-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_load_2xgb.py
422 lines (386 loc) · 16.6 KB
/
main_load_2xgb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import os
import sys
import time
import json
import shutil
import datetime
import numpy as np
from tqdm import tqdm
import xgboost as xgb
import matplotlib.pyplot as plt
from pprint import pprint
import torch
from torch import nn
import torch.nn.functional as F
from torch.backends import cudnn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.models import efficientnet_b4, EfficientNet_B4_Weights
from sklearn.metrics import (
log_loss,
accuracy_score,
mean_squared_error,
mean_absolute_error,
)
import joint_transforms
from config import cod_training_root, cod10k_path
from datasets import ImageFolder
from misc import AvgMeter, check_mkdir, peak_memory, get_train_val_index
from misc import save_model, load_model, write
from single_xgboost import SingleXGBoost
from arguments import parse_arguments
from features import image_features, prob_features
from fastforest import fast
from tee import Tee
def feature_extraction(models, args, data_loader, epoch_num=1):
X_train = None
y_train = None
num_samples = epoch_num*len(data_loader.dataset)*int(args["feature_shape_3"]*args["feature_shape_3"]*args['sample_ratio'])
cur = 0
for epoch in range(epoch_num):
for images, targets in tqdm(data_loader):
# print(images.shape, targets.shape)
images = images.cuda(args["gpu_id"])
with torch.no_grad():
features = image_features(models['backbone'], images, args["feature_shape_1"], args["start_layer_1"], args["end_layer_1"], all_size=args['all_size_1'], equal=args['equal_1'])
y_prev_train = models['prev_sxgb'].predict(features)
features = image_features(models['backbone'], images, args["feature_shape_2"], args["start_layer_2"], args["end_layer_2"], all_size=args['all_size_2'], equal=args['equal_2'])
features = prob_features(features, y_prev_train, args["prob_kernel_size_2"], args["feature_shape_1"], args["feature_shape_2"], args['prob_only_2'])
y_prev_train = models['prev_sxgb_2'].predict(features)
features = image_features(models['backbone'], images, args["feature_shape_3"], args["start_layer_3"], args["end_layer_3"], all_size=args['all_size_3'], equal=args['equal_3'])
features = prob_features(features, y_prev_train, args["prob_kernel_size_3"], args["feature_shape_2"], args["feature_shape_3"], args['prob_only_3'])
targets = F.interpolate(targets, size=(args["feature_shape_3"], args["feature_shape_3"]), mode="bicubic")
targets = torch.clamp(targets, min=0, max=1)
targets = targets.flatten().numpy()
# print(features.shape, targets.shape)
if X_train is None:
X_train = np.zeros((num_samples, features.shape[1]), dtype=np.float32)
y_train = np.zeros((num_samples), dtype=np.float32)
if args['sample_ratio'] != 1:
n = int(args["feature_shape_3"]*args["feature_shape_3"]*args['sample_ratio'])*len(images)
train_samples_indices = torch.randperm(len(features))[:n]
features = features[train_samples_indices]
targets = targets[train_samples_indices]
assert cur+len(features) <= len(X_train)
assert cur+len(targets) <= len(y_train)
assert len(features) == len(targets)
X_train[cur:cur+len(features)] = features
y_train[cur:cur+len(targets)] = targets
cur += len(targets)
if args["debug"]:
X_train = features
y_train = targets
break
if not args["debug"]:
assert cur == len(X_train), cur == len(y_train)
print(X_train.shape, y_train.shape)
return X_train, y_train
if __name__ == "__main__":
args = parse_arguments()
# Path
ckpt_path = args["ckpt_path"]
exp_name = args["exp_name"]
check_mkdir(ckpt_path)
check_mkdir(os.path.join(ckpt_path, exp_name))
cur = str(datetime.datetime.now())
save_path = os.path.join(ckpt_path, exp_name, cur)
check_mkdir(save_path)
model_path = os.path.join(ckpt_path, exp_name, cur, "model")
check_mkdir(model_path)
log_path = os.path.join(save_path, "log.txt")
shutil.copy2(sys.argv[0], save_path)
out_path = os.path.join(save_path, "out.txt")
file = open(out_path, "w")
sys.stdout = Tee(sys.stdout, file)
full_command = " ".join(sys.argv)
print(cur)
print("python " + full_command)
print("Exp name: ", exp_name)
print("Save Path", save_path)
pprint(args)
if args["debug"]:
args["epoch_num"] = 1
args["batch_size"] = 10
cudnn.benchmark = True
torch.manual_seed(args["seed"])
print(torch.__version__)
with open(os.path.join(save_path, "args.json"), "w") as f:
json.dump(args, f, indent= 4)
if not args["infer"]:
# Transform Data.
joint_transform = joint_transforms.Compose(
[
joint_transforms.RandomHorizontallyFlip(),
joint_transforms.Resize((args["scale"], args["scale"])),
]
)
img_transform = transforms.Compose(
[
transforms.ColorJitter(
brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1
),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
target_transform = transforms.ToTensor()
train_index, val_index = get_train_val_index(
args["dataset_size"], args["train_size"]
)
# Prepare Data Set.
train_set = ImageFolder(
cod_training_root, joint_transform, img_transform, target_transform, train_index
)
val_set = ImageFolder(
cod_training_root, joint_transform, img_transform, target_transform, val_index
)
print("Train set: {}".format(train_set.__len__()))
print("Val set: {}".format(val_set.__len__()))
train_loader = DataLoader(
train_set,
batch_size=args["batch_size"],
num_workers=args["num_workers"],
shuffle=True,
)
val_loader = DataLoader(
val_set,
batch_size=args["batch_size"],
num_workers=args["num_workers"],
shuffle=True,
)
models = {}
print("Load EfficientNet_B4...")
weights = EfficientNet_B4_Weights.DEFAULT
model = efficientnet_b4(weights=weights).eval().cuda(args["gpu_id"])
models['backbone'] = model
print("Load previous XGboost...")
models["prev_sxgb"] = load_model(os.path.join(args["model_path_1"]))
models["prev_sxgb"] = fast(models["prev_sxgb"], model_path, "prev_sxgb")
models["prev_sxgb_2"] = load_model(os.path.join(args["model_path_2"]))
models["prev_sxgb_2"] = fast(models["prev_sxgb_2"], model_path, "prev_sxgb_2")
print("Get training data...")
X_train, y_train = feature_extraction(models, args, train_loader, epoch_num=args["epoch_num"])
print("Create DMatrix_train...")
DMatrix_train = xgb.DMatrix(X_train, label=y_train)
del X_train
print("Get validation data...")
X_val, y_val = feature_extraction(models, args, val_loader, epoch_num=1)
print("Create DMatrix_val...")
DMatrix_val = xgb.DMatrix(X_val, label=y_val)
del X_val
print("Delete models...")
del model, weights, models
peak_memory()
print("Release torch cached memory...")
torch.cuda.empty_cache()
peak_memory()
params = {
"gpu_id": args["gpu_id"],
"tree_method": "gpu_hist",
"objective": "binary:logistic",
"eval_metric": ["error", "rmse", "logloss", "mae"],
"max_depth": args["depth"],
"eta": args["eta"],
"subsample": 0.8,
"colsample_bytree": 0.8,
"seed": 0,
"max_delta_step": args["max_delta_step"],
# "verbosity": 3,
}
pprint(params)
num_boost_round = args["num_boost_round"]
if args["debug"]:
num_boost_round = 100
early_stopping_rounds = args["early_stopping_rounds"]
# decay_rate = 0.995
# scheduler = xgb.callback.LearningRateScheduler(lambda epoch: params["eta"] * decay_rate ** epoch)
sxgb = SingleXGBoost(params, num_boost_round, early_stopping_rounds)
start = time.time()
sxgb.fit(DMatrix_train, DMatrix_val)
print("Finished in", time.time() - start, "seconds.")
peak_memory()
# dump
save_model(sxgb, os.path.join(model_path, "xgboost.pkl"))
peak_memory()
def logloss(y_true, y_pred):
if isinstance(y_true, torch.Tensor):
y_true = y_true.numpy()
y_pred = np.clip(y_pred, 1e-7, 1 - 1e-7)
return np.mean(-(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred)))
# Plot learning curve
sxgb.plot_learning_curve(eval_metric="logloss", path=os.path.join(save_path, "logloss.png"))
sxgb.plot_learning_curve(eval_metric="error", path=os.path.join(save_path, "error.png"))
sxgb.plot_learning_curve(eval_metric="rmse", path=os.path.join(save_path, "rmse.png"))
sxgb.plot_learning_curve(eval_metric="mae", path=os.path.join(save_path, "mae.png"))
# Training score
y_pred_train = sxgb.predict(DMatrix_train)
mse_train = mean_squared_error(y_train, y_pred_train)
mae_train = mean_absolute_error(y_train, y_pred_train)
accuracy_train = accuracy_score(y_train > 0.5, y_pred_train > 0.5)
logloss_train = logloss(y_train, y_pred_train)
print(
"mse_train: ",
mse_train,
"mae_train: ",
mae_train,
"accuracy_train: ",
accuracy_train,
"log_loss: ",
logloss_train,
)
write(
log_path,
"mse_train: %f, mae_train: %f, accuracy_train: %f, log_loss: %f\n"
% (mse_train, mae_train, accuracy_train, logloss_train),
)
del DMatrix_train
peak_memory()
# Validation score
y_pred_val = sxgb.predict(DMatrix_val)
mse_val = mean_squared_error(y_val, y_pred_val)
mae_val = mean_absolute_error(y_val, y_pred_val)
accuracy_val = accuracy_score(y_val > 0.5, y_pred_val > 0.5)
logloss_val = logloss(y_val, y_pred_val)
print(
"mse_val: ",
mse_val,
"mae_val: ",
mae_val,
"accuracy_val: ",
accuracy_val,
"log_loss: ",
logloss_val,
)
write(
log_path,
"mse_val: %f, mae_val: %f, accuracy_val: %f, log_loss: %f\n"
% (mse_val, mae_val, accuracy_val, logloss_val),
)
del DMatrix_val
peak_memory()
# Test
peak_memory()
print("Load EfficientNet_B4...")
weights = EfficientNet_B4_Weights.DEFAULT
model = efficientnet_b4(weights=weights).eval().cuda(args["gpu_id"])
models = {}
models["prev_sxgb"] = load_model(os.path.join(args["model_path_1"]))
models["prev_sxgb_2"] = load_model(os.path.join(args["model_path_2"]))
if not args["infer"]:
sxgb = load_model(os.path.join(model_path, "xgboost.pkl"))
else:
sxgb = load_model(os.path.join(args["cur_model_path"]))
models["prev_sxgb"] = fast(models["prev_sxgb"], model_path, "prev_sxgb")
models["prev_sxgb_2"] = fast(models["prev_sxgb_2"], model_path, "prev_sxgb_2")
sxgb = fast(sxgb, model_path, "sxgb")
test_joint_transform = joint_transforms.Compose(
[joint_transforms.Resize((args["scale"], args["scale"]))]
)
test_img_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
target_transform = transforms.ToTensor()
test_set = ImageFolder(
cod10k_path, test_joint_transform, test_img_transform, target_transform
)
print("Test set: {}".format(test_set.__len__()))
test_loader = DataLoader(
test_set,
batch_size=args["test_batch_size"],
num_workers=args["num_workers"],
shuffle=False,
)
mae_test = 0
mse_test = 0
error_test = 0
logloss_test = 0
mae_test_binary = 0
baseline = 0
pos_mae = 0
neg_mae = 0
pos_len = 0
neg_len = 0
num_images = 0
prob = []
for images, targets in tqdm(test_loader):
num_images += len(images)
# print(images.shape, targets.shape)
images = images.cuda(args["gpu_id"])
with torch.no_grad():
features = image_features(model, images, args["feature_shape_1"], args["start_layer_1"], args["end_layer_1"], all_size=args["all_size_1"], equal=args["equal_1"])
start = time.time()
y_prev_train = models["prev_sxgb"].predict(features)
# print("XGBoost Predict Finished in", time.time() - start, "seconds.")
features = image_features(model, images, args["feature_shape_2"], args["start_layer_2"], args["end_layer_2"], all_size=args["all_size_2"], equal=args["equal_2"])
features = prob_features(features, y_prev_train, args["prob_kernel_size_2"], args["feature_shape_1"], args["feature_shape_2"], args["prob_only_2"])
start = time.time()
y_prev_train = models["prev_sxgb_2"].predict(features)
# print("XGBoost Predict Finished in", time.time() - start, "seconds.")
features = image_features(model, images, args["feature_shape_3"], args["start_layer_3"], args["end_layer_3"], all_size=args["all_size_3"], equal=args["equal_3"])
features = prob_features(features, y_prev_train, args["prob_kernel_size_3"], args["feature_shape_2"], args["feature_shape_3"], args["prob_only_3"])
start = time.time()
y_pred = sxgb.predict(features)
# print("XGBoost Predict Finished in", time.time() - start, "seconds.")
y_pred = torch.from_numpy(y_pred)
y_pred = y_pred.reshape(-1, 1, args["feature_shape_3"], args["feature_shape_3"])
prob.append(y_pred)
y_pred = F.interpolate(y_pred, size=targets.shape[-2:], mode="bicubic")
y_pred = torch.clamp(y_pred, min=0, max=1)
y_pred = y_pred.flatten().numpy()
targets = targets.flatten().numpy()
y_pred = np.clip(y_pred, 1e-7, 1 - 1e-7)
mae_test += np.sum(np.abs(y_pred - targets))
mae_test_binary += np.sum(np.abs((y_pred > 0.5) - targets))
baseline += np.sum(np.abs(targets))
error_test += np.sum(np.abs((y_pred > 0.5).astype(int) - (targets > 0.5).astype(int)))
mse_test += np.sum((y_pred - targets) ** 2)
pos_mae += np.sum(np.abs(y_pred[targets > 0.5] - targets[targets > 0.5]))
neg_mae += np.sum(np.abs(y_pred[targets <= 0.5] - targets[targets <= 0.5]))
pos_len += np.sum(targets > 0.5)
neg_len += np.sum(targets <= 0.5)
logloss_test += np.sum(-(targets * np.log(y_pred) + (1 - targets) * np.log(1 - y_pred)))
if args["debug"]:
break
if not args["debug"]:
assert num_images == test_set.__len__()
mae_test /= num_images * args["scale"] * args["scale"]
mse_test /= num_images * args["scale"] * args["scale"]
error_test /= num_images * args["scale"] * args["scale"]
logloss_test /= num_images * args["scale"] * args["scale"]
mae_test_binary /= num_images * args["scale"] * args["scale"]
baseline /= num_images * args["scale"] * args["scale"]
pos_mae /= pos_len
neg_mae /= neg_len
print(
"mse_test: ",
mse_test,
"mae_test: ",
mae_test,
"accuracy_test: ",
1 - error_test,
"logloss_test: ",
logloss_test,
)
write(
log_path,
"mse_test: %f, mae_test: %f, accuracy_test: %f, logloss_test: %f\n"
% (mse_test, mae_test, 1 - error_test, logloss_test),
)
print("baseline: ", baseline, "pos_mae: ", pos_mae, "neg_mae: ", neg_mae)
print(
"mae_test_binary: ", mae_test_binary
)
write(
log_path,
"baseline: %f, pos_mae: %f, neg_mae: %f\nmae_test_binary %f\n"
% (baseline, pos_mae, neg_mae, mae_test_binary),
)
prob = torch.cat(prob, dim=0)
prob = prob.numpy()
np.save(os.path.join(save_path, "prob.npy"), prob)
del sxgb, model, models
print("python " + full_command)
file.close()