diff --git a/algebraic_construction.tex b/algebraic_construction.tex index a134c7c..cf30f43 100644 --- a/algebraic_construction.tex +++ b/algebraic_construction.tex @@ -217,28 +217,34 @@ \subsection{Relation} Equivalence & \poscell{Reflexive} & \poscell{Symmetric} & \poscell{Transitive} & \\ \bottomrule \end{tabular} \end{table} -% \begin{table}[h] -% \centering -% \renewcommand{\arraystretch}{1.6} -% \begin{tabular}{l|l|l|l|l} -% \toprule -% \textbf{Homogeneous Relation} & \multicolumn{1}{c|}{\textbf{Reflexivity}} & \multicolumn{1}{c|}{\textbf{Symmetry}} & \multicolumn{1}{c|}{\textbf{Transitivity}} & \multicolumn{1}{c}{\textbf{Connectedness}} \\ -% \midrule -% \midrule -% Directed graph & & & & \\ \midrule -% Undirected graph & & Symmetric & & \\ \midrule -% Dependency & Reflexive & Symmetric & & \\ \midrule -% Tournament & Irreflexive & Asymmetric & & \\ \midrule -% Preorder & Reflexive & & Transitive & \\ \midrule -% Total preorder & Reflexive & & Transitive & Strongly Connected \\ \midrule -% Partial order & Reflexive & Antisymmetric & Transitive & \\ \midrule -% Strict partial order & Irreflexive & Asymmetric & Transitive & \\ \midrule -% Total order & Reflexive & Antisymmetric & Transitive & Strongly Connected \\ \midrule -% Strict total order & Irreflexive & Asymmetric & Transitive & Connected \\ \midrule -% Partial equivalence & & Symmetric & Transitive & \\ \midrule -% Equivalence & Reflexive & Symmetric & Transitive & \\ \bottomrule -% \end{tabular} -% \end{table} + +\dfn{Filtered Set}{ + A \textbf{filtered set} or \textbf{directed set} is a preorder set $(X, \le)$ with an additional property that every pair of elements has an upper bound. In other words, for every $x, y \in X$, there exists $z \in X$ such that $x \le z$ and $y \le z$. +} +\prop{Intersection of equivalence relations is an equivalence relation}{ + The intersection of a family of equivalence relations on a set $X$ is an equivalence relation on $X$. +} +\pf{ + Suppose $(R_i)_{i\in i}$ is a family of equivalence relations on $X$. We can check that $\bigcap\limits_{i\in I}R_i$ is an equivalence relation on $X$ by checking the three properties of equivalence relation: + \begin{enumerate}[(i)] + \item Reflexivity: For any $x\in X$, since $(x,x)\in R_i$ for all $i\in I$, we have $(x,x)\in \bigcap\limits_{i\in I}R_i$. + \item Symmetry: For any $x,y\in X$, + \[ + (x,y)\in \bigcap\limits_{i\in I}R_i\implies\forall i\in I,(x,y)\in R_i\implies\forall i\in I, (y,x)\in R_i\implies(y,x)\in \bigcap\limits_{i\in I}R_i + \] + \item Transitivity: For any $x,y,z\in X$, + \begin{align*} + (x,y)\in \bigcap\limits_{i\in I}R_i\text{ and }(y,z)\in \bigcap\limits_{i\in I}R_i + &\implies\forall i\in I,(x,y)\in R_i\text{ and }(y,z)\in R_i\\ + &\implies\forall i\in I, (x,z)\in R_i\\ + &\implies(x,z)\in \bigcap\limits_{i\in I}R_i + \end{align*} + \end{enumerate} +} + +\dfn{Generated Equivalence Relation}{ + Let $X$ be a set and $R\subseteq X\times X$ be a relation on $X$. The \textbf{generated relation} $\langle R \rangle$ is defined as the smallest equivalence relation on $X$ that contains $R$, or equivalently, the intersection of all equivalence relations on $X$ that contain $R$. +} \section{Function} \prop{}{ @@ -679,6 +685,41 @@ \section{Limits and Colimits} \end{tikzcd} \] } + +\ex{Colimit of $\mathsf{Set}$-valued Functor}{ + Let $F:\mathsf{J}\to \mathsf{Set}$ be a functor. Define a relation $\sim^*$ on $\coprod\limits_{i\in \mathrm{Ob}(\mathsf{J})}F(i)$: for any $(i,x),(j,y)\in \coprod\limits_{i\in \mathrm{Ob}(\mathsf{J})}F(i)$, + \[ + (i,x)\sim^* (j,y)\iff \text{there exists }\lambda:i\to j\text{ in }\mathrm{Hom}_\mathsf{J}(i,j)\text{ such that }F(\lambda)(x)=y. + \] + Let $\sim$ denote the equivalence relation generated by $\sim^*$. Then + \[ + \varinjlim F\cong\coprod_{i\in \mathrm{Ob}(\mathsf{J})}F(i)/\sim + \] + and the map $\phi_i:F(i)\to \varinjlim F$ is given by the composition + \[ + F(i)\xrightarrow{\quad\iota_i\quad}\coprod_{i\in \mathrm{Ob}(\mathsf{J})}F(i)\xrightarrow{\quad\pi\quad}\coprod_{i\in \mathrm{Ob}(\mathsf{J})}F(i)/\sim + \] + If $\mathsf{J}$ is a filtered category, then the equivalence relation $\sim$ has a explicit description: for any $(i,x),(j,y)\in \coprod\limits_{i\in \mathrm{Ob}(\mathsf{J})}F(i)$, + \[ + (i,x)\sim (j,y)\iff \text{there exists }\lambda_1:i\to k\text{ and }\lambda_2:j\to k\text{ such that }F(\lambda_1)(x)=F(\lambda_2)(y). + \] +} +\pf{ + It is easy to show + \[ + \varinjlim F\cong\coprod_{i\in \mathrm{Ob}(\mathsf{J})}F(i)/\sim + \] + by checking the universal property of $\varinjlim F$. If $\mathsf{J}$ is a filtered category, first we can check + \[ + (i,x)\approx (j,y)\iff \text{there exists }\lambda_1:i\to k\text{ and }\lambda_2:j\to k\text{ such that }F(\lambda_1)(x)=F(\lambda_2)(y). + \] + is an equivalence relation. To show $\approx\;=\;\sim$, let's assume $\backsimeq$ is any equivalence relation containing $\sim^*$. If $(i,x)\approx(j,y)$, then there exists $\lambda_1:i\to k$ and $\lambda_2:j\to k$ such that $F(\lambda_1)(x)=F(\lambda_2)(y)=z$. Hence + \[ + (i,x)\sim^* (k,z)\text{ and }(j,y)\sim^* (k,z)\implies(i,x)\backsimeq (k,z)\text{ and }(j,y)\backsimeq (k,z)\implies (i,x)\backsimeq (j,y). + \] + This implies $\backsimeq$ contains $\approx$. Therefore, $\approx$ is the smallest equivalence relation containing $\sim^*$, which means $\approx$ coincides with $\sim$. +} + \dfn{Complete Category}{ A category $\mathsf{C}$ is \textbf{complete} if it has all small limits. That is, for any functor $F:\mathsf{J}\to \mathsf{C}$ with $\mathsf{J}$ small, $\varprojlim F$ exists. } @@ -744,6 +785,17 @@ \section{Limits and Colimits} (X,\leq)&\longmapsto \mathsf{X} \end{align*} } + +\ex{Filtered Set}{ + A filtered set can be regarded as a filtered (0,1)-category with objects being elements of the set and morphisms being + \begin{align*} + \mathrm{Hom}(x,y)=\begin{cases} + \{*\} & \text{if }x\leq y\\ + \varnothing & \text{otherwise} + \end{cases} + \end{align*} +} + \section{Representable Functor} \dfn{Presheaf}{ Let $\mathsf{C}$ be a category. A \textbf{presheaf} on $\mathsf{C}$ is a functor $F:\mathsf{C}^{\mathrm{op}}\to \mathsf{Set}$. @@ -2396,7 +2448,7 @@ \subsection{Ideals} \dfn{Ideal generated from subset}{ Let $R$ be a commutative ring and $\mathcal I(R)$ be the set of all ideals of $R$. Suppose $S\subseteq R$ be a subset. The \textbf{ideal generated by $S$}, denoted by $(S)$, is the smallest ideal of $R$ containing $S$, i.e. \[ - (S)=\bigcap_{\substack{ I\in \mathcal I(R)\\S\subseteq I}}I. + (S)=\bigcap_{\substack{ I\in \mathcal I(R)\\S\subseteq I}}I=\left\{\sum_{i=1}^n r_is_i\mid n\in\mathbb{Z}_{+},r_i\in R,s_i\in S\right\}. \] If $S=\{a_1,\dots,a_n\}$, we write \[ @@ -2419,6 +2471,17 @@ \subsection{Ideals} \]. \end{enumerate} } +\prop{}{ + Let $R$ be a commutative ring and $S$ be a subset of $R$. Then + $$(S)=\sum_{s\in S}(s).$$ +} +\pf{ + \begin{align*} + \sum_{s \in S} (s)&=\left\{a_{s_1}+ \cdots +a_{s_n}\mid n\in\mathbb{Z}_{+},s_i\in S,a_{s_i}\in (s_i)\right\}\\ + &=\left\{r_1s_{1}+ \cdots +r_ns_{n}\mid n\in\mathbb{Z}_{+},s_i\in S,r_i\in R\right\}\\ + &=(S). + \end{align*} +} \prop{Properties of Ideal Operations}{ \begin{enumerate}[(i)] @@ -2427,7 +2490,7 @@ \subsection{Ideals} \item ${I} ({J}+{K}) = {I} {J}+{I} {K}$ \item $$ \begin{gathered} - \left(\sum_{t \in T} I_t\right) J=\sum_{t \in T}\left(I_t J\right), \quad J\left(\sum_{t \in T} I_t\right)=\sum_{t \in T} J I_t. + J\sum_{t \in T} I_t=\sum_{t \in T} J I_t. \end{gathered} $$ \item $I(J K)=(I J) K$ @@ -2442,6 +2505,21 @@ \subsection{Ideals} \end{enumerate} } +\prop{}{ + Let $I$ and $J$ be ideals of a commutative ring $R$ and $\mathfrak{p}$ be a prime ideal of $R$. Then + \[ + I\cap J\subseteq \mathfrak{p}\iff IJ\subseteq \mathfrak{p}\iff I\subseteq \mathfrak{p}\text{ or }J\subseteq \mathfrak{p}. + \] +} +\pf{ + We have the following chain of implications: + \begin{itemize} + \item $I\cap J\subseteq \mathfrak{p}\implies IJ\subseteq \mathfrak{p}$. Note that $IJ\subseteq I\cap J$. The result follows immediately. + \item $IJ\subseteq \mathfrak{p}\implies I\subseteq \mathfrak{p}\text{ or }J\subseteq \mathfrak{p}$. Assume $IJ\subseteq \mathfrak{p}$. Suppose $I\subsetneq \mathfrak{p}$ and $J\subsetneq \mathfrak{p}$. Then there exist $a\in I-\mathfrak{p}$ and $b\in J-\mathfrak{p}$. Since $\mathfrak{p}$ is prime, $ab\in IJ\subseteq \mathfrak{p}$ implies $a\in \mathfrak{p}$ or $b\in \mathfrak{p}$, which is a contradiction. Hence $I\subseteq \mathfrak{p}$ or $J\subseteq \mathfrak{p}$. + \item $I\subseteq \mathfrak{p}\text{ or }J\subseteq \mathfrak{p}\implies I\cap J\subseteq \mathfrak{p}$. Note that $I\cap J\subseteq I$. The result follows immediately. + \end{itemize} +} + \dfn{Radical Ideal}{ An ideal $I$ is called a \textbf{radical ideal} if $I=\sqrt{I}$. }