forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReduceUtils.h
160 lines (143 loc) · 5.64 KB
/
ReduceUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#pragma once
#include <ATen/Parallel.h>
#include <ATen/NumericUtils.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/native/ReductionType.h>
#include <c10/util/irange.h>
namespace at::native {
inline namespace CPU_CAPABILITY {
using namespace vec;
#define AT_DISPATCH_REDUCTION_TYPES(op, ...) \
[&] { \
switch (op) { \
case SUM: { \
static constexpr ReductionType reduce = SUM; \
return __VA_ARGS__(); \
} \
case MEAN: { \
static constexpr ReductionType reduce = MEAN; \
return __VA_ARGS__(); \
} \
case MIN: { \
static constexpr ReductionType reduce = MIN; \
return __VA_ARGS__(); \
} \
case MAX: { \
static constexpr ReductionType reduce = MAX; \
return __VA_ARGS__(); \
} \
case PROD: { \
static constexpr ReductionType reduce = PROD; \
return __VA_ARGS__(); \
} \
} \
}()
template <typename scalar_t, ReductionType reduce>
inline vec_scalar_t<scalar_t> init_value() {
using acc_t = vec_scalar_t<scalar_t>;
acc_t val;
if (reduce == ReductionType::SUM ||
reduce == ReductionType::MEAN) {
val = static_cast<acc_t>(0);
} else if (reduce == ReductionType::PROD) {
val = static_cast<acc_t>(1);
} else if (reduce == ReductionType::MAX) {
val = -std::numeric_limits<acc_t>::infinity();
} else {
TORCH_INTERNAL_ASSERT(reduce == ReductionType::MIN);
val = std::numeric_limits<acc_t>::infinity();
}
return val;
}
template <typename scalar_t, ReductionType reduce>
inline vec_scalar_t<scalar_t> init_value(const c10::optional<Scalar>& initial) {
using acc_t = vec_scalar_t<scalar_t>;
if (initial.has_value()) {
return initial.value().to<acc_t>();
} else {
return init_value<scalar_t, reduce>();
}
}
template <typename scalar_t>
inline void init(scalar_t* out, int64_t size, const vec_scalar_t<scalar_t>& val) {
using Vec = Vectorized<vec_scalar_t<scalar_t>>;
map<scalar_t>(
[val](Vec x) { return Vec(val); },
out,
out,
size);
}
template <typename scalar_t, ReductionType reduce>
inline void init(scalar_t* out, int64_t size, const c10::optional<Scalar>& initial) {
using acc_t = vec_scalar_t<scalar_t>;
acc_t val = init_value<scalar_t, reduce>(initial);
init(out, size, val);
}
// overload with `include_self`, used by scatter_reduce
template <typename scalar_t, ReductionType reduce>
inline void init(scalar_t* out, int64_t size, bool include_self = false) {
using acc_t = vec_scalar_t<scalar_t>;
if (!include_self) {
acc_t val = init_value<scalar_t, reduce>();
init(out, size, val);
}
}
template <typename scalar_t>
inline scalar_t _max(const scalar_t& x, const scalar_t& y) {
return at::_isnan(y) ? y : std::max(x, y);
}
template <typename scalar_t>
inline Vectorized<scalar_t> _max(const Vectorized<scalar_t>& x, const Vectorized<scalar_t>& y) {
// vec::maximum propagates NaN
return vec::maximum(x, y);
}
template <typename scalar_t>
inline scalar_t _min(const scalar_t& x, const scalar_t& y) {
return at::_isnan(y) ? y : std::min(x, y);
}
template <typename scalar_t>
inline Vectorized<scalar_t> _min(const Vectorized<scalar_t>& x, const Vectorized<scalar_t>& y) {
// vec::minimum propagates NaN
return vec::minimum(x, y);
}
// for Max and Min, propagate NaN:
template <typename T, ReductionType reduce>
inline T update(const T& x, const T& y) {
if (reduce == ReductionType::SUM ||
reduce == ReductionType::MEAN) {
return x + y;
} else if (reduce == ReductionType::PROD) {
return x * y;
} else if (reduce == ReductionType::MAX) {
return _max(x, y);
} else {
TORCH_INTERNAL_ASSERT(reduce == ReductionType::MIN);
return _min(x, y);
}
}
template <typename scalar_t, ReductionType reduce>
inline void update(scalar_t* out, scalar_t* data, int64_t K) {
using Vec = vec::Vectorized<vec_scalar_t<scalar_t>>;
map2<scalar_t>(
[](Vec x, Vec y) { return update<Vec, reduce>(x, y); },
out,
out,
data,
K);
}
template <typename scalar_t, ReductionType reduce>
inline void write(scalar_t* out, int64_t count, int64_t K) {
using Vec = vec::Vectorized<vec_scalar_t<scalar_t>>;
if (reduce == ReductionType::MEAN) {
if (count > 0) {
vec::map<scalar_t>(
[count](Vec x) { return x / Vec(count); },
out,
out,
K);
}
}
}
} // namespace CPU_CAPABILITY
} // namespace at::native