-
Notifications
You must be signed in to change notification settings - Fork 0
/
acor.cpp
114 lines (95 loc) · 3.98 KB
/
acor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <fstream>
#include <iostream>
#include <vector>
#include "acor.h"
#include "exception.h"
#include "int2str.h"
using namespace std;
#define TAUMAX 100 // Compute tau directly only if tau < TAUMAX. Otherwise compute tau using the pairwise sum series.
#define WINMULT 10 // Compute autocovariances up to lag s = WINMULT*TAU
#define MAXLAG TAUMAX*WINMULT // The autocovariance array is double C[MAXLAG+1] so that C[s] makes sense for s = MAXLAG.
#define MINFAC 2 // Stop and print an error message if the array is shorter than MINFAC * MAXLAG.
/* Jonathan Goodman, March 2009, [email protected] */
/* Adapted by Fengji Hou, Feb 2013, [email protected], again on Jul 2013. */
int acor( double & mean, double & sigma, double & tau, vector<double> X, size_t L){
static int recursive_depth = 0;
++recursive_depth;
mean = 0.; // Compute the mean of X ...
for ( size_t i = 0; i < L; ++i) {
mean += X[i];
}
mean /= static_cast<double>(L);
for ( size_t i = 0; i < L; ++i ) {
X[i] -= mean; // ... and subtract it away.
}
if ( L < MINFAC*MAXLAG ) {
if (recursive_depth > 1) {
cout << "Recursive Depth = " << recursive_depth << endl;
}
recursive_depth = 0;
throw( Exception("acor: Too Many Lags Are Required to Evaluate Autocovariance!") );
}
double C[MAXLAG+1];
for ( int s = 0; s <= MAXLAG; ++s ) {
C[s] = 0.; // Here, s=0 is the variance, s = MAXLAG is the last one computed.
}
size_t iMax = L - MAXLAG; // Compute the autocovariance function . . .
for ( size_t i = 0; i < iMax; ++i ) {
for ( int s = 0; s <= MAXLAG; ++s ) {
C[s] += X[i]*X[i+s]; // ... first the inner products ...
}
}
for ( int s = 0; s <= MAXLAG; ++s ) {
C[s] = C[s]/static_cast<double>(iMax); // ... then the normalization.
//cout << s << " " << C[s] << endl;
}
double D = C[0]; // The "diffusion coefficient" is the sum of the autocovariances
for ( int s = 1; s <= MAXLAG; ++s ) {
D += 2*C[s]; // The rest of the C[s] are double counted since C[-s] = C[s].
}
if (D < C[0]) {
D = C[0];
}
sigma = sqrt( D / static_cast<double>(L) ); // The standard error bar formula, if D were the complete sum.
tau = D / C[0]; // A provisional estimate, since D is only part of the complete sum.
if ( tau*WINMULT < MAXLAG ) {
recursive_depth = 0;
return 0; // Stop if the D sum includes the given multiple of tau.
// This is the self consistent window approach.
}
else { // If the provisional tau is so large that we don't think tau
// is accurate, apply the acor procedure to the pairwase sums
// of X.
size_t Lh = L/2; // The pairwise sequence is half the length (if L is even)
double newMean; // The mean of the new sequence, to throw away.
int j1 = 0;
int j2 = 1;
for ( size_t i = 0; i < Lh; ++i ) {
X[i] = X[j1] + X[j2];
j1 += 2;
j2 += 2;
}
acor( newMean, sigma, tau, X, Lh);
D = .25*(sigma) * (sigma) * L; // Reconstruct the fine time series numbers from the coarse series numbers.
tau = D/C[0]; // As before, but with a corrected D.
sigma = sqrt( D/ static_cast<double>(L)); // As before, again.
}
return 0;
}
int logacorlog( double & logmean, double & logsigma, double & tau, vector<double> & logX) {
size_t L = logX.size();
double max_lX = *(max_element(logX.begin(), logX.end()));
vector<double> X(L,0);
for (size_t i = 0; i < L; ++i) {
X[i] = exp(logX[i] - max_lX);
}
double mean, sigma;
acor(mean, sigma, tau, X, L);
logsigma = log(sigma) + max_lX;
logmean = log(mean) + max_lX;
return 1;
}