd3Cq6++mr/+67/O0KFD06dPn/z+7/9+/vZv/zavvfZatUvrku67776cccYZaWpqSk1NTb7zne+0e71cLmfBggVpampKnz59MmHChDz66KPVKRb2kz6yc9BXdl56zOrTc3YeetDqEJYdgNtuuy3Nzc259NJL89BDD+WP/uiPMnny5Dz99NPVLq3LW7VqVWbPnp21a9dm5cqVefXVVzNp0qS89NJL1S6t21m3bl2uvfbavPe97612Kd3Gtm3bctJJJ+WII47I9773vfzsZz/L1772tRx11FHVLq1b+OpXv5p//Md/zJIlS/LYY4/liiuuyP/4H/8jixcvrnZpXdJLL72U973vfVmyZMmbvn7FFVfkyiuvzJIlS7Ju3bo0NjbmYx/7WF588cVDXCnsH31k56Gv7Jz0mNWn5+xc9KDVUVMul8vVLuJwM2bMmHzgAx/INddcUzk2fPjwTJ8+PYsWLapiZd3Pc889l/r6+qxatSof+chHql1Ot7Fjx4584AMfyNe//vX83d/9Xd7//vfn6quvrnZZXd78+fPzz//8z2YgVMnUqVPT0NCQ66+/vnLs4x//ePr27Zubb765ipV1fTU1Nbn99tszffr0JL+dVdbU1JTm5uZ88YtfTJK0tbWloaEhX/3qV/OZz3ymitXCW9NHdl76yurTY3YOes7ORQ9aHWaW7addu3Zl/fr1mTRpUrvjkyZNyurVq6tUVffV2tqaJKmrq6tyJd3L7NmzM2XKlEycOLHapXQrd9xxR0aPHp1PfOITqa+vz4knnpjrrruu2mV1Gx/+8Ifzwx/+ME888USS5F//9V9z//3354//+I+rXFn3s3HjxrS0tLT7XVxbW5uTTz7Z72I6NX1k56avrD49Zueg5+xc9KDV0bPaBRxufv3rX2f37t1paGhod7yhoSEtLS1Vqqp7KpfLmTdvXj784Q9nxIgR1S6n27j11lvzL//yL1m3bl21S+l2/u3f/i3XXHNN5s2bly996Ut58MEHc+GFF6a2tjaf/vSnq11el/fFL34xra2t+cM//MP06NEju3fvzle+8pV88pOfrHZp3c7rv2/f7HfxU089VY2SYJ/oIzsvfWX16TE7Dz1n56IHrQ5h2QGqqalp97xcLu9xjI41Z86c/PSnP839999f7VK6jc2bN+dzn/tc7r777vTu3bva5XQ7r732WkaPHp2FCxcmSU488cQ8+uijueaaazQuh8Btt92WpUuXZtmyZXnPe96TDRs2pLm5OU1NTTn77LOrXV635Hcxhyt/dzsffWV16TE7Fz1n56IHrQ5h2X4aOHBgevToscfdv61bt+5xl5COM3fu3Nxxxx257777cuyxx1a7nG5j/fr12bp1a0aNGlU5tnv37tx3331ZsmRJ2tra0qNHjypW2LUNGjQo7373u9sdGz58eP7P//k/Vaqoe/mrv/qrzJ8/P3/6p3+aJBk5cmSeeuqpLFq0SKNyiDU2Nib57QyzQYMGVY77XUxnp4/snPSV1afH7Fz0nJ2LHrQ6rFm2n3r16pVRo0Zl5cqV7Y6vXLky48ePr1JV3Ue5XM6cOXPy7W9/O/fcc0+GDh1a7ZK6lVNPPTUPP/xwNmzYUHmMHj06f/Znf5YNGzZoYjrYSSedtMeW9k888USGDBlSpYq6l5dffjm/93vtf2326NHDtt1VMHTo0DQ2Nrb7Xbxr166sWrXK72I6NX1k56Kv7Dz0mJ2LnrNz0YNWh5llB2DevHmZNWtWRo8enXHjxuXaa6/N008/nc9+9rPVLq3Lmz17dpYtW5bvfve76devX+XObKlUSp8+fapcXdfXr1+/PdbxOPLIIzNgwADrexwCn//85zN+/PgsXLgwM2fOzIMPPphrr7021157bbVL6xbOOOOMfOUrX8lxxx2X97znPXnooYdy5ZVX5i/+4i+qXVqXtGPHjvziF7+oPN+4cWM2bNiQurq6HHfccWlubs7ChQszbNiwDBs2LAsXLkzfvn1z1llnVbFqeHv6yM5DX9l56DE7Fz1n56IHrZIyB+Qf/uEfykOGDCn36tWr/IEPfKC8atWqapfULSR508cNN9xQ7dK6rZNPPrn8uc99rtpldBt33nlnecSIEeXa2tryH/7hH5avvfbaapfUbWzfvr38uc99rnzccceVe/fuXf793//98qWXXlpua2urdmld0o9+9KM3/ff+7LPPLpfL5fJrr71W/pu/+ZtyY2Njuba2tvyRj3yk/PDDD1e3aNhH+sjOQV/Zuekxq0vP2XnoQaujplwulw95QgcAAAAAnZA1ywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIy4LAzYcKEzJ07N83NzTn66KPT0NCQa6+9Ni+99FL+/M//PP369ct//s//Od/73veSJLt37865556boUOHpk+fPjnhhBPy93//9+3Oee+99+ZDH/pQjjzyyBx11FE56aST8tRTTyVJ/vVf/zWnnHJK+vXrl/79+2fUqFH5yU9+csivGwCANzdhwoTMmTMnc+bMyVFHHZUBAwbkr//6r1Mul6tdGnAYEpYBh6WbbropAwcOzIMPPpi5c+fmL//yL/OJT3wi48ePz7/8y7/ktNNOy6xZs/Lyyy/ntddey7HHHptvfetb+dnPfpb/9t/+W770pS/lW9/6VpLk1VdfzfTp03PyySfnpz/9adasWZPzzz8/NTU1SZI/+7M/y7HHHpt169Zl/fr1mT9/fo444ohqXj4AAG9w0003pWfPnnnggQfyP//n/8xVV12V//W//le1ywIOQzVlUTtwmJkwYUJ2796dH//4x0l+O3OsVCplxowZ+eY3v5kkaWlpyaBBg7JmzZqMHTt2j3PMnj07zz77bP73//7f+c1vfpMBAwbk3nvvzcknn7zH2P79+2fx4sU5++yzO/bCAAA4IBMmTMjWrVvz6KOPVm54zp8/P3fccUd+9rOfVbk64HBjZhlwWHrve99b+e8ePXpkwIABGTlyZOVYQ0NDkmTr1q1Jkn/8x3/M6NGjc8wxx+Q//af/lOuuuy5PP/10kqSuri7nnHNOTjvttJxxxhn5+7//+2zZsqVyrnnz5uW//tf/mokTJ+byyy/P//t//+9QXCIAAPth7NixlaAsScaNG5cnn3wyu3fvrmJVwOFIWAYclt74Nciampp2x15vlF577bV861vfyuc///n8xV/8Re6+++5s2LAhf/7nf55du3ZVxt9www1Zs2ZNxo8fn9tuuy3vete7snbt2iTJggUL8uijj2bKlCm555578u53vzu33377IbhKAAAADjVhGdDl/fjHP8748eNzwQUX5MQTT8wf/MEfvOnssBNPPDGXXHJJVq9enREjRmTZsmWV1971rnfl85//fO6+++7MmDEjN9xww6G8BAAA3sbrNzp/9/mwYcPSo0ePKlUEHK6EZUCX9wd/8Af5yU9+ku9///t54okn8uUvfznr1q2rvL5x48ZccsklWbNmTZ566qncfffdeeKJJzJ8+PDs3Lkzc+bMyb333punnnoq//zP/5x169Zl+PDhVbwiAADeaPPmzZk3b14ef/zx/NM//VMWL16cz33uc9UuCzgM9ax2AQAd7bOf/Ww2bNiQM888MzU1NfnkJz+ZCy64IN/73veSJH379s3Pf/7z3HTTTXn++eczaNCgzJkzJ5/5zGfy6quv5vnnn8+nP/3pPPvssxk4cGBmzJiRyy67rMpXBQDA7/r0pz+dnTt35kMf+lB69OiRuXPn5vzzz692WcBhyG6YAAAAHNYmTJiQ97///bn66qurXQrQBfgaJgAAAAAUhGUAAAAAUPA1TAAAAAAomFkGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQOH/BxO5PEiquvvEAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAIOCAYAAACmmIqfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/wElEQVR4nO3dfZRV9X0v/vcUZEQLRwcyM8wSkbZoSaB5gISHWMWoCFfkGrKKCQ3R1oumCoagNwHtvaVdKRi7ovbCjVWvS1Qwmt+9mphFMhGvEUMBRdqpDzHG3KLBlgFj8IxY7qB4fn9059wM+ADIcHh4vdbaa83e+3O+89lnIvPNe75n77pKpVIJAAAAAJDfqnUDAAAAAHCwEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUOhZ6wa6y1tvvZV//dd/TZ8+fVJXV1frdgCAQ0SlUslrr72WlpaW/NZv+bviwcg8DwDYF3s8z6vshQULFlRGjhxZ+e3f/u3KBz7wgcp//I//sfLTn/60S82FF15YSdJlGzVqVJea//t//29l5syZlX79+lWOOeaYynnnnVfZuHFjl5pf/epXlc9//vOVvn37Vvr27Vv5/Oc/X9m6dese97px48bd+rDZbDabzWbb023XuQkHD/M8m81ms9ls72d7r3leXaVSqWQPTZgwIZ/97Gfz8Y9/PG+++WauueaaPPXUU/nJT36SY489Nkly0UUXZfPmzbn99turr+vVq1caGhqq+3/2Z3+W733ve1myZEn69euXK6+8Mr/61a+yfv369OjRI0kyceLEvPTSS7nllluSJJdccklOOumkfO9739ujXsvlco477rhs3Lgxffv23dNLBACOcB0dHRk4cGBeffXVlEqlWrfD2zDPAwD2xZ7O8/bqY5itra1d9m+//fY0NjZm/fr1Oe2006rH6+vr09zc/LZjlMvl3Hbbbbnrrrty1llnJUmWLl2agQMH5qGHHso555yTZ599Nq2trVm7dm1GjRqVJLn11lszZsyYPPfccznllFPes9dfL8nv27evSRQAsNd8vO/gZZ4HALwf7zXPe1834iiXy0nSZdVYkjzyyCNpbGzMySefnBkzZmTLli3Vc+vXr88bb7yR8ePHV4+1tLRk2LBhWb16dZJkzZo1KZVK1aAsSUaPHp1SqVSt2VVnZ2c6Ojq6bAAAAACwN/Y5LKtUKpkzZ05OPfXUDBs2rHp84sSJWbZsWR5++OF84xvfyLp16/KpT30qnZ2dSZL29vb06tUrxx9/fJfxmpqa0t7eXq1pbGzc7Xs2NjZWa3a1cOHClEql6jZw4MB9vTQAAAAAjlD7/DTMmTNn5sknn8yqVau6HL/ggguqXw8bNiwjR47MoEGDsnz58kyZMuUdx6tUKl2Wwb3dkrhda37TvHnzMmfOnOr+rz+HCgAAAAB7ap9Wls2aNSsPPPBAfvSjH+WEE05419oBAwZk0KBBef7555Mkzc3N2bFjR7Zu3dqlbsuWLWlqaqrWbN68ebexXn755WrNrurr66v3rXD/CgAAAAD2xV6FZZVKJTNnzsx9992Xhx9+OIMHD37P17zyyivZuHFjBgwYkCQZMWJEjjrqqKxYsaJas2nTpjz99NMZO3ZskmTMmDEpl8t5/PHHqzWPPfZYyuVytQYAAAAA9re9+hjm5Zdfnrvvvjvf/e5306dPn+r9w0qlUnr37p1t27Zl/vz5+cxnPpMBAwbkhRdeyNVXX53+/fvn05/+dLX24osvzpVXXpl+/fqloaEhV111VYYPH159OubQoUMzYcKEzJgxIzfffHOS5JJLLsmkSZP26EmYAAAAALAv9iosu+mmm5Ik48aN63L89ttvz0UXXZQePXrkqaeeyp133plXX301AwYMyBlnnJF77703ffr0qdbfcMMN6dmzZ6ZOnZrt27fnzDPPzJIlS9KjR49qzbJly3LFFVdUn5o5efLkLF68eF+vEwAAAADeU12lUqnUuonu0NHRkVKplHK57P5lAMAeM4c4+PkZAQD7Yk/nEPt0g38AAAAAOBwJywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAIBCz1o3AHSPk+Yur3UL78sL155b6xYAAOgGB2Keai4JvB9WlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABR61roBAABqb+HChbnvvvvy05/+NL17987YsWPz9a9/Paecckq15qKLLsodd9zR5XWjRo3K2rVrq/udnZ256qqr8q1vfSvbt2/PmWeemW9+85s54YQTqjVbt27NFVdckQceeCBJMnny5CxatCjHHXdc914kcMQ4ae7ybh3/hWvP7dbxgdqysgwAgKxcuTKXX3551q5dmxUrVuTNN9/M+PHj8/rrr3epmzBhQjZt2lTdvv/973c5P3v27Nx///255557smrVqmzbti2TJk3Kzp07qzXTpk1LW1tbWltb09ramra2tkyfPv2AXCcAwHuxsgwAgLS2tnbZv/3229PY2Jj169fntNNOqx6vr69Pc3Pz245RLpdz22235a677spZZ52VJFm6dGkGDhyYhx56KOecc06effbZtLa2Zu3atRk1alSS5NZbb82YMWPy3HPPdVnJBgBQC1aWAQCwm3K5nCRpaGjocvyRRx5JY2NjTj755MyYMSNbtmypnlu/fn3eeOONjB8/vnqspaUlw4YNy+rVq5Mka9asSalUqgZlSTJ69OiUSqVqza46OzvT0dHRZQMA6C7CMgAAuqhUKpkzZ05OPfXUDBs2rHp84sSJWbZsWR5++OF84xvfyLp16/KpT30qnZ2dSZL29vb06tUrxx9/fJfxmpqa0t7eXq1pbGzc7Xs2NjZWa3a1cOHClEql6jZw4MD9dakAALvxMUwAALqYOXNmnnzyyaxatarL8QsuuKD69bBhwzJy5MgMGjQoy5cvz5QpU95xvEqlkrq6uur+b379TjW/ad68eZkzZ051v6OjQ2AGAHQbK8sAAKiaNWtWHnjggfzoRz/q8gTLtzNgwIAMGjQozz//fJKkubk5O3bsyNatW7vUbdmyJU1NTdWazZs37zbWyy+/XK3ZVX19ffr27dtlAwDoLsIyAABSqVQyc+bM3HfffXn44YczePDg93zNK6+8ko0bN2bAgAFJkhEjRuSoo47KihUrqjWbNm3K008/nbFjxyZJxowZk3K5nMcff7xa89hjj6VcLldrAABqyccwAQDI5Zdfnrvvvjvf/e5306dPn+r9w0qlUnr37p1t27Zl/vz5+cxnPpMBAwbkhRdeyNVXX53+/fvn05/+dLX24osvzpVXXpl+/fqloaEhV111VYYPH159OubQoUMzYcKEzJgxIzfffHOS5JJLLsmkSZM8CRMOEifNXV7rFgBqSlgGAEBuuummJMm4ceO6HL/99ttz0UUXpUePHnnqqady55135tVXX82AAQNyxhln5N57702fPn2q9TfccEN69uyZqVOnZvv27TnzzDOzZMmS9OjRo1qzbNmyXHHFFdWnZk6ePDmLFy/u/osEANgDwjIAAFKpVN71fO/evfPDH/7wPcc5+uijs2jRoixatOgdaxoaGrJ06dK97hEA4EBwzzIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACj0rHUDAAAAcCg5ae7ybh3/hWvP7dbxgXdnZRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABR61roBAAAA9txJc5fXugWAw5qVZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFNzgH2rEjVkBAADg4GNlGQAAAAAUhGUAAAAAUNirsGzhwoX5+Mc/nj59+qSxsTHnn39+nnvuuS41lUol8+fPT0tLS3r37p1x48blmWee6VLT2dmZWbNmpX///jn22GMzefLkvPTSS11qtm7dmunTp6dUKqVUKmX69Ol59dVX9+0qAQAAAGAP7FVYtnLlylx++eVZu3ZtVqxYkTfffDPjx4/P66+/Xq257rrrcv3112fx4sVZt25dmpubc/bZZ+e1116r1syePTv3339/7rnnnqxatSrbtm3LpEmTsnPnzmrNtGnT0tbWltbW1rS2tqatrS3Tp0/fD5cMAAAAAG9vr27w39ra2mX/9ttvT2NjY9avX5/TTjstlUolN954Y6655ppMmTIlSXLHHXekqakpd999dy699NKUy+Xcdtttueuuu3LWWWclSZYuXZqBAwfmoYceyjnnnJNnn302ra2tWbt2bUaNGpUkufXWWzNmzJg899xzOeWUU3brrbOzM52dndX9jo6OvXsnAAAAADjiva97lpXL5SRJQ0NDkmTDhg1pb2/P+PHjqzX19fU5/fTTs3r16iTJ+vXr88Ybb3SpaWlpybBhw6o1a9asSalUqgZlSTJ69OiUSqVqza4WLlxY/chmqVTKwIED38+lAQAAAHAE2uewrFKpZM6cOTn11FMzbNiwJEl7e3uSpKmpqUttU1NT9Vx7e3t69eqV448//l1rGhsbd/uejY2N1ZpdzZs3L+Vyubpt3LhxXy8NAAAAgCPUXn0M8zfNnDkzTz75ZFatWrXbubq6ui77lUplt2O72rXm7erfbZz6+vrU19fvSesAAAAA8Lb2aWXZrFmz8sADD+RHP/pRTjjhhOrx5ubmJNlt9deWLVuqq82am5uzY8eObN269V1rNm/evNv3ffnll3dbtQYAAAAA+8tehWWVSiUzZ87Mfffdl4cffjiDBw/ucn7w4MFpbm7OihUrqsd27NiRlStXZuzYsUmSESNG5KijjupSs2nTpjz99NPVmjFjxqRcLufxxx+v1jz22GMpl8vVGgAAAADY3/bqY5iXX3557r777nz3u99Nnz59qivISqVSevfunbq6usyePTsLFizIkCFDMmTIkCxYsCDHHHNMpk2bVq29+OKLc+WVV6Zfv35paGjIVVddleHDh1efjjl06NBMmDAhM2bMyM0335wkueSSSzJp0qS3fRImAAAAAOwPexWW3XTTTUmScePGdTl+++2356KLLkqSfOUrX8n27dtz2WWXZevWrRk1alQefPDB9OnTp1p/ww03pGfPnpk6dWq2b9+eM888M0uWLEmPHj2qNcuWLcsVV1xRfWrm5MmTs3jx4n25RgAAAADYI3WVSqVS6ya6Q0dHR0qlUsrlcvr27VvrdmA3J81dXusWDmovXHturVsAjlDmEAc/PyOOdOaRhz9zYegeezqH2Kcb/AMAAADA4UhYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEChZ60bAAAAAP6fk+Yu79bxX7j23G4dHw51VpYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAABk4cKF+fjHP54+ffqksbEx559/fp577rkuNZVKJfPnz09LS0t69+6dcePG5ZlnnulS09nZmVmzZqV///459thjM3ny5Lz00ktdarZu3Zrp06enVCqlVCpl+vTpefXVV7v7EgEA9oiwDACArFy5MpdffnnWrl2bFStW5M0338z48ePz+uuvV2uuu+66XH/99Vm8eHHWrVuX5ubmnH322XnttdeqNbNnz87999+fe+65J6tWrcq2bdsyadKk7Ny5s1ozbdq0tLW1pbW1Na2trWlra8v06dMP6PUCALyTukqlUql1E92ho6MjpVIp5XI5ffv2rXU7sJvufsIN784TgIB3Yg7x715++eU0NjZm5cqVOe2001KpVNLS0pLZs2fnq1/9apJ/X0XW1NSUr3/967n00ktTLpfzgQ98IHfddVcuuOCCJMm//uu/ZuDAgfn+97+fc845J88++2w++MEPZu3atRk1alSSZO3atRkzZkx++tOf5pRTTnnP3vyMONKZR/J+mQtzpNrTOYSVZQAA7KZcLidJGhoakiQbNmxIe3t7xo8fX62pr6/P6aefntWrVydJ1q9fnzfeeKNLTUtLS4YNG1atWbNmTUqlUjUoS5LRo0enVCpVa3bV2dmZjo6OLhsAQHcRlgEA0EWlUsmcOXNy6qmnZtiwYUmS9vb2JElTU1OX2qampuq59vb29OrVK8cff/y71jQ2Nu72PRsbG6s1u1q4cGH1/malUikDBw58fxcIAPAuhGUAAHQxc+bMPPnkk/nWt76127m6urou+5VKZbdju9q15u3q322cefPmpVwuV7eNGzfuyWUAAOwTYRkAAFWzZs3KAw88kB/96Ec54YQTqsebm5uTZLfVX1u2bKmuNmtubs6OHTuydevWd63ZvHnzbt/35Zdf3m3V2q/V19enb9++XTYAgO4iLAMAIJVKJTNnzsx9992Xhx9+OIMHD+5yfvDgwWlubs6KFSuqx3bs2JGVK1dm7NixSZIRI0bkqKOO6lKzadOmPP3009WaMWPGpFwu5/HHH6/WPPbYYymXy9UaAIBa6lnrBgAAqL3LL788d999d7773e+mT58+1RVkpVIpvXv3Tl1dXWbPnp0FCxZkyJAhGTJkSBYsWJBjjjkm06ZNq9ZefPHFufLKK9OvX780NDTkqquuyvDhw3PWWWclSYYOHZoJEyZkxowZufnmm5Mkl1xySSZNmrRHT8IEAOhuwjIAAHLTTTclScaNG9fl+O23356LLrooSfKVr3wl27dvz2WXXZatW7dm1KhRefDBB9OnT59q/Q033JCePXtm6tSp2b59e84888wsWbIkPXr0qNYsW7YsV1xxRfWpmZMnT87ixYu79wIBAPZQXaVSqdS6ie7Q0dGRUqmUcrnsvhYclE6au7zWLRzRXrj23Fq3ABykzCEOfn5GHOnMI3m/zIU5Uu3pHMI9ywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKPSsdQNwsDpp7vJatwAAAAAcYFaWAQAAAEBBWAYAAAAABWEZAAAAABT2Oix79NFHc95556WlpSV1dXX5zne+0+X8RRddlLq6ui7b6NGju9R0dnZm1qxZ6d+/f4499thMnjw5L730UpearVu3Zvr06SmVSimVSpk+fXpeffXVvb5AAAAAANhTex2Wvf766/nwhz+cxYsXv2PNhAkTsmnTpur2/e9/v8v52bNn5/77788999yTVatWZdu2bZk0aVJ27txZrZk2bVra2trS2tqa1tbWtLW1Zfr06XvbLgAAAADssb1+GubEiRMzceLEd62pr69Pc3Pz254rl8u57bbbctddd+Wss85KkixdujQDBw7MQw89lHPOOSfPPvtsWltbs3bt2owaNSpJcuutt2bMmDF57rnncsopp+xt2wAAAADwnrrlnmWPPPJIGhsbc/LJJ2fGjBnZsmVL9dz69evzxhtvZPz48dVjLS0tGTZsWFavXp0kWbNmTUqlUjUoS5LRo0enVCpVa3bV2dmZjo6OLhsAAAAA7I39HpZNnDgxy5Yty8MPP5xvfOMbWbduXT71qU+ls7MzSdLe3p5evXrl+OOP7/K6pqamtLe3V2saGxt3G7uxsbFas6uFCxdW729WKpUycODA/XxlAAAAABzu9vpjmO/lggsuqH49bNiwjBw5MoMGDcry5cszZcqUd3xdpVJJXV1ddf83v36nmt80b968zJkzp7rf0dEhMAMAAABgr3TLxzB/04ABAzJo0KA8//zzSZLm5ubs2LEjW7du7VK3ZcuWNDU1VWs2b96821gvv/xytWZX9fX16du3b5cNAAAAAPZGt4dlr7zySjZu3JgBAwYkSUaMGJGjjjoqK1asqNZs2rQpTz/9dMaOHZskGTNmTMrlch5//PFqzWOPPZZyuVytAQAAAID9ba8/hrlt27b8/Oc/r+5v2LAhbW1taWhoSENDQ+bPn5/PfOYzGTBgQF544YVcffXV6d+/fz796U8nSUqlUi6++OJceeWV6devXxoaGnLVVVdl+PDh1adjDh06NBMmTMiMGTNy8803J0kuueSSTJo0yZMwAQCAg9pJc5fXugUA3oe9DsueeOKJnHHGGdX9X98n7MILL8xNN92Up556KnfeeWdeffXVDBgwIGeccUbuvffe9OnTp/qaG264IT179szUqVOzffv2nHnmmVmyZEl69OhRrVm2bFmuuOKK6lMzJ0+enMWLF+/zhQIAAADAe9nrsGzcuHGpVCrveP6HP/zhe45x9NFHZ9GiRVm0aNE71jQ0NGTp0qV72x4AAAAA7LNuv2cZAAAAABwqhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAEmSRx99NOedd15aWlpSV1eX73znO13OX3TRRamrq+uyjR49uktNZ2dnZs2alf79++fYY4/N5MmT89JLL3Wp2bp1a6ZPn55SqZRSqZTp06fn1Vdf7earAwDYM8IyAACSJK+//no+/OEPZ/Hixe9YM2HChGzatKm6ff/73+9yfvbs2bn//vtzzz33ZNWqVdm2bVsmTZqUnTt3VmumTZuWtra2tLa2prW1NW1tbZk+fXq3XRcAwN7oWesGAAA4OEycODETJ05815r6+vo0Nze/7blyuZzbbrstd911V84666wkydKlSzNw4MA89NBDOeecc/Lss8+mtbU1a9euzahRo5Ikt956a8aMGZPnnnsup5xyym7jdnZ2prOzs7rf0dGxr5cIAPCerCwDAGCPPfLII2lsbMzJJ5+cGTNmZMuWLdVz69evzxtvvJHx48dXj7W0tGTYsGFZvXp1kmTNmjUplUrVoCxJRo8enVKpVK3Z1cKFC6sf2SyVShk4cGA3XR0AgLAMAIA9NHHixCxbtiwPP/xwvvGNb2TdunX51Kc+VV311d7enl69euX444/v8rqmpqa0t7dXaxobG3cbu7GxsVqzq3nz5qVcLle3jRs37ucrAwD4f3wMEwCAPXLBBRdUvx42bFhGjhyZQYMGZfny5ZkyZco7vq5SqaSurq66/5tfv1PNb6qvr099ff376BwAYM9ZWQYAwD4ZMGBABg0alOeffz5J0tzcnB07dmTr1q1d6rZs2ZKmpqZqzebNm3cb6+WXX67WAADUkrAMAIB98sorr2Tjxo0ZMGBAkmTEiBE56qijsmLFimrNpk2b8vTTT2fs2LFJkjFjxqRcLufxxx+v1jz22GMpl8vVGgCAWvIxTAAAkiTbtm3Lz3/+8+r+hg0b0tbWloaGhjQ0NGT+/Pn5zGc+kwEDBuSFF17I1Vdfnf79++fTn/50kqRUKuXiiy/OlVdemX79+qWhoSFXXXVVhg8fXn065tChQzNhwoTMmDEjN998c5LkkksuyaRJk972SZgAAAeasAwAgCTJE088kTPOOKO6P2fOnCTJhRdemJtuuilPPfVU7rzzzrz66qsZMGBAzjjjjNx7773p06dP9TU33HBDevbsmalTp2b79u0588wzs2TJkvTo0aNas2zZslxxxRXVp2ZOnjw5ixcvPkBXCQDw7oRlAAAkScaNG5dKpfKO53/4wx++5xhHH310Fi1alEWLFr1jTUNDQ5YuXbpPPQIAdDf3LAMAAACAgrAMAAAAAAo+hgkAAABHkJPmLu/W8V+49txuHR+6m5VlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAIWetW4AoBZOmru8W8d/4dpzu3V8AAAAuoeVZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUeta6gUPZSXOXd+v4L1x7breODwAAAEBXVpYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFBwg38OWd39gAUAAADgyGNlGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFDoWesGeGcnzV3ereO/cO253To+AAAAwKHGyjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoLDXYdmjjz6a8847Ly0tLamrq8t3vvOdLucrlUrmz5+flpaW9O7dO+PGjcszzzzTpaazszOzZs1K//79c+yxx2by5Ml56aWXutRs3bo106dPT6lUSqlUyvTp0/Pqq6/u9QUCAAAAwJ7a67Ds9ddfz4c//OEsXrz4bc9fd911uf7667N48eKsW7cuzc3NOfvss/Paa69Va2bPnp37778/99xzT1atWpVt27Zl0qRJ2blzZ7Vm2rRpaWtrS2tra1pbW9PW1pbp06fvwyUCAAAAwJ7pubcvmDhxYiZOnPi25yqVSm688cZcc801mTJlSpLkjjvuSFNTU+6+++5ceumlKZfLue2223LXXXflrLPOSpIsXbo0AwcOzEMPPZRzzjknzz77bFpbW7N27dqMGjUqSXLrrbdmzJgxee6553LKKafs9r07OzvT2dlZ3e/o6NjbSwMAAADgCLdf71m2YcOGtLe3Z/z48dVj9fX1Of3007N69eokyfr16/PGG290qWlpacmwYcOqNWvWrEmpVKoGZUkyevTolEqlas2uFi5cWP3IZqlUysCBA/fnpQEAAABwBNivYVl7e3uSpKmpqcvxpqam6rn29vb06tUrxx9//LvWNDY27jZ+Y2NjtWZX8+bNS7lcrm4bN25839cDAAAAwJFlrz+GuSfq6uq67Fcqld2O7WrXmrerf7dx6uvrU19fvw/dAgAAAMC/268ry5qbm5Nkt9VfW7Zsqa42a25uzo4dO7J169Z3rdm8efNu47/88su7rVoDAAAAgP1lv64sGzx4cJqbm7NixYp89KMfTZLs2LEjK1euzNe//vUkyYgRI3LUUUdlxYoVmTp1apJk06ZNefrpp3PdddclScaMGZNyuZzHH388n/jEJ5Ikjz32WMrlcsaOHbs/W6YbnTR3ea1bAAAAANgrex2Wbdu2LT//+c+r+xs2bEhbW1saGhpy4oknZvbs2VmwYEGGDBmSIUOGZMGCBTnmmGMybdq0JEmpVMrFF1+cK6+8Mv369UtDQ0OuuuqqDB8+vPp0zKFDh2bChAmZMWNGbr755iTJJZdckkmTJr3tkzABAAAAYH/Y67DsiSeeyBlnnFHdnzNnTpLkwgsvzJIlS/KVr3wl27dvz2WXXZatW7dm1KhRefDBB9OnT5/qa2644Yb07NkzU6dOzfbt23PmmWdmyZIl6dGjR7Vm2bJlueKKK6pPzZw8eXIWL168zxcKAAAAAO9lr8OycePGpVKpvOP5urq6zJ8/P/Pnz3/HmqOPPjqLFi3KokWL3rGmoaEhS5cu3dv2AAAAAGCf7dcb/AMAAADAoUxYBgBAkuTRRx/Neeedl5aWltTV1eU73/lOl/OVSiXz589PS0tLevfunXHjxuWZZ57pUtPZ2ZlZs2alf//+OfbYYzN58uS89NJLXWq2bt2a6dOnp1QqpVQqZfr06Xn11Ve7+eoAAPaMsAwAgCTJ66+/ng9/+MPveJ/Y6667Ltdff30WL16cdevWpbm5OWeffXZee+21as3s2bNz//3355577smqVauybdu2TJo0KTt37qzWTJs2LW1tbWltbU1ra2va2toyffr0br8+AIA9sdf3LAMA4PA0ceLETJw48W3PVSqV3HjjjbnmmmsyZcqUJMkdd9yRpqam3H333bn00ktTLpdz22235a677qo+5Xzp0qUZOHBgHnrooZxzzjl59tln09ramrVr12bUqFFJkltvvTVjxozJc88958nnAEDNWVkGAMB72rBhQ9rb26tPKk+S+vr6nH766Vm9enWSZP369XnjjTe61LS0tGTYsGHVmjVr1qRUKlWDsiQZPXp0SqVStWZXnZ2d6ejo6LIBAHQXYRkAAO+pvb09SdLU1NTleFNTU/Vce3t7evXqleOPP/5daxobG3cbv7GxsVqzq4ULF1bvb1YqlTJw4MD3fT0AAO9EWAYAwB6rq6vrsl+pVHY7tqtda96u/t3GmTdvXsrlcnXbuHHjPnQOALBnhGUAALyn5ubmJNlt9deWLVuqq82am5uzY8eObN269V1rNm/evNv4L7/88m6r1n6tvr4+ffv27bIBAHQXYRkAAO9p8ODBaW5uzooVK6rHduzYkZUrV2bs2LFJkhEjRuSoo47qUrNp06Y8/fTT1ZoxY8akXC7n8ccfr9Y89thjKZfL1RoAgFryNEwAAJIk27Zty89//vPq/oYNG9LW1paGhoaceOKJmT17dhYsWJAhQ4ZkyJAhWbBgQY455phMmzYtSVIqlXLxxRfnyiuvTL9+/dLQ0JCrrroqw4cPrz4dc+jQoZkwYUJmzJiRm2++OUlyySWXZNKkSZ6ECQAcFIRlR7CT5i6vdQsAwEHkiSeeyBlnnFHdnzNnTpLkwgsvzJIlS/KVr3wl27dvz2WXXZatW7dm1KhRefDBB9OnT5/qa2644Yb07NkzU6dOzfbt23PmmWdmyZIl6dGjR7Vm2bJlueKKK6pPzZw8eXIWL158gK4SAODd1VUqlUqtm+gOHR0dKZVKKZfL3XZfC2ET8E5euPbcWrcA7KMDMYfg/fEz4mDn/ydwpDMX5mC1p3MI9ywDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAAo9a90AAADAgXTS3OW1bgGAg5iVZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUOhZ6wYAAACAw8dJc5d36/gvXHtut44PVpYBAAAAQEFYBgAAAAAFH8ME6AaWngMAAByarCwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgMJ+D8vmz5+furq6Lltzc3P1fKVSyfz589PS0pLevXtn3LhxeeaZZ7qM0dnZmVmzZqV///459thjM3ny5Lz00kv7u1UAAAAA6KJbVpZ96EMfyqZNm6rbU089VT133XXX5frrr8/ixYuzbt26NDc35+yzz85rr71WrZk9e3buv//+3HPPPVm1alW2bduWSZMmZefOnd3RLgAAAAAkSXp2y6A9e3ZZTfZrlUolN954Y6655ppMmTIlSXLHHXekqakpd999dy699NKUy+Xcdtttueuuu3LWWWclSZYuXZqBAwfmoYceyjnnnPO237OzszOdnZ3V/Y6Ojm64MgAAAAAOZ92ysuz5559PS0tLBg8enM9+9rP553/+5yTJhg0b0t7envHjx1dr6+vrc/rpp2f16tVJkvXr1+eNN97oUtPS0pJhw4ZVa97OwoULUyqVqtvAgQO749IAAAAAOIzt97Bs1KhRufPOO/PDH/4wt956a9rb2zN27Ni88soraW9vT5I0NTV1eU1TU1P1XHt7e3r16pXjjz/+HWvezrx581Iul6vbxo0b9/OVAQAAAHC42+8fw5w4cWL16+HDh2fMmDH53d/93dxxxx0ZPXp0kqSurq7LayqVym7HdvVeNfX19amvr38fnQMAAABwpOuWj2H+pmOPPTbDhw/P888/X72P2a4rxLZs2VJdbdbc3JwdO3Zk69at71gDAMCB56nnAMCRoNvDss7Ozjz77LMZMGBABg8enObm5qxYsaJ6fseOHVm5cmXGjh2bJBkxYkSOOuqoLjWbNm3K008/Xa0BAKA2PPUcADjc7fePYV511VU577zzcuKJJ2bLli352te+lo6Ojlx44YWpq6vL7Nmzs2DBggwZMiRDhgzJggULcswxx2TatGlJklKplIsvvjhXXnll+vXrl4aGhlx11VUZPnx49emYAADUhqeeAwCHu/2+suyll17K5z73uZxyyimZMmVKevXqlbVr12bQoEFJkq985SuZPXt2LrvssowcOTL/8i//kgcffDB9+vSpjnHDDTfk/PPPz9SpU/PJT34yxxxzTL73ve+lR48e+7tdAAD2gqeeAwCHu/2+suyee+551/N1dXWZP39+5s+f/441Rx99dBYtWpRFixbt5+4AANhXv37q+cknn5zNmzfna1/7WsaOHZtnnnnmXZ96/uKLLyZ5f089nzNnTnW/o6NDYAYAdJv9HpYBAHB48tRzAOBI0O03+AcA4PDkqecAwOFIWAYAwD7x1HMA4HDkY5gAAOwRTz0HAI4EwjIAAPbIr596/stf/jIf+MAHMnr06N2eer59+/Zcdtll2bp1a0aNGvW2Tz3v2bNnpk6dmu3bt+fMM8/MkiVLPPUcADho1FUqlUqtm+gOHR0dKZVKKZfL6du3b7d8j5PmLu+WcQFq7YVrz611C1AzB2IOwfvjZ8T7ZR4PhzZzVfbVns4h3LMMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACgIywAAAACgICwDAAAAgIKwDAAAAAAKPWvdAAAAwG86ae7yWrcAwBHMyjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoNCz1g0AAAAA7KmT5i7v1vFfuPbcbh2fg5+VZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFIRlAAAAAFDwNEwAdtPdTxhKPGUIAAA4OFlZBgAAAAAFYRkAAAAAFIRlAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQKFnrRsA4Mh00tzl3Tr+C9ee263jAwAAhycrywAAAACgICwDAAAAgIKwDAAAAAAKwjIAAAAAKAjLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACj1r3QAAdIeT5i6vdQvvywvXnlvrFgAA4IhkZRkAAAAAFIRlAAAAAFAQlgEAAABAwT3LAOAg1N33XHNPNAAAeHtWlgEAAABAwcoyAABgrxzqTxwGgHdjZRkAAAAAFKwsA4AjkHuiAQDA2xOWAQD7nTAOAIBDlY9hAgAAAEBBWAYAAAAABWEZAAAAABTcswwAAACg4N6rWFkGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRkAAAAAFHrWugEAAGD/Omnu8lq3AACHLCvLAAAAAKAgLAMAAACAwkH/McxvfvOb+Zu/+Zts2rQpH/rQh3LjjTfmD//wD2vdFgAA75N5HgBHou7+qPwL157breMfCQ7qsOzee+/N7Nmz881vfjOf/OQnc/PNN2fixIn5yU9+khNPPLHW7QEAsI+O9Hmee4oBwMGrrlKpVGrdxDsZNWpUPvaxj+Wmm26qHhs6dGjOP//8LFy48F1f29HRkVKplHK5nL59+3ZLfyY5AFAb3fkX0wMxh+Dgn+d1N/NIAA5Vh/LKtT2dQxy0K8t27NiR9evXZ+7cuV2Ojx8/PqtXr96tvrOzM52dndX9crmc5N/fiO7yVue/ddvYAMA7687f778e+yD+e+Ih71CY5w37ix9229gAcCg78cv/X7eO//RfntNtY+/pPO+gDct++ctfZufOnWlqaupyvKmpKe3t7bvVL1y4MH/5l3+52/GBAwd2W48AQG2Ubuz+7/Haa6+lVCp1/zc6ApnnAQDv5GCY5x20Ydmv1dXVddmvVCq7HUuSefPmZc6cOdX9t956K7/61a/Sr1+/t61/vzo6OjJw4MBs3LjxkF3+fyjz/teW97+2vP+152dQW939/lcqlbz22mtpaWnZ72PT1cE6zztc+bfrwPJ+H1je7wPHe31geb/3rz2d5x20YVn//v3To0eP3f66uGXLlt3+Cpkk9fX1qa+v73LsuOOO684WkyR9+/b1P9ga8v7Xlve/trz/tednUFvd+f5bUda9DpV53uHKv10Hlvf7wPJ+Hzje6wPL+73/7Mk877cOQB/7pFevXhkxYkRWrFjR5fiKFSsyduzYGnUFAMD7ZZ4HABzMDtqVZUkyZ86cTJ8+PSNHjsyYMWNyyy235Be/+EW++MUv1ro1AADeB/M8AOBgdVCHZRdccEFeeeWV/NVf/VU2bdqUYcOG5fvf/34GDRpU69ZSX1+fv/iLv9jtIwEcGN7/2vL+15b3v/b8DGrL+394OJjneYcr/+0cWN7vA8v7feB4rw8s73dt1FU8Fx0AAAAAkhzE9ywDAAAAgANNWAYAAAAABWEZAAAAABSEZQAAAABQEJbto29+85sZPHhwjj766IwYMSI//vGPa93SEWHhwoX5+Mc/nj59+qSxsTHnn39+nnvuuVq3dcRauHBh6urqMnv27Fq3csT4l3/5l3z+859Pv379cswxx+QjH/lI1q9fX+u2jghvvvlm/vzP/zyDBw9O79698zu/8zv5q7/6q7z11lu1bu2w9Oijj+a8885LS0tL6urq8p3vfKfL+Uqlkvnz56elpSW9e/fOuHHj8swzz9SmWTgEmLseGOaqtWVu2v3MRQ8cc8/aEpbtg3vvvTezZ8/ONddck3/8x3/MH/7hH2bixIn5xS9+UevWDnsrV67M5ZdfnrVr12bFihV58803M378+Lz++uu1bu2Is27dutxyyy35gz/4g1q3csTYunVrPvnJT+aoo47KD37wg/zkJz/JN77xjRx33HG1bu2I8PWvfz1/93d/l8WLF+fZZ5/Nddddl7/5m7/JokWLat3aYen111/Phz/84SxevPhtz1933XW5/vrrs3jx4qxbty7Nzc05++yz89prrx3gTuHgZ+564Jir1o65afczFz2wzD1rq65SqVRq3cShZtSoUfnYxz6Wm266qXps6NChOf/887Nw4cIadnbkefnll9PY2JiVK1fmtNNOq3U7R4xt27blYx/7WL75zW/ma1/7Wj7ykY/kxhtvrHVbh725c+fm7//+760GqJFJkyalqakpt912W/XYZz7zmRxzzDG56667atjZ4a+uri73339/zj///CT/vqqspaUls2fPzle/+tUkSWdnZ5qamvL1r389l156aQ27hYOPuWvtmKseGOamB4a56IFl7llbVpbtpR07dmT9+vUZP358l+Pjx4/P6tWra9TVkatcLidJGhoaatzJkeXyyy/Pueeem7POOqvWrRxRHnjggYwcOTJ/9Ed/lMbGxnz0ox/NrbfeWuu2jhinnnpq/vf//t/52c9+liT5p3/6p6xatSr/4T/8hxp3duTZsGFD2tvbu/wurq+vz+mnn+53MezC3LW2zFUPDHPTA8Nc9MAy96ytnrVu4FDzy1/+Mjt37kxTU1OX401NTWlvb69RV0emSqWSOXPm5NRTT82wYcNq3c4R45577sk//MM/ZN26dbVu5Yjzz//8z7npppsyZ86cXH311Xn88cdzxRVXpL6+Pl/4whdq3d5h76tf/WrK5XJ+//d/Pz169MjOnTvz13/91/nc5z5X69aOOL/+fft2v4tffPHFWrQEBy1z19oxVz0wzE0PHHPRA8vcs7aEZfuorq6uy36lUtntGN1r5syZefLJJ7Nq1apat3LE2LhxY770pS/lwQcfzNFHH13rdo44b731VkaOHJkFCxYkST760Y/mmWeeyU033WSCcgDce++9Wbp0ae6+++586EMfSltbW2bPnp2WlpZceOGFtW7viOR3Mew5/70ceOaq3c/c9MAyFz2wzD1rS1i2l/r3758ePXrs9pe4LVu27PYXO7rPrFmz8sADD+TRRx/NCSecUOt2jhjr16/Pli1bMmLEiOqxnTt35tFHH83ixYvT2dmZHj161LDDw9uAAQPywQ9+sMuxoUOH5n/9r/9Vo46OLP/5P//nzJ07N5/97GeTJMOHD8+LL76YhQsXmrAcYM3NzUn+fYXZgAEDqsf9LobdmbvWhrnqgWFuemCZix5Y5p615Z5le6lXr14ZMWJEVqxY0eX4ihUrMnbs2Bp1deSoVCqZOXNm7rvvvjz88MMZPHhwrVs6opx55pl56qmn0tbWVt1GjhyZP/7jP05bW5vJSDf75Cc/udvj53/2s59l0KBBNeroyPJv//Zv+a3f6vprs0ePHh7fXQODBw9Oc3Nzl9/FO3bsyMqVK/0uhl2Yux5Y5qoHlrnpgWUuemCZe9aWlWX7YM6cOZk+fXpGjhyZMWPG5JZbbskvfvGLfPGLX6x1a4e9yy+/PHfffXe++93vpk+fPtW/kpZKpfTu3bvG3R3++vTps9s9N4499tj069fPvTgOgC9/+csZO3ZsFixYkKlTp+bxxx/PLbfckltuuaXWrR0RzjvvvPz1X/91TjzxxHzoQx/KP/7jP+b666/Pn/7pn9a6tcPStm3b8vOf/7y6v2HDhrS1taWhoSEnnnhiZs+enQULFmTIkCEZMmRIFixYkGOOOSbTpk2rYddwcDJ3PXDMVQ8sc9MDy1z0wDL3rLEK++S///f/Xhk0aFClV69elY997GOVlStX1rqlI0KSt91uv/32Wrd2xDr99NMrX/rSl2rdxhHje9/7XmXYsGGV+vr6yu///u9Xbrnlllq3dMTo6OiofOlLX6qceOKJlaOPPrryO7/zO5Vrrrmm0tnZWevWDks/+tGP3vbf+wsvvLBSqVQqb731VuUv/uIvKs3NzZX6+vrKaaedVnnqqadq2zQcxMxdDwxz1dozN+1e5qIHjrlnbdVVKpXKAU/oAAAAAOAg5J5lAAAAAFAQlgEAAABAQVgGAAAAAAVhGQAAAAAUhGUAAAAAUBCWAQAAAEBBWAYAAAAABWEZAAAAABSEZQAAAABQEJYBAAAAQEFYBgAAAAAFYRlwyBk3blxmzZqV2bNn5/jjj09TU1NuueWWvP766/mTP/mT9OnTJ7/7u7+bH/zgB0mSnTt35uKLL87gwYPTu3fvnHLKKfnbv/3bLmM+8sgj+cQnPpFjjz02xx13XD75yU/mxRdfTJL80z/9U84444z06dMnffv2zYgRI/LEE08c8OsGAODtjRs3LjNnzszMmTNz3HHHpV+/fvnzP//zVCqVWrcGHIKEZcAh6Y477kj//v3z+OOPZ9asWfmzP/uz/NEf/VHGjh2bf/iHf8g555yT6dOn59/+7d/y1ltv5YQTTsi3v/3t/OQnP8l//a//NVdffXW+/e1vJ0nefPPNnH/++Tn99NPz5JNPZs2aNbnkkktSV1eXJPnjP/7jnHDCCVm3bl3Wr1+fuXPn5qijjqrl5QMAsIs77rgjPXv2zGOPPZb/9t/+W2644Yb8j//xP2rdFnAIqquI2oFDzLhx47Jz5878+Mc/TvLvK8dKpVKmTJmSO++8M0nS3t6eAQMGZM2aNRk9evRuY1x++eXZvHlz/uf//J/51a9+lX79+uWRRx7J6aefvltt3759s2jRolx44YXde2EAAOyTcePGZcuWLXnmmWeqf/CcO3duHnjggfzkJz+pcXfAocbKMuCQ9Ad/8AfVr3v06JF+/fpl+PDh1WNNTU1Jki1btiRJ/u7v/i4jR47MBz7wgfz2b/92br311vziF79IkjQ0NOSiiy7KOeeck/POOy9/+7d/m02bNlXHmjNnTv7Tf/pPOeuss3Lttdfm//yf/3MgLhEAgL0wevToalCWJGPGjMnzzz+fnTt31rAr4FAkLAMOSbt+DLKurq7LsV9PlN566618+9vfzpe//OX86Z/+aR588MG0tbXlT/7kT7Jjx45q/e233541a9Zk7Nixuffee3PyySdn7dq1SZL58+fnmWeeybnnnpuHH344H/zgB3P//fcfgKsEAADgQBOWAYe9H//4xxk7dmwuu+yyfPSjH83v/d7vve3qsI9+9KOZN29eVq9enWHDhuXuu++unjv55JPz5S9/OQ8++GCmTJmS22+//UBeAgAA7+HXf+j8zf0hQ4akR48eNeoIOFQJy4DD3u/93u/liSeeyA9/+MP87Gc/y3/5L/8l69atq57fsGFD5s2blzVr1uTFF1/Mgw8+mJ/97GcZOnRotm/fnpkzZ+aRRx7Jiy++mL//+7/PunXrMnTo0BpeEQAAu9q4cWPmzJmT5557Lt/61reyaNGifOlLX6p1W8AhqGetGwDobl/84hfT1taWCy64IHV1dfnc5z6Xyy67LD/4wQ+SJMccc0x++tOf5o477sgrr7ySAQMGZObMmbn00kvz5ptv5pVXXskXvvCFbN68Of3798+UKVPyl3/5lzW+KgAAftMXvvCFbN++PZ/4xCfSo0ePzJo1K5dcckmt2wIOQZ6GCQAAwCFt3Lhx+chHPpIbb7yx1q0AhwEfwwQAAACAgrAMAAAAAAo+hgkAAAAABSvLAAAAAKAgLAMAAACAgrAMAAAAAArCMgAAAAAoCMsAAAAAoCAsAwAAAICCsAwAAAAACsIyAAAAACj8/5++VuxSK8xtAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1038,17 +1038,17 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:53.526764Z", - "iopub.status.busy": "2024-01-10T15:12:53.526596Z", - "iopub.status.idle": "2024-01-10T15:12:53.676250Z", - "shell.execute_reply": "2024-01-10T15:12:53.675678Z" + "iopub.execute_input": "2024-02-06T01:09:45.301989Z", + "iopub.status.busy": "2024-02-06T01:09:45.301820Z", + "iopub.status.idle": "2024-02-06T01:09:45.448355Z", + "shell.execute_reply": "2024-02-06T01:09:45.447836Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 24, @@ -1057,7 +1057,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTcElEQVR4nOzdd3iUZfbw8e8zPWUy6Q3S6L2FKgZREezYVsQVV8WCunZ317JF3d2frx0LKDbYVSk2LCuKWOiREgjSpISQ3nud/v4xJBJpk2Qmk3I+1zWXYeZ57vsMkszJXc6tOJ1OJ0IIIYQQnZjK1wEIIYQQQpyJJCxCCCGE6PQkYRFCCCFEpycJixBCCCE6PUlYhBBCCNHpScIihBBCiE5PEhYhhBBCdHqSsAghhBCi09P4OgBPcTgc5OfnYzQaURTF1+EIIYQQwg1Op5OamhpiY2NRqU49jtJtEpb8/Hzi4uJ8HYYQQggh2iAnJ4fevXuf8vVuk7AYjUbA9YaDgoJ8HI0QQggh3FFdXU1cXFzz5/ipdJuEpWkaKCgoSBIWIYQQoos503IOWXQrhBBCiE5PEhYhhBBCdHqSsAghhBCi05OERQghhBCdniQsQgghhOj0JGERQgghRKcnCYsQQgghOj1JWIQQQgjR6UnCIoQQQohOTxIWIYQQQnR63aY0vxCiZ3M4HNhsNhwOh69DEaJHUKlUaDSa056w7EmSsAghurSqqiqqq6upr6+XZEWIDqZSqfD39ycoKAiTyeTVviRhEUJ0SU6nk6KiIioqKvD39yc8PByDwYBKpTrjIWpCiPZxOp04HA4aGxupra0lPz+fhoYGoqKivPb9JwmLEKJLqqiooKKigujoaEJCQnwdjhA9UkBAAGFhYVRUVFBYWIhOpyM0NNQrfUnCIkQPtHRLdpvvvX5CvAcjaRun00llZSVGo1GSFSE6gZCQEOrq6qisrCQkJMQroyyyS0gI0eXYbDbMZrPX58yFEO4zmUyYzWZsNptX2peERQjR5djtdgA0GhkkFqKzaPp+bPr+9DRJWIQQXZYsrhWi8/D296MkLEIIIYTo9GQ8VYguqj0LZ4UQoqtp0wjLwoULSUpKwmAwkJyczIYNG0557aeffsoFF1xAREQEQUFBTJo0idWrV7e4ZsmSJSiKcsKjsbGxLeEJIYQQoptpdcKyYsUK7r//fh5//HF27txJSkoKF110EdnZJ/9tb/369VxwwQWsWrWKtLQ0zj33XC677DJ27tzZ4rqgoCAKCgpaPAwGQ9velRBCCCG6lVYnLC+++CJz587l1ltvZfDgwcyfP5+4uDhef/31k14/f/58/vznPzNu3Dj69+/P//3f/9G/f3++/PLLFtcpikJ0dHSLhxBCiK4rMTERRVG46aabfB1Kh+hp77ejtSphsVgspKWlMX369BbPT58+nc2bN7vVhsPhoKam5oRKeLW1tSQkJNC7d28uvfTSE0ZgfstsNlNdXd3iIYQQQojuqVUJS2lpKXa7naioqBbPR0VFUVhY6FYbL7zwAnV1dVx77bXNzw0aNIglS5bwxRdfsGzZMgwGA5MnT+bQoUOnbOfpp5/GZDI1P+Li4lrzVoQQQgjRhbRpl9Bv91o7nU639l8vW7aMJ554gs8//5zIyMjm5ydOnMjEiROb/zx58mTGjBnDq6++yiuvvHLSth599FEefPDB5j9XV1dL0iKEEJ3I0aNHfR2C6EZalbCEh4ejVqtPGE0pLi4+YdTlt1asWMHcuXP56KOPmDZt2mmvValUjBs37rQjLHq9Hr1e737wQgghhOiyWjUlpNPpSE5OZs2aNS2eX7NmDWedddYp71u2bBk33XQTS5cu5ZJLLjljP06nk/T0dGJiYloTnhBCCCG6qVbvEnrwwQd5++23effdd9m/fz8PPPAA2dnZzJs3D3BN1dx4443N1y9btowbb7yRF154gYkTJ1JYWEhhYSFVVVXN1zz55JOsXr2aI0eOkJ6ezty5c0lPT29uUwghhG/l5+fzyCOPMGbMGEwmEzqdjujoaIYPH87s2bNZsmTJCZsf3Nk1Y7Vaefnllxk3bhxGo5Hg4GDGjh3LSy+9hMVi4ejRo821uZYsWXLC/TfddBOKopCYmAhAZWUlf//73xk6dCgBAQEEBwczZcoUPvjgg9O+v7q6OlasWMGtt97KqFGjMJlMaLVaIiIiOOecc3j++eepra1t7V+b8KBWr2GZNWsWZWVlPPXUUxQUFDBs2DBWrVpFQkICAAUFBS1qsixatAibzcbdd9/N3Xff3fz8H/7wh+Z/fJWVldx+++0UFhZiMpkYPXo069evZ/z48e18e0L0TIrFQtySl/HPzqCuzyDqBgylrt8QzFGxIOfviFbasGEDl1566QkJSVFREUVFRezZs4fly5cTHh7OpZde6na7lZWVzJgxg61bt7Z4Pi0tjbS0NJYvX86iRYvcbu+XX37hoosuOmHtzIYNG9iwYQOpqam89tprJ733kksuYd26dSc8X1payvr161m/fj0LFy5k1apVDBo0yO2YhOe0adHtXXfdxV133XXS136bAa9du/aM7b300ku89NJLbQlFCPEbKnMjfeb/A+O+dAD8cjIJX/c1AFajibr+Q6jr70pg6hP749TpfBit6OzMZjPXXXcd1dXVGI1G7rzzTs4991wiIyOxWq1kZWWRmprKJ5980uq2r7vuuuZkZdKkSdx7773079+fkpIS3n//fT744AO3R9rr6+u5/PLLKSsr469//SvTpk0jMDCQnTt38uSTT5Kbm8uCBQu47LLLmDFjxgn322w2hg8fzuWXX87YsWOJjY3F6XSSlZXFypUr+fDDD8nMzOSKK64gPT1dCpv6gJwlJEQ3oqqvo++LfyPw0F7segP5185FV1ZMwKF9+B89iLamiuAdqQTvSAXAodFSO3A42bc+iDU0wsfRi85o06ZN5OfnA7B06dITRlAmTJjAtddey3PPPUd9fb3b7a5cubL5mJaZM2fyySefoFarm1+/8MILGT16NA8//LBb7ZWUlGC1WklNTWXo0KHNzycnJzN16lSGDx9OY2MjCxcuPGnCsnjxYvr373/C803vb+7cucyYMYMDBw7wwQcfMHfuXLffq/AMSViE6CbUNVX0e+4x/LMOY/MPJOOhf1Hfb3Dz64rVgl/WYQIP7SPg0D4CDu1FW11J0N4dJCx6lsN/+X+gUp+mhy7I6QSr+x+iXZrW3yvTfcfvCp0yZcopr9NoNAQFBbndbtNUj8FgYNGiRS2SlSYPPvggS5cuZceOHW61+dRTT7VIVpr069ePK664guXLl5/y7LuTJSvHmzZtGpdffjmfffYZn332mSQsPiAJixDdgKaijH7PPoJffjZWo4mMPz9NQ3zfFtc4tTrq+w2hvt8QuAhwOvHLOkz/p/+E8Zefifz6E4ovufbkHXRV1nr4v1hfR9ExHssHXYDHmz1+t+bixYu577772t2mzWZj/fr1gGsk5VRlMRRFYc6cOW4lLIqicP3115/y9eTkZJYvX05FRQWVlZUEBweftr2SkhIqKysxm83Nz0VEuEYhd+3adcZ4hOe16bRmIUTnoS0tYsD/PYRffjaWkHAOPfb8CcnKSSkKDYn9yf39nQDEfPIf/LIOezla0dWcffbZ9OnTB4D777+f8ePH8/TTT7N582YsFkub2szIyKChoQFwJRKnM3bsWLfaDA8PJyws7JSvH38cTE1NzUmv2bRpE7NmzSIsLIzIyEgGDBjA8OHDmx9vvfUW4FqIKzqejLAI0YXpC3Pp98xf0JWXYo6I5vBfnsES0bqDQ8tTpmNK30Jw2iYS3niGA0++hlPXTYoyav1dIw89gdbfO81qtXz55Zdcc8017N+/n23btrFt2zYA/Pz8OOecc5gzZw6zZs066bTOyVRUVDR/fXzV85NpGtU4E3//079/lerX38/tdvsJrz/xxBM8+eSTbvXVlGyJjiUjLEJ0UYbsI/T/90PoyktpjInj0GMvtDpZAUBRyL75PqymUPzys4n98B3PB+sriuKaJukJDy9uVx8yZAi7d+9m5cqV3HLLLfTt6xrBa2ho4JtvvuH3v/89EyZMoLi42GsxeNP333/fnKz06dOHhQsX8vPPP1NZWYnNZsPpdOJ0Ovnb3/7m40h7NklYhOiCGn7+mf7/709oqyupj+/Loceexxoa3ub27EYTWbc9BEDkms8x/rzNU6GKbkKtVnPFFVfwzjvvcPjwYfLz83nnnXeap3TS0tK444473GorJCSk+eszJTklJSVtD9pNTVM9wcHBpKamcueddzJ8+HBMJlOLUaPjR4ZEx5OERYguxlpcTPYtc9HU1VLbbzCHH3kWW1Bwu9utGT6W4gtmApDw9ouoa6rOcIfoyWJiYrjllltITU1lzJgxAPzvf/9za7qkb9++zXVMtm/fftprz/S6J+zduxeA884777RTVB0Rizg1SViE6GLK3nobR20t9Qn9yPjT09gDAj3Wdv61c2mIjUdbVU78u/Nd24KFOA2tVss555wDuHb/VFZWnvEejUbTvEV69erVFBUVnfQ6p9PJe++957FYT8VmswGcto5Meno6P/30k9djEacmCYsQXYi1sJDKFSsAyLvuNhwGP4+279TpyZr3FxxqDcE7NhO64VuPti+6ng0bNnD48Kl3j1ksluaS9oGBgW4vkm2aPmpsbOSOO+446ULYF1980e0aLO3RVINl48aNHDly5ITXS0pKuOGGG7wehzg9SViE6ELK3nwTp8WC/7hx1A4e6ZU+GhL6UXD1HwDo/f5CdEU9ZJeNOKnvv/+egQMHMnXqVJ577jlWr17Njh072LRpE4sXLyYlJaU5qbj11lvRaNzbfHrVVVcxffp0AD7//HNSUlL48MMP2bFjB6tXr2bOnDk8/PDDLc6UU7y0sLjpwN7a2lrOOeccXnvtNVJTU9m8eTPPP/88I0eOZN++fUyaNMkr/Qv3yLZmIXxo6ZbsM190jLasmCErPkIF7Jp2rVd3hRRfdDVBP2/D+MvPJC56loOPvwBublkV3Y/D4WDdunUnPRywyVVXXcXTTz/dqnZXrFjRfPhhamoqqampLV4fPXo0CxcubK7F4q3ze6655hpuvvlmFi9eTG5uLvfcc0+L19VqNS+99BIVFRUnxCg6joywCNFFRH+xDJXdRs2QUdQOGuHdzlRqsm7/Ezb/AAIy9hP95TLv9ic6rT//+c+sWrWKBx54gIkTJxIfH4/BYMBgMJCYmMisWbP46quv+OSTT1qdUAQHB7Nx40bmz59PcnIygYGBGI1GRo0a1Vyc7vhdOiaTydNvr9m7777Le++9R0pKCkajEb1eT0JCAnPmzGHz5s0eqfAr2kdxOrvHqrrq6mpMJhNVVVWtOs9CCF9yd4RFV1LIkL/cgmK3c/DxF6kbcOJ5Kd4QkvoDiW88g1Ol4uBfX6K+7yCunxDfIX2fTmNjI5mZmSQlJcmpud3c+++/z5w5cwA4fPhwcw0Y0fm09fvS3c9vGWERoguI/mIpit1O9fDkDktWAComnUfFhKkoDgfRXyztsH6FaLJsmWt0LyIiovmIANEzScIiRCenK8ojdOMaAAquvLHD+y+4yvXbbdCubWjLumYlU9E55eXlnbZuyzvvvMOqVasA18JYby26FV2DLLoVopOL+ewDFIeDqpHjqe87qMP7N0f3pmbwSIz7dxG27hu42L3D6IQ4kzVr1vDnP/+Z6667jqlTp5KQkIDD4SAjI4MVK1bw2WefARAVFcUjjzzi22CFz0nCIkQnps/PJiT1R8A3oytNSs+9uDlhcdoeQXFz66oQZ1JSUsKrr77Kq6++etLXY2Ji+OqrrwgPb/vRE6J7kCkhITqx6M8/QHE6qBwziYak/j6Loyp5MlajCV1lGbWn2doqRGtceumlvP7668ycOZMBAwYQEhKCRqMhPDyclJQUnn32WQ4cOMDo0aN9HaroBOTXJCE6KUPuUUK2uJKDwivm+DQWp0ZLecp0olZ9RMWKFRjPP9+n8YjuITw8nHnz5jFv3jxfhyK6ABlhEaKTiv7sfRSnk4qxZ9OQ4PutnKVTLwKgbsNGLLl5Po5GCNHTSMIiRCdkyD5CyLYNOBWFwit9O7rSxBLVi+qho8HppPLjj3wdjhCih5GERYhOKOaz9wGoHD+Fxt6Jvg3mOGXnXgJA5Sef4LRafRyNEKInkYRFiE7G7+ghgtM24VRUFFzRuU6IrRw9CXV4OPaSUmp+/NHX4QghehBJWIToZGJWukZXKiadiznW92XwW9BoCL7qKgAqV3zo42CEED2JJCxCdCJ+Rw9hSv8Jp0pF4czf+zqckwq+9negKNRt2oQlJ8fX4QgheghJWIToRMLWfg1AxfgpmKN7+Tiak9P17k3A5MkAVH4oi2+FEB1DEhYhOgnFammuu1I+ZYaPozm94FnXAlD56ac4LRYfRyOE6AkkYRGikwhK34KmvhZLaDg1g0f6OpzTMk6diiYiAntZGTU//ODrcIQQPYAkLEJ0EqGbvgOgfNL5oFL7OJrTU7RaTNdcDUDFihU+jkYI0RNIwiJEJ6CprsT08zYAKiZ3jbL3IddcA4pCfepPWLKyfB2OEKKbk4RFiE4g5Ke1KHY7dUkDaOyV4Otw3KLt1YuAKSkAVHwoW5yFEN4lCYsQnUDzdNDkaT6OpHVCZs0CoOrTlThk8a0QwoskYRHCxwy5R/E/eginWk3FxKm+DqdVAqdMQRMVhb2igpo1a3wdjvCSJ554AkVRUBTFJ/3fdNNNKIpCYmKiT/oXnYPG1wEI0dM1ja5UjRyP3WjycTRntnRLdos/R0+6gJjP3ufAW//lcPjw0957/YROVrlXCNFlyAiLEL7ksBOy2bUtuKtNBzUpO+dCnIoK4y8/oy+QyrdCCO+QhEUIHzLuS0dXWYYtwEj1yPG+DqdNrKERzbGHr13l42iEEN2VJCxC+FDopu8BqJg4FadW5+No2q506kUABG9dD06nj6MRQnRHkrAI4SP22jpM2zcCXXc6qEnN0DHY9QZ05aX4ZWf4OhwhRDckCYsQPlLz7beoLWYaY3pT32egr8NpF6dOR82wZABMO37ycTTC2yorK/nHP/7B0KFDCQwMJDQ0lKlTp/LBBx+c8V6LxcKbb77JJZdcQq9evdDr9URGRpKcnMwf//hHNmzYgLMNo3Tff/89RqMRRVEYMGAAWVLMsNuRXUJC+EjV558Dx0ZXfLRd1JOqRk8kOG0Tpp2pFF55g6/DEV6SmZnJBRdcQEbGryNpdXV1rFu3jnXr1vHZZ5+xbNkyNJoTP17S09O56qqryMzMbPF8SUkJJSUl7NixgwULFpCZmdmqLcwrV65k9uzZmM1mRo0axerVq4mMjGzzexSdkyQsQviANS+P+i1bACg/q2uU4j+T6pHjcSoK/lmH0ZaXYA2N8HVIwgtmzZpFZmYm8+bN45prrsFkMvHzzz/zzDPPcPDgQT7++GNiYmJ45ZVXWty3b98+UlJSqK2tBeDKK6/kuuuuo0+fPtjtdg4cOMCaNWtYuXJlq+JZvHgxt912G3a7nZSUFL788ktMps5fHkC0niQsQvhA1ZdfAlAzeCTWsO7xm6AtKJi6voMJPLyPoPQtlJ13qa9DEl6wbds2li5dyuzZs5ufGzt2LL/73e9ISUlh165dLFiwgNtuu43hw3+ty3PDDTdQW1uLSqXigw8+4LrrrmvR7oQJE7jxxhspKyvD39/frVief/55/vSnPwFw8cUX8/HHH+Pn5+eBdyk6I0lYhOhgTqeTqs+OTQedfYGPo/GsqjETCTy8D9POnzpFwuJ0OmmwNfg6jA7hp/HrkEq0l156aYtkpYnRaOTNN99kwoQJOBwO3njjDRYsWADA6tWr2blzJwD33HPPCcnK8cLCwtyK47HHHuPpp58GYPbs2fznP/9Bq9W29u2ILkQSFiE6WOPPP2M5ehTFz4/K5Mm+DsejqkdNpNeH72Lcn46qsQGHwbe/7TbYGpiwdIJPY+goW67fgr/WvZGJ9rj55ptP+dr48eMZOnQoe/fu5bvvvmt+/quvvmr++oEHHmhX/w6Hg7vuuotFixYBcNddd/Haa6/57NgA0XFkl5AQHaxpsa3xgmk4/Lz/AdORGmPjMUfGoLJaMe7Z4etwhBeMGzfutK+PH+8qInjo0CEsxw7EbBpdiY+PJyGh7aeR22w2Zs+e3ZysPP744yxYsECSlR5CRliE6EAOi4Wqr1zVYE0zZ/o4Gi9QFKpGTyJy9aeYdqZSNda3I0h+Gj+2XL/FpzF0FD9Nx4xmnWn3TVRUFOCajquoqCAqKorS0lIAYmJi2tV3Xl4eH374IeBas/Kvf/2rXe2JrkUSFiE6UO3atTiqqtBERREwcSJsz/N1SB5XNXoCkas/JWjXVnDYQaX2WSyKonTINElPcqbRjNPVUGnvSEhUVBT9+vVj06ZNrFq1ihdeeIGHHnqoXW2KrkOmhIToQFWffwGA6fLLUNS++yD3ptr+w7D5B6KtqSIg4xdfhyM8rKio6LSvFxcXA67kJCQkBIDw8HAA8vPz29W3wWDg66+/ZtKkSQA8/PDDzJ8/v11tiq5DEhYhOoitooLadeuAbjod1ESjoXrEWABMO6XqbXezbds2t17v378/Op3rfKwxY8YAkJ2d3e4KtEajkW+++YYJE1yLqR944AFee+21drUpugZJWIToINVfrQKbDcOwYej79fN1OF5VNdr1G3CQJCzdzn/+859TvrZ9+3b27NkDwLRpv56PddlllzV//dJLL7U7hqCgIFavXt28APiee+7h9ddfb3e7onOThEWIDlKzejUApst8X5/E22qGj8WpVuOXn42uqPut0+nJvvjii+aFr8erra3l9ttvB0ClUnHHHXc0vzZt2jSSk11nTb366qssX778lO2Xl5fT0HDm2jkmk4lvv/22ud27776bt956q1XvRXQtkrAI0QFsZWXUp6UBYLygexWLOxl7QCC1A11VTk07e8YunZ5i7NixXH/99dx99938+OOPpKWlsXjxYsaOHdu8ffnuu+9mxIgRLe577733CAwMxOFwMHv2bK6++mo++ugj0tLS2Lp1K0uXLuXmm28mISHhjOtkmgQHB7NmzRpGjx6N0+nkjjvu4N133/X4exadg+wSEqID1PzwAzgcGIYNQxsb6+twOkTV6IkY96VjSv+Jkguv8nU4wkM+/PBDzj//fBYuXMjChQtPeP3qq6/mxRdfPOH5wYMHs3btWq688kpycnL49NNP+fTTT9sdT0hICGvWrOH8889n165d3HbbbajVav7whz+0u23RucgIixAdoGbNGgCMx83rd3dVoyYCEHhgN+q6Gh9HIzwlKSmJtLQ0HnvsMQYPHoy/vz8mk4kpU6bw/vvv8/HHH5/0pGaA5ORkDhw4wCuvvMJ5551HZGQkWq2W6OhokpOTue+++0hNTW3VSc3gKuf/3XffMXz4cBwOB7fccgvvv/++B96t6EwU5+k2zXch1dXVmEwmqqqqCAoK8nU4ogdZuiX7tK+r6usY/sdrUdlt7Hv6Lcyx8R0Ume8Neux2/PKyODrvESomncv1Ezzz3hsbG8nMzCQpKQmDweCRNoUQ7dPW70t3P79lhEUILzPt2oLKbqMhNr5HJSvgmhYC2d4shGi/NiUsCxcubM6gkpOT2bBhwymv/fTTT7nggguIiIggKCiISZMmsfrYbonjffLJJwwZMgS9Xs+QIUNYuXJlW0ITotMxpW0GoKqbHXTojqbtzcbd28Bm83E0QoiurNUJy4oVK7j//vt5/PHH2blzJykpKVx00UVkZ598WHz9+vVccMEFrFq1irS0NM4991wuu+yy5tXkAKmpqcyaNYs5c+awa9cu5syZw7XXXsuWLbK7QHRtisXsKlEPVPr4XB1fqO8zEGtQMJr6OgIP7vF1OEKILqzVa1gmTJjAmDFjWhTpGTx4MFdccQVPP/20W20MHTqUWbNm8fe//x2AWbNmUV1dzddff918zYUXXkhISAjLli1zq01ZwyJ85XRrWEw7NtPn5Scxh0ex7/n/QA88VTb+nRcJW7+a4ulXcM4r7v2MOBNZwyJE59Op1rBYLBbS0tKYPn16i+enT5/O5s2b3WrD4XBQU1NDaGho83OpqakntDljxozTtmk2m6murm7xEKKzMW3fBBybDuqByQr8ulvItPOn0x6MJ4QQp9OqhKW0tBS73d58fHiTqKgoCgsL3WrjhRdeoK6ujmuvvbb5ucLCwla3+fTTT2MymZofcXFxrXgnQnQAm615sWll8lk+DubkFKcdld3s1T5qho3BodWiLynEcviwV/sSQnRfbSoc99sjwp1Op1vHhi9btownnniCzz//nMjIyHa1+eijj/Lggw82/7m6ulqSFtGpGH/Zhaa+FmtQMHX9h/gkBsVhxb+xmICG/JM+/BsLQVGxadSz5Ead75UYHHoDNUNGY9q1lZoffkTfv79X+hFCdG+tSljCw8NRq9UnjHwUFxefMELyWytWrGDu3Ll89NFHLQ7FAoiOjm51m3q9Hr1e35rwhehQzdNBY84ClbpD+1acdibs/juJef9DheP0Fzthcvqf+XHsGxSHjfNKPFWjJ2LatZXaH34g/I7bvdKHEKJ7a9WUkE6nIzk5mTXHqnY2WbNmDWeddeoh72XLlnHTTTexdOlSLrnkkhNenzRp0gltfvvtt6dtU4hOzeEgeEcq4JvdQcMOv0GfvC9Q4cCuaKn2T6AgbCKHe1/Nrv5/ZPOI/2PNhCV8NnU1OVHnoXZYOCftHkKq9nslnuqREwBo+PlnbKWlXulDCNG9tXpK6MEHH2TOnDmMHTuWSZMm8eabb5Kdnc28efMA11RNXl4e//3vfwFXsnLjjTfy8ssvM3HixOaRFD8/P0wmEwD33XcfU6ZM4ZlnnmHmzJl8/vnnfPfdd2zcuNFT71OIDhWQsR9tVTk2/wBqB4/s0L6jSzYz7PAiAFKH/5PMXpeDcurfTTaNfJZzt88jqnw7U7fP47uJ/6UmIMGjMVlDw6lLGkBA5kFq160j+OqrPdq+EKL7a3UdllmzZjF//nyeeuopRo0axfr161m1ahUJCa4fcAUFBS1qsixatAibzcbdd99NTExM8+O+++5rvuass85i+fLlLF68mBEjRrBkyRJWrFjBhAkTPPAWheh4TdNB1aMm4tRoO6xfv8Yiztr1CApODsVdQ2bvK06brAA41HrWj3mFcuMg/CzlnLvtDvwaiz0eW/Uo1/dzzQ8/erxtIUT3J2cJCdFOJ9RhcToZ8qeb0JcUcuSev1PVQVNCisPK+VtvJbJiB+XGQXw76X0cavfXeRnMpVzw0x8w1mdTGdiPNROXYNWaPBafX1YGg/5+F4qfHwO2/IRKp2tzW1KHRYjOp1PVYRFCnJlf9hH0JYU4dHqqhyd3WL8jD75KZMUOrOoANo5+oVXJCkCjPpwfxr1JvT6C4NrDTN3+R9T2Bo/F1xDfB3VYGM6GBhrS0z3WrhCiZ5CERQgPM6W51l5VDx+LU98xv/33KlrLkMzFAPw0/ClqA9p2yGKdfy9+HLcIi8ZIRGU6KTsfRHFYPROkohAwyXW2UP1PchiiEKJ1JGERwsOCj61fqeygww4D6vOYuPtxAA4k/J6cmOlnuOP0qoz9WTt2ITaVgdiSjUzc/TdwnmFrtJsCJrmq3tZtTvVIe0KInkMSFiE8SF+Yi19eFk61unmRqTepHFbOTn8YvbWaUtNwdg56yCPtloaMck0rKRqS8r9izP7nwAPL3ZpGWBp278ZeW9vu9oQQPYckLEJ4kCnNNbpSM2QU9oBAr/c3+pcXCKvag1kbxKZRz+FQeW5HUn7kFH4a/k8ABmW9T9+cj9vdpjY2Fm1CPNjt1G/d1u72hBA9hyQsQnjQr9NBZ3u9r7iCbxmY9QEAqSP+jzr/Xh7v42ivS0kf4CpBMCzjTY+sZ2kaZalLlWkhIYT7JGERwkO0ZcUEHDmAU1GoGjPJq30F1mUzcfffAdiXdDP5ked4ra9fEufQoAsloLGQhIJv2t1ewCRXBev6nyRhEUK4TxIWITzEdKwUf13/IdhMIV7rR3FYOXvnQ2jtdRSHjGHXgHu81he4CssdSLwBgMGZi9u9liVgwnhQFMyHDmMt9nyBOtG5JCYmoigKN910k69D8aknnngCRVHcOijYW2666SYURSExMdFnMbSHJCxCeEjwdtd2Zm9PB8UVfU9ozS+YtSY2jXoWpwfXrZzKofhrsar9CKk5REzppna1pQ4OxjDEdXq1bG8WQrhLEhYhPEBTXUnggT0AVCV799DOAVnLADiYMJsGw+lPSfcUq9ZERtw1AAw+srjd7QWc1bSORRIWIYR7JGERwgOCdv6E4nRQn9APS0S01/oJrv6FyIodOBQNh+N+57V+TuaXxDk4FA3R5VsJrdzTrrb8Jx6rx5KaSjc5HUScwtGjR3E6nSxZssTXoYguThIWITwg+Nh25kovnxvUNLqSEz2NBkOkV/v6rXq/GLJiLgKOrWVpB//kZBSdDlthIZajRz0QnRDt07S+o6evtenMJGERop1UDfUY9+0EoGqM96aDdJYqEvO/AuBg/Gyv9XM6+/rcBEBc4XcE1mWf/uLTUBkM+I0eDcj2ZiGEeyRhEaKdgvakobJaaYzqRWOvBK/10zf3UzQOM+XGQZSEjPZaP6dTZRxAXkQKKhwMOvrfdrXVfK6QJCxdQn5+Po888ghjxozBZDKh0+mIjo5m+PDhzJ49myVLllBdXX3Cfe7sErJarbz88suMGzcOo9FIcHAwY8eO5aWXXsJisXD06NHmHTbdZWqpsrKSf/zjHwwdOpTAwEBCQ0OZOnUqH3zwgVv3WywW3nzzTS655BJ69eqFXq8nMjKS5ORk/vjHP7Jhw4Y2Tbd+//33GI1GFEVhwIABZGVltboNb9H4OgAhujpT2mbg2GJbL21ZVJx2+mevAOBgwvVe68cd+5NuplfJBvrkfsbufndi1oe5fe/SLb+OyvgHJTEQqNj0E+tTM0GlPu29109o24GOov02bNjApZdeekJCUlRURFFREXv27GH58uWEh4dz6aWXtqrtyspKZsyYwdatW1s8n5aWRlpaGsuXL2fRokXtfg+dSWZmJhdccAEZGRnNz9XV1bFu3TrWrVvHZ599xrJly9BoTv4RnZ6ezlVXXUVmZmaL50tKSigpKWHHjh0sWLCAzMzMVm1hXrlyJbNnz8ZsNjNq1ChWr15NZGTHTj2fjiQsQrSD02olaNcWAK8Wi4stXk9gQx5mrYms2Iu81o87ikPHUmoaTnjVbgZmLeXnNtaBqU/qj80/AE19Lf5HD1PfZ6CHIxWeYDabue6666iursZoNHLnnXdy7rnnEhkZidVqJSsri9TUVD755JM2tX/dddc1JyuTJk3i3nvvpX///pSUlPD+++/zwQcfMG/ePE++JZ+bNWsWmZmZzJs3j2uuuQaTycTPP//MM888w8GDB/n444+JiYnhlVdeOeHeffv2kZKSQu2xs7iuvPJKrrvuOvr06YPdbufAgQOsWbOGlStXtiqmxYsXc9ttt2G320lJSeHLL7/EZDJ55P16iiQsQrRD/bZtaOrrsAYFU9d3kNf6GZC1FICM3ldhVxu81o9bFIX9fW4mZeeD9M9ezr4+c7Fp/FvfjkpN7aCRBO/YjHHvTklYOqlNmzaRn58PwNKlS08YQZkwYQLXXnstzz33HPX19a1qe+XKlaxevRqAmTNn8sknn6BW/zrSduGFFzJ69Ggefvjhdr6LzmXbtm0sXbqU2bN/XYs2duxYfve735GSksKuXbtYsGABt912G8OHD29x7w033EBtbS0qlYoPPviA6667rsXrEyZM4MYbb6SsrAx/f/e+L59//nn+9Kc/AXDxxRfz8ccf4+fn18536XmyhkWIdqj57nsAqkZPPOOURlsF1R4hpuwnHKg4FD/LK320Vm7UedT4x6O3VtM399M2t1MzZBRA86JlT3M6nTjq63vEw1vbwwsLC5u/njJlyimv02g0BAUFtartpqkeg8HAokWLWiQrTR588EHGjBnTqnY7u0svvbRFstLEaDTy5ptvAuBwOHjjjTdavL569Wp27nR9r9xzzz0nJCvHCwsLcyvpeOyxx5qTldmzZ/PZZ591ymQFZIRFiDZzOp3UfH8sYfHi7qCmrcx5ked45YDDtnAqavYn/YHxe//JoMz/cjB+Vpsq7tYMdS0eDji0F8VixqnTezbOhgYOjEn2aJud1cAdaShu/kbdGjExMc1fL168mPvuu88j7dpsNtavXw+4RlKiok5eBFFRFObMmcOOHTs80m9ncPPNN5/ytfHjxzN06FD27t3Ld9991+K1r776qvnrBx54oF0xOBwO7rrrruak8a677uK1117z6dEBZyIjLEK0UeOevdiKirDrDdQM8c6uHY21lqS8L4Bji207kcxelx87FLGAhILVbWrDHBOHJSQcldVKwKF9Ho5QeMLZZ59Nnz59ALj//vsZP348Tz/9NJs3b8ZisbS53YyMDBoaGgBITj59Ujl27Ng299Nk7dq1zTuNTvb4z3/+A8B//vOf01531AN1g8aNG3fa18ePHw/AoUOHWvwdN42uxMfHk5DQ9h2JNpuN2bNnNycrjz/+OAsWLOjUyQrICIsQbVbzg2t0pXrEOJw6nVf66JP3OVp7PVUBfSgKm+CVPtrKrjZwMOH3jDz0KoMzF3M09pLW715SFGqGjCJs03cY9+6kdqhnEz/Fz4+BO9I82mZnpXhpGF+r1fLll19yzTXXsH//frZt28a2bdsA8PPz45xzzmHOnDnMmjXrpFM6p1JRUdH89Zl2okRERLQt+E7qTO+3abTJ6XRSUVHR/OfS0lKg5ahXW+Tl5fHhhx8CrjUr//rXv9rVXkeRhEWINqr9zsvTQU4HA7KXA65zg3y5lflUDsXPYsiRtwmpOUhM6WYKIlpf6bdm6GhXwrJvJwUejk9RFK9Mk/Q0Q4YMYffu3Xz55Zd8+eWXrFu3rnmE5JtvvuGbb77hxRdfZNWqVZ1qG+zxxo0bx+7du0/5+l//+lc+//xzZs6cedoP8F692j8te6aRjDOtR2rvSEhUVBT9+vVj06ZNrFq1ihdeeIGHHnqoXW12BElYhGgDS1YW5kOHQKOheuTph3fbKqY0laC6o1jVAWT2uswrfbSXRWciI+5qBh19n8GZi9uWsBybTvM/egh1XQ32AKOnwxQeoFarueKKK7jiiisAKCgo4Ouvv2bhwoXNNVPuuOMOt7fThoSENH9dXFx82mtLSkraHHeTgIAAhg0bdsrXg4ODm/97uus8oaioiLi4uFO+3vT3oShKi7+n8PBwgOZdW21lMBj4+uuvmTFjBqmpqTz88MOo1Wruv//+drXrbbKGRYg2qPn+BwACxo/z2gds02LbI72vwKYJ8EofnvBL4o04FDXRZVsIrdrb6vttIWE0xMajOJ0E7t/lhQiFN8TExHDLLbeQmpravIvnf//7X/O6lDPp27cvBoNri/727dtPe+2ZXu9qmqbUzvR6//790R033dz095ydnd3uCrRGo5FvvvmGCRNcU80PPPAAr732Wrva9DZJWIRog6bdQYHnn++V9gPqc4gtce2gOJhw6q2LncHxhyIOyvxPm9po2i1k3Oud7c3Ce7RaLeeccw7gWsxZWVnp1n0ajaZ5m/Tq1aspKio66XVOp5P33nvPI7F2Fk0LfE9m+/bt7NnjOg192rRpLV677LJfR1pfeumldscRFBTE6tWrmxcB33PPPbz++uvtbtdbJGERopVsZWU0HNtiaTzvPK/0MSB7BQpO8sMnUxOQ6JU+POlAwu8B6F30I2pb64qHAdQ212NJ92BUwhM2bNjA4cOHT/m6xWJh3bp1AAQGBrZqgewdd9wBQGNjI3fccQd2u/2Ea1588cVutaUZ4Isvvmhe9Hq82tpabr/9dgBUKlXz30+TadOmNe+oevXVV1m+fPkp+ygvL3drtMtkMvHtt982t3v33Xfz1ltvuf1eOpIkLEK0Uu2PP4LTiWHoULTtXK1/MmpbPX1zXMXYOttW5lMpNw2lxq83GkcjsSUbWn1/zaCROBUVhsJctGWnX88gOtb333/PwIEDmTp1Ks899xyrV69mx44dbNq0icWLF5OSktKcUNx6662nPP/mZK666iqmT58OwOeff05KSgoffvghO3bsYPXq1cyZM4eHH364eZsvtH/BaWcwduxYrr/+eu6++25+/PFH0tLSWLx4MWPHjm3eunz33XczYsSIE+597733CAwMxOFwMHv2bK6++mo++ugj0tLS2Lp1K0uXLuXmm28mISHhlKNWvxUcHMyaNWsYPXo0TqeTO+64g3fffdej79kTZNGtEK3UVN3WOM0700GJ+V+hs9VQ49e7TYtYfUJRyI6ZztAj75JQuJqcmBmtut3hH0B9n4EEZOzHuC+d8pTpXgpUtIXD4Wg+mO9UrrrqKp5++ulWt71ixYrmww9TU1NJ/c3p3aNHj2bhwoXNtVia1r10ZR9++CHnn38+CxcuZOHChSe8fvXVV/Piiy+e9N7Bgwezdu1arrzySnJycvj000/59NO2V5tuEhISwpo1azj//PPZtWsXt912G2q1mj/84Q/tbttTZIRFiFZw1NVRt9l1OrNX1q84nQzIdi22PZRwHU7FO+X+vSE72pWkxBZvaNO0UHOZflnH0qn8+c9/ZtWqVTzwwANMnDiR+Ph4DAYDBoOBxMREZs2axVdffcUnn3zSpmQiODiYjRs3Mn/+fJKTkwkMDMRoNDJq1KjmAnXH13fpbAfytUVSUhJpaWk89thjDB48GH9/f0wmE1OmTOH999/n448/Pu1IVXJyMgcOHOCVV17hvPPOIzIyEq1WS3R0NMnJydx3332kpqa26qRmcJXz/+677xg+fDgOh4NbbrmF999/v53v1nMUp7cOoOhg1dXVmEwmqqqqWn2ehRDuqv72W/LuvQ9tfDx9V3+Doigs3ZLtsfYjyndwwZY/YFP7sfLcNVi1XeiHs9PJZesuxtiQy8ZRz5Edc2Grbg/cv4v+/+/PWE2h7Hl56Ql1Z66fEN/8dWNjI5mZmSQlJXWL37jF6b3//vvMmTMHgMOHD9O3b18fRyROpq3fl+5+fssIixCtUHtsd5Dx/PO9MpceX+gqcZ8dfUHXSlageVoIIL7w21bfXtdvMA6dHm1VOYa89m3ZFN3LsmWuUceIiIjmYwJEzyMJixBuclqt1Kx1zeF7Zf2K00Fcoeuws+zorrmGoz3TQk6tjtoBroJd3jq9WXQ+eXl5p93N8s4777Bq1SoAbrzxxm6x6Fa0jSQsQripPi0NR1UV6tBQ/EaN8nj7YVV78TcXY1X7Uxg20ePtd4SKoMHNu4V6Hasj0xpSj6XnWbNmDQkJCdx77718+umnpKWlsW3bNpYvX86VV17JrbfeCrjKyT/yyCM+jlb4kuwSEsJNTbuDAs87F6UVh7y5q3eRa3QlP3IKDrXe4+13CEUhO2YGQ4+8Q3zBt61ex9K08Dbwl91gs0ErtsiKrqukpIRXX32VV1999aSvx8TE8NVXXzWXphc9k4ywCOEGp9PZXN3W6KXdQfHHpoNyoryzXbqjNE1nxZa0flqoIb4vtsAg1I31+B896I3wRCdz6aWX8vrrrzNz5kwGDBhASEgIGo2G8PBwUlJSePbZZzlw4ACjR3v2JG/R9civL0K4oXHfPmwFBSj+/gRMmuTx9k21hzHWZ2NX6ciPSPF4+x2pImgwNf5xGOtz6FWyvnWjLCoVtYOGE7x9E8b9u6jvN8R7gYpOITw8nHnz5jFv3jxfhyI6ORlhEcINTbuDAidPRuWFbbRNi20Lws/q1AcdukVRmkdZ4gtav1uoZtBIADkIUQjRgiQsQrjB29Vt44pc7Xf16aAmx08LaVo5LVQ7+FjCcmgfitXi8diEEF2TJCxCnIElJwfzwYOgVhN47FRaTwqsyyGk5gAORU1e5FSPt+8LTdNCrrOFWrdbqLFXAtagYFQWM/5HDngpQiFEVyMJixBn0LTY1n/cONTBwR5vv/ex0ZXi0LFYdJ5v3yfaMy2kKM2jLEaZFhJCHCMJixBnUPudF3cHAXFFTbuDpnmlfV9pLiJXsr7V00I1g91bx9JNThYRolvw9vejJCxCnIatpIT6tDQAjOef5/H2/RqLiah0fSjnRnm+fV+qCBp0bFrI3OppoaYRloDD+1Es5hNeV6lcP7ocDkf7AxVCeITdbgd+/f70NElYhDiN6jVrwOnEMHIE2thYj7ffu+gHAEqCR9JgiPR4+z6lKM2jLPEFq1t1qzmqF5bgMFQ2KwGH95/wularRa1WU1dX55FQhRDtV19fj1qtRqvVeqV9SViEOI2ar78BIOjCi7zSftN0UG432R30W23eLXSGdSyKomA0GqmurpZpISE6AafTSXV1NUaj0WvnPUnCIsQp2EpKqN++HYCgGZ4/jFBnqSKy3NV+d9nO/FvHTwv1Kl7XqnvPtI7FZDJhtVrJz8+XpEUIH3I6neTn52O1WjGZvHfKvFS6FeIUqr/9FpxO/EaO9Mp0UK/itaicdiqMA6gNiPd4+53CsWmhoUfeJq7wW7Ji3R+pahph8T9yAJW58YTX/f396d27N7m5uTQ0NBAUFIS/vz9qtVpO9BXCy5xOJ3a7nfr6eqqrq7FarfTu3Rt/f3+v9SkJixDA0i3ZJzzX78PPMQKHhkxg80leb6/uujvot7KjpzP0yNvN00I2jXs/0CwR0VjCItGVFRNwcC9MGXDCNUajkYSEBKqqqqisrKSsrMzT4QshTkOtVmM0GjGZTF5NVkASFiFOSlNZRuDBPQBUjvP82T4aWz0xpZsByInuntNBTVzTQvEY67PpVbzO/VEWRaFm8EjCNq45Ni105Ukv8/f3x9/fn+joaKxWq+wcEqKDqFQqtFpth41oSsIixEkEb9uI4nRS228w1jDP796JKdmA2mGhxj+eqsD+Hm+/UzlWRK6t00JhG9dg/OXMBeQURUGn07UnUiFEJyaLboU4ieBtGwCoHDfFK+23ODuoB6y3yIppKiLXut1CTQtv/TMPYq+VLcxC9GSSsAjxG5qK46eDzvZ4+yr7rztmcqK79/qVJpXGgdT4x7d6t5A1LBJzRAyKw0FD2nYvRiiE6OwkYRHiN4K3N00HDfHKdFB02Ra09nrq9ZGUmYZ5vP1O6fizhQpbV0SuaZSlbstWj4clhOg6JGER4jdCtrrKyFeO9/xiWzhud1D0+aD0nG/BpmmhmJKNqO0nblM+ldohroSlfssWr8QlhOgaes5PSyHcoKkoI+DQXsA7u4MUh41eRT8C3X87829VGgdSZ4hC4zATWb7N7fuaRlga9+/HXlXlrfCEEJ2cJCxCHKfFdFBohMfbj6jYgcFaSaM2mJKQMR5vv1NTFAoiXGuCYks2un2bLTiMxpje4HA0Vx4WQvQ8krAIcZyQra4FoZUTvLU7yDUdlBd1Lk5Vz6sqkB/uGrVqTcICUDOoaR2LTAsJ0VNJwiLEMdryUgIPHpsOGuuF9StOB3GFTduZe9Z0UJPCsAk4FA3G+mwC69yvHtxUpr9eFt4K0WNJwiLEMcHbXb/11/YfijU03OPth1Xtwd9cjFUdQGHYBI+33xXYtIGUhIwGXDVZ3NWUsJgPHMBWUeGV2IQQnVubEpaFCxeSlJSEwWAgOTmZDRtO/YOnoKCA66+/noEDB6JSqbj//vtPuGbJkiUoinLCo7HR/Z0EQrRXcPPuIO9MB/Uu+gGA/MgUHGq9V/roCvIjmqaF3E9YbEHB6Pv3A6B+q/sLdoUQ3UerE5YVK1Zw//338/jjj7Nz505SUlK46KKLyM4++fCu2WwmIiKCxx9/nJEjR56y3aCgIAoKClo8DAZDa8MTok205SUEHtqLU1GoHOv5YnHw67qN3MipXmm/q8g/tvA2snx7q7Y3+493jUrJ9mYheqZWJywvvvgic+fO5dZbb2Xw4MHMnz+fuLg4Xn/99ZNen5iYyMsvv8yNN96IyWQ6ZbuKohAdHd3iIURHaZoOqus/xCvTQX6NxYTUHMCJQmHYJI+335VUBfZr0/Zm/wnjAajbKgmLED1RqxIWi8VCWloa06dPb/H89OnT2bx5c7sCqa2tJSEhgd69e3PppZeyc+fO015vNpuprq5u8RCirYK3uKaDKsaf45X2o4+dzFxuGoJZH+qVPrqMNm5v9h83DhQFy+EMbKWl3opOCNFJtSphKS0txW63ExUV1eL5qKgoCgsL2xzEoEGDWLJkCV988QXLli3DYDAwefJkDh06dMp7nn76aUwmU/MjLi6uzf2Lns1aWEjg4X3enQ4q3QRAQfhkr7Tf1bRle7MmJAT9wIEA1G+V3UJC9DRtWnSr/OZ0WafTecJzrTFx4kRuuOEGRo4cSUpKCh9++CEDBgzg1VdfPeU9jz76KFVVVc2PnJycNvcveraa1a6zber6D8UWEubx9hWnvXmEpWn9Rk9XGDYB+7Htzca6LLfvC2iaFpLtzUL0OK1KWMLDw1Gr1SeMphQXF58w6tKuoFQqxo0bd9oRFr1eT1BQUIuHEG1R/fU3AFR4aXdQaOUe9NZqLBojZabhXumjq3Ftb3ZV+o1pzbTQBFl4K0RP1aqERafTkZyczJo1a1o8v2bNGs466yyPBeV0OklPTycmJsZjbQpxMtaCAhrS013TQeO8Ox1UGD6xR1a3PZVf17G4v73Zf+xYUKmwHD2KtajYW6EJITqhVk8JPfjgg7z99tu8++677N+/nwceeIDs7GzmzZsHuKZqbrzxxhb3pKenk56eTm1tLSUlJaSnp7Nv377m15988klWr17NkSNHSE9PZ+7cuaSnpze3KYS3VB+bDqodMAxbsOengwBijiUs+eEyHXS8tmxvVgcFYRgyBIB62S0kRI/S6l/3Zs2aRVlZGU899RQFBQUMGzaMVatWkZCQALgKxf22Jsvo0aObv05LS2Pp0qUkJCRw9OhRACorK7n99tspLCzEZDIxevRo1q9fz/jx49vx1oQ4s5pvXAmLt4rF6SyVhFbuAaAg3HOjkN1B0/bmgMYiIsu3URDh3nEI/hPG07hnD3VbtmC67DIvRymE6CwUp9Pp9HUQnlBdXY3JZKKqqkrWswi3WHLzyJg2DRSF3fOXYgv2/Hbj+IJvODv9T1QG9mNVykqPt9/Vjd/zBP1yPuFAwvWkDXn0tNdePyEegNr168m5/Q60vXvT77s1p71HCNH5ufv5LWcJiR6r6tNPAfCfOMEryQr8uqBUdgedXFvK9PuNSQa1GmtuLta8PG+FJoToZGQFoOiRnHY7lccSlpDf/c5LnTil/soZFIZNPLa9OQdjXRY1AQmnvHbpll+nmgckDiAgYz/fL/ua8pTpp7ynSdPojBCi65IRFtEj1W3ejK2wELXJROC0aV7pI7jmIH7mUmxqv+YtvKIlmyagTduba4aMAsC4L90LUQkhOiNJWESPVPnRxwAEzbwclU7nlT6aPoCLQsfjUHunj+6gLduba4a6FvIb9+6E7rEMTwhxBpKwiB7HVlZGzQ8/ABB89TVe66dpOig/QqaDTqct25vr+g3GodOjrSrHkOd+pVwhRNclCYvocao+/wJsNgwjR2AYOMArfWhsdURUuA7wLJD6K6fVltObnVodtQOGATItJERPIQmL6FGcTieVH7umg4Kvvtpr/USVbUHltFHjH09tgBzMeVqK0qbdQi2mhYQQ3Z4kLKJHadi5E8uRIyj+/gRdfInX+oktkemg1vh1HUvrF94G/vIz2O3eCEsI0YlIwiJ6lObFthddiDowwDudOJ3N5fhlO7N7fru92R0N8X2xBRhRN9bjn3nAyxEKIXxNEhbRY9hra6n+xnUyc/A13ltsa6w7SmBDHnZFS3HoOK/10520aXuzSvXr9maZFhKi25OERfQY1V+twtnQgK5vX/xGjfJaP027g0pCx2DT+Hutn+6m3dubhRDdmiQsosdoXmx7zTUoiuK1fprL8cvuoFZpub25wa17aoa4EpaAw/tRmd3bEi2E6JokYRE9QuOBAzTu3g1aLaaZl3utH7W9kcjyNAAKZMFtq7i2N0ejcZiJKnNve7MlMgZzeBQqu42AA7u9HKEQwpckYRE9QuXHnwBgPO88NKHeOegQIKJ8BxpHI/X6SKoC+3mtn25JUZpHWWJK3VzHoijNoywyLSRE9yaHH4pu4fiD8X5LsVgY9ulKNMDO4VNYf5pr2yu29LjTmb047dRdFUScTf+cj4kt2Uiam/fUDB1N+PpvpICcEN2cjLCIbi84bROaulosYZHNizS9JaZEtjO3R1u2N9ce2ynkn52BprrSe8EJIXxKEhbR7YWtd21lLkuZASq11/rxb8jHVHcEh6KmMHyi1/rpzmyaAEpDXElldGmqe/cEBdMQlwRA4P50b4UmhPAxSVhEt6YrLsC4Lx2nolA2ZbpX+2oaXSkNHoFVG+TVvrqzgvCzAIgu3ez2Pb9ub073RkhCiE5AEhbRrYWtXw1AzbAxWMMivdpXrFS39YiC8EkARJdtRXFY3bqnZoir6Jxxnyy8FaK7koRFdF92O6EbvgWg7JyLvNqV4rASXfoT8GsBNNE2FUGDadQGo7XXEV7p3lbl2oHDcKrV6EsK0RUXeDlCIYQvyC4hN5xuB8qZXD8h3oORiNYI2r0NXWUZVqOJqtHeXVMSXrkLrb2ORm0I5UGDvdpXt6eoKAyfRGLB10SXbqYkdMwZb3EY/KjrO5jAg3sw7ttJWWRMBwQqhOhIMsIiuq2wda7poIrJ5+PUaL3aV9PpzAURZ4Ei31btVRjmmhaKcXPhLUiZfiG6O/nJKrolTWU5pnTXFE3ZlAu93p+czuxZhcfWsYRW7UFnqXLrnuYCcvvSweHwVmhCCB+RhEV0SxHffY7icFDbbwiNvRK82pfeXE5o9X7g1w9a0T71ftFUBfRBhYOosi1u3VPXZyB2gx+a2mr8cjK9HKEQoqNJwiK6HXVtNRFrvgCg+JLfeb2/6DLXSE6FcSCN+nCv99dTNG1vjilzc3uzRkPtoBEAGPfu8FZYQggfkYTlDCx1NVj3r/V1GKIVIr5dibqxnvr4PlSN9v6IR1O9kKYPWOEZTaNV0aWp4HS6dU/Nsaq3sr1ZiO5HEpbTsFvMrLv5ckY/9zTWje/7OhzhBnVdLZHffgZA4eXXe/88H6ezeWFogUwHeVRR6FjsiobAhnyM9e7t1KsZ6tpRFHBgD4rV4s3whBAdTBKW0zDbGqlXLGjtMPat97B//aqvQxJnEPHtZ6gb6mnonUhVsvcXwJpqM/A3F2NT6SkJOfP2W+E+u8a/+e/U3aq3jb0SsJpCUFvMBGT84s3whBAdTBKW0/D3NzHjvTVsHReNChi7/H+w4im3h6dFx1LV1xHx7Urg2OiKyvv/vJs+SItDx+JQ673eX0/TNC0U426ZfkX5dVpItjcL0a1IwnIGBp0/6rveYf15fQEYvWoT2rcflm2TnVDEms/R1NfSEBtP5biUDumz6YNUdgd5R9O6oKhWlel3bW8OlHUsQnQrkrC4QaXSEHjja3w/czQOYNjGPfi/PA9kjrzTUDXUE7n6EwCKOmh0RWU3E1meBsiCW2+pCBpEozYErb2e8Mqf3bqnqYBcwJEDqOrrvBmeEKIDScLiJkVREXLl06yZMxWbCgamZxH8zC3QUOvr0AQQ8f2XaOpqaYzpTcWEKR3TZ8VONI5G6vURVAX265A+exxFRWG461gFd6eFrGGRNEb1QnE4CPzFvSRHCNH5ScLSCoqiEDntUb67/UoatZB0qISIf92EUlXq69B6NEddHZFffwxA4WXXg0rdIf22mA7y9m6kHqzF9mY3NZfp35fujZCEED4gCUsbRE2ax7p7b6baD3rn1hD71FwobvsBiaJ9KpYvR1NbTWNULBUTp3ZYv9HN25llOsibCo6dKxTWmjL9zecKSQE5IboLSVjaKHLEdfz08P2UBilEljaS9M87UbL2+DqsHsdRX0/ZO+8Cx9auqDtmdMVgLiW0xrVttjDMuydB93QNftFUBvZFwUnUsarCZ1I7aARORcEvPxtNRZmXIxRCdARJWNohot9F7Hz0H+SGqwiutjHwXw+j2rHG12H1KBUrPsReXo45Iobyied2WL/Rpa4PzvKgwZj1YR3Wb0/16/Zm96aF7IFB1Cf2B2RaSIjuQhKWdgqPncTBx5/nlwQtfhYnw155Ht3qd30dVo/gaGig7J13ACi87DrQaDqs7+gyqW7bkZqm3aLLWlOm3zUtFLQnzWtxCSE6jiQsHhASOpTiR9/mp5FG1E4YunQFAf95Chx2X4fWrVV+9BH20lK0sbGUT57WcR07ncctuJX1Kx2hOCQZu6I9VqY/y617qkeMAyDo52047fK9KERX13G/knZzRr9oGu9dwjdL7+HC7/MZ8MMmsovvwfHfD1H5+/s6vC5h6Rb3Fy4rFgtDFy5CC2RM/12Hjq6Yag/hZy7FpjJQEjy6w/rtyewaf0pCxxBdtoWY0s3UBCSe8Z66/kOw+Qeiqa2m4eef8R8t/6+E6MpkhMWDDJpAwue8ySfXjcCihvg9GWy7+kIsRUW+Dq3bCVv3NdrKciyhEZSnXNChfTetoygOG4tDrevQvnuypt1Cbm9vVqupGZ4MQO3add4KSwjRQWSExcPUipakC59lZfhLXPTOaoIyS9hx+YXkPvQsloSBrWrr+gnxXoqya1OsFqK++hCAoktn4dRoO7T/pumggjCZDupIheFnwcH5RJVtReWw4lCd+f971cgJhGxZR+26dUQ+cL/3gxRCeI2MsHiBoigMGPcgqx++mbwwMFU10u9f9+O3Y72vQ+sWwn/8Cl1FKZaQcMqmzOjQvtX2RiKkHL9PVAQNpFEXitZeT1jlLrfuqR4xFqeiYP7lF6yFhV6OUAjhTZKweFG/ftex7ZHH2ZOgRm9xMOCVf2P86j057bkd9IV5xHy0GIDCy2fj1HbslExExQ40DjP1+kiqA/t0aN89nqKiMGwC4H6ZfrvRRF3fQQDUrpNfGIToyiRh8bKEyCnk/PkF1o/Uo3JCvw/fJ2rB46jMjb4Oreux24l/6znUFjM1g0dSNvXiDg+hRXVbKcff4ZpGtdytxwJQPXI8ALXrZB2LEF2ZJCwdIDpwMPa7F/HRjDBsKojdlkb8E7ehK8rzdWhdStSqjwg8vB+7nz9Ztz3cIScy/5ZsZ/atpgJyoVV70Vkq3bqneqRrVKYuNRWH2eyt0IQQXiYJSwcJ1scQN+tt3r5lCJUBEJJfTL+/34Fxp3ulxns6v6wMole+B0DuDXdhDYvs8BgMjSWE1BzEidJ8grDoWA2GKCoD+6HgJNrNMv0N8X3QREXhbGigfutWL0cohPAWSVg6kF7tz7izn2fp/RdzoBfoG630m/8PIj9dDA6Hr8PrtBSLhYQ3n0Vlt1GZPLlji8Qdp+kDsjxoMGZdiE9iEG04vVlRCJwyBZDtzUJ0ZZKwdDCVombSgPv46cF7WT3G9dff6/PlJLz4KOq6Gh9H1znFrPwvfrlHsQYFk3PTvT5bOyLTQZ1Di3Usbi5gDzx3KuBax+KURe9CdEmSsPjIiPBLaLj1GRZd5o9FA6G70+n393kYso/4OrROJeDAbiK//hiAnJvvwxYU7JtAnI6WC26FzxSHusr0BzQWYKw76tY9ARMnouh0WHNzsRyR7zEhuiJJWHwoIWAE/S5fwHO3xFBsAv/SUvo/dQ8hm77zdWidgqqhnoS3nkdxOilLmU7VGN8lCsE1h/CzlGFV+1EaPNJncQiwq/0oCR0DQGzpJrfuUfn74z/+2G4hmRYSokuShMXHQnWxnDfxNRbePYadfRQ0VhuJbz5HwutPY6+q8nV4PtVr2SL0JYWYw6PI/f08n8bSNB1UHDpOyvF3AvnhZwMQU7LR7XsCzzkHkO3NQnRVkrB0AgZ1IJcN+Bdrbp/JihQVdgVCf1pLxsyZ1P20xdfh+URQ+k+Er/sGp6KQfdvDOPwCfBpPdFM5fpkO6hQKIiYDEFm+HbXdvZpGgVNdCUt9Whr26mqvxSaE8A5JWDoJlaLmgpg7qb/mPv5xo46CELAXFpF9880UPfccDovF1yF2GE11JfHvzgegZMaV1A4a4dN41PYGIit2AL/uUBG+VRXYjzpDFBqHmcjy7W7do4uLQ9enD9jt1G1ybypJCNF5SMLSyYwKvpCJk57jqdsjWDNKAaeT8nfe5ei1szAfOuTr8LzP6STuP6+graqgITae/Ktv9nVERJbvQO2wUGeIpjogydfhCABFoSDCNS0U25ZpIVnHIkSXI6c1d0K9/AZx/YBXWBnw/9jRbzd3fuUg6JdfOHzl1eTPupWSaZefscprVz3pOXTDtwRv34RTrSbrjj/j1Pl+vUiL6SApx99p5IefTb+cT1q3jmXqVMoXL6Z2wwacDgeKD6olCyHaRr5bO6lATSjXx/8bxl3OQ7eq2dFXQWWz0vuD1+n7wl/RVJT5OkSPC1v7dfNUUMHMG2hI7O/bgI75tf6KTAd1JkVhE3AoGoLqswisy3HrHv8xo1EZjdjLy2ncvdvLEQohPEkSlk5MrWiZHn0nKf0f4vlrDbw1Q4VFoxC0J43Bj91O+JrPwW73dZjt5nQ6KX1jEfGL56M4HZRNmUHRZbN8HRYAfg2FBNcexoGKwjApx9+ZWLVGSo5tMY8pdW+URdFqCZjsWrAru4WE6FraNCW0cOFCnnvuOQoKChg6dCjz588nJSXlpNcWFBTw0EMPkZaWxqFDh7j33nuZP3/+Cdd98skn/O1vfyMjI4O+ffvy73//myuvvLIt4XU7w03nE66P51PNv9mbUMw9XzrpW1BL3PsLCV/3NTk33E3doOEt7lm6JbvN/bVnOqnV/Toc9Fq6iMg1nwFQeMksCn53c6eZeok99kFYFjwciy7Yt8GIExREnE1URRqxJZs4lDDbrXsCzzmHmm++oWbtWiLuvdfLEQohPKXVCcuKFSu4//77WbhwIZMnT2bRokVcdNFF7Nu3j/j4Ez/ozGYzERERPP7447z00ksnbTM1NZVZs2bxz3/+kyuvvJKVK1dy7bXXsnHjRiZMmND6d9UNxRj6c3Piy3yme4bHbkxnWrqKGzZo8MvJZMDTD1M+cSr5s27DGhru61DdptisxL/1PKE/rQUg9/o7KJlxlW+D+o3Ykg0A5EecPCEXvpUfkcKogy8TVb4Vld2MQ60/6XXHJ9KawD4MUxTM+/bz4Tc7sYWEnbaPrroeTIjuptVTQi+++CJz587l1ltvZfDgwcyfP5+4uDhef/31k16fmJjIyy+/zI033ojJZDrpNfPnz+eCCy7g0UcfZdCgQTz66KOcf/75Jx2J6cn8NSaui/snE8KvYc0YFXffZmfj2BCcikLoT2sZ/Mhcov63AsXa+bdAqxob6DP/H4T+tBanWs3RO/7S6ZIVld1CdKnrwENJWDqnSuMA6vURaOwNRFakuXWPLSiY+qQBAJh2yenNQnQVrUpYLBYLaWlpTJ8+vcXz06dPZ/PmzW0OIjU19YQ2Z8yYcdo2zWYz1dXVLR49gUpRc27kLVzT6+/YAo28ckENf785gNI+cajNjcR+9C6DHp9H0K5tvg71lNQ1VfR75i8E7U7DrtOTcf+TVJx1nq/DOkFExQ609noa9OFUBA3ydTjiZBSFgnDXmpSYEvdrq1SPdJXpD5KERYguo1UJS2lpKXa7naioqBbPR0VFUVhY2OYgCgsLW93m008/jclkan7ExcW1uf+uqL9xArckvUqMYQAHohq569p8Vl03HmtQMIaiPPq++Ff6vPR3/A/v93WoLWjLihnw7wcJOHIAW2AQhx95lpoR43wd1kk1TweFnw2KrE/vrPLbUI+lapRrqtm4d0eXGJEUQrRxl5DymwWRTqfzhOe83eajjz5KVVVV8yMnx71tjd2JSRvJnIRnGRcyExSFJUk7+NsfY8iZfjFOtRpT+hYG/vN+Bjx1H8E/rQWbzafxGnKPMuCfD2AoyMUSGsHBx1+gvm/nHbmQ9StdQ2H4RByoMNUdwb8h3617GhL6YQ0ORW1uJPCAbG8WoitoVcISHh6OWq0+YeSjuLj4hBGS1oiOjm51m3q9nqCgoBaPnkitaJkWdTtX9XoMvSqAI85D/HX8T3z72D2UnX0BDo2WgIxfSHr9aYY+/Aei/rcCdW3HTp/5Z/xC4sL/Y9Df7kRXUUpDbDwH//YS5tjOu5gxoD4XU10mDkUt9Vc6OavWRGmIa3uz26MsikLViGPTQukyLSREV9CqhEWn05GcnMyaNWtaPL9mzRrOOqvth8JNmjTphDa//fbbdrXZ0ww0TubmxJeJNvSjwV7NO7bX+O/McH5+YTEFV8zBGhSMrqKU2I/eZdgDNxC35GUMeVneC8huJ3jbBvr/8wEGPnUfIVvWoTgcVI0cz6HHX8AaGuG9vj2g6YOvJHgUVq3Rx9GIMylow+nNTetYTLu2gNPplbiEEJ7T6m3NDz74IHPmzGHs2LFMmjSJN998k+zsbObNmwe4pmry8vL473//23xPeno6ALW1tZSUlJCeno5Op2PIkCEA3HfffUyZMoVnnnmGmTNn8vnnn/Pdd9+xcaP7P3wEhOhimBP/PN8Xv82Oyv+RWv4RWYbdXH7Jw4Reei0hW9YRsXol/tkZhP+4ivAfV1E9dAzVo8ZT13cwDQl9cWq07YpB1VBH2LrVRKz5DH1pEQAOtYaKSedSMuNKGuL7euKtep1MB3Ut+RGTGXnoVaLLtqByWHGozvzvuGboaBxqDfriAvSFuZhjetY6OCG6mlYnLLNmzaKsrIynnnqKgoIChg0bxqpVq0hISABcheKys1sWDxs9enTz12lpaSxdupSEhASOHj0KwFlnncXy5cv561//yt/+9jf69u3LihUrpAZLG2hUWmZE30m8/zC+LnyV/MZfePfoPcyIuothZ19A+eRpBBzYQ+S3KzHt2EzQ3h0E7XWdROzQ6qhP6k9RygT8Ro3Cf9QoNBGnHwlxWCw4qqqwlZVR9dnnDFv+IerGegBsgUGUnncpJedfii349LUuOhO1vZGoMtc0QX6kJCxdQUXQYBp0ofhZygmv2Elx2Pgz3uPw86d20HCC9u4kaNdWSiRhEaJTU5zO7jEWWl1djclkoqqqyuPrWdpTNdaXqqzFfJH/PLkNewEYGjSV6VF3YVAHAKArLiBky1oCDu0j4PB+NHU1J7Rhjoimvs8gnGo16vpa1HW1qOtqUNfXoamvRWUxn3BPY0wcxTOuovys83DqDd59k14QU7KRc7ffSZ0his+nruk0VXfF6U3a9RhJ+V+yL+lm0gc96NY9Ed+upPcHb1AzaASHH33upNdI4TghvMvdz285rbkbM2kj+X3802wu+5CNpUvZW72W3Ib9XB77J3r7DcYSGUPRZcfKmTud6AtzCTi8/9hjH4a8LPQlhehLTr9l3ako2P0CqO8zkJLpV1I9PPmMp0l3Zi2mgyRZ6TLyI84mKf9LYko3ko57CUvlmLPo/cEbBB7YjaayrEuNBArR00jC0s2pFDVnh88mMWAUX+Q/R5W1iPez/szZ4ddzVti1qBS160JFwRwThzkmjvIUVxE/VX0dAUd+wf/oYZwqFXb/QOwBgdiO/dceYHQ95+ffpROU32pacCvrV7qWgvCzcKIQUnMIv4ZCGvyiz3iPNTyK2n6DCTy8n5Ct6ymZLueXCdFZScLSQ/T2G8wtia/ybdFC9lavZUPp+2TW7eTy2IcxaSNPeo/DP4CaYcnUDEvu4Gh9x1iXhbE+G7uioUhOZ+5SLLpgykzDCa/6mdjSTWTEXe3WfRUTz3UlLD+tk4RFiE6s+/xaLM7IoA7g8tg/cVnMQ+hUfuQ27OWdzD+yp+pHuslSpnZrmg4qCU3GpvH3cTSitZqq3ramTH/luBScioqAjP3ozjD9KYTwHUlYeqBhpvO4JfFVYg2DMDvq+LLgeVbmP029rcrXofmcbGfu2gqOJSzRZakoDqtb99iCQ6kdPAKAkC3rvBabEKJ9JGHpoUJ0McxJeJaU8BtQoeZAzSbeyryLgzWpvg7NZ9S2eiLLXIdGSsLSNZWbhtCoDUZnqyW88me376uYMBWAkJ9+9FJkQoj2koSlB2takPuHxJeI0CdQb6/kk7x/8WX+izTaa30dXoeLLtuK2mml1q8X1QFJvg5HtIFTUVMY7qqQ3ZrDECvHTsah1uCXk+ndCtBCiDaThEUQbejLTQkvMzH0GhRU7Kn+nrcz7yazbqevQ+tQMaXH7Q6S7cxd1q/rWNxPWOyBQdQMdy0uD5ZpISE6JUlYBOCqkHtu5M3cEP8MIdpYamylLM/5K6sLF2JxNPo6PO9zOmX9SjdRcGyEJbTmFwyNJW7f9+u00Fo5W0iITkgSFtFCb/8h3JL0KsnBlwKwo/Ir3sn8Izn1e30cmXcF1R4hsCEfm0pPUdg4X4cj2sGsD6PMNBSAmFL3dwtVjZmEQ6fHUJSHX9Zhb4UnhGgjSVjECXQqA9Oj7+S6uH8RpImg0lrA+9l/ZnXh65jt9b4OzyuaRleKQ8diV/v5OBrRXgXhk4HWrWNxGPyoOnaCc8hPa70RlhCiHSRhEaeUFDCauUkLGGlyVb7dUfk/3s68i8O123wcmefJdFD30vT/0bW92eb2fRUTpwLHtjc7HN4ITQjRRpKwiNMyqAO4OOY+Zsf9m2BtNNW2Ej7KfYIv8p/vNnVbNNZaIitcJ1ZLwtI9lJmGYdYGobdWE1a1x+37qkeMx27wR1deQsDhfV6MUAjRWpKwCLckBoxibtICxodciYKKvdU/8lbmneyrXtflq+RGl/2EymmjOiCR2gA5mbc7cKo0FIZNAiC2ZL379+l0VCa7Fu3KtJAQnYskLMJtOpWB86Nu5caE54/Vbani8/xn+TjvKaqtpb4Or81+PezwbB9HIjwpL/IcAHoXta4YXNO0UPC2DWC3ezosIUQbScIiWi3WbyA3J75MSvjvUaHhcO1W3s68kx0Vq3A6u9i8v2xn7rbyIqfgUDQE1x4msC7b7ftqhozGFhiEtroS4/507wUohGgVSVhEm6gVLWeHX88tSa8QaxiI2VHP6qIF/DfrYYoaM3wdntuCaw7iby7GpvajOGSsr8MRHmTVmigKdf0/jSv63v0bNRoqxrmSVzlbSIjOQxIW0S4R+gTmJDzHtMg70Kn8yG88wOKj9/Nd0ZtdYgt00+hKYdgEHGqdj6MRnpYbdT4AvVuTsACVx6aFTNs34rBYPB2WEKINJGER7aZS1IwLvZzbkxYx2JiCEwfbKj7nrcx5/FK9sVMvypXpoO4tN+pcACIqd7Wq6m3tgGFYgsPQ1NdRt9H9Wi5CCO+RhEV4jFEbxhW9HmFW76cI1sZQYytjZf7TfJj7BBWWAl+HdwKttYrwinRAFtx2Vw2GKEpNIwDoXdyKxbcqFZUTXIt2q//3lTdCE0K0kiQswuP6BCZza9ICJofNRq1oOFK3nbcz72JT6XJsDquvw2vWu2gtKhxUGPtT7xfr63CEl+REnQe0ch0LUHEsYan58Ucc9Z1/elOI7k4SFuEVWpWeKRE3MDdpIYn+I7E5LawvfY93jv6RjNrtvg4PgLii7wDIibrAx5EIb8qNdq1jiSrbitZa7fZ99X0GYo6IwdnQQM2PrdsaLYTwPElYhFeF6XpxXdy/uTzmTwSogym35PJh7j/4KPdJyi35PotLY60lpnQzADnRkrB0ZzUBiVQG9kXltNGr2P0icigKFROPTQut+tpL0Qkh3CUJi/A6RVEYaprK7X3eZHzIlahQN9duWVu8BIujocNj6lWyHrXDQlVAIlWBfTu8f9Gxco9NC/Uu+qFV91VMdC3arVu/Hnu1+6MzQgjPk4RFdBiDOoDzo25lbtJrJAWMwe60kVr+EYuO3MGeqh87dDdRXOGx6aDoC0BROqxf4Rs5x7Y3x5ZuRG1vdPu+xt6J6Pv3w2m1UrPmO2+FJ4RwgyQsosOF6+OZ1fsprun1N4K10dTayviy4Hney/4ThY2Hvd6/2lbfvJ1Z1q/0DBVBQ6gzxKCxNxBdmtqqe4MuuQSA6lWrvBGaEMJNkrAIn1AUhf7GidyW9DrnhN+IVtGT17CfxUfvZ1XBK9TZKrzWd2zpJjSORmr9elERNMhr/YhORFGOmxZq3W6hoIsvBqAuNRVLbp7HQxNCuEcSFuFTGpWOs8JncXufNxkSNBVwsqtqNW8cuY1NpcuxOtwfvndXXOEaALKjp8t0UA/SNC3Uq3gdisPm9n26+HgCzpoEDgcVy5Z6KzwhxBlIwiI6hSBtODNj/8QN8c8SbeiPxdHA+tL3WHTkDnZXfe+xQxVVdjO9il3nw+RET/NIm6JrKAkZTaM2GIO1koiKHa26N+SGOQBUfvwJjoaOXyQuhJCERXQycf5DuSnhRS6P+RNBmghqbKX8r+BFFh+9j6N1u9rdfkxpKlp7PXWGaMpMwz0QsegqnCoNeZFTgdYXkQs8Zwra3r1xVFVR9eWXXohOCHEmGl8HIMRvKYqKoaapDDSexfaKL9hc9iFF5iMsy3mMfgHjOTfyZsL18W1qO67INR2UEzVNpoN6oNyo8+mb9xm9i34gbfAjbv0bWLolG4CIlIvpvexNMt9cwtfxE9y69/oJbft3KoQ4kYywiE5Lo9IxMewa5vV5i+SQy1z1W+q28nbm3XxTuIBaW3mr2lM5rPQuclUslemgnqkgfBJWtR8BjYWEVu9r1b3lKTOw6/T45WYS+MvPXopQCHEqkrCITs9fY2J61Dxu7fM6AwIn4cTBzspVvJFxK+tK/kOjvdatdqLKtqCz1dCgD6c0ZJR3gxadkkOtp+DYQZet3S1kDwikfLIr0Y347nOPxyaEOD1JWESXEabrxdW9/8oN8c8QaxiE1Wlmc9mHvJ4xl9Syj864o6i5WFzU+TgVdUeELDqhpt1CcYWtS1gASqddDoApLRVtaZFH4xJCnJ4kLKLLifMfxo0Jz3N1r78Srkug0VHL2pIlvHHkNnZUfIXdeeKWVcVha/6NWs4O6tnyI6ZgVzSY6o5grM1s1b2NvROpGTIKxekg4ntZfCtER5KERXRJiqIwwDiJuUmvcmnMQ5i0UdTaylldtJA3m0v9/7oVOrIiDYO1kkZtMMUhyT6MXPiaVWukKGwC0PrdQgAlF8wEIGzdNyhmz9cJEkKcnCQsoktTKWqGm87jjj6LmB51JwHqYCqthXxZ8DzvHL2HgzWpOJ3O5mJxuVHn4VTJ5rierq2HIQJUjZqAOTwKTV0Noak/ejo0IcQpSMIiugW1oiU55FLm9X2Hc8JvRK8KoMR8lE/y/sXio/eSWbkWJzIdJFxyo87DiUJ41W78Glu5FkWlpvT8y4Bji2878NBOIXoySVhEt6JTGTgrfBZ39n2HSWHXolUMFJmP8HCYnmt7xbJBr3ToqdCic2rUh1MaPBJo2yhL2TkXurY452QSeGC3p8MTQpyEJCyiW/JTG5ka8Qfu6vsuVzjj8HM4+EWn4aP8/2NJ1v0cqt0qiUsP17xbqA3rWOwBRirOct0fvka2OAvRESRhEd2av9rII4WHWZ2TzwX68WgVA4WNh/k490mWZD3AYUlceqzcYwlLZPl2dJaqVt/ftPg2OG0z2rJij8YmhDiRJCyiWwur2kNAYxGBioHx8Y9wV993mRh6NVpFT2HjIT7KfZIlWfdzoGaTxw5YFF1DbUAcFcb+qJx2epWsa/X9x29xDv/+f16IUAhxPElYRLfWVCwuL/IcHGo9/hoT50bewl19Fx+XuBzm07z/463Mu9hd9cNJ67iI7im3uYjcmjbdXzLNNcoSvnYVisXssbiEECeShEV0X8dtZ86Janl20PGJy1lh16FXBVBmyeF/BS+w6Mjt7Kj4CpvD4ouoRQfKjp4OQEzJRvSWilbfXzX61y3OIT+t9XB0QojjScIiuq2Q6l8wNuRiUxnIP3Z+zG/5a0ycEzGHu/ouZmrEH/BXm6iyFrG6aCELM27mp7JPMNvrOzhy0VGqjP0pCxqC2mkjIX9V6xs4fovzms9ki7MQXiQJi+i24opcoyv5EWdj1/if9lqDOoBJYddyV993uSBqHkGaCOrslfxY8i4LM25ifcl71NkqOyBq0dEye7umdfrktW23T9mUGTh0evyzjxBwcI8nQxNCHEcSFtE9HT8d1IpicVqVgbEhlzGv71tcEn0/obpeNDrq2FS2nAUZN/F14auUmXO9FbXwgaMxF2NXNIRW7ye4+kCr77cHBlE+yVU5N0K2OAvhNZKwiG7JVJuBqe4odkVLXsSUVt+vVrSMCL6A25Je58rYR4kxDMDutJJe+Q1vZt7Bx7lPkVO/R7ZEdwMWXTB5kecCbR9l+XWL8yZ0xQUei00I8StJWES3lJT3BQAFEZOxaQPb3I5KUTMo6Gz+kPAiN8Q/Q/9A16F5h2q38H72X/hP1oPsr96Aw2n3SNzCN470vgKAxPyvUBzWVt/fGJdE9fBkFIeD2I8Xezg6IQRIwiK6IcVhJenYb8oZva/0TJuKQpz/MK7p/XduT3qDUcEXola0FDQe5LP8/8eiI7exrfwLWaDbRRWEn0WDLgyDpZzYkg1taiP/2rk4FYWQLevwP7zfwxEKISRhEd1Or+J1+FnKadCHkx+R4vH2w/RxXBR9D3f3XcLksNn4qYOotBbxXfEiFmT8ge+K3qTCItMCXYlTpSGzl2u3T1unhRri+1J+tmu9VK/lb8mOISE8TBIW0e30y/0EgCO9ZuJUab3WT4AmmCkRN3B338XMiLqLUF0vzI56tlV8zhtHbuOjnCfJrNsp61y6iMxelwPQq3g9enN5m9oouOoPOHR6Ag/txZS2yZPhCdHjScIiuhX/hkJiSlwfFBm9r+qQPrUqA2NCLuH2pDeY1fsp+gSMBZwcrtvK8py/8nbmXeyoWIXF0dgh8Yi2qTL2p8w0FJXTRmJBG2qyANbQcIouuhqA2A/fwWmR4oNCeIokLKJb6ZO7EgUnhaHjqQ2I79C+FUVFn8BkZsU9ye193iQ55DJ0Kj9KLdmsLlrAgsM38kPxOzJd1Ikd6XUFAH1yP2tzG8UX/Q6rKQRDUT4Vy1d4JjAhhCQsovtQnHb65q4EICOuY0ZXTiVM14vpUfP4Y9//Mi3yDkK0sTQ66thS/ilvHLmV5Tl/42BNquwu6mSyYi7CrmgJqTlAcPUvbWrD4edPwZVzAChdsAB7dbUnQxSix5KERXQb0aU/EdBYgFkbdMLZQb6iV/szLvRy7uiziN/1foI+AcmAQmbdDj7J+xcLM25hY+kyaqxlvg5VABadidyoYzVZctteBK5syoU0xMZjr6qidNEiT4UnRI8mCYvoNvoeW2x7NPYyHGq9j6NpSVFU9Ascx6y4p5jX5y0mhl6DnzqIGlspG0rfZ2HGzXya938crUuXRbo+ltnLVQQuMf8rVG2oyQKAWk3+rFsBqHjvfSy5eZ4KT4geS+PrAITwBL25jF5FPwKeq73iLSG6GM6NvJmU8Bs4ULOJHZWryG3Yy4GaTRyo2USorhejTDMYZjqfAE2wr8PtcQrCz6JBH46fuZTYkvXkRp3fpnaqR46nZsgojPvS2fa3f5M175FW3X/9hI5dgyVEZ9emEZaFCxeSlJSEwWAgOTmZDRtOX2hp3bp1JCcnYzAY6NOnD2+88UaL15csWYKiKCc8GhtlV4VwT1Lel6idNkpNw6kMGujrcNyiUWkZaprKnIRnmZu4gDHBl6JT+VFuyeOHknd57fCNfJr7bzJqt8talw7kVGnIjD1Wk6Udi29RFPKuuw2nohCa+iP+R1p/TpEQ4letTlhWrFjB/fffz+OPP87OnTtJSUnhoosuIjs7+6TXZ2ZmcvHFF5OSksLOnTt57LHHuPfee/nkk09aXBcUFERBQUGLh8FgaNu7Ej2L09k8HeTrxbZtFWlIZEb0ndzT7z0uir6HWMNAHNg5ULuZD3P/wcKMW1hf8h6VlkJfh9ojHDk2LRRbsgGDubTN7TQk9KP8LNcITawUkxOiXVqdsLz44ovMnTuXW2+9lcGDBzN//nzi4uJ4/fXXT3r9G2+8QXx8PPPnz2fw4MHceuut3HLLLTz//PMtrlMUhejo6BYPIdwRUbETU91RrGo/smIu8nU47aJT+TEq+EL+kPgityYtYFzITAwqIzW2UjaVLef1I3NZlv04+6rXYXNIjQ9vqTb2pdQ0HJXTTkJ+22qyNCm4+g84tDqMB3Zj2pnqoQiF6HlalbBYLBbS0tKYPn16i+enT5/O5s2bT3pPamrqCdfPmDGD7du3Y7X+uqCttraWhIQEevfuzaWXXsrOnTtPG4vZbKa6urrFQ/RMTaMrWTEXYdME+Dgaz4nQJzIt6nbu6fceV8Q+QqL/aEDhaH06n+c/y6uHb+CbwgXkNuyXhbpe0DTK0ifvs3aNjFjDIime4VpXFbviHbDZPBGeED1OqxKW0tJS7HY7UVFRLZ6PioqisPDkQ9WFhYUnvd5ms1Fa6hpqHTRoEEuWLOGLL75g2bJlGAwGJk+ezKFDh04Zy9NPP43JZGp+xMXFteatiG5Ca60mvuBboOMq23Y0jUrL4KAUZsf/izv7vMPksNkEaSJodNSxs3IV72U9zKIjt7OpdDlV1mJfh9ttZMVeeKwmyyFCqtt3mGHRpbOwGk0YCnMJX9u+ERsheqo2LbpVFKXFn51O5wnPnen645+fOHEiN9xwAyNHjiQlJYUPP/yQAQMG8Oqrr56yzUcffZSqqqrmR05OTlveiujiEvK/RuNopDKwH2XBI3wdjtcF66KYEnEDd/Z9h9lx/2ZY0HloFT0V1nzWl77Hwoyb+SD7EX6uXCMnR7eTVWsiN+o8oO0HIjZx+AVQeKyYXPRn76Oqr2t3fEL0NK1KWMLDw1Gr1SeMphQXF58witIkOjr6pNdrNBrCwsJOHpRKxbhx4047wqLX6wkKCmrxED1Pv+bFtlfDaZLm7kalqEkMGMVlsQ9xb/8PuCTmARL8RwIK2fW7+apwPq8evoEv8p8jo3Y7dqdMQ7TFkd5XAMdqstjbt2ao9JyLaIzpjbamirj3FsgCXCFaqVUJi06nIzk5mTVr1rR4fs2aNZx11lknvWfSpEknXP/tt98yduxYtNqTn6TrdDpJT08nJiamNeGJHiakah+h1fuxK1oyYy/1dTg+o1P5McI0jevj/4+7+r7LOeE3EqrrhdVpZm/1Wj7M/QevHp7D6sKF5NTvxel0+DrkLqMwfBL1+kj01ipiS9a3rzGNhuxbHsCpUhG6+XtCN3zrmSCF6CFaPSX04IMP8vbbb/Puu++yf/9+HnjgAbKzs5k3bx7gmqq58cYbm6+fN28eWVlZPPjgg+zfv593332Xd955h4cffrj5mieffJLVq1dz5MgR0tPTmTt3Lunp6c1tCnEyfXM/BSAnehoWXbBvg+kkTNpIzgqfxe1Ji7gx4QWSQy7DXx1Mg72aHZVf8X72n1mYcQs/Fi+muDHT1+F2ek5FTWYvVzLc3mkhgLoBwyi46g8AxL23AEPu0Xa3KURP0epKt7NmzaKsrIynnnqKgoIChg0bxqpVq0hISACgoKCgRU2WpKQkVq1axQMPPMCCBQuIjY3llVde4eqrr26+prKykttvv53CwkJMJhOjR49m/fr1jB8/3gNvUXRHansDiflfAcemg0QLiqLQy28QvfwGMS3yNo7W72Jf1VoO1G6m2lbCT+Uf81P5x4TrEhgadA6DglII1cX6OuxOKbPXTIYeeZfY4vUE1uVQG9C+Bf5Fl1xL4IGfCdqdRuKCf3PwiVdx6KXmlBBnoji7yX7I6upqTCYTVVVVHl/PsnTLyYviCd9Jyv2cSbv/So1fb7485ytQ5Fgsd1gdZjJqt7G3ei0ZddtarG2J0vdlUNDZDDKeLcnLb0zdNo/Y0k0civsd24b9vd3taaorGfS3O9FWllN29gVk3/bwCddIaX7RU7j7+S0/5UWX1DQdlBF3lSQrraBV6RkUdDZX9/4r9/b7gIuj7yXRfzQKKorMGawr+Q+LjtzGu5n3srnsQ8ot+b4OuVPY29d1kGGf3M8wNJa0uz1bUDBH73wUp6IibOMaQjeuOfNNQvRwcvih6HKCao8QWbEDh6JuPllXtJ5BHcjI4BmMDJ5Bva2Kg7Wp7K/eSFb9LorMGRSVuBKYppGXgcbJhOl6+TpsnygJSaYkeBQRlekMOvoe6YMebHebtYNGUHDlDcR++l96/+dV6pMG0NgrwQPRCtE9ya+mosvpn70CgPyIFBoMkT6Opnvw15gYFXwhs+P/xb393uei6HtOGHl588jtvHXkTtaV/JeCxkM9q7quojSPsvTPXoHWWuWRZosuu47qoaNRW8wkLvg3ilkOfBXiVCRhEV2KX2Mx/XI+BuBAwvU+jqZ7OlnykhQwBhVqSi3ZbC5bwZKj97Mw42bWFL1Jdv3uHnGadH7EFCqM/dHa6xmQtdwzjarUZN3xF6ymUPzysuj9/snPZBNCSMIiupjBRxajdlgoDhlNUdhEX4fT7TUlL9fF/ZN7+3/AZTEPMTDwLLSKnmpbCdsrPueD7Ed45fANfFUwn0M1P2F1dNNRAkVhX5+5AAw8+gFqe4NHmrWZQjg67y84FYXw9d8QsvkHj7QrRHcja1hEl2FoLKFfzkcA7Ok3r0dVtu0M/NRGhpnOY5jpPKwOM5l1OzhYk8qh2q002Kv5uWoNP1etQaPoSPAfSf/ACfQLHIdRG+7r0D0mO3oGIw6+hrEhl745n3Iw8fceabd2yCgKZ/6emM/eJ27Jy9Qn9Qdkl5AQx5OERXQZQzLfReMwUxI8isKwSb4Op0fTqvQMME5igHESDqed7Po9HKzZzOHarVTZismo20ZG3TYogmhDP/oFTqB/4Hii9H1Pe+5YZ+dUadjf52bG7/0ngzOXcDj+Whyqk1fsbq3CmdcTeGA3xv27SFrwbxwXforKIPVZhGgidVjcIHVYfM/QWMLl6y5C4zDzw9hFFEac/CgI4VtOp5MScxaHa7dwqHYr+Y0HgF9/xBg1YfQNHEffgLEkBoxCp/LzXbBtpLKbmbnuQvzMpaQO/yeZx84b8gRNZRmD/nYX2upKAqedT68XX0Sl03msfSE6I3c/vyVhcYMkLL43Zv+zDDr6HiXBI1kz8T2ZDuoi6mwVZNRu51DtFjLrdmJ1/rq+RYWGOP+h9A1Ipm/gOMJ0cV1m9GXwkXcZfeAlqgKS+CrlM4/WAgrcl07fF/6KymYl4Jwp9H7lFVR6vcfaF6KzkYTFgyRh8S2DuZTL116IxmHmx7FvUBAx2dchiTawOSxk1f9MRt12Mmq3U2ktaPF6kCaCvoFj6ROQ3OlHXzTWWq5YOx2drYb1o18iN3qaR9s37kmj/6tP4WxsxH/SROIWLEDl7+/RPoToLCRh8SBJWHxr9P7nGHz0v5QGj+Dbie/L6Eo3UW7JI6M2jYy6bWTX78butDa/pkJDb7/BJAWMJjFgNNGGvqgUtQ+jPdGIg68wLOMtykxDWT1pmcf/Xc5UCsmddyeO+nr8xiYT98YbqAMDPdqHEJ2BJCweJAmL77hGVy5C42jkx7GvUxBxtq9DEl5gdTSSVb+bjNrtHKnbTqW1sMXrBpWRpIBRJAaMJilgNCat7wsG6s3lzFw7A42jke/HvUlRuGcXgl8/IZ76nTvJue12HLW1GEaOIP6tt1B7+OebEL7m7ue37BISndrgI4vROBopNY2gIFymgrorrcpAv8Bx9Asch9PppMJawNG6nWTW7SSrfheNjhr212xgf80GAEJ1vUjyH01iwCji/IfhpzZ2eMxmfSgZcVcxMGspQ4+84/GEBcB/9GjilywhZ+5cGnf9TNZNNxH/zjtoQkI83pcQnZ2MsLhBRlh8Q0ZXBIDDaSe/4QCZdTvJrN9JfsMBnDiOu0Ih2tCXBP+RJPiPIM5/GDpVx2wH9m8o4PJ1F6Ny2lg9aSllwcM91vbxpzU3HjhA9i1zsZeVoe/fj/h330UTEeGxvoTwJZkS8iBJWHxj9C/PMzjzP5SahvPtpA9k7YoAoNFeR3b9z8dGX36mzJLT4nUVamL9BpHgP4LEgJHEGgaiUXlva/DEnx+nT94X5ESdx4YxL3utH31+Nv2eeQRdZRmN0b05/Jf/hzX05EnL8cmOEJ2dJCweJAlLx9Oby5i59sJjoysLKYhI8XVIopOqsZaRVf8zWfW7yKrbRZWtuMXrakVLrGEg8f7DiPcfTi+/QWg9OAITVHuESzZcgYKT/539GdXGvh5r+7d0Rfn0f+Yv6MqKMUdEc/gvz2CJiD7hOklYRFciCYsHScLS8Ub98gJDMpdQZhrG6klLZXRFuK3SUsjR+l3NCUydvbLF6yo0xPj1J95/OPF+w+jlNxi9un1bhlN23E9c0fcc6XU5P434d7vaOhNtaRH9n/kL+uICbP6B5M65m4pJ57b4HpGERXQlkrB4kCQsHUtvLmPmuovQ2BtYm7yA/Mgpvg5JdFFOp5Nyaz459bvJrt9Ndv0eamylLa5RUBFl6Euc3xB6+w2lt/9gAjWhreontHIPF6bOxqGo+ersldQEJnnybZxAW15K0itPEpB5EICKsWeT+4d7sAUFA5KwiK5FEhYPkoSlY4365UWGZC72Wn0L0XM5nU4qrYXk1O8hu2EPOfW7qbQWnXBdsDbGlcD4D6W332C3qvCes/1uepWspzB0PD+Mf9v7/27tdqL+t5yYzz9AsduxBgWTc/N9VI05SxIW0aVIwuJBkrB0HL25nJnrLpTRFdFhqq0l5DbsI6d+H7kNeyk2H+X4848A/NRB9DIMopef6xHjN+CESrwB9blcsuFKNI5GUof/i8zeMzskfr+jh0h48zn88rIAKDv7Aia99G/Uxo7f6i1EW0jC4kGSsHScX9euyOiK8I1Gex15DfvJbdhPbsNe8hsOYnOaW1yjoCJSn0is369JTIg2liGZixl94CUatcF8NeULzLqOqZeiWC3EfPpfIr/+GMXpRBMTQ+z//ZuASXKquej8JGHxIElYOkZI1T5mpF6PymmX0RXRadidVgobM8hr+IX8hl/Ia/iFalvJCde5RmEGMKU4nXE1+QSGnse+Ec90aKwBB/eS8NZz6Itd5zSF/P73RD78ECq/znsukxCSsHiQJCzep3JYmbF5FiE1h8iOvoCNo1/0dUhCnFKNtZS8hl/Ia3QlMIWNh1uchdQkXBVCZOAIYgwDiDUMIMrQF63KuycvqxobOGftciqXLQdAExND2K1zCb76alSGjimoJ0RrSMLiQZKweN+Ig68yLONNGrUhfJWyErM+zNchCeE2m8NKkTmDgoaD5DcepKIqlXyl8YTrVKiJ0CcSbehHtKEfMYb+ROgT0ai0Ho/JuDuN+HdfRFfu2hVlNYVSfOFVlJ53KQ7DqUdcZMGu6GiSsHiQJCzeFVK1lxmpv0fltLNh1PPkxMzwdUhCtIvGWsuUjTM5QjXfx05mZ0Ao+Q0HTqgJA666MBH6hOYEJtrQz2NJjGIxE7Z+NVGrPkJX5iqoZwswUjzjSkqnzcQecOLpz5KwiI4mCYsHScLiPSq7hQs3zyK49jBZ0TPYNPp5X4ckhEf0LvyOKTsfwK5o+Hryx1QF9qHGVkpB40EKGw9T0HiYwsbDNNirT7hXhYZwfRxRhr5E6fsSbehDpL5PmwvcKTYrIZt/IOp/KzAU5QFgN/hTcv5llFx4VXP9FpCERXQ8SVg8SBIW7xlx8BWGZbxFoy6Ur85eiVnfuoJdQnRaTidTdtxL7+K1FIeM4bsJi0FR/eYSJ9W2EgobDzUnMKdKYsBVH6YpeXElM30I1ISesUZMM4ed4K0biP5yGX65R11P6fSUpUynfPI06vsM5PqJCe1510K0miQsHiQJi3eEVu1letNU0OgXyYm+wNchCeFR/g0FXLJhJlp7A1uG/YOMuGvOeE9TElPUmEFR4xGKzK7/nmxnErh2J0XqE4nUJxGpTyLCkEi4Lv70i3sdDkzpPxH1xbLmarkA5ogYYq+6nKBLLsYwYECr368QbSEJiwdJwuJ5LaaCYi5k06jnfB2SEF4xMPM9kn95FovGyP+mfEGjPrxN7dTbqyluPEJRYwaFZtd/yy15OHGccK2CilBdLJH6PkToE449EgnWRqEcP8rjdGLcu4Ow9d8StDMVteXXejMNvROpmHAOFROmYomKdStGmU4SbSEJiwdJwuJ5Iw+8zNAjb9OgC2VVymcdVmBLiI6mOGzMSL2e0Or9HI25iM2jnvVY2zaHhVJLNsWNmRSbMyk2H6XYnHnKKSWtoie8OYFJcH2tSyBQE4raYiZo50+E/PQjQT9vR2W3Nd9X12cgFRPOoWZYMo29Ek5Z0FESFtEW7n5+azowJiEA10Fxg4+8C8C2oX+TZEV0a06Vhi3DnmDG5tkkFnxNZq/LKYg42yNta1S65i3Szf05ndTayo8lMJmUmLMoNWdRasnB6jRT0HiQgsaDLdoxqAII08cTnhBP+IBRRNumMXBvIbHb0jDu20XAkQMEHDkAgDUomNrBo6gZMpKawaOwRMZIRWrRIWSExQ0ywuI5Krv52FRQhsd/2xSiMxuz/1kGHX2PWr9efJWyEru6Y6vPOpx2KiwFlJizKLFkUWo+Sok5i3JL/kmnlQB0Kj8SLTFM/kXFsAPVxGQWo7HaWlxjCYukZsgoagaPYtrvL0YbFdURb0d0IzIl5EGSsHjOyAPzGXrkHRp0YXyV8hkWXbCvQxKiQ2hs9VyyYSYBjYWuas6jnj9h15Av2BwWyi15lFpyKDVnU2bJptScQ7klDwf2FtdqbE7658PwLBiZrSEpz4LG3vIjRBMTg9+woRiGDsMwbBiGoUPQhMgoqjg1SVg8SBIWzwir3M0FqTegwsH6MfPJjTrf1yEJ0aEiyrdz3tbbUTut/JI4hx2D/+zrkE7J7rRRYcmnzJJDqTmHUks25eZcyiy5WI8dBqm3OBmU62RYlpOhR530KYSTpmCxUfgPH0Hg8BEYhg5FP2iQJDGimSQsHiQJS/vpzeVc8NONBNVncTTmYjaP6thD4YToLBLyVzF5118ASBv8Fw4k3uDjiFrH6XRQYyujzOJKXsrMuZRbciiz5GGtKyGpCPoUOulb4KRPgZPYipO3U2/0oyYmmsZeiTjiBjF1xmT0/fqhNpk69g0Jn5OExYMkYWkfrbWa87feSmj1fuoM0Xw9+SOZChI92uCMdxh9cD5OFDaMfpHc6Gm+DskjLI4Gyi35VFjyKbfkUW7Jo6Eqm6CcHOLyG1xJTKGTqMpTt1EfbMAcH4U6KZ7APgMIHzCC4P5D0MXEoKjVHfZeRMeRhMWDJGFpO7WtnnO3zyOyYicNulC+m/gfagISfR2WEL7ldDJ2378ZkL0Cm0rPD+PfpjRklK+j8qp6e3VzElNbk40mL4PA/HxCCkuJLrYSV+ok4uS7sQGwahRqIwIwx4ahTuiNf1I/wvoPI6rfSPxie6GofL8eSLSNJCweJAlL26jsFs5J+yMxZalYNEa+m7CYyqCBvg5LiE5BcdiYsuN+epWso1EbzJpJ7/XYZL7BXkOFJZ/aqqMoeb9gyD1KYHEJwSVVRJRZiK4Arf3U91vVUB1moDHShCM2El1cHEGJ/QjrO5SY/iPRGWWaqTOThMWDJGFpPcVh4+z0h4gr+gGr2o8fx73Z7X+DFKK11LZ6pm2dS1jVHmr8evPtpPcx68N8HVanYnU0UmUuxFx8ACXvILrCHAKKijCVVhFW1kh4lRPNyXdlN6v1U6gINlAbGkhDWCiWsGjsEb1RRfXh2gvPJzBMtmL7kiQsHiQJSys5HUz6+a8k5X+JXaVjbfICisIn+joqITolg7mU6ak3ENiQR6lpON9PeKfDa7R0VU6nk3pLGeaSgzgLD6MuykJfUkhAaTmmslrCKiwYG87cToNeoTpER2NYIPbIMDTRURh6xWGK60N44mCiEgajNcj/E2+RhMWDJGFphePm5h2Kmg2jXyIv6lxfRyVEp2aszWT6T3PQW6vIiTyXjWNewqnIAtP2cjodNNbmYy06iLM4E3VxLrqyYvzLyjFW1BFaaSGo/swfgQ6gOlBFlUlPbXAADcEmrCHh9BvaH2OvRMLiBxCVMBi9X6DbsbXnc6W7HYEgpfmFT4w8+DIDslfgRCF1xL8lWRHCDTWBSaxLfpXzt95KXPGPJO/7f2wf8piUvG8nRVHhZ+yNn7E3/Hp6ATag4tjDUl+KpegAjtIsVCU5aMuK0VeUEVheQ1BVAyFVdnR2CK51EFzbAHkNQCmQAf/bAkAdcASoDlCoM+kxhwZgDzWhioxAHxVNQGwcpl59iIgfQEhUAmq1fPS2hfytCY8ZkvE2Q4+8A8DWoX8jK/YSH0ckRNdRGjKazSOe5uz0hxmQvRyHSsvOgQ/iVMmPaW/S+YejSwqHpMktnq899shz2LFUZmMrPoyzLAdVWQHa8hL0FRUE19bhX9GAqcqGzgZBdU6C6hohvxEow5XG/KoEKFBBtVFNiFFHvdGfRpMRS3AItuBwnCHRqEJ7ow6LRxvcG5Va10F/C12DfCcIjxiQtZRRB18GYMegh8mI/52PIxKi68mJmc4O859J3v8Mg46+R0jVPjaNfp5GfbivQ+uxFJUafWgS+tCkFs87gAuPTc04HA4qirMpPrqfqrwj1BbkYCkswFFSirqsCl1FHYGVZoLqXAuEQ6vshFY1AA24EpujJ/TrUKA6QEVNoJZ6o4GGoEAsQUHYTKGs39+XgOjemGLiCYvtgymsF6oesK1b1rC4QdawnJraVs+YX56jf87HAOzuewe7B/zRx1EJ0bXFFXzLxN1/R2uvo14fwaZRz1MSOsbXYYl2cljrsZQdxV6WjbMiD1VFEZrKMvSVlRiqawmobiCoxoKxznnyIw5OwaaCmkAVDUYdFpM/9uBAlNBgNGFh6MKjCIiMwRgVR3BUHGHRfdD5+XvtPbaFLLr1IElYTi6kah9n7foLprqjwLFkpf/dMu8uhAcYazNJ2fkAwbUZOBQ1Owc+yIHEOfL91QM4bBasFdnYK3JxVuShVBShqipDW1WBvroGU30DhupGAqut+Jtb3369XqEuUEOjUYfNFIDDFIgSEowmNBRdaDgBEdEERMQQHBVPcFQ8AcZQz7/J40jC4kGSsPyG08HgzP8w4uArqJ026vWRpI74t2xdFsLDNLZ6xu95gsSCrwHIip7OluFPYdME+Dgy4UvH7xJqqK+mPP8IlYVZ1BTmUl9SgLmkCHt5BZRXoqmsRVfTiH+NlcA6B+o2fOKbtVDnr6bRqCP6iX8w9OyZHnw3sktIeIlfYxGTfn6c6DLX6vicqPPZMuwJORtICC+wafzZPPIZSkNGMWb/cyQUfktwzUE2jJ5PtbGvr8MTnYCffxC9+o2iV79RZ7zWbrfx/vfbsVXk4qgqxFlVjKqqBHV1BdraanQ1dRjqGvCrMxNQb8NY50DjAL0V9FV2qGrA4cMRPhlhcYOMsLj0LvyeCXv+gd5ahU3tR9rgv5DR+yoZohaiA4RXpHP2zofwNxdjVfuxddiTZMVe5OuwRDfmdDiw15djrcrDUVXEcKOZodN+hzE40qP9yJSQB/X0hEVtqyd5/7P0y/0EgLKgIWwe+f+oCUw6w51CCE/Sm8uYvOsvzSOcmbGXsrvfXdQGxPk4MtETeKtgnUwJiXZTHDbiC79l+KGFBNVn4URhX5+b2d3/jzhUWl+HJ0SPY9aH8eO4RQw/tIBhGW+RlP8/Egq+JjP2Mvb2vV0SF9GtScIiTqCx1dMndyWDjv6XwIZ8AOr1kWwe+TTFYeN9HJ0QPZtTUfPzgHvJizyX4YcXEluykb55n5GU/yWZvS5nT9/bqPOXxEV0P5KwiGYGcykDspbSP3sFems1AI3aEA4mzOZA4vVYtXJEuxCdRVnw8P/f3v3HNHXufwB/nxZo+f0bSkX4FmTDgW5KmZcf6u7dxqZe73TLZD90LibmkuEGNNnAqXFzAaZmxmwIrotZvotx8oc6MdEbu01hSPeVMHBe5OpXYSIItxaBll8tbZ/7B9jdDtDhoKccPq/khPbpc8q7TyLn49PznIPzyjIE9/yMBf9fCrn+AmLbTkDRfgrNc/6GxtjN6PeK5DsmIVOGChYC374WzP/lf6FoPwWxzQwAMHrNRZPiTbTM+RusYinPCQkhE+kKWIjzyQcR3H0JC66XQa6/gHltxxHTXoHmOS+gKeZNGL3/h++YhPxhVLDMUh7mXsi6tIi+fRqRuvPgMHLutd5/IZpi3kRb+F/obrGEzCBdgY/jfPJBhHQ3YMH1MkToazCv7RjmtR1Dj888tIX/GW1hf8Fd/8cATviXcSfCQwXLLMExK4J6/okIfQ3k+moE9fwTItjsr7eFPYUmxZu4E7iYlikTMoPpA5/AueTPEdJdj8Qbasj0WgT0XUdA33Uk3vgCA5Iwe/GiC06mE+jJjEEFi4B5Dukg09dArr8AmV4LyXCvw+s9PvPQEZqGG5EvwuATw1NKQsh00AcuwnllGdyHezFH9wMidd8j4s4FeJl0eKS1HI+0lsPs5oOO0HTcDl2Ku37xMHgrwKiAIS7qoQqW0tJS7N27Fx0dHUhISMD+/fuxdOnSCftXVlZCpVKhsbERcrkc7733HrKyshz6HDt2DDt27MCNGzcQGxuLwsJCrF279mHizTruwwb49zXDr68Z/n03RrdmeA91OPQzu/miM+RPuB2Sjs6QVAx4ynhKTAhxlmF3f/wy56/4Zc5fIbKaIOv6P8zRnUPkv8/B09yF6I5/ILrjHwAAK+eOXp9Y9Pg9gh7fR9Dt+yh6/B6FySOQ509ByEMULOXl5cjNzUVpaSnS0tLw+eefY8WKFbhy5QqiosZeVKalpQUrV67E5s2bcfjwYVy4cAFvvfUWQkND8dJLLwEAtFotMjMz8dFHH2Ht2rU4ceIE1q1bh+rqaixZsuSPf8qZjDF4DPdCauqCp1kPqakLUlMXfAbb4N93A359zfAy3Rl/V3C465+A2yFp6AhNR5d/IpiIJtUIma1sYgluhy3D7bBlqE3YgeCey4jUnUNodz0CjNfgYelDkPFfCDL+y2G/AUkYen3noV8qw6AkFIPSMAxKwjAgDcWgNBwmj0A6541Mu0lf6XbJkiVYvHgxysrK7G3z58/HmjVrUFxcPKZ/fn4+Kioq0NTUZG/LysrCpUuXoNVqAQCZmZkwGAw4c+aMvc/zzz+PwMBAfP31178rl0tc6ZYxiJgFItvw6GaGiA1DfO+xbRhu1gG4WwbgZh2Am2UA7tYBuFn6R9v74WYdhMTcDU/TSHEiMd+FmFke+Kv7peEw+MSi1ycGvT6xo1sMLUUmhPw+jMF78DYCjFcRaLiKAOM1BBqvwnfg1gN3tXFiDEpCMCQJhdndD8Nu3hh28xn96fub5z6wiiSwiiWwijxgE3mM+5P+c+V6ZtSVbs1mM+rq6lBQUODQnpGRgZqamnH30Wq1yMjIcGh77rnncOjQIQwPD8Pd3R1arRZ5eXlj+uzfv3/CLCaTCSbTr/fV7u0dOT/DYDBM5iM92PG/Y/nNenCwgWNWcIyBY1aImBUcu9c28lOMBxcWk2EZ3QDA5OaLIY9gmCRBGPQIxqA0DAZvxegWDYv7OHdvNQMwG6c0EyFEuAbghzs+yYBPsr3NzTIIf+N1+PXfhNR0B55mPTyHdCMzvkN6SM13IYIFGOqEOzoxlWfA2OAGxnGwcWIwzg2ME40+FoNxIvusDuNEYBABHAcGDowTAeDAOA7AyMbAjTy04/5rgcHo6//92jgPHfuM0wEY/Z3CZKiVACs+BkIfndr3HT1uP2j+ZFIFi16vh9VqRXh4uEN7eHg4Ojs7x92ns7Nz3P4WiwV6vR4RERET9pnoPQGguLgYH3744Zj2uXOFeoVHI4DbfIcghBAyq03f1c6NRiP8/Sf+VuCh5ty431SQjLExbQ/q/9v2yb7n1q1boVKp7M9tNhvu3r2L4ODg++43WQaDAXPnzsWtW7em/Ksm8isaZ+ehsXYOGmfnoHF2jukcZ8YYjEYj5HL5fftNqmAJCQmBWCweM/Oh0+nGzJDcI5PJxu3v5uaG4ODg+/aZ6D0BQCKRQCKROLQFBAT83o8yaX5+fvSPwQlonJ2Hxto5aJydg8bZOaZrnO83s3LPpC536OHhgaSkJGg0God2jUaD1NTUcfdJSUkZ0//s2bNQKpVwd3e/b5+J3pMQQgghs8ukvxJSqVTYsGEDlEolUlJSoFar0draar+uytatW9He3o6vvvoKwMiKoJKSEqhUKmzevBlarRaHDh1yWP2Tk5ODZcuWYffu3XjhhRdw8uRJfPvtt6iurp6ij0kIIYSQmWzSBUtmZia6urqwa9cudHR0IDExEadPn0Z0dDQAoKOjA62tvy4DVigUOH36NPLy8nDgwAHI5XJ8+umn9muwAEBqaiqOHj2K7du3Y8eOHYiNjUV5eblLXINFIpFg586dY75+IlOLxtl5aKydg8bZOWicncMVxnnS12EhhBBCCHE2umUnIYQQQlweFSyEEEIIcXlUsBBCCCHE5VHBQgghhBCXRwXLA5SWlkKhUEAqlSIpKQk//PAD35EEpbi4GMnJyfD19UVYWBjWrFmDq1ev8h1L8IqLi8FxHHJzc/mOIjjt7e1Yv349goOD4eXlhSeeeAJ1dXV8xxIci8WC7du3Q6FQwNPTEzExMdi1axdsNhvf0Wa0qqoqrF69GnK5HBzH4ZtvvnF4nTGGDz74AHK5HJ6ennjqqafQ2NjolGxUsNxHeXk5cnNzsW3bNtTX12Pp0qVYsWKFw7Jt8sdUVlYiOzsbP/74IzQaDSwWCzIyMtDf3893NMGqra2FWq3GwoUL+Y4iON3d3UhLS4O7uzvOnDmDK1eu4JNPPpnWq3DPVrt378bBgwdRUlKCpqYm7NmzB3v37sVnn33Gd7QZrb+/H48//jhKSkrGfX3Pnj3Yt28fSkpKUFtbC5lMhmeffRZGoxNutMvIhJ588kmWlZXl0BYfH88KCgp4SiR8Op2OAWCVlZV8RxEko9HI4uLimEajYcuXL2c5OTl8RxKU/Px8lp6ezneMWWHVqlVs06ZNDm0vvvgiW79+PU+JhAcAO3HihP25zWZjMpmMffzxx/a2oaEh5u/vzw4ePDjteWiGZQJmsxl1dXXIyMhwaM/IyEBNTQ1PqYSvt7cXABAUFMRzEmHKzs7GqlWr8Mwzz/AdRZAqKiqgVCrx8ssvIywsDIsWLcIXX3zBdyxBSk9Px3fffYdr164BAC5duoTq6mqsXLmS52TC1dLSgs7OTofjokQiwfLly51yXHyouzXPBnq9HlardcwNGMPDw8fcqJFMDcYYVCoV0tPTkZiYyHccwTl69Ch++ukn1NbW8h1FsJqbm1FWVgaVSoX3338fFy9exDvvvAOJRII33niD73iCkp+fj97eXsTHx0MsFsNqtaKwsBCvvvoq39EE696xb7zj4s2bN6f991PB8gAcxzk8Z4yNaSNTY8uWLfj555/pHlLT4NatW8jJycHZs2chlUr5jiNYNpsNSqUSRUVFAIBFixahsbERZWVlVLBMsfLychw+fBhHjhxBQkICGhoakJubC7lcjo0bN/IdT9D4Oi5SwTKBkJAQiMXiMbMpOp1uTHVJ/ri3334bFRUVqKqqQmRkJN9xBKeurg46nQ5JSUn2NqvViqqqKpSUlMBkMkEsFvOYUBgiIiLw2GOPObTNnz8fx44d4ymRcL377rsoKCjAK6+8AgBYsGABbt68ieLiYipYpolMJgMwMtMSERFhb3fWcZHOYZmAh4cHkpKSoNFoHNo1Gg1SU1N5SiU8jDFs2bIFx48fx/fffw+FQsF3JEF6+umncfnyZTQ0NNg3pVKJ119/HQ0NDVSsTJG0tLQxy/KvXbtmvzksmToDAwMQiRwPYWKxmJY1TyOFQgGZTOZwXDSbzaisrHTKcZFmWO5DpVJhw4YNUCqVSElJgVqtRmtrK7KysviOJhjZ2dk4cuQITp48CV9fX/uMlr+/Pzw9PXlOJxy+vr5jzgvy9vZGcHAwnS80hfLy8pCamoqioiKsW7cOFy9ehFqthlqt5jua4KxevRqFhYWIiopCQkIC6uvrsW/fPmzatInvaDNaX18frl+/bn/e0tKChoYGBAUFISoqCrm5uSgqKkJcXBzi4uJQVFQELy8vvPbaa9MfbtrXIc1wBw4cYNHR0czDw4MtXryYlttOMQDjbl9++SXf0QSPljVPj1OnTrHExEQmkUhYfHw8U6vVfEcSJIPBwHJyclhUVBSTSqUsJiaGbdu2jZlMJr6jzWjnzp0b92/yxo0bGWMjS5t37tzJZDIZk0gkbNmyZezy5ctOycYxxtj0l0WEEEIIIQ+PzmEhhBBCiMujgoUQQgghLo8KFkIIIYS4PCpYCCGEEOLyqGAhhBBCiMujgoUQQgghLo8KFkIIIYS4PCpYCCGEEOLyqGAhhBBCiMujgoUQQgghLo8KFkIIIYS4PCpYCCGEEOLy/gMgaIsmtftYTQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTw0lEQVR4nOzdd3iUZfbw8e+0zKRMJr2RSu8QQkeKithQsCKu2Aura123qLvr6ru/dXUtWEDFgq4KYseCUlSKEBECoUtNIb1nUqc+7x8hUSTATDKTSTmf65pLmHme+z4TSebkLudWKYqiIIQQQgjRial9HYAQQgghxJlIwiKEEEKITk8SFiGEEEJ0epKwCCGEEKLTk4RFCCGEEJ2eJCxCCCGE6PQkYRFCCCFEpycJixBCCCE6Pa2vA/AUp9NJQUEBRqMRlUrl63CEEEII4QJFUaipqSEuLg61+tTjKN0mYSkoKCAhIcHXYQghhBCiDY4dO0Z8fPwpX+82CYvRaASa3nBwcLCPoxFCCCGEK8xmMwkJCS2f46fSbRKW5mmg4OBgSViEEEKILuZMyzlk0a0QQgghOj1JWIQQQgjR6UnCIoQQQohOTxIWIYQQQnR6krAIIYQQotOThEUIIYQQnZ4kLEIIIYTo9CRhEUIIIUSnJwmLEEIIITo9SViEEEII0el1m9L8Qoiezel0YrfbcTqdvg5FiB5BrVaj1WpPe8KyJ0nCIoTo0qqrqzGbzdTX10uyIkQHU6vVBAQEEBwcjMlk8mpfkrAIIbokRVEoLi6msrKSgIAAIiIiMBgMqNXqMx6iJoRoH0VRcDqdNDY2UltbS0FBAQ0NDURHR3vt+08SFiFEl1RZWUllZSUxMTGEhob6OhwheqTAwEDCw8OprKykqKgIPz8/wsLCvNKXJCxCdFFLt+S2+d5rxyV6MJKOpygKVVVVGI1GSVaE6ARCQ0Opq6ujqqqK0NBQr4yyyC4hIUSXY7fbsVgsXp8zF0K4zmQyYbFYsNvtXmlfEhYhRJfjcDgA0GplkFiIzqL5+7H5+9PTJGERQnRZsrhWiM7D29+PkrAIIYQQotOThEUIIYQQnV6bEpZFixaRkpKCwWAgLS2NjRs3nvLaTz75hPPOO4/IyEiCg4OZMGECq1atOuGat956C5VKddKjsbGxLeEJIYQQoptxe8Xa8uXLue+++1i0aBGTJk3i1Vdf5cILL2Tfvn0kJp68VXLDhg2cd955/Pvf/yYkJIQlS5ZwySWXsGXLFlJTU1uuCw4O5sCBAyfcazAY2vCWhBBn0pO3RAshuia3R1ieffZZbrnlFm699VYGDRrEggULSEhI4OWXX271+gULFvDnP/+ZMWPG0K9fP/7973/Tr18/vvjiixOuU6lUxMTEnPAQQgjRdSUnJ6NSqbjxxht9HUqH6Gnvt6O5lbBYrVYyMjKYMWPGCc/PmDGDzZs3u9SG0+mkpqbmpEp4tbW1JCUlER8fz8yZM9mxY8dp27FYLJjN5hMeQgghhOie3EpYysrKcDgcREdHn/B8dHQ0RUVFLrXxzDPPUFdXx9VXX93y3MCBA3nrrbf4/PPPWbZsGQaDgUmTJnHo0KFTtvPEE09gMplaHgkJCe68FSGEEEJ0IW2quvTbvdaKori0/3rZsmX885//ZMWKFURFRbU8P378eMaPH9/y90mTJjFq1ChefPFFXnjhhVbbeuihh3jggQda/m42myVpEUKITiQ7O9vXIYhuxK2EJSIiAo1Gc9JoSklJyUmjLr+1fPlybrnlFj788EOmT59+2mvVajVjxow57QiLXq9Hr9e7HrwQQgghuiy3poT8/PxIS0tjzZo1Jzy/Zs0aJk6ceMr7li1bxo033sjSpUu5+OKLz9iPoihkZmYSGxvrTnhCCCGE6Kbc3iX0wAMP8Prrr/Pmm2+yf/9+7r//fnJzc5k/fz7QNFVz/fXXt1y/bNkyrr/+ep555hnGjx9PUVERRUVFVFdXt1zz2GOPsWrVKo4ePUpmZia33HILmZmZLW0KIYTwrYKCAv76178yatQoTCYTfn5+xMTEMGzYMObOnctbb7110uYHV3bN2Gw2nn/+ecaMGYPRaCQkJITRo0fz3HPPYbVayc7ObqnN9dZbb510/4033ohKpSI5ORmAqqoq/vGPfzBkyBACAwMJCQlhypQpvPfee6d9f3V1dSxfvpxbb72VkSNHYjKZ0Ol0REZGMnXqVJ5++mlqa2vd/bIJD3J7DcucOXMoLy/n8ccfp7CwkKFDh7Jy5UqSkpIAKCwsJDf3lxoPr776Kna7nbvuuou77rqr5fkbbrih5R9fVVUVt99+O0VFRZhMJlJTU9mwYQNjx45t59sToufyKy5AX1pIfcoAHIFBvg5HdGEbN25k5syZJyUkxcXFFBcXs2fPHt5//30iIiKYOXOmy+1WVVVx/vnn89NPP53wfEZGBhkZGbz//vu8+uqrLrf3888/c+GFF560dmbjxo1s3LiR9PR0XnrppVbvvfjii1m/fv1Jz5eVlbFhwwY2bNjAokWLWLlyJQMHDnQ5JuE5bVp0e+edd3LnnXe2+tpvM+B169adsb3nnnuO5557ri2hCCFaEbR/J70XPIqmsQFFpaIxLpG6voOp6z+Eur6DsUTHgRwcKFxgsVi45pprMJvNGI1Gfv/733P22WcTFRWFzWYjJyeH9PR0Pv74Y7fbvuaaa1qSlQkTJnDPPffQr18/SktLeffdd3nvvfdcHmmvr6/n0ksvpby8nL/97W9Mnz6doKAgduzYwWOPPUZeXh4LFy7kkksu4fzzzz/pfrvdzrBhw7j00ksZPXo0cXFxKIpCTk4On376KR988AFZWVnMnj2bzMxMKWzqA3I2uxDdTPDOn0h58f+htlmxBwahravFPz8H//wcItZ/DYDNaKKu7yDq+g2hZkgqDcn9fBy16Kw2bdpEQUEBAEuXLj1pBGXcuHFcffXV/Pe//6W+vt7ldj/99NOWY1pmzZrFxx9/jEajaXn9ggsuIDU1lQcffNCl9kpLS7HZbKSnpzNkyJCW59PS0pg2bRrDhg2jsbGRRYsWtZqwLFmyhH79Tv4+aH5/t9xyC+effz4HDhzgvffe45ZbbnH5vQrPkIRFiG4k5KcNJL3yJGqHnarU8WTf+QiaxnoCD+8j8FDTIyD7ILqaakJ2/EjIjh8ByLntQSrOOs/H0XuBooDN9Q/RLk0X4JVRs1/vCp0yZcopr9NqtQQHB7vcbvNUj8Fg4NVXXz0hWWn2wAMPsHTpUrZv3+5Sm48//vgJyUqzvn37Mnv2bN5///1Tnn3XWrLya9OnT+fSSy/ls88+47PPPpOExQckYRGimwjbuJrEN55DpTipGD+NnNv+BFotdj8/qkdNpHpU004+lc2Kf84RAg/vI3jXNoL3bif+nYXU9huCNTrOx+/Cw2z18O9u9p5O5eEC8Av0eLO/3q25ZMkS7r333na3abfb2bBhA9A0knKqshgqlYp58+a5lLCoVCquvfbaU76elpbG+++/T2VlJVVVVYSEhJy2vdLSUqqqqrBYLC3PRUZGArBz584zxiM8TxIWIbqBiDUrSHh3EQBlUy/g2I33gPrk31gBFJ0f9X0HUd93EKUzZtP3P3/BeGA3ya8+xcFHnoFWftMVPddZZ51F7969OXr0KPfddx/vvfcel112GVOnTmX06NH4+fm53eaRI0doaGgAmhKJ0xk9erRLbUZERBAeHn7K1399HExNTU2rCcumTZt44YUXWLt2LRUVFadsq6yszKWYhGdJwiJEFxf9xfvEfbQEgJLzLyd/7u2uTw2oNeTc/icG/v33BB7ZT8wXyyiafZ0Xo+1guoCmkYeeQBfgnWZ1Or744guuvPJK9u/fz9atW9m6dSsA/v7+TJ06lXnz5jFnzpxWp3VaU1lZ2fLnX1c9b03zqMaZBASc/v2r1b9U8XA4HCe9/s9//pPHHnvMpb6aky3RsdyuwyKE6CQUhdgP32xJVgpn/c69ZOU4W0Q0edf/AYCYFe8RcORnj4fqMypV0zRJT3h4cdfX4MGD2b17N59++ik333wzffr0AZo+uL/55ht+97vfMW7cOEpKSrwWgzd9++23LclK7969WbRoEbt27aKqqgq73Y6iKCiKwt///ncfR9qzScIiRBekOJ30eu9lYr5cDkD+nFspuvz6Nn9oVU44h4rx01A5nSS9+iTqRvkNUpxIo9Ewe/Zs3njjDQ4fPkxBQQFvvPFGy5RORkYGd9xxh0tthYaGtvz5TElOaWlp24N20WuvvQZASEgI6enp/P73v2fYsGGYTKYTRo1+PTIkOp4kLEJ0MYqiUPiPfxC1ZgWKSkXujfdQctFV7W437/q7sYZFYiguoNfSVzwQqejOYmNjufnmm0lPT2fUqFEAfPnlly5Nl/Tp06eljsm2bdtOe+2ZXveEvXv3AnDOOeecdoqqI2IRpyZrWITwoaVbcs980W8EZ/5In48+RlGrybn1QSonneuRWByBQeTc/if6PvkXItZ/g3nEOKrTTn1GmBDQtMZl6tSpbN++HbvdTlVVFf7+/qe9R6vVMmXKFFavXs2qVasoLi5udaeQoii888473gq9hd1uBzhtHZnMzEx+/PFHr8ciTk1GWIToShSF2E+afoCXXHilx5KVZrWDRlBy4ZUAJL75HNqqco+2L7qejRs3cvjw4VO+brVaW0raBwUFubxItnn6qLGxkTvuuKPVhbDPPvusyzVY2qO5BssPP/zA0aNHT3q9tLSU667rRovRuyhJWIToQkwZmwnIOYzD4E+xB6aBWlN4+fXUJ/ZBW2sm6fVnm4qviR7r22+/ZcCAAUybNo3//ve/rFq1iu3bt7Np0yaWLFnC5MmTW5KKW2+9Fa3WtYH7yy+/nBkzZgCwYsUKJk+ezAcffMD27dtZtWoV8+bN48EHHzzhTDmVlxYWNx/YW1tby9SpU3nppZdIT09n8+bNPP3004wYMYJ9+/YxYcIEr/QvXCNTQkJ0FU4nsZ82ja6UzrgMR5DrVUXdoej8yJn/FwY8+geCd28jYu3nlJ03yyt9ia7B6XSyfv36Vg8HbHb55ZfzxBNPuNXu8uXLWw4/TE9PJz09/YTXU1NTWbRoUUstFm+d33PllVdy0003sWTJEvLy8rj77rtPeF2j0fDcc89RWVl5Uoyi48gIixBdRMi2H/DPy8IeEEjJBZd7ta/GXknkz7kVgF7LX8eQn+PV/kTn9ec//5mVK1dy//33M378eBITEzEYDBgMBpKTk5kzZw5fffUVH3/8sdsJRUhICD/88AMLFiwgLS2NoKAgjEYjI0eO5IknnmDz5s0n7NIxmUyefnst3nzzTd555x0mT56M0WhEr9eTlJTEvHnz2Lx5s0cq/Ir2USlK9xjvNZvNmEwmqqur3TrPQghfcnnRrdPBwEfm41+QS+Fl8zqmuJui0OeZvxG8exv1iX04+OjzKFod145L9H7fZ9DY2EhWVhYpKSlyam439+677zJv3jwADh8+3FIDRnQ+bf2+dPXzW0ZYhOgCQresx78gF3tgECUzLuuYTlUqcm59AJvRREDuEaK+/rhj+hXiV5YtWwY0Vbzt3bu3j6MRviQJixCdncNBzGfvAU07g5wBnj/g7lTsIeEUXHMbABHffQnOk3dyCNFW+fn5p63b8sYbb7By5UqgaWGstxbdiq5BEhYhOrmw9O8wFOVhM5oond7xi18rx03FHhSMX0Upwbu2dnj/ovtas2YNSUlJ3HPPPXzyySdkZGSwdetW3n//fS677DJuvbVpHVV0dDR//etffRyt8DXZJSREZ2a3/zK6ctFVOP29c8Dd6Sg6P8rPOo/obz4m4ruv4I6rOzwG0X2Vlpby4osv8uKLL7b6emxsLF999RUREREdHJnobGSERYhOLGzTWvSlhdiCQyg79xKfxVF+9kUABO/ahq2gh5x+LLxu5syZvPzyy8yaNYv+/fsTGhqKVqslIiKCyZMn89RTT3HgwAFSU1N9HaroBGSERYhOSmW3EfP5UgCKL56DU++73TCWmHhqBo3AuH8nVR99ROQ99/gsFtF9REREMH/+fObPn+/rUEQXICMsQnRSYRtWoS8rxhYSRtk5F/s6HMqOj7JUffQxyvGzV4QQoqNIwiJEJ6SyWon5omk7Z9HMa1D89D6OCKrTJmEzmrCXlFC7bp2vwxFC9DCSsAjRCYWv/xq/ijKsYRGUT73Q1+EAoGh1VEw5H4DK5R/4OBohRE8jCYsQnYzKaiHmy/cBKLpkLoqfn48j+kXZ8eSp7ocfsObl+TgaIURPIgmLEJ1MxHdfoauqwBIR3TKi0VlYo+MInDgRFIWqDz70dThCiB5EEhYhOhG1pZHor5YDUHTptShanY8jOlnInDkAVH3yCYrN5uNohBA9hSQsQnQioZu/RWeuwhIZS8Wk6b4Op1XGc85GExmBo6yMmm+/83U4QogeQhIWITqRsB/WAFB27kzQds4ySSqdjpDLrwCg6oPlPo5GCNFTdM6fiEL0QPqifIIO70dRqamYcLavwzmlpVty8es3kcGqxdRtTuejz9OxRvdy6d5rxyV6OTohRHclIyxCdBJhm9YCYB6Whj0k3MfRnJ41MgbzsNEARKz72sfRCCF6AklYhOgMnE5CN38L0GnXrvxW8/lCYRtXo7JZfRyNEKK7k4RFiE4g6MBu9GXFOPwDqB41wdfhuKR6xDisoRHoaqoxZWz2dThCiG5OEhYhOoHm6aDKsVM6RRl+l2g0lB+vExPx/Vc+DkYI0d1JwiKEj6ksjYRs3Qh0nemgZuVTL0BRqTH+vAt94TFfhyO85J///CcqlQqVSuWT/m+88UZUKhXJyck+6V90DpKwCOFjIRmb0TQ2YImMoa7/UF+H4xZbeBTmEWMBiFi30sfRCCG6M0lYhPCx5umgiknTwUe/wbZHWcvi2zWorLL4VgjhHZKwCOFDuooyjHt3AF1vOqiZefhorOFRaOtqCNn2g6/DEUJ0U5KwCOFDoenfoVKc1PYfgjUq1tfhtI1aQ9nUCwAI3/CNj4MRQnRXkrAI4SOKorSU4q+YdJ6Po2mfyonnAk3bszV1NT6ORgjRHUnCIoSPNO7dh39BLk6djsqxU3wdTrtYI2NoiE9G5XQSvGurr8MRXlZVVcWjjz7KkCFDCAoKIiwsjGnTpvHee++d8V6r1crixYu5+OKL6dWrF3q9nqioKNLS0vjDH/7Axo0bURTF7Zi+/fZbjEYjKpWK/v37k5OT05a3JjoxOUtICB+pXrGi6b+jJuIMCPRxNO1XPXIc/nnZmHb8SOWEc3wdjvCSrKwszjvvPI4cOdLyXF1dHevXr2f9+vV89tlnLFu2DG0rh3dmZmZy+eWXk5WVdcLzpaWllJaWsn37dhYuXEhWVpZbW5g//fRT5s6di8ViYeTIkaxatYqoqKg2v0fROckIixA+oFitmL/8Euj600HNqlObKvQG79qKym7zcTTCW+bMmUNWVhbz589n7dq1bN26lTfeeIP+/fsD8NFHH/HAAw+cdN++ffuYPHlyS7Jy2WWXsXz5crZu3cqPP/7I22+/zXXXXUdgoHvJ+5IlS7jqqquwWCxMnjyZdevWSbLSTckIixA+UPvDDzgqK7GZwjAPHeXrcDyivvcAbMEh6MxVBB7YQ+2QVF+HJLxg69atLF26lLlz57Y8N3r0aK666iomT57Mzp07WbhwIbfddhvDhg1ruea6666jtrYWtVrNe++9xzXXXHNCu+PGjeP666+nvLycgIAAl2J5+umn+dOf/gTARRddxEcffYS/v78H3qXojCRhEcIHqj/9DICKCWeDRuPbYDxFraZ65HgiNnyDacePnSJhURSFBnuDr8PoEP5a/w6pRDtz5swTkpVmRqORxYsXM27cOJxOJ6+88goLFy4EYNWqVezY0bR9/+677z4pWfm18HDXTip/+OGHeeKJJwCYO3cub7/9Njqdzt23I7oQSViE6GCOqipq1q0Dum7tlVOpTm1OWNLJ/918nxfCa7A3MG7pOJ/G0FG2XLuFAJ1rIxPtcdNNN53ytbFjxzJkyBD27t3L2rVrW57/6qtfzpq6//7729W/0+nkzjvv5NVXXwXgzjvv5KWXXvLZsQGi48gaFiE6mPnrr8FmQz9oEI2JvX0djkfVDEnFqfNDX1aMIS/b1+EILxgzZsxpXx87tumohkOHDmE9Xvm4eXQlMTGRpKSkNvdtt9uZO3duS7LyyCOPsHDhQklWeggZYRGig1V99hkAplmX+jYQL1D0BmqGpGLK3IIp80caE1J8Go+/1p8t127xaQwdxV/bMWs3zrSgNTo6GmiajqusrCQ6OpqysjIAYmPbVxwxPz+fDz74AGhas/Kvf/2rXe2JrkUSFiE6kOVoFo07d4FGg2nmTDhS7+uQPK46dXxTwrLjR4ovOXmtQ0dSqVQdMk3Sk5xpNON0NVTaOxISHR1N37592bRpEytXruSZZ57hj3/8Y7vaFF2HTAkJ0YGaa68EnXUW2ogIH0fjHdUjm9aMBB75GW1VhY+jEZ5WXFx82tdLSkqApuQkNDQUgIjj/9YLCgra1bfBYODrr79mwoSmLfQPPvggCxYsaFebouuQhEWIDqI4nVR//jkAptmzfByN99hDwqlLaarJYcrsGdMxPcnWraevZNz8er9+/fDz8wNg1Kimrfu5ubntrkBrNBr55ptvGDeuKTG+//77eemll9rVpugaJGERooPU/7QVe2EhaqORoHO6dyXYliJymT/6OBLhaW+//fYpX9u2bRt79uwBYPr0X3bAXXLJJS1/fu6559odQ3BwMKtWrWpZAHz33Xfz8ssvt7td0blJwiJEBzF/1VTZNviCC1Dr9T6OxruqU8cDELx3BypLo4+jEZ70+eeftyx8/bXa2lpuv/12ANRqNXfccUfLa9OnTyctLQ2AF198kffff/+U7VdUVNDQcObaOSaTidWrV7e0e9ddd/Haa6+59V5E1yIJixAdQHE4qFn7LQDBF13o42i8rzEhBUtENGqrBeO+TF+HIzxo9OjRXHvttdx11118//33ZGRksGTJEkaPHt2yffmuu+5i+PDhJ9z3zjvvEBQUhNPpZO7cuVxxxRV8+OGHZGRk8NNPP7F06VJuuukmkpKSzrhOpllISAhr1qwhNTUVRVG44447ePPNNz3+nkXnILuEhOgA9RkZOCor0ZhMBIwe7etwvE+lwjxyHJFrP8e0Ix3z8REX0fV98MEHnHvuuSxatIhFixad9PoVV1zBs88+e9LzgwYNYt26dVx22WUcO3aMTz75hE8++aTd8YSGhrJmzRrOPfdcdu7cyW233YZGo+GGG25od9uic5ERFiE6QM2apqqfQeecg6qHlA9vnhYyZW4Bp9PH0QhPSUlJISMjg4cffphBgwYREBCAyWRiypQpvPvuu3z00UetntQMkJaWxoEDB3jhhRc455xziIqKQqfTERMTQ1paGvfeey/p6elundQMTeX8165dy7Bhw3A6ndx88828++67Hni3ojNRKafbNN+FmM1mTCYT1dXVBAcH+zocIVooisLhs8/BXlRE/KJFGM85u+W1pVtyfRiZd6nsNobddTWaxnoO/ON56vsM5NpxiR5pu7GxkaysLFJSUjAYDB5pUwjRPm39vnT181tGWITwssY9e7AXFaEKCCBw0kRfh9NhFK0O8/Cm6S/TDtktJIRoH0lYhPCymtVrAAiaOqXb7w76rebtzZKwCCHaq00Jy6JFi1qGfNLS0ti4ceMpr/3kk08477zziIyMJDg4mAkTJrBq1aqTrvv4448ZPHgwer2ewYMH8+mnn7YlNCE6FUVRqFm9GoDg887zcTQdzzx8NIpajX9eFn6lRb4ORwjRhbmdsCxfvpz77ruPRx55hB07djB58mQuvPBCcnNbn4vfsGED5513HitXriQjI4Ozzz6bSy65pGX7G0B6ejpz5sxh3rx57Ny5k3nz5nH11VezZYtUyRRdm/XwYaw5Oah0OgKnTPV1OB3OERRMbf+hAARL1VshRDu4veh23LhxjBo16oSqgoMGDWL27Nk88cQTLrUxZMgQ5syZwz/+8Q8A5syZg9ls5uuvv2655oILLiA0NJRly5a51KYsuhWdUemiRZS98CJB06aR8MrJlTi786LbZpHffEz8ssWYh6Qy7uOlHmlTFt0K0fl0qkW3VquVjIwMZsyYccLzM2bMYPPmzS614XQ6qampISwsrOW59PT0k9o8//zzT9umxWLBbDaf8BCis2nezmzsgdNBzcwjm7Y3G3/ehaOmxsfRCCG6KrcSlrKyMhwOB9HR0Sc8Hx0dTVGRa/PTzzzzDHV1dVx99dUtzxUVFbnd5hNPPIHJZGp5JCQkuPFOhPA+67FjWPbvB42GoF9tZfYlra0WU81B4krW0z9nKSN/foZR+59EZ6v2Wp+WmF40xiagcjioO816NyGEOJ02VbpVqVQn/F1RlJOea82yZcv45z//yYoVK4iKimpXmw899BAPPPBAy9/NZrMkLcInTjWtE/X1R/QCagYM44ODNUDHji6EV+4kqfAbAhsLCKwvILCxAL2t9ZHI8Ko9fDfmVRzaAK/EUp06HkPhMWq+X0fwRRd5pQ8hRPfmVsISERGBRqM5aeSjpKTkpBGS31q+fDm33HILH3744QmneALExMS43aZer0ffw7aIiq7FtG0TAFVpkzq877DqvUzfchMaxXbSaxadiTr/uKaHIZbe+SuIrMpk8o4H2JD2Ik615yvxVqdOIHrlh9SuX49is/WYar9CCM9xK2Hx8/MjLS2NNWvWcNlll7U8v2bNGmbNmnXK+5YtW8bNN9/MsmXLuPjii096fcKECaxZs4b777+/5bnVq1czcWLPKbIluhdtVTlBh/cBUD2qY/8d62zVnLXjj2gUG8VhY8iNmfFLguIfh/03oyi5sedzzk+3EVe2ifG7HmHziP+AyrMlmur6DsRmNKEzV1O/fQeB48Z6tH0hRPfn9pTQAw88wLx58xg9ejQTJkxg8eLF5ObmMn/+fKBpqiY/P5///e9/QFOycv311/P8888zfvz4lpEUf39/TCYTAPfeey9TpkzhySefZNasWaxYsYK1a9fyww8/eOp9CtGhQjKaFozX9RmELSyi4zpWFMbv+jtBDfnU+MezYdQCbLrT75orCx3JxlHPMjXjHpILv8biF0LGoIfAhWlel6k1mEeMJfyHNdR+950kLEIIt7n9a9ScOXNYsGABjz/+OCNHjmTDhg2sXLmSpKQkAAoLC0+oyfLqq69it9u56667iI2NbXnce++9LddMnDiR999/nyVLljB8+HDeeustli9fzrhx4zzwFoXoeKaM49NBozt2Omhg9v9IKPkeh0rHD6nPnDFZaVYYOZn04f8CYEDOMoYefsXjsTUfhljz/fceb1sI0f21adHtnXfeyZ133tnqa2+99dYJf1+3bp1LbV555ZVceeWVbQlHiE5FU2vGuH8nAFVpHTcdFFG5g5EHngMgY/BfqTQNduv+nLiL0VurGL3/Pww/vAiLXyiHkq7xWHw1Q9NAq8WWm4v12DH8ZJG8EMINcpaQEB5mytyCyumkISEFa3SvDulTb6ngrB0PolYcZMdeyOGEq9rUzsHk37G7b9P07uh9/yap4Osz3OE6p8Ef/xEjAKhLT/dYu0KInkESFiE8zLStae1VVdpZHdOh4mTirocIsJRQHZjMT0Mfbdf6k9197+Rg4hxUKEzY9TCxpZs8FmrghKbDECVhEUK4q01TQkKI1qkbGwjekwF03PqVIUdeI7ZsM3a1gR9Sn8WuDWxfgyoV2wY/jN5WTVLhN0zecT/fjnmN8tAR7Y51s6k3/YHKjZvZkJ4Natd/Z7p2XGK7+xdCdF0ywiKEBwXv2oraZqMxOo7G+GSv9xddvoVhhxYBsHXI36g29vNMwyo16cP/TWHERLSOBqZl3Elw7dF2N1vXewAOgz/aWjP+x7I8EKgQoqeQhEUIDwo5XiyuOm2SZ7cFt8LQWMrEzL+gxsmR+MvIij91LaS2cKp1bEh9jjLTcPQ2M6k/P9P+RrVaagcMA8C4d3v72xNC9BiSsAjhISqrleCdWwCoGu3d9Ssqp51JO/+Mv7WcSmM/tg1+yCv9OLQBpI/4NwoqepVuwFRzqN1t1gxJBcC4b0e72xJC9BySsAjhIcZ9O9A0NmANjaA+pb9X+xp2eBHRFduwaQL4IfVZHBp/r/VVE5jEseim4zQGZb3V/vaGjAIg8MAeVDZru9sTnVtycjIqlYobb7zR16H41D//+U9UKpVL5+55y4033ohKpSI5OdlnMbSHJCxCeIjpeHXb6rSJbi0mdVdw7VGGHHkdgC3DHqMmMNlrfTXb3/smAJILVhLQ4NrJ7KfS2CsJmykUjdVC4JGfPRGeEKIHkIRFCE9wODDtaNqq6+3dQf1zlqJCIS9qGrmxF3i1r2blIcMoDhuDWrEzIPud9jWmUlEzeCQAxr0yLSSEcI0kLEJ4QNDBPehqqrEHBVPbf5jX+tHZakjJ/xyAA8nXea2f1uw7PsrS99hH6GzV7WqrZvDxdSySsHR72dnZKIpyUhV0IdwlCYsQHtB8dlD1qAmg0Xitn975K9A5GqgK6kNxWMceIFgYcRZVQX3ROerpl/thu9pqXngbkHUAdX2dJ8ITol2a13f09LU2nZkkLEK0l6IQ0nzYoTfPDlKc9M9ZBsDBxLle3zZ9EpWKfb1vBmBA9ruoHZY2N2ULj6IxJh6V00nQz7s8FaEQohuThEWIdvLPPoxfRRkOvYGawaO81k9s2SaM9blYtUaye13itX5OJyf2AuoMMfhby1umptqqZR2LbG/uEgoKCvjrX//KqFGjMJlM+Pn5ERMTw7Bhw5g7dy5vvfUWZrP5pPtc2SVks9l4/vnnGTNmDEajkZCQEEaPHs1zzz2H1WolOzu7ZYdNd5laqqqq4tFHH2XIkCEEBQURFhbGtGnTeO+991y632q1snjxYi6++GJ69eqFXq8nKiqKtLQ0/vCHP7Bx40YURXE7rm+//Raj0YhKpaJ///7k5OS43Ya3SGl+IdopZHvT7iDz8DEofn5e66d5dOVo/Czs2gCv9XM6ilrHz8nXk/bzUwzKepujCZejqNo2BVYzJJXI776UdSxdwMaNG5k5c+ZJCUlxcTHFxcXs2bOH999/n4iICGbOnOlW21VVVZx//vn89NNPJzyfkZFBRkYG77//Pq+++mq730NnkpWVxXnnnceRI0danqurq2P9+vWsX7+ezz77jGXLlqHVtv4RnZmZyeWXX05W1onVoktLSyktLWX79u0sXLiQrKwst7Ywf/rpp8ydOxeLxcLIkSNZtWoVUVFRbXqP3iAJixDtZDqesFSP8t50UFBdLnGlTYcqHkyc67V+XHEk4QqGHnmF4PocehV/T17M9Da1UztoBIpKhX9BLtrKcuyh4R6OVHiCxWLhmmuuwWw2YzQa+f3vf8/ZZ59NVFQUNpuNnJwc0tPT+fjjj9vU/jXXXNOSrEyYMIF77rmHfv36UVpayrvvvst7773H/PnzPfmWfG7OnDlkZWUxf/58rrzySkwmE7t27eLJJ5/k4MGDfPTRR8TGxvLCCy+cdO++ffuYPHkytbW1AFx22WVcc8019O7dG4fDwYEDB1izZg2ffvqpWzEtWbKE2267DYfDweTJk/niiy8wmUweeb+eIgmLEO1gzcnBPy8bRaPBPGKM1/rpn7sMFQoFkWdRG+jbQwDt2gAOJc5h6JHXGHz0TfKiz23TehpHoJH65H4EZh3EuG8HlZPalvgI79q0aRMFBQUALF269KQRlHHjxnH11Vfz3//+l/r6erfa/vTTT1m1ahUAs2bN4uOPP0bzq0XrF1xwAampqTz44IPtfBedy9atW1m6dClz5/7yy8fo0aO56qqrmDx5Mjt37mThwoXcdtttDBt24q7D6667jtraWtRqNe+99x7XXHPNCa+PGzeO66+/nvLycgICXBuJffrpp/nTn/4EwEUXXcRHH32Ev7/3ilG2laxhEaIdar79rum/A4fjCDR6pQ+tvZ7eeZ8BcCDpWq/04a4DSb/DofYjono3URXb2tyOt7c3K4qCs76+Rzzasl7BFUVFvxQKnDJlyimv02q1BAcHu9V281SPwWDg1VdfPSFZafbAAw8wapT31ob5wsyZM09IVpoZjUYWL14MgNPp5JVXXjnh9VWrVrFjR9P3yt13331SsvJr4eHhLiUdDz/8cEuyMnfuXD777LNOmayAjLAI0S41334LeHc6KLngS/zstZgDkiiM8G5ROldZ9OEc7TWbfsc+YFDWEkrC2za6VDMklZivljclLIri8Z1PSkMDB0alebTNzmrA9gxULv5G7Y7Y2NiWPy9ZsoR7773XI+3a7XY2bNgANI2kREdHt3qdSqVi3rx5bN/efQ7LvOmmm0752tixYxkyZAh79+5l7dq1J7z21Vdftfz5/vvvb1cMTqeTO++8syVpvPPOO3nppZd8enTAmcgIixBtZC8vp+H4D9Hq1PHe6URRWhbbHkq6BlSd51t2f8oNxw9F3Iip5mCb2qjrNwSnzg+/qnL0hcc8HKHwhLPOOovevXsDcN999zF27FieeOIJNm/ejNXa9rOgjhw5QkNDAwBpaadPKkePHt3mfpqtW7euZadRa4+3334bgLfffvu012VnZ7c7ljFjTp/gjx3bVGPp0KFDJ3yNm0dXEhMTSUpKanP/druduXPntiQrjzzyCAsXLuzUyQrICIsQbVb7/fegKNSl9McW7p2V9NEVPxFSexibxp+jvWZ5pY+2qg1M5FjMdBKL1jD46Fukj/i3220ofn7U9RuMcV8mxr07sMR5dn2Oyt+fAdszPNpmZ6Xy0jC+Tqfjiy++4Morr2T//v1s3bqVrVu3AuDv78/UqVOZN28ec+bMaXVK51QqKytb/nymnSiRkZFtC76TOtP7bR5tUhSFysrKlr+XlZUBJ456tUV+fj4ffPAB0LRm5V//+le72usokrAI0UY1a5ungyZ4rY/+OUsByOp1KTadd9bItMe+lJtJLFpDUuHX7Ox/N/X+7v8grRkyqilh2beDsvM8m5SpVCqvTJP0NIMHD2b37t188cUXfPHFF6xfv75lhOSbb77hm2++4dlnn2XlypWdahvsr40ZM4bdu3ef8vW//e1vrFixglmzZp32A7xXr17tjuVMIxlnWo/U3pGQ6Oho+vbty6ZNm1i5ciXPPPMMf/zjH9vVZkeQhEWINnDW1VG32bvbmQMaCuhVvA7w/VbmU6kIGUpR2FhiKn5iYPY7bB/0Z7fbMA9JJe5DMO7fCQ6HV482EG2n0WiYPXs2s2fPBqCwsJCvv/6aRYsWtdRMueOOO1zeThsaGtry55KSktNeW1pa2ua4mwUGBjJ06NBTvh4SEtLy39Nd5wnFxcUkJCSc8vXmr4dKpTrh6xQREQHQsmurrQwGA19//TXnn38+6enpPPjgg2g0Gu677752tettnWdCXIgupPaHTShWK7qkRBp7tX0u+XT65S5HjZOi8HGYjX280ocn7D9+KGKfNh6K2JDUB3tgEJqGegKyD3k6POElsbGx3HzzzaSnp7fs4vnyyy9b1qWcSZ8+fTAYDABs23b6nWZner2raZ5SO9Pr/fr1w+9XxSibv865ubntrkBrNBr55ptvGDduHNC0iPell15qV5veJgmLEG1Q823T6n3judO9cqaPxtFI32NNhbg6y1bmUymMmESlsT86RwP9c5a734BaQ+2gEQAY93afnSA9hU6nY+rUqUDTYs6qqiqX7tNqtS3bpFetWkVxcXGr1ymKwjvvvOORWDuL5gW+rdm2bRt79uwBYPr0E2sTXXLJL0dyPPfcc+2OIzg4mFWrVrUsAr777rt5+eWX292ut0jCIoSbFJuN2nXrATBOP9crfSQVfI3eVk2tfxwFUVO90ofHqFTsT7kRgD55nzRtT3aTt+uxiLbbuHEjhw8fPuXrVquV9eubvh+CgoLcWiB7xx13ANDY2Mgdd9yBw+E46Zpnn322W21pBvj8889bFr3+Wm1tLbfffjsAarW65evTbPr06S07ql588UXef//9U/ZRUVHh0miXyWRi9erVLe3eddddvPbaay6/l44kCYsQbqrfuhWn2YwmPBz/ESM834GitCy2PZQ4p81n9XSkYzHTsWv8CWrIJ8y8z+37a4Y0DXUHHt6PytLo6fBEO3z77bcMGDCAadOm8d///pdVq1axfft2Nm3axJIlS5g8eXJLQnHrrbee8vyb1lx++eXMmDEDgBUrVjB58mQ++OADtm/fzqpVq5g3bx4PPvhgyzZfaP+C085g9OjRXHvttdx11118//33ZGRksGTJEkaPHt2ydfmuu+5i+PDhJ937zjvvEBQUhNPpZO7cuVxxxRV8+OGHZGRk8NNPP7F06VJuuukmkpKSTjlq9VshISGsWbOG1NRUFEXhjjvu4M033/Toe/YEWXQrhJuadwcZzzkblRcWiEZUZRJW8zN2tZ4j8Zd7vH1vcGj8yY+cQlLRKhILV1FhGuLW/ZboOKzhUfiVlxB0cC81w3pGsbeuwul0thzMdyqXX345TzzxhNttL1++vOXww/T0dNLT0094PTU1lUWLFrXUYmle99KVffDBB5x77rksWrSIRYsWnfT6FVdcwbPPPtvqvYMGDWLdunVcdtllHDt2jE8++YRPPvmk3TGFhoayZs0azj33XHbu3Mltt92GRqPhhhtuaHfbniIjLEK4QVGUluq2Qed6ZzpowPHRley4i7H6hXilD2/IjWn6TTmxaLX700IqFTWDRwJg3CfTQp3Jn//8Z1auXMn999/P+PHjSUxMxGAwYDAYSE5OZs6cOXz11Vd8/PHHbUomQkJC+OGHH1iwYAFpaWkEBQVhNBoZOXJkS4G6X9d36WwH8rVFSkoKGRkZPPzwwwwaNIiAgABMJhNTpkzh3Xff5aOPPjrtSFVaWhoHDhzghRde4JxzziEqKgqdTkdMTAxpaWnce++9pKenu3VSMzSV81+7di3Dhg3D6XRy88038+6777bz3XqOSvHWARQdzGw2YzKZqK6udvs8CyFc1bB7D9lXXYUqIID+6ZtR6/Us3ZLrsfb9G0uYte581IqdlZM+pCp4oMfa9jaNo4Ervp2K1tHANxOWURHi3tbQ0PTvSH7lSeqT+nLg8YUnvX7tuF+KyjU2NpKVlUVKSkq3+I1bnN67777LvHnzADh8+DB9+nTeXXM9WVu/L139/JYRFiHc0Lw7KGjyZNR6vcfbTyr8GrVipzRkZJdKVuCXaSE4PsripuaFt/65R9DUuL89WnRfy5Y1HU8RGRnZckyA6HkkYRHCDbXHp4O8tTsooagpIcqJu9Ar7Xtbbuz5ACQWrXJ7WshuCqUhPhmVojQVkRM9Qn5+/ml3s7zxxhusXLkSgOuvv75bLLoVbSMJixAusmZnYzl0GLRago7Xj/AkQ2MpkVWZAByL9k5C5G0FkWdh0/gT1FBAWPVet++X7c09z5o1a0hKSuKee+7hk08+ISMjg61bt/L+++9z2WWXceuttwJN5eT/+te/+jha4UuyS0gIcGkdStTKj+kFmAcMY/nP1YBnpy3ii78DoCxkOA2GaI+23VEcGn8KoqaSVPgNiUWr3F7HUjMklajVn0rC0sOUlpby4osv8uKLL7b6emxsLF999VVLaXrRM8kIixAuMm1v2m7prbODEoqbpoOORU8/w5WdW05M87SQ+7uFagcMQ9Fo0JcW4lda5I3wRCczc+ZMXn75ZWbNmkX//v0JDQ1Fq9USERHB5MmTeeqppzhw4ACpqam+DlX4mIywCOECbXUlgYebCqJVp473ePt+1mqiK5rOD+mq00HNCn81LRRevYfykGEu3+v0D6AuZQBBh/cRtH8nFZExXoxUdAYRERHMnz+f+fPn+zoU0cnJCIsQLjDt+BGVolCX0h9beJTH2+9Vsg614qDS2J/awMQz39CJOTQG8qOmAccX37qp5VwhWXgrhPgVSViEcIFp+2YAqkdN8Er73WU6qFlLEblC96eFao4nLEH7d7bpXCIhRPckCYsQZ6BuqG+pvuqN9Staez2xZU0J0bGYrj0d1Kx5WiiwsZDw6t1u3VvXbzBOrQ6/yjL0xQVeilAI0dVIwiLEGQTvyUBts9EYHUdjrySPtx9buhGN00pNQCLVQf083r4vnDAtVOjetJDip6eu7yAAgvZnejgyIURXJQmLEGdgyjg+HZQ2CbxQtCqxZTroXK+07yu57dktNNC1dSzd5GQRIboFb38/SsIixGmo7DaCd24BoDrV8+tX1A4LcSUbADgW0z3WrzQrjJyETRNAYGMR4VW73Lq3ZR3Lz7taTXbU6qYfXU6ns/2BCiE8wuFwAL98f3qaJCxCnIZxz3a09XXYQsJapik8Kab8R3SOeuoM0ZSb3Cuy1tk1TQtNBdw/W6i+zwCcOj901ZUYCk4u6qfT6dBoNNTV1XkkViFE+9XX16PRaNDpdF5pXxIWIU4j5Kem0Y/KMZPBC781NJ8dlBd9Lqi637fjL2cLrQbF9dEQRedHXb/BwPHdQr+hUqkwGo2YzWaZFhKiE1AUBbPZjNFo9Np5T93vJ6QQHqKyWTHtaKpuWzXW82cHqZx24ku+B7rPdubfKog4q2VaKKKt00KnWMdiMpmw2WwUFBRI0iKEDymKQkFBATabDZPJ5LV+pNKtEKdg3Ns0HWQNCaeu72CPtx9VmYHeVk2jLpTS0O5Zdtyp0ZMfNY3kwpUkFq2mLHSky/fWDB4JH7/dtPC2lbUqAQEBxMfHk5eXR0NDA8HBwQQEBKDRaOREXyG8TFEUHA4H9fX1mM1mbDYb8fHxBAQEeK1PSViEOIXQLU3TQVVjvT0ddDaKuvt+K+bEnk9y4UoSilazfeCDLk991Sf3x6E3oK2rwT8vC0g+6Rqj0UhSUhLV1dVUVVVRXl7u2eCFEKel0WgwGo2YTCavJisgCYsQrTphOmiM56eDUJwtpzPndfGzg86kMGISNk0ggY3FRFTtcn2URaulrv9QgndvOz4tdHarlwUEBBAQEEBMTAw2m012DgnRQdRqNTqdrsNGNCVhEaIVxj3b0TTUYw2N8MruoPCq3QRYSrBpAikK9/xhip2JU6MnL3oaKQVfkVi0yr1poUEjfpWwnJ5KpcLPz68dkQohOjNZdCtEK0KP7w6q8tbuoOJvAciPmoJT0/0/ZE88W8j1EZDmgxCDDuxGOV7jQQjRM0nCIsRvqKxWTNubpoMqx3ljOkghoWgN0H13B/1W87RQgKXErd1C9Ul9sQcEoq2vo3H/z16MUAjR2UnCIsRvBO/ZhqaxHmtYJPW9B3q8/ZCagxgb8rCr9RRGnuXx9jujpmmhpjUobp0tpNFQ138YAPVbfvRGaEKILkISFiF+I+SnjYA3p4OadgcVRk7CrvXuqvrOpGVayM2zhZrrsdRt2eKVuIQQXYMkLEL8ispqadkdVOmFYnHwy3bmnjId1KwwYiJ2jT8BlhJCag66fF/zOpaGbRkoNpu3whNCdHKSsAjxK8G7M9A0NmANj6K+j+eng4x12YTUHsap0pIf5Z2EqLNyavQUh40FIK50o8v3NSSkYA804qyvp3HvXm+FJ4To5CRhEeJXQn5aDxw/O8gLtQXii5p2BxWHj8Wm814J686q4PiaHXcSFtRqagcOB6Buy0/eCEsI0QVIwiLEcSqrBVNm0zoJb5wdBL9sZz7WzYvFnUpzwhJRtROdzezyfc3rWGThrRA9lyQsQhwXvGvbL9NBvQd4vP2AhiIiqnejoCIv+hyPt98V1AXEUx2YglpxEFOW7vJ9zetY6rfvwGm1eis8IUQn1qaEZdGiRaSkpGAwGEhLS2PjxlMP7xYWFnLttdcyYMAA1Go1991330nXvPXWW6hUqpMejY2NbQlPiDZpLhZXOXaKd6aDjo+ulIam0qiP8Hj7XUVhy7TQDy7f09grCU14OEpjI4273Dv1WQjRPbidsCxfvpz77ruPRx55hB07djB58mQuvPBCcnNzW73eYrEQGRnJI488wogRI07ZbnBwMIWFhSc8DAaDu+EJ0SYqq4XgzKbpBm9NBzWv28iLav1MnJ6ieVootmyT69ubVSoCxo4BZHuzED2V2wnLs88+yy233MKtt97KoEGDWLBgAQkJCbz88sutXp+cnMzzzz/P9ddfj8l06kWGKpWKmJiYEx5CdJTgXVvRWBqxRERTn9Lf4+1rHI1EVWwD6DHF4k6lJHT08e3NpYTUHHD5vsBx4wCol4W3QvRIbiUsVquVjIwMZsyYccLzM2bMYPPmze0KpLa2lqSkJOLj45k5cyY7duw47fUWiwWz2XzCQ4i2ajk7yEvTQVEV29A6LdQZYqgO6uPx9rsSp8aPovCm5MOd3UIBY5vuacjMxCnTxUL0OG4lLGVlZTgcDqKjo094Pjo6mqKiojYHMXDgQN566y0+//xzli1bhsFgYNKkSRw6dOiU9zzxxBOYTKaWR0JCQpv7Fz2bs6GB4B1N00HeKhYXW7oJaKpu642EqKspiHB/HYtfSjLaqCgUq5WGzEwvRSaE6KzatOhW9ZsfuIqinPScO8aPH891113HiBEjmDx5Mh988AH9+/fnxRdfPOU9Dz30ENXV1S2PY8eOtbl/0bPVrt+AxmrBEhlDQ3I/r/QRW9b0wdz8Qd3TFZ6wvbnapXtUKhUBx6eFZB2LED2PWwlLREQEGo3mpNGUkpKSk0Zd2hWUWs2YMWNOO8Ki1+sJDg4+4SFEW5hXfQN4bzoosD4PU102TpWG4uNTIT1dXUAvqgN7o1YcxLqxvTlwXFOlXFnHIkTP41bC4ufnR1paGmvWrDnh+TVr1jBx4kSPBaUoCpmZmcTGxnqsTSFa46yvp3Zdc3VbL00HlTWt7yoLGYFNZ/RKH11Ry24hN6aFmkdYGnbvxllf75W4hBCdk9tTQg888ACvv/46b775Jvv37+f+++8nNzeX+fPnA01TNddff/0J92RmZpKZmUltbS2lpaVkZmayb9++ltcfe+wxVq1axdGjR8nMzOSWW24hMzOzpU0hvKV2wwaUhgYskbE0JPf1Sh/NH8gFPXx30G+1lOkv2wSK06V7dPHxaONiwWajfvvpF+YLIboXrbs3zJkzh/Lych5//HEKCwsZOnQoK1euJCkpCWgqFPfbmiypqaktf87IyGDp0qUkJSWRnZ0NQFVVFbfffjtFRUWYTCZSU1PZsGEDY8eObcdbE+LMzF83TQd5q1ic2mkjprxpvUVhxCSPt9+VlYamYdP4428pI9R8gErToDPeo1KpCBw3nupPP6V+yxaCzpKvqRA9hUpRXK3c1LmZzWZMJhPV1dWynkW4xFlXx8FJZ6E0NvLz4wtpSPL8CEtU+Vam/3QzDX5hfHrO96CS0zB+bUrG3cSXrGNnv7vZ2/d2l+4J+2ENSa89TV3vARx89AWX7rl2XGJ7whRCeJGrn9/y01P0WOZvVqE0NuKXlERDondqozTvDiqKmCTJSisKIicDv3ydXNF8EGJA9iHUDXVeiUsI0fnIT1DRY1V99BEApiuv8FptlLjj9VcKImXqojUtpzdXur692RYehSUqFpXTSdCBPd4MTwjRiUjCInoky+HDNOzYARoNIbNne6UP/8YSQmsOoKCiKHyCV/ro6ur946gK6oMap1vbm2sGjQTAuC/TO4EJITodSVhEj1T10ccABJ09DW1kpFf6iDm+nbnCNASLPswrfXQHv5ze7HqZ/pohTQv5jXtlp5AQPYUkLKLHUaxWqlesACDkyiu91k9c2fHpINkddFrN1X9jS13f3lwzeCQA/nlZaKsrvRWaEKITkYRF9Dg1332Po7ISbXQ0QWd5pzaKSnG0jLD09NOZz6Q0dFTT9mZrOaHmn126x2E0UX98V5dMCwnRM0jCInqclsW2l81GpXW7FJFLwqr2oLeZsWqNlJuGeqWP7qLp9ObxgJvTQsdHWYz7ZFpIiJ5AEhbRo9jy86nb1DRVE3LFFV7rp3k6qDBiAoraO0lRd/LLOhY3tjc3r2PZsx26RzkpIcRpSMIiepSqTz4FRSFgwnj8EhK81k9zOf5COZ3ZJc31WMKrduFndW17c13/oTi1OvwqStEXF3gzPCFEJyAJi+gxFIeDqk8+Aby72FZvrSS8uqk+SGGk5w4F7c7q/WOpCup7fHvzZpfuceoN1PVtKucfJNNCQnR7krCIHqNu82bshYVoTCaM06d7rZ+YsnRUKFQa+9FgiPZaP91Ny+nN7lS9le3NQvQYkrCIHqPqw6bFtsGzLkWt13utn9iW9SsyHeSO5nUssaU/uLG9+XjCsj8TnA5vhSaE6ARkNaDoFpZuyT3t61pzFUO//RYVsLn/JBrPcH2bKc6meiL8MmIgXNO0vTkAf2sFoeb9VJqGnPGe+pT+OPwD0NbV4p9zhIaU/h0QqRDCF2SERfQIYT+sQeVwUNdnII0JKV7rJ9R8AH9rOTaNP2WhqV7rpztyqnUURTRtb+7l6vZmjablMMRgmRYSoluThEV0f4pC+IZvACifcr5Xu2qeDioOH4dTrfNqX93RL1Vv3VjHcnxaSBbeCtG9ScIiur3AQ/swFObh0BuoHDfNq301f9AWyPqVNils2d68Gz9rlUv3NC+8DTq4B5XV4q3QhBA+JgmL6PbC138NQNW4qTj9A7zWj85WQ2TVTkC2M7dVvX9My/bmmPIfXbrHEpuANSQctc1G4KF9Xo5QCOErkrCIbk1dX0fITxsAKJt6gVf7ii7/CbVixxyYTF2A94rSdXdFEROApu3hLlGpZHuzED2AJCyiWwvdsg6N1UJDXCL1fQZ5ta/m+iGFcjpzuxRGNI1OxZZtdrnkfkvCIutYhOi2JGER3Vr4+uOLbadeCCqV9zpSFOJatjNLwtIeJWFpOFQ6AhuLCK7Lcume5oW3AdmH0NTVeDM8IYSPSMIiui3/nCMEZh3EqdFSMelcr/YVXJdFYGMhDrUfJWGjvdpXd+fQ+FMaNgpwfVrIHhpOQ1wiKkUhaP9Ob4YnhPARSVhEt9W8lbk6bSIOo8mrfTXvDioJG41D4+/VvnqCE6aFXCTrWITo3iRhEd2SymohdPN3AJRP8e5iW4C4lnL8sjvIE5q/jtEVW1E7rC7d01Kmf1+mt8ISQviQJCyiWwr9cR3a+losEdEtv3l7i8bRSGRFBiD1VzylytifBr8wtI4GIqpcm+KpHTgcRa3GUJSHrrzEyxEKITqaJCyi+3E4iPliGQBl514Cau/+M4+s3I7WaaFeH4U5qLdX++oxVOqW7c2uTgs5AwKp6z0AkGkhIbojSVjOQFEULDVVvg5DuCEs/Tv0JYXYjKamhMXLmj9QCyMmencnUg9TdHxaKMaNdSy1g2V7sxDdlZzWfAYbnnwA1Ypvyf7L02hjB7p9/7XjEr0QlTglh4Poz5tGV0ouvBKn3uD1Lps/UItk/YpHFYY3jbCEmfejt1Rg0Yed8Z6aIanEfL60aR2LokgCKUQ3IiMsp1FbXY5qxRoiK230/3/3Yz/8k69DEmcQ+uM6DMX52IOCO2R0xdBYSmjNIRRULScNC89oNERSaeyPCoWY8i0u3VPXZyAOPz266koM+TlejlAI0ZEkYTmNIFM4ie/9j2PRWkx1ToY89Q/su1b7OixxKk4HMV8sBaDkgitwGry/vTi2vKlOSIVpMBa/UK/319MUujktpOj8qBswDADj3u1ei0sI0fEkYTmD5N6jyH3kZQ4lGQiwKIxY8AyOzct9HZZoReiWDRgK87AHGimdfmmH9Bnz6/UrwuNOWHjrapn+wSMBWXgrRHcjCYsLAkyJlD38JrsGGvFzwKjFb+Jc/aqvwxK/5nQQ/fnx0ZXzL/fqqcwtFGdLJdai4+sthGeVho7CrtYTYCkhuPaoS/fUDGmqkht0YDfY7d4MTwjRgSRhcZHBEE7Dg2+xJS0CtQJp732C+sMnXP6tT3hXyNYf8C/IxR4QROl5szqmz5qD+FsrsGn8KQsd2SF99jQOjYHSsDTA9e3NDQkp2IwmNI0NBB494M3whBAdSBIWN/jpglDftYT105p2/oz4ch1+b/4VnE4fR9azKU4nMSveA6B0xmU4AwI7pN/mD9CSsLE41boO6bMnainTX+7i9ma1mlqZFhKi25GExU1ajR9BN77CmkuHADBkQyaBL9wFNtfKhwvPq1mzFv/8HOwBgZTOmN1h/f5Sf0Wmg7yp+esbVb6tDWX6ZeGtEN2FJCxtoFZpCL/8Gb6+diJ2NfTfcZSQp25F1VDn69B6HMXppGzRIgBKz5uNIzCoQ/rVOBqIrGj6MJQFt95VHdSPBn0EWmcjkVWujZg0H8cQeORn1A313gxPCNFBJGFpI5VKRcz5j7L61oto1EHKwWKiH7sedXmhr0PrUWq+/RbLgQM4DAEdOroSVbENjWKjzhBLTWByh/XbI6lUbm9vtkbGYImMReVwNC2+FUJ0eZKwtFPspHv59p7rqAqA2MJakh+9DfXRXb4Oq0dQFIWyRS8DUHreLBxBwR3Wd8t0UKSU4+8IzbuwYo/vynJF8yiL1GMRonuQhMUD4obPI/0vD5IXocZUY2Pgv/+Mbus3vg6r26v9/nss+/ejDgig5ILLO7Tv5u3MheEyHdQRmqsIN5XpL3fpHvOw0QAE75QK1UJ0B5KweEhM8nn8/MhT7OmtQ29TGPzScxi+XIwi2569QlEUyhY2rV0J/d3vOnR0xb+hiJDaIzhRUxw+rsP67cka9RFUGJvO8oop/9Gle2qGpOLUaDEUF2DJyvJmeEKIDiAJiweFhw2j/M+L2TgqGDUw6MOPyfzLnShSvMrjatevp3HvXlQBAYTdfFOH9v1LOf6hWP1MHdp3T3ZC1VsXOP0DqB3YVKa/dv16r8UlhOgYkrB4WLB/HNq73uSLC+JwAobP15Fx/eU4amt9HVq3ccLoytxr0IZ27Bk+LdNBsp25Q/2y8Dbd5YKN5hFjAahdJwmLEF2dJCxeYNAaiZmzmA+uG06jDgK3H2L7ZRdgzcvzdWjdQt2GDTTu3o3K35/wm2/u2M5/XY5ftjN3qNLQVOxqAwGWUky1h126p3pk05Rd/bZt8kuDEF2cJCxeolXr6D/9SXY8egUVQRB0rJw9l8+kZsc2X4fWpTlqayl6/P8BEHrNNWjDwzu0/1Dzfgy2KmyaQMpChnVo3z2dU6OnxM0y/dboXjTGxIPdTt0mFyvlCiE6JUlYvEilUnPzlf+iZMED5ESp8DdbyL7uegree1sW47ZR8RNPYMvPR9erFxF33dXh/ce2HHY4FkXK8Xe4E6aFXNQyLSTrWITo0iRh6QCXnXUbAa89x7YBWrQOher/9x8O/fk+nBaLr0PrUmq++47qjz8BlYq4J/+DJqhjzgz6tebf7GU6yDeav+5RFdtQO1z7/qn+VcKiyLlfQnRZWl8H0FNMGXA+P7+ZxIrHbmDmGjN8sZp9Bw4y4OXX0fXq1eo9S7fktrm/a8cltvnezsheUUHh3/8BQNjNNxEwenSHx6C11xNR2VQavjBiUof3L6A6qA/1+igCLCVEVm6n2IWFz3UDhqIODMRRXk7j3r34D5OpPCG6Ihlh6UADwwdyy5NfseyOvpj9QXMwm59nX0rtpk2+Dq1TUxSFokcfxVFejr5fPyLvuccncURVbEWj2Knxj6c2MMEnMfR4KlXL7ixXq94qWh2Bk5oSTNktJETXJQlLB4vwj+Dvd3/EmkdncCQGtDX15N56GyWvviLrWk6h+rMV1KxZCzodcf99CrVe75M4ZDqoc2j++ru68BYgaOpUAGrXrfNGSEKIDiAJiw/oNXoembWA4mfu5dsRKlSKQvlzz5P9hztl6+Vv2PLzKf7XvwCIvPtuDAMH+iyW5oP35HRm3yoKbyrTH1pzAIOlzKV7gqZOAaBx715sJSVei00I4T2yhsVHVCoVt6TN59un+vHmC39k3jcW+HYdh664jJSFL6Pv29fXIXa4k9bsOJ30ffIvGOvqqO07mB3DpkM71vW0R0BDAaa6bJwqDcXhY3wSg2hi0YdRETyIMPN+YsrSye51yRnv0UZEYBg2jMbdu6nbuJGQK67ogEiFEJ4kIyw+dm7SudzyyPs8f1sUZUZQcvI4csUVVC5b5nI1z+4qcvVnGH/ehUNvIOf2P4Fa47NYmtdLlJuGYdN13LlFonXNi57jSje6fM8v00KyjkWIrkhGWLzMtZ0+AYwb8zzPBf+Tqz84yIhsK0WPPU7v4WPIveUB7CFhXo+zszHkZRP30ZsA5M+9HWt0nE/jkemgzqUg8iyGHH2dmLJ0VIoDRXXmZDZo6lTKXnqJuk2bcFqtqP38OiBSIYSnyAhLJxGkDWP2oKdZcdt5LJmuxqoB066tDHzkDkzbe1aFTpXdRtLi/6K22agePobyaRf5Nh7F0XJCcJGcH9QplIWMwKo1YrBVEVa916V7DEMGo4mMwFlfT8M2qTgtRFcjCUsnolX7MbPXA9gv/j0P36QjOwp0tWZ6P/8YCW8+h7qxwdchdoiYFUsJyDmMPdBI7i33g0rl03jCqveht5mxao2Um4b6NBbRRFFrKYpoWnwbV/qDS/eo1GqCpjQtvpWqt0J0PZKwdDIqlYrRYZcyJe0//N/N4awYp8IJRKz/hoF//z0Bh/f7OkSvCji8n+gv3gfg2I33YA/p2LOCWtM8HVQUPh5FLbOonUVBxFkAxLqYsMAv61hqZHuzEF2OJCydVELAUOb1fYHvLxrC49eqKQsGfUkh/f/vAWI+fQfsdl+H6HEBRw/Qe8GjqBQnFRPOpmrsFF+HBPxS76NQpoM6lcLIpoW34dV70FsrXboncOIk0Omw5eRiycryZnhCCA+TXxc7MaMugt8l/oe1hld5MHolt6xyMnmfk9jP3iV4508cu+FuGlL6+zrME7T1OAHjngz6vvA4Gksj9cn9yJv3Bw9H1jY6Ww0RVTsBWb/S2TQYoqk09ie05iAxZZvJibv4jPdoggIJHDOaus3p1K5fjz4lpQMiFUJ4QptGWBYtWkRKSgoGg4G0tDQ2bjz11sLCwkKuvfZaBgwYgFqt5r777mv1uo8//pjBgwej1+sZPHgwn376aVtC63a0ah0XxPyBacn3smi2nucvVVOvVxGYdZABj91DwpvPoTVX+TrMdglN/57ez/4DjaUR85BUDv31KRyBQb4OC2g6FVitOKgO7E1dQLyvwxG/URDZNC3k6joW+NX2ZlnHIkSX4nbCsnz5cu677z4eeeQRduzYweTJk7nwwgvJzW39N2uLxUJkZCSPPPIII0aMaPWa9PR05syZw7x589i5cyfz5s3j6quvZsuWLe6G122NCDmf6xKfYteISO6/Tc0PQ7WoFIWI9d8w6C+3ELFmBTgcvg7TbZGrPyP5lf+gdtipHDeVo/c/jtM/wNdhtWiu81EQNdnHkYjWFDavYynbDIprJzE3Jyz1W7dJZWkhuhC3E5Znn32WW265hVtvvZVBgwaxYMECEhISePnll1u9Pjk5meeff57rr78ek8nU6jULFizgvPPO46GHHmLgwIE89NBDnHvuuSxYsMDd8Lq1OP8B3JT8PMbo4bxwCfx9noaiuGC09bUkvLuIgf+4i6Cfd/k6TNcoCrEfvUX8e03/bkqnX0r2/L+i6DpRbQzFSVxZ02/uzQs8RedSGjoSmyYQg7WCMLNrC9L9kpPxS0oCu526TT2rZIAQXZlbCYvVaiUjI4MZM2ac8PyMGTPYvLnt3/jp6ekntXn++ee3q83uKlAbytyE/2Ni+BwOxKu4d14d718cjS0wEP+8LPo98SeSFz2BrajI16GemsNBwpIFxHyxDICCK24g77o7Qd251oCHmn/G31KGTRNAaegoX4cjWqGodb/a3uxG1dtp0wCZFhKiK3HrE6KsrAyHw0F0dPQJz0dHR1PUjg/IoqIit9u0WCyYzeYTHj2FWqVhauT1zIl/HIPOxCfDy7nndhWHzhqNolITumUdRy68iLJXXu10Q94qq4WUl/5FxPpvUFRqcm+6l+JLr/V5rZXWNH8AFkWMx6npRCM/4gQFx8v0u7W9edov61gUp2tTSUII32rTr7Sq33y4KIpy0nPebvOJJ57AZDK1PBISEtrVf1fUOyiNm5NfJN5/COWGRh6ZnMlb90ylpt9glIYGShcs4PDUaRQ/8QTWY8d8HS6aulr6PP0IIds349TpyPrD33xexfZ0WtavRMr6lc6s8Pj/n/Cq3fhZq126JyAtDXVgII7ychr3ulYpVwjhW24lLBEREWg0mpNGPkpKSk4aIXFHTEyM220+9NBDVFdXtzyOdYIPZF8I1kVwbeK/GR92JQBfB2zkkd85MTz+V/x698ZZV0fF2//jyIzzOXbXH6jb8hNKBx+qqG6oI3LVJwz8++8xHtiNwz+AIw/+m+rRkzo0DnforZVEVDWtB5L1K51bvX8MVUF9UeMkpjzdpXtUfn4ETmr69yeHIQrRNbiVsPj5+ZGWlsaaNWtOeH7NmjVMnNj2Q+EmTJhwUpurV68+bZt6vZ7g4OATHj2VRqXl7KibuCr+UQxqI0WWw/zO/irZC+8j4bXXCJwyGRSF2m+/JfeGG8iafRlVH3+C02Lxalx+pUX0WvoqQ++7jvilr+JXXoI1NIJDDz9N7cDhXu27vWLKNqNCodLYnwb/GF+HI87gl+3NbTi9WdaxCNEluF047oEHHmDevHmMHj2aCRMmsHjxYnJzc5k/fz7QNPKRn5/P//73v5Z7MjMzAaitraW0tJTMzEz8/PwYPHgwAPfeey9TpkzhySefZNasWaxYsYK1a9fyww+uz0kL6Bs0lptTXmBFwZPkN/zMfRseYFTITM656U8EXXg9kWtWEPbDGiwHDlD4yCPk/ucpys++mOoRY2lI6tOyQ+facYltD0JRCDy8j8hVnxKybROq41tNG+ISKZ1xGRWTzkXx03vi7XqVTAd1LYURkxic9RaxpZuatjerzvy7WNCUpv+3jXv2YCspQRcV5e0whRDt4HbCMmfOHMrLy3n88ccpLCxk6NChrFy5kqSkJKCpUNxva7Kkpqa2/DkjI4OlS5eSlJREdnY2ABMnTuT999/nb3/7G3//+9/p06cPy5cvZ9y4ce14az2TSRfF7xKfZH3p22yp+ITtVV+SW7+bWXF/wnLD3RReeSPh678hcs0K/CpKifl8KTGfL8Wp01Gf1Jf6voMwV07BPzUVXbTrP8AVu52a1avp/9JiAo8eaHnePGQUJRdcTs3QtE63C+hUVIqj6YMPSVi6itLQUdg0/vhbywk1/0ylafAZ79FGRmIYOpTGPXuo27iRkCuu6IBIhRBtpVI6ekGDl5jNZkwmE9XV1R6fHmpruXlfO1q3nS8LnqXOUYlGpePsyJsYHXpp02Jmh4OQjE2Epn9H4KF96GpOXqyojYslYORIDMOHo9LqcJircVabcZjNOGrMv/zZbMZRVYXS0HSatFOno3LCOZTMuIzGhK5X+jy8cifn/3gdVq2Rj8/dIAcedhFTMu4mvmQdmf3vYV+f21y6J+bTd4n97B2q0iaRdc8/Wr2mXSOOQogzcvXzW34Sd2O9A0dxa8pCvipcwOG6n1hbspijdRnMjL2fQG0oVWOnNB0wqCj4lRQQeHg/gYf3E194BMuBA9gLCjEXFGJe+bVL/WnCwsibcjFl587EHhzi3TfnRc3TQYUREyVZ6UIKIicTX7KOuNIfXE5YqkdNIPazdwjetRV1Qx1O/0AvRymEaCv5adzNBWhNXBn/D7ZXfcV3JW9wtC6D17P+wMWx99E3aEzTRSoV1uheWKN7UTlpOlPGJeKoraNxz24aMjObtn2qNWiCg1EHG9EEm9CYgo///fifjUZ0cXFs29GJC9a5SNavdE2Fx+uxRFTtRGczY9OdeaS1IbE3jbHxGArzMG1Pp3LSdG+HKYRoI0lYegCVSkVa6EwSA4axouApSi3ZfJj3T9JCL+GcyJvRqk8sitYyBaaKg9Q4SD1DrZT644/irp+sGCxlhJv3AVAY2Xm3XYuT1QX0ojowBVNdFjFl6RyLPf/MN6lUVI6bRuxn7xK6Zb0kLEJ0Yl1jFaTwiEh9EjcmPcfo0FkAZFR+wVs591HSmOXjyDqP5mqp5aYhNOojfByNcFdh8/bmsk0u31M5rml7c/CeDDS1PadithBdjSQsPYxW7cd50bdzdfxjBGhCKLXksCT7PtLLP8CpdL3Tnj1NpoO6tuZ6LE3bm13bT2CJS6Q+sQ8qh4OQrVJKQYjOShKWHqpP0GhuTVlIv6DxOLGzrvRt3sn5M+XWfF+H5jMqp43YsqZKqZKwdE0loWnYNf4EWEoIqTno8n2V46cBEPrj916KTAjRXpKw9GCB2hCu6PU3ZsY+gF4dQEHjz7yZdTdbKz5HUXregXARVTvxs9fQqAulwjTE1+GINnBq9BSHNS0md6fqbfO0UNCB3Wgry70SmxCifSRh6eFUKhXDTOdya8oikgNGYlcsrC15laXHHqbKWuzr8DpUy3bmyEkoKo2PoxFt1TIt5MY6FltENLV9B6NSFEJ/klL9QnRGkrAIAIJ1kVyT8C/Oj74TnUpPbv1u3si+i51Vqzr8sERfkfUr3UNzwhJZmYnWVuvyfb9MC63zQlRCiPaShEW0UKlUjAq9mFtSFhLvPwSrs4GVRS/wYd4/qbF172HygIYiQmsO4URNYUTbD/IUvlcXkIA5IAm1Yiem/EeX76saOwVFpSbw6AH8Sgq9GKEQoi0kYREnCfWL5XeJT3BO5C1oVDqO1G3jtazfk9mNR1tij4+ulIcMx+oX4ttgRLu1bG8udX3Xj90USs3gEQCEblnnjbCEEO0gCYtolVqlYVz45dyc/AKxhv5YnHV8XfQCy449QqW1+/32KdNB3csv61h+cHl7M0DluGkAhP4o61iE6GwkYRGnFaFP5Pqkpzk36la0Kj059Tt5PesutpR/0m3qtqgd1papA0lYuoeSsNHY1XoCG4sx1R52+b7q0ZNwarT452VhyMv2XoBCCLdJwiLOSK3SMDbsMm5NWUhSwAjsioXvSt/g7Zw/dosquZGV29E5GqjXR1IZPNDX4QgPcGgMlISNBtybFnIEGjEPb7pPFt8K0blIwiJcFuoXy9yE/+OimHvQqwMpajzEkux7WV/6Dnanzdfhtdkv25nPApXKx9EITymImgJArxL3isFVNU8LbVnn1nSSEMK7JGERblGpVIwIOZ/bUl6mf9AEnDjYXP4+b2bfTV79Pl+H1yayfqV7yos6B2ja3mywlLl8X/WoCTj89OhLCgnIcr1arhDCuyRhEW1i1IVzRfzfuCzuYQI1IZRbj/FO7p9YWfgC9Y6uc4BcYP0xTHVZOFVaisLH+zoc4UH1/jGUm4aiQqFXseujLE69AXNq078F2S0kROchCYtol4HBk7it9ysMN50HwM7qVSw+ege7qtZ0iS3QzesbSkNTsemMPo5GeNqx6HMBSCj+1q37movIhWzZgOLsecdUCNEZScIi2s1fY+Ti2Pu4LvEpIvVJNDjMfFW0gPdy/0KpJcfX4Z2WTAd1b3nRTdNC0eVb0NlqXL7PPGw09oBA/CrLaMjI8FZ4Qgg3SMIiPCYhYAg3Jb/A2ZE3o1PpOdawlzez7ub7kjexOht9Hd5JNI5Gost/AiRh6a7MQb2pDkxBo9iJK93g8n2Kzo/qtEkAVH/1lbfCE0K4QRIW4VEalZbx4VdwW+9XWhbl/ljxMa8dnc+hGtfLpHeE2LJNaJ0Wav3jqA7q4+twhJfktXNaqOabVSi2rrsLTojuQhIW4RUmXRRXxP+NK3v9A5M2CrO9lI/y/x8f5T3eaSrlJhStBY5/oMl25m6reR1LbOkPaByuj/TVDBqJLTgER1UVdT92rmRbiJ5IEhbhVf2M47i198tMCLsKNRoO1W7htazfs770bazOBp/FpXZY6VWyDoDcmBk+i0N4X4VpCHWGaHSOBmLK3Eg8NBqqxjRNFZq/lGkhIXxNEhbhdX5qA9OibuSWlJdIDkjFodjYXP4Bi4/ewd7qdT7ZTRRT/iN+9lrq9VGUhQzv8P5FB1KpWqaF4ts6LbR2LU6LxdORCSHcIAmL6DAR+kSuSfh/XNHrb4Tooqmxl/N54X95N/fPFDW6ft6LJyQUrQHgWMy5oJJvg+6ueVqoV8k6VE67y/fV9R2MNjYWZ10dtevlQEQhfEl+UosOpVKp6G+cwG0przA14np0Kj15DftYkn0fXxe+QL292vsxOG3EHy/Xfiz6PK/3J3yvNHQUjboQDLYqIit3uH6jWk3wRRcCYP5qpZeiE0K4QhIW4RNatR8TI+Zwe+/FDA6eBihkVq/ilaO3sbViBQ7F9d+C3RVdsRW9rZoGvzBKw0Z5rR/ReShqLflRUwFIKF7r1r3BF10EQO3332OvrPR4bEII10jCInwqWBfBrLg/cV3iU0Tr+2Bx1rG2ZDGvHf09B2o2e2V9S/N0UF70uSgqjcfbF53TL+tYvnPrUEPD4MEYBg9GsVqp+vAjb4UnhDgDSVhEp5AQMIQbk5/jwpi7CdCEUGkr4JP8/+Pd3L9Q0HDAY/2oFAcJxd8BcCxmusfaFZ1fUcQEbBp/AhuLCDO7flCnSqUidN48ACqXLUOxe2/0TwhxapKwiE5DrdIwMuQC5vd+jYnh16BV6clr2MvbOQ/wWf6TVFmL291HZMV2DNYKLDoTxWFjPBC16CocGgOFEWcB7u8WCr7oQjShodgLC6n59jtvhCeEOANJWESno9cEMDVyHnf0Xsww03RAxf6aDSzOup3vSt6gweH6mTC/lVB8fDoo6mwUtc5DEYuu4ljM8aq3Re4lLGq9npA5VwNQ+c47Ho9LCHFmkrCITitYF8HM2Pu5Ofl5kgNG4FDsbKn4hFeONC/MdbNcuuJsqW57LEZ2B/VEBZFTcKi0mOqOYqzNcuve0LlzQaOhfts2Gn/+2UsRCiFORRIW0elFG/pwTcL/cXX8Y0T4JdLorGFtyWJePXoHu6u/xak4XGonomoXAZZSrNogisLHezlq0RnZdEaKw8cB7p8tpIuOxjijKdGtePddj8cmhDg9SVhEl6BSqegTNJpbUl7igpg/EKgJpdpWzJeFz/JG1t0crEk/446ixKLVAORHTcOp8euIsEUnlBd9DnB8t5Cbwo4vvjV/8aVscRaig0nCIroUtUpDasiF/L7P60yLvBGDOogyaw4f5/+L/+X8key6na3fqCgt00G5Mh3Uo+VFn4OCiojq3fg3FLl1r39qatMWZ4tFtjgL0cG0vg5AiLbQqQ1MCL+K1JAL2VLxMVsrVlDQeIBlxx4mOWAkUyNvIM6/f8v1YdV7CWwsxKbxpyhiog8jF77WqI+gLGQEkVWZJJR8x8Gka097/dItuSf8PWzSRSTt20f+W++weuh00Jy6ls+14xI9ErMQQkZYRBdn0AQxNfIG5vd5nbTQS1CjJbs+k7dz7ueTvP+j1JID/DIdVBA1FYfG4MuQRSdw7NdF5NxUOXYqNqMJv4pSTNs3ezo0IcQpSMIiuoUgbRgzouc3bYUOPhdQcaB2M69n3cVn+f/BXnZ8OihaisWJX6reRlVsw89a5da9ip8f5dOayvVHrlnh6dCEEKcgCYvoVkL8opkZ9wC3pixkgHESoLC/ZiPXhcODUVHsMiX7OkTRCdQGJlBp7I9acdCrxP1TmMvOmYmiVmM8sBv/3CNeiFAI8VuSsIhuKVKfxOW9HuaW5JcYSzSKSsWqQAOv5P6Rz/KfpMySe+ZGRLf2y9lC7m1vBrCFRVA1uqlqbsSazz0alxCidZKwiG4tSp/MsyWlfJRfSKq2N00jLht4LetOVhQ8JYlLD9a8jiW2bDMae73b95eeNxuAsPTv0NRUezI0IUQrJGER3Zqp9gimumz62mBm0hPcnPwiA4ImAgr7zOt5LetOPst/kpJG96qeiq6vytifWv9eaJ0WYsvcXzxb128w9Ul9UdusRKz/xgsRCiF+TRIW0a0lFDWdHVQUMRG7LohoQ28uj3+Em5NfoH/QBJpHXN7I/gMfHnuMvIb9vg1YdByVqmWUJfH4vxN37y+dMRuAiG+/AIdrFZeFEG0jCYvo1poPO/xtsbhoQx+uiP8bNye/yCDjFEDF4bqfeCfnQd7L/StH67afsXKu6Pqaz5TqVfI92jZMC8kWZyE6jiQsotsy1mUTWnMIp0pLXvS0Vq+JNvRmdq+/cHvvVxlhmoEaLbn1u1l+7O+8lXMfB2o2oSjOjg1cdJiykBGYA5PRORpILFrl9v2yxVmIjiMJi+i2mkvxF4WPw6YznfbacL9eXBR7L7/v8wZjQmehVekpajzMJ/n/5rWsO9lVvdb906FF56dScbTXLABS8tqWcMgWZyE6hiQsottqXr9yLMb1YnHBugimR9/OXX2WMDH8GvTqQMqtx/iq8DkWHbmF9PIPaXTUeitk4QNZcTNRUBFdmUFQ3TG375ctzkJ0DElYRLcUWJ9HuHkfTtTkRZ3j9v0BWhNTI+dxV5+3mBZ5I0HaMGrt5awrfYuFR25kbfFiqqzFXohcdLQG/xiKIiYAkJLftlGWX29x1lbLKc5CeIMkLKJbSi74CoCS8DFY9GFtbkevCWBC+FX8vvebXBxzH5H6JKzOBrZWruCVo7fyWf6TFDYc8lTYwkeO9poNQO/8z6ENa5bq+g2mrvcA1DYrMZ+96+HohBAgCYvojhQnffI+BWhZn9BeWrWO4SHncUvyQubEP05ywEgUnOyv2cBbOffxXs5fOVSzRRbodlF50Wdj1RoJbCwkumKr+w2oVBTMuRWAiHUr0RdIQUIhPE0SFtHtxJT/SFBDPlatsWXbqqeoVCp6B6UxN/H/uDn5BYYGn4MaDbkNu/ko/3FePXoHWytWYHG4v0VW+I5DYyAn9gIAeud91qY2agcOp2rUBFROJ72Wv+HB6IQQIAmL6Ib6HPsEgOy4i3FoDF7rJ9rQh0vi/sjv+7zJuLAr0KsDqbQVsLZkMS8duZ7Vxa9Qbs33Wv/Cs47GzwaadpdpbW1bWF1w9S0oajWmzB8J2p/pueCEEJKwiO5Fb6loOczucMKVHdJnsC6Cc6Ju5g993+b86LsI90vA6mwgo/ILFh+9neXHHuVI7TaZLurkyk3DqA5MQetsJLFodZvasMQmUHb2xQD0WvYailP+nwvhKZKwiG4lpeALNIqdctMQqoIHdGjffmp/RoVexG0pL3NNwr/oGzQWUHG0bhsf5D3K4qz5bKv8QqaLOqtf1WTpnf9Zm5spmn0dDkMAATmHMX/5pYeCE0JIwiK6D0Whz7GPATgSf7nPwlCpVKQEpnJV/KPM7/0aY0Jno1cHUGHNZ03xK7x4eB5fF71IUaMUGetssntdghM1UZU7MNbltKkNe3AIxZdcA0DJcwtwNjZ6MkQheixJWES3EVGViakuC7vGn+zYi3wdDgChfrFMj76Nu/q8zYzo3xPuF49NaSSz6huWZN/D29kPsKt6LTanxdehCqDBEEVR5ESg7TVZAEpmzMYaFom9sJCKt//nqfCE6NEkYRHdRvPoSk7M+dh1QT6O5kR6TQBpoTO5LeUVfpf4HwYZp6BGS0HjAb4qfI6XDl/P2uLXKLfk+TrUHq+lVH/+56iUtp3ArPjpKbjyJgDKFy/GXl7usfiE6KkkYRHdgs5WQ1Jh0+F1RxKu8HE0p6ZSqUgMGMbsXn/hD33fYmrkDZi0UTQ6a9la+RmLs+5gae7D7DNvwO6Us4t8IS/qbCy6YAIbi4ku39LmdionnI1h8GCcdXWULVzowQiF6JnalLAsWrSIlJQUDAYDaWlpbNy48bTXr1+/nrS0NAwGA7179+aVV1454fW33noLlUp10qNR5n6Fi5IKv0brbKQqqA9lISN8HY5LArWhTAy/mvl9Xueq+H/SN7BpkW5O/U5WFDzJi4fnsaZ4MSWN2b4OtUdxavTkxF4ItL0mCwBqNVF//jMAlcs/wHL0qAeiE6LncjthWb58Offddx+PPPIIO3bsYPLkyVx44YXk5rZe2TErK4uLLrqIyZMns2PHDh5++GHuuecePv744xOuCw4OprCw8ISHweC9Ghqie+l77CMAjsRfASqVj6Nxj1qloW/QGK5KeJQ7+7zJxPBrMGrDaXTWsK1yBW9k38Vb2fezo+pr2WHUQZpL9ccXf4fOZm5zO4HjxxF09tngcFDy9DMeik6InkmlKIrizg3jxo1j1KhRvPzyyy3PDRo0iNmzZ/PEE0+cdP1f/vIXPv/8c/bv39/y3Pz589m5cyfp6elA0wjLfffdR1VVVRvfBpjNZkwmE9XV1QQHB7e5ndYs3SJltjuz0Op9XLh5Dg6Vjs/O+RaLX6ivQ2o3p+LgaN12dlWt5lDtFpw0raXQqfQMDJ7MCNMM4v0Ho+piyVmXoShc9MPlhNQeZsuQf3Ak8ao2NXPtuEQsR49y9JJLweEg8e23CRw31sPBCtG1ufr57dYIi9VqJSMjgxkzZpzw/IwZM9i8eXOr96Snp590/fnnn8+2bduw2X6Zo6+trSUpKYn4+HhmzpzJjh07ThuLxWLBbDaf8BA9U5+8psq2x2Kmd4tkBX4Zdbk8/hH+0Pdtzom8+fgOIwu7q9fybu6fWZx1B5vK3qfaVuLrcLufX9Vk6dOOmiwA+t69CZ1zNQAlTz0lxeSEaCOtOxeXlZXhcDiIjo4+4fno6GiKiopavaeoqKjV6+12O2VlZcTGxjJw4EDeeusthg0bhtls5vnnn2fSpEns3LmTfv36tdruE088wWOPPeZO+KIb0jgaWk5m9mXtFW8K1IYyLvwKxoZdTn7DfnZWr2a/eQMV1nw2lL3DhrJ3SAoYztDgcxhgnIReE+DrkLuF7F4zGXlwARFVuwiuPYo5qLfbbTSPzmonzGbwJyto3LuXb57/H5UTzznjvdeOS3S7PyG6szYtuv3tMLSiKKcdmm7t+l8/P378eK677jpGjBjB5MmT+eCDD+jfvz8vvvjiKdt86KGHqK6ubnkcO3asLW9FdHGJhavxs9dS69+L4vDuPdSuUqmIDxjMxbH3cXffd7k45j6SAoYDkFO/i6+KFvDi4ev4vOBpsup24GzjllzRpFEfQWHEWUDTFuf2sAeHUDxzDgBxH76Jyip1d4Rwl1sjLBEREWg0mpNGU0pKSk4aRWkWExPT6vVarZbw8PBW71Gr1YwZM4ZDhw6dMha9Xo9er3cnfNENNU8HHU64AlQ9Z5e+XhPA8JDzGB5yHtW2EvZUf8ce83dUWPPZa/6evebvMWrDGRI8jSHBZxOpT5b1Lm1wNH4WvUrXk5L/Bbv6342i0rS5rZLzLyPiuy/wqygl7sMl5P9uvgcjFaL7c+snvJ+fH2lpaaxZs+aE59esWcPEiRNbvWfChAknXb969WpGjx6NTqdr9R5FUcjMzCQ2Ntad8EQPE1x7lKjK7ThVGrKOrzfoiUy6KCZFXMPtKa9yfdIzpIZchEEdRI29nB8rPuaN7D/wetZdbCp7n0proa/D7VLyI6di0ZkIsJQQU5berrYUPz3HbrgbgKjVn2La3vq6PyFE69z+lfSBBx7g9ddf580332T//v3cf//95ObmMn9+028LDz30ENdff33L9fPnzycnJ4cHHniA/fv38+abb/LGG2/w4IMPtlzz2GOPsWrVKo4ePUpmZia33HILmZmZLW0K0Zrm0ZWCyMk0GKJ8HI3vqVQqevkP5IKYu7i777tcFvcwA4ImolFpKbPmsKHsHV45eitvZ/+RbRWfU2ev9HXInZ5T40d2XNPpy+2qyXKceeR4Si5oWmuV+Noz+JW2vvZPCHEyt6aEAObMmUN5eTmPP/44hYWFDB06lJUrV5KUlARAYWHhCTVZUlJSWLlyJffffz8LFy4kLi6OF154gSuu+KUaaVVVFbfffjtFRUWYTCZSU1PZsGEDY8d27zUJou3UThspeU3rCo7Ed97Ktr6iVesYGDyJgcGTaHTUcrAmnb3mdeTU76Kg8WcKGn9mbclrJAWMYEjwVPobJ2DQdK7jDDqLo71mMSBnKfHF3+HfWNLu5LjgqpsJPLiXwKMHSH75CQ49/DSKtvXRZiHEL9yuw9JZSR2WniWhcBWTMx+kXh/FimmrUNRu5949Uq29gv3mH9hnXkdB44GW59VoSQkcyUDjWfQzjsdfY/RhlJ3P9B+vJ6pyB/tTbmDHwAfPfMMZ+JUWMeAfd6Gtr6X4gisomHv7SdfILiHRU3ilDosQnUXf49NBR+NnSbLihiBtGGPCLuWG5GeZ3/t1pkTMI1KfhBM7R+q28VXRAl44dB0fHHuUXVVraHDU+DrkTmFf71sB6Jv7AX7W6na3Z42MIffWPwIQ/c3HBO/4sd1tCtHdScIiupzA+vyWBZBH4i/zcTRdV6hfLJMiruHWlEXcnvIKkyOuazV5WS7JCwWRk6k09kfnaKB/zlKPtFmdNpGSGU3/fpNe+y+6cikAKMTpSMIiupy+xz5EhUJh+HjqAhJ8HU63EK5P4KyIua0mL0ePJy/PH7qWpbkPs63yC8y2Ml+H3LFUqpZRlgE576G1e+ZMp4I5t1CX0h9tXS0pC/8NdrtH2hWiO5KERXQpftYq+ucsA+BQ0jU+jqZ7ai15idKnoOAkp34na4pfYeGRG3gr+342l39AuaVnFG3MjTmPmoAE9LZq+hw/bLO9FK2O7LsewR4QSOCR/cR9/JZH2hWiO5KERXQpA7P/h85RT4VxIHlRZy5vLtqnOXm5JeUl5vd+nXMibyHefzCgorDxIOtL32Zx1nwWH72DdaVvk9/wM4rSPc/KUdRa9qXcBMCgrLdRO6weadcaGUPuLQ8AEL3yQ4Izt3ikXSG6G0lYRJfhZ61iQHbT+oE9feeDVG7tUKF+sYwLv5x5Sf/l7r7/44KYP9A7MA01WsqteaSXf8D/cv7Ii4fn8VXhAg7WpGN1Nvo6bI/K6jWLen0kAZYSkgu+9Fi71aPPouS8puKHSYtlPYsQrZHtFaLLaBpdqaPSOIC86LN9HU6PFqQNIzXkQlJDLqTRUceRuq0crEnnaF0GdY4qdlWvYVf1GjQqHUkBI+gXNJa+QeMI1kX4OvR2cWr8+DnlBkb9/DSDj75JVvysdpXr/7WCObcSdGgfAdmHSF70BMp576M6RTVwIXoiqcPiAqnD4nt+1mpmrTsfnaOODakLyIs519chiVY4FBu59Xs4XPsTh2u3UGUrPuH1aH1v+gSNpU9gGnH+A1B76MO+I2ntdcxaNwO9zczGkU9zLPZ8j7XtV1LIwH/ciaahHtMVlxP7+OOoNF3vaySEO1z9/JaExQWSsPje8IMvMvTIYiqNA/h60gc96qDDrkpRFMqsuRyu3cKh2p/Ib/gZ+OXHjUFtJCUwlT5Bo+kdOIpAbajvgnXTsEMLGXb4FSqMA/lm0gcenZ40bdtEykv/QqU4Cb70EuL+/W9UWhkMF92XJCweJAmLb504uvIceTHTfR2SaIN6ezWH67ZytDaDrLrtNDprT3g9xtCX3oGju8Toi5+1itnrZqB1NPD96JcpjDzLo+2HbFlHyqtPgcOBccYMej39X1R+fh7tQ4jOwtXPb0nbRaf3y9qV/uRFy86gripAa2K4aTrDTdNxKg4KGg5wpG4bR2u3UWQ5QlHjYYoaD7O5/H0M6iCSA0eQHJhKSsAoQvyifR3+Cax+IRxOuJKB2e8w+MjrHk9YqsZNI35IL/Lvu5+a1avJu8dKr+cXoNbrPdqPEF2JjLC4QEZYfEdGV3qGWnsFR2szOFrXPPpSd8Lrobo4UgJTSQlMJTFgOAZNoI8i/YV/QxGXrr8QjWJn9fh3KAsd6dH2rx2XSO3GjeT94W4Ui4XAiROJX/gSan9/j/YjhK/JlJAHScLiO8MOvsSwI69SaezP15M+lLUrPYBTcVDQeJDsuh1k1e1oqu3CL7VdVKjp5T+Q5MBUkgNGEOffH43KN7tpxu5+lL55n5AfOZX1o1/yaNvNhx/W/biFY3feiVJfT8Do0cS/8gqaIN8nbEJ4iiQsHiQJi2/4Wau5dP0F+Nlr2Zj6LMdizvN1SMIHLI56cut3cbRuB9n1O6iw5p/wuk6lJz5gCMkBI0gKGEG0oXeHrX8x1mUzc8OlqFBYOekjqoIHeKztX5/WXL99B8duvx1nbS3+I0aQ8NpiNB7+OSeEr8gaFtHlDch+Bz97LZXGfhyLlm3MPZVeE0A/43j6GccDUG0rIatuB9l1O8ip30W9o5qsuu1k1W1vul4dSGLAMJICRpAcOJwIv0RUXhqZqwlMJjdmBklFqxh89A02j3zKK/0EjEolcckScm+9lYadO8m58UYS33gDbWjX2VklRHvJCIsLZISl4+ls1cxaJ6Mr4vSatk7nkF23i5z6neTW78bym/Uv/ppgEvyHkBgwjMSAoUTqkz06AhNavZ8LN1+NEzVfTvmS2kDvHchpyD1K36f+iq6mmoZeSRz+83+wh4SddN2vR2eE6OxkSsiDJGHpeM11LiqN/fh60keydkW4xKk4KG48SnZ9Jjn1uzhWvxe7YjnhGoM6kHj/ISQGDCUhYBgxhj7tTmCmbZ1PXNkmDiVcxdah/2hXW2eiL8il35N/QVdVgS0kjNyb78c8YuwJ10jCIroSSVg8SBKWjnXC6MrIZzgWO8PXIYkuyqHYKGw8zLH63eTW7yGvYR9WZ8MJ1/ip/enlP4h4/8HE+w8mzn8AfmqDW/1EVmzjvC034VDp+GLql9T7x3nybZzErzifPs89iqGw6aTssqkXkj/3dpz+AYAkLKJrkYTFgyRh6VjNoytVQX1ZedbHMroiPKZ5BCa3fjfHGvZwrH7vSQXsVKiJMfQl3n8Q8f5DiA8YRJD25GmXEygK5/x0KzEVP5EfOYX1aS95/XBOldVC3IdLiFr9KQCWiGhyb3uQ2oHDJWERXYokLB4kCUvH0dnMx0dXamR0RXidojgpsWST17Cv6VG/D7O99KTrQnSxxPsPopf/QHr5D2x1HUxw7VEu/OEKNIrd42cMnU7Q/p0kvv4M+rKmc5tKZlxGwVU3ofi1rcicJDuio0nC4kGSsHSc5rorMroifKXaVtKSvOQ17KPEks2vz0AC0KkMxPr3o5f/IHoZmpKYAK2pZXSwQR/Bl5NXYNN1zNZjdUM9vZYtJmL91wA0xiaQc/ufqO/t/jZrSVhER5OExYMkYekYwTVHuHDTVWgUm4yuiE6j0VFHfsN+8ht+Jr/hZwobD2Bx1p90XYgulnhDP6YXbGR0TSHaqEvZOfTRDo01eOdPJL75HLqqChS1muKZ11A061oUreuF9SRhER1NEhYPkoTF+1ROOzN+nEd49R7yIyezPm2h19cACNEWiuKkzHqM/IafKTiexJRZT/4ZoVUUYnS9iAwaSZyhP3H+Awjz6+X1onaaWjPx7ywk7Md1ADTEJVJ8yVwqx00FzZn7loRFdDRJWDxIEhbvG3zkdUYefB6r1shXkz+lwdC5DrsT4nQaHbUUNBygoPEghQ0HKa3dTrXKftJ1fmp/Ygx9Wx6xhn6E6mK9Utgu5KcNJLz9ItpaMwCWqFiKL76aiknTUXSnPvlZEhbR0SRh8SBJWLzLVHOICzbNQaPYSB/2L7LiZ/k6JCHaRWepZPTm2RxUN/Bd7ET26A0UNh7CpjSedK1eHUC0oU9LAhNj6OuxJEZTV0vEt58TterTlsTFGhZByYVXUTb1AhT9ydu3JWERHU0SFg+ShMV7VE4bM9KvI9y8r8O2gwrREZLzv2Diroexq/WsPOtTzAFxlFuPUdhwiMLGwxQ1HqLEkoVdsZ50r14dQJS+N9GGPkQbehOt702EPhGNqm2nqagtjYR/v5Korz/Cr6ocAJvRROkFV1B67kyc/r8cpigJi+hokrB4kCQs3jPk8GJGHHrx+FTQZzQYonwdkhCeoSicvfUOYsvTKQwfz/djFp+UjDsUO+WWYxQ1Hqaw8RBFjYdPmcRoVFoi/ZKIMhxPZPS9idKnoNcEuBySymYl7Ic1RH/1AfrSIgDsAUGUnTuTionnYolLlIRFdDhJWDxIEhbvMNUcPD4VZGfz8H+T3esSX4ckhEcF1R3joh8uQ+u0uPxvvDmJKbYcpbjxCMWNRym2HD3pjKRmIbpoIvUpRDU/DMlnnlJyOAj98Xtivni/pVouQH1iH5Kvnk3whRei69XL7fcrRFtIwuJBkrB4nspp4/z03xFm3k9e1DQ2jHpBpoJEt9S8oLxRF8qXUz7H6hfidhuKolBtK6bYcjyBaTxKseUINfbyVq/XqfRE6pOJ0icTqU8mUp9EpD6ZAK3pxAudTkwZmwjfuJrgPRmoHI6Wl2r7DqZy/DSqxkxu9YDF1sjojGgLSVg8SBIWzxt6+BWGH1qIRRfMV2d9RqMh0tchCeEVKqeNCzddTUjtYY70ms2W4f/PY23XO8yUNmZTYsmm1JJFsSWLMktOq1NKAAGaECL1iUTok5qSGL8kIvRJGDSBaGrNhGz7gdAf1xH08y5Uxz8aFJWa2kHDqRw3FfOw0djCTz1tKwmLaAtJWDxIEhbPCjEf4PzN16BR7Gwa8R9y4i72dUhCeFVEZSbn/Xg9KhTWjn2TkvAxXuvLqTiotBZSYsmixJJFqSWHUksOVbYifluxt5lRG0GEPpEIvwTC9Qn0qjfRf1cuUT/9SOCR/Sdca4mKpWbQSGoGj6R20AjsptCW1yRhEW0hCYsHScLiOSqnjfM3X0tYzc8ciz6HjakLZCpI9Aij9/6L/rnLMQcms3LSRzg1bTvrp62szkbKLccotWRTZs1tSWRq7GWnvCdQE0K/+mgm7nMyaH8lkcdKUDudJ1zT0CvpePIykgt+dyEak+kUrQnROklYPEgSFs8Zeuhlhh9ehEVn4qvJn9Goj/B1SEJ0CJ2thos3ziLAUkpW3CWkD/+/TpGsNzpqKbPkUm49RpnlGGXWXMosua0eAulvURh4TGFErobhOWriiywnXqBS4de7N4Yhg/EfOhTD0KEYBg5EHeD6TibR80jC4kGSsHhGiPlnLtg8F7ViZ9OIp8iJu9DXIQnRoWJKNzMt407UioM9fW5jV/97fB3SKVmdDZRb8loSmDJrLhXWfCqthSg0jbIY6xUG5yoMzVEYkqMQ38oaYEWloi42jsaUQTSk9Kc+pR+NCb1x/qZonUwn9Vyufn63rQqREG7S2aqZuPOvqBU7udHTyYm9wNchCdHhiiIn8tOQfzB+z6MMPfIadYZYjiRe5euwWuWn9ifWvx+x/v1OeN6h2KiyFlFuzaPceozy2Hy+HpnHe9Zj6Gtq6V2o0LsI+hQq9C5SCKtVCCrIJ6ggHzatbWmnJiyY2rg4rPG9cSYMoiFoAvo+fVAbTq6+KwTICItLZISlfbT2Os7ZejsRVbto0Efw9aQPZSpI9GjDDi1k2OFXcKo0bBj1AgVRU3wdUrspikK9o5pKawEV1vyWh6M8l7BjBSQV2OhTBL0LFUJOPuy6qQ0V1EUasSfHouudQnCfAUQNGElQn/5owsJQdYIpNOF5MiXkQZKwtJ3aYWHatjuJqfgJi87E2nFLqDb2O/ONQnRnisK43X+nT/4KbBp/1o5bQqVpiK+j8hpFcWK2l7UkM40V2ejzjxJUUER4cRW9Su3El0Fww6nbaNCrqYgIojYqnMboOByxKahi+6OO7Y/TGNLm9UAyFeV7MiUkfE7ltDF5xx+JqfgJmyaA70e/IsmKEAAqFT8NfZSAxhJiy9OZtu0uVk94l7qAeF9H5hUqlRqTLgqTLorkwJEQCvRpek1RnJTaKzhoyaeh4gjavIME5OdiLC4ntKyG6AoHEdXgb3HSK98M+WYgC9jU0n6DXkVFmD814cE0RERii4pDiU5BEzsATVRfOM3p1KLrkBEWF8gIi/tUioMJOx8iufBr7Go960a/7NXaE0J0RVpbLedtuZHQmgNUByazZvy7WP1kW3AzRVFodNZirjuGo/BnVAWH0RfnE1RSSkhpDZEVVsJqT9+GE6g2aqgK9acuLJjG8AhsEbEoUYmoo/py7cVnow8wdsj7Ea2TKSEPkoTFTYrC2D2P0TfvYxwqLRvSXqAwcrKvoxKiU/JvLGZG+u8IbCymJHQU341Z3OE1Wroqh2Knrq4QW9F+KD6KtiQPQ2kJQeWVhJTXE1Flx2A7czvmIDW1oQYskcEQFYEuNpaAXomEJPUlMmkQEb36otZovP+GeihJWDxIEhY3KAqjfv4vA7PfwYmaTSP/y7HYGb6OSohOzVRziPN+vAE/ew05MTPYNPK/cLrDC4VLHE4rDRVHcRQfgpIctGUF6MtLCSqvJriqnrAqG/6tn2JwArsaqk1a6sP8sYWbICocXUwMOaoQCE9AG9kbXWgCao3rU0+yduYXsoZF+MTQw68wMPsdALYMe0ySFSFcUG3sx4ZRCzh76x0kFa2m/ucYdgz6k6/D6vI0aj+CIgZCxED41ZrmxuOPYqcDizkfW/EBKM1FXZaPX0Up/hWVBFbVElJtIaTGidYJ4ZV2witr4EgNkAfsJOFXfdnVUB2kpiZYT50pkIaQYGwh4ThCo1DCe6EJS0Ab0QddUHiHfg26ExlhcYGMsLhmYNbbjPr5aQC2DforB5N/5+OIhOhakgq+YtLOvwKwt/et7Or/BxSVTEX4ksPeiLX0CI7SI1Ceh6aiGL+KMgxVVQRW1WEyNyU1ahc/SRv8oNqoxRrijz3MiBIeijYyAn1ULEGxCYT2SiE8vi+m8F6o1T1jlE2mhDxIEpYz63PsI8bteQyAzP73sK/PbT6OSIiuadDRN0k98BwAheET2DzySSx+oWe4S/iS027FWpGNo+woSlke6soidJVl6Kuq8DfXYqxuJLjGRqDlzG01s2rAHKSh1uhHvdEfizEIqykEuymMQYP7ERQTT0hsMuFxfQgyde1RG0lYPEgSllPTOBoZeeA5BuQsBWBv75vZ2f++TnFGihBdVXL+l4zd+zhaRwN1hhh+SH2G8pDhvg5LtJO9oRJrWRbOshyoKkRTWYKuqgK/6moCzHUEmRsJrrUR2Oheu406qAnUUBfUnNwEYg024TCG4gyJBFMU6pBYNCG9uO7cMWg72TZvSVg8SBKW1plqDjIp8y+E1B4GJFkRwpNMNYeYvOMBguuycai0bB/0Fw4lzpHvrx7A3mjGXp6DoyofKgugqhRtdTl+5ioM1bUE1NQTWGvFVOvAz+5e204V1AaoaAjSYTEasJsCUUKMqEND0YWFo4+IIDAijqDIWEKiEgiNScJP793DKyVh8SBJWH5DcTIgZykjDzyHxmmlwS+cH4f/i8LIs3wdmRDditZWy/jd/yCxeA0AWXEX89OQf+DQyunHAhSnE3t9JfaqHJyVBSjVxairStFUV6CrqcZgrsW/poGAOgtBdQ6CGtv2cV+nh9pALTajnl6P/pPBE2d69H3ILiHhFYbGUsbv/jtxZU1VJvMjp/LjsMew6Lv2HKoQnZFdF8QPqc8wMPt/jDzwHCkFXxFqPsDGUc9RE5js6/CEj6nUanRB4U07j+JHnfS69fij+vjfnbZGbNX5OKoKcFYXoqouRV1djramCl1NDX61dRjqGgmosxJYbyeoXkENBFog0GKHCjtOxdmB7/BEkrAIl/UqXse43f/AYKvErtazfeCfOJx4tQxRC+FNKhU/p9xAuWkoZ2U+SEjtYS7YdA0/Dv9/HIs5z9fRiS5ErTOgj+gDEX1afb05wTEf/7vTYcVuLsZRXYjTXMzgQAvDBo3tqHBPIlNCLujpU0IaRwOpPz9D/9zlAFQaB7BpxJOYja3/oxdCeIfBUsakHQ8SXZkBwJFes9nTdz51Ab18HJnoCbxV7M7Vz++esclbtIlKcZBQuIoLNs1pSVb2p9zAqglLJVkRwgca9RF8N/Z19qXcBECf/M+4ZMNMxu75J4H1+T6OTgjvkikhcRKNo4HeeZ8xMOt/GBvyAKjXR/Lj8H9RFDHRx9EJ0bMpai2ZAx8gL/ochh1aRGx5On2PfUzvvBUciZ/N3j63Ue8f5+swhfA4SVhEC72lgv65y+iX8z4GWxUAFp2Jg4nXcCD5Oqx+IT6NTwjxi7LQkXw/djGRFdsZevhlYst//P/t3X9MU+e/B/D3aekPhIKWX6UqWhwOB25TOr38ULZsY1Pjd7plsh8679fEXDLcgCYbODVuLsDUzJgNwdVrlizGSb7XOVkiid3mhaFscpmoQa5E5IoyWCliW3610D73D7CuK+hw0FMOn1fStH369PjuE+F8OD3PcxBz878QfetbXKfChQgQFSwEip4biG3+CprWk/BzDi3F2O0/E/+reQtNM9fQFEpCfFiHcjHOLDmEsNu/YuG1Yqg6f/lD4bIWDZp/ojtg9oM3RIiPo4JlipIMmKEy/YI5beWY/fsP4DB07nVncByuaP6JW6rn6BomhEwiHcrF+HHJfyLsdi0WXisZLlz+hZib/0KXYj5uhT+DWxHPoCvoMZrZRyYlKlimCI45oDRfQaTpLCI7ziLkziWIcG8+fWvYcjRo/h1GpZZ+mREyiXUoE4YLl/9BfNMhRJh+xgxrI2ZYG7Gw6Qv0yFVoDX8atyKegVH5FJwiCd+RCflLqGARMLnNhEjTOUR2VEFlqnadl3KXOUCDtrBkNM16BWbFI/yEJIRMiA6lFmeUWkjtdzCzoxIzfz8DteksAvrbMb/lGOa3HIPdT4HfwlLwW9gydAXFwhIwF4wKGOKjHqpgKS4uxt69e9HW1oa4uDjs378fy5YtG7V/RUUFdDod6uvroVar8f777yMjI8Otz/Hjx7Fjxw40NTVh3rx5yM/Px9q1ax8m3pQjGbAiqPs6gruvI7inCcHdTQjqbkZgn/s0R7tfINpD/g1toUloC0umE/IImQLs0ulonvkPNM/8B8SOfkR0/oJZv5/BTON/w9/eiblt5ZjbVg4AcHASmBWPoEsxH3cU83En6FF0KR6lE+6JTxhzwVJaWors7GwUFxcjOTkZX3zxBVasWIErV64gKspzUZnm5masXLkSmzdvxpEjR3D27Fm8/fbbCAsLwyuvvAIAqK6uRnp6Oj7++GOsXbsWJ06cwLp161BVVYWlS5f+/U85mTEG6YAFcpsJcnsn/G2dkNs7Edh7C0HdTQjuvo5pNuOob+8MjhsqUEJTYJq+kP56ImQKc4jl+C08Fb+FpwLMidA7lzDTeAZhXRcww9IIiaMHSksDlJYGt/f1ysJxRxGDXrkKffIw9MnC0CuPQJ8sDH3ycPRLlQBHy3qRiTXmlW6XLl2KxYsXo6SkxNW2YMECrFmzBoWFhR79c3NzUVZWhoaGez8AGRkZuHjxIqqrqwEA6enpsFgsKC8vd/V58cUXMWPGDHz99dd/KZdPrHTLGDg2CJFzAGLnAERsACKnfeixc+ixn6MXksFe+Dl64TfYC4mjF36DPcPtPfBz9EFm74Lc1gl/mwky+22I2YMvx9krC4c5cB4sgdEwB0bDHDgP5sBHYJcG/81PTwiZEpgTAX2tmGFpxHRrI2ZYr2K65aprLab7cXJi9MlC0S8Lg10ShAG/AAz4BQ7fK/70PBAOkQwOsQwOkRROkXTEeyaiMxZ8Dd8r3Y7pf4TdbkdtbS3y8vLc2tPS0nDu3LkR31NdXY20tDS3thdeeAGHDx/GwMAAJBIJqqurkZOT49Fn//79o2ax2Wyw2Wyu52bz0OWdLBbLaG95ON/8B1JvXAAHJzjmAMfY8L0TouH7u6+J2KBrts14GBy+AYBdHIg+WQhsMiX6pSHolYfDOk0Dc8BcWAPnYkAS6LmBAQAD1nHLQwgRtl5MR4diCaC4d70Yv4EeBHdfR1DP/8Hf1gF/mwlyWwf8bR1Df1jZO8FhEOhvhwTtGM9juE74gXEcnJwYjPMD40TDj8VgnMg1k5FxIjCIAI4DAwfGiQBwYBwHYOjGwA09dOH+MMFg+PU/vjbCQ/c+I3QAhv9NYbLUyIAVnwBhj47vdof32w86fjKmgsVkMsHhcCAiIsKtPSIiAu3t7SO+p729fcT+g4ODMJlMiIyMHLXPaNsEgMLCQnz00Uce7bNnC3W9ASuANr5DEEIImdIm7uKHVqsVwcGjfyvwUMfcuD9VkIwxj7YH9f9z+1i3uXXrVuh0Otdzp9OJ27dvIyQk5L7vGyuLxYLZs2fj5s2b4/5VE7mHxtl7aKy9g8bZO2icvWMix5kxBqvVCrX6/hNBxlSwhIaGQiwWexz5MBqNHkdI7lKpVCP29/PzQ0hIyH37jLZNAJDJZJDJZG5t06dP/6sfZcyCgoLoh8ELaJy9h8baO2icvYPG2Tsmapzvd2TlrjGd1i2VSpGQkACDweDWbjAYkJQ08kXxEhMTPfqfPn0aWq0WEonkvn1G2yYhhBBCppYxfyWk0+mwYcMGaLVaJCYmQq/Xo6WlxbWuytatW9Ha2oqvvvoKwNCMoKKiIuh0OmzevBnV1dU4fPiw2+yfrKwsLF++HLt378ZLL72EkydP4vvvv0dVVdU4fUxCCCGETGZjLljS09PR2dmJXbt2oa2tDfHx8Th16hTmzJkDAGhra0NLy71pwBqNBqdOnUJOTg4OHDgAtVqNzz77zLUGCwAkJSXh2LFj2L59O3bs2IF58+ahtLTUJ9Zgkclk2Llzp8fXT2R80Th7D421d9A4eweNs3f4wjiPeR0WQgghhBBvo6UJCSGEEOLzqGAhhBBCiM+jgoUQQgghPo8KFkIIIYT4PCpYHqC4uBgajQZyuRwJCQn46aef+I4kKIWFhXjqqaegUCgQHh6ONWvW4OrVq3zHErzCwkJwHIfs7Gy+owhOa2sr1q9fj5CQEEybNg1PPvkkamtr+Y4lOIODg9i+fTs0Gg38/f0RHR2NXbt2wel08h1tUqusrMTq1auhVqvBcRy+/fZbt9cZY/jwww+hVqvh7++Pp59+GvX19V7JRgXLfZSWliI7Oxvbtm3DhQsXsGzZMqxYscJt2jb5eyoqKpCZmYmff/4ZBoMBg4ODSEtLQ09PD9/RBKumpgZ6vR6PP/4431EEp6urC8nJyZBIJCgvL8eVK1fw6aefTugq3FPV7t27cfDgQRQVFaGhoQF79uzB3r178fnnn/MdbVLr6enBE088gaKiohFf37NnD/bt24eioiLU1NRApVLh+eefh9XqhQvtMjKqJUuWsIyMDLe22NhYlpeXx1Mi4TMajQwAq6io4DuKIFmtVhYTE8MMBgNLTU1lWVlZfEcSlNzcXJaSksJ3jClh1apVbNOmTW5tL7/8Mlu/fj1PiYQHADtx4oTrudPpZCqVin3yySeutv7+fhYcHMwOHjw44XnoCMso7HY7amtrkZaW5taelpaGc+fO8ZRK+MxmMwBAqVTynESYMjMzsWrVKjz33HN8RxGksrIyaLVavPrqqwgPD8eiRYtw6NAhvmMJUkpKCn744Qc0NjYCAC5evIiqqiqsXLmS52TC1dzcjPb2drf9okwmQ2pqqlf2iw91teapwGQyweFweFyAMSIiwuNCjWR8MMag0+mQkpKC+Ph4vuMIzrFjx/Drr7+ipqaG7yiCdf36dZSUlECn0+GDDz7A+fPn8e6770Imk+Gtt97iO56g5Obmwmw2IzY2FmKxGA6HA/n5+Xj99df5jiZYd/d9I+0Xb9y4MeH/PhUsD8BxnNtzxphHGxkfW7ZswaVLl+gaUhPg5s2byMrKwunTpyGXy/mOI1hOpxNarRYFBQUAgEWLFqG+vh4lJSVUsIyz0tJSHDlyBEePHkVcXBzq6uqQnZ0NtVqNjRs38h1P0PjaL1LBMorQ0FCIxWKPoylGo9GjuiR/3zvvvIOysjJUVlZi1qxZfMcRnNraWhiNRiQkJLjaHA4HKisrUVRUBJvNBrFYzGNCYYiMjMRjjz3m1rZgwQIcP36cp0TC9d577yEvLw+vvfYaAGDhwoW4ceMGCgsLqWCZICqVCsDQkZbIyEhXu7f2i3QOyyikUikSEhJgMBjc2g0GA5KSknhKJTyMMWzZsgXffPMNfvzxR2g0Gr4jCdKzzz6Ly5cvo66uznXTarV48803UVdXR8XKOElOTvaYlt/Y2Oi6OCwZP729vRCJ3HdhYrGYpjVPII1GA5VK5bZftNvtqKio8Mp+kY6w3IdOp8OGDRug1WqRmJgIvV6PlpYWZGRk8B1NMDIzM3H06FGcPHkSCoXCdUQrODgY/v7+PKcTDoVC4XFeUEBAAEJCQuh8oXGUk5ODpKQkFBQUYN26dTh//jz0ej30ej3f0QRn9erVyM/PR1RUFOLi4nDhwgXs27cPmzZt4jvapNbd3Y1r1665njc3N6Ourg5KpRJRUVHIzs5GQUEBYmJiEBMTg4KCAkybNg1vvPHGxIeb8HlIk9yBAwfYnDlzmFQqZYsXL6bptuMMwIi3L7/8ku9ogkfTmifGd999x+Lj45lMJmOxsbFMr9fzHUmQLBYLy8rKYlFRUUwul7Po6Gi2bds2ZrPZ+I42qZ05c2bE38kbN25kjA1Nbd65cydTqVRMJpOx5cuXs8uXL3slG8cYYxNfFhFCCCGEPDw6h4UQQgghPo8KFkIIIYT4PCpYCCGEEOLzqGAhhBBCiM+jgoUQQgghPo8KFkIIIYT4PCpYCCGEEOLzqGAhhBBCiM+jgoUQQgghPo8KFkIIIYT4PCpYCCGEEOLzqGAhhBBCiM/7fyrAmChIZAfUAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1091,10 +1091,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:53.678362Z", - "iopub.status.busy": "2024-01-10T15:12:53.677991Z", - "iopub.status.idle": "2024-01-10T15:12:53.684383Z", - "shell.execute_reply": "2024-01-10T15:12:53.683983Z" + "iopub.execute_input": "2024-02-06T01:09:45.450288Z", + "iopub.status.busy": "2024-02-06T01:09:45.450121Z", + "iopub.status.idle": "2024-02-06T01:09:45.456529Z", + "shell.execute_reply": "2024-02-06T01:09:45.456149Z" } }, "outputs": [], @@ -1110,10 +1110,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:53.686232Z", - "iopub.status.busy": "2024-01-10T15:12:53.685914Z", - "iopub.status.idle": "2024-01-10T15:12:53.874874Z", - "shell.execute_reply": "2024-01-10T15:12:53.874398Z" + "iopub.execute_input": "2024-02-06T01:09:45.458255Z", + "iopub.status.busy": "2024-02-06T01:09:45.457959Z", + "iopub.status.idle": "2024-02-06T01:09:45.642127Z", + "shell.execute_reply": "2024-02-06T01:09:45.641640Z" } }, "outputs": [ @@ -1121,7 +1121,7 @@ "data": { "text/plain": [ "((0.0, 10.0),\n", - " ,\n", + " ,\n", " Text(0.5, 0, 'mass'))" ] }, @@ -1131,7 +1131,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGwCAYAAACKOz5MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2s0lEQVR4nO3deVhUZfvA8e/MAMMOArIpIq6guJNrprmmZpmVlpaWbZZW6ttm9b6V/cr2TVNbtGzRtNKyMpXc9wV3AXdFEUVQdllm+f1xGJQEBZzhDMz9ua655syZM+fco8Dc8yz3ozGbzWaEEEIIIeyYVu0AhBBCCCGuRxIWIYQQQtg9SViEEEIIYfckYRFCCCGE3ZOERQghhBB2TxIWIYQQQtg9SViEEEIIYfec1A6gIkwmE2fOnMHLywuNRqN2OEIIIYSoALPZTHZ2NqGhoWi1N9ZGUiMSljNnzhAWFqZ2GEIIIYSoglOnTlG/fv0bOkeNSFi8vLwA5Q17e3urHI0QQgghKiIrK4uwsLCSz/EbUSMSFks3kLe3tyQsQgghRA1jjeEcMuhWCCGEEHZPEhYhhBBC2D1JWIQQQghh9yRhEUIIIYTdk4RFCCGEEHZPEhYhhBBC2D1JWIQQQghh9yRhEUIIIYTdk4RFCCGEEHZPEhYhhBBC2L1KJyzr1q1j8ODBhIaGotFo+O233677mrVr19KhQwdcXV1p1KgRs2bNqkqsQgghhHBQlU5YcnNzadOmDdOnT6/Q8cePH2fgwIF0796dXbt28fLLL/PMM8/w66+/VjpYIYQQQjimSi9+OGDAAAYMGFDh42fNmkWDBg345JNPAIiKimLHjh188MEH3H333ZW9vBBCCGHfzGYwm664/fvxv/ZffYKyz2nPx5UnK7vix16HzVdr3rx5M/369Su1r3///syePZuioiKcnZ2vek1BQQEFBQUlj7OyspSNz9qBhxvoXJSbk8vl7VL79KD3BBdP0Htfse0JLl7g6g0edcEjQHneCqtICiGEsENFlyDvAly6AHnpynZBFhTmQWEuFOVevW3IB2MRGAvBVHR521gIRkPxfZHyXFmJiLisoBLJzXXYPGE5e/YsQUFBpfYFBQVhMBhIS0sjJCTkqtdMnTqVN9544+qT5Z4Hg5WTC51LcfJSfPOpD3XCwbf4Vicc3P0lqRFCCHtTdAnSj8KFo5B5GjKTIctyS1ESFMMltaOsojI+c8r8HFLruAoymADrtLLYPGEB0PzrzZqLm5j+vd9i8uTJTJo0qeRxVlYWYWFhMGY5uLlckekW3wwFV2TABcrjghwozIaC7OLtnOLtbMjPVH6QC3OU11h+wMvjVgcCW0JQCwhsAcGtlJuT/sb/cYQQQlyb2QwXT8CZnXBmF6QmQtohyEiiQt0TWidw8wN3P+Xe1QdcPC7fnN3BxV1piXd2BydX0DkXt9w7X97WXrGtcwGtTrlptOXcNNd47opjarOsLHjLxyqnsnnCEhwczNmzZ0vtS01NxcnJCX9//zJfo9fr0evLSAaCWoK3t/WCK8yDvDSl5SY3DXLOQcYpyDgJF08qvwzZKXDpIpzcoNwsdHqo1wEadIIGXaHhzcoPvBBCiBtjMsHZvXB8LRxfB8k7lS6dsrj6gH9T8A0D73pKK7l3qLLt7q/c9F61PzFwADZPWLp06cIff/xRat+KFSuIiYkpc/xKtXJxB5cG4Nug/GOK8iHtIJyLh9QDyn3KbqWFJmmTcuNjJSNv2B2a9YfmA8GnXnW9CyGEqPmKLsGRfyD+dziy8uoERecCQdFQr73y5TWgOQQ0U8YiSjLiECqdsOTk5HDkyJGSx8ePH2f37t34+fnRoEEDJk+eTHJyMt999x0AY8eOZfr06UyaNInHHnuMzZs3M3v2bObPn2+9d2FLzq4Q0ka5WZjNkH4EkrbAqS1wbB1kJsGRWOW29HmlxaXNfRB1hzLIVwghRGkmIxxdDbt/hEPLlUGvFi6eyt/RiB7QoLOSpEg3vEPTmM1lzlkq15o1a7j11luv2j969Gi+/fZbHnroIU6cOMGaNWtKnlu7di0TJ07kwIEDhIaG8uKLLzJ27NgKXzMrKwsfHx8yMzPxtmaXkLWYzXA+EQ4tg4PLlCTGwslNSVw6Pwl1m6sXoxBC2IvcdNgxB3Z+p3zZs/AJgxZ3QuTtUD9GGS8iajRrfn5XOmFRg90nLP+WkQR7F8LeBcrAMIvGvaHHC8q3BSGEcDSZybB5OsR9C0V5yj5XX+VLXethENpeundqGUlYagqzGU5ugi0zIPEvSkazN+0HvV4t3c0khBC1Vd4FWPsubJ+t1C4BCGmrtDy3uBOc3VQNT9iOJCw10YVjsOET2PUDmI3KvnYPQJ8p4FH2bCkhhKjRjEWw9QtY955STgIg/GboPgka95LWFAcgCUtNln4U1kyFfT8rj93qQJ/Xof1o+eUVQtQeZ3bD7+Ph3D7lcVA09Ps/aHz1GEhRe0nCUhskbYW/JsG5/crjJn3hzs/BK+jarxNCCHtmKIC178GGj5XWZDc/6PsGtB2pFFkTDsWan9+VXq1ZWEmDTvD4Wuj/tlLD5UgszOwCB/9WOzIhhKiaiydgTn9Y/4GSrLQYAuO2QftRkqyIGyYJi5p0TtBlHDy+BoJaKcXo5t8Hq99WKj0KIURNcfBv+OIWpXS+Wx0Y9h0MmwueddWOTNQSkrDYg8AoeGwldCquTbP2XVgwEvKz1I1LCCGux2yGTdNg/v3KwNr6N8ET65XZP0JYkSQs9sJJDwPehSEzlXWKDi6FbwdBTqrakQkhRNmMBmUs3opXATPEPAIPLVXW9RHCyiRhsTdtR8DDf4NHXWXxrzn9lX5hIYSwJ4ZC+Hm0UrEWjTIeb9CH4OSidmSilpKExR7V7wBjliuLMl44BrP7Q9qR679OCCGqg6EAFo6CxD+VFuHh3yvj8aQ0g7AhSVjslX9jGLMCAltAzln47g5paRFCqK8oH34aCYf+VmY43j8fogarHZVwAJKw2DPvEBj9B9SNhKxkmDsYMk+rHZUQwlGZjLDoUaUMg7M7jFgITXqrHZVwEJKw2DuPABj1O/g1UhZV/OFuuJShdlRCCEdjNsNf/4GEP0DnAvf/BI16qB2VcCCSsNQEXsFKS4tXCJxPVPqODYVqRyWEcCTrPoC4bwANDP1KkhVR7SRhqSl86ivNry6ecHwt/DlR+cYjhBC2lvAnrP4/ZXvg+9ByiKrhCMckCUtNEtIa7vkGNFrY/YOyCqoQQthSaiIsfkLZ7vQkdHxM3XiEw5KEpaZp1k+pdwCw4hVlEUUhhLCFSxnw0/1QmAMNu0O/N9WOSDgwSVhqok5joeVQMBmUwk0559WOSAhR25jNsHisUgvKJwzu/RZ0zmpHJRyYJCw1kUYDd0yDgGaQnQKLHpPFEoUQ1rX9a6XWik4Pw39QZiwKoSJJWGoqvScM+x6c3ODYatj2pdoRCSFqi3PxsPwVZbvvFAhtq2o4QoAkLDVbYOTlPuV/XlMGxwkhxI0oyodfHwFjATTtB52eUDsiIQBJWGq+mx6Fxr3BkA+LH5f6LEKIG7P2XUiNB49AuHOGrA8k7IYkLDWdRgN3fg5udSBlD2z8RO2IhBA1Vcoe2Pipsj34E/Csq2o4QlxJEpbawDsEBn6gbK/7QFZ2FkJUnrEIfh8HZiO0vAsiB6kdkRClSMJSW0TfrXQNGQvgzwlSBVcIUTmbpsHZfUpr7YD31I5GiKtIwlJbaDRw+0fKrKET62H3j2pHJISoKS6eVMauANz2DngGqhuPEGWQhKU2qdMQbp2sbK94FfIuqBqOEKKGWPGqMnC/YXdoPVztaIQokyQstU3ncRDYAi5dhLXSrCuEuI5jayBhCWh0SleQzAoSdkoSltpG5wT931K2t38F5w+pG48Qwn4Zi+DvF5Xtjo9BUAt14xHiGiRhqY0a94JmA5S1hla8onY0Qgh7tf1rOJ8I7v7Q8yW1oxHimiRhqa36vwVaZzi8Ag7/o3Y0Qgh7k595udu413+V2UFC2DFJWGor/8aXS2rH/k8WRxRClLZpGly6AAHNod2DakcjxHVJwlKbdf8P6H0g9QAcWKR2NEIIe5GTCps/V7Z7/1cZ+yaEnZOEpTZz94OuTyvbq99SBtgJIcS696EoD+p1gMjb1Y5GiAqRhKW26zwW3APgwjHYPU/taIQQartwHHZ8o2z3eV2mMYsaQxKW2k7vpXQNgVLJsihf3XiEEOpa+y6YipTZhBG3qB2NEBUmCYsjiBkD3vUgKxl2fqd2NEIItVw4DnsXKtu9XlU3FiEqSRIWR+DsCjdPVLY3fgqGQnXjEUKoY+MnymrMjXsr41eEqEEkYXEU7R4EzyDIOg37FqodjRCiumUmw67iRVFveV7dWISoAklYHIWzK3QZr2yv/whMRnXjEUJUr02fKWNXwm+G8C5qRyNEpUnC4khiHgZXX7hwFOJ/VzsaIUR1yUmFuG+V7VueUzUUIapKEhZHoveCzk8q2+s/ArNZ3XiEENVj8+dgyId6MdCop9rRCFElkrA4mo6Pg4snnNsHR1aqHY0QwtYKci7XXen+H6m7ImosSVgcjbsftB+tbG/5XN1YhBC2t3seFGSCX2Nodpva0QhRZZKwOKJOT4BGC0dXwbl4taMRQtiKyQhbZijbXZ4CrfzJFzWX/PQ6ojrhl9cPsfwxE0LUPgf/hovHlcH2be5XOxohbogkLI6qyzjlfu9CyDmvbixCCNuwrMgcMwZcPNSNRYgbJAmLowrrBKHtwVgAO+aoHY0QwtqS4yBpE2idlcH2QtRwkrA4Ko3mcivL9q/AUKBuPEII69oyS7mPvhu8Q9SNRQgrkITFkbW4E7xCIfc8xC9ROxohhLXkpkH8b8p2pydUDUUIa5GExZHpnKFD8RRn6RYSovbY9T0YCyG0HdRrr3Y0QliFJCyOrv0o0OiUvm6Z4ixEzWcyXS4UF/OIurEIYUWSsDg671CIHKhsSyuLEDXf0VWQcRJcfZTxK0LUEk5qByDsQMwYSPgD9vwEfV4HvafaEYkqSssp4GR6LqcvXuL0xUukZuWTnW8gK99AXqEBjQa0Gg1ajQZPVyf83F2o4+5MoLcrEQEeNAzwIMTbFa1WyrfXWDtmK/dtRoCLu7qxCGFFkrAIiOgJfo3gwjHY/wt0eEjlgERFFBiM7DyZwZZj6Rw4k8m+5EzOZd34bC83Zx2t6vnQtoEvber70rmRH/6eeitELGwu4xQcWqZsx4xRNxYhrEwSFqGU644ZAytehe2zlbWGZIE0u5Sanc/f+86yMjGVbcfTyS8ylXpeo4FQHzfq13EjzM+dIG893q7OeLk646HXAWA0mTGYzOTkG7iYV8iF3EJSMvM5kZZL0oU8LhUZ2XbiAttOXCg5Z+t6PvRoVpe+LYKJrueNRn4+7NPOuWA2QcPuULeZ2tEIYVWSsAhF25Gw8k04uxeSd0L9DmpHJIrlFhhYsucMv+9OZuvxC5jNl58L8NTTrYk/7cJ8ia7nQ1SINx76qv9aG4wmjqflsvtUBrtPZRB38iKJZ7PZczqTPacz+WzVERrV9WBI23rc1a4eYX7S5WA3jEWw8ztl+yYZbCtqH43ZfOWfv4qZMWMG77//PikpKbRs2ZJPPvmE7t27l3v8jz/+yHvvvcfhw4fx8fHhtttu44MPPsDf379C18vKysLHx4fMzEy8vb0rG66oqEWPw94F0OFhGPyJ2tE4vMPnsvl+y0kW70wmu8BQsr9dA18GRodwS7O6NAvytHlrx7msfNYdOs/qg6msTEilwKC06mg00DsykIe6RtCtib+0uqjt4N8w/z5wD4BJCeDkonZEQlj187vSCcuCBQt48MEHmTFjBt26deOLL77g66+/Jj4+ngYNGlx1/IYNG+jRowcff/wxgwcPJjk5mbFjx9K0aVMWL15coWtKwlJNjq2F7+4AvTf856AM2FPJvtOZfLbqMLHx50r2NfR3Z/hNDRjcJoT6ddT7f8nOL2L5gXP8tiuZDUfSSvY3DfRkfK8m3N46FJ0M2FXHTyMh8U/oMh76v6V2NEIAKicsnTp1on379sycObNkX1RUFEOGDGHq1KlXHf/BBx8wc+ZMjh49WrJv2rRpvPfee5w6darMaxQUFFBQcHnwYFZWFmFhYZKw2JrJBJ+1gYwkGPoVtB6mdkQOJf5MFu8vT2T1QWUxSo0G+kYF8WCXcLo1DrC7mTvHzufw3eaT/LzjFLmFRkBJXJ7t05SB0SF2F2+tlnMePooEkwGe3AxBLdSOSAjAuglLpeqwFBYWEhcXR79+/Urt79evH5s2bSrzNV27duX06dMsXboUs9nMuXPn+OWXXxg0aFC515k6dSo+Pj4lt7CwsMqEKapKq4W2Dyjbu75XNxYHkpqdz0u/7mXQtPWsPngenVbD0Hb1iJ3Ygy9HxdC9aV27/PBvVNeT1+9oyZaXe/Ncv2Z4uzpxODWH8fN2cfesTew5laF2iI5j7wIlWQltL8mKqLUqlbCkpaVhNBoJCgoqtT8oKIizZ8+W+ZquXbvy448/Mnz4cFxcXAgODsbX15dp06aVe53JkyeTmZlZciuvJUbYQNv7AQ0cXwcXT6odTa1mNJmZveE4t76/hp+2n8Jshttbh7ByUg8+Gt6WJoE1ox6Ol6sz43s1ZcNLvZjQpykeLjp2JWUwZMZGXvhlD+k5srCmTZnNsOsHZbvdA+rGIoQNVanS7b8H15nN5nIH3MXHx/PMM8/wv//9j7i4OJYtW8bx48cZO3ZsuefX6/V4e3uXuolq4tsAGvVQtnfPUzeWWuzwuWzumbWJN/+MJ7fQSJswX359sgvTR7SnYYCH2uFViberMxP6NGP1cz0Z2q4eZjMs3HGafh+vY+m+FLXDq73O7ITzCeDkKpVtRa1WqYQlICAAnU53VWtKamrqVa0uFlOnTqVbt248//zztG7dmv79+zNjxgzmzJlDSor8EbNLlm6h3fOUcS3CakwmMzPXHGXQZxvYlZSBl96Jt+6KZvGTXekQ7qd2eFYR6O3KR8Pb8uuTXWge5EV6biFP/biTcfN2ciG3UO3wap9dPyr3UYPBzVfVUISwpUolLC4uLnTo0IHY2NhS+2NjY+natWuZr8nLy0OrLX0ZnU4pYFWFGdWiOkTdDnofyEyCE+vUjqbWOJ9dwOhvtvHuskQKjSZ6RwayYtItjOwUbpdjVG5Uh3A/ljzdjfG3NkGn1fDX3hQGfrqeHcUF6YQVFF2Cfb8o221HqhuLEDZW6S6hSZMm8fXXXzNnzhwSEhKYOHEiSUlJJV08kydPZtSoUSXHDx48mEWLFjFz5kyOHTvGxo0beeaZZ+jYsSOhoaHWeyfCepzdoFVx07J0C1nFxiNpDPh0PesPp+HqrOXdu1vx9egYQnzc1A7NpvROOp7r35zFT3WlUV0PzmblM/zLLXy57qh8YbGGxL+gIBN8wiCih9rRCGFTlS6JOXz4cNLT05kyZQopKSlER0ezdOlSwsPDAUhJSSEpKank+Iceeojs7GymT5/Of/7zH3x9fenVqxfvvvuu9d6FsL42I5TVmxP+hMJccKmZ4yrUZjab+XbTCf7vrwSMJjPNg7z4fGQ7mgR6qR1atWpd35cl42/m5UX7WLLnDG8vTSTu5EU+Ht4WdxcpuF1lexco923uU2b5CVGLVanSbXWTwnEqMJvhs3Zw8TgM/Rpa36t2RDVOocHEa0v2M3+bMsvt7vb1eeuuaFyddSpHph6z2cy8bUm8sSSeQqOJ6HrezB59E0HermqHVvPkpsEHzcBshPE7IKCp2hEJcRXV6rAIB6LRXC4ct2+hurHUQFn5RYyes435206h0cDLAyP54N7WDp2sgDLDcGSncOY/3gl/Dxf2J2dx5/SN7E/OVDu0mufAYiVZCWkryYpwCJKwiPK1Kk5YjqxUKmmKCknLKeD+L7ew+Vg6nnonZo+O4fFbGstaO1foEO7Hb+O60TTQk7NZ+dz35Ra2HktXO6yaZW/xFwmpSC0chCQsonwBTSC0nfIt7kDF1n1ydKcv5nHvrM0cOJOFv4cLPz3emV6RZU/5d3Rhfu78+lRXujTyJ6fAwKg521h9MFXtsGqGC8fh9DbQaKX2inAYkrCIa2s9XLm3DO4T5UpKV5KV42m51PN14+exXYiu56N2WHbN29WZbx6+id6RgRQYTDz+3Q4pMlcRlqnMEbeAV7C6sQhRTSRhEdfWcqjyLS55B6Qfvf7xDur0xTzu/2oLKZn5NK7rwS9PdqFR3ZpRWl9trs46Zj3YgcFtQikymnl6/i6WHyh7qQ+BMiDeMq6slXQHCcchCYu4Nq8gaHSrsr3vZ3VjsVNnM/MZ8dVWkjMuERHgwfzHOtf6+irW5qzT8snwtgxtXw+jyczT83ax9pCMmypTyh5IO6SU4o8arHY0QlQbSVjE9VkG9e1dqHy7EyXScwoY8dUWki7k0cDPnXmPdSJQpuhWiU6r4b27WzOoVQiFRqV7aIsMxL2a5YtDs9vAVco8CMchCYu4vsjbwdkdLhyF5J1qR2M3LhUaeWTuDo4Vj1mZ91gnaVm5QU46LR8Pb0uv4jEtj87dQUJKltph2Q+T8fL4FZkdJByMJCzi+vSe0HyAsn1gkbqx2AmjycwzP+1i96kMfNycmTumI/XruKsdVq3g4qRlxsj2dG7kR06BgTHfbudsZr7aYdmHE+sh5yy4+kKTvmpHI0S1koRFVEzLocr9gd8cfgVns9nM60sOEBt/DhcnLV+PjqFJoAywtSZXZx1fPBBD47oepGTmM+bb7eQUGNQOS32W1pWWQ8DJRdVQhKhukrCIimnSB1w8Ies0nN6udjSq+m7zSb7fchKNBj4d3pabGvqpHVKt5OPuzLcPdyTA04X4lCyenrcTo8mBx1AZiyDxT2Vbaq8IByQJi6gYZ1doPlDZduAicluPpfPmn/EAvHRbJANahagcUe0W5ufO7NE34eqsZfXB83wUe1DtkNRzfC1cuggedSG8m9rRCFHtJGERFRdd3C0U/5tDdgudybjEUz/uxGAyc0ebUB6/pZHaITmENmG+vHt3awA+X32UZfsdtEaL5YtC1B2gdew1qYRjkoRFVFzjXqD3gewUOLVF7WiqVX6RkbE/xJGeW0hUiDfv3t1a1gaqRne2rceYbhEAPPfzHo6k5qgcUTUzFkFCcXdQy7vUjUUIlUjCIirOSQ+Rg5RtB+sWeuuvBPaezsTX3ZkvH+yAm4t8w61ukwdG0ilCmTn0xPc7yHWkQbjH1kJ+BngEQnhXtaMRQhWSsIjKsXy7i/9dqQnhAJbtP8v3W04C8MnwtoT5yfRlNTjrtHw+sj3B3q4cPZ/LG38cUDuk6mP5gtDiTukOEg5LEhZROY16KjUgcs7ByU1qR2NzyRmXePHXvQA8fksjejYPVDkixxbgqefj4W3RaGDhjtP8ufeM2iHZnqEQEv9QtlsOUTUUIdQkCYuoHCcXiLpd2a7lReQMRhMTftpF5qUi2tT34bl+zdUOSQBdGvszrmcTACYv2sepC3kqR2Rjx9ZAfiZ4BkGDLmpHI4RqJGERlVfSLbQEjLV3HMGstUfZfuIinnonPru/HS5O8utiL57t05S2Yb5k5xuYsGB37a7PEv+bci/dQcLByV9gUXkRPcDND/LSlFLhtVBCShafrjwMwJQ7WxLu76FyROJKzjotn93XDk+9E3EnLzJ7wzG1Q7INQ6HMDhKimCQsovJ0zpeXtbd8+6tFiowmnvt5D0VGM31bBHFXu3pqhyTK0MDfnf/eHgXAhysOcfR8LZzqfGw1FGSCZzCEdVY7GiFUJQmLqJoWdyr3iX/VutlCM9cc5cCZLHzdnXnrrmipt2LHhsWE0b1pAAUGEy/8srf2dQ2Vmh0kf66FY5PfAFE1EbeAqw/knoek2lNELiEli2mrlK6gN+5oSaCXq8oRiWvRaDS8c3frkq6hbzedUDsk6zEUQuJSZVu6g4SQhEVUkc758tpCCUvUjcVKjCYzLy3aR5HRTL8WQdzRJlTtkEQF1PN1Y/LASADeX55Ye2YNHV9X3B0UBGGd1I5GCNVJwiKqLuoO5T7hDzDX/Kb4+duS2HMqAy+9E28Oka6gmmRExwZ0aeRPfpGJ15YcwFwLfh5Laq9EDpLuICGQhEXciMa3grMHZCVD8k61o7kh57MLeG9ZIgD/6deMIG/pCqpJNBoNbw6JxlmnYVViKrHx59QO6caYjMr4MIDI29WNRQg7IQmLqDpnN2jWT9mu4d1CU5cmkJVvoGWoNw90Dlc7HFEFTQI9S1bQfuOPePIKa3CNoFPblPFhrj7QsLva0QhhFyRhETempFtoSY3tFtp8NJ1Fu5LRaOCtu1rhpJNfi5pq/K1NqefrRnLGJaatOqJ2OFWXWFx7pdltSnVpIYQkLOIGNe0LOj1cOAap8WpHU2kGo4nXluwHlHEQbcN81Q1I3BA3Fx1v3NESgK/WHeNIag2szWI2X26xtNQ7EkJIwiJukN4LmvRWtuNrXrfQgh2nOHQuB193Z57vL2sF1QZ9WgTROzIQg8nM1KUJaodTeWf3QUYSOLlB495qRyOE3ZCERdw4y7fAGjaOJTu/iI9WHAJgQu+m+LpL03tt8fKgKJy0GlYmprLxSJra4VSOpTuoSW9wcVc3FiHsiCQs4sY1HwBaJ6VLKK3mjBv4fPVR0nMLaRTgwUgZaFurNK7rWTJ4+v/+SqhZFXATiqczS3eQEKVIwiJunFsdpfIt1JhWllMX8piz4TgALw+MwlkG2tY6z/ZuirerEwkpWfwad1rtcCom/aiS+GudoFl/taMRwq7IX2lhHSXdQn+oG0cFvbsskUKjiW5N/OkdFah2OMIG6ni48EzvpgB8sOIguQU1YJqzpTuo4c3KFwEhRAlJWIR1RN4OaODMTsg4pXY017TvdCZ/7k1Bo4FXBraQira12INdwgn3dyc1u4DZxS1qdk26g4QolyQswjo8A6FBF2Xb8i3RTn2w4iAAQ9rWo0Wot8rRCFvSO+n4Tz9l9tdX646RkVeockTXkJUCp7cr280HqRuLEHZIEhZhPS2Ki8jZ8fTm7ScusPbQeZy0Gib0aap2OKIa3N4qhMhgL7ILDHy57pja4ZTPkujX7wjeIerGIoQdkoRFWI9lzZOkzZCTqm4sZTCbzby/XGlduTcmjHB/D5UjEtVBq9WUtLJ8s/EE57MLVI6oHJaEJUrWDhKiLJKwCOvxDYPQdoD58sJtdmT94TS2Hb+Ai5OWZ3o3UTscUY36RAXSJsyXS0VGZqyxw6n3eRfgxAZlWxY7FKJMkrAI67IMFrSzcSxms7lk7MoDncIJ8XFTOSJRnTQaDc/1awbAj1uSOJNxSeWI/uXQcjAZILAl+DdWOxoh7JIkLMK6LIshHlsLlzJUDeVKqxJT2Xs6E3cXHU/dKh8IjujmJgF0ivCj0Gji89V21soi3UFCXJckLMK6AppC3UgwFcHhFWpHAyitK9OLP6Ae7BxOgKde5YiEGjQaDRP7Kq0sP+84zbmsfJUjKlaYC0dWKtsynVmIcknCIqzP0gdvJ1VvNx9NZ1dSBnonLY90j1A7HKGiThF+3NSwDoVGE1/Zy4yhIyvBcAl8wyEoWu1ohLBbkrAI67N8SzyyEgrz1I0FmLZKaV2576YwAr1cVY5GqEmj0TDuVmXA9Y9bk7iQawd1WUq6gwaDFDEUolySsAjrC2kDPg2gKA+OrlI1lLiTF9l8LB0nrYbHe8jYFQE9mtWlVT0fLhUZS9aTUo2hEA4uU7alO0iIa5KERVifRmM3awtZBlcObV+Per4yM0hYWlmU5HXu5hNk5RepF8yJ9VCQCR6BSsE4IUS5JGERtmFJWA79DUZ1PhD2J2eyKjEVrQae7Cl1V8Rl/VoE0zTQk+x8A99vPqleIJbuoMiBoJU/x0Jci/yGCNsI6wgedSE/U/kWqYIvigdVDmodSkSAVLUVl2m1l8eyzNlwnPwiY/UHYTJdLrAo3UFCXJckLMI2tDqILF7ATYVuoeSMSyzdlwLA2B6Nqv36wv7d3jqEer5upOcW8tuu5OoP4PR2yDkHeh9oeEv1X1+IGkYSFmE7JeNY/gRT9X6DnbvpBEaTma6N/WkZ6lOt1xY1g5NOy0NdGwLw9YbjmM3m6g0gsTiRb9YfnFyq99pC1ECSsAjbaXiL8u0xN1X5NllNcgoMzN+aBMCjUndFXMPwjmF46p04kprDmkPnq+/CZvPllkepbitEhUjCImzHyUX59gjV2i20YPspsgsMNK7rQc9mgdV2XVHzeLs6M/ymMABmr6/GKc7nDsDFE+DkCk36VN91hajBJGERtnXl9OZqaHI3GE18s1H54Hnk5kZotVKIS1zbw90aotXAhiNpxJ/Jqp6LWhL4xr3BRQaEC1ERkrAI22rSG5zcIOMknN1n88utiD/H6YuX8PNwYWj7eja/nqj56tdxZ0CrEABmV1chOVnsUIhKk4RF2JaLh5K0QLV0C329XpnK/EDncFyddTa/nqgdHuuuzCRbsieZVFsvinjhGJzbDxodNLvNttcSohaRhEXYXtQdyr2NE5a9pzPYmZSBi07Lg53DbXotUbu0DfOlQ3gdioxm5m87ZduLJRS3rjTsBu5+tr2WELVIlRKWGTNmEBERgaurKx06dGD9+msXBisoKOCVV14hPDwcvV5P48aNmTNnTpUCFjVQs36gdYLzCZB2xGaXsVQsHdQ6hLpeeptdR9ROo7ooSe68bScpMppsd6GS7qA7bHcNIWqhSicsCxYsYMKECbzyyivs2rWL7t27M2DAAJKSksp9zbBhw1i5ciWzZ8/m4MGDzJ8/n8jIyBsKXNQgbnUgorgwVqJtWlky8gpZsucMoHQHCVFZt0UH4+/hwrmsAv6JP2ebi2SfhVPblG1LYUUhRIVUOmH56KOPeOSRR3j00UeJiorik08+ISwsjJkzZ5Z5/LJly1i7di1Lly6lT58+NGzYkI4dO9K1a9dyr1FQUEBWVlapm6jhbLwY4s87TlNgMNEixJv2DXxtcg1Ru+mddNzXUZni/J2t1hdK/AswQ70Y8A61zTWEqKUqlbAUFhYSFxdHv379Su3v168fmzZtKvM1S5YsISYmhvfee4969erRrFkznnvuOS5dulTudaZOnYqPj0/JLSwsrDJhCnvUfBCggeQ4yLRuGXSTycwPW5UPmFFdwtFoZCqzqJoRncLRamDzsXQOn8u2/gVKuoNk7SAhKqtSCUtaWhpGo5GgoKBS+4OCgjh79myZrzl27BgbNmxg//79LF68mE8++YRffvmFcePGlXudyZMnk5mZWXI7dcrGg+CE7XkFQYPOyrZlwTcrWXf4PCfT8/BydeKOtvKtVVRdPV83+kQpf9++32LlVpZLF+H4OmVbEhYhKq1Kg27//Q3WbDaX+63WZDKh0Wj48ccf6dixIwMHDuSjjz7i22+/LbeVRa/X4+3tXeomaoHI4poTCUusetofij9Y7ulQH3cXJ6ueWzieUV0aArBoZzI5BQbrnfjQCjAZoG4U+De23nmFcBCVSlgCAgLQ6XRXtaakpqZe1epiERISQr169fDxubwAXVRUFGazmdOnT1chZFFjWYpkndwIuelWOeWpC3msTEwFZLCtsI6ujf1pFOBBToGBxTut+DfKkqhL64oQVVKphMXFxYUOHToQGxtban9sbGy5g2i7devGmTNnyMnJKdl36NAhtFot9evXr0LIosaq0xCCW4PZBAeXWuWU87clYTbDzU0CaFzX0yrnFI5Nq9WUJL/ztp2yzirOhXlwZKWyLdVthaiSSncJTZo0ia+//po5c+aQkJDAxIkTSUpKYuzYsYAy/mTUqFElx48YMQJ/f38efvhh4uPjWbduHc8//zxjxozBzc3Neu9E1AxWLCJnMJr4JU75BjyiU4MbPp8QFkPb18PFSUtCShb7k60wS/HoKjBcAt8GStIuhKi0Sicsw4cP55NPPmHKlCm0bduWdevWsXTpUsLDlW8kKSkppWqyeHp6EhsbS0ZGBjExMYwcOZLBgwfz2WefWe9diJrD8u3y2GoouLFZGGsOnic1uwB/D5eSgZJCWIOvuwu3tQwG4Kft5deYqjBLgh45GGQWmxBVojFbpb3TtrKysvDx8SEzM1MG4NZ0ZjNMj4H0I3DPHIi+u8qnenTuDv5JOMdj3SN4ZVALKwYpBGw6ksaIr7fipXdi6yu9qz6g21gE7zeG/Ex4+G8IL78GlRC1jTU/v2UtIVG9NBqrFJFLzcpn9UFlsO3wm6ROj7C+zo38aeDnTnaBgaX7yi7bUCEn1ivJikddCOtkvQCFcDCSsIjqZ0lYDsdCUdVWxv1l52mMJjMdwuvQJNDLisEJodBqNSXJ8IIb6RayLHbYfCBoZQVxIapKilaI6hfaHrzrQVYyHFsDzW+r1MvNZjMLtyvFBIfHSOuKsJ17OtTnwxUH2X7iIkdSc2gSWMmZaCbT5UKJKi92aDQaKSoqUjUGUfs4Ozuj01VPIi4Ji6h+Go1SRG7bF0q3UCUTlq3HL3AiPQ8PFx2DWofYKEghIMjblV6RgfyTkMrCHad4eWBU5U6QvANyzoLe+/ICoNXMbDZz9uxZMjIyVLm+qP18fX0JDg62+bIokrAIdUQNVhKWg3+B8VPQVfxH0dK6MrhNKB56+REWtjX8pgb8k5DKr3Gnea5fc1ycKtGTbhmn1aw/OLnYJsDrsCQrgYGBuLu7y1pbwmrMZjN5eXmkpirjCUNCbPsFUv7aC3U06ALu/pCXrlS+bdSjQi/LvFTEX/tSABgmg21FNbi1eV0CvfSkZhewKjGV26KDK/ZCs/mK6czqFIszGo0lyYq/v78qMYjazVJPLTU1lcDAQJt2D8mgW6EOnZMyCBEur2BbAX/uPUOBwUTTQE/ahfnaJjYhruCk03JXu3oALN5ViVL9qfFw8Tjo9NCkj42iuzbLmBV3d3dVri8cg+Xny9ZjpCRhEeopmd78pzI4sQIW70wGlMGQ0rQtqsvQ9soyIqsSU7mYW1ixF1laV5r0Br26y0bI74qwper6+ZKERagnoge4eEH2GTiz87qHn0zPZcfJi2g0cGfbetUQoBCK5sFetAz1psho5s+9Zyr2Ist0ZpW6g4SobSRhEepxdoVm/ZRty0q217B4l9K6cnOTAIJ9XG0ZmRBXsbSy/FrcyndNF47BuX2g0UHzATaOzPE89NBDDBkyRO0wymWN+E6cOIFGo2H37t3lHrNmzRo0Gk3JDLBvv/0WX1/fkudff/112rZte0Nx2BNJWIS6rqx6e41VIsxmc0nCYhlPIER1uqNNKDqtht2nMjh6PufaBx/4TbmPuAXc/Wwem6P59NNP+fbbb9UOQ3Vdu3YlJSUFHx+fMp9/7rnnWLlyZclje0/0rkcSFqGuJn2VQYkXjkFqQrmH7UzK4GR6Hm7OOvq3rOAsDSGsqK6XnluaBgCXx1KVK/535b7FnTaOyjH5+PiUakmoLoWFFRy/VE1cXFyuWf/E09OzVs0Ok4RFqEvvCY17KdvXWFvIMjvjtuhgqb0iVGPpFlq8KxmTqZwWwQvHIWW30h1kaUEUlfbLL7/QqlUr3Nzc8Pf3p0+fPuTm5gJXtxRkZ2czcuRIPDw8CAkJ4eOPP6Znz55MmDCh3PNbuku++OILwsLCcHd359577y1VYM9ynalTpxIaGkqzZs0A2LdvH7169SqJ7fHHHycn5+pWtzfeeIPAwEC8vb154oknSiU8y5Yt4+abb8bX1xd/f39uv/12jh49etU5EhMT6dq1K66urrRs2ZI1a9aUPPfvLqHy3qNle+7cufz+++9oNBo0Gg1r1qyhV69ejB8/vtTr0tPT0ev1rFq1qtx/PzVIwiLUd53FEAsMRv7Yo9ReGdpeuoOEevq2CMJL70RyxiW2Hr9Q9kGW1pWGN4NHQPUFV0Fms5m8QoMqN/M1un2vlJKSwv3338+YMWNISEhgzZo1DB06tNzXT5o0iY0bN7JkyRJiY2NZv349O3defyD/kSNHWLhwIX/88QfLli1j9+7djBs3rtQxK1euJCEhgdjYWP7880/y8vK47bbbqFOnDtu3b+fnn3/mn3/+uepD3/K61atXM3/+fBYvXswbb7xR8nxubi6TJk1i+/btrFy5Eq1Wy1133YXpXzMmn3/+ef7zn/+wa9cuunbtyh133EF6enqF/h2v9NxzzzFs2DBuu+02UlJSSElJoWvXrjz66KPMmzePgoKCkmN//PFHQkNDufXWWyt9HVuSr6pCfc0HKN9Gz+1Tvp36RZR6enXieTIvFRHkradrY/v7ABCOw9VZWQ7ip+2nWLTzNF0al9HcbufdQZeKjLT433JVrh0/pT/uLtf/2ElJScFgMDB06FDCw8MBaNWqVZnHZmdnM3fuXObNm0fv3r0B+OabbwgNDb3udfLz85k7dy716ystZ9OmTWPQoEF8+OGHBAcrXc8eHh58/fXXuLgolYq/+uorLl26xHfffYeHhwcA06dPZ/Dgwbz77rsEBQUBSnfNnDlzcHd3p2XLlkyZMoXnn3+eN998E61Wy913310qltmzZxMYGEh8fDzR0dEl+8ePH19y7MyZM1m2bBmzZ8/mhRdeuO77u5Knpydubm4UFBSUvDeAu+++m6effprff/+dYcOGlfz7PfTQQ3Y3HV5aWIT63P2Ub6NQZhE5S3fQnW3rodPa1y+QcDyWbqGl+1K4VGgs/eTFk8oUfY1WuoNuQJs2bejduzetWrXi3nvv5auvvuLixYtlHnvs2DGKioro2LFjyT4fHx+aN29+3es0aNCgJFkB6NKlCyaTiYMHD5bsa9WqVUmyApCQkECbNm1KkhWAbt26XfW6Nm3alCrY16VLF3Jycjh1Slla5OjRo4wYMYJGjRrh7e1NRITyRS0pqfTK4F26dCnZdnJyIiYmhoSE8sf7VZZer+eBBx5gzpw5AOzevZs9e/bw0EMPWe0a1iItLMI+RA2G42uVbqGuT5fszsgrZFWisk6FdAcJexATXof6ddw4ffESKxPPcXvrK77JW1pXwruBZ6A6AV6Hm7OO+Cn9Vbt2Reh0OmJjY9m0aRMrVqxg2rRpvPLKK2zdurXkg93C0k3079aAinY/XclyjivPdWViYjlveS0PFWmRsBwzePBgwsLC+OqrrwgNDcVkMhEdHV2hgb3Wbvl49NFHadu2LadPn2bOnDn07t27pGXLnkgLi7APkYOU+1NbIftsye6l+85SZDQTFeJNZLC3SsEJcZlWq2FwGyVJWbL7X0Xk7Lw7CJQPO3cXJ1Vulfmg1Wg0dOvWjTfeeINdu3bh4uLC4sWLrzqucePGODs7s23btpJ9WVlZHD58+LrXSEpK4syZy/+HmzdvRqvVlgyuLUuLFi3YvXt3yQBggI0bN171uj179nDp0qWSx1u2bMHT05P69euTnp5OQkICr776Kr179yYqKqrcFqQtW7aUbBsMBuLi4oiMjLzueyuLi4sLRqPxqv2tWrUiJiaGr776innz5jFmzJgqnd/WJGER9sE7FOrfpGxf0S20ZI8yffTOttfvjxaiutxRnLCsOaiMrwIg4xQk7wA0EHWHesHVAlu3buXtt99mx44dJCUlsWjRIs6fP09UVNRVx3p5eTF69Gief/55Vq9ezYEDBxgzZgxarfa6CZKrqyujR49mz549rF+/nmeeeYZhw4aVGuPxbyNHjix53f79+1m9ejVPP/00Dz74YMn4FVCmQD/yyCPEx8fz999/89prrzF+/Hi0Wi116tTB39+fL7/8kiNHjrBq1SomTZpU5vU+//xzFi9eTGJiIuPGjePixYtVTigaNmzI3r17OXjwIGlpaaXW/nn00Ud55513MBqN3HXXXVU6v61JwiLsx5VrCwHnsvJLZmIMamXbZcuFqIzIYC+aBnpSaDSx/EBxi2BJd1BX8Aoq/8Xiury9vVm3bh0DBw6kWbNmvPrqq3z44YcMGFB21eCPPvqILl26cPvtt9OnTx+6detGVFQUrq7XrojdpEkThg4dysCBA+nXrx/R0dHMmDHjmq9xd3dn+fLlXLhwgZtuuol77rmH3r17M3369FLH9e7dm6ZNm3LLLbcwbNgwBg8ezOuvvw6AVqvlp59+Ii4ujujoaCZOnMj7779f5vXeeecd3n33Xdq0acP69ev5/fffCQio2uSDxx57jObNmxMTE0PdunXZuHFjyXP3338/Tk5OjBgx4rr/bmrRmKvS0VfNsrKy8PHxITMzE29v6RaotdKPwrT2oHWC5w4zZ2cmU/6Mp30DXxY91U3t6IQo5bOVh/ko9hDdmwbw/SOd4Ou+cHobDHgPOj2hdniAMgvm+PHjRERE2O2HkC3k5uZSr149PvzwQx555JEyj3n99df57bffrln63pGcOnWKhg0bsn37dtq3b1+p117r58yan9/SwiLsh39jCIoGkwES/+KP4kXmLM3vQtgTy8/lxiNppCcfU5IV6Q5Sxa5du5g/fz5Hjx5l586djBw5EoA777TfsUT2oqioiKSkJF588UU6d+5c6WSlOknCIuxLS6XvNH/XQnYlZaDVwMDW0h0k7E/DAA9a1/fBZIZj6+YpOxt0Bm/5eVXDBx98QJs2bUoq4q5fv77KXSeOZOPGjYSHhxMXF8esWbPUDueaZFqzsC/Rd8OqN3E5tQF/7qd5o0YEejlOU7aoWe5oE8re05l4HftL2WHHs4Nqs3bt2hEXF1ep17z++uslY0ocWc+ePas0BVwN0sIi7ItfBNTrgBYTA3TbSqaPCmGPbm8dSj1NGpFF8ZilO0gIm5KERdid8w1vB+BO3SZuk5WZhR0L9nHlyYA9AKT4tAMfKW4ohK1IwiLszm+FHTGZNdykPUgdQ6ra4QhxTQM1ytTQRUWdVY5EiNpNEhZhV8xmMz8lGthuLl4H5MDVlS2FsBtph/HLSqTIrGP2hdYcPZ+jdkRC1FqSsAi7kpCSzdHzuSw1d1V27P9V3YCEuJZ9vwAQ79aei3izdG+KygEJUXtJwiLsiqX2Sl6jQaDRwZldSkE5IeyN2Qz7lYQlv7kyHf+vfZKwCGErkrAIu2E2m/mzOGHp2aElNOqhPHFgkYpRCVGOlD2QfgScXGnW4z50Wg2JZ7M5Jt1CVtGzZ08mTJhQ5devWbMGjUZDRkaG1WK6EQ0bNuSTTz65oXN8++23+Pr6XvOY119/nbZt25Y8fuihhxgyZEjJ4xv9d1WTJCzCbsSnZHHqwiVcnbXcGllXqckCsF8SFmGHLN2VTftRx8+fro39Afh7/9lrvEgI23ruuedYuXJluc8vWrSIN998s+SxNRKp6iIJi7Aby4v/0PdoVhd3FyeIvB20zpAaD+fiVY5OiCuYTJcT6Vb3ADCweIHOpdIt5FAKCwvVDqEUT09P/P39y33ez88PLy+vaozIeiRhEXZjWfGqt7dFF9decfOFpn2VbRl8K+zJqa2QdRpcvKBpPwD6twxGp9Vw4EwWJ9NzVQ6wdjAYDIwfPx5fX1/8/f159dVXS1VlLSgo4IUXXiAsLAy9Xk/Tpk2ZPXt2mee6dOkSgwYNonPnzly4cKHMY3r27Mn48eOvec2GDRvyf//3fzz00EP4+Pjw2GOPAfDrr7/SsmVL9Ho9DRs25MMPP7zq/NnZ2YwYMQJPT09CQ0OZNm1aqec/+ugjWrVqhYeHB2FhYTz11FPk5Fzdxfjbb7/RrFkzXF1d6du3L6dOnSp57t9dQmW9R0uXUM+ePTl58iQTJ05Eo9Gg0WjIzc3F29ubX375pdTr/vjjDzw8PMjOzi733LYmCYuwC8fO53DoXA5OWg29IoMuP2HpFtr3szLIUQh7UDzYlqjbwdkNAD8PF7o0Ur7ZLt1nx91CZjMU5qpzq+Tv8Ny5c3FycmLr1q189tlnfPzxx3z99dclz48aNYqffvqJzz77jISEBGbNmoWnp+dV58nMzKRfv34UFhaycuVK/Pz8qnxNgPfff5/o6Gji4uL473//S1xcHMOGDeO+++5j3759vP766/z3v//l22+/vep1rVu3ZufOnUyePJmJEycSGxtb8rxWq+Wzzz5j//79zJ07l1WrVvHCCy+UOkdeXh5vvfUWc+fOZePGjWRlZXHfffdV5p+1xKJFi6hfvz5TpkwhJSWFlJQUPDw8uO+++/jmm29KHfvNN99wzz33qNo6I2sJCbuw/MA5ALo09sfHzfnyE80HgosnZJyEpC0Q3kWlCIUoZiyCA78p25aEutiAVsFsOJLG0n0pPNmzcfXHVhFFefC2SktevHwGXDwqfHhYWBgff/wxGo2G5s2bs2/fPj7++GMee+wxDh06xMKFC4mNjaVPnz4ANGrU6KpznDt3juHDh9O4cWPmz5+Pi4tLla9p0atXL5577rmSxyNHjqR3797897//BaBZs2bEx8fz/vvv89BDD5Uc161bN1566aWSYzZu3MjHH39M375KS/KVg2EjIiJ48803efLJJ5kxY0bJ/qKiIqZPn06nTp0AJcGKiopi27ZtdOzYsSL/rCX8/PzQ6XR4eXkRHHy5qvijjz5K165dOXPmDKGhoaSlpfHnn3+WSq7UIC0swi5c1R1k4eJ+eX2WvT9Vc1RClOHISshLA/cAaNSz1FP9Wwaj1cC+5EyS0vPUia8W6dy5MxqNpuRxly5dOHz4MEajkd27d6PT6ejRo8c1z9GnTx8aNWrEwoULr5usXO+aFjExMaVek5CQQLdu3Urt69at21Wv69Kl9BeuLl26kJCQUPJ49erV9O3bl3r16uHl5cWoUaNIT08nN/dyF6OTk1Op60dGRuLr61vqPDeqY8eOtGzZku+++w6A77//ngYNGnDLLbdY7RpVIS0sQnVnMi6x51QGGg30bRF09QFthsOeeUrV29veBWdZvVmoyJI4t7oXdM6lngrw1NO5kT+bjqbz9/4Unuhhh60szu5KS4da17YSNze3Ch03aNAgfv31V+Lj42nVqpVVru3hUbqVyGw2l0pyLPsqwvK6kydPMnDgQMaOHcubb76Jn58fGzZs4JFHHqGoqKjM11xv34149NFHmT59Oi+99BLffPMNDz/8sNWvUVnSwiJUt6K4dSUmvA6BXmUkIw27g3c9yM+EQ8uqOTohrnApAxKXKtttyh43MMDeZwtpNEq3jBq3Sn7gbdmy5arHTZs2RafT0apVK0wmE2vXrr3mOd555x1Gjx5N7969iY+//mzDa12zPC1atGDDhg2l9m3atIlmzZqVel1Z546MjARgx44dGAwGPvzwQzp37kyzZs04c+bqxNJgMLBjx46SxwcPHiQjI6PkPJXl4uJSqhXI4oEHHiApKYnPPvuMAwcOMHr06Cqd35okYRGqs4xf6V/eysxanfJtFmDvgmqKSogyxP8GxgKoGwUhbco85LbibqE9pzM5fVG6hW7EqVOnmDRpEgcPHmT+/PlMmzaNZ599FlBm64wePZoxY8bw22+/cfz4cdasWcPChQuvOs8HH3zAyJEj6dWrF4mJiVW+Znn+85//sHLlSt58800OHTrE3LlzmT59eqlxLgAbN27kvffe49ChQ3z++ef8/PPPJedu3LgxBoOBadOmcezYMb7//ntmzZp11bWcnZ15+umn2bp1Kzt37uThhx+mc+fOlR6/YtGwYUPWrVtHcnIyaWlpJfvr1KnD0KFDef755+nXrx/169ev0vmtSRIWoaoLuYVsPZ4OXCNhgcvfZg+vgNz0aohMiDLsKe4OanNfua0Fdb30dIxQZqH8bc+zhWqAUaNGcenSJTp27Mi4ceN4+umnefzxx0uenzlzJvfccw9PPfUUkZGRPPbYY6XGe1zp448/ZtiwYfTq1YtDhw5V+Zplad++PQsXLuSnn34iOjqa//3vf0yZMqXUgFtQEpu4uDjatWvHm2++yYcffkj//v0BaNu2LR999BHvvvsu0dHR/Pjjj0ydOvWqa7m7u/Piiy8yYsQIunTpgpubGz/9VPXxfVOmTOHEiRM0btyYunXrlnrukUceobCwkDFjxlT5/NakMVe0o01FWVlZ+Pj4kJmZibe3t9rhCCtauP0UL/y6l5ah3vz1TPdrH/zFLUo59AHvQ6dr/wERwuouHIPP2gEamBQP3uXPtPlu8wn+9/sB2jXwZfFT3co9ztby8/M5fvw4ERERuLrK2K/r6dmzJ23btq0xlV9t7ccff+TZZ5/lzJkz1xywfK2fM2t+fksLi1BVyeyga7WuWLQubmWR2UJCDXuLuxoa9bxmsgLKbDeNBnYlZZCSecn2sQlhRXl5eRw4cICpU6fyxBNPVGh2VXWQhEWoJju/iA2HlT7Tq6Yzl6XVPcoKzslxkHbYxtEJcQWzGfbMV7bb3H/dwwO9XOnQoA4AK4rHaAlRU7z33nu0bduWoKAgJk+erHY4JSRhEapZc/A8hUYTjQI8aBJ4dXXKq3gGQpPeyvYeaWUR1ejUVrh4Apw9lOq2FWBJwpfJYog1xpo1a6Q7CKW8f1FREStXriyzcrBaJGERqrF0B/WPDq74/P7Ww5X7PT+B6eqpeELYhKV1pcWdFa7UahlEvu3EBS7k2tcCeULURJKwCFXkFxlZnZgKVHD8ikXk7eDqqyw8d2y1bYIT4kqFebB/sbJdTu2VsoT5udMixBujycw/Cep2C9WAuRWiBquuny9JWIQqNhxOI6/QSIiPK63r+1T8hc6u0HqYsr3zO9sEJ8SV4n+HgkzwDVeKGFaCpZXFUhyxujk7K5V48/KkHoywHcvPl+XnzVakNL9QxXJLd1DLSnQHWbQfBdu+VCqO5qaBR4ANIhSimCUxbv8gaCv3He+26GA+/ucQ6w6nkVNgwFNfvX9ydTodvr6+pKYqrZnu7u6ql1cXtYfZbCYvL4/U1FR8fX2vWQ3YGiRhEdXOYDQRm3Cd6rbXEtwKQtpCym6l8m2XcVaNT4gSaYchaRNotNB2ZKVf3izIk4b+7pxIz2PtwfMMah1igyCvzbIKryVpEcLafH19S632bCuSsIhqt+34BTLyivDzcOGmhnWqdpL2o+Cv3cq3385PVXqNEiEqxNK60rTfdWuvlEWj0dC/ZTBfrDvG8gNnVUlYNBoNISEhBAYGXrWInhA3ytnZ2eYtKxaSsIhqZ5kd1DcqCCddFYdRtboHlr8C5xPh9A4Iu8mKEQoBGAovzw5qP6rKp+kfrSQsqxJTKTAY0TtVzx/3f9PpdNX2wSKELcigW1GtTCZzyfiVChWLK4+rD7QcomzvnHvjgQnxb4eWQe558AhUWliqqG19XwK99OQUGNh0VNbBEqKqJGER1WrP6QzOZRXgqXeiaxP/GztZuweV+/2LoCD7xoMT4kqW7qC2I0BX9dkPWq2mZKzWcikiJ0SVScIiqpWlO+jWyMAbbxoP7wp+jaEoV0lahLCWzNNw5B9l+wa6gywsCUts/DmMJqmJIkRVSMIiqo3ZbC75hlmpYnHl0Wguf5jsmKOs9yKENez8HjBD+M3g3/iGT9epkR8+bs6k5xay48SFG49PCAdUpYRlxowZJctId+jQgfXr11fodRs3bsTJyYm2bdtW5bKihjt4LpsT6Xm4OGnp2byudU7a7kHQ6ZUpzsk7rXNO4diMRRD3rbId87BVTums09I7KhCA5bIYohBVUumEZcGCBUyYMIFXXnmFXbt20b17dwYMGEBSUtI1X5eZmcmoUaPo3bt3lYMVNdvy/cof6luaBuBhrQJaHv7Q8i5le/vX1jmncGyJf0LOWWWwbdQdVjttyTiWA2elVL4QVVDphOWjjz7ikUce4dFHHyUqKopPPvmEsLAwZs6cec3XPfHEE4wYMYIuXbpUOVhRsy27orqtVXV8TLnf/yvkyiwMcYO2FSe+HUaDk4vVTntL07q4OetIzrjEgTNZVjuvEI6iUglLYWEhcXFx9OtXeopfv3792LRpU7mv++abbzh69CivvfZaha5TUFBAVlZWqZuo2U6m55KQkoVOq6FPVJB1T16vA4S0AWMB7P7BuucWjuVcPJzcABoddLBOd5CFm4uOHs2UrtDlKq0tJERNVqmEJS0tDaPRSFBQ6Q+coKAgzp4t+xfw8OHDvPTSS/z44484OVWsG2Dq1Kn4+PiU3MLCwioTprBDlj/QnRv5UcfDet9aAWXw7U3FrSzbZ4PJZN3zC8dh6VaMHAg+9ax+ekvtoWUyvVmISqvSoNt/L55lNpvLXFDLaDQyYsQI3njjDZo1a1bh80+ePJnMzMyS26lTp6oSprAjlj/QVu8Osoi+G1x9IePk5emoQlRGfpayNhXATY/a5BK3RgbipNVwODWHY+dzbHINIWqrSiUsAQEB6HS6q1pTUlNTr2p1AcjOzmbHjh2MHz8eJycnnJycmDJlCnv27MHJyYlVq1aVeR29Xo+3t3epm6i5UrPy2ZmUAUC/FjZKWFzcod0DyrYMvhVVsXcBFOZAQDOI6GGTS/i4OdOlsVIwUWYLCVE5lUpYXFxc6NChA7GxsaX2x8bG0rVr16uO9/b2Zt++fezevbvkNnbsWJo3b87u3bvp1KnTjUUvaoTl8cof5nYNfAn2cbXdhWLGKPeHV8CFY7a7jqh9zGbY9pWyfdOjNl1Ms6RbSMaxCFEple4SmjRpEl9//TVz5swhISGBiRMnkpSUxNixYwGlO2fUKKWYl1arJTo6utQtMDAQV1dXoqOj8fDwsO67EXbJqsXirsW/cfGaL2bYcu1Za0KUcmQlpB0EFy9oc59NL9W3RRAaDew5lUFK5iWbXkuI2qTSCcvw4cP55JNPmDJlCm3btmXdunUsXbqU8PBwAFJSUq5bk0U4joy8QjYfU6Ya22z8ypW6jFPud/0Aly7a/nqidtg8TblvP0pZWNOGAr1cad+gDgArpFtIiArTmGtABaOsrCx8fHzIzMyU8Sw1zC9xp3nu5z1EBnuxbMIttr+g2QyzboZz+6H3a9B9ku2vKWq2s/thVjfQaOGZ3VAn3OaX/GrdMd5amkDXxv7Me6yzza8nhFqs+fktawkJm1puq2Jx5dFooMt4ZXvbl2AorJ7rippr8+fKfYs7qyVZgcu/D1uPX+BirvyMClERkrAIm8ktMLDu0Hng8kDDahF9N3gGQ3YKHJBVnMU1ZJ+FfT8r25ZEtxo08HcnKsQbo8nMPwnSLSRERUjCImxm7aHzFBhMhPu7ExnsVX0XdnKBTo8r25unyyrOonzbvgJTEYR1hvox1Xrp/i2VUhAyvVmIipGERdjMlcXiyiosaFMdHgZndzi7D46vq95ri5qhMA92zFa2LYO1q5GlW2jd4fPkFhiq/fpC1DSSsAibKDAYWZ2YClTj+JUruftB2xHK9oaPq//6wv7tnKvMJKvTECIHVfvlI4O9CPd3p9BgYm1x16kQonySsAib2HQ0newCA4FeetqF+aoTRNenlUXsjq2G5Dh1YhD2yVAAGz9Ttrs9C1pdtYeg0WhKknlZDFGI65OERdjE8iu6g7Taau4OsqjTEFoPU7bXfahODMI+7ZkP2WfAKwTajlQtDMs4llUJqRQaZNFOIa5FEhZhdUaTmRXF5firdXZQWW6eBGjg4F9w7oC6sQj7YDRc7ibs+jQ46VULpV1YHep66ckuMLDpaJpqcQhRE0jCIqxu+4kLXMgtxMfNmY4RfuoGU7eZUl8DYP1H6sYi7MOBRXDxBLj7Q4eHVA1Fq9XQr4XMFhKiIiRhEVZn6Y/vExWEs84OfsS6/0e5P7AI0o+qG4tQl8kE64u7Bzs/BS7qr2dmaYWMjT+L0SRT8IUojx18mojaxGw2X17sUO3uIIuQ1tC0P5hNsEFaWRxa4p9wPhH0PtDxMbWjAaBzI3+8XZ1IyylkZ5KsfyVEeSRhEVa1LzmTM5n5uLvo6N40QO1wLrvleeV+z0/SyuKoTEZYM1XZ7vS4zRc5rChnnZbeUUq3kKV2kRDiapKwCKuy/MHt2bwurs7VP1W0XGE3QZO+YDLAmnfUjkao4cBiSI1XWldUKBR3LVdOb64B69EKoQpJWIRVLavuxQ4ro9eryv2+n+FcvLqxiOplNMDqt5Xtbk+DWx114/mXHs3q4uqs5fTFS8SnZKkdjhB2SRIWYTVHUrM5dj4XF52WXpGBaodztdC2EHUHYIbVb6kdjahOe+bBhaPKzKBOY9WO5ipuLjpuaVoXuFzDSAhRmiQswmr+3qf8oe3axB8vV2eVoynHra8AGmXwZfJOtaMR1cFQAGvfU7ZvngT6alyIsxIsg9RlerMQZZOERVjN38XfDAfYy+ygsgRGQuvhyvaq/1M3FlE94r6FzFNKVdubHlE7mnL1jgzCSavh4Llsjqflqh2OEHZHEhZhFUnpecSnZKHTaujbwo4TFoCeL4HWCY6uhGNr1I5G2FJ+Jqx9V9m+5XlwdlM3nmvwcXemS2N/QNYWEqIskrAIq1h2IAWAThF++Hm4qBzNdfhFQEzxN+3lryjTXUXttP5DyEuHgGbQfpTa0VxXP1kMUYhyScIirGKZvRWLu56eLyl1OM7th90/qh2NsIWLJ2DLTGW775ugs9NxVVewlOnflZTB2cx8laMRwr5IwiJu2NnMfHYmZQB2Op25LO5+0ONFZXvlm1CQrW48wvr+eQOMhRDRA5r1VzuaCgnydqV9A19AKdUvhLhMEhZxwyzN1+0b+BLk7apyNJVw02Pg1whyU2HDJ2pHI6zp1DZl7Sg00P8t0GjUjqjCLheRk9lCQlxJEhZxw5aVzA4KUTmSSnJyUboKADZPh4wkdeMR1mEywbKXlO12D0BwK3XjqSRLwrL5WDoZeYUqRyOE/ZCERdyQ9JwCth5PB2rQ+JUrRQ6Cht3BkA/LJqsdjbCGnXMhOQ5cvC5XN65BGgZ4EBnshdFkZmVCqtrhCGE3JGERN+SfhHOYzNAy1JswP3e1w6k8jQYGvq9Mc078Ew4uUzsicSNy0+Cf15XtXq+AVw1MopHZQkKURRIWcUNqRLG46wmMurwY3t/PQ2GeuvGIqot9DfIzIKiVMkaphrqtOGFZe+g8eYUGlaMRwj5IwiKqLPNSERuPpAE1tDvoSj1eBJ8wZRzLuvfVjkZUxcnNsPsHZfv2j0DnpG48NyAqxIswPzcKDCbWHTqvdjhC2AVJWESVrU5MpchopkmgJ00C7XN9lgpz8YABxRVRN02D1ER14xGVYyiEvyYp2+1HQVhHdeO5QRqNhv7FFaOXyWKIQgCSsIgb8Pd+pbrtbTWl9sr1NB8IzQaAqQiWjJcKuDXJ+g8gNV5Zjbn362pHYxWWVsuViakUGkwqRyOE+iRhEVWSV2hgbXFTdY3vDrLQaGDQB6D3htPblanOwv6l7FVK8AMM/AA8/NWNx0raN6hDXS892fmGkq5XIRyZJCyiStYePE9+kYn6ddxoGeqtdjjW41Mf+r+tbK96C84fVDcecW3GIvjtKTAZIOoOaHmX2hFZjVarYWDxl4G/9qWoHI0Q6pOERVTJ0itmB2lqUBXRCmn3ADTpC8aC4g9D6RqyW+s/gnP7wM0PBn1YoyraVsTAVkoxxuUHzkq3kHB4krCISrtUaGRlglI2fFDrUJWjsQGNBgZ/CnofSN4BGz9ROyJRltNxsO49ZXvAe+AZqG48NhDT0I/A4m6hDUdktpBwbJKwiEpbfTCVvEIj9eu40aa+j9rh2IZPPbhtqrK9+m04vUPdeERpBdnw6yNKV1CLO6HVPWpHZBM6raakleXPvdItJBybJCyi0v7cewaAQa1Dal930JXajlDGRJgM8MvDkJ+pdkTCYunzcPG4Ujtn8Ke1rivoSoNaKwlLbPw5CgzSPSkclyQsolJyCwysSlTWN7m9VS3sDrqSpWvIt4FSUO6PCWA2qx2V2Psz7JkPGi0M/Qrc6qgdkU11aFCHIO/ibqHDMltIOC5JWESlrEpMJb/IRLi/O9H1atHsoPK4+sDdc0CjgwOLYOd3akfk2M4fgj8nKtu3vADhXdSNpxpotZqSldD/km4h4cAkYRGVUtId1KqWdwddKeymy6v+Ln1eWQlYVL/8LFgwEgqzIfxmuOV5tSOqNrdLt5AQkrCIisspMLD6oDJT4fbaODvoWrpNUCrhGgvgpwcgJ1XtiByLyQS/PQlph8ArFO79pkavFVRZ7RvUIdjblewCA+sPSbeQcEySsIgK+yf+HIUGE40CPIgKqeFrB1WWVgt3fQH+TSH7DCwcrRQtE9Vj48eQ+CfoXGD497VyCvO1aLUaBrSSInLCsUnCIirMMq2y1s8OKo+rN9w3D1y8IGkT/P2iDMKtDgl/wso3le2B70P9GHXjUcmV3UL5RdItJByPJCyiQrLyi0qWuXe47qAr1W0GQ78ENLBjNmz6TO2IarfTcfDro4AZYsZAh4fUjkg17cLqEOLjSk6BoeR3UQhHIgmLqJDYA+coNJpoEuhJsyBPtcNRV+RA6Pd/ynbs/2DfL+rGU1tdPAHzh4PhkrJUwoD31Y5IVdorisj9IbOFhAOShEVUiGV20O2O2h30b13GQacnle3fnoTj69WNp7bJTYMf74Xc8xDcyuEG2ZbnzrZK62Zs/FlyCgwqRyNE9ZKERVxXek4B64oLVjl0d9CVNBro/5ayQrCxEH4aoXRfiBt36SJ8P0SZEeRdD0YsBL2DDfIuR6t6PjQK8CC/yMSKA2fVDkeIaiUJi7iuv/alYDSZaVXPhyaBDt4ddCWtThnPEn4zFGTBD3fBmd1qR1WzFWTDD/fA2X3gURdG/Q7ekiRbaDQa7ihuZflt9xmVoxGieknCIq7rt13JAAxpV0/lSOyQsxuMWABhnZS1hr4fAucOqB1VzVSQA/PuU1bIdqujJCsBTdWOyu4Maav8Hm44fJ7z2QUqRyNE9ZGERVzTyfRcdiZloNXA4DYhaodjn/SeMPJnCG2vdGfMHQxndqkdVc1yKQO+vwtObgC9NzywCIJaqh2VXWoY4EGbMF9M5stjy4RwBJKwiGv6vbjZuVuTAAK9XFWOxo65+sCDiyC0HeSlw7eDZSBuReWch29vh9PbwNUXHvwN6rVXOyq7NkS6hYQDkoRFlMtsNl/uDmor3UHX5VYHRi2Bht2V9W5+uFspeibKd+E4fHMbnNsHHoHw8FKo30HtqOze7a1D0Wk17DmVwfG0XLXDEaJaSMIiyrUvOZNjabm4OmvpHx2sdjg1g6s3jPwFmg9S1h1a+CBs/lwq4pYlaQt83RvSj4B3fXj4b+kGqqC6Xnq6NQkA4PfdySpHI0T1kIRFlOu3XUpzc98WwXjqpQZGhTm7wrDvoP0oMJtg+cuw5GkwFKodmf3Yu1AZ65OXDiFt4dF/IKCJ2lHVKJZuod93n8EsCbFwAJKwiDIZjCaW7FESFssfRlEJOicY/Bn0fxs0Wtj1PXx3B2Q5eIVSQyH8/RIsekypXxN5u9IN5C0DuiurX8tgXJ21HE/LZe/pTLXDEcLmJGERZdp0NJ20nALquDtzS7O6aodTM2k0SkXcET8rM1+SNsOsbnA4Vu3I1JGRpIxX2TpTeXzzRBj2Pbh4qBtXDeWpd6JvC6WrdvEu6RYStZ8kLKJMv+48DSiD+5x18mNyQ5r2gcdWKyXm89Lhx3tgxatgcJAaGmazst7SrO6QHKfMBLr/J+jzOmjlZ+tGDC2ujfT77mQKDSaVoxHCtuSvhbhKZl4Rf+9Xyn7fG1Nf5WhqiYAm8Mg/0PFx5fGmafDFLXBqu7px2VrOeWXg8a+PQH6GUqvmiXXQfIDakdUK3ZsGEOSt52JeESsTzqkdjhA2VaWEZcaMGURERODq6kqHDh1Yv778ehOLFi2ib9++1K1bF29vb7p06cLy5curHLCwvSV7z1BoMBEZ7EWrej5qh1N7OLvCwPfhvnlK2fnziTC7Lyx7WanyWpuYTLDrB5jRCRL+AK0T9HgJxiyHOuFqR1drOOm0DG2vfKlYuOOUytEIYVuVTlgWLFjAhAkTeOWVV9i1axfdu3dnwIABJCUllXn8unXr6Nu3L0uXLiUuLo5bb72VwYMHs2uXVAK1V78U/+G7NyZMVma2hchBMG4btLkfMMOWz2Fae9j5PZiMakd3407vgNl94PdxShdYULTSJXbrZHByUTu6WufeDkrCsvbQec5l5ascjRC2ozFXcj5cp06daN++PTNnzizZFxUVxZAhQ5g6dWqFztGyZUuGDx/O//73vwodn5WVhY+PD5mZmXh7e1cmXFFJiWezuO2T9ThpNWx9uTf+nnq1Q6rdDsfC0ufh4nHlcXAr6P06NOmtDNqtSc4fhLXvwv5flccuXtDjBeg0VhIVG7tn5iZ2nLzIi7dF8mTPxmqHI0QJa35+V6qFpbCwkLi4OPr161dqf79+/di0aVOFzmEymcjOzsbPz6/cYwoKCsjKyip1E9Xj5x3KYNs+UUGSrFSHpn1h3Fbo93+g91FWKf7xbvjqVkhcWjMKzqUmwq+PweedLicrbUfC03HQ7RlJVqrBsJgwAH7ecUpqsohaq1IJS1paGkajkaCgoFL7g4KCOHv2bIXO8eGHH5Kbm8uwYcPKPWbq1Kn4+PiU3MLCwioTpqiiQoOppBS/DLatRk566Po0PLMTOo8DJzdl8cSf7leSgC2zlMUB7YnJCAf/hu/uVMap7FsImJW6KmM3wJAZ4BV03dMI6xjYOgQ3Zx3H0nLZmXRR7XCEsIkqDbr997gGs9lcobEO8+fP5/XXX2fBggUEBgaWe9zkyZPJzMwsuZ06JYPJqsOqxFTScwup66Wnh9ReqX4eAXDb2zBhn1KjxMUT0g7Cshfhoyj47Sk48g8Yi9SL8dwB+Od1+LQNzL8Pjq1RCuNF3g6Pr4X7flS6tUS18tQ7Mai1Unxv4fbTKkcjhG1Uqt56QEAAOp3uqtaU1NTUq1pd/m3BggU88sgj/Pzzz/Tp0+eax+r1evR66Y6obj8XD7Yd2r4eTlJ7RT2edZUaJTdPgr0LYPtsOJ8Au39Ubm5+ysDdJr0hoge4l9+9esMMhXBqKxyJhUMrlDgsXH2g/Wi46VGZ+WMH7u1Qn1/iTvPn3jP8b3ALPGQ5DVHLVOon2sXFhQ4dOhAbG8tdd91Vsj82NpY777yz3NfNnz+fMWPGMH/+fAYNGlT1aIXNJGdcYvXBVOByf7hQmas3dHxMSQiStsC+nyH+d8hLU0r97/oe0CgtGvVvgpA2yi2gGbi4V/56hkLIOAmpCUqBt+Q4SN4JRVesBqxzgab9oNW90Kw/OLtZ7e2KG9Mxwo+IAA+Op+Xy++4zjOjUQO2QhLCqSqfgkyZN4sEHHyQmJoYuXbrw5ZdfkpSUxNixYwGlOyc5OZnvvvsOUJKVUaNG8emnn9K5c+eS1hk3Nzd8fKTGh72YvzUJkxm6NvancV1PtcMRV9JoILyLchvwHpzcAIeWK90xqfFwdq9yu5JHXfANV9bo0fsoyY+lBL7ZpIxBKchSph3nXYDMU0rpfHMZ1VI96kLj3soA4Sa9wa2Ozd+yqDyNRsOIjg14a2kCP2w5yf0dpSyBqF0qnbAMHz6c9PR0pkyZQkpKCtHR0SxdupTwcKVJOCUlpVRNli+++AKDwcC4ceMYN25cyf7Ro0fz7bff3vg7EDesyGjip+1Kd9DITtK0b9d0TtCop3IDyD4LJzdCyp7Lt0sXIfe8cqvsEjPO7uDfWKlIWz8G6nWAulFSQr+GuKdDfd5fcZD4lCx2ncqgfQNJLkXtUek6LGqQOiy29dfeFMbN20ldLz2bXuolawfVZGazUgI/I0m5ZZ9VWlLys6AwV2mt0WhBowO9F7j7K2NgvILBr7FyL9/Ka7RJC3ezaGcyQ9vX46NhbdUORzg4a35+y6gswQ9bTgJw301hkqzUdBqN0mXjVkcZzyIczgOdw1m0M5k/96bw30EtqOMhdXBE7SCfTg7uSGoOm4+lo9XAfR1lkJ4QNV27MF9ahHhTaDCVrLouRG0gCYuDm7dVGW/UKzKQer4y40OImk6j0fBAZ2Us2o9bkzCZ7L7XX4gKkYTFgeUWGPglrniwbWcZbCtEbXFn21A89U4cT8tl49E0tcMRwiokYXFgv+48TVa+gYb+7tzSVCrbClFbeOiduLt9PQC+2XhC3WCEsBJJWByUyWQu+UP2cLcIdFqZGSJEbfJQtwg0GmXJjSOpOWqHI8QNk4TFQa1KTOV4Wi7erk7c00EWOhSitokI8KBPlLJkyjcbj6scjRA3ThIWBzV7g/IH7P6ODWTNESFqqUdvjgCU7t8LuYUqRyPEjZGExQEdOJPJ5mPp6LQaRndtqHY4Qggb6RjhR3Q9b/KLTMzbelLtcIS4IZKwOKA5G04AMCA6mFCZyixEraXRaHj05kYAzN18kgKDUeWIhKg6SVgcTHLGJX7frSww82j3RipHI4SwtYGtQgj2duV8dgFLdp9ROxwhqkwSFgfz1bpjGExmujb2p22Yr9rhCCFszMVJy8PdGgIwc81RjFJITtRQkrA4kPPZBczfplS2HXdrE5WjEUJUl5Gdw/F1d+ZYWi5L96WoHY4QVSIJiwOZs/E4BQYTbcN86drYX+1whBDVxFPvxJhuyoyh6auOSLl+USNJwuIgMvOK+H6zMktg3K1N0GikUJwQjmR014Z46Z04eC6bfxLOqR2OEJUmCYuDmLv5BDkFBiKDvegdGah2OEKIaubj5syDXZQ1w6avPoLZLK0somaRhMUBZOYV8dX6YwA82bMxWinDL4RDeuTmCFydtew9ncmaQ+fVDkeISpGExQF8uf4o2fkGmgd5cXvrULXDEUKoxN9TzwOdlFaWD1cclLEsokaRhKWWO59dUFIo7j/9mskih0I4uCd7NsZT78T+5CyW7pcZQ6LmkISllvt89REuFRlpE+ZL3xZBaocjhFCZv6eex4qLRn644hBFRpPKEQlRMZKw1GLJGZeYt1Wpu/J8v+YyM0gIAcAj3SPw93DheFouP+84rXY4QlSIJCy12AfLD1JoNNG5kR/dmkjdFSGEwlPvxPheSvHIT1ce4lKhrDEk7J8kLLXUzqSLLN6VjEYDrwxsIa0rQohSRnRqQP06bpzLKiiZRSiEPZOEpRYymcxM+SMegLvb16dVfR+VIxJC2Bu9k44XbosEYMaaIyRnXFI5IiGuTRKWWmjJnjPsPpWBh4uOF/o3VzscIYSdGtw6hI4N/cgvMvH20gS1wxHimiRhqWVyCwy883ciAE/d2oRAb1eVIxJC2CuNRsPrd7REq4G/9qaw+Wi62iEJUS5JWGqZj2IPcTYrnzA/Nx65OULtcIQQdq5FqDcji4vJvfHHAZnmLOyWJCy1yL7TmXyz8TgAb94ZjauzTuWIhBA1waS+zfB1dybxbDZfrz+udjhClEkSllrCYDTx0qK9mMxwR5tQejaXBQ6FEBVTx8OFVwe1AODjfw5x7HyOyhEJcTVJWGqJbzae4MCZLLxdnfjv7S3UDkcIUcPc3b4e3ZsGUGgw8dKv+2SdIWF3JGGpBQ6fy+b9FQcBeGVQFHW99CpHJISoaTQaDW/f1Qp3Fx3bTlzgx60n1Q5JiFIkYanhCg0mJizYTaHBRM/mdRkWE6Z2SEKIGirMz50Xi2uzvL00kaPSNSTsiCQsNdwn/xziwJks6rg7897draWirRDihjzYOZxuTfy5VGTk2Z92UWiQWUPCPkjCUoNtPprOrLVHAZg6tJXUXBFC3DCtVsOH97bF192Z/clZfFjc3SyE2iRhqaHOZeXz9PxdmMxwb4f63BYdonZIQohaItjHlXfvbg3AF+uOsToxVeWIhJCEpUYqMpoYP28naTkFRAZ7MeXOaLVDEkLUMv1bBvNgZ6Wg3DM/7ZKpzkJ1krDUQFOXJrL9xEW89E7MfKADbi5SIE4IYX3/vb0FMeF1yM438Pj3cWTnF6kdknBgkrDUMN9vOcmc4mq279/bhogAD5UjEkLUVi5OWmY80J4gbz1HUnOYtHCP1GcRqpGEpQZZnZjKa7/vB+C5fs24LTpY5YiEELVdoJcrsx7ogItOS2z8Od5amoDZLEmLqH6SsNQQ+05nMn7eTkxmGBZTn3G3NlE7JCGEg2jXoA7v3tMKgNkbjvPlumMqRyQckSQsNUDi2SwenLOV3EIj3Zr489ZdraTeihCiWt3Vrj6vDIwCYOrfify845TKEQlHIwmLnTuSms3Ir7aSkVdE2zBfvngwBmed/LcJIarfY7c04vFbGgHwwq97WbhdkhZRfeSTz44dOJPJfV9uJT23kOh63swd0xFPvZPaYQkhHNjkAZGM6hKO2awkLfO2JqkdknAQkrDYqS3H0rnviy2k5RTQIsSb78d0wsfNWe2whBAOTqPR8MYdLXm4W0MAXl68j1lrj8pAXGFzkrDYoT/3nmHUnG1kFxjoFOHHT090po6Hi9phCSEEoCQt/7u9BU8Udw+983ciLy/eT5FR1h0StiMJix0xmsy8tyyR8fOUBcf6tghi7piOeLtKy4oQwr5oNBomD4zitcEt0Ghg/rYkxny7nYu5hWqHJmopSVjsRFpOAY/M3c6MNcpihk/0aMSsBzrg6ixVbIUQ9uvhbhF8+WAMbs461h9OY9Bn64k7eVHtsEQtJAmLHViVeI7bPlnHmoPncXXW8ul9bZk8IAqdVqYuCyHsX98WQSx6qisRAR6cycxn+BebmbbysHQRCavSmGvASKmsrCx8fHzIzMzE29tb7XCsJiOvkHeXJTJ/mzI1sHmQF5/e35bI4NrzHoUQjiM7v4jJi/bx594UAFqGevPePa1pGeqjcmRCLdb8/JaERQUmk5lfdp7mnb8TuVDc3/vIzRE837+5dAEJIWo0s9nMb7uTeX1JPJmXinDSahhzcwTjbm0iMx0dkCQsNZTZbGbNofN8uOIg+5OzAGgW5Mmbd0bTqZG/ytEJIYT1pGbn87/fDrDswFkA6rg7M7FvM+67qQEuTjIawVFIwlLDmExm1h0+z+erj7D9hDIYzcNFx7N9mvJwtwipXCuEqJXMZjOrD6by1l8JHD2fC0CIjyuPdW/EfR3DcHeRQpi1nSQsNUReoYHFu5KZs+F4yS+ri5OWUZ3DebJnY/w99SpHKIQQtldkNPHTtiSmrTpCanYBAH4eLtzfMYz7bmpAmJ+7yhEKW5GExY4ZTWY2Hklj8a5klh84S16hEQBPvRPDYsJ4/JZGBPu4qhylEEJUv/wiI4t2JjNr7VGSLuQBoNHAzU0CGNK2Hn1aBMk4l1pGEhY7k5VfxIbDaaxMSGXtoVTSci4XTmro786DXRoyLKY+XlIATgghMBhNxMafY962JNYfTivZ76zT0K1JAP1bBnNzkwBpeakFJGFRWXpOATtOXiTu5EV2nLjA3tOZGEyX/xl93Z0Z3DqUIe3q0b6BLxqN1FMRQoiyJKXnsWjXaZbuS+HQuZxSz4X7u9OtSQAx4XVoXd+XRgEeaKU+VY2iesIyY8YM3n//fVJSUmjZsiWffPIJ3bt3L/f4tWvXMmnSJA4cOEBoaCgvvPACY8eOrfD11EpYcgoMJKXncTg1m8Sz2RwsviVnXLrq2EZ1PejVPJBeUYHc1NBPBtIKIUQlHUnNZum+s6w9dJ7dpzIwmkp/PHnpnYiu50NUiDeNAz1oXNeTRnU9qOuply+GdkrVhGXBggU8+OCDzJgxg27duvHFF1/w9ddfEx8fT4MGDa46/vjx40RHR/PYY4/xxBNPsHHjRp566inmz5/P3XffXaFrWjthKTSYuJBbSFpOAem5haTnFJCeU8j5nAJOX8zj1IVLnLqYR0ZeUbnnaBroSUxDP2LC69Axwk+aLoUQwoqy84vYdvwCm46ms+dUBvvPZJJfVHblXC9XJ+r5uhHi40qIrxsh3q4E+7ji7+lCHffLNy9XJ2mhqWaqJiydOnWiffv2zJw5s2RfVFQUQ4YMYerUqVcd/+KLL7JkyRISEhJK9o0dO5Y9e/awefPmCl3T8obnb0jEydWDIqOJIqOJQoOJwuJ7ZZ+ZQoOJAoORnAIjuQUGcgoM5OQbyC00lDwu74e+LHXcnWlc15PmwV5EBnvRPNib5sFeMjBMCCGqkcFo4nBqDntPZ3D4XA5Hz+dw9Hwupy7mUdFPMa0GfN1d8HFzxs1Zh4deh5uLE+7OOtxddLjrdbi7OKF30uKss9w0JdtOOg0u/9qv0YBWoym+KYtCajWg1V75uHifRlPG8QBXJ1FlNRiVlWqV1bJU9nFlna9i1y1LRY/LzsqiRcMQqyQslZoEX1hYSFxcHC+99FKp/f369WPTpk1lvmbz5s3069ev1L7+/fsze/ZsioqKcHa++oO/oKCAgoKCksdZWUqRtRd+2YtWb52WDCetBj8PF/w99QR4uuDv4UKAp55QXzfC/NwJ83Ojfh13PPVSJ0AIIdTmpNMSFeJNVEjpD738IiNJF/I4k3GJlMx85ZZxibNZ+VzMK+RibhEZeYXkFhoxmeFCbmFJhXFhe6aCPKudq1KfxmlpaRiNRoKCgkrtDwoK4uzZs2W+5uzZs2UebzAYSEtLIyQk5KrXTJ06lTfeeOOq/R0b+uHu5YWLTouL0xWZrpO2eN/lew+9E556HZ56Zzz0Ojz1TsX7nPBydcLb1VmaBoUQooZzddbRLMiLZkFe1zyuwGAkI6+Ii3mFZOcbyCs0kldQfF90xXahobj13kyR0YTB0npf3LJvuGK7yGjCbAaTWSmSZzKbMZnBZDYX7y/eZ7I8T8kxVx7/b2V1fJTZiFTWa8s6rILnK6ulylzGkZXplzEarTees0rNB/9ugjKbzdcc8FTW8WXtt5g8eTKTJk0qeZyVlUVYWBhzHr7JLmYJCSGEqFn0TjqCvHUEeUsdrOqUlZWFzwfWOVelEpaAgAB0Ot1VrSmpqalXtaJYBAcHl3m8k5MT/v5lr5+j1+vR66UKrBBCCCEUlWqrcXFxoUOHDsTGxpbaHxsbS9euXct8TZcuXa46fsWKFcTExJQ5fkUIIYQQ4t8q3bk0adIkvv76a+bMmUNCQgITJ04kKSmppK7K5MmTGTVqVMnxY8eO5eTJk0yaNImEhATmzJnD7Nmzee6556z3LoQQQghRq1V6DMvw4cNJT09nypQppKSkEB0dzdKlSwkPDwcgJSWFpKSkkuMjIiJYunQpEydO5PPPPyc0NJTPPvuswjVYhBBCCCGkNL8QQgghbMKan99SP14IIYQQdk8SFiGEEELYPUlYhBBCCGH3JGERQgghhN2ThEUIIYQQdk8SFiGEEELYPUlYhBBCCGH3JGERQgghhN2ThEUIIYQQdq/SpfnVYCnGm5WVpXIkQgghhKgoy+e2NYrq14iEJT09HYCwsDCVIxFCCCFEZaWnp+Pj43ND56gRCYufnx8ASUlJN/yGxY3JysoiLCyMU6dOybpOKpP/C/sh/xf2Rf4/7EdmZiYNGjQo+Ry/ETUiYdFqlaE2Pj4+8sNnJ7y9veX/wk7I/4X9kP8L+yL/H/bD8jl+Q+ewQhxCCCGEEDYlCYsQQggh7F6NSFj0ej2vvfYaer1e7VAcnvxf2A/5v7Af8n9hX+T/w35Y8/9CY7bGXCMhhBBCCBuqES0sQgghhHBskrAIIYQQwu5JwiKEEEIIuycJixBCCCHsnt0nLDNmzCAiIgJXV1c6dOjA+vXr1Q7JIU2dOpWbbroJLy8vAgMDGTJkCAcPHlQ7LIc3depUNBoNEyZMUDsUh5WcnMwDDzyAv78/7u7utG3blri4OLXDcjgGg4FXX32ViIgI3NzcaNSoEVOmTMFkMqkdmkNYt24dgwcPJjQ0FI1Gw2+//VbqebPZzOuvv05oaChubm707NmTAwcOVOoadp2wLFiwgAkTJvDKK6+wa9cuunfvzoABA0hKSlI7NIezdu1axo0bx5YtW4iNjcVgMNCvXz9yc3PVDs1hbd++nS+//JLWrVurHYrDunjxIt26dcPZ2Zm///6b+Ph4PvzwQ3x9fdUOzeG8++67zJo1i+nTp5OQkMB7773H+++/z7Rp09QOzSHk5ubSpk0bpk+fXubz7733Hh999BHTp09n+/btBAcH07dvX7Kzsyt+EbMd69ixo3ns2LGl9kVGRppfeukllSISFqmpqWbAvHbtWrVDcUjZ2dnmpk2bmmNjY809evQwP/vss2qH5JBefPFF880336x2GMJsNg8aNMg8ZsyYUvuGDh1qfuCBB1SKyHEB5sWLF5c8NplM5uDgYPM777xTsi8/P9/s4+NjnjVrVoXPa7ctLIWFhcTFxdGvX79S+/v168emTZtUikpYZGZmAlhlQStReePGjWPQoEH06dNH7VAc2pIlS4iJieHee+8lMDCQdu3a8dVXX6kdlkO6+eabWblyJYcOHQJgz549bNiwgYEDB6ocmTh+/Dhnz54t9Xmu1+vp0aNHpT7P7Xbxw7S0NIxGI0FBQaX2BwUFcfbsWZWiEqD0RU6aNImbb76Z6OhotcNxOD/99BM7d+5k+/btaofi8I4dO8bMmTOZNGkSL7/8Mtu2beOZZ55Br9czatQotcNzKC+++CKZmZlERkai0+kwGo289dZb3H///WqH5vAsn9llfZ6fPHmywuex24TFQqPRlHpsNpuv2ieq1/jx49m7dy8bNmxQOxSHc+rUKZ599llWrFiBq6ur2uE4PJPJRExMDG+//TYA7dq148CBA8ycOVMSlmq2YMECfvjhB+bNm0fLli3ZvXs3EyZMIDQ0lNGjR6sdnuDGP8/tNmEJCAhAp9Nd1ZqSmpp6VZYmqs/TTz/NkiVLWLduHfXr11c7HIcTFxdHamoqHTp0KNlnNBpZt24d06dPp6CgAJ1Op2KEjiUkJIQWLVqU2hcVFcWvv/6qUkSO6/nnn+ell17ivvvuA6BVq1acPHmSqVOnSsKisuDgYEBpaQkJCSnZX9nPc7sdw+Li4kKHDh2IjY0ttT82NpauXbuqFJXjMpvNjB8/nkWLFrFq1SoiIiLUDskh9e7dm3379rF79+6SW0xMDCNHjmT37t2SrFSzbt26XTW9/9ChQ4SHh6sUkePKy8tDqy39kabT6WRasx2IiIggODi41Od5YWEha9eurdTnud22sABMmjSJBx98kJiYGLp06cKXX35JUlISY8eOVTs0hzNu3DjmzZvH77//jpeXV0nLl4+PD25ubipH5zi8vLyuGjfk4eGBv7+/jCdSwcSJE+natStvv/02w4YNY9u2bXz55Zd8+eWXaofmcAYPHsxbb71FgwYNaNmyJbt27eKjjz5izJgxaofmEHJycjhy5EjJ4+PHj7N79278/Pxo0KABEyZM4O2336Zp06Y0bdqUt99+G3d3d0aMGFHxi1hrGpOtfP755+bw8HCzi4uLuX379jKNViVAmbdvvvlG7dAcnkxrVtcff/xhjo6ONuv1enNkZKT5yy+/VDskh5SVlWV+9tlnzQ0aNDC7urqaGzVqZH7llVfMBQUFaofmEFavXl3mZ8To0aPNZrMytfm1114zBwcHm/V6vfmWW24x79u3r1LX0JjNZrO1MiwhhBBCCFuw2zEsQgghhBAWkrAIIYQQwu5JwiKEEEIIuycJixBCCCHsniQsQgghhLB7krAIIYQQwu5JwiKEEEIIuycJixBCCCHsniQsQgghhLB7krAIIYQQwu5JwiKEEEIIuycJixDihvTs2ZOnn36aCRMmUKdOHYKCgvjyyy/Jzc3l4YcfxsvLi8aNG/P3338DYDQaeeSRR4iIiMDNzY3mzZvz6aefljrnmjVr6NixIx4eHvj6+tKtWzdOnjwJwJ49e7j11lvx8vLC29ubDh06sGPHjmp/30KI6iUJixDihs2dO5eAgAC2bdvG008/zZNPPsm9995L165d2blzJ/379+fBBx8kLy8Pk8lE/fr1WbhwIfHx8fzvf//j5ZdfZuHChQAYDAaGDBlCjx492Lt3L5s3b+bxxx9Ho9EAMHLkSOrXr8/27duJi4vjpZdewtnZWc23L4SoBrJasxDihvTs2ROj0cj69esBpQXFx8eHoUOH8t133wFw9uxZQkJC2Lx5M507d77qHOPGjePcuXP88ssvXLhwAX9/f9asWUOPHj2uOtbb25tp06YxevRo274xIYRdkRYWIcQNa926dcm2TqfD39+fVq1alewLCgoCIDU1FYBZs2YRExND3bp18fT05KuvviIpKQkAPz8/HnroIfr378/gwYP59NNPSUlJKTnXpEmTePTRR+nTpw/vvPMOR48erY63KIRQmSQsQogb9u8uGY1GU2qfpTvHZDKxcOFCJk6cyJgxY1ixYgW7d+/m4YcfprCwsOT4b775hs2bN9O1a1cWLFhAs2bN2LJlCwCvv/46Bw4cYNCgQaxatYoWLVqwePHianiXQgg1ScIihKhW69evp2vXrjz11FO0a9eOJk2alNlK0q5dOyZPnsymTZuIjo5m3rx5Jc81a9aMiRMnsmLFCoYOHco333xTnW9BCKECSViEENWqSZMm7Nixg+XLl3Po0CH++9//sn379pLnjx8/zuTJk9m8eTMnT55kxYoVHDp0iKioKC5dusT48eNZs2YNJ0+eZOPGjWzfvp2oqCgV35EQojo4qR2AEMKxjB07lt27dzN8+HA0Gg33338/Tz31VMm0Z3d3dxITE5k7dy7p6emEhIQwfvx4nnjiCQwGA+np6YwaNYpz584REBDA0KFDeeONN1R+V0IIW5NZQkIIIYSwe9IlJIQQQgi7JwmLEEIIIeyeJCxCCCGEsHuSsAghhBDC7knCIoQQQgi7JwmLEEIIIeyeJCxCCCGEsHuSsAghhBDC7knCIoQQQgi7JwmLEEIIIeyeJCxCCCGEsHv/D9UWnLjJD5DMAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGwCAYAAACKOz5MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2vElEQVR4nO3deVxU9frA8c/MAMMOArIpuC8ouG9oLqlharZYaWlpaZalldrqrXtv2a9sX01bXLJubpWWlZnkvqbiLrgvICIIyr7O8vvjMCgJCjhwBuZ5v17zmjNnzpzzIDjzzHd5vhqz2WxGCCGEEMKGadUOQAghhBDiRiRhEUIIIYTNk4RFCCGEEDZPEhYhhBBC2DxJWIQQQghh8yRhEUIIIYTNk4RFCCGEEDbPQe0AKsJkMnH+/Hk8PDzQaDRqhyOEEEKICjCbzWRlZREcHIxWe3NtJLUiYTl//jwhISFqhyGEEEKIKkhISKBhw4Y3dY5akbB4eHgAyg/s6empcjRCCCGEqIjMzExCQkJKPsdvRq1IWCzdQJ6enpKwCCGEELWMNYZzyKBbIYQQQtg8SViEEEIIYfMkYRFCCCGEzZOERQghhBA2TxIWIYQQQtg8SViEEEIIYfMkYRFCCCGEzZOERQghhBA2TxIWIYQQQtg8SViEEEIIYfMqnbBs2rSJYcOGERwcjEaj4eeff77hazZu3Ejnzp1xdnamadOmfPHFF1WJVQghhBB2qtIJS05ODu3bt2fWrFkVOv706dMMGTKE3r17s3fvXv71r3/xzDPP8NNPP1U6WCGEEELYp0ovfjh48GAGDx5c4eO/+OILQkND+fjjjwEICwtj9+7dvP/++9x7772VvbwQQghh28xmMJvAZFTuS26Wx2blduUFpV9b1v7rPWf+x3FVeu6fx1lJZpbVTlXtqzVv376dqKioUvsGDRrEvHnzKCoqwtHR8ZrXFBQUUFBQUPI4MzNT2fi0I7i5gM5JuTkU3+v0oHO8ss/BGZzcQO8BTh6gdwcnd+Wx3gP0nuDmB271lcdWWEVSCCGEDSrKg9y0K7e8dCjMhsKcK/cFVz02FoKhAIxFyraxePuf+65ORkolJka1f2LbUmC9RKjaE5YLFy4QEBBQal9AQAAGg4HU1FSCgoKuec3MmTN5/fXXrz1ZzkUwWDm50DkpiYslgfEKgXqNwDsUvBsr266+ktQIIYStKcqDtBNw+SxknIOMhOL7c5CdrCQoRblqR2lFV30OlfpMstb+amAwAdZpZan2hAVA849/EHNxM9Q/91tMnz6dadOmlTzOzMwkJCQExv0JLk7FGe5Vt39mvkX5xdlyFhRkFWfP2cX3WUqGnZt2JZvOTFRu5XGpB/5tIaAN+LeBwAgIbKe05gghhKheZjNcPgPn98D5vXDxqHJLj6dCXRlaR+WLp6svuHgrLe5Oblda353crtw76P/Ran/V9tX7tQ6g1YLGctNd2dZatjVlP0fxfgtNDSYQNS0zE970ssqpqj1hCQwM5MKFC6X2paSk4ODggK+vb5mv0ev16PX6a58IaAuentYLrjAXclOVlpucVCUjT49XbpfPKvdZSZB3Gc5uUW4WDs4Q3AlCu0NoT2h8Czi5Wi82IYSwVyYTJB+Ek+vhzBZIjIG8S2Uf61IPfJqCV0OlhdyrIXg2AM/gK0mKdP3XCdWesERGRvLrr7+W2rdmzRq6dOlS5viVGuXkCk6hSvdPeYryIfUYJB+GlMOQHAtJ+5QWmvhtyo2PlASmcW9oOQhaDQGvBjX1UwghRO1XlAfHoyFupZKo5KaWfl7npLRuB3dSWrv9WoJfK6U7X5IRu1DphCU7O5sTJ06UPD59+jT79u3Dx8eH0NBQpk+fTmJiIt9++y0AEydOZNasWUybNo0JEyawfft25s2bx+LFi633U1QnR2cIaqfcLMxmSDsJ8dshYQec2gQZ8XAiWrmtekFpcWk3EtrcCc7WaQ4TQog6xWSEE2vhwFI4tlrpprdwdFPeR5v2U1qyA8KV7hlhtzRm8zVznq5rw4YN3HrrrdfsHzt2LN988w2PPPIIZ86cYcOGDSXPbdy4kalTp3L48GGCg4N56aWXmDhxYoWvmZmZiZeXFxkZGXhas0vIWsxmuHgEjv2p/KeL337lOQcXaP8A9HgS6rdSL0YhhLAV2Rdhz0KIWah82bPwCoG2d0PLwdCwq4wTrAOs+fld6YRFDTafsPxTejwcWKZ8a0g9dmV/84HQ50Xl24IQQtibjETY9qmSqBjylH3O3tD+QYi4Dxp0lu6dOkYSltrCbIaz22DHbDjyOyWj2VtEQf9XIai9quEJIUSNyL0EG96G3fPBVKTsC+4I3Z5QWlQcXVQNT1QfSVhqo0unYcuHsPf7K4WFOj4MA18Ht7JnSwkhRK1mKIRdX8PGdyA/Q9nX6Bbo8xw0vVVaU+yAJCy1WdpJ2DATDv6gPHapBwNfg05j5T+vEKLuOL8XfpkMyYeUxwERMOj/lEG0wm5IwlIXxO+A35+78p+5+W1w1+fgEXD91wkhhC0zFCpfyrZ+orQmu/jAba9Dh9HFRdOEPbHm53elV2sWVhLaAx7fCFFvKtUTT0TDnEg4+ofakQkhRNWkJ8CCwUr3t9kIbYfDpJ3QaYwkK+KmScKiJp0D9JwMT2xUmktz02DxA7D+LaXSoxBC1BbH1sCXvSFxtzLzZ8R3cP8CcK+vdmSijpCExRb4h8GEtcqIeVAGqC0ZBfmZ6sYlhBA3YjbDlo9h0f3KMibBneCJTUrRTCGsSBIWW+GghyHvwt1zlC6iY3/AN0MgO0XtyIQQomxGA/w2Ff76r/K4y3gYt1pZ5V4IK5OExdZ0GAXj/gC3+nDhIMwfpKxSKoQQtsRQCD+MhZgFgAZufxvu+FDK54tqIwmLLWrQGcb9qSzKeOkUzBukTIcWQghbYCiAZQ/Dkd+UFuGR3ynLjwhRjSRhsVW+zWDcGvBvA9kXYOEwaWkRQqivKF8ZY3dstbJK/YOLIWyY2lEJOyAJiy3zDIIxK5Vl1DMTYeGdkHFO7aiEEPbKZIQVj8OJv8DRFUYtg+YD1I5K2AlJWGyde30laanXBNLPwnfDIS9d7aiEEPbGbIZVL0DsL6BzggeXQNO+akcl7IgkLLWBZxCM/RU8giD1qNJ3bChUOyohhD3Z9D7sngdoYPhXkqyIGicJS23hHaI0vzq5w+lN8OuzyjceIYSobrErYf3/KdtD3oO296gbj7BLkrDUJkHt4P5vQKOD/Ytg51dqRySEqOuSY2HFRGW7x1PQbYK68Qi7JQlLbdPiNogq/qbz578gYae68Qgh6q7cS7DkQSjKgSZ94LY31I5I2DFJWGqjHk8qTbImAywbC9kX1Y5ICFHXmM3wyySlnIJ3KNz3jbL+mRAqkYSlNtJo4M7PlOnOWedh+QRZLFEIYV275sLRVcqMoJH/AzdftSMSdk4SltpK76GshurgAqfWy3gWIYT1JMfCmleV7YGvQ1B7deMRAklYajf/1hBV3Kf8138h5Yi68Qghar+ifPhxHBjyoUWUlNwXNkMSltqu62PQbIDy5rLicanPIoS4ORvfgYtx4OYPd81WuqCFsAGSsNR2Gg3c9Tm41IOk/bD1Y7UjEkLUVuf3wdZPlO07PlIqbQthIyRhqQs8g2DI+8r2pvch9YS68Qghah9jEaycDGajMgsx7A61IxKiFElY6orwe5WuIWMB/DZFquAKISpn26dw4aDSWjv4PbWjEeIakrDUFRoN3PGhMmvozGbYt0jtiIQQtcXls7DxXWX79nekK0jYJElY6pJ6jeHW6cr2mlch77Kq4Qghaok1rygD9xv3hnYj1I5GiDJJwlLX9HgK/NtA3iXY8I7a0QghbN3J9RD3q7JG2eB3ZVaQsFmSsNQ1OkcY9KayvetruHhM3XiEELbLWAR/vKRsd5sAAW3UjUeI65CEpS5q1h9aDlbWGlrzitrRCCFs1a65kHoUXH2h38tqRyPEdUnCUlcNehO0jnB8DRz/S+1ohBC2Jj9DKRIH0P/fyuwgIWyYJCx1lW8z6P6Esv3Xf2VxRCFEads+Uwbm+7WEjg+rHY0QNyQJS13W+znQe0LyITi8XO1ohBC2IisZtn+ubPf/N+gc1I1HiAqQhKUuc/WBns8o2+vfVAbYCSHEpvegKBcadIawYWpHI0SFSMJS1/WYCK5+cOmUFJMTQijvBTELlO2Br8k0ZlFrSMJS1+k9lK4hUAbYFeWrG48QQl0b31VmEDYbAE36qB2NEBUmCYs96DIOPBtAZiLs+VbtaIQQarl0Gg4sU7b7S8kDUbtIwmIPHJ2h9zRle+snYChUNx4hhDq2fqysxtxsgDJ+RYhaRBIWe9HhIXAPgMxzcHCZ2tEIIWpaxjnY+72y3ecFdWMRogokYbEXjs4QOVnZ3vwhmIzqxiOEqFlbPwVTkbLAYaNItaMRotIkYbEnXcaBszdcOgmxv6gdjRCipmQlw56Fynaf59WNRYgqkoTFnujdoceTyvbmD8FsVjceIUTN2DEbDPnQsBs06at2NEJUiSQs9qbb4+DkDskH4cRataMRQlS3guwrdVdumSp1V0StJQmLvXH1gU5jle0dn6sbixCi+u1bpCx06NMMWt6udjRCVJkkLPao++Og0cLJdZASp3Y0QojqYjIq3UEAkU+BVt7yRe0lf732qF5jaD1U2ba8mQkh6p6jq+DyaXCpB+0fVDsaIW6KJCz2qsck5X7/UshJVTcWIUT1sKzI3GUcOLmpG4sQN0kSFnsV2gOCO4KxAHbPVzsaIYS1JcZA/HbQOkLXCWpHI8RNk4TFXmk0V1pZdn4NhgJ14xFCWNffXyr34feCZ5C6sQhhBZKw2LO2d4NHEOSkQNyvakcjhLCWnDQ4vELZ7v64urEIYSWSsNgznSN0fkTZ3jVP1VCEEFa0739gLISgDrLIoagzJGGxd53GgEYH8dsgOVbtaIQQN8tkgt3FheK6jlc3FiGsSBIWe+cZDK2HKNsy+FaI2u/UOmUqs95LGb8iRB3hoHYAwgZ0GaeMYdm/BAa+pqw5JGqltOwCTqfmkJiex7nLeSRn5pOdbyCrwEBuoQEArUaDTqvBTe+Aj6sTPm5O1PfQ08TPjSZ+bgR6OqPVSvn2WmtX8RePDg/KVGZRp0jCIqBJP/BpCpdOwaEfr4xrETatwGBkz9l0dpxK41BiBofOZ5CcefOzvVwcdYQ38KRDiDcdQ+vRrYkPfu56K0Qsql3GOTj2h7LdZZy6sQhhZZKwCKVcd5dxsOZVZfBtp7GyQJqNSsnKZ/WhC0THJrPrzCXyi0zXHNPA24WG9VxoWM+VQC89ns6OeDg74qbXAWA0mTGazGQXGLiUU8ilnEKSMvI5k5pD/KVc8oqM7DpzmV1nLgOn0WggooEX/Vr5c1tYAOENPNHI34dtivkGzCZo3Bvqt1I7GiGsShIWoegwGta+ARcOQOIeaCgzC2xFbqGBlfvOs2JvIjvPXMJsvvKcn7ueXs196RRajzbBnoQFeeKur/p/a4PRxJm0HPYlZLA3/jIxZy9z5EIWB85lcOBcBp+uPU7T+m7c3aEB93RsQIiPqxV+QmEVxiLY862yLa0rog7SmM1Xv/1VzOzZs3nvvfdISkqibdu2fPzxx/Tu3bvc47///nveffddjh8/jpeXF7fffjvvv/8+vr6+FbpeZmYmXl5eZGRk4OnpWdlwRUX9NAEOLlPe7O74SO1o7N7x5Cy+23GWFXsSySowlOzvEOLNkIhA+rXyp4W/e7W3dqRk5rPh2EXWH0lh3ZEUCgxKq45GA/1b+fNIr8bc0txPWl3UdmQVLHkQ3OrD1FhwcFI7IiGs+vld6YRl6dKlPPzww8yePZtevXrx5ZdfMnfuXGJjYwkNDb3m+C1bttC3b18++ugjhg0bRmJiIhMnTqRFixasWLGiQteUhKWGnNoI394Jek947ig4ybdnNRw4l86sdSdYE5tcsq+xrysju4YyrH0QDeup93vJyi/iz8PJ/Lw3kS0nrqxB1cLfncn9m3NHu2B0MmBXHYtHwdHfIXIyDHpT7WiEAFROWLp3706nTp2YM2dOyb6wsDDuvvtuZs6cec3x77//PnPmzOHkyZMl+z777DPeffddEhISyrxGQUEBBQVXBg9mZmYSEhIiCUt1M5ng0/aQHg/Dv4Z2I9SOyK7EJWXyzuojbDh6EVBaMKLaBPBwj8b0bOZrczN3TqfmsHDbGX7YnUBOoRFQEpcpA1syODzQ5uKt07IvwoetwWSAp3aAf5jaEQkBWDdhqVQdlsLCQmJiYoiKiiq1Pyoqim3btpX5mp49e3Lu3DlWrVqF2WwmOTmZH3/8kaFDh5Z7nZkzZ+Ll5VVyCwkJqUyYoqq0WmUsC8De/6kbix1Jycrn5Z8OMOTTzWw4ehGdVsPwjg2IntqXLx/uwi0t/Gzyw7+Jnxuv3dmW7f8awPNRLfF0duB4SjaTFu1h+Jxt7E9IVztE+3FgqZKsNOgsyYqosyqVsKSmpmI0GgkICCi1PyAggAsXLpT5mp49e/L9998zcuRInJycCAwMxNvbm88++6zc60yfPp2MjIySW3ktMaIadBgFaOD0Rrh8Vu1o6jSjycz8Lae59b0NLNmVgNkMQ9sFse65vnw4sgPN/WtHPRxPZ0cm92/Blpf7M2VgC9ycdOxLSOfu2Vt56ccDpGXLwprVymy+8gXD8oVDiDqoSpVu/zm4zmw2lzvgLjY2lmeeeYb//Oc/xMTEsHr1ak6fPs3EiRPLPb9er8fT07PUTdQQ71Bo2lfZ3rdI3VjqsGPJWdw7Zxszfoslp9BI+xBvfnoyks9HdaKRb+0s9uXp7MiUgS1Z/3w/hndsgNkMS3cnEPXRJv44mKR2eHXX+T1wMQ4cnKWyrajTKpWw+Pn5odPprmlNSUlJuabVxWLmzJn06tWLF154gXbt2jFo0CBmz57N/PnzSUqSNzGb1OEh5X7fImVci7Aak8nMnA0nGfrpZvYlpOOud+DNe8JZ8WRPOjfyUTs8q/D3dObDkR34cWIkrQI8SMsp5Mnv9zB50R4u5RSqHV7dY2ldCRsGLt6qhiJEdapUwuLk5ETnzp2Jjo4utT86OpqePXuW+Zrc3Fy02tKX0emUAlZVmFEtakLYHco6JBnxcGaT2tHUGSlZ+YxdsJN3Vh+hyGhmYJg/0dP6MLp7I5sco3KzujT2YeXTvZh8a3N0Wg2/HUhiyCeb2XXmktqh1R1FeXDwJ2VbuoNEHVfpLqFp06Yxd+5c5s+fT1xcHFOnTiU+Pr6ki2f69OmMGTOm5Phhw4axfPly5syZw6lTp9i6dSvPPPMM3bp1Izg42Ho/ibAeRxeIuE/Zlm4hq9h6IpUhn2xm8/FUnB21vHNvBF+P6UKQl4vaoVUrvYOO5we1YsVTPWla340Lmfk88NUOvtp0Ur6wWMOR36EgA7xCoElftaMRolpVuiTmyJEjSUtLY8aMGSQlJREeHs6qVato1KgRAElJScTHx5cc/8gjj5CVlcWsWbN47rnn8Pb2pn///rzzzjvW+ymE9bV/EHbPg7jfoDBHFlGrIrPZzMJtZ3jj9ziMJjOtAz2YNaojzf091A6tRrVr6M2vk29h+vKDrNx/nrdWHSHm7GU+GtkBVycpuF1l+5co9+0fUGb5CVGHVanSbU2TwnEqMJvh047KMvXD50K7+9WOqNYpNJj478pDLN6pzHIb3qkBb90TgbOjTuXI1GM2m1m0M57XV8ZSaDTRNtiTeWO7EujlrHZotU/2RfigFZiNMHk3+LVQOyIhrqFaHRZhRzSaK4XjDixVN5ZaKCu/iLHzd7J4ZwIaDbwyJIwP7m9v18kKKDMMR3dvxOLHe+Dr5sTh85nc9fkWDiVmqB1a7XN4hZKsBHeUZEXYBUlYRPkiihOWk+uUb3OiQlKzC3jw6x1sP5WGm5OO+WO7MqFPU1lr5yqdG9Xj50m9aO7vTnJmASO/3M6OU2lqh1W7HFym3EdIRWphHyRhEeXzaw7BnZRvcYeXqx1NrXDuci73f7GdQ4mZ+Lo5sfSJSG5t7a92WDYpxMeVn57sSWRTX3IKjYydv5P1R1PUDqt2SDsJ53aBRiu1V4TdkIRFXF9Jt9AydeOoBRIu5TLii+2cTs2hgbcLP0yMJLyBl9ph2TQvF0cWPNqVAa39KTCYePzb3aySInM3dvBH5b5pP/AouwaWEHWNJCzi+sLvBY0OEncr3+pEmRLT83jgqx2cz8inaX03fnwykqb1a0dpfbU5O+r44uHO3NEuiCKjmacX72X1obKX+hAoA+KlO0jYIUlYxPW5+yvf4gAO/qBqKLbqQkY+D361g8T0PJr4ubFkQo86X1/F2hx1Wj55oCP3dmqI0WTm6cV72CDdQ2U7vxfSToCDi1LkUQg7IQmLuLF2I5X7A0uVb3eixKWcQkZ9vYP4S7mE+riyaEJ3/D1lim5V6LQa3rk3gqERSkvLE9/FyEDcsli6Z1sPAb191fMR9k0SFnFjrYeCoytcOgWJe9SOxmbkFRoZv3AXp4rHrCya0F1aVm6Sg07LRyM7lIxpeWzhbuKSMtUOy3YYDXCouBS/dAcJOyMJi7gxvTu0Gqxsy2whAIwmM88s2cve+HS8XBxZOK4rDeu5qh1WneDkoOXz0Z3o0dSH7AID477ZRXJmvtph2YazWyAnBVzqQfMBakcjRI2ShEVUTNt7lPvDP9v9Cs5ms5nXVh4mOjYZJwctc8d2sbtS+9XN2VHHlw91oVl9N5Iy8nl0wS6yCwxqh6W+wyuU+7A7QeeobixC1DBJWETFNL8NnNwh85xS/8GOfbfjLN/tOItGA5+M7EDXxj5qh1Qnebk68s2j3fBzdyI2KZOnF+3BaLLjMVRGA8SuVLYtXyCEsCOSsIiKcXSGVkOUbcu3PDv096k0ZvwaC8DLt7dmcESQyhHVbSE+rswd2xVnRy3rj17kw+ijaoeknjObIO8SuPpC495qRyNEjZOERVRc+HDlPvZnu+wWOp+ex1Pf78FgMnNn+2Ae79NU7ZDsQocQb965tx0An68/ab81Wkp1B8kK18L+SMIiKq5Zf9B7QVYSJOxQO5oalV9k5InvYkjLKaRNkCfv3NtO1gaqQXd1aMD4W5oA8PwP+zmRkq1yRDXMWARxvyrbli8OQtgZSVhExTnolSnOAIfsa7bQW6viOJiYQT1XR758uDMuTva96rIaXh7cmu5NlJlDT3y3mxx7GoR7eiPkXQa3+tCol9rRCKEKSVhE5VgG+8X+AiajurHUkD8PX+Db7WcB+GhkB0J8ZPqyGhx1WmaN6kSgpzMnL+bw+q+H1Q6p5li6g9rcBVpJloV9koRFVE7TfuDsrdSCOLtV7WiqXWJ6Hi/+eACAx/s0pV8rWXlZTfU99Hw0sgMaDSzbfY7fDpxXO6TqZyiEuN+UbZkdJOyYJCyichycrqxfUse7hQxGE1OW7CUjr4j2Db14PqqV2iEJILKZL0/1awbA9OUHOXc5V+WIqtnpjZCfDu4BEBqpdjRCqEYSFlF5bYsH/cWtVGpD1FFfbjrFrjOX8dA78NmDnXBykP8utmLKwJZ0CPEmK9/A1KX7MBjr8Kw1yxcD6Q4Sdk7egUXlNekDLj6Qm6bUhqiDjlzI5OO/jgHw+l1tCfWVcSu2xFGn5dMHOuKud2DXmcvM23Ja7ZCqh6EAjvyubEt3kLBzkrCIytM5Qps7le3YX9SNpRoUGU08t2w/RUYzA8MCuKdjA7VDEmUI9XXlP3e0AeCD6GOcvFgHpzqfXA8FGeAeCCE91I5GCFVJwiKqJqw4YTnye52bLTRnw0kOn8/E29WRt4aHS70VG3Z/l4b0aVmfQoOJF388UPdK91tmB7W9G7Tydi3sm/wPEFXTuDc4e0HORYivO0Xk4pIy+XTtcQBev7Mt/h7OKkckrkej0TBzeATuegdizl7mm21n1A7JegyFcPQPZbvN3aqGIoQtkIRFVI2D05W1heJWqhuLlZhMZqYvP4jBZCaqTQB3tg9WOyRRAQ28XZg+pDUA7/15hPi0OjJr6Mym4u6gAAjprnY0QqhOEhZRdZZuobhfwVz7m+IX74pnX0I67noH3rhbuoJqk1HdQols6kt+kYnXfj2MuQ78PZbUXmk1RLqDhEASFnEzmt0Kjm6QmQiJe9SO5qakZhfwzh9HAHguqiUBntIVVJtoNBreuDscR52GdUdSiI5NVjukm2MyXpkdFDZM3ViEsBGSsIiqc3SBllHKdlztni301u9xZOYbaBvsycM9GqkdjqiC5v7uJStov/5rLLmFtbhG0LldSjVpvZcyXkwIIQmLuEl1oFto+8k0lu9NRKOBN++JwEEn/y1qq8m3tqCBtwuJ6XnMWndC7XCqzrIyc6vblfFiQghJWMRNanEb6PRw6RQk177F6AxGE6+tVOIe3T2UDiHe6gYkboqLk47X7mwLwNebT3EipRbWZjGbryQsre9QNxYhbIgkLOLm6D2g+QBl2/ImW4ss232Oo8lZeLk4ylpBdcRtbQIY0NqfIqOZt/+IUzucyks+BOlnwcH5yv8tIYQkLMIKSrqFatf05qz8Ij6MPgrAlIEt8HaVpve64l9Dw3DQavgrLoWtJ1LVDqdyLIl/84Hg5KZuLELYEElYxM1rdTtoHSAlFlJrz7iBz9efJDW7kKZ+bjwkA23rlGb13Ut+p//3e1ztqoBrmc4s3UFClCIJi7h5LvWUBRGh1rSyJFzKZX7xgnn/GhKGowy0rXOeGdACD2cH4pIy+WnPObXDqZi0k5ByGDQ6aDlI7WiEsCnyLi2so5Z1C729+giFRhO9mvsyIMxf7XBENfBxc+KZ/i0AeP/Po+QU1IJpzkeKW1ea9AZXH3VjEcLGSMIirKP1UEAD5/dCeoLa0VzXocQMfj+QhEYDrwxpIxVt67AxPRsR6uNKSlYBczefVjucG5PuICHKJQmLsA53f2jUU9m28dlC769RBtre2T6YNsGeKkcjqpPeQccLg5TZX3M3nyI9t1DliK4jMwnO7VS2JWER4hqSsAjrsZQQt+FuoV1nLrHh6EV0Wg1TB7ZUOxxRA4ZGBNE60IOsAgNfbjqldjjlO1pcir9hV/AMUjcWIWyQJCzCeiwJS/wOyE5RN5YymM1m3vtTaV0Z0aUhjf1kyqg90Go1PFdcY+ebrWdIycpXOaJySHeQENclCYuwHq+GENwJMF9ZuM2GbD6eys7Tl3By0PJ08WBMYR8GhvnTPsSbvCIjczacVDuca+VdhjOblW1Z7FCIMknCIqyrpFvItsaxmM3mkrErD3VvRLC3i8oRiZqk0Wh4PkrpAvx+Rzzn0/NUjugfjv0JJgP4twHfZmpHI4RNkoRFWJclYTm9EfLSVQ3lauuPpnDgXAauTjqeulU+EOzRLc396N7Eh0KjiVnrbazAoSXBl9YVIcolCYuwLr8WUL+18m3x+Bq1owGU1pVP1yofUA/3aISfu17liIQaNBoN025TWll+3H2OCxk2MpalMBdOrFW2ZfyKEOWShEVYn43NFtp2Mo19Cek4OWgZ37uJ2uEIFXVv6kvXxvUoNJr4erONzBg6uRYMeeAdCoERakcjhM2ShEVYnyVhOf6X8u1RZbPWKa0rD3YNwd/DWeVohNom3docgEV/x3MpxwbqspR0B90JUsRQiHJJwiKsL7Cd8m3RkKd8e1RRzNlLbD+VhqNOw+N9ZeyKgL4t6xPRwIu8ImPJelKqMRbBsdXKtnQHCXFdkrAI69NooLVtzBaytK4M79iQBjIzSKCMZbG0sizcfobM/CL1gjmzGfIzwM0fQrqpF4cQtYAkLKJ6WLqFjq0GgzrN7ocSM1h/9CJaDTzZT1pXxBVRbQJoGeBOVr6B77afVS8QS0LfeghoderFIUQtIAmLqB4h3ZRvjfkZVwpi1TBLGfZh7YOlqq0oRavV8FQ/pZVl/pbT5BcZaz4Ik+lKgcXWMp1ZiBuRhEVUD62ueAVnVOkWSkzPY9XBJAAe79O0xq8vbN8d7YJo4O1CWk4hP+9NrPkAzu2C7GTQe0KTPjV/fSFqGUlYRPWxdAsd+R1MNfsN9putpzGazPRs5kvbYK8avbaoHRx0Wh7t1RiAuVtOYzKZazaAI8WJfMtB4OBUs9cWohaShEVUn8a9Qe8FOSmQsLPGLpuVX8SSnQkAPCZ1V8R1jOgagrvegRMp2Ww8frHmLmw2y2KHQlSSJCyi+jg4Qavble0jv9XYZZfuSiCrwECz+m70a+lfY9cVtY+nsyMPdA0BYG5NFpJLPgyXT4ODMzQfWHPXFaIWk4RFVK+rq96aq7/J3WA0sWDrGQDG39IUrVYKcYnre6RXY3RaDVtPpBF7PrNmLmpJ4Jv1B717zVxTiFpOEhZRvZoNAAcXSI+HCweq/XKrD18gMT0PHzcnhndqUO3XE7Vfw3quDA4PBGDulhpqZbF0B8lih0JUmCQsono5uUKL4ibvGpgtNHezUrn0oR6NcHaUuhaiYh7rrcwk+3X/eVIyq3lRxEunIfkgaHTQ8vbqvZYQdYgkLKL61VDV2wPn0tmXkI6jTsPDPRpV67VE3dIhxJtOod4UGc0sLh6wXW0s3UGNe4GrT/VeS4g6pEoJy+zZs2nSpAnOzs507tyZzZuvXxisoKCAV155hUaNGqHX62nWrBnz58+vUsCiFmo5CLQOcPEIpB6vtstYKpYOiQiivoe+2q4j6qYxkY0BWLTzLEVGU/VdqKS6rXQHCVEZlU5Yli5dypQpU3jllVfYu3cvvXv3ZvDgwcTHx5f7mhEjRrB27VrmzZvH0aNHWbx4Ma1bt76pwEUt4uINTfoq29XUynI5p5CV+88DMCZSWldE5Q2OCMTXzYnkzAL+ik2unotkXbgyxT9MpjMLURmVTlg+/PBDxo8fz2OPPUZYWBgff/wxISEhzJkzp8zjV69ezcaNG1m1ahUDBw6kcePGdOvWjZ49e5Z7jYKCAjIzM0vdRC0XVr3dQj/EJFBgMNEmyJNOofWq5RqibtM76HigmzLF+dvqWl/oyO+AGRp0Ac/g6rmGEHVUpRKWwsJCYmJiiIqKKrU/KiqKbdu2lfmalStX0qVLF959910aNGhAy5Ytef7558nLyyv3OjNnzsTLy6vkFhISUpkwhS1qPRTQwPk9kG7dMQImk5n/7VBa+B6ObIRGI1OZRdWM6t4IrQa2n0rjeHKW9S9gGb8irStCVFqlEpbU1FSMRiMBAQGl9gcEBHDhwoUyX3Pq1Cm2bNnCoUOHWLFiBR9//DE//vgjkyZNKvc606dPJyMjo+SWkFDNg+BE9XP3h9AeyrZlwTcr2Xj8IvGXcvFwduCuDvKtVVRdA28XBoYp72/f7bByK0veZTi9SdmW8StCVFqVBt3+8xus2Wwu91utyWRCo9Hw/fff061bN4YMGcKHH37IN998U24ri16vx9PTs9RN1AElawtZt+qtZbDt/Z1DcHVysOq5hf15uHgM1PI9iWQXGKx34mNrwGSA+mHg19x65xXCTlQqYfHz80On013TmpKSknJNq4tFUFAQDRo0wMvrygJ0YWFhmM1mzp07V4WQRa1lWTPl7FbISbXKKRMu5bL+aAoAD/UItco5hX3r1cyPpn5uZBcYWLHHiu9RcSuVe+kOEqJKKpWwODk50blzZ6Kjo0vtj46OLncQba9evTh//jzZ2dkl+44dO4ZWq6Vhw4ZVCFnUWvUaQVB7MJvg6CqrnHLxznjMZujdwo+m9aXEubh5Wq2Gh4rr+CzamYDZGktKFObCibXKtlS3FaJKKt0lNG3aNObOncv8+fOJi4tj6tSpxMfHM3HiREAZfzJmzJiS40eNGoWvry+PPvoosbGxbNq0iRdeeIFx48bh4uJivZ9E1A5WnC1kMJr4MUb5Bjyqm7SuCOsZ3qkBTg5a4pIyOZRohVmKJ9eCIQ+8QiGw3c2fTwg7VOmEZeTIkXz88cfMmDGDDh06sGnTJlatWkWjRso3kqSkpFI1Wdzd3YmOjiY9PZ0uXbowevRohg0bxqeffmq9n0LUHpbBhqc2QP7NfRBsOHqRlKwCfN2cGBBWdpekEFXh7erE7W2V9YWW7Cq/xlSFXb12kMxiE6JKNGartHdWr8zMTLy8vMjIyJABuLWd2QyzukLacbh3HkTcV+VTPbZwN3/FJTOhdxNeGdrGikEKAdtOpDJq7t946B34+5UBVR/QbSyC95pBfgY8+gc0Kr8GlRB1jTU/v2UtIVGzNBqrdAulZOaXDLYd2VXq9Ajr69HUl1AfV7IKDKw6WHbZhgo5s1lJVtzqQ0h36wUohJ2RhEXUPEvCcjwaisovIHg9P+45h9FkpnOjejT397BicEIotFpNSTK89Ga6hSzdQa2GgFZWEBeiqqRohah5wR3BsyFknoOT66H1kEq93Gw2s2yXUkxQWldEdbqvc0M+WHOUXWcucyIlm+b+lZyJZjJdKZQYdqf1A6wEo9FIUVGRqjGIusfR0RGdrmYScUlYRM3TaJRaFH9/oRSRq2TC8vfpS5xJy8XNScfQiKBqClIICPB0pn9rf/6KS2HZ7gT+NSSscidI3A3ZF0DvCU36VE+QN2A2m7lw4QLp6emqXF/Ufd7e3gQGBlb7siiSsAh1hA1TEpajq5RBiTrHCr90aXHryp0dgnHTy5+wqF4ju4byV1wKP8Wc4/moVjg5VKIn3VIsrkUUODhVT4A3YElW/P39cXV1lbW2hNWYzWZyc3NJSVHGEwYFVe8XSHm3F+oIjQRXP8hNVSrfNu1XoZdl5BWx6mASoHyQCFHdbm1VH38PPSlZBaw7ksLt4YEVe6HZXHo6swqMRmNJsuLr66tKDKJus9RTS0lJwd/fv1q7h2TQrVCHVnelK6gSs4V+P5BEgcFEywB32jf0uvELhLhJDjot93RsAMCKvZUo1Z98GC6fBp0emg+spuiuzzJmxdXVVZXrC/tg+fuq7jFSkrAI9VgGIcb9pgxOrADLB8a9nRpK07aoMcM7KcuIrDuSwuWcwoq9yLLIZ/MBoFd32Qj5vyKqU039fUnCItTTpA84eSiDEhNjbnh4fFouu85cRqOBuzo0qIEAhVC0CvSgbbAnRUYzvx04X7EXWVoOW8tih0JYgyQsQj0Oemg5SNm2DE68jhV7EwG4pbkfgV7O1RmZENewtLL8tCfxxgdfOgXJh0Cjg1aDqzky+/PII49w9913qx1GuawR35kzZ9BoNOzbt6/cYzZs2IBGoymZAfbNN9/g7e1d8vxrr71Ghw4dbioOWyIJi1DX1VVvr7NKhNlsZnlxd5BlPIEQNenO9sHotBr2JaRz8mL29Q8+/LNy36Q3uPpUe2z25pNPPuGbb75ROwzV9ezZk6SkJLy8yh7P9/zzz7N27dqSx7ae6N2IJCxCXc0HgoOzMjgx+XC5h+2JT+dsWi6uTjoGta3gLA0hrKi+h56+LesDsOJGrSyxvyj3be6q5qjsk5eXV6mWhJpSWFjB8Us1xMnJ6br1T9zd3evU7DBJWIS69O7QbICyfZ3ZQsv3KK0rt7cNlNorQjXDO1lmCyViMpXTInjpNCTtA432yurkotJ+/PFHIiIicHFxwdfXl4EDB5KTkwNc21KQlZXF6NGjcXNzIygoiI8++oh+/foxZcqUcs9v6S758ssvCQkJwdXVlfvvv79UgT3LdWbOnElwcDAtW7YE4ODBg/Tv378ktscff5zs7Gtb3V5//XX8/f3x9PTkiSeeKJXwrF69mltuuQVvb298fX254447OHny5DXnOHLkCD179sTZ2Zm2bduyYcOGkuf+2SVU3s9o2V64cCG//PILGo0GjUbDhg0b6N+/P5MnTy71urS0NPR6PevWrSv3308NkrAI9YUVD0q0zKr4hwKDkd8OKLVXLOMIhFDDwLAAPJwdSEzP4+/Tl8o+yDIeq/Et4F6/5oKrILPZTG6hQZWb+TrdvldLSkriwQcfZNy4ccTFxbFhwwaGDx9e7uunTZvG1q1bWblyJdHR0WzevJk9e/bc8DonTpxg2bJl/Prrr6xevZp9+/YxadKkUsesXbuWuLg4oqOj+e2338jNzeX222+nXr167Nq1ix9++IG//vrrmg99y+vWr1/P4sWLWbFiBa+//nrJ8zk5OUybNo1du3axdu1atFot99xzD6Z/zJh84YUXeO6559i7dy89e/bkzjvvJC0trUL/jld7/vnnGTFiBLfffjtJSUkkJSXRs2dPHnvsMRYtWkRBQUHJsd9//z3BwcHceuutlb5OdZKvqkJ9LW9XBicmH4K0k+DbrNTT64+kkJFXRICnnshmdad5U9Q+zo467mgXxOKdCSzfc67sv0fL+BUb7Q7KKzLS5j9/qnLt2BmDcHW68cdOUlISBoOB4cOH06hRIwAiIiLKPDYrK4uFCxeyaNEiBgxQWmsXLFhAcHDwDa+Tn5/PwoULadhQ+SL02WefMXToUD744AMCA5WuZzc3N+bOnYuTk1Kp+OuvvyYvL49vv/0WNzc3AGbNmsWwYcN45513CAgIAJTumvnz5+Pq6krbtm2ZMWMGL7zwAm+88QZarZZ77723VCzz5s3D39+f2NhYwsPDS/ZPnjy55Ng5c+awevVq5s2bx4svvnjDn+9q7u7uuLi4UFBQUPKzAdx77708/fTT/PLLL4wYMaLk3++RRx6xuenw0sIi1OfqowxOhDJbWZYXjxe4u0MDdFrb+g8k7I+llW/VwSTyCo2ln7x8Fs7vUbqDVF7ssDZr3749AwYMICIigvvvv5+vv/6ay5cvl3nsqVOnKCoqolu3biX7vLy8aNWq1Q2vExoaWpKsAERGRmIymTh69GjJvoiIiJJkBSAuLo727duXJCsAvXr1uuZ17du3L1WwLzIykuzsbBISlKVFTp48yahRo2jatCmenp40adIEgPj40iuDR0ZGlmw7ODjQpUsX4uLibvizVZRer+ehhx5i/vz5AOzbt4/9+/fzyCOPWO0a1iItLMI2hA2DUxuUcSy9ni3ZfTmnkPVHlXUqpDtI2IIujerRsJ4L5y7nse5ICkPbXbV+iqU7qFEvcPdXJ8AbcHHUETtjkGrXrgidTkd0dDTbtm1jzZo1fPbZZ7zyyiv8/fffJR/sFpZuon+2BlS0++lqlnNcfa6rExPLectreahIi4TlmGHDhhESEsLXX39NcHAwJpOJ8PDwCg3stXbLx2OPPUaHDh04d+4c8+fPZ8CAASUtW7ZEWliEbWh9B6CBc7sg80phrj8OXaDIaCYsyJNWgR7qxSdEMY1Gw7D2SnfDyv3/mC1k491BoMTv6uSgyq0yH7QajYZevXrx+uuvs3fvXpycnFixYsU1xzVr1gxHR0d27txZsi8zM5Pjx4/f8Brx8fGcP3/l/Wb79u1otdqSwbVladOmDfv27SsZAAywdevWa163f/9+8vLySh7v2LEDd3d3GjZsSFpaGnFxcbz66qsMGDCAsLCwcluQduzYUbJtMBiIiYmhdevWN/zZyuLk5ITRaLxmf0REBF26dOHrr79m0aJFjBs3rkrnr26SsAjb4BEIDbsq20d+L9n9637lzeTO9jfujxaiplj+HtcfvUhmfvH6KekJkLgb0Eh30E36+++/eeutt9i9ezfx8fEsX76cixcvEhYWds2xHh4ejB07lhdeeIH169dz+PBhxo0bh1arvWGC5OzszNixY9m/fz+bN2/mmWeeYcSIEaXGePzT6NGjS1536NAh1q9fz9NPP83DDz9cMn4FlCnQ48ePJzY2lj/++IP//ve/TJ48Ga1WS7169fD19eWrr77ixIkTrFu3jmnTppV5vc8//5wVK1Zw5MgRJk2axOXLl6ucUDRu3JgDBw5w9OhRUlNTS63989hjj/H2229jNBq55557qnT+6iYJi7AdVxeRA1Iy89lxWhkNf0e76l22XIjKaB3oQQt/dwoNJv48dEHZWdId1BM8Asp/sbghT09PNm3axJAhQ2jZsiWvvvoqH3zwAYMHl101+MMPPyQyMpI77riDgQMH0qtXL8LCwnB2vn5F7ObNmzN8+HCGDBlCVFQU4eHhzJ49+7qvcXV15c8//+TSpUt07dqV++67jwEDBjBr1qxSxw0YMIAWLVrQp08fRowYwbBhw3jttdcA0Gq1LFmyhJiYGMLDw5k6dSrvvfdemdd7++23eeedd2jfvj2bN2/ml19+wc/P77oxlmfChAm0atWKLl26UL9+fbZu3Vry3IMPPoiDgwOjRo264b+bWjTmqnT01bDMzEy8vLzIyMjA09NT7XBEdbl0Cj7tqMwYeuEE8/dkMOO3WDqFerP8qV5qRydEKZ+uPc6H0cfo3cKP78Z3h7m3wbmdMPhd6P6E2uEByiyY06dP06RJE5v9EKoOOTk5NGjQgA8++IDx48eXecxrr73Gzz//fN3S9/YkISGBxo0bs2vXLjp16lSp117v78yan9/SwiJsh09TCIgAsxGO/M6vxYvMDZPuIGGDLN1C206mcSnptJKsSHeQKvbu3cvixYs5efIke/bsYfTo0QDcdZftjiWyFUVFRcTHx/PSSy/Ro0ePSicrNUkSFmFb2ipvMPl7l7E3Ph2tBoZGSHeQsD2N/dxo19ALo8nMyY2LlJ2hPcBT/l7V8P7779O+ffuSiribN2+ucteJPdm6dSuNGjUiJiaGL774Qu1wrkumNQvbEn4vrPs/nBK24MuDtGraFH9P+2nKFrXLne2DOXAuA4+TxfWDbHh2UF3WsWNHYmJiKvWa1157rWRMiT3r169flaaAq0FaWIRt8WkKwZ3QYmKwbqd0Bwmbdke7YBpoUmldFIsZjSQsQlQjSViEzUltrKwtdKduO7fLyszChgV6OfOk334Akrw7gack2EJUF0lYhM1ZUaiU2O6mPUI9w0WVoxHi+oZolKmhPxX2UDkSIeo2SViETTGbzSw+auRvU3Elx8PL1Q1IiOtJPY5P5hGKzDrmX4rg5MVstSMSos6ShEXYlNikTE5dzOEPc09lx6Gf1A1IiOs5+CMAsS6duIwnqw4kqRyQEHWXJCzCpvy6X3nDz202VCkgd34vpJ1UOSohymA2wyElYclvpZQy//2gJCxCVBdJWITNMJvNrCp+w+/bqS007as8Id1CwhYl7Ye0E+DgTKt+D+Kg1XDkQhanpFvIKvr168eUKVOq/PoNGzag0WhIT0+3Wkw3o3Hjxnz88cc3dY5vvvkGb2/v6x7z2muv0aFDh5LHjzzyCHfffXfJ45v9d1WTJCzCZsQlZRF/KRe9g5ZbW9dXarIAHJRuIWGDLN2VLQfhXc+Hns2VImV/WNYWEkIFzz//PGvXri33+eXLl/PGG2+UPLZGIlVTJGERNuPPw8obfd+W9XF1coDWd4DOCS7GQXKsytEJcRWTCQ4Vt/yF3wfAkHBlCv7vMo7FrhQWFqodQinu7u74+vqW+7yPjw8eHh41GJH1SMIibIYlYRlkqb3i4g3Nb1O2ZfCtsCUJf0PmOdB7QosoAKLaBqLTaohNyuRMao7KAdYNBoOByZMn4+3tja+vL6+++mqpqqwFBQW8+OKLhISEoNfradGiBfPmzSvzXHl5eQwdOpQePXpw6dKlMo/p168fkydPvu41GzduzP/93//xyCOP4OXlxYQJEwD46aefaNu2LXq9nsaNG/PBBx9cc/6srCxGjRqFu7s7wcHBfPbZZ6We//DDD4mIiMDNzY2QkBCeeuopsrOv7WL8+eefadmyJc7Oztx2220kJCSUPPfPLqGyfkZLl1C/fv04e/YsU6dORaPRoNFoyMnJwdPTkx9//LHU63799Vfc3NzIysoq99zVTRIWYRNOp+Zw5EIWDloNA8L8rzwRPly5P/SjMshRCFtQPNiW1neAo7J0hI+bE5FNlW+2qw7ZcCuL2QyFOercKvl/eOHChTg4OPD333/z6aef8tFHHzF37tyS58eMGcOSJUv49NNPiYuL44svvsDd3f2a82RkZBAVFUVhYSFr167Fx8enytcEeO+99wgPDycmJoZ///vfxMTEMGLECB544AEOHjzIa6+9xr///W+++eaba17Xrl079uzZw/Tp05k6dSrR0dElz2u1Wj799FMOHTrEwoULWbduHS+++GKpc+Tm5vLmm2+ycOFCtm7dSmZmJg888EBl/llLLF++nIYNGzJjxgySkpJISkrCzc2NBx54gAULFpQ6dsGCBdx3332qts7IWkLCJlhaVyKb+eLt6nTliVaDwdENLp+BhJ0Q2l2dAIWwMBrg8M/KdsS9pZ4aEhHElhOp/HHwAk/1a17zsVVEUS68pVJF3n+dBye3Ch8eEhLCRx99hEajoVWrVhw8eJCPPvqICRMmcOzYMZYtW0Z0dDQDBw4EoGnTptecIzk5mZEjR9KsWTMWL16Mk5PTNcdU9JoW/fv35/nnny95PHr0aAYMGMC///1vAFq2bElsbCzvvfcejzzySMlxvXr14uWXXy45ZuvWrXz00UfcdpvSknz1YNgmTZrwxhtv8OSTTzJ79uyS/UVFRcyaNYvu3ZX3woULFxIWFsbOnTvp1q1bRf5ZS/j4+KDT6fDw8CAw8EpV8ccee4yePXty/vx5goODSU1N5bfffiuVXKlBWliETVh96B/dQRZObtDmTmV7/+IajkqIMpxcB7mp4OoHTfqVempQ2wC0GjiYmEF8Wq4q4dUlPXr0QKPRlDyOjIzk+PHjGI1G9u3bh06no2/fvtc9x8CBA2natCnLli27YbJyo2tadOnSpdRr4uLi6NWrV6l9vXr1uuZ1kZGRpY6JjIwkLi6u5PH69eu57bbbaNCgAR4eHowZM4a0tDRycq50MTo4OJS6fuvWrfH29i51npvVrVs32rZty7fffgvAd999R2hoKH369LHaNapCWliE6i5k5LMvIR2NBqLaBFx7QPsHlGTl8HIY/A446Gs+SCEsLIlzxP2gK/0W6uuup0dTX7adTGPVoSQm9m2mQoA34OiqtHSodW0rcXFxqdBxQ4cO5aeffiI2NpaIiAirXNvNrXQrkdlsLpXkWPZVhOV1Z8+eZciQIUycOJE33ngDHx8ftmzZwvjx4ykqKirzNTfadzMee+wxZs2axcsvv8yCBQt49NFHrX6NypIWFqG6NbFK60qn0Hr4ezpfe0Dj3uARDPkZcGx1DUcnxFXy0uHI78p2+7LHDQyJCALgD1stIqfRKC2Xatwq+YG3Y8eOax63aNECnU5HREQEJpOJjRs3Xvccb7/9NmPHjmXAgAHExt54tuH1rlmeNm3asGXLllL7tm3bRsuWLUu9rqxzt26tLEOye/duDAYDH3zwAT169KBly5acP39tYmkwGNi9e3fJ46NHj5Kenl5ynspycnIq1Qpk8dBDDxEfH8+nn37K4cOHGTt2bJXOb02SsAjVWbqDyl2ZWauDdiOU7f1LaygqIcoQ+zMYC6B+GAS1L/OQQW0D0Wpg/7kMEi5Jt9DNSEhIYNq0aRw9epTFixfz2Wef8eyzzwLKbJ2xY8cybtw4fv75Z06fPs2GDRtYtmzZNed5//33GT16NP379+fIkSNVvmZ5nnvuOdauXcsbb7zBsWPHWLhwIbNmzSo1zgVg69atvPvuuxw7dozPP/+cH374oeTczZo1w2Aw8Nlnn3Hq1Cm+++47vvjii2uu5ejoyNNPP83ff//Nnj17ePTRR+nRo0elx69YNG7cmE2bNpGYmEhqamrJ/nr16jF8+HBeeOEFoqKiaNiwYZXOb02SsAhVXcop5O/TyhTDa8avXM3ybfb4n5CTVgORCVGG/UuU+/YPlNtaUN9DT7cmyiyUP2x5tlAtMGbMGPLy8ujWrRuTJk3i6aef5vHHHy95fs6cOdx333089dRTtG7dmgkTJpQa73G1jz76iBEjRtC/f3+OHTtW5WuWpVOnTixbtowlS5YQHh7Of/7zH2bMmFFqwC0oiU1MTAwdO3bkjTfe4IMPPmDQoEEAdOjQgQ8//JB33nmH8PBwvv/+e2bOnHnNtVxdXXnppZcYNWoUkZGRuLi4sGTJkuvGdz0zZszgzJkzNGvWjPr165d6bvz48RQWFjJu3Lgqn9+aNOaKdrSpKDMzEy8vLzIyMvD09FQ7HGFFy3Yn8OKPB2gT5MmqZ3tf/+Av+yjl0Ie8D90mXP9YIazt0in4tCOggWmx4Fn+TJvvtp/h378cpn2IN79M6lXucdUtPz+f06dP06RJE5ydy+huFaX069ePDh061JrKr9Xt+++/59lnn+X8+fPXHbB8vb8za35+SwuLUNWflu6g8Ou0rli0K25lkdlCQg0Hirsamva7brICMCg8EI0G9iekk5SRV/2xCWFFubm5HD58mJkzZ/LEE09UaHZVTZCERagmu8DA5hNKn+l1u4MsIu5TVnBOjIHU49UcnRBXMZuvJModRt3wcH8PZzqH1gNgzeHk6oxMCKt799136dChAwEBAUyfPl3tcEpIwiJUs+FoCoUGE0383GgZcG11ymu4+0PzAcr2/qr32QpRaQl/K8ULndyh9dAKvcSShK+WxRBrjQ0bNkh3EEp5/6KiItauXVtm5WC1SMIiVHN1sbgKz++3DL49sBRM107FE6JaWFpX2txV4UqtloRl55lLXMqxrQXyhKiNJGERqsgvMrL+SApQwfErFq2GgrMXZCTAqQ3VE5wQVyvMvbIyc7uRFX5ZqK8rYUGeGE1m/opTt1uoFsytELVYTf19ScIiVLH1RCo5hUaCvJxp18Cr4i90dL7yobHn2+oJToirxf4CBZng3UgpYlgJltpCaw6r0y3k6OgIKIMohagulr8vy99bdZHS/EIVlsUOo9oEoNVWstxzpzGw8yul4mhOGrj5VkOEQhSzJMadHgZt5b7jDQoP4KO/jrHpeCrZBQbc9TX7lqvT6fD29iYlRWnNdHV1Vb28uqg7zGYzubm5pKSk4O3tfd1qwNYgCYuocQajiehYpYl8UGW6gywCIyCoAyTtgwNLIHKSVeMTokTqcYjfBhotdBhd6Ze3CvCgsa8rZ9Jy2Xj0IkPbBVVDkNdnWYXXkrQIYW3e3t6lVnuuLpKwiBq388wlLucWUc/VkW6Nfap2kk5j4Pd9sOc76PFUpdcoEaJCLK0rLaJuWHulLBqNhkFtA/ly0ylWH76gSsKi0WgICgrC39//mkX0hLhZjo6O1d6yYiEJi6hxlmJxt7UJwEFXxWFUEffBn6/AxTg4txtCuloxQiEAY9GV2UGdxlT5NIPClYRl/ZEUCgxG9A418+b+TzqdrsY+WISoDjLoVtQok8nMn8WFtCpULK48zl7Q9m5le8/Cmw9MiH86thpyLoJ7gNLCUkUdGnrj76Enu8DAtpOyDpYQVSUJi6hRBxIzuJCZj5uTjl7N/W7uZB0fVu4PLYeCrJsPToirWbqDOowCXdVnP2i1mpLk/E8pIidElUnCImqUpVjcra39cXa8yebpRj3BpxkU5cDhFVaITohiGefgxF/KtiUxvgmWhCU6NhmjSWqiCFEVkrCIGmM2m1l9KAmoZLG48mg0V8YW7F5w8+cTwmLv/8Bsgka3gG+zmz5d96Y+eLk4kpZTyO4zl6wQoBD2p0oJy+zZs0uWke7cuTObN2+u0Ou2bt2Kg4MDHTp0qMplRS13LDmbM2m5ODlo6dfK3zon7fgQ6Jzg/B5lUUQhbpax6EoC3OVRq5zSUadlQJjyN/+nLIYoRJVUOmFZunQpU6ZM4ZVXXmHv3r307t2bwYMHEx8ff93XZWRkMGbMGAYMGFDlYEXtZukO6t3cz3oFtNz8oO09yvbOudY5p7BvR36D7Avg5g9hd1rttJaqt38eviCl8oWogkonLB9++CHjx4/nscceIywsjI8//piQkBDmzJlz3dc98cQTjBo1isjIyCoHK2o3S3XbKhWLu56uE5T7Qz8plW+FuBmWxLfzWHBwstpp+7Ssj4ujjsT0PA6fz7TaeYWwF5VKWAoLC4mJiSEqqvQUv6ioKLZt21bu6xYsWMDJkyf573//W6HrFBQUkJmZWeomarf4tFxikzLRaTUMDAuw7skbdoHAdmAsgH3/s+65hX1JiYOzW0Cjg87W6Q6ycHbU0a9VfeBKa6MQouIqlbCkpqZiNBoJCCj9gRMQEMCFC2X/Bzx+/Dgvv/wy33//PQ4OFesGmDlzJl5eXiW3kJCQyoQpbJCldaV7Ex983Kz3rRVQBt92K25l2TUPTEbrnl/Yj13FrSutBoNXA6ufftBV3UJCiMqp0qDbfy6eZTaby1xQy2g0MmrUKF5//XVatmxZ4fNPnz6djIyMkltCQkJVwhQ2ZHXxG7RVZgeVJfw+pZhc+tkr01GFqIz8TNi/RNm2JMBWdmtrfxx1Go6nZHPyYna1XEOIuqpSCYufnx86ne6a1pSUlJRrWl0AsrKy2L17N5MnT8bBwQEHBwdmzJjB/v37cXBwYN26dWVeR6/X4+npWeomaq+UzHxizl4GIKpNNSUsTq7Q4SFle5cMvhVVcGApFGaDX0to0rdaLuHl4khkM6VgorSyCFE5lUpYnJyc6Ny5M9HR0aX2R0dH07Nnz2uO9/T05ODBg+zbt6/kNnHiRFq1asW+ffvo3r37zUUvaoU1xSszdwjxJtDLufou1HW8cn88GtJOVt91RN1jNl9JdLs+Vq2LaV6ZLSTTm4WojEp3CU2bNo25c+cyf/584uLimDp1KvHx8UycOBFQunPGjFGKeWm1WsLDw0vd/P39cXZ2Jjw8HDc3N+v+NMIm/Vnd3UEWvs2g+W2AGf7+onqvJeqWk2vh4hFwcof2D1TrpW5rE4BGA/sT0knKyKvWawlRl1Q6YRk5ciQff/wxM2bMoEOHDmzatIlVq1bRqFEjAJKSkm5Yk0XYj/TcQrYXL/h2U4sdVlTkJOV+7/8g73L1X0/UDdtmKfedxihjoapRfQ89nUPrAbBGWlmEqDCNuRZUMMrMzMTLy4uMjAwZz1LL/BRzjud+2E/rQA9WT+lT/Rc0m+GLWyD5EAz4L/SeVv3XFLVb8mGY0xM0WnhmH9RrVO2XnLv5FP/3exw9m/myaEKPar+eEGqx5ue3rCUkqpVldlBUTbSugDL2wNLKsvMrMBTWzHVF7bX9c+U+7M4aSVbgSmvj36cvcTlH/kaFqAhJWES1yS00sOnYReDKQMMaEX4vuAdAVhIcXl5z1xW1T9YFOLBM2e75dI1dNsTHlbAgT4wmM3/FSbeQEBUhCYuoNhuPXqTAYCLUx5WwII+au7CDHro9rmxvn6V0EwlRlp1fg6kIQrorFZNr0O1SRE6ISpGERVSbq4vFlVVYsFp1GQeOrnDhIJzeVLPXFrVDYS7snqdsR06u8csPCldqV206nkpOgaHGry9EbSMJi6gWBQYj6+JSgBqaHfRPrj7QYZSyvfWTmr++sH17vlVmktVrDK2H1vjlWwV40MjXlUKDiY3FXadCiPJJwiKqxbaTaWQVGPD30NMxxFudICInK4vYnVwLiXvUiUHYJkMhbPtU2e71LGh1NR6CRqMp6RaSxRCFuDFJWES1WFMyOygArbaGu4MsfJpAxP3K9uYP1IlB2Kb9iyEzETyCoMNo1cKwzJ5bfySFAoMs2inE9UjCIqzOaDKXFMS6vW2QusH0ngZo4MhvSr0NIYwG2PKRst3zaWWQtko6hnjj76Enq8DAtuICi0KIsknCIqxu95lLpOUU4uXiSPemPuoGU78VtLlT2d78obqxCNtweAVcPg2uvtD5EVVD0Wo1RLVVBt+ukdlCQlyXJCzC6iyzgwaGBeCos4E/sd7PK/eHl8uiiPbOZLrSPdjjSXBSfz0zy6D06NhkjCaZgi9EeWzg00TUJWbzle6gQcXfHFUX1A5aDAKzCbZIK4tdO/o7XIwDvSd0naB2NAD0aOqLp7MDqdmFxJyV9a+EKI8kLMKqDiVmkpieh4ujjj4t66sdzhV9XlDu9y+BS6fUjUWow2SC9TOV7W6Pg4u3quFYOOq0DAxTknspIidE+SRhEVa1+nASALe2ro+zY81PFS1XSFdoPhBMBtjwttrRCDUcXg4ph0HvBT1rvlDc9URdNb25FqxHK4QqJGERVmWpJ6FKsbgb6f+qcn9gGaTEqRuLqFlGA6x/S9nu+TS41FM3nn/o27I+zo5aEtPzOHw+U+1whLBJkrAIqzmRksXJizk46bT0b+2vdjjXCu6orMiLGdb9n9rRiJq0fzFcOqnMDOoxUe1oruHipKNvcReqzBYSomySsAirsbSu9Gzui4ezo8rRlOPWV0CjVeqyJMaoHY2oCYYC2PiOsn3LNNDX4EKclXB7eHG3kCQsQpRJEhZhNX8UJyyDw22wO8jCvzW0G6lsSyuLfYhZCBkJSlXbruPVjqZc/VsF4KDVcCw5m9OpOWqHI4TNkYRFWEV8Wi6Hz2ei1VAy48Fm9XsZtI5wch2c2qB2NKI65WfAxuJB1n1eAEcXdeO5Di9XRyKb+QIyW0iIskjCIqzC8gbbvYkvvu7qlTqvkHqNocs4ZfvPV8Eka7jUWZs/gNw08GsFncaqHc0NDZLFEIUolyQswir+OKRMZx4cYcPdQVfr9zI4e0HyQdj3vdrRiOpw+QzsmKNsR70BOgdVw6mIqDYBaDSwLyGdCxn5aocjhE2RhEXctAsZ+eyJTwcgqk0tSVhcfaDvS8r22jegIEvdeIT1/fU6GAuhaT9oEaV2NBXi7+lMxxBvANbESiuLEFeThEXcNMsba6dQbwK9nFWOphK6TgCfppCTcmX1XlE3JOxUCsWhgaj/A41G7YgqzDJbSMaxCFGaJCzipv1xUHljvd2WZweVxcEJbntD2d42C9Lj1Y1HWIfJBKtfVrY7PgSBEerGU0mWcSw7Tl0iPbdQ5WiEsB2SsIibcimnkL9PpwEwODxI5WiqoPVQaNwbjAWwerra0Qhr2LNQqbHj5HGlunEt0sjXjdaBHhhNZv6KS1E7HCFshiQs4qZEx17AZIa2wZ6E+LiqHU7laTQw+F3QOijF5I6uVjsicTNyUuGv15Tt/q+CRy1r9StmaWWRbiEhrpCERdwUS7G4221x7aCKCmgDkZOU7VUvQGGuuvGIqov+L+SnK91AXR9TO5oqsyQsm45dJLfQoHI0QtgGSVhElWXmF7H1RCpQi6Yzl6fvS+AVAhnxsOldtaMRVRG/A/b9T9ke+mGtmMZcnrAgD0J9XCkwmNh49KLa4QhhEyRhEVW2Li6FIqOZZvXdaO5vm+uzVJiTm9I1BLDtM1nNubYxFMJvU5Xtjg9DSDd147lJGo2GQW2VitHSLSSEQhIWUWUlxeJq42DbsrQeAq2GgMkAK5+RCri1yeb3ISVWWY154OtqR2MVlm6htUdSKDSYVI5GCPVJwiKqJLfQwMZjSlN1rZvOfD1D3gO9J5zbCds/VzsaURFJB5QS/ABD3gc3X3XjsZJOofWo76EnK9/A1pOpaocjhOokYRFVsvHoRfKLTDSs50LbYE+1w7Eer4Yw6C1le93/wcWj6sYjrs9YBL88pbSKhQ2DtveoHZHVaLWaksHsqw4kqRyNEOqThEVUiWV20ODwQDS1qIpohXR8CJrfptRm+fkp6RqyZVs+hgsHwaWeMtC2jv0tDm2ndLf+efiCdAsJuycJi6i0vEIjf8UlAzAkoo6MX7maRgPDPgG9FyTuhq2fqB2RKMu5GNj4trI9+F1w91c3nmrQtbEP9T30ZOYbSmbkCWGvJGERlbbhaAq5hUYaeLvQoXihtjrHqwEMLv4wXP+m8uEobEdBFvw0XukKansPRNyvdkTVQqfVMLT4S8Fv0i0k7JwkLKLSLG+cd7QLqnvdQVdr/6DyYWgywI+PQn6G2hEJi1UvwOXTSu2cOz6uc11BV7N0C62JvUCBQbonhf2ShEVUSm6hgbVHlO6gO9oFqxxNNbN0DXmHQvpZ+HUKmM1qRyUO/AD7F4NGC8O/BhdvtSOqVp1D6xHgqcwW2nxMuoWE/ZKERVTK2rgU8otMhPq4Et6gDs0OKo+zF9w7X1lr6PBy2POt2hHZt4vHrhSI6/MiNIpUN54aoNVqSsaK/X5QuoWE/ZKERVTK7/bSHXS1kK5XVv1d9QIk7lE3HnuVnwlLR0NhFjTqBX1eUDuiGnNHcbdQdGwy+UXSLSTskyQsosKyCwysP6osd2/pV7cbPZ+FloOVqc5LH4LsFLUjsi9mM/z8JKQeA49guP+bWr1WUGV1DKlHkJcz2QUGNh2TtYWEfZKERVTY2rhkCgwmmvq50SbIDrqDrqbVwvAvwbcFZCbCsrHK+jWiZmz5CI78BjonGPldnZzCfD3SLSSEJCyiEn7dr7xRDrWn7qCrOXvBg4uV0v3x22D1yzIItybE/QprZyjbg9+Fhl3UjUclllbNv6RbSNgpSVhEhWTmF5U0Rdf52UHX49dCmZmCBnbPU1Z2FtXnXAz8NAEwQ5fx0OVRtSNSTccQbxp4u5BTaGTDUekWEvZHEhZRIdGHkyk0mmju707LAHe1w1FXq9sh6v+U7eh/w8Ef1Y2nrrp8BhaPBEMetIhSWlfsmEajYUiEsraQdAsJeyQJi6iQ3w6cB+xsdtD1RE6C7k8q2ysmwulN6sZT1+Skwvf3Q85FCIyA+xbY1SDb8gwtbt38KzaZ3EKDytEIUbMkYRE3dCmnkM3HlYJVdt0ddDWNBga9CWF3gqkIloyGRCnfbxV56fDd3cqMIM8GMGoZ6O28Va9Y+4ZeNPJ1Ja/ISHRsstrhCFGjJGERN/T7gfMYTGbCG3jS3F8+OEpodcp4lka3QEEmfHcPJO1XO6rarSALvr9PWYHZzR/GrARPSZItNBoNd7VX/j1W7E1UORohapYkLOKGLG+Md3dooHIkNsjRGUYtgZDuylpD394FFw6pHVXtVJANix6Ac7vA2RvG/Ax+zdWOyubc1VH5f7j5eCqp2QUqRyNEzZGERVxXfFoue+LT0WrgzvbyTbdMeg8Y/SM06Ax5l+HbO+H8PrWjql3yLivdQGe3gJMHPLwcAtqqHZVNalbfnXYNvTCazCWVp4WwB5KwiOv6eZ/SutKruR/+ns4qR2PDnD3hoeUQ3BFy0+CbO+D0ZrWjqh2yL8LCYVe1rPyiJH+iXHcVt3Za/n8KYQ8kYRHlMpvNJW+I0h1UAS7eypiLRrco6938716I+03tqGzbpdOwYPCVMSuProKGkqzcyLD2QWg1sDc+nTOpOWqHI0SNkIRFlOtgYganLubg7KhlUHig2uHUDs6e8NBP0PoOZd2hZQ/D9tlSEbcs8Ttg7gBIOw6eDeHRP6QbqIL8PZzp1dwPgF/2nVc5GiFqhiQsolyWwba3tQnEXS81MCrM0RnuXwgdHwazCf6cDisng0EGSJY48IPSDZSbBkEd4LG/ZIBtJVlaPX/Zl4hZEmJhByRhEWUyGE0lawfd3UEG21aazgHu/AwGvQUaLez9nzKDKOuC2pGpy1AIf7wMyx8DY6HSEvXoKvC0s9W/rWBQeCDOjlpOpeZw4FyG2uEIUe0kYRFl2noyjdTsAuq5OtKnZX21w6mdNBqlIu6oH4oXTNwOc3rB8b/Ujkwd6fGw4Hb4e47y+JapMOI7cHJTN65ayl3vwMCwAEBqsgj7IAmLKNNPMecApbKto07+TG5Ki4EwYR0EREBuKnx/L/z5iv10EZnNynpLX/RWqgE7e8ODS2Dga6CVv62bcW+nhoDSLVRoMKkcjRDVS94txDUycotYfVjpuri/S0OVo6kj/Foo4zS6PaE83j4LvuwDCbvUjau6ZV+EZWPgp/GQnw7BneCJTdBqsNqR1Qm9W/jh76Hncm4Ra+OkVL+o26qUsMyePZsmTZrg7OxM586d2by5/HoTy5cv57bbbqN+/fp4enoSGRnJn3/+WeWARfVbeeA8hQYTrQM9iGjgpXY4dYejMwx5Fx5YBG714eIRmHebMqajIFvt6KzLZFLG7czuDnErQesA/f4F49dAvUZqR1dnOOi0DC9uZfmhuFVUiLqq0gnL0qVLmTJlCq+88gp79+6ld+/eDB48mPj4+DKP37RpE7fddhurVq0iJiaGW2+9lWHDhrF3796bDl5Ujx92JwBwf5cQWZm5OrQeCpN2QvsHAbMypuOzTrDnOzAZ1Y7u5p2LgXkD4ZdJyiyggHCYsB76vQQ6R7Wjq3MsraAbjqaQnJmvcjRCVB+NuZLz4bp3706nTp2YM2dOyb6wsDDuvvtuZs6cWaFztG3blpEjR/Kf//ynQsdnZmbi5eVFRkYGnp6elQlXVNKRC5nc/vFmHLQa/v7XAHzd9WqHVLed+At+fw4un1EeB0QoYzuaD1AG7dYmF4/BhplweLny2MlDSVK6PQEOTurGVsfdO2cbMWcv89LtrXmyXzO1wxGihDU/vyvVwlJYWEhMTAxRUVGl9kdFRbFt27YKncNkMpGVlYWPj0+5xxQUFJCZmVnqJmrGD7uVZuWBYQGSrNSE5gOV1paoN0HvBckHlUG5X98KR35XulZsXcoRWP640v1jSVbaPwhP74aeT0uyUgNGdLF0CyVITRZRZ1UqYUlNTcVoNBIQEFBqf0BAABcuVKy+xAcffEBOTg4jRowo95iZM2fi5eVVcgsJCalMmKKKCg2mkumRI7rKYNsa46CHnpPhmb3QYxI4uMD5vbBkFMzuAX9/CXnpakdZmskER1crtWVmd4cDS5Uiea3vgIlb4Z4vwEOqI9eUoe2CcXHUcepiDnvi09UOR4hqUaVBt/8c12A2mys01mHx4sW89tprLF26FH9//3KPmz59OhkZGSW3hISEqoQpKmndkRQu5RTi76GnTwupvVLj3Hzh9rdgykG4ZZrSpZJ6FP54ET5oDT8/pXQhGYvUizE5FqL/Cx9HwOKRcGqDUhgvbBg8vgEe+B4Cw9WLz0656x0YHKEkiJYxaELUNZWqt+7n54dOp7umNSUlJeWaVpd/Wrp0KePHj+eHH35g4MCB1z1Wr9ej10t3RE2zvNEN79QQB6m9oh73+jDwv3DLFDiwDHbNg4txsO975eZST2nJaD4QmvQB1/K7V2+asUhZ8+f4GjgercRh4ewFncZA1wky88cGjOgSwvI9ifx2IIl/39EGN1lOQ9QxlfqLdnJyonPnzkRHR3PPPfeU7I+Ojuauu+4q93WLFy9m3LhxLF68mKFDh1Y9WlFtEtPzWH80BZDaKzbD2Qu6TYCujylJw8FlELtSKT639zvlhgYCIyCkGwS2g6B2UL81OLpU/nqGQkg/q0y3PrdbKfKWuAeKrloNWOsILQdBuxHQYpAyVVvYhO5NfGji58bp1Bx+2XeeUd1D1Q5JCKuqdAo+bdo0Hn74Ybp06UJkZCRfffUV8fHxTJw4EVC6cxITE/n2228BJVkZM2YMn3zyCT169ChpnXFxccHLS2p82IolO+MxmSGyqS/N6rurHY64mkYDjSKV2+D34OxWOLoKTm1UWjwuHFBuV3OrD96h4BmsDOZ19rxSAt9kBLMRCrIgJxVyL0FmolI631zGtGpXP2hxm9Ki03yA0sIjbI5Go2F091D+7/c4/rfjLA92k7IEom6pdMIycuRI0tLSmDFjBklJSYSHh7Nq1SoaNVKahJOSkkrVZPnyyy8xGAxMmjSJSZMmlewfO3Ys33zzzc3/BOKmFRlNLNmldAc91EOa9m2azgGa9lVuAFnJcHYLnN8HSfuVxCXvMuRcVG6JMZU7v6Mb+DaD4I7QsAs06KK02EgJ/Vrhvs4Nee/Po8QmZbI3IZ1OoZJcirqj0nVY1CB1WKrX7weSmLRoD/U99Gx7ub+sHVSbmc1KwpKRoLSYZF2AgkylNaUgC9CAVgcaHeg9wNVXGezrHgA+zZSZPfKtvFZ7btl+ftpzjuGdGvDhiA5qhyPsnDU/v2VUluD7v88CMLJLiCQrtZ1GowzCdfWBoPZqRyNU8FCPUH7ac04ZfDu0DfXcpA6OqBvk08nOnbyYzbaTaWg18KAM0hOi1usQ4k3bYE8KDSZ+lPWFRB0iCYud+36HMt6of2t/GnhXYWaJEMKmaDSakrFo//v7LCaTzff6C1EhkrDYsZwCAz/GKINtR8tgWyHqjLs6BOOhd+BsWi5bTqSqHY4QViEJix37ac85MvMNNPFzo69UthWiznB1cuDezko9pYXbzqgbjBBWIgmLnTKZzCzYegaAR3s1RquVmSFC1CVjIhuh0cDaIymcvJitdjhC3DRJWOzUuiMpnE7NwdPZgXs7SWVbIeqapvXdGdBaWTJl/pbTKkcjxM2ThMVOzSt+A3uwe6isOSJEHfVY7yaA0v17KadQ5WiEuDmSsNihw+cz2H4qDZ1Ww9jIxmqHI4SoJt2b+BDewJP8IhOLiustCVFbScJih+ZvOQPAkIgggmUqsxB1lkajYULvpgAs3H6WAkMZa0UJUUtIwmJnzqfnsXJ/IgDjb2micjRCiOo2JCKIQE9nLmYVsHLfebXDEaLKJGGxM19tOkWR0UxkU186hHirHY4Qopo56rQ82qsxAHM2nsQoheRELSUJix1JzS5g8U6lsu3k/s1VjkYIUVNG92iEl4sjpy7m8MehJLXDEaJKJGGxI/O2nKbAYKJ9iDc9m/mqHY4Qooa46x0Y10vpAp617oSU6xe1kiQsdiIjt4jvtiuzBCbf2hyNRgrFCWFPHunZGHe9A0cuZPFXXLLa4QhRaZKw2ImF28+QXWCgVYAHA1r7qx2OEKKGebk6MiZSWTPss3UnMJullUXULpKw2IGM3CK+3nwKgKdubSZl+IWwU+NvaYKLo46DiRlsOHZR7XCEqBRJWOzAV5tPkpWvtK4MaxesdjhCCJX4uusZ3T0UgA/WHJWxLKJWkYSljruYVVBSKO65qJbSuiKEnXuyXzPcnHQcSsxklcwYErWIJCx13OfrT5BXZKR9iDe3tQlQOxwhhMp83fVM6KNUv/1gzTGKjCaVIxKiYiRhqcMS0/NY9LdSd+XFQa1kZpAQAoDHejfF182J06k5LNudoHY4QlSIJCx12Hurj1BoNBHZ1Jdezf3UDkcIYSPc9Q4lxSM/+es4eYWyxpCwfZKw1FF74i/z877zaDTwryFhaocjhLAxo7qH0rCeCylZBSWzCIWwZZKw1EEmk5kZv8YCcF+nhkQ09FI5IiGErdE76Hjx9tYAzN5wgvPpeSpHJMT1ScJSB63cf559Cem4Oel4YVArtcMRQtioYe2C6NbYh/wiE2+tilM7HCGuSxKWOianwMDbfxwB4Klbm+Pv6axyREIIW6XRaHjtzrZoNfDbgSS2n0xTOyQhyiUJSx3zwZpjXMjMJ8THhfG3NFE7HCGEjWsT7Mno7krJ/td/PYxBpjkLGyUJSx1y8FwG32w7DcD/3R2Bs6NO5YiEELXBtNta4u3qyJELWczdclrtcIQokyQsdYTBaOLl5QcwmeHO9sH0bVlf7ZCEELVEPTcnXimeTfhR9DFOXcxWOSIhriUJSx2xYOsZDp/PxNPZgX/f0UbtcIQQtcx9nRvSu4UfBQYTL/90UNYZEjZHEpY64HhyFu+tOQooNVfqe+hVjkgIUdtoNBreuicCVycdO89c4vu/z6odkhClSMJSyxUaTExZuo9Cg4m+LeszsmuI2iEJIWqpEB9XXiquzTLzjyPSNSRsiiQstdwna49x+Hwm9Vwdee++drJekBDipjzcoxGRTX3JLTTyzJK9FBikbL+wDZKw1GLbT6YxZ8NJAGYOj5CaK0KIm6bVavhoZAfquTpyKDGT9/88qnZIQgCSsNRayZn5PL14LyYz3N+5IbeHB6kdkhCijgj0cuade9sB8PXm06w/mqJyREJIwlIrFRlNTPp+D6nZBbQO9GDGXeFqhySEqGOi2gYyJlIpKPfs4r2cSc1ROSJh7yRhqYXeWhXH7rOX8dA78MVDnXFxkgJxQgjre2VoGB1DvcnMN/D4d7vJLjCoHZKwY5Kw1DL/23GWBVvPAPDBiPY09nNTNyAhRJ2ld9DxxUOd8ffQcyw5m+eW7ZP6LEI1krDUIuuPpvCfXw4BSintqLaBKkckhKjrAjyd+fLhzjjptPx5OJk3V8VhNkvSImqeJCy1xMFzGUz+fg8ms1KR8un+zdUOSQhhJzqG1uPd+5RBuPO2nOarTadUjkjYI0lYaoHY85k8NO9vcgqN9Gzmy1v3REi9FSFEjbq7YwNeHaqsNzTzjyMs252gckTC3kjCYuOOJ2fx8Ly/ycgromOoN1+N6YKTg/zahBA177HeTXmiT1MAXvrpAMt2SdIiao588tmww+czePDrv0nLKSS8gSffPNoNd72D2mEJIezYy4Nb83CPRpjN8OJPB2TNIVFjJGGxUTtOpfHAlztIzS6gTZAn343rjpeLo9phCSHsnEajYcZdbXm0V2MAXllxiDkbTspAXFHtJGGxQb8dOM+Y+TvJKjDQrYkPS57oQT03J7XDEkIIQEla/nNHm5LuoXdWH+HVnw9hMJpUjkzUZZKw2BCjycw7q48wedFeCg0mBoYF8O24bng6S8uKEMK2aDQapg8J4z93tEGjge//jufRb3aRll2gdmiijpKExUakZhcw7ptdJYsZPtGnKV881AlnR6liK4SwXeNuacIXD3XG2VHL5uOpDP10C7vOXFI7LFEHScJiA9bGJXP7x5vYeOwizo5aPnmgA9OHhOGgk1+PEML2DWobyC+TbqFpfTcuZObzwFc7+Hz9CekiElalMdeCkVKZmZl4eXmRkZGBp6en2uFYTXpuIW//cYQlxVMDWwV48PEDHQgLqjs/oxDCfuQUGJi+/CAr958HILyBJ+/e2542wfKeZq+s+fktCYsKTCYzP8ac4+3VR7iUUwjA+Fua8MKgVtIFJISo1cxmM8v3JDLjt1gy8opw0Gp4tFdjJvdvITMd7ZAkLLWU2Wxmw7GLfLDmKIcSMwFoGeDOG3eF072pr8rRCSGE9aRk5fOfnw+z+vAFAOq5OjL1tpY80DVUil/aEUlYahmz2cym46nMWnecXWcuA+DqpGPKwBY82qsJjjJWRQhRR204msKbv8dxPCUbgCAvZx7v05QHuobi4iQtynWdJCy1RG6hgRV7E1mw9Qwniv+z6h20jIlsxMS+zfB116scoRBCVD+D0cTinfF8tu4EKVnKtGdfNydGdA1hVLdQQnxcVY5QVBdJWGyY0WRm64lUVuxN5M/DF8gtNALgrndgRJcQnujblABPZ5WjFEKImpdfZOTHmHN8sfEk5y7nAaDRwC3N/bizfTBRbQLxcpVxLnWJJCw2JjO/iC3HU1l3JIUNR1NIzS4sea6xrytjIhtzf5eGeEgBOCGEwGA08VdcCt//fZbNx1NL9jvqNPRuUZ8BYf70bl6fUF9peantJGFRWVp2ATFnL7P77GV2n7nEgXMZGExX/hm9XR0Z1i6Yuzs2oFOoNxqNRsVohRDCdp1Ny+GXfef5/UASR5OzSj0X6uPKLS386Bxaj/Yh3jT1c0OrlffT2kT1hGX27Nm89957JCUl0bZtWz7++GN69+5d7vEbN25k2rRpHD58mODgYF588UUmTpxY4euplbBkFxhIuJTLseQsjlzI4mjxLTE975pjm9Z3o38rf/q39qdLYx8ZBS+EEJV0PDmLPw5dYPPxi+yNTy/1RRDAQ+9AREMvWgV60Ky+O839lZuvm5N8MbRRqiYsS5cu5eGHH2b27Nn06tWLL7/8krlz5xIbG0toaOg1x58+fZrw8HAmTJjAE088wdatW3nqqadYvHgx9957b4Wuae2EpcBg5FJOIWnZhaRmF5CWXUhaTgEXswo4dzmPc5fzSLicS3puUbnnaOHvTpfGPnRpVI+ujX2k6VIIIawou8DAjpNpbD+VxoFz6RxMzCC/qOzKuR56B4K8nQn2dlFuXs4EeDrj6+5EPVcnfNycqOfmhIfeQRKbGqZqwtK9e3c6derEnDlzSvaFhYVx9913M3PmzGuOf+mll1i5ciVxcXEl+yZOnMj+/fvZvn17ha5p+YEXbzmCg7MbRUYTRUYThQYThcX3yj4zhQYTBQYj2QVGcgoMZOcbyC4wkFNoUB4XGMr9oy9LPVdHmtZ3p1WgB60DPWgV4EHrQE8ZGCaEEDXIYDRxLDmbg4npHE/O5sTFbE6kZJOYnkdFP8UctBq8XBxx0zvg6qTDXe+Aq94BNycdbsX3Tg5anBy0OOqUeyfdle0r+zTotFp0WmURSK1Gg1YDOo2m+DFotVf2ay3HaK9sX503XZ1Clc6nSidX5b9GU87+q4/XlLm/vPNbS1ZmJm0aB1klYXGozMGFhYXExMTw8ssvl9ofFRXFtm3bynzN9u3biYqKKrVv0KBBzJs3j6KiIhwdr/3gLygooKDgyoqfmZlKkbUXfzyAVm+dlgwHrQYfNyd83fX4uTvhW7zdwNuFEB9XGtZzoWE9FxkoK4QQNsBBp6VNsOc1Zf7zCo0kpudx3nLLyOd8eh7Jmfmk5xZxKaeQy7mF5BYaMZjMpOUUkpZTWM5VhLWZCnKtdq5KJSypqakYjUYCAgJK7Q8ICODChQtlvubChQtlHm8wGEhNTSUoKOia18ycOZPXX3/9mv3dGvvg6uGBk06Lk4OmnMxXuXfTO+Chd1CyZr2SSbs7O+Dm5ICnsyOeLtI0KIQQtZ2Lk65kLMv15BcZuZxbSHpuEbmFBnIKjCX3OVc9VlrpTaVa8ouM5mv2GUxmzGYzJrNSzsJkNmM2g9F81fZV+01mc/FjZftqV3d0mEvtp0LH8c/jynnN9c5v/udJrMRgtN54zkolLBb//KA3m83X/fAv6/iy9ltMnz6dadOmlTzOzMwkJCSE+Y92tYlZQkIIIWoXZ0cdQV4uBHm5qB2KXcnMzMTrfeucq1IJi5+fHzqd7prWlJSUlGtaUSwCAwPLPN7BwQFf37LXz9Hr9ej1UgVWCCGEEIpKtdU4OTnRuXNnoqOjS+2Pjo6mZ8+eZb4mMjLymuPXrFlDly5dyhy/IoQQQgjxT5XuXJo2bRpz585l/vz5xMXFMXXqVOLj40vqqkyfPp0xY8aUHD9x4kTOnj3LtGnTiIuLY/78+cybN4/nn3/eej+FEEIIIeq0So9hGTlyJGlpacyYMYOkpCTCw8NZtWoVjRo1AiApKYn4+PiS45s0acKqVauYOnUqn3/+OcHBwXz66acVrsEihBBCCCGl+YUQQghRLaz5+S3144UQQghh8yRhEUIIIYTNk4RFCCGEEDZPEhYhhBBC2DxJWIQQQghh8yRhEUIIIYTNk4RFCCGEEDZPEhYhhBBC2DxJWIQQQghh8ypdml8NlmK8mZmZKkcihBBCiIqyfG5bo6h+rUhY0tLSAAgJCVE5EiGEEEJUVlpaGl5eXjd1jlqRsPj4+AAQHx9/0z+wuDmZmZmEhISQkJAg6zqpTH4XtkN+F7ZFfh+2IyMjg9DQ0JLP8ZtRKxIWrVYZauPl5SV/fDbC09NTfhc2Qn4XtkN+F7ZFfh+2w/I5flPnsEIcQgghhBDVShIWIYQQQti8WpGw6PV6/vvf/6LX69UOxe7J78J2yO/CdsjvwrbI78N2WPN3oTFbY66REEIIIUQ1qhUtLEIIIYSwb5KwCCGEEMLmScIihBBCCJsnCYsQQgghbJ7NJyyzZ8+mSZMmODs707lzZzZv3qx2SHZp5syZdO3aFQ8PD/z9/bn77rs5evSo2mHZvZkzZ6LRaJgyZYraoditxMREHnroIXx9fXF1daVDhw7ExMSoHZbdMRgMvPrqqzRp0gQXFxeaNm3KjBkzMJlMaodmFzZt2sSwYcMIDg5Go9Hw888/l3rebDbz2muvERwcjIuLC/369ePw4cOVuoZNJyxLly5lypQpvPLKK+zdu5fevXszePBg4uPj1Q7N7mzcuJFJkyaxY8cOoqOjMRgMREVFkZOTo3ZodmvXrl189dVXtGvXTu1Q7Nbly5fp1asXjo6O/PHHH8TGxvLBBx/g7e2tdmh255133uGLL75g1qxZxMXF8e677/Lee+/x2WefqR2aXcjJyaF9+/bMmjWrzOffffddPvzwQ2bNmsWuXbsIDAzktttuIysrq+IXMduwbt26mSdOnFhqX+vWrc0vv/yyShEJi5SUFDNg3rhxo9qh2KWsrCxzixYtzNHR0ea+ffuan332WbVDsksvvfSS+ZZbblE7DGE2m4cOHWoeN25cqX3Dhw83P/TQQypFZL8A84oVK0oem0wmc2BgoPntt98u2Zefn2/28vIyf/HFFxU+r822sBQWFhITE0NUVFSp/VFRUWzbtk2lqIRFRkYGgFUWtBKVN2nSJIYOHcrAgQPVDsWurVy5ki5dunD//ffj7+9Px44d+frrr9UOyy7dcsstrF27lmPHjgGwf/9+tmzZwpAhQ1SOTJw+fZoLFy6U+jzX6/X07du3Up/nNrv4YWpqKkajkYCAgFL7AwICuHDhgkpRCVD6IqdNm8Ytt9xCeHi42uHYnSVLlrBnzx527dqldih279SpU8yZM4dp06bxr3/9i507d/LMM8+g1+sZM2aM2uHZlZdeeomMjAxat26NTqfDaDTy5ptv8uCDD6odmt2zfGaX9Xl+9uzZCp/HZhMWC41GU+qx2Wy+Zp+oWZMnT+bAgQNs2bJF7VDsTkJCAs8++yxr1qzB2dlZ7XDsnslkokuXLrz11lsAdOzYkcOHDzNnzhxJWGrY0qVL+d///seiRYto27Yt+/btY8qUKQQHBzN27Fi1wxPc/Oe5zSYsfn5+6HS6a1pTUlJSrsnSRM15+umnWblyJZs2baJhw4Zqh2N3YmJiSElJoXPnziX7jEYjmzZtYtasWRQUFKDT6VSM0L4EBQXRpk2bUvvCwsL46aefVIrIfr3wwgu8/PLLPPDAAwBERERw9uxZZs6cKQmLygIDAwGlpSUoKKhkf2U/z212DIuTkxOdO3cmOjq61P7o6Gh69uypUlT2y2w2M3nyZJYvX866deto0qSJ2iHZpQEDBnDw4EH27dtXcuvSpQujR49m3759kqzUsF69el0zvf/YsWM0atRIpYjsV25uLlpt6Y80nU4n05ptQJMmTQgMDCz1eV5YWMjGjRsr9Xlusy0sANOmTePhhx+mS5cuREZG8tVXXxEfH8/EiRPVDs3uTJo0iUWLFvHLL7/g4eFR0vLl5eWFi4uLytHZDw8Pj2vGDbm5ueHr6yvjiVQwdepUevbsyVtvvcWIESPYuXMnX331FV999ZXaodmdYcOG8eabbxIaGkrbtm3Zu3cvH374IePGjVM7NLuQnZ3NiRMnSh6fPn2affv24ePjQ2hoKFOmTOGtt96iRYsWtGjRgrfeegtXV1dGjRpV8YtYaxpTdfn888/NjRo1Mjs5OZk7deok02hVApR5W7Bggdqh2T2Z1qyuX3/91RweHm7W6/Xm1q1bm7/66iu1Q7JLmZmZ5meffdYcGhpqdnZ2Njdt2tT8yiuvmAsKCtQOzS6sX7++zM+IsWPHms1mZWrzf//7X3NgYKBZr9eb+/TpYz548GClrqExm81ma2VYQgghhBDVwWbHsAghhBBCWEjCIoQQQgibJwmLEEIIIWyeJCxCCCGEsHmSsAghhBDC5knCIoQQQgibJwmLEEIIIWyeJCxCCCGEsHmSsAghhBDC5knCIoQQQgibJwmLEEIIIWyeJCxCiJvSr18/nn76aaZMmUK9evUICAjgq6++Iicnh0cffRQPDw+aNWvGH3/8AYDRaGT8+PE0adIEFxcXWrVqxSeffFLqnBs2bKBbt264ubnh7e1Nr169OHv2LAD79+/n1ltvxcPDA09PTzp37szu3btr/OcWQtQsSViEEDdt4cKF+Pn5sXPnTp5++mmefPJJ7r//fnr27MmePXsYNGgQDz/8MLm5uZhMJho2bMiyZcuIjY3lP//5D//6179YtmwZAAaDgbvvvpu+ffty4MABtm/fzuOPP45GowFg9OjRNGzYkF27dhETE8PLL7+Mo6Ojmj++EKIGyGrNQoib0q9fP4xGI5s3bwaUFhQvLy+GDx/Ot99+C8CFCxcICgpi+/bt9OjR45pzTJo0ieTkZH788UcuXbqEr68vGzZsoG/fvtcc6+npyWeffcbYsWOr9wcTQtgUaWERQty0du3alWzrdDp8fX2JiIgo2RcQEABASkoKAF988QVdunShfv36uLu78/XXXxMfHw+Aj48PjzzyCIMGDWLYsGF88sknJCUllZxr2rRpPPbYYwwcOJC3336bkydP1sSPKIRQmSQsQoib9s8uGY1GU2qfpTvHZDKxbNkypk6dyrhx41izZg379u3j0UcfpbCwsOT4BQsWsH37dnr27MnSpUtp2bIlO3bsAOC1117j8OHDDB06lHXr1tGmTRtWrFhRAz+lEEJNkrAIIWrU5s2b6dmzJ0899RQdO3akefPmZbaSdOzYkenTp7Nt2zbCw8NZtGhRyXMtW7Zk6tSprFmzhuHDh7NgwYKa/BGEECqQhEUIUaOaN2/O7t27+fPPPzl27Bj//ve/2bVrV8nzp0+fZvr06Wzfvp2zZ8+yZs0ajh07RlhYGHl5eUyePJkNGzZw9uxZtm7dyq5duwgLC1PxJxJC1AQHtQMQQtiXiRMnsm/fPkaOHIlGo+HBBx/kqaeeKpn27OrqypEjR1i4cCFpaWkEBQUxefJknnjiCQwGA2lpaYwZM4bk5GT8/PwYPnw4r7/+uso/lRCiusksISGEEELYPOkSEkIIIYTNk4RFCCGEEDZPEhYhhBBC2DxJWIQQQghh8yRhEUIIIYTNk4RFCCGEEDZPEhYhhBBC2DxJWIQQQghh8yRhEUIIIYTNk4RFCCGEEDZPEhYhhBBC2Lz/B1CXmNaa0aigAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1160,10 +1160,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:53.877038Z", - "iopub.status.busy": "2024-01-10T15:12:53.876640Z", - "iopub.status.idle": "2024-01-10T15:12:53.956464Z", - "shell.execute_reply": "2024-01-10T15:12:53.955962Z" + "iopub.execute_input": "2024-02-06T01:09:45.643984Z", + "iopub.status.busy": "2024-02-06T01:09:45.643693Z", + "iopub.status.idle": "2024-02-06T01:09:45.725395Z", + "shell.execute_reply": "2024-02-06T01:09:45.724876Z" } }, "outputs": [], @@ -1185,16 +1185,16 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:53.959391Z", - "iopub.status.busy": "2024-01-10T15:12:53.958526Z", - "iopub.status.idle": "2024-01-10T15:12:54.171963Z", - "shell.execute_reply": "2024-01-10T15:12:54.171418Z" + "iopub.execute_input": "2024-02-06T01:09:45.727958Z", + "iopub.status.busy": "2024-02-06T01:09:45.727406Z", + "iopub.status.idle": "2024-02-06T01:09:45.909809Z", + "shell.execute_reply": "2024-02-06T01:09:45.909324Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGwCAYAAACkfh/eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzbklEQVR4nO3dd3xT9f7H8VeStuluaUsXFCi7bCggU0CQKQ4cOEFRvF7FAVevol7nz3HvVRx4FXFvRVFUNiJlbyijlLIKLdBS2tK9k/P74zSF2gItJDkZn+fjkUcO6UnOu1CaT75TpyiKghBCCCGEC9FrHUAIIYQQwtqkwBFCCCGEy5ECRwghhBAuRwocIYQQQrgcKXCEEEII4XKkwBFCCCGEy5ECRwghhBAux0PrANZmNps5efIkAQEB6HQ6reMIIYQQogEURaGwsJDo6Gj0+stvf3G5AufkyZPExMRoHUMIIYQQlyA9PZ3mzZtf9uu4XIETEBAAqH9BgYGBGqcRQgghREMUFBQQExNT8z5+uVyuwLF0SwUGBkqBI4QQQjgZaw0vkUHGQgghhHA5UuAIIYQQwuVIgSOEEEIIlyMFjhBCCCFcjhQ4QgghhHA5UuAIIYQQwuVIgSOEEEIIlyMFjhBCCCFcjhQ4QgghhHA5UuAIIYQQwuVIgSOEEEIIlyMFjhBCCCFcjstttimEEEI4DUVRbyigmC9wqz5PMdf3IvW/7sXOa8g5tjjvfAoKG35uA7hugfN2N/DzBoOXevMwgsHz7J/PfczTF7z8wRgARn/wCjjn2B98moBfU/ALU58jhBDC9SgKlOVDaS6UnKm+z4WKQqgohooSqCz+y3EJmCrAVHn23lxZ9zFTJZir6hYujSkAXF25df8uXLfAKc0Fs3W2XK/FGKQWOn5NwT8cgltAk1YQ3BKatISgGPDytf51hRBCXJ7iHMg5CLmpUHAcCk5C/gkoOAFFp6D0jFqEOKV63u909b0HNuQ8a75WI1SZAeu14ugUpd42JadVUFBAUFAQ+Ye2EOjjeU4FXa4eV5WfU1GXQ1UFVJZARRGUF0F5oVqt1xwXqRV8SXYDf/B1asET0RnCO6n3Ud3Vxy7nH14IIUTDVJXDqb1wYgdk7ILsg5B9QP3g2xCevuATAr5N1HtjgNqa7+ULXn7g6XfOsa/asq+39BB4ntNb4Fn7cb0BdAbQ6eu56Rr4uOu+j9S8f+fnExgYeNmv57otOE07gBX+gmqYzVCWB8XZUHxavRVmQF4anDkGecfU+4pCOJOq3vYvPPt8/0hocQXE9IPYwRDRxaV/UIUQwm7Ki+DYBkhdDcfWQ+ZetZuoPkExEBKr3gc2g6Bm6n1AJPiGqgWNp7d98wubcN0WHCtVgI2iKGoBlLVPvZ1KUm+Ze+r+ZwtsBu2uhnajoM1V8h9KCCEaI/847PtN/SCZvrluC7tPCDTrBdE9oWlHCGsPoW3UVhfhkKz9/i0Fjj1UlsLJnZC2EY5thKProKr07NeNQdD5Ouh2K7ToD3qZvS+EEHWUnoHd82DPj3B8a+2vBbeA1kMhdgg0762Oi5RWcqciBc5FOGSB81eVpWqRc2AZpCxWB7hZhLSGK/4OPW5XZ3EJIYS7O7EDtsyFpF+gqqz6QZ36gbDTddB+pPq7Uzg1KXAuwikKnHOZzXBsHez+AZJ+VcfwgNqq0/tuGPAo+IVqGlEIIexOUeDoWlj7JhxJOPt4eGfoNUktbAKjNIsnrE8KnItwugLnXOVFsOs72DwHcg6pj3n5Q78HYcA08A7SNp8QQtjD8W2w7BlI36T+WWeArjdD36nQLF66nlyUFDgX4dQFjoXZDAeXQ8Kr6hRHUEf3X/0ydL9NxugIIVxTXjr88QLs/Un9s4c39LwLBjysrjMmXJoUOBfhEgWOhaJA8m/w5/+paziA2ud8zVsQHqdtNiGEsBazGbZ/CiueV9ceQwc97oCrnpVuKDciBc5FuFSBY2GqhE0fQMLr6tLgBiOMeF4djCytOUIIZ5Z7BH57RB1vA+paYWP/oy6QKtyKtd+/5d3RGRg8YeAjMG2Lum6OqRyWPQ1fXQ8FGVqnE0KIS5P0C8y5Ui1uPP1gzH/hniVS3AirkALHmQQ1h9t/ULuoPHzUVTvnDoX0rRd9qhBCOIyqClj8BPx4tzpztMUAeHADXHG/tEoLq5GfJGej00HvKfDAWmgaB0WZ8PlY2PGV1smEEOLiSvPgmxvVdW0ABs2Ayb+r+/UJYUVS4DirsHZw3wroeI26eehv02DVa+rAZCGEcERnjsInIyF1jboExm0/qOMJDa67LaLQjhQ4zswYALd8BVf+U/3z6tdh8eNgNmmbSwgh/up0ilrcZKdAQDRMWQodRmudSrgwKXCcnV4PVz0DY98AdLD1Y/jlb1LkCCEcx6l98NlYKDqlrkQ8dSVEdtU6lXBxUuC4ir5T4aZPQe+hbkT32yPq2hJCCKGlzD3wxTVQkg2R3eDuhRAYrXUq4QakwHElXSaoRY7OAIlfw+J/yJgcIYR2co/AVzdASQ5E94TJv4FviNaphJuQAsfVdLoObvgQ0MG2T2H1v7VOJIRwR0VZanFTfBoiusJdC8CnidaphBuxaYGzZs0axo8fT3R0NDqdjgULFlzw/ISEBHQ6XZ3b/v37bRnT9XS7Gca/rR4nvAaJ32kaRwjhZiqK4Zub1FlTwS3hzvngE6x1KuFmbFrgFBcX0717d957771GPS8lJYWMjIyaW7t27WyU0IXF3w2DpqvHvz2sTssUQghbUxRY8KC6UbBvGNz1CwREaJ1KuCGbLj4wZswYxowZ0+jnhYeHExwc3KBzy8vLKS8vr/lzQUFBo6/nsq56Tv0ElfQLzJsEf1sDwS20TiWEcGXr3oJ9C0DvCbd+A6FttE4k3JRDjsHp2bMnUVFRDB8+nFWrVl3w3Ndee42goKCaW0xMjJ1SOgG9Hq7/QB3cV3oG5k2GqvKLP08IIS7FwRWw8iX1eOx/oEU/bfMIt+ZQBU5UVBRz585l/vz5/Pzzz3To0IHhw4ezZs35u1dmzpxJfn5+zS09Pd2OiZ2Apw/c/AV4B8PJHeomnUIIYW1njsH8ewFF7SLvPUXrRMLNOdT62B06dKBDhw41f+7fvz/p6em88cYbXHnllfU+x2g0YjQa7RXROTVpCTd+DN/crC4E2HIAdLlR61RCCFdhqoKf74eyfGjWG8b8R+tEQjhWC059+vXrx8GDB7WO4fzaXQ1XPq4eL5wOBSe1zSOEcB1r34D0TeAVADd9Ah7yoVNoz+ELnJ07dxIVFaV1DNcw5EmI7qV+ylrwd1npWAhx+dI2n11v65q3ZFdw4TBs2kVVVFTEoUOHav6cmppKYmIiISEhtGjRgpkzZ3LixAm+/PJLAN5++21atWpF586dqaio4Ouvv2b+/PnMnz/fljHdh8ETJsyFOYPhSAJsmQv9HtA6lRDCWVWWqh+WFDN0m6iuwSWEg7BpgbNt2zaGDRtW8+cZM2YAMHnyZD7//HMyMjJIS0ur+XpFRQWPP/44J06cwMfHh86dO7No0SLGjh1ry5juJawdjHxZ3XX8j+eh/UgIaa11KiGEM0p4HXIPQ0AUjP2v1mmEqEWnKK61WVFBQQFBQUHk5+cTGBiodRzHpCjw5bXq4n+th6kLcel0WqcSQjiTkzvho+GgmOC276FD49c8E+Jc1n7/dvgxOMIGdDq45m0wGOHIKnX3cSGEaChTJfz6sFrcdLlRihvhkKTAcVehbWDIE+rx0plQkqttHiGE89j8IZzao26eOVo29BWOSQocdzbgUWgaByXZsPJFrdMIIZxB4Sl17A3A1S+Bf1Nt8whxHlLguDMPL7hmlnq840vI3KNtHiGE41v5ElQUqlvA9LhT6zRCnJcUOO6u5QDofIM6zXPpTHUAshBC1Of4dkj8Wj0e8191vzshHJT8dAq1mdlghKNrYf8irdMIIRyR2QxLqsftdb8dYvpom0eIi5ACR0BwCxjwsHq8/BnZcVwIUde+BXBiO3j5w4gXtE4jxEVJgSNUg6aDfyScOQrbPtM6jRDCkZgq4c//U48HPgoBEdrmEaIBpMARKqM/DH1KPV77BlQUa5tHCOE4dn6trljsGwb9/q51GiEaRAoccVbPO6FJLBSfhs1ztE4jhHAEFSVnN9O88gkwBmibR4gGkgJHnGXwhGFPq8fr34HSM9rmEUJob8tcKMyAoBbQ+x6t0wjRYFLgiNq63AjhnaAsHzbM1jqNEEJLZQWw7i31eNjT4GHUNo8QjSAFjqhNb4Bhz6jHm+ZAcY62eYQQ2tn6MZTlQWg76HaL1mmEaBQpcERdHcdBZDeoLIYtH2qdRgihhYpi2Pieenzl4+qHHyGciBQ4oi6dDgb/Qz3ePEdtphZCuJftX0BJDgS3hC43aZ1GiEaTAkfUL+5aCGuvjsXZ9qnWaYQQ9lRVDhveVY8HzwCDh7Z5hLgEUuCI+un16uJ/ABv/B5Wl2uYRQthP4jfqzKnAZtD9Nq3TCHFJpMAR59f1ZnUbh+IsdaEvIYTrM1WdnTk18FGZOSWclhQ44vwMnuovOID176q/+IQQri35N8hLU1ct7jVJ6zRCXDIpcMSF9bgDfEMhPw32L9Q6jRDC1ja9r973uQ88fbTNIsRlkAJHXJinD/S+Vz22/OITQrim9C1wfCsYjNDnXq3TCHFZpMARF9fnPjB4QfpmOL5d6zRCCFuxrHvT7WbwD9c2ixCXSQoccXEBEWfXwdj0P22zCCFs48wxSP5dPe73kLZZhLACKXBEw/T7u3qftADyj2saRQhhA5s/BMUMrYdBRCet0whx2aTAEQ0T1Q1aDQbFpO4uLIRwHeWFsONL9bj/NG2zCGElUuCIhuv3oHq/40uoLNM2ixDCenbPg4pCCG0LbYdrnUYIq5ACRzRc+1EQFAOlZ2DfAq3TCCGsQVHObsfS+151LzohXIAUOKLh9AaIn6wey/5UQriG9C1wai94eEMP2ZZBuA4pcETj9JwEeg91ynjmXq3TCCEu17ZP1PsuN4JPE22zCGFFskWsaJyACOh4jdpFte0TuOYtrROJS1BWaWJ/ZiEpmQWk55aSfqaEE2dKOVNSQUFZFYVllVRUmTHodeh0OrwMeoJ8PAnx86KJnxfNm/gQG+pHy1BfOkQG0CLEF510bTif4hx1ZiScXdBTCBchBY5ovN5T1AJn9zy4+iUwBmidSFzEmeIKNh7JYd2hbHYcO8PBrCJMZuWizzObFEChospMUXkVJ/Lq31W+ia8n3WOC6dWiCVe2b0q3ZkHo9VLwOLzEb8BUDlHdoVkvrdMIYVVS4IjGi70SQttBzkG1yJEl3R3SibxSFu0+yaI9mew+nofyl3omxM+LztGBtAz1JaaJL82a+BDqZyTA24NAb0+MnnrMioLJrBY4eaWV5JVUkF1UQXpuCanZxaRmF3PwVBFnSipJSDlNQsppZq04QIifF1e2C2Ns1yiGdgjHy0N6wx2O2SyDi4VLkwJHNJ5Op7biLJsJ2z5Tj+WXo0MorTDx+66TfL81jR1pebW+1j7Cn4Ftw+jXOpRuzYOIDPS2SrdSeZWJ/RmFJKbnselIDusOZpNbXMGCxJMsSDxJkI8nY7tGMbFPDD1igi/7esJKUhPgTCoYg6DrTVqnEcLqdIry1891zq2goICgoCDy8/MJDAzUOo7rKsmFNzuqzdv3r4boHloncmvpuSV8uj6V+duPU1BWBag15xWxIYzrFs3IThFEBHrbJUulyczOtDyWJ2Xy266TZBWW13ytR0ww9wxsxZguUdKqo7WfpsDe+dBnKox7Q+s0Qlj9/VsKHHHp5Bek5o6cLuJ/qw6zIPFEzZiaFiG+3H5FCyb0bEa4nYqa8zGZFTYdyeGn7cdZtDuDCpMZgOggbx66qi03x8dIoaOF0jPwRgf5gCIcihQ4FyEFjh0dWglfTwDvYPhHCnhq+2bqTjLzy/jvshR+2Xkcy1jhwe3CuHdQLFe2a+qQA3xPF5bz3ZY0vtp0jNPVrTrNgn14dHg7boxvjsEBM7usLR/B4schogs8sE66mIVDkALnIqTAsSOzCd7uBgXH4aZP1XU0hE2VVpj4cM1hPlx9hNJKEwAj4sKZdlU7pxnfUlZp4rstabyfcLim0OnaLIgXru1MfEtZh8UuPhwCGYkw+vWzG+kKoTEpcC5CChw7+/P/YM1/oc1wuOtnrdO4tDUHTjPz5z01U7XjWzbhX9d0cprC5q9KK0x8tekos1ceorBcHTc0oVcz/jWuE038vDRO58JOJcEHA0Dvqba8+oVqnUgIwPrv39L5LS5Pj9vV+8N/Qv5xbbO4qPySSh7/cReTPt3CibxSmgX78N7tPfnpgf5OW9wA+HgZuP/KNvz5+FBu6d0cgJ93nODqt9awLClT43QubOc36n2H0VLcCJcmBY64PCGtoeUgQIFd32mdxuVsOJTN1W+t5qftx9Hp4J6BrVg+/Uqu6RbtMisHNw0w8p+buvPLgwNoF+5PdlE5f/tqO499v5P80kqt47mWqgrY/b163PMubbMIYWNS4IjL1/NO9X7nN9RZTU5ckiqTmVnLU7jjk81kFZbTuqkfPz3Qn+fHd8bP6JrLV/Vs0YTfHx7E34e2Qa+DBYknGT97HXtP5GsdzXUcXAYlOeAfqXYrC+HCpMARl6/TteAVoC4alrZR6zROL6uwjNs/3sy7fx5CUWBi7xgWPTyY+JYhWkezOW9PA0+O7shPfx9A8yY+pOWWMOGDDXyz+RguNlxQGzu/Vu+7TwSDaxbKQlhIgSMun5cfdLpOPd49T9ssTi7pZD7Xv7eeLam5+Bs9eOfWHvz7pm74eBm0jmZXvVo0YdHDgxkRF05FlZlnftnLzJ/3UFm9jo64BMXZcHCFetzjDm2zCGEHUuAI6+h2s3qf9Ivazy8abeneDG76YCMn88toHebHb9MGcl2PZlrH0kyQrycfTerN02M7otfB91vTmfzpFvJLZFzOJUn6BRSTurFm0w5apxHC5qTAEdbRajAEREFZHhxaoXUap/PJulQe+HoHpZUmBrcL45eHBtK6qb/WsTSn0+m4/8o2fDy5N35eBjYczuGG99eTllOidTTns+dH9b7rLdrmEMJOpMAR1qE3nF3ob/cP2mZxIoqi8ObyFF5euA+Ayf1b8tndfQjy8dQ4mWO5qmMEP/19ANFB3hzJLuamORs4eKpQ61jO48xRSN8M6GRBTuE2pMAR1tOt+pNhylIok5kvF2M2K/zr173M/vMQAI+PbM8L13bGwyD/LesTFxXIgocG0iEigKzCcm75cCN7jsvPWYNYWm9ir4TAKG2zCGEn8ptUWE9kN2havcN48u9ap3FoZrPCUz/v5utNaeh08PL1XZh2VTuXWdvGVsIDvfn+/n50bx7EmZJKbv9oE9uP5Wody7EpCuyuLnC6SfeUcB9S4Ajr0emga/VgY+mmOi9FUVtu5m07jl4Hb0/swV39Wmody2k08fPi6/uuoG9sCIXlVdz96VZpybmQzD2QnQIGI8SN1zqNEHYjBY6wLkuBk7oWCk5qm8UBKYrCi7/v45vNasvNrFt6uPVMqUsV4O3JF/f0rSly7vp0MymZMianXnuql25oPwq8g7TNIoQdSYEjrKtJS2jRH1Bgz09ap3E4s1Yc4PMNRwH494RuXN9TiptL5eNl4NO7+9A9Jpi8kkru+HgzqdnFWsdyLGYT7JmvHkv3lHAzUuAI67O04uyRRf/O9e3mtJoBxS9f34Vb+sRonMj5+Rs9+PKevsRFBZJdVM7kT7eQU1SudSzHcWw9FJ5UW27ajdQ6jRB2JQWOsL7ON4Deo7rv/6DWaRzCqv1Z/OvXvQA8clVbGXNjRUG+nnx1b19iQtStHe77chtllSatYzkGy8rina4DD6O2WYSwMylwhPX5hkDroepx0i+aRnEEe47n89C3OzCZFW7s1ZzpV7fXOpLLCfM38tndfQny8WRnWh7Tf0jEbHbzvauqKiD5N/VYFvcTbkgKHGEbnSeo925e4JwuLGfql9soqVBXKH5tQleZCm4jbcP9mXtXPF4GPUv2ZvLf5SlaR9LWkVXqelT+kdByoNZphLA7KXCEbXQcC3pPyNoHWfu1TqOJiiozD32zg8yCMlo39eN/d/TCy0P+y9nSFa1D+c9N3QD4IOEwS/ZkaJxIQ5YPF52uA7383An3Iz/1wjZ8mkCbq9RjN23FeWXRPrYcVXcFn3tXbwK9ZfsFe7i+ZzPuGxQLwOM/7nLPLR2qymH/IvW48w3aZhFCI1LgCNvpck43leJe4yF+2n6cLzYeA+CtiT1oGy4bZ9rTU2M60q91CMUVJv721XYKytxsB/LDq6C8QN0AN+YKrdMIoQkpcITtdBgDBi91FdWsfVqnsZtDWYU8u2APAI+NaMfVnSI0TuR+PAx63ru9F1HVm3M++dNuFHcqsqV7SggpcIQNeQdB2xHqsZt0U5VVmpj27U7KKs0MbhfGI1e10zqS2wrzN/LBnfF46HUs2ZvJ91vTtY5kH5VlkLJYPZbuKeHGpMARttXZvbqpXluczP7MQsL8vXjzlu7o9TJjSks9YoJ5fFQHAF78PYlDWW4wHufwn9XdU9HQvK/WaYTQjE0LnDVr1jB+/Hiio6PR6XQsWLDgos9ZvXo18fHxeHt707p1a+bMmWPLiMLWOowGD2/IOaQu/OfClidl1oy7eePm7oQHeGucSADcP7g1g9qGUVZp5uHvEl1/EcB9C9R76Z4Sbs6mP/3FxcV0796d9957r0Hnp6amMnbsWAYPHszOnTt5+umneeSRR5g/f74tYwpbMgZAu6vVYxfupsouKuepn9UCburgWIZ2CNc4kbDQ63XMuqU7IX5eJGcU8N9lLrw+TmUZ7JfuKSHAxgXOmDFj+L//+z8mTJjQoPPnzJlDixYtePvtt4mLi+O+++5jypQpvPHGG7aMKWzN8os26WeX7KZSFIV/LdhLbnEFHSMDeGJUR60jib8ID/Tmv9Xr43y6PpVtR3M1TmQjh1dCRWF191QfrdMIoSmHar/cuHEjI0fW3hBu1KhRbNu2jcrK+qd5lpeXU1BQUOsmHEy7UeDhA2eOQsYurdNY3cLdGSzZm4mHXsebt3SXxfwc1PC4CG6Ob46iwD9/2u2aXVVJC9T7ztdL95Rwew71PyAzM5OIiNpTaiMiIqiqqiI7O7ve57z22msEBQXV3GJiZIdmh2P0h3bVs6mSf9c2i5WdLiznuepNNB8a1pbO0UEaJxIX8uw1nYgINHIku5hZKw5oHce6Kktl9pQQ53CoAgeos0+PZe2K8+3fM3PmTPLz82tu6eluMhXU2cRdp95bNv9zEc/9upczJZXERQXy0LC2WscRFxHk48mrN3QF4OO1R9iZdkbjRFZ0aCVUFEFgM2jWW+s0QmjOoQqcyMhIMjMzaz2WlZWFh4cHoaGh9T7HaDQSGBhY6yYcUPuR6t5U2QfgtGsM8lyZfKqma+qNm7tJ15STGB4XwYSezTAr8OT83VSazFpHsg5L62jctdI9JQQOVuD079+fFStW1Hps+fLl9O7dG09P2cfHqXkHQZth6vE+52/FKa0w8fxvSQDcOzhWuqaczHPjOxHi58WBU0V8tj5V6ziXz1QJB5aox3Hjtc0ihIOwaYFTVFREYmIiiYmJgDoNPDExkbS0NEDtXpo0aVLN+Q888ADHjh1jxowZJCcn8+mnn/LJJ5/w+OOP2zKmsBfLL14X6Kaa/edBjp8pJTrIW1YrdkLBvl7MHKPOdnv7j4OczCvVONFlOroOyvLBNwxa9NM6jRAOwaYFzrZt2+jZsyc9e/YEYMaMGfTs2ZPnnnsOgIyMjJpiByA2NpbFixeTkJBAjx49ePnll3n33Xe58cYbbRlT2EuHcaDTQ+ZuyHXeT82Hsgr5aO0RAJ6/tjN+Rg+NE4lLcWOv5vRu2YSSChMvL3TyvdIs3VMdx4LeoG0WIRyETnGxHegKCgoICgoiPz9fxuM4os+vgaNrYeT/wYCHtU7TaIqicPtHm9l4JIfhHcP5eHLv8w6AF44vOaOAa2avw2RW+OyePgxzxgUazWaYFQdFmXD7j+p4NyGckLXfvx1qDI5wA52qZ1M56TicJXsz2XgkB29PPS9c21mKGycXFxXIPQNaAfDib0lUVDnhgOMT29XixisAWg/ROo0QDkMKHGFfHcep98e3QEGGtlkaqazSxGtLkgH425VtiAnx1TiRsIbHrm5PmL+RozklfLXpmNZxGs8ypq3d1eBh1DaLEA5EChxhX4Hn7HC8f6G2WRrpiw1HSc8tJSLQyN+GtNY6jrASf6MHj49sD8C7Kw+SV1KhcaJGUJSz/49k9pQQtUiBI+zPCWdT5RSV896fhwB4YlRHfL1kYLErubl3DB0jA8gvreTdlYe0jtNwWcmQewQMxrOb2gohAClwhBYsBc7R9VCco22WBnrrjwMUllfRpVkgE3o20zqOsDKDXscz4+IA+HLjUY6cLtI4UQNZWm9aDwVjgKZRhHA0UuAI+wuJhciuoJjO7p3jwA5lFfLtZnU5g2fHdUKvl4HFrmhwu6YM7dCUKrPC60v2ax2nYSytoNI9JUQdUuAIbTjR3lRvLj+AWYGrO0XQr3X9W4YI1/DM2Dj0Oli+7xQ7HH2fqjNHIXOPurZUhzFapxHC4UiBI7Rh+cR5JEFdgdVB7T2Rz5K9meh08MSoDlrHETbWLiKAG3s1B+DN5Q6+Z9r+Rep9iwHgF6ZtFiEckBQ4QhvhHSGsPZgq4MByrdOc1xvVb3LXdY+mfYSMcXAHjwxvh6dBx/pDOWw4nK11nPOr2VxTuqeEqI8UOEI7ll/M+3/XNsd5bDuaS0LKaQx6HY+NaK91HGEnMSG+3Na3BQBvLEvBIRd7L8qCtE3qsWVtKSFELVLgCO1YCpyDK6DSsTY7VBSF/y5TW29u6d2cVmF+GicS9jRtWFu8PfXsSMtjVUqW1nHqSlkMKBDVA4JjtE4jhEOSAkdoJ6oHBMVAZQkc/lPrNLWsO5TN5tRcvAx6Hpbdwt1OeKA3k/u3AuCNZQcwmx2sFSfZsrjfNdrmEMKBSYEjtKPTQcfqX9DJjtNNpSgKb/9xEIA7+rUgOthH40RCC38b0gZ/owf7MgpYkXxK6zhnleWrg/MB4q7VNIoQjkwKHKEtSzdVyhIwVWqbpdqmI7lsP3YGLw89fx/SRus4QiMhfl5M6t8SgP+tOuQ4Y3EOrgBzJYS2g6Yys0+I85ECR2irRT/wDYOyPDi6Tus0gPpmBurYm/BAb43TCC3dOygWb089u4/ns/agg8yoqpk9Jd1TQlyIFDhCW3oDdByrHjtAN1Vieh7rDmVj0Ov425XSeuPuQv2NNTOq3lvlAHtUVZaqLTgg08OFuAgpcIT2LOMI9i8Cs1nTKJYNNa/v0YyYEF9NswjHcP+VrfE06NiSmsvWo7nahjmSAJXFENgMontpm0UIBycFjtBe7JVgDISiTDixTbMY+zML+CP5FDodPDhMWm+EKirIh5vi1dWNLQWwZiyzpzqOUwfpCyHOSwocoT0PI7QfpR5ruDfV/1YdBmBslyjaNPXXLIdwPA8MaYNeB6sPnGbPcY22FjFVnd2cVrqnhLgoKXCEY6iZLr4QNJitkp5bwqLdJwFpvRF1tQz149ru0QDMXXtEmxBpG6A0F3xC1P2nhBAXJAWOcAxtR4CHN5xJhVNJdr/8Z+uPYlZgcLswOkcH2f36wvFNvbI1AIv3ZHAiT4OVty3dUx3GgMHD/tcXwslIgSMcg9Ef2gxXj+08m6qgrJIftqYB6rRgIerTOTqIAW1CMZkVPl+fat+LKwrst4y/kenhQjSEFDjCccRps6rxD1vSKa4w0S7cnyHtm9r12sK5TB2stuJ8vyWdwjI7Lkx5cgcUnABPP2gzzH7XFcKJSYEjHEf70aAzQFYS5By2yyWrTGY+q/40ft/gWHQyM0VcwJD2TWnT1I/C8irmbTtuvwtbuqfajQBP2TpEiIaQAkc4Dt8QiB2sHlua421s8d5MTuaXEernxXU9mtnlmsJ56fU67h2ktuJ8ui6VKpOd1m2q6Z6S2VNCNJQUOMKx2HHzTUVR+Lh6Rsxd/Vvi7Wmw+TWF85vQqxkhfl6cyCtlWZIdNuE8nQLZB0DvCe1H2v56QrgIKXCEY7EUOMe3QkGGTS+17dgZdh/Px8tDz139Wtr0WsJ1eHsauLP65+WTdXaYMm4p9lsPAW+Z4SdEQ0mBIxxLYBQ076se27ib6suNxwC4oUczQv2NNr2WcC139muBp0HHjrQ89p6w8cJ/MntKiEsiBY5wPJZVWm3YTZVVWMbSvWoL0V39pfVGNE54gDeju0QB8FV1oWwTeelwciegU7dnEEI0mBQ4wvFYposfXQclttnc8Ict6VSaFHq1CKZLM2n2F403qbow/nXXCfJLbDRlfP8i9b5FP/APt801hHBRUuAIxxPSGiK6gGKCA0ut/vJVJjPfblEX9pPWG3GperdsQsfIAMoqzfy4Pd02F5HuKSEumRQ4wjHZsJtq5f4sMvLLCPHzYkx1N4MQjaXT6WoK5K83HcNstvIeasU5cGy9ehwnBY4QjSUFjnBMlk+sh1ZCeZFVX9oyZmJinxiZGi4uy/U9mhFg9OBoTglrD2Vb98VTFoNihsiu0KSVdV9bCDcgBY5wTBGdoUksmMrh0B9We9nDp4tYdygbnQ5u79vCaq8r3JOf0YMb45sD8NXGo9Z9cVncT4jLIgWOcEw6nU26qb7ZpI69uapDODEhvlZ7XeG+LGvirNyfxfEzJdZ50fJCOLxKPY6TAkeISyEFjnBccdeq9weWQVX5Zb9cWaWJn6oHg94pg4uFlbQN92dAm1AUBevtT3Vwhdp6GdIawuOs85pCuBkpcITjahYP/pFQUQipay775ZbuzaSgrIpmwT4MaSe7hgvrubW6u/PHbemYrDHY+NzZU7IBrBCXRAoc4bj0+rOzR5J/u+yX+36r2j11S+8Y9Hp50xDWM7JTBEE+nmTkl7Hm4OnLe7GqcjiwXD22tGIKIRpNChzh2CzjD/YvBrPpkl/mWE4xm47kotPBTb2bWymcECpvTwM39FR3o5+39TLXxDmyWm219I9UWzGFEJdEChzh2FoOBO9gKMmGtE2X/DLztqlvOoPbNaVZsI+Vwglx1sQ+MQCs2HeK7KLLGDO2v3pQfcdxaiumEOKSyP8e4dgMntBhrHp8ibOpqkxmfqwe/Hlr9ZuQENYWFxVI95hgqswKP++4xMHGZpPaWgkye0qIy+ShdQAhLipuPOz6Vi1wRr/W6EGXqw+cJquwnBA/L0bERdgopBBqAb0rPY/vt6YzdXBrdI0dIJy+WW2t9A6GVoNsklELJpOJykob7dclnIqnpycGg30WWJUCRzi+NsPA0w8Kjqs7Kzfr1ainf189JuKGns3w8pBGS2E747tH8/LCfRw5Xcy2Y2fo0yqkcS9gaaVsP1ptvXRyiqKQmZlJXl6e1lGEAwkODiYyMrLxHwAaSQoc4fg8faDdCNj3qzp9thEFTlZhGX/uzwLOjpEQwlb8jR5c0y2KeduO892WtMYVOIoCydXTw12ke8pS3ISHh+Pr62vzNzTh2BRFoaSkhKws9XdyVJRt9wKUAkc4h7hr1QIn+XcY/lyDnzZ/+wlMZoWeLYJpHxFgw4BCqCb2iWHetuMs2ZPJy9dV4Wds4K/ZzN2QnwYePtDmKtuGtAOTyVRT3ISGhmodRzgIHx91kkdWVhbh4eE27a6S9nrhHNqNBIMXZB+A0ykNeoqiKMyvHuw5sbe03gj76NWiCbFhfpRWmli6N7PhT7R0T7UdDl7Ov42IZcyNr6/zfy/Cuiw/E7YelyUFjnAO3oEQO0Q9buBsqj0n8jmUVYTRQ8/YbrZtChXCQqfT1ayJ8/PORsymqumecq3F/aRbSvyVvX4mpMARzqORm2/+vOMEAFd3iiDQ2/kHbArnYSlwNhzO4WRe6cWfkH0ITieD3gPaj7RxOiHcgxQ4wnl0GAs6PWQkQl7aBU+tNJn5fddJACb0amaHcEKcFRPiS9/YEBQFFiSeuPgTLFuRtBoMPk1sG05csrvvvpvrr79e6xiNptPpWLBgQYPPT0hIQKfTOf3sNylwhPPwbwot+qvH+xdd8NS1B0+TU1xBqJ8Xg2VjTaGBG6sL6593nEBRLrIB575f1ftO19k4lbgc77zzDp9//rlNXruoqAhPT09++OGHWo9PnDgRnU7H4cOHaz3epk0bnn766Qa9dkZGBmPGjLFaVoAXXniBHj16WPU1rU0KHOFcGthNZemeGt89Gk+D/JgL+xvTNQqjh55DWUXsPVFw/hNzU9VWSZ3eZaaHu6qgoCCCg4Nt8tr+/v707t2bVatW1Xp89erVxMTE1Hr8+PHjHDlyhGHDhjXotSMjIzEajVbN6wzkN79wLh2rdxc/tgGKsuo9paCskuX7TgFwYy/ZWFNoI9Dbk5GdIwFqZvPVq6Z7ahD4hdkhmbiQn376ia5du+Lj40NoaCgjRoyguLgYqNtFVVhYyB133IGfnx9RUVG89dZbDB06lMcee+y8r79r1y6GDRtGQEAAgYGBxMfHs23bNgCGDRtGQkJCzbnJycmUlpby4IMP1np81apVeHp6MnDgQAB+//134uPj8fb2pnXr1rz44otUVVXVnP/XLqoNGzbQo0cPvL296d27NwsWLECn05GYmFgr6/bt2+nduze+vr4MGDCAlBR1Buvnn3/Oiy++yK5du9DpdOh0Opu1bF0OKXCEcwmOgeiegAIpi+s9ZcmeDCqqzLQN96dLs0D75hPiHBOqBxv/tusklSZz/SclLVDvO11vl0xaUhSFkooqu98u2kVYLSMjg9tuu40pU6aQnJxMQkICEyZMOO/zZ8yYwfr16/ntt99YsWIFa9euZceOHRe8xh133EHz5s3ZunUr27dv56mnnsLTU50EMWzYMFJSUsjIyADUQmbw4MFcddVVdQqcK664Al9fX5YtW8add97JI488wr59+/jwww/5/PPPeeWVV+q9fmFhIePHj6dr167s2LGDl19+mSeffLLec5955hnefPNNtm3bhoeHB1OmTAHUbrN//OMfdO7cmYyMDDIyMpg4ceIFv28tyEJ/wvl0vEbdsiF5IcTfXefLlu6pG3o2kymqQlOD24UR5u9FdlEFq1NOM6LTX/ZCO3MMTu5wm+6p0koTnZ5bZvfr7ntpFL5eF3+7y8jIoKqqigkTJtCyZUsAunbtWu+5hYWFfPHFF3z77bcMHz4cgM8++4zo6OgLXiMtLY0nnniCjh07AtCuXbuarw0cOBBPT08SEhK47bbbSEhIYMiQIfTq1Yv8/HwOHjxIu3btSEhI4M477wTglVde4amnnmLy5MkAtG7dmpdffpl//vOfPP/883Wu/80336DT6fjoo4/w9vamU6dOnDhxgqlTp9Y595VXXmHIEHV5jqeeeopx48ZRVlaGj48P/v7+eHh4EBkZecHvV0vSgiOcj2WdkCMJUJZf60vHz5SwOTUXgOt7yuwpoS0Pg57relxgTRxL91TLgeAfbsdkoj7du3dn+PDhdO3alZtvvpmPPvqIM2fO1HvukSNHqKyspG/fvjWPBQUF0aFDhwteY8aMGdx3332MGDGC119/vdbgYV9fX/r27VvTWrN69WqGDh2Kh4cHAwcOJCEhgbS0NFJTU7nqKnW16+3bt/PSSy/h7+9fc5s6dSoZGRmUlJTUuX5KSgrdunXD29u75rFzv4dzdevWrebYsq2CZZsFZyAtOML5NG0PYR0gOwUOLIduN9d86ddEdWp4/9ahNAv20SqhEDVu6NmMT9alsjI5i8KySgLOXZOppnvKPWZP+Xga2PfSKE2u2xAGg4EVK1awYcMGli9fzuzZs3nmmWfYvHkzsbGxtc61dFv9tZX4Yt1hL7zwArfffjuLFi1iyZIlPP/883z//ffccMMNgNpN9cMPP5CUlERpaSm9eql77w0ZMoRVq1bh5eWFt7c3/fr1A8BsNvPiiy8yYcKEOtc6t4g5N19DM1u6zs79Ps3m83S1OiBpwRHOKa56sPH+s7OpFEXhl51nu6eEcASdowNpHeZHeZWZFdWD3wHIS4cT2wCdW3RPgfom6evlYfdbY7qqdTodAwcO5MUXX2Tnzp14eXnxyy+/1DmvTZs2eHp6smXLlprHCgoKOHjw4EWv0b59e6ZPn87y5cuZMGECn332Wc3Xhg0bxsGDB/n2228ZNGhQzV5NQ4YMISEhgYSEBPr3719TvPTq1YuUlBTatm1b56bX132L79ixI7t376a8vLzmMcsg58bw8vLCZDI1+nn2JAWOcE6WN4SDK6BSXSk25VQhh7KK8DLoGdXFcfuFhXvR6XSM766Oy/itevFJ4Gz3VIv+ECA/r45g8+bNvPrqq2zbto20tDR+/vlnTp8+TVxcXJ1zAwICmDx5Mk888QSrVq0iKSmJKVOmoNfrz1tQlZaWMm3aNBISEjh27Bjr169n69attV5/wIABGI1GZs+eXTP+BaBPnz7k5+czf/78WtPDn3vuOb788kteeOEFkpKSSE5O5ocffuDZZ5+tN8Ptt9+O2Wzm/vvvJzk5mWXLlvHGG28AjdtCoVWrVqSmppKYmEh2dnatgslRSIEjnFNUDwiKgcoSOPwnQM3KxUM6NCXIR7ZmEI7DUuCsO5hNbnGF+qBlcb/O12sTStQRGBjImjVrGDt2LO3bt+fZZ5/lzTffPO8iebNmzaJ///5cc801jBgxgoEDBxIXF1dv1xCoXWA5OTlMmjSJ9u3bc8sttzBmzBhefPHFmnMs3U+FhYUMHTq05nFPT0/69+9PYWFhrQJn1KhRLFy4kBUrVtCnTx/69evHrFmzagZJ1/c9/v777yQmJtKjRw+eeeYZnnvuuZprN9SNN97I6NGjGTZsGE2bNuW7775r8HPtRac0dP6ckygoKCAoKIj8/HwCA2WKsEtbOhM2vQ/db0e5/n2GvpHAsZwS3r2tJ9d2v/BMBiHsbew7a9mXUcArN3Thjo4e8FYn9QszkiHQ9X5ey8rKSE1NJTY2tlFvnM6suLiYZs2a8eabb3LvvfdqHafBvvnmG+655x7y8/Px8bH92MXz/WxY+/1bBhkL5xU3Xi1w9i9ib1oWx3JK8PE0MCJOZqMIx3Ntj2j2ZRTwW+JJ7lAS1Qdj+rlkceMudu7cyf79++nbty/5+fm89NJLAFx3nWMPGv/yyy9p3bo1zZo1Y9euXTz55JPccsstdilu7MkuXVTvv/9+TaUWHx/P2rVrz3uuZZOvv972799vj6jCmcRcAQFRUJ5P8roFAAyPC2/QehdC2Julm2rL0VwqdlcPWnWT2VOu7I033qB79+41Kx6vXbuWsDDHXpE6MzOTO++8k7i4OKZPn87NN9/M3LlztY5ldTZ/J/jhhx947LHHeP/99xk4cCAffvghY8aMYd++fbRo0eK8z0tJSanVRNW0qWyYKP5Cb4DON8Cm9wk6/Dvw95o3ESEcTbNgH3q3bELasSN4nqyeedPpWm1DicvSs2dPtm/frnWMRvvnP//JP//5T61j2JzNW3BmzZrFvffey3333UdcXBxvv/02MTExfPDBBxd8Xnh4OJGRkTU3y1Q5IWrpciMAg0xbaGo0MaS9FMLCcY3vHs04wyZ0KNC8DwTJXmlC2IpNC5yKigq2b9/OyJEjaz0+cuRINmzYcMHn9uzZk6ioKIYPH15nd9VzlZeXU1BQUOsm3EizeM54ReGnK2dazBG8G7iglxBaGNs1imsNGwHIiXWPtW+E0IpNC5zs7GxMJhMREbX3X4mIiCAzM7Pe50RFRTF37lzmz5/Pzz//TIcOHRg+fDhr1qyp9/zXXnuNoKCgmltMTIzVvw/huKrMCgsq1RU9x+ouXDQLobWmlSfpqT+ESdGxoKL+5fGFENZhl0HG9S0Lfb4FhTp06MDUqVPp1asX/fv35/3332fcuHE1CxH91cyZM8nPz6+5paenWz2/cFybjuQyr0x9owg7mQBl0oInHNje+QBsNHfih/0VGocRwrXZtMAJCwvDYDDUaa3Jysqq06pzIf369Tvv8tdGo5HAwMBaN+E+ft91kmSlBVnGluhM5ZCyWOtIQpzf3p8BWKwM4MCpIg5lFWocSAjXZdMCx8vLi/j4eFasWFHr8RUrVjBgwIAGv87OnTtrdjIVwqKiysySvRmAjvKO16sPVn9CFsLhZCVDVhLoPclrpa6Mu3hP/V31QojLZ/MuqhkzZvDxxx/z6aefkpyczPTp00lLS+OBBx4A1C6mSZMm1Zz/9ttvs2DBAg4ePEhSUhIzZ85k/vz5TJs2zdZRhZNZfyibgrIqwgOMRA+8Q33w8J9QkqttMCHqs+cn9b7tCIb2aA/A4j0ZGgYS9Rk6dCiPPfbYJT/fspZbXl6e1TJZ26VkfOGFF+jRo4fNMtmCzQuciRMn8vbbb/PSSy/Ro0cP1qxZw+LFi2v2ycjIyCAtLa3m/IqKCh5//HG6devG4MGDWbduHYsWLap3K3jh3pbuVT/9ju4SiSG8A0R2BXPV2U0MhXAUigJ7qwucrjcxslMEHnod+zMLOXK6SNtswmEtXboUnU5XZ5hHZGRknQk1x48fR6fTsXz58ou+7oABA8jIyCAoKMiqeS+3OLQ2uwwyfvDBBzl69Cjl5eVs376dK6+8suZrn3/+OQkJCTV//uc//8mhQ4coLS0lNzeXtWvXMnbsWHvEFE6kymRmRfIpAEZ3rt6JuXpNHOmmEg7n5A44cxQ8fKD9aIJ9vRjQVl3tdsle6aYS9Rs0aBAeHh613iOTk5MpKyujoKCAQ4cO1Ty+atUqPD09GThw4EVf18vLi8jIyEbtHu6MZDdx4ZS2Hj1DbnEFwb6e9I0NUR/sXN3Kl7oWCuVNQziQPdVFd4cxYPQHYGwXtTBftFu6qRxNVVUV06ZNIzg4mNDQUJ599lnO3Ze6vLycf/7zn8TExGA0GmnXrh2ffPJJva9VWlrKuHHj6NevH7m59Xef//TTT3Tt2hUfHx9CQ0Nrtn3w9/enT58+tQqchIQEBg0axKBBg+o83rdvX/z8/FAUhf/85z+0bt0aHx8funfvzk8//VTr3L92UX300UfExMTg6+vLDTfcwKxZswgODq6T9auvvqJVq1YEBQVx6623UlioDpS/++67Wb16Ne+8807NFktHjx69+F+2DUmBI5zSsiS1gBkRF4GHofrHuElLdXVYlJrZKkJozmyCpOqfx6431Tw8snMkBr2OfRkFHM0u1iicnSkKVBTb/3ZOcdIQX3zxBR4eHmzevJl3332Xt956i48//rjm65MmTeL777/n3XffJTk5mTlz5uDv71/ndfLz8xk5ciQVFRWsXLmSkJCQOudkZGRw2223MWXKFJKTk0lISGDChAk1BdWwYcNqLXa7atUqhg4dypAhQ+o8PmzYMACeffZZPvvsMz744AOSkpKYPn06d955J6tXr673+12/fj0PPPAAjz76KImJiVx99dW88sordc47fPgwCxYsYOHChSxcuJDVq1fz+uuvA/DOO+/Qv39/pk6dSkZGBhkZGZqvSye7EgqnoyhKTYFT0z1l0fUWOL4Vdn8P/R/UIJ0Qf3FsAxRmgDEI2o6oeTjEz4v+rUNZdyibxXszeHBoWw1D2kllCbyqwX5xT58EL78Gnx4TE8Nbb72FTqejQ4cO7Nmzh7feeoupU6dy4MAB5s2bx4oVKxgxQv33bN26dZ3XOHXqFBMnTqRNmzZ89913eHl51XutjIwMqqqqmDBhQs3Y1K5du9Z8fejQobz66qtkZGQQFRXF6tWreeKJJzCbzbzzzjsApKenk5qayrBhwyguLmbWrFn8+eef9O/fvybfunXr+PDDDxkyZEidDLNnz2bMmDE8/vjjALRv354NGzawcOHCWueZzWY+//xzAgICALjrrrtYuXIlr7zyCkFBQXh5eeHr60tkZGSda2hBWnCE09l9PJ+M/DJ8vQwMaveXXXu73Ah6D8jYBVmyA71wALu/V+87jQcPY60vje2qLn+xRKaLO5R+/frVGp/Sv39/Dh48iMlkIjExEYPBUG+hcK4RI0bQunVr5s2bd97iBqB79+4MHz6crl27cvPNN/PRRx9x5syZmq8PHDgQLy8vEhIS2LdvH6WlpfTq1Yv4+HgKCgo4ePAgq1atwmg0MmDAAPbt20dZWRlXX301/v7+Nbcvv/ySw4cP15shJSWFvn1rr6z91z8DtGrVqqa4AXXngaysrAv+PWhJWnCE07G03gzrEF537ym/UGg3Ul3wb/f3MOIF+wcUwqKyFJJ+VY+7317ny6M6R/Dsgj3sOZFPWk4JLUJ97RzQzjx91dYULa5rJT4+Pg06b9y4ccyfP599+/bVapH5K4PBwIoVK9iwYQPLly9n9uzZPPPMM2zevJnY2Fh8fX3p27cvq1atIjc3l0GDBtVsPj1gwABWrVrFxo0b6d+/P97e3pjNZgAWLVpEs2bNal3LaDTWuT7Uv7uAUk+3nqenZ60/63S6mus5ImnBEU5FUZSa6eGjupynGbTbRPV+9zxw4P98wg3sXwQVhRDcAlr0r/PlUH8j/VqHAlQvWunidDq1q8jet0bOFtq0aVOdP7dr1w6DwUDXrl0xm83nHc9i8frrrzN58mSGDx/Ovn37LvLXomPgwIG8+OKL7Ny5Ey8vL3755Zearw8bNoyEhAQSEhIYOnRozeNDhgypedwy/qZTp04YjUbS0tJo27Ztrdv5xsR07NiRLVu21Hps27ZtF8xcHy8vL0wmU6OfZytS4AinciiriCPZxXgZ9Azr0LT+k9qPVsc7FJyAo2vtG1CIc+2q7p7qNhH09f+6tXRTyaJ/jiM9PZ0ZM2aQkpLCd999x+zZs3n00UcBtZtm8uTJTJkyhQULFpCamkpCQgLz5s2r8zpvvPEGd9xxB1dddRX799ffZb5582ZeffVVtm3bRlpaGj///DOnT58mLi6u5pxhw4Zx8OBBli5dWqtrbMiQISxcuJCjR4/WFDgBAQE8/vjjTJ8+nS+++ILDhw+zc+dO/ve///HFF1/Um+Hhhx9m8eLFzJo1i4MHD/Lhhx+yZMmSRk8jb9WqFZs3b+bo0aNkZ2dr3rojBY5wKpbWm0Htwgjw9qz/JE9v6Hy9erz7B/sEE+KvCk/B4ZXqcbdbz3vaqM6R6HWw63g+x8+U2CmcuJBJkyZRWlpK3759eeihh3j44Ye5//77a77+wQcfcNNNN/Hggw/SsWNHpk6dSnFx/TPh3nrrLW655RauuuoqDhw4UOfrgYGBrFmzhrFjx9K+fXueffZZ3nzzTcaMGVNzTv/+/Wu6l+Lj42se79OnDyaTCR8fH6644oqax19++WWee+45XnvtNeLi4hg1ahS///47sbGx9WYcOHAgc+bMYdasWXTv3p2lS5cyffp0vL29G/X39vjjj2MwGOjUqRNNmzattYivFnRKfR1tTqygoICgoCDy8/Nl400XdM3stew9UcC/b+zKxD4tzn/isQ3w2Rjw8ofHD4KXi49tEI5nw3uw/Bl16YL7/rjgqbfO3cimI7k8MzaOqVfWnZHjjMrKykhNTSU2NrbRb5RCe1OnTmX//v2sXWv9VvDz/WxY+/1bWnCE00jPLWHviQL0OnX9mwuK6QfBLaGiSB0HIYS9Wbqnup+/9caippvKHcbhCIf0xhtvsGvXLg4dOsTs2bP54osvmDx5staxLosUOMJpWGZP9Y0NIdS//tkANfT6cwYbf2/jZEL8ReZeOLUH9J5nV9i+gJGd1AHzO9PyOFVQZut0QtSxZcsWrr76arp27cqcOXN49913ue+++7SOdVlkmrhwGsuT1L2nRv11cb/z6X4rrPmPusN44SkIuEirjxDWYimqO4wG37qr1/5VZJA3PVsEszMtj+X7TnFXv5Y2DihEbfUNknZ20oIjnMLpwnK2HlP3cWlwgRPaBpr1BsUMe1zvP69wUKYqdYkCgO63Nfhplp/r5Umy6J8Q1iAFjnAKK/adQlGge/MgooMbttAWAD3vUO93fNXo/WiEuCRHVkHRKfAJgbZXN/hplgJn4+Ec8ksqbZXO7lxsHouwAnv9TEiBI5zC0upPtSMb2npj0eVG8PCB7BRI33Lx84W4XDuq1xrpNhE8zr9E/1/FhvnRISKAKrPCyv2nbBTOfiyr3paUyNR3UZvlZ+KvKyNbm4zBEQ4vv7SSjYezARh9vtWLz8c7CDrfALu+hZ1fQosrLv4cIS5VURakLFGPe93V6KeP6hxByqlCliVlMqFXcyuHsy+DwUBwcHDNXkW+vr6NXjhOuBZFUSgpKSErK4vg4OCaLSdsRQoc4fBW7c+i0qTQLtyfNk39G/8Cve5SC5y9v8Do18EYcPHnCHEpdn0P5ip17FdE50Y/fWTnSN798xCrD5ymtMKEj5dt3wBszbKrtCNvyCjsLzg42C47jkuBIxyeZfXiRrfeWLToD6FtIecQ7P0Z4p17bQfhoBQFdnypHl9C6w1A5+hAmgX7cCKvlNUHTl/6z7yD0Ol0REVFER4eTmWl64wrEpfO09PT5i03FlLgCIdWWmFi9YHTQCNmT/2VTgc974I/noedX0mBI2wjbRPkHARPP3Xs1yXQ6XSM7hLJJ+tSWZ6U6fQFjoXBYLDbm5oQFjLIWDi0NQdPU1ppolmwD52jL2Pp7u63gd4Djm+FrGTrBRTCwtJ60+WGy+oGtRTyfySfotKk7WaFQjgzKXCEQ1t2TvfUZQ1QDIhQdxkHdcq4ENZUlg9Jv6jHvS6vhTC+ZRNC/bwoKKti05EcK4QTwj1JgSMcVqXJzB/JjVy9+EJ6Vo+L2P09VJVf/usJYbHnJ6gqhaYd1c01L4NBr2NkZ3XV7WWy6J8Ql0wKHOGwNh3JoaCsijB/L+JbNrn8F2w7AgKioCQHkn+//NcTAqoHF1evfdNrkjrm6zKNrFnV+BRmsyyUJ8SlkAJHOCzL7KmrO0Vi0Fth/QyDB8TfrR5v/fjyX08IgBPbIWMXGIzQ7eI7hzfEgDah+Bs9yCosZ2d6nlVeUwh3IwWOcEhms8LyfZbuKStuktlrsjrYOG2juuOzEJdry0fqfZcJ4BdqlZc0ehgY1jEckL2phLhUUuAIh7Qz/QynC8sJMHowoE2Y9V44MAo6XqMeSyuOuFzF2ZD0s3rcZ6pVX3p0dTfV0qRM2c9JiEsgBY5wSJbuqeFx4Xh5WPnHtM996v3ueersFyEu1c6vwFQBUT2gWS+rvvTQDk3x8tBzLKeElFOFVn1tIdyBFDjC4SiKUrO5pk0WOms1SJ3tUlkMu36w/usL92A2wdZP1eO+U60yuPhcfkYPBrdVWy+X7XX+zTeFsDcpcITDSc4oJD23FKOHnivbN7X+BXS6s604Wz9WZ8EI0VgHl0N+Gvg0ueSViy9mVJez3VRCiMaRAkc4HMsv8yHtm+LrZaPdRLpNBC9/yE6Bo2ttcw3h2iyDi3veCZ4+NrnEiLgI9DpIziggLafEJtcQwlVJgSMczrLL3VyzIbwD1SIHYMtc211HuKacw3B4JaCD3lNsdpkQPy/6xoYAsHyftOII0RhS4AiHkppdTMqpQjz0OoZ3tOL08Pr0rZ71sn8R5Kba9lrCtWyeo963HQEhrW16qZrZVHulwBGiMaTAEQ7FsjR9/zahBPl62vZi4XHQZjgoZtj8oW2vJVxH6RnY+bV63P8hm1/Osqrx9jR16QQhRMNIgSMciuVTqlX2nmoIyxvUzq+gNM8+1xTObdtnUFkCEV2g9VCbXy462IduzYNQFFixT2ZTCdFQUuAIh5GZX0Zieh46HYzsZOPuKYs2V0F4J6goOrufkBDnU1VxdsxW/4esPjX8fEZ1ltlUQjSWFDjCYVgGUfZq0YTwQG/7XFSnO9uKs/lDMFXa57rCOSX9AoUZ4B8JXW6y22UtBc7Gw9kUlMnPqBANIQWOcBiW7qnR9uqesuh6M/iFQ8EJSFpg32sL56EosHG2etx3Knh42e3SbcP9adPUj0qTwqr9WXa7rhDOTAoc4RByiyvYnJoL2HH8jYWH8eyMqo2zZeE/Ub+jayFzD3j42HRq+PmMktlUQjSKFDjCIfyRfAqTWSEuKpAWob72D9B7Cnh4Q8YuSF1j/+sLx7f+HfW+x+3gG2L3y1vWhUpIOU1Zpcnu1xfC2UiBIxzC8iSNuqcs/MKg513q8do3tMkgHNfJnXDoD9DpYcA0TSJ0bRZEdJA3pZUm1h7M1iSDEM5EChyhuaLyKtZU/8K26erFFzPwUdB7qC046Vu1yyEcz9o31fsuN9l8Yb/z0el0NWviLJPZVEJclBQ4QnMJKVlUVJlpFepL+wh/7YIEx0C3W9VjacURFln7Ifl39XjwDE2jWMbh/JF8iiqTWdMsQjg6KXCE5pYlqYuXjeoSic5O64qc16DpajfEgaXqgFIh1s1S7zteo65+raE+rZrQxNeTvJJKtlQPyhdC1E8KHKGpskoTfyarBY5m42/OFdYWOl2vHlu6JYT7yk2FPT+px1c+rm0WwMOgZ0ScugimdFMJcWFS4AhNbTicTXGFichAb7o3D9Y6jmrwP9T7pAWQfVDTKEJj698GxaTuWRbdU+s0wNluqmVJpzCbZUkDIc5HChyhKcuaHiM7R6DXa9w9ZRHZBTqMBRRY/R+t0witnDkKO79Rjx2g9cZiULswfL0MZBaUsftEvtZxhHBYUuAIzVSZzPyRrK7K6hDdU+ca8qR6v+dHOLVP2yxCG6v/A+ZKdUPNlgO0TlPD29PAsA7hgHRTCXEhUuAIzWw9eobc4gqCfT3pG2v/hdMuKLoHxF0LKLDqFa3TCHs7fQB2faceX/UvbbPUY2Tn6nE4ezNRZOVtIeolBY7QjOXT54i4CDwMDvijOOwZQAf7F8KJHVqnEfaU8CooZmg/Bpr31jpNHVd1DMfLoOdIdjGHsoq0jiOEQ3LAdxXhDsxmRbvNNRsqvCN0m6ge//l/2mYR9pOxW901HOCqZ7TNch4B3p4MaBsKSDeVEOcjBY7QxK7jeWQWlOHnZWBQuzCt45zf0KfU1Y0Pr4RjG7ROI+xh1avqfecJENlV2ywXcO5sKiFEXVLgCE0srf7UOaxjON6eBo3TXEBI7Nk9qv54QXYad3XHNsCBJepij8Oe1jrNBV3dKQKdDvacyOf4mRKt4wjhcKTAEXanKGe7p8Z0idI4TQMMeRI8fSF9M+xboHUaYStmMyyrLmp6TYKwdtrmuYgwfyN9WqqD85dLK44QdUiBI+xuf2Yhx3JKMHroGdqhqdZxLi4wSt2IE2DF81BZpm0eYRt7flR3Dffyrx5g7vhqZlPJOBwh6pACR9jdkurWmyvbN8XP6KFxmgYa8DAEREHeMdg8R+s0wtoqSmDli+rx4BngH65tngayjMPZejSXnKJyjdMI4VikwBF2t8zRZ0/Vx8sPhj+nHq99E4pOa5tHWNem/0HBCQiKgX4Pap2mwWJCfOkcHYhZUXcYF0KcJQWOsKsjp4tIOVWIh15Xs2mg0+h2K0R1h/ICdZ0U4RoKM2Hd2+rx8OfB00fTOI0ls6mEqJ8UOMKuLLOn+rcJJcjXU+M0jaTXw6jqwmb753AyUcs0wlqWPwsVRdAsHrrcqHWaRrMUOOsOZlNYVqlxGiEchxQ4wq6cavZUfVoNUt8EFTMsnA5mk9aJxOU4slodXIwOxr2pFrFOpn2EP7FhflSYzCSkSNepEBbO979ZOK0TeaXsPp6PTqeu4eG0Rr0KxkA4uUNtyRHOqaoCFv1DPe5zH0T31DbPJdLpdDKbSoh6SIEj7MbSetOnVQhNA4wap7kMAZFw1bPq8coXoShL2zzi0mycDTkHwa/p2X9PJ2Xpplq1P4uySmlVFAKkwBF25JSzp86n970Q2Q3K8mHFc1qnEY115his/q96PPIV8AnWNM7l6tE8mIhAI8UVJjYcztY6jhAOwS4Fzvvvv09sbCze3t7Ex8ezdu3aC56/evVq4uPj8fb2pnXr1syZI+uOOLuswjK2HssFYHQXFyhwDB5wzduADnZ9B4dWap1INJSiwG8PQ1UptBwE3W7ROtFl0+t1jOyk/r+ytJQK4e5sXuD88MMPPPbYYzzzzDPs3LmTwYMHM2bMGNLS0uo9PzU1lbFjxzJ48GB27tzJ008/zSOPPML8+fNtHVXY0Ip9p1AU6N48iOhg55qGe17N46Hv/erxb4+orTnC8W3/HFJXg4cPXPsu6HRaJ7IKyweH5ftOUWkya5xGCO3ZvMCZNWsW9957L/fddx9xcXG8/fbbxMTE8MEHH9R7/pw5c2jRogVvv/02cXFx3HfffUyZMoU33nij3vPLy8spKCiodROOx/KpcrSzzp46nxHPQ5NYKDiuTjcWji0vHZb/Sz0e/i8IbaNtHiu6IjaEUD8v8koq2XA4R+s4QmjOpgVORUUF27dvZ+TIkbUeHzlyJBs2bKj3ORs3bqxz/qhRo9i2bRuVlXXXeHjttdcICgqqucXExFjvGxBWcaa4ouYXrkt0T53Lyw+u+596vONLOPSHtnnE+SkK/P4IVBRCzBVwxQNaJ7IqD4O+5v/X4t0ZGqcRQns2LXCys7MxmUxERNSeEhwREUFmZv39xJmZmfWeX1VVRXZ23cFzM2fOJD8/v+aWnp5uvW9AWMXSpExMZoVOUYHEhvlpHcf6Wg08+2b52yNQmqdpHHEe2z+Dw3+Ch7dalOoNWieyunHd1BbSpUmZ0k0l3J5dBhnr/tLHrShKnccudn59jwMYjUYCAwNr3YRjWVT9adLyy9clDX8OQlqr+xktfExtLRCOI2s/LH1aPb7qXxDWTts8NnJFbChh/l7kl1ay/pDMphLuzaYFTlhYGAaDoU5rTVZWVp1WGovIyMh6z/fw8CA0NNRmWYVt5BSV10xbvcaVCxwvP5jwMeg9IOkXtbtKOIbKMvhpijprqs1VTrWZZmMZ9Lqz3VR7pJtKuDebFjheXl7Ex8ezYsWKWo+vWLGCAQMG1Puc/v371zl/+fLl9O7dG09PJ9u7SLBkbyZmBbo2C6JlqAt2T52rebzaOgCw5Ek4naJtHqFa8RxkJakL+l0/xym3Y2iMcV2jAXXzzYoq6aYS7svm/9NnzJjBxx9/zKeffkpycjLTp08nLS2NBx5QxyzMnDmTSZMm1Zz/wAMPcOzYMWbMmEFycjKffvopn3zyCY8//ritowobcIvuqXMNeARaD1NbC36aApWlWidyb/sXwZYP1ePrP4AAJ94ipIH6xoYQ5m9Uu6lk0T/hxmxe4EycOJG3336bl156iR49erBmzRoWL15My5YtAcjIyKi1Jk5sbCyLFy8mISGBHj168PLLL/Puu+9y443Ot8uvu8sqLGNzqjp7alxXNylw9Hq44UO1teDUXnWvIxmPo43sg/Dz39Tjfg9Bu6u1zWMnBr2OMTKbSgh0iuJav30LCgoICgoiPz9fBhxr7MuNR3nu1yS6xwTz60MDtY5jX0cS4Ksb1F3Hx/wXrrhf60TupbwQPh4Bp/dDiwEw+TcwuE8X96YjOdw6dxOB3h5se/ZqvDxcu1tOuAZrv3/LT72wmYXVnx7Hu0v31LlaD4WrX1KPl82Eo+s1jeNWFAV+fUgtbgKi4ObP3aq4gbMb2haUVclsKuG2pMARNnGqoIytR9W9p8a4S/fUX/WfBl1uAnMVzJukrqIrbG/NG7DvV9B7wi1fusW4m78y6HWMre6mWiSzqYSbkgJH2MTiPRkoCvRqEUwzV9l7qrF0Orh2NkR0hZJs+OZmWQTQ1nbPg1X/px6P/Q/E9NU2j4bGVn+wWJaUKbOphFuSAkfYhGX21DXdojVOojEvX7jtO/CPhNPJ8MOdUFWudSrXdHSd2jUFMOBh6D1F2zwa690qhPAAI4VlVaw+cFrrOELYnRQ4wupO5pWy7dgZdLqznyLdWnAM3PEjePnD0bXw6zQwyydqqzqdAt/fAaYKiLsWRrykdSLNGfQ6xndXP2AsSDyhcRoh7E8KHGF1v+06CagDHSODvDVO4yCiuqnjQfQesGceLH9Gpo9bS+4R+PI6KMuD5n1gwlyXX8yvoa7v0QyAP/adorCs7mbFQrgy+S0grG7BTvXT4g09m2mcxMG0HQ7j31WPN70PK1+UIudy5R+HL66DwgxoGge3/QCebjrmqx5dmgXSuqkf5VVmliWd0jqOEHYlBY6wqv2ZBezPLMTLoGdsF+meqqPnHTD2DfV43VuQ8Lq2eZxZ4Sm15SY/DULawKRfwU/2qzuXTqeracX5VbqphJuRAkdY1YKdavfUsI5NCfJ1r7VHGqzvVBj1qnq8+nW1yJGWnMbJS4fPxkDOIQhqoS7k54bTwRviuh7qOJz1h7LJKizTOI0Q9iMFjrAas1nht+pPiZZPjeI8+j8EI15QjxNeg6VPycDjhso5DJ+OhtzD1cXNrxDUXOtUDqtlqB89WwRjVuD3XbImjnAfUuAIq9lyNJeT+WUEeHswrGO41nEc36DpMPrf6vHmObDg72CSgaAXlLlHLW4KjkNoO5iyFEJaa53K4V1XPZvqN+mmEm5EChxhNZY+/rFdovD2NGicxkn0ewBumAs6A+z+Hr67FcrytU7lmFKWqsVNcRZEdoV7lkCQtBQ2xDXdozHodew6nk9qdrHWcYSwCylwhFWUV5lqFve7rqebL+7XWN0nwq3fgocPHPpD3SQy57DWqRyHosDG9+H726CiCGKHwOSF4N9U62ROI8zfyKC2YcDZWY5CuDopcIRVrNp/moKyKqKCvOkXKzNZGq3DaJiyBAKiIfsAfHSVuiO5u6sshd+mqRuWKmboNRnunA8+wVonczrXV3/w+DXxBIoMahduQAocYRWW7qlru0ej1+s0TuOkonvC/augWby6aN2X18OqV8FUpXUybWQfhI+Gw86vAR1c/TKMf8ftdga3lpGdIvHxNHA0p4Sd6XlaxxHC5qTAEZftTHEFK5OzALheFve7PAGRcPci6HknoMDqf8OX10K+G3UrKArs+h7mDoWsJPBrCpMWwMBH1A1MxSXxM3owqrM6lf6n7cc1TiOE7UmBIy7br4knqDCZ6dIskLioQK3jOD9PH7jufzDhY3X/qmPr4YP+akuGq3ctFJ5S95T65W/qeJuWg+CBddB6qNbJXMItvWMA+D3xJKUVJo3TCGFbUuCIyzZvm/pp8Ob4GI2TuJhuN8Pf1qhdV2X56k7ZX0+AvDStk1mfokDid/D+FZCyCPSeMOxZdXXigEit07mMfq1Dad7Eh8LyKpYlZWodRwibkgJHXJa9J/LZl1GAl0Ffs2KqsKLQNnDvHzDiRTAY4fCf8L8r1NWPK1xkuu/JRPh0FCx4AErPqFPA70+AIU+AwUPrdC5Fr9dxU7y6KOKP29M1TiOEbUmBIy6LpS//6s4RBPt6aZzGRRk8YNBj8PcN0HIgVJaoqx/P7q2OVTE7aVdDXhr8Ok0da5O+GTx9YfhzMHUVRHbROp3LurGXWuBsOJxDem6JxmmEsB0pcMQlK68ysaB69pSlb1/YUFhbdQDyTZ9BcAsoPKmOVfnfFWr3jrPMtso/Dgunw7u9YOdXgAJdb4Zp22DwP2SWlI3FhPgyoE0oigLzd8hgY+G6pMARl+yPfVnklVQSFeRds4iYsDGdDrpMgIe2qntZeQdDzkG1e2d2L9j4P7Wbx9EoCqRvhZ/uhXe6w7ZPwVypLto3ZTnc+LGsSmxHlg8kP20/jtns4gPXhduSDm5xySx9+Df2ao5B1r6xL09vdS+rPvfB1o9hw3uQdwyWPQ0rX4IuN0KPO6BFP9BruG1GcTbs/Rl2fQsnd559vNVgGDoTWg3ULpsbG9U5kgCjB8fPlLIpNYcBbeQDinA9UuCIS5KRX8qaA6cBagYtCg0YA9RCp+/9sPsH2PoJnNoLid+oN/9I6HQddBynFjseRttnyktXt5zYv0gdFK1UjxEyeKldUX3vh+gets8hzsvHy8A13aP5bksa87amS4EjXJIUOOKSfL8lHbMCV8SG0CrMT+s4wssPek+B+HsgfQvs+AKSF0JRJmz5UL15+EDL/mrrSXRPiOoOviGXd12zGXIOwYntcGIbHF0Hp/fXPieqB3S7BbreIvtHOZBb+8Tw3ZY0Fu/N5PniCpr4ySQB4VqkwBGNVmky8/1WdS2WO/u11DiNqEWngxZXqLdr3oYjqyBpARxeCUWn1BaVw3+ePT+wOYTEQnBLdeCyXygYg8A7EDy81dYXxQymSijJhZIcKMmG3FTIPaLeKv8yE0enh+Z9oO0I6HwDhLWz59+AaKBuzYPo0iyQvScK+HF7Ovdf2UbrSEJYlRQ4otFWJp/iVEE5Yf5ejOosi7A5LA8vaD9KvSmK2rJyeBUc3wIZu9TipOC4emPtZVzHR+1yahavFjath4BPE2t9F8JGdDodd17Rkqd+3sM3m9O4b1Br2UdOuBQpcESjfbNZbb25pXcMXh4yEc8p6HQQHqfeeFB9rCwfTu1T16PJS1MHKZeeUR8vL4CqCnWAsk6nrizsGwI+IeAbqrb2hLaBkDbQpKVM7XZS1/aI5pVFyRzLKWHdoWyubC9diMJ1SIEjGiU1u5i1B7PR6eC2vi20jiMuh3eQOianZX+tkwiN+Hp5MKFXM77YeIyvNx2TAke4FPn4LRrluy1q683Q9k2JCfHVOI0Q4nLdUT2O7o/kU2Tkl2qcRgjrkQJHNFhZpYkft6lr38jgYiFcQ/uIAPrGhmBW4Lstsj+VcB1S4IgGW7g7gzMllTQL9mFoh3Ct4wghrMTygeX7LWlUmswapxHCOqTAEQ2iKAqfrEsF4I5+LWTlYiFcyOjOkYT5G8kqLGfxngyt4whhFVLgiAbZeCSH5IwCfDwN3C6Di4VwKV4eeib1V1txPl6biqLI/lTC+UmBIxrk0+rWm5vimxPsKyueCuFq7riiBUYPPXtO5LP1qANu2CpEI0mBIy4qNbuYlfuzALhnYCttwwghbCLU38iEXuq+ch+vPaJxGiEunxQ44qI+W5+KosDwjuG0buqvdRwhhI3cO6gVACuST3Esp1jbMEJcJilwxAXll1Ty0/bjANw7KFbjNEIIW2obHsDQDk1RFPhs/VGt4whxWaTAERf0xcajlFSYiIsKpH+bUK3jCCFs7L5BrQGYty2dvJIKjdMIcemkwBHnVVxexafr1cHFfx/aBp1OpoYL4eoGtg2lU1QgJRUmacURTk0KHHFe321JI6+kklahvozrGqV1HCGEHeh0OqZd1RZQx98VllVqnEiISyMFjqhXeZWJuWvUmRR/H9pGFvYTwo2M7hxJ23B/Csqq+GrTMa3jCHFJpMAR9fpp+3GyCsuJCvLmhp7NtY4jhLAjvV7HQ8PaAOrCfyUVVRonEqLxpMARdVSazMxZfRiA+69sjZeH/JgI4W7Gd4umRYgvucUVsgmncEryziXq+Gn7cdJzSwn18+LWPrItgxDuyMOg5+9D1VacD1cfpqzSpHEiIRpHChxRS1mliXdXHgTgwWFt8fEyaJxICKGVCb2aER3kTVZhOV9tlLE4wrlIgSNq+WZzGhn5ZUQFeXPHFdJ6I4Q7M3oYeOzq9gD8L+EQBTKjSjgRKXBEjeLyKt5fdQiAR4a3w9tTWm+EcHcTejajbbg/eSWVfLRG9qgSzkMKHFHjs/Wp5BRX0CrUl5viZeaUEEIdi/P4yA6AOqPqdGG5xomEaBgpcAQApwvLmbNa/XQ2/er2eBrkR0MIoRrVOYLuMcGUVpp478+DWscRokHkXUwA8ObyFIrKq+jWPIjx3aK1jiOEcCA6nY4nR6utON9sTuNQVpHGiYS4OClwBEkn8/lhm7rOxXPXdEIvqxYLIf5iQJswhncMp8qs8NLCfSiKonUkIS5IChw3pygKL/2+D0WB8d2j6d0qROtIQggH9a9rOuFl0LPmwGlWJmdpHUeIC5ICx80t2ZvJ5tRcjB56nhrTUes4QggH1irMj3sHxwLw0sJ9svifcGhS4LixgrJKXvw9CYC/DWlDs2AfjRMJIRzdtGFtiQg0kpZbwsdrZdq4cFxS4LixN5alcKqgnFahvjxYvSS7EEJciJ/Rg5lj4gCY/echUrOLNU4kRP2kwHFTO9LO8NUmden1V27oKov6CSEa7Loe0QxuF0Z5lZmn5u/GbJYBx8LxSIHjhiqqzDz98x4URd1rZmDbMK0jCSGciE6n49UbuuLrZWBzai7fbU3TOpIQdUiB44beWXmA/ZmFNPH15NlxnbSOI4RwQjEhvjwxSl0b57XF+zmZV6pxIiFqkwLHzWw7mssHCYcBeG1CV0L8vDROJIRwVpP6t6JXi2CKyqt4/Mdd0lUlHIoUOG6kqLyK6fMSMStwY6/mjO4SpXUkIYQTM+h1vHFzd3w8DWw4nMNcmVUlHIhNC5wzZ85w1113ERQURFBQEHfddRd5eXkXfM7dd9+NTqerdevXr58tY7oFRVF47te9pOeW0izYh+evla4pIcTla93Unxev7QyoMzN3H8/TNpAQ1Wxa4Nx+++0kJiaydOlSli5dSmJiInfddddFnzd69GgyMjJqbosXL7ZlTLfw3ZZ0ft5xAr0O3prYg0BvT60jCSFcxM29mzOuaxRVZoWHv9tJfkml1pGEwMNWL5ycnMzSpUvZtGkTV1xxBQAfffQR/fv3JyUlhQ4dOpz3uUajkcjISFtFczu7j+fxwm/qgn7/HN2RvrGyHYMQwnoss6oS0/M4llPCI9/v5NO7+2CQfe2EhmzWgrNx40aCgoJqihuAfv36ERQUxIYNGy743ISEBMLDw2nfvj1Tp04lK+v8e56Ul5dTUFBQ6ybOyikq58FvdlBhMnN1pwj+dmVrrSMJIVxQkK8ncyfF4+2pZ/WB07yxPEXrSMLN2azAyczMJDw8vM7j4eHhZGZmnvd5Y8aM4ZtvvuHPP//kzTffZOvWrVx11VWUl5fXe/5rr71WM8YnKCiImJgYq30Pzq6s0sT9X23n+JlSWob68sbN3dHp5BOVEMI2OkcH8e8buwHwQcJhFu4+qXEi4c4aXeC88MILdQYB//W2bds2gHrfTBVFueCb7MSJExk3bhxdunRh/PjxLFmyhAMHDrBo0aJ6z585cyb5+fk1t/T09MZ+Sy7JbFZ4/MddbD92hkBvDz6Z3JsgHxl3I4Swret6NOP+6pbif8zbxdajuRonEu6q0WNwpk2bxq233nrBc1q1asXu3bs5depUna+dPn2aiIiIBl8vKiqKli1bcvDgwXq/bjQaMRqNDX49d6AoCv9etp+FuzPwNOj48K7etA0P0DqWEMJN/HNUBw5nFbFyfxb3fr6VHx8YQIdI+R0k7KvRBU5YWBhhYRdf2r9///7k5+ezZcsW+vbtC8DmzZvJz89nwIABDb5eTk4O6enpREXJmi0NNfvPQ3y4Wl2P4rUJ3ejfJlTjREIId+Jh0PPe7b244+NN7EjLY/KnW/jxgf7EhPhqHU24EZuNwYmLi2P06NFMnTqVTZs2sWnTJqZOnco111xTawZVx44d+eWXXwAoKiri8ccfZ+PGjRw9epSEhATGjx9PWFgYN9xwg62iupQ5qw8za8UBAJ4dF8dN8c01TiSEcEc+XgY+vbsPbcP9ySwoY+KHGzmWIzuPC/ux6To433zzDV27dmXkyJGMHDmSbt268dVXX9U6JyUlhfz8fAAMBgN79uzhuuuuo3379kyePJn27duzceNGAgKkefNCFEVh9sqDvL5kPwBPjOrAfYNlxpQQQjvBvl58c98VtG7qx8n8MiZ+uIkjp4u0jiXchE5RFJfaPKSgoICgoCDy8/MJDAzUOo5dmM0KLy3cx+cbjgLw2Ih2PDaivbahhBCiWlZhGXd8tJmDWUU0DTDy6eQ+dG0epHUs4WCs/f4te1E5udIKEw9/v7OmuHl+fCcpboQQDiU8wJvv7+9Hx8gATheWc8uHG/ljX91JKEJYkxQ4Tuz4mRJumrOBRbsz8NDreOfWHtwzMFbrWEIIUUeov5F5D/RncLswSitN3P/VNj5acwQX60QQDkQKHCe19uBprn1vPUknCwj18+Lr+67guh7NtI4lhBDnFejtyad39+G2vjGYFXhlcTJ/+2o7+aWyd5WwPilwnExZpYkXf0/irk+2kFtcQefoQH57eBD9WstUcCGE4/M06Hn1hq68fF1nvAx6lu87xTWz17LxcI7W0YSLkUHGTmTb0Vye/mUPB06psxDu6teSp8fG4eNl0DiZEEI03p7j+Tz47XbSc0sBuLNfC54aE4e/0Wb7QAsHZu33bylwnEBOUTmvL9nPj9uPAxDmb+S/N3VjWMe6e30JIYQzKSyr5LUl+/l2cxoA0UHezBwbxzXdomTvPDcjBc5FuFKBU1RexWfrUpm79giFZVUA3Nonhn+O7kiIn5fG6YQQwnrWH8rmyfm7OX5Gbc3p2SKYZ8fFEd8yRONkwl6kwLkIVyhw8ksr+X5LGh+uOUJucQUAnaICefn6LsS3bKJxOiGEsI3SChMfrT3CBwmHKa00ATCgTSgPDWvLgDah0qLj4qTAuQhnLnCOnC7iiw1H+XH7cUoq1P/csWF+PDaiHeO7RaPXy39uIYTrO1VQxqzlB5i/4zhVZvUtqlvzIO7q15JrukXLuEMXJQXORThbgXOmuIKFu0/y884T7EzLq3m8Q0QA9w6OZULPZngYZLKbEML9nMgr5aM1R/huSxrlVWYAArw9uK5HNOO6RtM3NgSDfPBzGVLgXISjFziKonAku5hV+7P4c38WW1Jzaz6h6HUwrEM4UwbFSnOsEEJUyy4q58dtx/luSxppuSU1j4f5ezGqcyTD48LpGxsqs6+cnBQ4F+FoBY7ZrHDodBHbjp5h29Fcth7LrZkSadE5OpAbejbj2u7RhAd6a5RUCCEcm9mssOFwDr8mnmD5vlO1Fgj00OvoERPMgLZh9IwJplvzIEL9jRqmFY0lBc5FaFXgmM0Kp4vKOZpdTMqpQvZnFpKSWciBzEIKy6tqnetp0HFFbCjDOoZzVcdwYsP87JZTCCFcQaXJzIbDOSzdm8n6Q9m1WnYsmgX70K15EO0iAmjT1I82Tf1p3dQPXy9p6XFEUuBchLX/ghRFoai8iuyiCnKKytX74nJyiio4VVBG+plSjp8p4fiZUiqq+4j/ysfTQM8WwfRu2YT4ViHEt2wiTalCCGFF6bklrD+UzZbUXHYdz+NIdjHne3eLDPQmKtib6CAfooK8iQzyJiLQmxA/L4J9PWni60UTXy8ZzGxnUuBchOUv6McNKXh4+1FhMlNpMlNRdfa+wqTUeqykwkRxeRVF1bfi8iqKy00UllVSXGHCZG7YX5FeB9HBPnSICKBDpHqLiwokNswPTxkoLIQQdlNYVsmeE/kknSjg8Omi6ltxzdIbDWH00NPE1wt/bw98vQzVNw98vAz4nXPsZdDjadDhadBX384eexh01V/XYzDo0Ot06HWg1+nQVd9bHtOd8zXL1+ueA1B3fGZ9QzbrG8VZ39jOvz5S/2s17Jr1aeh5hQUFdGoVZbUCx2WbEWbM24Xe6Gu11/P1MhDmbyTU34tQPyNh/l40DTDSvIkPMU18iQnxJTLIWwoZIYRwAAHengxoE8aANmG1Hj9TXEFabgkZ+aWczCtT7/PLOF1YTl5JBWdKKskrqaDSpFBeZSazoAwKNPom3Iy5vG434+Vw2QInvkUTfAP8aypnLw99reOzj+nw9jLgb/TAz8sDP6MHAd7qvb/RgJ/RgyAfT+mzFUIIF9DEz4smfl50jwk+7zmWoQl5JZWcKamguNxESUUVJRUmSitMFJ9zXFJhotLSU2AyU2lSqKr5s0JllZkqs3pcZTKjKGBWlJr72sd1v2ZW1DznnlNf3jqP1fuNXfychr5WfX0/Sj1nNqaPyGSybgOBy3ZROcosKiGEEEJcnLXfv6U/RQghhBAuRwocIYQQQrgcKXCEEEII4XKkwBFCCCGEy5ECRwghhBAuRwocIYQQQrgcKXCEEEII4XKkwBFCCCGEy5ECRwghhBAuRwocIYQQQrgcKXCEEEII4XKkwBFCCCGEy5ECRwghhBAuRwocIYQQQrgcD60DWJuiKIC67boQQgghnIPlfdvyPn65XK7AycnJASAmJkbjJEIIIYRorJycHIKCgi77dVyuwAkJCQEgLS3NKn9B4vIUFBQQExNDeno6gYGBWsdxa/Jv4Tjk38JxyL+F48jPz6dFixY17+OXy+UKHL1eHVYUFBQkP6wOJDAwUP49HIT8WzgO+bdwHPJv4Tgs7+OX/TpWeRUhhBBCCAciBY4QQgghXI7LFThGo5Hnn38eo9GodRSB/Hs4Evm3cBzyb+E45N/CcVj730KnWGs+lhBCCCGEg3C5FhwhhBBCCClwhBBCCOFypMARQgghhMuRAkcIIYQQLsflCpz333+f2NhYvL29iY+PZ+3atVpHcjuvvfYaffr0ISAggPDwcK6//npSUlK0jiVQ/210Oh2PPfaY1lHc1okTJ7jzzjsJDQ3F19eXHj16sH37dq1juZ2qqiqeffZZYmNj8fHxoXXr1rz00kuYzWato7m8NWvWMH78eKKjo9HpdCxYsKDW1xVF4YUXXiA6OhofHx+GDh1KUlJSo6/jUgXODz/8wGOPPcYzzzzDzp07GTx4MGPGjCEtLU3raG5l9erVPPTQQ2zatIkVK1ZQVVXFyJEjKS4u1jqaW9u6dStz586lW7duWkdxW2fOnGHgwIF4enqyZMkS9u3bx5tvvklwcLDW0dzOv//9b+bMmcN7771HcnIy//nPf/jvf//L7NmztY7m8oqLi+nevTvvvfdevV//z3/+w6xZs3jvvffYunUrkZGRXH311RQWFjbuQooL6du3r/LAAw/Ueqxjx47KU089pVEioSiKkpWVpQDK6tWrtY7itgoLC5V27dopK1asUIYMGaI8+uijWkdyS08++aQyaNAgrWMIRVHGjRunTJkypdZjEyZMUO68806NErknQPnll19q/mw2m5XIyEjl9ddfr3msrKxMCQoKUubMmdOo13aZFpyKigq2b9/OyJEjaz0+cuRINmzYoFEqAeoGaoDVNlATjffQQw8xbtw4RowYoXUUt/bbb7/Ru3dvbr75ZsLDw+nZsycfffSR1rHc0qBBg1i5ciUHDhwAYNeuXaxbt46xY8dqnMy9paamkpmZWeu93Gg0MmTIkEa/l7vMZpvZ2dmYTCYiIiJqPR4REUFmZqZGqYSiKMyYMYNBgwbRpUsXreO4pe+//54dO3awdetWraO4vSNHjvDBBx8wY8YMnn76abZs2cIjjzyC0Whk0qRJWsdzK08++ST5+fl07NgRg8GAyWTilVde4bbbbtM6mluzvF/X915+7NixRr2WyxQ4FjqdrtafFUWp85iwn2nTprF7927WrVundRS3lJ6ezqOPPsry5cvx9vbWOo7bM5vN9O7dm1dffRWAnj17kpSUxAcffCAFjp398MMPfP3113z77bd07tyZxMREHnvsMaKjo5k8ebLW8dyeNd7LXabACQsLw2Aw1GmtycrKqlMJCvt4+OGH+e2331izZg3NmzfXOo5b2r59O1lZWcTHx9c8ZjKZWLNmDe+99x7l5eUYDAYNE7qXqKgoOnXqVOuxuLg45s+fr1Ei9/XEE0/w1FNPceuttwLQtWtXjh07xmuvvSYFjoYiIyMBtSUnKiqq5vFLeS93mTE4Xl5exMfHs2LFilqPr1ixggEDBmiUyj0pisK0adP4+eef+fPPP4mNjdU6ktsaPnw4e/bsITExsebWu3dv7rjjDhITE6W4sbOBAwfWWTLhwIEDtGzZUqNE7qukpAS9vvZboMFgkGniGouNjSUyMrLWe3lFRQWrV69u9Hu5y7TgAMyYMYO77rqL3r17079/f+bOnUtaWhoPPPCA1tHcykMPPcS3337Lr7/+SkBAQE2rWlBQED4+Phqncy8BAQF1xj75+fkRGhoqY6I0MH36dAYMGMCrr77KLbfcwpYtW5g7dy5z587VOprbGT9+PK+88gotWrSgc+fO7Ny5k1mzZjFlyhSto7m8oqIiDh06VPPn1NRUEhMTCQkJoUWLFjz22GO8+uqrtGvXjnbt2vHqq6/i6+vL7bff3rgLWWOalyP53//+p7Rs2VLx8vJSevXqJVOTNQDUe/vss8+0jiYURaaJa+z3339XunTpohiNRqVjx47K3LlztY7klgoKCpRHH31UadGiheLt7a20bt1aeeaZZ5Ty8nKto7m8VatW1fseMXnyZEVR1Knizz//vBIZGakYjUblyiuvVPbs2dPo6+gURVGsUZEJIYQQQjgKlxmDI4QQQghhIQWOEEIIIVyOFDhCCCGEcDlS4AghhBDC5UiBI4QQQgiXIwWOEEIIIVyOFDhCCCGEcDlS4AghhBDC5UiBI4QQQgiXIwWOEEIIIVyOFDhCCCGEcDlS4Agh7Gro0KE8/PDDPPbYYzRp0oSIiAjmzp1LcXEx99xzDwEBAbRp04YlS5YAYDKZuPfee4mNjcXHx4cOHTrwzjvv1HrNhIQE+vbti5+fH8HBwQwcOJBjx44BsGvXLoYNG0ZAQACBgYHEx8ezbds2u3/fQgj7kgJHCGF3X3zxBWFhYWzZsoWHH36Yv//979x8880MGDCAHTt2MGrUKO666y5KSkowm800b96cefPmsW/fPp577jmefvpp5s2bB0BVVRXXX389Q4YMYffu3WzcuJH7778fnU4HwB133EHz5s3ZunUr27dv56mnnsLT01PLb18IYQeym7gQwq6GDh2KyWRi7dq1gNpCExQUxIQJE/jyyy8ByMzMJCoqio0bN9KvX786r/HQQw9x6tQpfvrpJ3JzcwkNDSUhIYEhQ4bUOTcwMJDZs2czefJk235jQgiHIi04Qgi769atW82xwWAgNDSUrl271jwWEREBQFZWFgBz5syhd+/eNG3aFH9/fz766CPS0tIACAkJ4e6772bUqFGMHz+ed955h4yMjJrXmjFjBvfddx8jRozg9ddf5/Dhw/b4FoUQGpMCRwhhd3/tItLpdLUes3Qvmc1m5s2bx/Tp05kyZQrLly8nMTGRe+65h4qKiprzP/vsMzZu3MiAAQP44YcfaN++PZs2bQLghRdeICkpiXHjxvHnn3/SqVMnfvnlFzt8l0IILUmBI4RwaGvXrmXAgAE8+OCD9OzZk7Zt29bbCtOzZ09mzpzJhg0b6NKlC99++23N19q3b8/06dNZvnw5EyZM4LPPPrPntyCE0IAUOEIIh9a2bVu2bdvGsmXLOHDgAP/617/YunVrzddTU1OZOXMmGzdu5NixYyxfvpwDBw4QFxdHaWkp06ZNIyEhgWPHjrF+/Xq2bt1KXFycht+REMIePLQOIIQQF/LAAw+QmJjIxIkT0el03HbbbTz44IM108h9fX3Zv38/X3zxBTk5OURFRTFt2jT+9re/UVVVRU5ODpMmTeLUqVOEhYUxYcIEXnzxRY2/KyGErcksKiGEEEK4HOmiEkIIIYTLkQJHCCGEEC5HChwhhBBCuBwpcIQQQgjhcqTAEUIIIYTLkQJHCCGEEC5HChwhhBBCuBwpcIQQQgjhcqTAEUIIIYTLkQJHCCGEEC5HChwhhBBCuJz/B/ByDZmDI6bfAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGwCAYAAACkfh/eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzk0lEQVR4nO3deXxM9/7H8dfMZN8mksiChAQhdmINai1FddG9lFbrXrfVhau93W7X2+XeX6t7q3TRvdpSbVGlrdh3Yg2CSIJEJCH7Nsvvj5MJqSBhZs4sn+fjMY8cM2fmvENkPvNdNWaz2YwQQgghhAvRqh1ACCGEEMLapMARQgghhMuRAkcIIYQQLkcKHCGEEEK4HClwhBBCCOFypMARQgghhMuRAkcIIYQQLsdD7QDWZjKZOHHiBIGBgWg0GrXjCCGEEKIBzGYzxcXFNGvWDK32yttfXK7AOXHiBNHR0WrHEEIIIcRlyMrKokWLFlf8Oi5X4AQGBgLKX1BQUJDKaYQQQgjREEVFRURHR9e+j18plytwLN1SQUFBUuAIIYQQTsZaw0tkkLEQQgghXI4UOEIIIYRwOVLgCCGEEMLlSIEjhBBCCJcjBY4QQgghXI4UOEIIIYRwOVLgCCGEEMLlSIEjhBBCCJcjBY4QQgghXI4UOEIIIYRwOVLgCCGEEMLlSIEjhBBCCJfjcpttCiGEEE7FZAKz5WY8e2yyHJvPOdlc97kXesz8l/Mu+FgDX+9Sj1lDUbFVX851C5w3u4C/D+i8lJuHN+g8QWf5es59nn7gFQDegeAdAF41X70Dlft9m4B/U/APU54jhBDC9ZhMUFkIZQVQlq/cKouhqgQqS6CqVDm2fK0uB0MlGKvAWA3GmmND1fn3XaiIMZvU/q4dR6V1iybXLXDKC8BknS3X6/DWg3+oUvAEREBwDDRpBcEtlePgGPDys/51hRBCXD6zGUpPQV4aFB6Dwizla9Fx5WvpKaWwMRvVTmol57z/aTQNuP9yn2NFBhNgvVYcjdl8XjuWUysqKkKv11N4aDNBvp41FXRVTRVdfX61baiC6rKzFXplMVQV11TrNX8uP6388JsMDQvRpBWEd4SIDhDeAZp1gyaxtv3BEEIIoTBUQs4eOL4NcnZB3kE4dQAqzjTs+V6B4NcEfEPAR1/Tmu9fcwuoufkrH2Z13jU9BZ7n9BR41e0t0HmC1gM02rM3ra7uny/4mK7mveMCRYYLva/Uvn8XFhIUFHTFr+e6LThN24EV/oJqmc3Kf47SPKXYKT0FRSfgTKZyO50BZzKgsghOH1VuB5acfb5/OMT0gZh+0GoARHZxqR9MIYRQTWUJZKyDI8mQuUEpbkzV9ZyoqWl1bwlBLUBvuTWHgEjwCwW/EBmK4CJctwXHShVgo5XmQe4+OLn37C1n9/n/2QKjoO3VEH8NtB4Knr72zyqEEM7qTBbs+wkOLIWszef/jvULheaJENVN+cDbtB2EtpHftQ7M2u/fUuDYQ3UFnNihfLLI3AhH10J16dnHvYOgw/XQ9XaISQKtzN4XQojzlBXArvmwZyEc21z3seCW0HoItBoILXopLTXSSu5UpMC5BIcscP7KUKkUOQd/g/1LoOjY2ceaxEKfqdB9vNLvK4QQ7i5rC2z5CPb+qIydBEADLfsrHw7bDoeQOFUjiisnBc4lOEWBcy6TCTLXK59K9v6kTFEEZZBb4iQYMF2Zni6EEO7EbIYjK2H165Cx9uz9kZ2h+11KYRMYqV4+YXVS4FyC0xU456oqhZ3fwqbZyqh/AE9/6PsPSJqmrMcjhBCuLnMTLH/6bDeU1hM63wK97oPmPaTryUVJgXMJTl3gWJhMcGgFrHwZslOU+3xD4OrnodsEGaMjhHBNZzJhxTNKVxSAh6/Skp30oDLbSbg0KXAuwSUKHAuzGfYvhj//A6f2K/e16A3XvgGRndTNJoQQ1mIywuY58McLyrpkaKDHXTDkKemGciNS4FyCSxU4FsZq2PQhJL+iLD6o84Kh/4Z+06Q1Rwjh3PIOwU/3Q9Ym5c8t+8Oo/ypjbYRbsfb7t7w7OgOdpzIGZ9oWaDdaWYl5xb/h8+uUxQaFEMIZ7VkAcwYpxY1XIIyZBZMWS3EjrEIKHGcS1Axu/xrGvq0MPj66Bj4cpKytI4QQzsJQCUtmwg+TlVbplv3h/g3Q615plRZWIz9JzkajUQbdTV0DEZ2gNBfmXQtbP1E7mRBCXFpZAXx+PWyZq/x5wAyY+DMER6ubS7gcKXCcVWhruHc5dLhBWaJ88XT4/XllYLIQQjii/MPw0XBlVXdvPdz5PQx/FnSuuy2iUI8UOM7Myx9umafMNABYOwt+eQiMDdz1XAgh7OXkXvh4BBQcBn003PsbxI9QO5VwYVLgODuNBgY9pozL0Whh++ew8D4pcoQQjiN7l9KVXpanDCC+7w8IT1A7lXBxUuC4isRJcOvnyoqfe39Upl2ajGqnEkK4uxM74LOxUF4AzXrApF8gMELtVMINSIHjShLGwq2fgdZD2dvql4eVVZGFEEINeYfgy5ug4oyySOnERbLljLAbmxY4q1evZuzYsTRr1gyNRsOiRYsuen5ycjIajea82/79+20Z07W0HwPj5irdVTu+gD9fUDuREMIdFWXDFzdCWT406w53LQQfvdqphBuxaYFTWlpK165deffddxv1vAMHDpCdnV17a9u2rY0SuqhO4+C6mr/ztW/AtnmqxhFCuJmKIvjqZijMhJDWymwp70C1Uwk3Y9O5eaNGjWLUqFGNfl54eDjBwcHWD+ROuo9XNq5b9SosnqHMWmgzTO1UQghXZzLBwr/ByT0QEKG03AQ0VTuVcEMOOQane/fuREVFMWzYMFauXHnRcysrKykqKqpzEzUGPw5dbgezUVkx9PRRtRMJIVzdqlfh4K+g84Y7voEmrdROJNyUQxU4UVFRzJkzhwULFrBw4ULatWvHsGHDWL169QWf88orr6DX62tv0dGyGmYtjQauexua91QG+c2/C6or1E4lhHBVqb/Aqv8qx2PfguaJ6uYRbs1uu4lrNBp+/PFHbrjhhkY9b+zYsWg0Gn7++ed6H6+srKSysrL2z0VFRURHR7vWbuJXqvAYfHiVMtiv+11wfePGRAkhxCUVpMPsgVBVDH3vh2teUTuRcDJut5t43759SUtLu+Dj3t7eBAUF1bmJv9C3gJs+BjTKzKqUb9ROJIRwJcZqWHCvUtxE94WrX1Q7kRCOX+Ds2LGDqKgotWM4v9ZDYMiTyvHSR+F0hrp5hBCuY+XLcHybMg38prmyt5RwCDb9KSwpKeHQoUO1f05PTyclJYWQkBBiYmJ44oknOH78OJ9//jkAb775Jq1ataJjx45UVVXx5ZdfsmDBAhYsWGDLmO5jwAw49DtkbYJF/1BWFNXq1E4lhHBm6WuU5ShA2TImOEbdPELUsGmBs3XrVoYMGVL75xkzZgAwadIk5s2bR3Z2NpmZmbWPV1VVMXPmTI4fP46vry8dO3ZkyZIljB492pYx3YfOA26crfSTZ6yDDe9C/4fVTiWEcFZVpfDTA4AZekyEjjeonUiIWnYbZGwv1h6k5JK2fw4/Pwg6L/jHegiThRSFEJdh2ROw8X1lna37N8hifuKKuN0gY2ED3e+CNsPBWAWLp4Nr1bhCCHvI2gwbP1COx74pxY1wOFLguCONBsa8Dh6+cHQNpHyldiIhhDMxVMJP0wAzdL1T+cAkhIORAsddNWl1dlbV8qeh5JSqcYQQTmTDe5B3APzDYeRLaqcRol5S4LizvvdDZGcoPw2/P6t2GiGEMyg6AatfU45H/Af8QtTNI8QFSIHjznQecO2bynHKV3B8u6pxhBBOYPm/oboUovtAl1vVTiPEBUmB4+5a9FQ25ARlRoQMOBZCXEjGetjzA6CBUf9TxvMJ4aCkwBEw/Fnw9IOsjbB3odpphBCOyGSEpY8px4mToFk3VeMIcSlS4AgIagYDpivHK56F6nJ18wghHM/u7+HkbvDWw9Bn1E4jxCVJgSMU/aZBUAsozILNc9ROI4RwJIZK+LNmttSAR8A/VNU4QjSEFDhC4eV3dtr42jegokjdPEIIx7H1UyjMhIBI6DNV7TRCNIgUOOKsLrdBWLwybXzDe2qnEUI4gspiWP1/yvHgfykfhoRwAlLgiLN0HjDkKeV4w7tQmq9uHiGE+ja8B2V5ENJa2eZFCCchBY6oK+E6iOoKVSWwdpbaaYQQaiorgPXvKsdDnwadp7p5hGgEKXBEXVrt2RkSWz6C4pPq5hFCqGfTh1BVDOEdocMNaqcRolGkwBHnazMMWvQCQwVslLE4QriliiLYVLNb+FUzlQ8/QjgR+YkV59NoYOBM5XjLx0oztRDCvWz5CCoKlYkHHa5XO40QjSYFjqhf/EiI6KSMxZF1cYRwL1WlykQDgIH/BK1O3TxCXAYpcET9NBoYOEM53viBMlVUCOEetn0GZfnQpBV0ulntNEJcFilwxIV1uAFC20DFGWWhLyGE6zNUwfp3lOMBM5TlI4RwQlLgiAvT6s7uUbXhPeUXnxDCte39EYpPKKsWd71D7TRCXDYpcMTFdb5V+UVXkqP84hNCuC6zGTbUtN70+Rt4eKmbR4grIAWOuDgPL+h9n3K88T3lF6AQwjUdXQM5u8HTDxLvUTuNEFdEChxxaYmTwcMHsndCxnq10wghbMWyB123O8EvRN0sQlwhKXDEpfmHQtfbleON76ubRQhhG3lpcHAZoIG+96udRogrJgWOaBjLL7z9S6DgiLpZhBDWZ2m9aTcaQlurm0UIK5ACRzRM03bQZjhgVvanEUK4jvIzsPNb5biftN4I1yAFjmg4SyvOjq+gskTdLEII69n5LRjKIbwDtOyvdhohrEIKHNFwcUMgJE7ZXXjPD2qnEUJYg9kMWz9Wjnvdq6xiLoQLkAJHNJxWCz0nK8dbPpYp40K4gqNrIO8geAVAl9vUTiOE1UiBIxqn23jQeUPOLji+Te00QogrtaWm9abLreAdqG4WIaxINhkRjeMXAh1vhF3fwtZPoEVPtROJK1BRbeTEmXKyTpdz/HQ5p8uqKK4wUFxRTbXRhFajQaPR4KnTEOzrSRN/L0L8vWjRxJdWof6E+HuhkS4N51WcA/sXK8c971U3ixBWJgWOaLxe9yoFzp4FMOI/siCYk6g2mtiZdYbtmafZc7yIPScKSc8rvaKexkBvD+IjA+naIphuMcH0iAmmRRM/64UWtrX9czAZILoPRHZSO40QViUFjmi8Fr0gojOc3A07v4F+D6idSFzAyaIKlu3JYfXBU2w8kk9plfG8c/y8dEQ38aN5E19C/L0I8vEk0McDLw+lB9tkMlNlNHGmrJqCsirySyrJKijnRGE5xZUGtmWcZlvGaVinvF5cU38GxTdlcLtwklqH4qmTnnCHZDTAtnnKsbTeCBckBY5oPI0Gek2GxdOVbqq+98vMCwdSWF7NzynH+WVXNluOFtRpoWni50mf2FA6t9DTqbmeDlFBhAVcXjdTRbWRjPwy9p4oJCXrDClZZ9h7oogjp0o5cqqUT9cdpYmfJ6M7R3FD9+b0bNlEurMcSdpyKDoOfqHQ4Xq10whhdRqz2bWmwhQVFaHX6yksLCQoKEjtOK6rshheawfVpTD5N4jpq3Yit7f7WCFfbszgp53Hqag21d7fIyaYER0jGdAmjA5RQWi1tisyiiqqWX8oj+QDp/g9NZe8ksrax1o39efupFaM69ECf2/5bKW6b+6AA0sh6UGlq1kIlVn7/VsKHHH5Ft0PKV9B97vg+nfVTuOWzGYz6w/n8/YfaWxKL6i9v11EIDcntmB0lyiaB/uqks1gNLHhSD6Ldpxg2Z7s2u6xQG8P7uwTw5Sr4ggL8FYlm9srPgmzEsBshAc2KyuVC6EyKXAuQQocO8pYD5+OUtbPmHkQvPzVTuRW1qblMWvFAbZnngHAU6dhdOcoJvRt6XDdQSWVBhZsO8Zn649yJK8UAF9PHROTWvL3q1oT4u+lckI3s+5tWPFvZTzdfb+rnUYIQAqcS5ICx47MZninh7L55g0fQLc71U7kFg7llvDy0lT+3J8LgLeHljt6x/D3QXFE6dVprWkok8lM8sFc3vo9jZ3HCgGlRefh4W2Z2K9V7cBmYUNmM7zfF07th2vfhJ73qJ1ICEAKnEuSAsfOVr8Gf76o7F9zz1K107i00koDs1Yc5LP1RzGYzHhoNUzo25L7h7QmPNBH7XiNYjab+XN/Lq8vP8i+7CJAGaPz7NiOXBXfVOV0Lu7YNvhoKHj4wswD4KNXO5EQgPXfv+XjkrgyXe8AjRYy1kH+YbXTuKw1aacY+eZqPl6bjsFkZnhCOL9Nv4rnruvodMUNgEajYVhCBIsfHMD/bupCqL8Xh0+VMvGTzfzzu50UllerHdF17fhC+drhOiluhEuTAkdcGX1zaD1UOU75Wt0sLqi00sC/ftjFXR9v5tjpcpoH+zLvnl58NKkXrZsGqB3vimm1Gm7tFc2fMwdzT/9WaDSwYPsxRryxipU1XXDCiqrLYc9C5bjbeHWzCGFjUuCIK9d9gvI15Wswnb+QnLg8e08UMvadtczfmoVGA3cntWL59KsY3C5c7WhWp/f15NmxHflhaj/iwvw5WVTJPfO28NzPe6kymC79AqJhUhdDZSEEx0CrgWqnEcKmpMARV67daPBtAsUn4Eiy2mmcntls5osNR7nx/fUcySslSu/Dt1P68tx1HV1+/ZjEliEsfXgg9w6IBWDe+qPcMns9WQVlKidzESlfKl+7jQet/PoXrk1+wsWV8/CGTjcpx7u+UzeLk6s0GJn5/S7+/ZPScjE8IZylDw2kT1yo2tHsxsdTx7+v7cDHk3qi9/Vk57FCxry9htUHT6kdzbkVnYAjq5Tjrrerm0UIO5ACR1hH51uVr/sXQ1WpulmcVF5JJXfO3cSC7cfQauDpMQnMndiTJm66RsywhAiWPDSAbtHBFFUYuGfeFr7YmKF2LOe1ZwFghph+0KSV2mmEsDkpcIR1RPeG4JZQVQIHflU7jdNJO1nM9e+uY1vGaQJ9PJh3T2/uGxjnUIv1qaFFEz/m/70v43o0x2gy8+9Fe3j+l70YTS61uoV9WFpXO9+ibg4h7EQKHGEdGg10qWnFkW6qRtmReZpbPtzA8TPlxIb5s+iB/rIWzDm8PXS8fktXHh2pbCfw6bqjPPjNdhl83Bi5+yFnF2g9oOONaqcRwi6kwBHWY+mmOvwHlOapm8VJrEk7xfiPNnGmrJpu0cEs/EeSS0z/tjaNRsMDQ9rw3p098NJpWbo7hymfb6W8SmbtNcjumg8dbUeAX4i6WYSwEylwhPU0jYeobmAywN4f1U7j8FbsO8nkeVsoqzIysG0YX93Xx23H2zTUmC5RfDSpJz6eWlYdPMWkTzZTVCGLAl6UyQS7vleOpXtKuBEpcIR1STdVg6w8kMv9X22j2mhmdOdIPprU0+WngFvLVfFN+eLePgR6e7D5aAH3fLqF0kqD2rEcV9YmKMwEr0BoN0rtNELYjRQ4wro63aRs3XBss7IJpzjP2rQ8/v6FUtyM6RzF27d3x9tDp3Ysp9KrVQjf/K0vQT4ebMs4zZTPt1JRLd1V9bJ0T3W4DjwdezNWIaxJChxhXYGREDtIOd79g7pZHNDm9ALu+3wLVQYTV3eI4M3bu+Ghk/+Gl6NTcz2fTe6Nv5eO9Yfz+ceX22Tg8V8Zqs52F0v3lHAz8ptVWF+X25Svu+aDa21Wf0XSThZz32dbqKg2MaRdU969szueUtxcke4xTfj47l74eGpZeeAUM7/fiUmmkJ916HcoPw0BkRB7ldpphLAr+e0qrC/hWvDwgfxDytRUQW5RBXd/uoWiCgOJLZvwwYRE6Zaykr5xocyekIiHVsPPO08wa8VBtSM5jj0LlK+dxoFWft6Ee5ECR1ifd6AyHRVkNhVQUqmswmtZ52buxJ74eMqbjTUNbhfOyzd2BuDdlYf4dnOmyokcQHX52UU3LVupCOFGpMARtmFZTGzPQrfupjKZzDz8zQ72nigi1N+Leff0IkSmgtvErb2ieXBoGwCeWrSHNWluvndV2gqoLgV9NDRPVDuNEHYnBY6wjfiR4OkHZzLgxA6106jmzd8P8sf+XLw9tHx8dy9ahvqrHcmlzbg6nhu7K9s6TPt6B5n5brwLuaX1tOMNykrjQrgZKXCEbXj5K0UOuG031bI9Obz95yEAXhnXmW7RweoGcgMajYZXb+pM1+hgCsur+fuX29xzteOqUji4TDnuOE7dLEKoRAocYTuWbqq9i9yumyrtZDH//C4FgHv6t2JcjxbqBnIj3h46Zk/oQai/F6nZRTy+cBdmN/v5I205VJcpG+A26652GiFUIQWOsJ22I8DTX1lF9fg2tdPYTVmVgalfbqO0ykjfuBCeHJ2gdiS3E6X35b3xPdBpNfyUcoLP1h9VO5J91XZP3SjdU8JtSYEjbMfT9+zS8HsWqpvFjp7/eR+HT5USHujNu3f2kLVuVNI3LrS2uHx56X72nihUOZGdVJbAweXKsewcLtyY/OYVtmX5BbtvkbLpn4v7ZecJ5m/NQqOBN2/vRliAt9qR3Nrk/q0YnhBBldHEQ9/soKzKDfasSvsNDOXQJBaiuqqdRgjV2LTAWb16NWPHjqVZs2ZoNBoWLVp0yeesWrWKxMREfHx8iIuLY/bs2baMKGytzXBlk7+i43Bsi9ppbCqroIwnF+4G4IHBbUhqHaZyIqHRaPjfzV2ICPLm8KlSXly8T+1ItifdU0IANi5wSktL6dq1K++++26Dzk9PT2f06NEMHDiQHTt28OSTT/LQQw+xYMECW8YUtuTpA+1HK8d7Xbebymgy8/C3OyiuNNAjJphHhrdVO5KoEeLvxRu3dkOjgW82Z/Hr7my1I9lOZbGy/g1I95Rwex62fPFRo0YxatSoBp8/e/ZsYmJiePPNNwFISEhg69atvPbaa9x0U/0rcVZWVlJZWVn756KioivKLGyg443KvlR7F8HIV0Drej2jH605wvbMMwR6e/DW7d1lA00Hk9QmjKmDWvNB8mGe/HE3vWJDXLP78MAyMFRAaBuI7Kx2GiFU5VC/hTds2MCIESPq3Ddy5Ei2bt1KdXV1vc955ZVX0Ov1tbfo6Gh7RBWN0XooeOuhJAeyNqqdxuoO5Zbwes3+R09fm0B0iJ/KiUR9pg+PJyEqiNNl1Tz7016149iGdE8JUcuhCpycnBwiIiLq3BcREYHBYCAvL6/e5zzxxBMUFhbW3rKysuwRVTSGh/fZ2VT7flY3i5UZTWYe/WEnVQYTg+KbcmtPKbAdlZeHlv+7uQseWg1LdmezZJeLdVVVFCm7h4N0TwmBgxU4oAwKPJdlga6/3m/h7e1NUFBQnZtwQB2uU76m/uJSi/59tOYIO2q6pl69qfMFf06FY+jUXM/9g1sD8MxPe8gvqbzEM5xI2nIwVkJoWwjvoHYaIVTnUAVOZGQkOTk5de7Lzc3Fw8OD0NBQlVIJq2g9VFn0r+gYnNiudhqryMgvre2a+ve1HYjS+6qcSDTEtKFtaR8ZSH5pFc//4kKzqlJrWkc7XCfdU0LgYAVOv379WLFiRZ37li9fTs+ePfH09FQplbAKT19oe7VynPqLulmswGw288xPe6kymBjQJoxbespWDM5C6arqilYDP+88wdq0+ru/nUp1OaTVdE+1v1bdLEI4CJsWOCUlJaSkpJCSkgIo08BTUlLIzMwElPEzEydOrD1/6tSpZGRkMGPGDFJTU/nkk0/4+OOPmTlzpi1jCntJGKt83fez03dT/bonh1UHT+Gl0/LC9R2la8rJdG6hZ2K/VoDSVVVpcPINOQ+vhOpSCGohe08JUcOmBc7WrVvp3r073bsr/+FmzJhB9+7deeaZZwDIzs6uLXYAYmNjWbp0KcnJyXTr1o0XX3yRt99++4JTxIWTiR8JOm8oOAy5qWqnuWwllQZeqOnamDq4NXFNA1ROJC7HjBHxNA305kheKXNXH1E7zpXZv1j5mnCtdE8JUUNjdrFtdouKitDr9RQWFsqAY0f09e1w8FcY/AQMflztNJflxcX7+HhtOi1D/fjtkavw8dSpHUlcpp9SjvPwtyl4e2j5fcYg55zibzTAa22g/DRMWgyxA9VOJMRlsfb7t0ONwRFuwNJN5aTjcA7kFDOvZmfqF67vJMWNk7uuazOSWodSaTDx/C9OujZOxjqluPELhZh+aqcRwmFIgSPsq90o0Ojg5B7IP6x2mkYxm838Z8k+jCYz13SMZFB8U7UjiSuk0Wh44fpOeGg1/J6a65wDji3dU+1Ggc6mi9ML4VSkwBH25RdytgndyVpxkg+eYk1aHl46LU+Mbq92HGElbcIDmNC3JUBtAes0TCZIrSlw2o9VN4sQDkYKHGF/CZZF/5xnVWOD0cRLS5SB0Xf3b0XLUH+VEwlremR4W/S+nuzPKeaHbU60GvqJHVB8ArwCIG6w2mmEcChS4Aj7a38toIHj26DwmNppGuSbLVkcyi2hiZ8nDwxpo3YcYWXBfl48NEzZAf7/fjtISaVB5UQNtL+mFbTt1eDpo24WIRyMFDjC/gIjIKavcmxpXndgRRXVvFGzYvH0q+PR+8qik67orr4taRXqR15JJbOTnWB8mNl8tps3QbqnhPgrKXCEOmpnUzl+N9WHqw5TUFpF66b+3Nk7Ru04wka8PLQ8MToBgLlrjpBbVKFyoks4dQDyD4HOC9pcrXYaIRyOFDhCHZYCJ2M9lOSqm+Ui8koq+XTdUQAeu6Y9Hjr5L+PKRnSIILFlEyoNJt5deUjtOBdnab2JGww+suaXEH8lv62FOoJjapaUN8P+JWqnuaD3Vx6mrMpI1xZ6RnSIUDuOsDGNRsM/R8QD8M3mTLIKylROdBH7pXtKiIuRAkeox8EX/csuLOfLTRkA/HNEO9lvyk0ktQ5jQJswqo1m3vojTe049TuTCdk7QaOFdqPVTiOEQ5ICR6jHMl08fTWUn1E1Sn3e/uMQVQYTvWNDGNg2TO04wo5mjmwHwMLtxziUW6JymnpYBufHJIG//GwKUR8pcIR6wtpC0/Zgqoa05WqnqSMjv5TvtyrroTw6Ulpv3E236GCGJ0RgMsMbvx9UO875zt1cUwhRLylwhLocdDbV238cwmAyMyi+Kb1ahagdR6jgnyPi0Whgya5s9ucUqR3nrJJTyuB8gPZj1M0ihAOTAkeoy1LgpP0OVY4xoDOroIxFKccBZd0b4Z4SooIY3SkKUAabO4wDSwEzRHVTBusLIeolBY5QV2QX0MeAoRwO/6F2GgBmrzqM0WRmYNswukUHqx1HqOj+Ia0BWLzrBOl5pSqnqSHdU0I0iBQ4Ql0azTndVOqvanyyqILvtyrbR8iWDKJjMz3D2odjMsMHyQ6wLk5FERxJVo4tg/SFEPWSAkeoz1LgHPwVDFWqRpm7+ghVRhO9WjWhT6yMvRHwwFCl0F24/TjHTqvcjZq2HIxVENoWmrZTN4sQDk4KHKG+6N7gHw4VhXB0jWoxCkqr+GpTJqC03sjMKQHQI6YJ/duEYjCZ+XDVEXXD1O49Jd1TQlyKFDhCfVrd2dkgKi769+m6dMqrjXRurmdQfFPVcgjHY+munL81S709qqor4NDvyrGsXizEJUmBIxyD5RPp/iVgMtr98iWVBuatPwrAA0NaS+uNqKNfXCg9YoKpMphqf07s7kgyVJVAUHNo1kOdDEI4ESlwhGNodRV466E0F45tsfvlv9+aRXGFgbgwf0Z0iLT79YVj02g0/O0qZUbVV5syKasy2D+EpXWz/bXK4HwhxEVJgSMcg4cXtLtGObZzN5XRZOaTdekATB4Qi1Yrbx7ifFd3iKBlqB+F5dX8sO2YfS9uNNSsf4OMvxGigaTAEY7j3FWNzWa7XXb53hyyCspp4ufJTT1a2O26wrnotBruHRALwMdr0zGa7PczSuZ6KC8A3xBl/ykhxCVJgSMcR+th4OGr7JScs8tul/1ordJ6M6FvS3y9dHa7rnA+Nye2QO/rSUZ+GSv2nbTfhS1rRLUbDToP+11XCCcmBY5wHF5+0GaYcmynRf+2Z55mW8ZpvHRa7urX0i7XFM7Lz8uD8X2U7RE+WmOnKeNms6xeLMRlkAJHOBbL6qx2Gofz8Rql9eb6bs0ID/SxyzWFc5uU1ApPnYatGafZkXna9hc8sR2KjoOnP8QNsf31hHARUuAIxxI/ErQecCoV8tJseqmsgjJ+3ZMNwL0DY216LeE6IoJ8uK5rc0AZi2NzltbMtleDpxThQjSUFDjCsfgGQ+wg5djGrThfbszAZIYBbcJoHxlk02sJ1zJ5QCsAlu3Jsf3Cf7WrF8vifkI0hhQ4wvHULvpnu3E4FdVG5m/NAuDupFY2u45wTR2b6Uls2QSDycw3m7Nsd6FTByA/DXRe0HaE7a4jhAuSAkc4nnZjAA0c3waFtllvZPGubM6UVdM82Jch7cNtcg3h2ibWDEr/enMG1UaTbS5iab2JHQQ+0sooRGNIgSMcT2AExPRVjvcvscklvthwFIDxfWPQycJ+4jJc0ymSsAAvThZV2m7KuHRPCXHZpMARjql20T/rj8PZmXWGnccK8dJpubVntNVfX7gHbw8dd/RWpox/Zov9qc5kQnYKaLTK+jdCiEaRAkc4pvY143Ay1kFpnlVf+suNGQCM7hxJWIC3VV9buJc7+ygtgJvSCziQU2zdF7e0Xsb0gwDZ3V6IxpICRzimJi0hsguYTXDgV6u97OnSKn7eeQKAu/q1strrCvcUpffl6oQIAL7YeNS6Ly7dU0JcESlwhOOywaJ/P2w7RqXBRIeoIHrEBFvtdYX7sgw2Xrj9OMUV1dZ50ZJTkLlBOW4/xjqvKYSbkQJHOC7LJ9cjK6Gi6IpfzmQy8+UmpXtqYr+WaDQyuFhcuX6tQ4lr6k9ZlZFfdmZb50UPLFVaL6O6QXCMdV5TCDcjBY5wXE3bQWhbMFZB2vIrfrmN6flk5JcR6O3Bdd2aWSGgEKDRaLi9lzJYff6WTOu8aG33lOw9JcTlkgJHOC6NxqqzqeZvURZkG9utGX5esiOzsJ5xPVrgqdOw81gh+05cYWtjRSGkr1KOLd20QohGkwJHODbLJ9i0FVB9+UviF5ZV8+ueHIDaT9tCWEtYgDdXd1AGG19xK07aCqXVMrSt0oophLgsUuAIx9asBwQ1h+pSZSzOZVqUcpwqg4n2kYF0bq63YkAhFLf1UsbK/LjjOBXVxst/IZk9JYRVSIEjHJuVuqks3VO39YqWwcXCJga2CaN5sC9FFQaW1bQWNlp1udKCAzL+RogrJAMRhONLGAubZiszS4wG0DXux3bP8UL2ZRfh5aHlxu7NbRRSuDutVsOtPaN54/eDfLslkxsu52ft8EqltTKoudJ66SKMRiPV1VaaQi+cmqenJzqdzi7XkgJHOL6YfuAXBmV5ysrGcYMa9fRva8ZEjOwYSbCfly0SCgHALT1b8NYfB9l4pID0vFJiw/wb9wL7FytfE8YqrZdOzmw2k5OTw5kzZ9SOIhxIcHAwkZGRNm9NlwJHOD6tDtqNgh1fKN1UjShwyquM/JSirFwsg4uFrTUL9mVQfFNWHjjF/C1ZPD6qfcOfbDQorZRwdqsSJ2cpbsLDw/Hz85PuYTdnNpspKysjNzcXgKioKJteTwoc4RwSrlMKnP2LYdT/QNuw4WO/7smmuMJAdIgv/eJCbRxSCGWc18oDp/hxxzEeHdmu4bvVZ6yD8tPgF6q0Wjo5o9FYW9yEhsr/PaHw9fUFIDc3l/DwcJt2V8kgY+Ec4gaBVyAUZ8PxbQ1+2vdbjwFwS2I02oa+0QhxBYa0DyfYz5OTRZWsO9SIjWItg+jbjWr0ODNHZBlz4+fnp3IS4WgsPxO2HpclBY5wDh7eED9SOU79uUFPOX6mnA1H8gG4KbGFrZIJUYe3h46xXZSVshduP9awJ5lM54y/ca3F/aRbSvyVvX4mpMARzsMyXXz/YjCbL3n6oh3HAegbF0LzYF9bJhOiDktBvWxvTsM24DyxXWmd9AqA2MYNohdC1E8KHOE82gwHnTcUHIHcfRc91Ww21356HtddWm+EfXVtoSeuqT8V1abaFbQvytIq2XYEePrYNpy4bHfffTc33HCD2jEaTaPRsGjRogafn5ycjEajcfrZb1LgCOfhHQBthinHl1j0b/fxQg6fKsXbQ8uozpF2CCfEWRqNhpt6KIX1JbupzGbY95NyLKsXO7S33nqLefPm2eS1S0pK8PT0ZP78+XXuv+2229BoNBw+fLjO/a1bt+bJJ59s0GtnZ2czatQoq2UFeO655+jWrZtVX9PapMARzqWBqxov3K50T43oGEmgj6etUwlxnhu6N0ejgY1HCjh2uuzCJ2bvhNNHwcNXacERDkuv1xMcHGyT1w4ICKBnz56sXFl3S5pVq1YRHR1d5/5jx45x5MgRhgwZ0qDXjoyMxNvb26p5nYEUOMK5xF8DGh2c3KN0VdWj2mjil53K2jfjZOVioZLmwWeXJvixpuCu175Fyte2w5VWSqGqH374gc6dO+Pr60toaCjDhw+ntLQUOL+Lqri4mPHjx+Pv709UVBRvvPEGgwcP5pFHHrng6+/cuZMhQ4YQGBhIUFAQiYmJbN26FYAhQ4aQnJxce25qairl5eXcf//9de5fuXIlnp6e9O/fH4BffvmFxMREfHx8iIuL4/nnn8dgMNSe/9cuqvXr19OtWzd8fHzo2bMnixYtQqPRkJKSUifrtm3b6NmzJ35+fiQlJXHgwAEA5s2bx/PPP8/OnTvRaDRoNBqbtWxdCSlwhHPxC4HYgcpx6uJ6T1l98BT5pVWEBXgxsG2YHcMJUdc4SzfVjuOY6xsYf273VIcb7BdMJWazmbIqg91v9f7d1yM7O5s77riDyZMnk5qaSnJyMuPGjbvg82fMmMG6dev4+eefWbFiBWvWrGH79u0Xvcb48eNp0aIFW7ZsYdu2bTz++ON4eiqtzEOGDOHAgQNkZ2cDSiEzcOBAhg4del6B06dPH/z8/Pjtt9+YMGECDz30EPv27ePDDz9k3rx5vPTSS/Vev7i4mLFjx9K5c2e2b9/Oiy++yL/+9a96z33qqad4/fXX2bp1Kx4eHkyePBlQus3++c9/0rFjR7Kzs8nOzua222676PetBudfbEG4n/bXwpFkpZuq/0PnPbywZvbUdV2b46GTGl6oZ1SnSP69aA/peaVszzxDYssmdU/I2a20RHr4KK2TLq682kiHZ36z+3X3vTASP69Lv91lZ2djMBgYN24cLVu2BKBz5871nltcXMxnn33G119/zbBhytjATz/9lGbNml30GpmZmTz66KO0b6+sct22bdvax/r374+npyfJycnccccdJCcnM2jQIHr06EFhYSFpaWm0bduW5ORkJkyYAMBLL73E448/zqRJkwCIi4vjxRdf5LHHHuPZZ5897/pfffUVGo2GuXPn4uPjQ4cOHTh+/DhTpkw579yXXnqJQYOUWX2PP/44Y8aMoaKiAl9fXwICAvDw8CAy0nHHOMpvf+F8LMvYH9sMRdl1Hiosr2bFvpMAjOsh3VNCXf7eHozqpLwB/JRSTzeVpXuqjXRPOYKuXbsybNgwOnfuzC233MLcuXM5ffp0veceOXKE6upqevfuXXufXq+nXbt2F73GjBkzuO+++xg+fDivvvpqncHDfn5+9O7du7a1ZtWqVQwePBgPDw/69+9PcnIymZmZpKenM3ToUEDpRnrhhRcICAiovU2ZMoXs7GzKys4f+3XgwAG6dOmCj8/Z2Xrnfg/n6tKlS+2xZVsFyzYLzkBacITzCYqCFr2VAmf/Yuh99pPHr7uzqTKYaBseQMdmQSqGFEJxXbdmLNxxnKW7s3nm2g5nWxXNZti7SDnueKNq+ezJ11PHvhdGqnLdhtDpdKxYsYL169ezfPly3nnnHZ566ik2bdpEbGxsnXMt3VZ/XbTuUt1hzz33HHfeeSdLlizh119/5dlnn+Xbb7/lxhuVn4EhQ4Ywf/589u7dS3l5OT16KLvKDxo0iJUrV+Ll5YWPjw99+/YFwGQy8fzzzzNu3LjzrnVuEXNuvoZmtnSdnft9mkymi35/jkRacIRzOnfRv3P8WNM9Na5HC1lBVTiE/m3CCPH3Iq+kivWH888+cHIPFBxW1naKt/+bvho0Gg1+Xh52vzXmd4FGo6F///48//zz7NixAy8vL3788cfzzmvdujWenp5s3ry59r6ioiLS0tIueY34+HimT5/O8uXLGTduHJ9++mntY0OGDCEtLY2vv/6aAQMG1O7VNGjQIJKTk0lOTqZfv361xUuPHj04cOAAbdq0Oe+mrWfPvvbt27Nr1y4qKytr77MMcm4MLy8vjEZjo59nT1LgCOeUUNNNlb4GygoAyC4sZ/NR5fi6bhfvBxfCXjx1WkZ3tnRTnTj7gGVwcZvh4B2oQjLxV5s2beLll19m69atZGZmsnDhQk6dOkVCQsJ55wYGBjJp0iQeffRRVq5cyd69e5k8eTJarfaCBVV5eTnTpk0jOTmZjIwM1q1bx5YtW+q8flJSEt7e3rzzzju1418AevXqRWFhIQsWLKgzPfyZZ57h888/57nnnmPv3r2kpqYyf/58nn766Xoz3HnnnZhMJv72t7+RmprKb7/9xmuvvQY0bguFVq1akZ6eTkpKCnl5eXUKJkchBY5wTiFxENEJzEY4uAyAJbuyMZuhZ8smsjWDcCjXdVXGgy3fm0NFtfEv3VM3qJZL1BUUFMTq1asZPXo08fHxPP3007z++usXXCRv1qxZ9OvXj2uvvZbhw4fTv39/EhIS6u0aAqULLD8/n4kTJxIfH8+tt97KqFGjeP7552vPsXQ/FRcXM3jw4Nr7PT096devH8XFxXUKnJEjR7J48WJWrFhBr1696Nu3L7NmzaodJF3f9/jLL7+QkpJCt27deOqpp3jmmWdqr91QN910E9dccw1DhgyhadOmfPPNNw1+rr1ozA2dP+ckioqK0Ov1FBYWEhQkYzBcWvKrkPwKxI+CO7/l+vfWsTPrDM9f15FJSa3UTidELZPJTP///kl2YQWzJ/TgmqYF8EGS0j316CHwcb3fVRUVFaSnpxMbG9uoN05nVlpaSvPmzXn99de599571Y7TYF999RX33HMPhYWF+Pra/sPhhX42rP3+LS04wnlZ1g059DtZx0+wM+sMWg2yNYNwOFqthrFdlW7Tn3eeONt602aYSxY37mLHjh188803HD58mO3btzN+/HgArr/+epWTXdznn3/O2rVrSU9PZ9GiRfzrX//i1ltvtUtxY092KXDef//92kotMTGRNWvWXPBcyyZff73t37/fHlGFMwlvD+EdwFRN2upvAejXOpTwQPf4tCicy3U1Bc4fqbkYLQWOGyzu5+pee+01unbtWrvi8Zo1awgLc+wFRnNycpgwYQIJCQlMnz6dW265hTlz5qgdy+psPk18/vz5PPLII7z//vv079+fDz/8kFGjRrFv3z5iYmIu+LwDBw7UaaJq2rSpraMKZ9RpHPy5D/3hn4FHGdtFBhcLx9SxWRBxTf3R5R1Al38QdF7QzvUX93Nl3bt3Z9u2bWrHaLTHHnuMxx57TO0YNmfzFpxZs2Zx7733ct9995GQkMCbb75JdHQ0H3zwwUWfFx4eTmRkZO3NMlVOiDo6Kms/dK3eSbi2iGs6SfeUcEwajYbrujbjWt0G5Y7WQ8FHr24oIVyYTQucqqoqtm3bxogRdXfIHTFiBOvXr7/oc7t3705UVBTDhg07b3fVc1VWVlJUVFTnJtxIaGtyAhLw0JiYFrmPYD8vtRMJcUHXdYniOq3yu6+4zXUqpxHCtdm0wMnLy8NoNBIREVHn/oiICHJycup9TlRUFHPmzGHBggUsXLiQdu3aMWzYMFavXl3v+a+88gp6vb72Fh0dbfXvQzgus9nMj9XKip6jNRcvmoVQW1x1GrHak5SbvVhc1UPtOEK4NLsMMq5vWegLLSjUrl07pkyZQo8ePejXrx/vv/8+Y8aMqV2I6K+eeOIJCgsLa29ZWVlWzy8c177sIj4vVN4oQvO3QWE9+/0I4Sj2LADgD1MPFu09o24WIVycTQucsLAwdDrdea01ubm557XqXEzfvn0vuPy1t7c3QUFBdW7CffyyM5tsQjnk0xkN5rObFwrhaEwm2LMQgJ+MSWw+WkBucYXKoYRwXTYtcLy8vEhMTGTFihV17l+xYgVJSUkNfp0dO3bU7mQqhIXZbOaXncrS95Xtb1DurPmELITDyVwPxSfAR09Bs0GYzfDbnvq76oUQV87mXVQzZszgo48+4pNPPiE1NZXp06eTmZnJ1KlTAaWLaeLEibXnv/nmmyxatIi0tDT27t3LE088wYIFC5g2bZqtowonsyPrDMfPlOPvpSPuqvGg0cLxbVCQrnY0Ic63+3vla8JYRnZRxgou3S0FjqMZPHgwjzzyyGU/37KW25kzZ6yWydouJ+Nzzz1Ht27dbJbJFmxe4Nx22228+eabvPDCC3Tr1o3Vq1ezdOnS2n0ysrOzyczMrD2/qqqKmTNn0qVLFwYOHMjatWtZsmRJvVvBC/f26+5sAIZ3iMA3JApir1Ie2LtQxVRC1MNQdXZzzU43M6qT0iK9KT2fvBLH26RQOIZly5ah0WjOG+YRGRl53oSaY8eOodFoWL58+SVfNykpiezsbPR66y5TcKXFobXZZZDx/fffz9GjR6msrGTbtm1cddVVtY/NmzeP5OTk2j8/9thjHDp0iPLycgoKClizZg2jR4+2R0zhRMxmM7/tPQnANR1r1r7pdJPydY8UOMLBHFkJ5afBPxxiryI6xI8uLfSYzLBMuqnEBQwYMAAPD48675GpqalUVFRQVFTEoUOHau9fuXIlnp6e9O/f/5Kv6+XlRWRkZKN2D3dGsheVcEqp2cVkFpTh7aFlULuaVa7bXwtaTzi5B3Jlaw/hQHb/oHzteCNolUVLR3dWWnGW1rRECsdhMBiYNm0awcHBhIaG8vTTT3PuvtSVlZU89thjREdH4+3tTdu2bfn444/rfa3y8nLGjBlD3759KSgoqPecH374gc6dO+Pr60toaGjttg8BAQH06tWrToGTnJzMgAEDGDBgwHn39+7dG39/f8xmM//73/+Ii4vD19eXrl278sMPP9Q5969dVHPnziU6Oho/Pz9uvPFGZs2aRXBw8HlZv/jiC1q1aoVer+f222+nuLgYgLvvvptVq1bx1ltv1W6xdPTo0Uv/ZduQFDjCKS3bq3zqHRTfFD+vmh1H/EKgzXDleNd8lZIJ8RdVZbB/iXLc+Zbau0fXdFNtPOJG3VRmM1SV2v92TnHSEJ999hkeHh5s2rSJt99+mzfeeIOPPvqo9vGJEyfy7bff8vbbb5Oamsrs2bMJCAg473UKCwsZMWIEVVVV/PHHH4SEhJx3TnZ2NnfccQeTJ08mNTWV5ORkxo0bV1tQDRkypM5itytXrmTw4MEMGjTovPuHDBkCwNNPP82nn37KBx98wN69e5k+fToTJkxg1apV9X6/69atY+rUqTz88MOkpKRw9dVX89JLL5133uHDh1m0aBGLFy9m8eLFrFq1ildffRWAt956i379+jFlyhSys7PJzs5WfV06m+9FJYQtWGafnLc1Q9fb4OCvyoDOof8GrdTwQmUHl0F1KQS3hBY9a++OCfWjU/Mg9hwv4re9OYzv01LFkHZSXQYvq7Bf3JMnwMu/wadHR0fzxhtvoNFoaNeuHbt37+aNN95gypQpHDx4kO+++44VK1YwfLjygSouLu681zh58iS33XYbrVu35ptvvsHLq/5V1rOzszEYDIwbN652bGrnzp1rHx88eDAvv/wy2dnZREVFsWrVKh599FFMJhNvvfUWAFlZWaSnpzNkyBBKS0uZNWsWf/75J/369avNt3btWj788EMGDRp0XoZ33nmHUaNGMXPmTADi4+NZv349ixcvrnOeyWRi3rx5BAYGAnDXXXfxxx9/8NJLL6HX6/Hy8sLPz4/ISMfYMkd++wunk55XyoGTxXhoNQxr/5f1lOJHgbceCrMgY506AYU4l2X2VKeb4C9jHizdVL/KbCqH0rdv3zrjU/r160daWhpGo5GUlBR0Ol29hcK5hg8fTlxcHN99990FixuArl27MmzYMDp37swtt9zC3LlzOX36dO3j/fv3x8vLi+TkZPbt20d5eTk9evQgMTGRoqIi0tLSWLlyJd7e3iQlJbFv3z4qKiq4+uqrCQgIqL19/vnnHD58uN4MBw4coHfv3nXu++ufAVq1alVb3ICy80Bubu5F/x7UJC04wun8VtM91a91KHo/z7oPevpAx+th++ew81uIHahCQiFqlOZBWs2sli63nffwmM5R/G/ZATYcyaegtIoQfxffS83TT2lNUeO6VuLr69ug88aMGcOCBQvYt29fnRaZv9LpdKxYsYL169ezfPly3nnnHZ566ik2bdpEbGwsfn5+9O7dm5UrV1JQUMCAAQNqN59OSkpi5cqVbNiwgX79+uHj44PJZAJgyZIlNG/evM61vL29681Q3+4C5nq69Tw96/6+1Wg0tddzRNKCI5yOZdbJyI4XaAbteofydd9PyvgHIdSyZwGYDNCsO4S3P+/hlqH+dGwWhNFkri3cXZpGo3QV2fvWyNlCGzduPO/Pbdu2RafT0blzZ0wm0wXHs1i8+uqrTJo0iWHDhrFv375L/LVo6N+/P88//zw7duzAy8uLH3/8sfbxIUOGkJycTHJyMoMHD669f9CgQbX3W8bfdOjQAW9vbzIzM2nTpk2d24XGxLRv357NmzfXuW/r1q0XzVwfLy8vjEZjo59nK1LgCKeSXVhOStYZNBoY0eEC231E94XgGKgqhgNL7RtQiHOlfK18tRTd9ZDZVI4nKyuLGTNmcODAAb755hveeecdHn74YUDpppk0aRKTJ09m0aJFpKenk5yczHfffXfe67z22muMHz+eoUOHsn9//TM7N23axMsvv8zWrVvJzMxk4cKFnDp1ioSEhNpzhgwZQlpaGsuWLavTNTZo0CAWL17M0aNHawucwMBAZs6cyfTp0/nss884fPgwO3bs4L333uOzzz6rN8ODDz7I0qVLmTVrFmlpaXz44Yf8+uuvjZ5G3qpVKzZt2sTRo0fJy8tTvXVHChzhVJbXrH2TGNOE8CCf+k/Sas92B+z81k7JhPiL3FTITgGtx9k1muphKXDWH1a6qYT6Jk6cSHl5Ob179+aBBx7gwQcf5G9/+1vt4x988AE333wz999/P+3bt2fKlCmUlpbW+1pvvPEGt956K0OHDuXgwYPnPR4UFMTq1asZPXo08fHxPP3007z++uuMGjWq9px+/frVdi8lJibW3t+rVy+MRiO+vr706dOn9v4XX3yRZ555hldeeYWEhARGjhzJL7/8QmxsbL0Z+/fvz+zZs5k1axZdu3Zl2bJlTJ8+HR+fC/yOvYCZM2ei0+no0KEDTZs2rbOIrxo05vo62pxYUVERer2ewsJC2XjTBd05dyPrD+fz9JgE7ht4/syFWnmH4N1E0Ojgn/shINx+IYUAWPEsrHsT2o2BO76+6Kmj3lpDanYRr47rzO29Y+yTz8YqKipIT08nNja20W+UQn1Tpkxh//79rFmzxuqvfaGfDWu/f0sLjnAaBaVVbEpXFsq64Pgbi7A20LwnmI1nF1kTwl5MxrNrMXW9/ZKnj65Z7sAtxuEIh/Taa6+xc+dODh06xDvvvMNnn33GpEmT1I51RaTAEU7j99STGE1mOkQFER3SgFkRljeWXdJNJewsfRUUZ4NPMMSPvOTplvWc1h3Kp7ii2sbhhDjf5s2bufrqq+ncuTOzZ8/m7bff5r777lM71hWRaeLCaVxwcb8L6TgOlj0B2Tvh5D6I6GDDdEKcwzL2q/PN4FH/1NxztQkPIC7MnyN5paw8cIrruqqwGJ5wa/UNknZ20oIjnEJJpYE1aXlAIwoc/9Czn55TvrJRMiH+orIYUn9Rji8ye+pcGo2GkZZuKtl8UwirkAJHOIXkA7lUGU3EhvnTNvz8PV8uqPsE5evOb8EgM1SEHez7SdmSILQNNE+89Pk1LOPKVh7IpaLacdYSuVIuNo9FWIG9fiakwBFO4dzF/Rq1NkObqyEgEsrylD2qhLC17Z8rX7vd2agF5ro01xOl96GsysjamtZKZ2ZZ9basTBbbFHVZfib+ujKytckYHOHwKqqNrNyv7HfS4O4pC52H8kazdhZs/wI6XG+DhELUyN0PWZuU5Qm6jW/UU7VaDSM7RjJv/VF+25vD8AstZOkkdDodwcHBtXsV+fn5NXrhOOFazGYzZWVl5ObmEhwcXLvlhK1IgSMc3rpDeZRWGYnS+9Club7xL9B9glLgHPodCo+BvoX1QwoBZ1tv4q+BwMbvqDyiYwTz1h/l99STGIwmPHTO3chu2VXakTdkFPYXHBxslx3HpcARDu/c7imt9jI+AYa2hpYDIGOtsnT+oMesnFAIwFAJO79RjhMvb/2Q3q1CaOLnyemyajYfLSCpdZgVA9qfRqMhKiqK8PBwqqtl+rtQuqVs3XJjIQWOcGgGo4nfU5XtGUZ0vIIm+x4TlQJnxxcwcKaynYMQ1rR/CZQXQGAzaD3ssl7CQ6dleEIE3287xm97cpy+wLHQ6XR2e1MTwkJ+ywuHtvloAafLqmni50nvViGX/0IdrgNvPZzJVBZhE8LattdsZNh9vDL26zJdU7uq8UlMJpmBJMTlkgJHODTLmiBXd4i4svEInr7KomugtOIIYU2nj8KRZOXYsjTBZerfJgx/Lx05RRXsOl54xdGEcFdS4AiHZTKZ+a1m9/BGz56qT4+JytfUX6A0/8pfTwiLHV8qX+OGQJNWV/RSPp46BrdXNoeVvamEuHxS4AiHtfPYGXKKKvD30llnLEKzbhDVFYxVkPLllb+eEABGw9kCx1JEX6Frahb9W7YnRxbKE+IySYEjHJal9WZI+3B8PK00QLFXzeZxWz4Gk8k6rync24ElysaafmHQfoxVXnJwu6Z46bSk55WSlltildcUwt1IgSMcktlsZtmebMBK3VMWnW4GHz2cyVDWxRHiSm2eq3xNnNSgjTUbItDHkwFtlVZL2ZtKiMsjBY5wSAdPlnA0vwwvDy2D24Vb74W9/KBbzSDQLR9Z73WFe8rdD0fXgEYLifdY9aVH1iyLsEzG4QhxWaTAEQ7JsrjfVW3DCPC28nJNve5VvqYtV2a/CHG5LEVyu9EQHG3Vlx6eEIFWA3tPFJFVIPs5CdFYUuAIh2T51Dqiow2W8w5tDa2HAmbY+on1X1+4h8piZZd6ODu2y4pCA7zpHaus/SSzqYRoPClwhMPJzC8jNbsInVbD8AQbbThoeUPa/gVUV9jmGsK17fwWqoohtC3EDbbJJUZ2tCz6JwWOEI0lBY5wOJZf5n1iQwjx97LNReKvAX20srT+3h9tcw3huszms91TvaeAjXbJthQ4WzNOc6q40ibXEMJVSYEjHI6le8qqs6f+SquDxLuV402zlTcsIRrq6Fo4tR88/aHr7Ta7TLNgX7q00GM2U7snmxCiYaTAEQ4lt6iCbRmnARjRwYYFDigFjocPZKdAxnrbXku4lg3vKV+73q4sO2BDI89Z9E8I0XBS4AiHsnyf8im1W3QwkXof217MPwy63qEcW96whLiUvDQ4+Kty3Pd+m1/OUuCsP5xHUUW1za8nhKuQAkc4lN/s0T11Lssb1IGlkH/YPtcUzs1SDMePgrA2Nr9cm/AAWjf1p9poZuX+XJtfTwhXIQWOcBhnyqrYcFjZBHOkLaaH16dpPLQdCZhh4/v2uaZwXqV5sPMb5Thpmt0uayn4ZTaVEA0nBY5wGH+k5mIwmWkfGUhsmL/9Lmx5o9rxFZQV2O+6wvls/QQMFRDVDVr2t9tlLQV/8oFTVFQb7XZdIZyZFDjCYdh0cb+LaTUQIjuDoVwW/hMXVl0Bm+cox0kP2mxqeH06N9fTTO9DWZWRNWl5druuEM5MChzhEMqqDKw+eAqAa+xd4Gg00K+mFWfzHDDIeiOiHru/g9JTENQCOlxv10trNJrawl+6qYRoGClwhENYdeAUlQYTMSF+JEQF2j9Ax3EQ2AxKTp4dYyGEhckE699Rjvv8HXSedo9g6ab6PfUkBqPJ7tcXwtlIgSMcwrmL+2ns2PRfy8NL6XYAWPsGGA32zyAcV+rPkHdQWfPGskCknfVq1YQQfy/OlFWzOV3GiglxKVLgCNVVGoz8mapMf7Xb7Kn6JE4Cv1Blh/G9C9XLIRyL2QyrX1OO+0wFnyBVYnjotAxPCAekm0qIhpACR6hu/eF8iisNhAd60z06WL0gXv5n18VZ87rSLSFE2nI4uVvZlqHPVFWjnN188yQmk2wvIsTFSIEjVLe8dvZUBFqtCt1T5+o9Bbz1yj5D+xerm0Woz2yG1f+nHPe6F/xCVI3Tv00Y/l46cooq2HW8UNUsQjg6KXCEqowmM8v3KtszXNMxSuU0KGMs+vxNOV7zmmzC6e7SV8OxLaDzPjvTTkU+njoGt5duKiEaQgocoaqtRwvIL61C7+tJnzh1Px3X6vMP8PSD7J1w6He10wg1WVpvEidBYIS6WWpYllH4bU8OZinAhbggKXCEqiyzp4YlhOOpc5AfR/9Q6DlZOV75krTiuKv01XB0DWg9IekhtdPUGtyuKV46LUfySjmUW6J2HCEcloO8owh3ZDaf2z2l4uyp+vR/RBlUemKHjMVxR2Yz/PGicpx4NwRHqxrnXIE+nvRvEwrAsj3STSXEhUiBI1Sz53gRx8+U4+up46r4pmrHqSugKfT9h3L850tgkv1/3Eracji2GTx84aqZaqc5T+3mm/ukwBHiQqTAEapZtjcbUJrcfTx1KqepR9KDyqDjU6mwZ4HaaYS9mEzwZ03rTe8pEOhgrYvA8IQItBrlQ8Kx02VqxxHCIUmBI1RhNpv5dc/Z1Ysdkm/w2bEXK18GY7WqcYSdpP4EObvBKxAGTFc7Tb1CA7zp1UoZlP9bTTevEKIuKXCEKtJySzhyqhQvnZahNdNeHVKfqeDfFE6nQ8pXaqcRtmY0KMUsQL8HVF/35mJGyuabQlyUFDhCFZbBkQPahhHoY/+NCxvMOwAGzFCOV74ClTJrxaXt+FzZc8q3iVLgOLARHZVp61uOFpBXUqlyGiEcjxQ4QhUO3z11rl73QpNWUJID699WO42wlYoiZUA5wOAnVNtzqqFaNPGjc3M9ZjP8vk+6qYT4KylwhN1l5JeSml2ETqvh6gTHWDztojy84eoXlON1b0PhcXXzCNtYOwvK8iC0zdl1kBzcyJpWnGXSTSXEeaTAEXZn6Z7qGxdCE38vldM0UMJ1EJMEhnL44wW10whrO50BG95Xjkf8B3QO3G16DksL6PpD+RRXyCB4Ic4lBY6wO8unTYdb3O9iNBoYWdN9setbOL5d3TzCuv54HoyVEHsVxF+jdpoGaxMeSFxTf6qMJlYeOKV2HCEcihQ4wq6yC8vZkXlGqRecqcABaN4DutyuHC97QrZwcBWZG2vWOdLAyJeVYtaJjDxnbyohxFlS4Ai7svwS7hHThPAgH5XTXIZhzygbcWZthJSv1U4jrpTRAItrZsn1uAsiO6ub5zJYWkJXHsilolpW3BbCQgocYVeW7qlRzjB7qj765jDoX8rxin9DWYG6ecSV2fwh5O4F3xAY/rzaaS5LlxZ6ovQ+lFUZWZuWp3YcIRyGFDjCbvJLKtmcrhQETtc9da5+D0DTBCjLV8ZuCOdUePzson5XP+/Qi/pdjEajkUX/hKiHFDjCblbsO4nJDJ2aBxEd4qd2nMun84RrZynH2+ZB1hZV44jL9NuTUFUCLXpDtwlqp7kilkX/fk89icFoUjmNEI5BChxhN5bF/UZ1ilI5iRW0TIJu45XjxdNlnypnc3A57FsEGq1SrGqd+1dh71YhNPHz5HRZNZuPSrepEGCnAuf9998nNjYWHx8fEhMTWbNmzUXPX7VqFYmJifj4+BAXF8fs2bPtEVPYUGF5NesPK+MDnLp76lxXv6As6X9yN6x9Q+00oqEqCuGXh5Xjvvc75cDiv/LQaRles2jmctl8UwjADgXO/PnzeeSRR3jqqafYsWMHAwcOZNSoUWRmZtZ7fnp6OqNHj2bgwIHs2LGDJ598koceeogFCxbYOqqwoT/3n6TaaKZteABtwgPUjmMd/mEw6v+U41X/g5w96uYRDfPbU1B8AkLiYMhTaqexGssHh2V7cjCZZAkDIWxe4MyaNYt7772X++67j4SEBN58802io6P54IMP6j1/9uzZxMTE8Oabb5KQkMB9993H5MmTee211+o9v7KykqKiojo34Xh+3e1Ee081Ruebof21YKqGRf+QripHd+h32PEFoIHr3wMvJx4L9hcD2oYR6O1BTlEF2zNPqx1HCNXZtMCpqqpi27ZtjBgxos79I0aMYP369fU+Z8OGDeedP3LkSLZu3Up19flvHq+88gp6vb72Fh0dbb1vQFhFSaWBVQeVVVZdrsDRaGDMLKWrKmeXdFU5sooi+Lmma6rPVGUclQvx8dRxdQelm2rxrmyV0wihPpsWOHl5eRiNRiIi6m6oGBERQU5O/dMZc3Jy6j3fYDCQl3f+Gg9PPPEEhYWFtbesrCzrfQPCKv5IPUmlwURsmD8dohx7h+bLEhhRt6vqxA5184j6LZ0JRcegSSwM+7faaWxiTBdlAP/S3dnSTSXcnl0GGWv+svS52Ww+775LnV/f/QDe3t4EBQXVuQnHYvk0eW2XqIv+uzu1zjdDwlilq+qHyVBZrHYica6d38Ku+aDRwY0fgpe/2olsYkDbMAJ9PMgtrmRrhnRTCfdm0wInLCwMnU53XmtNbm7uea00FpGRkfWe7+HhQWhoqM2yCtsoqqhmVc0mgJZPly5Jo4Gxb0NQCyg4AksfVTuRsMg/DEv+qRwPfhxi+qibx4a8PXSM6KB0Ay/ZdULlNEKoy6YFjpeXF4mJiaxYsaLO/StWrCApqf7+7379+p13/vLly+nZsyeenp42yyps4/d9J6kymmgTHkC7iEC149iWXwjcNFdZW2XnN7BzvtqJhKEKFtynLOjXsj8M/KfaiWzuWks31Z4cjNJNJdyYzbuoZsyYwUcffcQnn3xCamoq06dPJzMzk6lTpwLKGJqJEyfWnj916lQyMjKYMWMGqampfPLJJ3z88cfMnDnT1lGFDVi6p8Z0duHuqXO1TIJBjyvHS2ZAXpq6edzdimfgxHbw0cO4OaDVqZ3I5vq3CUPv68mp4kq2yKJ/wo3ZvMC57bbbePPNN3nhhRfo1q0bq1evZunSpbRs2RKA7OzsOmvixMbGsnTpUpKTk+nWrRsvvvgib7/9NjfddJOtoworKyyrZk2a0j11rSt3T/3VVTOh5QCl1eDbO5XZO8L+dn0Hm2qWo7j+fdC3UDePnXh5aBnZ0TKbSrqphPvSmC0jeF1EUVERer2ewsJCGXCssu+3ZvHoD7toFxHIb9OvUjuOfRWfhDmDlQXl2l8Lt37h9NsBOJWc3fDR1WAoh4EzXXbW1IWsOniKSZ9sJizAi41PDMNDJz97wvFZ+/1bfuqFzdR2T7lT641FYATc9gXovGD/YlhT/0KVwgbKCuDb8Upx03oYDHlS7UR2l9Q6lGA/T/JKqticLt1Uwj1JgSNs4nRpFesOKesWuWWBA9Cip7IIIMDKlyD1F3XzuANDJcy/C85kQHBLuOkjtxh381eeOi3X1GzdsHi3LPon3JMUOMImlu/LwWAykxAVROumLrL31OXocRf0mqIcL7gPsjarm8eVmc3w0zTIWAtegXDHN8rMNjdl+WCxbE8OBqNJ5TRC2J8UOMImzl3cz+1d8yrEXwOGCvj6NmVdFmF9K1+C3d+B1gNu+xwiOqqdSFX94kJp4udJQWkVG49IN5VwP1LgCKvLK6lk/eF8QJke7vZ0HnDzJ9CsO5QXwJc3QckptVO5li0fw+qa7TKufQNaD1U3jwPw0Gm5ppPy/++XnTKbSrgfKXCE1S3eeQKjyUyXFnpahbnmkviN5uUPd36njAs5nQ5f3KAMhhVXLuUbZc0hUGZM9Zh48fPdyHVdmwGwdE82FdVGldMIYV9S4AirW5SifFq8oVtzlZM4mIBwuOtHCIiAk3uUIqf8jNqpnNveRfDT/cpx77/B0KdVjeNo+sSGEKX3objCQPKBXLXjCGFXUuAIqzqaV0pK1hm0Gri2q3RPnSe0NUz8GfzCIHun0l0lCwFenv1LYMG9YDZBtwlwzX+VPcFELa1Ww3XdlFacH3ccVzmNEPYlBY6wqkUpyi/RAW2bEh7oo3IaBxXeHib+BL5N4PhW+Px6KM1XO5Vz2fWdMh3cZIBON8F1b8tCihdgaUlduf8UhWXVKqcRwn7kN4KwGrPZzE+13VPNVE7j4CI7wV2LwDdE2Svp01FQKJ+wG2TrJ7Dwb2A2Qtc74Eb32GPqciVEBdE+MpAqo4lf98iaOMJ9SIEjrGbnsULS80rx9dQxsmaRMXERzbrB5GUQ2AzyDsAnI2Vzzosxm2HV/8Hi6YBZWV/o+veVWWrioq6vacWRbirhTqTAEVazqOaX59UdIvD3ljedBmnaDu79DULbQGEWfDQcDq9UO5XjMVTCj1Nh5X+UPw+YAaP/T7qlGsgyDmdTegEnzpSrnEYI+5DfDsIqDEZT7c7FN3aX2VONEhwD9yyDFr2g4owy8HjzXLVTOY7SfGWc0q5vQaNTtr8Y/qwMKG6E5sG+9IlVVnX+WdbEEW5CChxhFWsP5ZFXUkWIvxcD2oapHcf5BDSFSYuhy+3K2JKlM+HnB6HazT9tZ26CDwdC5gbw1sOEH6DXvWqncko31HzwWCTdVMJNSIEjrMIyuHhslyg8dfJjdVk8feDG2TD8eUAD2z+HucPg1AG1k9mf2Qzr34F5o6HouNKFd98KWaH4CozuFIWXTsv+nGJSs2VpAuH65J1IXLHiiura2RnXS/fUldFoYMAjcNdC8A+H3L0wZzBsm6e86buDohPw1S2w/Omz08D/lqyMVxKXTe/nybCEcAB+2HZM5TRC2J4UOOKKLd6VTUW1iTbhAXSPDlY7jmtoPRSmroW4IVBdBr88rKx8fPqo2slsx2yGHV/Be33h0ArQeSvjbW76GLwD1U7nEm7p2QJQZlNVGWSHceHapMARV+z7rVkA3JLYAo0M/LSewAiYsBBG/Ac8fOBIMrzfDza8D0YXW7AtL00ZXP3T/VBZCM0T4e+rlfE28jNlNVe1bUp4oDcFpVX8uV+2bhCuTQoccUUO5RazPfMMOq2GG3tI95TVabWQ9CD8Yz207K+05vz2BHyQBAeXO3+3VUUR/PYUvN8XDv8BOi8Y9ixMXq6s+CysykOnZVwPpRXnh21ZKqcRwrakwBFX5Puavvwh7WRrBpsKba3Mshr7FviFQt5B+PoW+OJGyNqidrrGqyqFdW/B291gw7vKWJv4a+D+jTBwhizeZ0OWbqqVB06RW1yhchohbEcKHHHZDEYTC7crU05v6Rmtcho3oNVC4t3w4HalVUfrCUdWwsfDlXVijq5z/BadikJY9za81RVWPANl+coMqTu/hzvnK4WcsKnWTQPoEROM0WTmx+0yZVy4LilwxGVbdfAUp4orCfX3Ymj7cLXjuA/fYGVczrQt0H0CaD2U8TnzRsOHVykzrqpKVQ75F6cOwJJ/wusJsOLfUHoKglsqWy3cvwniR6id0K1YPpB8v+0YZkcvioW4TFLgiMv2Xc3g4hu7N5e1b9QQEgvXv6e06PScrMw6ytmlzLh6vT38NA0O/wlGgzr5SnJh42yYOxTe6w1bPoLqUmjaHq57Bx7cBt3HS3eUCq7tEoWPp5ZDuSXsyDqjdhwhbEJ+s4jLkldSyR+pyiwM6Z5SWZOWcO0bMPTfkPIVbPkYTqfDji+Um1+oMr4lbgjEDYIAG7W2mUyQsxMO/Q5pv8OxzWCumYqs0UL8KOjzd4i9SmZGqSzQx5PRnaJYuOM4323JokdME7UjCWF1UuCIy/Ld1iwMJjNdo4NpFylrlDgEvxBlbE7fByBjLexZCKk/K+NcUr5SbgBh7aBZd4jqCpGdISQOAiNBq2v4tapKoeAI5B+G7J1wfCsc3wFVxXXPa54InW+FTuNsV1iJy3Jbr2gW7jjOTykneHJMAkE+nmpHEsKqpMARjWY0mfl6UyYAE/rEqJxGnEerVVpJYq+C0a8pxc6hP5RxOjm7IO+Actv17TnP8QR9C/APA+8g8NGDh7fSAmM2Kbt5l5+GsgIoy4OSk/Vf2ysA4gZDm2HQZriykahwSL1jQ4iPCODgyRJ+3H6cSUmt1I4khFVJgSMabXXaKY6dLifIx4NruzRTO464GJ2HUnDEDVb+XJqvtLZk71RuJ/dA4TEwVSvdWqfTG/7avk0gpLWyXk3zntCiJzRNkDE1TkKj0TC+T0ue/XkvX27MYGK/lrJQp3Ap8ptINNpXGzMAuDkxGl+vRnRrCPX5h0L8SOVmYTRAcTacyVRaaSqLlAX4jJWg0SnjZ3SeSkHj20QZ0xMco3SJCad2Y4/mvPrrftJyS9icXkCfuFC1IwlhNVLgiEY5fqa8don38X2l+8El6DwgOFq5CbcS5OPJDd2b8c3mLL7YmCEFjnApMrdXNMo3mzIxmSGpdSitmwaoHUcIcYUm9G0JwG97czhVXKlyGiGsRwoc0WBVBhPfblHWvhnfp6XKaYQQ1tCxmZ7uMcFUG821a1sJ4QqkwBENtmxvDnkllTQN9GZExwi14wghrGRCzQeWrzdlYjTJysbCNUiBIxrEbDbz8Vplhs34PjGycrEQLmRMlyiC/Tw5fqacFfsusASAEE5G3qVEg2zPPM3OrDN4eWhr++yFEK7Bx1PHnb2VSQOfrG3EUgFCODApcESDWFpvbujWjLAAb5XTCCGsbVJSKzx1GjYfLWCn7E8lXIAUOOKSsgrKWLYnB4DJA2JVTiOEsIWIIB/GdlUW7vxIWnGEC5ACR1zS5xuOYjLDgDZhtI8MUjuOEMJG7q35ALN0dzbHz5SrnEaIKyMFjriokkoD325Wpo7eK603Qri0js30JLUOxWgy89n6o2rHEeKKSIEjLurrTRkUVxqIa+rPoPimascRQtjYfQOVDzLfbMqkuKJa5TRCXD4pcMQFVVQbmbtG6YufOqg1Wq1sxCeEqxscH07rpv4UVxr4cmOm2nGEuGxS4IgL+n5rFqeKK2ke7MuN3ZurHUcIYQdarYYHhrQB4KM1RyirMqicSIjLIwWOqFe10cTsVUcA+PugOFnYTwg3cl3XZkSH+JJfWsU3m2X7BuGc5F1L1OunlBMcP1NOWIA3t/aUXaaFcCceOi33D1ZacT5cdZiKaqPKiYRoPClwxHmMJjPvJx8ClAGHPp46lRMJIextXI/mROl9yC2u5Pttx9SOI0SjSYEjzvNTynGOnCpF7+sp2zII4aa8PXRMHdQagNnJh6kymFROJETjSIEj6qgymHjj94OAMnMqwNtD5URCCLXc1iuapoHeHD9TzrdbZEaVcC5S4Ig65m/NIqtAGXszKUlab4RwZz6eOh4aqozFefuPNEorZUaVcB5S4Iha5VVG3vkjDYAHh7bBz0tab4Rwd7f3jqFlqB95JVWy07hwKlLgiFpfbDxKbs26N7f3lplTQgjw1GmZcXU8AHNWH6GgtErlREI0jBQ4AoDTpVW8+6cyc+rh4W3x9pCZU0IIxdguzegQFURxpYH3Vx5SO44QDSIFjgDgjd8PUlRhoH1kIDf1aKF2HCGEA9FqNTx2TTsAPt+QQWZ+mcqJhLg0KXAEB08W89UmZYbEM2M7oJM9p4QQfzEovikD2oRRZTTx4pJ9ascR4pKkwHFzZrOZFxfvw2gyM7JjBEmtw9SOJIRwQBqNhmfHdsBDq2HFvpOsOnhK7UhCXJQUOG7uj9Rc1qTl4aXT8tToDmrHEUI4sLYRgUxKagXA87/slcX/hEOTAseNlVYaePbnvQBMHhBLTKifyomEEI7u4eFtCQvw4sipUuatl2njwnFJgePG3lhxkONnymnRxJeHhrVRO44QwgkE+Xjy2DXtAXjz9zSyCmTAsXBMUuC4qd3HCvlknfLp6z83dJJF/YQQDXZzjxb0jg2hrMrIkz/uxmw2qx1JiPNIgeOGqo0mnvhxFyYzjO3ajMHtwtWOJIRwIlqthv/e1AVvDy1r0vJkt3HhkKTAcUPvrTzEnuNFBPl48O9rE9SOI4RwQrFh/rUrHP9n8T5yiypUTiREXVLguJkdmad5p2bF4hdv6ER4oI/KiYQQzureAbF0bq6nqMLAoz/swmSSrirhOKTAcSNlVQZmfLcTo8nM2K7NuL5bc7UjCSGcmIdOy+u3dsXbQ8uqg6dqx/UJ4QhsWuCcPn2au+66C71ej16v56677uLMmTMXfc7dd9+NRqOpc+vbt68tY7qNF37ZR3peKZFBPvzn+k5qxxFCuID4iECevlZZQ+u/y/az53ihyomEUNi0wLnzzjtJSUlh2bJlLFu2jJSUFO66665LPu+aa64hOzu79rZ06VJbxnQL323N4tstWWg08PqtXdH7eaodSQjhIib0iWFEhwiqjWYe+mYHJZUGtSMJgc3mBqemprJs2TI2btxInz59AJg7dy79+vXjwIEDtGvX7oLP9fb2JjIy0lbR3M7eE4X8e9EeAKYPj6d/G9mOQQhhPRqNMqtq17E1HMkrZcb8FGZPSEQr+9oJFdmsBWfDhg3o9fra4gagb9++6PV61q9ff9HnJicnEx4eTnx8PFOmTCE3N/eC51ZWVlJUVFTnJs46U1bFP77cTqXBxJB2TZk2RBb0E0JYXxN/Lz6Y0AMvnZbl+07WTmYQQi02K3BycnIIDz9/fZXw8HBycnIu+LxRo0bx1Vdf8eeff/L666+zZcsWhg4dSmVlZb3nv/LKK7VjfPR6PdHR0Vb7HpxdpcHI37/YRmZBGS2a+PLGbd3kE5UQwma6xzThPzcq4/ve+P0gy/de+He9ELbW6ALnueeeO28Q8F9vW7duBZRmy78ym8313m9x2223MWbMGDp16sTYsWP59ddfOXjwIEuWLKn3/CeeeILCwsLaW1ZWVmO/JZdkNpt5YsFuNqUXEODtwdyJPQn281I7lhDCxd3aM5q7azbkfPjbFHZknlY3kHBbjR6DM23aNG6//faLntOqVSt27drFyZMnz3vs1KlTRERENPh6UVFRtGzZkrS0tHof9/b2xtvbu8Gv5y5eX36QhTuOo9NqeH98DxKigtSOJIRwE0+NSSA9r5RVB08xed4Wvp+aRJvwALVjCTfT6AInLCyMsLBLD1Lt168fhYWFbN68md69ewOwadMmCgsLSUpKavD18vPzycrKIioqqrFR3dZ7Kw/x7kql//s/N3TiqvimKicSQrgTT52W98f34M6PNrEz6wyTPtnM91P70SzYV+1owo3YbAxOQkIC11xzDVOmTGHjxo1s3LiRKVOmcO2119aZQdW+fXt+/PFHAEpKSpg5cyYbNmzg6NGjJCcnM3bsWMLCwrjxxhttFdWlfLTmCP/32wEAHh/Vnjt6x6icSAjhjvy9Pfj07l7ENfXn+JlybpuzQXYeF3Zl03VwvvrqKzp37syIESMYMWIEXbp04YsvvqhzzoEDBygsVBaG0ul07N69m+uvv574+HgmTZpEfHw8GzZsIDAw0JZRnZ7ZbGb2qsP8Z0kqoEwHnzqotcqphBDuLMTfiy/v7UPLUD+yCsq5fc5GMvJL1Y4l3ITG7GL73BcVFaHX6yksLCQoyD3GnZhMZl75NZW5a5Rl0qcNacM/R8RfdDC3EELYS05hBXfO3ciRvFIigrz59O7edGjmHr+fRcNZ+/1b9qJychXVRv75/c7a4uap0QnMHNlOihshhMOI1Pvw7d/70jY8gJNFldwyez2rDp5SO5ZwcVLgOLETZ8q59cMN/FgzW+q1W7oy5ao4tWMJIcR5wgN9+GFqEn3jQiitMjJ53hY+WnMEF+tEEA5EChwntf5QHte9u5Zdxwpp4ufJ55N7c3NiC7VjCSHEBen9PPl8ch/G9WiO0WTmP0tSmfrlNgrLq9WOJlyQFDhOptJg5KUl+7jzo03klVSREBXEz9MGyP5SQgin4OWh5fVbuvLC9R3x1Gn4be9Jxr6zlm0ZBWpHEy5GBhk7ke2Zp3ly4W725xQDcGefGJ4ek4Cfl832TBVCCJvZmXWGB77ezrHT5Wg0cHdSKx4d2U5+p7kpa79/S4HjBE6XVvHfZfv5douyDUWovxf/vakLwzs0fEVoIYRwRIVl1by4ZB8/bDsGQIsmvjw5OoFRnSJlsoSbkQLnElypwCmrMvDpuqN8uOowRRUGAG5ObMETo9oTGiDbUwghXMeqg6d4YsEuThRWANCzZROeGpNA95gmKicT9iIFziW4QoFTXFHN/C1ZzF51mLySKgDaRwby4g2d6NUqROV0QghhG6WVBuasPsKHqw9TUW0CYGDbMKYNaUOfuFCV0wlbkwLnEpy5wDmaV8pnG47y/dZjlFQqLTYtQ/2YPjyesV2bodNKc60QwvVlF5Yzq2bDYKNJeYvqFh3MhL4tubZLFD6eOpUTCluQAucSnK3AOVNWxeJd2SzacZytGadr728bHsB9A2MZ16MFnjqZ7CaEcD9ZBWXMXnWY77ceo8qotOjofT25rmszxnSJolerEPng50KkwLkEZyhwjuaV8sf+XFbuz2VTej7VRuWfQKuBQfFNmTwglgFtwmSAnRBCAKeKK/luaxZfb8rk+Jny2vubBnozqlMkg+Kb0jcuFH9vmX3lzKTAuQRHK3BMJjOHT5WwNeM0W44WsC3jNBn5dXfUTYgKYlz35lzXrRkRQT4qJRVCCMdmNJlZeyiPxTtP8NvenNrJFwAeWg09YprQr3Uo3WKC6doimBB/LxXTisaSAucS1CpwTCYzeSWVHM0v40BOEak5xRzIKeZgTjHFlYY653poNfSODWFo+3CGtA+nddMAu+UUQghXUGUwse5QHsv3nWTtoVNkFZSfd050iC+dm+tpEx5Im/AA2jQNIK6pv4zhcVBS4FyCtf+CzGYzJZUG8kuqyC+tJK+kioLSKvJLKskpqiCroJys02UcP11OpcFU72v4eGrpFh1Mz5Yh9GzVhMSWTQj08bzibEIIIRQZ+aWsSctje8ZpUo6d4cip0nrP02igaYA3UcG+NA/2oZnel6hgX8IDvQnx96KJn5fy1d8Tbw8phOxJCpxLsPwFfb/+AB4+/lQZTVQbTVQZzn6tMprr3FdWZaS00kBJza200kBppbH22GBq2F+RVgPNgn2JjwikXWQg7SOVr62bBshAYSGEsKPC8mp2HytkX3Yhh3NLOXSqhEO5JY3a98rfS0egjyd+3joCvD3w89Lh7+WBn7cH/l46fL10eHlo8dIpN08PLZ46bc19Grxq/uyp06LTaNBpNWg0oNVoam6g1Z491tSco605R6NBeQ7KscW5ozPrDtXU1Ht/3fM19d5//nPqf60LnW8NxUVFdGgVZbUCx2VHZM34bidabz+rvZ6/l47QAG9CA7wI9fci1N+bpoHeRIf4Et3Ej+gQPyL1PlLICCGEA9D7ejKgbRgD2p7dp89sNlNQWsWJMxUcP1POiTPlZBeWc+JMBXkllZwuq6KgtJrTZVUYTWZKq4yUVhlV/C7ci6my7NInNYLLFjiJMU3wCwxQqurailpbp6K2VNk+Xkp1HuDtgf9fvgZ4e6D39cTXS5oqhRDCmWk0mpoPqt50bqG/4Hlms5miCgOnS6vOtupXKS37ZTVfSysNlFUbqbb0DhjNdXoKlPvOHhvNyuuazGaMprPHJrMyhtNybDSZax4Do/ns8bnZ6mStk7th5537h7/2T5z7vPMfO/d51u/8MRit20Dgsl1UjjKLSgghhBCXZu33b+lPEUIIIYTLkQJHCCGEEC5HChwhhBBCuBwpcIQQQgjhcqTAEUIIIYTLkQJHCCGEEC5HChwhhBBCuBwpcIQQQgjhcqTAEUIIIYTLkQJHCCGEEC5HChwhhBBCuBwpcIQQQgjhcqTAEUIIIYTLkQJHCCGEEC7HQ+0A1mY2mwFl23UhhBBCOAfL+7blffxKuVyBk5+fD0B0dLTKSYQQQgjRWPn5+ej1+it+HZcrcEJCQgDIzMy0yl+QuDJFRUVER0eTlZVFUFCQ2nHcmvxbOA75t3Ac8m/hOAoLC4mJial9H79SLlfgaLXKsCK9Xi8/rA4kKChI/j0chPxbOA75t3Ac8m/hOCzv41f8OlZ5FSGEEEIIByIFjhBCCCFcjssVON7e3jz77LN4e3urHUUg/x6ORP4tHIf8WzgO+bdwHNb+t9CYrTUfSwghhBDCQbhcC44QQgghhBQ4QgghhHA5UuAIIYQQwuVIgSOEEEIIl+NyBc77779PbGwsPj4+JCYmsmbNGrUjuZ1XXnmFXr16ERgYSHh4ODfccAMHDhxQO5ZA+bfRaDQ88sgjakdxW8ePH2fChAmEhobi5+dHt27d2LZtm9qx3I7BYODpp58mNjYWX19f4uLieOGFFzCZTGpHc3mrV69m7NixNGvWDI1Gw6JFi+o8bjabee6552jWrBm+vr4MHjyYvXv3Nvo6LlXgzJ8/n0ceeYSnnnqKHTt2MHDgQEaNGkVmZqba0dzKqlWreOCBB9i4cSMrVqzAYDAwYsQISktL1Y7m1rZs2cKcOXPo0qWL2lHc1unTp+nfvz+enp78+uuv7Nu3j9dff53g4GC1o7md//73v8yePZt3332X1NRU/ve///F///d/vPPOO2pHc3mlpaV07dqVd999t97H//e//zFr1izeffddtmzZQmRkJFdffTXFxcWNu5DZhfTu3ds8derUOve1b9/e/Pjjj6uUSJjNZnNubq4ZMK9atUrtKG6ruLjY3LZtW/OKFSvMgwYNMj/88MNqR3JL//rXv8wDBgxQO4Ywm81jxowxT548uc5948aNM0+YMEGlRO4JMP/444+1fzaZTObIyEjzq6++WntfRUWFWa/Xm2fPnt2o13aZFpyqqiq2bdvGiBEj6tw/YsQI1q9fr1IqAcoGaoDVNlATjffAAw8wZswYhg8frnYUt/bzzz/Ts2dPbrnlFsLDw+nevTtz585VO5ZbGjBgAH/88QcHDx4EYOfOnaxdu5bRo0ernMy9paenk5OTU+e93Nvbm0GDBjX6vdxlNtvMy8vDaDQSERFR5/6IiAhycnJUSiXMZjMzZsxgwIABdOrUSe04bunbb79l+/btbNmyRe0obu/IkSN88MEHzJgxgyeffJLNmzfz0EMP4e3tzcSJE9WO51b+9a9/UVhYSPv27dHpdBiNRl566SXuuOMOtaO5Ncv7dX3v5RkZGY16LZcpcCw0Gk2dP5vN5vPuE/Yzbdo0du3axdq1a9WO4paysrJ4+OGHWb58OT4+PmrHcXsmk4mePXvy8ssvA9C9e3f27t3LBx98IAWOnc2fP58vv/ySr7/+mo4dO5KSksIjjzxCs2bNmDRpktrx3J413stdpsAJCwtDp9Od11qTm5t7XiUo7OPBBx/k559/ZvXq1bRo0ULtOG5p27Zt5ObmkpiYWHuf0Whk9erVvPvuu1RWVqLT6VRM6F6ioqLo0KFDnfsSEhJYsGCBSonc16OPPsrjjz/O7bffDkDnzp3JyMjglVdekQJHRZGRkYDSkhMVFVV7/+W8l7vMGBwvLy8SExNZsWJFnftXrFhBUlKSSqnck9lsZtq0aSxcuJA///yT2NhYtSO5rWHDhrF7925SUlJqbz179mT8+PGkpKRIcWNn/fv3P2/JhIMHD9KyZUuVErmvsrIytNq6b4E6nU6miassNjaWyMjIOu/lVVVVrFq1qtHv5S7TggMwY8YM7rrrLnr27Em/fv2YM2cOmZmZTJ06Ve1obuWBBx7g66+/5qeffiIwMLC2VU2v1+Pr66tyOvcSGBh43tgnf39/QkNDZUyUCqZPn05SUhIvv/wyt956K5s3b2bOnDnMmTNH7WhuZ+zYsbz00kvExMTQsWNHduzYwaxZs5g8ebLa0VxeSUkJhw4dqv1zeno6KSkphISEEBMTwyOPPMLLL79M27Ztadu2LS+//DJ+fn7ceeedjbuQNaZ5OZL33nvP3LJlS7OXl5e5R48eMjVZBUC9t08//VTtaMJslmniKvvll1/MnTp1Mnt7e5vbt29vnjNnjtqR3FJRUZH54YcfNsfExJh9fHzMcXFx5qeeespcWVmpdjSXt3LlynrfIyZNmmQ2m5Wp4s8++6w5MjLS7O3tbb7qqqvMu3fvbvR1NGaz2WyNikwIIYQQwlG4zBgcIYQQQggLKXCEEEII4XKkwBFCCCGEy5ECRwghhBAuRwocIYQQQrgcKXCEEEII4XKkwBFCCCGEy5ECRwghhBAuRwocIYQQQrgcKXCEEEII4XKkwBFCCCGEy5ECRwhhV4MHD+bBBx/kkUceoUmTJkRERDBnzhxKS0u55557CAwMpHXr1vz6668AGI1G7r33XmJjY/H19aVdu3a89dZbdV4zOTmZ3r174+/vT3BwMP379ycjIwOAnTt3MmTIEAIDAwkKCiIxMZGtW7fa/fsWQtiXFDhCCLv77LPPCAsLY/PmzTz44IP84x//4JZbbiEpKYnt27czcuRI7rrrLsrKyjCZTLRo0YLvvvuOffv28cwzz/Dkk0/y3XffAWAwGLjhhhsYNGgQu3btYsOGDfztb39Do9EAMH78eFq0aMGWLVvYtm0bjz/+OJ6enmp++0IIO5DdxIUQdjV48GCMRiNr1qwBlBYavV7PuHHj+PzzzwHIyckhKiqKDRs20Ldv3/Ne44EHHuDkyZP88MMPFBQUEBoaSnJyMoMGDTrv3KCgIN555x0mTZpk229MCOFQpAVHCGF3Xbp0qT3W6XSEhobSuXPn2vsiIiIAyM3NBWD27Nn07NmTpk2bEhAQwNy5c8nMzAQgJCSEu+++m5EjRzJ27FjeeustsrOza19rxowZ3HfffQwfPpxXX32Vw4cP2+NbFEKoTAocIYTd/bWLSKPR1LnP0r1kMpn47rvvmD59OpMnT2b58uWkpKRwzz33UFVVVXv+p59+yoYNG0hKSmL+/PnEx8ezceNGAJ577jn27t3LmDFj+PPPP+nQoQM//vijHb5LIYSapMARQji0NWvWkJSUxP3330/37t1p06ZNva0w3bt354knnmD9+vV06tSJr7/+uvax+Ph4pk+fzvLlyxk3bhyffvqpPb8FIYQKpMARQji0Nm3asHXrVn777TcOHjzIv//9b7Zs2VL7eHp6Ok888QQbNmwgIyOD5cuXc/DgQRISEigvL2fatGkkJyeTkZHBunXr2LJlCwkJCSp+R0IIe/BQO4AQQlzM1KlTSUlJ4bbbbkOj0XDHHXdw//33104j9/PzY//+/Xz22Wfk5+cTFRXFtGnT+Pvf/47BYCA/P5+JEydy8uRJwsLCGDduHM8//7zK35UQwtZkFpUQQgghXI50UQkhhBDC5UiBI4QQQgiXIwWOEEIIIVyOFDhCCCGEcDlS4AghhBDC5UiBI4QQQgiXIwWOEEIIIVyOFDhCCCGEcDlS4AghhBDC5UiBI4QQQgiXIwWOEEIIIVzO/wOe2hnyA/0IQAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1223,16 +1223,16 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:54.173970Z", - "iopub.status.busy": "2024-01-10T15:12:54.173643Z", - "iopub.status.idle": "2024-01-10T15:12:54.535077Z", - "shell.execute_reply": "2024-01-10T15:12:54.534590Z" + "iopub.execute_input": "2024-02-06T01:09:45.911646Z", + "iopub.status.busy": "2024-02-06T01:09:45.911490Z", + "iopub.status.idle": "2024-02-06T01:09:46.242330Z", + "shell.execute_reply": "2024-02-06T01:09:46.241774Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAJaCAYAAAAxh8B+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWP0lEQVR4nO3de5xVdb0//tc43AlGQZmRX6Co5A1SAiXRkgJBE81uVBRqmZe8EphKHg3tBKmpFBwtPR5RkezrKUzrpIKppSYKSsdbWicUSZA64iCKgLB/f7jZxxFQYGbYMPN8Ph778WCv9Vlrv9cedN681lqfVVEoFAoBAAAAALJduQsAAAAAgK2FsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoalHuAhrLmjVr8tJLL6VDhw6pqKgodzkAwDaiUCjktddeS9euXbPdds4rbo30eQDA5tjYPq/JhmUvvfRSunXrVu4yAIBt1IsvvpgPfvCD5S6D9dDnAQD18X59XpMNyzp06JDk7S+gY8eOZa4GANhWLF26NN26dSv1Es3J73//+1x22WWZM2dOFi5cmOnTp+eYY45Z79iTTz4511xzTa688sqMGjWqtHzFihU5++yz87Of/SzLly/PoEGDctVVV9VpSJcsWZIzzzwzt99+e5Lk6KOPzqRJk7L99ttvVJ36PABgc2xsn9dkw7K1l+R37NhREwUAbLLmeHvf66+/nv322y9f+9rX8rnPfW6D42677bbMmjUrXbt2XWfdqFGjcscdd+SWW25J586dM2bMmAwbNixz5sxJZWVlkmTEiBFZsGBB7rzzziTJSSedlJEjR+aOO+7YqDr1eQBAfbxfn9dkwzIAADbNEUcckSOOOOI9x/z973/P6aefnrvuuitHHnlknXW1tbW57rrrctNNN2Xw4MFJkqlTp6Zbt26ZOXNmhg4dmmeeeSZ33nlnHn744fTv3z9Jcu211+aggw7Ks88+mz333LNxDg4AYCOZtRYAgI2yZs2ajBw5Mt/+9rez7777rrN+zpw5WbVqVYYMGVJa1rVr1/Tq1SsPPfRQkuSPf/xjqqqqSkFZknz0ox9NVVVVacy7rVixIkuXLq3zAgBoLMIyAAA2yiWXXJIWLVrkzDPPXO/6RYsWpVWrVtlhhx3qLK+urs6iRYtKY7p06bLOtl26dCmNebcJEyakqqqq9DK5PwDQmNyGCcB7Wr16dVatWlXuMqDBVFZWpkWLFs1yTrL6mDNnTn70ox/lscce2+TvrlAo1Nlmfdu/e8w7jR07NqNHjy69Xzs5LwAbr1Ao5K233srq1avLXQo0mobq84RlAGzQsmXLsmDBghQKhXKXAg2qXbt22XnnndOqVatyl7LN+MMf/pDFixene/fupWWrV6/OmDFjMnHixDz//POpqanJypUrs2TJkjpXly1evDgDBgxIktTU1OTll19eZ///+Mc/Ul1dvd7Pbt26dVq3bt3ARwTQfKxcuTILFy7MG2+8Ue5SoNE1RJ8nLANgvVavXp0FCxakXbt22WmnnVyFQ5NQKBSycuXK/OMf/8i8efPSs2fPbLedWSk2xsiRI0uT9q81dOjQjBw5Ml/72teSJH379k3Lli0zY8aMDB8+PEmycOHCPPnkk7n00kuTJAcddFBqa2vzyCOP5MADD0ySzJo1K7W1taVADYCGs2bNmsybNy+VlZXp2rVrWrVqpa+jSWrIPk9YBsB6rVq1KoVCITvttFPatm1b7nKgwbRt2zYtW7bMCy+8kJUrV6ZNmzblLmmrsWzZsvz1r38tvZ83b17mzp2bTp06pXv37uncuXOd8S1btkxNTU3pCZZVVVU54YQTMmbMmHTu3DmdOnXK2Wefnd69e5eCtr333juHH354TjzxxPz0pz9Nkpx00kkZNmyYJ2ECNIKVK1dmzZo16datW9q1a1fucqBRNVSfJywD4D0580hT5Gqy9Zs9e3Y+8YlPlN6vnSfsuOOOy5QpUzZqH1deeWVatGiR4cOHZ/ny5Rk0aFCmTJmSysrK0pibb745Z555ZumpmUcffXQmT57ccAcCwDr87qO5aIi/68IyAACSJAMHDtykOQqff/75dZa1adMmkyZNyqRJkza4XadOnTJ16tTNKREAoNGJlgEAAACgyJVlAGySabPmb9HPG9G/+/sPagDjxo3Lbbfdlrlz5270NgMHDsz++++fiRMnlrWOtZ5//vn06NEjjz/+ePbff/8GqwkAaJq2ZF+np6vrvvvuyyc+8YksWbIk22+//WZ9RmPUzduEZQCQ5Oyzz84ZZ5yxSdv88pe/TMuWLRupok3XrVu3LFy4MDvuuGO5SwEAKIum0NNRfsIyAJq1QqGQ1atX5wMf+EA+8IEPbNK2nTp1aqSqNk9lZWVqamrKXQYAwBbXlHo6ys+cZQA0KStWrMiZZ56ZLl26pE2bNjnkkEPy6KOPltbfd999qaioyF133ZV+/fqldevW+cMf/pBx48bVuXXxrbfeyplnnpntt98+nTt3zrnnnpvjjjsuxxxzTGnMwIEDM2rUqNL7XXfdNePHj8/Xv/71dOjQId27d88111xTp75zzz03H/rQh9KuXbvstttuueCCC7Jq1aqNPr4lS5bkK1/5Snbaaae0bds2PXv2zPXXX5/k7dswKyoq6lzuf/vtt6dnz55p27ZtPvGJT+SGG25IRUVFXn311Q1+RkVFRa6++uocccQRadu2bXr06JFbb711o2sEAKivpt7TrfXggw9mv/32S5s2bdK/f/888cQT66w/9NBD065du+ywww4ZOnRolixZst593XnnnamqqsqNN9643vVrv7Pf/OY37/mZCMsAaGLOOeec/OIXv8gNN9yQxx57LHvssUeGDh2aV155ZZ1xEyZMyDPPPJMPf/jD6+znkksuyc0335zrr78+Dz74YJYuXZrbbrvtfT//8ssvT79+/fL444/n1FNPzTe/+c38+c9/Lq3v0KFDpkyZkqeffjo/+tGPcu211+bKK6/c6OO74IIL8vTTT+e3v/1tnnnmmVx99dUbvO3y+eefz+c///kcc8wxmTt3bk4++eScf/75G/05n/vc5/KnP/0pX/3qV/PlL385zzzzzEbXCQBQH029p1vr29/+dn74wx/m0UcfTZcuXXL00UeXQre5c+dm0KBB2XffffPHP/4xDzzwQI466qisXr16nf3ccsstGT58eG688cYce+yxm/2ZvE1YBkCT8frrr+fqq6/OZZddliOOOCL77LNPrr322rRt2zbXXXddnbEXX3xxDjvssOy+++7p3LnzOvuaNGlSxo4dm8985jPZa6+9Mnny5I2afPVTn/pUTj311Oyxxx4599xzs+OOO+a+++4rrf+Xf/mXDBgwILvuumuOOuqojBkzJv/v//2/jT7G+fPnp0+fPunXr1923XXXDB48OEcdddR6x/7kJz/Jnnvumcsuuyx77rlnvvSlL+X444/fqM/5whe+kG984xv50Ic+lO9973vp169fJk2atNF1AgBsrubQ06313e9+N4cddlh69+6dG264IS+//HKmT5+eJLn00kvTr1+/XHXVVdlvv/2y77775vTTT1/nROlVV12VU045Jb/61a/y6U9/ul6fydvMWQZAk/E///M/WbVqVQ4++ODSspYtW+bAAw9c56qofv36bXA/tbW1efnll3PggQeWllVWVqZv375Zs2bNe9bwzjOaFRUVqampyeLFi0vL/vM//zMTJ07MX//61yxbtixvvfVWOnbsuNHH+M1vfjOf+9zn8thjj2XIkCE55phjMmDAgPWOffbZZ3PAAQfUWfbOY3ovBx100DrvN+cJnQAAm6o59HRrvbPn6tSpU/bcc8/SMc6dOzdf+MIX3nP7X/ziF3n55ZfzwAMPbFaf9+7P5G2uLAOgySgUCknebmjevfzdy9q3b/+++1vfft7Pu5+kVFFRUWrGHn744XzpS1/KEUcckV//+td5/PHHc/7552flypXvu9+1jjjiiLzwwgsZNWpUXnrppQwaNChnn332eseu77g35hg25N37AgBoDM2hp9uYetu2bfu+Y/fff//stNNOuf766/V5DUhYBkCTsccee6RVq1Z54IEHSstWrVqV2bNnZ++9997o/VRVVaW6ujqPPPJIadnq1avz+OOP16u+Bx98MLvsskvOP//89OvXLz179swLL7ywyfvZaaedcvzxx2fq1KmZOHHiOhPOrrXXXnvVmQg3SWbPnr1Rn/Hwww+v836vvfba5FoBADZVc+npkro915IlS/Lcc8+Veq4Pf/jDueeee95z+9133z333ntvfvWrX+WMM86o92fyNrdhAtBktG/fPt/85jfz7W9/O506dUr37t1z6aWX5o033sgJJ5ywSfs644wzMmHChOyxxx7Za6+9MmnSpCxZsqReZ9322GOPzJ8/P7fccksOOOCA/OY3v9nk+SEuvPDC9O3bN/vuu29WrFiRX//61xtsGk8++eRcccUVOffcc3PCCSdk7ty5mTJlSpL3P3t46623pl+/fjnkkENy880355FHHllnjhAAgMbQHHq6tS6++OJ07tw51dXVOf/887PjjjuWntQ5duzY9O7dO6eeempOOeWUtGrVKvfee2++8IUv1Jm37EMf+lDuvffeDBw4MC1atMjEiRM3+zN5m7AMgE0yon/3cpfwnn7wgx9kzZo1GTlyZF577bX069cvd911V3bYYYdN2s+5556bRYsW5dhjj01lZWVOOumkDB06NJWVlZtd26c//el861vfyumnn54VK1bkyCOPzAUXXJBx48Zt9D5atWqVsWPH5vnnn0/btm3zsY99LLfccst6x/bo0SP/+Z//mTFjxuRHP/pRDjrooJx//vn55je/mdatW7/n51x00UW55ZZbcuqpp6ampiY333xz9tlnn005XABgK7c193VNvadb6wc/+EHOOuus/OUvf8l+++2X22+/Pa1atUrydgh299135zvf+U4OPPDAtG3bNv3798+Xv/zldfaz55575ne/+10GDhyYysrKXH755Zv1mbytolCfm1q3YkuXLk1VVVVqa2s3a5I9YCs3+/r6bd/vaw1TRxP25ptvZt68eenRo0fatGlT7nLKbs2aNdl7770zfPjwfO973yt3OZvt+9//fn7yk5/kxRdf3OCYioqKTJ8+vUmfYXyvv996iK2fnxFbu2mz5tdr+605wGDbo6erq6n0dJvjvvvuyyc+8YksWbJko54Iuq1qiD7PlWUAsB4vvPBC7r777hx66KFZsWJFJk+enHnz5mXEiBHlLm2TXHXVVTnggAPSuXPnPPjgg7nsssty+umnl7ssAIAtoqn0dGxZwjIAWI/tttsuU6ZMydlnn51CoZBevXpl5syZmzSp7NbgL3/5S/71X/81r7zySrp3754xY8Zk7Nix5S4LAGCLaCo9HVuWsAwA1qNbt2558MEHy11GvV155ZW58sorN2mbJjpDA8DGq+90DxnUIGUA9ddUerqGMHDgQH3eRtqu3AUAAAAAwNZCWAYAAAAARW7DBLZJs+a9Uq/t+/droEIAAABoUlxZBgAAAABFwjIAAAAAKBKWAQAAAECROcsA2DSzr9+yn9fva1v289gkzz//fHr06JHHH388+++//yZvP3DgwOy///6ZOHFig9cGALyPLdnX6em2ahvT0+26664ZNWpURo0atVmfMWXKlIwaNSqvvvrqZte5pbiyDAC2AgMHDtzsxmNTPf/886moqMjcuXO3yOe9l1/+8pf53ve+V+4yAAAaRHPt6ZoaYRkATdrKlSvLXUKDKRQKeeutt8pdRoPq1KlTOnToUO4yAICtnJ6OLUlYBkCTMnDgwJx++ukZPXp0dtxxxxx22GFJkqeffjqf+tSn8oEPfCDV1dUZOXJk/vnPf5a2W7NmTS655JLssccead26dbp3757vf//7pfVPPPFEPvnJT6Zt27bp3LlzTjrppCxbtqy0/vjjj88xxxyTH/7wh9l5553TuXPnnHbaaVm1alVpzFVXXZWePXumTZs2qa6uzuc///nStvfff39+9KMfpaKiIhUVFXn++edz3333paKiInfddVf69euX1q1b5w9/+EPps95p1KhRGThw4EYdT48ePZIkffr0SUVFRZ3trr/++uy9995p06ZN9tprr1x11VV1PueRRx5Jnz590qZNm/Tr1y+PP/74+/5MNnTca39e7zz7unDhwhx55JFp27ZtevTokWnTpmXXXXd9z9s0134fF110Ubp06ZKOHTvm5JNPblJNNbBt2X3+rfV6AXq6jTmeLd3TJclrr72WESNG5AMf+EC6du2aSZMm1Vn/6quv5qSTTkp1dXXatGmTXr165de//vV69/W///u/OfDAA3P00UfnzTffXO+YXXfdNd/73vfe8zMbgznLAGhybrjhhnzzm9/Mgw8+mEKhkIULF+bQQw/NiSeemCuuuCLLly/Pueeem+HDh+d3v/tdkmTs2LG59tprc+WVV+aQQw7JwoUL8+c//zlJ8sYbb+Twww/PRz/60Tz66KNZvHhxvvGNb+T000/PlClTSp977733Zuedd869996bv/71r/niF7+Y/fffPyeeeGJmz56dM888MzfddFMGDBiQV155JX/4wx+SJD/60Y/y3HPPpVevXrn44ouTJDvttFOef/75JMk555yTH/7wh9ltt92y/fbbb9R38F7H88gjj+TAAw/MzJkzs++++6ZVq1ZJkmuvvTbf/e53M3ny5PTp0yePP/54TjzxxLRv3z7HHXdcXn/99QwbNiyf/OQnM3Xq1MybNy9nnXXWe9bxXse9Pscee2z++c9/5r777kvLli0zevToLF68+H2P95577kmbNm1y77335vnnn8/Xvva17LjjjnWaYwBg26Kn23p6urUuu+yyfOc738m4ceNy11135Vvf+lb22muvHHbYYVmzZk2OOOKIvPbaa5k6dWp23333PP3006msrFxnPwsWLMiQIUPSr1+//Md//EdatNhwPPVen9lYhGUANDl77LFHLr300tL7Cy+8MB/5yEcyfvz40rL/+I//SLdu3fLcc89l5513zo9+9KNMnjw5xx13XJJk9913zyGHHJIkufnmm7N8+fLceOONad++fZJk8uTJOeqoo3LJJZekuro6SbLDDjtk8uTJqayszF577ZUjjzwy99xzT0488cTMnz8/7du3z7Bhw9KhQ4fssssu6dOnT5KkqqoqrVq1Srt27VJTU7PO8Vx88cWb1Ay89tpr73k8O+20U5Kkc+fOdT7ve9/7Xi6//PJ89rOfTfL22cqnn346P/3pT3Pcccfl5ptvzurVq/Mf//EfadeuXfbdd98sWLAg3/zmNzdYy3sd97v9+c9/zsyZM/Poo4+mX79+SZJ///d/T8+ePd/3mFu1alWnrosvvjjf/va3873vfS/bbedCegDYFunptp6ebq2DDz445513XpLkQx/6UB588MFceeWVOeywwzJz5sw88sgjeeaZZ/KhD30oSbLbbruts4/nnnsuhx12WD796U+XrsLb3M9sLMIyAJqctUHLWnPmzMm9996bD3zgA+uM/Z//+Z+8+uqrWbFiRQYNGrTe/T3zzDPZb7/9Sk1V8vYv7TVr1uTZZ58tNVb77rtvnTNnO++8c5544okkyWGHHZZddtklu+22Ww4//PAcfvjh+cxnPpN27dpt8vG8n2eeeeY9j2d9/vGPf+TFF1/MCSeckBNPPLG0/K233kpVVVVpv/vtt1+dmg866KD33O+mHPezzz6bFi1a5CMf+Uhp2R577JEddtjhfetfX13Lli3Liy++mF122eV9twd4p1nzXil3CUD0dFtTT7ehcQcddFBpuoy5c+fmgx/8YCkoW5/ly5fnkEMOyZe//OX86Ec/qvdnNhZhGdAsTZs1v17bj+jfvYEqoTG8swFK3p7rYe0Zw3fbeeed87e//e0991coFDZ4xuudy1u2bLnOujVr1iRJOnTokMceeyz33Xdf7r777lx44YUZN25cHn300fe9DP/dx7PddtulUCjUWfbOeTTatm37nvtbn7V1Xnvttenfv3+ddWubxXd/5sbYlOPe0P4353PXer8zlQDA1ktPt/X0dO9l7Xe3MfW2bt06gwcPzm9+85t8+9vfzgc/+MF6fWZjcV8CAE3eRz7ykTz11FPZdddds8cee9R5tW/fPj179kzbtm1zzz33rHf7ffbZJ3Pnzs3rr79eWvbggw9mu+22e88zZ+/WokWLDB48OJdeemn++7//O88//3xpfo1WrVpl9erVG7WfnXbaKQsXLqyz7J2PDH+/41k7n8U7P6+6ujr/3//3/+Vvf/vbOt/R2slj99lnn/zpT3/K8uXLS9s9/PDD9Trud9prr73y1ltv1Zlg9q9//WteffXV9/2M9dX1gQ98YLMbMABg66Onq2tL93TrG/fwww9nr732SpJ8+MMfzoIFC/Lcc89tcPvtttsuN910U/r27ZtPfvKTeemll+r1mY1FWAZAk3faaafllVdeyZe//OU88sgj+dvf/pa77747X//617N69eq0adMm5557bs4555zceOON+Z//+Z88/PDDue6665IkX/nKV9KmTZscd9xxefLJJ3PvvffmjDPOyMiRI0uX67+fX//61/nxj3+cuXPn5oUXXsiNN96YNWvWZM8990zy9pN+Zs2aleeffz7//Oc/S2cF1+eTn/xkZs+enRtvvDF/+ctf8t3vfjdPPvlkaf37HU+XLl3Stm3b3HnnnXn55ZdTW1ubJBk3blwmTJhQmpz2iSeeyPXXX58rrrgiSTJixIhst912OeGEE/L000/nv/7rv/LDH/6wXsf9TnvttVcGDx6ck046KY888kgef/zxnHTSSWnbtu37nj1cuXJlqa7f/va3+e53v5vTTz/dfGUA0ITo6crX06314IMP5tJLL81zzz2Xf/u3f8utt95aejjAoYcemo9//OP53Oc+lxkzZmTevHn57W9/mzvvvLPOPiorK3PzzTdnv/32yyc/+cksWrRosz+zsbgNE2iW6v1Y9v5jGqaQbVG/r5W7gk3WtWvXPPjggzn33HMzdOjQrFixIrvssksOP/zwUphywQUXpEWLFrnwwgvz0ksvZeedd84pp5ySJGnXrl3uuuuunHXWWTnggAPSrl27fO5znys1HBtj++23zy9/+cuMGzcub775Znr27Jmf/exn2XfffZMkZ599do477rjss88+Wb58eebNm7fBfQ0dOjQXXHBBzjnnnLz55pv5+te/nmOPPbY0l8b7HU+LFi3y4x//OBdffHEuvPDCfOxjH8t9992Xb3zjG2nXrl0uu+yynHPOOWnfvn169+6dUaNGJUk+8IEP5I477sgpp5ySPn36ZJ999skll1ySz33uc5t93O9244035oQTTsjHP/7x1NTUZMKECXnqqafSpk2b9/x+Bw0alJ49e+bjH/94VqxYkS996UsZN27ce24DAM3eNtbX6enK19OtNWbMmMyZMycXXXRROnTokMsvvzxDhw4trf/FL36Rs88+O1/+8pfz+uuvZ4899sgPfvCDdfbTokWL/OxnP8sXv/jFfPKTn8x9992XLl26bNZnNoaKQkPfrLqVWLp0aaqqqlJbW5uOHTuWuxyggc269fKyfn7/LzT9sOzNN9/MvHnz0qNHj/cNKqCxLFiwIN26dcvMmTM3OLnt8ccfn1dffTW33XbbRu/3vf5+6yG2fn5GNDZ9Bk2Jno5t2a677ppRo0aVgr6N0RB9nivLAICtxu9+97ssW7YsvXv3zsKFC3POOedk1113zcc//vFylwYAQDMhLAMAthqrVq3Kd77znfztb39Lhw4dMmDAgNx8883rPJUKAAAai7AMANhqDB06dJPnoJgyZUrjFAMAQFk9//zzZflcj4gCAAAAgCJhGQDvqYk+B4Zmzt9rAJobv/toLhri77qwDID1qqysTJKsXLmyzJVAw3vjjTeSxFxoADR5a3/Xrf3dB01dQ/R55iwDYL1atGiRdu3a5R//+EdatmyZ7bZzfoVtX6FQyBtvvJHFixdn++23L4XCANBUVVZWZvvtt8/ixYuTJO3atUtFRUWZq4KG15B9nrAMKItps+bXa/vdG6gONqyioiI777xz5s2blxdeeKHc5UCD2n777VNTU1PuMgBgi1j7O29tYAZNWUP0ecIyADaoVatW6dmzp1sxaVJatmzpijIAmpW1J0G7dOmSVatWlbscaDQN1ecJywB4T9ttt13atGlT7jIAAKinyspKJ4xgI5iABgAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAUYtyFwA0T7vPv7XcJQAAAMA6NvnKst///vc56qij0rVr11RUVOS2224rrVu1alXOPffc9O7dO+3bt0/Xrl1z7LHH5qWXXqqzjxUrVuSMM87IjjvumPbt2+foo4/OggUL6oxZsmRJRo4cmaqqqlRVVWXkyJF59dVXN+sgAQAAAGBjbHJY9vrrr2e//fbL5MmT11n3xhtv5LHHHssFF1yQxx57LL/85S/z3HPP5eijj64zbtSoUZk+fXpuueWWPPDAA1m2bFmGDRuW1atXl8aMGDEic+fOzZ133pk777wzc+fOzciRIzfjEAEAAABg42zybZhHHHFEjjjiiPWuq6qqyowZM+osmzRpUg488MDMnz8/3bt3T21tba677rrcdNNNGTx4cJJk6tSp6datW2bOnJmhQ4fmmWeeyZ133pmHH344/fv3T5Jce+21Oeigg/Lss89mzz333NSyAQAAAOB9NfoE/7W1tamoqMj222+fJJkzZ05WrVqVIUOGlMZ07do1vXr1ykMPPZQk+eMf/5iqqqpSUJYkH/3oR1NVVVUa824rVqzI0qVL67wAAAAAYFM0alj25ptv5rzzzsuIESPSsWPHJMmiRYvSqlWr7LDDDnXGVldXZ9GiRaUxXbp0WWd/Xbp0KY15twkTJpTmN6uqqkq3bt0a+GgAAAAAaOoaLSxbtWpVvvSlL2XNmjW56qqr3nd8oVBIRUVF6f07/7yhMe80duzY1NbWll4vvvji5hcPAAAAQLPUKGHZqlWrMnz48MybNy8zZswoXVWWJDU1NVm5cmWWLFlSZ5vFixenurq6NObll19eZ7//+Mc/SmPerXXr1unYsWOdFwAAAABsigYPy9YGZX/5y18yc+bMdO7cuc76vn37pmXLlnUeBLBw4cI8+eSTGTBgQJLkoIMOSm1tbR555JHSmFmzZqW2trY0BgAAAAAa2iaHZcuWLcvcuXMzd+7cJMm8efMyd+7czJ8/P2+99VY+//nPZ/bs2bn55puzevXqLFq0KIsWLcrKlSuTvP3EzBNOOCFjxozJPffck8cffzxf/epX07t379LTMffee+8cfvjhOfHEE/Pwww/n4Ycfzoknnphhw4Z5EiYAQCP5/e9/n6OOOipdu3ZNRUVFbrvtttK6VatW5dxzz03v3r3Tvn37dO3aNccee2xeeumlOvtYsWJFzjjjjOy4445p3759jj766CxYsKDOmCVLlmTkyJGluWZHjhyZV199dQscIQDA+9vksGz27Nnp06dP+vTpkyQZPXp0+vTpkwsvvDALFizI7bffngULFmT//ffPzjvvXHq98ymWV155ZY455pgMHz48Bx98cNq1a5c77rgjlZWVpTE333xzevfunSFDhmTIkCH58Ic/nJtuuqkBDhkAgPV5/fXXs99++2Xy5MnrrHvjjTfy2GOP5YILLshjjz2WX/7yl3nuuedy9NFH1xk3atSoTJ8+PbfcckseeOCBLFu2LMOGDcvq1atLY0aMGJG5c+fmzjvvzJ133pm5c+dm5MiRjX58AAAbo6JQKBTKXURjWLp0aaqqqlJbW2v+MtgKzbr18nKXUC/9vzCm3CUAjUQP8baKiopMnz49xxxzzAbHPProoznwwAPzwgsvpHv37qmtrc1OO+2Um266KV/84heTJC+99FK6deuW//qv/8rQoUPzzDPPZJ999snDDz+c/v37J0kefvjhHHTQQfnzn/+8UXcR+BnR2Mrdp+gzABrHxvYQjfY0TAAAmrba2tpUVFRk++23T5LMmTMnq1atypAhQ0pjunbtml69epXuMvjjH/+YqqqqUlCWJB/96EdTVVVV506Ed1qxYkWWLl1a5wUA0FiEZQAAbLI333wz5513XkaMGFE6M7to0aK0atUqO+ywQ52x1dXVWbRoUWlMly5d1tlfly5dSmPebcKECaX5zaqqqtKtW7cGPhoAgP8jLAMAYJOsWrUqX/rSl7JmzZpcddVV7zu+UCikoqKi9P6df97QmHcaO3ZsamtrS68XX3xx84sHAHgfwjIAADbaqlWrMnz48MybNy8zZsyoM99HTU1NVq5cmSVLltTZZvHixamuri6Nefnll9fZ7z/+8Y/SmHdr3bp1OnbsWOcFANBYhGUAAGyUtUHZX/7yl8ycOTOdO3eus75v375p2bJlZsyYUVq2cOHCPPnkkxkwYECS5KCDDkptbW0eeeSR0phZs2altra2NAYAoJxalLsAAAC2DsuWLctf//rX0vt58+Zl7ty56dSpU7p27ZrPf/7zeeyxx/LrX/86q1evLs0x1qlTp7Rq1SpVVVU54YQTMmbMmHTu3DmdOnXK2Wefnd69e2fw4MFJkr333juHH354TjzxxPz0pz9Nkpx00kkZNmzYRj0JEwCgsQnLAABIksyePTuf+MQnSu9Hjx6dJDnuuOMybty43H777UmS/fffv8529957bwYOHJgkufLKK9OiRYsMHz48y5cvz6BBgzJlypRUVlaWxt98880588wzS0/NPProozN58uRGPDIAgI0nLAMAIEkycODAFAqFDa5/r3VrtWnTJpMmTcqkSZM2OKZTp06ZOnXqZtUIANDYzFkGAAAAAEXCMgAAAAAoEpYBAAAAQJE5ywA2x+zr67d9v681TB0AAAA0KGEZAADQpEybNb9e2+/eQHVsNiflAMrKbZgAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKDIBP8Am2HWvFfqtX3/fg1UCAAAAA3KlWUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARZ6GCQAANCm7z7+13CXUi6duA5SXK8sAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAICiTQ7Lfv/73+eoo45K165dU1FRkdtuu63O+kKhkHHjxqVr165p27ZtBg4cmKeeeqrOmBUrVuSMM87IjjvumPbt2+foo4/OggUL6oxZsmRJRo4cmaqqqlRVVWXkyJF59dVXN/kAAQAAAGBjbXJY9vrrr2e//fbL5MmT17v+0ksvzRVXXJHJkyfn0UcfTU1NTQ477LC89tprpTGjRo3K9OnTc8stt+SBBx7IsmXLMmzYsKxevbo0ZsSIEZk7d27uvPPO3HnnnZk7d25Gjhy5GYcIAAAAABunxaZucMQRR+SII45Y77pCoZCJEyfm/PPPz2c/+9kkyQ033JDq6upMmzYtJ598cmpra3PdddflpptuyuDBg5MkU6dOTbdu3TJz5swMHTo0zzzzTO688848/PDD6d+/f5Lk2muvzUEHHZRnn302e+655+YeLwAAAABsUIPOWTZv3rwsWrQoQ4YMKS1r3bp1Dj300Dz00ENJkjlz5mTVqlV1xnTt2jW9evUqjfnjH/+YqqqqUlCWJB/96EdTVVVVGvNuK1asyNKlS+u8AAAAAGBTNGhYtmjRoiRJdXV1neXV1dWldYsWLUqrVq2yww47vOeYLl26rLP/Ll26lMa824QJE0rzm1VVVaVbt271Ph4AAAAAmpdGeRpmRUVFnfeFQmGdZe/27jHrG/9e+xk7dmxqa2tLrxdffHEzKgcAAACgOWvQsKympiZJ1rn6a/HixaWrzWpqarJy5cosWbLkPce8/PLL6+z/H//4xzpXra3VunXrdOzYsc4LAICN56nnAAANHJb16NEjNTU1mTFjRmnZypUrc//992fAgAFJkr59+6Zly5Z1xixcuDBPPvlkacxBBx2U2traPPLII6Uxs2bNSm1tbWkMAAANy1PPAQA242mYy5Yty1//+tfS+3nz5mXu3Lnp1KlTunfvnlGjRmX8+PHp2bNnevbsmfHjx6ddu3YZMWJEkqSqqionnHBCxowZk86dO6dTp045++yz07t379LTMffee+8cfvjhOfHEE/PTn/40SXLSSSdl2LBhnoQJANBIPPUcAGAzriybPXt2+vTpkz59+iRJRo8enT59+uTCCy9MkpxzzjkZNWpUTj311PTr1y9///vfc/fdd6dDhw6lfVx55ZU55phjMnz48Bx88MFp165d7rjjjlRWVpbG3Hzzzendu3eGDBmSIUOG5MMf/nBuuumm+h4vAACbwVPPAYDmYpOvLBs4cGAKhcIG11dUVGTcuHEZN27cBse0adMmkyZNyqRJkzY4plOnTpk6deqmlgcAQCN4r6eev/DCC6UxjfXU84suuqjexwAAsDE2OSwDAKD5KtdTz0ePHl16v3Tp0nTr1m1TyobmZfb19du+39capg6AbVSDTvAPAEDT5KnnAEBzISwDAOB9eeo5ANBcuA0TAIAknnoOAJAIywAAKJo9e3Y+8YlPlN6vnSfsuOOOy5QpU3LOOedk+fLlOfXUU7NkyZL0799/vU89b9GiRYYPH57ly5dn0KBBmTJlyjpPPT/zzDNLT808+uijM3ny5C10lAAA762i8F6PttyGLV26NFVVVamtrTWvBWyFZt16eblLKKv+XxhT7hKADdBDbP38jHg/zb3PqC99CtBUbWwPYc4yAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQ5GmYAADA1mX29eWuAIBmzJVlAAAAAFAkLAMAAACAImEZAAAAABSZswzYLNNmza/X9rs3UB0AAADQkIRlwGbZff6t5S4BAAAAGpzbMAEAAACgSFgGAAAAAEVuwwQAALYqs+a9Uu4SAGjGXFkGAAAAAEXCMgAAAAAoEpYBAAAAQJE5ywDKYfb19du+39capg4AAADqEJYBlEF9Jy7u36+BCgEAAKAOt2ECAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFDR6WvfXWW/mXf/mX9OjRI23bts1uu+2Wiy++OGvWrCmNKRQKGTduXLp27Zq2bdtm4MCBeeqpp+rsZ8WKFTnjjDOy4447pn379jn66KOzYMGChi4XAAAAAEoaPCy75JJL8pOf/CSTJ0/OM888k0svvTSXXXZZJk2aVBpz6aWX5oorrsjkyZPz6KOPpqamJocddlhee+210phRo0Zl+vTpueWWW/LAAw9k2bJlGTZsWFavXt3QJQMAAABAkqRFQ+/wj3/8Yz796U/nyCOPTJLsuuuu+dnPfpbZs2cnefuqsokTJ+b888/PZz/72STJDTfckOrq6kybNi0nn3xyamtrc9111+Wmm27K4MGDkyRTp05Nt27dMnPmzAwdOrShywYAAACAhr+y7JBDDsk999yT5557Lknypz/9KQ888EA+9alPJUnmzZuXRYsWZciQIaVtWrdunUMPPTQPPfRQkmTOnDlZtWpVnTFdu3ZNr169SmPebcWKFVm6dGmdFwAAAABsiga/suzcc89NbW1t9tprr1RWVmb16tX5/ve/ny9/+ctJkkWLFiVJqqur62xXXV2dF154oTSmVatW2WGHHdYZs3b7d5swYUIuuuiihj4cAAAAAJqRBr+y7Oc//3mmTp2aadOm5bHHHssNN9yQH/7wh7nhhhvqjKuoqKjzvlAorLPs3d5rzNixY1NbW1t6vfjii/U7EAAA6vAgJwCgOWjwsOzb3/52zjvvvHzpS19K7969M3LkyHzrW9/KhAkTkiQ1NTVJss4VYosXLy5dbVZTU5OVK1dmyZIlGxzzbq1bt07Hjh3rvAAAaDge5AQANAcNHpa98cYb2W67urutrKwsnXHs0aNHampqMmPGjNL6lStX5v7778+AAQOSJH379k3Lli3rjFm4cGGefPLJ0hgAALasdz7Iadddd83nP//5DBkyZIMPcurVq1duuOGGvPHGG5k2bVqSlB7kdPnll2fw4MHp06dPpk6dmieeeCIzZ84s5+EBACRphLDsqKOOyve///385je/yfPPP5/p06fniiuuyGc+85kkb99+OWrUqIwfPz7Tp0/Pk08+meOPPz7t2rXLiBEjkiRVVVU54YQTMmbMmNxzzz15/PHH89WvfjW9e/cuPR0TAIAty4OcAIDmoMEn+J80aVIuuOCCnHrqqVm8eHG6du2ak08+ORdeeGFpzDnnnJPly5fn1FNPzZIlS9K/f//cfffd6dChQ2nMlVdemRYtWmT48OFZvnx5Bg0alClTpqSysrKhSwYAYCN4kBMA0Bw0eFjWoUOHTJw4MRMnTtzgmIqKiowbNy7jxo3b4Jg2bdpk0qRJdebAAACgfN75IKd99903c+fOzahRo9K1a9ccd9xxpXGN8SCn0aNHl94vXbo03bp1q8eRAABsWIOHZQAANE3vfJBTkvTu3TsvvPBCJkyYkOOOO67Og5x23nnn0nYbepDTO68uW7x48Qbnpm3dunVat27dWIcFAFBHg89ZBgBA0+RBTgBAc+DKMgAANsraBzl17949++67bx5//PFcccUV+frXv56k7oOcevbsmZ49e2b8+PEbfJBT586d06lTp5x99tke5AQAbDWEZQAAbBQPcgIAmoOKQqFQKHcRjWHp0qWpqqpKbW1tOnbsWO5yoMmZdevl5S6hWev/hTHlLgGaLD3E1s/PqOnTZ5SXPgNoqja2hzBnGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFDUotwFAOUxbdb8em2/ewPVAQAAAFsTV5YBAAAAQJErywC2RbOvr9/2/b7WMHUAAE2PPgNo5lxZBgAAAABFriwDAACgZNa8V+q1ff9+DVQIQJkIy6CZ2n3+reUuAQAAALY6bsMEAAAAgCJhGQAAAAAUCcsAAAAAoMicZQDbIBPvAgAANA5XlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUeRomAADQsGZfX+4KAGCzCcsAAIAGNWveK+UuAQA2m9swAQAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFjRKW/f3vf89Xv/rVdO7cOe3atcv++++fOXPmlNYXCoWMGzcuXbt2Tdu2bTNw4MA89dRTdfaxYsWKnHHGGdlxxx3Tvn37HH300VmwYEFjlAsAAAAASRohLFuyZEkOPvjgtGzZMr/97W/z9NNP5/LLL8/2229fGnPppZfmiiuuyOTJk/Poo4+mpqYmhx12WF577bXSmFGjRmX69Om55ZZb8sADD2TZsmUZNmxYVq9e3dAlAwAAAECSpEVD7/CSSy5Jt27dcv3115eW7brrrqU/FwqFTJw4Meeff34++9nPJkluuOGGVFdXZ9q0aTn55JNTW1ub6667LjfddFMGDx6cJJk6dWq6deuWmTNnZujQoQ1dNgAAAAA0/JVlt99+e/r165cvfOEL6dKlS/r06ZNrr722tH7evHlZtGhRhgwZUlrWunXrHHrooXnooYeSJHPmzMmqVavqjOnatWt69epVGgMAwJZnug0AoKlr8LDsb3/7W66++ur07Nkzd911V0455ZSceeaZufHGG5MkixYtSpJUV1fX2a66urq0btGiRWnVqlV22GGHDY55txUrVmTp0qV1XgAANBzTbQAAzUGD34a5Zs2a9OvXL+PHj0+S9OnTJ0899VSuvvrqHHvssaVxFRUVdbYrFArrLHu39xozYcKEXHTRRfWsHgCADTHdBgDQHDT4lWU777xz9tlnnzrL9t5778yfPz9JUlNTkyTrXCG2ePHi0tVmNTU1WblyZZYsWbLBMe82duzY1NbWll4vvvhigxwPAABvK9d0G+4gAAC2pAYPyw4++OA8++yzdZY999xz2WWXXZIkPXr0SE1NTWbMmFFav3Llytx///0ZMGBAkqRv375p2bJlnTELFy7Mk08+WRrzbq1bt07Hjh3rvAAAaDjlmm5jwoQJqaqqKr26devW0IcGAFDS4Ldhfutb38qAAQMyfvz4DB8+PI888kiuueaaXHPNNUnevv1y1KhRGT9+fHr27JmePXtm/PjxadeuXUaMGJEkqaqqygknnJAxY8akc+fO6dSpU84+++z07t27dLk+AABbVrmm2xg7dmxGjx5der906VKBGQDQaBo8LDvggAMyffr0jB07NhdffHF69OiRiRMn5itf+UppzDnnnJPly5fn1FNPzZIlS9K/f//cfffd6dChQ2nMlVdemRYtWmT48OFZvnx5Bg0alClTpqSysrKhSwYAYCNsaLqNX/ziF0nqTrex8847l8ZsaLqNd15dtnjx4ve8g6B169YNeiwAABvS4LdhJsmwYcPyxBNP5M0338wzzzyTE088sc76ioqKjBs3LgsXLsybb76Z+++/P7169aozpk2bNpk0aVL+93//N2+88UbuuOMOZxABAMqoXNNtAABsSQ1+ZRkAAE2T6TYAgOZAWAYAwEYx3QYA0BxUFAqFQrmLaAxLly5NVVVVamtrPRkT1mPWrZeXuwTKqP8XxpS7BNhq6SG2fn5GWz99RvOmzwC2VhvbQzTKnGUAAAAAsC0SlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKCoRbkLAGDLmzZrfr22H9G/ewNVAgAAsHVxZRkAAAAAFAnLAAAAAKDIbZgAzdDu82+t3w76j2mYQgAAALYyriwDAAAAgCJXlgEAANBwZl9f/330+1r99wGwmVxZBgAAAABFriwDAADqmDZrfr22372B6gCAcnBlGQAAAAAUCcsAAAAAoMhtmAAAQB27z7+13CUAQNm4sgwAAAAAioRlAAAAAFDU6LdhTpgwId/5zndy1llnZeLEiUmSQqGQiy66KNdcc02WLFmS/v3759/+7d+y7777lrZbsWJFzj777PzsZz/L8uXLM2jQoFx11VX54Ac/2NglwzbBU6oAAACg4TXqlWWPPvporrnmmnz4wx+us/zSSy/NFVdckcmTJ+fRRx9NTU1NDjvssLz22mulMaNGjcr06dNzyy235IEHHsiyZcsybNiwrF69ujFLBgBgI02YMCEVFRUZNWpUaVmhUMi4cePStWvXtG3bNgMHDsxTTz1VZ7sVK1bkjDPOyI477pj27dvn6KOPzoIFC7Zw9QAA69doYdmyZcvyla98Jddee2122GGH0vJCoZCJEyfm/PPPz2c/+9n06tUrN9xwQ954441MmzYtSVJbW5vrrrsul19+eQYPHpw+ffpk6tSpeeKJJzJz5szGKhkAgI3kpCgA0FQ12m2Yp512Wo488sgMHjw4//qv/1paPm/evCxatChDhgwpLWvdunUOPfTQPPTQQzn55JMzZ86crFq1qs6Yrl27plevXnnooYcydOjQxiobAID38c6Tou/s8959UjRJbrjhhlRXV2fatGk5+eSTSydFb7rppgwePDhJMnXq1HTr1i0zZ87U50ETMGveK/XeR/9+DVAIwGZqlCvLbrnlljz22GOZMGHCOusWLVqUJKmurq6zvLq6urRu0aJFadWqVZ0r0t495t1WrFiRpUuX1nkBANDw3nlS9J3e76Rokvc9Kbo++jwAYEtq8LDsxRdfzFlnnZWpU6emTZs2GxxXUVFR532hUFhn2bu915gJEyakqqqq9OrWrdumFw8AwHsqx0lRfR4AsCU1eFg2Z86cLF68OH379k2LFi3SokWL3H///fnxj3+cFi1alJqndzdDixcvLq2rqanJypUrs2TJkg2OebexY8emtra29HrxxRcb+tAAAJq1cp0U1ecBAFtSg4dlgwYNyhNPPJG5c+eWXv369ctXvvKVzJ07N7vttltqamoyY8aM0jYrV67M/fffnwEDBiRJ+vbtm5YtW9YZs3Dhwjz55JOlMe/WunXrdOzYsc4LAICGU66Tovo8AGBLavAJ/jt06JBevXrVWda+fft07ty5tHzUqFEZP358evbsmZ49e2b8+PFp165dRowYkSSpqqrKCSeckDFjxqRz587p1KlTzj777PTu3XuduTEAANgy1p4Ufaevfe1r2WuvvXLuuefWOSnap0+fJP93UvSSSy5JUvek6PDhw5P830nRSy+9dMseEADAejTa0zDfyznnnJPly5fn1FNPzZIlS9K/f//cfffd6dChQ2nMlVdemRYtWmT48OFZvnx5Bg0alClTpqSysrIcJQMANHtOigIAzcEWCcvuu+++Ou8rKioybty4jBs3boPbtGnTJpMmTcqkSZMatzgAABqMk6IAwLauolAoFMpdRGNYunRpqqqqUltba14LmqRZt15e7hJoxvp/YUy5S4BGo4fY+vkZNT59BuWm1wAaw8b2EA0+wT8AAAAAbKuEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAilqUuwAAAKCBzb6+3BUAwDZLWAYAAE3MrHmvlLsEANhmuQ0TAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFLcpdADRbs68vdwUAAADAu7iyDAAAAACKhGUAAAAAUCQsAwAAAIAic5YBsOkaYs69fl+r/z4AAAAamCvLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkQn+Adhks+a9Uu999O/XAIUAAAA0MFeWAQAAAECRsAwAAAAAioRlAAAAAFBkzjIok4aY8wkAAABoWK4sAwAAAIAiYRkAAAAAFLkNEwAAgK3KtFnz67X9iP7dG6gSoDlyZRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAA2yoQJE3LAAQekQ4cO6dKlS4455pg8++yzdcYUCoWMGzcuXbt2Tdu2bTNw4MA89dRTdcasWLEiZ5xxRnbccce0b98+Rx99dBYsWLAlDwUAYIMaPCzTRAEANE33339/TjvttDz88MOZMWNG3nrrrQwZMiSvv/56acyll16aK664IpMnT86jjz6ampqaHHbYYXnttddKY0aNGpXp06fnlltuyQMPPJBly5Zl2LBhWb16dTkOCwCgjgZ/GubaJuqAAw7IW2+9lfPPPz9DhgzJ008/nfbt2yf5vyZqypQp+dCHPpR//dd/zWGHHZZnn302HTp0SPJ2E3XHHXfklltuSefOnTNmzJgMGzYsc+bMSWVlZUOXDQDA+7jzzjvrvL/++uvTpUuXzJkzJx//+MdTKBQyceLEnH/++fnsZz+bJLnhhhtSXV2dadOm5eSTT05tbW2uu+663HTTTRk8eHCSZOrUqenWrVtmzpyZoUOHbvHjArY+u8+/tX476D+mYQoBmqUGv7LszjvvzPHHH5999903++23X66//vrMnz8/c+bMSZJ1mqhevXrlhhtuyBtvvJFp06YlSamJuvzyyzN48OD06dMnU6dOzRNPPJGZM2c2dMkAAGyG2traJEmnTp2SJPPmzcuiRYsyZMiQ0pjWrVvn0EMPzUMPPZQkmTNnTlatWlVnTNeuXdOrV6/SmHdbsWJFli5dWucFANBYGn3Osi3VRAEAsOUUCoWMHj06hxxySHr16pUkWbRoUZKkurq6ztjq6urSukWLFqVVq1bZYYcdNjjm3SZMmJCqqqrSq1u3bg19OAAAJY0alm3JJsoZRwCALef000/Pf//3f+dnP/vZOusqKirqvC8UCusse7f3GjN27NjU1taWXi+++OLmFw4A8D4aNSzbkk2UM44AAFvGGWeckdtvvz333ntvPvjBD5aW19TUJMk6JzcXL15cOlFaU1OTlStXZsmSJRsc826tW7dOx44d67wAABpLo4VlW7qJcsYRAKBxFQqFnH766fnlL3+Z3/3ud+nRo0ed9T169EhNTU1mzJhRWrZy5crcf//9GTBgQJKkb9++admyZZ0xCxcuzJNPPlkaAwBQTg0elpWriXLGEQCgcZ122mmZOnVqpk2blg4dOmTRokVZtGhRli9fnuTtOwdGjRqV8ePHZ/r06XnyySdz/PHHp127dhkxYkSSpKqqKieccELGjBmTe+65J48//ni++tWvpnfv3qWnYwIAlFOLht7haaedlmnTpuVXv/pVqYlK3m6M2rZtW6eJ6tmzZ3r27Jnx48dvsInq3LlzOnXqlLPPPlsTBQBQRldffXWSZODAgXWWX3/99Tn++OOTJOecc06WL1+eU089NUuWLEn//v1z9913p0OHDqXxV155ZVq0aJHhw4dn+fLlGTRoUKZMmZLKysotdSgAABvU4GGZJgoAoGkqFArvO6aioiLjxo3LuHHjNjimTZs2mTRpUiZNmtSA1QEANIwGD8s0UQAAAABsqxr1aZgAAAAAsC0RlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQFGLchcA26pps+bXa/vdG6gOAADgXWZfX7/t+32tYeoAtknCMgDKor6B84j+3RuoEgAAgP8jLAOgLHaff2v9dtB/TMMUAgAA8A7CMgAAAJqUWfNeqdf2/fs1UCHANskE/wAAAABQ5MoyAADYysy69fJylwAAzZYrywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFLUodwGwrdp9/q3lLgEAAABoYMIymq/Z15e7AgAAAGAr4zZMAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFLcpdAABsjlm3Xl6v7ft/YUwDVQIAADQlwjIAAGhg02bNr9f2uzdQHQDAphOW0WzNmvdKuUsAAAAAtjLmLAMAAACAIleWAQBAA9t9/q3lLgGoh/reSj2if/cGqgQoB1eWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAIhP8AwAAwDvU+yEd/cc0TCFAWbiyDAAAAACKXFkGAAAADWjarPn12n5E/+4NVAmwOYRlAAAA0IDcxgnbNmEZAAC8y6xbLy93CQBAmQjLAGiW3B4BAACsj7CMbVZ9/6G7ewPVAWyb3B4BAACsj6dhAgAAAECRsAwAAAAAityGCQBAWVx11VW57LLLsnDhwuy7776ZOHFiPvaxj5W7LIBt3+zr67d9v681TB2wjXJlGQAAW9zPf/7zjBo1Kueff34ef/zxfOxjH8sRRxyR+fPrNycpAEB9ubIMAIAt7oorrsgJJ5yQb3zjG0mSiRMn5q677srVV1+dCRMmlLk6gPKq91O7KxuoEGimhGUAAGxRK1euzJw5c3LeeefVWT5kyJA89NBD64xfsWJFVqxYUXq/dOnSRq8RYFs2a94r9dq+f78GKgS2UVt9WNak57LY1u8jr2f901YPaqBCALa8WbdeXq/t+39hTANVAtuef/7zn1m9enWqq6vrLK+urs6iRYvWGT9hwoRcdNFFW6q8JP4bBcqrf33/rVjf/4eV+9+q5f78+qpv/eVW7u9vK7BVh2Vr57K46qqrcvDBB+enP/1pjjjiiDz99NPp3r17ucujnnaff2u5SwAAyqiioqLO+0KhsM6yJBk7dmxGjx5der906dJ069at0esDoEy29bBmW6+frTssM5cFAE2VK9NoznbcccdUVlaucxXZ4sWL17naLElat26d1q1bb6nyAIBmbqsNy8xlsRHKfBvk7vPrdx88AJuvvmFbfQnrqI9WrVqlb9++mTFjRj7zmc+Uls+YMSOf/vSny1gZAMBWHJZtC3NZ1FuZL80cUd8d9PcPJQBg84wePTojR45Mv379ctBBB+Waa67J/Pnzc8opp5S7NIDyK/dtfOX+fCizrTYsW8tcFgAATc8Xv/jF/O///m8uvvjiLFy4ML169cp//dd/ZZdddil3aQBAM7fVhmXmsgAAaNpOPfXUnHrqqeUuAwCgju3KXcCGvHMui3eaMWNGBgwYUKaqAAAAAGjKttoryxJzWQAAAACwZW3VYZm5LAAAAADYkrbqsCwxlwUAAAAAW85WO2cZAAAAAGxpwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARS3KXUBjKRQKSZKlS5eWuRIAYFuytndY20uw9dHnAQCbY2P7vCYblr322mtJkm7dupW5EgBgW/Taa6+lqqqq3GWwHvo8AKA+3q/Pqyg00dOma9asyUsvvZQOHTqkoqKiwfe/dOnSdOvWLS+++GI6duzY4Pvnvfn+y8v3X16+//LzMyivxv7+C4VCXnvttXTt2jXbbWfGiq2RPq9p8/2Xl++//PwMysv3X15bS5/XZK8s22677fLBD36w0T+nY8eO/gMqI99/efn+y8v3X35+BuXVmN+/K8q2bvq85sH3X16+//LzMygv3395lbvPc7oUAAAAAIqEZQAAAABQJCzbTK1bt853v/vdtG7dutylNEu+//Ly/ZeX77/8/AzKy/dPY/N3rLx8/+Xl+y8/P4Py8v2X19by/TfZCf4BAAAAYFO5sgwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJyzbTVVddlR49eqRNmzbp27dv/vCHP5S7pGZhwoQJOeCAA9KhQ4d06dIlxxxzTJ599tlyl9VsTZgwIRUVFRk1alS5S2k2/v73v+erX/1qOnfunHbt2mX//ffPnDlzyl1Ws/DWW2/lX/7lX9KjR4+0bds2u+22Wy6++OKsWbOm3KU1Sb///e9z1FFHpWvXrqmoqMhtt91WZ32hUMi4cePStWvXtG3bNgMHDsxTTz1VnmJpcvR55aHP27ro87Y8fV756PO2rG2hzxOWbYaf//znGTVqVM4///w8/vjj+djHPpYjjjgi8+fPL3dpTd7999+f0047LQ8//HBmzJiRt956K0OGDMnrr79e7tKanUcffTTXXHNNPvzhD5e7lGZjyZIlOfjgg9OyZcv89re/zdNPP53LL78822+/fblLaxYuueSS/OQnP8nkyZPzzDPP5NJLL81ll12WSZMmlbu0Jun111/Pfvvtl8mTJ693/aWXXporrrgikydPzqOPPpqampocdthhee2117ZwpTQ1+rzy0edtPfR5W54+r7z0eVvWNtHnFdhkBx54YOGUU06ps2yvvfYqnHfeeWWqqPlavHhxIUnh/vvvL3cpzcprr71W6NmzZ2HGjBmFQw89tHDWWWeVu6Rm4dxzzy0ccsgh5S6j2TryyCMLX//61+ss++xnP1v46le/WqaKmo8khenTp5fer1mzplBTU1P4wQ9+UFr25ptvFqqqqgo/+clPylAhTYk+b+uhzysPfV556PPKS59XPltrn+fKsk20cuXKzJkzJ0OGDKmzfMiQIXnooYfKVFXzVVtbmyTp1KlTmStpXk477bQceeSRGTx4cLlLaVZuv/329OvXL1/4whfSpUuX9OnTJ9dee225y2o2DjnkkNxzzz157rnnkiR/+tOf8sADD+RTn/pUmStrfubNm5dFixbV+V3cunXrHHrooX4XUy/6vK2LPq889Hnloc8rL33e1mNr6fNabLFPaiL++c9/ZvXq1amurq6zvLq6OosWLSpTVc1ToVDI6NGjc8ghh6RXr17lLqfZuOWWW/LYY4/l0UcfLXcpzc7f/va3XH311Rk9enS+853v5JFHHsmZZ56Z1q1b59hjjy13eU3eueeem9ra2uy1116prKzM6tWr8/3vfz9f/vKXy11as7P29+36fhe/8MIL5SiJJkKft/XQ55WHPq989Hnlpc/bemwtfZ6wbDNVVFTUeV8oFNZZRuM6/fTT89///d954IEHyl1Ks/Hiiy/mrLPOyt133502bdqUu5xmZ82aNenXr1/Gjx+fJOnTp0+eeuqpXH311ZqoLeDnP/95pk6dmmnTpmXffffN3LlzM2rUqHTt2jXHHXdcuctrlvwuprH4u1V++rwtT59XXvq88tLnbX3K/btYWLaJdtxxx1RWVq5zdnHx4sXrJJ80njPOOCO33357fv/73+eDH/xguctpNubMmZPFixenb9++pWWrV6/O73//+0yePDkrVqxIZWVlGSts2nbeeefss88+dZbtvffe+cUvflGmipqXb3/72znvvPPypS99KUnSu3fvvPDCC5kwYYImagurqalJ8vaZx5133rm03O9i6kuft3XQ55WHPq+89Hnlpc/bemwtfZ45yzZRq1at0rdv38yYMaPO8hkzZmTAgAFlqqr5KBQKOf300/PLX/4yv/vd79KjR49yl9SsDBo0KE888UTmzp1bevXr1y9f+cpXMnfuXA1UIzv44IPz7LPP1ln23HPPZZdddilTRc3LG2+8ke22q/trs7Ky0iPFy6BHjx6pqamp87t45cqVuf/++/0upl70eeWlzysvfV556fPKS5+39dha+jxXlm2G0aNHZ+TIkenXr18OOuigXHPNNZk/f35OOeWUcpfW5J122mmZNm1afvWrX6VDhw6lM79VVVVp27Ztmatr+jp06LDOvCHt27dP586dzSeyBXzrW9/KgAEDMn78+AwfPjyPPPJIrrnmmlxzzTXlLq1ZOOqoo/L9738/3bt3z7777pvHH388V1xxRb7+9a+Xu7QmadmyZfnrX/9aej9v3rzMnTs3nTp1Svfu3TNq1KiMHz8+PXv2TM+ePTN+/Pi0a9cuI0aMKGPVNAX6vPLR55WXPq+89Hnlpc/bsraJPm+LPXezifm3f/u3wi677FJo1apV4SMf+YhHWm8hSdb7uv7668tdWrPlkeJb1h133FHo1atXoXXr1oW99tqrcM0115S7pGZj6dKlhbPOOqvQvXv3Qps2bQq77bZb4fzzzy+sWLGi3KU1Sffee+96/39/3HHHFQqFtx8r/t3vfrdQU1NTaN26deHjH/944Yknnihv0TQZ+rzy0OdtffR5W5Y+r3z0eVvWttDnVRQKhcKWi+YAAAAAYOtlzjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQFGLchcAsKUMHDgwvXr1SpJMnTo1lZWV+eY3v5nvfe97qaioKHN1AABsLn0e0JBcWQY0KzfccENatGiRWbNm5cc//nGuvPLK/Pu//3u5ywIAoJ70eUBDqSgUCoVyFwGwJQwcODCLFy/OU089VTrDeN555+X222/P008/XebqAADYXPo8oCG5sgxoVj760Y/WuRT/oIMOyl/+8pesXr26jFUBAFBf+jygoQjLAAAAAKBIWAY0Kw8//PA673v27JnKysoyVQQAQEPQ5wENRVgGNCsvvvhiRo8enWeffTY/+9nPMmnSpJx11lnlLgsAgHrS5wENpUW5CwDYko499tgsX748Bx54YCorK3PGGWfkpJNOKndZAADUkz4PaCjCMqBZadmyZSZOnJirr7663KUAANCA9HlAQ3EbJgAAAAAUCcsAAAAAoKiiUCgUyl0EAAAAAGwNXFkGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARf8/cHs3cPU7iWMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMsAAAJfCAYAAABhSlHNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiuElEQVR4nO3dfZhVdb03/vc4A8NDMArIjPMLFI18Ah8CJdA7KRCykDyWVBhZmVoqOompHHtAKzhqCQW3lh6PkEh0e5dlnVKxlFISEaWTD0ezUKAg6kiDKA0I+/eH2303gArMwEZ4va5rXZd7re9a+7P2APPxvb9rrYpCoVAIAAAAAJC9yl0AAAAAAOwqhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDACBJ8qtf/Sonn3xy6uvrU1FRkR/96EevOfacc85JRUVFpkyZ0mx9U1NTxo4dm27duqVjx44ZOXJkli1b1mzMqlWrMmbMmNTU1KSmpiZjxozJ3//+99Y/IQCA7SAsAwAgSfLiiy/myCOPzLRp01533I9+9KPMnz8/9fX1m21raGjI7bffntmzZ+f+++/PmjVrMmLEiGzYsKE0ZvTo0Vm0aFHuvPPO3HnnnVm0aFHGjBnT6ucDALA9KgqFQqHcRQAAsGupqKjI7bffnlNOOaXZ+j/96U8ZMGBA7rrrrrz//e9PQ0NDGhoakiSNjY3Zd999c8stt+TDH/5wkuTPf/5zevTokZ/97GcZPnx4nnzyyRx22GF58MEHM2DAgCTJgw8+mIEDB+a///u/c/DBB+/M0wQA2ExVuQvYUTZu3Jg///nP6dSpUyoqKspdDgDwJlEoFPLCCy+kvr4+e+1lEv4/27hxY8aMGZPPf/7zOfzwwzfbvnDhwqxfvz7Dhg0rrauvr0+fPn0yb968DB8+PL/5zW9SU1NTCsqS5J3vfGdqamoyb968LYZlTU1NaWpqalbH888/n65du+rzAICttrV93m4blr36LSYAwPZYunRp3vrWt5a7jF3KVVddlaqqqlxwwQVb3L5ixYq0bds2++yzT7P1tbW1WbFiRWlM9+7dN9u3e/fupTGbmjRpUq644ooWVg8A8Io36vN227CsU6dOSV75ADp37lzmagCAN4vVq1enR48epV6CVyxcuDDf/OY388gjj2zzbK5CodBsny3tv+mYfzZ+/PhcdNFFpdeNjY3p2bOnPg8A2CZb2+fttmHZq81W586dNVEAwDZzeV9zv/71r7Ny5cr07NmztG7Dhg0ZN25cpkyZkmeffTZ1dXVZt25dVq1a1Wx22cqVKzNo0KAkSV1dXf7yl79sdvy//vWvqa2t3eJ7V1dXp7q6erP1+jwAYHu8UZ/nRhwAALyhMWPG5L/+67+yaNGi0lJfX5/Pf/7zueuuu5Ik/fr1S5s2bTJnzpzSfsuXL89jjz1WCssGDhyYxsbGPPTQQ6Ux8+fPT2NjY2kMAEA57bYzywAA2DZr1qzJM888U3q9ePHiLFq0KF26dEnPnj3TtWvXZuPbtGmTurq60k35a2pqcuaZZ2bcuHHp2rVrunTpkosvvjh9+/bN0KFDkySHHnpo3vve9+ass87Kd77znSTJ2WefnREjRngSJgCwSxCWAQCQJHn44Yfz7ne/u/T61fuEnXHGGZk+ffpWHWPy5MmpqqrKqFGjsnbt2gwZMiTTp09PZWVlacytt96aCy64oPTUzJEjR2batGmtdyIAAC1QUSgUCuUuYkdYvXp1ampq0tjY6F4WAC2wYcOGrF+/vtxlQKuprKxMVVXVa96rQg+x6/MzAth2hUIhL7/8cjZs2FDuUmCHaa0+z8wyAF7TmjVrsmzZsuym36uwB+vQoUP222+/tG3bttylAMAOt27duixfvjwvvfRSuUuBHa41+jxhGQBbtGHDhixbtiwdOnTIvvvu68mA7BYKhULWrVuXv/71r1m8eHF69+6dvfbyvCMAdl8bN27M4sWLU1lZmfr6+rRt21Zfx26pNfs8YRkAW7R+/foUCoXsu+++ad++fbnLgVbTvn37tGnTJs8991zWrVuXdu3albskANhh1q1bl40bN6ZHjx7p0KFDucuBHaq1+jxfpQLwunzzyO7IbDIA9jR+97GnaI0/6/62AAAAAECRsAwAkkyYMCFHHXXUNu0zePDgNDQ0lL2OVz377LOpqKjIokWLWrUmAIA3izdLT3ffffeloqIif//737f7PXZE3bzCPcsA2Caz5i/Zqe83ekDPnfI+F198ccaOHbtN+/zwhz9MmzZtdlBF265Hjx5Zvnx5unXrVu5SAIA3gZ3Z1+npeDMRlgGwRysUCtmwYUPe8pa35C1vecs27dulS5cdVNX2qaysTF1dXbnLAADY6Xanno7ycxkmALuVpqamXHDBBenevXvatWuX448/PgsWLChtf3XK+1133ZX+/funuro6v/71rzebKv/yyy/nggsuyN57752uXbvm0ksvzRlnnJFTTjmlNGbTqe8HHHBAJk6cmE996lPp1KlTevbsmRtuuKFZfZdeemne/va3p0OHDjnwwAPzxS9+MevXr9/q81u1alVOP/300lNKe/funZtvvjnJli/DvOOOO9K7d++0b98+7373uzNjxow3nPJfUVGR66+/PieddFLat2+fXr165bbbbtvqGgEAWmp37+le9cADD+TII49Mu3btMmDAgPzud7/bbPsJJ5yQDh06ZJ999snw4cOzatWqLR7rzjvvTE1NTb773e9ucfurn9l//ud/vu57IiwDYDdzySWX5Ac/+EFmzJiRRx55JG9729syfPjwPP/885uNmzRpUp588skcccQRmx3nqquuyq233pqbb745DzzwQFavXp0f/ehHb/j+3/jGN9K/f/88+uijOffcc/PZz342//3f/13a3qlTp0yfPj1PPPFEvvnNb+bGG2/M5MmTt/r8vvjFL+aJJ57Iz3/+8zz55JO5/vrrX/Oyy2effTYf+tCHcsopp2TRokU555xzcvnll2/1+3zwgx/Mb3/723zsYx/LRz/60Tz55JNbXScAQEvs7j3dqz7/+c/n61//ehYsWJDu3btn5MiRpdBt0aJFGTJkSA4//PD85je/yf3335+TTz45GzZs2Ow4s2fPzqhRo/Ld7343H//4x7f7PXmFsAyA3caLL76Y66+/Ptdcc01OOumkHHbYYbnxxhvTvn373HTTTc3GXnnllTnxxBNz0EEHpWvXrpsda+rUqRk/fnz+5V/+JYccckimTZuWvffe+w1reN/73pdzzz03b3vb23LppZemW7duue+++0rbv/CFL2TQoEE54IADcvLJJ2fcuHH5P//n/2z1OS5ZsiRHH310+vfvnwMOOCBDhw7NySefvMWx3/72t3PwwQfnmmuuycEHH5yPfOQj+cQnPrFV73Paaafl05/+dN7+9rfnK1/5Svr375+pU6dudZ0AANtrT+jpXvXlL385J554Yvr27ZsZM2bkL3/5S26//fYkydVXX53+/fvnuuuuy5FHHpnDDz88559//mZflF533XX5zGc+kx//+Mf5wAc+0KL35BXuWQbAbuMPf/hD1q9fn+OOO660rk2bNjn22GM3mxXVv3//1zxOY2Nj/vKXv+TYY48trausrEy/fv2ycePG163hn7/RrKioSF1dXVauXFla93//7//NlClT8swzz2TNmjV5+eWX07lz560+x89+9rP54Ac/mEceeSTDhg3LKaeckkGDBm1x7FNPPZVjjjmm2bp/PqfXM3DgwM1ee8omALAz7Ak93av+uefq0qVLDj744NI5Llq0KKeddtrr7v+DH/wgf/nLX3L//fdvV5+36XvyCjPLANhtFAqFJK80NJuu33Rdx44d3/B4WzrOG9n0SUoVFRWlZuzBBx/MRz7ykZx00kn56U9/mkcffTSXX3551q1b94bHfdVJJ52U5557Lg0NDfnzn/+cIUOG5OKLL97i2C2d99acw2vZ9FgAADvCntDTbU297du3f8OxRx11VPbdd9/cfPPN+rxWJCwDYLfxtre9LW3bts39999fWrd+/fo8/PDDOfTQQ7f6ODU1Namtrc1DDz1UWrdhw4Y8+uijLarvgQceyP7775/LL788/fv3T+/evfPcc89t83H23XfffOITn8jMmTMzZcqUzW44+6pDDjmk2Y1wk+Thhx/eqvd48MEHN3t9yCGHbHOtAADbak/p6ZLmPdeqVavy9NNPl3quI444Ir/4xS9ed/+DDjoo9957b3784x9n7NixLX5PXuEyTAB2Gx07dsxnP/vZfP7zn0+XLl3Ss2fPXH311XnppZdy5plnbtOxxo4dm0mTJuVtb3tbDjnkkEydOjWrVq1q0bdub3vb27JkyZLMnj07xxxzTP7zP/9zm+8P8aUvfSn9+vXL4Ycfnqampvz0pz99zabxnHPOybXXXptLL700Z555ZhYtWpTp06cneeNvD2+77bb0798/xx9/fG699dY89NBDm90jBABgR9gTerpXXXnllenatWtqa2tz+eWXp1u3bqUndY4fPz59+/bNueeem8985jNp27Zt7r333px22mnN7lv29re/Pffee28GDx6cqqqqTJkyZbvfk1eYWQbAbuXf/u3f8sEPfjBjxozJO97xjjzzzDO56667ss8++2zTcS699NJ89KMfzcc//vEMHDgwb3nLWzJ8+PC0a9duu2v7wAc+kM997nM5//zzc9RRR2XevHn54he/uE3HaNu2bcaPH58jjjgi73rXu1JZWZnZs2dvcWyvXr3yf//v/80Pf/jDHHHEEbn++utLT8Osrq5+3fe54oorMnv27BxxxBGZMWNGbr311hx22GHbVCsAwPba3Xu6V/3bv/1bLrzwwvTr1y/Lly/PHXfckbZt2yZ5JQS7++6789vf/jbHHntsBg4cmB//+Mepqtp83tPBBx+cX/7yl/ne976XcePGbfd78oqKQksuat2FrV69OjU1NWlsbNyum+wB7On+8Y9/ZPHixenVq1eLmondxcaNG3PooYdm1KhR+cpXvlLucrbb1772tXz729/O0qVLX3NMRUVFbr/99t36G8bX+/Oth9j1+RkBbD09XXO7S0+3Pe677768+93vzqpVq7bqiaBvVq3R57kME3hzevjmlu3f/5OtUwe7reeeey533313TjjhhDQ1NWXatGlZvHhxRo8eXe7Stsl1112XY445Jl27ds0DDzyQa665Jueff365ywLYvelTYJexu/R07FzCMgDYgr322ivTp0/PxRdfnEKhkD59+uSee+7ZppvK7gp+//vf56tf/Wqef/759OzZM+PGjcv48ePLXRYAwE6xu/R07FzCMgDYgh49euSBBx4odxktNnny5EyePHmb9tlN79AAAOyBdpeerjUMHjxYn7eV3OAfAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUucE/AADAP5k1f0mL9h9d2UqFAFAWZpYBAAAAQJGwDADYbs8++2wqKiqyaNGi7dp/8ODBaWhoaNWaAADYNlvT0x1wwAGZMmXKdr/H9OnTs/fee2/3/juTyzCBN6X5i59v0f4D+rdSIXuih2/eue/X/5M79/3KZPDgwTnqqKNa1IBsrWeffTa9evXKo48+mqOOOmqHv9/r+eEPf5g2bdqUtQYA2GPtzL5OT9fqdqWebndjZhkAu7V169aVu4RWUygU8vLLL5e7jFbVpUuXdOrUqdxlAAC7OD0dO5OwDIDdyuDBg3P++efnoosuSrdu3XLiiScmSZ544om8733vy1ve8pbU1tZmzJgx+dvf/lbab+PGjbnqqqvytre9LdXV1enZs2e+9rWvlbb/7ne/y3ve8560b98+Xbt2zdlnn501a9aUtn/iE5/IKaeckq9//evZb7/90rVr15x33nlZv359acx1112X3r17p127dqmtrc2HPvSh0r5z587NN7/5zVRUVKSioiLPPvts7rvvvlRUVOSuu+5K//79U11dnV//+tel9/pnDQ0NGTx48FadT69evZIkRx99dCoqKprtd/PNN+fQQw9Nu3btcsghh+S6665r9j4PPfRQjj766LRr1y79+/fPo48++oY/k9c671d/Xv98Geby5cvz/ve/P+3bt0+vXr0ya9asN5zy/+rnccUVV6R79+7p3LlzzjnnnN2qqQbeXOYvfr5FC6Cn25rz2dk9XZK88MILGT16dN7ylrekvr4+U6dObbb973//e84+++zU1tamXbt26dOnT376059u8Vj/8z//k2OPPTYjR47MP/7xjy2OOeCAA/KVr3zldd9zR3AZJgC7nRkzZuSzn/1sHnjggRQKhSxfvjwnnHBCzjrrrFx77bVZu3ZtLr300owaNSq//OUvkyTjx4/PjTfemMmTJ+f444/P8uXL89///d9Jkpdeeinvfe978853vjMLFizIypUr8+lPfzrnn39+pk+fXnrfe++9N/vtt1/uvffePPPMM/nwhz+co446KmeddVYefvjhXHDBBbnlllsyaNCgPP/88/n1r3+dJPnmN7+Zp59+On369MmVV16ZJNl3333z7LPPJkkuueSSfP3rX8+BBx641fd5eL3zeeihh3LsscfmnnvuyeGHH562bdsmSW688cZ8+ctfzrRp03L00Ufn0UcfzVlnnZWOHTvmjDPOyIsvvpgRI0bkPe95T2bOnJnFixfnwgsvfN06Xu+8t+TjH/94/va3v+W+++5LmzZtctFFF2XlypVveL6/+MUv0q5du9x777159tln88lPfjLdunVr1hwDAG8uerpdp6d71TXXXJN//dd/zYQJE3LXXXflc5/7XA455JCceOKJ2bhxY0466aS88MILmTlzZg466KA88cQTqazc/BHBy5Yty7Bhw9K/f//8x3/8R6qqXjueer333FGEZQDsdt72trfl6quvLr3+0pe+lHe84x2ZOHFiad1//Md/pEePHnn66aez33775Zvf/GamTZuWM844I0ly0EEH5fjjj0+S3HrrrVm7dm2++93vpmPHjkmSadOm5eSTT85VV12V2traJMk+++yTadOmpbKyMoccckje//735xe/+EXOOuusLFmyJB07dsyIESPSqVOn7L///jn66KOTJDU1NWnbtm06dOiQurq6zc7nyiuv3KZm4IUXXnjd89l3332TJF27dm32fl/5ylfyjW98I6eeemqSV76tfOKJJ/Kd73wnZ5xxRm699dZs2LAh//Ef/5EOHTrk8MMPz7Jly/LZz372NWt5vfPe1H//93/nnnvuyYIFC9K//ys3Fvz3f//39O7d+w3PuW3bts3quvLKK/P5z38+X/nKV7LXXibSA8CbkZ5u1+npXnXcccflsssuS5K8/e1vzwMPPJDJkyfnxBNPzD333JOHHnooTz75ZN7+9rcnSQ488MDNjvH000/nxBNPzAc+8IHSLLztfc8dRfcIwG7n1aDlVQsXLsy9996bt7zlLaXlkEMOSZL84Q9/yJNPPpmmpqYMGTJki8d78sknc+SRR5aaquSVX9obN27MU089VVp3+OGHN/vmbL/99ivNijrxxBOz//7758ADD8yYMWNy66235qWXXtqu83kjb3Q+W/LXv/41S5cuzZlnntnsc/rqV7+aP/zhD6XjHnnkkenQoUNpv4EDB77ucbflvJ966qlUVVXlHe94R2nd2972tuyzzz5vWP+W6lqzZk2WLl36hvsCALsmPd2u09O91riBAwfmySefTJIsWrQob33rW0tB2ZasXbs2xx9/fE455ZR861vfesOg7I3ec0cxswyA3c4/N0DJK/d6ePUbw03tt99++eMf//i6xysUCq/5i/yf12/6VMeKiops3LgxSdKpU6c88sgjue+++3L33XfnS1/6UiZMmJAFCxa84TT8Tc9nr732SqFQaLbun++j0b59+9c93pa8WueNN96YAQMGNNv2arO46XtujW0579c6/va876u2pgEDAHZNerpdp6d7Pa9+dltTb3V1dYYOHZr//M//zOc///m89a1vbdF77ijCMmCPNGv+khbtP3pAz1aqhJ3hHe94R37wgx/kgAMO2OL9EHr37p327dvnF7/4RT796U9vtv2www7LjBkz8uKLL5aanAceeCB77bXX635ztqmqqqoMHTo0Q4cOzZe//OXsvffe+eUvf5lTTz01bdu2zYYNG7bqOPvuu28ee+yxZusWLVpUauze6HxevZ/FP79fbW1t/r//7//LH//4x5x++ulbfN/DDjsst9xyS9auXVtqhh588MEWnfc/O+SQQ/Lyyy/n0UcfTb9+/ZIkzzzzTP7+97+/4Xv89re/3ayut7zlLdvdgAEAux49XXM7u6fb0rgHH3ywNLvviCOOyLJly/L000+/5ue511575ZZbbsno0aPznve8J/fdd1/q6+u3+z13FJdhArDbO++88/L888/nox/9aB566KH88Y9/zN13351PfepT2bBhQ9q1a5dLL700l1xySb773e/mD3/4Qx588MHcdNNNSZLTTz897dq1yxlnnJHHHnss9957b8aOHZsxY8aU7m3xRn7605/mW9/6VhYtWpTnnnsu3/3ud7Nx48YcfPDBSV550s/8+fPz7LPP5m9/+1vpW8Etec973pOHH3443/3ud/P73/8+X/7yl5s1Wm90Pt27d0/79u1z55135i9/+UsaGxuTJBMmTMikSZNKN6f93e9+l5tvvjnXXnttkmT06NHZa6+9cuaZZ+aJJ57Iz372s3z9619v0Xn/s0MOOSRDhw7N2WefnYceeiiPPvpozj777LRv3/4Nvz1ct25dqa6f//zn+fKXv5zzzz/f/coAYDeipytfT/eqBx54IFdffXWefvrp/O///b9z2223lR4OcMIJJ+Rd73pXPvjBD2bOnDlZvHhxfv7zn+fOO+9sdozKysrceuutOfLII/Oe97wnK1as2O733FF0kADs9urr6/PAAw9kw4YNGT58ePr06ZMLL7wwNTU1pTDli1/8YsaNG5cvfelLOfTQQ/PhD3+4dG+KDh065K677srzzz+fY445Jh/60IcyZMiQTJs2batr2HvvvfPDH/4w73nPe3LooYfm29/+dr73ve/l8MMPT5JcfPHFqayszGGHHZZ99903S5a89uzH4cOH54tf/GIuueSSHHPMMXnhhRfy8Y9/vNmY1zufqqqqfOtb38p3vvOd1NfX5wMf+ECS5NOf/nT+/d//PdOnT0/fvn1zwgknZPr06aXHkr/lLW/JT37ykzzxxBM5+uijc/nll2/xMohtOe9Nffe7301tbW3e9a535V/+5V9y1llnpVOnTmnXrt3rvs+QIUPSu3fvvOtd78qoUaNy8sknZ8KECa+7DwDw5qKnK19P96px48Zl4cKFOfroo0sPEhg+fHhp+w9+8IMcc8wx+ehHP5rDDjssl1xyyRZn2lVVVZU+t/e85z2v+/TzN3rPHaGi0NoXq+4iVq9enZqamjQ2NqZz587lLgdoZfNv+0aL9v9Dz9NatP+ecBnmP/7xjyxevDi9evV6w6ACdpRly5alR48eueeee17z5raf+MQn8ve//z0/+tGPtvq4r/fnWw+x6/MzYkdr6e0aDlpyW4v2H3DauBbtD/9MT8eb2QEHHJCGhoY0NDRs9T6t0ee5ZxkAsMv45S9/mTVr1qRv375Zvnx5LrnkkhxwwAF517veVe7SAADYQwjLAIBdxvr16/Ov//qv+eMf/5hOnTpl0KBBufXWWzd7KhUAAOwowjIAYJcxfPjwbb4HxfTp03dMMQAAlNWzzz5blvd1g38AAAAAKDKzDNgjtfTGuxngxrsAAAC7IzPLAHhdu+lDk9nD+XMNwJ7G7z72FK3xZ11YBsAWVVZWJknWrVtX5kqg9b300ktJ4sEBAOz2Xv1d9+rvPtjdtUaf5zJMALaoqqoqHTp0yF//+te0adMme+3l+xXe/AqFQl566aWsXLkye++9dykUBoDdVWVlZfbee++sXLkySdKhQ4dUVFSUuSpofa3Z5wnLANiiioqK7Lffflm8eHGee+65cpcDrWrvvfdOXV1ducsAgJ3i1d95rwZmsDtrjT5PWAbAa2rbtm169+7tUkx2K23atDGjDIA9yqtfgnbv3j3r168vdzmww7RWn7fNYdmvfvWrXHPNNVm4cGGWL1+e22+/PaecckqSZP369fnCF76Qn/3sZ/njH/+YmpqaDB06NP/2b/+W+vr60jGamppy8cUX53vf+17Wrl2bIUOG5Lrrrstb3/rW0phVq1blggsuyB133JEkGTlyZKZOnZq99967ZWcMwDbZa6+90q5du3KXAQBAC1VWVvrCCLbCNodlL774Yo488sh88pOfzAc/+MFm21566aU88sgj+eIXv5gjjzwyq1atSkNDQ0aOHJmHH364NK6hoSE/+clPMnv27HTt2jXjxo3LiBEjsnDhwtJf3NGjR2fZsmW58847kyRnn312xowZk5/85CctOV8AAIDXddCS28pdAgBltM1h2UknnZSTTjppi9tqamoyZ86cZuumTp2aY489NkuWLEnPnj3T2NiYm266KbfcckuGDh2aJJk5c2Z69OiRe+65J8OHD8+TTz6ZO++8Mw8++GAGDBiQJLnxxhszcODAPPXUUzn44IO3tWwAAAAAeEM7/NFmjY2NqaioKF0+uXDhwqxfvz7Dhg0rjamvr0+fPn0yb968JMlvfvOb1NTUlIKyJHnnO9+Zmpqa0phNNTU1ZfXq1c0WAAAAANgWOzQs+8c//pHLLrsso0ePTufOnZMkK1asSNu2bbPPPvs0G1tbW5sVK1aUxnTv3n2z43Xv3r00ZlOTJk1KTU1NaenRo0crnw0AAAAAu7sdFpatX78+H/nIR7Jx48Zcd911bzi+UCikoqKi9Pqf//u1xvyz8ePHp7GxsbQsXbp0+4sHAAAAYI+0Q8Ky9evXZ9SoUVm8eHHmzJlTmlWWJHV1dVm3bl1WrVrVbJ+VK1emtra2NOYvf/nLZsf961//Whqzqerq6nTu3LnZAgAAAADbotXDsleDst///ve555570rVr12bb+/XrlzZt2jR7EMDy5cvz2GOPZdCgQUmSgQMHprGxMQ899FBpzPz589PY2FgaAwAAAACtbZufhrlmzZo888wzpdeLFy/OokWL0qVLl9TX1+dDH/pQHnnkkfz0pz/Nhg0bSvcY69KlS9q2bZuampqceeaZGTduXLp27ZouXbrk4osvTt++fUtPxzz00EPz3ve+N2eddVa+853vJEnOPvvsjBgxwpMwAQAAANhhtjkse/jhh/Pud7+79Pqiiy5KkpxxxhmZMGFC7rjjjiTJUUcd1Wy/e++9N4MHD06STJ48OVVVVRk1alTWrl2bIUOGZPr06amsrCyNv/XWW3PBBReUnpo5cuTITJs2bVvLBQAAAICtts1h2eDBg1MoFF5z++tte1W7du0yderUTJ069TXHdOnSJTNnztzW8gAAAABgu+2wp2ECAAAAwJuNsAwAAAAAirb5MkwAkjx8c8v27//J1qkDAACAVmVmGcB2mL/4+RYtALuiX/3qVzn55JNTX1+fioqK/OhHPyptW79+fS699NL07ds3HTt2TH19fT7+8Y/nz3/+c7NjNDU1ZezYsenWrVs6duyYkSNHZtmyZc3GrFq1KmPGjElNTU1qamoyZsyY/P3vf98JZwgA8MaEZQAAJElefPHFHHnkkVt8AvlLL72URx55JF/84hfzyCOP5Ic//GGefvrpjBw5stm4hoaG3H777Zk9e3buv//+rFmzJiNGjMiGDRtKY0aPHp1FixblzjvvzJ133plFixZlzJgxO/z8AAC2hsswAQBIkpx00kk56aSTtritpqYmc+bMabZu6tSpOfbYY7NkyZL07NkzjY2Nuemmm3LLLbdk6NChSZKZM2emR48eueeeezJ8+PA8+eSTufPOO/Pggw9mwIABSZIbb7wxAwcOzFNPPZWDDz54x54kAMAbMLMMAIDt0tjYmIqKiuy9995JkoULF2b9+vUZNmxYaUx9fX369OmTefPmJUl+85vfpKamphSUJck73/nO1NTUlMYAAJSTmWUAAGyzf/zjH7nssssyevTodO7cOUmyYsWKtG3bNvvss0+zsbW1tVmxYkVpTPfu3Tc7Xvfu3UtjNtXU1JSmpqbS69WrV7fWaQAAbMbMMgAAtsn69evzkY98JBs3bsx11133huMLhUIqKipKr//5v19rzD+bNGlS6WEANTU16dGjx/YXDwDwBoRlAABstfXr12fUqFFZvHhx5syZU5pVliR1dXVZt25dVq1a1WyflStXpra2tjTmL3/5y2bH/etf/1oas6nx48ensbGxtCxdurQVzwgAoDlhGQAAW+XVoOz3v/997rnnnnTt2rXZ9n79+qVNmzbNHgSwfPnyPPbYYxk0aFCSZODAgWlsbMxDDz1UGjN//vw0NjaWxmyquro6nTt3brYAAOwo7lkGAECSZM2aNXnmmWdKrxcvXpxFixalS5cuqa+vz4c+9KE88sgj+elPf5oNGzaU7jHWpUuXtG3bNjU1NTnzzDMzbty4dO3aNV26dMnFF1+cvn37lp6Oeeihh+a9731vzjrrrHznO99Jkpx99tkZMWKEJ2ECALsEYRkAAEmShx9+OO9+97tLry+66KIkyRlnnJEJEybkjjvuSJIcddRRzfa79957M3jw4CTJ5MmTU1VVlVGjRmXt2rUZMmRIpk+fnsrKytL4W2+9NRdccEHpqZkjR47MtGnTduCZAQBsPWEZAABJksGDB6dQKLzm9tfb9qp27dpl6tSpmTp16muO6dKlS2bOnLldNQIA7GjCMgAAgF3IrPlLWrT/6AE9W6kSgD2TsAwoi5Y2gQe1Uh0AALuag5bc1rIDDBjXOoUA7KGEZQAAwO7l4ZvLXQEAb2J7lbsAAAAAANhVmFkGlEWLLy8AAHgN8xc/X+4SAHgTM7MMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFG1zWParX/0qJ598curr61NRUZEf/ehHzbYXCoVMmDAh9fX1ad++fQYPHpzHH3+82ZimpqaMHTs23bp1S8eOHTNy5MgsW7as2ZhVq1ZlzJgxqampSU1NTcaMGZO///3v23yCAAAAALC1tjkse/HFF3PkkUdm2rRpW9x+9dVX59prr820adOyYMGC1NXV5cQTT8wLL7xQGtPQ0JDbb789s2fPzv333581a9ZkxIgR2bBhQ2nM6NGjs2jRotx555258847s2jRoowZM2Y7ThEAAAAAtk7Vtu5w0kkn5aSTTtritkKhkClTpuTyyy/PqaeemiSZMWNGamtrM2vWrJxzzjlpbGzMTTfdlFtuuSVDhw5NksycOTM9evTIPffck+HDh+fJJ5/MnXfemQcffDADBgxIktx4440ZOHBgnnrqqRx88MHbe74AAAAA8Jpa9Z5lixcvzooVKzJs2LDSuurq6pxwwgmZN29ekmThwoVZv359szH19fXp06dPacxvfvOb1NTUlIKyJHnnO9+Zmpqa0hgAAAAAaG3bPLPs9axYsSJJUltb22x9bW1tnnvuudKYtm3bZp999tlszKv7r1ixIt27d9/s+N27dy+N2VRTU1OamppKr1evXr39JwIAAADAHmmHPA2zoqKi2etCobDZuk1tOmZL41/vOJMmTSo9DKCmpiY9evTYjsoBAAAA2JO1alhWV1eXJJvN/lq5cmVptlldXV3WrVuXVatWve6Yv/zlL5sd/69//etms9ZeNX78+DQ2NpaWpUuXtvh8AAAAANiztGpY1qtXr9TV1WXOnDmldevWrcvcuXMzaNCgJEm/fv3Spk2bZmOWL1+exx57rDRm4MCBaWxszEMPPVQaM3/+/DQ2NpbGbKq6ujqdO3dutgAAAADAttjme5atWbMmzzzzTOn14sWLs2jRonTp0iU9e/ZMQ0NDJk6cmN69e6d3796ZOHFiOnTokNGjRydJampqcuaZZ2bcuHHp2rVrunTpkosvvjh9+/YtPR3z0EMPzXvf+96cddZZ+c53vpMkOfvsszNixAhPwgQAAABgh9nmsOzhhx/Ou9/97tLriy66KElyxhlnZPr06bnkkkuydu3anHvuuVm1alUGDBiQu+++O506dSrtM3ny5FRVVWXUqFFZu3ZthgwZkunTp6eysrI05tZbb80FF1xQemrmyJEjM23atO0+UQAAAAB4IxWFQqFQ7iJ2hNWrV6empiaNjY0uyYRd0PzbvlHuEspqwGnjyl0C8Br0ELs+PyPeiD5DnwGwJVvbQ+yQp2ECAAAAwJuRsAwAAAAAioRlAAAAAFAkLAMAIEnyq1/9KieffHLq6+tTUVGRH/3oR822FwqFTJgwIfX19Wnfvn0GDx6cxx9/vNmYpqamjB07Nt26dUvHjh0zcuTILFu2rNmYVatWZcyYMampqUlNTU3GjBmTv//97zv47AAAto6wDACAJMmLL76YI4888jWfQH711Vfn2muvzbRp07JgwYLU1dXlxBNPzAsvvFAa09DQkNtvvz2zZ8/O/fffnzVr1mTEiBHZsGFDaczo0aOzaNGi3HnnnbnzzjuzaNGijBkzZoefHwDA1qgqdwEAAOwaTjrppJx00klb3FYoFDJlypRcfvnlOfXUU5MkM2bMSG1tbWbNmpVzzjknjY2Nuemmm3LLLbdk6NChSZKZM2emR48eueeeezJ8+PA8+eSTufPOO/Pggw9mwIABSZIbb7wxAwcOzFNPPZWDDz5455wsAMBrMLMMAIA3tHjx4qxYsSLDhg0rrauurs4JJ5yQefPmJUkWLlyY9evXNxtTX1+fPn36lMb85je/SU1NTSkoS5J3vvOdqampKY3ZVFNTU1avXt1sAQDYUcwsAyiHh29u2f79P9k6dQBspRUrViRJamtrm62vra3Nc889VxrTtm3b7LPPPpuNeXX/FStWpHv37psdv3v37qUxm5o0aVKuuOKKFp8DAMDWMLMMAICtVlFR0ex1oVDYbN2mNh2zpfGvd5zx48ensbGxtCxdunQ7KgcA2DrCMgAA3lBdXV2SbDb7a+XKlaXZZnV1dVm3bl1WrVr1umP+8pe/bHb8v/71r5vNWntVdXV1Onfu3GwBANhRhGUAALyhXr16pa6uLnPmzCmtW7duXebOnZtBgwYlSfr165c2bdo0G7N8+fI89thjpTEDBw5MY2NjHnroodKY+fPnp7GxsTQGAKCc3LMM2C6z5i9p0f4HtVIdALSeNWvW5Jlnnim9Xrx4cRYtWpQuXbqkZ8+eaWhoyMSJE9O7d+/07t07EydOTIcOHTJ69OgkSU1NTc4888yMGzcuXbt2TZcuXXLxxRenb9++padjHnrooXnve9+bs846K9/5zneSJGeffXZGjBjhSZgAwC5BWAYAQJLk4Ycfzrvf/e7S64suuihJcsYZZ2T69Om55JJLsnbt2px77rlZtWpVBgwYkLvvvjudOnUq7TN58uRUVVVl1KhRWbt2bYYMGZLp06ensrKyNObWW2/NBRdcUHpq5siRIzNt2rSddJYAAK+volAoFMpdxI6wevXq1NTUpLGx0X0tYAdo8cyyJbe1UiV7pgGnjSt3CbDb0kPs+vyMeCPzb/tGuUsoK30CwJZtbQ/hnmUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQVFXuAoA3p4OW3FbuEgAAAKDVmVkGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAICiqnIXAAAAQOuZNX9Ji/YfPaBnK1UC8OZkZhkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqqyl0AAABAMw/fXO4KANiDmVkGAAAAAEXCMgAAAAAoEpYBAAAAQJF7lgEAALuU+YufL3cJAOzBzCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAEBRVbkLAAAAoPUctOS2lh1gwLjWKQTgTcrMMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoKjVw7KXX345X/jCF9KrV6+0b98+Bx54YK688sps3LixNKZQKGTChAmpr69P+/btM3jw4Dz++OPNjtPU1JSxY8emW7du6dixY0aOHJlly5a1drkAAAAAUNLqYdlVV12Vb3/725k2bVqefPLJXH311bnmmmsyderU0pirr7461157baZNm5YFCxakrq4uJ554Yl544YXSmIaGhtx+++2ZPXt27r///qxZsyYjRozIhg0bWrtkAAAAAEiSVLX2AX/zm9/kAx/4QN7//vcnSQ444IB873vfy8MPP5zklVllU6ZMyeWXX55TTz01STJjxozU1tZm1qxZOeecc9LY2Jibbropt9xyS4YOHZokmTlzZnr06JF77rknw4cPb+2yAQAAAKD1Z5Ydf/zx+cUvfpGnn346SfLb3/42999/f973vvclSRYvXpwVK1Zk2LBhpX2qq6tzwgknZN68eUmShQsXZv369c3G1NfXp0+fPqUxm2pqasrq1aubLQAAAACwLVp9Ztmll16axsbGHHLIIamsrMyGDRvyta99LR/96EeTJCtWrEiS1NbWNtuvtrY2zz33XGlM27Zts88++2w25tX9NzVp0qRcccUVrX06AAAAAOxBWn1m2fe///3MnDkzs2bNyiOPPJIZM2bk61//embMmNFsXEVFRbPXhUJhs3Wber0x48ePT2NjY2lZunRpy04EAAAAgD1Oq88s+/znP5/LLrssH/nIR5Ikffv2zXPPPZdJkybljDPOSF1dXZJXZo/tt99+pf1WrlxZmm1WV1eXdevWZdWqVc1ml61cuTKDBg3a4vtWV1enurq6tU8HAAAAgD1Iq88se+mll7LXXs0PW1lZmY0bNyZJevXqlbq6usyZM6e0fd26dZk7d24pCOvXr1/atGnTbMzy5cvz2GOPvWZYBgAAAAAt1eozy04++eR87WtfS8+ePXP44Yfn0UcfzbXXXptPfepTSV65/LKhoSETJ05M796907t370ycODEdOnTI6NGjkyQ1NTU588wzM27cuHTt2jVdunTJxRdfnL59+5aejgkAAAAAra3Vw7KpU6fmi1/8Ys4999ysXLky9fX1Oeecc/KlL32pNOaSSy7J2rVrc+6552bVqlUZMGBA7r777nTq1Kk0ZvLkyamqqsqoUaOydu3aDBkyJNOnT09lZWVrlwwAAAAASZKKQqFQKHcRO8Lq1atTU1OTxsbGdO7cudzlwG5n/m3fKHcJe7QBp40rdwmw29JD7Pr8jHZ/+ozy0mcAu6ut7SFa/Z5lAAAAAPBmJSwDAGCrvPzyy/nCF76QXr16pX379jnwwANz5ZVXlh7klCSFQiETJkxIfX192rdvn8GDB+fxxx9vdpympqaMHTs23bp1S8eOHTNy5MgsW7ZsZ58OAMAWCcsAANgqV111Vb797W9n2rRpefLJJ3P11VfnmmuuydSpU0tjrr766lx77bWZNm1aFixYkLq6upx44ol54YUXSmMaGhpy++23Z/bs2bn//vuzZs2ajBgxIhs2bCjHaQEANNPqN/gHAGD39Jvf/CYf+MAH8v73vz9JcsABB+R73/teHn744SSvzCqbMmVKLr/88px66qlJkhkzZqS2tjazZs3KOeeck8bGxtx000255ZZbSk85nzlzZnr06JF77rknw4cPL8/JAQAUmVkGAMBWOf744/OLX/wiTz/9dJLkt7/9be6///68733vS5IsXrw4K1asyLBhw0r7VFdX54QTTsi8efOSJAsXLsz69eubjamvr0+fPn1KYzbV1NSU1atXN1sAAHYUM8sAANgql156aRobG3PIIYeksrIyGzZsyNe+9rV89KMfTZKsWLEiSVJbW9tsv9ra2jz33HOlMW3bts0+++yz2ZhX99/UpEmTcsUVV7T26QAAbJGZZQAAbJXvf//7mTlzZmbNmpVHHnkkM2bMyNe//vXMmDGj2biKiopmrwuFwmbrNvV6Y8aPH5/GxsbSsnTp0padCADA6zCzDACArfL5z38+l112WT7ykY8kSfr27ZvnnnsukyZNyhlnnJG6urokr8we22+//Ur7rVy5sjTbrK6uLuvWrcuqVauazS5buXJlBg0atMX3ra6uTnV19Y46LQCAZswsAwBgq7z00kvZa6/m7WNlZWU2btyYJOnVq1fq6uoyZ86c0vZ169Zl7ty5pSCsX79+adOmTbMxy5cvz2OPPfaaYRkAwM5kZhkAAFvl5JNPzte+9rX07Nkzhx9+eB599NFce+21+dSnPpXklcsvGxoaMnHixPTu3Tu9e/fOxIkT06FDh4wePTpJUlNTkzPPPDPjxo1L165d06VLl1x88cXp27dv6emYAADlJCwDAGCrTJ06NV/84hdz7rnnZuXKlamvr88555yTL33pS6Uxl1xySdauXZtzzz03q1atyoABA3L33XenU6dOpTGTJ09OVVVVRo0albVr12bIkCGZPn16Kisry3FaAADNVBQKhUK5i9gRVq9enZqamjQ2NqZz587lLgd2PQ/f3KLd5y9+vpUKYXsMOG1cuUuA3ZYeYtfnZ7T7m3/bN8pdwh5NnwHsrra2h3DPMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAEBRVbkLAMpj/uLny10CAAAA7HLMLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUFRV7gIAAIDdzMM3l7sCANhuwjKAN6FZ85e0aP/RA3q2UiUAAAC7F5dhAgAAAECRmWUAb0IHLbmtZQcYMK51CgEAANjNmFkGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFFWVuwAAAGD3Mn/x8+UuAQC2m7AMAACA/+fhm1u2f/9Ptk4dAGXiMkwAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQFFVuQsAAABg1zF/8fMt2n9A/1YqBKBMzCwDAAAAgKIdEpb96U9/ysc+9rF07do1HTp0yFFHHZWFCxeWthcKhUyYMCH19fVp3759Bg8enMcff7zZMZqamjJ27Nh069YtHTt2zMiRI7Ns2bIdUS4AAAAAJNkBYdmqVaty3HHHpU2bNvn5z3+eJ554It/4xjey9957l8ZcffXVufbaazNt2rQsWLAgdXV1OfHEE/PCCy+UxjQ0NOT222/P7Nmzc//992fNmjUZMWJENmzY0NolAwAAAECSHXDPsquuuio9evTIzTffXFp3wAEHlP67UChkypQpufzyy3PqqacmSWbMmJHa2trMmjUr55xzThobG3PTTTfllltuydChQ5MkM2fOTI8ePXLPPfdk+PDhrV02AAAAALT+zLI77rgj/fv3z2mnnZbu3bvn6KOPzo033ljavnjx4qxYsSLDhg0rrauurs4JJ5yQefPmJUkWLlyY9evXNxtTX1+fPn36lMZsqqmpKatXr262AAAAAMC2aPWw7I9//GOuv/769O7dO3fddVc+85nP5IILLsh3v/vdJMmKFSuSJLW1tc32q62tLW1bsWJF2rZtm3322ec1x2xq0qRJqampKS09evRo7VMDAAAAYDfX6mHZxo0b8453vCMTJ07M0UcfnXPOOSdnnXVWrr/++mbjKioqmr0uFAqbrdvU640ZP358GhsbS8vSpUtbdiIAAAAA7HFaPSzbb7/9cthhhzVbd+ihh2bJkiVJkrq6uiTZbIbYypUrS7PN6urqsm7duqxateo1x2yquro6nTt3brYAAAAAwLZo9bDsuOOOy1NPPdVs3dNPP539998/SdKrV6/U1dVlzpw5pe3r1q3L3LlzM2jQoCRJv3790qZNm2Zjli9fnscee6w0BgAAAABaW6s/DfNzn/tcBg0alIkTJ2bUqFF56KGHcsMNN+SGG25I8srllw0NDZk4cWJ69+6d3r17Z+LEienQoUNGjx6dJKmpqcmZZ56ZcePGpWvXrunSpUsuvvji9O3bt/R0TAAAAABoba0elh1zzDG5/fbbM378+Fx55ZXp1atXpkyZktNPP7005pJLLsnatWtz7rnnZtWqVRkwYEDuvvvudOrUqTRm8uTJqaqqyqhRo7J27doMGTIk06dPT2VlZWuXDAAAAABJkopCoVAodxE7wurVq1NTU5PGxkb3L4MtmH/bN8pdAmU04LRx5S4Bdll6iF2fn9GuT5+xZ9NnALuqre0hWv2eZQAA7L7+9Kc/5WMf+1i6du2aDh065KijjsrChQtL2wuFQiZMmJD6+vq0b98+gwcPzuOPP97sGE1NTRk7dmy6deuWjh07ZuTIkVm2bNnOPhUAgC0SlgEAsFVWrVqV4447Lm3atMnPf/7zPPHEE/nGN76RvffeuzTm6quvzrXXXptp06ZlwYIFqaury4knnpgXXnihNKahoSG33357Zs+enfvvvz9r1qzJiBEjsmHDhjKcFQBAc61+zzIAAHZPV111VXr06JGbb765tO6AAw4o/XehUMiUKVNy+eWX59RTT02SzJgxI7W1tZk1a1bOOeecNDY25qabbsott9xSenDTzJkz06NHj9xzzz0ZPnz4Tj0nAIBNmVkGAMBWueOOO9K/f/+cdtpp6d69e44++ujceOONpe2LFy/OihUrMmzYsNK66urqnHDCCZk3b16SZOHChVm/fn2zMfX19enTp09pzKaampqyevXqZgsAwI4iLAMAYKv88Y9/zPXXX5/evXvnrrvuymc+85lccMEF+e53v5skWbFiRZKktra22X61tbWlbStWrEjbtm2zzz77vOaYTU2aNCk1NTWlpUePHq19agAAJcIyAAC2ysaNG/OOd7wjEydOzNFHH51zzjknZ511Vq6//vpm4yoqKpq9LhQKm63b1OuNGT9+fBobG0vL0qVLW3YiAACvQ1gGAMBW2W+//XLYYYc1W3fooYdmyZIlSZK6urok2WyG2MqVK0uzzerq6rJu3bqsWrXqNcdsqrq6Op07d262AADsKMIyAAC2ynHHHZennnqq2bqnn346+++/f5KkV69eqaury5w5c0rb161bl7lz52bQoEFJkn79+qVNmzbNxixfvjyPPfZYaQwAQDl5GiYAAFvlc5/7XAYNGpSJEydm1KhReeihh3LDDTfkhhtuSPLK5ZcNDQ2ZOHFievfund69e2fixInp0KFDRo8enSSpqanJmWeemXHjxqVr167p0qVLLr744vTt27f0dEwAgHISlgEAsFWOOeaY3H777Rk/fnyuvPLK9OrVK1OmTMnpp59eGnPJJZdk7dq1Offcc7Nq1aoMGDAgd999dzp16lQaM3ny5FRVVWXUqFFZu3ZthgwZkunTp6eysrIcpwUA0ExFoVAolLuIHWH16tWpqalJY2Oj+1rAFsy/7RvlLoEyGnDauHKXALssPcSuz89o16fP2LPpM4Bd1db2EO5ZBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKqspdALCdHr653BUAAADAbkdYBm9S8xc/X+4SAAAAYLfjMkwAAAAAKBKWAQAAAECRyzAB9kCz5i9p0f6jB/RspUoAAAB2LcIygD3QQUtua9kBBoxrnUIAAAB2MS7DBAAAAIAiYRkAAAAAFAnLAAAAAKDIPcsAAABoPQ/f3PJj9P9ky48BsJ3MLAMAAACAImEZAAAAABS5DBMAAIBWM3/x8y0+xoD+rVAIwHYyswwAAAAAioRlAAAAAFAkLAMAAACAoh0elk2aNCkVFRVpaGgorSsUCpkwYULq6+vTvn37DB48OI8//niz/ZqamjJ27Nh069YtHTt2zMiRI7Ns2bIdXS4AAAAAe7AdeoP/BQsW5IYbbsgRRxzRbP3VV1+da6+9NtOnT8/b3/72fPWrX82JJ56Yp556Kp06dUqSNDQ05Cc/+Ulmz56drl27Zty4cRkxYkQWLlyYysrKHVk2AADs0WbNX9Ki/Q9qpToAoBx2WFi2Zs2anH766bnxxhvz1a9+tbS+UChkypQpufzyy3PqqacmSWbMmJHa2trMmjUr55xzThobG3PTTTfllltuydChQ5MkM2fOTI8ePXLPPfdk+PDhO6psAADY4x205LZylwAAZbPDLsM877zz8v73v78Udr1q8eLFWbFiRYYNG1ZaV11dnRNOOCHz5s1LkixcuDDr169vNqa+vj59+vQpjdlUU1NTVq9e3WwBAAAAgG2xQ2aWzZ49O4888kgWLFiw2bYVK1YkSWpra5utr62tzXPPPVca07Zt2+yzzz6bjXl1/01NmjQpV1xxRWuUDwAAAMAeqtVnli1dujQXXnhhZs6cmXbt2r3muIqKimavC4XCZus29Xpjxo8fn8bGxtKydOnSbS8eAAAAgD1aq4dlCxcuzMqVK9OvX79UVVWlqqoqc+fOzbe+9a1UVVWVZpRtOkNs5cqVpW11dXVZt25dVq1a9ZpjNlVdXZ3OnTs3WwAAAABgW7R6WDZkyJD87ne/y6JFi0pL//79c/rpp2fRokU58MADU1dXlzlz5pT2WbduXebOnZtBgwYlSfr165c2bdo0G7N8+fI89thjpTEAAAAA0Npa/Z5lnTp1Sp8+fZqt69ixY7p27Vpa39DQkIkTJ6Z3797p3bt3Jk6cmA4dOmT06NFJkpqampx55pkZN25cunbtmi5duuTiiy9O3759N3tgAAAAAAC0lh1yg/83cskll2Tt2rU599xzs2rVqgwYMCB33313OnXqVBozefLkVFVVZdSoUVm7dm2GDBmS6dOnp7KyshwlAwAAALAHaPXLMLfkvvvuy5QpU0qvKyoqMmHChCxfvjz/+Mc/Mnfu3M1mo7Vr1y5Tp07N//zP/+Sll17KT37yk/To0WNnlAsAwFaYNGlSKioq0tDQUFpXKBQyYcKE1NfXp3379hk8eHAef/zxZvs1NTVl7Nix6datWzp27JiRI0dm2bJlO7l6AIAt2ylhGQAAu5cFCxbkhhtuyBFHHNFs/dVXX51rr70206ZNy4IFC1JXV5cTTzwxL7zwQmlMQ0NDbr/99syePTv3339/1qxZkxEjRmTDhg07+zQAADYjLAMAYJusWbMmp59+em688cbss88+pfWFQiFTpkzJ5ZdfnlNPPTV9+vTJjBkz8tJLL2XWrFlJksbGxtx00035xje+kaFDh+boo4/OzJkz87vf/S733HNPuU4JAKBEWAYAwDY577zz8v73v3+zBy8tXrw4K1asyLBhw0rrqqurc8IJJ2TevHlJkoULF2b9+vXNxtTX16dPnz6lMZtqamrK6tWrmy0AADtKWW7wDwDAm9Ps2bPzyCOPZMGCBZttW7FiRZKktra22fra2to899xzpTFt27ZtNiPt1TGv7r+pSZMm5YorrmiN8gEA3pCZZQAAbJWlS5fmwgsvzMyZM9OuXbvXHFdRUdHsdaFQ2Gzdpl5vzPjx49PY2Fhali5duu3FAwBsJWEZAABbZeHChVm5cmX69euXqqqqVFVVZe7cufnWt76Vqqqq0oyyTWeIrVy5srStrq4u69aty6pVq15zzKaqq6vTuXPnZgsAwI4iLAMAYKsMGTIkv/vd77Jo0aLS0r9//5x++ulZtGhRDjzwwNTV1WXOnDmlfdatW5e5c+dm0KBBSZJ+/fqlTZs2zcYsX748jz32WGkMAEA5uWcZAABbpVOnTunTp0+zdR07dkzXrl1L6xsaGjJx4sT07t07vXv3zsSJE9OhQ4eMHj06SVJTU5Mzzzwz48aNS9euXdOlS5dcfPHF6du372YPDAAAKAdhGQAAreaSSy7J2rVrc+6552bVqlUZMGBA7r777nTq1Kk0ZvLkyamqqsqoUaOydu3aDBkyJNOnT09lZWUZKwcAeIWwDACA7Xbfffc1e11RUZEJEyZkwoQJr7lPu3btMnXq1EydOnXHFgcAsB3cswwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQFFVuQsA4E3o4Ztbfoz+n2z5MQAAAFqZsAyAbTZ/8fMtPsaA/q1QCAAAQCtzGSYAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkadhQpnMmr+kRfsf1Ep1AAAAAP+PmWUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQVFXuAgAAgNY1a/6SFu1/UCvVAQBvRmaWAQAAAECRmWVQJgctua3cJQAAuyl9BgBsPzPLAAAAAKBIWAYAAAAARa0elk2aNCnHHHNMOnXqlO7du+eUU07JU0891WxMoVDIhAkTUl9fn/bt22fw4MF5/PHHm41pamrK2LFj061bt3Ts2DEjR47MsmXLWrtcAAAAAChp9XuWzZ07N+edd16OOeaYvPzyy7n88sszbNiwPPHEE+nYsWOS5Oqrr861116b6dOn5+1vf3u++tWv5sQTT8xTTz2VTp06JUkaGhryk5/8JLNnz07Xrl0zbty4jBgxIgsXLkxlZWVrlw0AAMAuoqVPdB09oGcrVQLsiVo9LLvzzjubvb755pvTvXv3LFy4MO9617tSKBQyZcqUXH755Tn11FOTJDNmzEhtbW1mzZqVc845J42Njbnppptyyy23ZOjQoUmSmTNnpkePHrnnnnsyfPjw1i4btt3DN5e7AgAAAKCV7fB7ljU2NiZJunTpkiRZvHhxVqxYkWHDhpXGVFdX54QTTsi8efOSJAsXLsz69eubjamvr0+fPn1KYzbV1NSU1atXN1sAAAAAYFvs0LCsUCjkoosuyvHHH58+ffokSVasWJEkqa2tbTa2tra2tG3FihVp27Zt9tlnn9ccs6lJkyalpqamtPTo0aO1TwcAAACA3dwODcvOP//8/Nd//Ve+973vbbatoqKi2etCobDZuk293pjx48ensbGxtCxdunT7CwcAAABgj7TDwrKxY8fmjjvuyL333pu3vvWtpfV1dXVJstkMsZUrV5Zmm9XV1WXdunVZtWrVa47ZVHV1dTp37txsAQAAAIBt0ephWaFQyPnnn58f/vCH+eUvf5levXo1296rV6/U1dVlzpw5pXXr1q3L3LlzM2jQoCRJv3790qZNm2Zjli9fnscee6w0BgAAAABaW6uHZeedd15mzpyZWbNmpVOnTlmxYkVWrFiRtWvXJnnl8suGhoZMnDgxt99+ex577LF84hOfSIcOHTJ69OgkSU1NTc4888yMGzcuv/jFL/Loo4/mYx/7WPr27Vt6OiYAADvXpEmTcswxx6RTp07p3r17TjnllDz11FPNxhQKhUyYMCH19fVp3759Bg8enMcff7zZmKampowdOzbdunVLx44dM3LkyCxbtmxnngoAwGtq9bDs+uuvT2NjYwYPHpz99tuvtHz/+98vjbnkkkvS0NCQc889N/3798+f/vSn3H333enUqVNpzOTJk3PKKadk1KhROe6449KhQ4f85Cc/SWVlZWuXDADAVpg7d27OO++8PPjgg5kzZ05efvnlDBs2LC+++GJpzNVXX51rr70206ZNy4IFC1JXV5cTTzwxL7zwQmlMQ0NDbr/99syePTv3339/1qxZkxEjRmTDhg3lOC0AgGYqCoVCodxF7AirV69OTU1NGhsb3b+MHePhm1u0+/zFz7dSIfDmNOC0ceUuAbZID7H1/vrXv6Z79+6ZO3du3vWud6VQKKS+vj4NDQ259NJLk7wyi6y2tjZXXXVVzjnnnDQ2NmbffffNLbfckg9/+MNJkj//+c/p0aNHfvazn2X48OFv+L5+Rm9s/m3fKHcJ0CJ/6Hlai/YfPaBnK1UC7E62toeo2ok1AQCwG2lsbEySdOnSJUmyePHirFixIsOGDSuNqa6uzgknnJB58+blnHPOycKFC7N+/fpmY+rr69OnT5/Mmzdvq8IyYPd30JLbWnaAAb6UA7afsAwAgG1WKBRy0UUX5fjjj0+fPn2S/L+nnW/69PLa2to899xzpTFt27bNPvvss9mYTZ+W/qqmpqY0NTWVXq9evbrVzgMAYFOtfs8yAAB2f+eff37+67/+K9/73vc221ZRUdHsdaFQ2Gzdpl5vzKRJk1JTU1NaevTosf2FAwC8AWEZAADbZOzYsbnjjjty77335q1vfWtpfV1dXZJsNkNs5cqVpdlmdXV1WbduXVatWvWaYzY1fvz4NDY2lpalS5e25ukAADQjLAMAYKsUCoWcf/75+eEPf5hf/vKX6dWrV7PtvXr1Sl1dXebMmVNat27dusydOzeDBg1KkvTr1y9t2rRpNmb58uV57LHHSmM2VV1dnc6dOzdbAAB2FPcsAwBgq5x33nmZNWtWfvzjH6dTp06lGWQ1NTVp3759Kioq0tDQkIkTJ6Z3797p3bt3Jk6cmA4dOmT06NGlsWeeeWbGjRuXrl27pkuXLrn44ovTt2/fDB06tJynBwCQRFgGAMBWuv7665MkgwcPbrb+5ptvzic+8YkkySWXXJK1a9fm3HPPzapVqzJgwIDcfffd6dSpU2n85MmTU1VVlVGjRmXt2rUZMmRIpk+fnsrKyp11KgAAr0lYBgDAVikUCm84pqKiIhMmTMiECRNec0y7du0yderUTJ06tRWrAwBoHe5ZBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAitzgH4CymDV/SYv2Hz2gZytVAgAA8P+YWQYAAAAARcIyAAAAAChyGSYAZXHQkttadoAB41qnEAAAgH8iLIPtNH/x8+UuAQAA2JKHb27Z/v0/2Tp1AG9KLsMEAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAiqrKXQAAAAC0pvmLn2/R/gP6t1IhwJuSmWUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARcIyAAAAACiqKncBAABAc7PmL2nR/ge1Uh0AsCcyswwAAAAAioRlAAAAAFDkMkwAANjFHLTktnKXAAB7LDPLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFVeUuAAAAdjsP31zuCgCA7WRmGQAAAAAUmVnGHmvW/CUt2v+gVqoD2D4t/Ts8ekDPVqoEAADYnQjL2GMdtOS2cpcAtECL/w4PGNc6hQAAux1fysGeTVgGAACtbP7i58tdAtACvpSDPZt7lgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoKiq3AXA9po1f0mL9j+oleoAAAAAdh9mlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCI3+OdN66Alt5W7BOBNrKUPCRk9oGcrVQIAAOxKhGUA7JFaHLgPGNc6hQC7podvLncFAECZ7PKXYV533XXp1atX2rVrl379+uXXv/51uUsCAAAAYDe1S88s+/73v5+GhoZcd911Oe644/Kd73wnJ510Up544on07Onylze7ll4CdVAr1QGwPebf9o0W7T/gNDPTYFc2f/Hz5S4BACiTXTosu/baa3PmmWfm05/+dJJkypQpueuuu3L99ddn0qRJZa5uF1DuywP6f7K87w8AALALcm9UeHPbZcOydevWZeHChbnsssuarR82bFjmzZtXpqpopsVh3ZBWKQPgzailM9Naysw2AADYsl02LPvb3/6WDRs2pLa2ttn62trarFixYrPxTU1NaWpqKr1evXr1Dq9xT9fiyxN8WQJQNi4jBQCALdtlw7JXVVRUNHtdKBQ2W5ckkyZNyhVXXLGzynrFHn4Z5ID+Ldy/pZ+f/1EDAAAAWtku+zTMbt26pbKycrNZZCtXrtxstlmSjB8/Po2NjaVl6dKlO6tUAAAAAHYTu+zMsrZt26Zfv36ZM2dO/uVf/qW0fs6cOfnABz6w2fjq6upUV1fvzBJbPrOr3DPTAAAAaHUHLbmtZQeo7NKy/T2MDVpklw3LkuSiiy7KmDFj0r9//wwcODA33HBDlixZks985jPlLq11+AcMANiDXXfddbnmmmuyfPnyHH744ZkyZUr+1//6X+UuCwDYw+3SYdmHP/zh/M///E+uvPLKLF++PH369MnPfvaz7L///uUuDQCAFvj+97+fhoaGXHfddTnuuOPyne98JyeddFKeeOKJ9OzpKUDAnq2lD1Nr6f2lW6ylV1GZWEKZVRQKhUK5i9gRVq9enZqamjQ2NqZz587lLoct8Q8oALsgPcTOMWDAgLzjHe/I9ddfX1p36KGH5pRTTsmkSZNed9+d8TNq6RNjAd7MWvzUa/+vxy5qa3uIXXpmGQAAu59169Zl4cKFueyyy5qtHzZsWObNm7fZ+KampjQ1NZVer169eofXCLAna+kXBgN6tfCea+W+v7ewbo8nLKN8/AMEAHukv/3tb9mwYcNmTzivra3d7EnoSTJp0qRcccUVO6u8JK0wqwIAeNPaq9wFAACwZ6qoqGj2ulAobLYuScaPH5/GxsbSsnTp0p1VIgCwBzKzDACAnapbt26prKzcbBbZypUrN5ttliTV1dWprq7eWeUBAHs4M8sAANip2rZtm379+mXOnDnN1s+ZMyeDBg0qU1UAAK8wswwAgJ3uoosuypgxY9K/f/8MHDgwN9xwQ5YsWZLPfOYz5S4NANjDCcsAANjpPvzhD+d//ud/cuWVV2b58uXp06dPfvazn2X//fcvd2kAwB5OWAYAQFmce+65Offcc8tdBgBAM+5ZBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAImEZAAAAABQJywAAAACgSFgGAAAAAEXCMgAAAAAoEpYBAAAAQJGwDAAAAACKhGUAAAAAUCQsAwAAAIAiYRkAAAAAFAnLAAAAAKBIWAYAAAAARVXlLmBHKRQKSZLVq1eXuRIA4M3k1d7h1V6CXY8+DwDYHlvb5+22YdkLL7yQJOnRo0eZKwEA3oxeeOGF1NTUlLsMtkCfBwC0xBv1eRWF3fRr040bN+bPf/5zOnXqlIqKilY//urVq9OjR48sXbo0nTt3bvXj8/p8/uXl8y8vn3/5+RmU147+/AuFQl544YXU19dnr73csWJXpM/bvfn8y8vnX35+BuXl8y+vXaXP221nlu21115561vfusPfp3Pnzv4ClZHPv7x8/uXl8y8/P4Py2pGfvxlluzZ93p7B519ePv/y8zMoL59/eZW7z/N1KQAAAAAUCcsAAAAAoEhYtp2qq6vz5S9/OdXV1eUuZY/k8y8vn395+fzLz8+gvHz+7Gj+jJWXz7+8fP7l52dQXj7/8tpVPv/d9gb/AAAAALCtzCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwrLtdN1116VXr15p165d+vXrl1//+tflLmmPMGnSpBxzzDHp1KlTunfvnlNOOSVPPfVUucvaY02aNCkVFRVpaGgodyl7jD/96U/52Mc+lq5du6ZDhw456qijsnDhwnKXtUd4+eWX84UvfCG9evVK+/btc+CBB+bKK6/Mxo0by13abulXv/pVTj755NTX16eioiI/+tGPmm0vFAqZMGFC6uvr0759+wwePDiPP/54eYplt6PPKw993q5Fn7fz6fPKR5+3c70Z+jxh2Xb4/ve/n4aGhlx++eV59NFH87/+1//KSSedlCVLlpS7tN3e3Llzc9555+XBBx/MnDlz8vLLL2fYsGF58cUXy13aHmfBggW54YYbcsQRR5S7lD3GqlWrctxxx6VNmzb5+c9/nieeeCLf+MY3svfee5e7tD3CVVddlW9/+9uZNm1annzyyVx99dW55pprMnXq1HKXtlt68cUXc+SRR2batGlb3H711Vfn2muvzbRp07JgwYLU1dXlxBNPzAsvvLCTK2V3o88rH33erkOft/Pp88pLn7dzvSn6vALb7Nhjjy185jOfabbukEMOKVx22WVlqmjPtXLlykKSwty5c8tdyh7lhRdeKPTu3bswZ86cwgknnFC48MILy13SHuHSSy8tHH/88eUuY4/1/ve/v/CpT32q2bpTTz218LGPfaxMFe05khRuv/320uuNGzcW6urqCv/2b/9WWvePf/yjUFNTU/j2t79dhgrZnejzdh36vPLQ55WHPq+89Hnls6v2eWaWbaN169Zl4cKFGTZsWLP1w4YNy7x588pU1Z6rsbExSdKlS5cyV7JnOe+88/L+978/Q4cOLXcpe5Q77rgj/fv3z2mnnZbu3bvn6KOPzo033ljusvYYxx9/fH7xi1/k6aefTpL89re/zf3335/3ve99Za5sz7N48eKsWLGi2e/i6urqnHDCCX4X0yL6vF2LPq889Hnloc8rL33ermNX6fOqdto77Sb+9re/ZcOGDamtrW22vra2NitWrChTVXumQqGQiy66KMcff3z69OlT7nL2GLNnz84jjzySBQsWlLuUPc4f//jHXH/99bnooovyr//6r3nooYdywQUXpLq6Oh//+MfLXd5u79JLL01jY2MOOeSQVFZWZsOGDfna176Wj370o+UubY/z6u/bLf0ufu6558pRErsJfd6uQ59XHvq88tHnlZc+b9exq/R5wrLtVFFR0ex1oVDYbB071vnnn5//+q//yv3331/uUvYYS5cuzYUXXpi777477dq1K3c5e5yNGzemf//+mThxYpLk6KOPzuOPP57rr79eE7UTfP/738/MmTMza9asHH744Vm0aFEaGhpSX1+fM844o9zl7ZH8LmZH8Wer/PR5O58+r7z0eeWlz9v1lPt3sbBsG3Xr1i2VlZWbfbu4cuXKzZJPdpyxY8fmjjvuyK9+9au89a1vLXc5e4yFCxdm5cqV6devX2ndhg0b8qtf/SrTpk1LU1NTKisry1jh7m2//fbLYYcd1mzdoYcemh/84AdlqmjP8vnPfz6XXXZZPvKRjyRJ+vbtm+eeey6TJk3SRO1kdXV1SV755nG//fYrrfe7mJbS5+0a9Hnloc8rL31eeenzdh27Sp/nnmXbqG3btunXr1/mzJnTbP2cOXMyaNCgMlW15ygUCjn//PPzwx/+ML/85S/Tq1evcpe0RxkyZEh+97vfZdGiRaWlf//+Of3007No0SIN1A523HHH5amnnmq27umnn87+++9fpor2LC+99FL22qv5r83KykqPFC+DXr16pa6urtnv4nXr1mXu3Ll+F9Mi+rzy0ueVlz6vvPR55aXP23XsKn2emWXb4aKLLsqYMWPSv3//DBw4MDfccEOWLFmSz3zmM+Uubbd33nnnZdasWfnxj3+cTp06lb75rampSfv27ctc3e6vU6dOm903pGPHjunatav7iewEn/vc5zJo0KBMnDgxo0aNykMPPZQbbrghN9xwQ7lL2yOcfPLJ+drXvpaePXvm8MMPz6OPPpprr702n/rUp8pd2m5pzZo1eeaZZ0qvFy9enEWLFqVLly7p2bNnGhoaMnHixPTu3Tu9e/fOxIkT06FDh4wePbqMVbM70OeVjz6vvPR55aXPKy993s71pujzdtpzN3cz//t//+/C/vvvX2jbtm3hHe94h0da7yRJtrjcfPPN5S5tj+WR4jvXT37yk0KfPn0K1dXVhUMOOaRwww03lLukPcbq1asLF154YaFnz56Fdu3aFQ488MDC5ZdfXmhqaip3abule++9d4v/3p9xxhmFQuGVx4p/+ctfLtTV1RWqq6sL73rXuwq/+93vyls0uw19Xnno83Y9+rydS59XPvq8nevN0OdVFAqFws6L5gAAAABg1+WeZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoEhYBgAAAABFwjIAAAAAKBKWAQAAAECRsAwAAAAAioRlAAAAAFAkLAMAAACAoqpyFwCwswwePDh9+vRJksycOTOVlZX57Gc/m6985SupqKgoc3UAAGwvfR7QmswsA/YoM2bMSFVVVebPn59vfetbmTx5cv793/+93GUBANBC+jygtVQUCoVCuYsA2BkGDx6clStX5vHHHy99w3jZZZfljjvuyBNPPFHm6gAA2F76PKA1mVkG7FHe+c53NpuKP3DgwPz+97/Phg0bylgVAAAtpc8DWouwDAAAAACKhGXAHuXBBx/c7HXv3r1TWVlZpooAAGgN+jygtQjLgD3K0qVLc9FFF+Wpp57K9773vUydOjUXXnhhucsCAKCF9HlAa6kqdwEAO9PHP/7xrF27Nscee2wqKyszduzYnH322eUuCwCAFtLnAa1FWAbsUdq0aZMpU6bk+uuvL3cpAAC0In0e0FpchgkAAAAARcIyAAAAACiqKBQKhXIXAQAAAAC7AjPLAAAAAKBIWAYAAAAARcIyAAAAACgSlgEAAABAkbAMAAAAAIqEZQAAAABQJCwDAAAAgCJhGQAAAAAUCcsAAAAAoOj/B55idOmW+5UBAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1272,17 +1272,17 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:54.537084Z", - "iopub.status.busy": "2024-01-10T15:12:54.536822Z", - "iopub.status.idle": "2024-01-10T15:12:54.540618Z", - "shell.execute_reply": "2024-01-10T15:12:54.540267Z" + "iopub.execute_input": "2024-02-06T01:09:46.244298Z", + "iopub.status.busy": "2024-02-06T01:09:46.244127Z", + "iopub.status.idle": "2024-02-06T01:09:46.248272Z", + "shell.execute_reply": "2024-02-06T01:09:46.247792Z" } }, "outputs": [ { "data": { "text/plain": [ - "-0.3450503205921056" + "-0.34344490966851315" ] }, "execution_count": 30, @@ -1306,10 +1306,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:54.542323Z", - "iopub.status.busy": "2024-01-10T15:12:54.542174Z", - "iopub.status.idle": "2024-01-10T15:12:54.546986Z", - "shell.execute_reply": "2024-01-10T15:12:54.546516Z" + "iopub.execute_input": "2024-02-06T01:09:46.250103Z", + "iopub.status.busy": "2024-02-06T01:09:46.249789Z", + "iopub.status.idle": "2024-02-06T01:09:46.254537Z", + "shell.execute_reply": "2024-02-06T01:09:46.254128Z" } }, "outputs": [ @@ -1317,7 +1317,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "-0.017799548266771503" + "0.01243138520386182" ] }, { @@ -1331,7 +1331,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.002680077280922253" + "-0.011348832943694522" ] }, { @@ -1359,16 +1359,16 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:54.548848Z", - "iopub.status.busy": "2024-01-10T15:12:54.548539Z", - "iopub.status.idle": "2024-01-10T15:12:54.716717Z", - "shell.execute_reply": "2024-01-10T15:12:54.716229Z" + "iopub.execute_input": "2024-02-06T01:09:46.256133Z", + "iopub.status.busy": "2024-02-06T01:09:46.255984Z", + "iopub.status.idle": "2024-02-06T01:09:46.434038Z", + "shell.execute_reply": "2024-02-06T01:09:46.433664Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4NUlEQVR4nO3deXhN5/7//9cWEpmRkOGIiIo5JaWthBY1pIoqPVV1Tho11RDE0GjaQ0ORVo3loy2nx1BaztVDP53UUJSag5wqagzhI5FWNUE1IdnfP/zsX0MQmbZbno/rWtdlr32vtd73jtgv97rXWhar1WoVAACAocrZuwAAAICiIMwAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABitvL0LKA25ubk6c+aM3N3dZbFY7F0OAAAoAKvVqgsXLsjf31/lyt16/KVMhJkzZ84oICDA3mUAAIBCOHXqlKpXr37L98tEmHF3d5d07cPw8PCwczUAAKAgMjMzFRAQYPsev5UyEWaun1ry8PAgzAAAYJg7TRFhAjAAADAaYQYAABiNMAMAAIxWJubMFFROTo6uXLli7zIAIzk6Ot720kkAKCmEGV27jj0tLU2//fabvUsBjFWuXDkFBQXJ0dHR3qUAKGMIM5ItyFSrVk0uLi7cWA+4S9dvTJmamqoaNWrwOwSgVJX5MJOTk2MLMl5eXvYuBzBW1apVdebMGV29elUVKlSwdzkAypAyf4L7+hwZFxcXO1cCmO366aWcnBw7VwKgrCnzYeY6hsWBouF3CIC9EGYAAIDRCDMAAMBoZX4C8K3MWHu4VI83on2dUjlOfHy8PvvsMyUlJRV4m9atW6tJkyaaOXOmXeu47sSJEwoKCtLevXvVpEmTYqsJAGAmwkwZM3r0aA0dOvSutlmxYsU9dXVKQECAUlNT5e3tbe9SAAD3AMJMGWG1WpWTkyM3Nze5ubnd1bZVqlQpoaoKx8HBQb6+vvYuAwBwj2DOjKGysrI0bNgwVatWTRUrVlTLli21a9cu2/sbN26UxWLR6tWr1axZMzk5OWnz5s2Kj4/Pc2rm6tWrGjZsmCpVqiQvLy+NGTNGUVFReuaZZ2xtWrdurZiYGNvrmjVravLkyerTp4/c3d1Vo0YNzZs3L099Y8aMUZ06deTi4qJatWpp7Nixd/WoiPPnz+tvf/ubqlatKmdnZwUHB2vBggWSrp1mslgseU5Rff755woODpazs7PatGmjRYsWyWKx3PauzhaLRR988IE6d+4sFxcX1a9fX9u2bdPRo0fVunVrubq6KiwsTMeOHbNtc+zYMXXt2lU+Pj5yc3PTww8/rHXr1uXZ79y5cxUcHKyKFSvKx8dHf/3rX23vffrppwoJCZGzs7O8vLzUrl07Xbp0qcCfCyBJ2pBQ+AW4DzEyY6jY2Fj95z//0aJFixQYGKgpU6YoIiJCR48ezTOSEhsbq6lTp6pWrVqqVKmSvvvuuzz7efvtt7V06VItWLBA9evX16xZs/TZZ5+pTZs2tz3+tGnT9Oabb+q1117Tp59+qkGDBunxxx9XvXr1JEnu7u5auHCh/P39tW/fPvXv31/u7u6KjY0tUP/Gjh2rAwcOaNWqVfL29tbRo0d1+fLlfNueOHFCf/3rXzV8+HD169dPe/fu1ejRowt0nDfffFPTp0/X9OnTNWbMGPXq1Uu1atVSXFycatSooT59+ig6OlqrVq2SJF28eFFPPfWUJk6cqIoVK2rRokXq0qWLDh06pBo1aigxMVHDhg3TRx99pPDwcP3666/avHmzJCk1NVUvvPCCpkyZom7duunChQvavHmzrFZrgWrFfYZgARQbwoyBLl26pPfee08LFy5Ux44dJUnz58/X2rVr9eGHH+qVV16xtZ0wYYLat29/y33Nnj1bcXFx6tatmyRpzpw5+vrrr+9Yw1NPPaXBgwdLujYKM2PGDG3cuNEWZv7xj3/Y2tasWVOjRo3S8uXLCxxmUlJSFBoaqmbNmtn2cSvvv/++6tatq3feeUeSVLduXf3444+aNGnSHY/z0ksvqUePHrZ+hIWFaezYsYqIiJAkDR8+XC+99JKtfePGjdW4cWPb64kTJ2rlypX6/PPPFR0drZSUFLm6uqpz585yd3dXYGCgQkNDJV0LM1evXlX37t0VGBgoSQoJCSnQ5wEAuDVOMxno2LFjunLlilq0aGFbV6FCBT3yyCM6ePBgnrbXw0B+MjIydPbsWT3yyCO2dQ4ODmratOkda3jwwQdtf7ZYLPL19VV6erpt3aeffqqWLVvK19dXbm5uGjt2rFJSUgrUP0kaNGiQli1bpiZNmig2NlZbt269ZdtDhw7p4YcfzrPuz30qaD98fHwk5Q0YPj4++uOPP5SZmSnpWpCMjY1VgwYNVKlSJbm5uemnn36y9a19+/YKDAxUrVq1FBkZqaVLl+r333+XdC0ItW3bViEhIXruuec0f/58nT9/vkB1AgBujTBjoOunJW6846rVar1pnaur6x33l99+7uTGq5ssFotyc3MlSdu3b1fPnj3VsWNHffnll9q7d69ef/11ZWdn33G/13Xs2FEnT55UTEyMzpw5o7Zt297y1FF+/S7oqZs/9+P6PvJbd71vr7zyiv7zn/9o0qRJ2rx5s5KSkhQSEmLrm7u7u/bs2aNPPvlEfn5+GjdunBo3bqzffvtNDg4OWrt2rVatWqUGDRpo9uzZqlu3rpKTkwv4qQAA8kOYMVDt2rXl6Oio77//3rbuypUrSkxMVP369Qu8H09PT/n4+Gjnzp22dTk5Odq7d2+R6tuyZYsCAwP1+uuvq1mzZgoODtbJkyfvej9Vq1ZV7969tWTJEs2cOfOmScbX1atXL8/kZ0lKTEwsVO13snnzZvXu3VvdunVTSEiIfH19deLEiTxtypcvr3bt2mnKlCn64YcfdOLECa1fv17StXDUokULjR8/Xnv37pWjo6NWrlxZIrUCQFnBnBkDubq6atCgQXrllVdUpUoV1ahRQ1OmTNHvv/+uvn373tW+hg4dqoSEBNWuXVv16tXT7Nmzdf78+SI9Z6d27dpKSUnRsmXL9PDDD+urr7666y/scePGqWnTpmrYsKGysrL05Zdf3jKovfzyy7YJvH379lVSUpIWLlwoqfifF1S7dm2tWLFCXbp0kcVi0dixY22jNpL05Zdf6vjx43r88cdVuXJlff3118rNzVXdunW1Y8cOffvtt+rQoYOqVaumHTt26Oeff76rAAoAuBlh5hZK6468hfXWW28pNzdXkZGRunDhgpo1a6bVq1ercuXKd7WfMWPGKC0tTS+++KIcHBw0YMAARUREyMHBodC1de3aVSNGjFB0dLSysrLUqVMnjR07VvHx8QXeh6Ojo+Li4nTixAk5Ozvrscce07Jly/JtGxQUpE8//VSjRo3SrFmzFBYWptdff12DBg2Sk5NTofuRnxkzZqhPnz4KDw+Xt7e3xowZY5tPI0mVKlXSihUrFB8frz/++EPBwcH65JNP1LBhQx08eFCbNm3SzJkzlZmZqcDAQE2bNs02iRsAUDgWaxm4LjQzM1Oenp7KyMiQh4dHnvf++OMPJScnKygoSBUrVrRThfeO3Nxc1a9fXz169NCbb75p73IKbdKkSXr//fd16tQpe5dSZvC7dJfsdWl2mzj7HBcohNt9f/8ZIzNl3MmTJ7VmzRq1atVKWVlZmjNnjpKTk9WrVy97l3ZX5s6dq4cfflheXl7asmWL3nnnHUVHR9u7LABAKSDMlHHlypXTwoULNXr0aFmtVjVq1Ejr1q0zbh7HkSNHNHHiRP3666+qUaOGRo0apbg4/gcKAGUBYaaMCwgI0JYtW+xdRpHNmDFDM2bMsHcZAAA74NJsAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGK3SY2bRpk7p06SJ/f39ZLBZ99tlned7v3bu3LBZLnqV58+Z52mRlZWno0KHy9vaWq6urnn76aZ0+fTpPm/PnzysyMlKenp7y9PRUZGSkfvvtt8KWDRTKiRMnZLFYlJSUVKjtW7durZiYmGKtCQBwTaEvzb506ZIaN26sl156Sc8++2y+bZ588kktWLDA9trR0THP+zExMfriiy+0bNkyeXl5adSoUercubN2795tu51+r169dPr0aX3zzTeSpAEDBigyMlJffPFFYUsvmNK+O2cZuStn69at1aRJE82cObPEj3XixAkFBQVp7969atKkSYkf73ZWrFhx05PGAQDFo9BhpmPHjnd8poyTk5N8fX3zfS8jI0MffvihPvroI7Vr106StGTJEgUEBGjdunWKiIjQwYMH9c0332j79u169NFHJUnz589XWFiYDh06pLp16+a776ysLGVlZdle//nZOfer7Ozsm8KiqaxWq3JyclS+/P1zG6QqVarYuwQAuG+V6JyZjRs3qlq1aqpTp4769++v9PR023u7d+/WlStX1KFDB9s6f39/NWrUSFu3bpUkbdu2TZ6enrYgI0nNmzeXp6enrU1+EhISbKelPD09FRAQUAK9s6/WrVsrOjpaI0eOlLe3t9q3by9JOnDggJ566im5ubnJx8dHkZGR+uWXX2zb5ebm6u2331bt2rXl5OSkGjVqaNKkSbb39+3bpyeeeELOzs7y8vLSgAEDdPHiRdv7vXv31jPPPKOpU6fKz89PXl5eGjJkiK5cuWJrM3fuXAUHB6tixYry8fHRX//6V9u23333nWbNmmU79XjixAlt3LhRFotFq1evVrNmzeTk5KTNmzfbjvVnMTExat26dYH6ExQUJEkKDQ2VxWLJs92CBQtUv359VaxYUfXq1dPcuXPzHGfnzp0KDQ1VxYoV1axZM+3du/eOP5Nb9fv6z+vPp5lSU1PVqVMnOTs7KygoSB9//LFq1qx52xGr65/H5MmT5ePjo0qVKmn8+PG6evWq7Qnq1atX17/+9a88240ZM0Z16tSRi4uLatWqpbFjx+b5ef33v/9VmzZt5O7uLg8PDzVt2lSJiYmSrj3uokuXLqpcubJcXV3VsGFDff3113f8LACgNJXYf307duyo5557ToGBgUpOTtbYsWP1xBNPaPfu3XJyclJaWpocHR1vesqzj4+P0tLSJElpaWmqVq3aTfuuVq2arU1+4uLiNHLkSNvrzMzM+zLQLFq0SIMGDdKWLVtktVqVmpqqVq1aqX///po+fbouX76sMWPGqEePHlq/fr2ka5/N/PnzNWPGDLVs2VKpqan66aefJEm///67nnzySTVv3ly7du1Senq6+vXrp+joaC1cuNB23A0bNsjPz08bNmzQ0aNH9fzzz6tJkybq37+/EhMTNWzYMH300UcKDw/Xr7/+qs2bN0uSZs2apcOHD6tRo0aaMGGCJKlq1ao6ceKEJCk2NlZTp05VrVq1VKlSpQJ9Brfrz86dO/XII49o3bp1atiwoW3kav78+XrjjTc0Z84chYaGau/everfv79cXV0VFRWlS5cuqXPnznriiSe0ZMkSJScna/jw4bet43b9zs+LL76oX375RRs3blSFChU0cuTIPGH/VtavX6/q1atr06ZN2rJli/r27att27bp8ccf144dO7R8+XINHDhQ7du3t/2dd3d318KFC+Xv7699+/apf//+cnd3V2xsrCTpb3/7m0JDQ/Xee+/JwcFBSUlJtlNiQ4YMUXZ2tjZt2iRXV1cdOHBAbm5ud/7BAEApKrEw8/zzz9v+3KhRIzVr1kyBgYH66quv1L1791tuZ7VaZbFYbK///OdbtbmRk5OTnJycClm5OWrXrq0pU6bYXo8bN04PPfSQJk+ebFv3r3/9SwEBATp8+LD8/Pw0a9YszZkzR1FRUZKkBx54QC1btpQkLV26VJcvX9bixYvl6uoqSZozZ466dOmit99+Wz4+PpKkypUra86cOXJwcFC9evXUqVMnffvtt+rfv79SUlLk6uqqzp07y93dXYGBgQoNDZUkeXp6ytHRUS4uLvmefpwwYYJthKkgLly4cNv+VK1aVZLk5eWV53hvvvmmpk2bZvt7GBQUpAMHDuiDDz5QVFSUli5dqpycHP3rX/+Si4uLGjZsqNOnT2vQoEG3rOV2/b7RTz/9pHXr1mnXrl1q1qyZJOmf//yngoOD79jnKlWq6N1331W5cuVUt25dTZkyRb///rtee+01SdfC3VtvvaUtW7aoZ8+ekqR//OMftu1r1qypUaNGafny5bYwk5KSoldeeUX16tWTpDx1pKSk6Nlnn1VISIgkqVatWnesEQBKW6ldmu3n56fAwEAdOXJEkuTr66vs7GydP38+T7v09HTbl6avr6/Onj17075+/vlnW5uy7PoX4XW7d+/Whg0b5ObmZluuf0EdO3ZMBw8eVFZWltq2bZvv/g4ePKjGjRvbgowktWjRQrm5uTp06JBtXcOGDW0TtKVrP9vrowrt27dXYGCgatWqpcjISC1dulS///57ofpzJ3fqT35+/vlnnTp1Sn379s3zOU2cOFHHjh2z7bdx48ZycXGxbRcWFnbb/d5Nvw8dOqTy5cvroYcesq2rXbv2TaOU+WnYsKHKlfv/f219fHxsQUOSHBwc5OXllWeU59NPP1XLli3l6+srNzc3jR07VikpKbb3R44cqX79+qldu3Z66623bJ+DJA0bNkwTJ05UixYt9MYbb+iHH364Y40AUNpKbYbluXPndOrUKfn5+UmSmjZtqgoVKmjt2rXq0aOHpGvzCH788UfbaENYWJgyMjJspwskaceOHcrIyFB4eHhplX7P+nPokK7NH7k+inIjPz8/HT9+/Lb7u92I15/X33hVjsViUW5urqRrpzT27NmjjRs3as2aNRo3bpzi4+O1a9euO546urE/5cqVk9VqzbPuz3M9nJ2db7u//Fyvc/78+XnmYkmyBbQbj1kQd9PvW+2/IMfN77O/3c9j+/bt6tmzp8aPH6+IiAh5enpq2bJlmjZtmq19fHy8evXqpa+++kqrVq3SG2+8oWXLlqlbt27q16+fIiIi9NVXX2nNmjVKSEjQtGnTNHTo0IJ8LPe/0r7qEUC+Cj0yc/HiRSUlJdnuu5GcnKykpCSlpKTo4sWLGj16tLZt22ab4NmlSxd5e3urW7dukq6dcujbt69GjRqlb7/9Vnv37tXf//53hYSE2K5uql+/vp588kn1799f27dv1/bt29W/f3917tz5llcylWUPPfSQ9u/fr5o1a6p27dp5FldXVwUHB8vZ2Vnffvttvts3aNBASUlJunTpkm3dli1bVK5cOdWpU6fAdZQvX17t2rXTlClT9MMPP+jEiRO2OTuOjo7Kyckp0H6qVq2q1NTUPOv+fJ+XO/Xn+hyZPx/Px8dHf/nLX3T8+PGbPqPrE4YbNGig//73v7p8+bJtu+3btxep339Wr149Xb16Nc+k4qNHj5bI/ZO2bNmiwMBAvf7662rWrJmCg4N18uTJm9rVqVNHI0aM0Jo1a9S9e/c8t1QICAjQwIEDtWLFCo0aNUrz588v9joBoCgKHWYSExMVGhpqmxcwcuRIhYaGaty4cXJwcNC+ffvUtWtX1alTR1FRUapTp462bdsmd3d32z5mzJihZ555Rj169FCLFi3k4uKiL774Is8pjKVLlyokJEQdOnRQhw4d9OCDD+qjjz4qQpfvX0OGDNGvv/6qF154QTt37tTx48e1Zs0a9enTRzk5OapYsaLGjBmj2NhYLV68WMeOHdP27dv14YcfSro2EbRixYqKiorSjz/+qA0bNmjo0KGKjIws8Gm9L7/8Uu+++66SkpJ08uRJLV68WLm5ubbwWbNmTe3YsUMnTpzQL7/8YhtByM8TTzyhxMRELV68WEeOHNEbb7yhH3/80fb+nfpTrVo1OTs765tvvtHZs2eVkZEh6dpIREJCgm1C8r59+7RgwQJNnz5d0rV7G5UrV059+/bVgQMH9PXXX2vq1KlF6vef1atXT+3atdOAAQO0c+dO7d27VwMGDJCzs/Nt54IVRu3atZWSkqJly5bp2LFjevfdd7Vy5Urb+5cvX1Z0dLQ2btyokydPasuWLdq1a5fq168v6drVY6tXr1ZycrL27Nmj9evX294DgHtFoU8ztW7d+rbD4qtXr77jPipWrKjZs2dr9uzZt2xTpUoVLVmypFA1ljX+/v7asmWLxowZo4iICGVlZSkwMFBPPvmkbZ7F2LFjVb58eY0bN05nzpyRn5+fBg4cKElycXHR6tWrNXz4cD388MNycXHRs88+a/uSL4hKlSppxYoVio+P1x9//KHg4GB98sknatiwoSRp9OjRioqKUoMGDXT58mUlJyffcl8REREaO3asYmNj9ccff6hPnz568cUXtW/fPlub2/WnfPnyevfddzVhwgSNGzdOjz32mDZu3Kh+/frJxcVF77zzjmJjY+Xq6qqQkBDbpdNubm764osvNHDgQIWGhqpBgwZ6++23b3lzyIL0+0aLFy9W37599fjjj8vX11cJCQnav3+/KlasWODPuiC6du2qESNGKDo6WllZWerUqZPGjh2r+Ph4SddOrZ07d04vvviizp49K29vb3Xv3l3jx4+XdG1Ua8iQITp9+rQ8PDz05JNPasaMGcVaIwAUlcVamAkChsnMzJSnp6cyMjLk4eGR570//vhDycnJCgoKKvYvEqCgTp8+bbth5N1MaL6XlMnfJRPnzJSRu43j/nC77+8/u39usQoYZP369bp48aJCQkKUmpqq2NhY1axZU48//ri9SwMA4xBmADu4cuWKXnvtNR0/flzu7u4KDw/X0qVLeX4TABQCYQawg4iICEVERNi7DAC4L5TaTfMAAABKAmHm/1MG5kEDJYrfIQD2UubDzPU5CgW95T6A/GVnZ0tSnvtEAUBpKPNzZhwcHFSpUiXbs2xcXFyK/cZlwP0uNzdXP//8s1xcXFS+fJn/ZwVAKeNfHcn2ROU/P5wPwN0pV66catSowX8GAJQ6woyuPZjPz89P1apVy/MgQwAF5+jomOeJ3gBQWggzf+Lg4MD5fgAADEOYAYCypCiPYOBRCLhHMSYMAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARitv7wIAwK42JNi7AgBFxMgMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAadwAGABRMUe6W3Cau+OoAbsDIDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADBaeXsXAABl0bbj5wq9bVgtr2KsBDAfIzMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIzG1UwAYBiuhALyYmQGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohQ4zmzZtUpcuXeTv7y+LxaLPPvssz/tWq1Xx8fHy9/eXs7OzWrdurf379+dpk5WVpaFDh8rb21uurq56+umndfr06Txtzp8/r8jISHl6esrT01ORkZH67bffCls2AAC4zxQ6zFy6dEmNGzfWnDlz8n1/ypQpmj59uubMmaNdu3bJ19dX7du314ULF2xtYmJitHLlSi1btkzff/+9Ll68qM6dOysnJ8fWplevXkpKStI333yjb775RklJSYqMjCxs2QAA4D5jsVqt1iLvxGLRypUr9cwzz0i6Nirj7++vmJgYjRkzRtK1URgfHx+9/fbbevnll5WRkaGqVavqo48+0vPPPy9JOnPmjAICAvT1118rIiJCBw8eVIMGDbR9+3Y9+uijkqTt27crLCxMP/30k+rWrZtvPVlZWcrKyrK9zszMVEBAgDIyMuTh4VHU7gK412xIsHcFd60oN74rCrvdNK9NnH2OC6NlZmbK09Pzjt/fJTJnJjk5WWlpaerQoYNtnZOTk1q1aqWtW7dKknbv3q0rV67kaePv769GjRrZ2mzbtk2enp62ICNJzZs3l6enp61NfhISEmynpTw9PRUQEFDcXQQAAPeIEnmcQVpamiTJx8cnz3ofHx+dPHnS1sbR0VGVK1e+qc317dPS0lStWrWb9l+tWjVbm/zExcVp5MiRttfXR2YAoDjZa3QFQF4l+mwmi8WS57XVar1p3Y1ubJNf+zvtx8nJSU5OTndZLQAAMFGJnGby9fWVpJtGT9LT022jNb6+vsrOztb58+dv2+bs2bM37f/nn3++adQHAACUTSUSZoKCguTr66u1a9fa1mVnZ+u7775TeHi4JKlp06aqUKFCnjapqan68ccfbW3CwsKUkZGhnTt32trs2LFDGRkZtjYAAKBsK/RpposXL+ro0aO218nJyUpKSlKVKlVUo0YNxcTEaPLkyQoODlZwcLAmT54sFxcX9erVS5Lk6empvn37atSoUfLy8lKVKlU0evRohYSEqF27dpKk+vXr68knn1T//v31wQcfSJIGDBigzp073/JKJgAAULYUOswkJiaqTZs2ttfXJ9xGRUVp4cKFio2N1eXLlzV48GCdP39ejz76qNasWSN3d3fbNjNmzFD58uXVo0cPXb58WW3bttXChQvl4OBga7N06VINGzbMdtXT008/fct72wAAgLKnWO4zc68r6HXqAAxlp/vMmHg1E/eZgUkK+v1dolczAQAgqWiBkyCEO+BBkwAAwGiEGQAAYDTCDAAAMBpzZgCgDCnKpGW7TR4G7oCRGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0bjPDIAyzcSHRQLIi5EZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKOVt3cBAAAzbDt+rtDbhtXyKsZKgLwYmQEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBqXZgMwXlEuGQZgPkZmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABG4z4zAIB724aEwm/bJq746sA9i5EZAABgNMIMAAAwGqeZANwbinIqAUCZxsgMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjcTUTAKDEbTt+rtDbhtXyKsZKcD9iZAYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMVt7eBQCAJG07fs7eJQAwVImOzMTHx8tiseRZfH19be9brVbFx8fL399fzs7Oat26tfbv359nH1lZWRo6dKi8vb3l6uqqp59+WqdPny7JsgEAgEFK/DRTw4YNlZqaalv27dtne2/KlCmaPn265syZo127dsnX11ft27fXhQsXbG1iYmK0cuVKLVu2TN9//70uXryozp07Kycnp6RLBwAABijx00zly5fPMxpzndVq1cyZM/X666+re/fukqRFixbJx8dHH3/8sV5++WVlZGToww8/1EcffaR27dpJkpYsWaKAgACtW7dOERER+R4zKytLWVlZtteZmZkl0DMAAHAvKPGRmSNHjsjf319BQUHq2bOnjh8/LklKTk5WWlqaOnToYGvr5OSkVq1aaevWrZKk3bt368qVK3na+Pv7q1GjRrY2+UlISJCnp6dtCQgIKKHeAQAAeyvRkZlHH31UixcvVp06dXT27FlNnDhR4eHh2r9/v9LS0iRJPj4+ebbx8fHRyZMnJUlpaWlydHRU5cqVb2pzffv8xMXFaeTIkbbXmZmZBBoAMFRRJoeHtSnGQnDPKtEw07FjR9ufQ0JCFBYWpgceeECLFi1S8+bNJUkWiyXPNlar9aZ1N7pTGycnJzk5ORWhcgAAYIpSvc+Mq6urQkJCdOTIEds8mhtHWNLT022jNb6+vsrOztb58+dv2QYAAJRtpRpmsrKydPDgQfn5+SkoKEi+vr5au3at7f3s7Gx99913Cg8PlyQ1bdpUFSpUyNMmNTVVP/74o60NAAAo20r0NNPo0aPVpUsX1ahRQ+np6Zo4caIyMzMVFRUli8WimJgYTZ48WcHBwQoODtbkyZPl4uKiXr16SZI8PT3Vt29fjRo1Sl5eXqpSpYpGjx6tkJAQ29VNAACgbCvRMHP69Gm98MIL+uWXX1S1alU1b95c27dvV2BgoCQpNjZWly9f1uDBg3X+/Hk9+uijWrNmjdzd3W37mDFjhsqXL68ePXro8uXLatu2rRYuXCgHB4eSLB0AABjCYrVarfYuoqRlZmbK09NTGRkZ8vDwsHc5APKx7cPR9i4B96GwvlPtXQKKoKDf3zxoEgAAGI0wAwAAjMZTswEA968NCYXftk1c8dWBEsXIDAAAMBphBgAAGI3TTACKT1GG9AGgkBiZAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjfvMACg2246fs3cJAMogRmYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEbjPjMAgPtWUe59FNamGAtBiWJkBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNO4zAyCPGWsPF3rb5sVYBwAUFCMzAADAaIzMAACQnw0Jhd+2TVzx1YE7YmQGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBoXJoNAEA+th0/V+htw9oUYyG4I0ZmAACA0QgzAADAaIQZAABgNMIMAAAwGhOAAeTRPGWevUsAgLvCyAwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKNxNRNwH5qx9nCht21ejHUAZVVRfgdHtK9TjJWUDYzMAAAAoxFmAACA0QgzAADAaMyZAQCgmBXtTtpTi62OsoKRGQAAYDTCDAAAMBphBgAAGI0wAwAAjMYEYOAeVZSbbgFAWcLIDAAAMBphBgAAGI0wAwAAjMacGQAA7iE8pPLuMTIDAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBoXM0ElCDu4gsAJY+RGQAAYDRGZoA7YHQFQGlqnjKv0NvOWDug0NuafI8aY8LM3Llz9c477yg1NVUNGzbUzJkz9dhjj9m7LBiCQAIA9y8jwszy5csVExOjuXPnqkWLFvrggw/UsWNHHThwQDVq1LB3ecA9pyj/swNQNpl852Ej5sxMnz5dffv2Vb9+/VS/fn3NnDlTAQEBeu+99/Jtn5WVpczMzDwLAAC4P93zIzPZ2dnavXu3Xn311TzrO3TooK1bt+a7TUJCgsaPH18a5ZlrQ4K9KyhVI+75v+nFrO9Ue1cAwA7C7PZve5ydjnvNPT8y88svvygnJ0c+Pj551vv4+CgtLS3fbeLi4pSRkWFbTp06VRqlAgAAOzDm/6sWiyXPa6vVetO665ycnOTk5FQaZQEAADu750dmvL295eDgcNMoTHp6+k2jNQAAoOy550dmHB0d1bRpU61du1bdunWzrV+7dq26du1qx8oAALjHtCnC3BWD51Le82FGkkaOHKnIyEg1a9ZMYWFhmjdvnlJSUjRw4EB7lwYAAOzMiDDz/PPP69y5c5owYYJSU1PVqFEjff311woMDLR3aQAAwM6MCDOSNHjwYA0ePNjeZQAAgHvMPT8BGAAA4HaMGZkBAAAlqCiTh+2MkRkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBqPMwDuVQbfWhwAShNhpqwqyhflhoTiqwMAgCLiNBMAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAo/HUbKAkFeXp5ACAAmFkBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABG49lMwJ3wfCUAuKcxMgMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDQuzUbZwOXVAHDfYmQGAAAYjZEZmIPRFQBAPhiZAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMxk3zULq48R0AoJgxMgMAAIxGmAEAAEYjzAAAAKMRZgAAgNGYAIy7xyReAMA9hJEZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBoJRpmatasKYvFkmd59dVX87RJSUlRly5d5OrqKm9vbw0bNkzZ2dl52uzbt0+tWrWSs7Oz/vKXv2jChAmyWq0lWToAADBEid8BeMKECerfv7/ttZubm+3POTk56tSpk6pWrarvv/9e586dU1RUlKxWq2bPni1JyszMVPv27dWmTRvt2rVLhw8fVu/eveXq6qpRo0aVdPkAAOAeV+Jhxt3dXb6+vvm+t2bNGh04cECnTp2Sv7+/JGnatGnq3bu3Jk2aJA8PDy1dulR//PGHFi5cKCcnJzVq1EiHDx/W9OnTNXLkSFkslpLuAgAAuIeV+JyZt99+W15eXmrSpIkmTZqU5xTStm3b1KhRI1uQkaSIiAhlZWVp9+7dtjatWrWSk5NTnjZnzpzRiRMn8j1mVlaWMjMz8ywAAOD+VKIjM8OHD9dDDz2kypUra+fOnYqLi1NycrL++c9/SpLS0tLk4+OTZ5vKlSvL0dFRaWlptjY1a9bM0+b6NmlpaQoKCrrpuAkJCRo/fnwJ9AgAANxr7npkJj4+/qZJvTcuiYmJkqQRI0aoVatWevDBB9WvXz+9//77+vDDD3Xu3Dnb/vI7TWS1WvOsv7HN9cm/tzrFFBcXp4yMDNty6tSpu+0mAAAwxF2PzERHR6tnz563bXPjSMp1zZs3lyQdPXpUXl5e8vX11Y4dO/K0OX/+vK5cuWIbffH19bWN0lyXnp4uSTeN6lzn5OSU57QUAAC4f911mPH29pa3t3ehDrZ3715Jkp+fnyQpLCxMkyZNUmpqqm3dmjVr5OTkpKZNm9ravPbaa8rOzpajo6Otjb+//y1D042uj+QwdwYAAHNc/96+4+1YrCVk69at1unTp1v37t1rPX78uHX58uVWf39/69NPP21rc/XqVWujRo2sbdu2te7Zs8e6bt06a/Xq1a3R0dG2Nr/99pvVx8fH+sILL1j37dtnXbFihdXDw8M6derUAtdy6tQpqyQWFhYWFhYWA5dTp07d9nveYrWWzN3n9uzZo8GDB+unn35SVlaWAgMD1bNnT8XGxsrFxcXWLiUlRYMHD9b69evl7OysXr16aerUqXlOE+3bt09DhgzRzp07VblyZQ0cOFDjxo0r8GXZubm5OnPmjNzd3Yv9Uu7MzEwFBATo1KlT8vDwKNZ93wvon/nu9z7SP/Pd732kf4VntVp14cIF+fv7q1y5W0/zLbEwU1ZkZmbK09NTGRkZ9+1fUvpntvu9j/TPfPd7H+lfyePZTAAAwGiEGQAAYDTCTBE5OTnpjTfeuG8vBad/5rvf+0j/zHe/95H+lTzmzAAAAKMxMgMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIM8Vo0qRJCg8Pl4uLiypVqmTvcops7ty5CgoKUsWKFdW0aVNt3rzZ3iUVm02bNqlLly7y9/eXxWLRZ599Zu+SilVCQoIefvhhubu7q1q1anrmmWd06NAhe5dVrN577z09+OCD8vDwkIeHh8LCwrRq1Sp7l1ViEhISZLFYFBMTY+9SikV8fLwsFkuexdfX195lFbv/+7//09///nd5eXnJxcVFTZo00e7du+1dVrGoWbPmTT9Di8WiIUOGlHothJlilJ2dreeee06DBg2ydylFtnz5csXExOj111/X3r179dhjj6ljx45KSUmxd2nF4tKlS2rcuLHmzJlj71JKxHfffachQ4Zo+/btWrt2ra5evaoOHTro0qVL9i6t2FSvXl1vvfWWEhMTlZiYqCeeeEJdu3bV/v377V1asdu1a5fmzZunBx980N6lFKuGDRsqNTXVtuzbt8/eJRWr8+fPq0WLFqpQoYJWrVqlAwcOaNq0affFf3ala38v//zzW7t2rSTpueeeK/1i7uLZkSigBQsWWD09Pe1dRpE88sgj1oEDB+ZZV69ePeurr75qp4pKjiTrypUr7V1GiUpPT7dKsn733Xf2LqVEVa5c2frPf/7T3mUUqwsXLliDg4Ota9eutbZq1co6fPhwe5dULN544w1r48aN7V1GiRozZoy1ZcuW9i6j1AwfPtz6wAMPWHNzc0v92IzM4CbZ2dnavXu3OnTokGd9hw4dtHXrVjtVhaLIyMiQJFWpUsXOlZSMnJwcLVu2TJcuXVJYWJi9yylWQ4YMUadOndSuXTt7l1Lsjhw5In9/fwUFBalnz546fvy4vUsqVp9//rmaNWum5557TtWqVVNoaKjmz59v77JKRHZ2tpYsWaI+ffoU+wOdC4Iwg5v88ssvysnJkY+PT571Pj4+SktLs1NVKCyr1aqRI0eqZcuWatSokb3LKVb79u2Tm5ubnJycNHDgQK1cuVINGjSwd1nFZtmyZdqzZ48SEhLsXUqxe/TRR7V48WKtXr1a8+fPV1pamsLDw3Xu3Dl7l1Zsjh8/rvfee0/BwcFavXq1Bg4cqGHDhmnx4sX2Lq3YffbZZ/rtt9/Uu3dvuxyfMHMH+U1Su3FJTEy0d5kl4sZ0bbVa7ZK4UTTR0dH64Ycf9Mknn9i7lGJXt25dJSUlafv27Ro0aJCioqJ04MABe5dVLE6dOqXhw4dryZIlqlixor3LKXYdO3bUs88+q5CQELVr105fffWVJGnRokV2rqz45Obm6qGHHtLkyZMVGhqql19+Wf3799d7771n79KK3YcffqiOHTvK39/fLscvb5ejGiQ6Olo9e/a8bZuaNWuWTjGlxNvbWw4ODjeNwqSnp980WoN729ChQ/X5559r06ZNql69ur3LKXaOjo6qXbu2JKlZs2batWuXZs2apQ8++MDOlRXd7t27lZ6erqZNm9rW5eTkaNOmTZozZ46ysrLk4OBgxwqLl6urq0JCQnTkyBF7l1Js/Pz8bhoprF+/vv7zn//YqaKScfLkSa1bt04rVqywWw2EmTvw9vaWt7e3vcsoVY6OjmratKnWrl2rbt262davXbtWXbt2tWNlKCir1aqhQ4dq5cqV2rhxo4KCguxdUqmwWq3KysqydxnFom3btjdd3fPSSy+pXr16GjNmzH0VZCQpKytLBw8e1GOPPWbvUopNixYtbrolwuHDhxUYGGinikrGggULVK1aNXXq1MluNRBmilFKSop+/fVXpaSkKCcnR0lJSZKk2rVry83Nzb7F3aWRI0cqMjJSzZo1U1hYmObNm6eUlBQNHDjQ3qUVi4sXL+ro0aO218nJyUpKSlKVKlVUo0YNO1ZWPIYMGaKPP/5Y//u//yt3d3fbKJunp6ecnZ3tXF3xeO2119SxY0cFBATowoULWrZsmTZu3KhvvvnG3qUVC3d395vmOLm6usrLy+u+mPs0evRodenSRTVq1FB6eromTpyozMxMRUVF2bu0YjNixAiFh4dr8uTJ6tGjh3bu3Kl58+Zp3rx59i6t2OTm5mrBggWKiopS+fJ2jBSlfv3UfSwqKsoq6aZlw4YN9i6tUP7nf/7HGhgYaHV0dLQ+9NBD99VlvRs2bMj3ZxUVFWXv0opFfn2TZF2wYIG9Sys2ffr0sf39rFq1qrVt27bWNWvW2LusEnU/XZr9/PPPW/38/KwVKlSw+vv7W7t3727dv3+/vcsqdl988YW1UaNGVicnJ2u9evWs8+bNs3dJxWr16tVWSdZDhw7ZtQ6L1Wq1lnqCAgAAKCZczQQAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmANhV69atNXToUMXExKhy5cry8fHRvHnzdOnSJb300ktyd3fXAw88oFWrVkmScnJy1LdvXwUFBcnZ2Vl169bVrFmz8uxz48aNeuSRR+Tq6qpKlSqpRYsWOnnypCTpv//9r9q0aSN3d3d5eHioadOmSkxMLPV+Ayg+hBkAdrdo0SJ5e3tr586dGjp0qAYNGqTnnntO4eHh2rNnjyIiIhQZGanff/9dubm5ql69uv7973/rwIEDGjdunF577TX9+9//liRdvXpVzzzzjFq1aqUffvhB27Zt04ABA2SxWCRJf/vb31S9enXt2rVLu3fv1quvvqoKFSrYs/sAioinZgOwq9atWysnJ0ebN2+WdG3kxdPTU927d9fixYslSWlpafLz89O2bdvUvHnzm/YxZMgQnT17Vp9++ql+/fVXeXl5aePGjWrVqtVNbT08PDR79mxFRUWVbMcAlBpGZgDY3YMPPmj7s4ODg7y8vBQSEmJb5+PjI0lKT0+XJL3//vtq1qyZqlatKjc3N82fP18pKSmSpCpVqqh3796KiIhQly5dNGvWLKWmptr2NXLkSPXr10/t2rXTW2+9pWPHjpVGFwGUIMIMALu78TSPxWLJs+76KaLc3Fz9+9//1ogRI9SnTx+tWbNGSUlJeumll5SdnW1rv2DBAm3btk3h4eFavny56tSpo+3bt0uS4uPjtX//fnXq1Enr169XgwYNtHLlylLoJYCSQpgBYJTNmzcrPDxcgwcPVmhoqGrXrp3v6EpoaKji4uK0detWNWrUSB9//LHtvTp16mjEiBFas2aNunfvrgULFpRmFwAUM8IMAKPUrl1biYmJWr16tQ4fPqyxY8dq165dtveTk5MVFxenbdu26eTJk1qzZo0OHz6s+vXr6/Lly4qOjtbGjRt18uRJbdmyRbt27VL9+vXt2CMARVXe3gUAwN0YOHCgkpKS9Pzzz8tiseiFF17Q4MGDbZduu7i46KefftKiRYt07tw5+fn5KTo6Wi+//LKuXr2qc+fO6cUXX9TZs2fl7e2t7t27a/z48XbuFYCi4GomAABgNE4zAQAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBo/w/o11m1wm3o6QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDuElEQVR4nO3deVxWdf7//+clyiUiXArINgJirgm5YQk2Kbkg41JamuOMaRqWuaToaOhYaCnlZNboV1NzXNJG59Zo07SoOGqaS+LCpGnuiI0Q5QJqBgrX7w9/nk9X4oZcXB543G+3c7txnfM+53q9Ab2evM/7nGOx2+12AQAAmFQlVxcAAABwNwgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1Cq7uoCyUFRUpFOnTsnLy0sWi8XV5QAAgNtgt9t1/vx5BQcHq1KlG4+/VIgwc+rUKYWEhLi6DAAAUAInT55U7dq1b7i9QoQZLy8vSVe/Gd7e3i6uBgAA3I68vDyFhIQYn+M3UiHCzLVTS97e3oQZAABM5lZTRJgADAAATI0wAwAATI0wAwAATK1CzJm5XYWFhbp8+bKrywBMyd3d/aaXTgKAsxBmdPU69uzsbJ07d87VpQCmValSJYWHh8vd3d3VpQCoYAgzkhFk/P39Va1aNW6sB9yhazemzMrKUmhoKP+GAJSpCh9mCgsLjSDj6+vr6nIA06pVq5ZOnTqlK1euqEqVKq4uB0AFUuFPcF+bI1OtWjUXVwKY27XTS4WFhS6uBEBFU+HDzDUMiwN3h39DAFyFMAMAAEyNMAMAAEytwk8AvpEZqYfK9P1GdWxQJu+TnJysjz76SOnp6be9T7t27dSsWTO9/fbbLq3jmoyMDIWHh2vPnj1q1qxZqdUEADAnwkwFM2bMGA0fPvyO9lm5cuU9dXVKSEiIsrKy5Ofn5+pSAAD3AMJMBWG321VYWKjq1aurevXqd7Svj4+Pk6oqGTc3NwUGBrq6DADAPYI5MyaVn5+vESNGyN/fX1WrVtXDDz+stLQ0Y/vGjRtlsVi0Zs0aRUVFyWq1avPmzUpOTnY4NXPlyhWNGDFCNWrUkK+vr8aNG6f+/fvr8ccfN9q0a9dOI0eONF7XqVNHU6dO1cCBA+Xl5aXQ0FDNmzfPob5x48apQYMGqlatmurWrauJEyfe0aMizp49qz/84Q+qVauWPDw8VL9+fS1cuFDS1dNMFovF4RTVxx9/rPr168vDw0OxsbFavHixLBbLTe/qbLFYNHfuXHXt2lXVqlVT48aNtW3bNh05ckTt2rWTp6enoqOjdfToUWOfo0eP6rHHHlNAQICqV6+uVq1aad26dQ7HnT17turXr6+qVasqICBATz75pLHtww8/VGRkpDw8POTr66sOHTro4sWLt/19QTmyIaXkCwAHjMyY1NixY/XPf/5TixcvVlhYmKZNm6a4uDgdOXLEYSRl7NixevPNN1W3bl3VqFFDX3zxhcNx3njjDS1btkwLFy5U48aN9c477+ijjz5SbGzsTd9/+vTpevXVVzV+/Hh9+OGHGjJkiB555BE1atRIkuTl5aVFixYpODhYe/fuVUJCgry8vDR27Njb6t/EiRO1f/9+ff755/Lz89ORI0d06dKlYttmZGToySef1Isvvqhnn31We/bs0ZgxY27rfV599VW99dZbeuuttzRu3Dj17dtXdevWVVJSkkJDQzVw4EANGzZMn3/+uSTpwoUL+t3vfqfXXntNVatW1eLFi9WtWzcdPHhQoaGh2rlzp0aMGKH3339fMTExOnPmjDZv3ixJysrK0u9//3tNmzZNPXr00Pnz57V582bZ7fbbqhUw3E2giU0qvTqAewRhxoQuXryoOXPmaNGiRYqPj5ckzZ8/X6mpqVqwYIH+9Kc/GW0nT56sjh073vBYM2fOVFJSknr06CFJmjVrlj777LNb1vC73/1OL7zwgqSrozAzZszQxo0bjTDz5z//2Whbp04djR49WitWrLjtMJOZmanmzZsrKirKOMaNvPvuu2rYsKH+8pe/SJIaNmyoffv2acqUKbd8n2eeeUa9e/c2+hEdHa2JEycqLi5OkvTiiy/qmWeeMdo3bdpUTZs2NV6/9tprWrVqlT7++GMNGzZMmZmZ8vT0VNeuXeXl5aWwsDA1b95c0tUwc+XKFfXs2VNhYWGSpMjIyNv6fgAAbozTTCZ09OhRXb58WW3atDHWValSRQ8++KAOHDjg0PZaGChObm6uvv/+ez344IPGOjc3N7Vs2fKWNTzwwAPG1xaLRYGBgcrJyTHWffjhh3r44YcVGBio6tWra+LEicrMzLyt/knSkCFDtHz5cjVr1kxjx47V1q1bb9j24MGDatWqlcO6X/bpdvsREBAgyTFgBAQE6Oeff1ZeXp6kq0Fy7Nixuv/++1WjRg1Vr15d3377rdG3jh07KiwsTHXr1lW/fv20bNky/fTTT5KuBqH27dsrMjJSvXr10vz583X27NnbqhMAcGOEGRO6dlri13dctdvt163z9PS85fGKO86t/PrqJovFoqKiIknS9u3b1adPH8XHx+uTTz7Rnj17NGHCBBUUFNzyuNfEx8frxIkTGjlypE6dOqX27dvf8NRRcf2+3VM3v+zHtWMUt+5a3/70pz/pn//8p6ZMmaLNmzcrPT1dkZGRRt+8vLy0e/du/f3vf1dQUJBefvllNW3aVOfOnZObm5tSU1P1+eef6/7779fMmTPVsGFDHT9+/Da/KwCA4hBmTKhevXpyd3fXl19+aay7fPmydu7cqcaNG9/2cWw2mwICArRjxw5jXWFhofbs2XNX9W3ZskVhYWGaMGGCoqKiVL9+fZ04ceKOj1OrVi0NGDBAS5cu1dtvv33dJONrGjVq5DD5WZJ27txZotpvZfPmzRowYIB69OihyMhIBQYGKiMjw6FN5cqV1aFDB02bNk1ff/21MjIytH79eklXw1GbNm00adIk7dmzR+7u7lq1apVTagWAioI5Mybk6empIUOG6E9/+pN8fHwUGhqqadOm6aefftKgQYPu6FjDhw9XSkqK6tWrp0aNGmnmzJk6e/bsXT1np169esrMzNTy5cvVqlUrffrpp3f8gf3yyy+rZcuWatKkifLz8/XJJ5/cMKg999xzxgTeQYMGKT09XYsWLZJU+s8LqlevnlauXKlu3brJYrFo4sSJxqiNJH3yySc6duyYHnnkEdWsWVOfffaZioqK1LBhQ3311Vf6z3/+o06dOsnf319fffWVfvjhhzsKoACA6xFmbqCs7shbUq+//rqKiorUr18/nT9/XlFRUVqzZo1q1qx5R8cZN26csrOz9fTTT8vNzU2DBw9WXFyc3NzcSlzbY489plGjRmnYsGHKz89Xly5dNHHiRCUnJ9/2Mdzd3ZWUlKSMjAx5eHjot7/9rZYvX15s2/DwcH344YcaPXq03nnnHUVHR2vChAkaMmSIrFZriftRnBkzZmjgwIGKiYmRn5+fxo0bZ8ynkaQaNWpo5cqVSk5O1s8//6z69evr73//u5o0aaIDBw5o06ZNevvtt5WXl6ewsDBNnz7dmMQNACgZi70CXBeal5cnm82m3NxceXt7O2z7+eefdfz4cYWHh6tq1aouqvDeUVRUpMaNG6t379569dVXXV1OiU2ZMkXvvvuuTp486epSKgz+Ld0hV90vhkuzYSI3+/z+JUZmKrgTJ05o7dq1atu2rfLz8zVr1iwdP35cffv2dXVpd2T27Nlq1aqVfH19tWXLFv3lL3/RsGHDXF0WAKAMEGYquEqVKmnRokUaM2aM7Ha7IiIitG7dOtPN4zh8+LBee+01nTlzRqGhoRo9erSSkvgLFAAqAsJMBRcSEqItW7a4uoy7NmPGDM2YMcPVZQAAXIBLswEAgKkRZgAAgKmVOMxs2rRJ3bp1U3BwsCwWiz766COH7QMGDJDFYnFYWrdu7dAmPz9fw4cPl5+fnzw9PdW9e3d99913Dm3Onj2rfv36yWazyWazqV+/fjd9EjIAAKhYShxmLl68qKZNm2rWrFk3bNO5c2dlZWUZy68fYDhy5EitWrVKy5cv15dffqkLFy6oa9euKiwsNNr07dtX6enpWr16tVavXq309HT169evpGUDAIBypsQTgOPj4295sy+r1arAwMBit+Xm5mrBggV6//331aFDB0nS0qVLFRISonXr1ikuLk4HDhzQ6tWrtX37dj300EOSrj4dOjo6WgcPHlTDhg2LPXZ+fr7y8/ON17+8qRkAAChfnDpnZuPGjfL391eDBg2UkJDg8FTlXbt26fLly+rUqZOxLjg4WBEREcYTkrdt2yabzWYEGUlq3bq1bDbbTZ+inJKSYpyWstlsCgkJcULvUJFkZGTIYrEoPT29RPu3a9dOI0eOLNWaAABXOe3S7Pj4ePXq1UthYWE6fvy4Jk6cqEcffVS7du2S1WpVdna23N3dr7v9fkBAgLKzsyVJ2dnZ8vf3v+7Y/v7+RpviJCUlKTEx0Xidl5d354GmrO/OWUHuytmuXTs1a9ZMb7/9ttPfKyMjQ+Hh4dqzZ4+aNWvm9Pe7mZUrV173pHEAQOlwWph56qmnjK8jIiIUFRWlsLAwffrpp+rZs+cN97Pb7Q4PByzuQYG/bvNrVqu11J/Jc68rKCiQu7u7q8soFXa7XYWFhapcufzcBsnHx8fVJQBAuVVml2YHBQUpLCxMhw8fliQFBgaqoKBAZ8+edWiXk5OjgIAAo833339/3bF++OEHo01F1a5dOw0bNkyJiYny8/NTx44dJUn79+/X7373O1WvXl0BAQHq16+ffvzxR2O/oqIivfHGG6pXr56sVqtCQ0M1ZcoUY/vevXv16KOPysPDQ76+vho8eLAuXLhgbB8wYIAef/xxvfnmmwoKCpKvr6+GDh2qy5cvG21mz56t+vXrq2rVqgoICNCTTz5p7PvFF1/onXfeMa5wy8jI0MaNG2WxWLRmzRpFRUXJarVq8+bNxnv90siRI9WuXbvb6k94eLgkqXnz5rJYLA77LVy4UI0bN1bVqlXVqFEjzZ492+F9duzYoebNm6tq1aqKiorSnj17bvkzuVG/r/28fnmaKSsrS126dJGHh4fCw8P1wQcfqE6dOjcdsbr2/Zg6daoCAgJUo0YNTZo0SVeuXDGeoF67dm397W9/c9hv3LhxatCggapVq6a6detq4sSJDj+v//73v4qNjZWXl5e8vb3VsmVL7dy5U9LVx11069ZNNWvWlKenp5o0aXLdRH4AcLUy+9P39OnTOnnypIKCgiRJLVu2VJUqVZSamqrevXtLuvof/L59+zRt2jRJUnR0tHJzc7Vjxw49+OCDkqSvvvpKubm5iomJKavS71mLFy/WkCFDtGXLFtntdmVlZalt27ZKSEjQW2+9pUuXLmncuHHq3bu31q9fL+nqKbj58+drxowZevjhh5WVlaVvv/1WkvTTTz+pc+fOat26tdLS0pSTk6Nnn31Ww4YN06JFi4z33bBhg4KCgrRhwwYdOXJETz31lJo1a6aEhATt3LlTI0aM0Pvvv6+YmBidOXNGmzdvliS98847OnTokCIiIjR58mRJUq1atZSRkSFJGjt2rN58803VrVtXNWrUuK3vwc36c+33Zt26dWrSpIkxcjV//ny98sormjVrlpo3b649e/YoISFBnp6e6t+/vy5evKiuXbvq0Ucf1dKlS3X8+HG9+OKLN63jZv0uztNPP60ff/xRGzduVJUqVZSYmOgwp+xG1q9fr9q1a2vTpk3asmWLBg0apG3btumRRx7RV199pRUrVuj5559Xx44djVOrXl5eWrRokYKDg7V3714lJCTIy8tLY8eOlST94Q9/UPPmzTVnzhy5ubkpPT3dOCU2dOhQFRQUaNOmTfL09NT+/ftVvXr1W/9gAKAMlTjMXLhwQUeOHDFeHz9+XOnp6fLx8ZGPj4+Sk5P1xBNPKCgoSBkZGRo/frz8/PzUo0cPSZLNZtOgQYM0evRo+fr6ysfHR2PGjFFkZKRxdVPjxo3VuXNnJSQkaO7cuZKkwYMHq2vXrje8kqkiqVevnhH8JOnll19WixYtNHXqVGPd3/72N4WEhOjQoUMKCgrSO++8o1mzZql///6SpPvuu08PP/ywJGnZsmW6dOmSlixZIk9PT0nSrFmz1K1bN73xxhvGaFjNmjU1a9Ysubm5qVGjRurSpYv+85//KCEhQZmZmfL09FTXrl3l5eWlsLAwNW/eXNLVn7m7u7uqVatW7FVukydPNkaYbsf58+dv2p9atWpJknx9fR3e79VXX9X06dON053h4eHav3+/5s6dq/79+2vZsmUqLCzU3/72N1WrVk1NmjTRd999pyFDhtywlpv1+9e+/fZbrVu3TmlpaYqKipIkvffee6pfv/4t++zj46O//vWvqlSpkho2bKhp06bpp59+0vjx4yVdDXevv/66tmzZoj59+kiS/vznPxv716lTR6NHj9aKFSuMMJOZmak//elPatSokSQ51JGZmaknnnhCkZGRkqS6deveskbc4+5mPmAFmdsH8ylxmNm5c6diY2ON19cm3Pbv319z5szR3r17tWTJEp07d05BQUGKjY3VihUr5OXlZewzY8YMVa5cWb1799alS5fUvn17LVq0SG5ubkabZcuWacSIEcZVT927d7/pvW0qkmsfhNfs2rVLGzZsKPYv56NHj+rcuXPKz89X+/btiz3egQMH1LRpUyPISFKbNm1UVFSkgwcPGmGmSZMmDj+joKAg7d27V5LUsWNHhYWFqW7duurcubM6d+6sHj16qFq1anfcn1s5cODATftTnB9++EEnT57UoEGDlJCQYKy/cuWKbDabcdymTZs61BwdHX3T495Jvw8ePKjKlSurRYsWxrp69epdNxm+OE2aNFGlSv93djggIEARERHGazc3N/n6+jqM8nz44Yd6++23deTIEV24cEFXrlyRt7e3sT0xMVHPPvuscZuEXr166b777pMkjRgxQkOGDNHatWvVoUMHPfHEE3rggQduWScAlKUSh5l27drJbrffcPuaNWtueYyqVatq5syZmjlz5g3b+Pj4aOnSpSWqsbz7ZeiQrs4fuTaK8mtBQUE6duzYTY93s4nVv1z/66tyLBaLioqKJF09pbF7925t3LhRa9eu1csvv6zk5GSlpaXd8tTRr/tTqVKl637HfjnXw8PD46bHK861OufPn+9wyb8kI6Dd7Pf6Ru6k3zc6/u28b3Hf+5v9PLZv364+ffpo0qRJiouLk81m0/LlyzV9+nSjfXJysvr27atPP/1Un3/+uV555RUtX75cPXr00LPPPqu4uDh9+umnWrt2rVJSUjR9+nQNHz78dr4t5V9ZX/UIoFg8m6kcadGihb755hvVqVNH9erVc1g8PT1Vv359eXh46D//+U+x+99///1KT0/XxYsXjXVbtmxRpUqV1KBBg9uuo3LlyurQoYOmTZumr7/+WhkZGcacHXd3d4c7PN9MrVq1lJWV5bDul/d5uVV/rs2R+eX7BQQE6De/+Y2OHTt23ffo2oTh+++/X//973916dIlY7/t27ffVb9/qVGjRrpy5YrDpOIjR4445TEdW7ZsUVhYmCZMmKCoqCjVr19fJ06cuK5dgwYNNGrUKK1du1Y9e/bUwoULjW0hISF6/vnntXLlSo0ePVrz588v9ToB4G4QZsqRoUOH6syZM/r973+vHTt26NixY1q7dq0GDhyowsJCVa1aVePGjdPYsWO1ZMkSHT16VNu3b9eCBQskXZ0IWrVqVfXv31/79u3Thg0bNHz4cPXr1++2rx775JNP9Ne//lXp6ek6ceKElixZoqKiImOOU506dfTVV18pIyNDP/74ozGCUJxHH31UO3fu1JIlS3T48GG98sor2rdvn7H9Vv3x9/eXh4eHVq9ere+//165ubmSro5EpKSkGBOS9+7dq4ULF+qtt96SdPURGpUqVdKgQYO0f/9+ffbZZ3rzzTfvqt+/1KhRI3Xo0EGDBw/Wjh07tGfPHg0ePFgeHh43veVASdSrV0+ZmZlavny5jh49qr/+9a9atWqVsf3SpUsaNmyYNm7cqBMnTmjLli1KS0tT48aNJV29emzNmjU6fvy4du/erfXr1xvbAOBeQZgpR4KDg7VlyxYVFhYqLi5OERERevHFF2Wz2Yx5FhMnTtTo0aP18ssvq3HjxnrqqaeM+RXVqlXTmjVrdObMGbVq1UpPPvmk2rdvf0dzlGrUqKGVK1fq0UcfVePGjfXuu+/q73//u5o0aSJJGjNmjNzc3HT//ferVq1ayszMvOGx4uLiNHHiRI0dO1atWrXS+fPn9fTTTzu0uVl/KleurL/+9a+aO3eugoOD9dhjj0mSnn32Wb333ntatGiRIiMj1bZtWy1atMgYmalevbr+/e9/a//+/WrevLkmTJhQ7Km7O+n3ry1ZskQBAQF65JFH1KNHD+MKo6pVq97eN/o2PfbYYxo1apSGDRumZs2aaevWrZo4caKx3c3NTadPn9bTTz+tBg0aqHfv3oqPj9ekSZMkXR3VGjp0qDEZv2HDhtddxg4Armaxl2SCgMnk5eXJZrMpNzfXYeKjJP388886fvy4wsPDS/2DBLhd3333nfFcsjuZ0HwvqZD/liranBmuZkIZu9nn9y+Vn1usAiayfv16XbhwQZGRkcrKytLYsWNVp04dPfLII64uDQBMhzADuMDly5c1fvx4HTt2TF5eXoqJidGyZct4fhMAlABhBnCBuLg4xcXFuboMACgXmAAMAABMjTDz/6sA86ABp+LfEABXqfBh5tochZ9++snFlQDmVlBQIEkOj7oAgLJQ4efMuLm5qUaNGg73WintG5cB5V1RUZF++OEHVatWTZUrV/j/VgCUMf7XkYwnKv/y4XwA7kylSpUUGhrKHwMAyhxhRlcfzBcUFCR/f3+HBxkCuH3u7u4OT/QGgLJCmPkFNzc3zvcDAGAy/BkFAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjQdNAqjYNqS4ugIAd4mRGQAAYGqEGQAAYGqEGQAAYGolDjObNm1St27dFBwcLIvFoo8++sjYdvnyZY0bN06RkZHy9PRUcHCwnn76aZ06dcrhGO3atZPFYnFY+vTp49Dm7Nmz6tevn2w2m2w2m/r166dz586VtGwAAFDOlDjMXLx4UU2bNtWsWbOu2/bTTz9p9+7dmjhxonbv3q2VK1fq0KFD6t69+3VtExISlJWVZSxz58512N63b1+lp6dr9erVWr16tdLT09WvX7+Slg0AAMqZEl/NFB8fr/j4+GK32Ww2paamOqybOXOmHnzwQWVmZio0NNRYX61aNQUGBhZ7nAMHDmj16tXavn27HnroIUnS/PnzFR0drYMHD6phw4YlLR8AAJQTZTZnJjc3VxaLRTVq1HBYv2zZMvn5+alJkyYaM2aMzp8/b2zbtm2bbDabEWQkqXXr1rLZbNq6desN3ys/P195eXkOCwAAKJ/K5D4zP//8s1566SX17dtX3t7exvo//OEPCg8PV2BgoPbt26ekpCT997//NUZ1srOz5e/vf93x/P39lZ2dfcP3S0lJ0aRJk0q/IwAA4J7j9DBz+fJl9enTR0VFRZo9e7bDtoSEBOPriIgI1a9fX1FRUdq9e7datGghSbJYLNcd0263F7v+mqSkJCUmJhqv8/LyFBIScrddAQAA9yCnhpnLly+rd+/eOn78uNavX+8wKlOcFi1aqEqVKjp8+LBatGihwMBAff/999e1++GHHxQQEHDD41itVlmt1ruuHwAA3PucNmfmWpA5fPiw1q1bJ19f31vu88033+jy5csKCgqSJEVHRys3N1c7duww2nz11VfKzc1VTEyMs0oHAAAmUuKRmQsXLujIkSPG6+PHjys9PV0+Pj4KDg7Wk08+qd27d+uTTz5RYWGhMcfFx8dH7u7uOnr0qJYtW6bf/e538vPz0/79+zV69Gg1b95cbdq0kSQ1btxYnTt3VkJCgnHJ9uDBg9W1a1euZAIAAJIki91ut5dkx40bNyo2Nva69f3791dycrLCw8OL3W/Dhg1q166dTp48qT/+8Y/at2+fLly4oJCQEHXp0kWvvPKKfHx8jPZnzpzRiBEj9PHHH0uSunfvrlmzZl13VdTN5OXlyWazKTc395anugBUMDxo8vbFJrm6AlQwt/v5XeIwYyaEGQA3RJi5fYQZlLHb/fwuk0uzAQDlwN0EP4IQnIgHTQIAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFOr7OoCAKAi2nbsdIn3ja7rW4qVAObHyAwAADA1wgwAADA1wgwAADA15swAgMkw3wZwxMgMAAAwNcIMAAAwNcIMAAAwtRKHmU2bNqlbt24KDg6WxWLRRx995LDdbrcrOTlZwcHB8vDwULt27fTNN984tMnPz9fw4cPl5+cnT09Pde/eXd99951Dm7Nnz6pfv36y2Wyy2Wzq16+fzp07V9KyAQBAOVPiMHPx4kU1bdpUs2bNKnb7tGnT9NZbb2nWrFlKS0tTYGCgOnbsqPPnzxttRo4cqVWrVmn58uX68ssvdeHCBXXt2lWFhYVGm759+yo9PV2rV6/W6tWrlZ6ern79+pW0bAAAUM6U+Gqm+Ph4xcfHF7vNbrfr7bff1oQJE9SzZ09J0uLFixUQEKAPPvhAzz33nHJzc7VgwQK9//776tChgyRp6dKlCgkJ0bp16xQXF6cDBw5o9erV2r59ux566CFJ0vz58xUdHa2DBw+qYcOGJS0fAACUE06ZM3P8+HFlZ2erU6dOxjqr1aq2bdtq69atkqRdu3bp8uXLDm2Cg4MVERFhtNm2bZtsNpsRZCSpdevWstlsRpvi5OfnKy8vz2EBAADlk1PCTHZ2tiQpICDAYX1AQICxLTs7W+7u7qpZs+ZN2/j7+193fH9/f6NNcVJSUow5NjabTSEhIXfVHwAAcO9y6tVMFovF4bXdbr9u3a/9uk1x7W91nKSkJOXm5hrLyZMn77ByAABgFk65A3BgYKCkqyMrQUFBxvqcnBxjtCYwMFAFBQU6e/asw+hMTk6OYmJijDbff//9dcf/4Ycfrhv1+SWr1Sqr1VoqfQGAG7mbO/ECKD1OCTPh4eEKDAxUamqqmjdvLkkqKCjQF198oTfeeEOS1LJlS1WpUkWpqanq3bu3JCkrK0v79u3TtGnTJEnR0dHKzc3Vjh079OCDD0qSvvrqK+Xm5hqBBwBw+1z2KIQNKSXfNzap5PuiQihxmLlw4YKOHDlivD5+/LjS09Pl4+Oj0NBQjRw5UlOnTlX9+vVVv359TZ06VdWqVVPfvn0lSTabTYMGDdLo0aPl6+srHx8fjRkzRpGRkcbVTY0bN1bnzp2VkJCguXPnSpIGDx6srl27ciUTgP9zNx+UAEyvxGFm586dio2NNV4nJiZKkvr3769FixZp7NixunTpkl544QWdPXtWDz30kNauXSsvLy9jnxkzZqhy5crq3bu3Ll26pPbt22vRokVyc3Mz2ixbtkwjRowwrnrq3r37De9tAwAAKh6L3W63u7oIZ8vLy5PNZlNubq68vb1dXQ6A0uaikZmKNmfGZU/c5jRThXW7n988mwkAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJhaiR80CQDlQUV7vhJQHjEyAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0HTQIAbsvdPJQzuq5vKVYCOGJkBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmJpTw0ydOnVksViuW4YOHSpJGjBgwHXbWrdu7XCM/Px8DR8+XH5+fvL09FT37t313XffObNsAABgIk4NM2lpacrKyjKW1NRUSVKvXr2MNp07d3Zo89lnnzkcY+TIkVq1apWWL1+uL7/8UhcuXFDXrl1VWFjozNIBAIBJOPWmebVq1XJ4/frrr+u+++5T27ZtjXVWq1WBgYHF7p+bm6sFCxbo/fffV4cOHSRJS5cuVUhIiNatW6e4uLhi98vPz1d+fr7xOi8v7267AgAA7lFlNmemoKBAS5cu1cCBA2WxWIz1GzdulL+/vxo0aKCEhATl5OQY23bt2qXLly+rU6dOxrrg4GBFRERo69atN3yvlJQU2Ww2YwkJCXFOpwAAgMuVWZj56KOPdO7cOQ0YMMBYFx8fr2XLlmn9+vWaPn260tLS9OijjxqjKtnZ2XJ3d1fNmjUdjhUQEKDs7OwbvldSUpJyc3ON5eTJk07pEwAAcL0yezbTggULFB8fr+DgYGPdU089ZXwdERGhqKgohYWF6dNPP1XPnj1veCy73e4wuvNrVqtVVqu1dAoHAAD3tDIZmTlx4oTWrVunZ5999qbtgoKCFBYWpsOHD0uSAgMDVVBQoLNnzzq0y8nJUUBAgNPqBQAA5lEmYWbhwoXy9/dXly5dbtru9OnTOnnypIKCgiRJLVu2VJUqVYyroCQpKytL+/btU0xMjFNrBgAA5uD000xFRUVauHCh+vfvr8qV/+/tLly4oOTkZD3xxBMKCgpSRkaGxo8fLz8/P/Xo0UOSZLPZNGjQII0ePVq+vr7y8fHRmDFjFBkZaVzdBKCc2JDi6goAmJTTw8y6deuUmZmpgQMHOqx3c3PT3r17tWTJEp07d05BQUGKjY3VihUr5OXlZbSbMWOGKleurN69e+vSpUtq3769Fi1aJDc3N2eXDgAATMBit9vtri7C2fLy8mSz2ZSbmytvb29XlwOgOHcxMrPt2OlSLATOEF3Xt+Q7xyaVXiEwldv9/ObZTAAAwNQIMwAAwNTK7D4zAICK625OBUbHlmIhKJcYmQEAAKbGyAwA4N52N5ftM3m4QmBkBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmFplVxcAAJK07dhpV5cAwKQYmQEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKbm1DCTnJwsi8XisAQGBhrb7Xa7kpOTFRwcLA8PD7Vr107ffPONwzHy8/M1fPhw+fn5ydPTU927d9d3333nzLIBAICJOH1kpkmTJsrKyjKWvXv3GtumTZumt956S7NmzVJaWpoCAwPVsWNHnT9/3mgzcuRIrVq1SsuXL9eXX36pCxcuqGvXriosLHR26QAAwAScftO8ypUrO4zGXGO32/X2229rwoQJ6tmzpyRp8eLFCggI0AcffKDnnntOubm5WrBggd5//3116NBBkrR06VKFhIRo3bp1iouLK/Y98/PzlZ+fb7zOy8tzQs8AAMC9wOkjM4cPH1ZwcLDCw8PVp08fHTt2TJJ0/PhxZWdnq1OnTkZbq9Wqtm3bauvWrZKkXbt26fLlyw5tgoODFRERYbQpTkpKimw2m7GEhIQ4qXcAAMDVnBpmHnroIS1ZskRr1qzR/PnzlZ2drZiYGJ0+fVrZ2dmSpICAAId9AgICjG3Z2dlyd3dXzZo1b9imOElJScrNzTWWkydPlnLPAADAvcKpp5ni4+ONryMjIxUdHa377rtPixcvVuvWrSVJFovFYR+73X7dul+7VRur1Sqr1XoXlQMAALMo00uzPT09FRkZqcOHDxvzaH49wpKTk2OM1gQGBqqgoEBnz569YRsAAFCxlWmYyc/P14EDBxQUFKTw8HAFBgYqNTXV2F5QUKAvvvhCMTExkqSWLVuqSpUqDm2ysrK0b98+ow0AAKjYnHqaacyYMerWrZtCQ0OVk5Oj1157TXl5eerfv78sFotGjhypqVOnqn79+qpfv76mTp2qatWqqW/fvpIkm82mQYMGafTo0fL19ZWPj4/GjBmjyMhI4+omAABQsTk1zHz33Xf6/e9/rx9//FG1atVS69attX37doWFhUmSxo4dq0uXLumFF17Q2bNn9dBDD2nt2rXy8vIyjjFjxgxVrlxZvXv31qVLl9S+fXstWrRIbm5uziwdAACYhMVut9tdXYSz5eXlyWazKTc3V97e3q4uB0Axti0Y4+oSUA5FD3rT1SXgLtzu5zfPZgIAAKZGmAEAAKZGmAEAAKZGmAEAAKbm9AdNAqhANqS4ugIAFRAjMwAAwNQIMwAAwNQIMwAAwNSYMwMAKL/uZh5XbFLp1QGnIswAKDXbjp12dQkAKiBOMwEAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFOr7OoCAABwlm3HTpd43+jYUiwETsXIDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDWnhpmUlBS1atVKXl5e8vf31+OPP66DBw86tBkwYIAsFovD0rp1a4c2+fn5Gj58uPz8/OTp6anu3bvru+++c2bpAADAJJwaZr744gsNHTpU27dvV2pqqq5cuaJOnTrp4sWLDu06d+6srKwsY/nss88cto8cOVKrVq3S8uXL9eWXX+rChQvq2rWrCgsLnVk+AAAwAademr169WqH1wsXLpS/v7927dqlRx55xFhvtVoVGBhY7DFyc3O1YMECvf/+++rQoYMkaenSpQoJCdG6desUFxfnvA4AAIB7XpneZyY3N1eS5OPj47B+48aN8vf3V40aNdS2bVtNmTJF/v7+kqRdu3bp8uXL6tSpk9E+ODhYERER2rp1a7FhJj8/X/n5+cbrvLw8Z3QHAFCebUgp+b6xSaVXB26pzCYA2+12JSYm6uGHH1ZERISxPj4+XsuWLdP69es1ffp0paWl6dFHHzXCSHZ2ttzd3VWzZk2H4wUEBCg7O7vY90pJSZHNZjOWkJAQ53UMAAC4VJmNzAwbNkxff/21vvzyS4f1Tz31lPF1RESEoqKiFBYWpk8//VQ9e/a84fHsdrssFkux25KSkpSYmGi8zsvLI9AAAFBOlUmYGT58uD7++GNt2rRJtWvXvmnboKAghYWF6fDhw5KkwMBAFRQU6OzZsw6jMzk5OYqJiSn2GFarVVartfQ6AFQgM1IPlXjf1rduAgClzqmnmex2u4YNG6aVK1dq/fr1Cg8Pv+U+p0+f1smTJxUUFCRJatmypapUqaLU1FSjTVZWlvbt23fDMAMAACoOp47MDB06VB988IH+9a9/ycvLy5jjYrPZ5OHhoQsXLig5OVlPPPGEgoKClJGRofHjx8vPz089evQw2g4aNEijR4+Wr6+vfHx8NGbMGEVGRhpXNwEAgIrLqWFmzpw5kqR27do5rF+4cKEGDBggNzc37d27V0uWLNG5c+cUFBSk2NhYrVixQl5eXkb7GTNmqHLlyurdu7cuXbqk9u3ba9GiRXJzc3Nm+QAAwAQsdrvd7uoinC0vL082m025ubny9vZ2dTnAPe2u5sxkzivFSgDzih70pqtLKBdu9/ObZzMBAABTI8wAAABTI8wAAABTK9PHGQC49zHvBYDZMDIDAABMjTADAABMjTADAABMjTkzQDnE85UAVCSMzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFNjAjAAAKXsbibhj+rYoBQrqRgYmQEAAKZGmAEAAKbGaSYAAErZ3T3j7M1Sq6OiYGQGAACYGmEGAACYGqeZgHvU3VwNAQAVCSMzAADA1AgzAADA1AgzAADA1AgzAADA1JgADADAPYRHIdw5RmYAAICpEWYAAICpEWYAAICpMWcGcCJufAcAzkeYAQCgnKiok4c5zQQAAEyNkRkAAO4hrTPnlXjf7aGDS7ES8zBNmJk9e7b+8pe/KCsrS02aNNHbb7+t3/72t64uCxUA814A4N5mijCzYsUKjRw5UrNnz1abNm00d+5cxcfHa//+/QoNDXV1eQAAmJ6Z59tY7Ha73aUV3IaHHnpILVq00Jw5c4x1jRs31uOPP66UlJRb7p+Xlyebzabc3Fx5e3s7s1Tcoyra6MrdDFMDMC9XnWZyVpi53c/ve35kpqCgQLt27dJLL73ksL5Tp07aunVrsfvk5+crPz/feJ2Xl+fUGiuaihYMAAD3tns+zPz4448qLCxUQECAw/qAgABlZ2cXu09KSoomTZpUFuWZ14Zbj2jdyKh7/rcGGvSmqysA4ALRd/F/+91JctH7XmWaS7MtFovDa7vdft26a5KSkpSbm2ssJ0+eLIsSAQCAC9zzf2P7+fnJzc3tulGYnJyc60ZrrrFarbJarWVRHgAAcLF7fmTG3d1dLVu2VGpqqsP61NRUxcTEuKgqAABwr7jnR2YkKTExUf369VNUVJSio6M1b948ZWZm6vnnn3d1aQAA3Dti72Luisvm29w9U4SZp556SqdPn9bkyZOVlZWliIgIffbZZwoLC3N1aQAAwMVMEWYk6YUXXtALL7zg6jIAAMA95p6fMwMAAHAzhBkAAGBqpjnNBAAAnOhuJg+7GCMzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1LgDcEVVQR8TDwAofwgzwL3KxLcWB4CyxGkmAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgajw1G3AmnnwNAE7HyAwAADA1wgwAADA1wgwAADA1p4WZjIwMDRo0SOHh4fLw8NB9992nV155RQUFBQ7tLBbLdcu7777r0Gbv3r1q27atPDw89Jvf/EaTJ0+W3W53VukAAMBEnDYB+Ntvv1VRUZHmzp2revXqad++fUpISNDFixf15ptvOrRduHChOnfubLy22WzG13l5eerYsaNiY2OVlpamQ4cOacCAAfL09NTo0aOdVT4AADAJp4WZzp07OwSUunXr6uDBg5ozZ851YaZGjRoKDAws9jjLli3Tzz//rEWLFslqtSoiIkKHDh3SW2+9pcTERFksluv2yc/PV35+vvE6Ly+vlHoFAADuNWU6ZyY3N1c+Pj7XrR82bJj8/PzUqlUrvfvuuyoqKjK2bdu2TW3btpXVajXWxcXF6dSpU8rIyCj2fVJSUmSz2YwlJCSk1PsCAADuDWV2n5mjR49q5syZmj59usP6V199Ve3bt5eHh4f+85//aPTo0frxxx/15z//WZKUnZ2tOnXqOOwTEBBgbAsPD7/uvZKSkpSYmGi8zsvLI9Cg5LhXDADc0+44zCQnJ2vSpEk3bZOWlqaoqCjj9alTp9S5c2f16tVLzz77rEPba6FFkpo1ayZJmjx5ssP6X59Kujb5t7hTTJJktVodRnIAAED5dcdhZtiwYerTp89N2/xyJOXUqVOKjY1VdHS05s2bd8vjt27dWnl5efr+++8VEBCgwMBAZWdnO7TJycmR9H8jNAAAoOK64zDj5+cnPz+/22r7v//9T7GxsWrZsqUWLlyoSpVuPUVnz549qlq1qmrUqCFJio6O1vjx41VQUCB3d3dJ0tq1axUcHHzd6ScAAFDxOG0C8KlTp9SuXTuFhITozTff1A8//KDs7GyHUZZ///vfmj9/vvbt26ejR4/qvffe04QJEzR48GDjNFHfvn1ltVo1YMAA7du3T6tWrdLUqVNveCUTAACoWJw2AXjt2rU6cuSIjhw5otq1aztsuzbnpUqVKpo9e7YSExNVVFSkunXravLkyRo6dKjR1mazKTU1VUOHDlVUVJRq1qypxMREhwm+AACg4rLYK8CtdPPy8mSz2ZSbmytvb29Xl2N+G1JcXUHZ4momAHCJ2/385tlMAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1Mrs2UyAS3FFEgCUW4zMAAAAUyPMAAAAUyPMAAAAU2PODMyDeS8AgGIwMgMAAEyNMAMAAEyN00woW5wqAgCUMkZmAACAqRFmAACAqRFmAACAqRFmAACAqRFmAACAqRFmAACAqXFpNu4cl1cDAO4hjMwAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTc2qYqVOnjiwWi8Py0ksvObTJzMxUt27d5OnpKT8/P40YMUIFBQUObfbu3au2bdvKw8NDv/nNbzR58mTZ7XZnlg4AAEzC6c9mmjx5shISEozX1atXN74uLCxUly5dVKtWLX355Zc6ffq0+vfvL7vdrpkzZ0qS8vLy1LFjR8XGxiotLU2HDh3SgAED5OnpqdGjRzu7fAAAcI9zepjx8vJSYGBgsdvWrl2r/fv36+TJkwoODpYkTZ8+XQMGDNCUKVPk7e2tZcuW6eeff9aiRYtktVoVERGhQ4cO6a233lJiYqIsFouzuwAAAO5hTp8z88Ybb8jX11fNmjXTlClTHE4hbdu2TREREUaQkaS4uDjl5+dr165dRpu2bdvKarU6tDl16pQyMjKKfc/8/Hzl5eU5LAAAoHxy6sjMiy++qBYtWqhmzZrasWOHkpKSdPz4cb333nuSpOzsbAUEBDjsU7NmTbm7uys7O9toU6dOHYc21/bJzs5WeHj4de+bkpKiSZMmOaFHAADgXnPHYSY5OfmWQSEtLU1RUVEaNWqUse6BBx5QzZo19eSTTxqjNZKKPU1kt9sd1v+6zbXJvzc6xZSUlKTExETjdW5urkJDQxmhAQDARK59bt/qop87DjPDhg1Tnz59btrm1yMp17Ru3VqSdOTIEfn6+iowMFBfffWVQ5uzZ8/q8uXLxuhLYGCgMUpzTU5OjiRdN6pzjdVqdTgtde2bERISctO6AQDAvef8+fOy2Ww33H7HYcbPz09+fn4lKmbPnj2SpKCgIElSdHS0pkyZoqysLGPd2rVrZbVa1bJlS6PN+PHjVVBQIHd3d6NNcHDwDUPTrwUHB+vkyZPy8vIq9QnDeXl5CgkJ0cmTJ+Xt7V2qx74X0D/zK+99pH/mV977SP9Kzm636/z58w5za4vjtDkz27Zt0/bt2xUbGyubzaa0tDSNGjVK3bt3V2hoqCSpU6dOuv/++9WvXz/95S9/0ZkzZzRmzBglJCQY35C+fftq0qRJGjBggMaPH6/Dhw9r6tSpevnll287mFSqVEm1a9d2VlclSd7e3uXyl/Qa+md+5b2P9M/8ynsf6V/J3GxE5hqnhRmr1aoVK1Zo0qRJys/PV1hYmBISEjR27FijjZubmz799FO98MILatOmjTw8PNS3b1+9+eabRhubzabU1FQNHTpUUVFRqlmzphITEx3mxAAAgIrLaWGmRYsW2r59+y3bhYaG6pNPPrlpm8jISG3atKm0SgMAAOUIz2a6S1arVa+88orDhOPyhP6ZX3nvI/0zv/LeR/rnfBY7DzkCAAAmxsgMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcJMKZoyZYpiYmJUrVo11ahRw9Xl3LXZs2crPDxcVatWVcuWLbV582ZXl1RqNm3apG7duik4OFgWi0UfffSRq0sqVSkpKWrVqpW8vLzk7++vxx9/XAcPHnR1WaVqzpw5euCBB4wbdUVHR+vzzz93dVlOk5KSIovFopEjR7q6lFKRnJwsi8XisAQGBrq6rFL3v//9T3/84x/l6+uratWqqVmzZtq1a5eryyoVderUue5naLFYNHTo0DKvhTBTigoKCtSrVy8NGTLE1aXctRUrVmjkyJGaMGGC9uzZo9/+9reKj49XZmamq0srFRcvXlTTpk01a9YsV5fiFF988YWGDh2q7du3KzU1VVeuXFGnTp108eJFV5dWamrXrq3XX39dO3fu1M6dO/Xoo4/qscce0zfffOPq0kpdWlqa5s2bpwceeMDVpZSqJk2aKCsry1j27t3r6pJK1dmzZ9WmTRtVqVJFn3/+ufbv36/p06eXiz92pau/l7/8+aWmpkqSevXqVfbF2FHqFi5caLfZbK4u4648+OCD9ueff95hXaNGjewvvfSSiypyHkn2VatWuboMp8rJybFLsn/xxReuLsWpatasaX/vvfdcXUapOn/+vL1+/fr21NRUe9u2be0vvviiq0sqFa+88oq9adOmri7DqcaNG2d/+OGHXV1GmXnxxRft9913n72oqKjM35uRGVynoKBAu3btUqdOnRzWd+rUSVu3bnVRVbgbubm5kiQfHx8XV+IchYWFWr58uS5evKjo6GhXl1Oqhg4dqi5duqhDhw6uLqXUHT58WMHBwQoPD1efPn107NgxV5dUqj7++GNFRUWpV69e8vf3V/PmzTV//nxXl+UUBQUFWrp0qQYOHFjqD3S+HYQZXOfHH39UYWGhAgICHNYHBAQoOzvbRVWhpOx2uxITE/Xwww8rIiLC1eWUqr1796p69eqyWq16/vnntWrVKt1///2uLqvULF++XLt371ZKSoqrSyl1Dz30kJYsWaI1a9Zo/vz5ys7OVkxMjE6fPu3q0krNsWPHNGfOHNWvX19r1qzR888/rxEjRmjJkiWuLq3UffTRRzp37pwGDBjgkvcnzNxCcZPUfr3s3LnT1WU6xa/Ttd1ud0nixt0ZNmyYvv76a/397393dSmlrmHDhkpPT9f27ds1ZMgQ9e/fX/v373d1WaXi5MmTevHFF7V06VJVrVrV1eWUuvj4eD3xxBOKjIxUhw4d9Omnn0qSFi9e7OLKSk9RUZFatGihqVOnqnnz5nruueeUkJCgOXPmuLq0UrdgwQLFx8crODjYJe/vtAdNlhfDhg1Tnz59btqmTp06ZVNMGfHz85Obm9t1ozA5OTnXjdbg3jZ8+HB9/PHH2rRpk2rXru3qckqdu7u76tWrJ0mKiopSWlqa3nnnHc2dO9fFld29Xbt2KScnRy1btjTWFRYWatOmTZo1a5by8/Pl5ubmwgpLl6enpyIjI3X48GFXl1JqgoKCrhspbNy4sf75z3+6qCLnOHHihNatW6eVK1e6rAbCzC34+fnJz8/P1WWUKXd3d7Vs2VKpqanq0aOHsT41NVWPPfaYCyvD7bLb7Ro+fLhWrVqljRs3Kjw83NUllQm73a78/HxXl1Eq2rdvf93VPc8884waNWqkcePGlasgI0n5+fk6cOCAfvvb37q6lFLTpk2b626JcOjQIYWFhbmoIudYuHCh/P391aVLF5fVQJgpRZmZmTpz5owyMzNVWFio9PR0SVK9evVUvXp11xZ3hxITE9WvXz9FRUUpOjpa8+bNU2Zmpp5//nlXl1YqLly4oCNHjhivjx8/rvT0dPn4+Cg0NNSFlZWOoUOH6oMPPtC//vUveXl5GaNsNptNHh4eLq6udIwfP17x8fEKCQnR+fPntXz5cm3cuFGrV692dWmlwsvL67o5Tp6envL19S0Xc5/GjBmjbt26KTQ0VDk5OXrttdeUl5en/v37u7q0UjNq1CjFxMRo6tSp6t27t3bs2KF58+Zp3rx5ri6t1BQVFWnhwoXq37+/Kld2YaQo8+unyrH+/fvbJV23bNiwwdWllcj/+3//zx4WFmZ3d3e3t2jRolxd1rthw4Zif1b9+/d3dWmlori+SbIvXLjQ1aWVmoEDBxq/n7Vq1bK3b9/evnbtWleX5VTl6dLsp556yh4UFGSvUqWKPTg42N6zZ0/7N9984+qySt2///1ve0REhN1qtdobNWpknzdvnqtLKlVr1qyxS7IfPHjQpXVY7Ha7vcwTFAAAQCnhaiYAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkALtWuXTsNHz5cI0eOVM2aNRUQEKB58+bp4sWLeuaZZ+Tl5aX77rtPn3/+uSSpsLBQgwYNUnh4uDw8PNSwYUO98847DsfcuHGjHnzwQXl6eqpGjRpq06aNTpw4IUn673//q9jYWHl5ecnb21stW7bUzp07y7zfAEoPYQaAyy1evFh+fn7asWOHhg8friFDhqhXr16KiYnR7t27FRcXp379+umnn35SUVGRateurX/84x/av3+/Xn75ZY0fP17/+Mc/JElXrlzR448/rrZt2+rrr7/Wtm3bNHjwYFksFknSH/7wB9WuXVtpaWnatWuXXnrpJVWpUsWV3Qdwl3hqNgCXateunQoLC7V582ZJV0debDabevbsqSVLlkiSsrOzFRQUpG3btql169bXHWPo0KH6/vvv9eGHH+rMmTPy9fXVxo0b1bZt2+vaent7a+bMmerfv79zOwagzDAyA8DlHnjgAeNrNzc3+fr6KjIy0lgXEBAgScrJyZEkvfvuu4qKilKtWrVUvXp1zZ8/X5mZmZIkHx8fDRgwQHFxcerWrZveeecdZWVlGcdKTEzUs88+qw4dOuj111/X0aNHy6KLAJyIMAPA5X59msdisTisu3aKqKioSP/4xz80atQoDRw4UGvXrlV6erqeeeYZFRQUGO0XLlyobdu2KSYmRitWrFCDBg20fft2SVJycrK++eYbdenSRevXr9f999+vVatWlUEvATgLYQaAqWzevFkxMTF64YUX1Lx5c9WrV6/Y0ZXmzZsrKSlJW7duVUREhD744ANjW4MGDTRq1CitXbtWPXv21MKFC8uyCwBKGWEGgKnUq1dPO3fu1Jo1a3To0CFNnDhRaWlpxvbjx48rKSlJ27Zt04kTJ7R27VodOnRIjRs31qVLlzRs2DBt3LhRJ06c0JYtW5SWlqbGjRu7sEcA7lZlVxcAAHfi+eefV3p6up566ilZLBb9/ve/1wsvvGBcul2tWjV9++23Wrx4sU6fPq2goCANGzZMzz33nK5cuaLTp0/r6aef1vfffy8/Pz/17NlTkyZNcnGvANwNrmYCAACmxmkmAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgav8fhtiwISGMS3IAAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/advanced-python/70ScikitHEPUniverse.ipynb b/advanced-python/70ScikitHEPUniverse.ipynb index 65d17606..c7c4e27e 100644 --- a/advanced-python/70ScikitHEPUniverse.ipynb +++ b/advanced-python/70ScikitHEPUniverse.ipynb @@ -30,10 +30,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:57.924427Z", - "iopub.status.busy": "2024-01-10T15:12:57.924270Z", - "iopub.status.idle": "2024-01-10T15:12:58.250849Z", - "shell.execute_reply": "2024-01-10T15:12:58.250355Z" + "iopub.execute_input": "2024-02-06T01:09:49.507804Z", + "iopub.status.busy": "2024-02-06T01:09:49.507351Z", + "iopub.status.idle": "2024-02-06T01:09:49.833184Z", + "shell.execute_reply": "2024-02-06T01:09:49.832716Z" } }, "outputs": [ @@ -60,10 +60,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.253021Z", - "iopub.status.busy": "2024-01-10T15:12:58.252594Z", - "iopub.status.idle": "2024-01-10T15:12:58.256208Z", - "shell.execute_reply": "2024-01-10T15:12:58.255750Z" + "iopub.execute_input": "2024-02-06T01:09:49.835220Z", + "iopub.status.busy": "2024-02-06T01:09:49.834851Z", + "iopub.status.idle": "2024-02-06T01:09:49.838388Z", + "shell.execute_reply": "2024-02-06T01:09:49.837997Z" } }, "outputs": [ @@ -87,10 +87,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.257847Z", - "iopub.status.busy": "2024-01-10T15:12:58.257702Z", - "iopub.status.idle": "2024-01-10T15:12:58.260969Z", - "shell.execute_reply": "2024-01-10T15:12:58.260566Z" + "iopub.execute_input": "2024-02-06T01:09:49.840169Z", + "iopub.status.busy": "2024-02-06T01:09:49.839874Z", + "iopub.status.idle": "2024-02-06T01:09:49.843100Z", + "shell.execute_reply": "2024-02-06T01:09:49.842738Z" } }, "outputs": [ @@ -123,10 +123,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.262907Z", - "iopub.status.busy": "2024-01-10T15:12:58.262385Z", - "iopub.status.idle": "2024-01-10T15:12:58.373116Z", - "shell.execute_reply": "2024-01-10T15:12:58.372678Z" + "iopub.execute_input": "2024-02-06T01:09:49.844912Z", + "iopub.status.busy": "2024-02-06T01:09:49.844557Z", + "iopub.status.idle": "2024-02-06T01:09:49.953340Z", + "shell.execute_reply": "2024-02-06T01:09:49.952909Z" } }, "outputs": [], @@ -150,10 +150,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.375197Z", - "iopub.status.busy": "2024-01-10T15:12:58.375040Z", - "iopub.status.idle": "2024-01-10T15:12:58.378291Z", - "shell.execute_reply": "2024-01-10T15:12:58.377840Z" + "iopub.execute_input": "2024-02-06T01:09:49.955284Z", + "iopub.status.busy": "2024-02-06T01:09:49.954885Z", + "iopub.status.idle": "2024-02-06T01:09:49.958117Z", + "shell.execute_reply": "2024-02-06T01:09:49.957726Z" } }, "outputs": [ @@ -177,10 +177,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.380134Z", - "iopub.status.busy": "2024-01-10T15:12:58.379827Z", - "iopub.status.idle": "2024-01-10T15:12:58.382806Z", - "shell.execute_reply": "2024-01-10T15:12:58.382371Z" + "iopub.execute_input": "2024-02-06T01:09:49.959877Z", + "iopub.status.busy": "2024-02-06T01:09:49.959615Z", + "iopub.status.idle": "2024-02-06T01:09:49.962793Z", + "shell.execute_reply": "2024-02-06T01:09:49.962385Z" } }, "outputs": [ @@ -204,10 +204,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.384418Z", - "iopub.status.busy": "2024-01-10T15:12:58.384274Z", - "iopub.status.idle": "2024-01-10T15:12:58.387176Z", - "shell.execute_reply": "2024-01-10T15:12:58.386767Z" + "iopub.execute_input": "2024-02-06T01:09:49.964564Z", + "iopub.status.busy": "2024-02-06T01:09:49.964264Z", + "iopub.status.idle": "2024-02-06T01:09:49.967311Z", + "shell.execute_reply": "2024-02-06T01:09:49.966854Z" } }, "outputs": [ @@ -231,10 +231,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.388776Z", - "iopub.status.busy": "2024-01-10T15:12:58.388623Z", - "iopub.status.idle": "2024-01-10T15:12:58.391805Z", - "shell.execute_reply": "2024-01-10T15:12:58.391381Z" + "iopub.execute_input": "2024-02-06T01:09:49.969087Z", + "iopub.status.busy": "2024-02-06T01:09:49.968692Z", + "iopub.status.idle": "2024-02-06T01:09:49.971841Z", + "shell.execute_reply": "2024-02-06T01:09:49.971377Z" } }, "outputs": [ @@ -266,10 +266,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.393402Z", - "iopub.status.busy": "2024-01-10T15:12:58.393259Z", - "iopub.status.idle": "2024-01-10T15:12:58.423639Z", - "shell.execute_reply": "2024-01-10T15:12:58.423256Z" + "iopub.execute_input": "2024-02-06T01:09:49.973484Z", + "iopub.status.busy": "2024-02-06T01:09:49.973326Z", + "iopub.status.idle": "2024-02-06T01:09:50.003529Z", + "shell.execute_reply": "2024-02-06T01:09:50.003142Z" } }, "outputs": [ @@ -338,10 +338,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.425247Z", - "iopub.status.busy": "2024-01-10T15:12:58.425099Z", - "iopub.status.idle": "2024-01-10T15:12:58.428128Z", - "shell.execute_reply": "2024-01-10T15:12:58.427665Z" + "iopub.execute_input": "2024-02-06T01:09:50.005449Z", + "iopub.status.busy": "2024-02-06T01:09:50.004972Z", + "iopub.status.idle": "2024-02-06T01:09:50.008180Z", + "shell.execute_reply": "2024-02-06T01:09:50.007801Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.429681Z", - "iopub.status.busy": "2024-01-10T15:12:58.429537Z", - "iopub.status.idle": "2024-01-10T15:12:58.431681Z", - "shell.execute_reply": "2024-01-10T15:12:58.431303Z" + "iopub.execute_input": "2024-02-06T01:09:50.010006Z", + "iopub.status.busy": "2024-02-06T01:09:50.009588Z", + "iopub.status.idle": "2024-02-06T01:09:50.012047Z", + "shell.execute_reply": "2024-02-06T01:09:50.011571Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.433269Z", - "iopub.status.busy": "2024-01-10T15:12:58.433126Z", - "iopub.status.idle": "2024-01-10T15:12:58.436184Z", - "shell.execute_reply": "2024-01-10T15:12:58.435758Z" + "iopub.execute_input": "2024-02-06T01:09:50.013985Z", + "iopub.status.busy": "2024-02-06T01:09:50.013501Z", + "iopub.status.idle": "2024-02-06T01:09:50.016707Z", + "shell.execute_reply": "2024-02-06T01:09:50.016349Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.437776Z", - "iopub.status.busy": "2024-01-10T15:12:58.437633Z", - "iopub.status.idle": "2024-01-10T15:12:58.506989Z", - "shell.execute_reply": "2024-01-10T15:12:58.506554Z" + "iopub.execute_input": "2024-02-06T01:09:50.018582Z", + "iopub.status.busy": "2024-02-06T01:09:50.018128Z", + "iopub.status.idle": "2024-02-06T01:09:50.087961Z", + "shell.execute_reply": "2024-02-06T01:09:50.087405Z" } }, "outputs": [], @@ -440,10 +440,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.509143Z", - "iopub.status.busy": "2024-01-10T15:12:58.508908Z", - "iopub.status.idle": "2024-01-10T15:12:58.515662Z", - "shell.execute_reply": "2024-01-10T15:12:58.515255Z" + "iopub.execute_input": "2024-02-06T01:09:50.090102Z", + "iopub.status.busy": "2024-02-06T01:09:50.089889Z", + "iopub.status.idle": "2024-02-06T01:09:50.096447Z", + "shell.execute_reply": "2024-02-06T01:09:50.096042Z" }, "pycharm": { "name": "#%%\n" @@ -502,10 +502,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.517330Z", - "iopub.status.busy": "2024-01-10T15:12:58.517184Z", - "iopub.status.idle": "2024-01-10T15:12:58.528210Z", - "shell.execute_reply": "2024-01-10T15:12:58.527808Z" + "iopub.execute_input": "2024-02-06T01:09:50.098133Z", + "iopub.status.busy": "2024-02-06T01:09:50.097974Z", + "iopub.status.idle": "2024-02-06T01:09:50.108928Z", + "shell.execute_reply": "2024-02-06T01:09:50.108432Z" } }, "outputs": [ @@ -530,10 +530,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:12:58.529958Z", - "iopub.status.busy": "2024-01-10T15:12:58.529649Z", - "iopub.status.idle": "2024-01-10T15:12:58.533091Z", - "shell.execute_reply": "2024-01-10T15:12:58.532691Z" + "iopub.execute_input": "2024-02-06T01:09:50.110663Z", + "iopub.status.busy": "2024-02-06T01:09:50.110473Z", + "iopub.status.idle": "2024-02-06T01:09:50.114067Z", + "shell.execute_reply": "2024-02-06T01:09:50.113586Z" } }, "outputs": [ diff --git a/python/01basics.ipynb b/python/01basics.ipynb index 97ce6986..90cbf288 100644 --- a/python/01basics.ipynb +++ b/python/01basics.ipynb @@ -55,10 +55,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.365433Z", - "iopub.status.busy": "2024-01-10T15:13:00.364980Z", - "iopub.status.idle": "2024-01-10T15:13:00.369956Z", - "shell.execute_reply": "2024-01-10T15:13:00.369586Z" + "iopub.execute_input": "2024-02-06T01:09:51.963846Z", + "iopub.status.busy": "2024-02-06T01:09:51.963681Z", + "iopub.status.idle": "2024-02-06T01:09:51.968266Z", + "shell.execute_reply": "2024-02-06T01:09:51.967894Z" }, "slideshow": { "slide_type": "subslide" @@ -74,10 +74,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.371776Z", - "iopub.status.busy": "2024-01-10T15:13:00.371436Z", - "iopub.status.idle": "2024-01-10T15:13:00.374209Z", - "shell.execute_reply": "2024-01-10T15:13:00.373825Z" + "iopub.execute_input": "2024-02-06T01:09:51.970026Z", + "iopub.status.busy": "2024-02-06T01:09:51.969709Z", + "iopub.status.idle": "2024-02-06T01:09:51.972306Z", + "shell.execute_reply": "2024-02-06T01:09:51.971894Z" }, "slideshow": { "slide_type": "subslide" @@ -148,10 +148,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.376063Z", - "iopub.status.busy": "2024-01-10T15:13:00.375699Z", - "iopub.status.idle": "2024-01-10T15:13:00.378625Z", - "shell.execute_reply": "2024-01-10T15:13:00.378159Z" + "iopub.execute_input": "2024-02-06T01:09:51.974190Z", + "iopub.status.busy": "2024-02-06T01:09:51.973824Z", + "iopub.status.idle": "2024-02-06T01:09:51.976661Z", + "shell.execute_reply": "2024-02-06T01:09:51.976235Z" }, "slideshow": { "slide_type": "subslide" @@ -180,10 +180,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.380313Z", - "iopub.status.busy": "2024-01-10T15:13:00.380158Z", - "iopub.status.idle": "2024-01-10T15:13:00.384849Z", - "shell.execute_reply": "2024-01-10T15:13:00.384453Z" + "iopub.execute_input": "2024-02-06T01:09:51.978254Z", + "iopub.status.busy": "2024-02-06T01:09:51.978099Z", + "iopub.status.idle": "2024-02-06T01:09:51.982790Z", + "shell.execute_reply": "2024-02-06T01:09:51.982388Z" }, "slideshow": { "slide_type": "subslide" @@ -234,10 +234,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.386598Z", - "iopub.status.busy": "2024-01-10T15:13:00.386356Z", - "iopub.status.idle": "2024-01-10T15:13:00.388693Z", - "shell.execute_reply": "2024-01-10T15:13:00.388216Z" + "iopub.execute_input": "2024-02-06T01:09:51.984692Z", + "iopub.status.busy": "2024-02-06T01:09:51.984381Z", + "iopub.status.idle": "2024-02-06T01:09:51.986501Z", + "shell.execute_reply": "2024-02-06T01:09:51.986136Z" }, "slideshow": { "slide_type": "subslide" @@ -254,10 +254,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.390425Z", - "iopub.status.busy": "2024-01-10T15:13:00.390279Z", - "iopub.status.idle": "2024-01-10T15:13:00.393415Z", - "shell.execute_reply": "2024-01-10T15:13:00.392903Z" + "iopub.execute_input": "2024-02-06T01:09:51.988352Z", + "iopub.status.busy": "2024-02-06T01:09:51.987970Z", + "iopub.status.idle": "2024-02-06T01:09:51.991140Z", + "shell.execute_reply": "2024-02-06T01:09:51.990660Z" }, "slideshow": { "slide_type": "subslide" @@ -295,10 +295,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.395259Z", - "iopub.status.busy": "2024-01-10T15:13:00.394882Z", - "iopub.status.idle": "2024-01-10T15:13:00.519926Z", - "shell.execute_reply": "2024-01-10T15:13:00.519386Z" + "iopub.execute_input": "2024-02-06T01:09:51.992884Z", + "iopub.status.busy": "2024-02-06T01:09:51.992590Z", + "iopub.status.idle": "2024-02-06T01:09:52.109599Z", + "shell.execute_reply": "2024-02-06T01:09:52.109122Z" }, "slideshow": { "slide_type": "subslide" @@ -340,10 +340,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.521825Z", - "iopub.status.busy": "2024-01-10T15:13:00.521656Z", - "iopub.status.idle": "2024-01-10T15:13:00.531418Z", - "shell.execute_reply": "2024-01-10T15:13:00.530952Z" + "iopub.execute_input": "2024-02-06T01:09:52.111579Z", + "iopub.status.busy": "2024-02-06T01:09:52.111200Z", + "iopub.status.idle": "2024-02-06T01:09:52.120503Z", + "shell.execute_reply": "2024-02-06T01:09:52.120054Z" }, "slideshow": { "slide_type": "subslide" @@ -385,10 +385,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.533437Z", - "iopub.status.busy": "2024-01-10T15:13:00.533147Z", - "iopub.status.idle": "2024-01-10T15:13:00.536367Z", - "shell.execute_reply": "2024-01-10T15:13:00.535920Z" + "iopub.execute_input": "2024-02-06T01:09:52.122185Z", + "iopub.status.busy": "2024-02-06T01:09:52.122020Z", + "iopub.status.idle": "2024-02-06T01:09:52.125160Z", + "shell.execute_reply": "2024-02-06T01:09:52.124704Z" }, "slideshow": { "slide_type": "subslide" @@ -428,10 +428,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.538031Z", - "iopub.status.busy": "2024-01-10T15:13:00.537888Z", - "iopub.status.idle": "2024-01-10T15:13:00.540471Z", - "shell.execute_reply": "2024-01-10T15:13:00.540049Z" + "iopub.execute_input": "2024-02-06T01:09:52.126811Z", + "iopub.status.busy": "2024-02-06T01:09:52.126668Z", + "iopub.status.idle": "2024-02-06T01:09:52.129332Z", + "shell.execute_reply": "2024-02-06T01:09:52.128937Z" }, "slideshow": { "slide_type": "subslide" @@ -456,10 +456,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.542044Z", - "iopub.status.busy": "2024-01-10T15:13:00.541902Z", - "iopub.status.idle": "2024-01-10T15:13:00.544564Z", - "shell.execute_reply": "2024-01-10T15:13:00.544158Z" + "iopub.execute_input": "2024-02-06T01:09:52.131024Z", + "iopub.status.busy": "2024-02-06T01:09:52.130797Z", + "iopub.status.idle": "2024-02-06T01:09:52.133353Z", + "shell.execute_reply": "2024-02-06T01:09:52.132908Z" }, "slideshow": { "slide_type": "subslide" @@ -495,10 +495,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.546282Z", - "iopub.status.busy": "2024-01-10T15:13:00.545998Z", - "iopub.status.idle": "2024-01-10T15:13:00.548149Z", - "shell.execute_reply": "2024-01-10T15:13:00.547755Z" + "iopub.execute_input": "2024-02-06T01:09:52.135017Z", + "iopub.status.busy": "2024-02-06T01:09:52.134767Z", + "iopub.status.idle": "2024-02-06T01:09:52.137467Z", + "shell.execute_reply": "2024-02-06T01:09:52.137113Z" }, "slideshow": { "slide_type": "subslide" @@ -525,10 +525,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.549744Z", - "iopub.status.busy": "2024-01-10T15:13:00.549606Z", - "iopub.status.idle": "2024-01-10T15:13:00.552705Z", - "shell.execute_reply": "2024-01-10T15:13:00.552229Z" + "iopub.execute_input": "2024-02-06T01:09:52.139073Z", + "iopub.status.busy": "2024-02-06T01:09:52.138933Z", + "iopub.status.idle": "2024-02-06T01:09:52.141810Z", + "shell.execute_reply": "2024-02-06T01:09:52.141418Z" }, "slideshow": { "slide_type": "subslide" @@ -587,10 +587,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.554549Z", - "iopub.status.busy": "2024-01-10T15:13:00.554195Z", - "iopub.status.idle": "2024-01-10T15:13:00.556993Z", - "shell.execute_reply": "2024-01-10T15:13:00.556529Z" + "iopub.execute_input": "2024-02-06T01:09:52.143433Z", + "iopub.status.busy": "2024-02-06T01:09:52.143292Z", + "iopub.status.idle": "2024-02-06T01:09:52.145931Z", + "shell.execute_reply": "2024-02-06T01:09:52.145540Z" }, "slideshow": { "slide_type": "subslide" @@ -627,10 +627,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.558627Z", - "iopub.status.busy": "2024-01-10T15:13:00.558490Z", - "iopub.status.idle": "2024-01-10T15:13:00.561649Z", - "shell.execute_reply": "2024-01-10T15:13:00.561253Z" + "iopub.execute_input": "2024-02-06T01:09:52.147762Z", + "iopub.status.busy": "2024-02-06T01:09:52.147457Z", + "iopub.status.idle": "2024-02-06T01:09:52.150870Z", + "shell.execute_reply": "2024-02-06T01:09:52.150505Z" }, "slideshow": { "slide_type": "subslide" @@ -668,10 +668,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.563291Z", - "iopub.status.busy": "2024-01-10T15:13:00.563154Z", - "iopub.status.idle": "2024-01-10T15:13:00.565808Z", - "shell.execute_reply": "2024-01-10T15:13:00.565408Z" + "iopub.execute_input": "2024-02-06T01:09:52.152453Z", + "iopub.status.busy": "2024-02-06T01:09:52.152315Z", + "iopub.status.idle": "2024-02-06T01:09:52.154973Z", + "shell.execute_reply": "2024-02-06T01:09:52.154571Z" }, "slideshow": { "slide_type": "subslide" @@ -707,10 +707,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.567539Z", - "iopub.status.busy": "2024-01-10T15:13:00.567243Z", - "iopub.status.idle": "2024-01-10T15:13:00.569879Z", - "shell.execute_reply": "2024-01-10T15:13:00.569489Z" + "iopub.execute_input": "2024-02-06T01:09:52.156746Z", + "iopub.status.busy": "2024-02-06T01:09:52.156349Z", + "iopub.status.idle": "2024-02-06T01:09:52.159023Z", + "shell.execute_reply": "2024-02-06T01:09:52.158571Z" }, "slideshow": { "slide_type": "subslide" @@ -748,10 +748,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.571431Z", - "iopub.status.busy": "2024-01-10T15:13:00.571295Z", - "iopub.status.idle": "2024-01-10T15:13:00.581098Z", - "shell.execute_reply": "2024-01-10T15:13:00.580614Z" + "iopub.execute_input": "2024-02-06T01:09:52.160796Z", + "iopub.status.busy": "2024-02-06T01:09:52.160439Z", + "iopub.status.idle": "2024-02-06T01:09:52.169316Z", + "shell.execute_reply": "2024-02-06T01:09:52.168854Z" }, "slideshow": { "slide_type": "subslide" @@ -793,10 +793,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.582885Z", - "iopub.status.busy": "2024-01-10T15:13:00.582726Z", - "iopub.status.idle": "2024-01-10T15:13:00.585607Z", - "shell.execute_reply": "2024-01-10T15:13:00.585196Z" + "iopub.execute_input": "2024-02-06T01:09:52.171125Z", + "iopub.status.busy": "2024-02-06T01:09:52.170821Z", + "iopub.status.idle": "2024-02-06T01:09:52.173674Z", + "shell.execute_reply": "2024-02-06T01:09:52.173281Z" }, "slideshow": { "slide_type": "subslide" @@ -821,10 +821,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.587169Z", - "iopub.status.busy": "2024-01-10T15:13:00.587017Z", - "iopub.status.idle": "2024-01-10T15:13:00.589879Z", - "shell.execute_reply": "2024-01-10T15:13:00.589490Z" + "iopub.execute_input": "2024-02-06T01:09:52.175441Z", + "iopub.status.busy": "2024-02-06T01:09:52.175139Z", + "iopub.status.idle": "2024-02-06T01:09:52.177863Z", + "shell.execute_reply": "2024-02-06T01:09:52.177390Z" }, "slideshow": { "slide_type": "subslide" @@ -863,10 +863,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.591462Z", - "iopub.status.busy": "2024-01-10T15:13:00.591313Z", - "iopub.status.idle": "2024-01-10T15:13:00.593754Z", - "shell.execute_reply": "2024-01-10T15:13:00.593273Z" + "iopub.execute_input": "2024-02-06T01:09:52.179595Z", + "iopub.status.busy": "2024-02-06T01:09:52.179440Z", + "iopub.status.idle": "2024-02-06T01:09:52.181779Z", + "shell.execute_reply": "2024-02-06T01:09:52.181307Z" }, "slideshow": { "slide_type": "subslide" @@ -893,10 +893,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.595442Z", - "iopub.status.busy": "2024-01-10T15:13:00.595210Z", - "iopub.status.idle": "2024-01-10T15:13:00.597864Z", - "shell.execute_reply": "2024-01-10T15:13:00.597384Z" + "iopub.execute_input": "2024-02-06T01:09:52.183714Z", + "iopub.status.busy": "2024-02-06T01:09:52.183366Z", + "iopub.status.idle": "2024-02-06T01:09:52.185994Z", + "shell.execute_reply": "2024-02-06T01:09:52.185535Z" }, "slideshow": { "slide_type": "subslide" @@ -934,10 +934,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.599515Z", - "iopub.status.busy": "2024-01-10T15:13:00.599370Z", - "iopub.status.idle": "2024-01-10T15:13:00.608954Z", - "shell.execute_reply": "2024-01-10T15:13:00.608553Z" + "iopub.execute_input": "2024-02-06T01:09:52.187687Z", + "iopub.status.busy": "2024-02-06T01:09:52.187530Z", + "iopub.status.idle": "2024-02-06T01:09:52.196513Z", + "shell.execute_reply": "2024-02-06T01:09:52.196155Z" }, "slideshow": { "slide_type": "subslide" @@ -979,10 +979,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.610757Z", - "iopub.status.busy": "2024-01-10T15:13:00.610454Z", - "iopub.status.idle": "2024-01-10T15:13:00.613209Z", - "shell.execute_reply": "2024-01-10T15:13:00.612813Z" + "iopub.execute_input": "2024-02-06T01:09:52.198114Z", + "iopub.status.busy": "2024-02-06T01:09:52.197973Z", + "iopub.status.idle": "2024-02-06T01:09:52.200649Z", + "shell.execute_reply": "2024-02-06T01:09:52.200262Z" }, "slideshow": { "slide_type": "subslide" @@ -1031,10 +1031,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.614798Z", - "iopub.status.busy": "2024-01-10T15:13:00.614657Z", - "iopub.status.idle": "2024-01-10T15:13:00.616922Z", - "shell.execute_reply": "2024-01-10T15:13:00.616552Z" + "iopub.execute_input": "2024-02-06T01:09:52.202437Z", + "iopub.status.busy": "2024-02-06T01:09:52.202145Z", + "iopub.status.idle": "2024-02-06T01:09:52.204571Z", + "shell.execute_reply": "2024-02-06T01:09:52.204114Z" }, "slideshow": { "slide_type": "subslide" @@ -1053,10 +1053,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.618478Z", - "iopub.status.busy": "2024-01-10T15:13:00.618337Z", - "iopub.status.idle": "2024-01-10T15:13:00.620593Z", - "shell.execute_reply": "2024-01-10T15:13:00.620228Z" + "iopub.execute_input": "2024-02-06T01:09:52.206291Z", + "iopub.status.busy": "2024-02-06T01:09:52.206005Z", + "iopub.status.idle": "2024-02-06T01:09:52.208503Z", + "shell.execute_reply": "2024-02-06T01:09:52.208039Z" } }, "outputs": [], @@ -1089,10 +1089,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.622169Z", - "iopub.status.busy": "2024-01-10T15:13:00.622030Z", - "iopub.status.idle": "2024-01-10T15:13:00.624524Z", - "shell.execute_reply": "2024-01-10T15:13:00.624072Z" + "iopub.execute_input": "2024-02-06T01:09:52.210292Z", + "iopub.status.busy": "2024-02-06T01:09:52.209973Z", + "iopub.status.idle": "2024-02-06T01:09:52.212325Z", + "shell.execute_reply": "2024-02-06T01:09:52.211883Z" }, "slideshow": { "slide_type": "subslide" @@ -1116,10 +1116,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.626086Z", - "iopub.status.busy": "2024-01-10T15:13:00.625948Z", - "iopub.status.idle": "2024-01-10T15:13:00.635246Z", - "shell.execute_reply": "2024-01-10T15:13:00.634872Z" + "iopub.execute_input": "2024-02-06T01:09:52.214077Z", + "iopub.status.busy": "2024-02-06T01:09:52.213707Z", + "iopub.status.idle": "2024-02-06T01:09:52.222384Z", + "shell.execute_reply": "2024-02-06T01:09:52.222015Z" }, "slideshow": { "slide_type": "subslide" @@ -1174,10 +1174,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.636935Z", - "iopub.status.busy": "2024-01-10T15:13:00.636793Z", - "iopub.status.idle": "2024-01-10T15:13:00.639008Z", - "shell.execute_reply": "2024-01-10T15:13:00.638628Z" + "iopub.execute_input": "2024-02-06T01:09:52.224184Z", + "iopub.status.busy": "2024-02-06T01:09:52.223882Z", + "iopub.status.idle": "2024-02-06T01:09:52.226006Z", + "shell.execute_reply": "2024-02-06T01:09:52.225610Z" }, "slideshow": { "slide_type": "subslide" @@ -1193,10 +1193,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.640800Z", - "iopub.status.busy": "2024-01-10T15:13:00.640441Z", - "iopub.status.idle": "2024-01-10T15:13:00.642606Z", - "shell.execute_reply": "2024-01-10T15:13:00.642237Z" + "iopub.execute_input": "2024-02-06T01:09:52.227791Z", + "iopub.status.busy": "2024-02-06T01:09:52.227487Z", + "iopub.status.idle": "2024-02-06T01:09:52.229580Z", + "shell.execute_reply": "2024-02-06T01:09:52.229217Z" }, "slideshow": { "slide_type": "subslide" @@ -1212,10 +1212,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.644240Z", - "iopub.status.busy": "2024-01-10T15:13:00.644087Z", - "iopub.status.idle": "2024-01-10T15:13:00.646359Z", - "shell.execute_reply": "2024-01-10T15:13:00.645900Z" + "iopub.execute_input": "2024-02-06T01:09:52.231303Z", + "iopub.status.busy": "2024-02-06T01:09:52.231011Z", + "iopub.status.idle": "2024-02-06T01:09:52.233080Z", + "shell.execute_reply": "2024-02-06T01:09:52.232725Z" }, "slideshow": { "slide_type": "subslide" @@ -1255,10 +1255,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.648277Z", - "iopub.status.busy": "2024-01-10T15:13:00.647918Z", - "iopub.status.idle": "2024-01-10T15:13:00.650587Z", - "shell.execute_reply": "2024-01-10T15:13:00.650180Z" + "iopub.execute_input": "2024-02-06T01:09:52.234899Z", + "iopub.status.busy": "2024-02-06T01:09:52.234543Z", + "iopub.status.idle": "2024-02-06T01:09:52.237183Z", + "shell.execute_reply": "2024-02-06T01:09:52.236739Z" }, "slideshow": { "slide_type": "subslide" @@ -1284,10 +1284,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.652176Z", - "iopub.status.busy": "2024-01-10T15:13:00.652039Z", - "iopub.status.idle": "2024-01-10T15:13:00.654504Z", - "shell.execute_reply": "2024-01-10T15:13:00.654039Z" + "iopub.execute_input": "2024-02-06T01:09:52.238914Z", + "iopub.status.busy": "2024-02-06T01:09:52.238627Z", + "iopub.status.idle": "2024-02-06T01:09:52.241216Z", + "shell.execute_reply": "2024-02-06T01:09:52.240756Z" }, "slideshow": { "slide_type": "subslide" @@ -1323,10 +1323,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.656158Z", - "iopub.status.busy": "2024-01-10T15:13:00.656003Z", - "iopub.status.idle": "2024-01-10T15:13:00.658797Z", - "shell.execute_reply": "2024-01-10T15:13:00.658306Z" + "iopub.execute_input": "2024-02-06T01:09:52.243109Z", + "iopub.status.busy": "2024-02-06T01:09:52.242807Z", + "iopub.status.idle": "2024-02-06T01:09:52.245366Z", + "shell.execute_reply": "2024-02-06T01:09:52.244915Z" }, "slideshow": { "slide_type": "subslide" @@ -1352,10 +1352,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.660679Z", - "iopub.status.busy": "2024-01-10T15:13:00.660301Z", - "iopub.status.idle": "2024-01-10T15:13:00.663020Z", - "shell.execute_reply": "2024-01-10T15:13:00.662547Z" + "iopub.execute_input": "2024-02-06T01:09:52.246922Z", + "iopub.status.busy": "2024-02-06T01:09:52.246783Z", + "iopub.status.idle": "2024-02-06T01:09:52.249432Z", + "shell.execute_reply": "2024-02-06T01:09:52.249042Z" }, "slideshow": { "slide_type": "subslide" @@ -1405,10 +1405,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.664996Z", - "iopub.status.busy": "2024-01-10T15:13:00.664700Z", - "iopub.status.idle": "2024-01-10T15:13:00.667073Z", - "shell.execute_reply": "2024-01-10T15:13:00.666581Z" + "iopub.execute_input": "2024-02-06T01:09:52.251003Z", + "iopub.status.busy": "2024-02-06T01:09:52.250867Z", + "iopub.status.idle": "2024-02-06T01:09:52.253012Z", + "shell.execute_reply": "2024-02-06T01:09:52.252656Z" }, "slideshow": { "slide_type": "subslide" @@ -1436,10 +1436,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.668696Z", - "iopub.status.busy": "2024-01-10T15:13:00.668545Z", - "iopub.status.idle": "2024-01-10T15:13:00.670725Z", - "shell.execute_reply": "2024-01-10T15:13:00.670346Z" + "iopub.execute_input": "2024-02-06T01:09:52.254621Z", + "iopub.status.busy": "2024-02-06T01:09:52.254445Z", + "iopub.status.idle": "2024-02-06T01:09:52.256575Z", + "shell.execute_reply": "2024-02-06T01:09:52.256202Z" }, "slideshow": { "slide_type": "subslide" @@ -1468,10 +1468,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.672454Z", - "iopub.status.busy": "2024-01-10T15:13:00.672150Z", - "iopub.status.idle": "2024-01-10T15:13:00.675032Z", - "shell.execute_reply": "2024-01-10T15:13:00.674628Z" + "iopub.execute_input": "2024-02-06T01:09:52.258299Z", + "iopub.status.busy": "2024-02-06T01:09:52.258002Z", + "iopub.status.idle": "2024-02-06T01:09:52.260623Z", + "shell.execute_reply": "2024-02-06T01:09:52.260197Z" }, "slideshow": { "slide_type": "subslide" @@ -1510,10 +1510,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.676700Z", - "iopub.status.busy": "2024-01-10T15:13:00.676557Z", - "iopub.status.idle": "2024-01-10T15:13:00.679154Z", - "shell.execute_reply": "2024-01-10T15:13:00.678702Z" + "iopub.execute_input": "2024-02-06T01:09:52.262192Z", + "iopub.status.busy": "2024-02-06T01:09:52.262053Z", + "iopub.status.idle": "2024-02-06T01:09:52.264825Z", + "shell.execute_reply": "2024-02-06T01:09:52.264424Z" }, "slideshow": { "slide_type": "subslide" @@ -1541,10 +1541,10 @@ "execution_count": 40, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.680821Z", - "iopub.status.busy": "2024-01-10T15:13:00.680581Z", - "iopub.status.idle": "2024-01-10T15:13:00.683292Z", - "shell.execute_reply": "2024-01-10T15:13:00.682811Z" + "iopub.execute_input": "2024-02-06T01:09:52.266471Z", + "iopub.status.busy": "2024-02-06T01:09:52.266315Z", + "iopub.status.idle": "2024-02-06T01:09:52.268923Z", + "shell.execute_reply": "2024-02-06T01:09:52.268463Z" }, "slideshow": { "slide_type": "subslide" @@ -1582,10 +1582,10 @@ "execution_count": 41, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.685190Z", - "iopub.status.busy": "2024-01-10T15:13:00.684788Z", - "iopub.status.idle": "2024-01-10T15:13:00.687255Z", - "shell.execute_reply": "2024-01-10T15:13:00.686785Z" + "iopub.execute_input": "2024-02-06T01:09:52.270780Z", + "iopub.status.busy": "2024-02-06T01:09:52.270397Z", + "iopub.status.idle": "2024-02-06T01:09:52.272652Z", + "shell.execute_reply": "2024-02-06T01:09:52.272270Z" }, "slideshow": { "slide_type": "subslide" @@ -1601,10 +1601,10 @@ "execution_count": 42, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.689025Z", - "iopub.status.busy": "2024-01-10T15:13:00.688668Z", - "iopub.status.idle": "2024-01-10T15:13:00.691506Z", - "shell.execute_reply": "2024-01-10T15:13:00.691029Z" + "iopub.execute_input": "2024-02-06T01:09:52.274447Z", + "iopub.status.busy": "2024-02-06T01:09:52.274085Z", + "iopub.status.idle": "2024-02-06T01:09:52.276889Z", + "shell.execute_reply": "2024-02-06T01:09:52.276441Z" }, "slideshow": { "slide_type": "subslide" @@ -1648,10 +1648,10 @@ "execution_count": 43, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.693348Z", - "iopub.status.busy": "2024-01-10T15:13:00.693108Z", - "iopub.status.idle": "2024-01-10T15:13:00.695526Z", - "shell.execute_reply": "2024-01-10T15:13:00.695046Z" + "iopub.execute_input": "2024-02-06T01:09:52.278647Z", + "iopub.status.busy": "2024-02-06T01:09:52.278287Z", + "iopub.status.idle": "2024-02-06T01:09:52.281009Z", + "shell.execute_reply": "2024-02-06T01:09:52.280543Z" }, "slideshow": { "slide_type": "subslide" @@ -1677,10 +1677,10 @@ "execution_count": 44, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.697390Z", - "iopub.status.busy": "2024-01-10T15:13:00.697038Z", - "iopub.status.idle": "2024-01-10T15:13:00.699791Z", - "shell.execute_reply": "2024-01-10T15:13:00.699300Z" + "iopub.execute_input": "2024-02-06T01:09:52.282592Z", + "iopub.status.busy": "2024-02-06T01:09:52.282422Z", + "iopub.status.idle": "2024-02-06T01:09:52.285059Z", + "shell.execute_reply": "2024-02-06T01:09:52.284612Z" }, "slideshow": { "slide_type": "subslide" @@ -1716,10 +1716,10 @@ "execution_count": 45, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.701570Z", - "iopub.status.busy": "2024-01-10T15:13:00.701307Z", - "iopub.status.idle": "2024-01-10T15:13:00.704103Z", - "shell.execute_reply": "2024-01-10T15:13:00.703585Z" + "iopub.execute_input": "2024-02-06T01:09:52.286815Z", + "iopub.status.busy": "2024-02-06T01:09:52.286525Z", + "iopub.status.idle": "2024-02-06T01:09:52.289263Z", + "shell.execute_reply": "2024-02-06T01:09:52.288861Z" }, "slideshow": { "slide_type": "subslide" @@ -1780,10 +1780,10 @@ "execution_count": 46, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.705922Z", - "iopub.status.busy": "2024-01-10T15:13:00.705618Z", - "iopub.status.idle": "2024-01-10T15:13:00.708550Z", - "shell.execute_reply": "2024-01-10T15:13:00.708094Z" + "iopub.execute_input": "2024-02-06T01:09:52.291074Z", + "iopub.status.busy": "2024-02-06T01:09:52.290789Z", + "iopub.status.idle": "2024-02-06T01:09:52.293698Z", + "shell.execute_reply": "2024-02-06T01:09:52.293247Z" }, "slideshow": { "slide_type": "subslide" @@ -1812,10 +1812,10 @@ "execution_count": 47, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.710176Z", - "iopub.status.busy": "2024-01-10T15:13:00.710031Z", - "iopub.status.idle": "2024-01-10T15:13:00.713344Z", - "shell.execute_reply": "2024-01-10T15:13:00.712902Z" + "iopub.execute_input": "2024-02-06T01:09:52.295379Z", + "iopub.status.busy": "2024-02-06T01:09:52.295089Z", + "iopub.status.idle": "2024-02-06T01:09:52.298398Z", + "shell.execute_reply": "2024-02-06T01:09:52.297955Z" } }, "outputs": [ @@ -1840,10 +1840,10 @@ "execution_count": 48, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.714893Z", - "iopub.status.busy": "2024-01-10T15:13:00.714756Z", - "iopub.status.idle": "2024-01-10T15:13:00.717818Z", - "shell.execute_reply": "2024-01-10T15:13:00.717429Z" + "iopub.execute_input": "2024-02-06T01:09:52.300088Z", + "iopub.status.busy": "2024-02-06T01:09:52.299802Z", + "iopub.status.idle": "2024-02-06T01:09:52.302807Z", + "shell.execute_reply": "2024-02-06T01:09:52.302336Z" } }, "outputs": [ @@ -1878,10 +1878,10 @@ "execution_count": 49, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.719397Z", - "iopub.status.busy": "2024-01-10T15:13:00.719259Z", - "iopub.status.idle": "2024-01-10T15:13:00.722035Z", - "shell.execute_reply": "2024-01-10T15:13:00.721640Z" + "iopub.execute_input": "2024-02-06T01:09:52.304571Z", + "iopub.status.busy": "2024-02-06T01:09:52.304218Z", + "iopub.status.idle": "2024-02-06T01:09:52.307021Z", + "shell.execute_reply": "2024-02-06T01:09:52.306567Z" }, "slideshow": { "slide_type": "subslide" @@ -1906,10 +1906,10 @@ "execution_count": 50, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.723749Z", - "iopub.status.busy": "2024-01-10T15:13:00.723437Z", - "iopub.status.idle": "2024-01-10T15:13:00.726086Z", - "shell.execute_reply": "2024-01-10T15:13:00.725696Z" + "iopub.execute_input": "2024-02-06T01:09:52.308671Z", + "iopub.status.busy": "2024-02-06T01:09:52.308390Z", + "iopub.status.idle": "2024-02-06T01:09:52.311019Z", + "shell.execute_reply": "2024-02-06T01:09:52.310565Z" }, "slideshow": { "slide_type": "subslide" @@ -2005,10 +2005,10 @@ "execution_count": 51, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:00.727693Z", - "iopub.status.busy": "2024-01-10T15:13:00.727558Z", - "iopub.status.idle": "2024-01-10T15:13:00.730266Z", - "shell.execute_reply": "2024-01-10T15:13:00.729826Z" + "iopub.execute_input": "2024-02-06T01:09:52.312912Z", + "iopub.status.busy": "2024-02-06T01:09:52.312546Z", + "iopub.status.idle": "2024-02-06T01:09:52.315388Z", + "shell.execute_reply": "2024-02-06T01:09:52.314965Z" }, "slideshow": { "slide_type": "subslide" diff --git a/python/classes.ipynb b/python/classes.ipynb index 072d9889..be74414e 100644 --- a/python/classes.ipynb +++ b/python/classes.ipynb @@ -26,10 +26,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.582931Z", - "iopub.status.busy": "2024-01-10T15:13:03.582775Z", - "iopub.status.idle": "2024-01-10T15:13:03.642282Z", - "shell.execute_reply": "2024-01-10T15:13:03.641801Z" + "iopub.execute_input": "2024-02-06T01:09:54.708732Z", + "iopub.status.busy": "2024-02-06T01:09:54.708357Z", + "iopub.status.idle": "2024-02-06T01:09:54.767599Z", + "shell.execute_reply": "2024-02-06T01:09:54.767123Z" } }, "outputs": [], @@ -42,10 +42,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.645724Z", - "iopub.status.busy": "2024-01-10T15:13:03.644855Z", - "iopub.status.idle": "2024-01-10T15:13:03.649093Z", - "shell.execute_reply": "2024-01-10T15:13:03.648671Z" + "iopub.execute_input": "2024-02-06T01:09:54.770984Z", + "iopub.status.busy": "2024-02-06T01:09:54.770079Z", + "iopub.status.idle": "2024-02-06T01:09:54.774291Z", + "shell.execute_reply": "2024-02-06T01:09:54.773875Z" } }, "outputs": [], @@ -66,10 +66,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.652148Z", - "iopub.status.busy": "2024-01-10T15:13:03.651309Z", - "iopub.status.idle": "2024-01-10T15:13:03.658855Z", - "shell.execute_reply": "2024-01-10T15:13:03.658431Z" + "iopub.execute_input": "2024-02-06T01:09:54.777302Z", + "iopub.status.busy": "2024-02-06T01:09:54.776498Z", + "iopub.status.idle": "2024-02-06T01:09:54.783862Z", + "shell.execute_reply": "2024-02-06T01:09:54.783438Z" } }, "outputs": [ @@ -100,10 +100,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.661909Z", - "iopub.status.busy": "2024-01-10T15:13:03.661117Z", - "iopub.status.idle": "2024-01-10T15:13:03.665265Z", - "shell.execute_reply": "2024-01-10T15:13:03.664842Z" + "iopub.execute_input": "2024-02-06T01:09:54.786886Z", + "iopub.status.busy": "2024-02-06T01:09:54.786061Z", + "iopub.status.idle": "2024-02-06T01:09:54.790224Z", + "shell.execute_reply": "2024-02-06T01:09:54.789808Z" } }, "outputs": [], @@ -124,10 +124,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.668273Z", - "iopub.status.busy": "2024-01-10T15:13:03.667452Z", - "iopub.status.idle": "2024-01-10T15:13:03.672539Z", - "shell.execute_reply": "2024-01-10T15:13:03.672104Z" + "iopub.execute_input": "2024-02-06T01:09:54.793217Z", + "iopub.status.busy": "2024-02-06T01:09:54.792404Z", + "iopub.status.idle": "2024-02-06T01:09:54.797454Z", + "shell.execute_reply": "2024-02-06T01:09:54.797039Z" } }, "outputs": [ @@ -165,10 +165,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.675528Z", - "iopub.status.busy": "2024-01-10T15:13:03.674735Z", - "iopub.status.idle": "2024-01-10T15:13:03.678308Z", - "shell.execute_reply": "2024-01-10T15:13:03.677898Z" + "iopub.execute_input": "2024-02-06T01:09:54.800562Z", + "iopub.status.busy": "2024-02-06T01:09:54.799754Z", + "iopub.status.idle": "2024-02-06T01:09:54.803325Z", + "shell.execute_reply": "2024-02-06T01:09:54.802899Z" } }, "outputs": [], @@ -186,10 +186,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.681241Z", - "iopub.status.busy": "2024-01-10T15:13:03.680440Z", - "iopub.status.idle": "2024-01-10T15:13:03.685497Z", - "shell.execute_reply": "2024-01-10T15:13:03.685082Z" + "iopub.execute_input": "2024-02-06T01:09:54.807560Z", + "iopub.status.busy": "2024-02-06T01:09:54.805466Z", + "iopub.status.idle": "2024-02-06T01:09:54.811827Z", + "shell.execute_reply": "2024-02-06T01:09:54.811418Z" } }, "outputs": [ @@ -220,10 +220,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.688466Z", - "iopub.status.busy": "2024-01-10T15:13:03.687653Z", - "iopub.status.idle": "2024-01-10T15:13:03.691416Z", - "shell.execute_reply": "2024-01-10T15:13:03.691001Z" + "iopub.execute_input": "2024-02-06T01:09:54.814836Z", + "iopub.status.busy": "2024-02-06T01:09:54.814003Z", + "iopub.status.idle": "2024-02-06T01:09:54.817735Z", + "shell.execute_reply": "2024-02-06T01:09:54.817315Z" } }, "outputs": [], @@ -241,10 +241,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.694358Z", - "iopub.status.busy": "2024-01-10T15:13:03.693565Z", - "iopub.status.idle": "2024-01-10T15:13:03.698809Z", - "shell.execute_reply": "2024-01-10T15:13:03.698394Z" + "iopub.execute_input": "2024-02-06T01:09:54.820709Z", + "iopub.status.busy": "2024-02-06T01:09:54.819914Z", + "iopub.status.idle": "2024-02-06T01:09:54.825172Z", + "shell.execute_reply": "2024-02-06T01:09:54.824758Z" } }, "outputs": [ @@ -276,10 +276,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.701467Z", - "iopub.status.busy": "2024-01-10T15:13:03.701014Z", - "iopub.status.idle": "2024-01-10T15:13:03.704363Z", - "shell.execute_reply": "2024-01-10T15:13:03.703992Z" + "iopub.execute_input": "2024-02-06T01:09:54.828004Z", + "iopub.status.busy": "2024-02-06T01:09:54.827339Z", + "iopub.status.idle": "2024-02-06T01:09:54.831053Z", + "shell.execute_reply": "2024-02-06T01:09:54.830711Z" } }, "outputs": [], @@ -308,10 +308,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.706217Z", - "iopub.status.busy": "2024-01-10T15:13:03.705920Z", - "iopub.status.idle": "2024-01-10T15:13:03.709249Z", - "shell.execute_reply": "2024-01-10T15:13:03.708883Z" + "iopub.execute_input": "2024-02-06T01:09:54.833127Z", + "iopub.status.busy": "2024-02-06T01:09:54.832824Z", + "iopub.status.idle": "2024-02-06T01:09:54.835892Z", + "shell.execute_reply": "2024-02-06T01:09:54.835408Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.711222Z", - "iopub.status.busy": "2024-01-10T15:13:03.710929Z", - "iopub.status.idle": "2024-01-10T15:13:03.714113Z", - "shell.execute_reply": "2024-01-10T15:13:03.713765Z" + "iopub.execute_input": "2024-02-06T01:09:54.837474Z", + "iopub.status.busy": "2024-02-06T01:09:54.837318Z", + "iopub.status.idle": "2024-02-06T01:09:54.840287Z", + "shell.execute_reply": "2024-02-06T01:09:54.839826Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.715870Z", - "iopub.status.busy": "2024-01-10T15:13:03.715685Z", - "iopub.status.idle": "2024-01-10T15:13:03.718082Z", - "shell.execute_reply": "2024-01-10T15:13:03.717715Z" + "iopub.execute_input": "2024-02-06T01:09:54.841816Z", + "iopub.status.busy": "2024-02-06T01:09:54.841666Z", + "iopub.status.idle": "2024-02-06T01:09:54.844094Z", + "shell.execute_reply": "2024-02-06T01:09:54.843628Z" } }, "outputs": [], @@ -418,10 +418,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.719855Z", - "iopub.status.busy": "2024-01-10T15:13:03.719682Z", - "iopub.status.idle": "2024-01-10T15:13:03.722839Z", - "shell.execute_reply": "2024-01-10T15:13:03.722469Z" + "iopub.execute_input": "2024-02-06T01:09:54.845880Z", + "iopub.status.busy": "2024-02-06T01:09:54.845599Z", + "iopub.status.idle": "2024-02-06T01:09:54.848851Z", + "shell.execute_reply": "2024-02-06T01:09:54.848394Z" } }, "outputs": [ @@ -459,10 +459,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.724611Z", - "iopub.status.busy": "2024-01-10T15:13:03.724439Z", - "iopub.status.idle": "2024-01-10T15:13:03.727683Z", - "shell.execute_reply": "2024-01-10T15:13:03.727312Z" + "iopub.execute_input": "2024-02-06T01:09:54.850599Z", + "iopub.status.busy": "2024-02-06T01:09:54.850277Z", + "iopub.status.idle": "2024-02-06T01:09:54.853347Z", + "shell.execute_reply": "2024-02-06T01:09:54.852876Z" } }, "outputs": [ @@ -527,10 +527,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.729650Z", - "iopub.status.busy": "2024-01-10T15:13:03.729343Z", - "iopub.status.idle": "2024-01-10T15:13:03.733243Z", - "shell.execute_reply": "2024-01-10T15:13:03.732875Z" + "iopub.execute_input": "2024-02-06T01:09:54.855164Z", + "iopub.status.busy": "2024-02-06T01:09:54.854881Z", + "iopub.status.idle": "2024-02-06T01:09:54.858543Z", + "shell.execute_reply": "2024-02-06T01:09:54.858027Z" } }, "outputs": [], @@ -562,10 +562,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.735067Z", - "iopub.status.busy": "2024-01-10T15:13:03.734780Z", - "iopub.status.idle": "2024-01-10T15:13:03.738207Z", - "shell.execute_reply": "2024-01-10T15:13:03.737713Z" + "iopub.execute_input": "2024-02-06T01:09:54.860226Z", + "iopub.status.busy": "2024-02-06T01:09:54.859923Z", + "iopub.status.idle": "2024-02-06T01:09:54.862295Z", + "shell.execute_reply": "2024-02-06T01:09:54.861923Z" } }, "outputs": [], @@ -600,10 +600,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.740116Z", - "iopub.status.busy": "2024-01-10T15:13:03.739960Z", - "iopub.status.idle": "2024-01-10T15:13:03.742312Z", - "shell.execute_reply": "2024-01-10T15:13:03.741949Z" + "iopub.execute_input": "2024-02-06T01:09:54.864133Z", + "iopub.status.busy": "2024-02-06T01:09:54.863840Z", + "iopub.status.idle": "2024-02-06T01:09:54.866319Z", + "shell.execute_reply": "2024-02-06T01:09:54.865934Z" } }, "outputs": [], @@ -620,10 +620,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.744117Z", - "iopub.status.busy": "2024-01-10T15:13:03.743962Z", - "iopub.status.idle": "2024-01-10T15:13:03.746393Z", - "shell.execute_reply": "2024-01-10T15:13:03.745991Z" + "iopub.execute_input": "2024-02-06T01:09:54.868135Z", + "iopub.status.busy": "2024-02-06T01:09:54.867825Z", + "iopub.status.idle": "2024-02-06T01:09:54.870377Z", + "shell.execute_reply": "2024-02-06T01:09:54.869916Z" } }, "outputs": [], @@ -639,10 +639,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.748130Z", - "iopub.status.busy": "2024-01-10T15:13:03.747832Z", - "iopub.status.idle": "2024-01-10T15:13:03.751001Z", - "shell.execute_reply": "2024-01-10T15:13:03.750540Z" + "iopub.execute_input": "2024-02-06T01:09:54.872129Z", + "iopub.status.busy": "2024-02-06T01:09:54.871838Z", + "iopub.status.idle": "2024-02-06T01:09:54.874882Z", + "shell.execute_reply": "2024-02-06T01:09:54.874468Z" } }, "outputs": [ @@ -702,10 +702,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-10T15:13:03.752918Z", - "iopub.status.busy": "2024-01-10T15:13:03.752554Z", - "iopub.status.idle": "2024-01-10T15:13:03.755308Z", - "shell.execute_reply": "2024-01-10T15:13:03.754839Z" + "iopub.execute_input": "2024-02-06T01:09:54.876455Z", + "iopub.status.busy": "2024-02-06T01:09:54.876314Z", + "iopub.status.idle": "2024-02-06T01:09:54.878978Z", + "shell.execute_reply": "2024-02-06T01:09:54.878585Z" } }, "outputs": [], diff --git a/searchindex.js b/searchindex.js index a4a197ef..7139ea73 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["CONDUCT", "CONTRIBUTING", "LICENSE", "advanced-python/10Basics", "advanced-python/11AdvancedPython", "advanced-python/12AdvancedClasses", "advanced-python/20DataAndPlotting", "advanced-python/30Classification", "advanced-python/31ClassificationExtension", "advanced-python/32BoostingToUniformity", "advanced-python/33ModelTuning", "advanced-python/40Histograms", "advanced-python/45DemoReweighting", "advanced-python/50LikelihoodInference", "advanced-python/60sPlot", "advanced-python/70ScikitHEPUniverse", "advanced-python/README", "git/01-basics", "git/02-setup", "git/03-create", "git/04-changes", "git/05-history", "git/06-ignore", "git/07-gitlab", "git/08-share", "git/09-pullrequests", "git/10-conflict", "git/11-ci", "git/12-open", "git/13-licensing", "git/14-citation", "git/README", "index", "python/00scripts", "python/01basics", "python/README", "python/classes", "python/conditions", "python/dictionaries", "python/first_histogram", "python/further_reading", "python/learning", "python/lists", "python/methods", "python/modules", "python/numbers", "python/operators", "python/running", "python/scripting", "python/strings", "shell-extras/README", "shell-extras/persistent-screen", "shell-extras/screen", "shell-extras/screen2", "shell-extras/shell2", "shell/02-filedir", "shell/03-create", "shell/04-pipefilter", "shell/05-loop", "shell/06-script", "shell/07-find", "shell/README", "snakemake/README"], "filenames": ["CONDUCT.md", "CONTRIBUTING.md", "LICENSE.md", "advanced-python/10Basics.ipynb", "advanced-python/11AdvancedPython.ipynb", "advanced-python/12AdvancedClasses.ipynb", "advanced-python/20DataAndPlotting.ipynb", "advanced-python/30Classification.ipynb", "advanced-python/31ClassificationExtension.ipynb", "advanced-python/32BoostingToUniformity.ipynb", "advanced-python/33ModelTuning.ipynb", "advanced-python/40Histograms.ipynb", "advanced-python/45DemoReweighting.ipynb", "advanced-python/50LikelihoodInference.ipynb", "advanced-python/60sPlot.ipynb", "advanced-python/70ScikitHEPUniverse.ipynb", "advanced-python/README.md", "git/01-basics.md", "git/02-setup.md", "git/03-create.md", "git/04-changes.md", "git/05-history.md", "git/06-ignore.md", "git/07-gitlab.md", "git/08-share.md", "git/09-pullrequests.md", "git/10-conflict.md", "git/11-ci.md", "git/12-open.md", "git/13-licensing.md", "git/14-citation.md", "git/README.md", "index.md", "python/00scripts.md", "python/01basics.ipynb", "python/README.md", "python/classes.ipynb", "python/conditions.md", "python/dictionaries.md", "python/first_histogram.md", "python/further_reading.md", "python/learning.md", "python/lists.md", "python/methods.md", "python/modules.md", "python/numbers.md", "python/operators.md", "python/running.md", "python/scripting.md", "python/strings.md", "shell-extras/README.md", "shell-extras/persistent-screen.md", "shell-extras/screen.md", "shell-extras/screen2.md", "shell-extras/shell2.md", "shell/02-filedir.md", "shell/03-create.md", "shell/04-pipefilter.md", "shell/05-loop.md", "shell/06-script.md", "shell/07-find.md", "shell/README.md", "snakemake/README.md"], "titles": ["Contributor Code of Conduct", "Contributing", "Instructional Material", "1: Basics", "Advanced Python Concepts", "Advanced Classes", "2: First look at data", "3: Multivariate Analysis", "4: Extension on Classification", "5: Boosting to Uniformity", "Model tuning setup", "6: Histograms", "7: Demonstration of distribution reweighting", "8: Likelihood inference", "9: sPlot", "10: Scikit-HEP", "Advanced Python Tutorial", "Automated Version Control", "Setting Up Git", "Creating a Repository", "Tracking Changes", "Exploring History", "Ignoring Things", "Remotes in CERN GitLab", "Sharing a repository with others", "Collaborating with Pull Requests", "Conflicts", "GitLab CI", "Open Science", "Licensing", "Citation", "Git", "Analysis essentials ", "Scripting", "1: Basics", "An introduction to Python", "Classes", "Conditions", "Dictionaries", "Making your first histogram", "More advanced topics in Python", "Learning more", "Lists and looping", "Functions", "Modules", "Numbers", "Objects and operators", "Running Python", "Scripting", "Strings", "UNIX shell", "Persistent screen or tmux session on lxplus", "Using screen to keep things running", "Advanced screen topics", "More about the UNIX shell", "Navigating Files and Directories", "Working With Files and Directories", "Pipes and Filters", "Loops", "Shell Scripts", "Finding Things", "Introducing the Shell", "Analysis automation with Snakemake"], "terms": {"As": [0, 4, 9, 10, 12, 14, 15, 18, 21, 22, 23, 25, 26, 28, 31, 34, 38, 39, 42, 43, 44, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "maintain": [0, 1, 6, 15, 25, 29, 32, 35], "thi": [0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "project": [0, 1, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 32, 56], "we": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "pledg": 0, "respect": [0, 4, 5, 6, 34, 42, 56, 59], "all": [0, 1, 2, 3, 4, 5, 6, 8, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 32, 35, 37, 38, 39, 44, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "peopl": [0, 1, 17, 21, 23, 25, 26, 28, 29, 35, 39, 41, 43, 49, 54, 55, 56, 57, 58, 59, 60, 61], "who": [0, 1, 25, 26, 28, 29, 35, 41, 43, 51, 54, 55, 58, 59, 60], "contribut": [0, 14, 25, 29, 32, 39], "through": [0, 6, 15, 16, 20, 21, 22, 24, 25, 28, 29, 36, 41, 44, 46, 47, 53, 54, 55, 57, 58, 60, 61], "report": [0, 1, 10, 20, 60], "issu": [0, 1, 18, 22, 23, 32, 61, 62], "post": [0, 24, 28, 41], "featur": [0, 3, 6, 7, 12, 13, 14, 16, 23, 27, 31, 32, 35, 47, 53, 57, 62], "request": [0, 1, 3, 31, 32, 62], "updat": [0, 1, 13, 18, 20, 21, 23, 24, 26, 27, 39, 41, 44, 47, 51, 58, 62], "document": [0, 1, 2, 3, 10, 16, 17, 21, 23, 27, 28, 32, 39, 43, 44, 55, 56], "submit": [0, 1, 25, 28], "pull": [0, 1, 23, 24, 26, 31, 32], "patch": [0, 6, 11, 20, 21, 61], "other": [0, 2, 4, 5, 7, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62], "activ": [0, 16, 18, 32, 35, 44, 52], "ar": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "commit": [0, 1, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], "make": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 48, 49, 50, 55, 56, 57, 58, 59, 60, 61, 62], "particip": [0, 32], "harass": 0, "free": [0, 2, 6, 7, 12, 27, 28, 29, 31, 42, 54], "experi": [0, 6, 10, 13, 32, 47, 56, 58, 60], "everyon": [0, 1, 20, 21, 22, 41, 43, 61], "regardless": [0, 55, 61, 62], "level": [0, 10, 13, 22, 24, 37, 54, 55, 56, 57, 61], "gender": 0, "ident": [0, 6, 12, 17, 34, 38, 42, 55, 56, 62], "express": [0, 2, 14, 16, 32, 33, 39, 41, 42, 43, 46, 48, 49, 54, 57, 60], "sexual": 0, "orient": [0, 36, 44], "disabl": [0, 55], "person": [0, 2, 17, 23, 24, 25, 26, 28, 34, 43, 55, 59, 62], "appear": [0, 19, 20, 21, 24, 25, 55, 56, 58, 59, 60, 61, 62], "bodi": [0, 37, 58], "size": [0, 10, 11, 14, 20, 39, 42, 54, 55, 56, 60], "race": 0, "ethnic": 0, "ag": [0, 25, 34, 43], "religion": 0, "exampl": [0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 25, 27, 32, 33, 34, 36, 37, 38, 39, 42, 43, 46, 48, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "unaccept": 0, "behavior": [0, 5, 13, 36, 47], "includ": [0, 1, 2, 3, 4, 7, 8, 10, 13, 17, 18, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 33, 34, 38, 39, 41, 43, 44, 47, 48, 49, 52, 55, 56, 57, 59, 60, 61], "us": [0, 2, 3, 5, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 48, 49, 50, 54, 55, 56, 57, 58, 59, 60, 61], "languag": [0, 29, 32, 34, 35, 36, 39, 41, 42, 46, 47, 60, 61], "imageri": 0, "derogatori": 0, "comment": [0, 1, 3, 8, 17, 20, 21, 24, 25, 33, 34, 41, 43, 48, 59, 60, 62], "attack": 0, "troll": 0, "public": [0, 2, 23, 27, 29, 30, 36, 39, 55], "privat": [0, 23, 25, 27, 36, 51], "insult": 0, "unprofession": 0, "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "right": [0, 2, 4, 5, 7, 8, 9, 10, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 39, 44, 46, 55, 56, 57, 58, 59, 60, 61], "respons": [0, 3, 7, 10, 16, 26, 42, 55, 56, 58, 59], "remov": [0, 4, 7, 10, 11, 12, 13, 19, 21, 23, 26, 33, 39, 41, 42, 48, 56, 57, 58, 59, 62], "edit": [0, 18, 20, 25, 26, 34, 54, 58, 59, 62], "reject": [0, 10, 25, 26], "wiki": 0, "align": 0, "do": [0, 1, 2, 4, 5, 6, 7, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 32, 33, 36, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "follow": [0, 1, 2, 3, 4, 5, 6, 10, 12, 13, 14, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 31, 32, 34, 35, 36, 37, 38, 41, 42, 43, 44, 51, 53, 54, 55, 56, 57, 58, 59, 60, 62], "mai": [0, 1, 2, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 21, 23, 26, 28, 30, 36, 47, 53, 54, 55, 56, 57, 58, 59, 60], "from": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 45, 46, 48, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "team": 0, "instanc": [0, 4, 5, 9, 13, 14, 23, 27, 36, 44, 47, 53, 60, 62], "abus": 0, "otherwis": [0, 2, 9, 20, 29, 34, 55, 57, 62], "open": [0, 1, 4, 5, 6, 7, 9, 10, 12, 19, 24, 25, 29, 31, 32, 39, 44, 54, 55, 56, 57, 58, 59, 62], "an": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "contact": [0, 1, 29], "one": [0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "more": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 49, 50, 52, 55, 56, 57, 58, 59, 60, 61, 62], "i": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "adapt": [0, 2, 8, 10], "coven": 0, "version": [0, 1, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 47, 54, 55, 58, 62], "1": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 24, 25, 26, 30, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62], "0": [0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "avail": [0, 1, 2, 4, 6, 11, 13, 14, 15, 16, 25, 26, 27, 29, 33, 37, 38, 39, 43, 44, 45, 46, 48, 49, 54, 55, 61, 62], "http": [0, 3, 6, 7, 8, 9, 10, 12, 13, 17, 23, 25, 26, 32, 44, 55, 61, 62], "org": [0, 6, 7, 8, 10, 55], "hsf": [1, 32, 62], "train": [1, 7, 8, 10, 16, 32, 62], "sourc": [1, 14, 25, 29, 31, 32, 39, 44, 45, 47, 49, 54, 55, 62], "welcom": [1, 16, 23, 32, 34, 35], "kind": [1, 2, 13, 16, 20, 23, 29, 56, 59, 61], "new": [1, 6, 7, 8, 9, 10, 12, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 31, 32, 34, 36, 39, 42, 43, 44, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62], "lesson": [1, 3, 6, 7, 8, 10, 16, 18, 20, 21, 23, 24, 25, 27, 30, 32, 35, 39, 43, 44, 46, 50, 52, 55, 56, 57, 60, 61], "fix": [1, 3, 6, 10, 14, 16, 20, 21, 23, 25, 26, 35, 47, 54, 57, 59, 60], "exist": [1, 4, 8, 9, 11, 25, 26, 31, 34, 35, 37, 42, 43, 44, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62], "materi": [1, 29, 32, 47, 50, 54], "bug": [1, 7, 10, 25, 47], "review": [1, 20, 24, 25, 28], "propos": [1, 24, 25], "chang": [1, 2, 4, 6, 10, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 34, 37, 39, 42, 43, 44, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 62], "By": [1, 4, 8, 14, 24, 25, 43, 44, 49, 51, 55, 56, 57, 58, 59], "you": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "agre": [1, 5, 12], "redistribut": [1, 2], "your": [1, 2, 3, 6, 7, 8, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "work": [1, 3, 4, 5, 6, 7, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 34, 37, 38, 41, 42, 45, 47, 48, 49, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62], "under": [1, 2, 5, 7, 9, 12, 13, 16, 22, 23, 25, 26, 29, 33, 44, 48, 57, 60], "our": [1, 4, 6, 7, 8, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 33, 34, 35, 36, 39, 42, 43, 44, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62], "licens": [1, 2, 31, 32, 47], "In": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 20, 21, 23, 24, 25, 26, 27, 29, 32, 33, 34, 35, 36, 38, 39, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "exchang": 1, "address": [1, 10, 18, 29, 54, 62], "assess": [1, 10], "promptli": 1, "can": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "help": [1, 3, 7, 10, 13, 17, 18, 20, 22, 26, 27, 29, 32, 33, 34, 35, 41, 42, 43, 47, 48, 53, 54, 55, 56, 57, 59, 60, 62], "becom": [1, 6, 10, 17, 20, 21, 29, 32, 34, 41, 43, 49, 57, 58, 59, 61, 62], "member": [1, 24], "commun": [1, 28, 35, 36, 41, 61], "involv": [1, 5, 7, 10, 13, 16, 27], "abid": 1, "code": [1, 3, 4, 5, 7, 14, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 39, 42, 43, 45, 47, 48, 49, 54, 55, 58, 62], "conduct": [1, 32], "The": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60], "easiest": [1, 23, 59, 61], "wai": [1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 17, 18, 20, 21, 22, 24, 25, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "get": [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 26, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62], "start": [1, 3, 4, 6, 11, 14, 16, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 32, 33, 34, 36, 37, 38, 41, 42, 43, 44, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62], "file": [1, 2, 3, 4, 6, 11, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 53, 58, 59, 60, 61], "tell": [1, 7, 18, 19, 20, 21, 22, 23, 25, 26, 33, 34, 37, 38, 42, 43, 44, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 62], "u": [1, 5, 6, 7, 10, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 26, 31, 32, 33, 34, 37, 38, 39, 42, 43, 44, 45, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "about": [1, 3, 5, 6, 7, 9, 13, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 32, 33, 34, 36, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 55, 56, 57, 58, 59, 60, 61, 62], "mistak": [1, 7, 19, 21, 56, 58, 59], "some": [1, 3, 4, 6, 7, 8, 9, 10, 13, 14, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 36, 37, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "awkward": [1, 40], "word": [1, 14, 17, 20, 25, 41, 43, 47, 49, 54, 55, 56, 57, 58, 59, 60], "factual": 1, "error": [1, 3, 4, 5, 6, 7, 10, 13, 21, 23, 25, 26, 27, 34, 40, 42, 44, 55, 56, 57, 58, 59, 62], "good": [1, 3, 4, 5, 6, 7, 8, 10, 12, 19, 20, 21, 24, 25, 29, 34, 35, 36, 41, 43, 52, 54, 56, 57, 58, 61], "introduc": [1, 4, 10, 14, 16, 23, 25, 26, 32, 55, 59], "yourself": [1, 20, 24, 26, 38, 41, 42, 44, 49, 53, 57, 58, 62], "meet": 1, "If": [1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 32, 34, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 53, 54, 55, 56, 57, 58, 59, 60, 62], "account": [1, 12, 13, 18, 23, 25, 55, 61], "write": [1, 3, 4, 6, 10, 13, 14, 17, 20, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 34, 35, 41, 42, 43, 47, 48, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "convenor": 1, "email": [1, 18, 25, 54], "howev": [1, 4, 5, 6, 7, 8, 10, 11, 14, 16, 17, 20, 23, 27, 28, 32, 36, 38, 39, 42, 43, 44, 47, 52, 54, 55, 56, 57, 58, 60, 61, 62], "abl": [1, 4, 12, 14, 21, 24, 27, 28, 32, 34, 39, 41, 43, 52, 59, 61, 62], "respond": [1, 4, 6], "quickli": [1, 10, 25, 41, 54, 58, 62], "method": [1, 3, 4, 5, 6, 7, 10, 12, 13, 14, 15, 16, 27, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 49, 55, 60], "describ": [1, 11, 13, 14, 28, 30, 42, 44, 56, 57], "below": [1, 3, 4, 7, 10, 12, 18, 20, 21, 25, 26, 29, 34, 55, 56, 57, 58, 60], "willing": 1, "creat": [1, 4, 5, 6, 7, 8, 11, 13, 14, 15, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 34, 36, 38, 39, 41, 42, 43, 44, 45, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "know": [1, 4, 5, 6, 11, 12, 14, 20, 25, 26, 33, 34, 36, 41, 42, 44, 46, 48, 49, 54, 55, 56, 57, 58, 59, 62], "git": [1, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 44, 55, 60, 62], "problem": [1, 4, 7, 10, 12, 14, 16, 20, 21, 26, 29, 32, 35, 36, 38, 41, 55, 57, 58, 59, 60, 62], "suggest": [1, 2, 10, 24, 44, 56], "improv": [1, 6, 7, 10, 12, 25, 44, 54, 58, 59, 61], "allow": [1, 3, 6, 10, 11, 14, 15, 17, 20, 21, 23, 24, 25, 26, 27, 29, 31, 33, 38, 39, 43, 44, 48, 49, 52, 54, 55, 56, 57, 58, 59, 61, 62], "assign": [1, 4, 12, 25, 27, 32, 35, 37, 39, 42, 43, 44, 47, 52, 54, 58], "item": [1, 5, 12, 34, 38, 41, 42, 44, 58, 62], "someon": [1, 20, 23, 25, 26, 29, 41, 43, 54, 56, 57, 62], "thread": [1, 9, 10, 23, 24, 25, 26, 44, 62], "discuss": [1, 6, 19, 20, 22, 26, 28, 29, 31, 32, 53], "comfort": [1, 32, 35, 41], "would": [1, 4, 7, 10, 12, 17, 20, 21, 22, 23, 24, 25, 29, 36, 39, 42, 43, 44, 46, 51, 52, 55, 56, 57, 58, 59, 60, 61, 62], "like": [1, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "add": [1, 3, 4, 5, 6, 11, 13, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 32, 33, 36, 39, 43, 48, 49, 54, 55, 56, 59, 62], "pr": 1, "instruct": [1, 13, 23, 32, 51, 56, 58], "There": [1, 4, 5, 6, 7, 13, 14, 20, 28, 32, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 52, 53, 54, 55, 56, 57, 58, 60, 62], "mani": [1, 4, 6, 10, 11, 12, 14, 16, 17, 18, 22, 24, 25, 28, 29, 34, 35, 36, 37, 39, 41, 42, 43, 44, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62], "exercis": [1, 4, 5, 6, 7, 8, 11, 13, 23, 25, 36, 54, 56, 57, 58], "ones": [1, 4, 8, 12, 14, 23, 26, 34, 39, 41, 49, 54, 58, 60, 62], "fill": [1, 6, 11, 16, 25, 43, 55, 56, 57, 62], "thing": [1, 3, 4, 6, 7, 11, 12, 13, 14, 16, 18, 20, 21, 23, 25, 26, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 55, 56, 57, 58, 59, 61, 62], "clear": [1, 5, 29, 36, 43], "miss": [1, 5, 7, 21, 23, 39, 49, 57, 61], "look": [1, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 19, 20, 21, 22, 23, 24, 25, 26, 28, 31, 32, 34, 36, 37, 38, 42, 43, 44, 46, 52, 54, 55, 56, 57, 58, 60, 62], "idea": [1, 4, 5, 7, 14, 16, 19, 21, 25, 28, 41, 43, 55, 57, 58, 60], "pleas": [1, 7, 13, 18, 30, 32, 44, 60], "see": [1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 32, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62], "tab": [1, 23, 24, 25, 26, 27, 32, 34, 46, 47, 50, 55, 58, 61], "list": [1, 3, 4, 7, 18, 19, 20, 21, 22, 25, 29, 32, 33, 34, 35, 36, 37, 38, 43, 44, 46, 47, 48, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62], "associ": [1, 2, 18, 23, 43, 55], "repositori": [1, 17, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 44], "also": [1, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62], "particularli": [1, 35, 43, 52, 56, 62], "easi": [1, 3, 5, 7, 8, 13, 15, 21, 28, 30, 42, 57, 58, 60, 62], "suitabl": [1, 4, 20, 21, 27, 39], "first": [1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 16, 18, 20, 21, 23, 25, 26, 27, 31, 32, 33, 34, 35, 36, 40, 42, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62], "just": [1, 3, 4, 5, 6, 7, 10, 13, 15, 16, 17, 18, 19, 20, 21, 23, 25, 26, 27, 33, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "smarter": 1, "togeth": [1, 4, 11, 16, 21, 36, 38, 39, 54, 55, 57, 60, 61], "than": [1, 3, 5, 6, 10, 12, 14, 16, 17, 20, 21, 23, 24, 25, 28, 33, 35, 36, 37, 39, 43, 44, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "own": [1, 4, 10, 12, 18, 20, 21, 23, 24, 25, 27, 28, 29, 33, 38, 41, 43, 44, 47, 48, 55, 60], "novic": [1, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 55, 56, 57, 58, 59, 60, 61], "newcom": [1, 32], "valuabl": 1, "been": [1, 6, 7, 8, 12, 15, 16, 17, 20, 21, 23, 24, 25, 35, 36, 39, 43, 45, 47, 54, 55, 56, 57, 58, 61, 62], "while": [1, 4, 5, 6, 7, 8, 10, 12, 13, 16, 21, 25, 27, 28, 34, 37, 39, 43, 44, 45, 50, 54, 55, 56, 57, 59, 60, 61], "forget": [1, 5, 6, 18, 21, 23, 53], "impenetr": 1, "so": [1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "fresh": [1, 52, 60], "ey": 1, "alwai": [1, 4, 8, 16, 18, 19, 20, 22, 25, 33, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 54, 55, 56, 57, 59, 60, 61, 62], "choos": [1, 7, 10, 12, 14, 18, 20, 29, 34, 43, 49, 58], "via": [1, 5, 12, 20, 22, 25, 34, 44, 52, 55], "want": [1, 4, 6, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 33, 34, 36, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "To": [1, 3, 4, 5, 6, 7, 11, 12, 13, 14, 19, 20, 23, 24, 25, 26, 27, 30, 32, 33, 39, 44, 47, 48, 51, 52, 53, 54, 55, 56, 57, 59, 60, 62], "manag": [1, 16, 17, 26, 29, 32, 54, 55, 61], "flow": [1, 11, 16, 32, 34, 57], "each": [1, 6, 7, 8, 10, 11, 12, 14, 17, 19, 20, 21, 23, 25, 26, 27, 29, 38, 39, 41, 42, 43, 45, 54, 55, 56, 57, 58, 59, 60, 61, 62], "ha": [1, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 36, 38, 39, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "two": [1, 3, 4, 5, 7, 8, 11, 12, 14, 16, 17, 20, 21, 22, 23, 25, 26, 32, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62], "encourag": [1, 32, 47], "volunt": 1, "final": [1, 4, 7, 10, 14, 22, 24, 25, 28, 42, 43, 51, 54, 55, 57, 58, 59, 60, 62], "sai": [1, 4, 13, 14, 21, 22, 23, 24, 25, 33, 41, 43, 44, 48, 49, 54, 55, 56, 57, 59], "over": [1, 4, 10, 11, 12, 13, 15, 16, 20, 23, 24, 25, 32, 34, 35, 37, 38, 42, 43, 44, 47, 50, 58, 59], "merg": [1, 2, 7, 17, 24, 26, 31, 32, 62], "web": [1, 6, 12, 16, 23, 25, 27, 28, 29, 39, 55, 62], "interfac": [1, 6, 8, 11, 24, 25, 27, 32, 36, 39, 40, 56, 60], "fork": [1, 24, 31, 32], "origin": [1, 6, 8, 10, 13, 14, 16, 23, 24, 26, 27, 31, 32, 42, 55, 57, 58, 60, 62], "profil": [1, 3, 13], "within": [1, 7, 14, 17, 19, 20, 27, 42, 44, 46, 53, 54, 55, 58, 59, 60, 62], "move": [1, 10, 19, 20, 21, 23, 34, 51, 55, 56, 58, 62], "gh": 1, "page": [1, 7, 18, 20, 23, 24, 25, 27, 28, 32, 50, 53, 55, 57, 60, 61], "branch": [1, 19, 20, 21, 22, 23, 24, 25, 26], "signific": [1, 6, 7, 10, 13, 16], "being": [1, 4, 14, 20, 21, 22, 25, 26, 27, 28, 29, 32, 35, 44, 47, 54, 56, 57, 58, 60, 61, 62], "made": [1, 2, 13, 17, 20, 21, 23, 24, 25, 26, 29, 31, 39, 42, 44, 56, 59, 60, 62], "navig": [1, 20, 32, 34, 56, 61], "": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 58, 59, 60, 62], "wish": [1, 15, 18, 56], "revis": [1, 20, 28, 55], "requir": [1, 6, 10, 12, 16, 27, 28, 29, 32, 36, 37, 38, 42, 54, 55, 56, 57, 58, 60, 62], "appropri": [1, 2, 7, 12, 14, 20, 25, 26, 28, 43, 46, 62], "individu": [1, 14], "receiv": [1, 7, 25, 57, 58], "feedback": [1, 28], "specif": [1, 4, 6, 10, 20, 21, 22, 24, 32, 34, 35, 38, 42, 43, 44, 50, 52, 54, 55, 60, 61, 62], "automat": [1, 4, 24, 26, 27, 29, 31, 32, 33, 34, 36, 39, 41, 43, 47, 48, 50, 55, 61, 62], "repeat": [1, 13, 24, 49, 54, 58, 59, 61], "need": [1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 38, 39, 42, 43, 44, 47, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "until": [1, 4, 6, 12, 21, 27, 38, 39, 42, 54, 60, 61], "when": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 33, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "sure": [1, 11, 12, 13, 19, 20, 23, 24, 25, 32, 36, 37, 38, 42, 54, 55, 56, 57, 58, 59, 60], "clone": [1, 24, 26, 31, 32, 44], "up": [1, 4, 7, 8, 15, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 31, 32, 34, 37, 38, 42, 44, 47, 50, 52, 54, 55, 56, 57, 58, 59, 61, 62], "date": [1, 20, 21, 23, 25, 30, 44, 52, 55, 60, 62], "befor": [1, 4, 6, 10, 13, 17, 18, 20, 21, 24, 25, 26, 27, 28, 34, 36, 39, 41, 42, 43, 44, 55, 56, 57, 58, 59, 60, 62], "e": [1, 4, 6, 7, 8, 12, 13, 14, 15, 18, 20, 21, 22, 23, 25, 26, 27, 34, 36, 41, 42, 44, 45, 47, 55, 56, 57, 58, 59, 60, 61, 62], "addition": [1, 27, 31], "onli": [1, 4, 5, 6, 7, 10, 11, 13, 14, 18, 20, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "newli": [1, 20, 22, 56], "lastli": [1, 44], "publish": [1, 2, 28], "copi": [1, 2, 7, 10, 11, 19, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38, 39, 42, 44, 49, 51, 55, 56, 57, 58], "refer": [1, 6, 7, 11, 18, 21, 28, 30, 32, 33, 34, 47, 48, 52, 54, 55, 56, 58, 59, 60, 62], "inform": [1, 6, 13, 15, 16, 18, 19, 20, 23, 24, 25, 28, 29, 32, 33, 39, 41, 43, 47, 48, 51, 54, 55, 56, 57, 59, 60, 62], "home": [1, 19, 23, 26, 44, 52, 55, 56, 57, 58, 60], "creativ": [2, 29, 62], "common": [2, 3, 4, 6, 10, 21, 23, 24, 25, 27, 29, 35, 37, 39, 42, 49, 54, 58, 60, 61], "attribut": [2, 5, 11, 15, 29, 36, 42, 60], "human": [2, 5, 23, 54, 55, 56, 58, 61], "readabl": [2, 5, 15, 23, 34, 37, 41, 42, 43, 44, 54, 55, 60], "summari": [2, 20, 62], "substitut": [2, 58, 62], "full": [2, 10, 13, 20, 21, 23, 26, 27, 36, 42, 55, 56, 57, 60, 62], "legal": [2, 29], "text": [2, 3, 6, 7, 11, 12, 14, 18, 20, 21, 23, 26, 32, 34, 35, 44, 47, 49, 50, 55, 56, 57, 58, 59, 60, 61, 62], "cc": [2, 10, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 55, 56, 57, 58, 59, 60, 61], "BY": [2, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 55, 56, 57, 58, 59, 60, 61], "4": [2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 34, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 55, 56, 57, 58, 59, 60, 61, 62], "share": [2, 3, 7, 10, 13, 14, 22, 23, 26, 27, 28, 29, 31, 32, 54, 55, 62], "ani": [2, 4, 5, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 32, 34, 38, 39, 41, 42, 43, 44, 45, 47, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "medium": 2, "format": [2, 6, 20, 23, 32, 35, 37, 41, 43, 44, 48, 55, 57, 59, 60], "remix": 2, "transform": [2, 8, 57], "build": [2, 10, 13, 16, 21, 25, 27, 40, 42, 44, 46, 57, 58, 60, 61, 62], "upon": 2, "purpos": [2, 7, 9, 13, 20, 28, 31, 43, 56, 57, 58], "even": [2, 6, 10, 12, 14, 17, 20, 21, 25, 26, 29, 31, 33, 34, 35, 36, 39, 42, 43, 44, 48, 49, 52, 54, 55, 56, 57, 60, 61, 62], "commerci": [2, 29], "licensor": 2, "cannot": [2, 7, 12, 25, 26, 34, 38, 42, 44, 55, 56, 58, 62], "revok": 2, "freedom": 2, "long": [2, 3, 17, 18, 20, 21, 33, 37, 44, 47, 48, 49, 52, 55, 60, 61, 62], "term": [2, 10, 20, 25, 45, 55, 60], "must": [2, 4, 21, 25, 26, 29, 37, 38, 39, 41, 42, 43, 44, 51, 54, 55, 56, 57, 59, 62], "give": [2, 4, 5, 6, 7, 10, 11, 16, 24, 25, 26, 32, 38, 39, 42, 43, 44, 45, 49, 55, 57, 58, 59, 60, 62], "credit": [2, 47], "provid": [2, 4, 5, 6, 10, 11, 12, 13, 15, 16, 23, 25, 27, 29, 39, 41, 43, 44, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62], "link": [2, 23, 24, 25, 28, 32, 50, 55, 60], "indic": [2, 10, 23, 34, 38, 42, 49, 55, 56, 57], "were": [2, 6, 10, 14, 21, 22, 23, 24, 26, 27, 43, 57, 58, 59, 60, 62], "reason": [2, 12, 14, 18, 20, 23, 28, 42, 45, 49, 54, 59, 62], "manner": [2, 38], "endors": 2, "No": [2, 4, 6, 7, 12, 37, 43, 54, 55, 56, 58], "addit": [2, 5, 20, 23, 25, 26, 27, 32, 34, 38, 44, 46, 50, 54, 55, 56, 57, 58, 59, 61, 62], "restrict": [2, 6, 23, 29, 38, 42, 44, 60], "appli": [2, 5, 7, 10, 11, 13, 15, 16, 21, 29, 32, 35, 43, 55, 58], "technolog": 2, "measur": [2, 6, 12, 13, 58, 61, 62], "anyth": [2, 4, 13, 20, 25, 26, 28, 31, 33, 38, 42, 43, 47, 48, 55, 56, 57, 58, 59, 62], "permit": 2, "notic": [2, 19, 20, 21, 22, 34, 44, 49, 54, 55, 56, 60, 62], "compli": 2, "element": [2, 4, 34, 42, 43, 44, 55, 56, 58], "domain": 2, "where": [2, 3, 5, 6, 7, 8, 10, 12, 14, 18, 19, 20, 21, 23, 25, 26, 27, 28, 34, 35, 36, 42, 43, 44, 45, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "applic": [2, 3, 9, 12, 55], "except": [2, 5, 6, 13, 16, 22, 23, 25, 32, 44, 47, 55, 56, 57], "limit": [2, 10, 11, 13, 14, 17, 20, 25, 32, 55, 58, 60], "warranti": 2, "given": [2, 4, 8, 12, 13, 14, 20, 21, 22, 25, 26, 28, 36, 42, 43, 44, 45, 54, 55, 56, 57, 58, 59, 60, 62], "permiss": [2, 6, 24, 25, 29, 54, 55, 60], "necessari": [2, 26, 42, 44, 55, 61], "intend": [2, 31, 47], "For": [2, 4, 5, 6, 7, 9, 10, 12, 13, 17, 18, 20, 22, 24, 28, 32, 34, 36, 37, 39, 42, 43, 44, 45, 46, 47, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "privaci": 2, "moral": 2, "how": [2, 3, 4, 6, 7, 8, 10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 35, 38, 41, 42, 43, 44, 45, 46, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62], "note": [2, 3, 4, 6, 13, 18, 19, 20, 23, 24, 25, 26, 32, 37, 38, 42, 43, 44, 47, 51, 53, 55, 56, 57, 58, 59, 60, 61, 62], "program": [2, 4, 18, 20, 22, 28, 32, 33, 35, 36, 38, 41, 44, 46, 47, 48, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61], "carpentri": [2, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 50, 55, 56, 57, 58, 59, 60, 61], "osi": 2, "approv": [2, 29], "mit": 2, "herebi": [2, 25, 36], "grant": [2, 29], "charg": [2, 15, 31], "obtain": [2, 6, 9, 11, 12, 13, 14, 16, 28, 33, 48, 51, 60], "deal": [2, 11, 17, 46, 57], "without": [2, 3, 5, 6, 9, 10, 11, 12, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 29, 33, 36, 39, 42, 44, 45, 48, 49, 51, 55, 56, 57, 58, 59, 60, 62], "modifi": [2, 20, 21, 22, 25, 26, 27, 28, 31, 33, 39, 42, 44, 48, 49, 54, 58, 59, 60, 62], "distribut": [2, 7, 10, 13, 16, 17, 25, 28, 29, 31, 32, 39, 40, 44, 47, 62], "sublicens": 2, "sell": 2, "whom": 2, "furnish": 2, "subject": [2, 14, 62], "condit": [2, 13, 14, 29, 32, 35, 44, 50], "abov": [2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 19, 21, 24, 26, 28, 32, 34, 36, 39, 42, 43, 44, 47, 52, 54, 55, 56, 58, 60, 62], "copyright": [2, 29, 47], "shall": [2, 14], "substanti": [2, 62], "portion": [2, 20], "THE": 2, "AS": 2, "OF": 2, "OR": [2, 13], "impli": [2, 10, 55], "BUT": 2, "NOT": [2, 4, 36], "TO": 2, "merchant": 2, "fit": [2, 7, 8, 9, 10, 11, 12, 13, 15, 16, 20, 32, 35, 40], "FOR": 2, "A": [2, 3, 4, 5, 7, 10, 11, 12, 14, 17, 21, 23, 24, 25, 26, 27, 28, 29, 34, 36, 38, 39, 40, 42, 43, 47, 49, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62], "particular": [2, 14, 17, 20, 23, 27, 35, 37, 44, 54, 56, 60], "AND": [2, 13, 14], "noninfring": 2, "IN": 2, "NO": 2, "event": [2, 6, 7, 12, 16, 39, 59], "author": [2, 11, 17, 20, 21, 25, 26, 30, 55], "holder": [2, 29], "BE": 2, "liabl": 2, "claim": [2, 62], "damag": 2, "liabil": 2, "whether": [2, 4, 7, 25, 29, 34, 37, 38, 44, 54, 58, 62], "action": [2, 4, 26, 33, 39, 42, 48, 62], "contract": [2, 60], "tort": 2, "aris": [2, 58], "out": [2, 3, 4, 5, 6, 7, 10, 12, 16, 20, 21, 22, 23, 24, 25, 26, 28, 29, 33, 34, 39, 41, 42, 43, 44, 46, 47, 48, 51, 52, 53, 55, 57, 59, 60, 61, 62], "connect": [2, 3, 23, 25, 36, 52, 53, 55, 57], "WITH": 2, "advanc": [3, 6, 7, 9, 10, 12, 13, 32, 34, 35, 50, 60], "python": [3, 5, 6, 7, 9, 10, 11, 12, 13, 15, 21, 27, 29, 32, 33, 36, 37, 38, 39, 42, 43, 45, 46, 48, 49, 62], "tutori": [3, 4, 5, 6, 10, 15, 31, 32, 34, 54, 55], "cover": [3, 4, 6, 16, 20, 22, 34, 36, 50, 55, 56, 61], "skill": [3, 32, 61], "tip": [3, 23, 26, 56], "load": [3, 4, 7, 8, 10, 11, 15, 16, 32, 44, 52, 62], "data": [3, 7, 8, 10, 11, 13, 14, 15, 16, 22, 28, 32, 35, 38, 39, 42, 54, 55, 56, 57, 58, 59, 60, 61, 62], "plot": [3, 8, 9, 10, 12, 14, 15, 16, 22, 27, 32, 35], "matplotlib": [3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 27, 32, 39, 40, 44], "cut": [3, 7, 8, 10, 11, 13, 14, 15, 16, 32, 35, 57, 59, 60], "base": [3, 7, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 36, 39, 40, 44, 55, 56, 57, 58, 59, 60, 61, 62], "selction": 3, "multivari": [3, 12, 16, 32], "analysi": [3, 10, 11, 13, 14, 15, 16, 22, 28, 35, 39, 49, 56, 57, 58, 59], "scikit": [3, 6, 7, 8, 10, 11, 16, 32], "learn": [3, 7, 8, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 52, 55, 56, 57, 58, 59, 60, 61, 62], "uboost": [3, 9], "hep_ml": [3, 9, 12, 14, 32], "neural": [3, 16], "network": [3, 16], "demo": [3, 61], "mutivari": 3, "kinemat": 3, "reweight": [3, 16, 32], "splot": [3, 12, 16, 32], "techniqu": [3, 7, 8, 14, 16, 42, 58, 60], "mutabl": [3, 4, 7, 32, 35, 38, 42, 43], "immut": [3, 34, 38, 49], "object": [3, 4, 5, 6, 7, 10, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 47, 49, 52, 55, 56, 57, 58, 59, 60, 61, 62], "dictionari": [3, 6, 10, 11, 32, 34, 35, 37, 41, 43, 62], "comprehens": [3, 32, 35, 37, 38, 43, 55, 57, 59, 60, 62], "notebook": [3, 7, 9, 10, 13, 14, 15, 16, 28, 29, 32, 34, 39, 47], "moduel": 3, "let": [3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 34, 35, 36, 42, 43, 44, 45, 47, 48, 52, 54, 55, 56, 57, 59, 60, 62], "compar": [3, 7, 9, 10, 16, 18, 20, 21, 24, 25, 32, 34, 37, 38, 39, 46, 54, 59, 61], "string": [3, 4, 5, 15, 21, 23, 26, 32, 34, 35, 37, 38, 42, 43, 53, 54, 55, 59, 60, 62], "tupl": [3, 32, 34, 35, 37, 38, 43, 62], "what": [3, 4, 5, 6, 7, 8, 11, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61], "happen": [3, 5, 8, 16, 17, 20, 21, 23, 26, 35, 38, 42, 43, 44, 45, 47, 52, 54, 55, 56, 57, 58, 59, 60, 62], "run": [3, 4, 9, 10, 13, 18, 19, 20, 21, 23, 24, 25, 27, 32, 33, 34, 35, 37, 38, 39, 42, 43, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "b": [3, 4, 5, 7, 8, 10, 14, 15, 20, 21, 22, 34, 38, 39, 42, 43, 45, 49, 51, 52, 54, 55, 57, 58, 59, 62], "c": [3, 4, 13, 14, 18, 22, 27, 34, 35, 37, 38, 39, 42, 43, 44, 49, 53, 55, 56, 57, 58, 60, 62], "hello": [3, 4, 5, 34, 42, 54, 57, 58, 60], "print": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 20, 21, 25, 26, 33, 34, 37, 38, 39, 41, 42, 43, 44, 47, 48, 49, 53, 54, 55, 57, 58, 59, 60, 61, 62], "39": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 34], "2": [3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 52, 54, 55, 57, 58, 59, 60, 61], "3": [3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 24, 25, 26, 32, 34, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 49, 52, 55, 57, 58, 59, 60], "foo": [3, 34, 41, 43, 62], "bar": [3, 7, 14, 20, 24, 41, 43, 53, 57, 62], "n": [3, 11, 14, 16, 18, 20, 32, 34, 38, 49, 53, 54, 55, 57, 58, 59, 60, 62], "10": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 20, 21, 25, 26, 32, 34, 36, 39, 41, 42, 43, 45, 47, 49, 52, 53, 55, 57, 59, 60, 62], "list_of_squar": [3, 34], "rang": [3, 6, 7, 8, 10, 12, 13, 14, 15, 34, 38, 42, 43, 44, 59, 61, 62], "sum_of_squar": [3, 34], "sum": [3, 7, 12, 14, 34, 42, 43], "squar": [3, 7, 8, 9, 10, 34, 42, 43], "285": [3, 34], "5": [3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 26, 32, 34, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 54, 55, 56, 57, 58, 59, 60], "9": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 23, 32, 34, 36, 39, 42, 47, 57, 59, 60], "16": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 34, 36, 39, 42, 46, 47, 52, 59], "25": [3, 4, 5, 6, 7, 10, 11, 13, 14, 34, 38, 39, 47, 58, 60, 62], "6": [3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 23, 26, 32, 34, 36, 39, 42, 43, 47, 49, 57, 60], "36": [3, 4, 34, 52], "7": [3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 27, 32, 33, 34, 36, 38, 39, 42, 44, 47, 48, 55, 59, 60], "49": [3, 4, 12, 34], "8": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 25, 26, 32, 34, 36, 39, 42, 43, 47, 49, 55, 57, 60], "64": [3, 6, 10, 12, 18, 34, 43, 62], "81": [3, 13, 34, 42, 58], "inlin": [3, 12, 32, 34, 35], "latex": [3, 6, 7, 10, 27, 34], "frac": [3, 7, 8, 10, 12, 13, 14, 34], "show": [3, 6, 7, 10, 13, 14, 19, 20, 21, 23, 24, 25, 26, 33, 34, 37, 39, 43, 44, 47, 48, 52, 54, 55, 56, 57, 58, 59, 60], "wonder": [3, 34], "syntax": [3, 6, 34, 37, 42, 43, 44, 46, 49, 52, 54, 57, 60, 62], "highlight": [3, 20, 26, 34, 42], "sad": [3, 34], "grei": [3, 7, 8, 9, 10, 34], "world": [3, 4, 23, 34, 41, 47, 54, 60], "iostream": [3, 34], "std": [3, 34], "cout": [3, 34], "endl": [3, 34], "bash": [3, 20, 32, 34, 39, 47, 50, 51, 55, 57, 58, 59, 60, 61, 62], "echo": [3, 25, 26, 27, 34, 54, 57, 58, 59, 60, 62], "f": [3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 21, 22, 32, 33, 34, 36, 39, 44, 49, 51, 53, 54, 55, 56, 57, 59, 60, 62], "pt_cut": [3, 34], "1789": [3, 34], "234567890987654": [3, 34], "eta_low": [3, 34], "eta_high": [3, 34], "cut_str": [3, 34], "pt": [3, 6, 15, 34, 52], "2f": [3, 7, 8, 9, 10, 34], "eta": [3, 6, 10, 11, 15, 34], "gt": [3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 34, 54], "23": [3, 4, 5, 6, 7, 10, 11, 13, 14, 34, 39, 47, 57], "amp": [3, 34], "lt": [3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 34, 54, 55], "veri": [3, 4, 8, 10, 12, 14, 20, 21, 22, 23, 25, 26, 27, 31, 38, 39, 41, 42, 43, 47, 52, 53, 54, 55, 56, 57, 60, 62], "try": [3, 4, 5, 6, 7, 10, 14, 19, 20, 21, 23, 25, 26, 28, 29, 33, 39, 41, 42, 43, 44, 46, 48, 52, 54, 55, 56, 57, 58, 60, 62], "faster": [3, 7, 8, 32, 38, 55], "cell": [3, 4, 7, 10, 34, 47, 60], "return": [3, 4, 5, 6, 7, 10, 11, 13, 14, 18, 19, 27, 33, 34, 36, 38, 41, 42, 43, 44, 45, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62], "valu": [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 54, 58, 59, 60], "which": [3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "shown": [3, 10, 19, 20, 33, 39, 48, 56, 60], "after": [3, 4, 7, 14, 16, 20, 21, 22, 25, 26, 31, 32, 33, 42, 43, 44, 48, 52, 54, 55, 56, 57, 58, 59, 61, 62], "finish": [3, 4, 20, 26, 33, 48, 49, 57, 58, 60, 62], "rune": 3, "none": [3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 22, 36, 37, 43, 49, 55, 58, 59, 60, 62], "starterkitt": 3, "shell": [3, 20, 23, 32, 33, 41, 44, 45, 47, 48, 51, 53, 55, 56, 57, 58, 60, 62], "command": [3, 11, 18, 19, 20, 21, 23, 24, 25, 26, 27, 32, 33, 34, 35, 39, 41, 43, 44, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62], "l": [3, 6, 13, 14, 19, 20, 26, 27, 38, 39, 41, 43, 47, 52, 54, 55, 56, 57, 58, 59, 60, 62], "10basic": 3, "ipynb": 3, "33modeltun": 3, "11advancedpython": 3, "40histogram": 3, "12advancedclass": 3, "45demoreweight": 3, "20dataandplot": 3, "50likelihoodinfer": 3, "30classif": 3, "60splot": 3, "31classificationextens": 3, "70scikithepunivers": 3, "32boostingtouniform": 3, "readm": [3, 25], "md": [3, 60], "11": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 32, 34, 36, 39, 45, 47, 52, 55, 57, 58, 59, 60, 62], "wget": [3, 32, 61, 62], "com": [3, 17, 20, 26, 29, 31, 32, 54, 62], "index": [3, 4, 6, 10, 11, 14, 16, 20, 21, 32, 34, 38, 42, 44, 55, 62], "html": [3, 6, 7, 8, 10, 13, 43], "2024": 3, "01": [3, 11, 12, 14, 55], "14": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 20, 34, 36, 39, 45, 47, 59], "32": [3, 4, 14, 16, 18, 34, 52], "resolv": [3, 26], "93": 3, "184": 3, "216": 3, "34": [3, 4, 10, 13, 15, 34, 42], "2606": 3, "2800": 3, "220": 3, "248": 3, "1893": 3, "25c8": 3, "1946": 3, "443": 3, "sent": [3, 57], "await": 3, "200": [3, 13, 14, 36], "ok": [3, 25, 29, 33, 36, 37, 48, 55, 61], "length": [3, 42, 43, 57, 59], "1256": 3, "2k": 3, "save": [3, 10, 17, 20, 21, 31, 32, 54, 56, 57, 58, 59, 60, 62], "kb": [3, 54, 55], "100": [3, 6, 7, 8, 10, 12, 14, 23, 24, 25, 26, 36, 39, 58, 62], "23k": 3, "76": 3, "mb": [3, 54, 55], "pre": [3, 13, 25, 47, 62], "end": [3, 4, 7, 8, 10, 12, 13, 14, 17, 18, 20, 21, 22, 24, 25, 26, 27, 29, 31, 37, 38, 42, 43, 44, 47, 49, 52, 55, 57, 58, 59, 60, 61, 62], "sphinxverbatim": 3, "time": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 18, 20, 21, 23, 25, 26, 27, 28, 29, 31, 33, 34, 36, 39, 41, 42, 44, 47, 48, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "someth": [3, 4, 6, 8, 12, 22, 23, 25, 26, 28, 34, 36, 37, 42, 43, 45, 46, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62], "take": [3, 4, 6, 7, 9, 10, 12, 13, 14, 20, 24, 26, 27, 33, 36, 37, 39, 41, 42, 43, 46, 48, 55, 58, 59, 60, 61, 62], "line": [3, 4, 6, 7, 13, 14, 18, 20, 21, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 62], "12": [3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 34, 36, 39, 47, 55, 57, 59], "10000": [3, 13, 14], "cpu": [3, 10], "user": [3, 6, 11, 17, 18, 20, 23, 25, 27, 29, 39, 43, 44, 47, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62], "494": 3, "\u00b5": 3, "sy": [3, 33, 40, 44, 48], "130": [3, 59], "total": [3, 6, 12, 13, 14, 23, 24, 25, 26, 39, 43, 57, 60, 62], "624": 3, "wall": 3, "628": 3, "333283335000": 3, "entir": [3, 19, 20, 26, 27, 28, 55, 56, 57], "13": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 34, 36, 39, 47, 59], "31": [3, 4, 6, 7, 14, 16, 34, 43, 47], "m": [3, 6, 13, 14, 15, 19, 20, 21, 22, 24, 25, 26, 39, 53, 55, 62], "longer": [3, 10, 20, 21, 26, 51, 52, 54, 55, 58, 59, 60], "expect": [3, 13, 14, 26, 29, 35, 42, 55, 56, 58, 59, 60, 62], "find": [3, 7, 8, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 37, 41, 42, 43, 46, 49, 50, 52, 54, 55, 56, 57, 58, 59, 61, 62], "spend": [3, 41], "mayb": [3, 4, 5, 13, 20, 24, 34, 60], "skip": [3, 14, 55], "prun": 3, "cumtim": 3, "np": [3, 6, 7, 8, 10, 11, 12, 13, 14, 36, 39, 44, 45], "sqrt": [3, 6, 7, 8, 10, 15, 36, 39, 43, 45, 47], "100000": [3, 14, 39], "question": [3, 6, 7, 8, 21, 24, 28, 31, 32, 41, 55, 57, 59, 61, 62], "mark": [3, 26, 27, 41, 47, 49, 55, 57, 58, 59, 62], "def": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 33, 36, 41, 43, 44, 48], "my_print": 3, "my_str": 3, "15": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 34, 36, 39, 47, 52, 57, 59, 62], "function": [3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 24, 32, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 51, 57, 62], "17": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 34, 36, 39, 47, 57, 59], "done": [3, 6, 7, 8, 11, 13, 15, 20, 23, 24, 25, 26, 33, 39, 44, 45, 46, 47, 48, 53, 54, 57, 58, 59, 60, 61, 62], "actual": [3, 5, 8, 12, 15, 16, 18, 20, 22, 25, 27, 33, 34, 36, 37, 44, 48, 51, 54, 55, 57, 58, 59, 60, 61, 62], "sometim": [3, 4, 13, 20, 22, 25, 27, 34, 37, 39, 44, 46, 47, 54, 55, 57, 60, 61, 62], "junk": 3, "variabl": [3, 4, 7, 8, 10, 12, 13, 14, 15, 16, 32, 35, 37, 39, 42, 43, 44, 46, 47, 49, 50, 55, 58, 59], "18": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 34, 36, 39, 42, 47, 56, 57, 59, 62], "found": [3, 5, 13, 16, 25, 34, 37, 38, 42, 44, 50, 54, 55, 57, 60, 61, 62], "19": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 34, 36, 39, 42, 47, 55, 57, 59, 60], "dict": [3, 4, 14, 15, 34, 36, 37, 38, 43], "kei": [3, 4, 6, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 37, 39, 41, 43, 47, 51, 55, 56, 57, 58, 59, 60, 61, 62], "default": [3, 5, 10, 11, 13, 14, 16, 18, 24, 25, 34, 39, 42, 43, 44, 45, 47, 51, 55, 56, 57, 59, 60, 61, 62], "20": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 26, 30, 34, 36, 39, 42, 47, 52, 54, 56, 57, 58, 59], "It": [3, 4, 6, 7, 8, 12, 13, 15, 17, 18, 20, 21, 23, 24, 26, 28, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 54, 55, 57, 58, 59, 60, 61, 62], "practic": [3, 5, 6, 10, 14, 20, 23, 24, 25, 27, 28, 29, 31, 32, 36, 41, 52, 54, 55, 57, 59, 61, 62], "begin": [3, 10, 13, 14, 23, 41, 42, 44, 55, 56, 57, 58, 60, 62], "script": [3, 6, 21, 22, 27, 28, 32, 34, 35, 44, 47, 54, 57, 58, 60, 61], "avoid": [3, 7, 8, 10, 12, 20, 22, 25, 43, 55, 56, 58, 62], "wildcard": [3, 32, 57, 58, 59, 60], "unclear": 3, "come": [3, 5, 6, 7, 13, 16, 20, 22, 23, 24, 25, 33, 34, 36, 41, 43, 44, 45, 46, 47, 48, 55, 56, 59, 60, 62], "math": [3, 11, 14, 38, 42, 44, 46, 47], "now": [3, 4, 5, 6, 7, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 39, 42, 44, 47, 48, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "max": [3, 10, 11, 12, 54, 62], "21": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 20, 21, 34, 36, 39, 47, 57, 59], "22": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 20, 21, 23, 34, 39, 47, 57, 59, 60], "numpi": [3, 6, 7, 8, 10, 11, 12, 13, 14, 15, 32, 36, 39, 40, 44, 45, 62], "axiserror": 3, "traceback": [3, 4, 34, 37, 38, 42, 43], "most": [3, 4, 5, 7, 11, 12, 13, 16, 20, 21, 22, 23, 25, 28, 29, 33, 34, 36, 37, 38, 39, 41, 42, 43, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62], "recent": [3, 4, 13, 20, 21, 25, 27, 28, 34, 37, 38, 42, 43, 51, 55, 56, 58, 59, 62], "call": [3, 4, 5, 6, 7, 9, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "last": [3, 4, 10, 13, 16, 19, 20, 21, 23, 34, 36, 37, 38, 42, 43, 53, 54, 55, 56, 57, 58, 59, 60, 61], "usr": [3, 7, 10, 13, 14, 33, 44, 48], "miniconda": [3, 7, 10, 13, 14, 47], "env": [3, 7, 10, 13, 14, 32, 44, 62], "essenti": [3, 7, 10, 11, 13, 14, 47, 61, 62], "lib": [3, 7, 10, 13, 14, 33, 44, 48, 62], "python3": [3, 7, 10, 13, 14], "site": [3, 7, 10, 13, 14, 39, 59, 60], "packag": [3, 6, 7, 8, 10, 13, 14, 15, 16, 27, 32, 39, 44, 47, 61, 62], "core": [3, 10, 13, 18, 20, 55, 62], "fromnumer": 3, "py": [3, 6, 7, 8, 10, 13, 14, 21, 27, 33, 36, 44, 47, 48, 62], "2810": 3, "axi": [3, 6, 7, 8, 9, 10, 14, 16, 32, 39], "keepdim": 3, "initi": [3, 16, 19, 20, 25, 32], "2692": 3, "array_function_dispatch": 3, "_max_dispatch": 3, "2693": 3, "set_modul": 3, "2694": 3, "_novalu": 3, "2695": 3, "2696": 3, "2697": 3, "maximum": [3, 10, 13, 14], "arrai": [3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 34, 39, 40, 42], "along": [3, 9, 25, 27, 35, 38, 47, 54, 55, 56], "2698": 3, "2808": 3, "2809": 3, "_wrapreduct": 3, "2811": 3, "88": [3, 6], "obj": [3, 4, 15, 43], "ufunc": 3, "dtype": [3, 6, 7, 11, 12, 15, 39], "kwarg": [3, 4, 5, 6, 7, 43], "85": 3, "els": [3, 4, 5, 7, 8, 9, 10, 14, 20, 23, 25, 26, 28, 33, 34, 37, 43, 44, 48, 49, 51, 54, 55, 56, 57, 59, 62], "86": [3, 15], "reduct": 3, "passkwarg": 3, "reduc": [3, 9, 10, 12, 13, 20, 25, 26, 58, 62], "bound": 3, "dimens": [3, 7, 15, 16, 32, 42, 60], "abriv": 3, "panda": [3, 6, 7, 10, 12, 14, 15, 16, 32, 35, 40, 44], "pd": [3, 6, 7, 9, 10, 12], "pyplot": [3, 6, 7, 8, 9, 10, 12, 13, 14, 39], "plt": [3, 6, 7, 8, 9, 10, 12, 13, 14, 39], "root": [3, 6, 7, 9, 10, 12, 15, 20, 22, 32, 35, 39, 42, 43, 55, 61, 62], "r": [3, 5, 7, 8, 10, 11, 13, 14, 26, 47, 53, 55, 56, 57, 58, 60, 62], "typial": 3, "nicest": [3, 62], "mixtur": [3, 14], "x": [3, 4, 6, 7, 8, 10, 13, 14, 15, 18, 37, 41, 42, 43, 44, 54, 55, 56, 57, 58, 59, 60, 62], "y": [3, 4, 5, 6, 7, 8, 13, 14, 15, 27, 37, 41, 42, 43, 44, 53, 54, 55, 56, 60], "re": [3, 4, 5, 6, 13, 20, 21, 22, 23, 24, 26, 28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 46, 47, 48, 52, 55, 56, 57, 58, 59, 60], "interest": [3, 4, 12, 13, 16, 20, 27, 33, 34, 35, 39, 42, 45, 46, 48, 54, 62], "best": [3, 6, 7, 8, 10, 13, 19, 25, 29, 31, 32, 35, 36, 37, 39, 41, 47, 49, 57, 61, 62], "style": [3, 6, 15, 26, 41, 44, 55, 59], "offic": [3, 29], "guid": [3, 16, 28, 32, 35, 44, 52], "pep8": [3, 41], "itself": [3, 4, 5, 10, 11, 17, 21, 25, 28, 34, 36, 41, 42, 46, 51, 54, 55, 56, 58, 59, 61], "quit": [3, 9, 12, 23, 33, 36, 37, 41, 45, 48, 49, 52, 54, 55, 56, 57], "autom": [3, 31, 32, 58, 60, 61], "sytl": 3, "checker": 3, "linter": 3, "flake8": [3, 39], "either": [3, 5, 13, 22, 46, 47, 55, 57, 59], "plugin": 3, "favourit": [3, 37, 49, 54], "editor": [3, 18, 20, 22, 29, 32, 35, 43, 50, 56, 59, 60, 62], "care": [3, 4, 6, 7, 12, 13, 14, 19, 25, 32, 33, 48, 51, 54, 56, 57, 58, 59, 62], "though": [3, 5, 6, 10, 12, 16, 23, 28, 34, 37, 39, 51, 56, 58, 59, 60, 61, 62], "occasion": [3, 28], "better": [3, 5, 6, 7, 8, 9, 10, 12, 17, 20, 24, 25, 30, 31, 34, 36, 41, 42, 49, 56, 60, 62], "break": [3, 5, 18, 20, 26, 37, 43, 47, 49, 56, 62], "rule": [3, 5, 16, 22, 32, 42, 43, 56], "easier": [3, 6, 21, 24, 28, 29, 32, 39, 41, 53, 55, 57, 60], "read": [3, 5, 6, 12, 14, 18, 21, 24, 26, 28, 34, 37, 40, 41, 42, 43, 54, 55, 57, 58, 59, 60, 61, 62], "restart": [3, 34], "kernal": 3, "24": [3, 4, 5, 6, 7, 10, 11, 14, 26, 34, 39, 47, 52, 58, 60, 61], "few": [4, 5, 6, 7, 12, 16, 18, 20, 21, 22, 26, 27, 28, 29, 34, 36, 41, 45, 47, 55, 56, 57, 58, 59, 61], "relat": [4, 19, 41, 54, 61, 62], "import": [4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 20, 21, 22, 25, 27, 29, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 45, 47, 48, 54, 56, 60, 62], "thei": [4, 6, 11, 12, 14, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 34, 37, 38, 39, 41, 42, 43, 45, 46, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "act": [4, 13, 25, 28, 43, 46], "parenthesi": 4, "situat": [4, 17, 54, 56, 62], "adder": 4, "left": [4, 5, 7, 14, 25, 27, 34, 46, 52, 57, 58], "assigmenemt": 4, "oper": [4, 5, 7, 18, 22, 32, 35, 37, 39, 41, 42, 44, 45, 49, 54, 55, 56, 57, 58, 59, 60, 61], "plai": [4, 6, 12, 13, 14, 17, 24, 25, 33, 34, 36, 37, 47, 48, 60], "around": [4, 12, 13, 17, 33, 37, 41, 42, 47, 48, 58, 59, 60, 61, 62], "seen": [4, 5, 6, 8, 10, 14, 16, 25, 34, 36, 37, 38, 43, 44, 46, 47, 56, 57, 60], "remain": [4, 20, 34, 54, 60, 62], "special": [4, 5, 6, 12, 13, 16, 19, 20, 26, 27, 42, 44, 46, 47, 49, 55, 56, 58, 59, 61, 62], "case": [4, 5, 6, 7, 8, 12, 13, 16, 20, 21, 23, 25, 27, 32, 39, 42, 43, 44, 46, 47, 54, 55, 56, 57, 58, 59, 60, 62], "d1": 4, "d2": 4, "d3": 4, "d4": 4, "noth": [4, 5, 17, 19, 20, 22, 33, 45, 47, 48, 52, 55, 56, 57, 58, 59, 62], "simpli": [4, 5, 11, 13, 23, 25, 34, 44, 47, 52, 54, 58, 59, 62], "empti": [4, 20, 37, 42, 44, 49, 56, 59, 60, 62], "advantag": [4, 7, 47, 55, 59, 61, 62], "multipl": [4, 6, 7, 10, 16, 17, 20, 22, 32, 33, 36, 37, 42, 43, 44, 46, 48, 53, 55, 56, 60, 62], "ad": [4, 7, 12, 13, 15, 16, 20, 21, 22, 23, 25, 26, 29, 32, 33, 34, 39, 43, 44, 48, 54, 57, 59], "doe": [4, 5, 6, 11, 12, 13, 20, 21, 22, 23, 25, 26, 27, 28, 31, 34, 36, 37, 38, 42, 43, 44, 55, 56, 57, 58, 59, 60, 61, 62], "possibl": [4, 5, 9, 11, 12, 17, 18, 21, 24, 34, 36, 37, 41, 43, 44, 47, 51, 54, 55, 58, 62], "ill": [4, 21], "defin": [4, 7, 8, 10, 12, 13, 14, 22, 27, 33, 34, 37, 38, 42, 43, 44, 48, 49, 54, 59, 62], "d": [4, 5, 14, 23, 29, 34, 38, 41, 42, 43, 44, 47, 51, 52, 53, 55, 57, 59, 60], "g": [4, 8, 10, 12, 13, 15, 20, 21, 22, 23, 26, 34, 36, 41, 42, 45, 47, 53, 54, 55, 56, 59, 60, 62], "h": [4, 6, 7, 11, 15, 18, 23, 33, 39, 48, 53, 54, 55, 59, 60], "should": [4, 5, 6, 11, 14, 19, 20, 21, 23, 24, 25, 26, 27, 29, 32, 35, 36, 37, 39, 41, 42, 43, 44, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62], "understand": [4, 17, 18, 21, 24, 25, 27, 34, 35, 42, 44, 55, 57, 58, 59, 61, 62], "arg": [4, 5, 43, 62], "func": [4, 43], "mykwarg": 4, "myarg": 4, "statement": [4, 6, 29, 37, 42, 43, 44], "basic": [4, 5, 6, 12, 13, 16, 17, 24, 28, 32, 35, 36, 44, 47, 50, 54, 55, 57, 60], "perform": [4, 8, 10, 11, 12, 13, 14, 15, 23, 26, 37, 42, 45, 46, 54, 60, 61, 62], "enter": [4, 6, 18, 19, 21, 24, 32, 33, 34, 39, 47, 48, 49, 54, 55, 57, 58, 61, 62], "again": [4, 6, 8, 10, 14, 20, 21, 22, 25, 26, 27, 33, 34, 36, 38, 42, 43, 47, 48, 49, 51, 52, 54, 55, 56, 58, 59, 60, 61, 62], "exit": [4, 18, 27, 33, 39, 44, 47, 48, 54, 55, 56, 58, 59, 62], "var": [4, 6, 7, 8, 10, 14, 43, 52], "translat": [4, 5, 55, 61], "return_from_context_entering_cod": 4, "leav": [4, 6, 21, 47, 52, 56, 62], "great": [4, 5, 16, 31, 33, 41, 47, 48, 49, 50, 54, 55, 56, 61], "here": [4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 21, 23, 25, 26, 27, 31, 32, 34, 36, 37, 39, 41, 42, 43, 44, 46, 47, 49, 52, 55, 56, 57, 58, 59, 60, 61, 62], "whenev": [4, 18, 43, 47, 61], "step": [4, 6, 10, 13, 14, 16, 17, 21, 23, 24, 25, 26, 28, 36, 39, 42, 51, 55, 56, 57, 58, 59, 60, 61, 62], "prove": [4, 56], "incredibli": 4, "cleanup": 4, "yet": [4, 5, 6, 8, 15, 16, 20, 23, 25, 34, 36, 47, 56, 58, 59], "tediou": [4, 39, 43, 58], "manual": [4, 15, 18, 20, 32, 50, 51, 55, 60, 62], "forgotten": 4, "One": [4, 6, 7, 15, 20, 24, 27, 28, 33, 41, 48, 49, 51, 52, 54, 56, 58, 59, 60, 62], "executioin": 4, "stop": [4, 11, 16, 26, 27, 32, 36, 37, 52, 55, 57], "point": [4, 7, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 39, 44, 54, 55, 56, 57, 58, 59, 60, 62], "continu": [4, 7, 13, 22, 25, 27, 57], "wa": [4, 11, 14, 15, 20, 21, 23, 24, 26, 28, 29, 32, 33, 34, 36, 42, 47, 48, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62], "iter": [4, 10, 16, 32, 37, 38, 42, 43, 58], "everytim": 4, "suppos": [4, 6, 20, 21, 26, 43, 56, 57, 58, 59, 62], "asynchron": 4, "wait": [4, 12, 18, 27, 55, 59, 62], "contextlib": 4, "contextmanag": 4, "printer": [4, 61], "number": [4, 6, 7, 9, 10, 11, 12, 14, 20, 21, 25, 26, 27, 28, 32, 35, 38, 39, 42, 43, 44, 46, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "insid": [4, 14, 19, 20, 32, 34, 35, 39, 42, 43, 49, 51, 52, 54, 55, 58, 59, 60, 62], "state": [4, 14, 16, 20, 21, 23, 28, 29, 30, 31, 34, 36, 57], "set": [4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 31, 32, 34, 39, 43, 44, 46, 47, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "tmp": [4, 6, 7, 8, 10, 41, 55, 59, 62], "txt": [4, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 41, 54, 55, 56, 57, 58, 59, 60, 62], "w": [4, 12, 14, 18, 44, 53, 54, 55, 57, 60, 62], "textfil": 4, "asdf": 4, "implement": [4, 5, 8, 11, 14, 16, 29, 31, 32, 38, 40, 43, 44, 61], "roughli": [4, 23], "myopen": 4, "mode": [4, 20, 24, 26, 34, 55, 58, 59], "close": [4, 6, 7, 12, 21, 25, 28, 35, 39, 42, 44, 51, 53, 54, 56], "temporarili": [4, 57], "42": [4, 5, 9, 12, 34, 36, 39, 42, 43, 44], "switch": [4, 8, 24, 25, 47, 53, 55], "back": [4, 5, 6, 10, 12, 16, 17, 20, 21, 23, 24, 25, 28, 33, 36, 38, 39, 43, 44, 48, 51, 52, 55, 56, 57, 58, 59, 61], "old": [4, 13, 20, 21, 26, 47, 51, 55, 56, 60], "testdict": 4, "name": [4, 5, 6, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 32, 33, 34, 36, 37, 39, 41, 42, 43, 44, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "answer": [4, 5, 7, 12, 20, 21, 28, 36, 41, 45, 46, 55, 57, 58, 59, 60], "invok": [4, 5], "solut": [4, 5, 10, 12, 14, 19, 20, 21, 22, 23, 24, 25, 26, 36, 37, 38, 39, 42, 43, 44, 46, 54, 55, 56, 57, 58, 59, 60, 62], "var1": 4, "set_answ": 4, "old_valu": 4, "instead": [4, 6, 7, 10, 11, 14, 18, 20, 21, 22, 23, 25, 26, 36, 37, 38, 42, 44, 46, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "__enter__": 4, "__exit__": 4, "mycontext": 4, "__init__": [4, 5, 13, 14, 36, 44], "self": [4, 7, 16, 32, 36, 55, 59], "type_": 4, "go": [4, 5, 6, 8, 12, 14, 19, 20, 21, 23, 24, 25, 26, 27, 29, 33, 34, 35, 36, 38, 39, 42, 43, 44, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62], "detail": [4, 5, 20, 25, 26, 27, 32, 39, 44, 47, 53], "power": [4, 7, 9, 12, 13, 16, 17, 36, 41, 42, 43, 54, 55, 56, 57, 59, 60, 61, 62], "offer": [4, 11, 23, 29, 34], "usus": 4, "enough": [4, 5, 20, 32, 51, 55, 56, 57, 59, 60], "prefer": [4, 5, 14, 18, 32, 39, 41, 43, 44, 57, 62], "doesn": [4, 6, 16, 20, 23, 28, 32, 33, 37, 42, 48, 53, 55, 56, 57, 58, 59, 60, 62], "t": [4, 5, 6, 7, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 32, 33, 36, 37, 38, 39, 41, 42, 43, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "flexibl": [4, 8, 56, 59], "rememb": [4, 10, 14, 18, 20, 21, 23, 25, 43, 52, 53, 54, 55, 58, 59, 62], "figur": [4, 6, 7, 8, 9, 10, 12, 14, 23, 39, 43, 55, 59, 61, 62], "fulli": [4, 11, 36, 47], "hand": [4, 21, 24, 25, 26, 28, 34, 38, 42, 57, 60, 61], "programat": 4, "pattern": [4, 16, 22, 55, 58, 60], "achiev": [4, 6, 9, 14, 25, 37, 56, 60], "integ": [4, 11, 34, 38, 45, 54, 55], "everyth": [4, 5, 14, 16, 19, 20, 21, 22, 23, 26, 31, 32, 33, 36, 37, 39, 44, 47, 48, 55, 56, 57, 58, 60], "make_power_func": 4, "pow3": 4, "26": [4, 5, 7, 11, 13, 14, 34, 39, 47, 52, 57, 62], "4398046511104": 4, "27": [4, 5, 7, 11, 14, 34, 39, 43, 47, 55], "test": [4, 6, 8, 10, 13, 16, 22, 23, 27, 31, 32, 36, 38, 44, 51, 54, 56, 57, 60], "anoth": [4, 6, 7, 12, 13, 16, 18, 19, 20, 21, 23, 24, 26, 29, 34, 35, 37, 38, 39, 42, 43, 44, 47, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "wrapper": [4, 9, 46], "timed_pow3": 4, "fime_func": 4, "hint": [4, 12, 21, 22, 26, 36, 55, 57, 60, 62], "scetch": 4, "time_func": 4, "new_func": 4, "28": [4, 6, 7, 11, 14, 34, 36, 47], "timed_func": 4, "wrapped_func": 4, "29": [4, 7, 11, 14, 34, 42, 47], "add_notim": 4, "30": [4, 6, 7, 11, 12, 13, 14, 16, 27, 34, 36, 42, 47, 57, 58, 59, 61, 62], "add_tim": 4, "1920928955078125e": 4, "06": [4, 13, 57, 59, 60, 62], "33": [4, 16, 34, 44], "syntact": [4, 42], "sugar": [4, 32, 35], "argument": [4, 5, 6, 14, 15, 23, 33, 34, 35, 36, 41, 42, 43, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62], "certain": [4, 6, 7, 11, 13, 25, 34, 36, 41, 42, 44, 46, 49, 54, 60], "surfac": [4, 26], "higher": [4, 10, 13, 17, 39], "stack": [4, 14, 41, 47, 62], "typic": [4, 6, 7, 12, 14, 26, 27, 39, 43, 44, 52, 55, 57, 62], "encount": [4, 7, 8, 36, 41, 44], "wrong": [4, 7, 12, 19, 21, 36, 41, 54, 56, 58, 59, 60, 62], "type": [4, 5, 6, 11, 14, 18, 20, 21, 22, 32, 35, 36, 37, 38, 41, 43, 44, 45, 46, 47, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 62], "caught": 4, "block": [4, 37, 42, 43, 44, 46, 47, 55, 58], "order": [4, 6, 7, 8, 11, 12, 13, 14, 16, 20, 22, 26, 27, 32, 37, 38, 39, 41, 42, 43, 51, 53, 55, 56, 57, 58, 59, 60, 61, 62], "handl": [4, 12, 31, 33, 48, 52, 59, 60, 61, 62], "built": [4, 6, 9, 11, 13, 20, 27, 38, 39, 43, 54, 55, 56, 59, 62], "typeerror": [4, 5, 34, 38, 42, 43], "float": [4, 12, 13, 14, 15, 34, 45], "valueerror": [4, 62], "illeg": 4, "neg": [4, 12, 14, 42, 60], "posit": [4, 7, 8, 9, 10, 14, 22, 33, 42, 43, 48, 49, 57, 60], "runtimeerror": 4, "statu": [4, 19, 20, 21, 22, 25, 26, 27, 53, 55, 62], "pars": [4, 15, 44], "fall": [4, 5], "categori": [4, 7, 44], "keyerror": [4, 34], "indexerror": [4, 34, 42], "rais": [4, 5, 34, 62], "35": [4, 11, 34], "int": [4, 34, 41, 43, 45, 46], "str": [4, 10, 16, 32, 34, 37, 43, 44, 49, 62], "often": [4, 5, 6, 7, 8, 11, 16, 21, 23, 27, 28, 29, 37, 39, 41, 43, 52, 58, 60, 61, 62], "conveni": [4, 6, 26, 34, 47, 57, 58], "messag": [4, 6, 13, 20, 21, 23, 25, 26, 33, 44, 48, 55, 56, 57, 58], "And": [4, 5, 6, 12, 14, 18, 24, 33, 36, 38, 48, 49, 54, 55, 57, 60], "inherit": [4, 11, 32, 35], "attent": [4, 12, 13, 25], "subclass": 4, "never": [4, 5, 32, 37, 42, 43, 46, 49, 55], "baseexcept": 4, "37": [4, 34, 58], "myerror": 4, "pass": [4, 5, 11, 14, 15, 28, 33, 43, 44, 48, 49, 51, 54, 55, 57, 58, 59, 60, 62], "38": [4, 5, 6, 34], "alreadi": [4, 6, 7, 11, 14, 20, 22, 23, 25, 26, 28, 29, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 53, 54, 56, 57, 62], "natur": [4, 25, 28, 37, 55], "negativevalueerror": 4, "next": [4, 5, 6, 14, 17, 20, 21, 22, 23, 24, 25, 34, 36, 37, 46, 47, 55, 58, 59, 61], "specifi": [4, 10, 11, 13, 20, 27, 33, 36, 37, 38, 39, 42, 43, 44, 48, 49, 51, 54, 55, 56, 57, 60, 62], "check": [4, 5, 10, 12, 13, 14, 18, 19, 20, 21, 23, 25, 26, 27, 28, 37, 52, 53, 54, 55, 56, 58, 59, 61, 62], "goe": [4, 6, 7, 12, 21, 54, 55, 57, 58, 61], "ye": [4, 5, 7, 34, 41, 42, 53, 55, 56, 62], "40": [4, 6, 9, 14, 15, 21, 34, 36, 42, 58], "keyword": [4, 6, 27, 41, 42, 43, 44, 54, 58], "inspect": [4, 33, 48, 54, 55, 56], "41": [4, 6, 34, 36, 42], "anti": 4, "gener": [4, 6, 7, 8, 13, 14, 16, 20, 25, 27, 34, 36, 39, 41, 42, 43, 44, 47, 51, 52, 55, 56, 57, 58, 62], "unfortun": [4, 21, 25], "caugth": 4, "43": [4, 34, 42, 43], "therefor": [4, 13, 19, 21, 25, 51, 59], "temporari": [4, 41, 55, 57, 62], "44": [4, 34, 43, 52], "guaranti": 4, "could": [4, 6, 7, 8, 10, 21, 22, 23, 26, 29, 32, 33, 36, 37, 38, 39, 42, 43, 46, 48, 51, 54, 55, 56, 57, 59, 62], "omit": [4, 5, 42, 55], "45": [4, 16, 34, 42, 43, 47], "odd": [4, 36, 58], "effect": [4, 6, 7, 20, 21, 23, 34, 37, 39, 41, 42, 43, 44, 55, 56, 57, 58, 59], "ignor": [4, 6, 10, 14, 19, 25, 31, 32, 55, 59, 60, 62], "IF": [4, 5], "logic": [4, 20, 26, 43], "46": [4, 20, 34, 61], "clean": [4, 6, 20, 22, 23, 25, 41, 59], "47": [4, 34], "elif": [4, 37, 54], "replac": [4, 21, 24, 25, 26, 36, 42, 43, 49, 54, 55, 58, 59, 60, 62], "golden": [4, 43], "steer": 4, "consid": [4, 6, 7, 10, 13, 17, 20, 21, 26, 54, 55, 57, 59, 61, 62], "three": [4, 6, 23, 24, 25, 27, 39, 42, 43, 44, 49, 51, 54, 55, 56, 57, 58, 60, 62], "sake": [4, 10, 55, 56], "favor": 4, "real": [4, 5, 6, 7, 8, 10, 12, 16, 21, 25, 29, 32, 43, 44, 45, 54, 60], "larger": [4, 10, 25, 54, 60], "scale": [4, 6, 7, 14, 55, 62], "too": [4, 6, 7, 10, 20, 21, 22, 25, 29, 37, 41, 44, 55, 56, 57, 59, 60], "complic": [4, 5, 7, 24, 25, 28, 29, 41, 42, 52, 55, 56, 58, 59, 62], "explain": [4, 5, 14, 18, 20, 21, 22, 23, 25, 26, 28, 29, 30, 43, 45, 54, 55, 57, 58, 59, 60, 61, 62], "assum": [4, 6, 8, 14, 39, 42, 55, 56, 57, 58, 59, 60, 62], "third": [4, 20, 42, 43, 56, 57, 60], "solv": [4, 7, 14, 22, 26, 29, 35, 36, 41, 58, 60, 62], "deeper": [4, 17], "nest": [4, 5, 19, 22, 37, 42, 57, 58], "don": [4, 6, 7, 12, 13, 16, 20, 21, 22, 23, 25, 26, 29, 33, 36, 37, 38, 39, 41, 42, 43, 47, 48, 54, 55, 56, 57, 58, 59, 60, 62], "output": [4, 7, 8, 9, 10, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 42, 43, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "48": [4, 34, 52], "50": [4, 6, 11, 12, 14, 16, 20, 21, 25, 34, 36], "result": [4, 7, 8, 10, 12, 13, 14, 15, 16, 22, 26, 28, 33, 37, 43, 45, 46, 47, 48, 49, 55, 56, 57, 58, 60, 61, 62], "focus": [5, 60], "invoc": [5, 55], "demystifi": 5, "oubl": 5, "score": [5, 7, 10, 12], "__meth__": [5, 16], "reserv": 5, "invent": 5, "precis": [5, 6, 34, 39], "__meth": 5, "fine": 5, "These": [5, 7, 10, 16, 17, 21, 22, 27, 34, 39, 52, 55, 61, 62], "deleg": 5, "correspond": [5, 6, 14, 20, 23, 25, 26, 37, 38, 45, 46, 49, 57, 61], "__add__": [5, 36, 46], "notimpl": 5, "altern": [5, 6, 7, 13, 16, 32, 47, 60, 62], "tri": [5, 26, 41, 55], "__radd__": 5, "ight": 5, "differ": [5, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 32, 34, 38, 39, 42, 43, 44, 45, 46, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62], "namedvalu": 5, "valueleft": 5, "valueright": 5, "radd": 5, "think": [5, 14, 17, 20, 21, 22, 23, 25, 38, 41, 42, 55, 57, 58, 59, 60], "valleft": 5, "val": 5, "valleft2": 5, "left2": 5, "__len__": [5, 16], "nice": [5, 7, 20, 32, 33, 35, 36, 37, 39, 42, 43, 48, 49, 62], "represent": [5, 7, 38], "__str__": 5, "similar": [5, 6, 20, 21, 23, 26, 34, 38, 39, 42, 43, 47, 51, 52, 54, 55, 58, 60, 61, 62], "__repr__": 5, "target": [5, 9, 16, 32, 56, 58], "toward": [5, 16, 45, 57], "develop": [5, 27, 29, 32, 43, 59], "namerepr": 5, "namestr": 5, "am": [5, 42], "namestrrepr": 5, "repr": 5, "mean": [5, 6, 7, 10, 12, 13, 14, 17, 18, 20, 21, 23, 25, 28, 31, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "attach": [5, 43, 44, 45, 46, 49, 51, 52], "behind": [5, 7, 24, 25, 26, 28, 29, 46, 57], "__call__": 5, "notcal": 5, "noncal": 5, "down": [5, 20, 21, 26, 27, 32, 34, 35, 43, 45, 53, 54, 55, 56, 62], "won": [5, 13, 14, 20, 24, 26, 37, 42, 58, 60, 62], "rather": [5, 6, 12, 20, 21, 23, 24, 25, 37, 53, 55, 56, 57, 58, 59, 60, 61], "normal": [5, 7, 8, 11, 13, 14, 28, 34, 36, 39, 43, 44, 46, 53, 55, 57, 58, 60], "That": [5, 6, 7, 15, 20, 21, 36, 39, 42, 57, 58], "control": [5, 6, 16, 19, 22, 23, 24, 25, 26, 27, 28, 31, 32, 34, 55, 56, 62], "__getitem__": 5, "__setitem__": 5, "storag": [5, 11, 20, 27, 56, 57], "contain": [5, 6, 7, 9, 12, 13, 14, 15, 16, 20, 23, 25, 26, 27, 28, 32, 35, 37, 38, 39, 42, 43, 44, 46, 49, 54, 55, 56, 57, 58, 59, 60, 62], "demonstr": [5, 7, 8, 9, 10, 13, 14, 16, 32, 45, 55, 58, 61], "getitem": 5, "setitem": 5, "renam": [5, 26, 41, 44, 55, 56], "well": [5, 6, 10, 11, 12, 13, 14, 15, 16, 21, 23, 25, 28, 34, 36, 38, 41, 43, 49, 54, 56, 57, 58, 60], "fullstop": 5, "consequ": 5, "latter": [5, 6, 11, 12, 13, 34, 39, 44, 54, 55, 60], "why": [5, 6, 10, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 32, 36, 37, 54, 55, 56, 57, 58, 59, 60], "dynam": [5, 25, 32, 35, 36], "complet": [5, 6, 12, 17, 25, 26, 27, 34, 36, 47, 54, 55, 58, 59, 61, 62], "sens": [5, 37, 42], "fun": [5, 42], "live": [5, 62], "realli": [5, 7, 12, 21, 22, 23, 34, 38, 42, 44, 56, 61, 62], "least": [5, 25, 31, 35, 37, 38, 45, 56, 57, 58, 62], "independ": [5, 6, 8, 10, 14, 17, 25, 39, 62], "colleagu": [5, 20, 21, 28, 41, 55, 57, 59], "quiz": 5, "did": [5, 7, 13, 16, 17, 20, 25, 28, 34, 36, 42, 44, 56, 57, 59, 60, 62], "access": [5, 6, 13, 15, 16, 18, 23, 24, 28, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 51, 54, 55, 56, 61, 62], "guess": [5, 7, 21, 56], "overrid": [5, 22, 36, 43], "store": [5, 6, 7, 8, 10, 11, 13, 19, 20, 21, 26, 27, 28, 34, 42, 46, 49, 55, 59, 60, 61], "__dict__": 5, "remark": [5, 43], "__class__": 5, "mappingproxi": 5, "__module__": 5, "__main__": [5, 36, 43, 44], "__weakref__": 5, "__doc__": 5, "But": [5, 14, 19, 20, 21, 26, 33, 34, 36, 42, 43, 44, 48, 49, 54, 55, 61], "occur": [5, 20, 23, 26, 45], "realiti": [5, 28], "disclaim": 5, "extrem": [5, 36], "bad": [5, 7, 14, 19, 57, 61, 62], "getandset": 5, "__getattr__": [5, 16], "__setattr__": 5, "game": [5, 34], "same": [5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 33, 34, 37, 38, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62], "provok": 5, "getattr": 5, "setattr": 5, "hi": [5, 18, 19, 26, 34], "becaus": [5, 8, 14, 18, 20, 21, 22, 23, 24, 26, 29, 33, 34, 35, 36, 37, 42, 43, 45, 46, 48, 49, 53, 55, 56, 57, 58, 59, 60, 61, 62], "explicit": [5, 34, 37, 62], "zen": [5, 41], "tim": 5, "peter": 5, "beauti": [5, 15, 21, 42], "ugli": [5, 49], "implicit": [5, 34, 43], "simpl": [5, 7, 11, 16, 25, 27, 32, 33, 36, 37, 43, 47, 48, 51, 54, 57, 58, 60, 61, 62], "complex": [5, 11, 16, 32, 34, 43, 45, 50, 56, 57, 59, 60, 61], "flat": [5, 9], "spars": 5, "dens": 5, "count": [5, 6, 10, 11, 13, 14, 23, 24, 25, 26, 57, 59, 60, 62], "aren": [5, 17, 41, 42, 56], "although": [5, 36, 61], "beat": 5, "puriti": 5, "silent": [5, 44, 56, 57], "unless": [5, 17, 23, 35, 37, 55, 57, 62], "explicitli": [5, 6, 13, 15, 20, 25, 34, 36, 37, 42, 43, 44, 45, 55, 62], "silenc": 5, "face": 5, "ambigu": [5, 21], "refus": 5, "temptat": 5, "obviou": [5, 23, 41, 43, 62], "dutch": 5, "hard": [5, 6, 8, 21, 25, 43, 55, 57, 58, 60, 62], "namespac": [5, 44], "honk": 5, "those": [5, 6, 12, 14, 17, 20, 21, 23, 25, 26, 37, 38, 43, 44, 45, 46, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "sentenc": [5, 21, 35, 49, 54], "adult": 5, "behav": [5, 25, 37, 38, 44, 45, 57], "simul": [6, 8, 12, 13], "j": [6, 7, 10, 13, 14, 34, 45, 54, 55], "psi": [6, 7, 10, 13], "rightarrow": [6, 39], "mu": [6, 13, 14], "mplhep": [6, 7, 8, 13, 14, 16], "hep": [6, 7, 11, 12, 13, 16, 32, 62], "organis": [6, 54], "collect": [6, 11, 15, 27, 28, 37, 38, 41, 42, 44, 55, 61], "still": [6, 10, 13, 14, 20, 23, 26, 36, 51, 52, 56, 57, 58, 59, 60, 61, 62], "high": [6, 10, 11, 12, 13, 14, 15, 32, 35, 41, 61], "energi": [6, 11, 14, 32, 35, 41], "physic": [6, 9, 11, 12, 13, 14, 15, 16, 32, 35, 41, 55], "mimic": 6, "top": [6, 7, 11, 14, 23, 24, 25, 33, 37, 39, 48, 55, 57, 59], "pure": [6, 13, 14, 16], "cumbersom": [6, 36], "uproot": [6, 7, 9, 10, 12, 16, 32, 40], "put": [6, 8, 20, 21, 22, 23, 25, 26, 33, 43, 48, 52, 55, 56, 57, 58, 59, 60, 61, 62], "fake": [6, 14, 54, 62], "jpsi_m": [6, 7, 10, 11, 13], "jpsi_p": [6, 7, 10, 11], "jpsi_pt": [6, 7, 10, 11], "jpsi_px": [6, 11], "jpsi_pi": [6, 11], "jpsi_pz": [6, 7, 10, 11], "mum_m": [6, 11], "mum_pt": [6, 7, 8, 10, 11], "mum_eta": [6, 7, 10, 11], "mum_p": [6, 7, 10, 11], "mum_px": [6, 7, 10, 11], "mum_pi": [6, 7, 10, 11], "mum_pz": [6, 7, 10, 11], "mum_ip": [6, 7, 8, 10, 11], "mum_probnnmu": [6, 7, 10, 11], "mum_probnnpi": [6, 11], "mup_m": [6, 11], "mup_pt": [6, 7, 8, 10, 11], "mup_eta": [6, 7, 10, 11], "mup_p": [6, 7, 10, 11], "mup_px": [6, 11], "mup_pi": [6, 11], "mup_pz": [6, 11], "mup_ip": [6, 7, 8, 10, 11], "mup_probnnmu": [6, 7, 10, 11], "mup_probnnpi": [6, 11], "ntrack": [6, 11], "suffix": 6, "_m": 6, "invari": [6, 14, 36], "mass": [6, 7, 8, 9, 10, 11, 13, 15, 16, 36, 39], "particl": [6, 9, 14, 16, 32, 36, 39], "pdg": [6, 15], "muon": [6, 7, 10], "_p": 6, "absolut": [6, 8, 35, 39, 54, 55, 61], "momentum": [6, 8, 14, 15, 36, 39], "_pt": 6, "plane": 6, "_pe": 6, "_px": 6, "_py": 6, "_pz": 6, "four": [6, 18, 25, 37, 42, 60, 61], "compon": [6, 14, 39, 42], "_ip": 6, "impact": [6, 10], "paramet": [6, 10, 14, 16, 54, 55, 56], "distanc": [6, 12, 39], "closest": 6, "approach": [6, 25, 26, 28, 60], "between": [6, 7, 8, 10, 11, 12, 14, 15, 20, 21, 23, 26, 27, 34, 38, 42, 44, 47, 55, 57, 58, 59, 60, 61], "reconstruct": [6, 16, 20, 32], "primari": 6, "vertex": 6, "probnnmu": 6, "probnnpi": 6, "identif": 6, "pion": [6, 42], "track": [6, 11, 17, 19, 21, 22, 23, 25, 26, 31, 32, 36, 37, 42, 55, 60, 62], "instal": [6, 10, 18, 27, 32, 39, 44, 47, 62], "github": [6, 7, 18, 23, 25, 26, 28, 29, 32, 62], "repos": 6, "tree": [6, 9, 10, 12, 16, 39, 55, 60], "class": [6, 7, 10, 13, 14, 16, 32, 34, 35, 43], "convert": [6, 14, 16, 32, 34, 42, 49, 54, 60], "varieti": [6, 10, 61], "datafram": [6, 7, 10, 14, 15, 16, 39, 40], "tabl": [6, 11, 18, 24, 26, 34, 56, 57], "root_numpi": 6, "root_panda": [6, 39, 44], "outdat": [6, 16], "grid": [6, 7, 8, 9, 10], "cern": [6, 7, 9, 10, 12, 18, 24, 25, 26, 27, 29, 31, 32, 39, 44, 47, 51, 52, 53, 55, 61, 62], "keep": [6, 7, 11, 12, 17, 19, 20, 21, 22, 23, 24, 25, 26, 29, 31, 32, 36, 37, 42, 44, 50, 51, 54, 55, 56, 57, 62], "local": [6, 12, 19, 20, 21, 23, 24, 26, 31, 39, 44, 55], "xrootd": 6, "protocol": [6, 23], "my_fil": [6, 39, 56], "eosus": 6, "ch": [6, 7, 9, 10, 12, 23, 24, 25, 26, 27, 39, 44, 47, 51, 52, 53, 55, 61, 62], "eo": [6, 39], "lhcbsk": 6, "real_data": [6, 7, 10], "valid": [6, 7, 8, 12, 13, 16, 23, 32, 33, 36, 48, 57, 59], "credenti": 6, "authent": 6, "fail": [6, 25, 26, 27, 62], "oserror": 6, "server": [6, 17, 18, 23, 25, 26, 28, 31, 32], "3010": 6, "unabl": [6, 7, 58], "unauthor": 6, "deni": 6, "kinit": [6, 51, 52], "usernam": [6, 23, 24, 25, 51, 55, 62], "termin": [6, 10, 20, 24, 25, 35, 44, 47, 52, 54, 55, 57, 58, 62], "password": [6, 32, 50], "publicli": 6, "remot": [6, 24, 26, 27, 31, 32, 52, 55, 61], "significantli": 6, "slower": 6, "starterkit": [6, 7, 9, 10, 12, 16, 32, 35, 50], "2018": [6, 7, 10], "httpsourc": [6, 10, 12], "chunkbyt": [6, 10, 12], "1024": [6, 10, 12, 26, 55], "limitbyt": [6, 10, 12], "33554432": [6, 10, 12], "parallel": [6, 10, 12, 17, 26, 27, 32, 61, 62], "decaytre": [6, 7, 10, 39], "singl": [6, 7, 12, 20, 23, 25, 26, 27, 37, 42, 43, 44, 49, 53, 55, 57, 58, 59, 60, 61, 62], "\u03c8": 6, "101106": 6, "1071159": 6, "08600438": 6, "00478927": 6, "77311478": 6, "7698744": 6, "data_df": [6, 7, 8, 10, 11, 13], "usual": [6, 7, 8, 11, 12, 20, 25, 26, 29, 34, 39, 42, 44, 49, 54, 55, 57, 59, 60, 61], "head": [6, 7, 20, 21, 24, 25, 26, 39, 43, 53, 54, 57, 58, 59], "188": 6, "630181": 6, "700534": 6, "131937": 6, "375806": 6, "288923": 6, "604688": 6, "376341": 6, "246101": 6, "755981": 6, "99": [6, 12, 34, 42], "674146": 6, "119": 6, "018213": 6, "608728": 6, "105658": 6, "820565": 6, "149": 6, "999983": 6, "836058": 6, "999994": 6, "244674": 6, "52": 6, "385685": 6, "816164": 6, "595537": 6, "51": [6, 12, 20, 34], "961499": 6, "882897": 6, "293459": 6, "107116": 6, "735741": 6, "552217": 6, "776801": 6, "621295": 6, "210": [6, 39], "293355": 6, "851094": 6, "900278": 6, "125": [6, 7], "998874": 6, "264369": 6, "999999": 6, "391294": 6, "068478": 6, "552368": 6, "817129": 6, "837748": 6, "801420": 6, "976946": 6, "086004": 6, "110952": 6, "179505": 6, "096355": 6, "279673": 6, "272015": 6, "632559": 6, "490677": 6, "371": 6, "538509": 6, "313881": 6, "882305": 6, "961390": 6, "78": [6, 42], "399724": 6, "833082": 6, "818953": 6, "283360": 6, "949075": 6, "338889": 6, "087923": 6, "571993": 6, "028028": 6, "581850": 6, "020064": 6, "134": 6, "767864": 6, "792800": 6, "088611": 6, "136": 6, "896250": 6, "792830": 6, "999992": 6, "724581": 6, "83": 6, "900727": 6, "065507": 6, "457333": 6, "618226": 6, "132904": 6, "842831": 6, "116368": 6, "698279": 6, "220143": 6, "818777": 6, "851730": 6, "2926": 6, "081975": 6, "619576": 6, "031800": 6, "71": [6, 15], "998548": 6, "270670": 6, "999987": 6, "921856": 6, "row": [6, 7, 39, 57], "column": [6, 7, 11, 12, 15, 20, 26, 39, 54, 55], "hist": [6, 10, 12, 14, 16, 39], "xlabel": [6, 7, 8, 9, 10, 13, 14, 39], "jpsi": 6, "okai": [6, 7, 8], "api": 6, "_as_gen": 6, "intern": [6, 13, 14, 29, 38, 44], "bin": [6, 7, 8, 9, 10, 13, 14, 16, 32, 39, 44, 54, 55, 56, 62], "histtyp": [6, 10, 13, 14, 39], "easili": [6, 7, 12, 14, 33, 37, 39, 42, 44, 47, 48, 49, 52, 53, 62], "uncertainti": [6, 13, 16, 40], "match": [6, 10, 20, 22, 26, 29, 38, 41, 47, 55, 56, 57, 58, 59, 60, 62], "lhcb2": 6, "atla": 6, "cm": [6, 9], "histplot": [6, 7, 8, 11, 13, 14], "lot": [6, 8, 26, 32, 35, 36, 37, 39, 41, 42, 43, 44, 47, 49, 55, 57, 60, 62], "onc": [6, 7, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 34, 42, 43, 44, 49, 52, 53, 56, 57, 58, 59, 60, 61, 62], "subplot": [6, 9, 10, 12, 14], "figsiz": [6, 9, 12, 14], "yerr": [6, 7, 13, 14], "true": [6, 7, 8, 9, 10, 12, 13, 14, 18, 25, 33, 34, 37, 39, 41, 43, 44, 47, 48, 54, 60], "half_binwidth": 6, "errorbar": [6, 11, 13, 14], "xerr": 6, "errorbarartist": 6, "errorbarcontain": [6, 11], "artist": [6, 11], "plot_mass": [6, 7, 10], "df": [6, 7, 8, 10, 39, 54], "75": [6, 7, 10, 11, 45], "feel": [6, 7, 12, 33, 37, 41, 47, 48, 61], "adjust": [6, 7, 8, 9, 10, 12, 59, 62], "label": [6, 7, 8, 9, 10, 11, 12, 13, 16, 20, 32, 39, 44, 55], "gev": [6, 7, 10, 13, 15, 39], "xlim": [6, 7, 8, 9, 10, 12, 14, 39], "forgot": [6, 20, 57], "bother": [6, 32], "them": [6, 11, 13, 14, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 37, 39, 41, 43, 44, 45, 46, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "eval": [6, 7, 10, 12, 15, 39], "jpsi_eta": [6, 7, 10, 11], "arctanh": [6, 7, 10], "inplac": [6, 7, 10, 13, 39], "703371": 6, "874790": 6, "307233": 6, "972345": 6, "307082": 6, "float64": [6, 39], "mu_p": 6, "809553": 6, "820509": 6, "484875": 6, "900145": 6, "577624": 6, "490405": 6, "69": 6, "311033": 6, "087997": 6, "66": [6, 14, 15], "868844": 6, "031472": 6, "increas": [6, 12, 15, 58], "signal": [6, 7, 8, 10, 11, 13, 16, 56], "sampl": [6, 7, 10, 13, 14, 16, 32, 39, 55, 57, 59, 61, 62], "background": [6, 7, 8, 10, 13, 16, 32, 39], "discrimin": [6, 7, 14, 16, 32], "pid": [6, 7], "data_with_cuts_df": [6, 7], "queri": [6, 7, 10, 11, 13, 15, 37, 39, 41], "identifi": [6, 11, 20, 21, 23, 26, 28, 55, 61, 62], "densiti": [6, 7, 8, 10, 12, 14, 16, 32, 39], "p": [6, 7, 13, 14, 15, 23, 27, 37, 47, 51, 55, 57, 60, 62], "_t": [6, 7], "legend": [6, 7, 8, 9, 10, 13, 14, 39], "loc": [6, 7, 8, 9, 10, 14, 39], "0x7f09c6ec0950": 6, "python_lesson": [6, 7], "check_truth": [6, 7], "ncut": 6, "moment": [6, 7, 14, 25, 42, 55, 58, 59, 62], "1216": 6, "167169": 6, "metric": [6, 7, 8, 9, 10, 12], "58": 6, "602": 6, "31922": 6, "275": 6, "13798": 6, "told": [6, 20, 57, 62], "pick": [6, 29, 44], "simulated_data": [6, 7, 10], "mc_df": [6, 7, 8, 10, 11, 13], "mc_file": 6, "sideband": [6, 7, 8], "peak": [6, 7, 9], "present": [6, 16, 20, 22, 47, 54, 60, 62], "select": [6, 7, 14, 25, 34, 35, 53, 57, 58, 59, 60, 62], "outsid": [6, 43, 55, 59, 62], "region": [6, 7, 10, 13], "bkg_df": [6, 7, 8, 10, 11, 13], "ve": [6, 17, 20, 21, 23, 24, 25, 26, 33, 34, 37, 39, 41, 42, 45, 46, 48, 49, 55, 56, 57, 60, 62], "appl": 6, "nearest": 6, "9975": 6, "005": 6, "partial": 6, "mc": [6, 7, 8, 10, 12, 13, 16], "hsig": [6, 7, 8], "60": [6, 7, 8, 15, 57, 58], "hbkg": [6, 7, 8], "bkg": [6, 7, 8, 13, 14], "0x7f09c75a1050": 6, "normalis": [6, 10, 39], "0x7f09c7688790": 6, "both": [6, 10, 11, 13, 20, 21, 24, 25, 26, 27, 29, 30, 34, 43, 47, 49, 54, 55, 56, 57, 58, 60, 62], "signatur": 6, "plot_comparis": [6, 7, 8, 10], "ipykernel_3549": 6, "3447827755": 6, "runtimewarn": [6, 7, 8], "retain": [6, 11], "consum": [6, 56], "much": [6, 8, 9, 12, 13, 17, 21, 22, 28, 33, 37, 38, 39, 41, 43, 44, 48, 49, 54, 55, 56, 57, 58, 62], "memori": [6, 34, 38, 54, 57], "warn": [6, 10, 13, 14, 26, 44], "rcparam": 6, "max_open_warn": 6, "reli": [6, 38, 44, 62], "fortun": [6, 27, 39], "heavili": 6, "depend": [6, 9, 13, 14, 20, 25, 27, 28, 31, 36, 37, 55, 56, 62], "shape": [6, 10, 11, 13, 14, 39], "calcul": [6, 10, 11, 13, 15, 36, 38, 39, 43, 47, 55, 57, 59, 61, 62], "detector": 6, "calorimet": 6, "p_e": 6, "got": [6, 25, 39, 42, 43, 44], "slow": [6, 39, 47], "crash": [6, 7, 53, 59], "produc": [6, 20, 27, 56, 57, 58, 59, 62], "ever": [6, 15, 19, 25, 27, 59, 60, 62], "thousand": [6, 44], "pseudorapid": 6, "vagu": 6, "lhcb": [6, 35, 39, 45, 47, 50, 62], "asid": 6, "session": [6, 10, 18, 26, 29, 32, 47, 50, 52, 53, 54], "reload": [6, 7], "boost": [7, 11, 16, 32], "bdt": [7, 8, 9, 10, 11, 13, 16], "distinguish": [7, 12, 20, 55, 60, 61], "input": [7, 10, 13, 18, 21, 42, 43, 44, 54, 55, 57, 58, 59, 60, 61, 62], "predict": [7, 8, 9, 10, 12, 21], "previou": [7, 8, 10, 11, 14, 15, 16, 21, 22, 25, 26, 27, 32, 39, 54, 55, 56, 57, 58, 62], "modul": [7, 8, 16, 32, 33, 35, 37, 38, 39, 42, 43, 48], "sklearn": [7, 8, 9, 10, 12], "ensembl": [7, 8, 9, 10, 12], "gradientboostingclassifi": [7, 8, 9, 10, 12], "auc": [7, 8, 9, 10, 12], "roc_curv": [7, 8, 9, 10], "model_select": [7, 8, 9, 10, 12], "kfold": [7, 8, 10, 12], "xgboost": [7, 8, 10, 16, 32], "xgbclassifi": [7, 8, 10], "rectangular": [7, 16], "adavantag": 7, "corel": 7, "scatter": [7, 59], "marker": [7, 20, 26], "ylabel": [7, 8, 9, 10], "0x7f7414d1b950": 7, "dimension": [7, 12, 16], "machin": [7, 8, 16, 18, 24, 27, 28, 41, 51, 52, 55, 57, 61, 62], "concept": [7, 16, 25, 32, 36], "known": [7, 8, 12, 16, 27, 28, 32, 39, 47, 55, 60], "weak": 7, "learner": [7, 10], "strong": [7, 32, 35], "combin": [7, 10, 13, 14, 15, 20, 21, 28, 37, 47, 55, 57, 58, 60, 61, 62], "algorithm": [7, 8, 10, 12, 14, 16, 43], "luckili": [7, 21, 39, 42, 60], "ensem": 7, "classif": [7, 9, 10, 12, 14, 16, 32, 58], "popular": [7, 27, 29, 39, 41, 61], "might": [7, 10, 19, 20, 21, 22, 23, 24, 25, 28, 33, 35, 37, 38, 41, 42, 44, 47, 48, 54, 55, 56, 57, 58, 59, 60, 62], "sound": [7, 35, 37, 46, 49, 61], "gradientboosingclassifi": 7, "training_column": [7, 8, 9, 10], "n_estim": [7, 8, 9, 10, 12], "less": [7, 8, 10, 12, 26, 32, 50, 54, 57, 58], "estim": [7, 8, 10, 12, 13, 14, 16, 40], "300": [7, 8, 14, 57, 59, 60, 61], "teach": [7, 28, 31, 32, 35, 62], "2d": [7, 9, 11], "catagori": [7, 8, 10, 11], "training_data": [7, 8, 10], "concat": [7, 10], "ignore_index": [7, 10], "later": [7, 17, 18, 19, 20, 21, 27, 29, 34, 44, 46, 49, 52, 57, 59], "base_scor": 7, "booster": [7, 8], "callback": 7, "colsample_bylevel": 7, "colsample_bynod": 7, "colsample_bytre": [7, 10], "devic": [7, 54, 61], "early_stopping_round": [7, 10], "enable_categor": 7, "fals": [7, 8, 9, 10, 13, 14, 32, 33, 34, 37, 41, 43, 44, 48, 62], "eval_metr": [7, 10], "feature_typ": 7, "gamma": [7, 10], "grow_polici": 7, "importance_typ": 7, "interaction_constraint": 7, "learning_r": [7, 9, 10, 12], "max_bin": 7, "max_cat_threshold": 7, "max_cat_to_onehot": 7, "max_delta_step": 7, "max_depth": [7, 9, 10, 12], "max_leav": 7, "min_child_weight": [7, 10], "nan": 7, "monotone_constraint": 7, "multi_strategi": 7, "n_job": [7, 9, 10], "num_parallel_tre": 7, "random_st": [7, 8, 9, 10, 12], "jupyt": [7, 11, 13, 16, 29, 32, 35, 39, 47], "environ": [7, 13, 14, 27, 32, 35, 39, 47, 50, 55, 59, 60], "rerun": [7, 34, 62], "trust": [7, 54], "On": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 32, 38, 55, 56, 57, 60, 61], "render": [7, 34], "nbviewer": 7, "xgbclassifierxgbclassifi": 7, "dataset": [7, 8, 12, 13, 14, 16, 57], "candid": 7, "predict_proba": [7, 8, 9, 10, 12], "0951997": 7, "9048003": 7, "22529536": 7, "77470464": 7, "63189864": 7, "3681014": 7, "6602049": 7, "33979508": 7, "36177772": 7, "6382223": 7, "float32": 7, "n_": [7, 14], "probabl": [7, 8, 16, 22, 28, 32, 34, 41, 42, 43, 54, 56, 57, 59, 60, 62], "candiat": 7, "second": [7, 10, 13, 14, 20, 24, 25, 34, 37, 41, 42, 44, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62], "assumpt": [7, 16], "treat": [7, 11, 13, 14, 42, 44, 55, 56, 58, 62], "slice": [7, 10, 42], "367871": 7, "22820437": 7, "29143938": 7, "challeng": [7, 21, 22, 55, 61, 62], "fact": [7, 14, 20, 21, 27, 34, 37, 44, 49, 55, 59, 60, 61, 62], "fewer": [7, 33, 48, 55], "chanc": [7, 25, 26, 56, 61], "mix": [7, 29, 43, 62], "caus": [7, 13, 18, 26, 56, 59], "subtl": 7, "accidenatlli": 7, "somewher": [7, 25, 35, 43, 49, 56], "earlier": [7, 20, 23, 24, 25, 28, 39, 42, 52, 54, 56, 57, 58, 59, 60], "histogram": [7, 8, 9, 12, 13, 14, 15, 16, 32, 35], "95": 7, "0x7f740b3de0d0": 7, "possibli": [7, 28, 54], "207": 7, "59": [7, 36], "far": [7, 20, 23, 24, 29, 34, 37, 55, 62], "magic": [7, 11, 34, 36, 45, 55, 56, 62], "unfortuan": 7, "tool": [7, 15, 17, 18, 20, 25, 26, 27, 29, 31, 35, 36, 47, 55, 56, 57, 59, 60, 61, 62], "almost": [7, 20, 27, 32, 51, 55, 56, 57], "characterist": [7, 14, 55], "curv": [7, 8, 10, 12, 14, 16], "roc": [7, 8, 10, 12, 16], "effienc": [7, 9], "rate": [7, 8, 9, 10, 58], "tpr": [7, 8, 9, 10], "against": [7, 10], "ineffieicni": 7, "fpr": [7, 8, 9, 10], "corropsond": 7, "threshold": [7, 8, 9, 10], "reus": [7, 13, 14, 23, 24, 25, 26, 29, 36, 43, 44], "y_score": [7, 8, 9, 10], "nicer": [7, 8, 9, 10, 42, 43], "forc": [7, 8, 9, 10, 22, 35, 39, 42, 54, 55, 60, 62], "corrospond": 7, "randomli": 7, "grai": [7, 24], "color": [7, 8, 9, 10, 13, 14, 18, 20, 21, 26, 34, 54, 55, 59], "linestyl": [7, 8, 9, 10], "ylim": [7, 8, 9, 10, 14], "lower": [7, 8, 9, 10, 11, 12, 13, 14, 37, 49, 60], "gca": [7, 8, 9, 10, 13, 14], "set_aspect": [7, 8, 9, 10], "equal": [7, 8, 9, 10, 12, 14, 37, 38, 43, 54, 62], "box": [7, 8, 9, 10], "closer": [7, 34], "corner": [7, 9, 36], "area": [7, 8, 9, 10, 11, 12, 19, 20, 21, 25, 26], "generanl": 7, "pm": 7, "sigma": [7, 10, 13, 14], "toi": [7, 12, 13, 16], "n_sig": [7, 8, 10], "1200": [7, 8, 10], "n_bkg": [7, 8, 10], "23000": [7, 8, 10], "sig": [7, 14], "ipykernel_4014": 7, "4020814425": 7, "invalid": [7, 8, 23, 43, 44, 54, 55], "divid": [7, 8, 11, 12, 45, 58], "Then": [7, 19, 24, 25, 26, 33, 35, 38, 43, 46, 48, 51, 56, 59, 62], "optimal_index": 7, "argmax": [7, 8, 10], "optimal_metr": 7, "optimal_cut": [7, 8, 10], "optim": [7, 8, 10, 14], "inf": [7, 13], "util": [7, 47, 51, 55, 60, 62], "262": 7, "zero": [7, 10, 14, 27, 42, 55, 57, 58, 61], "scalar": [7, 11], "flat_scal": 7, "diff": [7, 13, 14, 20, 21, 23, 24, 54], "edg": [7, 10, 11], "197": 7, "sumw": 7, "comput": [7, 10, 13, 14, 17, 18, 20, 21, 24, 26, 28, 30, 41, 42, 43, 44, 45, 47, 52, 55, 56, 57, 59, 61, 62], "meaning": [7, 8, 25, 42, 56], "ab": [7, 8, 10, 14, 43, 45, 57, 58, 59], "method_fcn": 7, "varianc": [7, 11], "242": 7, "multipli": [7, 11, 12, 49, 57], "243": [7, 59], "yerr_lo": 7, "244": 7, "yerr_hi": 7, "0x7f740b726990": 7, "plot_roc": [7, 8, 9, 10], "plot_signific": [7, 8, 10], "axvlin": [7, 8, 10], "black": [7, 8, 10, 13, 14, 62], "datafil": [7, 9, 58, 59], "librari": [7, 9, 10, 11, 12, 13, 15, 16, 32, 33, 35, 39, 41, 48, 54, 55], "mcfile": 7, "succesfulli": 7, "4278176416": 7, "standardis": [8, 62], "rank": 8, "highli": [8, 13, 28, 32, 47], "competit": [8, 60], "comparis": 8, "alorithm": 8, "adaboostclassifi": [8, 10], "gradient": [8, 9, 10, 16, 32], "bdt_1": 8, "bdt_2": 8, "classifi": [8, 12, 14, 16, 32, 55], "xgboost_bdt": 8, "ipykernel_4441": 8, "2193470804": 8, "actuali": 8, "adaboost": [8, 9], "biject": 8, "short": [8, 11, 20, 25, 28, 43, 44, 55, 56, 60], "matter": [8, 22, 29, 34, 42, 44, 55, 56, 57, 61, 62], "correl": [8, 12, 14, 16], "littl": [8, 14, 17, 19, 25, 33, 42, 43, 48, 53, 60], "resolut": [8, 26, 55], "ipmin": 8, "min": [8, 11, 14, 54, 62], "ipdiff": [8, 10], "bdtclass": 8, "training_columns_2": 8, "bdt_3": 8, "training_columns_3": 8, "0x7f6eefad8fd0": 8, "lose": [8, 19, 21, 25, 31, 52], "part": [8, 11, 13, 14, 16, 21, 25, 27, 32, 33, 42, 44, 47, 48, 49, 55, 56, 58, 60, 62], "split": [8, 10, 11, 12, 14, 20, 36, 44, 62], "crucial": [8, 13, 34], "scenario": 8, "red": [8, 20, 23, 58], "tile": 8, "blue": [8, 9, 24], "whole": [8, 12, 13, 24, 49, 55, 57, 58, 60, 62], "holdout": 8, "overfit": [8, 12], "overestim": 8, "evalu": [8, 10, 12, 37, 54, 58, 61], "unbias": [8, 12], "search": [8, 15, 16, 20, 21, 44, 54, 55, 56, 58, 60, 62], "stabl": [8, 9, 10, 13], "section": [8, 16, 39, 50, 57], "kf": [8, 10], "n_split": [8, 10], "get_n_split": 8, "shuffl": [8, 10], "train_index": 8, "test_index": 8, "x_train": [8, 10], "x_test": [8, 10], "y_train": [8, 10], "y_test": [8, 10], "favorid": 8, "frequent": [9, 14, 26, 44, 55, 59, 61], "discoveri": [9, 13, 16, 28], "due": [9, 14, 17, 35, 44], "comparison": [9, 10, 37], "signif": [9, 13], "loos": [9, 57], "qualiti": [9, 12, 25, 57], "plain": [9, 11, 55, 56, 59], "gradientboost": 9, "knn": 9, "ada": 9, "loss": [9, 10, 12, 14, 16, 32, 56, 57, 60], "ugb": 9, "knnada": 9, "flatnessloss": 9, "paper": [9, 14, 17, 23, 28, 55, 59, 61], "plenti": [9, 35], "subset": [9, 10, 41], "train_test_split": [9, 10, 12], "decisiontreeclassifi": 9, "used_column": 9, "y1": [9, 10], "y2": 9, "y3": 9, "m2ab": 9, "m2ac": 9, "2019": [9, 12], "dalitzdata": 9, "drop": [9, 47, 62], "mostli": [9, 26, 55], "tradit": [9, 33, 48], "poor": 9, "effieci": 9, "plot_distribut": 9, "data_fram": 9, "var_name1": 9, "var_name2": 9, "hist2d": 9, "cmap": 9, "colorbar": [9, 11], "titl": [9, 10, 12, 13, 14, 25, 30], "trainx": 9, "testx": 9, "traini": 9, "testi": 9, "test_siz": 9, "uniform_featur": 9, "train_featur": 9, "150": [9, 15, 39], "base_estim": 9, "efficiency_step": 9, "smooth": [9, 12], "knnloss": 9, "knnadalossfunct": 9, "uniform_label": 9, "ugradientboostingclassifi": 9, "uboostclassifi": 9, "knnflatnesslossfunct": 9, "fl_coeffici": 9, "fl": 9, "clf": [9, 12], "roc_auc_scor": [9, 12], "pip": [10, 39, 44], "xgb": 10, "gridsearchcv": 10, "cross_val_scor": 10, "cross_valid": 10, "process": [10, 12, 14, 24, 28, 39, 44, 47, 51, 53, 55, 56, 57, 58, 59, 60, 61, 62], "stt": 10, "stc": 10, "process_tim": 10, "norm": [10, 14, 39], "_": [10, 25, 27, 40, 43, 44, 49, 56], "optimum": 10, "linewidth": 10, "max_entri": 10, "1000": [10, 12, 13, 14, 55], "low": [10, 12], "stat": [10, 14, 40, 58, 59, 60, 62], "entry_stop": 10, "ipykernel_4651": 10, "2007768199": 10, "settingwithcopywarn": 10, "row_index": 10, "col_index": 10, "caveat": [10, 59], "pydata": 10, "doc": [10, 17, 43], "user_guid": 10, "view": [10, 11, 20, 23, 25, 38, 39, 43, 44, 47, 55, 56, 58], "versu": [10, 41], "previous": [10, 22, 25, 41, 58], "off": [10, 13, 14, 25, 29, 37, 38, 43, 44, 53, 57, 61], "monitor": [10, 62], "approxim": 10, "x1": 10, "train_siz": [10, 12], "vari": 10, "suit": [10, 29], "lr": 10, "coeffici": [10, 14], "decai": [10, 15, 39], "alia": [10, 33, 34, 44, 48, 51], "stime": 10, "seed": 10, "123": [10, 21, 35, 41, 49, 58], "8686127662658691": 10, "3009250180": 10, "randomis": 10, "fly": 10, "statist": [10, 13, 14, 15, 16, 40, 56, 59, 61], "remaind": 10, "cv": [10, 17], "100th": 10, "trend": 10, "training_monitor": 10, "alg": 10, "eval_set": 10, "evals_result": 10, "epoch": 10, "len": [10, 12, 14, 16, 32, 38, 42, 43, 49, 62], "validation_0": 10, "logloss": 10, "x_axi": 10, "fig": [10, 14], "ax": [10, 13, 14, 16, 32], "validation_1": 10, "progress": [10, 21, 25, 27, 31, 62], "minimis": [10, 43], "cost": [10, 26], "neglig": 10, "invert": [10, 60], "overtrain": 10, "costli": 10, "pitfal": [10, 16], "multi": [10, 16, 36, 42, 49], "bdt_cv": 10, "n_thread": 10, "verbos": [10, 25, 33, 34, 41, 48, 55, 57], "nxgboost": 10, "xgbcv": 10, "889": 10, "userwarn": [10, 13, 14], "deprec": [10, 40], "compat": [10, 13, 16, 47], "constructor": [10, 36], "set_param": 10, "160": 10, "54": 10, "workspac": 10, "src": 10, "742": 10, "smsg": 10, "057788610458374": 10, "3553768138": 10, "draw": 10, "respon": 10, "effici": [10, 11, 25, 31, 38, 55, 56], "v": [10, 12, 14, 23, 25, 26, 33, 36, 48, 55, 59, 60], "minimum": 10, "bdt_cut": 10, "bdt_cv_cut": 10, "405805978293522": 10, "80857503": 10, "273454027276424": 10, "81235266": 10, "averag": [10, 11, 52], "across": [10, 17, 24, 47, 55, 62], "instabl": 10, "reliabl": [10, 13], "seem": [10, 12, 17, 25, 33, 41, 44, 46, 47, 48, 55, 58, 60, 62], "consist": [10, 13, 34, 41, 42, 56, 57, 58, 59], "ll": [10, 17, 20, 21, 23, 29, 33, 41, 42, 43, 45, 46, 48, 49, 55, 56, 57, 58, 59, 60, 61], "test_train_split": 10, "iloc": 10, "cv_acc": 10, "accuraci": 10, "cv_lo": 10, "neg_log_loss": 10, "cv_auc": 10, "roc_auc": 10, "bestfold": 10, "7279951572418213": 10, "78412488": 10, "77760064": 10, "78477481": 10, "78856118": 10, "42945196": 10, "43137575": 10, "42765048": 10, "42374993": 10, "87520356": 10, "87239133": 10, "8768386": 10, "87975731": 10, "round": [10, 13, 14, 45], "standard": [10, 13, 15, 16, 29, 32, 33, 35, 41, 48, 54, 55, 57, 58, 59, 60, 61], "revert": [10, 21], "prevent": [10, 25, 32, 44, 55, 57, 60, 62], "extra": [10, 14, 20, 25, 44, 47, 59], "thu": [10, 14, 20, 21, 22, 29, 39, 44, 52, 57], "small": [10, 14, 24, 25, 28, 31, 43, 57, 59], "prematur": 10, "modelfit": 10, "param": [10, 13, 14], "predictor": 10, "fbest": 10, "early_stop": 10, "enumer": [10, 12, 38, 42], "xgb_param": 10, "get_xgb_param": 10, "dmatrix": 10, "feature_nam": 10, "nthread": 10, "cvresult": 10, "num_boost_round": 10, "get_param": [10, 14], "nfold": 10, "cv_fold": 10, "train_predict": 10, "test_predict": 10, "nmodel": 10, "accuracy_scor": 10, "incorpor": [10, 25, 29], "its": [10, 12, 14, 20, 21, 23, 24, 26, 28, 29, 31, 32, 37, 38, 39, 42, 43, 44, 47, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "subsequ": [10, 18, 25, 62], "upper": [10, 11, 13, 14, 44, 49], "converg": [10, 13, 25], "hyperparamet": [10, 12], "bdt_e": 10, "hyperparamt": 10, "subsampl": [10, 12], "scale_pos_weight": 10, "binari": [10, 26, 60], "logist": 10, "mutli": 10, "softprob": 10, "num_class": 10, "multiclassifi": 10, "nmodelfit": 10, "xgbe": 10, "981419086456299": 10, "290315866470337": 10, "320": 10, "878406430077885": 10, "8180580234817411": 10, "87963104248047": 10, "41647419": 10, "benchmark": 10, "slowli": 10, "kick": 10, "comaprison": 10, "bdt_cut_cv": 10, "bdt_cut_": 10, "05205070820643": 10, "7961289": 10, "structur": [10, 15, 22, 32, 35, 36, 39, 42, 55, 56, 58, 62], "constraint": [10, 13, 14, 35, 61], "space": [10, 14, 16, 20, 22, 26, 32, 33, 37, 42, 43, 48, 50, 55, 56, 58, 59, 60, 62], "explor": [10, 17, 23, 31, 32, 35, 55, 56, 60, 61], "optims": 10, "weigh": 10, "resourc": [10, 27, 32, 41, 61, 62], "timefram": 10, "dispos": 10, "expedi": 10, "predetermin": 10, "variat": [10, 16, 25, 55, 59], "gridscan": 10, "hp": 10, "hpgridscan": 10, "arang": 10, "scan": [10, 46], "establish": [10, 26], "cutoff": 10, "param_grid": 10, "iid": 10, "best_estimator_": 10, "best_params_": 10, "best_score_": 10, "shorten": 10, "bdt_st": 10, "bdt_g": 10, "nhpgridscan": 10, "xgbg": 10, "071139097213745": 10, "8091291887649159": 10, "30479145050049": 10, "1018627576": 10, "naiv": [10, 25], "fair": 10, "push": [10, 18, 23, 24, 26, 27, 28, 29, 31, 32], "further": [10, 21, 25, 29, 41, 55, 56, 61], "trade": [10, 38], "parrallis": 10, "task": [10, 26, 27, 60, 62], "hour": [10, 23, 52, 58, 60, 61], "o": [10, 15, 18, 41, 44, 53, 55, 56, 59, 60, 61], "bdt_opt": 10, "xgbopt": 10, "comapr": 10, "stage": [10, 19, 20, 21, 24, 25, 26, 27, 28, 57, 58, 59], "bdt_es_cut": 10, "bdt_gs_cut": 10, "bdt_opt_cut": 10, "data_bdt_cut": 10, "data_gs_cut": 10, "225756452547515": 10, "8237634": 10, "817070520310462": 10, "8272739": 10, "0x7f5f0deeacd0": 10, "rel": [10, 13, 23, 37, 42, 55, 56, 61], "shoulder": 10, "spectrum": 10, "potenti": [10, 54, 59], "exploit": 10, "diverg": 10, "replot": 10, "ideal": [10, 12, 28], "carefulli": [10, 21], "sign": [10, 23, 27, 55, 58], "lhc": 10, "ugboost": 10, "punish": 10, "deped": 10, "sig_df": 10, "sig_bdt_cut": 10, "sig_gs_cut": 10, "0x7f5f0dd81250": 10, "cours": [10, 16, 32, 33, 34, 35, 36, 37, 38, 43, 45, 46, 48, 50, 55, 59, 62], "decreas": 10, "retrain": 10, "afford": 10, "With": [10, 11, 12, 13, 21, 24, 28, 32, 33, 34, 39, 48, 49, 55, 59, 60, 61], "choic": [10, 23, 24, 29, 44, 60], "kernel": [10, 34], "suffici": [10, 51], "strategi": [10, 26, 55], "exhaust": [10, 54], "non": [10, 13, 16, 20, 26, 27, 36, 43, 44, 55, 56, 61, 62], "discritis": 10, "smart": 10, "randomizedsearchcv": 10, "diment": 10, "sophist": [10, 16], "skopt": 10, "bayessearchcv": 10, "hyperopt": 10, "tpe": 10, "bit": [10, 14, 18, 25, 55, 57, 59, 60], "ly": 10, "lhcb_xgb_tune": 10, "entrystop": 10, "max_ev": 10, "315": 10, "9246733188629": 10, "186": 10, "5501554": 10, "nearli": [11, 12, 17, 62], "everi": [11, 18, 21, 22, 23, 25, 27, 28, 34, 36, 38, 39, 42, 44, 51, 54, 55, 56, 57, 58, 60, 62], "place": [11, 19, 27, 34, 42, 43, 45, 49, 55, 56, 58, 59, 60], "correct": [11, 14, 16, 20, 21, 32, 55, 56, 57, 58, 59, 60], "friendli": [11, 47, 56], "directli": [11, 25, 28, 34, 36, 39, 42, 44, 47, 49, 57, 59, 61, 62], "workhors": 11, "written": [11, 13, 18, 28, 35, 55, 58, 59, 61, 62], "boost_histogram": 11, "bh": 11, "compos": [11, 25], "per": [11, 18, 33, 38, 43, 44, 48, 55, 57, 60], "overflow": [11, 41, 54, 62], "hist2dplot": 11, "colormeshartist": 11, "pcolormesh": 11, "quadmesh": 11, "0x7f910983c910": 11, "cbar": 11, "0x7f91098abb10": 11, "cental": 11, "difin": 11, "former": [11, 12, 15, 34, 36, 51, 55], "regularli": [11, 41, 47], "axis_reg": 11, "nbin": [11, 13, 14], "arbitrarili": 11, "mro": [11, 36], "axis_var": 11, "axis1": 11, "data_h": 11, "doubl": [11, 21, 37, 38, 43, 44, 45, 46, 49, 55, 56, 59, 62], "\u03c3": 11, "168384": 11, "168385": 11, "mc_h": 11, "chain": [11, 13, 21, 32, 54, 57], "unifi": [11, 54], "born": 11, "seemless": 11, "stairsartist": 11, "stair": 11, "steppatch": 11, "0x7f9109722f50": 11, "legend_artist": 11, "plot1d": 11, "0x7f90dbf87ed0": 11, "0x7f90dbe5c650": 11, "axis_bdt": 11, "mc_h2d": 11, "data_h2d": 11, "0265": 11, "994": 11, "026503": 11, "993653": 11, "168383": 11, "0x7f90dbe1c250": 11, "0x7f90dbeab490": 11, "variou": [11, 13, 14, 17, 21, 23, 39, 47, 56], "besid": [11, 62], "locat": [11, 41, 54, 55, 56, 59, 60, 62], "support": [11, 12, 14, 34, 35, 42, 44, 46, 47, 53, 55, 60, 61], "318": 11, "capabl": [11, 12, 17], "underflow": 11, "integr": [11, 23, 25, 26, 27], "devid": 11, "24562342": 11, "20355474": 11, "32523501": 11, "37322826": 11, "07734872": 11, "27271602": 11, "00139882": 11, "38734028": 11, "48785252": 11, "77554461": 11, "97317478": 11, "4737405": 11, "21992964": 11, "7286828": 11, "6058711": 11, "42574726": 11, "2947481": 11, "17193639": 11, "09824937": 11, "02456234": 11, "27018576": 11, "34274135": 11, "36617225": 11, "26679145": 11, "2984098": 11, "37915283": 11, "68321982": 11, "66797636": 11, "66092035": 11, "94861244": 11, "30999156": 11, "87605685": 11, "76143259": 11, "69593302": 11, "39299747": 11, "35206023": 11, "13099916": 11, "26199831": 11, "46555306": 11, "16148607": 11, "49603997": 11, "76622573": 11, "33002815": 11, "6165888": 11, "19084155": 11, "68435126": 11, "48898396": 11, "85855052": 11, "95793133": 11, "83511962": 11, "54855896": 11, "27837321": 11, "12281171": 11, "08187447": 11, "05731213": 11, "43280327": 11, "14511118": 11, "74279482": 11, "16741064": 11, "95340558": 11, "42827752": 11, "83059387": 11, "29135379": 11, "47260907": 11, "9240501": 11, "23630453": 11, "98249367": 11, "56493386": 11, "33568534": 11, "22106108": 11, "06549958": 11, "01637489": 11, "20468618": 11, "32636645": 11, "76735717": 11, "32297214": 11, "86334366": 11, "31365326": 11, "576783": 11, "24222911": 11, "13692373": 11, "82580073": 11, "36730369": 11, "92518154": 11, "82693217": 11, "55674641": 11, "50762173": 11, "22924852": 11, "04093724": 11, "35911624": 11, "89130031": 11, "02116803": 11, "79897552": 11, "05984239": 11, "98615537": 11, "53810864": 11, "00592457": 11, "30180411": 11, "0234309": 11, "78599493": 11, "4503096": 11, "32749789": 11, "1555615": 11, "03274979": 11, "1953673": 11, "89948776": 11, "8246693": 11, "9872868": 11, "78146919": 11, "46215874": 11, "56972699": 11, "57085843": 11, "91586265": 11, "29361666": 11, "94155643": 11, "84330707": 11, "4339347": 11, "36843513": 11, "28656065": 11, "1391866": 11, "10643681": 11, "00818745": 11, "31112299": 11, "22811709": 11, "95566845": 11, "57791444": 11, "96978047": 11, "03528005": 11, "38847172": 11, "65160147": 11, "43167183": 11, "58130875": 11, "40118491": 11, "11462426": 11, "04912468": 11, "12986772": 11, "99773713": 11, "9638559": 11, "82353786": 11, "42122151": 11, "23177878": 11, "92884324": 11, "52060231": 11, "5135463": 11, "76030116": 11, "81874472": 11, "81055728": 11, "51580918": 11, "31931044": 11, "19649873": 11, "09006192": 11, "25381086": 11, "15443006": 11, "87492542": 11, "68548269": 11, "70778216": 11, "17446665": 11, "7323445": 11, "50422742": 11, "2187982": 11, "7684886": 11, "77780749": 11, "03161835": 11, "54742753": 11, "79191951": 11, "02003659": 11, "96159302": 11, "08666761": 11, "56267098": 11, "53924008": 11, "27724177": 11, "67955812": 11, "49124683": 11, "34387278": 11, "14737405": 11, "0398058": 11, "79305094": 11, "55448354": 11, "31478469": 11, "92065579": 11, "74053195": 11, "30772868": 11, "49717141": 11, "84217563": 11, "94974388": 11, "59768365": 11, "05618069": 11, "80123839": 11, "54629609": 11, "47147763": 11, "21653533": 11, "81421897": 11, "97796792": 11, "01298058": 11, "16967352": 11, "75211371": 11, "17080495": 11, "90880664": 11, "72049536": 11, "49943428": 11, "18717985": 11, "66205179": 11, "67729525": 11, "33229102": 11, "92178723": 11, "69959471": 11, "27384746": 11, "16035463": 11, "5299212": 11, "72755137": 11, "76962004": 11, "53218407": 11, "21287363": 11, "71117647": 11, "70185759": 11, "06210527": 11, "08553617": 11, "56859556": 11, "62590769": 11, "16854208": 11, "71230791": 11, "48305939": 11, "41755981": 11, "30293555": 11, "8842443": 11, "24336054": 11, "15216719": 11, "06097383": 11, "26566001": 11, "51128343": 11, "31591613": 11, "57198987": 11, "26905432": 11, "9006192": 11, "09711793": 11, "45736561": 11, "30886012": 11, "07848016": 11, "96272446": 11, "4375964": 11, "37209682": 11, "34979736": 11, "67842668": 11, "46668449": 11, "16374894": 11, "96611877": 11, "04686181": 11, "89835632": 11, "75803828": 11, "35572193": 11, "93110611": 11, "17786096": 11, "81761329": 11, "1789924": 11, "75324515": 11, "52399662": 11, "69480158": 11, "6925387": 11, "99547425": 11, "18378554": 11, "27497889": 11, "25154799": 11, "68661413": 11, "25267943": 11, "80236983": 11, "54037152": 11, "99068112": 11, "35092879": 11, "08779905": 11, "12760484": 11, "58610189": 11, "25747256": 11, "25041655": 11, "15329862": 11, "65386434": 11, "10530538": 11, "85149451": 11, "67023924": 11, "09598649": 11, "02822404": 11, "48672109": 11, "90654377": 11, "22698565": 11, "58017732": 11, "36024768": 11, "38367858": 11, "80010695": 11, "78260062": 11, "05278638": 11, "01184915": 11, "19310442": 11, "91699409": 11, "38481002": 11, "18012384": 11, "21061075": 11, "78373206": 11, "64341402": 11, "1030425": 11, "29248523": 11, "08893048": 11, "79418238": 11, "57312131": 11, "61405854": 11, "63043344": 11, "69367014": 11, "17672953": 11, "2820349": 11, "63409514": 11, "23404166": 11, "31704757": 11, "93336898": 11, "68774557": 11, "73687025": 11, "11349282": 11, "71004503": 11, "5533521": 11, "97091191": 11, "23743597": 11, "18831129": 11, "85968196": 11, "57904588": 11, "14397974": 11, "93816212": 11, "91473122": 11, "94042499": 11, "62224599": 11, "59542077": 11, "04573037": 11, "10191107": 11, "94634957": 11, "83398818": 11, "39186603": 11, "67137067": 11, "07255559": 11, "34160991": 11, "62817056": 11, "03048691": 11, "42461582": 11, "89243175": 11, "49830284": 11, "0796116": 11, "65499578": 11, "40937236": 11, "84104419": 11, "29954124": 11, "54516465": 11, "61179567": 11, "98136223": 11, "28542922": 11, "04799325": 11, "37662257": 11, "52286519": 11, "60247678": 11, "93223755": 11, "7450577": 11, "44212215": 11, "64680833": 11, "97430622": 11, "6527329": 11, "62703913": 11, "50535885": 11, "56380242": 11, "13805517": 11, "18604841": 11, "46442162": 11, "16261751": 11, "89016887": 11, "42235294": 11, "45849705": 11, "07368703": 11, "58836476": 11, "40710949": 11, "24449198": 11, "60360822": 11, "75098227": 11, "3743597": 11, "44917816": 11, "26792288": 11, "02935548": 11, "20242331": 11, "05391782": 11, "26086687": 11, "00705601": 11, "12168027": 11, "73573881": 11, "73460738": 11, "0632367": 11, "11236139": 11, "06436814": 11, "74392626": 11, "02229947": 11, "10417394": 11, "03867436": 11, "70412046": 11, "01524346": 11, "44099071": 11, "75916972": 11, "66318323": 11, "37549114": 11, "96498734": 11, "14624261": 11, "12873628": 11, "86673797": 11, "53105263": 11, "63862088": 11, "55561497": 11, "25973544": 11, "71936392": 11, "40005348": 11, "21174219": 11, "48192795": 11, "onto": [11, 17, 55, 57], "1d": [11, 12, 15], "transpar": 11, "7500011": 11, "76500103": 11, "78000096": 11, "79500089": 11, "81000082": 11, "82500076": 11, "84000069": 11, "85500062": 11, "87000055": 11, "88500048": 11, "90000041": 11, "91500035": 11, "93000028": 11, "94500021": 11, "96000014": 11, "97500007": 11, "99000001": 11, "00499994": 11, "01999987": 11, "0349998": 11, "04999973": 11, "06499966": 11, "0799996": 11, "09499953": 11, "10999946": 11, "12499939": 11, "13999932": 11, "15499925": 11, "16999919": 11, "18499912": 11, "19999905": 11, "21499898": 11, "22999891": 11, "24499884": 11, "25999878": 11, "27499871": 11, "28999864": 11, "30499857": 11, "3199985": 11, "33499843": 11, "34999837": 11, "3649983": 11, "37999823": 11, "39499816": 11, "40999809": 11, "42499803": 11, "43999796": 11, "45499789": 11, "46999782": 11, "48499775": 11, "49999768": 11, "center": [11, 13, 14, 32], "75750106": 11, "772501": 11, "78750093": 11, "80250086": 11, "81750079": 11, "83250072": 11, "84750065": 11, "86250059": 11, "87750052": 11, "89250045": 11, "90750038": 11, "92250031": 11, "93750024": 11, "95250018": 11, "96750011": 11, "98250004": 11, "99749997": 11, "0124999": 11, "02749983": 11, "04249977": 11, "0574997": 11, "07249963": 11, "08749956": 11, "10249949": 11, "11749942": 11, "13249936": 11, "14749929": 11, "16249922": 11, "17749915": 11, "19249908": 11, "20749902": 11, "22249895": 11, "23749888": 11, "25249881": 11, "26749874": 11, "28249867": 11, "29749861": 11, "31249854": 11, "32749847": 11, "3424984": 11, "35749833": 11, "37249826": 11, "3874982": 11, "40249813": 11, "41749806": 11, "43249799": 11, "44749792": 11, "46249785": 11, "47749779": 11, "49249772": 11, "width": [11, 14, 15, 55], "01499993": 11, "readi": [11, 20, 25, 44, 55, 58, 59, 62], "broadcast": 11, "prod": 11, "00072536": 11, "ratio": 11, "data_df_bdt": 11, "data_bdt_h2d": 11, "734": 11, "735": 11, "0x7f90dbd92a10": 11, "ratio_larg": 11, "0x7f90dbd8c210": 11, "subtract": [11, 16, 46, 60], "weigth": 11, "random": [11, 13, 14, 21, 25, 26, 44, 52], "weightedsum": 11, "119880": 11, "120999": 11, "119939": 11, "121058": 11, "00000000e": 11, "00": [11, 13, 25, 57, 59], "29409042e": 11, "91260872e": 11, "12005121e": 11, "27372896e": 11, "52373500e": 11, "84416378e": 11, "27504660e": 11, "96988638e": 11, "79150714e": 11, "58937229e": 11, "25303796e": 11, "54359078e": 11, "90559759e": 11, "14617921e": 11, "63638518e": 11, "53879928e": 11, "95096517e": 11, "11574908e": 11, "14238625e": 11, "28179378e": 11, "72620129e": 11, "32385845e": 11, "95341674e": 11, "01005542e": 11, "02": [11, 52, 58], "91296475e": 11, "16834301e": 11, "32925418e": 11, "71469316e": 11, "44987756e": 11, "13602248e": 11, "68698778e": 11, "75299946e": 11, "92811262e": 11, "35069343e": 11, "12336463e": 11, "18095656e": 11, "19162742e": 11, "12778624e": 11, "26595401e": 11, "52944235e": 11, "50262281e": 11, "39747843e": 11, "52712596e": 11, "46608110e": 11, "65591707e": 11, "13895529e": 11, "92150312e": 11, "57478434e": 11, "73089740e": 11, "84642700e": 11, "97618616e": 11, "62753113e": 11, "34946209e": 11, "81973253e": 11, "98311794e": 11, "08956453e": 11, "84860175e": 11, "30504147e": 11, "87714008e": 11, "86558908e": 11, "15893374e": 11, "31629034e": 11, "82542567e": 11, "88119310e": 11, "26316677e": 11, "03": [11, 55, 57, 58, 59], "37832924e": 11, "11515419e": 11, "81002316e": 11, "28840416e": 11, "10410422e": 11, "71935069e": 11, "60982180e": 11, "29241525e": 11, "24197001e": 11, "22773291e": 11, "14820864e": 11, "14859815e": 11, "44872559e": 11, "33953217e": 11, "08855536e": 11, "22109688e": 11, "78188426e": 11, "91192926e": 11, "38198324e": 11, "82003091e": 11, "71200072e": 11, "38736986e": 11, "98361984e": 11, "66147437e": 11, "20872087e": 11, "95671105e": 11, "57722149e": 11, "79049158e": 11, "43459090e": 11, "45555809e": 11, "50686361e": 11, "73065919e": 11, "62774614e": 11, "19609889e": 11, "71046678e": 11, "38621105e": 11, "78621318e": 11, "42600823e": 11, "52108524e": 11, "49224813e": 11, "33562844e": 11, "21626659e": 11, "15620285e": 11, "17110210e": 11, "06118221e": 11, "10862332e": 11, "87395126e": 11, "03903877e": 11, "04500604e": 11, "33491313e": 11, "35583933e": 11, "58853558e": 11, "24475294e": 11, "46699889e": 11, "36044513e": 11, "96450573e": 11, "30834137e": 11, "74784277e": 11, "54886584e": 11, "55400621e": 11, "34197039e": 11, "65449422e": 11, "56435776e": 11, "05377581e": 11, "81007615e": 11, "92441084e": 11, "70812063e": 11, "49434456e": 11, "49237462e": 11, "74149001e": 11, "47610116e": 11, "87197498e": 11, "13440277e": 11, "99907378e": 11, "56182657e": 11, "62083704e": 11, "39434835e": 11, "08681117e": 11, "30065380e": 11, "14552630e": 11, "79843797e": 11, "85722440e": 11, "60162470e": 11, "39800451e": 11, "70000546e": 11, "27437055e": 11, "04784001e": 11, "60327499e": 11, "35996788e": 11, "46993157e": 11, "07545415e": 11, "27263457e": 11, "63214033e": 11, "08565780e": 11, "15813756e": 11, "08858071e": 11, "65106378e": 11, "05269375e": 11, "chi2": 11, "minim": [12, 13, 15, 16, 26, 27, 36], "mont": 12, "carlo": 12, "weight": [12, 14, 16, 32], "coincid": 12, "fight": 12, "drawback": 12, "multidimension": 12, "distibut": [12, 14], "aim": [12, 32, 35, 54], "pai": [12, 23], "neq": 12, "hspd": 12, "pt_b": 12, "pt_phi": 12, "vchi2_b": 12, "mu_pt_sum": 12, "mc_distribut": 12, "original_fil": 12, "original_tre": 12, "rd_distribut": 12, "target_fil": 12, "target_tre": 12, "original_weight": 12, "kolmogorov": 12, "smirnov": 12, "dim": 12, "ml": [12, 13], "ant": 12, "original_train": 12, "original_test": 12, "target_train": 12, "target_test": 12, "original_weights_train": 12, "original_weights_test": 12, "metrics_util": 12, "ks_2samp_weight": 12, "hist_set": 12, "alpha": [12, 14], "draw_distribut": 12, "new_original_weight": 12, "id": [12, 21, 23, 28, 55], "percentil": 12, "hstack": 12, "k": [12, 14, 16, 32, 42, 51, 53, 54, 55], "weights1": 12, "weights2": 12, "agreement": [12, 32], "1000000": 12, "21441": 12, "5203540728277889": 12, "21639364439970188": 12, "4020113592414034": 12, "40466385087324064": 12, "5200099303482495": 12, "21758393034661122": 12, "40500588059713394": 12, "40462044775517775": 12, "5232076840141869": 12, "21652812124569376": 12, "39385195112839255": 12, "40594501884056267": 12, "m_": 12, "w_": [12, 14], "fast": [12, 24, 26, 38, 40, 41], "bring": [12, 55, 60], "disagr": 12, "bins_reweight": 12, "binsreweight": 12, "n_bin": 12, "n_neigh": 12, "bins_weights_test": 12, "predict_weight": 12, "40952654771458574": 12, "11652765591222125": 12, "2693182103557125": 12, "34592365812555204": 12, "inspir": 12, "curs": 12, "decis": [12, 16, 20, 28, 29], "functiion": 12, "reweightlossfunct": 12, "sever": [12, 21, 25, 28, 34, 37, 43, 44, 46, 54, 55, 56, 58, 59, 60], "gbreweight": 12, "250": 12, "min_samples_leaf": 12, "gb_arg": 12, "gb_weights_test": 12, "04687823298270344": 12, "026121777921275707": 12, "022813015758623933": 12, "048893751134951424": 12, "check_ks_of_express": 12, "col_origin": 12, "engin": [12, 16, 30, 32, 54], "col_target": 12, "w_target": 12, "09380652676755549": 12, "12011671496948761": 12, "01928099679726153": 12, "367992410744947": 12, "3344074502355772": 12, "03686866384493581": 12, "47656210520414677": 12, "3807772951890118": 12, "03076521597555082": 12, "4910760063428767": 12, "3984543685951991": 12, "04624222729495375": 12, "pupros": 12, "separ": [12, 17, 19, 21, 26, 33, 42, 43, 48, 55, 57, 58, 59, 60, 61, 62], "concaten": [12, 14, 57, 58], "gb_weight": 12, "new_weight": 12, "xtr": 12, "xt": 12, "ytr": 12, "yt": 12, "wtr": 12, "wt": 12, "sample_weight": 12, "9395759390021483": 12, "9117746949904894": 12, "5389975862617249": 12, "undistingish": 12, "sensibl": [12, 24], "especi": [12, 16, 21, 26], "yeei": 12, "Or": [12, 15, 20, 28, 62], "taken": [12, 14, 15, 34, 58, 60], "wors": [12, 22, 49, 59], "spot": [12, 25], "topic": [12, 16, 26, 32, 35, 50, 60, 62], "whatev": [12, 20, 38, 42, 43, 57, 58, 59, 60], "yscale": 12, "log": [12, 20, 21, 22, 23, 25, 27, 32, 44, 51, 53, 55, 57, 59, 61], "638": 12, "9668514096913": 12, "70631": 12, "53820041155": 12, "desir": 12, "awar": [12, 25, 28, 34, 36, 54], "hoc": 12, "clip": 12, "disturb": 12, "proce": [12, 25, 54], "determin": [12, 14, 34, 42, 44, 62], "tradeoff": [12, 59], "factor": [12, 39], "tend": [12, 21, 55], "foldingreweight": 12, "Be": [12, 14, 27, 34, 54, 58, 62], "80": [12, 13, 14, 36], "greatli": [12, 15], "reweighter_bas": 12, "n_fold": 12, "half": [12, 61], "dure": [12, 14, 22, 26, 27, 28, 32, 56, 58, 62], "folding_weight": 12, "3077610048887751": 12, "1807535747531443": 12, "3080302885557679": 12, "2987192541370194": 12, "9363354007422626": 12, "8258681677520754": 12, "model": [13, 14, 16, 28, 32, 34, 40, 57], "extract": [13, 15, 55, 59, 60, 62], "immedi": [13, 58], "Of": [13, 16, 33, 37, 38, 43, 46, 48, 59, 60], "poi": 13, "observ": [13, 16, 20, 32, 46, 56, 62], "relev": [13, 15, 16, 32, 54, 61], "detectoreffect": 13, "nuisanc": 13, "chi": [13, 15], "reflect": 13, "retriev": [13, 14, 17, 21, 34, 42, 46, 58], "maximis": [13, 53], "trivial": [13, 27, 34, 36], "numer": [13, 34, 38, 55, 57, 59, 60], "procedur": 13, "studi": [13, 39], "focu": [13, 16, 36, 57], "unbin": 13, "zfit": [13, 14, 16], "hepstat": [13, 14, 16], "young": 13, "mention": [13, 20, 28, 54, 56, 60], "roofit": 13, "roostat": 13, "older": [13, 21, 60], "proven": 13, "framework": 13, "bind": [13, 39, 53], "templat": [13, 36, 49], "pyhf": 13, "recommend": [13, 18, 28, 32, 35, 39, 41, 44, 45, 47, 62], "record": [13, 17, 20, 21, 23, 44, 55, 56, 57, 59, 62], "introduct": [13, 16, 21, 32, 36, 47], "63": [13, 14], "tensorflow": [13, 14, 32], "suppress": [13, 14, 54], "zfit_disable_tf_warn": [13, 14], "datas": 13, "fraction": 13, "ob": [13, 14], "from_panda": 13, "obs_bkg": 13, "bkg_two": 13, "distinct": [13, 34, 60], "pdf": [13, 14, 27, 39, 55, 56, 57, 62], "lambd": [13, 14], "lambda": [13, 14, 15, 43, 44], "bkg_yield": [13, 14], "5000": [13, 14, 43], "200000": 13, "step_siz": [13, 14], "sig_yield": [13, 14], "bkg_pdf": 13, "exponenti": [13, 14, 45], "set_yield": 13, "sig_pdf": 13, "gauss": [13, 14, 44], "sumpdf": [13, 14], "plot_fit": 13, "limit1d": [13, 14], "bin_edg": [13, 14], "unstack_x": [13, 14], "binwidth": [13, 14], "linspac": [13, 14, 39], "num": [13, 14], "tf": 13, "sub": [13, 14, 19, 42, 55, 56, 57], "ext_pdf": [13, 14], "royalblu": [13, 14], "zip": [13, 14, 38, 42, 61], "get_model": [13, 14], "forestgreen": [13, 14], "crimson": [13, 14], "ym": [13, 14], "set_titl": [13, 14], "data_rang": [13, 14], "set_xlim": [13, 14], "fontsiz": [13, 14], "sinc": [13, 14, 17, 25, 34, 36, 38, 44, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62], "sig_nll": 13, "unbinnednl": 13, "807": 13, "advancedfeaturewarn": 13, "unwant": [13, 25], "turn": [13, 16, 25, 31, 32, 53, 54, 55, 56, 57, 58], "advanced_warn": 13, "extended_in_unbinnednl": 13, "extend": [13, 14, 25, 27, 34, 60], "dist_tfp": 13, "yield": [13, 14, 16, 60], "nll": 13, "extendedunbinnednl": [13, 14], "warn_advanced_featur": 13, "minuit": [13, 14], "nloptlbfgsv1": 13, "iminuit": [13, 40], "scipyslsqpv1": 13, "fitresult": 13, "0x7fc3f595e5d0": 13, "tol": 13, "001": 13, "edm": 13, "approx": 13, "fmin": 13, "2e": 13, "275181": 13, "55": 13, "129185": 13, "09692": 13, "0150308": 13, "tail": [13, 54, 57, 58, 59], "functor": 13, "composed_autoparam_1": 13, "composed_autoparam_2": 13, "0x7fc3f59bd310": 13, "1e": 13, "05": [13, 14, 56, 57, 58, 59, 60], "2348": 13, "9786": 13, "795": 13, "5985": 13, "116": 13, "848": 13, "15731": 13, "09828": 13, "hess": 13, "hessian": 13, "mino": 13, "1204": 13, "changedfeaturewarn": 13, "changed_warn": 13, "hesse_nam": 13, "current": [13, 16, 19, 20, 23, 25, 26, 27, 28, 32, 39, 41, 42, 44, 51, 52, 54, 55, 56, 57, 58, 59, 60], "minuit_hess": 13, "hesse_np": 13, "futur": [13, 31, 36, 43, 44, 51, 55, 59], "stai": [13, 25], "wherev": 13, "warn_changed_featur": 13, "1340": 13, "futurewarn": 13, "minuit_mino": 13, "custom": [13, 16, 55], "implementationwith": 13, "1361": 13, "errors_nam": 13, "zfit_error": 13, "065": 13, "006": 13, "0061": 13, "hypotest": 13, "asymptoticcalcul": 13, "null": [13, 60], "hypothesi": 13, "sig_yield_poi": 13, "tqdm": 13, "auto": [13, 18, 26, 55], "tqdmwarn": 13, "iprogress": 13, "ipywidget": 13, "readthedoc": 13, "io": 13, "en": 13, "user_instal": 13, "autonotebook": 13, "notebook_tqdm": 13, "frequentistcalcul": 13, "construct": [13, 14, 36, 55, 57, 59, 60, 61], "q_": 13, "h_": 13, "pseudo": [13, 44], "repres": [13, 14, 18, 24, 25, 34, 42, 44, 45, 46, 59, 62], "ask": [13, 19, 20, 26, 28, 29, 33, 37, 41, 42, 45, 47, 48, 54, 55, 56, 57, 58, 59, 60, 62], "equat": [13, 14], "z": [13, 15, 37, 38, 41, 51, 55, 57, 58, 59, 60, 62], "phi": [13, 15], "p_0": 13, "poinul": 13, "p_valu": 13, "986763889602841e": 13, "07": [13, 20, 21, 30, 55, 57, 58, 59], "unit": [13, 15, 25, 54, 55], "892160067803639": 13, "fluctuat": 13, "resampl": [13, 40], "compute_sweight": 14, "properti": [14, 16, 29, 33, 41, 44, 45, 46, 48, 55, 60], "explan": [14, 21, 55, 56, 59], "sig_data": 14, "bck_data": 14, "electron": [14, 28], "positron": 14, "p_x": 14, "0x7f2f4e900550": 14, "pictur": [14, 20, 23, 26, 55], "inaccuraci": 14, "correctli": [14, 19, 21, 23, 25, 26, 34], "px": [14, 36], "distort": 14, "lost": [14, 32, 50, 55], "n_sig1": 14, "n_bck1": 14, "8000": 14, "2000": 14, "n_sig2": 14, "n_bck2": 14, "first_bin": 14, "second_bin": 14, "121": 14, "bottom": [14, 25, 56], "xtick": 14, "horizontalalign": 14, "verticalalign": 14, "proport": 14, "122": [14, 49, 59], "visa": 14, "versa": [14, 34, 55, 61], "had": [14, 23, 25, 42, 43, 57, 61, 62], "big": [14, 25], "6800": 14, "compens": 14, "At": [14, 25, 29, 54, 55, 61, 62], "role": [14, 24, 36], "plot_with_weight": 14, "karg": 14, "assert": [14, 62], "electon": 14, "edgecolor": 14, "straightforward": 14, "uniqu": [14, 20, 21, 28, 38, 55, 59, 62], "continuo": 14, "channel": [14, 32, 47, 55, 57, 62], "pivk": 14, "2004ty": 14, "popul": [14, 20, 26, 56], "unfold": 14, "lifetim": [14, 39], "reson": 14, "combinatori": 14, "5279": [14, 15], "5100": 14, "5400": 14, "002": 14, "0001": 14, "6000": [14, 57], "signal_pdf": 14, "comb_bkg_pdf": 14, "25000": 14, "50000": 14, "3e5": 14, "extended_sig": 14, "create_extend": 14, "extended_bkg": 14, "backgrond": 14, "nsig_sw": 14, "20000": 14, "np_sig_m_sw": 14, "reshap": 14, "np_sig_t_sw": 14, "nbkg_sw": 14, "150000": 14, "np_bkg_m_sw": 14, "np_bkg_t_sw": 14, "t_cut": 14, "np_m_sw": 14, "np_t_sw": 14, "set_xlabel": 14, "likelihood": [14, 15, 16, 32], "data_sw": 14, "from_numpi": 14, "nll_sw": 14, "simultan": [14, 26, 38, 42, 57], "anymor": [14, 52], "use_minuit_grad": 14, "result_sw": 14, "118185": 14, "20057": 14, "00199439": 14, "plot_fit_project": 14, "visual": [14, 61], "set_valu": 14, "sum_": 14, "v_": 14, "nj": 14, "f_j": 14, "f_k": 14, "f_n": 14, "x_e": 14, "f_0": 14, "n_0": 14, "discrim": 14, "182e": 14, "05956155": 14, "20393773": 14, "0341005": 14, "12261654": 14, "12029648": 14, "12260669": 14, "006e": 14, "04": 14, "05955902": 14, "20393396": 14, "96589775": 14, "12260904": 14, "12028901": 14, "12259919": 14, "8610038471": 14, "118184": 14, "86140987206": 14, "sorter": 14, "argsort": 14, "mathrm": 14, "axhlin": 14, "5600": 14, "lw": [14, 53], "uncorrel": 14, "corrcoef": 14, "03252041347505456": 14, "scipi": [14, 32], "expon": 14, "sig_mass_distr": 14, "bck_mass_distr": 14, "sig_mass": 14, "rv": 14, "bck_mass": 14, "sig_p": 14, "bck_p": 14, "priori": 14, "gaussian": 14, "met": [14, 37, 44, 46], "me": [14, 20, 31, 37, 42, 54], "bck": 14, "0x7f2f45e9d110": 14, "prob": 14, "div": 14, "0x7f2f45e99090": 14, "goal": [14, 24, 25, 56], "hist_conf": 14, "3450503205921056": 14, "satisfi": [14, 28], "017799548266771503": 14, "002680077280922253": 14, "obvious": [14, 49], "p_": 14, "pb": 14, "p_b": 14, "sw_": 14, "wb": 14, "sw_b": 14, "formula": [14, 60], "nbsphinx": 14, "main": [14, 16, 23, 24, 25, 27, 43, 44, 60], "unknown": [14, 34, 55], "mathemat": [14, 44], "amount": [14, 38, 58], "1_": 14, "iff": 14, "li": [14, 60], "sum_x": 14, "guarante": [14, 16, 36, 38, 55, 56], "deviat": 14, "a_1": 14, "a_2": 14, "rewrit": [14, 36, 43, 44], "system": [14, 15, 17, 18, 23, 26, 28, 31, 32, 41, 47, 55, 56, 61], "_x": 14, "bb": 14, "sb": 14, "ss": 14, "nb": 14, "matrix": 14, "mathbb": 14, "apart": [14, 56], "isn": [14, 20, 28, 37, 41, 42, 55, 56, 57, 59, 62], "uniform": [14, 16, 32, 44], "leq": 14, "lagrangian": 14, "mathcal": 14, "lambda_1": 14, "lambda_2": 14, "assupt": 14, "abolut": 14, "indent": [14, 37, 42, 43], "interv": 14, "finali": 14, "helper": 15, "lookup": 15, "decaylanguag": 15, "overview": [15, 29, 47], "notabl": 15, "numexpr": 15, "usag": [15, 33, 48, 54, 55, 59, 60], "from_styl": 15, "to_styl": 15, "from_root": 15, "tmath": 15, "x_px": 15, "x_py": 15, "x_pz": 15, "pow": 15, "unnamedconst": 15, "to_numexpr": 15, "to_root": 15, "hold": [15, 20, 23, 28, 29, 38, 55, 56, 57], "piplu": 15, "from_pdgid": 15, "211": 15, "139": 15, "57039": 15, "5284e": 15, "pi": [15, 42, 44, 46, 57], "serv": [15, 16, 32, 43, 54], "neutral": 15, "hadron": [15, 39], "findal": 15, "pdgid": 15, "has_bottom": 15, "b0": 15, "511": 15, "mev": [15, 39], "513": 15, "5324": 15, "5747": 15, "515": 15, "5739": 15, "531": 15, "5366": 15, "92": [15, 36], "533": 15, "5415": 15, "s2": 15, "5840": 15, "535": [15, 60], "5839": 15, "551": 15, "9398": 15, "upsilon": 15, "553": 15, "9460": 15, "b2": 15, "1p": [15, 54], "555": 15, "9912": 15, "5122": 15, "5619": 15, "xi": 15, "5232": 15, "5791": 15, "10551": 15, "9859": 15, "10553": 15, "9899": 15, "b1": 15, "20553": 15, "9892": 15, "20555": 15, "10163": 15, "100553": 15, "10023": 15, "2p": 15, "100555": 15, "10268": 15, "110551": 15, "10232": 15, "110553": 15, "10259": 15, "120553": 15, "10255": 15, "200553": 15, "10355": 15, "3p": 15, "200555": 15, "10524": 15, "220553": 15, "10513": 15, "300553": 15, "10579": 15, "10860": 15, "9000553": 15, "10885": 15, "11020": 15, "9010553": 15, "11000": 15, "hardcod": [15, 36], "constant": [15, 58], "neat": [15, 42], "furthermor": [15, 36], "c_light": 15, "299": [15, 59, 61], "792458": 15, "1250": 15, "manipul": [15, 41, 44, 45, 46], "quantiti": [15, 20, 42], "liter": [15, 42, 43, 45, 49, 55], "coordin": [15, 41, 42], "field": [15, 25, 28, 32, 35, 36, 57, 59, 60], "vec1": 15, "momentumnumpy4d": 15, "rho": 15, "f8": 15, "tau": 15, "theta": 15, "1035868415601453": 15, "cartesian": 15, "4d": 15, "vectorobject4d": 15, "lectur": [16, 34, 36], "schedul": 16, "knowledg": [16, 36], "lock": 16, "markdown": [16, 32, 35], "pack": [16, 32], "unpack": [16, 24, 26, 32], "context": [16, 32, 41, 55], "decor": [16, 20, 25, 32], "factori": [16, 32], "catch": [16, 26, 32, 58], "execut": [16, 21, 27, 32, 34, 39, 44, 47, 54, 57, 58, 59, 60, 61, 62], "dunder": [16, 32], "callabl": [16, 32], "danger": [16, 29, 32, 37, 54, 56], "zone": [16, 32], "recap": [16, 20, 32], "todo": 16, "diagram": [16, 55, 56, 58], "extens": [16, 32, 47, 55, 56, 57, 59, 60, 62], "impliment": [16, 32], "fold": [16, 32], "scipt": [16, 32], "argpars": [16, 32, 35, 62], "dalitz": 16, "prepar": [16, 32, 33, 48, 55], "tune": [16, 32], "setup": [16, 32], "cross": [16, 32], "earli": [16, 17, 32, 60, 61], "hyperamet": [16, 32], "optimis": [16, 32], "regular": [16, 56, 60], "arithmet": [16, 32, 54], "download": [16, 23, 24, 25, 26, 27, 32, 55, 57, 62], "gb": [16, 32, 54], "infer": [16, 32], "scope": [16, 32], "sweight": [16, 32], "beforehand": [16, 43], "appi": [16, 32], "deriv": [16, 29, 32, 40, 61], "option": [16, 17, 20, 23, 25, 29, 32, 33, 37, 39, 43, 44, 48, 54, 55, 56, 57, 59, 60, 61, 62], "linear": 16, "uncorrelated": 16, "conclus": [16, 17, 20, 21, 32], "formul": [16, 32], "hepunit": [16, 32], "vector": [16, 32, 42], "repetit": [16, 58, 61], "simpler": [16, 38, 54, 58, 61], "columnar": 16, "excel": [16, 17, 29, 38, 41, 42], "art": 16, "de": 16, "bia": 16, "intro": 16, "parametr": 16, "harder": [16, 43], "gradientboostingreweight": 16, "repeatedli": 16, "ecosystem": 16, "Not": [16, 19, 37, 42, 61], "70": [16, 43, 60], "smaller": [16, 24, 26, 54], "benefit": [17, 62], "collabor": [17, 20, 21, 23, 24, 26, 28, 29, 31, 32], "pile": [17, 55], "jorg": 17, "cham": 17, "phdcomic": 17, "ridicul": 17, "processor": 17, "microsoft": [17, 59], "googl": [17, 41, 54, 60], "histori": [17, 19, 20, 24, 25, 28, 31, 32, 33, 47, 48, 58, 59], "libreoffic": [17, 59], "displai": [17, 21, 23, 32, 51, 54, 55, 56, 57, 58, 60], "tape": 17, "rewind": 17, "latest": [17, 24, 27], "conflict": [17, 19, 25, 31, 32, 62], "decid": [17, 25, 29, 33, 48, 51, 55, 58, 59, 62], "metadata": 17, "kept": [17, 27], "sync": [17, 24, 31, 32], "facilit": [17, 25], "among": [17, 32, 50], "rc": 17, "subvers": 17, "1980": [17, 61], "larg": [17, 20, 21, 25, 26, 31, 35, 38, 43, 56, 57, 61], "compani": [17, 31, 57], "legaci": 17, "modern": [17, 60, 61], "mercuri": 17, "central": [17, 23], "host": [17, 18, 23, 25, 28], "concurr": 17, "imagin": [17, 21, 57, 59, 62], "draft": [17, 56, 60], "paragraph": [17, 24], "ruin": 17, "co": 17, "writer": [17, 59], "accept": [17, 29, 31, 32, 33, 35, 43, 48, 54, 56, 59], "unlimit": 17, "undo": [17, 19, 20, 21], "2016": [17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 55, 56, 57, 58, 59, 60, 61], "2017": [17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 47, 55, 56, 57, 58, 59, 60, 61], "softwar": [17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 35, 36, 45, 47, 50, 55, 56, 57, 58, 59, 60, 61, 62], "foundat": [17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 50, 55, 56, 57, 58, 59, 60, 61], "endright": [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 55, 56, 57, 58, 59, 60, 61], "configur": [18, 19, 20, 22, 23, 25, 27, 54, 55, 56, 61], "global": [18, 20, 42, 43, 45, 49, 60], "flag": [18, 19, 20, 23, 33, 39, 43, 48, 55, 56, 57, 59, 60, 61], "verb": [18, 60], "dracula": [18, 19, 20, 21, 26], "laptop": [18, 23, 25, 26, 52, 57], "config": [18, 32], "vlad": [18, 20, 21, 23, 24, 26], "tran": [18, 20, 21], "sylvan": [18, 20, 21], "ia": [18, 20, 21], "ui": 18, "bitbucket": [18, 23], "gitlab": [18, 24, 25, 26, 31, 32, 44], "hit": [18, 47, 55], "keyboard": [18, 55, 57, 59, 61], "encod": [18, 38], "charact": [18, 20, 21, 25, 37, 38, 47, 49, 54, 55, 56, 57, 58, 59, 60, 61], "hear": 18, "newlin": [18, 55, 60], "unexpect": [18, 34, 36, 42, 62], "recogn": [18, 28, 60], "autocrlf": 18, "linux": [18, 32, 47, 55, 56, 62], "window": [18, 24, 32, 39, 44, 53, 55, 56, 58, 61], "favorit": [18, 20, 21, 26, 62], "atom": [18, 25, 26, 57, 59, 60], "nano": [18, 19, 20, 21, 22, 24, 26, 54, 56, 59], "bbedit": 18, "mac": [18, 55, 56], "sublim": 18, "subl": 18, "win": 18, "x86": 18, "sublime_text": 18, "ex": [18, 62], "notepad": [18, 56], "multiinst": 18, "notabbar": 18, "nosess": 18, "noplugin": 18, "kate": 18, "gedit": [18, 54, 56], "scratch": [18, 25, 29], "emac": [18, 54, 55, 56], "vim": [18, 54, 56], "reconfigur": 18, "haven": [18, 20, 21, 56, 58, 60], "esc": [18, 34], "q": [18, 20, 53, 54, 55, 57, 62], "ran": [18, 27, 32, 44, 52, 59, 60, 62], "directori": [19, 20, 21, 22, 25, 27, 29, 32, 41, 44, 51, 52, 54, 57, 58, 59, 60, 61, 62], "mkdir": [19, 20, 22, 23, 25, 27, 41, 44, 56, 58, 61, 62], "planet": [19, 20, 21, 23, 24, 26, 27, 55, 56, 60], "cd": [19, 20, 21, 23, 24, 25, 27, 32, 34, 55, 56, 57, 58, 59, 60, 61, 62], "init": [19, 20, 23, 32], "content": [19, 20, 21, 22, 23, 25, 26, 29, 37, 38, 42, 54, 55, 56, 57, 58, 59, 60, 62], "hidden": [19, 55], "delet": [19, 20, 26, 27, 39, 41, 42, 44, 55, 56, 57, 62], "master": [19, 20, 21, 22, 23, 24, 25, 26, 36, 60, 62], "moon": [19, 20, 21, 26], "despit": [19, 61], "wolfman": [19, 20, 21, 26, 55], "concern": [19, 20, 21, 56, 62], "he": [19, 26], "sequenc": [19, 42, 56, 58, 60, 62], "interfer": 19, "outer": [19, 58], "inner": [19, 58], "fatal": 19, "parent": [19, 36, 55, 56], "touch": [19, 22, 37, 55, 56, 61, 62], "phobo": 19, "deimo": 19, "titan": 19, "similarli": [19, 46, 55, 58], "gitignor": [19, 20, 22], "texteditor": 19, "cat": [19, 20, 21, 22, 24, 26, 54, 57, 58, 59, 60, 62], "afterward": [19, 23, 32], "recov": [19, 21, 24, 56], "folder": [19, 22, 24, 41, 54, 55, 56, 57], "subdirectori": [19, 54, 55, 56, 60], "rm": [19, 20, 26, 56, 57, 58, 61, 62], "rf": [19, 62], "pwd": [19, 20, 55, 56], "cycl": [20, 55, 61], "workflow": [20, 21, 24, 32, 59, 61], "descript": [20, 25, 27, 33, 48, 54, 55, 57, 61], "mar": [20, 21, 23, 26], "refresh": [20, 24, 32, 47, 50], "unix": [20, 32, 55, 56, 57, 59, 60, 61], "cold": [20, 21, 26, 54], "dry": [20, 21, 26, 58, 62], "my": [20, 21, 25, 26, 27, 28, 34, 37, 39, 44, 49, 56, 60, 62], "untrack": [20, 22, 25], "cach": [20, 51], "unstag": [20, 21], "hasn": [20, 58, 60], "f22b25e": [20, 21], "insert": [20, 24, 25, 26, 42, 49, 59, 60], "100644": [20, 21, 24, 26], "perman": [20, 51], "launch": [20, 39, 44], "brief": 20, "blank": [20, 56, 57, 59], "f22b25e3233b4645dabd0d81e651fe074bd8e73b": [20, 21], "aug": [20, 21], "09": [20, 62], "2013": [20, 21, 30, 55, 59, 60], "0400": [20, 21], "revers": [20, 38, 55, 58], "chronolog": [20, 56], "filesystem": [20, 55], "clutter": [20, 55], "accident": [20, 21, 22], "checkout": [20, 21, 23, 26], "discard": [20, 21, 44], "phrase": [20, 60], "nor": [20, 34, 42, 55], "df0654a": [20, 21], "315bf3a": [20, 21], "cryptic": [20, 60, 61], "seri": [20, 32, 55, 58, 59], "piec": [20, 26, 43, 46, 55, 57, 58], "exactli": [20, 21, 24, 25, 28, 33, 36, 38, 43, 45, 46, 48, 52, 55, 57, 58, 59, 60], "fourth": 20, "whoop": [20, 57], "didn": [20, 24, 33, 41, 42, 48, 55, 56, 61, 62], "34961b1": 20, "insist": [20, 59], "captur": [20, 43, 59, 62], "batch": [20, 47], "citat": [20, 31, 32], "supervisor": [20, 59, 61], "thesi": [20, 56, 60], "bibliographi": 20, "changeset": 20, "snapshot": [20, 25], "life": [20, 25, 29, 44, 56, 61], "prompt": [20, 51, 55, 56, 57, 58, 59], "gather": [20, 23, 44], "incomplet": [20, 25], "makeup": 20, "walk": 20, "watch": 20, "mummi": [20, 21, 26, 55], "appreci": [20, 21, 26], "lack": [20, 21, 26], "humid": [20, 21, 26], "b36abfd": [20, 21], "climat": 20, "005937f": 20, "005937fbe2a98fb83f0ade869025dc2636b4dad5": 20, "34961b159c27df3b475cfe4415d94a6d1fcd064d": [20, 21], "dif": 20, "docum": 20, "wise": 20, "coars": 20, "screen": [20, 21, 25, 32, 50, 54, 56, 57, 58, 61], "pager": 20, "press": [20, 34, 52, 54, 55, 56, 57, 58, 61], "some_word": 20, "onelin": [20, 25], "graph": [20, 25, 59, 61, 62], "gitkeep": [20, 60], "unlik": [20, 42], "sole": 20, "redund": [20, 55], "myfil": 20, "venu": [20, 21], "thought": [20, 60], "friend": [20, 37, 41, 47, 54, 60, 62], "definit": [20, 43, 62], "plan": 20, "cc127c2": 20, "committ": 20, "twice": [20, 41, 55, 57], "bio": 20, "frank": 20, "stein": 20, "franki": 20, "monster": [20, 62], "4162a51": 20, "4162a51b273ba799a9d395dd70c45d96dba4e2ff": 20, "aaa3271e5e26f75f11892718e83a3e2743fab8ea": 20, "restor": 21, "saw": [21, 42, 46, 54, 55, 58, 60, 62], "0848c8d": 21, "notat": [21, 42, 58], "pronounc": 21, "minu": [21, 37, 44], "digit": [21, 26, 28, 53, 59, 60], "letter": [21, 26, 38, 56, 57, 58, 59, 60, 61], "annoi": [21, 25, 42, 43, 52], "overwrit": [21, 26, 56, 58], "manufactur": 21, "oxygen": 21, "reset": [21, 25, 57], "detach": [21, 51, 52, 53], "shouldn": [21, 58], "reattach": 21, "rid": [21, 25, 26, 56], "cartoon": 21, "form": [21, 22, 42, 55, 60, 62], "simplifi": 21, "dash": [21, 44, 55, 56], "organ": [21, 29, 56, 57, 58, 61], "imposs": [21, 34, 60], "backward": [21, 47, 54], "forward": [21, 24, 26, 54, 57], "jennif": 21, "she": [21, 28, 55, 56, 57, 58, 59, 60, 61], "week": [21, 23, 61], "modif": [21, 25, 55, 62], "morn": [21, 57], "broke": 21, "spent": [21, 27, 33, 48], "1hr": 21, "luck": [21, 25], "her": [21, 24, 26, 28, 55, 56, 57, 58, 59, 61], "data_crunch": 21, "realiz": [21, 25, 39, 44, 56, 58], "group": [21, 25, 35, 42, 47, 54, 55, 58], "________": 21, "0b1d055": 21, "love": 21, "hot": [21, 37], "unsuit": 21, "wrote": [21, 22, 28, 54, 58, 60, 61], "summar": 21, "month": [21, 30, 47, 55, 61], "ago": [21, 23], "narrow": 21, "backup": [22, 24, 55, 56, 57], "intermedi": [22, 45, 57], "dummi": [22, 26], "dat": [22, 54, 56, 57, 58, 59, 60], "wast": [22, 62], "disk": [22, 32, 50, 55, 56], "distract": 22, "whose": [22, 25, 42, 43, 51, 54, 58, 60], "cleaner": 22, "wouldn": [22, 33, 48, 58], "bonu": [22, 61, 62], "path": [22, 27, 39, 44, 54, 55, 56, 61, 62], "subfold": 22, "handi": [22, 24, 25, 36], "exclam": [22, 47], "exclud": [22, 42, 57, 59], "entri": [22, 36, 39, 55], "gp": 22, "info": [22, 25, 55, 62], "shortest": [22, 57], "append": [22, 26, 34, 42, 43, 53, 54, 55, 57, 58, 62], "negat": [22, 37], "log_01": 22, "log_02": 22, "log_03": 22, "etc": [22, 26, 34, 36, 54, 58, 59, 62], "neighbor": [22, 28], "resid": [22, 28], "log_": 22, "prerequisit": [23, 61, 62], "ssh": [23, 24, 25, 26, 51, 52, 53], "runn": 23, "7999": [23, 24, 25, 26], "santa": 23, "clau": 23, "machineri": 23, "hub": [23, 28], "programm": [23, 55, 56, 57, 60], "servic": [23, 25, 27], "perspect": [23, 29], "websit": [23, 24, 27, 31, 32, 60], "slightli": [23, 29, 55, 58, 60], "jira": 23, "click": [23, 24, 25, 27, 32, 56, 61], "icon": [23, 24, 61], "extern": [23, 35, 44, 58, 62], "soon": [23, 26, 28, 34, 47, 52, 54, 55], "url": [23, 25], "equival": [23, 25, 36, 37, 42, 52, 54, 55, 58, 59], "bare": 23, "krb5": 23, "browser": [23, 24, 25], "fetch": [23, 24, 25, 26], "nicknam": 23, "delta": [23, 24, 25, 26], "compress": [23, 24, 25, 26, 39], "821": 23, "byte": [23, 24, 25, 26, 39, 55, 56, 60], "synonym": 23, "upstream": [23, 25, 26], "fetch_head": [23, 24, 26], "synchron": 23, "gui": [23, 56, 61], "brows": [23, 44], "hover": 23, "button": [23, 25, 32, 55], "clipboard": 23, "green": [23, 25], "shade": 23, "id1": 23, "id2": 23, "a3bf1e5": 23, "041e637": 23, "timestamp": [23, 55], "repo": [23, 24], "exact": 23, "interact": [23, 33, 34, 39, 47, 48, 56, 59, 60, 61, 62], "typo": [23, 59], "broken": [23, 28, 39, 44], "pair": [24, 38], "owner": [24, 25, 54, 55], "carri": [24, 26], "partner": [24, 26], "anyon": [24, 51, 62], "desktop": [24, 55, 56, 61], "pluto": 24, "306": 24, "9272da5": 24, "29aba7c": [24, 26], "upload": 24, "massiv": 24, "light": 24, "respositori": [24, 25], "benifit": 24, "contributor": [25, 29, 32], "adopt": [25, 37], "famou": 25, "builtin": 25, "leverag": [25, 28], "platform": 25, "starter": 25, "kit": 25, "destin": [25, 56], "test_merge_request": 25, "learnt": [25, 42], "your_cern_usernam": 25, "verifi": 25, "dberzano": [25, 44], "pend": [25, 27], "nuclear": 25, "mess": 25, "seamlessli": 25, "destroi": 25, "fxd": 25, "somehow": [25, 35, 36, 46, 56], "bunch": [25, 29, 59], "firstnam": 25, "lastnam": 25, "shorter": [25, 44, 57], "concis": 25, "ado": 25, "316": 25, "kib": 25, "protect": [25, 29, 56], "hook": 25, "declin": 25, "ref": [25, 26], "attempt": [25, 56], "forbidden": 25, "764051d": 25, "256c9b6": 25, "tag": 25, "said": [25, 49, 60], "graphic": [25, 56, 60, 61], "polici": 25, "sit": [25, 26, 59], "relax": 25, "notifi": 25, "somebodi": 25, "sequenti": [25, 27, 38, 42, 62], "repli": 25, "proceed": 25, "certifi": 25, "certif": 25, "d09c134": 25, "359": 25, "voil\u00e0": 25, "direct": [25, 59, 62], "static": [25, 34], "simplic": 25, "disappear": [25, 56], "essenc": [25, 38], "scrutini": 25, "abil": [25, 26, 34, 44], "happi": [25, 28, 56], "orang": [25, 49], "overli": 25, "truli": 25, "minor": [25, 52, 55, 62], "major": [25, 47], "buggi": 25, "releas": [25, 29, 47], "wine": 25, "tast": [25, 54], "rush": 25, "pickiest": 25, "controversi": 25, "bear": [25, 57, 59, 60], "mind": [25, 29, 42, 54], "rampag": 25, "ensur": [25, 55, 62], "toe": 26, "lab": [26, 28, 32, 55, 57, 61], "overlap": 26, "5ae9631": 26, "352": 26, "dabb4c8": 26, "07ebc69": 26, "counterpart": [26, 34], "detect": [26, 62], "trampl": 26, "affect": [26, 39, 42, 44, 62], "dabb4c8c450e8475aee9b14b4383acc99f42af1d": 26, "preced": [26, 37, 39, 49, 58], "reconcil": 26, "conclud": [26, 54], "2abf2b1": 26, "697": 26, "effort": [26, 62], "technic": [26, 42, 60], "segreg": 26, "alter": [26, 43], "clarifi": 26, "stylist": [26, 41], "churn": 26, "convent": [26, 27, 32, 35, 37, 42, 55, 56, 57], "govern": 26, "htmltidi": 26, "perltidi": 26, "rubocop": 26, "enforc": 26, "instructor": 26, "textual": 26, "imag": [26, 27, 45, 56, 60], "martian": 26, "jpg": 26, "dev": 26, "urandom": 26, "lh": [26, 55], "rw": 26, "57095": 26, "0k": 26, "kilobyt": 26, "8e4115c": 26, "meantim": 26, "sky": 26, "familiar": [26, 29, 35, 61], "6a67967": 26, "439dc8c": 26, "439dc8c08869c342438f6dc4a2b615b05b93c76": 26, "439dc8c0": 26, "21032c3": 26, "da21b34": 26, "success": [26, 54, 57], "mv": [26, 56], "94ae08c": 26, "celebr": 26, "beer": [26, 54], "afk": 26, "blindli": 26, "pipelin": [27, 32, 58, 59, 60, 62], "artefact": 27, "job": [27, 57, 61, 62], "deploi": 27, "physicist": [27, 41], "analys": [27, 35, 39, 57, 62], "travi": 27, "circleci": 27, "appveyor": 27, "yml": [27, 32], "interconnect": 27, "my_first_job": 27, "registri": 27, "worker": 27, "cc7": 27, "docker": 27, "offici": [27, 31, 41], "cento": 27, "sidebar": 27, "runner": 27, "enabl": [27, 33, 48, 55], "minut": [27, 28, 61], "prior": 27, "scroll": [27, 36, 54, 58], "examin": [27, 57, 58, 62], "dai": [27, 29, 31, 35, 46, 52, 55, 61], "compil": [27, 47], "first_stag": 27, "second_stag": 27, "artifact": [27, 60], "make_plot": 27, "continuumio": 27, "anaconda3": 27, "before_script": 27, "backend": [27, 39], "agg": [27, 39], "matplotlibrc": 27, "make_docu": 27, "yum": [27, 37], "texliv": 27, "ghostscript": 27, "latexmk": 27, "my_docu": 27, "tex": 27, "successfulli": 27, "debug": [27, 43, 44, 58, 59, 62], "difficult": [27, 36], "interpret": [27, 34, 39, 44, 47, 54, 55, 56, 58, 60, 62], "cvmf": [27, 47, 62], "persist": [27, 32, 33, 47, 48, 50], "opposit": 28, "john": 28, "wilbank": 28, "todai": [28, 60], "scientist": [28, 29, 30, 55], "depart": [28, 61], "analyz": [28, 56, 58], "grow": [28, 62], "journal": [28, 30], "send": [28, 54, 55, 57, 59, 61], "anonym": 28, "resubmit": 28, "eventu": 28, "onlin": [28, 30, 52, 55], "paywal": 28, "institut": [28, 29], "figshar": 28, "zenodo": 28, "doi": 28, "dryad": 28, "arxiv": [28, 30], "preprint": 28, "invit": 28, "peer": 28, "research": 28, "acceler": 28, "wide": [28, 35, 61], "cite": [28, 30], "aspect": 28, "book": [28, 60], "dilig": 28, "shareabl": 28, "conceptu": 28, "stamp": 28, "intent": [28, 44], "tie": 28, "rational": 28, "intellectu": [28, 29], "spring": 28, "recover": 28, "archiv": 28, "perpetu": 28, "citabl": 28, "reproduc": [28, 59, 61, 62], "labmat": 28, "surf": 28, "internet": [28, 35], "coupl": [28, 55, 61], "homepag": 28, "scientif": [28, 35, 61], "proper": [29, 36], "social": [29, 31, 32], "manuscript": 29, "clearli": [29, 36, 58], "elig": 29, "sue": 29, "infring": 29, "license": 29, "choosealicens": 29, "consider": [29, 38], "patent": 29, "licenc": 29, "wade": 29, "jargon": 29, "initit": 29, "articl": [29, 30], "ground": 29, "constitut": 29, "counsel": 29, "guidelin": 29, "doubt": 29, "hesit": 29, "trustworthi": 29, "advic": 29, "chosen": [29, 60], "unilater": 29, "daili": 29, "basi": 29, "workshop": [29, 56], "talk": [29, 44, 47], "cpython": 29, "etherpad": 29, "gpl": 29, "famili": 29, "creation": [29, 42, 60, 62], "lawyer": 29, "greg": 30, "wilson": 30, "product": [30, 58, 60, 61], "scienc": [30, 31, 32, 44], "nov": [30, 62], "dec": [30, 47], "2006": 30, "1307": 30, "5448": 30, "juli": [30, 55], "novemb": [30, 55], "decemb": [30, 55], "year": [30, 41, 55, 60], "eprinttyp": 30, "eprint": 30, "scm": 31, "design": [31, 55, 57, 61], "speed": [31, 60], "benevol": 31, "convinc": 31, "superior": 31, "hope": 31, "diari": 31, "amend": [31, 32], "retir": [31, 32], "side": [31, 32, 34, 42, 46, 60], "ci": [31, 32], "analyst": 32, "taught": 32, "student": [32, 61], "instil": 32, "maco": [32, 47], "shut": 32, "mambaforg": 32, "mamba": 32, "conda": [32, 39, 47, 62], "interchang": [32, 55], "forg": [32, 47], "accord": [32, 55, 56], "auto_activate_bas": 32, "jupyterlab": 32, "ipython": [32, 33, 34, 39, 42, 44, 46, 47, 48], "package_nam": 32, "webpag": [32, 50], "loop": [32, 35, 38, 43, 50, 59, 60, 61], "truthi": [32, 35], "pypi": [32, 35], "virtual": [32, 35, 39, 47], "glanc": [32, 35], "nell": [32, 56, 58, 59, 60], "pipe": [32, 50, 59, 60, 61], "filter": [32, 42, 43, 44, 60, 61], "tmux": [32, 50, 52], "lxplu": [32, 39, 44, 47, 50, 52, 53, 55, 61, 62], "kerbero": [32, 50, 52], "token": [32, 50, 52], "keytab": [32, 50], "k5reauth": [32, 50], "redirect": [32, 50, 57, 58, 62], "secur": [32, 50, 55], "viewer": [32, 43, 50], "wire": [32, 50], "bandit": [32, 50], "wargam": [32, 50], "snakemak": 32, "preserv": 32, "pizzaiolo": [33, 48], "make_pizza": [33, 48], "delici": [33, 48, 54], "pizza": [33, 37, 48, 55, 56], "sleep": [33, 41, 48, 52], "chees": [33, 37, 48], "oliv": [33, 37, 48], "filenam": [33, 39, 48, 55, 56, 57, 58, 59, 60, 61], "python2": [33, 44, 48], "dynload": [33, 44, 48], "broccoli": [33, 48], "argv": [33, 48], "whilst": [33, 42, 47, 48], "awesom": [33, 48], "super": [33, 36, 42, 48], "cool": [33, 42, 48], "behaviour": [33, 45, 48, 54, 59, 62], "topping1": [33, 48], "topping2": [33, 48], "hood": [33, 48], "parser": [33, 48, 62], "argumentpars": [33, 48, 62], "add_argu": [33, 48, 62], "narg": [33, 48], "store_tru": [33, 48], "parse_arg": [33, 48, 62], "shorthand": [33, 42, 46, 48], "woah": [33, 47, 48], "margherita": [33, 48], "tomato": [33, 48], "sauc": [33, 48], "buffalo": [33, 48], "mozzarella": [33, 48], "cleanli": [33, 48], "fundament": [34, 36, 46], "shift": 34, "everythin": 34, "timeit": 34, "bool": 34, "vice": [34, 55, 61], "wrap": [34, 42, 49], "e2": 34, "strongli": [34, 47, 55], "oppos": 34, "weakli": 34, "surpris": [34, 57], "mix_str_int": 34, "unsupport": [34, 55], "operand": 34, "mix_str_int2": 34, "strict": 34, "convers": 34, "int_plus_float": 34, "boolean": [34, 37], "principl": [34, 58], "hash": [34, 38], "list1": 34, "Being": 34, "jona": 34, "eschl": 34, "00001": 34, "mayou36": 34, "nation": 34, "accomplish": [34, 42, 53], "hair_color": 34, "frozendict": 34, "frozenset": 34, "tuple1": 34, "tuple_from_list": 34, "list2": 34, "tuple2": 34, "list3": 34, "neither": 34, "mutat": [34, 42], "surpriz": 34, "list_a": 34, "list_b": 34, "spam": 34, "happend": 34, "list_c": 34, "pretti": [34, 37, 42, 44], "nope": 34, "obj_to_return": 34, "broad": 35, "rich": [35, 44], "concentr": 35, "stuff": [35, 39, 42, 43, 44], "ntupl": 35, "believ": 35, "superb": 35, "abc": [35, 43], "oop": [36, 47], "paradigm": 36, "java": [36, 42], "anywai": [36, 44], "ahead": 36, "momenta": 36, "pi1": 36, "pi1_px": 36, "pi1_pi": 36, "pi1_pz": 36, "pi1_": 36, "calc_mass_simpl": 36, "pz": 36, "73618495495704": 36, "alright": 36, "stick": [36, 49, 56], "calc_mass": 36, "critic": 36, "docstr": [36, 43], "formal": 36, "belong": [36, 55], "trial": 36, "blueprint": 36, "make_particl": 36, "e1": 36, "234227": 36, "5113475212892835": 36, "picki": 36, "initialize_particl": 36, "particle1": 36, "284271247461902": 36, "perfect": [36, 43], "feed": [36, 54, 57], "acces": 36, "dot": [36, 44, 46, 56, 59], "simpleparticl": 36, "initialis": 36, "16079783099616": 36, "addabl": 36, "new_px": 36, "new_pi": 36, "new_pz": 36, "new_": 36, "particle2": 36, "new_particl": 36, "overtak": 36, "verboseparticl": 36, "momentum_text": 36, "composit": 36, "getter": 36, "setter": 36, "stateless": [36, 43], "classmethod": 36, "staticmethod": 36, "fledg": 36, "mandatori": [36, 49, 55], "asset": 36, "bugfre": 36, "codebas": 36, "sidenot": 36, "isinst": 36, "betterparticl": 36, "superpow": 36, "pineappl": 37, "pepperoni": 37, "dog": 37, "amaz": [37, 49], "weird": 37, "duh": 37, "ternari": 37, "succinct": 37, "impair": 37, "truth": 37, "dude": 37, "reassign": 37, "pointless": 37, "inequ": 37, "magnitud": [37, 42, 45], "parenthes": [37, 42, 43], "hero": [37, 41], "thor": [37, 41, 43], "stdin": [37, 38, 42, 43, 57], "nameerror": [37, 43], "dive": 37, "underscor": [37, 43, 44, 45, 46, 56], "dir": [37, 44, 45, 46, 54, 55], "__contains__": 37, "promis": 37, "iron": [37, 60], "man": [37, 54, 55, 60], "likewis": [37, 55], "placehold": [37, 49], "not_cheesi": 37, "blast": 37, "forev": [37, 56, 60], "jack": 37, "dull": 37, "boi": 37, "stuck": [37, 41], "ctrl": [37, 47, 51, 52, 53, 54, 56, 57, 58, 59], "map": [38, 43], "the_list": 38, "wherea": [38, 42, 44, 58], "sin": [38, 42, 44, 46, 47], "dict_kei": 38, "dict_valu": 38, "unord": [38, 43], "th": [38, 47], "flawlessli": 38, "256": 38, "3125": 38, "dd": 38, "unhash": 38, "__hash__": 38, "8411828025894108412": 38, "my_dict": 38, "my_kei": 38, "problemat": 38, "worri": [38, 49, 57, 58], "viewitem": 38, "viewkei": 38, "viewvalu": 38, "alphabet": [38, 55, 56, 57], "ascii_lowercas": 38, "abcdefghijklmnopqrstuvwxyz": 38, "alongsid": 38, "alphabet_map": 38, "invers": 38, "swap": 38, "reverse_map": 38, "portal": 39, "eospubl": 39, "opendata": 39, "antimattermatters2017": 39, "b2hhh_magnetdown": 39, "b2hhh_magnetup": 39, "phasespacesimul": 39, "safer": [39, 44], "lb": [39, 62], "upgrad": [39, 44], "__file__": [39, 44], "deactiv": [39, 44], "lcg": [39, 44, 47], "export": [39, 44, 54], "pythonpath": 39, "prioriti": 39, "pyroot": [39, 40], "tfile": 39, "aforement": [39, 53], "tnetxngfil": 39, "ttree": 39, "contina": 39, "my_tre": 39, "5135823": 39, "945201357": 39, "666480138": 39, "specialis": 39, "tabular": 39, "tleaf": 39, "read_root": 39, "b_flightdist": 39, "b_vertexchi2": 39, "h1_px": 39, "h1_py": 39, "h1_pz": 39, "301004": 39, "497280": 39, "375": 39, "284205": 39, "831": 39, "308481": 39, "51820": 39, "233718": 39, "94": 39, "690700": 39, "383338": 39, "4985": 39, "130785": 39, "5853": 39, "750057": 39, "326157": 39, "454706": 39, "284490": 39, "187101": 39, "1265": 39, "456544": 39, "2330": 39, "050788": 39, "90762": 39, "658032": 39, "590769": 39, "129099": 39, "720": 39, "797259": 39, "3413": 39, "790588": 39, "86793": 39, "058768": 39, "013242": 39, "988701": 39, "397": 39, "754571": 39, "1791": 39, "373059": 39, "40040": 39, "364159": 39, "bulk": 39, "child": [39, 51], "h1": 39, "h2": 39, "h3": 39, "transvers": 39, "h2_px": 39, "h2_py": 39, "1306": 39, "642724": 39, "167": 39, "578904": 39, "1273": 39, "457019": 39, "1146": 39, "299204": 39, "5135820": 39, "430531": 39, "5135821": 39, "762": 39, "344570": 39, "5135822": 39, "1454": 39, "471057": 39, "h2_pt": 39, "meson": 39, "b_p": 39, "h3_px": 39, "h3_py": 39, "h2_pz": 39, "h3_pz": 39, "xwindow": 39, "savefig": 39, "b_flight_dist": 39, "paus": 39, "ion": 39, "mathematica": 39, "matlab": 39, "b_flight_distance_v2": 39, "layer": 39, "flight": 39, "b_flight_distance_v3": 39, "throw": [39, 42, 43, 56], "awai": [39, 43, 44, 46, 56], "commonli": 39, "mm": 39, "df_with_cut": 39, "b_flight_distance_with_cut_compar": 39, "kaon": [39, 42], "argspars": 40, "datetim": 40, "fnmatch": 40, "subprocess": [40, 41], "pathlib": 40, "bootstrap": 40, "jackknif": 40, "jacobi": 40, "propag": 40, "numba": 40, "career": 41, "frustrat": 41, "trick": [41, 42], "beyond": [41, 53], "alli": 41, "didact": 41, "vote": 41, "treasur": 41, "trove": 41, "gone": [41, 56, 57], "tini": 41, "tempfil": 41, "mkdtemp": 41, "glob": 41, "localtim": 41, "tm_hour": 41, "namedtupl": 41, "coord": [41, 42], "ordereddict": 41, "321": [41, 59], "defaultdict": 41, "undefin": 41, "wider": 41, "90": [41, 42], "emphasis": 41, "consult": 41, "unsur": 41, "settl": 41, "disput": 41, "lower_case_funct": 41, "uppercasefunct": 41, "myfunc": 41, "my_func": 41, "summaris": 41, "philosophi": [41, 57, 62], "bracket": [42, 49], "comma": [42, 55], "del": 42, "my_funct": 42, "exclus": [42, 60], "arbitrari": [42, 43, 59, 62], "56": [42, 44], "11d6523211c0": 42, "indentationerror": 42, "complain": 42, "57": [42, 57], "5c3d29e65ad9": 42, "symbol": [42, 46, 55, 57, 58], "endfor": 42, "a_copi": 42, "intuit": [42, 45], "freeli": 42, "ourselv": 42, "a_doubl": 42, "firstli": 42, "sublist": 42, "0x7f5abe5b1190": 42, "item2": 42, "quick": [42, 47, 52, 57], "135": 42, "2025": 42, "succinctli": [42, 55], "attributeerror": 42, "65": 42, "worth": [42, 54, 62], "magsq": 42, "encapsul": 43, "0x7f83b2bc56e0": 43, "colon": [43, 58], "quot": [43, 49, 55, 56, 58, 59, 60], "linebreak": 43, "decent": 43, "top_funct": 43, "silli": 43, "elsewher": [43, 55], "implicitli": 43, "no_return": 43, "such_output": 43, "wow": 43, "clever": 43, "213": 43, "convention": [43, 49], "lowercas": [43, 44], "border": [43, 59], "trippl": 43, "un": 43, "unnecessari": 43, "syntaxerror": [43, 44], "remind": [43, 55, 58], "hmm": 43, "aha": 43, "clearer": [43, 58], "run_method": 43, "make_incrementor": 43, "increment": 43, "plu": [43, 46, 61], "increment_on": 43, "make_increment": 43, "increment_two": 43, "caller": 43, "expand": [43, 56, 57, 58, 59, 60], "reverse_arg": 43, "steve": 43, "helen": 43, "zorblax": 43, "9963": 43, "yoda": 43, "necessarili": [43, 44, 47], "bing": 43, "baz": 43, "cube": 43, "div2": 43, "0x7fc6b2207758": 43, "__future__": [43, 45], "divis": [43, 45, 46], "quadratur": 43, "4142135623730951": 43, "downsid": [43, 62], "unwieldi": 43, "idempot": 43, "anyhow": 43, "submodul": 44, "141592653589793": [44, 46], "8414709848078965": 44, "5877109428927353": 44, "4059007502204043": 44, "prefix": [44, 55, 58], "639334770284028": 44, "extent": 44, "clash": 44, "uni": 44, "7288973406605329": 44, "arcco": 44, "alias": 44, "abspath": 44, "af": [44, 55, 62], "getcwd": 44, "basenam": 44, "exp": 44, "floor": 44, "confid": 44, "portabl": 44, "anaconda": [44, 47], "preinstal": 44, "startup": 44, "bashrc": [44, 51, 62], "pythonuserbas": 44, "virtualenv": 44, "cburr": 44, "lcg_virtualenv": 44, "create_lcg_virtualenv": 44, "myvenv": 44, "simplest": [44, 53, 55, 60], "myfirstmodul": 44, "fire": 44, "ef292d9e19f": 44, "yabba": 44, "cp": [44, 56, 57, 58], "ring": 44, "bell": 44, "startswith": [44, 62], "__": [44, 46], "endsolut": [44, 56], "runnabl": 44, "long_format": 44, "print_label": 44, "msg": 44, "__name__": 44, "chmod": [44, 54], "outstand": 44, "notion": 44, "shebang": 44, "secondli": 44, "peculiar": 44, "hei": 44, "printout": 44, "discov": [45, 59, 60], "alic": [45, 47], "bewar": 45, "3333333333333335": 45, "decim": [45, 49], "histor": [45, 59], "unintuit": 45, "everywher": 45, "shortli": 45, "truncat": 45, "66666666667": 45, "__floordiv__": 45, "__truediv__": [45, 46], "4j": 45, "1j": 45, "5j": 45, "conjug": 45, "somewhat": 45, "confusingli": 45, "123105625617661": 45, "0j": 45, "straight": 46, "2246467991473532e": 46, "twopi": 46, "my_sin": 46, "4492935982947064e": 46, "scene": [46, 57], "0x7fdc7ea75980": 46, "shortcut": [46, 51, 55, 58], "__abs__": 46, "__and__": 46, "__bool__": 46, "to_byt": 46, "__sub__": 46, "__mul__": 46, "__getattribute__": 46, "horribl": 46, "liner": 46, "illustr": [46, 55], "999": [46, 49], "newer": [47, 49, 54], "sft": 47, "setupview": 47, "sh": [47, 54, 59, 60], "lcg_94python3": 47, "x86_64": 47, "slc6": 47, "gcc62": 47, "opt": 47, "miniforg": 47, "migrat": 47, "2020": 47, "gcc": 47, "repl": [47, 61], "ead": 47, "valuat": 47, "rint": 47, "enhanc": 47, "quickref": 47, "arrow": [47, 54, 55, 58], "past": [47, 49, 51], "autocomplet": 47, "middl": [47, 59], "abc_my_var": 47, "abc_": 47, "sinh": 47, "cal": 47, "octob": 47, "su": 47, "mo": 47, "tu": 47, "fr": 47, "sa": 47, "useful": 47, "chapter": 47, "parrot": 49, "join": [49, 57], "carrot": 49, "amazingli": 49, "omg": 49, "omgomgomgomgomgomgomgomgomgomg": 49, "escap": [49, 55, 62], "backslash": 49, "gari": 49, "surround": [49, 56, 59, 60], "quotat": [49, 56], "long_fact": 49, "inde": 49, "nquit": 49, "998": 49, "a_parrot": 49, "interleav": 49, "result1": 49, "result2": 49, "referenc": 49, "template2": 49, "template3": 49, "worst": 49, "front": [49, 55, 57, 58], "3f": 49, "000": 49, "curli": [49, 58], "brace": [49, 58, 62], "innermost": 49, "recip": [51, 54], "ktutil": 51, "confirm": [51, 54, 55, 56, 57], "otg0077802": 51, "lxplus9": 51, "properli": 51, "lxplus7": 51, "lxplus8": 51, "login": [51, 61], "kdestroi": 51, "kt": 51, "klist": 51, "ticket": 51, "renew": [51, 52], "children": 51, "3600": 51, "certainli": [51, 62], "ktmux": 51, "fi": [51, 54], "rest": [51, 55], "disconnect": 52, "reconnect": 52, "wifi": 52, "uptim": 52, "105": 52, "apr": 52, "cest": 52, "2015": [52, 57], "25593": 52, "lxplus0234": 52, "socket": 52, "thead": 52, "rd": 52, "ti": 52, "resum": 52, "hostnam": [52, 53], "lxplus0081": 52, "expir": 52, "suddenli": 52, "ganga": 52, "surviv": [52, 60], "node": 53, "snippet": 53, "seq": 53, "04g": 53, "500": [53, 59], "connecttimeout": 53, "preferredauthent": 53, "gssapi": 53, "mic": 53, "gssapiauthent": 53, "stricthostkeycheck": 53, "loglevel": 53, "quiet": [53, 62], "grep": [53, 54, 55, 57, 60, 62], "screenrc": 53, "hardstatu": 53, "alwayslastlin": 53, "bg": 53, "bw": [53, 59], "yr": 53, "predefin": 53, "colour": 53, "layout": 53, "eg": 53, "stand": [53, 55, 57, 59, 60], "visit": 53, "kill": [53, 58], "logout": 53, "tcsh": [54, 61], "apropo": 54, "gfal": 54, "vdir": 54, "ld_library_path": 54, "varnam": 54, "starwar": 54, "star": 54, "war": 54, "anakin": 54, "membership": 54, "chown": 54, "chgrp": 54, "strvar": 54, "intvar": 54, "file1": 54, "file2": 54, "fulfil": 54, "cond1": 54, "cond2": 54, "tempt": 54, "havea": 54, "poem": 54, "suppli": [54, 62], "sentences2": 54, "tee": 54, "stdout": [54, 57, 62], "listoffileswithte": 54, "incid": 54, "buffer": 54, "alloc": [54, 55], "malici": 54, "sebastian": 54, "lopienski": 54, "mail": 54, "passwd": 54, "reach": 54, "vi": 54, "du": 54, "mount": 54, "recurs": [54, 55, 56, 60], "depth": [54, 55, 57], "deep": 54, "compet": 54, "earn": 54, "beginn": 54, "panic": 54, "clue": 54, "ps1": 55, "dollar": [55, 58], "whoami": 55, "hypothet": 55, "throughout": 55, "mycommand": 55, "cernus": 55, "slash": [55, 56], "lead": [55, 56, 57, 62], "miscellan": [55, 60], "underneath": 55, "imhotep": 55, "larri": 55, "music": [55, 56], "movi": 55, "arrang": 55, "neatli": 55, "trail": 55, "sort": [55, 57, 59, 60], "cftuvsux": 55, "nongraph": 55, "048": [55, 59], "576": 55, "ctime": 55, "newest": 55, "themselv": [55, 56, 57, 60], "dire": 55, "au": 55, "horizont": 55, "vertic": [55, 57], "iso": 55, "augment": 55, "1k": 55, "234m": 55, "2g": 55, "si": [55, 60], "derefer": 55, "symlink": 55, "hide": [55, 61], "overridden": 55, "inod": 55, "kibibyt": 55, "uid": 55, "gid": 55, "raw": [55, 56, 57, 62], "char": 55, "enclos": [55, 58, 59, 61], "largest": 55, "atim": 55, "format1": 55, "format2": 55, "posix": 55, "tabsiz": 55, "col": 55, "10k": 55, "emit": 55, "ls_color": 55, "dircolor": 55, "seriou": 55, "troubl": 55, "gnu": 55, "coreutil": 55, "www": 55, "lucki": 55, "spacebar": [55, 57], "wikipedia": 55, "accur": [55, 59], "hierarch": 55, "hundr": [55, 58, 59, 60], "desk": 55, "defeat": 55, "creatur": [55, 56, 58, 59], "molecul": [55, 56, 57, 58, 59], "solar": [55, 56], "north": [55, 56, 57, 58, 59, 60, 61], "pacif": [55, 56, 57, 58, 59, 61], "gyre": [55, 56, 57, 58, 59, 61], "cfg": [55, 56, 62], "mislead": [55, 58], "amino": [55, 56], "acid": [55, 56], "pdb": [55, 56, 57, 58, 59, 60], "salmon": [55, 56, 57], "anim": [55, 56, 57, 59, 60], "mors": [55, 56], "sunspot": [55, 56], "bash_profil": 55, "fa": 55, "orthogon": [55, 57], "gotten": 55, "anywher": [55, 62], "tild": 55, "forth": 55, "tv": 55, "protein": [55, 56, 57, 59, 61], "assai": [55, 57, 61], "herself": 55, "came": 55, "2012": [55, 57, 58, 59], "confer": 55, "straw": 55, "june": 55, "ten": [55, 62], "nene01729a": [55, 57, 58], "nene01812a": [55, 57], "1520": [55, 61], "amanda": 55, "unnecessarili": 55, "08": 55, "pnas_fin": 55, "pnas_sub": 55, "ownership": [55, 60], "nevertheless": 55, "ong": 55, "uman": 55, "3k": 55, "5369": 55, "hierarchi": 56, "trash": 56, "pain": 56, "whitespac": [56, 58], "period": 56, "alphanumer": 56, "media": 56, "trait": 56, "menu": [56, 60], "writeout": 56, "tidi": 56, "unhook": 56, "recycl": [56, 59], "descend": 56, "mythesi": 56, "png": [56, 59], "albeit": 56, "whale": 56, "mp3": 56, "whalesong": 56, "player": 56, "statstic": 56, "misspel": 56, "incorrectli": 56, "jami": 56, "recombin": 56, "tricki": [56, 62], "recal": [56, 59], "fructos": 56, "sucros": 56, "0kb": 56, "maltos": 56, "glucos": 56, "___": 56, "safe": 56, "san": 56, "duplic": [56, 57], "wild": 56, "card": 56, "eas": 57, "six": [57, 60, 61], "bank": 57, "cuban": [57, 58, 59], "ethan": [57, 58, 59], "methan": [57, 58, 59], "octan": [57, 58, 59], "pentan": [57, 58, 59], "propan": [57, 58, 59], "wc": [57, 59, 60], "156": 57, "1158": 57, "84": 57, "622": 57, "422": 57, "246": 57, "1828": 57, "165": 57, "1226": 57, "111": 57, "825": 57, "107": 57, "819": 57, "6081": 57, "p5": 57, "ne": 57, "thane": 57, "greater": 57, "overwritten": [57, 58], "caution": 57, "disadvantag": [57, 59], "dump": 57, "greatest": 57, "fewest": 57, "incorrect": [57, 60], "confus": 57, "consecut": 57, "mathematician": 57, "3x": 57, "memor": 57, "stderr": [57, 62], "diagnost": 57, "circumst": [57, 60], "fed": 57, "enorm": 57, "stream": 57, "ammonia": 57, "saniti": 57, "nene01729b": [57, 58, 59], "nene01736a": [57, 58], "nene01751a": 57, "nene01751b": 57, "240": 57, "nene02018b": 57, "mondai": 57, "weekend": 57, "nene02040b": 57, "nene02040z": 57, "nene02043a": [57, 58], "nene02043b": [57, 58], "5040": 57, "nene01971z": 57, "late": 57, "henc": [57, 59], "testfile01": 57, "testfile02": 57, "sam": 57, "calibr": 57, "dataset1": 57, "dataset2": 57, "dataset_overview": 57, "trip": 57, "bob": 57, "____calibration____": 57, "____": 57, "send_to_bob": 57, "all_november_fil": 57, "all_datasets_created_on_a_23rd": 57, "uniq": [57, 59], "adjac": 57, "coho": 57, "steelhead": 57, "deer": [57, 59, 60], "rabbit": [57, 59, 60], "raccoon": [57, 59, 60], "fox": [57, 59], "unneed": 57, "expens": 57, "586": 57, "k2": 57, "difficulti": 57, "animalsupd": 57, "trace": 58, "punctuat": [58, 59, 61], "retyp": [58, 59], "genom": 58, "basilisk": [58, 59], "unicorn": [58, 59], "basiliscu": 58, "vulgari": 58, "1745": 58, "equu": 58, "monocero": 58, "1738": 58, "delimit": 58, "semicolon": 58, "reader": [58, 59], "temperatur": 58, "meaningless": 58, "dragon": 58, "purpl": 58, "judici": 58, "nene": 58, "goostat": [58, 59, 61], "redisplai": 58, "semi": 58, "five": [58, 60], "1518": 58, "coffe": 58, "456": 58, "nene0": 58, "457": 58, "458": 58, "459": 58, "460": 58, "quicker": 58, "alkan": 58, "inter": 58, "preview": 58, "reaction": 58, "compound": 58, "speci": [58, 59, 60], "expans": [58, 60], "502": 59, "681": 59, "785": 59, "254": 59, "537": 59, "357": 59, "252": 59, "895": 59, "009": 59, "741": 59, "467": 59, "172": 59, "337": 59, "206": 59, "docx": [59, 62], "font": 59, "versatil": 59, "324": 59, "350": 59, "332": 59, "271": 59, "378": 59, "074": 59, "384": 59, "288": 59, "362": 59, "205": 59, "183": 59, "412": 59, "259": 59, "420": 59, "112": 59, "608": 59, "407": 59, "540": 59, "303": 59, "404": 59, "393": 59, "ter": 59, "end_lin": 59, "num_lin": 59, "invalu": 59, "one_or_more_filenam": 59, "163": 59, "redo": 59, "297": 59, "298": 59, "goodiff": [59, 61], "01729": 59, "ygraph": 59, "301": 59, "serial": 59, "analyt": 59, "antarctica": 59, "adventur": 59, "leah": [59, 60], "csv": 59, "longest": 59, "hang": 59, "investig": 59, "datfil": 59, "meant": 60, "haiku": 60, "1998": 60, "salon": 60, "magazin": 60, "tao": 60, "toner": 60, "presenc": 60, "absenc": 60, "yesterdai": 60, "jeff": 60, "rothenberg": 60, "whichev": 60, "boundari": 60, "insensit": 60, "bre": 60, "regexp": 60, "er": 60, "perl": 60, "taster": 60, "anchor": 60, "sadli": 60, "littlewomen": 60, "episod": 60, "oldtool": 60, "useless": 60, "21022": 60, "21403": 60, "fe": 60, "heme": 60, "924": 60, "518": 60, "databas": 60, "ish": 60, "spreadsheet": 60, "borrow": 60, "imit": 60, "sincerest": 60, "prais": 60, "Its": 60, "unbeaten": 60, "alfr": 60, "whitehead": 60, "1911": 60, "civil": 60, "explanatori": 60, "net": 60, "temp": [60, 62], "women": 60, "louisa": 60, "alcott": 60, "sister": 60, "jo": 60, "meg": 60, "beth": 60, "ami": 60, "novel": 60, "tabul": 60, "emploi": 60, "eleg": 60, "ow": 60, "inferior": 60, "ocw": 60, "criteria": 60, "ahm": 60, "mtime": 60, "9rkz": 61, "unzip": 61, "hopefulli": 61, "mous": 61, "speech": 61, "recognit": 61, "hardwar": 61, "commonplac": 61, "mice": 61, "touchpad": 61, "pointer": 61, "technologi": 61, "widespread": 61, "doug": 61, "engelbart": 61, "1960": 61, "mother": 61, "rewir": 61, "1950": 61, "cli": 61, "heart": 61, "bourn": 61, "stephen": 61, "IT": 61, "zsh": 61, "ters": 61, "keystrok": 61, "volum": 61, "supercomput": 61, "cluster": 61, "cloud": 61, "crunch": 61, "tackl": 61, "nemo": 61, "marin": 61, "biologist": 61, "survei": 61, "gelatin": 61, "garbag": 61, "abund": 61, "graduat": 61, "upcom": 61, "aquat": 61, "goo": 61, "eight": 61, "370": 61, "deadlin": 61, "mattermost": 62, "cmake": 62, "lbenv": 62, "rcfile": 62, "ongo": 62, "basic_tutori": 62, "noext": 62, "ofil": 62, "declar": 62, "congratul": 62, "scalabl": 62, "took": 62, "parallelis": 62, "reprocess": 62, "snakefil": 62, "mynam": 62, "myinput1": 62, "myinput2": 62, "myoutput": 62, "name_fil": 62, "dag": 62, "lhcbdev": 62, "2021": 62, "07_04": 62, "mon": 62, "jobid": 62, "tmpdir": 62, "15t183022": 62, "449488": 62, "15t183344": 62, "711303": 62, "unavoid": 62, "quirk": 62, "nproc": 62, "name_al": 62, "chr": 62, "ord": 62, "forceal": 62, "routin": 62, "reiter": 62, "create_input": 62, "knew": 62, "reqest": 62, "hello_world": 62, "missingruleexcept": 62, "ext": 62, "gif": 62, "advanced_tutori": 62, "tar": 62, "xvf": 62, "phone": 62, "ultim": 62, "luca": 62, "luca_info": 62, "merge_data": 62, "get_address": 62, "get_phon": 62, "waypoint": 62, "fred": 62, "guillaum": 62, "acycl": 62, "get_info": 62, "infil": 62, "outfil": 62, "ln": 62, "recreat": 62, "inconsequenti": 62, "forcerun": 62, "workaround": 62, "cleanest": 62, "failur": 62, "corrupt": 62, "contrast": 62, "mylog": 62, "yaml": 62, "data1": 62, "data2": 62, "configfil": 62, "dosometh": 62, "mycod": 62, "plot1": 62, "plot2": 62, "input_alt": 62, "fit_rul": 62, "snake": 62, "efficiency_rul": 62}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"contributor": [0, 1], "code": [0, 25, 41, 44], "conduct": 0, "contribut": 1, "agreement": 1, "how": [1, 12, 36], "what": [1, 12, 25, 62], "us": [1, 4, 6, 7, 8, 14, 34, 44, 51, 52, 53, 62], "github": 1, "other": [1, 24], "resourc": 1, "instruct": 2, "materi": 2, "softwar": 2, "1": [3, 34], "basic": [3, 34, 62], "markdown": [3, 34], "jupyt": [3, 34], "import": [3, 6, 14, 44], "modul": [3, 6, 44], "advanc": [4, 5, 16, 40, 53, 62], "python": [4, 16, 34, 35, 40, 41, 44, 47], "concept": 4, "pack": 4, "unpack": 4, "valu": 4, "context": 4, "manag": [4, 62], "yield": 4, "where": 4, "i": [4, 25, 62], "thi": [4, 8, 13], "class": [4, 5, 36], "decor": 4, "factori": 4, "except": 4, "custom": 4, "catch": 4, "pitfal": 4, "guarante": 4, "execut": 4, "control": [4, 17], "flow": 4, "dunder": 5, "len": 5, "str": 5, "callabl": 5, "index": 5, "iter": 5, "self": 5, "danger": 5, "zone": 5, "2": 6, "first": [6, 39, 44], "look": [6, 9], "data": [6, 9, 12, 40], "two": [6, 13], "plot": [6, 7, 11, 13, 39], "librari": [6, 40, 44], "recap": 6, "5": [6, 9], "The": [6, 25, 44, 61, 62], "toi": 6, "dataset": [6, 9], "load": [6, 9], "6": [6, 11], "simpl": [6, 12, 14], "histogram": [6, 11, 39], "ad": 6, "variabl": [6, 11, 34, 54], "rectangular": 6, "cut": [6, 39], "compar": [6, 12, 14], "distribut": [6, 9, 12, 14], "3": 7, "multivari": 7, "analysi": [7, 32, 40, 62], "classifi": [7, 9], "todo": 7, "add": 7, "diagram": 7, "decis": 7, "tree": 7, "abov": 7, "evalu": 7, "perform": 7, "collect": 7, "all": 7, "togeth": 7, "4": 8, "extens": 8, "classif": 8, "altern": [8, 14], "impliment": 8, "featur": [8, 9, 25], "engin": 8, "k": [8, 10], "fold": [8, 10, 12], "turn": 8, "scipt": 8, "argpars": [8, 33, 48], "boost": [9, 12], "uniform": 9, "dalitz": 9, "signal": [9, 14], "background": [9, 14, 61], "prepar": [9, 12], "train": [9, 12], "test": [9, 12, 25], "set": [9, 18, 51], "up": [9, 18, 51], "let": 9, "": [9, 55, 57, 61], "result": 9, "roc": 9, "curv": 9, "after": 9, "model": 10, "tune": [10, 12], "setup": 10, "cross": 10, "valid": 10, "earli": 10, "stop": 10, "hyperamet": 10, "optimis": 10, "ax": 11, "regular": 11, "axi": 11, "name": 11, "compat": 11, "mplhep": 11, "hist": 11, "multipl": 11, "dimens": [11, 12], "access": 11, "bin": [11, 12], "get": [11, 13], "densiti": 11, "project": [11, 25], "everyth": 11, "relev": 11, "multi": 11, "dimension": 11, "arithmet": 11, "weight": 11, "7": 12, "demonstr": 12, "reweight": 12, "download": 12, "sampl": 12, "origin": [12, 25], "part": 12, "target": 12, "base": 12, "n": 12, "gradient": 12, "some": 12, "express": [12, 15], "gb": 12, "discrimin": 12, "great": 12, "did": 12, "just": 12, "happen": 12, "rule": [12, 62], "8": 13, "likelihood": 13, "infer": 13, "scope": 13, "tutori": [13, 16, 62], "start": [13, 61], "differ": [13, 54], "space": [13, 54], "loss": 13, "fix": [13, 36], "paramet": 13, "9": 14, "splot": 14, "exampl": 14, "observ": 14, "appli": [14, 39], "sweight": 14, "more": [14, 40, 41, 54], "complex": [14, 54], "case": 14, "known": 14, "probabl": 14, "build": [14, 32], "over": [14, 54], "mass": 14, "Of": 14, "cours": 14, "we": 14, "don": 14, "t": 14, "have": 14, "label": 14, "which": 14, "event": 14, "ar": 14, "beforehand": 14, "inform": 14, "about": [14, 54], "real": 14, "fit": 14, "doesn": 14, "give": 14, "u": 14, "appi": 14, "reconstruct": 14, "initi": 14, "an": [14, 35], "requir": 14, "deriv": 14, "option": 14, "under": 14, "assumpt": 14, "linear": 14, "minim": 14, "variat": 14, "uncorrelated": 14, "conclus": 14, "10": 15, "scikit": 15, "hep": 15, "formul": 15, "convert": 15, "particl": 15, "hepunit": 15, "vector": 15, "properti": 15, "content": [16, 31, 32, 35, 50, 61], "autom": [17, 62], "version": 17, "git": [18, 31], "creat": [19, 25], "repositori": [19, 24, 25], "track": 20, "chang": [20, 25], "explor": [21, 41], "histori": 21, "ignor": 22, "thing": [22, 52, 60], "remot": [23, 25], "cern": 23, "gitlab": [23, 27], "share": 24, "collabor": 25, "pull": 25, "request": 25, "merg": 25, "fork": 25, "clone": 25, "its": 25, "sync": 25, "your": [25, 39, 44, 51], "local": [25, 32], "implement": 25, "new": 25, "push": 25, "discuss": 25, "amend": 25, "retir": 25, "accept": 25, "social": 25, "side": 25, "automat": [25, 51], "conflict": 26, "ci": 27, "open": 28, "scienc": 28, "licens": 29, "citat": 30, "essenti": 32, "statu": 32, "binder": 32, "prerequisit": 32, "usag": 32, "script": [33, 48, 59, 62], "type": [34, 54], "oper": [34, 46], "strong": 34, "contain": 34, "mutabl": 34, "dynam": 34, "assign": 34, "sugar": 34, "comprehens": [34, 42], "introduct": 35, "welcom": 36, "inherit": 36, "glanc": 36, "condit": [37, 54], "truthi": 37, "loop": [37, 42, 54, 58], "dictionari": 38, "kei": 38, "make": [39, 51], "panda": 39, "topic": [40, 53], "nice": 40, "standard": [40, 44], "root": 40, "learn": 41, "convent": 41, "list": 42, "tupl": 42, "function": 43, "inlin": 43, "method": 43, "from": 44, "pypi": 44, "insid": 44, "virtual": 44, "environ": [44, 54, 62], "write": 44, "structur": 44, "run": [44, 47, 52, 62], "number": 45, "object": 46, "string": 49, "format": 49, "unix": [50, 54], "shell": [50, 54, 59, 61], "persist": 51, "screen": [51, 52, 53], "tmux": 51, "session": 51, "lxplu": 51, "password": 51, "less": 51, "kerbero": 51, "token": 51, "keytab": 51, "k5reauth": 51, "refresh": 51, "keep": 52, "find": [53, 60], "lost": 53, "tab": 53, "manual": 54, "page": 54, "among": 54, "file": [54, 55, 56, 57, 62], "link": 54, "command": [54, 61], "pipe": [54, 57], "redirect": 54, "bash": 54, "secur": 54, "text": 54, "viewer": 54, "editor": 54, "disk": 54, "wire": 54, "bandit": 54, "wargam": 54, "navig": 55, "directori": [55, 56], "nell": [55, 57, 61], "pipelin": [55, 57, 61], "organ": 55, "work": 56, "With": 56, "filter": 57, "check": 57, "introduc": [61, 62], "line": 61, "interfac": 61, "why": [61, 62], "bother": 61, "point": 61, "snakemak": 62, "document": 62, "workflow": 62, "preserv": 62, "system": 62, "re": 62, "chain": 62, "limit": 62, "wildcard": 62, "log": 62, "config": 62, "includ": 62}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"Contributor Code of Conduct": [[0, "contributor-code-of-conduct"]], "Contributing": [[1, "contributing"]], "Contributor Agreement": [[1, "contributor-agreement"]], "How to Contribute": [[1, "how-to-contribute"]], "What to Contribute": [[1, "what-to-contribute"]], "Using GitHub": [[1, "using-github"]], "Other Resources": [[1, "other-resources"]], "Instructional Material": [[2, "instructional-material"]], "Software": [[2, "software"]], "1: Basics": [[3, "1:-Basics"], [34, "1:-Basics"]], "Basics": [[3, "Basics"]], "Markdown": [[3, "Markdown"]], "Jupyter": [[3, "Jupyter"], [34, "Jupyter"]], "Importing modules": [[3, "Importing-modules"]], "Advanced Python Concepts": [[4, "Advanced-Python-Concepts"]], "Packing and unpacking of values": [[4, "Packing-and-unpacking-of-values"]], "Context manager": [[4, "Context-manager"]], "Using yield": [[4, "Using-yield"]], "Where is this useful": [[4, "Where-is-this-useful"]], "Using a class": [[4, "Using-a-class"]], "Decorators and factories": [[4, "Decorators-and-factories"]], "Decorator": [[4, "Decorator"]], "Exceptions": [[4, "Exceptions"]], "Custom Exception": [[4, "Custom-Exception"]], "Catching exceptions": [[4, "Catching-exceptions"]], "pitfall \u201cguaranteed execution\u201d": [[4, "pitfall-%22guaranteed-execution%22"]], "Exceptions as control-flow": [[4, "Exceptions-as-control-flow"]], "Advanced Classes": [[5, "Advanced-Classes"]], "Dunder": [[5, "Dunder"]], "len": [[5, "len"]], "str": [[5, "str"]], "Callable": [[5, "Callable"]], "Indexing (iterating)": [[5, "Indexing-(iterating)"]], "self": [[5, "self"]], "Danger zone": [[5, "Danger-zone"]], "2: First look at data": [[6, "2:-First-look-at-data"]], "Two plotting libraries?": [[6, "Two-plotting-libraries?"]], "Recap: Importing modules": [[6, "Recap:-Importing-modules"]], "5. The toy dataset": [[6, "5.-The-toy-dataset"]], "Loading data": [[6, "Loading-data"], [9, "Loading-data"]], "6. Plotting a simple histogram": [[6, "6.-Plotting-a-simple-histogram"]], "Adding variables": [[6, "Adding-variables"]], "Using rectangular cuts": [[6, "Using-rectangular-cuts"]], "Comparing distributions": [[6, "Comparing-distributions"]], "3: Multivariate Analysis": [[7, "3:-Multivariate-Analysis"]], "Using a classifier": [[7, "Using-a-classifier"]], "TODO Add a diagram of a decision tree for the above plot": [[7, "TODO-Add-a-diagram-of-a-decision-tree-for-the-above-plot"]], "Evaluating classifier performance": [[7, "Evaluating-classifier-performance"]], "Collecting it all together": [[7, "Collecting-it-all-together"]], "4: Extension on Classification": [[8, "4:-Extension-on-Classification"]], "Alternative implimentations": [[8, "Alternative-implimentations"]], "Feature engineering": [[8, "Feature-engineering"]], "k-folding": [[8, "k-folding"]], "Turn this into a scipt using argparse": [[8, "Turn-this-into-a-scipt-using-argparse"]], "5: Boosting to Uniformity": [[9, "5:-Boosting-to-Uniformity"]], "Distributions in the Dalitz features for signal and background": [[9, "Distributions-in-the-Dalitz-features-for-signal-and-background"]], "Preparation of train/test datasets": [[9, "Preparation-of-train/test-datasets"]], "Setting up classifiers, training": [[9, "Setting-up-classifiers,-training"]], "Let\u2019s look at the results of training": [[9, "Let's-look-at-the-results-of-training"]], "ROC curves after training": [[9, "ROC-curves-after-training"]], "Model tuning setup": [[10, "Model-tuning-setup"]], "Cross-validation": [[10, "Cross-validation"]], "k-folding & early stopping": [[10, "k-folding-&-early-stopping"]], "Hyperameter optimisation": [[10, "Hyperameter-optimisation"]], "6: Histograms": [[11, "6:-Histograms"]], "Axes": [[11, "Axes"]], "Regular": [[11, "Regular"]], "Variable": [[11, "Variable"]], "Axis Name": [[11, "Axis-Name"]], "Compatibility with mplhep": [[11, "Compatibility-with-mplhep"]], "Plotting with hist": [[11, "Plotting-with-hist"]], "Multiple dimensions": [[11, "Multiple-dimensions"]], "Access Bins": [[11, "Access-Bins"]], "Getting Density": [[11, "Getting-Density"]], "Projecting axes": [[11, "Projecting-axes"]], "Accessing everything relevant": [[11, "Accessing-everything-relevant"]], "Multi dimensional": [[11, "Multi-dimensional"]], "Arithmetics": [[11, "Arithmetics"]], "Weights": [[11, "Weights"]], "7: Demonstration of distribution reweighting": [[12, "7:-Demonstration-of-distribution-reweighting"]], "Downloading data": [[12, "Downloading-data"]], "prepare train and test samples": [[12, "prepare-train-and-test-samples"]], "Original distributions": [[12, "Original-distributions"]], "train part of original distribution": [[12, "train-part-of-original-distribution"]], "test part for target distribution": [[12, "test-part-for-target-distribution"]], "Bins-based reweighting in n dimensions": [[12, "Bins-based-reweighting-in-n-dimensions"]], "Gradient Boosted Reweighter": [[12, "Gradient-Boosted-Reweighter"]], "Comparing some simple expressions:": [[12, "Comparing-some-simple-expressions:"]], "GB-discrimination": [[12, "GB-discrimination"]], "Great!": [[12, "Great!"]], "What did just happen?": [[12, "What-did-just-happen?"]], "How to tune": [[12, "How-to-tune"]], "Folding reweighter": [[12, "Folding-reweighter"]], "GB discrimination for reweighting rule": [[12, "GB-discrimination-for-reweighting-rule"]], "8: Likelihood inference": [[13, "8:-Likelihood-inference"]], "Scope of this tutorial": [[13, "Scope-of-this-tutorial"]], "Getting started": [[13, "Getting-started"]], "Difference of the two spaces": [[13, "Difference-of-the-two-spaces"]], "Plotting": [[13, "Plotting"]], "Loss": [[13, "Loss"]], "Fixing parameters": [[13, "Fixing-parameters"]], "9: sPlot": [[14, "9:-sPlot"]], "Simple sPlot example": [[14, "Simple-sPlot-example"]], "Observed distributions": [[14, "Observed-distributions"]], "Applying sWeights": [[14, "Applying-sWeights"]], "Compare": [[14, "Compare"]], "More complex case": [[14, "More-complex-case"]], "Splot": [[14, "Splot"]], "Alternative: Known probabilities": [[14, "Alternative:-Known-probabilities"]], "Building sPlot over mass": [[14, "Building-sPlot-over-mass"]], "Of course we don\u2019t have labels which events are signal and which are background beforehand": [[14, "Of-course-we-don't-have-labels-which-events-are-signal-and-which-are-background-beforehand"]], "We have no information about real labels": [[14, "We-have-no-information-about-real-labels"]], "Fitting doesn\u2019t give us information about real labels": [[14, "Fitting-doesn't-give-us-information-about-real-labels"]], "Appying sPlot": [[14, "Appying-sPlot"]], "Using sWeights to reconstruct initial distribution": [[14, "Using-sWeights-to-reconstruct-initial-distribution"]], "An important requirement of sPlot": [[14, "An-important-requirement-of-sPlot"]], "Derivation of sWeights (optional)": [[14, "Derivation-of-sWeights-(optional)"]], "Under assumption of linearity:": [[14, "Under-assumption-of-linearity:"]], "Minimization of variation": [[14, "Minimization-of-variation"]], "Uncorrelatedness": [[14, "Uncorrelatedness"]], "Conclusion": [[14, "Conclusion"]], "10: Scikit-HEP": [[15, "10:-Scikit-HEP"]], "formulate - converting expressions": [[15, "formulate---converting-expressions"]], "Particle": [[15, "Particle"]], "hepunits": [[15, "hepunits"]], "Vector": [[15, "Vector"]], "Vector properties": [[15, "Vector-properties"]], "Advanced Python Tutorial": [[16, "advanced-python-tutorial"]], "Contents:": [[16, null], [31, null], [32, null], [35, null], [50, null], [61, null]], "Automated Version Control": [[17, "automated-version-control"]], "Setting Up Git": [[18, "setting-up-git"]], "Creating a Repository": [[19, "creating-a-repository"]], "Tracking Changes": [[20, "tracking-changes"]], "Exploring History": [[21, "exploring-history"]], "Ignoring Things": [[22, "ignoring-things"]], "Remotes in CERN GitLab": [[23, "remotes-in-cern-gitlab"]], "Sharing a repository with others": [[24, "sharing-a-repository-with-others"]], "Collaborating with Pull Requests": [[25, "collaborating-with-pull-requests"]], "What is a Pull (or Merge) Request": [[25, "what-is-a-pull-or-merge-request"]], "Fork the original project repository": [[25, "fork-the-original-project-repository"]], "Clone a remote project and its fork": [[25, "clone-a-remote-project-and-its-fork"]], "Sync your local repository with remote changes": [[25, "sync-your-local-repository-with-remote-changes"]], "Implement your new feature": [[25, "implement-your-new-feature"]], "Push changes": [[25, "push-changes"]], "Create a Pull (or Merge) Request": [[25, "create-a-pull-or-merge-request"]], "Discussing, amending, retiring a Merge Request": [[25, "discussing-amending-retiring-a-merge-request"]], "Accepting a Pull Request": [[25, "accepting-a-pull-request"]], "The social side of coding": [[25, "the-social-side-of-coding"]], "Automatic testing": [[25, "automatic-testing"]], "Conflicts": [[26, "conflicts"]], "GitLab CI": [[27, "gitlab-ci"]], "Open Science": [[28, "open-science"]], "Licensing": [[29, "licensing"]], "Citation": [[30, "citation"]], "Git": [[31, "git"]], "Analysis essentials Build Status Binder": [[32, "analysis-essentials-build-status-binder"]], "Prerequisites": [[32, "prerequisites"]], "Local": [[32, "local"]], "Binder": [[32, "binder"]], "Usage": [[32, "usage"]], "Scripting": [[33, "scripting"], [48, "scripting"]], "argparse": [[33, "argparse"], [48, "argparse"]], "Basic types and operations": [[34, "Basic-types-and-operations"]], "strong typing": [[34, "strong-typing"]], "Container types": [[34, "Container-types"]], "Mutability": [[34, "Mutability"]], "dynamic typing": [[34, "dynamic-typing"]], "Assignement and variables": [[34, "Assignement-and-variables"]], "Python variable assignement": [[34, "Python-variable-assignement"]], "Sugar: comprehensions": [[34, "Sugar:-comprehensions"]], "Sugar: using Markdown": [[34, "Sugar:-using-Markdown"]], "An introduction to Python": [[35, "an-introduction-to-python"]], "Classes": [[36, "Classes"]], "Welcome to classes": [[36, "Welcome-to-classes"]], "Inheritance: a glance": [[36, "Inheritance:-a-glance"]], "How to fix": [[36, "How-to-fix"]], "Conditions": [[37, "conditions"]], "Truthiness": [[37, "truthiness"]], "Conditions in loops": [[37, "conditions-in-loops"]], "Dictionaries": [[38, "dictionaries"]], "Dictionary keys": [[38, "dictionary-keys"]], "Making your first histogram": [[39, "making-your-first-histogram"]], "Pandas": [[39, "pandas"]], "Plotting histograms": [[39, "plotting-histograms"]], "Applying cuts": [[39, "applying-cuts"]], "More advanced topics in Python": [[40, "more-advanced-topics-in-python"]], "Nice standard libraries": [[40, "nice-standard-libraries"]], "Nice libraries for data analysis": [[40, "nice-libraries-for-data-analysis"]], "Python and ROOT": [[40, "python-and-root"]], "Learning more": [[41, "learning-more"]], "Exploring Python": [[41, "exploring-python"]], "Conventional coding": [[41, "conventional-coding"]], "Lists and looping": [[42, "lists-and-looping"]], "Looping": [[42, "looping"]], "List comprehension": [[42, "list-comprehension"]], "Tuples": [[42, "tuples"]], "Functions": [[43, "functions"]], "Inline methods": [[43, "inline-methods"]], "Modules": [[44, "modules"]], "Using modules into your code: import": [[44, "using-modules-into-your-code-import"]], "The standard library": [[44, "the-standard-library"]], "Modules from PyPi": [[44, "modules-from-pypi"]], "Modules inside a virtual environment": [[44, "modules-inside-a-virtual-environment"]], "Write your first Python module": [[44, "write-your-first-python-module"]], "Write a structured module": [[44, "write-a-structured-module"]], "Run a module": [[44, "run-a-module"]], "Numbers": [[45, "numbers"]], "Objects and operators": [[46, "objects-and-operators"]], "Objects": [[46, "objects"]], "Running Python": [[47, "running-python"]], "Strings": [[49, "strings"]], "Formatting": [[49, "formatting"]], "UNIX shell": [[50, "unix-shell"]], "Persistent screen or tmux session on lxplus": [[51, "persistent-screen-or-tmux-session-on-lxplus"]], "Setting up password-less kerberos token": [[51, "setting-up-password-less-kerberos-token"]], "Making use of the keytab": [[51, "making-use-of-the-keytab"]], "Using k5reauth to automatically refresh your kerberos token": [[51, "using-k5reauth-to-automatically-refresh-your-kerberos-token"]], "Using screen to keep things running": [[52, "using-screen-to-keep-things-running"]], "Advanced screen topics": [[53, "advanced-screen-topics"]], "Finding lost screens": [[53, "finding-lost-screens"]], "Using tabs in screen": [[53, "using-tabs-in-screen"]], "More about the UNIX shell": [[54, "more-about-the-unix-shell"]], "Types of shell": [[54, "types-of-shell"]], "Manual pages": [[54, "manual-pages"]], "Environment variables": [[54, "environment-variables"]], "Variables": [[54, "variables"]], "Differences among files": [[54, "differences-among-files"]], "Looping over files": [[54, "looping-over-files"]], "Conditionals": [[54, "conditionals"]], "Linking commands": [[54, "linking-commands"]], "Pipes and redirection": [[54, "pipes-and-redirection"]], "Bash security": [[54, "bash-security"]], "Complexity": [[54, "complexity"]], "Text viewers": [[54, "text-viewers"]], "Text editors": [[54, "text-editors"]], "Disk space": [[54, "disk-space"]], "Over the Wire and Bandit wargame": [[54, "over-the-wire-and-bandit-wargame"]], "Navigating Files and Directories": [[55, "navigating-files-and-directories"]], "Nelle\u2019s Pipeline: Organizing Files": [[55, "nelle-s-pipeline-organizing-files"]], "Working With Files and Directories": [[56, "working-with-files-and-directories"]], "Pipes and Filters": [[57, "pipes-and-filters"]], "Nelle\u2019s Pipeline: Checking Files": [[57, "nelle-s-pipeline-checking-files"]], "Loops": [[58, "loops"]], "Shell Scripts": [[59, "shell-scripts"]], "Finding Things": [[60, "finding-things"]], "Introducing the Shell": [[61, "introducing-the-shell"]], "Background": [[61, "background"]], "The Command-Line Interface": [[61, "the-command-line-interface"]], "The Shell": [[61, "the-shell"]], "Why bother?": [[61, "why-bother"]], "Nelle\u2019s Pipeline: Starting Point": [[61, "nelle-s-pipeline-starting-point"]], "Analysis automation with Snakemake": [[62, "analysis-automation-with-snakemake"]], "Documentation and environments": [[62, "documentation-and-environments"]], "Workflow preservation": [[62, "workflow-preservation"]], "Basic Tutorial": [[62, "basic-tutorial"]], "What is a workflow?": [[62, "what-is-a-workflow"]], "Why use a workflow management system?": [[62, "why-use-a-workflow-management-system"]], "Introducing Snakemake": [[62, "introducing-snakemake"]], "Re-running rules": [[62, "re-running-rules"]], "Chaining rules": [[62, "chaining-rules"]], "The limits of wildcards": [[62, "the-limits-of-wildcards"]], "Advanced Tutorial": [[62, "advanced-tutorial"]], "Running scripts": [[62, "running-scripts"]], "Log files": [[62, "log-files"]], "Config files": [[62, "config-files"]], "Includes": [[62, "includes"]]}, "indexentries": {}}) \ No newline at end of file +Search.setIndex({"docnames": ["CONDUCT", "CONTRIBUTING", "LICENSE", "advanced-python/10Basics", "advanced-python/11AdvancedPython", "advanced-python/12AdvancedClasses", "advanced-python/20DataAndPlotting", "advanced-python/30Classification", "advanced-python/31ClassificationExtension", "advanced-python/32BoostingToUniformity", "advanced-python/33ModelTuning", "advanced-python/40Histograms", "advanced-python/45DemoReweighting", "advanced-python/50LikelihoodInference", "advanced-python/60sPlot", "advanced-python/70ScikitHEPUniverse", "advanced-python/README", "git/01-basics", "git/02-setup", "git/03-create", "git/04-changes", "git/05-history", "git/06-ignore", "git/07-gitlab", "git/08-share", "git/09-pullrequests", "git/10-conflict", "git/11-ci", "git/12-open", "git/13-licensing", "git/14-citation", "git/README", "index", "python/00scripts", "python/01basics", "python/README", "python/classes", "python/conditions", "python/dictionaries", "python/first_histogram", "python/further_reading", "python/learning", "python/lists", "python/methods", "python/modules", "python/numbers", "python/operators", "python/running", "python/scripting", "python/strings", "shell-extras/README", "shell-extras/persistent-screen", "shell-extras/screen", "shell-extras/screen2", "shell-extras/shell2", "shell/02-filedir", "shell/03-create", "shell/04-pipefilter", "shell/05-loop", "shell/06-script", "shell/07-find", "shell/README", "snakemake/README"], "filenames": ["CONDUCT.md", "CONTRIBUTING.md", "LICENSE.md", "advanced-python/10Basics.ipynb", "advanced-python/11AdvancedPython.ipynb", "advanced-python/12AdvancedClasses.ipynb", "advanced-python/20DataAndPlotting.ipynb", "advanced-python/30Classification.ipynb", "advanced-python/31ClassificationExtension.ipynb", "advanced-python/32BoostingToUniformity.ipynb", "advanced-python/33ModelTuning.ipynb", "advanced-python/40Histograms.ipynb", "advanced-python/45DemoReweighting.ipynb", "advanced-python/50LikelihoodInference.ipynb", "advanced-python/60sPlot.ipynb", "advanced-python/70ScikitHEPUniverse.ipynb", "advanced-python/README.md", "git/01-basics.md", "git/02-setup.md", "git/03-create.md", "git/04-changes.md", "git/05-history.md", "git/06-ignore.md", "git/07-gitlab.md", "git/08-share.md", "git/09-pullrequests.md", "git/10-conflict.md", "git/11-ci.md", "git/12-open.md", "git/13-licensing.md", "git/14-citation.md", "git/README.md", "index.md", "python/00scripts.md", "python/01basics.ipynb", "python/README.md", "python/classes.ipynb", "python/conditions.md", "python/dictionaries.md", "python/first_histogram.md", "python/further_reading.md", "python/learning.md", "python/lists.md", "python/methods.md", "python/modules.md", "python/numbers.md", "python/operators.md", "python/running.md", "python/scripting.md", "python/strings.md", "shell-extras/README.md", "shell-extras/persistent-screen.md", "shell-extras/screen.md", "shell-extras/screen2.md", "shell-extras/shell2.md", "shell/02-filedir.md", "shell/03-create.md", "shell/04-pipefilter.md", "shell/05-loop.md", "shell/06-script.md", "shell/07-find.md", "shell/README.md", "snakemake/README.md"], "titles": ["Contributor Code of Conduct", "Contributing", "Instructional Material", "1: Basics", "Advanced Python Concepts", "Advanced Classes", "2: First look at data", "3: Multivariate Analysis", "4: Extension on Classification", "5: Boosting to Uniformity", "Model tuning setup", "6: Histograms", "7: Demonstration of distribution reweighting", "8: Likelihood inference", "9: sPlot", "10: Scikit-HEP", "Advanced Python Tutorial", "Automated Version Control", "Setting Up Git", "Creating a Repository", "Tracking Changes", "Exploring History", "Ignoring Things", "Remotes in CERN GitLab", "Sharing a repository with others", "Collaborating with Pull Requests", "Conflicts", "GitLab CI", "Open Science", "Licensing", "Citation", "Git", "Analysis essentials ", "Scripting", "1: Basics", "An introduction to Python", "Classes", "Conditions", "Dictionaries", "Making your first histogram", "More advanced topics in Python", "Learning more", "Lists and looping", "Functions", "Modules", "Numbers", "Objects and operators", "Running Python", "Scripting", "Strings", "UNIX shell", "Persistent screen or tmux session on lxplus", "Using screen to keep things running", "Advanced screen topics", "More about the UNIX shell", "Navigating Files and Directories", "Working With Files and Directories", "Pipes and Filters", "Loops", "Shell Scripts", "Finding Things", "Introducing the Shell", "Analysis automation with Snakemake"], "terms": {"As": [0, 4, 9, 10, 12, 14, 15, 18, 21, 22, 23, 25, 26, 28, 31, 34, 38, 39, 42, 43, 44, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "maintain": [0, 1, 6, 15, 25, 29, 32, 35], "thi": [0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "project": [0, 1, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 32, 56], "we": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "pledg": 0, "respect": [0, 4, 5, 6, 34, 42, 56, 59], "all": [0, 1, 2, 3, 4, 5, 6, 8, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 32, 35, 37, 38, 39, 44, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "peopl": [0, 1, 17, 21, 23, 25, 26, 28, 29, 35, 39, 41, 43, 49, 54, 55, 56, 57, 58, 59, 60, 61], "who": [0, 1, 25, 26, 28, 29, 35, 41, 43, 51, 54, 55, 58, 59, 60], "contribut": [0, 14, 25, 29, 32, 39], "through": [0, 6, 15, 16, 20, 21, 22, 24, 25, 28, 29, 36, 41, 44, 46, 47, 53, 54, 55, 57, 58, 60, 61], "report": [0, 1, 10, 20, 60], "issu": [0, 1, 10, 12, 18, 22, 23, 32, 61, 62], "post": [0, 24, 28, 41], "featur": [0, 3, 6, 7, 12, 13, 14, 16, 23, 27, 31, 32, 35, 47, 53, 57, 62], "request": [0, 1, 3, 31, 32, 62], "updat": [0, 1, 13, 18, 20, 21, 23, 24, 26, 27, 39, 41, 44, 47, 51, 58, 62], "document": [0, 1, 2, 3, 10, 16, 17, 21, 23, 27, 28, 32, 39, 43, 44, 55, 56], "submit": [0, 1, 25, 28], "pull": [0, 1, 23, 24, 26, 31, 32], "patch": [0, 6, 11, 20, 21, 61], "other": [0, 2, 4, 5, 7, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62], "activ": [0, 16, 18, 32, 35, 44, 52], "ar": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "commit": [0, 1, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], "make": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 48, 49, 50, 55, 56, 57, 58, 59, 60, 61, 62], "particip": [0, 32], "harass": 0, "free": [0, 2, 6, 7, 12, 27, 28, 29, 31, 42, 54], "experi": [0, 6, 10, 13, 32, 47, 56, 58, 60], "everyon": [0, 1, 20, 21, 22, 41, 43, 61], "regardless": [0, 55, 61, 62], "level": [0, 10, 13, 22, 24, 37, 54, 55, 56, 57, 61], "gender": 0, "ident": [0, 6, 12, 17, 34, 38, 42, 55, 56, 62], "express": [0, 2, 14, 16, 32, 33, 39, 41, 42, 43, 46, 48, 49, 54, 57, 60], "sexual": 0, "orient": [0, 36, 44], "disabl": [0, 55], "person": [0, 2, 17, 23, 24, 25, 26, 28, 34, 43, 55, 59, 62], "appear": [0, 19, 20, 21, 24, 25, 55, 56, 58, 59, 60, 61, 62], "bodi": [0, 37, 58], "size": [0, 10, 11, 14, 20, 39, 42, 54, 55, 56, 60], "race": 0, "ethnic": 0, "ag": [0, 25, 34, 43], "religion": 0, "exampl": [0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 25, 27, 32, 33, 34, 36, 37, 38, 39, 42, 43, 46, 48, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "unaccept": 0, "behavior": [0, 5, 13, 36, 47], "includ": [0, 1, 2, 3, 4, 7, 8, 10, 13, 17, 18, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 33, 34, 38, 39, 41, 43, 44, 47, 48, 49, 52, 55, 56, 57, 59, 60, 61], "us": [0, 2, 3, 5, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 48, 49, 50, 54, 55, 56, 57, 58, 59, 60, 61], "languag": [0, 29, 32, 34, 35, 36, 39, 41, 42, 46, 47, 60, 61], "imageri": 0, "derogatori": 0, "comment": [0, 1, 3, 8, 17, 20, 21, 24, 25, 33, 34, 41, 43, 48, 59, 60, 62], "attack": 0, "troll": 0, "public": [0, 2, 23, 27, 29, 30, 36, 39, 55], "privat": [0, 23, 25, 27, 36, 51], "insult": 0, "unprofession": 0, "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "right": [0, 2, 4, 5, 7, 8, 9, 10, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 39, 44, 46, 55, 56, 57, 58, 59, 60, 61], "respons": [0, 3, 7, 10, 16, 26, 42, 55, 56, 58, 59], "remov": [0, 4, 7, 8, 10, 11, 12, 13, 19, 21, 23, 26, 33, 39, 41, 42, 48, 56, 57, 58, 59, 62], "edit": [0, 18, 20, 25, 26, 34, 54, 58, 59, 62], "reject": [0, 10, 25, 26], "wiki": 0, "align": 0, "do": [0, 1, 2, 4, 5, 6, 7, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 32, 33, 36, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "follow": [0, 1, 2, 3, 4, 5, 6, 10, 12, 13, 14, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 31, 32, 34, 35, 36, 37, 38, 41, 42, 43, 44, 51, 53, 54, 55, 56, 57, 58, 59, 60, 62], "mai": [0, 1, 2, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 21, 23, 26, 28, 30, 36, 47, 53, 54, 55, 56, 57, 58, 59, 60], "from": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 45, 46, 48, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "team": 0, "instanc": [0, 4, 5, 9, 13, 14, 23, 27, 36, 44, 47, 53, 60, 62], "abus": 0, "otherwis": [0, 2, 9, 20, 29, 34, 55, 57, 62], "open": [0, 1, 4, 5, 6, 7, 9, 10, 12, 19, 24, 25, 29, 31, 32, 39, 44, 54, 55, 56, 57, 58, 59, 62], "an": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "contact": [0, 1, 29], "one": [0, 1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "more": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 49, 50, 52, 55, 56, 57, 58, 59, 60, 61, 62], "i": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61], "adapt": [0, 2, 8, 10], "coven": 0, "version": [0, 1, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 47, 54, 55, 58, 62], "1": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 24, 25, 26, 30, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62], "0": [0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "avail": [0, 1, 2, 4, 6, 11, 13, 14, 15, 16, 25, 26, 27, 29, 33, 37, 38, 39, 43, 44, 45, 46, 48, 49, 54, 55, 61, 62], "http": [0, 3, 6, 7, 8, 9, 10, 12, 13, 17, 23, 25, 26, 32, 44, 55, 61, 62], "org": [0, 6, 7, 8, 10, 55], "hsf": [1, 32, 62], "train": [1, 7, 8, 10, 16, 32, 62], "sourc": [1, 14, 25, 29, 31, 32, 39, 44, 45, 47, 49, 54, 55, 62], "welcom": [1, 16, 23, 32, 34, 35], "kind": [1, 2, 13, 16, 20, 23, 29, 56, 59, 61], "new": [1, 6, 7, 8, 9, 10, 12, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 31, 32, 34, 36, 39, 42, 43, 44, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62], "lesson": [1, 3, 6, 7, 8, 10, 16, 18, 20, 21, 23, 24, 25, 27, 30, 32, 35, 39, 43, 44, 46, 50, 52, 55, 56, 57, 60, 61], "fix": [1, 3, 6, 10, 14, 16, 20, 21, 23, 25, 26, 35, 47, 54, 57, 59, 60], "exist": [1, 4, 8, 9, 11, 25, 26, 31, 34, 35, 37, 42, 43, 44, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62], "materi": [1, 29, 32, 47, 50, 54], "bug": [1, 7, 10, 25, 47], "review": [1, 20, 24, 25, 28], "propos": [1, 24, 25], "chang": [1, 2, 4, 6, 10, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 34, 37, 39, 42, 43, 44, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 62], "By": [1, 4, 8, 14, 24, 25, 43, 44, 49, 51, 55, 56, 57, 58, 59], "you": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "agre": [1, 5, 12], "redistribut": [1, 2], "your": [1, 2, 3, 6, 7, 8, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "work": [1, 3, 4, 5, 6, 7, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 34, 37, 38, 41, 42, 45, 47, 48, 49, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62], "under": [1, 2, 5, 7, 9, 12, 13, 16, 22, 23, 25, 26, 29, 33, 44, 48, 57, 60], "our": [1, 4, 6, 7, 8, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 33, 34, 35, 36, 39, 42, 43, 44, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62], "licens": [1, 2, 31, 32, 47], "In": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 20, 21, 23, 24, 25, 26, 27, 29, 32, 33, 34, 35, 36, 38, 39, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "exchang": 1, "address": [1, 10, 18, 29, 54, 62], "assess": [1, 10], "promptli": 1, "can": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "help": [1, 3, 7, 10, 13, 17, 18, 20, 22, 26, 27, 29, 32, 33, 34, 35, 41, 42, 43, 47, 48, 53, 54, 55, 56, 57, 59, 60, 62], "becom": [1, 6, 10, 12, 17, 20, 21, 29, 32, 34, 41, 43, 49, 57, 58, 59, 61, 62], "member": [1, 24], "commun": [1, 28, 35, 36, 41, 61], "involv": [1, 5, 7, 10, 13, 16, 27], "abid": 1, "code": [1, 3, 4, 5, 7, 14, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 39, 42, 43, 45, 47, 48, 49, 54, 55, 58, 62], "conduct": [1, 32], "The": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60], "easiest": [1, 23, 59, 61], "wai": [1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 17, 18, 20, 21, 22, 24, 25, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "get": [1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 26, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62], "start": [1, 3, 4, 6, 11, 14, 16, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 32, 33, 34, 36, 37, 38, 41, 42, 43, 44, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62], "file": [1, 2, 3, 4, 6, 11, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 53, 58, 59, 60, 61], "tell": [1, 7, 18, 19, 20, 21, 22, 23, 25, 26, 33, 34, 37, 38, 42, 43, 44, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 62], "u": [1, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 26, 31, 32, 33, 34, 37, 38, 39, 42, 43, 44, 45, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "about": [1, 3, 5, 6, 7, 9, 13, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 32, 33, 34, 36, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 55, 56, 57, 58, 59, 60, 61, 62], "mistak": [1, 7, 19, 21, 56, 58, 59], "some": [1, 3, 4, 6, 7, 8, 9, 10, 13, 14, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 36, 37, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "awkward": [1, 40], "word": [1, 14, 17, 20, 25, 41, 43, 47, 49, 54, 55, 56, 57, 58, 59, 60], "factual": 1, "error": [1, 3, 4, 5, 6, 7, 10, 13, 21, 23, 25, 26, 27, 34, 40, 42, 44, 55, 56, 57, 58, 59, 62], "good": [1, 3, 4, 5, 6, 7, 8, 10, 12, 19, 20, 21, 24, 25, 29, 34, 35, 36, 41, 43, 52, 54, 56, 57, 58, 61], "introduc": [1, 4, 10, 14, 16, 23, 25, 26, 32, 55, 59], "yourself": [1, 20, 24, 26, 38, 41, 42, 44, 49, 53, 57, 58, 62], "meet": 1, "If": [1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 32, 34, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 53, 54, 55, 56, 57, 58, 59, 60, 62], "account": [1, 12, 13, 18, 23, 25, 55, 61], "write": [1, 3, 4, 6, 10, 13, 14, 17, 20, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 34, 35, 41, 42, 43, 47, 48, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "convenor": 1, "email": [1, 18, 25, 54], "howev": [1, 4, 5, 6, 7, 8, 10, 11, 14, 16, 17, 20, 23, 27, 28, 32, 36, 38, 39, 42, 43, 44, 47, 52, 54, 55, 56, 57, 58, 60, 61, 62], "abl": [1, 4, 12, 14, 21, 24, 27, 28, 32, 34, 39, 41, 43, 52, 59, 61, 62], "respond": [1, 4, 6], "quickli": [1, 10, 25, 41, 54, 58, 62], "method": [1, 3, 4, 5, 6, 7, 10, 12, 13, 14, 15, 16, 27, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 49, 55, 60], "describ": [1, 11, 13, 14, 28, 30, 42, 44, 56, 57], "below": [1, 3, 4, 7, 10, 12, 18, 20, 21, 25, 26, 29, 34, 55, 56, 57, 58, 60], "willing": 1, "creat": [1, 4, 5, 6, 7, 8, 11, 13, 14, 15, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 34, 36, 38, 39, 41, 42, 43, 44, 45, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "know": [1, 4, 5, 6, 11, 12, 14, 20, 25, 26, 33, 34, 36, 41, 42, 44, 46, 48, 49, 54, 55, 56, 57, 58, 59, 62], "git": [1, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 44, 55, 60, 62], "problem": [1, 4, 7, 10, 12, 14, 16, 20, 21, 26, 29, 32, 35, 36, 38, 41, 55, 57, 58, 59, 60, 62], "suggest": [1, 2, 10, 24, 44, 56], "improv": [1, 6, 7, 10, 12, 25, 44, 54, 58, 59, 61], "allow": [1, 3, 6, 10, 11, 12, 14, 15, 17, 20, 21, 23, 24, 25, 26, 27, 29, 31, 33, 38, 39, 43, 44, 48, 49, 52, 54, 55, 56, 57, 58, 59, 61, 62], "assign": [1, 4, 12, 25, 27, 32, 35, 37, 39, 42, 43, 44, 47, 52, 54, 58], "item": [1, 5, 12, 34, 38, 41, 42, 44, 58, 62], "someon": [1, 20, 23, 25, 26, 29, 41, 43, 54, 56, 57, 62], "thread": [1, 9, 10, 23, 24, 25, 26, 44, 62], "discuss": [1, 6, 19, 20, 22, 26, 28, 29, 31, 32, 53], "comfort": [1, 32, 35, 41], "would": [1, 4, 7, 10, 12, 17, 20, 21, 22, 23, 24, 25, 29, 36, 39, 42, 43, 44, 46, 51, 52, 55, 56, 57, 58, 59, 60, 61, 62], "like": [1, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "add": [1, 3, 4, 5, 6, 11, 13, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 32, 33, 36, 39, 43, 48, 49, 54, 55, 56, 59, 62], "pr": 1, "instruct": [1, 13, 23, 32, 51, 56, 58], "There": [1, 4, 5, 6, 7, 13, 14, 20, 28, 32, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 52, 53, 54, 55, 56, 57, 58, 60, 62], "mani": [1, 4, 6, 10, 11, 12, 14, 16, 17, 18, 22, 24, 25, 28, 29, 34, 35, 36, 37, 39, 41, 42, 43, 44, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62], "exercis": [1, 4, 5, 6, 7, 8, 11, 13, 23, 25, 36, 54, 56, 57, 58], "ones": [1, 4, 8, 12, 14, 23, 26, 34, 39, 41, 49, 54, 58, 60, 62], "fill": [1, 6, 11, 16, 25, 43, 55, 56, 57, 62], "thing": [1, 3, 4, 6, 7, 11, 12, 13, 14, 16, 18, 20, 21, 23, 25, 26, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 55, 56, 57, 58, 59, 61, 62], "clear": [1, 5, 29, 36, 43], "miss": [1, 5, 7, 21, 23, 39, 49, 57, 61], "look": [1, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 19, 20, 21, 22, 23, 24, 25, 26, 28, 31, 32, 34, 36, 37, 38, 42, 43, 44, 46, 52, 54, 55, 56, 57, 58, 60, 62], "idea": [1, 4, 5, 7, 14, 16, 19, 21, 25, 28, 41, 43, 55, 57, 58, 60], "pleas": [1, 7, 10, 12, 13, 18, 30, 32, 44, 60], "see": [1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 32, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62], "tab": [1, 23, 24, 25, 26, 27, 32, 34, 46, 47, 50, 55, 58, 61], "list": [1, 3, 4, 7, 18, 19, 20, 21, 22, 25, 29, 32, 33, 34, 35, 36, 37, 38, 43, 44, 46, 47, 48, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62], "associ": [1, 2, 18, 23, 43, 55], "repositori": [1, 17, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 44], "also": [1, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62], "particularli": [1, 35, 43, 52, 56, 62], "easi": [1, 3, 5, 7, 8, 13, 15, 21, 28, 30, 42, 57, 58, 60, 62], "suitabl": [1, 4, 20, 21, 27, 39], "first": [1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 16, 18, 20, 21, 23, 25, 26, 27, 31, 32, 33, 34, 35, 36, 40, 42, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62], "just": [1, 3, 4, 5, 6, 7, 10, 13, 15, 16, 17, 18, 19, 20, 21, 23, 25, 26, 27, 33, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "smarter": 1, "togeth": [1, 4, 11, 16, 21, 36, 38, 39, 54, 55, 57, 60, 61], "than": [1, 3, 5, 6, 10, 12, 14, 16, 17, 20, 21, 23, 24, 25, 28, 33, 35, 36, 37, 39, 43, 44, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "own": [1, 4, 10, 12, 18, 20, 21, 23, 24, 25, 27, 28, 29, 33, 38, 41, 43, 44, 47, 48, 55, 60], "novic": [1, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 55, 56, 57, 58, 59, 60, 61], "newcom": [1, 32], "valuabl": 1, "been": [1, 6, 7, 8, 12, 15, 16, 17, 20, 21, 23, 24, 25, 35, 36, 39, 43, 45, 47, 54, 55, 56, 57, 58, 61, 62], "while": [1, 4, 5, 6, 7, 8, 10, 12, 13, 16, 21, 25, 27, 28, 34, 37, 39, 43, 44, 45, 50, 54, 55, 56, 57, 59, 60, 61], "forget": [1, 5, 6, 18, 21, 23, 53], "impenetr": 1, "so": [1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "fresh": [1, 52, 60], "ey": 1, "alwai": [1, 4, 8, 16, 18, 19, 20, 22, 25, 33, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 54, 55, 56, 57, 59, 60, 61, 62], "choos": [1, 7, 10, 12, 14, 18, 20, 29, 34, 43, 49, 58], "via": [1, 5, 12, 20, 22, 25, 34, 44, 52, 55], "want": [1, 4, 6, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 33, 34, 36, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "To": [1, 3, 4, 5, 6, 7, 11, 12, 13, 14, 19, 20, 23, 24, 25, 26, 27, 30, 32, 33, 39, 44, 47, 48, 51, 52, 53, 54, 55, 56, 57, 59, 60, 62], "manag": [1, 16, 17, 26, 29, 32, 54, 55, 61], "flow": [1, 11, 16, 32, 34, 57], "each": [1, 6, 7, 8, 10, 11, 12, 14, 17, 19, 20, 21, 23, 25, 26, 27, 29, 38, 39, 41, 42, 43, 45, 54, 55, 56, 57, 58, 59, 60, 61, 62], "ha": [1, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 36, 38, 39, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "two": [1, 3, 4, 5, 7, 8, 11, 12, 14, 16, 17, 20, 21, 22, 23, 25, 26, 32, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62], "encourag": [1, 32, 47], "volunt": 1, "final": [1, 4, 7, 10, 14, 22, 24, 25, 28, 42, 43, 51, 54, 55, 57, 58, 59, 60, 62], "sai": [1, 4, 13, 14, 21, 22, 23, 24, 25, 33, 41, 43, 44, 48, 49, 54, 55, 56, 57, 59], "over": [1, 4, 10, 11, 12, 13, 15, 16, 20, 23, 24, 25, 32, 34, 35, 37, 38, 42, 43, 44, 47, 50, 58, 59], "merg": [1, 2, 7, 17, 24, 26, 31, 32, 62], "web": [1, 6, 12, 16, 23, 25, 27, 28, 29, 39, 55, 62], "interfac": [1, 6, 8, 11, 24, 25, 27, 32, 36, 39, 40, 56, 60], "fork": [1, 24, 31, 32], "origin": [1, 6, 8, 10, 13, 14, 16, 23, 24, 26, 27, 31, 32, 42, 55, 57, 58, 60, 62], "profil": [1, 3, 13], "within": [1, 7, 14, 17, 19, 20, 27, 42, 44, 46, 53, 54, 55, 58, 59, 60, 62], "move": [1, 10, 19, 20, 21, 23, 34, 51, 55, 56, 58, 62], "gh": 1, "page": [1, 7, 18, 20, 23, 24, 25, 27, 28, 32, 50, 53, 55, 57, 60, 61], "branch": [1, 19, 20, 21, 22, 23, 24, 25, 26], "signific": [1, 6, 7, 10, 13, 16], "being": [1, 4, 14, 20, 21, 22, 25, 26, 27, 28, 29, 32, 35, 44, 47, 54, 56, 57, 58, 60, 61, 62], "made": [1, 2, 13, 17, 20, 21, 23, 24, 25, 26, 29, 31, 39, 42, 44, 56, 59, 60, 62], "navig": [1, 20, 32, 34, 56, 61], "": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 58, 59, 60, 62], "wish": [1, 15, 18, 56], "revis": [1, 20, 28, 55], "requir": [1, 6, 10, 12, 16, 27, 28, 29, 32, 36, 37, 38, 42, 54, 55, 56, 57, 58, 60, 62], "appropri": [1, 2, 7, 12, 14, 20, 25, 26, 28, 43, 46, 62], "individu": [1, 14], "receiv": [1, 7, 25, 57, 58], "feedback": [1, 10, 12, 28], "specif": [1, 4, 6, 10, 20, 21, 22, 24, 32, 34, 35, 38, 42, 43, 44, 50, 52, 54, 55, 60, 61, 62], "automat": [1, 4, 24, 26, 27, 29, 31, 32, 33, 34, 36, 39, 41, 43, 47, 48, 50, 55, 61, 62], "repeat": [1, 13, 24, 49, 54, 58, 59, 61], "need": [1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 38, 39, 42, 43, 44, 47, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "until": [1, 4, 6, 12, 21, 27, 38, 39, 42, 54, 60, 61], "when": [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 33, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "sure": [1, 11, 12, 13, 19, 20, 23, 24, 25, 32, 36, 37, 38, 42, 54, 55, 56, 57, 58, 59, 60], "clone": [1, 24, 26, 31, 32, 44], "up": [1, 4, 7, 8, 15, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 31, 32, 34, 37, 38, 42, 44, 47, 50, 52, 54, 55, 56, 57, 58, 59, 61, 62], "date": [1, 20, 21, 23, 25, 30, 44, 52, 55, 60, 62], "befor": [1, 4, 6, 10, 13, 17, 18, 20, 21, 24, 25, 26, 27, 28, 34, 36, 39, 41, 42, 43, 44, 55, 56, 57, 58, 59, 60, 62], "e": [1, 4, 6, 7, 8, 12, 13, 14, 15, 18, 20, 21, 22, 23, 25, 26, 27, 34, 36, 41, 42, 44, 45, 47, 55, 56, 57, 58, 59, 60, 61, 62], "addition": [1, 27, 31], "onli": [1, 4, 5, 6, 7, 10, 11, 13, 14, 18, 20, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "newli": [1, 20, 22, 56], "lastli": [1, 44], "publish": [1, 2, 28], "copi": [1, 2, 7, 10, 11, 19, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38, 39, 42, 44, 49, 51, 55, 56, 57, 58], "refer": [1, 6, 7, 11, 18, 21, 28, 30, 32, 33, 34, 47, 48, 52, 54, 55, 56, 58, 59, 60, 62], "inform": [1, 6, 13, 15, 16, 18, 19, 20, 23, 24, 25, 28, 29, 32, 33, 39, 41, 43, 47, 48, 51, 54, 55, 56, 57, 59, 60, 62], "home": [1, 19, 23, 26, 44, 52, 55, 56, 57, 58, 60], "creativ": [2, 29, 62], "common": [2, 3, 4, 6, 10, 21, 23, 24, 25, 27, 29, 35, 37, 39, 42, 49, 54, 58, 60, 61], "attribut": [2, 5, 11, 15, 29, 36, 42, 60], "human": [2, 5, 23, 54, 55, 56, 58, 61], "readabl": [2, 5, 15, 23, 34, 37, 41, 42, 43, 44, 54, 55, 60], "summari": [2, 20, 62], "substitut": [2, 58, 62], "full": [2, 10, 13, 20, 21, 23, 26, 27, 36, 42, 55, 56, 57, 60, 62], "legal": [2, 29], "text": [2, 3, 6, 7, 11, 12, 14, 18, 20, 21, 23, 26, 32, 34, 35, 44, 47, 49, 50, 55, 56, 57, 58, 59, 60, 61, 62], "cc": [2, 10, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 55, 56, 57, 58, 59, 60, 61], "BY": [2, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 55, 56, 57, 58, 59, 60, 61], "4": [2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 34, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 55, 56, 57, 58, 59, 60, 61, 62], "share": [2, 3, 7, 8, 10, 13, 14, 22, 23, 26, 27, 28, 29, 31, 32, 54, 55, 62], "ani": [2, 4, 5, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 32, 34, 38, 39, 41, 42, 43, 44, 45, 47, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "medium": 2, "format": [2, 6, 20, 23, 32, 35, 37, 41, 43, 44, 48, 55, 57, 59, 60], "remix": 2, "transform": [2, 8, 57], "build": [2, 10, 13, 16, 21, 25, 27, 40, 42, 44, 46, 57, 58, 60, 61, 62], "upon": 2, "purpos": [2, 7, 9, 13, 20, 28, 31, 43, 56, 57, 58], "even": [2, 6, 10, 12, 14, 17, 20, 21, 25, 26, 29, 31, 33, 34, 35, 36, 39, 42, 43, 44, 48, 49, 52, 54, 55, 56, 57, 60, 61, 62], "commerci": [2, 29], "licensor": 2, "cannot": [2, 7, 12, 25, 26, 34, 38, 42, 44, 55, 56, 58, 62], "revok": 2, "freedom": 2, "long": [2, 3, 17, 18, 20, 21, 33, 37, 44, 47, 48, 49, 52, 55, 60, 61, 62], "term": [2, 10, 20, 25, 45, 55, 60], "must": [2, 4, 21, 25, 26, 29, 37, 38, 39, 41, 42, 43, 44, 51, 54, 55, 56, 57, 59, 62], "give": [2, 4, 5, 6, 7, 10, 11, 16, 24, 25, 26, 32, 38, 39, 42, 43, 44, 45, 49, 55, 57, 58, 59, 60, 62], "credit": [2, 47], "provid": [2, 4, 5, 6, 10, 11, 12, 13, 15, 16, 23, 25, 27, 29, 39, 41, 43, 44, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62], "link": [2, 23, 24, 25, 28, 32, 50, 55, 60], "indic": [2, 10, 23, 34, 38, 42, 49, 55, 56, 57], "were": [2, 6, 10, 14, 21, 22, 23, 24, 26, 27, 43, 57, 58, 59, 60, 62], "reason": [2, 12, 14, 18, 20, 23, 28, 42, 45, 49, 54, 59, 62], "manner": [2, 38], "endors": 2, "No": [2, 4, 6, 7, 12, 37, 43, 54, 55, 56, 58], "addit": [2, 5, 20, 23, 25, 26, 27, 32, 34, 38, 44, 46, 50, 54, 55, 56, 57, 58, 59, 61, 62], "restrict": [2, 6, 23, 29, 38, 42, 44, 60], "appli": [2, 5, 7, 10, 11, 13, 15, 16, 21, 29, 32, 35, 43, 55, 58], "technolog": 2, "measur": [2, 6, 12, 13, 58, 61, 62], "anyth": [2, 4, 13, 20, 25, 26, 28, 31, 33, 38, 42, 43, 47, 48, 55, 56, 57, 58, 59, 62], "permit": 2, "notic": [2, 19, 20, 21, 22, 34, 44, 49, 54, 55, 56, 60, 62], "compli": 2, "element": [2, 4, 34, 42, 43, 44, 55, 56, 58], "domain": 2, "where": [2, 3, 5, 6, 7, 8, 10, 12, 14, 18, 19, 20, 21, 23, 25, 26, 27, 28, 34, 35, 36, 42, 43, 44, 45, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "applic": [2, 3, 9, 12, 55], "except": [2, 5, 6, 13, 16, 22, 23, 25, 32, 44, 47, 55, 56, 57], "limit": [2, 10, 11, 13, 14, 17, 20, 25, 32, 55, 58, 60], "warranti": 2, "given": [2, 4, 8, 12, 13, 14, 20, 21, 22, 25, 26, 28, 36, 42, 43, 44, 45, 54, 55, 56, 57, 58, 59, 60, 62], "permiss": [2, 6, 24, 25, 29, 54, 55, 60], "necessari": [2, 26, 42, 44, 55, 61], "intend": [2, 31, 47], "For": [2, 4, 5, 6, 7, 9, 10, 12, 13, 17, 18, 20, 22, 24, 28, 32, 34, 36, 37, 39, 42, 43, 44, 45, 46, 47, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "privaci": 2, "moral": 2, "how": [2, 3, 4, 6, 7, 8, 10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 35, 38, 41, 42, 43, 44, 45, 46, 48, 49, 54, 55, 56, 58, 59, 60, 61, 62], "note": [2, 3, 4, 6, 13, 18, 19, 20, 23, 24, 25, 26, 32, 37, 38, 42, 43, 44, 47, 51, 53, 55, 56, 57, 58, 59, 60, 61, 62], "program": [2, 4, 18, 20, 22, 28, 32, 33, 35, 36, 38, 41, 44, 46, 47, 48, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61], "carpentri": [2, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 50, 55, 56, 57, 58, 59, 60, 61], "osi": 2, "approv": [2, 29], "mit": 2, "herebi": [2, 25, 36], "grant": [2, 29], "charg": [2, 15, 31], "obtain": [2, 6, 9, 11, 12, 13, 14, 16, 28, 33, 48, 51, 60], "deal": [2, 11, 17, 46, 57], "without": [2, 3, 5, 6, 9, 10, 11, 12, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 29, 33, 36, 39, 42, 44, 45, 48, 49, 51, 55, 56, 57, 58, 59, 60, 62], "modifi": [2, 20, 21, 22, 25, 26, 27, 28, 31, 33, 39, 42, 44, 48, 49, 54, 58, 59, 60, 62], "distribut": [2, 7, 10, 13, 16, 17, 25, 28, 29, 31, 32, 39, 40, 44, 47, 62], "sublicens": 2, "sell": 2, "whom": 2, "furnish": 2, "subject": [2, 14, 62], "condit": [2, 13, 14, 29, 32, 35, 44, 50], "abov": [2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 19, 21, 24, 26, 28, 32, 34, 36, 39, 42, 43, 44, 47, 52, 54, 55, 56, 58, 60, 62], "copyright": [2, 29, 47], "shall": [2, 14], "substanti": [2, 62], "portion": [2, 20], "THE": 2, "AS": 2, "OF": 2, "OR": [2, 13], "impli": [2, 10, 55], "BUT": 2, "NOT": [2, 4, 36], "TO": 2, "merchant": 2, "fit": [2, 7, 8, 9, 10, 11, 12, 13, 15, 16, 20, 32, 35, 40], "FOR": 2, "A": [2, 3, 4, 5, 7, 10, 11, 12, 14, 17, 21, 23, 24, 25, 26, 27, 28, 29, 34, 36, 38, 39, 40, 42, 43, 47, 49, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62], "particular": [2, 14, 17, 20, 23, 27, 35, 37, 44, 54, 56, 60], "AND": [2, 13, 14], "noninfring": 2, "IN": 2, "NO": 2, "event": [2, 6, 7, 12, 16, 39, 59], "author": [2, 11, 17, 20, 21, 25, 26, 30, 55], "holder": [2, 29], "BE": 2, "liabl": 2, "claim": [2, 62], "damag": 2, "liabil": 2, "whether": [2, 4, 7, 25, 29, 34, 37, 38, 44, 54, 58, 62], "action": [2, 4, 26, 33, 39, 42, 48, 62], "contract": [2, 60], "tort": 2, "aris": [2, 58], "out": [2, 3, 4, 5, 6, 7, 10, 12, 16, 20, 21, 22, 23, 24, 25, 26, 28, 29, 33, 34, 39, 41, 42, 43, 44, 46, 47, 48, 51, 52, 53, 55, 57, 59, 60, 61, 62], "connect": [2, 3, 23, 25, 36, 52, 53, 55, 57], "WITH": 2, "advanc": [3, 6, 7, 9, 10, 12, 13, 32, 34, 35, 50, 60], "python": [3, 5, 6, 7, 9, 10, 11, 12, 13, 15, 21, 27, 29, 32, 33, 36, 37, 38, 39, 42, 43, 45, 46, 48, 49, 62], "tutori": [3, 4, 5, 6, 10, 15, 31, 32, 34, 54, 55], "cover": [3, 4, 6, 16, 20, 22, 34, 36, 50, 55, 56, 61], "skill": [3, 32, 61], "tip": [3, 23, 26, 56], "load": [3, 4, 7, 8, 10, 11, 15, 16, 32, 44, 52, 62], "data": [3, 7, 8, 10, 11, 13, 14, 15, 16, 22, 28, 32, 35, 38, 39, 42, 54, 55, 56, 57, 58, 59, 60, 61, 62], "plot": [3, 8, 9, 10, 12, 14, 15, 16, 22, 27, 32, 35], "matplotlib": [3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 27, 32, 39, 40, 44], "cut": [3, 7, 8, 10, 11, 13, 14, 15, 16, 32, 35, 57, 59, 60], "base": [3, 7, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 36, 39, 40, 44, 55, 56, 57, 58, 59, 60, 61, 62], "selction": 3, "multivari": [3, 12, 16, 32], "analysi": [3, 8, 10, 11, 13, 14, 15, 16, 22, 28, 35, 39, 49, 56, 57, 58, 59], "scikit": [3, 6, 7, 8, 10, 11, 16, 32], "learn": [3, 7, 8, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 52, 55, 56, 57, 58, 59, 60, 61, 62], "uboost": [3, 9], "hep_ml": [3, 9, 12, 14, 32], "neural": [3, 16], "network": [3, 16], "demo": [3, 61], "mutivari": 3, "kinemat": 3, "reweight": [3, 16, 32], "splot": [3, 12, 16, 32], "techniqu": [3, 7, 8, 14, 16, 42, 58, 60], "mutabl": [3, 4, 7, 32, 35, 38, 42, 43], "immut": [3, 34, 38, 49], "object": [3, 4, 5, 6, 7, 10, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 47, 49, 52, 55, 56, 57, 58, 59, 60, 61, 62], "dictionari": [3, 6, 10, 11, 32, 34, 35, 37, 41, 43, 62], "comprehens": [3, 32, 35, 37, 38, 43, 55, 57, 59, 60, 62], "notebook": [3, 7, 9, 10, 13, 14, 15, 16, 28, 29, 32, 34, 39, 47], "moduel": 3, "let": [3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 34, 35, 36, 42, 43, 44, 45, 47, 48, 52, 54, 55, 56, 57, 59, 60, 62], "compar": [3, 7, 9, 10, 16, 18, 20, 21, 24, 25, 32, 34, 37, 38, 39, 46, 54, 59, 61], "string": [3, 4, 5, 10, 12, 15, 21, 23, 26, 32, 34, 35, 37, 38, 42, 43, 53, 54, 55, 59, 60, 62], "tupl": [3, 32, 34, 35, 37, 38, 43, 62], "what": [3, 4, 5, 6, 7, 8, 11, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61], "happen": [3, 5, 8, 16, 17, 20, 21, 23, 26, 35, 38, 42, 43, 44, 45, 47, 52, 54, 55, 56, 57, 58, 59, 60, 62], "run": [3, 4, 9, 10, 13, 18, 19, 20, 21, 23, 24, 25, 27, 32, 33, 34, 35, 37, 38, 39, 42, 43, 48, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61], "b": [3, 4, 5, 7, 8, 10, 14, 15, 20, 21, 22, 34, 38, 39, 42, 43, 45, 49, 51, 52, 54, 55, 57, 58, 59, 62], "c": [3, 4, 13, 14, 18, 22, 27, 34, 35, 37, 38, 39, 42, 43, 44, 49, 53, 55, 56, 57, 58, 60, 62], "hello": [3, 4, 5, 34, 42, 54, 57, 58, 60], "print": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 20, 21, 25, 26, 33, 34, 37, 38, 39, 41, 42, 43, 44, 47, 48, 49, 53, 54, 55, 57, 58, 59, 60, 61, 62], "39": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 34], "2": [3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 52, 54, 55, 57, 58, 59, 60, 61], "3": [3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 24, 25, 26, 32, 34, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 49, 52, 55, 57, 58, 59, 60], "foo": [3, 34, 41, 43, 62], "bar": [3, 7, 14, 20, 24, 41, 43, 53, 57, 62], "n": [3, 11, 14, 16, 18, 20, 32, 34, 38, 49, 53, 54, 55, 57, 58, 59, 60, 62], "10": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 20, 21, 25, 26, 32, 34, 36, 39, 41, 42, 43, 45, 47, 49, 52, 53, 55, 57, 59, 60, 62], "list_of_squar": [3, 34], "rang": [3, 6, 7, 8, 10, 12, 13, 14, 15, 34, 38, 42, 43, 44, 59, 61, 62], "sum_of_squar": [3, 34], "sum": [3, 7, 12, 14, 34, 42, 43], "squar": [3, 7, 8, 9, 10, 34, 42, 43], "285": [3, 34], "5": [3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 26, 32, 34, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 54, 55, 56, 57, 58, 59, 60], "9": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 23, 32, 34, 36, 39, 42, 47, 57, 59, 60], "16": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 34, 36, 39, 42, 46, 47, 52, 59], "25": [3, 4, 5, 6, 7, 10, 11, 14, 34, 38, 39, 47, 58, 60, 62], "6": [3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 23, 26, 32, 34, 36, 39, 42, 43, 47, 49, 57, 60], "36": [3, 4, 34, 52], "7": [3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 27, 32, 33, 34, 36, 38, 39, 42, 44, 47, 48, 55, 59, 60], "49": [3, 4, 12, 34], "8": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 25, 26, 32, 34, 36, 39, 42, 43, 47, 49, 55, 57, 60], "64": [3, 6, 10, 12, 18, 34, 43, 62], "81": [3, 13, 34, 42, 58], "inlin": [3, 12, 32, 34, 35], "latex": [3, 6, 7, 10, 27, 34], "frac": [3, 7, 8, 10, 12, 13, 14, 34], "show": [3, 6, 7, 10, 13, 14, 19, 20, 21, 23, 24, 25, 26, 33, 34, 37, 39, 43, 44, 47, 48, 52, 54, 55, 56, 57, 58, 59, 60], "wonder": [3, 34], "syntax": [3, 6, 34, 37, 42, 43, 44, 46, 49, 52, 54, 57, 60, 62], "highlight": [3, 20, 26, 34, 42], "sad": [3, 34], "grei": [3, 7, 8, 9, 10, 34], "world": [3, 4, 23, 34, 41, 47, 54, 60], "iostream": [3, 34], "std": [3, 34], "cout": [3, 34], "endl": [3, 34], "bash": [3, 20, 32, 34, 39, 47, 50, 51, 55, 57, 58, 59, 60, 61, 62], "echo": [3, 25, 26, 27, 34, 54, 57, 58, 59, 60, 62], "f": [3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 21, 22, 32, 33, 34, 36, 39, 44, 49, 51, 53, 54, 55, 56, 57, 59, 60, 62], "pt_cut": [3, 34], "1789": [3, 34], "234567890987654": [3, 34], "eta_low": [3, 34], "eta_high": [3, 34], "cut_str": [3, 34], "pt": [3, 6, 15, 34, 52], "2f": [3, 7, 8, 9, 10, 34], "eta": [3, 6, 10, 11, 15, 34], "gt": [3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 34, 54], "23": [3, 4, 5, 6, 7, 10, 11, 13, 14, 34, 39, 47, 57], "amp": [3, 34], "lt": [3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 34, 54, 55], "veri": [3, 4, 8, 10, 12, 14, 20, 21, 22, 23, 25, 26, 27, 31, 38, 39, 41, 42, 43, 47, 52, 53, 54, 55, 56, 57, 60, 62], "try": [3, 4, 5, 6, 7, 10, 14, 19, 20, 21, 23, 25, 26, 28, 29, 33, 39, 41, 42, 43, 44, 46, 48, 52, 54, 55, 56, 57, 58, 60, 62], "faster": [3, 7, 8, 32, 38, 55], "cell": [3, 4, 7, 10, 34, 47, 60], "return": [3, 4, 5, 6, 7, 10, 11, 13, 14, 18, 19, 27, 33, 34, 36, 38, 41, 42, 43, 44, 45, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62], "valu": [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 54, 58, 59, 60], "which": [3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "shown": [3, 10, 19, 20, 33, 39, 48, 56, 60], "after": [3, 4, 7, 14, 16, 20, 21, 22, 25, 26, 31, 32, 33, 42, 43, 44, 48, 52, 54, 55, 56, 57, 58, 59, 61, 62], "finish": [3, 4, 20, 26, 33, 48, 49, 57, 58, 60, 62], "rune": 3, "none": [3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 22, 36, 37, 43, 49, 55, 58, 59, 60, 62], "starterkitt": 3, "shell": [3, 20, 23, 32, 33, 41, 44, 45, 47, 48, 51, 53, 55, 56, 57, 58, 60, 62], "command": [3, 11, 18, 19, 20, 21, 23, 24, 25, 26, 27, 32, 33, 34, 35, 39, 41, 43, 44, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62], "l": [3, 6, 13, 14, 19, 20, 26, 27, 38, 39, 41, 43, 47, 52, 54, 55, 56, 57, 58, 59, 60, 62], "10basic": 3, "ipynb": 3, "33modeltun": 3, "11advancedpython": 3, "40histogram": 3, "12advancedclass": 3, "45demoreweight": 3, "20dataandplot": 3, "50likelihoodinfer": 3, "30classif": 3, "60splot": 3, "31classificationextens": 3, "70scikithepunivers": 3, "32boostingtouniform": 3, "readm": [3, 25], "md": [3, 60], "11": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 32, 34, 36, 39, 45, 47, 52, 55, 57, 58, 59, 60, 62], "wget": [3, 32, 61, 62], "com": [3, 10, 12, 17, 20, 26, 29, 31, 32, 54, 62], "index": [3, 4, 6, 10, 11, 14, 16, 20, 21, 32, 34, 38, 42, 44, 55, 62], "html": [3, 6, 7, 8, 10, 13, 43], "2024": 3, "02": [3, 11, 52, 58], "06": [3, 4, 13, 57, 59, 60, 62], "00": [3, 10, 11, 25, 57, 59], "26": [3, 4, 5, 7, 11, 13, 14, 34, 39, 47, 52, 57, 62], "51": [3, 6, 12, 20, 34], "resolv": [3, 26], "93": 3, "184": 3, "216": 3, "34": [3, 4, 10, 13, 15, 34, 42], "2606": 3, "2800": 3, "220": 3, "248": 3, "1893": 3, "25c8": 3, "1946": 3, "443": 3, "sent": [3, 57], "await": 3, "200": [3, 13, 14, 36], "ok": [3, 25, 29, 33, 36, 37, 48, 55, 61], "length": [3, 42, 43, 57, 59], "1256": 3, "2k": 3, "save": [3, 10, 17, 20, 21, 31, 32, 54, 56, 57, 58, 59, 60, 62], "kb": [3, 54, 55], "100": [3, 6, 7, 8, 10, 12, 14, 23, 24, 25, 26, 36, 39, 58, 62], "23k": 3, "82": 3, "mb": [3, 54, 55], "pre": [3, 13, 25, 47, 62], "end": [3, 4, 7, 8, 10, 12, 13, 14, 17, 18, 20, 21, 22, 24, 25, 26, 27, 29, 31, 37, 38, 42, 43, 44, 47, 49, 52, 55, 57, 58, 59, 60, 61, 62], "sphinxverbatim": 3, "time": [3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 18, 20, 21, 23, 25, 26, 27, 28, 29, 31, 33, 34, 36, 39, 41, 42, 44, 47, 48, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "someth": [3, 4, 6, 8, 12, 22, 23, 25, 26, 28, 34, 36, 37, 42, 43, 45, 46, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62], "take": [3, 4, 6, 7, 9, 10, 12, 13, 14, 20, 24, 26, 27, 33, 36, 37, 39, 41, 42, 43, 46, 48, 55, 58, 59, 60, 61, 62], "line": [3, 4, 6, 7, 13, 14, 18, 20, 21, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 62], "12": [3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 34, 36, 39, 47, 55, 57, 59], "10000": [3, 13, 14], "cpu": [3, 10], "user": [3, 6, 11, 17, 18, 20, 23, 25, 27, 29, 39, 43, 44, 47, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62], "482": 3, "\u00b5": 3, "sy": [3, 33, 40, 44, 48], "112": [3, 59], "total": [3, 6, 12, 13, 14, 23, 24, 25, 26, 39, 43, 57, 60, 62], "594": 3, "wall": 3, "598": 3, "333283335000": 3, "entir": [3, 19, 20, 26, 27, 28, 55, 56, 57], "13": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 34, 36, 39, 47, 59], "35": [3, 4, 11, 34], "m": [3, 6, 13, 14, 15, 19, 20, 21, 22, 24, 25, 26, 39, 53, 55, 62], "longer": [3, 10, 20, 21, 26, 51, 52, 54, 55, 58, 59, 60], "expect": [3, 13, 14, 26, 29, 35, 42, 55, 56, 58, 59, 60, 62], "find": [3, 7, 8, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 37, 41, 42, 43, 46, 49, 50, 52, 54, 55, 56, 57, 58, 59, 61, 62], "spend": [3, 41], "mayb": [3, 4, 5, 13, 20, 24, 34, 60], "skip": [3, 14, 55], "prun": 3, "cumtim": 3, "np": [3, 6, 7, 8, 10, 11, 12, 13, 14, 36, 39, 44, 45], "sqrt": [3, 6, 7, 8, 10, 15, 36, 39, 43, 45, 47], "100000": [3, 14, 39], "question": [3, 6, 7, 8, 21, 24, 28, 31, 32, 41, 55, 57, 59, 61, 62], "mark": [3, 26, 27, 41, 47, 49, 55, 57, 58, 59, 62], "14": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 20, 34, 36, 39, 45, 47, 59], "def": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 33, 36, 41, 43, 44, 48], "my_print": 3, "my_str": 3, "15": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 34, 36, 39, 47, 52, 57, 59, 62], "function": [3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 24, 32, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 51, 57, 62], "17": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 34, 36, 39, 47, 57, 59], "done": [3, 6, 7, 8, 11, 13, 15, 20, 23, 24, 25, 26, 33, 39, 44, 45, 46, 47, 48, 53, 54, 57, 58, 59, 60, 61, 62], "actual": [3, 5, 8, 12, 15, 16, 18, 20, 22, 25, 27, 33, 34, 36, 37, 44, 48, 51, 54, 55, 57, 58, 59, 60, 61, 62], "sometim": [3, 4, 13, 20, 22, 25, 27, 34, 37, 39, 44, 46, 47, 54, 55, 57, 60, 61, 62], "junk": 3, "variabl": [3, 4, 7, 8, 10, 12, 13, 14, 15, 16, 32, 35, 37, 39, 42, 43, 44, 46, 47, 49, 50, 55, 58, 59], "18": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 34, 36, 39, 42, 47, 56, 57, 59, 62], "found": [3, 5, 10, 12, 13, 16, 25, 34, 37, 38, 42, 44, 50, 54, 55, 57, 60, 61, 62], "19": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 34, 36, 39, 42, 47, 55, 57, 59, 60], "dict": [3, 4, 14, 15, 34, 36, 37, 38, 43], "kei": [3, 4, 6, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 37, 39, 41, 43, 47, 51, 55, 56, 57, 58, 59, 60, 61, 62], "default": [3, 5, 8, 10, 11, 13, 14, 16, 18, 24, 25, 34, 39, 42, 43, 44, 45, 47, 51, 55, 56, 57, 59, 60, 61, 62], "20": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 26, 30, 34, 36, 39, 42, 47, 52, 54, 56, 57, 58, 59], "It": [3, 4, 6, 7, 8, 12, 13, 15, 17, 18, 20, 21, 23, 24, 26, 28, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 54, 55, 57, 58, 59, 60, 61, 62], "practic": [3, 5, 6, 10, 14, 20, 23, 24, 25, 27, 28, 29, 31, 32, 36, 41, 52, 54, 55, 57, 59, 61, 62], "begin": [3, 10, 13, 14, 23, 41, 42, 44, 55, 56, 57, 58, 60, 62], "script": [3, 6, 21, 22, 27, 28, 32, 34, 35, 44, 47, 54, 57, 58, 60, 61], "avoid": [3, 7, 8, 10, 12, 20, 22, 25, 43, 55, 56, 58, 62], "wildcard": [3, 32, 57, 58, 59, 60], "unclear": 3, "come": [3, 5, 6, 7, 13, 16, 20, 22, 23, 24, 25, 33, 34, 36, 41, 43, 44, 45, 46, 47, 48, 55, 56, 59, 60, 62], "math": [3, 11, 14, 38, 42, 44, 46, 47], "now": [3, 4, 5, 6, 7, 10, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 39, 42, 44, 47, 48, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "max": [3, 10, 11, 12, 54, 62], "21": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 20, 21, 34, 36, 39, 47, 57, 59], "22": [3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 20, 21, 23, 34, 39, 47, 57, 59, 60], "numpi": [3, 6, 7, 8, 10, 11, 12, 13, 14, 15, 32, 36, 39, 40, 44, 45, 62], "axiserror": 3, "traceback": [3, 4, 34, 37, 38, 42, 43], "most": [3, 4, 5, 7, 11, 12, 13, 16, 20, 21, 22, 23, 25, 28, 29, 33, 34, 36, 37, 38, 39, 41, 42, 43, 46, 47, 48, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62], "recent": [3, 4, 13, 20, 21, 25, 27, 28, 34, 37, 38, 42, 43, 51, 55, 56, 58, 59, 62], "call": [3, 4, 5, 6, 7, 9, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "last": [3, 4, 10, 13, 16, 19, 20, 21, 23, 34, 36, 37, 38, 42, 43, 53, 54, 55, 56, 57, 58, 59, 60, 61], "usr": [3, 7, 8, 10, 13, 14, 33, 44, 48], "miniconda": [3, 7, 8, 10, 13, 14, 47], "env": [3, 7, 8, 10, 13, 14, 32, 44, 62], "essenti": [3, 7, 8, 10, 11, 13, 14, 47, 61, 62], "lib": [3, 7, 8, 10, 13, 14, 33, 44, 48, 62], "python3": [3, 7, 8, 10, 13, 14], "site": [3, 7, 8, 10, 13, 14, 39, 59, 60], "packag": [3, 6, 7, 8, 10, 13, 14, 15, 16, 27, 32, 39, 44, 47, 61, 62], "core": [3, 10, 13, 18, 20, 55, 62], "fromnumer": 3, "py": [3, 6, 7, 8, 10, 12, 13, 14, 21, 27, 33, 36, 44, 47, 48, 62], "2810": 3, "axi": [3, 6, 7, 8, 9, 10, 14, 16, 32, 39], "keepdim": 3, "initi": [3, 16, 19, 20, 25, 32], "2692": 3, "array_function_dispatch": 3, "_max_dispatch": 3, "2693": 3, "set_modul": 3, "2694": 3, "_novalu": 3, "2695": 3, "2696": 3, "2697": 3, "maximum": [3, 10, 13, 14], "arrai": [3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 34, 39, 40, 42], "along": [3, 9, 25, 27, 35, 38, 47, 54, 55, 56], "2698": 3, "2808": 3, "2809": 3, "_wrapreduct": 3, "2811": 3, "88": [3, 6], "obj": [3, 4, 15, 43], "ufunc": 3, "dtype": [3, 6, 7, 11, 12, 15, 39], "kwarg": [3, 4, 5, 6, 7, 43], "85": 3, "els": [3, 4, 5, 7, 8, 9, 10, 14, 20, 23, 25, 26, 28, 33, 34, 37, 43, 44, 48, 49, 51, 54, 55, 56, 57, 59, 62], "86": [3, 15], "reduct": 3, "passkwarg": 3, "reduc": [3, 9, 10, 12, 13, 20, 25, 26, 58, 62], "bound": 3, "dimens": [3, 7, 15, 16, 32, 42, 60], "abriv": 3, "panda": [3, 6, 7, 10, 12, 14, 15, 16, 32, 35, 40, 44], "pd": [3, 6, 7, 9, 10, 12], "pyplot": [3, 6, 7, 8, 9, 10, 12, 13, 14, 39], "plt": [3, 6, 7, 8, 9, 10, 12, 13, 14, 39], "root": [3, 6, 7, 9, 10, 12, 15, 20, 22, 32, 35, 39, 42, 43, 55, 61, 62], "r": [3, 5, 7, 8, 10, 11, 13, 14, 26, 47, 53, 55, 56, 57, 58, 60, 62], "typial": 3, "nicest": [3, 62], "mixtur": [3, 14], "x": [3, 4, 6, 7, 8, 10, 13, 14, 15, 18, 37, 41, 42, 43, 44, 54, 55, 56, 57, 58, 59, 60, 62], "y": [3, 4, 5, 6, 7, 8, 13, 14, 15, 27, 37, 41, 42, 43, 44, 53, 54, 55, 56, 60], "re": [3, 4, 5, 6, 13, 20, 21, 22, 23, 24, 26, 28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 46, 47, 48, 52, 55, 56, 57, 58, 59, 60], "interest": [3, 4, 12, 13, 16, 20, 27, 33, 34, 35, 39, 42, 45, 46, 48, 54, 62], "best": [3, 6, 7, 8, 10, 13, 19, 25, 29, 31, 32, 35, 36, 37, 39, 41, 47, 49, 57, 61, 62], "style": [3, 6, 15, 26, 41, 44, 55, 59], "offic": [3, 29], "guid": [3, 16, 28, 32, 35, 44, 52], "pep8": [3, 41], "itself": [3, 4, 5, 10, 11, 17, 21, 25, 28, 34, 36, 41, 42, 46, 51, 54, 55, 56, 58, 59, 61], "quit": [3, 9, 12, 23, 33, 36, 37, 41, 45, 48, 49, 52, 54, 55, 56, 57], "autom": [3, 31, 32, 58, 60, 61], "sytl": 3, "checker": 3, "linter": 3, "flake8": [3, 39], "either": [3, 5, 13, 22, 46, 47, 55, 57, 59], "plugin": 3, "favourit": [3, 37, 49, 54], "editor": [3, 18, 20, 22, 29, 32, 35, 43, 50, 56, 59, 60, 62], "care": [3, 4, 6, 7, 12, 13, 14, 19, 25, 32, 33, 48, 51, 54, 56, 57, 58, 59, 62], "though": [3, 5, 6, 10, 12, 16, 23, 28, 34, 37, 39, 51, 56, 58, 59, 60, 61, 62], "occasion": [3, 28], "better": [3, 5, 6, 7, 8, 9, 10, 12, 17, 20, 24, 25, 30, 31, 34, 36, 41, 42, 49, 56, 60, 62], "break": [3, 5, 18, 20, 26, 37, 43, 47, 49, 56, 62], "rule": [3, 5, 16, 22, 32, 42, 43, 56], "easier": [3, 6, 21, 24, 28, 29, 32, 39, 41, 53, 55, 57, 60], "read": [3, 5, 6, 12, 14, 18, 21, 24, 26, 28, 34, 37, 40, 41, 42, 43, 54, 55, 57, 58, 59, 60, 61, 62], "restart": [3, 34], "kernal": 3, "24": [3, 4, 5, 6, 7, 11, 14, 26, 34, 39, 47, 52, 58, 60, 61], "few": [4, 5, 6, 7, 12, 16, 18, 20, 21, 22, 26, 27, 28, 29, 34, 36, 41, 45, 47, 55, 56, 57, 58, 59, 61], "relat": [4, 19, 41, 54, 61, 62], "import": [4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 20, 21, 22, 25, 27, 29, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 45, 47, 48, 54, 56, 60, 62], "thei": [4, 6, 11, 12, 14, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 34, 37, 38, 39, 41, 42, 43, 45, 46, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "act": [4, 13, 25, 28, 43, 46], "parenthesi": 4, "situat": [4, 17, 54, 56, 62], "adder": 4, "left": [4, 5, 7, 14, 25, 27, 34, 46, 52, 57, 58], "assigmenemt": 4, "oper": [4, 5, 7, 18, 22, 32, 35, 37, 39, 41, 42, 44, 45, 49, 54, 55, 56, 57, 58, 59, 60, 61], "plai": [4, 6, 12, 13, 14, 17, 24, 25, 33, 34, 36, 37, 47, 48, 60], "around": [4, 12, 13, 17, 33, 37, 41, 42, 47, 48, 58, 59, 60, 61, 62], "seen": [4, 5, 6, 8, 10, 14, 16, 25, 34, 36, 37, 38, 43, 44, 46, 47, 56, 57, 60], "remain": [4, 20, 34, 54, 60, 62], "special": [4, 5, 6, 12, 13, 16, 19, 20, 26, 27, 42, 44, 46, 47, 49, 55, 56, 58, 59, 61, 62], "case": [4, 5, 6, 7, 8, 12, 13, 16, 20, 21, 23, 25, 27, 32, 39, 42, 43, 44, 46, 47, 54, 55, 56, 57, 58, 59, 60, 62], "d1": 4, "d2": 4, "d3": 4, "d4": 4, "noth": [4, 5, 17, 19, 20, 22, 33, 45, 47, 48, 52, 55, 56, 57, 58, 59, 62], "simpli": [4, 5, 11, 13, 23, 25, 34, 44, 47, 52, 54, 58, 59, 62], "empti": [4, 20, 37, 42, 44, 49, 56, 59, 60, 62], "advantag": [4, 7, 47, 55, 59, 61, 62], "multipl": [4, 6, 7, 10, 16, 17, 20, 22, 32, 33, 36, 37, 42, 43, 44, 46, 48, 53, 55, 56, 60, 62], "ad": [4, 7, 12, 13, 15, 16, 20, 21, 22, 23, 25, 26, 29, 32, 33, 34, 39, 43, 44, 48, 54, 57, 59], "doe": [4, 5, 6, 11, 12, 13, 20, 21, 22, 23, 25, 26, 27, 28, 31, 34, 36, 37, 38, 42, 43, 44, 55, 56, 57, 58, 59, 60, 61, 62], "possibl": [4, 5, 9, 11, 12, 17, 18, 21, 24, 34, 36, 37, 41, 43, 44, 47, 51, 54, 55, 58, 62], "ill": [4, 21], "defin": [4, 7, 8, 10, 12, 13, 14, 22, 27, 33, 34, 37, 38, 42, 43, 44, 48, 49, 54, 59, 62], "d": [4, 5, 14, 23, 29, 34, 38, 41, 42, 43, 44, 47, 51, 52, 53, 55, 57, 59, 60], "g": [4, 8, 10, 12, 13, 15, 20, 21, 22, 23, 26, 34, 36, 41, 42, 45, 47, 53, 54, 55, 56, 59, 60, 62], "h": [4, 6, 7, 11, 15, 18, 23, 33, 39, 48, 53, 54, 55, 59, 60], "should": [4, 5, 6, 11, 14, 19, 20, 21, 23, 24, 25, 26, 27, 29, 32, 35, 36, 37, 39, 41, 42, 43, 44, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62], "understand": [4, 17, 18, 21, 24, 25, 27, 34, 35, 42, 44, 55, 57, 58, 59, 61, 62], "arg": [4, 5, 43, 62], "func": [4, 43], "mykwarg": 4, "myarg": 4, "statement": [4, 6, 29, 37, 42, 43, 44], "basic": [4, 5, 6, 12, 13, 16, 17, 24, 28, 32, 35, 36, 44, 47, 50, 54, 55, 57, 60], "perform": [4, 8, 10, 11, 12, 13, 14, 15, 23, 26, 37, 42, 45, 46, 54, 60, 61, 62], "enter": [4, 6, 18, 19, 21, 24, 32, 33, 34, 39, 47, 48, 49, 54, 55, 57, 58, 61, 62], "again": [4, 6, 8, 10, 14, 20, 21, 22, 25, 26, 27, 33, 34, 36, 38, 42, 43, 47, 48, 49, 51, 52, 54, 55, 56, 58, 59, 60, 61, 62], "exit": [4, 18, 27, 33, 39, 44, 47, 48, 54, 55, 56, 58, 59, 62], "var": [4, 6, 7, 8, 10, 14, 43, 52], "translat": [4, 5, 55, 61], "return_from_context_entering_cod": 4, "leav": [4, 6, 21, 47, 52, 56, 62], "great": [4, 5, 16, 31, 33, 41, 47, 48, 49, 50, 54, 55, 56, 61], "here": [4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 21, 23, 25, 26, 27, 31, 32, 34, 36, 37, 39, 41, 42, 43, 44, 46, 47, 49, 52, 55, 56, 57, 58, 59, 60, 61, 62], "whenev": [4, 18, 43, 47, 61], "step": [4, 6, 10, 13, 14, 16, 17, 21, 23, 24, 25, 26, 28, 36, 39, 42, 51, 55, 56, 57, 58, 59, 60, 61, 62], "prove": [4, 56], "incredibli": 4, "cleanup": 4, "yet": [4, 5, 6, 8, 15, 16, 20, 23, 25, 34, 36, 47, 56, 58, 59], "tediou": [4, 39, 43, 58], "manual": [4, 15, 18, 20, 32, 50, 51, 55, 60, 62], "forgotten": 4, "One": [4, 6, 7, 15, 20, 24, 27, 28, 33, 41, 48, 49, 51, 52, 54, 56, 58, 59, 60, 62], "executioin": 4, "stop": [4, 11, 16, 26, 27, 32, 36, 37, 52, 55, 57], "point": [4, 7, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 39, 44, 54, 55, 56, 57, 58, 59, 60, 62], "continu": [4, 7, 13, 22, 25, 27, 57], "wa": [4, 10, 11, 12, 14, 15, 20, 21, 23, 24, 26, 28, 29, 32, 33, 34, 36, 42, 47, 48, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62], "iter": [4, 10, 16, 32, 37, 38, 42, 43, 58], "everytim": 4, "suppos": [4, 6, 20, 21, 26, 43, 56, 57, 58, 59, 62], "asynchron": 4, "wait": [4, 12, 18, 27, 55, 59, 62], "contextlib": 4, "contextmanag": 4, "printer": [4, 61], "number": [4, 6, 7, 9, 10, 11, 12, 14, 20, 21, 25, 26, 27, 28, 32, 35, 38, 39, 42, 43, 44, 46, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "insid": [4, 14, 19, 20, 32, 34, 35, 39, 42, 43, 49, 51, 52, 54, 55, 58, 59, 60, 62], "state": [4, 14, 16, 20, 21, 23, 28, 29, 30, 31, 34, 36, 57], "set": [4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 31, 32, 34, 39, 43, 44, 46, 47, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "tmp": [4, 6, 7, 8, 10, 12, 41, 55, 59, 62], "txt": [4, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 41, 54, 55, 56, 57, 58, 59, 60, 62], "w": [4, 12, 14, 18, 44, 53, 54, 55, 57, 60, 62], "textfil": 4, "asdf": 4, "implement": [4, 5, 8, 11, 14, 16, 29, 31, 32, 38, 40, 43, 44, 61], "roughli": [4, 23], "myopen": 4, "mode": [4, 20, 24, 26, 34, 55, 58, 59], "close": [4, 6, 7, 12, 21, 25, 28, 35, 39, 42, 44, 51, 53, 54, 56], "temporarili": [4, 57], "42": [4, 5, 9, 12, 34, 36, 39, 42, 43, 44], "switch": [4, 8, 24, 25, 47, 53, 55], "back": [4, 5, 6, 10, 12, 16, 17, 20, 21, 23, 24, 25, 28, 33, 36, 38, 39, 43, 44, 48, 51, 52, 55, 56, 57, 58, 59, 61], "old": [4, 13, 20, 21, 26, 47, 51, 55, 56, 60], "testdict": 4, "name": [4, 5, 6, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 32, 33, 34, 36, 37, 39, 41, 42, 43, 44, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "answer": [4, 5, 7, 12, 20, 21, 28, 36, 41, 45, 46, 55, 57, 58, 59, 60], "invok": [4, 5], "solut": [4, 5, 10, 12, 14, 19, 20, 21, 22, 23, 24, 25, 26, 36, 37, 38, 39, 42, 43, 44, 46, 54, 55, 56, 57, 58, 59, 60, 62], "var1": 4, "set_answ": 4, "old_valu": 4, "instead": [4, 6, 7, 10, 11, 14, 18, 20, 21, 22, 23, 25, 26, 36, 37, 38, 42, 44, 46, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "__enter__": 4, "__exit__": 4, "mycontext": 4, "__init__": [4, 5, 13, 14, 36, 44], "self": [4, 7, 16, 32, 36, 55, 59], "type_": 4, "go": [4, 5, 6, 8, 12, 14, 19, 20, 21, 23, 24, 25, 26, 27, 29, 33, 34, 35, 36, 38, 39, 42, 43, 44, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 60, 61, 62], "detail": [4, 5, 20, 25, 26, 27, 32, 39, 44, 47, 53], "power": [4, 7, 9, 12, 13, 16, 17, 36, 41, 42, 43, 54, 55, 56, 57, 59, 60, 61, 62], "offer": [4, 11, 23, 29, 34], "usus": 4, "enough": [4, 5, 20, 32, 51, 55, 56, 57, 59, 60], "prefer": [4, 5, 14, 18, 32, 39, 41, 43, 44, 57, 62], "doesn": [4, 6, 16, 20, 23, 28, 32, 33, 37, 42, 48, 53, 55, 56, 57, 58, 59, 60, 62], "t": [4, 5, 6, 7, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 32, 33, 36, 37, 38, 39, 41, 42, 43, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "flexibl": [4, 8, 56, 59], "rememb": [4, 10, 14, 18, 20, 21, 23, 25, 43, 52, 53, 54, 55, 58, 59, 62], "figur": [4, 6, 7, 8, 9, 10, 12, 14, 23, 39, 43, 55, 59, 61, 62], "fulli": [4, 11, 36, 47], "hand": [4, 21, 24, 25, 26, 28, 34, 38, 42, 57, 60, 61], "programat": 4, "pattern": [4, 16, 22, 55, 58, 60], "achiev": [4, 6, 9, 14, 25, 37, 56, 60], "integ": [4, 11, 34, 38, 45, 54, 55], "everyth": [4, 5, 14, 16, 19, 20, 21, 22, 23, 26, 31, 32, 33, 36, 37, 39, 44, 47, 48, 55, 56, 57, 58, 60], "make_power_func": 4, "pow3": 4, "4398046511104": 4, "27": [4, 5, 7, 11, 13, 14, 34, 39, 43, 47, 55], "test": [4, 6, 8, 10, 13, 16, 22, 23, 27, 31, 32, 36, 38, 44, 51, 54, 56, 57, 60], "anoth": [4, 6, 7, 12, 13, 16, 18, 19, 20, 21, 23, 24, 26, 29, 34, 35, 37, 38, 39, 42, 43, 44, 47, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "wrapper": [4, 9, 46], "timed_pow3": 4, "fime_func": 4, "hint": [4, 12, 21, 22, 26, 36, 55, 57, 60, 62], "scetch": 4, "time_func": 4, "new_func": 4, "28": [4, 6, 7, 11, 14, 34, 36, 47], "timed_func": 4, "wrapped_func": 4, "29": [4, 7, 11, 14, 34, 42, 47], "add_notim": 4, "30": [4, 6, 7, 11, 12, 13, 14, 16, 27, 34, 36, 42, 47, 57, 58, 59, 61, 62], "add_tim": 4, "31": [4, 6, 7, 14, 16, 34, 43, 47], "32": [4, 14, 16, 18, 34, 52], "1920928955078125e": 4, "33": [4, 16, 34, 44], "syntact": [4, 42], "sugar": [4, 32, 35], "argument": [4, 5, 6, 14, 15, 23, 33, 34, 35, 36, 41, 42, 43, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62], "certain": [4, 6, 7, 11, 13, 25, 34, 36, 41, 42, 44, 46, 49, 54, 60], "surfac": [4, 26], "higher": [4, 10, 13, 17, 39], "stack": [4, 14, 41, 47, 62], "typic": [4, 6, 7, 12, 14, 26, 27, 39, 43, 44, 52, 55, 57, 62], "encount": [4, 7, 8, 36, 41, 44], "wrong": [4, 7, 12, 19, 21, 36, 41, 54, 56, 58, 59, 60, 62], "type": [4, 5, 6, 10, 11, 12, 14, 18, 20, 21, 22, 32, 35, 36, 37, 38, 41, 43, 44, 45, 46, 47, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 62], "caught": 4, "block": [4, 37, 42, 43, 44, 46, 47, 55, 58], "order": [4, 6, 7, 8, 11, 12, 13, 14, 16, 20, 22, 26, 27, 32, 37, 38, 39, 41, 42, 43, 51, 53, 55, 56, 57, 58, 59, 60, 61, 62], "handl": [4, 12, 31, 33, 48, 52, 59, 60, 61, 62], "built": [4, 6, 9, 11, 13, 20, 27, 38, 39, 43, 54, 55, 56, 59, 62], "typeerror": [4, 5, 34, 38, 42, 43], "float": [4, 12, 13, 14, 15, 34, 45], "valueerror": [4, 62], "illeg": 4, "neg": [4, 12, 14, 42, 60], "posit": [4, 7, 8, 9, 10, 14, 22, 33, 42, 43, 48, 49, 57, 60], "runtimeerror": 4, "statu": [4, 19, 20, 21, 22, 25, 26, 27, 53, 55, 62], "pars": [4, 15, 44], "fall": [4, 5], "categori": [4, 7, 44], "keyerror": [4, 34], "indexerror": [4, 34, 42], "rais": [4, 5, 34, 62], "int": [4, 34, 41, 43, 45, 46], "str": [4, 10, 16, 32, 34, 37, 43, 44, 49, 62], "often": [4, 5, 6, 7, 8, 11, 16, 21, 23, 27, 28, 29, 37, 39, 41, 43, 52, 58, 60, 61, 62], "conveni": [4, 6, 26, 34, 47, 57, 58], "messag": [4, 6, 13, 20, 21, 23, 25, 26, 33, 44, 48, 55, 56, 57, 58], "And": [4, 5, 6, 12, 14, 18, 24, 33, 36, 38, 48, 49, 54, 55, 57, 60], "inherit": [4, 11, 32, 35], "attent": [4, 12, 13, 25], "subclass": 4, "never": [4, 5, 32, 37, 42, 43, 46, 49, 55], "baseexcept": 4, "37": [4, 34, 58], "myerror": 4, "pass": [4, 5, 11, 14, 15, 28, 33, 43, 44, 48, 49, 51, 54, 55, 57, 58, 59, 60, 62], "38": [4, 5, 6, 34], "alreadi": [4, 6, 7, 11, 14, 20, 22, 23, 25, 26, 28, 29, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 53, 54, 56, 57, 62], "natur": [4, 25, 28, 37, 55], "negativevalueerror": 4, "next": [4, 5, 6, 10, 12, 14, 17, 20, 21, 22, 23, 24, 25, 34, 36, 37, 46, 47, 55, 58, 59, 61], "specifi": [4, 10, 11, 13, 20, 27, 33, 36, 37, 38, 39, 42, 43, 44, 48, 49, 51, 54, 55, 56, 57, 60, 62], "check": [4, 5, 10, 12, 13, 14, 18, 19, 20, 21, 23, 25, 26, 27, 28, 37, 52, 53, 54, 55, 56, 58, 59, 61, 62], "goe": [4, 6, 7, 12, 21, 54, 55, 57, 58, 61], "ye": [4, 5, 7, 34, 41, 42, 53, 55, 56, 62], "40": [4, 6, 9, 14, 15, 21, 34, 36, 42, 58], "keyword": [4, 6, 27, 41, 42, 43, 44, 54, 58], "inspect": [4, 33, 48, 54, 55, 56], "41": [4, 6, 34, 36, 42], "anti": 4, "gener": [4, 6, 7, 8, 13, 14, 16, 20, 25, 27, 34, 36, 39, 41, 42, 43, 44, 47, 51, 52, 55, 56, 57, 58, 62], "unfortun": [4, 21, 25], "caugth": 4, "43": [4, 34, 42, 43], "therefor": [4, 13, 19, 21, 25, 51, 59], "temporari": [4, 41, 55, 57, 62], "44": [4, 34, 43, 52], "guaranti": 4, "could": [4, 6, 7, 8, 10, 21, 22, 23, 26, 29, 32, 33, 36, 37, 38, 39, 42, 43, 46, 48, 51, 54, 55, 56, 57, 59, 62], "omit": [4, 5, 42, 55], "45": [4, 16, 34, 42, 43, 47], "odd": [4, 36, 58], "effect": [4, 6, 7, 20, 21, 23, 34, 37, 39, 41, 42, 43, 44, 55, 56, 57, 58, 59], "ignor": [4, 6, 10, 14, 19, 25, 31, 32, 55, 59, 60, 62], "IF": [4, 5], "logic": [4, 20, 26, 43], "46": [4, 20, 34, 61], "clean": [4, 6, 20, 22, 23, 25, 41, 59], "47": [4, 34], "elif": [4, 37, 54], "replac": [4, 21, 24, 25, 26, 36, 42, 43, 49, 54, 55, 58, 59, 60, 62], "golden": [4, 43], "steer": 4, "consid": [4, 6, 7, 10, 13, 17, 20, 21, 26, 54, 55, 57, 59, 61, 62], "three": [4, 6, 23, 24, 25, 27, 39, 42, 43, 44, 49, 51, 54, 55, 56, 57, 58, 60, 62], "sake": [4, 10, 55, 56], "favor": 4, "real": [4, 5, 6, 7, 8, 10, 12, 16, 21, 25, 29, 32, 43, 44, 45, 54, 60], "larger": [4, 10, 25, 54, 60], "scale": [4, 6, 7, 14, 55, 62], "too": [4, 6, 7, 10, 20, 21, 22, 25, 29, 37, 41, 44, 55, 56, 57, 59, 60], "complic": [4, 5, 7, 24, 25, 28, 29, 41, 42, 52, 55, 56, 58, 59, 62], "explain": [4, 5, 14, 18, 20, 21, 22, 23, 25, 26, 28, 29, 30, 43, 45, 54, 55, 57, 58, 59, 60, 61, 62], "assum": [4, 6, 8, 14, 39, 42, 55, 56, 57, 58, 59, 60, 62], "third": [4, 20, 42, 43, 56, 57, 60], "solv": [4, 7, 14, 22, 26, 29, 35, 36, 41, 58, 60, 62], "deeper": [4, 17], "nest": [4, 5, 19, 22, 37, 42, 57, 58], "don": [4, 6, 7, 12, 13, 16, 20, 21, 22, 23, 25, 26, 29, 33, 36, 37, 38, 39, 41, 42, 43, 47, 48, 54, 55, 56, 57, 58, 59, 60, 62], "output": [4, 7, 8, 9, 10, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 42, 43, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], "48": [4, 34, 52], "50": [4, 6, 10, 11, 12, 14, 16, 20, 21, 25, 34, 36], "result": [4, 7, 8, 10, 12, 13, 14, 15, 16, 22, 26, 28, 33, 37, 43, 45, 46, 47, 48, 49, 55, 56, 57, 58, 60, 61, 62], "focus": [5, 60], "invoc": [5, 55], "demystifi": 5, "oubl": 5, "score": [5, 7, 10, 12], "__meth__": [5, 16], "reserv": 5, "invent": 5, "precis": [5, 6, 34, 39], "__meth": 5, "fine": 5, "These": [5, 7, 10, 16, 17, 21, 22, 27, 34, 39, 52, 55, 61, 62], "deleg": 5, "correspond": [5, 6, 14, 20, 23, 25, 26, 37, 38, 45, 46, 49, 57, 61], "__add__": [5, 36, 46], "notimpl": 5, "altern": [5, 6, 7, 13, 16, 32, 47, 60, 62], "tri": [5, 26, 41, 55], "__radd__": 5, "ight": 5, "differ": [5, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 32, 34, 38, 39, 42, 43, 44, 45, 46, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62], "namedvalu": 5, "valueleft": 5, "valueright": 5, "radd": 5, "think": [5, 14, 17, 20, 21, 22, 23, 25, 38, 41, 42, 55, 57, 58, 59, 60], "valleft": 5, "val": 5, "valleft2": 5, "left2": 5, "__len__": [5, 16], "nice": [5, 7, 20, 32, 33, 35, 36, 37, 39, 42, 43, 48, 49, 62], "represent": [5, 7, 38], "__str__": 5, "similar": [5, 6, 20, 21, 23, 26, 34, 38, 39, 42, 43, 47, 51, 52, 54, 55, 58, 60, 61, 62], "__repr__": 5, "target": [5, 9, 16, 32, 56, 58], "toward": [5, 16, 45, 57], "develop": [5, 27, 29, 32, 43, 59], "namerepr": 5, "namestr": 5, "am": [5, 42], "namestrrepr": 5, "repr": 5, "mean": [5, 6, 7, 10, 12, 13, 14, 17, 18, 20, 21, 23, 25, 28, 31, 34, 35, 36, 37, 38, 42, 43, 44, 46, 47, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "attach": [5, 43, 44, 45, 46, 49, 51, 52], "behind": [5, 7, 24, 25, 26, 28, 29, 46, 57], "__call__": 5, "notcal": 5, "noncal": 5, "down": [5, 20, 21, 26, 27, 32, 34, 35, 43, 45, 53, 54, 55, 56, 62], "won": [5, 13, 14, 20, 24, 26, 37, 42, 58, 60, 62], "rather": [5, 6, 12, 20, 21, 23, 24, 25, 37, 53, 55, 56, 57, 58, 59, 60, 61], "normal": [5, 7, 8, 11, 13, 14, 28, 34, 36, 39, 43, 44, 46, 53, 55, 57, 58, 60], "That": [5, 6, 7, 15, 20, 21, 36, 39, 42, 57, 58], "control": [5, 6, 16, 19, 22, 23, 24, 25, 26, 27, 28, 31, 32, 34, 55, 56, 62], "__getitem__": 5, "__setitem__": 5, "storag": [5, 11, 20, 27, 56, 57], "contain": [5, 6, 7, 9, 12, 13, 14, 15, 16, 20, 23, 25, 26, 27, 28, 32, 35, 37, 38, 39, 42, 43, 44, 46, 49, 54, 55, 56, 57, 58, 59, 60, 62], "demonstr": [5, 7, 8, 9, 10, 13, 14, 16, 32, 45, 55, 58, 61], "getitem": 5, "setitem": 5, "renam": [5, 26, 41, 44, 55, 56], "well": [5, 6, 10, 11, 12, 13, 14, 15, 16, 21, 23, 25, 28, 34, 36, 38, 41, 43, 49, 54, 56, 57, 58, 60], "fullstop": 5, "consequ": 5, "latter": [5, 6, 11, 12, 13, 34, 39, 44, 54, 55, 60], "why": [5, 6, 10, 14, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 32, 36, 37, 54, 55, 56, 57, 58, 59, 60], "dynam": [5, 25, 32, 35, 36], "complet": [5, 6, 12, 17, 25, 26, 27, 34, 36, 47, 54, 55, 58, 59, 61, 62], "sens": [5, 37, 42], "fun": [5, 42], "live": [5, 62], "realli": [5, 7, 12, 21, 22, 23, 34, 38, 42, 44, 56, 61, 62], "least": [5, 25, 31, 35, 37, 38, 45, 56, 57, 58, 62], "independ": [5, 6, 8, 10, 14, 17, 25, 39, 62], "colleagu": [5, 20, 21, 28, 41, 55, 57, 59], "quiz": 5, "did": [5, 7, 13, 16, 17, 20, 25, 28, 34, 36, 42, 44, 56, 57, 59, 60, 62], "access": [5, 6, 13, 15, 16, 18, 23, 24, 28, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 51, 54, 55, 56, 61, 62], "guess": [5, 7, 21, 56], "overrid": [5, 22, 36, 43], "store": [5, 6, 7, 8, 10, 11, 13, 19, 20, 21, 26, 27, 28, 34, 42, 46, 49, 55, 59, 60, 61], "__dict__": 5, "remark": [5, 43], "__class__": 5, "mappingproxi": 5, "__module__": 5, "__main__": [5, 36, 43, 44], "__weakref__": 5, "__doc__": 5, "But": [5, 14, 19, 20, 21, 26, 33, 34, 36, 42, 43, 44, 48, 49, 54, 55, 61], "occur": [5, 20, 23, 26, 45], "realiti": [5, 28], "disclaim": 5, "extrem": [5, 36], "bad": [5, 7, 14, 19, 57, 61, 62], "getandset": 5, "__getattr__": [5, 16], "__setattr__": 5, "game": [5, 34], "same": [5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 33, 34, 37, 38, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62], "provok": 5, "getattr": 5, "setattr": 5, "hi": [5, 18, 19, 26, 34], "becaus": [5, 8, 14, 18, 20, 21, 22, 23, 24, 26, 29, 33, 34, 35, 36, 37, 42, 43, 45, 46, 48, 49, 53, 55, 56, 57, 58, 59, 60, 61, 62], "explicit": [5, 34, 37, 62], "zen": [5, 41], "tim": 5, "peter": 5, "beauti": [5, 15, 21, 42], "ugli": [5, 49], "implicit": [5, 34, 43], "simpl": [5, 7, 11, 16, 25, 27, 32, 33, 36, 37, 43, 47, 48, 51, 54, 57, 58, 60, 61, 62], "complex": [5, 11, 16, 32, 34, 43, 45, 50, 56, 57, 59, 60, 61], "flat": [5, 9], "spars": 5, "dens": 5, "count": [5, 6, 10, 11, 13, 14, 23, 24, 25, 26, 57, 59, 60, 62], "aren": [5, 17, 41, 42, 56], "although": [5, 36, 61], "beat": 5, "puriti": 5, "silent": [5, 44, 56, 57], "unless": [5, 17, 23, 35, 37, 55, 57, 62], "explicitli": [5, 6, 13, 15, 20, 25, 34, 36, 37, 42, 43, 44, 45, 55, 62], "silenc": 5, "face": 5, "ambigu": [5, 21], "refus": 5, "temptat": 5, "obviou": [5, 23, 41, 43, 62], "dutch": 5, "hard": [5, 6, 8, 21, 25, 43, 55, 57, 58, 60, 62], "namespac": [5, 44], "honk": 5, "those": [5, 6, 12, 14, 17, 20, 21, 23, 25, 26, 37, 38, 43, 44, 45, 46, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "sentenc": [5, 21, 35, 49, 54], "adult": 5, "behav": [5, 25, 37, 38, 44, 45, 57], "simul": [6, 8, 12, 13], "j": [6, 7, 10, 13, 14, 34, 45, 54, 55], "psi": [6, 7, 10, 13], "rightarrow": [6, 39], "mu": [6, 13, 14], "mplhep": [6, 7, 8, 13, 14, 16], "hep": [6, 7, 11, 12, 13, 16, 32, 62], "organis": [6, 54], "collect": [6, 11, 15, 27, 28, 37, 38, 41, 42, 44, 55, 61], "still": [6, 10, 13, 14, 20, 23, 26, 36, 51, 52, 56, 57, 58, 59, 60, 61, 62], "high": [6, 10, 11, 12, 13, 14, 15, 32, 35, 41, 61], "energi": [6, 11, 14, 32, 35, 41], "physic": [6, 9, 11, 12, 13, 14, 15, 16, 32, 35, 41, 55], "mimic": 6, "top": [6, 7, 11, 14, 23, 24, 25, 33, 37, 39, 48, 55, 57, 59], "pure": [6, 13, 14, 16], "cumbersom": [6, 36], "uproot": [6, 7, 9, 10, 12, 16, 32, 40], "put": [6, 8, 20, 21, 22, 23, 25, 26, 33, 43, 48, 52, 55, 56, 57, 58, 59, 60, 61, 62], "fake": [6, 14, 54, 62], "jpsi_m": [6, 7, 10, 11, 13], "jpsi_p": [6, 7, 10, 11], "jpsi_pt": [6, 7, 10, 11], "jpsi_px": [6, 11], "jpsi_pi": [6, 11], "jpsi_pz": [6, 7, 10, 11], "mum_m": [6, 11], "mum_pt": [6, 7, 8, 10, 11], "mum_eta": [6, 7, 10, 11], "mum_p": [6, 7, 10, 11], "mum_px": [6, 7, 10, 11], "mum_pi": [6, 7, 10, 11], "mum_pz": [6, 7, 10, 11], "mum_ip": [6, 7, 8, 10, 11], "mum_probnnmu": [6, 7, 10, 11], "mum_probnnpi": [6, 11], "mup_m": [6, 11], "mup_pt": [6, 7, 8, 10, 11], "mup_eta": [6, 7, 10, 11], "mup_p": [6, 7, 10, 11], "mup_px": [6, 11], "mup_pi": [6, 11], "mup_pz": [6, 11], "mup_ip": [6, 7, 8, 10, 11], "mup_probnnmu": [6, 7, 10, 11], "mup_probnnpi": [6, 11], "ntrack": [6, 11], "suffix": 6, "_m": 6, "invari": [6, 14, 36], "mass": [6, 7, 8, 9, 10, 11, 13, 15, 16, 36, 39], "particl": [6, 9, 14, 16, 32, 36, 39], "pdg": [6, 15], "muon": [6, 7, 10], "_p": 6, "absolut": [6, 8, 35, 39, 54, 55, 61], "momentum": [6, 8, 14, 15, 36, 39], "_pt": 6, "plane": 6, "_pe": 6, "_px": 6, "_py": 6, "_pz": 6, "four": [6, 18, 25, 37, 42, 60, 61], "compon": [6, 14, 39, 42], "_ip": 6, "impact": [6, 10], "paramet": [6, 10, 14, 16, 54, 55, 56], "distanc": [6, 12, 39], "closest": 6, "approach": [6, 25, 26, 28, 60], "between": [6, 7, 8, 10, 11, 12, 14, 15, 20, 21, 23, 26, 27, 34, 38, 42, 44, 47, 55, 57, 58, 59, 60, 61], "reconstruct": [6, 16, 20, 32], "primari": 6, "vertex": 6, "probnnmu": 6, "probnnpi": 6, "identif": 6, "pion": [6, 42], "track": [6, 11, 17, 19, 21, 22, 23, 25, 26, 31, 32, 36, 37, 42, 55, 60, 62], "instal": [6, 10, 12, 18, 27, 32, 39, 44, 47, 62], "github": [6, 7, 10, 12, 18, 23, 25, 26, 28, 29, 32, 62], "repos": 6, "tree": [6, 9, 10, 12, 16, 39, 55, 60], "class": [6, 7, 10, 13, 14, 16, 32, 34, 35, 43], "convert": [6, 14, 16, 32, 34, 42, 49, 54, 60], "varieti": [6, 10, 61], "datafram": [6, 7, 10, 14, 15, 16, 39, 40], "tabl": [6, 11, 18, 24, 26, 34, 56, 57], "root_numpi": 6, "root_panda": [6, 39, 44], "outdat": [6, 16], "grid": [6, 7, 8, 9, 10], "cern": [6, 7, 9, 10, 12, 18, 24, 25, 26, 27, 29, 31, 32, 39, 44, 47, 51, 52, 53, 55, 61, 62], "keep": [6, 7, 11, 12, 17, 19, 20, 21, 22, 23, 24, 25, 26, 29, 31, 32, 36, 37, 42, 44, 50, 51, 54, 55, 56, 57, 62], "local": [6, 12, 19, 20, 21, 23, 24, 26, 31, 39, 44, 55], "xrootd": 6, "protocol": [6, 23], "my_fil": [6, 39, 56], "eosus": 6, "ch": [6, 7, 9, 10, 12, 23, 24, 25, 26, 27, 39, 44, 47, 51, 52, 53, 55, 61, 62], "eo": [6, 39], "lhcbsk": 6, "real_data": [6, 7, 10], "valid": [6, 7, 8, 12, 13, 16, 23, 32, 33, 36, 48, 57, 59], "credenti": 6, "authent": 6, "fail": [6, 25, 26, 27, 62], "oserror": 6, "server": [6, 17, 18, 23, 25, 26, 28, 31, 32], "3010": 6, "unabl": [6, 7, 58], "unauthor": 6, "deni": 6, "kinit": [6, 51, 52], "usernam": [6, 23, 24, 25, 51, 55, 62], "termin": [6, 10, 20, 24, 25, 35, 44, 47, 52, 54, 55, 57, 58, 62], "password": [6, 32, 50], "publicli": 6, "remot": [6, 24, 26, 27, 31, 32, 52, 55, 61], "significantli": 6, "slower": 6, "starterkit": [6, 7, 9, 10, 12, 16, 32, 35, 50], "2018": [6, 7, 10], "httpsourc": [6, 10, 12], "chunkbyt": [6, 10, 12], "1024": [6, 10, 12, 26, 55], "limitbyt": [6, 10, 12], "33554432": [6, 10, 12], "parallel": [6, 10, 12, 17, 26, 27, 32, 61, 62], "decaytre": [6, 7, 10, 39], "singl": [6, 7, 12, 20, 23, 25, 26, 27, 37, 42, 43, 44, 49, 53, 55, 57, 58, 59, 60, 61, 62], "\u03c8": 6, "101106": 6, "1071159": 6, "08600438": 6, "00478927": 6, "77311478": 6, "7698744": 6, "data_df": [6, 7, 8, 10, 11, 13], "usual": [6, 7, 8, 11, 12, 20, 25, 26, 29, 34, 39, 42, 44, 49, 54, 55, 57, 59, 60, 61], "head": [6, 7, 20, 21, 24, 25, 26, 39, 43, 53, 54, 57, 58, 59], "188": 6, "630181": 6, "700534": 6, "131937": 6, "375806": 6, "288923": 6, "604688": 6, "376341": 6, "246101": 6, "755981": 6, "99": [6, 12, 13, 34, 42], "674146": 6, "119": 6, "018213": 6, "608728": 6, "105658": 6, "820565": 6, "149": 6, "999983": 6, "836058": 6, "999994": 6, "244674": 6, "52": 6, "385685": 6, "816164": 6, "595537": 6, "961499": 6, "882897": 6, "293459": 6, "107116": 6, "735741": 6, "552217": 6, "776801": 6, "621295": 6, "210": [6, 39], "293355": 6, "851094": 6, "900278": 6, "125": [6, 7], "998874": 6, "264369": 6, "999999": 6, "391294": 6, "068478": 6, "552368": 6, "817129": 6, "837748": 6, "801420": 6, "976946": 6, "086004": 6, "110952": 6, "179505": 6, "096355": 6, "279673": 6, "272015": 6, "632559": 6, "490677": 6, "371": 6, "538509": 6, "313881": 6, "882305": 6, "961390": 6, "78": [6, 13, 42], "399724": 6, "833082": 6, "818953": 6, "283360": 6, "949075": 6, "338889": 6, "087923": 6, "571993": 6, "028028": 6, "581850": 6, "020064": 6, "134": 6, "767864": 6, "792800": 6, "088611": 6, "136": 6, "896250": 6, "792830": 6, "999992": 6, "724581": 6, "83": 6, "900727": 6, "065507": 6, "457333": 6, "618226": 6, "132904": 6, "842831": 6, "116368": 6, "698279": 6, "220143": 6, "818777": 6, "851730": 6, "2926": 6, "081975": 6, "619576": 6, "031800": 6, "71": [6, 15], "998548": 6, "270670": 6, "999987": 6, "921856": 6, "row": [6, 7, 39, 57], "column": [6, 7, 11, 12, 15, 20, 26, 39, 54, 55], "hist": [6, 10, 12, 14, 16, 39], "xlabel": [6, 7, 8, 9, 10, 13, 14, 39], "jpsi": 6, "okai": [6, 7, 8], "api": 6, "_as_gen": 6, "intern": [6, 13, 14, 29, 38, 44], "bin": [6, 7, 8, 9, 10, 13, 14, 16, 32, 39, 44, 54, 55, 56, 62], "histtyp": [6, 10, 13, 14, 39], "easili": [6, 7, 12, 14, 33, 37, 39, 42, 44, 47, 48, 49, 52, 53, 62], "uncertainti": [6, 13, 16, 40], "match": [6, 10, 20, 22, 26, 29, 38, 41, 47, 55, 56, 57, 58, 59, 60, 62], "lhcb2": 6, "atla": 6, "cm": [6, 9], "histplot": [6, 7, 8, 11, 13, 14], "lot": [6, 8, 26, 32, 35, 36, 37, 39, 41, 42, 43, 44, 47, 49, 55, 57, 60, 62], "onc": [6, 7, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 34, 42, 43, 44, 49, 52, 53, 56, 57, 58, 59, 60, 61, 62], "subplot": [6, 9, 10, 12, 14], "figsiz": [6, 9, 12, 14], "yerr": [6, 7, 13, 14], "true": [6, 7, 8, 9, 10, 12, 13, 14, 18, 25, 33, 34, 37, 39, 41, 43, 44, 47, 48, 54, 60], "half_binwidth": 6, "errorbar": [6, 11, 13, 14], "xerr": 6, "errorbarartist": 6, "errorbarcontain": [6, 11], "artist": [6, 11], "plot_mass": [6, 7, 10], "df": [6, 7, 8, 10, 39, 54], "75": [6, 7, 10, 11, 45], "feel": [6, 7, 12, 33, 37, 41, 47, 48, 61], "adjust": [6, 7, 8, 9, 10, 12, 59, 62], "label": [6, 7, 8, 9, 10, 11, 12, 13, 16, 20, 32, 39, 44, 55], "gev": [6, 7, 10, 13, 15, 39], "xlim": [6, 7, 8, 9, 10, 12, 14, 39], "forgot": [6, 20, 57], "bother": [6, 32], "them": [6, 11, 13, 14, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 37, 39, 41, 43, 44, 45, 46, 49, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "eval": [6, 7, 10, 12, 15, 39], "jpsi_eta": [6, 7, 10, 11], "arctanh": [6, 7, 10], "inplac": [6, 7, 10, 13, 39], "703371": 6, "874790": 6, "307233": 6, "972345": 6, "307082": 6, "float64": [6, 39], "mu_p": 6, "809553": 6, "820509": 6, "484875": 6, "900145": 6, "577624": 6, "490405": 6, "69": 6, "311033": 6, "087997": 6, "66": [6, 14, 15], "868844": 6, "031472": 6, "increas": [6, 12, 15, 58], "signal": [6, 7, 8, 10, 11, 13, 16, 56], "sampl": [6, 7, 10, 13, 14, 16, 32, 39, 55, 57, 59, 61, 62], "background": [6, 7, 8, 10, 13, 16, 32, 39], "discrimin": [6, 7, 14, 16, 32], "pid": [6, 7], "data_with_cuts_df": [6, 7], "queri": [6, 7, 10, 11, 13, 15, 37, 39, 41], "identifi": [6, 11, 20, 21, 23, 26, 28, 55, 61, 62], "densiti": [6, 7, 8, 10, 12, 14, 16, 32, 39], "p": [6, 7, 13, 14, 15, 23, 27, 37, 47, 51, 55, 57, 60, 62], "_t": [6, 7], "legend": [6, 7, 8, 9, 10, 13, 14, 39], "loc": [6, 7, 8, 9, 10, 14, 39], "0x7f4691a9d5d0": 6, "python_lesson": [6, 7], "check_truth": [6, 7], "ncut": 6, "moment": [6, 7, 14, 25, 42, 55, 58, 59, 62], "1216": 6, "167169": 6, "metric": [6, 7, 8, 9, 10, 12], "58": 6, "602": 6, "31922": 6, "275": 6, "13798": 6, "told": [6, 20, 57, 62], "pick": [6, 29, 44], "simulated_data": [6, 7, 10], "mc_df": [6, 7, 8, 10, 11, 13], "mc_file": 6, "sideband": [6, 7, 8], "peak": [6, 7, 9], "present": [6, 16, 20, 22, 47, 54, 60, 62], "select": [6, 7, 14, 25, 34, 35, 53, 57, 58, 59, 60, 62], "outsid": [6, 43, 55, 59, 62], "region": [6, 7, 10, 13], "bkg_df": [6, 7, 8, 10, 11, 13], "ve": [6, 17, 20, 21, 23, 24, 25, 26, 33, 34, 37, 39, 41, 42, 45, 46, 48, 49, 55, 56, 57, 60, 62], "appl": 6, "nearest": 6, "9975": 6, "005": 6, "partial": 6, "mc": [6, 7, 8, 10, 12, 13, 16], "hsig": [6, 7, 8], "60": [6, 7, 8, 15, 57, 58], "hbkg": [6, 7, 8], "bkg": [6, 7, 8, 13, 14], "0x7f469228f050": 6, "normalis": [6, 10, 39], "0x7f46923355d0": 6, "both": [6, 10, 11, 13, 20, 21, 24, 25, 26, 27, 29, 30, 34, 43, 47, 49, 54, 55, 56, 57, 58, 60, 62], "signatur": 6, "plot_comparis": [6, 7, 8, 10], "ipykernel_3589": 6, "3447827755": 6, "runtimewarn": [6, 7, 8], "retain": [6, 11], "consum": [6, 56], "much": [6, 8, 9, 12, 13, 17, 21, 22, 28, 33, 37, 38, 39, 41, 43, 44, 48, 49, 54, 55, 56, 57, 58, 62], "memori": [6, 34, 38, 54, 57], "warn": [6, 8, 10, 13, 14, 26, 44], "rcparam": 6, "max_open_warn": 6, "reli": [6, 38, 44, 62], "fortun": [6, 27, 39], "heavili": 6, "depend": [6, 9, 10, 12, 13, 14, 20, 25, 27, 28, 31, 36, 37, 55, 56, 62], "shape": [6, 10, 11, 13, 14, 39], "calcul": [6, 10, 11, 13, 15, 36, 38, 39, 43, 47, 55, 57, 59, 61, 62], "detector": 6, "calorimet": 6, "p_e": 6, "got": [6, 25, 39, 42, 43, 44], "slow": [6, 39, 47], "crash": [6, 7, 53, 59], "produc": [6, 20, 27, 56, 57, 58, 59, 62], "ever": [6, 15, 19, 25, 27, 59, 60, 62], "thousand": [6, 44], "pseudorapid": 6, "vagu": 6, "lhcb": [6, 35, 39, 45, 47, 50, 62], "asid": 6, "session": [6, 10, 18, 26, 29, 32, 47, 50, 52, 53, 54], "reload": [6, 7], "boost": [7, 11, 16, 32], "bdt": [7, 8, 9, 10, 11, 13, 16], "distinguish": [7, 12, 20, 55, 60, 61], "input": [7, 10, 13, 18, 21, 42, 43, 44, 54, 55, 57, 58, 59, 60, 61, 62], "predict": [7, 8, 9, 10, 12, 21], "previou": [7, 8, 10, 11, 14, 15, 16, 21, 22, 25, 26, 27, 32, 39, 54, 55, 56, 57, 58, 62], "modul": [7, 8, 16, 32, 33, 35, 37, 38, 39, 42, 43, 48], "sklearn": [7, 8, 9, 10, 12], "ensembl": [7, 8, 9, 10, 12], "gradientboostingclassifi": [7, 8, 9, 10, 12], "auc": [7, 8, 9, 10, 12], "roc_curv": [7, 8, 9, 10], "model_select": [7, 8, 9, 10, 12], "kfold": [7, 8, 10, 12], "xgboost": [7, 8, 10, 16, 32], "xgbclassifi": [7, 8, 10], "rectangular": [7, 16], "adavantag": 7, "corel": 7, "scatter": [7, 59], "marker": [7, 20, 26], "ylabel": [7, 8, 9, 10], "0x7fd57e00c650": 7, "dimension": [7, 12, 16], "machin": [7, 8, 16, 18, 24, 27, 28, 41, 51, 52, 55, 57, 61, 62], "concept": [7, 16, 25, 32, 36], "known": [7, 8, 12, 16, 27, 28, 32, 39, 47, 55, 60], "weak": 7, "learner": [7, 10], "strong": [7, 32, 35], "combin": [7, 10, 13, 14, 15, 20, 21, 28, 37, 47, 55, 57, 58, 60, 61, 62], "algorithm": [7, 8, 10, 12, 14, 16, 43], "luckili": [7, 21, 39, 42, 60], "ensem": 7, "classif": [7, 9, 10, 12, 14, 16, 32, 58], "popular": [7, 27, 29, 39, 41, 61], "might": [7, 10, 19, 20, 21, 22, 23, 24, 25, 28, 33, 35, 37, 38, 41, 42, 44, 47, 48, 54, 55, 56, 57, 58, 59, 60, 62], "sound": [7, 35, 37, 46, 49, 61], "gradientboosingclassifi": 7, "training_column": [7, 8, 9, 10], "n_estim": [7, 8, 9, 10, 12], "less": [7, 8, 10, 12, 26, 32, 50, 54, 57, 58], "estim": [7, 8, 10, 12, 13, 14, 16, 40], "300": [7, 8, 14, 57, 59, 60, 61], "teach": [7, 28, 31, 32, 35, 62], "2d": [7, 9, 11], "catagori": [7, 8, 10, 11], "training_data": [7, 8, 10], "concat": [7, 10], "ignore_index": [7, 10], "later": [7, 17, 18, 19, 20, 21, 27, 29, 34, 44, 46, 49, 52, 57, 59], "base_scor": 7, "booster": [7, 8], "callback": 7, "colsample_bylevel": 7, "colsample_bynod": 7, "colsample_bytre": [7, 10], "devic": [7, 54, 61], "early_stopping_round": [7, 10], "enable_categor": 7, "fals": [7, 8, 9, 10, 13, 14, 32, 33, 34, 37, 41, 43, 44, 48, 62], "eval_metr": [7, 10], "feature_typ": 7, "gamma": [7, 10], "grow_polici": 7, "importance_typ": 7, "interaction_constraint": 7, "learning_r": [7, 9, 10, 12], "max_bin": 7, "max_cat_threshold": 7, "max_cat_to_onehot": 7, "max_delta_step": 7, "max_depth": [7, 9, 10, 12], "max_leav": 7, "min_child_weight": [7, 10], "nan": 7, "monotone_constraint": 7, "multi_strategi": 7, "n_job": [7, 9, 10], "num_parallel_tre": 7, "random_st": [7, 8, 9, 10, 12], "jupyt": [7, 11, 13, 16, 29, 32, 35, 39, 47], "environ": [7, 13, 14, 27, 32, 35, 39, 47, 50, 55, 59, 60], "rerun": [7, 34, 62], "trust": [7, 54], "On": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 32, 38, 55, 56, 57, 60, 61], "render": [7, 34], "nbviewer": 7, "nbsp": 7, "xgbclassifierifittedxgbclassifi": 7, "dataset": [7, 8, 12, 13, 14, 16, 57], "candid": 7, "predict_proba": [7, 8, 9, 10, 12], "0951997": 7, "9048003": 7, "22529536": 7, "77470464": 7, "63189864": 7, "3681014": 7, "6602049": 7, "33979508": 7, "36177772": 7, "6382223": 7, "float32": 7, "n_": [7, 14], "probabl": [7, 8, 16, 22, 28, 32, 34, 41, 42, 43, 54, 56, 57, 59, 60, 62], "candiat": 7, "second": [7, 10, 13, 14, 20, 24, 25, 34, 37, 41, 42, 44, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62], "assumpt": [7, 16], "treat": [7, 11, 13, 14, 42, 44, 55, 56, 58, 62], "slice": [7, 10, 42], "367871": 7, "22820437": 7, "29143938": 7, "challeng": [7, 21, 22, 55, 61, 62], "fact": [7, 14, 20, 21, 27, 34, 37, 44, 49, 55, 59, 60, 61, 62], "fewer": [7, 33, 48, 55], "chanc": [7, 25, 26, 56, 61], "mix": [7, 29, 43, 62], "caus": [7, 10, 12, 13, 18, 26, 56, 59], "subtl": 7, "accidenatlli": 7, "somewher": [7, 25, 35, 43, 49, 56], "earlier": [7, 20, 23, 24, 25, 28, 39, 42, 52, 54, 56, 57, 58, 59, 60], "histogram": [7, 8, 9, 12, 13, 14, 15, 16, 32, 35], "95": 7, "0x7fd55bb1f490": 7, "possibli": [7, 28, 54], "207": 7, "59": [7, 36], "far": [7, 20, 23, 24, 29, 34, 37, 55, 62], "magic": [7, 11, 34, 36, 45, 55, 56, 62], "unfortuan": 7, "tool": [7, 15, 17, 18, 20, 25, 26, 27, 29, 31, 35, 36, 47, 55, 56, 57, 59, 60, 61, 62], "almost": [7, 20, 27, 32, 51, 55, 56, 57], "characterist": [7, 14, 55], "curv": [7, 8, 10, 12, 14, 16], "roc": [7, 8, 10, 12, 16], "effienc": [7, 9], "rate": [7, 8, 9, 10, 58], "tpr": [7, 8, 9, 10], "against": [7, 10], "ineffieicni": 7, "fpr": [7, 8, 9, 10], "corropsond": 7, "threshold": [7, 8, 9, 10], "reus": [7, 13, 14, 23, 24, 25, 26, 29, 36, 43, 44], "y_score": [7, 8, 9, 10], "nicer": [7, 8, 9, 10, 42, 43], "forc": [7, 8, 9, 10, 22, 35, 39, 42, 54, 55, 60, 62], "corrospond": 7, "randomli": 7, "grai": [7, 24], "color": [7, 8, 9, 10, 13, 14, 18, 20, 21, 26, 34, 54, 55, 59], "linestyl": [7, 8, 9, 10], "ylim": [7, 8, 9, 10, 14], "lower": [7, 8, 9, 10, 11, 12, 13, 14, 37, 49, 60], "gca": [7, 8, 9, 10, 13, 14], "set_aspect": [7, 8, 9, 10], "equal": [7, 8, 9, 10, 12, 14, 37, 38, 43, 54, 62], "box": [7, 8, 9, 10], "closer": [7, 34], "corner": [7, 9, 36], "area": [7, 8, 9, 10, 11, 12, 19, 20, 21, 25, 26], "generanl": 7, "pm": 7, "sigma": [7, 10, 13, 14], "toi": [7, 12, 13, 16], "n_sig": [7, 8, 10], "1200": [7, 8, 10], "n_bkg": [7, 8, 10], "23000": [7, 8, 10], "sig": [7, 14], "ipykernel_4090": 7, "4020814425": 7, "invalid": [7, 8, 23, 43, 44, 54, 55], "divid": [7, 8, 11, 12, 45, 58], "Then": [7, 19, 24, 25, 26, 33, 35, 38, 43, 46, 48, 51, 56, 59, 62], "optimal_index": 7, "argmax": [7, 8, 10], "optimal_metr": 7, "optimal_cut": [7, 8, 10], "optim": [7, 8, 10, 14], "inf": [7, 13], "util": [7, 47, 51, 55, 60, 62], "262": 7, "zero": [7, 10, 14, 27, 42, 55, 57, 58, 61], "scalar": [7, 11], "flat_scal": 7, "diff": [7, 13, 14, 20, 21, 23, 24, 54], "edg": [7, 10, 11], "197": 7, "sumw": 7, "comput": [7, 10, 13, 14, 17, 18, 20, 21, 24, 26, 28, 30, 41, 42, 43, 44, 45, 47, 52, 55, 56, 57, 59, 61, 62], "meaning": [7, 8, 25, 42, 56], "ab": [7, 8, 10, 14, 43, 45, 57, 58, 59], "method_fcn": 7, "varianc": [7, 11], "242": 7, "multipli": [7, 11, 12, 49, 57], "243": [7, 59], "yerr_lo": 7, "244": 7, "yerr_hi": 7, "0x7fd55ba7eb90": 7, "plot_roc": [7, 8, 9, 10], "plot_signific": [7, 8, 10], "axvlin": [7, 8, 10], "black": [7, 8, 10, 13, 14, 62], "datafil": [7, 9, 58, 59], "librari": [7, 9, 10, 11, 12, 13, 15, 16, 32, 33, 35, 39, 41, 48, 54, 55], "mcfile": 7, "succesfulli": 7, "4278176416": 7, "standardis": [8, 62], "rank": 8, "highli": [8, 13, 28, 32, 47], "competit": [8, 60], "comparis": 8, "alorithm": 8, "adaboostclassifi": [8, 10], "gradient": [8, 9, 10, 16, 32], "bdt_1": 8, "bdt_2": 8, "_weight_boost": 8, "519": 8, "futurewarn": [8, 13], "samm": 8, "deprec": [8, 10, 40], "circumv": 8, "classifi": [8, 12, 14, 16, 32, 55], "xgboost_bdt": 8, "ipykernel_4510": 8, "2193470804": 8, "actuali": 8, "adaboost": [8, 9], "biject": 8, "short": [8, 11, 20, 25, 28, 43, 44, 55, 56, 60], "matter": [8, 22, 29, 34, 42, 44, 55, 56, 57, 61, 62], "correl": [8, 12, 14, 16], "littl": [8, 14, 17, 19, 25, 33, 42, 43, 48, 53, 60], "resolut": [8, 26, 55], "ipmin": 8, "min": [8, 11, 14, 54, 62], "ipdiff": [8, 10], "bdtclass": 8, "training_columns_2": 8, "bdt_3": 8, "training_columns_3": 8, "0x7f48eb9e7790": 8, "lose": [8, 19, 21, 25, 31, 52], "part": [8, 11, 13, 14, 16, 21, 25, 27, 32, 33, 42, 44, 47, 48, 49, 55, 56, 58, 60, 62], "split": [8, 10, 11, 12, 14, 20, 36, 44, 62], "crucial": [8, 13, 34], "scenario": 8, "red": [8, 20, 23, 58], "tile": 8, "blue": [8, 9, 24], "whole": [8, 12, 13, 24, 49, 55, 57, 58, 60, 62], "holdout": 8, "overfit": [8, 12], "overestim": 8, "evalu": [8, 10, 12, 37, 54, 58, 61], "unbias": [8, 12], "search": [8, 15, 16, 20, 21, 44, 54, 55, 56, 58, 60, 62], "stabl": [8, 9, 10, 13], "section": [8, 16, 39, 50, 57], "kf": [8, 10], "n_split": [8, 10], "get_n_split": 8, "shuffl": [8, 10], "train_index": 8, "test_index": 8, "x_train": [8, 10], "x_test": [8, 10], "y_train": [8, 10], "y_test": [8, 10], "favorid": 8, "frequent": [9, 14, 26, 44, 55, 59, 61], "discoveri": [9, 13, 16, 28], "due": [9, 14, 17, 35, 44], "comparison": [9, 10, 37], "signif": [9, 13], "loos": [9, 57], "qualiti": [9, 12, 25, 57], "plain": [9, 11, 55, 56, 59], "gradientboost": 9, "knn": 9, "ada": 9, "loss": [9, 10, 12, 14, 16, 32, 56, 57, 60], "ugb": 9, "knnada": 9, "flatnessloss": 9, "paper": [9, 14, 17, 23, 28, 55, 59, 61], "plenti": [9, 35], "subset": [9, 10, 41], "train_test_split": [9, 10, 12], "decisiontreeclassifi": 9, "used_column": 9, "y1": [9, 10], "y2": 9, "y3": 9, "m2ab": 9, "m2ac": 9, "2019": [9, 12], "dalitzdata": 9, "drop": [9, 47, 62], "mostli": [9, 26, 55], "tradit": [9, 33, 48], "poor": 9, "effieci": 9, "plot_distribut": 9, "data_fram": 9, "var_name1": 9, "var_name2": 9, "hist2d": 9, "cmap": 9, "colorbar": [9, 11], "titl": [9, 10, 12, 13, 14, 25, 30], "trainx": 9, "testx": 9, "traini": 9, "testi": 9, "test_siz": 9, "uniform_featur": 9, "train_featur": 9, "150": [9, 15, 39], "base_estim": 9, "efficiency_step": 9, "smooth": [9, 12], "knnloss": 9, "knnadalossfunct": 9, "uniform_label": 9, "ugradientboostingclassifi": 9, "uboostclassifi": 9, "knnflatnesslossfunct": 9, "fl_coeffici": 9, "fl": 9, "clf": [9, 12], "roc_auc_scor": [9, 12], "pip": [10, 39, 44], "xgb": 10, "gridsearchcv": 10, "cross_val_scor": 10, "cross_valid": 10, "ipykernel_4718": 10, "1411477585": 10, "deprecationwarn": [10, 12], "pyarrow": [10, 12], "major": [10, 12, 25, 47], "releas": [10, 12, 25, 29, 47], "arrow": [10, 12, 47, 54, 55, 58], "interoper": [10, 12], "system": [10, 12, 14, 15, 17, 18, 23, 26, 28, 31, 32, 41, 47, 55, 56, 61], "dev": [10, 12, 26], "54466": [10, 12], "process": [10, 12, 14, 24, 28, 39, 44, 47, 51, 53, 55, 56, 57, 58, 59, 60, 61, 62], "stt": 10, "stc": 10, "process_tim": 10, "norm": [10, 14, 39], "_": [10, 25, 27, 40, 43, 44, 49, 56], "optimum": 10, "linewidth": 10, "max_entri": 10, "1000": [10, 12, 13, 14, 55], "low": [10, 12], "stat": [10, 14, 40, 58, 59, 60, 62], "entry_stop": 10, "2007768199": 10, "settingwithcopywarn": 10, "row_index": 10, "col_index": 10, "caveat": [10, 59], "pydata": 10, "doc": [10, 17, 43], "user_guid": 10, "view": [10, 11, 20, 23, 25, 38, 39, 43, 44, 47, 55, 56, 58], "versu": [10, 41], "previous": [10, 22, 25, 41, 58], "off": [10, 13, 14, 25, 29, 37, 38, 43, 44, 53, 57, 61], "monitor": [10, 62], "approxim": 10, "x1": 10, "train_siz": [10, 12], "vari": 10, "suit": [10, 29], "lr": 10, "coeffici": [10, 14], "decai": [10, 15, 39], "alia": [10, 33, 34, 44, 48, 51], "stime": 10, "seed": 10, "123": [10, 21, 35, 41, 49, 58], "8556647300720215": 10, "3009250180": 10, "randomis": 10, "fly": 10, "statist": [10, 13, 14, 15, 16, 40, 56, 59, 61], "remaind": 10, "cv": [10, 17], "100th": 10, "trend": 10, "training_monitor": 10, "alg": 10, "eval_set": 10, "evals_result": 10, "epoch": 10, "len": [10, 12, 14, 16, 32, 38, 42, 43, 49, 62], "validation_0": 10, "logloss": 10, "x_axi": 10, "fig": [10, 14], "ax": [10, 13, 14, 16, 32], "validation_1": 10, "progress": [10, 21, 25, 27, 31, 62], "minimis": [10, 43], "cost": [10, 26], "neglig": 10, "invert": [10, 60], "overtrain": 10, "costli": 10, "pitfal": [10, 16], "multi": [10, 16, 36, 42, 49], "bdt_cv": 10, "n_thread": 10, "verbos": [10, 25, 33, 34, 41, 48, 55, 57], "nxgboost": 10, "xgbcv": 10, "889": 10, "userwarn": [10, 13, 14], "compat": [10, 13, 16, 47], "constructor": [10, 36], "set_param": 10, "160": 10, "workspac": 10, "src": 10, "742": 10, "smsg": 10, "0221338272094727": 10, "3553768138": 10, "draw": 10, "respon": 10, "effici": [10, 11, 25, 31, 38, 55, 56], "v": [10, 12, 14, 23, 25, 26, 33, 36, 48, 55, 59, 60], "minimum": 10, "bdt_cut": 10, "bdt_cv_cut": 10, "405805978293522": 10, "80857503": 10, "284216832108756": 10, "82674176": 10, "averag": [10, 11, 52], "across": [10, 17, 24, 47, 55, 62], "instabl": 10, "reliabl": [10, 13], "seem": [10, 12, 17, 25, 33, 41, 44, 46, 47, 48, 55, 58, 60, 62], "consist": [10, 13, 34, 41, 42, 56, 57, 58, 59], "ll": [10, 17, 20, 21, 23, 29, 33, 41, 42, 43, 45, 46, 48, 49, 55, 56, 57, 58, 59, 60, 61], "test_train_split": 10, "iloc": 10, "cv_acc": 10, "accuraci": 10, "cv_lo": 10, "neg_log_loss": 10, "cv_auc": 10, "roc_auc": 10, "bestfold": 10, "713792562484741": 10, "78412488": 10, "77760064": 10, "78477481": 10, "78856118": 10, "42945196": 10, "43137575": 10, "42765048": 10, "42374993": 10, "87520356": 10, "87239133": 10, "8768386": 10, "87975731": 10, "round": [10, 13, 14, 45], "standard": [10, 13, 15, 16, 29, 32, 33, 35, 41, 48, 54, 55, 57, 58, 59, 60, 61], "revert": [10, 21], "prevent": [10, 25, 32, 44, 55, 57, 60, 62], "extra": [10, 14, 20, 25, 44, 47, 59], "thu": [10, 14, 20, 21, 22, 29, 39, 44, 52, 57], "small": [10, 14, 24, 25, 28, 31, 43, 57, 59], "prematur": 10, "modelfit": 10, "param": [10, 13, 14], "predictor": 10, "fbest": 10, "early_stop": 10, "enumer": [10, 12, 38, 42], "xgb_param": 10, "get_xgb_param": 10, "dmatrix": 10, "feature_nam": 10, "nthread": 10, "cvresult": 10, "num_boost_round": 10, "get_param": [10, 14], "nfold": 10, "cv_fold": 10, "train_predict": 10, "test_predict": 10, "nmodel": 10, "accuracy_scor": 10, "incorpor": [10, 25, 29], "its": [10, 12, 14, 20, 21, 23, 24, 26, 28, 29, 31, 32, 37, 38, 39, 42, 43, 44, 47, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "subsequ": [10, 18, 25, 62], "upper": [10, 11, 13, 14, 44, 49], "converg": [10, 13, 25], "hyperparamet": [10, 12], "bdt_e": 10, "hyperparamt": 10, "subsampl": [10, 12], "scale_pos_weight": 10, "binari": [10, 26, 60], "logist": 10, "mutli": 10, "softprob": 10, "num_class": 10, "multiclassifi": 10, "nmodelfit": 10, "xgbe": 10, "265354871749878": 10, "2194907665252686": 10, "320": 10, "878406430077885": 10, "8180580234817411": 10, "111666679382324": 10, "41647419": 10, "benchmark": 10, "slowli": 10, "kick": 10, "comaprison": 10, "bdt_cut_cv": 10, "bdt_cut_": 10, "05205070820643": 10, "7961289": 10, "structur": [10, 15, 22, 32, 35, 36, 39, 42, 55, 56, 58, 62], "constraint": [10, 13, 14, 35, 61], "space": [10, 14, 16, 20, 22, 26, 32, 33, 37, 42, 43, 48, 50, 55, 56, 58, 59, 60, 62], "explor": [10, 17, 23, 31, 32, 35, 55, 56, 60, 61], "optims": 10, "weigh": 10, "resourc": [10, 27, 32, 41, 61, 62], "timefram": 10, "dispos": 10, "expedi": 10, "predetermin": 10, "variat": [10, 16, 25, 55, 59], "gridscan": 10, "hp": 10, "hpgridscan": 10, "arang": 10, "scan": [10, 46], "establish": [10, 26], "cutoff": 10, "param_grid": 10, "iid": 10, "best_estimator_": 10, "best_params_": 10, "best_score_": 10, "shorten": 10, "bdt_st": 10, "bdt_g": 10, "nhpgridscan": 10, "xgbg": 10, "899073839187622": 10, "8091291887649159": 10, "127185344696045": 10, "1018627576": 10, "naiv": [10, 25], "fair": 10, "push": [10, 18, 23, 24, 26, 27, 28, 29, 31, 32], "further": [10, 21, 25, 29, 41, 55, 56, 61], "trade": [10, 38], "parrallis": 10, "task": [10, 26, 27, 60, 62], "hour": [10, 23, 52, 58, 60, 61], "o": [10, 15, 18, 41, 44, 53, 55, 56, 59, 60, 61], "bdt_opt": 10, "xgbopt": 10, "comapr": 10, "stage": [10, 19, 20, 21, 24, 25, 26, 27, 28, 57, 58, 59], "bdt_es_cut": 10, "bdt_gs_cut": 10, "bdt_opt_cut": 10, "data_bdt_cut": 10, "data_gs_cut": 10, "225756452547515": 10, "8237634": 10, "817070520310462": 10, "8272739": 10, "0x7f6c17de7910": 10, "rel": [10, 13, 23, 37, 42, 55, 56, 61], "shoulder": 10, "spectrum": 10, "potenti": [10, 54, 59], "exploit": 10, "diverg": 10, "replot": 10, "ideal": [10, 12, 28], "carefulli": [10, 21], "sign": [10, 23, 27, 55, 58], "lhc": 10, "ugboost": 10, "punish": 10, "deped": 10, "sig_df": 10, "sig_bdt_cut": 10, "sig_gs_cut": 10, "0x7f6c17d51e10": 10, "cours": [10, 16, 32, 33, 34, 35, 36, 37, 38, 43, 45, 46, 48, 50, 55, 59, 62], "decreas": 10, "retrain": 10, "afford": 10, "With": [10, 11, 12, 13, 21, 24, 28, 32, 33, 34, 39, 48, 49, 55, 59, 60, 61], "choic": [10, 23, 24, 29, 44, 60], "kernel": [10, 34], "suffici": [10, 51], "strategi": [10, 26, 55], "exhaust": [10, 54], "non": [10, 13, 16, 20, 26, 27, 36, 43, 44, 55, 56, 61, 62], "discritis": 10, "smart": 10, "randomizedsearchcv": 10, "diment": 10, "sophist": [10, 16], "skopt": 10, "bayessearchcv": 10, "hyperopt": 10, "tpe": 10, "bit": [10, 14, 18, 25, 55, 57, 59, 60], "ly": 10, "lhcb_xgb_tune": 10, "entrystop": 10, "max_ev": 10, "401": 10, "37995314598083": 10, "182": 10, "2430899": 10, "nearli": [11, 12, 17, 62], "everi": [11, 18, 21, 22, 23, 25, 27, 28, 34, 36, 38, 39, 42, 44, 51, 54, 55, 56, 57, 58, 60, 62], "place": [11, 19, 27, 34, 42, 43, 45, 49, 55, 56, 58, 59, 60], "correct": [11, 14, 16, 20, 21, 32, 55, 56, 57, 58, 59, 60], "friendli": [11, 47, 56], "directli": [11, 25, 28, 34, 36, 39, 42, 44, 47, 49, 57, 59, 61, 62], "workhors": 11, "written": [11, 13, 18, 28, 35, 55, 58, 59, 61, 62], "boost_histogram": 11, "bh": 11, "compos": [11, 25], "per": [11, 18, 33, 38, 43, 44, 48, 55, 57, 60], "overflow": [11, 41, 54, 62], "hist2dplot": 11, "colormeshartist": 11, "pcolormesh": 11, "quadmesh": 11, "0x7f3fd263bdd0": 11, "cbar": 11, "0x7f3fd2649450": 11, "cental": 11, "difin": 11, "former": [11, 12, 15, 34, 36, 51, 55], "regularli": [11, 41, 47], "axis_reg": 11, "nbin": [11, 13, 14], "arbitrarili": 11, "mro": [11, 36], "axis_var": 11, "axis1": 11, "data_h": 11, "doubl": [11, 21, 37, 38, 43, 44, 45, 46, 49, 55, 56, 59, 62], "\u03c3": 11, "168384": 11, "168385": 11, "mc_h": 11, "chain": [11, 13, 21, 32, 54, 57], "unifi": [11, 54], "born": 11, "seemless": 11, "stairsartist": 11, "stair": 11, "steppatch": 11, "0x7f3fd254a010": 11, "legend_artist": 11, "plot1d": 11, "0x7f3fa5472b90": 11, "0x7f3fa549d8d0": 11, "axis_bdt": 11, "mc_h2d": 11, "data_h2d": 11, "0265": 11, "994": 11, "026503": 11, "993653": 11, "168383": 11, "0x7f3fa5352690": 11, "0x7f3fa521e150": 11, "variou": [11, 13, 14, 17, 21, 23, 39, 47, 56], "besid": [11, 62], "locat": [11, 41, 54, 55, 56, 59, 60, 62], "support": [11, 12, 14, 34, 35, 42, 44, 46, 47, 53, 55, 60, 61], "318": 11, "capabl": [11, 12, 17], "underflow": 11, "integr": [11, 23, 25, 26, 27], "devid": 11, "24562342": 11, "20355474": 11, "32523501": 11, "37322826": 11, "07734872": 11, "27271602": 11, "00139882": 11, "38734028": 11, "48785252": 11, "77554461": 11, "97317478": 11, "4737405": 11, "21992964": 11, "7286828": 11, "6058711": 11, "42574726": 11, "2947481": 11, "17193639": 11, "09824937": 11, "02456234": 11, "27018576": 11, "34274135": 11, "36617225": 11, "26679145": 11, "2984098": 11, "37915283": 11, "68321982": 11, "66797636": 11, "66092035": 11, "94861244": 11, "30999156": 11, "87605685": 11, "76143259": 11, "69593302": 11, "39299747": 11, "35206023": 11, "13099916": 11, "26199831": 11, "46555306": 11, "16148607": 11, "49603997": 11, "76622573": 11, "33002815": 11, "6165888": 11, "19084155": 11, "68435126": 11, "48898396": 11, "85855052": 11, "95793133": 11, "83511962": 11, "54855896": 11, "27837321": 11, "12281171": 11, "08187447": 11, "05731213": 11, "43280327": 11, "14511118": 11, "74279482": 11, "16741064": 11, "95340558": 11, "42827752": 11, "83059387": 11, "29135379": 11, "47260907": 11, "9240501": 11, "23630453": 11, "98249367": 11, "56493386": 11, "33568534": 11, "22106108": 11, "06549958": 11, "01637489": 11, "20468618": 11, "32636645": 11, "76735717": 11, "32297214": 11, "86334366": 11, "31365326": 11, "576783": 11, "24222911": 11, "13692373": 11, "82580073": 11, "36730369": 11, "92518154": 11, "82693217": 11, "55674641": 11, "50762173": 11, "22924852": 11, "04093724": 11, "35911624": 11, "89130031": 11, "02116803": 11, "79897552": 11, "05984239": 11, "98615537": 11, "53810864": 11, "00592457": 11, "30180411": 11, "0234309": 11, "78599493": 11, "4503096": 11, "32749789": 11, "1555615": 11, "03274979": 11, "1953673": 11, "89948776": 11, "8246693": 11, "9872868": 11, "78146919": 11, "46215874": 11, "56972699": 11, "57085843": 11, "91586265": 11, "29361666": 11, "94155643": 11, "84330707": 11, "4339347": 11, "36843513": 11, "28656065": 11, "1391866": 11, "10643681": 11, "00818745": 11, "31112299": 11, "22811709": 11, "95566845": 11, "57791444": 11, "96978047": 11, "03528005": 11, "38847172": 11, "65160147": 11, "43167183": 11, "58130875": 11, "40118491": 11, "11462426": 11, "04912468": 11, "12986772": 11, "99773713": 11, "9638559": 11, "82353786": 11, "42122151": 11, "23177878": 11, "92884324": 11, "52060231": 11, "5135463": 11, "76030116": 11, "81874472": 11, "81055728": 11, "51580918": 11, "31931044": 11, "19649873": 11, "09006192": 11, "25381086": 11, "15443006": 11, "87492542": 11, "68548269": 11, "70778216": 11, "17446665": 11, "7323445": 11, "50422742": 11, "2187982": 11, "7684886": 11, "77780749": 11, "03161835": 11, "54742753": 11, "79191951": 11, "02003659": 11, "96159302": 11, "08666761": 11, "56267098": 11, "53924008": 11, "27724177": 11, "67955812": 11, "49124683": 11, "34387278": 11, "14737405": 11, "0398058": 11, "79305094": 11, "55448354": 11, "31478469": 11, "92065579": 11, "74053195": 11, "30772868": 11, "49717141": 11, "84217563": 11, "94974388": 11, "59768365": 11, "05618069": 11, "80123839": 11, "54629609": 11, "47147763": 11, "21653533": 11, "81421897": 11, "97796792": 11, "01298058": 11, "16967352": 11, "75211371": 11, "17080495": 11, "90880664": 11, "72049536": 11, "49943428": 11, "18717985": 11, "66205179": 11, "67729525": 11, "33229102": 11, "92178723": 11, "69959471": 11, "27384746": 11, "16035463": 11, "5299212": 11, "72755137": 11, "76962004": 11, "53218407": 11, "21287363": 11, "71117647": 11, "70185759": 11, "06210527": 11, "08553617": 11, "56859556": 11, "62590769": 11, "16854208": 11, "71230791": 11, "48305939": 11, "41755981": 11, "30293555": 11, "8842443": 11, "24336054": 11, "15216719": 11, "06097383": 11, "26566001": 11, "51128343": 11, "31591613": 11, "57198987": 11, "26905432": 11, "9006192": 11, "09711793": 11, "45736561": 11, "30886012": 11, "07848016": 11, "96272446": 11, "4375964": 11, "37209682": 11, "34979736": 11, "67842668": 11, "46668449": 11, "16374894": 11, "96611877": 11, "04686181": 11, "89835632": 11, "75803828": 11, "35572193": 11, "93110611": 11, "17786096": 11, "81761329": 11, "1789924": 11, "75324515": 11, "52399662": 11, "69480158": 11, "6925387": 11, "99547425": 11, "18378554": 11, "27497889": 11, "25154799": 11, "68661413": 11, "25267943": 11, "80236983": 11, "54037152": 11, "99068112": 11, "35092879": 11, "08779905": 11, "12760484": 11, "58610189": 11, "25747256": 11, "25041655": 11, "15329862": 11, "65386434": 11, "10530538": 11, "85149451": 11, "67023924": 11, "09598649": 11, "02822404": 11, "48672109": 11, "90654377": 11, "22698565": 11, "58017732": 11, "36024768": 11, "38367858": 11, "80010695": 11, "78260062": 11, "05278638": 11, "01184915": 11, "19310442": 11, "91699409": 11, "38481002": 11, "18012384": 11, "21061075": 11, "78373206": 11, "64341402": 11, "1030425": 11, "29248523": 11, "08893048": 11, "79418238": 11, "57312131": 11, "61405854": 11, "63043344": 11, "69367014": 11, "17672953": 11, "2820349": 11, "63409514": 11, "23404166": 11, "31704757": 11, "93336898": 11, "68774557": 11, "73687025": 11, "11349282": 11, "71004503": 11, "5533521": 11, "97091191": 11, "23743597": 11, "18831129": 11, "85968196": 11, "57904588": 11, "14397974": 11, "93816212": 11, "91473122": 11, "94042499": 11, "62224599": 11, "59542077": 11, "04573037": 11, "10191107": 11, "94634957": 11, "83398818": 11, "39186603": 11, "67137067": 11, "07255559": 11, "34160991": 11, "62817056": 11, "03048691": 11, "42461582": 11, "89243175": 11, "49830284": 11, "0796116": 11, "65499578": 11, "40937236": 11, "84104419": 11, "29954124": 11, "54516465": 11, "61179567": 11, "98136223": 11, "28542922": 11, "04799325": 11, "37662257": 11, "52286519": 11, "60247678": 11, "93223755": 11, "7450577": 11, "44212215": 11, "64680833": 11, "97430622": 11, "6527329": 11, "62703913": 11, "50535885": 11, "56380242": 11, "13805517": 11, "18604841": 11, "46442162": 11, "16261751": 11, "89016887": 11, "42235294": 11, "45849705": 11, "07368703": 11, "58836476": 11, "40710949": 11, "24449198": 11, "60360822": 11, "75098227": 11, "3743597": 11, "44917816": 11, "26792288": 11, "02935548": 11, "20242331": 11, "05391782": 11, "26086687": 11, "00705601": 11, "12168027": 11, "73573881": 11, "73460738": 11, "0632367": 11, "11236139": 11, "06436814": 11, "74392626": 11, "02229947": 11, "10417394": 11, "03867436": 11, "70412046": 11, "01524346": 11, "44099071": 11, "75916972": 11, "66318323": 11, "37549114": 11, "96498734": 11, "14624261": 11, "12873628": 11, "86673797": 11, "53105263": 11, "63862088": 11, "55561497": 11, "25973544": 11, "71936392": 11, "40005348": 11, "21174219": 11, "48192795": 11, "onto": [11, 17, 55, 57], "1d": [11, 12, 15], "transpar": 11, "7500011": 11, "76500103": 11, "78000096": 11, "79500089": 11, "81000082": 11, "82500076": 11, "84000069": 11, "85500062": 11, "87000055": 11, "88500048": 11, "90000041": 11, "91500035": 11, "93000028": 11, "94500021": 11, "96000014": 11, "97500007": 11, "99000001": 11, "00499994": 11, "01999987": 11, "0349998": 11, "04999973": 11, "06499966": 11, "0799996": 11, "09499953": 11, "10999946": 11, "12499939": 11, "13999932": 11, "15499925": 11, "16999919": 11, "18499912": 11, "19999905": 11, "21499898": 11, "22999891": 11, "24499884": 11, "25999878": 11, "27499871": 11, "28999864": 11, "30499857": 11, "3199985": 11, "33499843": 11, "34999837": 11, "3649983": 11, "37999823": 11, "39499816": 11, "40999809": 11, "42499803": 11, "43999796": 11, "45499789": 11, "46999782": 11, "48499775": 11, "49999768": 11, "center": [11, 13, 14, 32], "75750106": 11, "772501": 11, "78750093": 11, "80250086": 11, "81750079": 11, "83250072": 11, "84750065": 11, "86250059": 11, "87750052": 11, "89250045": 11, "90750038": 11, "92250031": 11, "93750024": 11, "95250018": 11, "96750011": 11, "98250004": 11, "99749997": 11, "0124999": 11, "02749983": 11, "04249977": 11, "0574997": 11, "07249963": 11, "08749956": 11, "10249949": 11, "11749942": 11, "13249936": 11, "14749929": 11, "16249922": 11, "17749915": 11, "19249908": 11, "20749902": 11, "22249895": 11, "23749888": 11, "25249881": 11, "26749874": 11, "28249867": 11, "29749861": 11, "31249854": 11, "32749847": 11, "3424984": 11, "35749833": 11, "37249826": 11, "3874982": 11, "40249813": 11, "41749806": 11, "43249799": 11, "44749792": 11, "46249785": 11, "47749779": 11, "49249772": 11, "width": [11, 14, 15, 55], "01499993": 11, "readi": [11, 20, 25, 44, 55, 58, 59, 62], "broadcast": 11, "prod": 11, "00072536": 11, "ratio": 11, "data_df_bdt": 11, "data_bdt_h2d": 11, "734": 11, "735": 11, "0x7f3fa4101a10": 11, "ratio_larg": 11, "0x7f3fa525e390": 11, "subtract": [11, 16, 46, 60], "weigth": 11, "random": [11, 13, 14, 21, 25, 26, 44, 52], "weightedsum": 11, "119974": 11, "121182": 11, "120033": 11, "121242": 11, "00000000e": 11, "14845083e": 11, "05446563e": 11, "96512911e": 11, "83084843e": 11, "01": [11, 12, 14, 55], "47208928e": 11, "06491397e": 11, "17668941e": 11, "86765349e": 11, "70775419e": 11, "65980841e": 11, "34566452e": 11, "54331482e": 11, "91131015e": 11, "37436170e": 11, "28903259e": 11, "82739379e": 11, "03425612e": 11, "23933316e": 11, "33293950e": 11, "13367706e": 11, "62757782e": 11, "36911714e": 11, "92850770e": 11, "01273599e": 11, "85787404e": 11, "93728587e": 11, "93944761e": 11, "06129394e": 11, "85624596e": 11, "76312956e": 11, "77302533e": 11, "00027384e": 11, "24613409e": 11, "16687046e": 11, "04229856e": 11, "50028668e": 11, "17789752e": 11, "09674446e": 11, "25052995e": 11, "56066555e": 11, "47822673e": 11, "37564300e": 11, "35874877e": 11, "24468114e": 11, "66791531e": 11, "14237471e": 11, "90947160e": 11, "52650475e": 11, "70669770e": 11, "89691594e": 11, "00644889e": 11, "72828008e": 11, "40622774e": 11, "86182825e": 11, "05673201e": 11, "12779318e": 11, "91809501e": 11, "32303592e": 11, "91442170e": 11, "89079400e": 11, "47408334e": 11, "42165478e": 11, "77319439e": 11, "82744008e": 11, "25254516e": 11, "03": [11, 55, 57, 58, 59], "39535291e": 11, "13146261e": 11, "80254871e": 11, "29800081e": 11, "12783665e": 11, "69414329e": 11, "61272306e": 11, "29681486e": 11, "25767329e": 11, "24222686e": 11, "18640184e": 11, "16874401e": 11, "43548904e": 11, "35677119e": 11, "32129012e": 11, "05404451e": 11, "75483562e": 11, "98321521e": 11, "39307737e": 11, "83272095e": 11, "70096391e": 11, "38661721e": 11, "98604631e": 11, "68145427e": 11, "17299161e": 11, "99418571e": 11, "58865872e": 11, "78166271e": 11, "44422172e": 11, "46004655e": 11, "49973939e": 11, "73273353e": 11, "64058105e": 11, "20467454e": 11, "46949836e": 11, "36878393e": 11, "89243789e": 11, "41091363e": 11, "52677662e": 11, "48138903e": 11, "33450512e": 11, "22818982e": 11, "14919810e": 11, "17156753e": 11, "03748083e": 11, "09708159e": 11, "72902222e": 11, "02631056e": 11, "04917200e": 11, "33170370e": 11, "34609600e": 11, "35407263e": 11, "44019090e": 11, "43449961e": 11, "18787227e": 11, "92089594e": 11, "37456546e": 11, "70995921e": 11, "51734657e": 11, "56810810e": 11, "34338834e": 11, "67410537e": 11, "53649061e": 11, "05068750e": 11, "83700797e": 11, "96047379e": 11, "72940438e": 11, "58235942e": 11, "49585405e": 11, "14958212e": 11, "15052678e": 11, "47664856e": 11, "43337925e": 11, "43664338e": 11, "45979667e": 11, "48108930e": 11, "56935482e": 11, "97313073e": 11, "40410110e": 11, "15275158e": 11, "67606170e": 11, "81575316e": 11, "59529244e": 11, "16354951e": 11, "80226660e": 11, "33279745e": 11, "19328132e": 11, "04097362e": 11, "65494275e": 11, "16575646e": 11, "84841399e": 11, "40751484e": 11, "49317280e": 11, "84178842e": 11, "09236354e": 11, "90913040e": 11, "50733199e": 11, "09802194e": 11, "chi2": 11, "minim": [12, 13, 15, 16, 26, 27, 36], "mont": 12, "carlo": 12, "weight": [12, 14, 16, 32], "coincid": 12, "fight": 12, "drawback": 12, "multidimension": 12, "distibut": [12, 14], "aim": [12, 32, 35, 54], "pai": [12, 23], "neq": 12, "ipykernel_5167": 12, "453314117": 12, "hspd": 12, "pt_b": 12, "pt_phi": 12, "vchi2_b": 12, "mu_pt_sum": 12, "mc_distribut": 12, "original_fil": 12, "original_tre": 12, "rd_distribut": 12, "target_fil": 12, "target_tre": 12, "original_weight": 12, "kolmogorov": 12, "smirnov": 12, "dim": 12, "ml": [12, 13], "ant": 12, "original_train": 12, "original_test": 12, "target_train": 12, "target_test": 12, "original_weights_train": 12, "original_weights_test": 12, "metrics_util": 12, "ks_2samp_weight": 12, "hist_set": 12, "alpha": [12, 14], "draw_distribut": 12, "new_original_weight": 12, "id": [12, 21, 23, 28, 55], "percentil": 12, "hstack": 12, "k": [12, 14, 16, 32, 42, 51, 53, 54, 55], "weights1": 12, "weights2": 12, "agreement": [12, 32], "1000000": 12, "21441": 12, "5203540728277889": 12, "21639364439970188": 12, "4020113592414034": 12, "40466385087324064": 12, "521532786069641": 12, "21869298507300033": 12, "40407485572151247": 12, "40315059700877287": 12, "5181806468942461": 12, "2117249270654996": 12, "39734291550071926": 12, "4114962436121": 12, "m_": 12, "w_": [12, 14], "fast": [12, 24, 26, 38, 40, 41], "bring": [12, 55, 60], "disagr": 12, "bins_reweight": 12, "binsreweight": 12, "n_bin": 12, "n_neigh": 12, "bins_weights_test": 12, "predict_weight": 12, "40882731291504454": 12, "11370672512099517": 12, "274164933082356": 12, "35385537482401175": 12, "inspir": 12, "curs": 12, "decis": [12, 16, 20, 28, 29], "functiion": 12, "reweightlossfunct": 12, "sever": [12, 21, 25, 28, 34, 37, 43, 44, 46, 54, 55, 56, 58, 59, 60], "gbreweight": 12, "250": 12, "min_samples_leaf": 12, "gb_arg": 12, "gb_weights_test": 12, "056483221287462415": 12, "024794142226322924": 12, "06181648469069534": 12, "022084478634007865": 12, "check_ks_of_express": 12, "col_origin": 12, "engin": [12, 16, 30, 32, 54], "col_target": 12, "w_target": 12, "09583124976705806": 12, "12280756843543553": 12, "05734825029784174": 12, "37176657078975295": 12, "339807241724008": 12, "03192878543735511": 12, "4755599757506862": 12, "37788460332851737": 12, "04467073507051755": 12, "49324049356537336": 12, "4045896623115322": 12, "04795372086978622": 12, "pupros": 12, "separ": [12, 17, 19, 21, 26, 33, 42, 43, 48, 55, 57, 58, 59, 60, 61, 62], "concaten": [12, 14, 57, 58], "gb_weight": 12, "new_weight": 12, "xtr": 12, "xt": 12, "ytr": 12, "yt": 12, "wtr": 12, "wt": 12, "sample_weight": 12, "9390359088931497": 12, "914814049291749": 12, "5201009709703769": 12, "undistingish": 12, "sensibl": [12, 24], "especi": [12, 16, 21, 26], "yeei": 12, "Or": [12, 15, 20, 28, 62], "taken": [12, 14, 15, 34, 58, 60], "wors": [12, 22, 49, 59], "spot": [12, 25], "topic": [12, 16, 26, 32, 35, 50, 60, 62], "whatev": [12, 20, 38, 42, 43, 57, 58, 59, 60], "yscale": 12, "log": [12, 20, 21, 22, 23, 25, 27, 32, 44, 51, 53, 55, 57, 59, 61], "907": 12, "1212756418231": 12, "72559": 12, "2547546806": 12, "desir": 12, "awar": [12, 25, 28, 34, 36, 54], "hoc": 12, "clip": 12, "disturb": 12, "proce": [12, 25, 54], "determin": [12, 14, 34, 42, 44, 62], "tradeoff": [12, 59], "factor": [12, 39], "tend": [12, 21, 55], "foldingreweight": 12, "Be": [12, 14, 27, 34, 54, 58, 62], "80": [12, 14, 36], "greatli": [12, 15], "reweighter_bas": 12, "n_fold": 12, "half": [12, 61], "dure": [12, 14, 22, 26, 27, 28, 32, 56, 58, 62], "folding_weight": 12, "30650047651487633": 12, "18075189416201726": 12, "3076657623730652": 12, "2990922524201176": 12, "9367389979362668": 12, "8257459844531432": 12, "model": [13, 14, 16, 28, 32, 34, 40, 57], "extract": [13, 15, 55, 59, 60, 62], "immedi": [13, 58], "Of": [13, 16, 33, 37, 38, 43, 46, 48, 59, 60], "poi": 13, "observ": [13, 16, 20, 32, 46, 56, 62], "relev": [13, 15, 16, 32, 54, 61], "detectoreffect": 13, "nuisanc": 13, "chi": [13, 15], "reflect": 13, "retriev": [13, 14, 17, 21, 34, 42, 46, 58], "maximis": [13, 53], "trivial": [13, 27, 34, 36], "numer": [13, 34, 38, 55, 57, 59, 60], "procedur": 13, "studi": [13, 39], "focu": [13, 16, 36, 57], "unbin": 13, "zfit": [13, 14, 16], "hepstat": [13, 14, 16], "young": 13, "mention": [13, 20, 28, 54, 56, 60], "roofit": 13, "roostat": 13, "older": [13, 21, 60], "proven": 13, "framework": 13, "bind": [13, 39, 53], "templat": [13, 36, 49], "pyhf": 13, "recommend": [13, 18, 28, 32, 35, 39, 41, 44, 45, 47, 62], "record": [13, 17, 20, 21, 23, 44, 55, 56, 57, 59, 62], "introduct": [13, 16, 21, 32, 36, 47], "63": [13, 14], "tensorflow": [13, 14, 32], "suppress": [13, 14, 54], "zfit_disable_tf_warn": [13, 14], "datas": 13, "fraction": 13, "ob": [13, 14], "from_panda": 13, "obs_bkg": 13, "bkg_two": 13, "distinct": [13, 34, 60], "pdf": [13, 14, 27, 39, 55, 56, 57, 62], "lambd": [13, 14], "lambda": [13, 14, 15, 43, 44], "bkg_yield": [13, 14], "5000": [13, 14, 43], "200000": 13, "step_siz": [13, 14], "sig_yield": [13, 14], "bkg_pdf": 13, "exponenti": [13, 14, 45], "set_yield": 13, "sig_pdf": 13, "gauss": [13, 14, 44], "sumpdf": [13, 14], "plot_fit": 13, "limit1d": [13, 14], "bin_edg": [13, 14], "unstack_x": [13, 14], "binwidth": [13, 14], "linspac": [13, 14, 39], "num": [13, 14], "tf": 13, "sub": [13, 14, 19, 42, 55, 56, 57], "ext_pdf": [13, 14], "royalblu": [13, 14], "zip": [13, 14, 38, 42, 61], "get_model": [13, 14], "forestgreen": [13, 14], "crimson": [13, 14], "ym": [13, 14], "set_titl": [13, 14], "data_rang": [13, 14], "set_xlim": [13, 14], "fontsiz": [13, 14], "sinc": [13, 14, 17, 25, 34, 36, 38, 44, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62], "sig_nll": 13, "unbinnednl": 13, "933": 13, "advancedfeaturewarn": 13, "unwant": [13, 25], "turn": [13, 16, 25, 31, 32, 53, 54, 55, 56, 57, 58], "advanced_warn": 13, "extended_in_unbinnednl": 13, "extend": [13, 14, 25, 27, 34, 60], "dist_tfp": 13, "yield": [13, 14, 16, 60], "nll": 13, "extendedunbinnednl": [13, 14], "warn_advanced_featur": 13, "minuit": [13, 14], "nloptlbfgsv1": 13, "iminuit": [13, 40], "scipyslsqpv1": 13, "fitresult": 13, "0x7f880f943150": 13, "tol": 13, "001": 13, "edm": 13, "approx": 13, "fmin": 13, "2e": 13, "275181": 13, "55": 13, "129185": 13, "09692": 13, "0150308": 13, "tail": [13, 54, 57, 58, 59], "functor": 13, "composed_autoparam_1": 13, "composed_autoparam_2": 13, "0x7f880de43150": 13, "6e": 13, "05": [13, 14, 56, 57, 58, 59, 60], "2379": 13, "9786": 13, "977": 13, "6004": 13, "157": 13, "381": 13, "15861": 13, "10385": 13, "hess": 13, "hessian": 13, "mino": 13, "1204": 13, "changedfeaturewarn": 13, "changed_warn": 13, "hesse_nam": 13, "current": [13, 16, 19, 20, 23, 25, 26, 27, 28, 32, 39, 41, 42, 44, 51, 52, 54, 55, 56, 57, 58, 59, 60], "minuit_hess": 13, "hesse_np": 13, "futur": [13, 31, 36, 43, 44, 51, 55, 59], "stai": [13, 25], "wherev": 13, "warn_changed_featur": 13, "1340": 13, "minuit_mino": 13, "custom": [13, 16, 55], "implementationwith": 13, "1361": 13, "errors_nam": 13, "zfit_error": 13, "065": 13, "0035": 13, "0036": 13, "0034": 13, "hypotest": 13, "asymptoticcalcul": 13, "null": [13, 60], "hypothesi": 13, "sig_yield_poi": 13, "tqdm": 13, "auto": [13, 18, 26, 55], "tqdmwarn": 13, "iprogress": 13, "ipywidget": 13, "readthedoc": 13, "io": 13, "en": 13, "user_instal": 13, "autonotebook": 13, "notebook_tqdm": 13, "frequentistcalcul": 13, "construct": [13, 14, 36, 55, 57, 59, 60, 61], "q_": 13, "h_": 13, "pseudo": [13, 44], "repres": [13, 14, 18, 24, 25, 34, 42, 44, 45, 46, 59, 62], "ask": [13, 19, 20, 26, 28, 29, 33, 37, 41, 42, 45, 47, 48, 54, 55, 56, 57, 58, 59, 60, 62], "equat": [13, 14], "z": [13, 15, 37, 38, 41, 51, 55, 57, 58, 59, 60, 62], "phi": [13, 15], "p_0": 13, "poinul": 13, "p_valu": 13, "6984747769631667e": 13, "unit": [13, 15, 25, 54, 55], "559552486475989": 13, "fluctuat": 13, "resampl": [13, 40], "compute_sweight": 14, "properti": [14, 16, 29, 33, 41, 44, 45, 46, 48, 55, 60], "explan": [14, 21, 55, 56, 59], "sig_data": 14, "bck_data": 14, "electron": [14, 28], "positron": 14, "p_x": 14, "0x7ff6685b0490": 14, "pictur": [14, 20, 23, 26, 55], "inaccuraci": 14, "correctli": [14, 19, 21, 23, 25, 26, 34], "px": [14, 36], "distort": 14, "lost": [14, 32, 50, 55], "n_sig1": 14, "n_bck1": 14, "8000": 14, "2000": 14, "n_sig2": 14, "n_bck2": 14, "first_bin": 14, "second_bin": 14, "121": 14, "bottom": [14, 25, 56], "xtick": 14, "horizontalalign": 14, "verticalalign": 14, "proport": 14, "122": [14, 49, 59], "visa": 14, "versa": [14, 34, 55, 61], "had": [14, 23, 25, 42, 43, 57, 61, 62], "big": [14, 25], "6800": 14, "compens": 14, "At": [14, 25, 29, 54, 55, 61, 62], "role": [14, 24, 36], "plot_with_weight": 14, "karg": 14, "assert": [14, 62], "electon": 14, "edgecolor": 14, "straightforward": 14, "uniqu": [14, 20, 21, 28, 38, 55, 59, 62], "continuo": 14, "channel": [14, 32, 47, 55, 57, 62], "pivk": 14, "2004ty": 14, "popul": [14, 20, 26, 56], "unfold": 14, "lifetim": [14, 39], "reson": 14, "combinatori": 14, "5279": [14, 15], "5100": 14, "5400": 14, "002": 14, "0001": 14, "6000": [14, 57], "signal_pdf": 14, "comb_bkg_pdf": 14, "25000": 14, "50000": 14, "3e5": 14, "extended_sig": 14, "create_extend": 14, "extended_bkg": 14, "backgrond": 14, "nsig_sw": 14, "20000": 14, "np_sig_m_sw": 14, "reshap": 14, "np_sig_t_sw": 14, "nbkg_sw": 14, "150000": 14, "np_bkg_m_sw": 14, "np_bkg_t_sw": 14, "t_cut": 14, "np_m_sw": 14, "np_t_sw": 14, "set_xlabel": 14, "likelihood": [14, 15, 16, 32], "data_sw": 14, "from_numpi": 14, "nll_sw": 14, "simultan": [14, 26, 38, 42, 57], "anymor": [14, 52], "use_minuit_grad": 14, "result_sw": 14, "118233": 14, "20032": 14, "00197586": 14, "5278": 14, "98": 14, "plot_fit_project": 14, "visual": [14, 61], "set_valu": 14, "sum_": 14, "v_": 14, "nj": 14, "f_j": 14, "f_k": 14, "f_n": 14, "x_e": 14, "f_0": 14, "n_0": 14, "discrim": 14, "182e": 14, "74522237": 14, "17454325": 14, "07409398": 14, "12220893": 14, "003e": 14, "04": 14, "25477958": 14, "8254534": 14, "92590173": 14, "12220347": 14, "647966127202": 14, "118232": 14, "76333840188": 14, "sorter": 14, "argsort": 14, "mathrm": 14, "axhlin": 14, "5600": 14, "lw": [14, 53], "uncorrel": 14, "corrcoef": 14, "03522752374174872": 14, "scipi": [14, 32], "expon": 14, "sig_mass_distr": 14, "bck_mass_distr": 14, "sig_mass": 14, "rv": 14, "bck_mass": 14, "sig_p": 14, "bck_p": 14, "priori": 14, "gaussian": 14, "met": [14, 37, 44, 46], "me": [14, 20, 31, 37, 42, 54], "bck": 14, "0x7ff65c899990": 14, "prob": 14, "div": 14, "0x7ff65c8b4690": 14, "goal": [14, 24, 25, 56], "hist_conf": 14, "34344490966851315": 14, "satisfi": [14, 28], "01243138520386182": 14, "011348832943694522": 14, "obvious": [14, 49], "p_": 14, "pb": 14, "p_b": 14, "sw_": 14, "wb": 14, "sw_b": 14, "formula": [14, 60], "nbsphinx": 14, "main": [14, 16, 23, 24, 25, 27, 43, 44, 60], "unknown": [14, 34, 55], "mathemat": [14, 44], "amount": [14, 38, 58], "1_": 14, "iff": 14, "li": [14, 60], "sum_x": 14, "guarante": [14, 16, 36, 38, 55, 56], "deviat": 14, "a_1": 14, "a_2": 14, "rewrit": [14, 36, 43, 44], "_x": 14, "bb": 14, "sb": 14, "ss": 14, "nb": 14, "matrix": 14, "mathbb": 14, "apart": [14, 56], "isn": [14, 20, 28, 37, 41, 42, 55, 56, 57, 59, 62], "uniform": [14, 16, 32, 44], "leq": 14, "lagrangian": 14, "mathcal": 14, "lambda_1": 14, "lambda_2": 14, "assupt": 14, "abolut": 14, "indent": [14, 37, 42, 43], "interv": 14, "finali": 14, "helper": 15, "lookup": 15, "decaylanguag": 15, "overview": [15, 29, 47], "notabl": 15, "numexpr": 15, "usag": [15, 33, 48, 54, 55, 59, 60], "from_styl": 15, "to_styl": 15, "from_root": 15, "tmath": 15, "x_px": 15, "x_py": 15, "x_pz": 15, "pow": 15, "unnamedconst": 15, "to_numexpr": 15, "to_root": 15, "hold": [15, 20, 23, 28, 29, 38, 55, 56, 57], "piplu": 15, "from_pdgid": 15, "211": 15, "139": 15, "57039": 15, "5284e": 15, "pi": [15, 42, 44, 46, 57], "serv": [15, 16, 32, 43, 54], "neutral": 15, "hadron": [15, 39], "findal": 15, "pdgid": 15, "has_bottom": 15, "b0": 15, "511": 15, "mev": [15, 39], "513": 15, "5324": 15, "5747": 15, "515": 15, "5739": 15, "531": 15, "5366": 15, "92": [15, 36], "533": 15, "5415": 15, "s2": 15, "5840": 15, "535": [15, 60], "5839": 15, "551": 15, "9398": 15, "upsilon": 15, "553": 15, "9460": 15, "b2": 15, "1p": [15, 54], "555": 15, "9912": 15, "5122": 15, "5619": 15, "xi": 15, "5232": 15, "5791": 15, "10551": 15, "9859": 15, "10553": 15, "9899": 15, "b1": 15, "20553": 15, "9892": 15, "20555": 15, "10163": 15, "100553": 15, "10023": 15, "2p": 15, "100555": 15, "10268": 15, "110551": 15, "10232": 15, "110553": 15, "10259": 15, "120553": 15, "10255": 15, "200553": 15, "10355": 15, "3p": 15, "200555": 15, "10524": 15, "220553": 15, "10513": 15, "300553": 15, "10579": 15, "10860": 15, "9000553": 15, "10885": 15, "11020": 15, "9010553": 15, "11000": 15, "hardcod": [15, 36], "constant": [15, 58], "neat": [15, 42], "furthermor": [15, 36], "c_light": 15, "299": [15, 59, 61], "792458": 15, "1250": 15, "manipul": [15, 41, 44, 45, 46], "quantiti": [15, 20, 42], "liter": [15, 42, 43, 45, 49, 55], "coordin": [15, 41, 42], "field": [15, 25, 28, 32, 35, 36, 57, 59, 60], "vec1": 15, "momentumnumpy4d": 15, "rho": 15, "f8": 15, "tau": 15, "theta": 15, "1035868415601453": 15, "cartesian": 15, "4d": 15, "vectorobject4d": 15, "lectur": [16, 34, 36], "schedul": 16, "knowledg": [16, 36], "lock": 16, "markdown": [16, 32, 35], "pack": [16, 32], "unpack": [16, 24, 26, 32], "context": [16, 32, 41, 55], "decor": [16, 20, 25, 32], "factori": [16, 32], "catch": [16, 26, 32, 58], "execut": [16, 21, 27, 32, 34, 39, 44, 47, 54, 57, 58, 59, 60, 61, 62], "dunder": [16, 32], "callabl": [16, 32], "danger": [16, 29, 32, 37, 54, 56], "zone": [16, 32], "recap": [16, 20, 32], "todo": 16, "diagram": [16, 55, 56, 58], "extens": [16, 32, 47, 55, 56, 57, 59, 60, 62], "impliment": [16, 32], "fold": [16, 32], "scipt": [16, 32], "argpars": [16, 32, 35, 62], "dalitz": 16, "prepar": [16, 32, 33, 48, 55], "tune": [16, 32], "setup": [16, 32], "cross": [16, 32], "earli": [16, 17, 32, 60, 61], "hyperamet": [16, 32], "optimis": [16, 32], "regular": [16, 56, 60], "arithmet": [16, 32, 54], "download": [16, 23, 24, 25, 26, 27, 32, 55, 57, 62], "gb": [16, 32, 54], "infer": [16, 32], "scope": [16, 32], "sweight": [16, 32], "beforehand": [16, 43], "appi": [16, 32], "deriv": [16, 29, 32, 40, 61], "option": [16, 17, 20, 23, 25, 29, 32, 33, 37, 39, 43, 44, 48, 54, 55, 56, 57, 59, 60, 61, 62], "linear": 16, "uncorrelated": 16, "conclus": [16, 17, 20, 21, 32], "formul": [16, 32], "hepunit": [16, 32], "vector": [16, 32, 42], "repetit": [16, 58, 61], "simpler": [16, 38, 54, 58, 61], "columnar": 16, "excel": [16, 17, 29, 38, 41, 42], "art": 16, "de": 16, "bia": 16, "intro": 16, "parametr": 16, "harder": [16, 43], "gradientboostingreweight": 16, "repeatedli": 16, "ecosystem": 16, "Not": [16, 19, 37, 42, 61], "70": [16, 43, 60], "smaller": [16, 24, 26, 54], "benefit": [17, 62], "collabor": [17, 20, 21, 23, 24, 26, 28, 29, 31, 32], "pile": [17, 55], "jorg": 17, "cham": 17, "phdcomic": 17, "ridicul": 17, "processor": 17, "microsoft": [17, 59], "googl": [17, 41, 54, 60], "histori": [17, 19, 20, 24, 25, 28, 31, 32, 33, 47, 48, 58, 59], "libreoffic": [17, 59], "displai": [17, 21, 23, 32, 51, 54, 55, 56, 57, 58, 60], "tape": 17, "rewind": 17, "latest": [17, 24, 27], "conflict": [17, 19, 25, 31, 32, 62], "decid": [17, 25, 29, 33, 48, 51, 55, 58, 59, 62], "metadata": 17, "kept": [17, 27], "sync": [17, 24, 31, 32], "facilit": [17, 25], "among": [17, 32, 50], "rc": 17, "subvers": 17, "1980": [17, 61], "larg": [17, 20, 21, 25, 26, 31, 35, 38, 43, 56, 57, 61], "compani": [17, 31, 57], "legaci": 17, "modern": [17, 60, 61], "mercuri": 17, "central": [17, 23], "host": [17, 18, 23, 25, 28], "concurr": 17, "imagin": [17, 21, 57, 59, 62], "draft": [17, 56, 60], "paragraph": [17, 24], "ruin": 17, "co": 17, "writer": [17, 59], "accept": [17, 29, 31, 32, 33, 35, 43, 48, 54, 56, 59], "unlimit": 17, "undo": [17, 19, 20, 21], "2016": [17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 55, 56, 57, 58, 59, 60, 61], "2017": [17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 47, 55, 56, 57, 58, 59, 60, 61], "softwar": [17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 35, 36, 45, 47, 50, 55, 56, 57, 58, 59, 60, 61, 62], "foundat": [17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 50, 55, 56, 57, 58, 59, 60, 61], "endright": [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 55, 56, 57, 58, 59, 60, 61], "configur": [18, 19, 20, 22, 23, 25, 27, 54, 55, 56, 61], "global": [18, 20, 42, 43, 45, 49, 60], "flag": [18, 19, 20, 23, 33, 39, 43, 48, 55, 56, 57, 59, 60, 61], "verb": [18, 60], "dracula": [18, 19, 20, 21, 26], "laptop": [18, 23, 25, 26, 52, 57], "config": [18, 32], "vlad": [18, 20, 21, 23, 24, 26], "tran": [18, 20, 21], "sylvan": [18, 20, 21], "ia": [18, 20, 21], "ui": 18, "bitbucket": [18, 23], "gitlab": [18, 24, 25, 26, 31, 32, 44], "hit": [18, 47, 55], "keyboard": [18, 55, 57, 59, 61], "encod": [18, 38], "charact": [18, 20, 21, 25, 37, 38, 47, 49, 54, 55, 56, 57, 58, 59, 60, 61], "hear": 18, "newlin": [18, 55, 60], "unexpect": [18, 34, 36, 42, 62], "recogn": [18, 28, 60], "autocrlf": 18, "linux": [18, 32, 47, 55, 56, 62], "window": [18, 24, 32, 39, 44, 53, 55, 56, 58, 61], "favorit": [18, 20, 21, 26, 62], "atom": [18, 25, 26, 57, 59, 60], "nano": [18, 19, 20, 21, 22, 24, 26, 54, 56, 59], "bbedit": 18, "mac": [18, 55, 56], "sublim": 18, "subl": 18, "win": 18, "x86": 18, "sublime_text": 18, "ex": [18, 62], "notepad": [18, 56], "multiinst": 18, "notabbar": 18, "nosess": 18, "noplugin": 18, "kate": 18, "gedit": [18, 54, 56], "scratch": [18, 25, 29], "emac": [18, 54, 55, 56], "vim": [18, 54, 56], "reconfigur": 18, "haven": [18, 20, 21, 56, 58, 60], "esc": [18, 34], "q": [18, 20, 53, 54, 55, 57, 62], "ran": [18, 27, 32, 44, 52, 59, 60, 62], "directori": [19, 20, 21, 22, 25, 27, 29, 32, 41, 44, 51, 52, 54, 57, 58, 59, 60, 61, 62], "mkdir": [19, 20, 22, 23, 25, 27, 41, 44, 56, 58, 61, 62], "planet": [19, 20, 21, 23, 24, 26, 27, 55, 56, 60], "cd": [19, 20, 21, 23, 24, 25, 27, 32, 34, 55, 56, 57, 58, 59, 60, 61, 62], "init": [19, 20, 23, 32], "content": [19, 20, 21, 22, 23, 25, 26, 29, 37, 38, 42, 54, 55, 56, 57, 58, 59, 60, 62], "hidden": [19, 55], "delet": [19, 20, 26, 27, 39, 41, 42, 44, 55, 56, 57, 62], "master": [19, 20, 21, 22, 23, 24, 25, 26, 36, 60, 62], "moon": [19, 20, 21, 26], "despit": [19, 61], "wolfman": [19, 20, 21, 26, 55], "concern": [19, 20, 21, 56, 62], "he": [19, 26], "sequenc": [19, 42, 56, 58, 60, 62], "interfer": 19, "outer": [19, 58], "inner": [19, 58], "fatal": 19, "parent": [19, 36, 55, 56], "touch": [19, 22, 37, 55, 56, 61, 62], "phobo": 19, "deimo": 19, "titan": 19, "similarli": [19, 46, 55, 58], "gitignor": [19, 20, 22], "texteditor": 19, "cat": [19, 20, 21, 22, 24, 26, 54, 57, 58, 59, 60, 62], "afterward": [19, 23, 32], "recov": [19, 21, 24, 56], "folder": [19, 22, 24, 41, 54, 55, 56, 57], "subdirectori": [19, 54, 55, 56, 60], "rm": [19, 20, 26, 56, 57, 58, 61, 62], "rf": [19, 62], "pwd": [19, 20, 55, 56], "cycl": [20, 55, 61], "workflow": [20, 21, 24, 32, 59, 61], "descript": [20, 25, 27, 33, 48, 54, 55, 57, 61], "mar": [20, 21, 23, 26], "refresh": [20, 24, 32, 47, 50], "unix": [20, 32, 55, 56, 57, 59, 60, 61], "cold": [20, 21, 26, 54], "dry": [20, 21, 26, 58, 62], "my": [20, 21, 25, 26, 27, 28, 34, 37, 39, 44, 49, 56, 60, 62], "untrack": [20, 22, 25], "cach": [20, 51], "unstag": [20, 21], "hasn": [20, 58, 60], "f22b25e": [20, 21], "insert": [20, 24, 25, 26, 42, 49, 59, 60], "100644": [20, 21, 24, 26], "perman": [20, 51], "launch": [20, 39, 44], "brief": 20, "blank": [20, 56, 57, 59], "f22b25e3233b4645dabd0d81e651fe074bd8e73b": [20, 21], "aug": [20, 21], "09": [20, 62], "2013": [20, 21, 30, 55, 59, 60], "0400": [20, 21], "revers": [20, 38, 55, 58], "chronolog": [20, 56], "filesystem": [20, 55], "clutter": [20, 55], "accident": [20, 21, 22], "checkout": [20, 21, 23, 26], "discard": [20, 21, 44], "phrase": [20, 60], "nor": [20, 34, 42, 55], "df0654a": [20, 21], "315bf3a": [20, 21], "cryptic": [20, 60, 61], "seri": [20, 32, 55, 58, 59], "piec": [20, 26, 43, 46, 55, 57, 58], "exactli": [20, 21, 24, 25, 28, 33, 36, 38, 43, 45, 46, 48, 52, 55, 57, 58, 59, 60], "fourth": 20, "whoop": [20, 57], "didn": [20, 24, 33, 41, 42, 48, 55, 56, 61, 62], "34961b1": 20, "insist": [20, 59], "captur": [20, 43, 59, 62], "batch": [20, 47], "citat": [20, 31, 32], "supervisor": [20, 59, 61], "thesi": [20, 56, 60], "bibliographi": 20, "changeset": 20, "snapshot": [20, 25], "life": [20, 25, 29, 44, 56, 61], "prompt": [20, 51, 55, 56, 57, 58, 59], "gather": [20, 23, 44], "incomplet": [20, 25], "makeup": 20, "walk": 20, "watch": 20, "mummi": [20, 21, 26, 55], "appreci": [20, 21, 26], "lack": [20, 21, 26], "humid": [20, 21, 26], "b36abfd": [20, 21], "climat": 20, "005937f": 20, "005937fbe2a98fb83f0ade869025dc2636b4dad5": 20, "07": [20, 21, 30, 55, 57, 58, 59], "34961b159c27df3b475cfe4415d94a6d1fcd064d": [20, 21], "dif": 20, "docum": 20, "wise": 20, "coars": 20, "screen": [20, 21, 25, 32, 50, 54, 56, 57, 58, 61], "pager": 20, "press": [20, 34, 52, 54, 55, 56, 57, 58, 61], "some_word": 20, "onelin": [20, 25], "graph": [20, 25, 59, 61, 62], "gitkeep": [20, 60], "unlik": [20, 42], "sole": 20, "redund": [20, 55], "myfil": 20, "venu": [20, 21], "thought": [20, 60], "friend": [20, 37, 41, 47, 54, 60, 62], "definit": [20, 43, 62], "plan": 20, "cc127c2": 20, "committ": 20, "twice": [20, 41, 55, 57], "bio": 20, "frank": 20, "stein": 20, "franki": 20, "monster": [20, 62], "4162a51": 20, "4162a51b273ba799a9d395dd70c45d96dba4e2ff": 20, "aaa3271e5e26f75f11892718e83a3e2743fab8ea": 20, "restor": 21, "saw": [21, 42, 46, 54, 55, 58, 60, 62], "0848c8d": 21, "notat": [21, 42, 58], "pronounc": 21, "minu": [21, 37, 44], "digit": [21, 26, 28, 53, 59, 60], "letter": [21, 26, 38, 56, 57, 58, 59, 60, 61], "annoi": [21, 25, 42, 43, 52], "overwrit": [21, 26, 56, 58], "manufactur": 21, "oxygen": 21, "reset": [21, 25, 57], "detach": [21, 51, 52, 53], "shouldn": [21, 58], "reattach": 21, "rid": [21, 25, 26, 56], "cartoon": 21, "form": [21, 22, 42, 55, 60, 62], "simplifi": 21, "dash": [21, 44, 55, 56], "organ": [21, 29, 56, 57, 58, 61], "imposs": [21, 34, 60], "backward": [21, 47, 54], "forward": [21, 24, 26, 54, 57], "jennif": 21, "she": [21, 28, 55, 56, 57, 58, 59, 60, 61], "week": [21, 23, 61], "modif": [21, 25, 55, 62], "morn": [21, 57], "broke": 21, "spent": [21, 27, 33, 48], "1hr": 21, "luck": [21, 25], "her": [21, 24, 26, 28, 55, 56, 57, 58, 59, 61], "data_crunch": 21, "realiz": [21, 25, 39, 44, 56, 58], "group": [21, 25, 35, 42, 47, 54, 55, 58], "________": 21, "0b1d055": 21, "love": 21, "hot": [21, 37], "unsuit": 21, "wrote": [21, 22, 28, 54, 58, 60, 61], "summar": 21, "month": [21, 30, 47, 55, 61], "ago": [21, 23], "narrow": 21, "backup": [22, 24, 55, 56, 57], "intermedi": [22, 45, 57], "dummi": [22, 26], "dat": [22, 54, 56, 57, 58, 59, 60], "wast": [22, 62], "disk": [22, 32, 50, 55, 56], "distract": 22, "whose": [22, 25, 42, 43, 51, 54, 58, 60], "cleaner": 22, "wouldn": [22, 33, 48, 58], "bonu": [22, 61, 62], "path": [22, 27, 39, 44, 54, 55, 56, 61, 62], "subfold": 22, "handi": [22, 24, 25, 36], "exclam": [22, 47], "exclud": [22, 42, 57, 59], "entri": [22, 36, 39, 55], "gp": 22, "info": [22, 25, 55, 62], "shortest": [22, 57], "append": [22, 26, 34, 42, 43, 53, 54, 55, 57, 58, 62], "negat": [22, 37], "log_01": 22, "log_02": 22, "log_03": 22, "etc": [22, 26, 34, 36, 54, 58, 59, 62], "neighbor": [22, 28], "resid": [22, 28], "log_": 22, "prerequisit": [23, 61, 62], "ssh": [23, 24, 25, 26, 51, 52, 53], "runn": 23, "7999": [23, 24, 25, 26], "santa": 23, "clau": 23, "machineri": 23, "hub": [23, 28], "programm": [23, 55, 56, 57, 60], "servic": [23, 25, 27], "perspect": [23, 29], "websit": [23, 24, 27, 31, 32, 60], "slightli": [23, 29, 55, 58, 60], "jira": 23, "click": [23, 24, 25, 27, 32, 56, 61], "icon": [23, 24, 61], "extern": [23, 35, 44, 58, 62], "soon": [23, 26, 28, 34, 47, 52, 54, 55], "url": [23, 25], "equival": [23, 25, 36, 37, 42, 52, 54, 55, 58, 59], "bare": 23, "krb5": 23, "browser": [23, 24, 25], "fetch": [23, 24, 25, 26], "nicknam": 23, "delta": [23, 24, 25, 26], "compress": [23, 24, 25, 26, 39], "821": 23, "byte": [23, 24, 25, 26, 39, 55, 56, 60], "synonym": 23, "upstream": [23, 25, 26], "fetch_head": [23, 24, 26], "synchron": 23, "gui": [23, 56, 61], "brows": [23, 44], "hover": 23, "button": [23, 25, 32, 55], "clipboard": 23, "green": [23, 25], "shade": 23, "id1": 23, "id2": 23, "a3bf1e5": 23, "041e637": 23, "timestamp": [23, 55], "repo": [23, 24], "exact": 23, "interact": [23, 33, 34, 39, 47, 48, 56, 59, 60, 61, 62], "typo": [23, 59], "broken": [23, 28, 39, 44], "pair": [24, 38], "owner": [24, 25, 54, 55], "carri": [24, 26], "partner": [24, 26], "anyon": [24, 51, 62], "desktop": [24, 55, 56, 61], "pluto": 24, "306": 24, "9272da5": 24, "29aba7c": [24, 26], "upload": 24, "massiv": 24, "light": 24, "respositori": [24, 25], "benifit": 24, "contributor": [25, 29, 32], "adopt": [25, 37], "famou": 25, "builtin": 25, "leverag": [25, 28], "platform": 25, "starter": 25, "kit": 25, "destin": [25, 56], "test_merge_request": 25, "learnt": [25, 42], "your_cern_usernam": 25, "verifi": 25, "dberzano": [25, 44], "pend": [25, 27], "nuclear": 25, "mess": 25, "seamlessli": 25, "destroi": 25, "fxd": 25, "somehow": [25, 35, 36, 46, 56], "bunch": [25, 29, 59], "firstnam": 25, "lastnam": 25, "shorter": [25, 44, 57], "concis": 25, "ado": 25, "316": 25, "kib": 25, "protect": [25, 29, 56], "hook": 25, "declin": 25, "ref": [25, 26], "attempt": [25, 56], "forbidden": 25, "764051d": 25, "256c9b6": 25, "tag": 25, "said": [25, 49, 60], "graphic": [25, 56, 60, 61], "polici": 25, "sit": [25, 26, 59], "relax": 25, "notifi": 25, "somebodi": 25, "sequenti": [25, 27, 38, 42, 62], "repli": 25, "proceed": 25, "certifi": 25, "certif": 25, "d09c134": 25, "359": 25, "voil\u00e0": 25, "direct": [25, 59, 62], "static": [25, 34], "simplic": 25, "disappear": [25, 56], "essenc": [25, 38], "scrutini": 25, "abil": [25, 26, 34, 44], "happi": [25, 28, 56], "orang": [25, 49], "overli": 25, "truli": 25, "minor": [25, 52, 55, 62], "buggi": 25, "wine": 25, "tast": [25, 54], "rush": 25, "pickiest": 25, "controversi": 25, "bear": [25, 57, 59, 60], "mind": [25, 29, 42, 54], "rampag": 25, "ensur": [25, 55, 62], "toe": 26, "lab": [26, 28, 32, 55, 57, 61], "overlap": 26, "5ae9631": 26, "352": 26, "dabb4c8": 26, "07ebc69": 26, "counterpart": [26, 34], "detect": [26, 62], "trampl": 26, "affect": [26, 39, 42, 44, 62], "dabb4c8c450e8475aee9b14b4383acc99f42af1d": 26, "preced": [26, 37, 39, 49, 58], "reconcil": 26, "conclud": [26, 54], "2abf2b1": 26, "697": 26, "effort": [26, 62], "technic": [26, 42, 60], "segreg": 26, "alter": [26, 43], "clarifi": 26, "stylist": [26, 41], "churn": 26, "convent": [26, 27, 32, 35, 37, 42, 55, 56, 57], "govern": 26, "htmltidi": 26, "perltidi": 26, "rubocop": 26, "enforc": 26, "instructor": 26, "textual": 26, "imag": [26, 27, 45, 56, 60], "martian": 26, "jpg": 26, "urandom": 26, "lh": [26, 55], "rw": 26, "57095": 26, "0k": 26, "kilobyt": 26, "8e4115c": 26, "meantim": 26, "sky": 26, "familiar": [26, 29, 35, 61], "6a67967": 26, "439dc8c": 26, "439dc8c08869c342438f6dc4a2b615b05b93c76": 26, "439dc8c0": 26, "21032c3": 26, "da21b34": 26, "success": [26, 54, 57], "mv": [26, 56], "94ae08c": 26, "celebr": 26, "beer": [26, 54], "afk": 26, "blindli": 26, "pipelin": [27, 32, 58, 59, 60, 62], "artefact": 27, "job": [27, 57, 61, 62], "deploi": 27, "physicist": [27, 41], "analys": [27, 35, 39, 57, 62], "travi": 27, "circleci": 27, "appveyor": 27, "yml": [27, 32], "interconnect": 27, "my_first_job": 27, "registri": 27, "worker": 27, "cc7": 27, "docker": 27, "offici": [27, 31, 41], "cento": 27, "sidebar": 27, "runner": 27, "enabl": [27, 33, 48, 55], "minut": [27, 28, 61], "prior": 27, "scroll": [27, 36, 54, 58], "examin": [27, 57, 58, 62], "dai": [27, 29, 31, 35, 46, 52, 55, 61], "compil": [27, 47], "first_stag": 27, "second_stag": 27, "artifact": [27, 60], "make_plot": 27, "continuumio": 27, "anaconda3": 27, "before_script": 27, "backend": [27, 39], "agg": [27, 39], "matplotlibrc": 27, "make_docu": 27, "yum": [27, 37], "texliv": 27, "ghostscript": 27, "latexmk": 27, "my_docu": 27, "tex": 27, "successfulli": 27, "debug": [27, 43, 44, 58, 59, 62], "difficult": [27, 36], "interpret": [27, 34, 39, 44, 47, 54, 55, 56, 58, 60, 62], "cvmf": [27, 47, 62], "persist": [27, 32, 33, 47, 48, 50], "opposit": 28, "john": 28, "wilbank": 28, "todai": [28, 60], "scientist": [28, 29, 30, 55], "depart": [28, 61], "analyz": [28, 56, 58], "grow": [28, 62], "journal": [28, 30], "send": [28, 54, 55, 57, 59, 61], "anonym": 28, "resubmit": 28, "eventu": 28, "onlin": [28, 30, 52, 55], "paywal": 28, "institut": [28, 29], "figshar": 28, "zenodo": 28, "doi": 28, "dryad": 28, "arxiv": [28, 30], "preprint": 28, "invit": 28, "peer": 28, "research": 28, "acceler": 28, "wide": [28, 35, 61], "cite": [28, 30], "aspect": 28, "book": [28, 60], "dilig": 28, "shareabl": 28, "conceptu": 28, "stamp": 28, "intent": [28, 44], "tie": 28, "rational": 28, "intellectu": [28, 29], "spring": 28, "recover": 28, "archiv": 28, "perpetu": 28, "citabl": 28, "reproduc": [28, 59, 61, 62], "labmat": 28, "surf": 28, "internet": [28, 35], "coupl": [28, 55, 61], "homepag": 28, "scientif": [28, 35, 61], "proper": [29, 36], "social": [29, 31, 32], "manuscript": 29, "clearli": [29, 36, 58], "elig": 29, "sue": 29, "infring": 29, "license": 29, "choosealicens": 29, "consider": [29, 38], "patent": 29, "licenc": 29, "wade": 29, "jargon": 29, "initit": 29, "articl": [29, 30], "ground": 29, "constitut": 29, "counsel": 29, "guidelin": 29, "doubt": 29, "hesit": 29, "trustworthi": 29, "advic": 29, "chosen": [29, 60], "unilater": 29, "daili": 29, "basi": 29, "workshop": [29, 56], "talk": [29, 44, 47], "cpython": 29, "etherpad": 29, "gpl": 29, "famili": 29, "creation": [29, 42, 60, 62], "lawyer": 29, "greg": 30, "wilson": 30, "product": [30, 58, 60, 61], "scienc": [30, 31, 32, 44], "nov": [30, 62], "dec": [30, 47], "2006": 30, "1307": 30, "5448": 30, "juli": [30, 55], "novemb": [30, 55], "decemb": [30, 55], "year": [30, 41, 55, 60], "eprinttyp": 30, "eprint": 30, "scm": 31, "design": [31, 55, 57, 61], "speed": [31, 60], "benevol": 31, "convinc": 31, "superior": 31, "hope": 31, "diari": 31, "amend": [31, 32], "retir": [31, 32], "side": [31, 32, 34, 42, 46, 60], "ci": [31, 32], "analyst": 32, "taught": 32, "student": [32, 61], "instil": 32, "maco": [32, 47], "shut": 32, "mambaforg": 32, "mamba": 32, "conda": [32, 39, 47, 62], "interchang": [32, 55], "forg": [32, 47], "accord": [32, 55, 56], "auto_activate_bas": 32, "jupyterlab": 32, "ipython": [32, 33, 34, 39, 42, 44, 46, 47, 48], "package_nam": 32, "webpag": [32, 50], "loop": [32, 35, 38, 43, 50, 59, 60, 61], "truthi": [32, 35], "pypi": [32, 35], "virtual": [32, 35, 39, 47], "glanc": [32, 35], "nell": [32, 56, 58, 59, 60], "pipe": [32, 50, 59, 60, 61], "filter": [32, 42, 43, 44, 60, 61], "tmux": [32, 50, 52], "lxplu": [32, 39, 44, 47, 50, 52, 53, 55, 61, 62], "kerbero": [32, 50, 52], "token": [32, 50, 52], "keytab": [32, 50], "k5reauth": [32, 50], "redirect": [32, 50, 57, 58, 62], "secur": [32, 50, 55], "viewer": [32, 43, 50], "wire": [32, 50], "bandit": [32, 50], "wargam": [32, 50], "snakemak": 32, "preserv": 32, "pizzaiolo": [33, 48], "make_pizza": [33, 48], "delici": [33, 48, 54], "pizza": [33, 37, 48, 55, 56], "sleep": [33, 41, 48, 52], "chees": [33, 37, 48], "oliv": [33, 37, 48], "filenam": [33, 39, 48, 55, 56, 57, 58, 59, 60, 61], "python2": [33, 44, 48], "dynload": [33, 44, 48], "broccoli": [33, 48], "argv": [33, 48], "whilst": [33, 42, 47, 48], "awesom": [33, 48], "super": [33, 36, 42, 48], "cool": [33, 42, 48], "behaviour": [33, 45, 48, 54, 59, 62], "topping1": [33, 48], "topping2": [33, 48], "hood": [33, 48], "parser": [33, 48, 62], "argumentpars": [33, 48, 62], "add_argu": [33, 48, 62], "narg": [33, 48], "store_tru": [33, 48], "parse_arg": [33, 48, 62], "shorthand": [33, 42, 46, 48], "woah": [33, 47, 48], "margherita": [33, 48], "tomato": [33, 48], "sauc": [33, 48], "buffalo": [33, 48], "mozzarella": [33, 48], "cleanli": [33, 48], "fundament": [34, 36, 46], "shift": 34, "everythin": 34, "timeit": 34, "bool": 34, "vice": [34, 55, 61], "wrap": [34, 42, 49], "e2": 34, "strongli": [34, 47, 55], "oppos": 34, "weakli": 34, "surpris": [34, 57], "mix_str_int": 34, "unsupport": [34, 55], "operand": 34, "mix_str_int2": 34, "strict": 34, "convers": 34, "int_plus_float": 34, "boolean": [34, 37], "principl": [34, 58], "hash": [34, 38], "list1": 34, "Being": 34, "jona": 34, "eschl": 34, "00001": 34, "mayou36": 34, "nation": 34, "accomplish": [34, 42, 53], "hair_color": 34, "frozendict": 34, "frozenset": 34, "tuple1": 34, "tuple_from_list": 34, "list2": 34, "tuple2": 34, "list3": 34, "neither": 34, "mutat": [34, 42], "surpriz": 34, "list_a": 34, "list_b": 34, "spam": 34, "happend": 34, "list_c": 34, "pretti": [34, 37, 42, 44], "nope": 34, "obj_to_return": 34, "broad": 35, "rich": [35, 44], "concentr": 35, "stuff": [35, 39, 42, 43, 44], "ntupl": 35, "believ": 35, "superb": 35, "abc": [35, 43], "oop": [36, 47], "paradigm": 36, "java": [36, 42], "anywai": [36, 44], "ahead": 36, "momenta": 36, "pi1": 36, "pi1_px": 36, "pi1_pi": 36, "pi1_pz": 36, "pi1_": 36, "calc_mass_simpl": 36, "pz": 36, "73618495495704": 36, "alright": 36, "stick": [36, 49, 56], "calc_mass": 36, "critic": 36, "docstr": [36, 43], "formal": 36, "belong": [36, 55], "trial": 36, "blueprint": 36, "make_particl": 36, "e1": 36, "234227": 36, "5113475212892835": 36, "picki": 36, "initialize_particl": 36, "particle1": 36, "284271247461902": 36, "perfect": [36, 43], "feed": [36, 54, 57], "acces": 36, "dot": [36, 44, 46, 56, 59], "simpleparticl": 36, "initialis": 36, "16079783099616": 36, "addabl": 36, "new_px": 36, "new_pi": 36, "new_pz": 36, "new_": 36, "particle2": 36, "new_particl": 36, "overtak": 36, "verboseparticl": 36, "momentum_text": 36, "composit": 36, "getter": 36, "setter": 36, "stateless": [36, 43], "classmethod": 36, "staticmethod": 36, "fledg": 36, "mandatori": [36, 49, 55], "asset": 36, "bugfre": 36, "codebas": 36, "sidenot": 36, "isinst": 36, "betterparticl": 36, "superpow": 36, "pineappl": 37, "pepperoni": 37, "dog": 37, "amaz": [37, 49], "weird": 37, "duh": 37, "ternari": 37, "succinct": 37, "impair": 37, "truth": 37, "dude": 37, "reassign": 37, "pointless": 37, "inequ": 37, "magnitud": [37, 42, 45], "parenthes": [37, 42, 43], "hero": [37, 41], "thor": [37, 41, 43], "stdin": [37, 38, 42, 43, 57], "nameerror": [37, 43], "dive": 37, "underscor": [37, 43, 44, 45, 46, 56], "dir": [37, 44, 45, 46, 54, 55], "__contains__": 37, "promis": 37, "iron": [37, 60], "man": [37, 54, 55, 60], "likewis": [37, 55], "placehold": [37, 49], "not_cheesi": 37, "blast": 37, "forev": [37, 56, 60], "jack": 37, "dull": 37, "boi": 37, "stuck": [37, 41], "ctrl": [37, 47, 51, 52, 53, 54, 56, 57, 58, 59], "map": [38, 43], "the_list": 38, "wherea": [38, 42, 44, 58], "sin": [38, 42, 44, 46, 47], "dict_kei": 38, "dict_valu": 38, "unord": [38, 43], "th": [38, 47], "flawlessli": 38, "256": 38, "3125": 38, "dd": 38, "unhash": 38, "__hash__": 38, "8411828025894108412": 38, "my_dict": 38, "my_kei": 38, "problemat": 38, "worri": [38, 49, 57, 58], "viewitem": 38, "viewkei": 38, "viewvalu": 38, "alphabet": [38, 55, 56, 57], "ascii_lowercas": 38, "abcdefghijklmnopqrstuvwxyz": 38, "alongsid": 38, "alphabet_map": 38, "invers": 38, "swap": 38, "reverse_map": 38, "portal": 39, "eospubl": 39, "opendata": 39, "antimattermatters2017": 39, "b2hhh_magnetdown": 39, "b2hhh_magnetup": 39, "phasespacesimul": 39, "safer": [39, 44], "lb": [39, 62], "upgrad": [39, 44], "__file__": [39, 44], "deactiv": [39, 44], "lcg": [39, 44, 47], "export": [39, 44, 54], "pythonpath": 39, "prioriti": 39, "pyroot": [39, 40], "tfile": 39, "aforement": [39, 53], "tnetxngfil": 39, "ttree": 39, "contina": 39, "my_tre": 39, "5135823": 39, "945201357": 39, "666480138": 39, "specialis": 39, "tabular": 39, "tleaf": 39, "read_root": 39, "b_flightdist": 39, "b_vertexchi2": 39, "h1_px": 39, "h1_py": 39, "h1_pz": 39, "301004": 39, "497280": 39, "375": 39, "284205": 39, "831": 39, "308481": 39, "51820": 39, "233718": 39, "94": 39, "690700": 39, "383338": 39, "4985": 39, "130785": 39, "5853": 39, "750057": 39, "326157": 39, "454706": 39, "284490": 39, "187101": 39, "1265": 39, "456544": 39, "2330": 39, "050788": 39, "90762": 39, "658032": 39, "590769": 39, "129099": 39, "720": 39, "797259": 39, "3413": 39, "790588": 39, "86793": 39, "058768": 39, "013242": 39, "988701": 39, "397": 39, "754571": 39, "1791": 39, "373059": 39, "40040": 39, "364159": 39, "bulk": 39, "child": [39, 51], "h1": 39, "h2": 39, "h3": 39, "transvers": 39, "h2_px": 39, "h2_py": 39, "1306": 39, "642724": 39, "167": 39, "578904": 39, "1273": 39, "457019": 39, "1146": 39, "299204": 39, "5135820": 39, "430531": 39, "5135821": 39, "762": 39, "344570": 39, "5135822": 39, "1454": 39, "471057": 39, "h2_pt": 39, "meson": 39, "b_p": 39, "h3_px": 39, "h3_py": 39, "h2_pz": 39, "h3_pz": 39, "xwindow": 39, "savefig": 39, "b_flight_dist": 39, "paus": 39, "ion": 39, "mathematica": 39, "matlab": 39, "b_flight_distance_v2": 39, "layer": 39, "flight": 39, "b_flight_distance_v3": 39, "throw": [39, 42, 43, 56], "awai": [39, 43, 44, 46, 56], "commonli": 39, "mm": 39, "df_with_cut": 39, "b_flight_distance_with_cut_compar": 39, "kaon": [39, 42], "argspars": 40, "datetim": 40, "fnmatch": 40, "subprocess": [40, 41], "pathlib": 40, "bootstrap": 40, "jackknif": 40, "jacobi": 40, "propag": 40, "numba": 40, "career": 41, "frustrat": 41, "trick": [41, 42], "beyond": [41, 53], "alli": 41, "didact": 41, "vote": 41, "treasur": 41, "trove": 41, "gone": [41, 56, 57], "tini": 41, "tempfil": 41, "mkdtemp": 41, "glob": 41, "localtim": 41, "tm_hour": 41, "namedtupl": 41, "coord": [41, 42], "ordereddict": 41, "321": [41, 59], "defaultdict": 41, "undefin": 41, "wider": 41, "90": [41, 42], "emphasis": 41, "consult": 41, "unsur": 41, "settl": 41, "disput": 41, "lower_case_funct": 41, "uppercasefunct": 41, "myfunc": 41, "my_func": 41, "summaris": 41, "philosophi": [41, 57, 62], "bracket": [42, 49], "comma": [42, 55], "del": 42, "my_funct": 42, "exclus": [42, 60], "arbitrari": [42, 43, 59, 62], "56": [42, 44], "11d6523211c0": 42, "indentationerror": 42, "complain": 42, "57": [42, 57], "5c3d29e65ad9": 42, "symbol": [42, 46, 55, 57, 58], "endfor": 42, "a_copi": 42, "intuit": [42, 45], "freeli": 42, "ourselv": 42, "a_doubl": 42, "firstli": 42, "sublist": 42, "0x7f5abe5b1190": 42, "item2": 42, "quick": [42, 47, 52, 57], "135": 42, "2025": 42, "succinctli": [42, 55], "attributeerror": 42, "65": 42, "worth": [42, 54, 62], "magsq": 42, "encapsul": 43, "0x7f83b2bc56e0": 43, "colon": [43, 58], "quot": [43, 49, 55, 56, 58, 59, 60], "linebreak": 43, "decent": 43, "top_funct": 43, "silli": 43, "elsewher": [43, 55], "implicitli": 43, "no_return": 43, "such_output": 43, "wow": 43, "clever": 43, "213": 43, "convention": [43, 49], "lowercas": [43, 44], "border": [43, 59], "trippl": 43, "un": 43, "unnecessari": 43, "syntaxerror": [43, 44], "remind": [43, 55, 58], "hmm": 43, "aha": 43, "clearer": [43, 58], "run_method": 43, "make_incrementor": 43, "increment": 43, "plu": [43, 46, 61], "increment_on": 43, "make_increment": 43, "increment_two": 43, "caller": 43, "expand": [43, 56, 57, 58, 59, 60], "reverse_arg": 43, "steve": 43, "helen": 43, "zorblax": 43, "9963": 43, "yoda": 43, "necessarili": [43, 44, 47], "bing": 43, "baz": 43, "cube": 43, "div2": 43, "0x7fc6b2207758": 43, "__future__": [43, 45], "divis": [43, 45, 46], "quadratur": 43, "4142135623730951": 43, "downsid": [43, 62], "unwieldi": 43, "idempot": 43, "anyhow": 43, "submodul": 44, "141592653589793": [44, 46], "8414709848078965": 44, "5877109428927353": 44, "4059007502204043": 44, "prefix": [44, 55, 58], "639334770284028": 44, "extent": 44, "clash": 44, "uni": 44, "7288973406605329": 44, "arcco": 44, "alias": 44, "abspath": 44, "af": [44, 55, 62], "getcwd": 44, "basenam": 44, "exp": 44, "floor": 44, "confid": 44, "portabl": 44, "anaconda": [44, 47], "preinstal": 44, "startup": 44, "bashrc": [44, 51, 62], "pythonuserbas": 44, "virtualenv": 44, "cburr": 44, "lcg_virtualenv": 44, "create_lcg_virtualenv": 44, "myvenv": 44, "simplest": [44, 53, 55, 60], "myfirstmodul": 44, "fire": 44, "ef292d9e19f": 44, "yabba": 44, "cp": [44, 56, 57, 58], "ring": 44, "bell": 44, "startswith": [44, 62], "__": [44, 46], "endsolut": [44, 56], "runnabl": 44, "long_format": 44, "print_label": 44, "msg": 44, "__name__": 44, "chmod": [44, 54], "outstand": 44, "notion": 44, "shebang": 44, "secondli": 44, "peculiar": 44, "hei": 44, "printout": 44, "discov": [45, 59, 60], "alic": [45, 47], "bewar": 45, "3333333333333335": 45, "decim": [45, 49], "histor": [45, 59], "unintuit": 45, "everywher": 45, "shortli": 45, "truncat": 45, "66666666667": 45, "__floordiv__": 45, "__truediv__": [45, 46], "4j": 45, "1j": 45, "5j": 45, "conjug": 45, "somewhat": 45, "confusingli": 45, "123105625617661": 45, "0j": 45, "straight": 46, "2246467991473532e": 46, "twopi": 46, "my_sin": 46, "4492935982947064e": 46, "scene": [46, 57], "0x7fdc7ea75980": 46, "shortcut": [46, 51, 55, 58], "__abs__": 46, "__and__": 46, "__bool__": 46, "to_byt": 46, "__sub__": 46, "__mul__": 46, "__getattribute__": 46, "horribl": 46, "liner": 46, "illustr": [46, 55], "999": [46, 49], "newer": [47, 49, 54], "sft": 47, "setupview": 47, "sh": [47, 54, 59, 60], "lcg_94python3": 47, "x86_64": 47, "slc6": 47, "gcc62": 47, "opt": 47, "miniforg": 47, "migrat": 47, "2020": 47, "gcc": 47, "repl": [47, 61], "ead": 47, "valuat": 47, "rint": 47, "enhanc": 47, "quickref": 47, "past": [47, 49, 51], "autocomplet": 47, "middl": [47, 59], "abc_my_var": 47, "abc_": 47, "sinh": 47, "cal": 47, "octob": 47, "su": 47, "mo": 47, "tu": 47, "fr": 47, "sa": 47, "useful": 47, "chapter": 47, "parrot": 49, "join": [49, 57], "carrot": 49, "amazingli": 49, "omg": 49, "omgomgomgomgomgomgomgomgomgomg": 49, "escap": [49, 55, 62], "backslash": 49, "gari": 49, "surround": [49, 56, 59, 60], "quotat": [49, 56], "long_fact": 49, "inde": 49, "nquit": 49, "998": 49, "a_parrot": 49, "interleav": 49, "result1": 49, "result2": 49, "referenc": 49, "template2": 49, "template3": 49, "worst": 49, "front": [49, 55, 57, 58], "3f": 49, "000": 49, "curli": [49, 58], "brace": [49, 58, 62], "innermost": 49, "recip": [51, 54], "ktutil": 51, "confirm": [51, 54, 55, 56, 57], "otg0077802": 51, "lxplus9": 51, "properli": 51, "lxplus7": 51, "lxplus8": 51, "login": [51, 61], "kdestroi": 51, "kt": 51, "klist": 51, "ticket": 51, "renew": [51, 52], "children": 51, "3600": 51, "certainli": [51, 62], "ktmux": 51, "fi": [51, 54], "rest": [51, 55], "disconnect": 52, "reconnect": 52, "wifi": 52, "uptim": 52, "105": 52, "apr": 52, "cest": 52, "2015": [52, 57], "25593": 52, "lxplus0234": 52, "socket": 52, "thead": 52, "rd": 52, "ti": 52, "resum": 52, "hostnam": [52, 53], "lxplus0081": 52, "expir": 52, "suddenli": 52, "ganga": 52, "surviv": [52, 60], "node": 53, "snippet": 53, "seq": 53, "04g": 53, "500": [53, 59], "connecttimeout": 53, "preferredauthent": 53, "gssapi": 53, "mic": 53, "gssapiauthent": 53, "stricthostkeycheck": 53, "loglevel": 53, "quiet": [53, 62], "grep": [53, 54, 55, 57, 60, 62], "screenrc": 53, "hardstatu": 53, "alwayslastlin": 53, "bg": 53, "bw": [53, 59], "yr": 53, "predefin": 53, "colour": 53, "layout": 53, "eg": 53, "stand": [53, 55, 57, 59, 60], "visit": 53, "kill": [53, 58], "logout": 53, "tcsh": [54, 61], "apropo": 54, "gfal": 54, "vdir": 54, "ld_library_path": 54, "varnam": 54, "starwar": 54, "star": 54, "war": 54, "anakin": 54, "membership": 54, "chown": 54, "chgrp": 54, "strvar": 54, "intvar": 54, "file1": 54, "file2": 54, "fulfil": 54, "cond1": 54, "cond2": 54, "tempt": 54, "havea": 54, "poem": 54, "suppli": [54, 62], "sentences2": 54, "tee": 54, "stdout": [54, 57, 62], "listoffileswithte": 54, "incid": 54, "buffer": 54, "alloc": [54, 55], "malici": 54, "sebastian": 54, "lopienski": 54, "mail": 54, "passwd": 54, "reach": 54, "vi": 54, "du": 54, "mount": 54, "recurs": [54, 55, 56, 60], "depth": [54, 55, 57], "deep": 54, "compet": 54, "earn": 54, "beginn": 54, "panic": 54, "clue": 54, "ps1": 55, "dollar": [55, 58], "whoami": 55, "hypothet": 55, "throughout": 55, "mycommand": 55, "cernus": 55, "slash": [55, 56], "lead": [55, 56, 57, 62], "miscellan": [55, 60], "underneath": 55, "imhotep": 55, "larri": 55, "music": [55, 56], "movi": 55, "arrang": 55, "neatli": 55, "trail": 55, "sort": [55, 57, 59, 60], "cftuvsux": 55, "nongraph": 55, "048": [55, 59], "576": 55, "ctime": 55, "newest": 55, "themselv": [55, 56, 57, 60], "dire": 55, "au": 55, "horizont": 55, "vertic": [55, 57], "iso": 55, "augment": 55, "1k": 55, "234m": 55, "2g": 55, "si": [55, 60], "derefer": 55, "symlink": 55, "hide": [55, 61], "overridden": 55, "inod": 55, "kibibyt": 55, "uid": 55, "gid": 55, "raw": [55, 56, 57, 62], "char": 55, "enclos": [55, 58, 59, 61], "largest": 55, "atim": 55, "format1": 55, "format2": 55, "posix": 55, "tabsiz": 55, "col": 55, "10k": 55, "emit": 55, "ls_color": 55, "dircolor": 55, "seriou": 55, "troubl": 55, "gnu": 55, "coreutil": 55, "www": 55, "lucki": 55, "spacebar": [55, 57], "wikipedia": 55, "accur": [55, 59], "hierarch": 55, "hundr": [55, 58, 59, 60], "desk": 55, "defeat": 55, "creatur": [55, 56, 58, 59], "molecul": [55, 56, 57, 58, 59], "solar": [55, 56], "north": [55, 56, 57, 58, 59, 60, 61], "pacif": [55, 56, 57, 58, 59, 61], "gyre": [55, 56, 57, 58, 59, 61], "cfg": [55, 56, 62], "mislead": [55, 58], "amino": [55, 56], "acid": [55, 56], "pdb": [55, 56, 57, 58, 59, 60], "salmon": [55, 56, 57], "anim": [55, 56, 57, 59, 60], "mors": [55, 56], "sunspot": [55, 56], "bash_profil": 55, "fa": 55, "orthogon": [55, 57], "gotten": 55, "anywher": [55, 62], "tild": 55, "forth": 55, "tv": 55, "protein": [55, 56, 57, 59, 61], "assai": [55, 57, 61], "herself": 55, "came": 55, "2012": [55, 57, 58, 59], "confer": 55, "straw": 55, "june": 55, "ten": [55, 62], "nene01729a": [55, 57, 58], "nene01812a": [55, 57], "1520": [55, 61], "amanda": 55, "unnecessarili": 55, "08": 55, "pnas_fin": 55, "pnas_sub": 55, "ownership": [55, 60], "nevertheless": 55, "ong": 55, "uman": 55, "3k": 55, "5369": 55, "hierarchi": 56, "trash": 56, "pain": 56, "whitespac": [56, 58], "period": 56, "alphanumer": 56, "media": 56, "trait": 56, "menu": [56, 60], "writeout": 56, "tidi": 56, "unhook": 56, "recycl": [56, 59], "descend": 56, "mythesi": 56, "png": [56, 59], "albeit": 56, "whale": 56, "mp3": 56, "whalesong": 56, "player": 56, "statstic": 56, "misspel": 56, "incorrectli": 56, "jami": 56, "recombin": 56, "tricki": [56, 62], "recal": [56, 59], "fructos": 56, "sucros": 56, "0kb": 56, "maltos": 56, "glucos": 56, "___": 56, "safe": 56, "san": 56, "duplic": [56, 57], "wild": 56, "card": 56, "eas": 57, "six": [57, 60, 61], "bank": 57, "cuban": [57, 58, 59], "ethan": [57, 58, 59], "methan": [57, 58, 59], "octan": [57, 58, 59], "pentan": [57, 58, 59], "propan": [57, 58, 59], "wc": [57, 59, 60], "156": 57, "1158": 57, "84": 57, "622": 57, "422": 57, "246": 57, "1828": 57, "165": 57, "1226": 57, "111": 57, "825": 57, "107": 57, "819": 57, "6081": 57, "p5": 57, "ne": 57, "thane": 57, "greater": 57, "overwritten": [57, 58], "caution": 57, "disadvantag": [57, 59], "dump": 57, "greatest": 57, "fewest": 57, "incorrect": [57, 60], "confus": 57, "consecut": 57, "mathematician": 57, "3x": 57, "memor": 57, "stderr": [57, 62], "diagnost": 57, "circumst": [57, 60], "fed": 57, "enorm": 57, "stream": 57, "ammonia": 57, "saniti": 57, "nene01729b": [57, 58, 59], "nene01736a": [57, 58], "nene01751a": 57, "nene01751b": 57, "240": 57, "nene02018b": 57, "mondai": 57, "weekend": 57, "nene02040b": 57, "nene02040z": 57, "nene02043a": [57, 58], "nene02043b": [57, 58], "5040": 57, "nene01971z": 57, "late": 57, "henc": [57, 59], "testfile01": 57, "testfile02": 57, "sam": 57, "calibr": 57, "dataset1": 57, "dataset2": 57, "dataset_overview": 57, "trip": 57, "bob": 57, "____calibration____": 57, "____": 57, "send_to_bob": 57, "all_november_fil": 57, "all_datasets_created_on_a_23rd": 57, "uniq": [57, 59], "adjac": 57, "coho": 57, "steelhead": 57, "deer": [57, 59, 60], "rabbit": [57, 59, 60], "raccoon": [57, 59, 60], "fox": [57, 59], "unneed": 57, "expens": 57, "586": 57, "k2": 57, "difficulti": 57, "animalsupd": 57, "trace": 58, "punctuat": [58, 59, 61], "retyp": [58, 59], "genom": 58, "basilisk": [58, 59], "unicorn": [58, 59], "basiliscu": 58, "vulgari": 58, "1745": 58, "equu": 58, "monocero": 58, "1738": 58, "delimit": 58, "semicolon": 58, "reader": [58, 59], "temperatur": 58, "meaningless": 58, "dragon": 58, "purpl": 58, "judici": 58, "nene": 58, "goostat": [58, 59, 61], "redisplai": 58, "semi": 58, "five": [58, 60], "1518": 58, "coffe": 58, "456": 58, "nene0": 58, "457": 58, "458": 58, "459": 58, "460": 58, "quicker": 58, "alkan": 58, "inter": 58, "preview": 58, "reaction": 58, "compound": 58, "speci": [58, 59, 60], "expans": [58, 60], "502": 59, "681": 59, "785": 59, "254": 59, "537": 59, "357": 59, "252": 59, "895": 59, "009": 59, "741": 59, "467": 59, "172": 59, "337": 59, "206": 59, "docx": [59, 62], "font": 59, "versatil": 59, "324": 59, "350": 59, "332": 59, "271": 59, "378": 59, "074": 59, "384": 59, "288": 59, "362": 59, "205": 59, "183": 59, "412": 59, "259": 59, "420": 59, "608": 59, "407": 59, "130": 59, "540": 59, "303": 59, "404": 59, "393": 59, "ter": 59, "end_lin": 59, "num_lin": 59, "invalu": 59, "one_or_more_filenam": 59, "163": 59, "redo": 59, "297": 59, "298": 59, "goodiff": [59, 61], "01729": 59, "ygraph": 59, "301": 59, "serial": 59, "analyt": 59, "antarctica": 59, "adventur": 59, "leah": [59, 60], "csv": 59, "longest": 59, "hang": 59, "investig": 59, "datfil": 59, "meant": 60, "haiku": 60, "1998": 60, "salon": 60, "magazin": 60, "tao": 60, "toner": 60, "presenc": 60, "absenc": 60, "yesterdai": 60, "jeff": 60, "rothenberg": 60, "whichev": 60, "boundari": 60, "insensit": 60, "bre": 60, "regexp": 60, "er": 60, "perl": 60, "taster": 60, "anchor": 60, "sadli": 60, "littlewomen": 60, "episod": 60, "oldtool": 60, "useless": 60, "21022": 60, "21403": 60, "fe": 60, "heme": 60, "924": 60, "518": 60, "databas": 60, "ish": 60, "spreadsheet": 60, "borrow": 60, "imit": 60, "sincerest": 60, "prais": 60, "Its": 60, "unbeaten": 60, "alfr": 60, "whitehead": 60, "1911": 60, "civil": 60, "explanatori": 60, "net": 60, "temp": [60, 62], "women": 60, "louisa": 60, "alcott": 60, "sister": 60, "jo": 60, "meg": 60, "beth": 60, "ami": 60, "novel": 60, "tabul": 60, "emploi": 60, "eleg": 60, "ow": 60, "inferior": 60, "ocw": 60, "criteria": 60, "ahm": 60, "mtime": 60, "9rkz": 61, "unzip": 61, "hopefulli": 61, "mous": 61, "speech": 61, "recognit": 61, "hardwar": 61, "commonplac": 61, "mice": 61, "touchpad": 61, "pointer": 61, "technologi": 61, "widespread": 61, "doug": 61, "engelbart": 61, "1960": 61, "mother": 61, "rewir": 61, "1950": 61, "cli": 61, "heart": 61, "bourn": 61, "stephen": 61, "IT": 61, "zsh": 61, "ters": 61, "keystrok": 61, "volum": 61, "supercomput": 61, "cluster": 61, "cloud": 61, "crunch": 61, "tackl": 61, "nemo": 61, "marin": 61, "biologist": 61, "survei": 61, "gelatin": 61, "garbag": 61, "abund": 61, "graduat": 61, "upcom": 61, "aquat": 61, "goo": 61, "eight": 61, "370": 61, "deadlin": 61, "mattermost": 62, "cmake": 62, "lbenv": 62, "rcfile": 62, "ongo": 62, "basic_tutori": 62, "noext": 62, "ofil": 62, "declar": 62, "congratul": 62, "scalabl": 62, "took": 62, "parallelis": 62, "reprocess": 62, "snakefil": 62, "mynam": 62, "myinput1": 62, "myinput2": 62, "myoutput": 62, "name_fil": 62, "dag": 62, "lhcbdev": 62, "2021": 62, "07_04": 62, "mon": 62, "jobid": 62, "tmpdir": 62, "15t183022": 62, "449488": 62, "15t183344": 62, "711303": 62, "unavoid": 62, "quirk": 62, "nproc": 62, "name_al": 62, "chr": 62, "ord": 62, "forceal": 62, "routin": 62, "reiter": 62, "create_input": 62, "knew": 62, "reqest": 62, "hello_world": 62, "missingruleexcept": 62, "ext": 62, "gif": 62, "advanced_tutori": 62, "tar": 62, "xvf": 62, "phone": 62, "ultim": 62, "luca": 62, "luca_info": 62, "merge_data": 62, "get_address": 62, "get_phon": 62, "waypoint": 62, "fred": 62, "guillaum": 62, "acycl": 62, "get_info": 62, "infil": 62, "outfil": 62, "ln": 62, "recreat": 62, "inconsequenti": 62, "forcerun": 62, "workaround": 62, "cleanest": 62, "failur": 62, "corrupt": 62, "contrast": 62, "mylog": 62, "yaml": 62, "data1": 62, "data2": 62, "configfil": 62, "dosometh": 62, "mycod": 62, "plot1": 62, "plot2": 62, "input_alt": 62, "fit_rul": 62, "snake": 62, "efficiency_rul": 62}, "objects": {}, "objtypes": {}, "objnames": {}, "titleterms": {"contributor": [0, 1], "code": [0, 25, 41, 44], "conduct": 0, "contribut": 1, "agreement": 1, "how": [1, 12, 36], "what": [1, 12, 25, 62], "us": [1, 4, 6, 7, 8, 14, 34, 44, 51, 52, 53, 62], "github": 1, "other": [1, 24], "resourc": 1, "instruct": 2, "materi": 2, "softwar": 2, "1": [3, 34], "basic": [3, 34, 62], "markdown": [3, 34], "jupyt": [3, 34], "import": [3, 6, 14, 44], "modul": [3, 6, 44], "advanc": [4, 5, 16, 40, 53, 62], "python": [4, 16, 34, 35, 40, 41, 44, 47], "concept": 4, "pack": 4, "unpack": 4, "valu": 4, "context": 4, "manag": [4, 62], "yield": 4, "where": 4, "i": [4, 25, 62], "thi": [4, 8, 13], "class": [4, 5, 36], "decor": 4, "factori": 4, "except": 4, "custom": 4, "catch": 4, "pitfal": 4, "guarante": 4, "execut": 4, "control": [4, 17], "flow": 4, "dunder": 5, "len": 5, "str": 5, "callabl": 5, "index": 5, "iter": 5, "self": 5, "danger": 5, "zone": 5, "2": 6, "first": [6, 39, 44], "look": [6, 9], "data": [6, 9, 12, 40], "two": [6, 13], "plot": [6, 7, 11, 13, 39], "librari": [6, 40, 44], "recap": 6, "5": [6, 9], "The": [6, 25, 44, 61, 62], "toi": 6, "dataset": [6, 9], "load": [6, 9], "6": [6, 11], "simpl": [6, 12, 14], "histogram": [6, 11, 39], "ad": 6, "variabl": [6, 11, 34, 54], "rectangular": 6, "cut": [6, 39], "compar": [6, 12, 14], "distribut": [6, 9, 12, 14], "3": 7, "multivari": 7, "analysi": [7, 32, 40, 62], "classifi": [7, 9], "todo": 7, "add": 7, "diagram": 7, "decis": 7, "tree": 7, "abov": 7, "evalu": 7, "perform": 7, "collect": 7, "all": 7, "togeth": 7, "4": 8, "extens": 8, "classif": 8, "altern": [8, 14], "impliment": 8, "featur": [8, 9, 25], "engin": 8, "k": [8, 10], "fold": [8, 10, 12], "turn": 8, "scipt": 8, "argpars": [8, 33, 48], "boost": [9, 12], "uniform": 9, "dalitz": 9, "signal": [9, 14], "background": [9, 14, 61], "prepar": [9, 12], "train": [9, 12], "test": [9, 12, 25], "set": [9, 18, 51], "up": [9, 18, 51], "let": 9, "": [9, 55, 57, 61], "result": 9, "roc": 9, "curv": 9, "after": 9, "model": 10, "tune": [10, 12], "setup": 10, "cross": 10, "valid": 10, "earli": 10, "stop": 10, "hyperamet": 10, "optimis": 10, "ax": 11, "regular": 11, "axi": 11, "name": 11, "compat": 11, "mplhep": 11, "hist": 11, "multipl": 11, "dimens": [11, 12], "access": 11, "bin": [11, 12], "get": [11, 13], "densiti": 11, "project": [11, 25], "everyth": 11, "relev": 11, "multi": 11, "dimension": 11, "arithmet": 11, "weight": 11, "7": 12, "demonstr": 12, "reweight": 12, "download": 12, "sampl": 12, "origin": [12, 25], "part": 12, "target": 12, "base": 12, "n": 12, "gradient": 12, "some": 12, "express": [12, 15], "gb": 12, "discrimin": 12, "great": 12, "did": 12, "just": 12, "happen": 12, "rule": [12, 62], "8": 13, "likelihood": 13, "infer": 13, "scope": 13, "tutori": [13, 16, 62], "start": [13, 61], "differ": [13, 54], "space": [13, 54], "loss": 13, "fix": [13, 36], "paramet": 13, "9": 14, "splot": 14, "exampl": 14, "observ": 14, "appli": [14, 39], "sweight": 14, "more": [14, 40, 41, 54], "complex": [14, 54], "case": 14, "known": 14, "probabl": 14, "build": [14, 32], "over": [14, 54], "mass": 14, "Of": 14, "cours": 14, "we": 14, "don": 14, "t": 14, "have": 14, "label": 14, "which": 14, "event": 14, "ar": 14, "beforehand": 14, "inform": 14, "about": [14, 54], "real": 14, "fit": 14, "doesn": 14, "give": 14, "u": 14, "appi": 14, "reconstruct": 14, "initi": 14, "an": [14, 35], "requir": 14, "deriv": 14, "option": 14, "under": 14, "assumpt": 14, "linear": 14, "minim": 14, "variat": 14, "uncorrelated": 14, "conclus": 14, "10": 15, "scikit": 15, "hep": 15, "formul": 15, "convert": 15, "particl": 15, "hepunit": 15, "vector": 15, "properti": 15, "content": [16, 31, 32, 35, 50, 61], "autom": [17, 62], "version": 17, "git": [18, 31], "creat": [19, 25], "repositori": [19, 24, 25], "track": 20, "chang": [20, 25], "explor": [21, 41], "histori": 21, "ignor": 22, "thing": [22, 52, 60], "remot": [23, 25], "cern": 23, "gitlab": [23, 27], "share": 24, "collabor": 25, "pull": 25, "request": 25, "merg": 25, "fork": 25, "clone": 25, "its": 25, "sync": 25, "your": [25, 39, 44, 51], "local": [25, 32], "implement": 25, "new": 25, "push": 25, "discuss": 25, "amend": 25, "retir": 25, "accept": 25, "social": 25, "side": 25, "automat": [25, 51], "conflict": 26, "ci": 27, "open": 28, "scienc": 28, "licens": 29, "citat": 30, "essenti": 32, "statu": 32, "binder": 32, "prerequisit": 32, "usag": 32, "script": [33, 48, 59, 62], "type": [34, 54], "oper": [34, 46], "strong": 34, "contain": 34, "mutabl": 34, "dynam": 34, "assign": 34, "sugar": 34, "comprehens": [34, 42], "introduct": 35, "welcom": 36, "inherit": 36, "glanc": 36, "condit": [37, 54], "truthi": 37, "loop": [37, 42, 54, 58], "dictionari": 38, "kei": 38, "make": [39, 51], "panda": 39, "topic": [40, 53], "nice": 40, "standard": [40, 44], "root": 40, "learn": 41, "convent": 41, "list": 42, "tupl": 42, "function": 43, "inlin": 43, "method": 43, "from": 44, "pypi": 44, "insid": 44, "virtual": 44, "environ": [44, 54, 62], "write": 44, "structur": 44, "run": [44, 47, 52, 62], "number": 45, "object": 46, "string": 49, "format": 49, "unix": [50, 54], "shell": [50, 54, 59, 61], "persist": 51, "screen": [51, 52, 53], "tmux": 51, "session": 51, "lxplu": 51, "password": 51, "less": 51, "kerbero": 51, "token": 51, "keytab": 51, "k5reauth": 51, "refresh": 51, "keep": 52, "find": [53, 60], "lost": 53, "tab": 53, "manual": 54, "page": 54, "among": 54, "file": [54, 55, 56, 57, 62], "link": 54, "command": [54, 61], "pipe": [54, 57], "redirect": 54, "bash": 54, "secur": 54, "text": 54, "viewer": 54, "editor": 54, "disk": 54, "wire": 54, "bandit": 54, "wargam": 54, "navig": 55, "directori": [55, 56], "nell": [55, 57, 61], "pipelin": [55, 57, 61], "organ": 55, "work": 56, "With": 56, "filter": 57, "check": 57, "introduc": [61, 62], "line": 61, "interfac": 61, "why": [61, 62], "bother": 61, "point": 61, "snakemak": 62, "document": 62, "workflow": 62, "preserv": 62, "system": 62, "re": 62, "chain": 62, "limit": 62, "wildcard": 62, "log": 62, "config": 62, "includ": 62}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"Contributor Code of Conduct": [[0, "contributor-code-of-conduct"]], "Contributing": [[1, "contributing"]], "Contributor Agreement": [[1, "contributor-agreement"]], "How to Contribute": [[1, "how-to-contribute"]], "What to Contribute": [[1, "what-to-contribute"]], "Using GitHub": [[1, "using-github"]], "Other Resources": [[1, "other-resources"]], "Instructional Material": [[2, "instructional-material"]], "Software": [[2, "software"]], "1: Basics": [[3, "1:-Basics"], [34, "1:-Basics"]], "Basics": [[3, "Basics"]], "Markdown": [[3, "Markdown"]], "Jupyter": [[3, "Jupyter"], [34, "Jupyter"]], "Importing modules": [[3, "Importing-modules"]], "Advanced Python Concepts": [[4, "Advanced-Python-Concepts"]], "Packing and unpacking of values": [[4, "Packing-and-unpacking-of-values"]], "Context manager": [[4, "Context-manager"]], "Using yield": [[4, "Using-yield"]], "Where is this useful": [[4, "Where-is-this-useful"]], "Using a class": [[4, "Using-a-class"]], "Decorators and factories": [[4, "Decorators-and-factories"]], "Decorator": [[4, "Decorator"]], "Exceptions": [[4, "Exceptions"]], "Custom Exception": [[4, "Custom-Exception"]], "Catching exceptions": [[4, "Catching-exceptions"]], "pitfall \u201cguaranteed execution\u201d": [[4, "pitfall-%22guaranteed-execution%22"]], "Exceptions as control-flow": [[4, "Exceptions-as-control-flow"]], "Advanced Classes": [[5, "Advanced-Classes"]], "Dunder": [[5, "Dunder"]], "len": [[5, "len"]], "str": [[5, "str"]], "Callable": [[5, "Callable"]], "Indexing (iterating)": [[5, "Indexing-(iterating)"]], "self": [[5, "self"]], "Danger zone": [[5, "Danger-zone"]], "2: First look at data": [[6, "2:-First-look-at-data"]], "Two plotting libraries?": [[6, "Two-plotting-libraries?"]], "Recap: Importing modules": [[6, "Recap:-Importing-modules"]], "5. The toy dataset": [[6, "5.-The-toy-dataset"]], "Loading data": [[6, "Loading-data"], [9, "Loading-data"]], "6. Plotting a simple histogram": [[6, "6.-Plotting-a-simple-histogram"]], "Adding variables": [[6, "Adding-variables"]], "Using rectangular cuts": [[6, "Using-rectangular-cuts"]], "Comparing distributions": [[6, "Comparing-distributions"]], "3: Multivariate Analysis": [[7, "3:-Multivariate-Analysis"]], "Using a classifier": [[7, "Using-a-classifier"]], "TODO Add a diagram of a decision tree for the above plot": [[7, "TODO-Add-a-diagram-of-a-decision-tree-for-the-above-plot"]], "Evaluating classifier performance": [[7, "Evaluating-classifier-performance"]], "Collecting it all together": [[7, "Collecting-it-all-together"]], "4: Extension on Classification": [[8, "4:-Extension-on-Classification"]], "Alternative implimentations": [[8, "Alternative-implimentations"]], "Feature engineering": [[8, "Feature-engineering"]], "k-folding": [[8, "k-folding"]], "Turn this into a scipt using argparse": [[8, "Turn-this-into-a-scipt-using-argparse"]], "5: Boosting to Uniformity": [[9, "5:-Boosting-to-Uniformity"]], "Distributions in the Dalitz features for signal and background": [[9, "Distributions-in-the-Dalitz-features-for-signal-and-background"]], "Preparation of train/test datasets": [[9, "Preparation-of-train/test-datasets"]], "Setting up classifiers, training": [[9, "Setting-up-classifiers,-training"]], "Let\u2019s look at the results of training": [[9, "Let's-look-at-the-results-of-training"]], "ROC curves after training": [[9, "ROC-curves-after-training"]], "Model tuning setup": [[10, "Model-tuning-setup"]], "Cross-validation": [[10, "Cross-validation"]], "k-folding & early stopping": [[10, "k-folding-&-early-stopping"]], "Hyperameter optimisation": [[10, "Hyperameter-optimisation"]], "6: Histograms": [[11, "6:-Histograms"]], "Axes": [[11, "Axes"]], "Regular": [[11, "Regular"]], "Variable": [[11, "Variable"]], "Axis Name": [[11, "Axis-Name"]], "Compatibility with mplhep": [[11, "Compatibility-with-mplhep"]], "Plotting with hist": [[11, "Plotting-with-hist"]], "Multiple dimensions": [[11, "Multiple-dimensions"]], "Access Bins": [[11, "Access-Bins"]], "Getting Density": [[11, "Getting-Density"]], "Projecting axes": [[11, "Projecting-axes"]], "Accessing everything relevant": [[11, "Accessing-everything-relevant"]], "Multi dimensional": [[11, "Multi-dimensional"]], "Arithmetics": [[11, "Arithmetics"]], "Weights": [[11, "Weights"]], "7: Demonstration of distribution reweighting": [[12, "7:-Demonstration-of-distribution-reweighting"]], "Downloading data": [[12, "Downloading-data"]], "prepare train and test samples": [[12, "prepare-train-and-test-samples"]], "Original distributions": [[12, "Original-distributions"]], "train part of original distribution": [[12, "train-part-of-original-distribution"]], "test part for target distribution": [[12, "test-part-for-target-distribution"]], "Bins-based reweighting in n dimensions": [[12, "Bins-based-reweighting-in-n-dimensions"]], "Gradient Boosted Reweighter": [[12, "Gradient-Boosted-Reweighter"]], "Comparing some simple expressions:": [[12, "Comparing-some-simple-expressions:"]], "GB-discrimination": [[12, "GB-discrimination"]], "Great!": [[12, "Great!"]], "What did just happen?": [[12, "What-did-just-happen?"]], "How to tune": [[12, "How-to-tune"]], "Folding reweighter": [[12, "Folding-reweighter"]], "GB discrimination for reweighting rule": [[12, "GB-discrimination-for-reweighting-rule"]], "8: Likelihood inference": [[13, "8:-Likelihood-inference"]], "Scope of this tutorial": [[13, "Scope-of-this-tutorial"]], "Getting started": [[13, "Getting-started"]], "Difference of the two spaces": [[13, "Difference-of-the-two-spaces"]], "Plotting": [[13, "Plotting"]], "Loss": [[13, "Loss"]], "Fixing parameters": [[13, "Fixing-parameters"]], "9: sPlot": [[14, "9:-sPlot"]], "Simple sPlot example": [[14, "Simple-sPlot-example"]], "Observed distributions": [[14, "Observed-distributions"]], "Applying sWeights": [[14, "Applying-sWeights"]], "Compare": [[14, "Compare"]], "More complex case": [[14, "More-complex-case"]], "Splot": [[14, "Splot"]], "Alternative: Known probabilities": [[14, "Alternative:-Known-probabilities"]], "Building sPlot over mass": [[14, "Building-sPlot-over-mass"]], "Of course we don\u2019t have labels which events are signal and which are background beforehand": [[14, "Of-course-we-don't-have-labels-which-events-are-signal-and-which-are-background-beforehand"]], "We have no information about real labels": [[14, "We-have-no-information-about-real-labels"]], "Fitting doesn\u2019t give us information about real labels": [[14, "Fitting-doesn't-give-us-information-about-real-labels"]], "Appying sPlot": [[14, "Appying-sPlot"]], "Using sWeights to reconstruct initial distribution": [[14, "Using-sWeights-to-reconstruct-initial-distribution"]], "An important requirement of sPlot": [[14, "An-important-requirement-of-sPlot"]], "Derivation of sWeights (optional)": [[14, "Derivation-of-sWeights-(optional)"]], "Under assumption of linearity:": [[14, "Under-assumption-of-linearity:"]], "Minimization of variation": [[14, "Minimization-of-variation"]], "Uncorrelatedness": [[14, "Uncorrelatedness"]], "Conclusion": [[14, "Conclusion"]], "10: Scikit-HEP": [[15, "10:-Scikit-HEP"]], "formulate - converting expressions": [[15, "formulate---converting-expressions"]], "Particle": [[15, "Particle"]], "hepunits": [[15, "hepunits"]], "Vector": [[15, "Vector"]], "Vector properties": [[15, "Vector-properties"]], "Advanced Python Tutorial": [[16, "advanced-python-tutorial"]], "Contents:": [[16, null], [31, null], [32, null], [35, null], [50, null], [61, null]], "Automated Version Control": [[17, "automated-version-control"]], "Setting Up Git": [[18, "setting-up-git"]], "Creating a Repository": [[19, "creating-a-repository"]], "Tracking Changes": [[20, "tracking-changes"]], "Exploring History": [[21, "exploring-history"]], "Ignoring Things": [[22, "ignoring-things"]], "Remotes in CERN GitLab": [[23, "remotes-in-cern-gitlab"]], "Sharing a repository with others": [[24, "sharing-a-repository-with-others"]], "Collaborating with Pull Requests": [[25, "collaborating-with-pull-requests"]], "What is a Pull (or Merge) Request": [[25, "what-is-a-pull-or-merge-request"]], "Fork the original project repository": [[25, "fork-the-original-project-repository"]], "Clone a remote project and its fork": [[25, "clone-a-remote-project-and-its-fork"]], "Sync your local repository with remote changes": [[25, "sync-your-local-repository-with-remote-changes"]], "Implement your new feature": [[25, "implement-your-new-feature"]], "Push changes": [[25, "push-changes"]], "Create a Pull (or Merge) Request": [[25, "create-a-pull-or-merge-request"]], "Discussing, amending, retiring a Merge Request": [[25, "discussing-amending-retiring-a-merge-request"]], "Accepting a Pull Request": [[25, "accepting-a-pull-request"]], "The social side of coding": [[25, "the-social-side-of-coding"]], "Automatic testing": [[25, "automatic-testing"]], "Conflicts": [[26, "conflicts"]], "GitLab CI": [[27, "gitlab-ci"]], "Open Science": [[28, "open-science"]], "Licensing": [[29, "licensing"]], "Citation": [[30, "citation"]], "Git": [[31, "git"]], "Analysis essentials Build Status Binder": [[32, "analysis-essentials-build-status-binder"]], "Prerequisites": [[32, "prerequisites"]], "Local": [[32, "local"]], "Binder": [[32, "binder"]], "Usage": [[32, "usage"]], "Scripting": [[33, "scripting"], [48, "scripting"]], "argparse": [[33, "argparse"], [48, "argparse"]], "Basic types and operations": [[34, "Basic-types-and-operations"]], "strong typing": [[34, "strong-typing"]], "Container types": [[34, "Container-types"]], "Mutability": [[34, "Mutability"]], "dynamic typing": [[34, "dynamic-typing"]], "Assignement and variables": [[34, "Assignement-and-variables"]], "Python variable assignement": [[34, "Python-variable-assignement"]], "Sugar: comprehensions": [[34, "Sugar:-comprehensions"]], "Sugar: using Markdown": [[34, "Sugar:-using-Markdown"]], "An introduction to Python": [[35, "an-introduction-to-python"]], "Classes": [[36, "Classes"]], "Welcome to classes": [[36, "Welcome-to-classes"]], "Inheritance: a glance": [[36, "Inheritance:-a-glance"]], "How to fix": [[36, "How-to-fix"]], "Conditions": [[37, "conditions"]], "Truthiness": [[37, "truthiness"]], "Conditions in loops": [[37, "conditions-in-loops"]], "Dictionaries": [[38, "dictionaries"]], "Dictionary keys": [[38, "dictionary-keys"]], "Making your first histogram": [[39, "making-your-first-histogram"]], "Pandas": [[39, "pandas"]], "Plotting histograms": [[39, "plotting-histograms"]], "Applying cuts": [[39, "applying-cuts"]], "More advanced topics in Python": [[40, "more-advanced-topics-in-python"]], "Nice standard libraries": [[40, "nice-standard-libraries"]], "Nice libraries for data analysis": [[40, "nice-libraries-for-data-analysis"]], "Python and ROOT": [[40, "python-and-root"]], "Learning more": [[41, "learning-more"]], "Exploring Python": [[41, "exploring-python"]], "Conventional coding": [[41, "conventional-coding"]], "Lists and looping": [[42, "lists-and-looping"]], "Looping": [[42, "looping"]], "List comprehension": [[42, "list-comprehension"]], "Tuples": [[42, "tuples"]], "Functions": [[43, "functions"]], "Inline methods": [[43, "inline-methods"]], "Modules": [[44, "modules"]], "Using modules into your code: import": [[44, "using-modules-into-your-code-import"]], "The standard library": [[44, "the-standard-library"]], "Modules from PyPi": [[44, "modules-from-pypi"]], "Modules inside a virtual environment": [[44, "modules-inside-a-virtual-environment"]], "Write your first Python module": [[44, "write-your-first-python-module"]], "Write a structured module": [[44, "write-a-structured-module"]], "Run a module": [[44, "run-a-module"]], "Numbers": [[45, "numbers"]], "Objects and operators": [[46, "objects-and-operators"]], "Objects": [[46, "objects"]], "Running Python": [[47, "running-python"]], "Strings": [[49, "strings"]], "Formatting": [[49, "formatting"]], "UNIX shell": [[50, "unix-shell"]], "Persistent screen or tmux session on lxplus": [[51, "persistent-screen-or-tmux-session-on-lxplus"]], "Setting up password-less kerberos token": [[51, "setting-up-password-less-kerberos-token"]], "Making use of the keytab": [[51, "making-use-of-the-keytab"]], "Using k5reauth to automatically refresh your kerberos token": [[51, "using-k5reauth-to-automatically-refresh-your-kerberos-token"]], "Using screen to keep things running": [[52, "using-screen-to-keep-things-running"]], "Advanced screen topics": [[53, "advanced-screen-topics"]], "Finding lost screens": [[53, "finding-lost-screens"]], "Using tabs in screen": [[53, "using-tabs-in-screen"]], "More about the UNIX shell": [[54, "more-about-the-unix-shell"]], "Types of shell": [[54, "types-of-shell"]], "Manual pages": [[54, "manual-pages"]], "Environment variables": [[54, "environment-variables"]], "Variables": [[54, "variables"]], "Differences among files": [[54, "differences-among-files"]], "Looping over files": [[54, "looping-over-files"]], "Conditionals": [[54, "conditionals"]], "Linking commands": [[54, "linking-commands"]], "Pipes and redirection": [[54, "pipes-and-redirection"]], "Bash security": [[54, "bash-security"]], "Complexity": [[54, "complexity"]], "Text viewers": [[54, "text-viewers"]], "Text editors": [[54, "text-editors"]], "Disk space": [[54, "disk-space"]], "Over the Wire and Bandit wargame": [[54, "over-the-wire-and-bandit-wargame"]], "Navigating Files and Directories": [[55, "navigating-files-and-directories"]], "Nelle\u2019s Pipeline: Organizing Files": [[55, "nelle-s-pipeline-organizing-files"]], "Working With Files and Directories": [[56, "working-with-files-and-directories"]], "Pipes and Filters": [[57, "pipes-and-filters"]], "Nelle\u2019s Pipeline: Checking Files": [[57, "nelle-s-pipeline-checking-files"]], "Loops": [[58, "loops"]], "Shell Scripts": [[59, "shell-scripts"]], "Finding Things": [[60, "finding-things"]], "Introducing the Shell": [[61, "introducing-the-shell"]], "Background": [[61, "background"]], "The Command-Line Interface": [[61, "the-command-line-interface"]], "The Shell": [[61, "the-shell"]], "Why bother?": [[61, "why-bother"]], "Nelle\u2019s Pipeline: Starting Point": [[61, "nelle-s-pipeline-starting-point"]], "Analysis automation with Snakemake": [[62, "analysis-automation-with-snakemake"]], "Documentation and environments": [[62, "documentation-and-environments"]], "Workflow preservation": [[62, "workflow-preservation"]], "Basic Tutorial": [[62, "basic-tutorial"]], "What is a workflow?": [[62, "what-is-a-workflow"]], "Why use a workflow management system?": [[62, "why-use-a-workflow-management-system"]], "Introducing Snakemake": [[62, "introducing-snakemake"]], "Re-running rules": [[62, "re-running-rules"]], "Chaining rules": [[62, "chaining-rules"]], "The limits of wildcards": [[62, "the-limits-of-wildcards"]], "Advanced Tutorial": [[62, "advanced-tutorial"]], "Running scripts": [[62, "running-scripts"]], "Log files": [[62, "log-files"]], "Config files": [[62, "config-files"]], "Includes": [[62, "includes"]]}, "indexentries": {}}) \ No newline at end of file