-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathchapter5.tex
232 lines (208 loc) · 13.1 KB
/
chapter5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
\section{Chapter V.\hspace{0.2em} Irreducibility and factorization in integral domains}
\subsection{\textsection1. Chain conditions and existence of factorizations}
Remember that in this section all rings are taken to be \emph{commutative}.
\hypertarget{Exercise V.1.1}{}
\begin{problem}[1.1]
$\triangleright$ Let $R$ be a Noetherian ring, and let $I$ be an ideal of $R$. Prove that $R / I$ is a Noetherian ring. [\textsection1.1]
\end{problem}
\begin{solution}
Let $\pi:R\to R / I$ be the projection. According to \hyperlink{Exercise III.4.2}{Exercise III.4.2}, the homomorphic image of the Noetherian ring $R$ is Noetherian. That is, $\pi(R)=R / I$ is Noetherian.
\end{solution}
\begin{problem}[1.2]
Prove that if $R[x]$ is Noetherian, so is $R$. (This is a `converse' to Hilbert's basis theorem.)
\end{problem}
\begin{solution}
According to \hyperlink{Exercise V.1.1}{Exercise V.1.1}, $R[x]$ is Noetherian implies $R\left[x\right]/\left(x\right)$ is Noetherian. Since in \hyperlink{Exercise III.4.12}{Exercise III.4.12} we have shown that
\[
R\cong R\left[x\right]/\left(x\right),
\]
we see $R$ is Noetherian.
\end{solution}
\subsection{\textsection4. Unique factorization in polynomial rings}
\hypertarget{Exercise V.4.7}{}
\begin{problem}[4.7]
$\triangleright$ A subset $S$ of a commutative ring $R$ is a \emph{multiplicative subset} (or \emph{multiplicatively closed}) if (i) $1 \in S$ and (ii) $s, t \in S \Longrightarrow s t \in S$. Define a relation on the set of pairs $(a, s)$ with $a \in R, s \in S$ as follows:
$$
(a, s) \sim\left(a^{\prime}, s^{\prime}\right) \Longleftrightarrow(\exists t \in S), t\left(s^{\prime} a-s a^{\prime}\right)=0 .
$$
Note that if $R$ is an integral domain and $S=R \backslash\{0\}$, then $S$ is a multiplicative subset, and the relation agrees with the relation introduced in $\S 4.2$.
\begin{itemize}
\item Prove that the relation $\sim$ is an equivalence relation.
\item Denote by $\frac{a}{s}$ the equivalence class of $(a, s)$, and define the same operations $+$, $\cdot$ on such `fractions' as the ones introduced in the special case of $\S 4.2$. Prove that these operations are well-defined.
\item The set $S^{-1} R$ of fractions, endowed with the operations $+$, $\cdot$ is the \emph{localization} of $R$ at the multiplicative subset $S$. Prove that $S^{-1} R$ is a commutative ring and that the function $a \mapsto \frac{a}{1}$ defines a ring homomorphism $\ell: R \rightarrow S^{-1} R$.
\item Prove that $\ell(s)$ is invertible for every $s \in S$.
\item Prove that $R \rightarrow S^{-1} R$ is initial among ring homomorphisms $f: R \rightarrow R^{\prime}$ such that $f(s)$ is invertible in $R^{\prime}$ for every $s \in S$.
\item Prove that $S^{-1} R$ is an integral domain if $R$ is an integral domain.
\item Prove that $S^{-1} R$ is the zero-ring if and only if $0 \in S$.
\end{itemize}
$[4.8,4.9,4.11,4.15$, VII.2.16, VIII.1.4, VIII.2.5, VIII.2.6, VIII.2.12, §IX.9.1]
\end{problem}
\begin{solution}
\begin{itemize}
\item Reflexivity.
\begin{align*}
1(sa-sa)=0\implies (a,s)\sim(a,s).
\end{align*}
Symmetry.
\begin{align*}
&(a, s) \sim\left(a^{\prime}, s^{\prime}\right) \Longleftrightarrow\left(\exists t \in S\right), t\left(s^{\prime} a-s a^{\prime}\right)=0 \\
\iff& (\exists t \in S), t\left(s a^{\prime}-s^{\prime} a\right)=0\iff \left(a^{\prime}, s^{\prime}\right) \sim (a, s).
\end{align*}
Transitivity.
\begin{align*}
&(a, s) \sim\left(a^{\prime}, s^{\prime}\right) ,\left(a^{\prime}, s^{\prime}\right) \sim \left(a'', s''\right)\\
\implies &\left(\exists t_1,t_2 \in S\right), t_1\left(s^{\prime} a-s a^{\prime}\right)=t_2\left(s'' a'-s' a''\right)=0 \\
\implies & (\exists t_1t_2s' \in S), t_1t_2s'\left(s'' a-s a''\right)=(t_2s'')(t_1s'a)-(t_1s)(t_2s'a'')\\
&\hspace{13.25em}=(t_2s'')(t_1sa')-(t_1s')(t_2s'' a')\\
&\hspace{13.25em}=0\\
\implies & (a, s)\sim \left(a'', s''\right) .
\end{align*}
\item Define
\begin{align*}
\frac{a_1}{s_1}+\frac{a_2}{s_2}&=\frac{a_1s_2+a_2s_1}{s_1s_2},\qquad \frac{a_1}{s_1}\cdot\frac{a_2}{s_2}=\frac{a_1a_2}{s_1s_2}.
\end{align*}
If $\frac{a_1}{s_1} = \frac{a_1^\prime}{s_1^\prime}$, then there exists $t\in S$ such that $ts_1^\prime a_1= ts_1 a_1^\prime$. Hence
\begin{align*}
&\;t(s_1^\prime s_2)(a_1s_2+a_2s_1)-t(s_1s_2)(a_1^\prime s_2+a_2s_1^\prime)\\
=&\;t\left(s_1^\prime s_2a_1s_2+s_1^\prime s_2a_2s_1-s_1s_2a_1^\prime s_2-s_1s_2a_2s_1^\prime\right)\\
=&\;t\left(s_1^\prime s_2a_1s_2+s_1^\prime s_2a_2s_1-s_1^\prime s_2a_1 s_2-s_1^\prime s_2a_2s_1\right)a\\
=&\;0,
\end{align*}
which implies
\begin{align*}
\frac{a_1}{s_1}+\frac{a_2}{s_2}=\frac{a_1s_2+a_2s_1}{s_1s_2}= \frac{a_1^\prime s_2+a_2s_1^\prime}{s_1^\prime s_2}=\frac{a_1^\prime}{s_1^\prime}+\frac{a_2}{s_2}.
\end{align*}
If $\frac{a_2}{s_2} = \frac{a_2^\prime}{s_2^\prime}$, in a similar way, we can prove
\begin{align*}
\frac{a_1}{s_1}+\frac{a_2}{s_2}=\frac{a_1s_2+a_2s_1}{s_1s_2}= \frac{a_1s_2^\prime+a_2^\prime s_1}{s_1s_2^\prime}=\frac{a_1}{s_1}+\frac{a_2^\prime}{s_2^\prime}.
\end{align*}
Therefore, $+$ is well-defined.
If $\frac{a_1}{s_1} = \frac{a_1^\prime}{s_1^\prime}$ and $\frac{a_2}{s_2} = \frac{a_2^\prime}{s_2^\prime}$, then there exists $t_1,t_2\in S$ such that $t_1s_1^\prime a_1= t_1s_1 a_1^\prime$ and $t_2s_2^\prime a_2= t_2s_2 a_2^\prime$. Hence we have
\begin{align*}
(t_1t_2)(s_1^\prime s_2^\prime a_1a_2 - s_1 s_2 a_1^\prime a_2^\prime)&=(t_1s_1^\prime a_1 )( t_2s_2^\prime a_2) -(t_1 s_1a_1^\prime ) (t_2s_2a_2^\prime )\\
&=(t_1s_1 a_1^\prime )( t_2s_2 a_2^\prime) -(t_1 s_1a_1^\prime ) (t_2s_2a_2^\prime )\\
&=0,
\end{align*}
which implies
\begin{align*}
\frac{a_1}{s_1}\cdot \frac{a_2}{s_2}=\frac{a_1a_2}{s_1s_2}= \frac{a_1^\prime a_2^\prime}{s_1^\prime s_2^\prime}=\frac{a_1^\prime}{s_1^\prime}\cdot \frac{a_2^\prime}{s_2^\prime}.
\end{align*}
Therefore, $\cdot$ is well-defined.
\item It is straightforward to check that $S^{-1} R$ is a commutative ring. Define
\begin{align*}
\ell: R &\longrightarrow S^{-1} R\\
a &\longmapsto \frac{a}{1}.
\end{align*}
Then
\begin{align*}
\ell(a+b)&=\frac{a+b}{1}=\frac{a}{1}+\frac{b}{1}= \ell(a)+\ell(b),\\
\ell(ab)&=\frac{ab}{1}=\frac{a}{1}\cdot\frac{b}{1}=\ell(a)\ell(b).
\end{align*}
Hence $\ell$ is a ring homomorphism.
\item Since
\begin{align*}
\frac{\ell(s)}{1}\frac{1}{s}=\frac{\ell(s)}{s}=\frac{s}{s}=\frac{1}{1},
\end{align*}
$\ell(s)$ is invertible in $S^{-1}R$ for every $s \in S$.
\item
\[\xymatrix{
S^{-1}R
\ar@{-->}[r]^{g} & R'\\
R\ar[ru]_{f}\ar[u]^{\ell} &
}\]
Suppose $f: R \rightarrow R^{\prime}$ is a ring homomorphism such that $f(s)$ is invertible in $R^{\prime}$ for every $s \in S$. Define
\begin{align*}
g: S^{-1}R &\longrightarrow R^{\prime}\\
\frac{a}{s} &\longmapsto f(s)^{-1}f(a).
\end{align*}
We can check that $g$ is a ring homomorphism as follows:
\begin{align*}
g\left(\frac{a_1}{s_1}+\frac{a_2}{s_2}\right)&=g\left(\frac{s_1a_2+s_2a_1}{s_1s_2}\right)\\
&=f(s_1s_2)^{-1}f(s_1a_2+s_2a_1)\\
&=f(s_1)^{-1}f(s_2)^{-1}f(s_1)f(a_2)+f(s_1)^{-1}f(s_2)^{-1}f(s_2)f(a_1)\\
&=f(s_1)^{-1}f(a_1)+f(s_2)^{-1}f(a_2)\\
&=g\left(\frac{a_1}{s_1}\right)+g\left(\frac{a_2}{s_2}\right),
\end{align*}
\begin{align*}
g\left(\frac{a_1}{s_1}\cdot \frac{a_2}{s_2}\right)&=g\left(\frac{a_1a_2}{s_1s_2}\right)\\
&=f(s_1s_2)^{-1}f(a_1a_2)\\
&=f(s_1)^{-1}f(a_1)f(s_2)^{-1}f(a_2)\\
&=g\left(\frac{a_1}{s_1}\right) g\left(\frac{a_2}{s_2}\right),
\end{align*}
\begin{align*}
g\left(\frac{1}{1}\right)&=f(1)^{-1}f(1)=1.
\end{align*}
Since
\begin{align*}
g(\ell(a))&=g\left(\frac{a}{1}\right)=f(1)^{-1}f(a)=f(a),
\end{align*}
we see $g$ gives a commutative diagram.
Suppose $g'$ is another ring homomorphism such that $g'\circ \ell=f$. Then we have
\begin{align*}
g'\left(\frac{a}{s}\right)&= g'\left(\frac{1}{s}\frac{a}{1}\right)\\
&=g'\left(\frac{1}{s}\right)g'\left(\frac{a}{1}\right)\\
&= \left(g'\left(\frac{s}{1}\right)\right)^{-1}g'\left(\frac{a}{1}\right)\\
&=f(s)^{-1}f(a)\\
&=g\left(\frac{a}{s}\right),
\end{align*}
which implies $g=g'$. Therefore, $\ell:R \rightarrow S^{-1} R$ is initial among ring homomorphisms $f: R \rightarrow R^{\prime}$ such that $f(s)$ is invertible in $R^{\prime}$ for every $s \in S$.
\item If $R$ is an integral domain, then for any $\frac{a_1}{s_1}, \frac{a_2}{s_2} \in S^{-1} R$, we have
\begin{align*}
\frac{a_1}{s_1}\cdot\frac{a_2}{s_2}=\frac{a_1a_2}{s_1s_2}=\frac{0}{1}\implies a_1a_2=0\implies a_1=0\text{ or }a_2=0.
\end{align*}
That means $S^{-1} R$ is an integral domain.
\item If $0 \in S$, then for any $a,a'\in R$, $s,s' \in S$, there exists $0\in S$ such that $0(s'a-sa')=0$. Therefore, $S^{-1} R$ only contains 1 element, which implies $S^{-1} R$ is a zero-ring.
\end{itemize}
\end{solution}
\hypertarget{Exercise V.4.8}{}
\begin{problem}[4.8]
$\neg$ Let $S$ be a multiplicative subset of a commutative ring $R$, as in \hyperlink{Exercise V.4.7}{Exercise V.4.7}. For every $R$-module $M$, define a relation $\sim$ on the set of pairs $(m, s)$, where $m \in M$ and $s \in S$:
$$
(m, s) \sim\left(m^{\prime}, s^{\prime}\right) \Longleftrightarrow(\exists t \in S), t\left(s^{\prime} m-s m^{\prime}\right)=0 .
$$
Prove that this is an equivalence relation, and define an $S^{-1} R$-module structure on the set $S^{-1} M$ of equivalence classes, compatible with the $R$-module structure on $M$. The module $S^{-1} M$ is the localization of $M$ at $S$. [4.9, 4.11, 4.14, VIII.1.4, VIII.2.5, VIII.2.6]
\end{problem}
\begin{solution}
We can check that $\sim$ is an equivalence relation as follows:\\
Reflexivity.
\begin{align*}
(\exists 1 \in S), 1\cdot\left(s m-s m\right)=0\implies (m, s) \sim\left(m, s\right).
\end{align*}
Symmetry.
\begin{align*}
&(m, s) \sim\left(m^{\prime}, s^{\prime}\right) \Longleftrightarrow\left(\exists t \in S\right), t\left(s^{\prime} m-s a^{\prime}\right)=0 \\
\iff& (\exists t \in S), t\left(sm^{\prime}-s^{\prime} m\right)=0\iff \left(m^{\prime}, s^{\prime}\right) \sim (m, s).
\end{align*}
Transitivity.
\begin{align*}
&(m, s) \sim\left(m^{\prime}, s^{\prime}\right) ,\left(m^{\prime}, s^{\prime}\right) \sim \left(m'', s''\right)\\
\implies &\left(\exists t_1,t_2 \in S\right), t_1\left(s^{\prime} m-s m^{\prime}\right)=t_2\left(s'' m'-s' m''\right)=0 \\
\implies & (\exists t_1t_2s' \in S), t_1t_2s'\left(s'' m-s m''\right)=(t_2s'')(t_1s'm)-(t_1s)(t_2s'm'')\\
&\hspace{13.25em}=(t_2s'')(t_1sm')-(t_1s')(t_2s'' m')\\
&\hspace{13.25em}=0\\
\implies & (m, s)\sim \left(m'', s''\right) .
\end{align*}
Denote by $\frac{m}{s}$ the equivalence class of $(m, s)$. The addtion of $S^{-1} M$ is defined as follows:
\begin{align*}
\frac{m_1}{s_1}+\frac{m_2}{s_2}&=\frac{s_2m_1+s_1m_2}{s_1s_2}.
\end{align*}
We can show that the addition is well-defined and makes $S^{-1} M$ an abelian group.\\
Define the scalar multiplication of $S^{-1}R$ on $S^{-1} M$ as follows:
\begin{align*}
\frac{a}{s_1}\cdot\frac{m}{s_2}&=\frac{am}{s_1s_2}.
\end{align*}
We can show that the scalar multiplication is well-defined as follows:
\begin{align*}
&\frac{a}{s_1}=\frac{a'}{s_1'},\frac{m}{s_2}=\frac{m'}{s_2'}\\
\implies& (\exists t_1,t_2 \in S), t_1\left(s_1a^{\prime}-s_1^{\prime} a\right)=0,t_2\left(s_2m^{\prime}-s_2^{\prime} m\right)=0\\
\implies& (\exists t_1t_2 \in S), t_1t_2\left(s_1's_2'am-s_1s_2a^{\prime}m^{\prime}\right)=0\\
\implies& \frac{am}{s_1s_2}=\frac{a'm'}{s_1's_2'}.
\end{align*}
We can check that the scalar multiplication is compatible with the addition as follows:
\begin{align*}
\frac{a}{s_1}\left(\frac{m_1}{s_2}+\frac{m_2}{s_3}\right)&= \frac{a}{s_1}\frac{s_3m_2+s_2m_1}{s_2s_3}=\frac{as_3m_2+as_2m_1}{s_1s_2s_3}=\frac{am_1}{s_1s_2}+\frac{am_2}{s_1s_3}=\frac{a}{s_1}\frac{m_1}{s_2}+\frac{a}{s_1}\frac{m_2}{s_3},\\
\left(\frac{a_1}{s_1}+\frac{a_2}{s_2}\right)\frac{m}{s_3}&=\frac{s_2a_1+s_1a_2}{s_1s_2}\frac{m}{s_3}=\frac{s_2a_1m+s_1a_2m}{s_1s_2s_3}=\frac{a_1m}{s_1s_3}+\frac{a_2m}{s_2s_3}=\frac{a_1}{s_1}\frac{m}{s_3}+\frac{a_2}{s_2}\frac{m}{s_3},\\
\left(\frac{a_1}{s_1}\frac{a_2}{s_2}\right)\frac{m}{s_3}&=\frac{a_1a_2}{s_1s_2}\frac{m}{s_3}=\frac{(a_1a_2)m}{(s_1s_2)s_3}=\frac{a_1(a_2m)}{s_1(s_2s_3)}=\frac{a_1}{s_1}\frac{a_2m}{s_2s_3}=\frac{a_1}{s_1}\left(\frac{a_2}{s_2}\frac{m}{s_3}\right),\\
\frac{1}{1}\frac{m}{s}&=\frac{1m}{1s}=\frac{m}{s}.
\end{align*}
\end{solution}