-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathchapter2.tex
2076 lines (1886 loc) · 85.3 KB
/
chapter2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\section{Chapter II.\hspace{0.2em} Groups, first encounter}
\subsection{\textsection1. Definition of group}
\begin{problem}[1.1]
Write a careful proof that every group is the group of isomorphisms of a groupoid. In particular, every group is the group of automorphisms of some object in some category.
\end{problem}
\begin{solution}
Assume $G$ is a group. Define a category $\mathsf{C}$ as follows:
\begin{itemize}
\item Objects: $\mathrm{Obj}(\mathsf{C})=\{*\}$;
\item Morphisms: $\mathrm{Hom}_\mathsf{C}(*,*)=\mathrm{End}_\mathsf{C}(*)=G$.
\end{itemize}
The composition of homomorphism is corresponding to the multiplication between two elements in $G$. The identity morphism on $*$ is $1_*=e_G$, which satisfies for all $g\in \mathrm{Hom}_\mathsf{C}(*,*)$,
\[
ge_G=e_Gg=g,
\]
and
\[
gg^{-1}=e_G,\;g^{-1}g=e_G.
\]
Thus any homomorphism $g\in \mathrm{Hom}_\mathsf{C}(*,*)$ is an isomorphism and accordingly $\mathsf{C}$ is a groupoid. Now we see $G=\mathrm{End}_\mathsf{C}(*)$ is the group of isomorphisms of a groupoid. Moreover, supposing that $*$ is an object in some category $\mathsf{D}$, $G$ would be the group of automorphisms of $*$, which is denoted as $\mathrm{Aut}_\mathsf{D}(*)$.
\end{solution}
\begin{problem}[1.2]
Consider the 'sets of numbers' listed in §1.1, and decide which are made into groups by conventional operations such as + and $\cdot$. Even if the answer is negative(for example, ($\mathbb{R}$, $\cdot$) is not a group), see if variations on the definition of these sets lead to groups (for example, ($\mathbb{R}^*$, $\cdot$) is a group; cf. §1.4).
\end{problem}
\begin{solution}
We will consider next sequence of nested sets of numbers:
\[
\Z \subset \Q \subset \R \subset \C.
\]
Let's check, that any set above is group under addition: let $X$ be some set from above, then $\exists 0 \in X$ such that $\forall a \in X: \;\; a+0 = a = 0+a$; for any element $a$ from $X$ there exists such $b \in X: \;\; b=-a$ that $a+b=0=b+a$ and associativity also holds.
Now let's consider multiplication instead of addition. Now we need to modify our sets in order to get a group: since $0$ lies in every group above, it doesn't have an inverse(we can't divide by $0$), thus we need to consider $X^* \coloneqq X \setminus \{0\}$ in order to get a group. This works out well for all 'sets of numbers' -- pair $(X^*, \cdot)$ is a group, but for $\Z$ it does not: only $\{-1,1\}$ has inverses under multiplication, therefore $(\{-1,1\}, \cdot)$ form a group.
\end{solution}
\begin{problem}[1.3]
Prove that $(gh)^{-1} = \inv{h}\inv{g}$ for all elements $g,h$ of a group $G$.
\end{problem}
\begin{solution}
We have:
\[ (\inv{h}\inv{g})(gh) = (\inv{h}(\inv{g}g))h = (\inv{h}e)h = \inv{h}h = e \]
\[ (gh)(\inv{h}\inv{g}) = (g(h\inv{h}))\inv{g} = (ge)\inv{g} = g\inv{g} = e \]
%
Hence $\inv{h}\inv{g}$ is a two-sided inverse of $gh$.
\end{solution}
\begin{problem}[1.4]
Suppose that $g^2 = e$ for all elements $g$ of a group $G$; prove that $G$ is commutative.
\end{problem}
\begin{solution}
For all $a,b\in G$,
\[
abab=e\implies a(abab)b=ab\implies (aa)ba(bb)=ab\implies ba=ab.
\]
\end{solution}
\begin{problem}[1.5]
The `multiplication table' of a group is an array compiling the results of all
multiplications $g \bullet h$:
\begin{center}
\begin{tabular}{c||c|c|c|c}
$\bullet$ & $e$ & $\cdots$ & $h$ & $\cdots$ \\ \hline \hline
$e$ & $e$ & $\cdots$ & $h$ & $\cdots$ \\ \hline
$\cdots$ & $\cdots$ & $\cdots$ & $\cdots$ & $\cdots$ \\ \hline
$g$ & $g$ & $\cdots$ & $g\bullet h$ & $\cdots$ \\ \hline
$\cdots$ & $\cdots$ & $\cdots$ & $\cdots$ & $\cdots$ \\
\end{tabular}
\end{center}
(Here $e$ is the identity element. Of course the table depends on the order in
which the elements are listed in the top row and leftmost column.) Prove that
every row and every column of the multiplication table of a group contains all
elements of the group exactly once (like Sudoku diagrams!).
\end{problem}
\begin{solution}
Without loss of generality suppose that two elements in a column are equal,
i.e. for some fixed element $f$ we have $f\bullet g = f\bullet h$. Then by
(left-)cancellation we get that $g=h$. Hence the columns must be the same.
\end{solution}
\subsection{\textsection2. Examples of groups}
\begin{problem}[2.1]
One can associate an $n\times n$ matrix $M_\sigma$ with a permutation $\sigma \in S_n$, by
letting the entry at $(i, \sigma(i))$ be 1, and letting all other entries be 0. For example,
the matrix corresponding to the permutation
\[
\sigma=\left(
\begin{matrix}
1 & 2 & 3\\
3 & 1 & 2
\end{matrix}
\right)\in S_3
\]
would be
\[
M_\sigma=\left(
\begin{matrix}
0 & 0 & 1\\
1 & 0 & 0\\
0 & 1 & 0
\end{matrix}
\right)
\]
Prove that, with this notation,
\[
M_{\sigma\tau}=M_{\sigma}M_{\tau}
\]
for all $\sigma,\tau\in S_n$, where the product on the right is the ordinary product of matrices.
\end{problem}
\begin{solution}
By introducing the Kronecker delta function
\[
\delta _{{i,j}}=
\begin{cases}
0{\text{\quad if }}i\neq j,\\
1{\text{\quad if }}i=j,
\end{cases}
\]
the entry at $(i,j)$ of the matrix $M_{\sigma\tau}$ can be written as
\[
(M_{\sigma\tau})_{i,j}=\delta_{\tau(\sigma(i)),j}
\]
and the entry at $(i,j)$ of the matrix $M_{\sigma}M_{\tau}$ can be written as
\[
(M_{\sigma}M_{\tau})_{i,j}=\sum_{k=1}^{n}(M_{\sigma})_{i,k}(M_{\tau})_{k,j}=\sum_{k=1}^{n}\delta_{\sigma(i),k}\cdot\delta_{\tau(k),j}=\sum_{k=1}^{n}\delta_{\sigma(i),k}\cdot\delta_{k,\tau^{-1}(j)}=\delta_{\sigma(i),\tau^{-1}(j)},
\]
where the last but one equality holds by the fact
\[
\tau(k)=j\iff k=\tau^{-1}(j).
\]
Noticing that
\[
\tau(\sigma(i))=j\iff \sigma(i)=\tau^{-1}(j),
\]
we see $M_{\sigma\tau}=M_{\sigma}M_{\tau}$
for all $\sigma,\tau\in S_n$.
\end{solution}
\begin{problem}[2.2]
Prove that if $d \le n$, then $S_n$ contains elements of order $d$.
\end{problem}
\begin{solution}
The cyclic permutation
\[
\sigma=(1\;2\;3\cdots d)
\]
is an element of order $d$ in $S_n$.
\end{solution}
\begin{problem}[2.3]
For every positive integer $n$ find an element of order $n$ in $S_\mathbb{N}$.
\end{problem}
\begin{solution}
The cyclic permutation
\[
\sigma=(1\;2\;3\cdots n)
\]
is an element of order $d$ in $S_n$.
\end{solution}
\begin{problem}[2.4]
Define a homomorphism $D_8 \rightarrow S_4$ by labeling vertices of a square, as we did
for a triangle in \textsection2.2. List the 8 permutations in the image of this homomorphism.
\end{problem}
\begin{solution}
The image of $n$ rotations under the homomorphism are
\[
\sigma_1=e_{D_8},\;\sigma_2=(1\;2\;3\;4),\;\sigma_3=(1\;3)(2\;4),\;\sigma_4=(1\;4\;3\;2).
\]
The image of $n$ reflections under the homomorphism are
\[
\sigma_5=(1\;3),\;\sigma_6=(2\;4),\;\sigma_7=(1\;2)(3\;4),\;\sigma_8=(1\;4)(3\;2).
\]
\end{solution}
\begin{problem}[2.11]
Prove that the square of every odd integer is congruent to 1 modulo 8.
\end{problem}
\begin{solution}
Given an odd integer $2k+1$, we have
\[
(2k+1)^2=4k(k+1)+1,
\]
where $k(k+1)$ is an even integer. So $(2k+1)^2\equiv1\mod 8$.
\end{solution}
\begin{problem}[2.12]
Prove that there are no nonzero integers $a, b, c$ such that $a^2+b^2=3c^2$. (Hint: studying the equation $[a]^2_4+[b]^2_4=3[c]^2_4$ in $\mathbb{Z}/4\mathbb{Z}$, show that $a, b, c$ would all have to be even. Letting $a=2k, b=2l,c=2m$, you would have $k^2+l^2=3m^2$. What's wrong with that?)
\end{problem}
\begin{solution}
\[
a^2+b^2=3c^2\implies [a]^2_4+[b]^2_4=3[c]_4^2.
\]
Noting that $[0]^2_4=[0]_4,[1]^2_4=[1]_4,[2]^2_4=[0]_4,[3]^2_4=[1]_4$, we see $[c]_4^2$ must be $[0]_4$ and so do $[a]_4^2$ and $[b]_4^2$. Hence $[a]_4,[b]_4,[b]_4$ can only be $[0]_4$ or $[2]_4$, which justifies letting $a=2k_1, b=2l_2,c=2m_1$. After substitution we have $k^2+l^2=3m^2$. Repeating this process $n$ times yields $a=2^nk_n, b=2^nl_n,c=2^nm_n$. For a sufficiently large number $N$, the absolute value of $k_N,l_N,m_N$ must be less than 1. Thus we conclude that $a=b=c=0$ is the unique solution to the equation $a^2+b^2=3c^2$.
\end{solution}
\hypertarget{Exercise II.2.13}{}
\begin{problem}[2.13]
Prove that if $\gcd(m, n) = 1$, then there exist integers $a$ and $b$ such that $am + bn = 1$. (Use Corollary 2.5.) Conversely, prove that if $am+ bn = 1$ for some integers $a$ and $b$, then $\gcd(m, n) = 1$. [2.15, \textsection V.2.1, V.2.4]
\end{problem}
\begin{solution}
Applying Corollary 2.5, we have $\gcd(m, n) = 1$ if and only if $[m]_n$ generates $\mathbb{Z}/n\mathbb{Z}$. Hence
\[
\gcd(m, n) = 1\iff a[m]_n=[1]_n\iff [am]_n=[1]_n\iff am+ bn = 1.
\]
\end{solution}
\begin{problem}[2.15]
Let $n > 0$ be an odd integer.
\begin{itemize}
\item Prove that if $\gcd(m, n) = 1$, then $\gcd(2m+ n, 2n) = 1$. (Use Exercise 2.13.)
\item Prove that if $\gcd(r, 2n) = 1$, then $\gcd(\frac{r-n}{2}, n) = 1$. (Ditto.)
\item Conclude that the function $[m]_n\rightarrow[2m + n]_{2n}$ is a bijection between $(\mathbb{Z}/n\mathbb{Z})^*$ and $(\mathbb{Z}/2n\mathbb{Z})^*$.
\end{itemize}
The number $\phi(n)$ of elements of $(\mathbb{Z}/n\mathbb{Z})^*$ is Euler’s $\phi(n)$-function. The reader has just proved that if $n$ is odd, then $\phi(2n) = \phi(n)$. Much more general formulas will be given later on (cf. \hyperlink{Exercise V.6.8}{Exercise V.6.8}). [VII.5.11]
\end{problem}
\begin{solution}
\begin{itemize}
\item Since $2m+n$ is an odd integer, $\gcd(2m+ n, 2n) = 1$ is actually equivalent to $\gcd(2m+ n, n) = 1$. According to \hyperlink{Exercise II.2.13}{Exercise II.2.13},
\[
\gcd(m, n) = 1\implies am+bn=1\implies \frac{a}{2}(2m+n)+\left(b-\frac{a}{2}\right)n=1.
\]
If $a$ is even, we have shown $\gcd(2m+ n, n) = 1$. Otherwise we can let $a'=a+n$ be an even integer and $b'=b-m$. Then it holds that
\[
\frac{a'}{2}(2m+n)+\left(b'-\frac{a'}{2}\right)n=1,
\]
which also implies $\gcd(2m+ n, n) = 1$.
\item If $\gcd(r, 2n) = 1$, then $r$ must be an odd integer and accordingly
\[
\gcd(r, n) = 1\implies ar+bn=1\implies 2a \left(\frac{r-n}{2}\right)+(a+b)n=1,
\]
which is $\gcd(\frac{r-n}{2}, n) = 1$.
\item It is easy to check that the function $f:(\mathbb{Z}/n\mathbb{Z})^*\rightarrow(\mathbb{Z}/2n\mathbb{Z})^*,\;[m]_n\mapsto[2m + n]_{2n}$ is well-defined. The fact
\[
\begin{aligned}
f([m_1]_n)=f([m_2]_n)&\implies
f([2m_1 + n]_{2n})=f([2m_2 + n]_{2n})\\
&\implies (2m_1 + n)-(2m_2 + n)=2kn\\
&\implies m_1-m_2=kn\\
&\implies [m_1]_n=[m_2]_n
\end{aligned}
\]
indicates that $f$ is injective. For any $[r]_{2n}\in(\mathbb{Z}/2n\mathbb{Z})^*$, we have
\[
\gcd(r, 2n) = 1\implies\gcd\left(\frac{r-n}{2},n\right) = 1\implies \left[\frac{r-n}{2}\right]_n\in(\mathbb{Z}/n\mathbb{Z})^*,
\]
and
\[
f\left(\left[\frac{r-n}{2}\right]_n\right)=[r]_{2n},
\]
which indicates that $f$ is surjective. Thus we show $f$ is a bijection.
\end{itemize}
\end{solution}
\begin{problem}[2.16]
Find the last digit of $1238237^{18238456}$. (Work in $\mathbb{Z}/10\mathbb{Z}$.)
\end{problem}
\begin{solution}
\[
1238237^{18238456}\equiv7^{18238456}\equiv(7^4)^{4559614}\equiv2401^{4559614} \equiv 1 \mod 10,
\]
which indicates that the last digit of $1238237^{18238456}$ is 1.
\end{solution}
\begin{problem}[2.17]
Show that if $m\equiv m'\mod n$, then $\gcd(m,n) = 1$ if and only if $\gcd(m',n)=1$. [\textsection 2.3]
\end{problem}
\begin{solution}
Assume that $m-m'=kn$. If $\gcd(m,n) = 1$, for any common divisor $d$ of $m'$ and $n$
\[
d|m',\;d|n\implies d|(m'+kn)\implies d|m\implies d=1,
\]
which means $\gcd(m',n)=1$. Likewise, we can show $\gcd(m',n) = 1\implies\gcd(m,n)=1$
\end{solution}
\subsection{\textsection3. The category $\mathsf{Grp}$}
\begin{problem}[3.1]
Let $\varphi : G\rightarrow H$ be a morphism in a category $\mathsf{C}$ with products. Explain why
there is a unique morphism
\[
(\varphi\times\varphi) : G \times G \longrightarrow H \times H .
\]
compatible in the evident way with the natural projections.
(This morphism is defined explicitly for $\mathsf{C} = \mathsf{Set}$ in \textsection 3.1.) [\textsection 3.1, 3.2]
\end{problem}
\begin{solution}
By the universal property of product in $\mathsf{C}$, there exist a unique morphism $(\varphi\times\varphi) : G \times G \longrightarrow H \times H$ such that the following diagram commutes.
\[\xymatrix{
G\ar[r]^{\varphi} & H \\
G \times G\ar[u]^{\pi_G}\ar[d]_{\pi_G}\ar[r]^{\varphi\times\varphi} & H\times H\ar[u]_{\pi_H}\ar[d]^{\pi_H} \\
G\ar[r]^{\varphi} & H
}\]
\end{solution}
\begin{problem}[3.2]
Let $\varphi : G\rightarrow H, \psi : H \rightarrow K$ be morphisms in a category with products, and
consider morphisms between the products $G\times G, H\times H, K\times K$ as in Exercise 3.1.
Prove that
\[
(\psi\varphi) \times(\psi\varphi)=(\psi \times \psi)(\varphi\times \varphi) .
\]
(This is part of the commutativity of the diagram displayed in \textsection 3.2.)
\end{problem}
\begin{solution}
By the universal property of product in $\mathsf{C}$, there exists a unique morphism
\[
(\psi\varphi) \times(\psi\varphi):G\times G\rightarrow K\times K
\]
such that the following diagram commutes.
\[\xymatrix{
G\ar[rr]^{\psi\varphi} && H \\
G \times G\ar[u]^{\pi_G}\ar[d]_{\pi_G}\ar[rr]^{ (\psi\varphi) \times(\psi\varphi)} && H\times H\ar[u]_{\pi_H}\ar[d]^{\pi_H} \\
G\ar[rr]^{\psi\varphi} && H
}\]
As the following commutative diagram tells us the composition
\[
(\psi \times \psi)(\varphi\times \varphi):G\times G\rightarrow K\times K
\]
can make the above diagram commute,
\[\xymatrix{
G\ar[r]^{\varphi}\ar@/^1.6pc/[rr]^{\psi\varphi} & H\ar[r]^{\psi} & K \\
G \times G\ar[u]^{\pi_G}\ar[d]_{\pi_G}\ar[r]^{\varphi\times\varphi} & H\times H\ar[u]^{\pi_H}\ar[d]_{\pi_H}\ar[r]^{\psi\times\psi} & K\times K \ar[u]^{\pi_K}\ar[d]_{\pi_K}\\
G\ar[r]^{\varphi}\ar@/_1.6pc/[rr]_{\psi\varphi} & H \ar[r]^{\psi} & K
}\]
there must be $(\psi\varphi) \times(\psi\varphi)=(\psi \times \psi)(\varphi\times \varphi)$.
\end{solution}
\hypertarget{Exercise 3.3}{}
\begin{problem}[3.3]
Show that if $G, H$ are abelian groups, then $G \times H$ satisfies the universal property for coproducts in $\mathsf{Ab}$.
\end{problem}
\begin{solution}
Define two monomorphisms:
\[
i_G:G\longrightarrow G\times H,\;a\longmapsto (a,0_H)
\]
\[
i_H:H\longrightarrow G\times H,\;b\longmapsto (0_G,b)
\]
We are to show that for any two homomorphisms $g:G\rightarrow M$ and $h:H\rightarrow M$ in $\mathsf{Ab}$, the mapping
\[
\begin{aligned}
\varphi:\quad & G\times H\longrightarrow M,\\
& (a,b)\longmapsto g(a)+h(b)
\end{aligned}
\]
is a homomorphism and makes the following diagram commute.
\[\xymatrix{
G\ar[rd]^{g}\ar[d]_{i_G} \\
G \times H\ar[r]^{\varphi} & M\\
H\ar[ru]_{h}\ar[u]^{i_H}
}\]
Exploiting the fact that $g,h$ are homomorphisms and $M$ is an abelian group, it is easy to check that $\varphi$ preserves the addition operation
\[
\begin{aligned}
\varphi((a_1,b_1)+(a_2,b_2))&=\varphi((a_1+a_2,b_1+b_2))\\
&=g(a_1+a_2)+h(b_1+b_2)\\
&=(g(a_1)+g(a_2))+(h(b_1)+h(b_2))\\
&=(g(a_1)+h(b_1))+(g(a_2)+h(b_2))\\
&=\varphi((a_1,b_1))+\varphi((a_2,b_2))
\end{aligned}
\]
and the diagram commutes
\[
\varphi\circ i_G(a)=\varphi((a,0_H))=g(a)+h(0_H)=g(a)+0_M=g(a),
\]
\[
\varphi\circ i_H(b)=\varphi((0_G,b))=g(0_G)+h(b)=0_M+h(b)=h(b).
\]
To show the uniqueness of the homomorphism $\varphi$ we have constructed, suppose a homomorphism $\varphi'$ can make the diagram commute. Then we have
\[
\varphi'((a,b))=\varphi'((a,0_H)+(0_G,b))=\varphi'(i_G(a))+\varphi'(i_H(b))=g(a)+h(b)=\varphi((a,b)),
\]
that is $\varphi'=\varphi$. Hence we show that there exist a unique homomorphism $\varphi$ such that the diagram commutes, which amounts to the universal property for coproducts in $\mathsf{Ab}$.
\end{solution}
\begin{problem}[3.4]
Let $G, H$ be groups, and assume that $G\cong H\times G$. Can you conclude that $H$ is trivial? (Hint: No. Can you construct a counterexample?)
\end{problem}
\begin{solution}
Consider the function
\[
\begin{aligned}
\varphi:\;&\mathbb{Z}\times\mathbb{Z}[x]\longrightarrow\mathbb{Z}[x]\\
&(n,f(x))\longmapsto n+xf(x)
\end{aligned}
\]
Firstly, we can show $\varphi$ is a homomorphism as follows
\[
\begin{aligned}
\varphi((n_1,f_1(x))+(n_2,f_2(x)))&=\varphi((n_1+n_2,f_1(x)+f_2(x)))\\
&=(n_1+n_2)+x(f_1(x)+f_2(x))\\
&=(n_1+xf_1(x))+(n_2+xf_2(x))\\
&=\varphi(n_1,f_1(x))+\varphi(n_2,f_2(x)).
\end{aligned}
\]
Secondly, we are to show $\varphi$ is a monomorphism. It follows by
\[
\varphi(n,f(x))=n+xf(x)=0\implies n=0,\;f(x)=0\implies \ker\varphi=\{(0,0)\}.
\]
Lastly, since given any $f(x)=\sum_{n\ge0}a_nx^n\in\mathbb{Z}[x]$ we have $$\varphi\left(a_0,\sum_{n\ge1}a_nx^{n-1}\right)=a_0+\sum_{n\ge1}a_nx^n=f(x),$$
we claim $\varphi$ is surjective and indeed an isomorphism. Therefore, as a counterexample we have $\mathbb{Z}[x]\cong\mathbb{Z}\times\mathbb{Z}[x]$ where $\mathbb{Z}$ is non-trivial.
\end{solution}
\begin{problem}[3.5]
Prove that $\mathbb{Q}$ is not the direct product of two nontrivial groups.
\end{problem}
\begin{solution}
Consider the additive group of rationals $(\mathbb{Q},+)$. Assume that $\varphi$ is a isomorphism between the product $G\times H=\{(a,b)|a\in G,b\in H\}$ and $(\mathbb{Q},+)$. Note that $\{e_G\}\times H$ and $G\times \{e_H\}$ are subgroups in $G\times H$ and their intersection is the trivial group $\{(e_G,e_H)\}$. It is easy to check that bijection $\varphi$ satisfies $\varphi(A\cap B)=\varphi(A)\cap\varphi (B)$. So applying the fact we have
\[
\varphi(\{(e_G,e_H)\})=\varphi(\{e_G\}\times H\cap G\times \{e_H\})=\varphi(\{e_G\}\times H)\cap \varphi(G\times \{e_H\})=\{0\}.
\]
Suppose both $\varphi(\{e_G\}\times H)$ and $\varphi(G\times \{e_H\})$ are nontrivial groups. If $\dfrac{p}{q}\in \varphi(\{e_G\}\times H)-\{0\}$ and $\dfrac{r}{s}\in \varphi(G\times \{e_H\})-\{0\}$, there must be
\[
rp=rq\cdot\dfrac{p}{q}=ps\cdot\dfrac{r}{s}\in \varphi(\{e_G\}\times H)\cap\varphi(G\times \{e_H\}),
\]
which implies $rp=0$. Since both $\dfrac{p}{q}$ and $\dfrac{r}{s}$ are non-zero, it leads to a contradiction. Thus without loss of generality we can assume $\varphi(\{e_G\}\times H)$ is a trivial group $\{0\}$.
Since $\varphi$ is isomorphism, we see that for all $h\in H$,
\[
\varphi(e_G,h)=\varphi(e_G,e_H)=0\iff h=e_H.
\]
That is, $H$ is a trivial group. Therefore, we have shown $(\mathbb{Q},+)$ will never be isomorphic to the direct product of two nontrivial groups.
\end{solution}
\begin{problem}[3.6]
Consider the product of the cyclic groups $C_2,C_3$ (cf. \textsection 2.3): $C_2 \times C_3$. By \hyperlink{Exercise 3.3}{Exercise 3.3}, this group is a coproduct of $C_2$ and $C_3$ in $\mathsf{Ab}$. Show that it is not a coproduct of $C_2$ and $C_3$ in $\mathsf{Grp}$, as follows:
\begin{itemize}
\item find injective homomorphisms $C_2\rightarrow S_3$, $C_3 \rightarrow S_3$;
\item arguing by contradiction, assume that $C_2\times C_3$ is a coproduct of $C_2, C_3$, and deduce that there would be a group homomorphism $C_2\times C_3\rightarrow S_3$ with certain properties;
\item show that there is no such homomorphism.
\end{itemize}
\end{problem}
\begin{solution}
\begin{itemize}
\item
Monomorphisms $g:C_2\rightarrow S_3$, $h:C_3 \rightarrow S_3$ can be constructed as follows:
\[
g([0]_2)=e,g([1]_2)=\left(
\begin{matrix}
1 & 2 & 3\\
1 & 3 & 2
\end{matrix}
\right).
\]
\[
h([0]_3)=e,h([1]_3)=\left(
\begin{matrix}
1 & 2 & 3\\
3 & 1 & 2
\end{matrix}
\right),h([2]_3)=\left(
\begin{matrix}
1 & 2 & 3\\
2 & 3 & 1
\end{matrix}
\right).
\]
\item Supposing that $C_2\times C_3$ is a coproduct of $C_2, C_3$, there would be a unique group homomorphism $\varphi :C_2\times C_3\rightarrow S_3$ such that the following diagram commutes
\[\xymatrix{
C_2\ar[rd]^{g}\ar[d]_{i_{C_2}} \\
C_2 \times C_3\ar[r]^{\varphi} & S_3\\
C_3\ar[ru]_{h}\ar[u]^{i_{C_3}}
}\]
In other words, for all $a\in C_2,b\in C_3$,
\[
\begin{aligned}
\varphi(a,b)&=\varphi(([0]_2,b)+(a,[0]_3))=\varphi(([0]_2,b))\varphi((a,[0]_3))=\varphi(i_{C_3}(b))\varphi(i_{C_2}(a))=h(b)g(a)\\
&=\varphi((a,[0]_3)+([0]_2,b))=\varphi((a,[0]_3))\varphi(([0]_2,b))=\varphi(i_{C_2}(a))\varphi(i_{C_3}(b))=g(a)h(b).
\end{aligned}
\]
\item Since
\[
g([1]_2)h([1]_3)=\left(
\begin{matrix}
1 & 2 & 3\\
1 & 3 & 2
\end{matrix}
\right)
\left(
\begin{matrix}
1 & 2 & 3\\
3 & 1 & 2
\end{matrix}
\right)=
\left(
\begin{matrix}
1 & 2 & 3\\
3 & 2 & 1
\end{matrix}
\right),
\]
\[
h([1]_3)g([1]_2)=
\left(
\begin{matrix}
1 & 2 & 3\\
3 & 1 & 2
\end{matrix}
\right)
\left(
\begin{matrix}
1 & 2 & 3\\
1 & 3 & 2
\end{matrix}
\right)
=
\left(
\begin{matrix}
1 & 2 & 3\\
2 & 1 & 3
\end{matrix}
\right),
\]
we see $g(a)h(b)\ne h(b)g(a)$ not always holds. The derived contradiction shows that $C_2\times C_3$ is not a coproduct of $C_2, C_3$ in $\mathsf{Grp}$.
\end{itemize}
\end{solution}
\begin{problem}[3.7]
Show that there is a surjective homomorphism $Z*Z\rightarrow C_2*C_3$. ($*$ denotes coproduct in $\mathsf{Grp}$.)
\end{problem}
\begin{solution}
Consider the mapping
\[
\begin{aligned}
\varphi:\;&\mathbb{Z}*\mathbb{Z}\longrightarrow C_2*C_3\\
&x^{m_1}y^{n_1}\cdots x^{m_k}y^{n_k}\longmapsto x^{[m_1]_2}y^{[n_1]_3}\cdots x^{[m_k]_2}y^{[n_k]_3}
\end{aligned}
\]
Since
\[
\begin{aligned}
&\varphi(x^{m_1}y^{n_1}\cdots x^{m_k}y^{n_k}x^{m_1'}y^{n_1'}\cdots x^{m_{k'}'}y^{n_{k}'})\\
=&x^{[m_1]_2}y^{[n_1]_3}\cdots x^{[m_k]_2}y^{[n_k]_3}x^{[m_1']_2}y^{[n_1']_3}\cdots x^{[m_k']_2}y^{[n_k']_3}\\
=&\varphi(x^{m_1}y^{n_1}\cdots x^{m_k}y^{n_k})\varphi(x^{m_1'}y^{n_1'}\cdots x^{m_{k'}'}y^{n_{k}'})
\end{aligned},
\]
$\varphi$ is a homomorphism. It is clear that $\varphi$ is surjective. Thus we show there exists a surjective homomorphism $Z*Z\rightarrow C_2*C_3$.
\end{solution}
\begin{problem}[3.8]
Define a group $G$ with two generators $x, y$, subject (only) to the relations $x^2 = e_G, y^3 = e_G$. Prove that $G$ is a coproduct of $C_2$ and $C_3$ in $\Grp$. (The reader will obtain an even more concrete description for $C_2*C_3$ in Exercise 9.14; it is called the modular group.) [\textsection3.4, 9.14]
\end{problem}
\begin{solution}
Given the maps $i_1:C_2\rightarrow G,[m]_2\mapsto x^m$ and $i_2:C_3\rightarrow G,[n]_3\mapsto y^n$, we can check that $i_1$, $i_2$ are homomorphisms.
We are to show that for every group $H$ endowed with two homomorphisms $f_1:C_2\rightarrow H$, $f_2:C_3\rightarrow H$ , there would be a unique group homomorphism $\varphi :G\rightarrow H$ such that the following diagram commutes
\[\xymatrix{
C_2\ar[rd]^{f_1}\ar[d]_{i_1} \\
G\ar[r]^{\varphi} & H\\
C_3\ar[ru]_{f_2}\ar[u]^{i_2}
}\]
or
\[
\varphi(i_1([m]_2))=\varphi(x^m)=\varphi(x)^m=f_1([m]_2),
\]
\[
\varphi(i_2([n]_3))=\varphi(y^n)=\varphi(y)^n=f_2([n]_3).
\]
Define $\phi:G\rightarrow H$ as $\phi(x^my^n)=f_1([m]_2)f_2([n]_3)$, $\phi(y^nx^m)=f_2([n]_3)f_1([m]_2)$. It is clear to see $\phi$ makes the diagram commute. Moreover, if $\varphi$ makes the diagram commute, it follows that for all $x^my^n,y^nx^m\in G$,
\[
\varphi(x^my^n)=\varphi(x^m)\varphi(y^n)=f_1([m]_2)f_2([n]_3),
\]
\[
\varphi(y^nx^m)=\varphi(y^n)\varphi(x^m)=f_2([n]_3)f_1([m]_2),
\]
which implies $\varphi=\phi$. Thus we can conclude $G$ is the coproduct of $C_2$ and $C_3$ in $\Grp$.
\end{solution}
\subsection{\textsection4. Group homomorphisms}
\begin{problem}[4.1]
Check that the function $\pi_m^n$
defined in \textsection4.1 is well-defined, and makes the
diagram commute. Verify that it is a group homomorphism. Why is the hypothesis
$m | n$ necessary? [\textsection4.1]
\end{problem}
\begin{solution}
In \textsection4.1 the function $\pi_m^n$ is defined as
\[
\begin{aligned}
\pi_m^n\;: \mathbb{Z}/n\mathbb{Z} &\longrightarrow \mathbb{Z}/m\mathbb{Z}\\
[a]_n&\longmapsto [a]_m
\end{aligned}
\]
with the condition $m|n$. We can check that $\pi_m^n$ is well-defined as
\[
[a_1]_n=[a_2]_n\iff a_1-a_2=kn=(kl)m \implies[a_1]_m=[a_2]_m\iff\pi_m^n([a_1]_n)=\pi_m^n([a_2]_n).
\]
Note $\pi_m^n(\pi_n(a))=\pi_m^n([a]_n)=[a]_m=\pi_m(a)$. The diagram in \textsection4.1 must commute.
\[\xymatrix{
\mathbb{Z}\ar[rd]^{\pi_m}\ar[d]_{\pi_n} \\
\mathbb{Z}/n\mathbb{Z}\ar[r]_{\pi_m^n} & \mathbb{Z}/m\mathbb{Z}
}\]
Since
\[
\pi_m^n([a]_n+[b]_n)=[a+b]_m=[a]_m+[b]_m=\pi_m^n([a]_n)+\pi_m^n([b]_n),
\]
it follows that $\pi_m^n$ is a group homomorphism. Actually we have shown that without the hypothesis
$m|n$, $\pi_m^n$ may not be well-defined.
\end{solution}
\begin{problem}[4.2]
Show that the homomorphism $\pi_2^4\times\pi_2^4:C_4\rightarrow C_2\times C_2$ is not an isomorphism. In fact, is there any isomorphism $C_4\rightarrow C_2\times C_2$?
\end{problem}
\begin{solution}
Let calculate the order of each non-zero element in both $C_4$ and $ C_2\times C_2$. For the group $C_4$,
\[
|[2]_4|=2,\quad\left|[1]_4\right|=\left|[3]_4\right|=4.
\]
For the group $C_2\times C_2$,
\[
|([1]_2,[0]_2)|=|([0]_2,[1]_2)|=|([1]_2,[1]_2)|=2.
\]
Since isomorphism must preserve the order, we can assert that there is no such isomorphism $C_4\rightarrow C_2\times C_2$.
\end{solution}
\begin{problem}[4.3]
Prove that a group of order $n$ is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ if and only if it contains
an element of order $n$. [\textsection4.3]
\end{problem}
\begin{solution}
Assume some group $G$ is isomorphic to $\mathbb{Z}/n\mathbb{Z}$. Since $|[1]_n|=n$ and isomorphism preserves the order, we can affirm that there is an element of order $n$ in $G$.
\noindent Conversely, assume there is a group $G$ of order $n$ in which $g$ is an element of order $n$. By definition we see $g^0,g^1,g^2\cdots g^{n-1}$ are distinct pairwise. Noticing group $G$ has exactly $n$ elements, $G$ must consist of $g^0,g^1,g^2\cdots g^{n-1}$. We can easily check that the function
\[
\begin{aligned}
f\;: G&\longrightarrow \mathbb{Z}/n\mathbb{Z}\\
g^k&\longmapsto [k]_n
\end{aligned}
\]
is an isomorphism.
\end{solution}
\begin{problem}[4.4]
Prove that no two of the groups $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R},+)$ are isomorphic to one another. Can you decide whether $(\mathbb{R}, +)$, $(\mathbb{C}, +)$ are isomorphic to one another? (Cf. \hyperlink{Exercise VI.1.1}{Exercise VI.1.1}.)
\end{problem}
\begin{solution}
Suppose there exists an isomorphism $f:\mathbb{Z}\rightarrow\mathbb{Q}$. Let $f(1)=p/q\ (p,q\in\mathbb{Z})$. If $p=1$, for all $n\in\mathbb{Z}$, we have
\[
f(n)=\frac{n}{q}\ne\frac{1}{2q}.
\]
If $p\ne1$, for all $n\in\mathbb{Z}$, we have
\[
f(n)=\frac{np}{q}\ne\frac{p+1}{q}.
\]
In both cases, it implies $f(\mathbb{Z})\nsubseteq\mathbb{Q}$. Hence we see $f$ is not a surjection, which contradicts the fact that $f:\mathbb{Z}\rightarrow\mathbb{Q}$ is an isomorphism. Comparing the cardinality of $\mathbb{Z}$, $\mathbb{Q}$, $\mathbb{R}$
\[
|\mathbb{Z}|=|\mathbb{Q}|<|\mathbb{R}|,
\]
we see there exist no such isomorphisms like $f:\mathbb{Z}\rightarrow \mathbb{R}$ or $f:\mathbb{Q}\rightarrow \mathbb{R}$.
\noindent We can prove $(\mathbb{R}, +)$, $(\mathbb{C}, +)$ are isomorphic, if considering the both as vector spaces over $\mathbb{Q}$. The proof is given in \hyperlink{Exercise VI.1.1}{Exercise VI.1.1}.
\end{solution}
\begin{problem}[4.5]
Prove that the groups $(\mathbb{R}\setminus\{0\},\cdot)$ and $(\mathbb{C}\setminus\{0\}, \cdot)$ are not isomorphic.
\end{problem}
\begin{solution}
Suppose $f:\mathbb{R}\rightarrow\mathbb{C}$ is an isomorphism. Then there exists a real number $x$ such that $f(x)=i$.
\[
f(x^4)=f(x)^4=i^4=1.
\]
Since isomorphism preserves the identity, we have
\[
f(1)=1=f(x^4).
\]
which indicates $x^4=1$. Noticing that $x\in\mathbb{R}$, there must be $x^2=1$. Now we see
\[
f(1)=f(x^2)=f(x)^2=i^2=-1,
\]
which derives a contradiction. Thus we can conclude that groups $(\mathbb{R}\setminus\{0\},\cdot)$ and $(\mathbb{C}\setminus\{0\}, \cdot)$ are not isomorphic.
\end{solution}
\begin{problem}[4.6]
We have seen that $(\mathbb{R}, +)$ and $(\mathbb{R}_{>0},\cdot)$ are isomorphic (Example 4.4). Are the groups $(\mathbb{Q}, +)$ and $(\mathbb{Q}_{>0},\cdot)$ isomorphic?
\end{problem}
\begin{solution}
Suppose $f:\mathbb{Q}\rightarrow\mathbb{Q}_{>0}$ is an isomorphism.
Since isomorphism preserves the multiplication, we have
\[
f(1)=f\left(n\cdot\frac{1}{n}\right)=f\left(\frac{1}{n}\right)^n\quad(n\in\mathbb{Z}_{>0}),
\]
which implies
\[
f\left(\frac{1}{n}\right)=f(1)^{\frac{1}{n}}.
\]
Assume
$$f(1)=\dfrac{p}{q}=\dfrac{p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}}{q_1^{s_1}q_2^{s_2}\cdots q_l^{s_l}}$$
where $p_i,q_i$ are pairwise distinct positive prime numbers. Then let $$M=\max\{p,q\}+1>\max\{r_1,\cdots,r_k,s_1,\cdots,s_l\}.$$
Thus we assert
\[
f\left(\frac{1}{M}\right)=\left(\dfrac{p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}}{q_1^{s_1}q_2^{s_2}\cdots q_l^{s_l}}\right)^{\frac{1}{M}}\notin\mathbb{Q},
\]
which can be proved by contradiction. In fact, Suppose
\[
\left(\dfrac{p}{q}\right)^{\tfrac{1}{M}}=\dfrac{a}{b}\in\mathbb{Q}
\]
or say
\[
pb^M=qa^M,
\]
where $a$, $b$ are coprime. Note that $b^M$, $a^M$ are also coprime and that the prime factorization of $a^M$ can be written as $a_1^{Mt_1}a_2^{Mt_2}\cdots a_j^{Mt_j}$ where $a_i$ are pairwise distinct positive prime numbers. That forces
\[
p=p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}=N\cdot a_1^{Mt_1}a_2^{Mt_2}\cdots a_j^{Mt_j}.
\]
Noticing that $a_i$ must coincide with one number in $\{p_1,p_2,\cdots p_k\}$, we can assume $a_1=p_1$ without loss of generality. However, since $M>\max\{r_1,\cdots,r_k\}$, we see the exponent of $p_1$ is distinct from that of $a_1$, which violates the unique factorization property of $\mathbb{Z}$. Hence we get a contradiction and verify $ f\left(\frac{1}{M}\right)\notin \mathbb{Q}$. Moreover, it contradicts our assumption that $f:\mathbb{Q}\rightarrow\mathbb{Q}_{>0}$ is an isomorphism. Eventually we show that the groups $(\mathbb{Q}, +)$ and $(\mathbb{Q}_{>0},\cdot)$ are not isomorphic.
\end{solution}
\begin{problem}[4.7]
Let $G$ be a group. Prove that the function $G\rightarrow G$ defined by $g\mapsto g^{-1}$ is a homomorphism if and only if $G$ is abelian. Prove that $g\mapsto g^2$ is a homomorphism
if and only if G is abelian.
\end{problem}
\begin{solution}
Given the function
\[
\begin{aligned}
f\;: G&\longrightarrow G\\
g&\longmapsto g^{-1}
\end{aligned}
\]
we have
\[
f(g_1g_2)=(g_1g_2)^{-1}=g_2^{-1}g_1^{-1},\quad f(g_1)f(g_2)=g_1^{-1}g_2^{-1}.
\]
If $G$ is abelian, it is clear to see $f(g_1g_2)=f(g_1)f(g_2)$. If $f$ is a homomorphism, $\forall h_1,h_2\in G$,
\[
h_1h_2=(h_2^{-1}h_1^{-1})^{-1}=f(h_2^{-1}h_1^{-1})=f(h_2^{-1})f(h_1^{-1})=h_2h_1.
\]
Given the function
\[
\begin{aligned}
h\;: G&\longrightarrow G\\
g&\longmapsto g^{2}
\end{aligned}
\]
we have
\[
h(g_1g_2)=(g_1g_2)^{2}=g_1g_2g_1g_2,\quad h(g_1)h(g_2)=g_1^2g_2^2=g_1g_1g_2g_2.
\]
If $G$ is abelian, it is clear to see $h(g_1g_2)=h(g_1)h(g_2)$. If $h$ is a homomorphism, by cancellation we have
\[
h(g_1g_2)=h(g_1)h(g_2)\implies g_2g_1=g_1g_2.
\]
\end{solution}
\hypertarget{Exercise II.4.8}{}
\begin{problem}[4.8]
Let $G$ be a group, and $g\in G$. Prove that the function $\gamma_g : G\rightarrow G$ defined by $(\forall a \in G) : \gamma_g(a) = gag^{-1}$ is an automorphism of $G$. (The automorphisms $\gamma_g$ are
called \textquoteleft inner' automorphisms of $G$.) Prove that the function $G\rightarrow \mathrm{Aut}(G)$ defined by $g \mapsto \gamma_g$ is a homomorphism. Prove that this homomorphism is trivial if and only if $G$ is abelian.
\end{problem}
\begin{solution}
Since
\[
\gamma_g(ab)=gabg^{-1}=gag^{-1}gbg^{-1}=\gamma_g(a)\gamma_g(b),
\]
$\gamma_g$ is an automorphism of $G$.
For all $a\in G$, we have
\[
\gamma_{g_1g_2}(a)=g_1g_2ag_2^{-1}g_1^{-1}=\gamma_{g_1}(g_2ag_2^{-1})=(\gamma_{g_1}\circ \gamma_{g_2})(a),
\]
which implies $\gamma_{g_1g_2}=\gamma_{g_1}\circ \gamma_{g_2}$ and $g \mapsto\gamma_g$ is a homomorphism. If $G$ is abelian, for all $g$ the homomorphism
\[
\gamma_g(a) = gag^{-1}=gg^{-1}a=a
\]
is the identity in $\mathrm{Aut}(G)$. That is, the homomorphism $g \mapsto \gamma_g$ is trivial. If the homomorphism $g \mapsto \gamma_g$ is trivial, we have for all $g,a\in G$,
\[
gag^{-1}=a,
\]
which implies for all $a,b\in G$,
\[
ab=bab^{-1}b=ba.
\]
Thus we show the homomorphism $g \mapsto \gamma_g$ is trivial if and only if $G$ is abelian.
\end{solution}
\begin{problem}[4.9]
Prove that if $m$, $n$ are positive integers such that $\gcd(m, n) = 1$, then $C_{mn}\cong C_{m}\times C_n$.
\end{problem}
\begin{solution}
Define a function
\[
\begin{aligned}
\varphi\;: C_{m}\times C_n&\longrightarrow C_{mn}\\
([a]_m,[b]_n)&\longmapsto [anp+bmq]_{mn}
\end{aligned}
\]
where $[pn]_m=[1]_m$ and $[qm]_n=[1]_n$, as $\gcd(m, n) = 1$ guarantees the existence of $p,q$ (see textbook p56). First of all, we have to check whether $\varphi$ is well-defined. Note that
\[
[(anp_1+bmq_1)-(anp_2+bmp_2)]_{m}=[a(p_1n-p_2n)+b(q_1m-q_2m)]_{m}=[0]_m
\]
\[
[(anp_1+bmq_1)-(anp_2+bmp_2)]_{n}=[a(p_1n-p_2n)+b(q_1m-q_2m)]_{n}=[0]_n
\]
and $\gcd(m, n) = 1$. Thus we have
\[
[(anp_1+bmq_1)-(anp_2+bmp_2)]_{mn}=[0]_{mn},
\]
or
\[
[anp_1+bmq_1]_{mn}=[anp_2+bmp_2]_{mn}.
\]
Then we show $\varphi$ is a homomorphism.
\begin{align*}
\varphi(([a_1]_m,[b_1]_n)+([a_2]_m,[b_2]_n))&=\varphi([a_1+a_2]_m,[b_1+b_2]_n)\\
&=[(a_1+a_2)np+(b_1+b_2)mq]_{mn}\\
&=[a_1np+b_1mq]_{mn}+[a_2np+b_2mq]_{mn}\\
&=\varphi([a_1]_m,[b_1]_n)+\varphi([a_2]_m,[b_2]_n).
\end{align*}
In order to show $\varphi$ is a monomorphism, we can check
\begin{align*}
&\varphi([a_1]_m,[b_1]_n)=\varphi([a_2]_m,[b_2]_n)\\
\implies&[a_1np+b_1mq]_{mn}=[a_2np+b_2mq]_{mn}\\
\implies&[(a_1-a_2)np+(b_1-b_2)mq]_{mn}=[0]_{mn}\\
\implies&[(a_1-a_2)np+(b_1-b_2)mq]_{m}=[a_1-a_2]_{m}=[0]_m,\\
&[(a_1-a_2)np+(b_1-b_2)mq]_{n}=[b_1-b_2]_{n}=[0]_n\\
\implies&[a_1]_m=[a_2]_m,\ [b_1]_m=[b_2]_m.
\end{align*}
Since $|C_{m}\times C_n|= |C_{mn}|=mn$, we can conclude $\varphi$ is an isomorphism. Thus we complete proving $C_{mn}\cong C_{m}\times C_n$.
\end{solution}
\subsection{\textsection5. Free groups}
\begin{problem}[5.1]
Does the category $\mathscr{F}^A$ defined in \textsection5.2 have final objects? If so, what are they?
\end{problem}
\begin{solution}
Yes, they are functions from $A$ to any trivial group, for example $T=\{t\}$.
\[\xymatrix{
G \ar[r]^{\exists!\varphi} & \{t\}\\
A\ar[ru]_{e}\ar[u]^{j}
}\]
For any object $(j,G)$ in $\mathscr{F}^A$, the trivial homomorphism $\varphi:g\mapsto t$ is the unique homomorphism such that the diagram commutes. That is, $\Hom((j,G),(e,T))=\{\varphi\}$.
\end{solution}
\begin{problem}[5.2]
Since trivial groups $T$ are initial in $\Grp$, one may be led to think that $(e,T)$ should be initial in $\mathscr{F}^A$, for every $A$: $e$ would be defined by sending every element of $A$ to the (only) element in $T$ ; and for any other group $G$, there is a unique homomorphism $T\rightarrow G$. Explain why $(e, T)$ is not initial in $\mathscr{F}^A$ (unless $A =\varnothing$).
\end{problem}
\begin{solution}
Let $G=C_2=\{[0]_2,[1]_2\}$. Note that $\varphi\circ e(A)$ must be the trivial subgroup $\{[0]_2\}$. If $x\in A$ and $j(x)=[1]_2$, we see $\varphi\circ e\ne j$ and the following diagram does not commute.
\[\xymatrix{
T\ar[r]^{\varphi} & G\\
A\ar[ru]_{j}\ar[u]^{e}
}\]
That implies $(e, T)$ is not initial in $\mathscr{F}^A$ unless $A =\varnothing$.
\end{solution}
\begin{problem}[5.3]
Use the universal property of free groups to prove that the map $j:A\rightarrow F(A)$ is injective, for all sets $A$. (Hint: it suffices to show that for every two elements $a, b$ of $A$ there is a group $G$ and a set-function $f : A\rightarrow G$ such that $f(a)=f(b)$. Why? and how do you construct $f$ and $G$?) [\textsection III.6.3]
\end{problem}
\begin{solution}
Let $G=S_A$ be the symmetric group over $A$. Define functions $g_a:A\rightarrow A,\;x\mapsto a$ sending every element of $A$ to $a$.
Since $g_a\in S_A$, we can define an injection
\[
\begin{aligned}
f\;: A&\longrightarrow S_A\\
a&\longmapsto g_a
\end{aligned}
\]
In light of the commutative diagram
\[\xymatrix{
F(A) \ar[r]^{\varphi} &S_A\\
A\ar[ru]_{f}\ar[u]^{j}
}\]
we have $\forall a,b\in A$,
\[
j(a)=j(b)\implies\varphi(j(a))=\varphi(j(b))\implies f(a)=f(b)\implies a=b.
\]
\end{solution}
\begin{problem}[5.4]
In the \textquoteleft concrete’ construction of free groups, one can try to reduce words by performing cancellations in any order; the \textquoteleft elementary reductions' used in the text(that is, from left to right) is only one possibility. Prove that the result of iterating cancellations on a word is independent of the order in which the cancellations are performed. Deduce the associativity of the product in $F(A)$ from this. [\textsection 5.3]
\end{problem}
\begin{solution}
We use induction on the length of $w$. If $w$ is reduced, there is nothing to show. If not, there must be some pair of symbols that can be cancelled, say the underlined pair
$$w = \cdots \underline{xx}^{-1}\cdots.$$
(Let's allow $x$ to denote any element of $A'$, with the understanding that if $x = a^{-1}$ then $x^{-1} = a$.) If we show that we can obtain every reduced form of $w$ by cancelling the pair $xx^{-1}$ first, the proposition will follow by induction, because the word $w^* = \cdots \underline{\cancel{x}\cancel{x}}^{-1}\cdots$ is shorter.
Let $w_0$ be a reduced form of $w$. It is obtained from $w$ by some sequence of cancellations. The first case is that our pair $xx^{-1}$ is cancelled at some step in this sequence. If so, we may as well cancel $xx^{-1}$ first. So this case is settled. On the other hand, since $w_0$ is reduced, the pair $xx^{-1}$ can not remain in $w_0$. At least one of the two symbols must be cancelled at some time. If the pair itself is not cancelled, the first cancellation involving the pair must look like
\[
\cdots \cancel{x}^{-1}\underline{\cancel{x}x}^{-1}\cdots\quad \text{ or }\quad \cdots \underline{x\cancel{x}}^{-1}\cancel{x}\cdots
\]
Notice that the word obtained by this cancellation is the same as the one obtained by cancelling the pair $xx^{-1}$. So at this stage we may cancel the original pair instead. Then we are back in the first case, so the proposition is proved.
\end{solution}
\begin{problem}[5.5]
Verify explicitly that $H^{\oplus A}$ is a group.
\end{problem}
\begin{solution}
Assume the $A$ is a set and $H$ is an abelian group. $H^{\oplus A}$ are defined as follows
\[
H^{\oplus A}:=\{\alpha:A\rightarrow H|\alpha(a)\ne e_H \text{ for only finitely many elements }a\in A\} .
\]
Now that $H^{\oplus A}\subset H^A:=\Hom_{\mathsf{Set}}(A,H)$, we can first show $(H^A,+)$ is a group, where for all $\phi,\psi\in H^A$, $\phi+\psi$ is defined by
\[
(\forall a\in A) : (\phi + \psi)(a) := \phi(a) + \psi(a) .
\]
Here is the verification:
\begin{itemize}
\item Identity: Define a function $\varepsilon:A\rightarrow H,a\mapsto e_H$ sending all elements in $A$ to $e_H$. Then for any $\alpha\in H^A$ we have
\[
(\forall a\in A) : (\alpha + \varepsilon)(a) = \alpha(a) + \varepsilon(a)=\alpha(a),
\]
which is $\alpha + \varepsilon=\alpha$. Because of the commutativity of the operation $+$ defined on $H^A$, $\varepsilon$ is the identity indeed.
\item Associativity: This follows by the associativity in $H$:
\[
(\forall a\in A) : ((\alpha + \beta)+\gamma)(a) = (\alpha + \beta)(a) + \gamma(a)= \alpha(a)+ (\beta+ \gamma)(a)=(\alpha +(\beta+\gamma))(a).
\]
\item Inverse: Every function $\phi\in H^A$ has inverse $-\phi$ defined by
\[
(\forall a\in A) :(-\phi)(a) = -\phi(a).
\]
\end{itemize}
Thus $H^A$ makes a group.
Then it is time to show $H^{\oplus A}$ is a subgroup of $H^A$. For all $\alpha,\beta\in H^{\oplus A}$, let $N_\alpha=\{a\in A|\alpha(a)\ne e_H\}$, $N_\beta=\{a\in A|\beta(a)\ne e_H\}$, $N_{\alpha-\beta}=\{a\in A|(\alpha - \beta)(a)\ne e_H\}$. Since
\[
(\forall a\in A) :(\alpha - \beta)(a) = \alpha(a) - \beta(a),
\]
we have
\[
(\alpha - \beta)(a)\ne e_H\implies \alpha(a)\ne e_H\text{ or }\beta(a)\ne e_H,
\]
which implies $N_{\alpha-\beta}\subset N_\alpha\cup N_\beta$. Note that $N_\alpha$, $N_\beta$ are both finite sets, which forces $N_{\alpha-\beta}$ to be finite. So there must be $\alpha - \beta\in H^{\oplus A}$. Now we see $H^{\oplus A}$ is closed under additions and inverses. And $e_{H^A}=\varepsilon\in H^{\oplus A}$ means that $H^{\oplus A}$ is nonempty. Finally we can conclude $H^{\oplus A}$ is a subgroup of $H^A$.
\end{solution}
\begin{problem}[5.6]
Prove that the group $F(\{x, y\})$ (visualized in Example 5.3) is a coproduct $\mathbb{Z}*\mathbb{Z}$ of $\mathbb{Z}$ by itself in the category $\Grp$. (Hint: with due care, the universal property for one turns into the universal property for the other.) [\textsection 3.4, 3.7, 5.7]
\end{problem}
\begin{solution}
Define two homomorphisms
\begin{align*}
i_1:\mathbb{Z}\longrightarrow F(\{x, y\}),\quad n\longmapsto x^n,\\ i_2:\mathbb{Z}\longrightarrow F(\{x, y\}),\quad n\longmapsto y^n.
\end{align*}
We need to show that for any group $G$ with two homomorphisms $f_1,f_2:\mathbb{Z}\rightarrow G$, there exists a unique homomorphism $\varphi$ such that the following diagram commutes.
\[\xymatrix{