-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathmain.c
331 lines (270 loc) · 9.86 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#include "ACMSim.h"
double sign(double x){
return (x > 0) - (x < 0);
}
double fabs(double x){
return (x >= 0) ? x : -x;
}
struct SynchronousMachineSimulated ACM;
void Machine_init(){
ACM.Ts = MACHINE_TS;
int i;
for(i=0;i<NUMBER_OF_STATES;++i){
ACM.x[i] = 0.0;
ACM.x_dot[i] = 0.0;
}
ACM.omg_elec = 0.0;
ACM.rpm = 0.0;
ACM.rpm_cmd = 0.0;
ACM.rpm_deriv_cmd = 0.0;
ACM.Tload = 0.0;
ACM.Tem = 0.0;
ACM.npp = PMSM_NUMBER_OF_POLE_PAIRS;
ACM.R = PMSM_RESISTANCE;
ACM.Ld = PMSM_D_AXIS_INDUCTANCE;
ACM.Lq = PMSM_Q_AXIS_INDUCTANCE;
ACM.KE = PMSM_PERMANENT_MAGNET_FLUX_LINKAGE; // Vs/rad
ACM.Js = PMSM_SHAFT_INERTIA;
ACM.mu_m = ACM.npp/ACM.Js;
ACM.L0 = 0.5*(ACM.Ld + ACM.Lq);
ACM.L1 = 0.5*(ACM.Ld - ACM.Lq);
ACM.ual = 0.0;
ACM.ube = 0.0;
ACM.ial = 0.0;
ACM.ibe = 0.0;
ACM.theta_d = 0.0;
ACM.ud = 0.0;
ACM.uq = 0.0;
ACM.id = 0.0;
ACM.iq = 0.0;
ACM.eemf_q = 0.0;
ACM.eemf_al = 0.0;
ACM.eemf_be = 0.0;
ACM.theta_d__eemf = 0.0;
}
/* Simple Model */
void RK_dynamics(double t, double *x, double *fx){
// electromagnetic model
fx[0] = (ACM.ud - ACM.R * x[0] + x[2]*ACM.Lq*x[1]) / ACM.Ld; // current-d
fx[1] = (ACM.uq - ACM.R * x[1] - x[2]*ACM.Ld*x[0] - x[2]*ACM.KE) / ACM.Lq; // current-q
// mechanical model
ACM.Tem = ACM.npp*(x[1]*ACM.KE + (ACM.Ld - ACM.Lq)*x[0]*x[1]);
fx[2] = (ACM.Tem - ACM.Tload)*ACM.mu_m; // elec. angular rotor speed
fx[3] = x[2]; // elec. angular rotor position
}
void RK_Linear(double t, double *x, double hs){
#define NS NUMBER_OF_STATES
double k1[NS], k2[NS], k3[NS], k4[NS], xk[NS];
double fx[NS];
int i;
RK_dynamics(t, x, fx); // timer.t,
for(i=0;i<NS;++i){
k1[i] = fx[i] * hs;
xk[i] = x[i] + k1[i]*0.5;
}
RK_dynamics(t, xk, fx); // timer.t+hs/2.,
for(i=0;i<NS;++i){
k2[i] = fx[i] * hs;
xk[i] = x[i] + k2[i]*0.5;
}
RK_dynamics(t, xk, fx); // timer.t+hs/2.,
for(i=0;i<NS;++i){
k3[i] = fx[i] * hs;
xk[i] = x[i] + k3[i];
}
RK_dynamics(t, xk, fx); // timer.t+hs,
for(i=0;i<NS;++i){
k4[i] = fx[i] * hs;
x[i] = x[i] + (k1[i] + 2*(k2[i] + k3[i]) + k4[i])/6.0;
// derivatives
ACM.x_dot[i] = (k1[i] + 2*(k2[i] + k3[i]) + k4[i])/6.0 / hs;
}
#undef NS
}
int machine_simulation(){
// solve for ACM.x with ACM.ud and ACM.uq as inputs
RK_Linear(CTRL.timebase, ACM.x, ACM.Ts);
// rotor position
ACM.theta_d = ACM.x[3];
if(ACM.theta_d > M_PI){
ACM.theta_d -= 2*M_PI;
}else if(ACM.theta_d < -M_PI){
ACM.theta_d += 2*M_PI; // 反转!
}
ACM.x[3] = ACM.theta_d;
// currents
ACM.id = ACM.x[0];
ACM.iq = ACM.x[1];
ACM.ial = MT2A(ACM.id, ACM.iq, cos(ACM.theta_d), sin(ACM.theta_d));
ACM.ibe = MT2B(ACM.id, ACM.iq, cos(ACM.theta_d), sin(ACM.theta_d));
// speed
ACM.omg_elec = ACM.x[2];
ACM.rpm = ACM.x[2] * 60 / (2 * M_PI * ACM.npp);
// extended emf
ACM.eemf_q = (ACM.Ld-ACM.Lq) * (ACM.omg_elec*ACM.id - ACM.x_dot[1]) + ACM.omg_elec*ACM.KE;
ACM.eemf_al = ACM.eemf_q * -sin(ACM.theta_d);
ACM.eemf_be = ACM.eemf_q * cos(ACM.theta_d);
// ACM.theta_d__eemf = atan2(-ACM.eemf_al, ACM.eemf_be);
ACM.theta_d__eemf = atan2(-ACM.eemf_al*sign(ACM.omg_elec), ACM.eemf_be*sign(ACM.omg_elec));
// detect bad simulation
if(isNumber(ACM.rpm)){
return false;
}else{
printf("ACM.rpm is %g\n", ACM.rpm);
return true;
}
}
void dynamics_lpf_local(double input, double *state, double *derivative){
derivative[0] = (50*2*M_PI) * ( input - *state );
}
void measurement(){
// Executed every TS
// Voltage measurement
US_C(0) = CTRL.ual;
US_C(1) = CTRL.ube;
US_P(0) = US_C(0);
US_P(1) = US_C(1);
// Current measurement
IS_C(0) = ACM.ial;
IS_C(1) = ACM.ibe;
// Position and speed measurement
sm.theta_d = ACM.x[3]; // + 30.0/180*M_PI;
sm.omg_elec = ACM.x[2];
sm.omg_mech = sm.omg_elec * sm.npp_inv;
}
void inverter_model(){
// 根据给定电压CTRL.ual和实际的电机电流ACM.ial,计算畸变的逆变器输出电压ACM.ual。
#if INVERTER_NONLINEARITY
InverterNonlinearity_SKSul96(CTRL.ual, CTRL.ube, ACM.ial, ACM.ibe);
// InverterNonlinearity_Tsuji01
ACM.ual = UAL_C_DIST;
ACM.ube = UBE_C_DIST;
// Distorted voltage (for visualization purpose)
DIST_AL = ACM.ual - CTRL.ual;
DIST_BE = ACM.ube - CTRL.ube;
#else
ACM.ual = CTRL.ual;
ACM.ube = CTRL.ube;
#endif
// 仿真是在永磁体磁场定向系下仿真的哦
ACM.ud = AB2M(ACM.ual, ACM.ube, cos(ACM.theta_d), sin(ACM.theta_d));
ACM.uq = AB2T(ACM.ual, ACM.ube, cos(ACM.theta_d), sin(ACM.theta_d));
}
int main(){
if(SENSORLESS_CONTROL==true){
printf("Sensorless using observer.\n");
}else{
printf("Sensored control.\n");
}
printf("NUMBER_OF_STEPS: %d\n\n", NUMBER_OF_STEPS);
/* Initialization */
Machine_init();
CTRL_init();
sm_init();
// ob_init();
COMM_init();
FILE *fw;
fw = fopen(DATA_FILE_NAME, "w");
printf("%s\n", DATA_FILE_NAME);
write_header_to_file(fw);
/* MAIN LOOP */
clock_t begin, end;
begin = clock();
int _; // _ for the outer iteration
int dfe_counter=0; // dfe_counter for down frequency execution
for(_=0;_<NUMBER_OF_STEPS;++_){
// printf("%d\n", _);
/* Command (Speed or Position) */
// cmd_fast_speed_reversal(CTRL.timebase, 5, 5, 1500); // timebase, instant, interval, rpm_cmd
// cmd_fast_speed_reversal(CTRL.timebase, 5, 5, 200); // timebase, instant, interval, rpm_cmd
if(CTRL.timebase>14){
ACM.rpm_cmd = 900; // 40 double e_state; // Integral internal state
}else if(CTRL.timebase>12){
ACM.rpm_cmd = 40; // 40
}else if(CTRL.timebase>9){
ACM.rpm_cmd = 0;
}else if(CTRL.timebase>6){
ACM.rpm_cmd = -40;
}else if(CTRL.timebase>3){
// ACM.rpm_cmd = -20;
ACM.rpm_cmd = 1 * RAD_PER_SEC_2_RPM;
}else{
ACM.rpm_cmd = -10*0;
}
/* Load Torque */
// ACM.Tload = 0 * sign(ACM.rpm); // No-load test
// ACM.Tload = ACM.Tem; // Blocked-rotor test
// ACM.Tload = 2 * ACM.rpm/20; // speed-dependent load
ACM.Tload = 0 * sign(ACM.rpm); // speed-direction-dependent load
/* Simulated ACM */
if(machine_simulation()){
printf("Break the loop.\n");
break;
}
if(++dfe_counter == TS_UPSAMPLING_FREQ_EXE_INVERSE){
dfe_counter = 0;
/* Time in DSP */
CTRL.timebase += TS;
measurement();
// observation();
write_data_to_file(fw);
control(ACM.rpm_cmd, 0);
// commissioning();
}
inverter_model();
}
end = clock(); printf("The simulation in C costs %g sec.\n", (double)(end - begin)/CLOCKS_PER_SEC);
fclose(fw);
/* Fade out */
system("python ./ACMPlot.py");
// getch();
// system("pause");
// system("exit");
return 0;
}
/* Utility */
void write_header_to_file(FILE *fw){
// no space is allowed!
fprintf(fw, "x0(id)[A],x1(iq)[A],x2(speed)[rpm],x3(position)[rad],ud_cmd[V],uq_cmd[V],id[A],id_err[A],iq_cmd[A],iq_err[A],CTRL_POS_ERR,MEAS_POS_ERR,theta_d_harnefors,POS_ERR_Harnefors,omg_harnefors,OMG_ERR_Harnefors\n");
// fprintf(fw, "x0(id)[A],x1(iq)[A],x2(speed)[rpm],x3(position)[rad],ud[V],uq[V],IS_C(0),CTRL.ual,ACM.ual,ACM.theta_d,DIST_AL,COMM.KE\n");
{
FILE *fw2;
fw2 = fopen("info.dat", "w");
fprintf(fw2, "TS,DOWN_SAMPLE,DATA_FILE_NAME\n");
fprintf(fw2, "%g, %d, %s\n", TS, DOWN_SAMPLE, DATA_FILE_NAME);
fclose(fw2);
}
}
extern double theta_d_harnefors;
extern double omg_harnefors;
void write_data_to_file(FILE *fw){
static int bool_animate_on = false;
static int j=0,jj=0; // j,jj for down sampling
// if(CTRL.timebase>20)
{
if(++j == DOWN_SAMPLE)
{
j=0;
fprintf(fw, "%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n",
ACM.x[0], ACM.x[1], ACM.x[2]*RAD_PER_SEC_2_RPM, ACM.x[3], CTRL.ud_cmd, CTRL.uq_cmd,
CTRL.id__fb, CTRL.id__fb-CTRL.id_cmd, CTRL.iq_cmd, CTRL.iq__fb-CTRL.iq_cmd, difference_between_two_angles(ACM.x[3], CTRL.theta_d__fb)/M_PI*180, difference_between_two_angles(ACM.x[3], sm.theta_d)/M_PI*180,
theta_d_harnefors, difference_between_two_angles(ACM.theta_d, theta_d_harnefors)/M_PI*180, omg_harnefors*RAD_PER_SEC_2_RPM, (sm.omg_elec-omg_harnefors)*RAD_PER_SEC_2_RPM
);
// fprintf(fw, "%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n",
// ACM.x[0], ACM.x[1], ACM.x[2]*RAD_PER_SEC_2_RPM, ACM.x[3], ACM.ud, ACM.uq,
// IS_C(0), CTRL.ual, ACM.ual, ACM.theta_d, DIST_AL, COMM.KE
// );
}
}
// if(bool_animate_on==false){
// bool_animate_on = true;
// printf("Start ACMAnimate\n");
// system("start python ./ACMAnimate.py");
// }
}
int isNumber(double x){
// This looks like it should always be true,
// but it's false if x is an NaN (1.#QNAN0).
return (x == x);
// see https://www.johndcook.com/blog/IEEE_exceptions_in_cpp/ cb: https://stackoverflow.com/questions/347920/what-do-1-inf00-1-ind00-and-1-ind-mean
}