-
Notifications
You must be signed in to change notification settings - Fork 0
/
cubesym_gene.rb
91 lines (77 loc) · 2.95 KB
/
cubesym_gene.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
require 'set'
class Permutation
def initialize(data)
raise ArgumentError, "expected a permutation, got #{data.inspect}" unless data.sort == (0 ... data.size).to_a
@data = data
end
def self::[](*data); new data; end
attr_reader :data
def *(other)
return Permutation.new(self * other.data) if other.is_a? Permutation
return (self * other.chars).join if other.is_a? String
return (self * other.to_s(2).rjust(@data.size, "0")).to_i(2) if other.is_a? Integer
raise ArgumentError, "length mismatch #{inspect} * #{other.inspect}" unless @data.size == other.size
@data.map{|i| other[i]}
end
include Comparable
def <=>(other); @data <=> other.data; end
def eql?(other); @data.eql? other.data; end
def hash; @data.hash; end
def to_s; "Permutation#{@data}"; end
def inspect; to_s; end
end
GENERATORS = [Permutation[1, 3, 0, 2, 5, 7, 4, 6], # r01 = t01 + m0
Permutation[4, 0, 6, 2, 5, 1, 7, 3], # r20 = t20 + m2
Permutation[2, 3, 6, 7, 0, 1, 4, 5]] # r12 = t12 + m1
INVERSION = Permutation.new((0..7).to_a.reverse)
GENERATORS.dup.each{|g| GENERATORS << g*g << g*g*g << g*g*INVERSION}
PERMUTATIONS = GENERATORS.map{|g1| GENERATORS.map{|g2| [g1 * g2, g1 * g2 * INVERSION]}}.flatten.uniq.sort
CLASSES = (0..255).map{|i| PERMUTATIONS.map{|per| per * i}.uniq.sort}.uniq.sort
################################################################################
def random_genome; CLASSES.map{|c| c.sample}; end
def mix_genomes(x, y); x.zip(y).map(&:sample); end
def mutate(x, p_m); x.map{|g| rand > p_m ? g : GENERATORS.sample * g}; end
def genome_fitness(genome)
1.0 / genome.map{|gene|
(0..7).map{|bit|
next_gene = gene | (1 << bit)
case
when genome.include?(next_gene) then 0
when GENERATORS.any?{|g| genome.include?(g * next_gene)} then 1
else 2
end
}.reduce(&:+)
}.reduce(&:+)
end
def print_genome(genome)
genome.map{|g|g.to_s(16).rjust(2, "0")}.join " "
end
population = 16.times.map{random_genome}
best_genome = nil
best_fitness = 0
at_exit do
puts "#" * 80, "\a1/#{(1/best_fitness).round(5)} #{print_genome best_genome}"
end
2000.times do |generation|
fitnesses = population.map{|g| genome_fitness g}
puts generation if generation % 100 == 0
gen_best = fitnesses.max
if gen_best > best_fitness
best_fitness = gen_best
best_genome = population.find{|g| genome_fitness(g) == best_fitness}
puts "@#{"%04d"%generation} new best: 1/#{(1/best_fitness).round(5)} for #{print_genome best_genome}"
#gets
end
total_fitness = fitnesses.reduce(&:+)
pop_fitnesses = population.zip(fitnesses)
population = [best_genome] + (population.size - 1).times.map{
parents = 2.times.map{
needle = 0
stop = rand * total_fitness
#parent = pop_fitnesses.find{|_, f| needle += f; needle >= stop}.first
parent = 2.times.map{pop_fitnesses.sample}.max_by{|g, f| [f, rand]}.first
mutate(parent, 0.05)
}
mix_genomes(*parents)
}
end