From 3c021ae18e15c2dd8dbd1aa9300e1758c74336a8 Mon Sep 17 00:00:00 2001 From: Derived Cat Date: Thu, 11 Jan 2024 18:53:58 -0500 Subject: [PATCH] add unit and counit --- algebraic_construction.tex | 2 + appendices.tex | 1 + category_theory.tex | 81 +++++++++++++++++++++++++++----------- 3 files changed, 60 insertions(+), 24 deletions(-) diff --git a/algebraic_construction.tex b/algebraic_construction.tex index f505d25..70dadfd 100644 --- a/algebraic_construction.tex +++ b/algebraic_construction.tex @@ -2,6 +2,8 @@ \input{preamble} +\includeonly{category_theory} + %\tikzexternalize % activate! \usepackage[page,toc,titletoc,title]{appendix} \usepackage{chemfig} diff --git a/appendices.tex b/appendices.tex index 36e070d..01ccb11 100644 --- a/appendices.tex +++ b/appendices.tex @@ -14,6 +14,7 @@ $\mathsf{Grp}$ & \multicolumn{2}{c}{$\{0\}$} \\ \midrule $R\text{-}\mathsf{Mod}$ & \multicolumn{2}{c}{$\{0\}$} \\ \midrule $\mathsf{Ring}$ & \multicolumn{1}{c|}{$\mathbb{Z}$} & \multicolumn{1}{c}{$\{0\}$} \\ \midrule + $R\text{-}\mathsf{Alg}$ & \multicolumn{1}{c|}{$R$} & \multicolumn{1}{c}{$\{0\}$} \\ \midrule $\mathsf{Sch}$ & \multicolumn{1}{c|}{$\spec\mathbb{Z}$} & \multicolumn{1}{c}{$\spec \{0\}=\varnothing$ } \\ \midrule $\mathsf{Field}_p$ & \multicolumn{1}{c|}{\begin{minipage}{.3\linewidth}$$ \begin{array}{ll} diff --git a/category_theory.tex b/category_theory.tex index 070a90e..ac2a099 100644 --- a/category_theory.tex +++ b/category_theory.tex @@ -904,28 +904,28 @@ \section{Adjoint Functor} Let $\left(L,R,\varphi\right)$ be an adjoint pair of functors. The \textbf{adjunction unit} $\eta$ of this adjunction is a natural transformation \begin{center} \begin{tikzcd}[ampersand replacement=\&] - \mathsf{C} \arrow[r, "\mathrm{id}_{\mathsf{C}}"{name=A, above}, bend left=40] \arrow[r, "R\circ L"'{name=B, below}, bend right=40] + \mathsf{C} \arrow[r, "\scalebox{1.2}{$\mathrm{id}_{\mathsf{C}}$}"{name=A, above}, bend left=40] \arrow[r, "\scalebox{1.2}{$R\circ L$}"'{name=B, below}, bend right=40] \&[+25pt] \mathsf{C} \arrow[Rightarrow, shorten <=3.5pt, shorten >=3.5pt, from=A.south-|B, to=B, "\eta"] \end{tikzcd} \hspace{3cm} \begin{tikzpicture}[x=0.6cm,y=0.6cm, baseline=(current bounding box.center)] - \fill[fill=blue!20] (-2.5,0) rectangle (2.5,2.8); - \filldraw[fill=green!20] (-1,2) arc (180:360:1); - \fill[fill=green!20] (-1,2) rectangle (1,2.8); - \node[above=2pt] at (-1,2.8) {$F$}; - \node[above=2pt] at (1,2.8) {$G$}; - \node[above=2pt] at (0,1) {$\eta$}; - \draw[fill=black] (0, 1) circle (0.07); - \draw (-1,2) -- (-1,2.8); - \draw (1,2) -- (1,2.8); + \begin{scope} + \clip (-2.5,0.2) rectangle (2.5,3); + \fill[fill=green!20] (-2.5,0.2) rectangle (2.5,3); + \draw[fill=blue!20, rounded corners=0.6cm, line width=0.5pt] (-1,-1) rectangle (1, 2); + \end{scope} + \node[below=2pt] at (-1,0.2) {$L$}; + \node[below=2pt] at (1,0.2) {$R$}; + \node[above=1pt] at (0,2) {$\eta$}; + \draw[fill=black] (0, 2) circle (0.07); \end{tikzpicture} \end{center} -defined by $\eta_X:=\varphi_{X,L(X)}(\mathrm{id}_{L(X)})$ for any $X\in \mathrm{Ob}(\mathsf{C})$, where $\varphi_{X,L(X)}$ is the natural bijection +defined by $\eta_X:=\varphi_{X,L(X)}\left(\mathrm{id}_{L(X)}\right)$ for any $X\in \mathrm{Ob}(\mathsf{C})$, where $\varphi_{X,L(X)}$ is the natural bijection $$ \begin{aligned} \varphi_{X,L(X)}:\operatorname{Hom}_{\mathsf{D}}\left(L(X), L(X)\right) & \xlongrightarrow{\sim}\operatorname{Hom}_{\mathsf{C}}(X, RL(X)) \\ -\operatorname{id}_{F X} & \longmapsto \eta_X +\operatorname{id}_{F(X)} & \longmapsto \eta_X \end{aligned} $$ The \textbf{adjunction counit} $\varepsilon$ of this adjunction is a natural transformation @@ -937,27 +937,60 @@ \section{Adjoint Functor} \end{tikzcd} \hspace{3cm} \begin{tikzpicture}[x=0.6cm,y=0.6cm, baseline=(current bounding box.center)] - \fill[fill=blue!20] (-2.5,0) rectangle (2.5,2.8); - \filldraw[fill=green!20] (-1,2) arc (180:360:1); - \fill[fill=green!20] (-1,2) rectangle (1,2.8); - \node[above=2pt] at (-1,2.8) {$F$}; - \node[above=2pt] at (1,2.8) {$G$}; - \node[above=2pt] at (0,1) {$\eta$}; - \draw[fill=black] (0, 1) circle (0.07); - \draw (-1,2) -- (-1,2.8); - \draw (1,2) -- (1,2.8); + \begin{scope} + \clip (-2.5,0) rectangle (2.5,2.8); + \fill[fill=blue!20] (-2.5,0) rectangle (2.5,2.8); + \draw[fill=green!20, rounded corners=0.6cm, line width=0.5pt] (-1,1) rectangle (1, 4); + \end{scope} + \node[above=2pt] at (-1,2.8) {$R$}; + \node[above=2pt] at (1,2.8) {$L$}; + \node[above=2pt] at (0,1) {$\varepsilon$}; + \draw[fill=black] (0, 1) circle (0.07); \end{tikzpicture} \end{center} +defined by $\varepsilon_Y:=\varphi_{R(Y),Y}^{-1}\left(\mathrm{id}_{R(Y)}\right)$ for any $Y\in \mathrm{Ob}(\mathsf{D})$, where $\varphi_{R(Y),Y}^{-1}$ is the natural bijection +$$ +\begin{aligned} + \varphi_{R(Y),Y}^{-1}:\operatorname{Hom}_{\mathsf{D}}\left(R(Y), R(Y)\right) & \xlongrightarrow{\sim}\operatorname{Hom}_{\mathsf{C}}(LR(Y), R(Y)) \\ +\mathrm{id}_{R(Y)} & \longmapsto \varepsilon_Y +\end{aligned} +$$ } \pf{ - The naturality square of $\eta$ means that for any morphism $g:X_1\to X_2$ in $\mathsf{C}$, the following diagram commutes + By naturality of $\varphi$, for any morphism $g:X_2\to X_1$ in $\mathsf{C}$, we have the following commutative diagram + \[ + \begin{tikzcd}[ampersand replacement=\&] + \mathrm{id}_{L(X_1)}\arrow[d,mapsto]\&[-30pt]\ni\&[-29pt]{\operatorname{Hom}_{\mathsf{D}}\left(L(X_1), L(X_1)\right) } \arrow[d, "{\varphi_{X_1,L(X_1)}}"'] \arrow[r,"{\left(L(g)\right)^*}"] \& [+12pt]{\operatorname{Hom}_{\mathsf{D}}\left(L(X_2), L(X_1)\right) } \arrow[d, "{\varphi_{X_2,L(X_1)}}"] \&[+12pt] {\operatorname{Hom}_{\mathsf{D}}\left(L(X_2), L(X_2)\right) } \arrow[d, "{\varphi_{X_2,L(X_2)}}"] \arrow[l,"{\left(L(g)\right)_*}"'] \&[-28pt]\in\&[-28pt]\mathrm{id}_{L(X_2)}\arrow[d,mapsto]\\[+20pt] + \eta_{X_1}\&\ni\&{\operatorname{Hom}_{\mathsf{C}}(X_1, RL(X_1))} \arrow[r,"g^*"] \& {\operatorname{Hom}_{\mathsf{C}}(X_2, RL(X_1))} \& {\operatorname{Hom}_{\mathsf{C}}(X_2, RL(X_2))} \arrow[l, "\left(RL(g)\right)_*"'] \&[-30pt]\in\&[-30pt]\eta_{X_2} + \end{tikzcd} + \] + Since + \[ + (L(g))^*\left(\mathrm{id}_{L(X_1)}\right)=L(g)=(L(g))_*\left(\mathrm{id}_{L(X_2)}\right), + \] + we have + \[ + g^*(\eta_{X_1})=\varphi_{X_2,L(X_1)}(L(g))=\left(RL(g)\right)_*(\eta_{X_2}), + \] + which implies the naturality square of $\eta$ commutes \[ \begin{tikzcd}[ampersand replacement=\&] - X_1 \arrow[d, "{\eta_{X_1}}"'] \arrow[r, "g"] \&[+50pt]X_2\arrow[d, "{\eta_{X_2}}"] \\[+20pt] - R(L(X_1))\arrow[r, "R(L(g))"']\& R(L(X_2)) + X_2 \arrow[d, "{\eta_{X_2}}"'] \arrow[r, "g"] \&[+18pt]X_1\arrow[d, "{\eta_{X_1}}"] \\[+15pt] + RL(X_2)\arrow[r, "RL(g)"']\& RL(X_1) \end{tikzcd} \] +Similarly, we can show that for any morphism $h:Y_1\to Y_2$ in $\mathsf{D}$, the naturality square of $\varepsilon$ commutes +\[ + \begin{tikzcd}[ampersand replacement=\&] + LR(Y_1) \arrow[d, "{\varepsilon_{Y_1}}"'] \arrow[r, "LR(h)"] \&[+18pt]LR(Y_2)\arrow[d, "{\varepsilon_{Y_2}}"] \\[+15pt] + Y_1\arrow[r, "h"']\& Y_2 + \end{tikzcd} +\] +} +\prop{Snake Equations}{ + } + \section{Monoidal Category} \dfn{Monoidal Category}{ A monoidal category is a category $\mathsf{V}$ equipped with