-
Notifications
You must be signed in to change notification settings - Fork 0
/
number_theory.tex
121 lines (104 loc) · 5.33 KB
/
number_theory.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
\chapter{Number Theory}
\section{$p$-adic Numbers}
\begin{definition}{$p$-adic Integer}{}
Let $p$ be a prime number. The $p$-adic integer topological ring is defined as
\[
\mathbb{Z}_p=\varprojlim_{n}\mathbb{Z}/p^n\mathbb{Z}.
\]
The universal property of $\mathbb{Z}_p$ is given by the following commutative diagram
\[
\begin{tikzcd}[ampersand replacement=\&, row sep=30pt]
\& \& \& \& \& G \arrow[d, dashed] \arrow[rdd] \& \\
\& \& \& \& \& \mathbb{Z}_p \arrow[d] \arrow[lld] \arrow[lllld] \arrow[llllld] \arrow[rd] \& \\
\mathbb{Z}/p\mathbb{Z} \& \mathbb{Z}/p^2\mathbb{Z} \arrow[l] \& \cdots \arrow[l] \& \mathbb{Z}/p^n\mathbb{Z} \arrow[l] \& \cdots \arrow[l] \& \mathbb{Z}/p^m\mathbb{Z} \arrow[l] \& \cdots \arrow[l]
\end{tikzcd}
\]
\end{definition}
A $p$-adic integer can be represented as a sequence
$$
x=\left(x_1 \bmod p, x_2 \bmod p^2, x_3 \bmod p^3, \ldots\right)
$$
such that $x_{n+1}\equiv x_n \bmod p^n$ for all $n\in \mathbb{Z}_{\ge 1}$. Writing in base-$p$ form, $x_n \bmod p^n$ can be represented as
\[
x_n =a_0+a_1p+\cdots+a_{n-1}p^{n-1}= \left(\,\overline{ a_{n-1}\cdots a_1a_0}\,\right)_p.
\]
The condition $x_{n+1}\equiv x_n \bmod p^n$ means that $x_{n+1}$ and $x_n$ have the same last $n$ digits in base-$p$ form. Thus $p$-adic integer $x$ can be thought as a base-$p$ interger with infinite digits
\[
x =a_0+a_1p+\cdots+a_{n}p^{n}+\cdots= \left(\,\overline{\cdots a_{n}\cdots a_1a_0}\,\right)_p.
\]
The projection map $\pi_n:\mathbb{Z}_p\to \mathbb{Z}/p^n\mathbb{Z}$ is the truncation map that truncates the last $n$ digits of $x$ in base-$p$ form.
\begin{definition}{$p$-adic Valuation}{}
Let $p$ be a prime number. The \textbf{$p$-adic valuation} is defined as
\begin{align*}
v_p:\mathbb{Q}&\longrightarrow \mathbb{Z}\cup\{\infty\}\\
\frac{a}{b}&\longmapsto \begin{cases}
\infty & \text{if }a=0,\\
\max\{n\in \mathbb{Z}\mid p^n\mid a\}-\max\{n\in \mathbb{Z}\mid p^n\mid b\} & \text{if }a\ne 0.
\end{cases}
\end{align*}
\end{definition}
The \textbf{$p$-adic absolute value} is defined as
\begin{align*}
\left|\,\cdot\,\right|_p:\mathbb{Q}&\longrightarrow \mathbb{R}_{\ge 0}\\
x&\longmapsto \begin{cases}
0 & \text{if }a=0,\\
p^{-v_p(x)} & \text{if }x\ne 0.
\end{cases}
\end{align*}
\begin{definition}{Global Field}{}
A \textbf{global field} is a field isomorphic to one of the following:
\begin{itemize}
\item a \textbf{number field}: finite extension of $\mathbb{Q}$,
\item a \textbf{function field} over a finite field $\mathbb{F}_q$: finite extension of $\mathbb{F}_q(t)$.
\end{itemize}
\end{definition}
\begin{definition}{Local Field}{}
A \textbf{local field} is a field isomorphic to one of the following:
\begin{itemize}
\item (Character zero): $\mathbb{R}$, $\mathbb{C}$ or a finite extension of $\mathbb{Q}_p$,
\item (Character $p>1$): the field of formal Laurent series $\mathbb{F}_q((t))$, where $q=p^n$.
\end{itemize}
\end{definition}
\section{Dirichlet Charater}
\begin{definition}{Euler's Totient Function}{}
The \textbf{Euler's totient function} is defined as
\begin{align*}
\varphi:\mathbb{N}&\longrightarrow \mathbb{N}\\
n&\longmapsto \left|\left\{a\in \mathbb{N}\mid 1\le a\le n, (a,n)=1\right\}\right|.
\end{align*}
\end{definition}
\begin{proposition}{Euler's Product Formula}{}
For any $n\in \mathbb{N}$, we have
\[
\varphi(n)=\sum_{k=1}^n \mathds{1}_{(k,n)=1}=n\prod_{p\mid n}\left(1-\frac{1}{p}\right).
\]
\end{proposition}
\begin{proposition}{Properties of Euler's Totient Function}{}
For any $m,n\in \mathbb{N}$, we have
\begin{enumerate}[(i)]
\item $\varphi(mn)=\varphi(m)\varphi(n)$ if $(m,n)=1$.
\item $\varphi(n)\mid n$.
\item $\varphi(n)=n$ if and only if $n=1$.
\item $\varphi(p^k)=p^k-p^{k-1}$ for any prime $p$ and $k\in \mathbb{N}$.
\item $\varphi(n)\le n-\sqrt{n}$ for any $n\in \mathbb{N}$.
\end{enumerate}
\end{proposition}
\begin{definition}{Dirichlet Character}{}
Given any group homomorphism $\rho_m:(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$, we can define a function $\chi:\mathbb{Z} \rightarrow \mathbb{C}$ by
\begin{align*}
\chi_m(a)=\left\{\begin{array}{lll}
0 & \text { if }[a] \notin(\mathbb{Z} / m \mathbb{Z})^{\times} & \text {i.e. }(a, m)>1 \\
\rho([a]) & \text { if }[a] \in(\mathbb{Z} / m \mathbb{Z})^{\times} & \text {i.e. }(a, m)=1
\end{array}\right.
\end{align*}
Such function $\chi_m$ is called a \textbf{Dirichlet character modulo $m$}.
\end{definition}
\begin{definition}{Principal Dirichlet Character}{}
The \textbf{principal Dirichlet character modulo $m$} is the simplest Dirichlet character defined by
\begin{align*}
\chi_0\left(a\right)=\left\{\begin{array}{lll}
0 & \text { if } a \neq 1 \\
1 & \text { if } a=1
\end{array}\right.
\end{align*}
\end{definition}