-
Notifications
You must be signed in to change notification settings - Fork 0
/
TrainConvKB.py
673 lines (588 loc) · 32.1 KB
/
TrainConvKB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
from sklearn.neighbors import NearestNeighbors
from model.TransE import *
from model.ConvKB import ConvKB
from model.utils import *
from model.evaluation import *
from model.CustomTripletMarginLoss import CustomTripletMarginLoss
from argparse import Namespace
import torch
import torch.nn as nn
import sys
from torch.autograd import Variable
import torch.optim as optim
from numpy import linalg as LA
from math import log10,floor
import pickle
import numpy as np
import csv
import errno
import multiprocessing
class TrainConvKB():
net = None
# processed_entity_2_id = dict()
# relation_2_id = dict()
# triplets = dict()
def __init__(self,args):
#super(TrainConvKB,self).__init__(0)
self.args = args
self.entity_total = get_total(self.args.entity_path)
self.relation_total = get_total(self.args.relation_path)
if os.path.exists(self.args.entity_path):
self.processed_entity_2_id = load_data(self.args.entity_path, ignore_first=True)
with open("./support/id_dict_2018", "rb") as f:
self.id_dict_2018 = pickle.load(f)
f.close()
if os.path.exists(self.args.relation_path):
self.relation_2_id = load_data(self.args.relation_path, ignore_first=True)
# if os.path.exists(self.args.triplets_path):
# self.triplets = load_data(self.args.triplets_path, is_triplet=True, ignore_first=True)
if os.path.exists(self.args.train_path):
self.triplets = load_data(self.args.train_path, is_triplet=True, ignore_first=True)
self.triple_dict = load_data_valid(self.args.triplets_path, is_triplet=True, ignore_first=True)
if os.path.exists(self.args.valid_path):
self.valids = load_data_valid(self.args.valid_path, is_triplet=True, ignore_first=True)
# if os.path.exists(self.args.conv_kb_save_path) and os.path.exists(self.args.entity_path) and os.path.exists(
# self.args.relation_path):
# self.net = ConvKB(self.entity_total, self.relation_total, self.args.embedding_size)
# if torch.cuda.is_available():
# self.net = self.net.cuda()
# self.net.load_state_dict(torch.load(self.args.conv_kb_save_path))
# else:
# self.net.load_state_dict(torch.load(self.args.conv_kb_save_path, map_location=lambda storage, loc: storage))
# self.train()
#self.net.eval()
def cleanup(self):
self.persist()
def persist(self):
print('Saving model...')
with open(self.args.entity_path, 'w') as f:
f.write('{}\n'.format(len(self.processed_entity_2_id)))
for processed_entity, idx in sorted(list(self.processed_entity_2_id.items()),
key=lambda kv: (kv[1])):
f.write('{}\t{}\n'.format(processed_entity, idx))
with open(self.args.relation_path, 'w') as f:
f.write('{}\n'.format(len(self.relation_2_id)))
for relation, idx in sorted(list(self.relation_2_id.items()), key=lambda kv: int(kv[1])):
f.write('{}\t{}\n'.format(relation, idx))
print('Saved model to file')
def get_item_embedding(self, item_id):
key = "_item:" + str(item_id)
if key in self.processed_entity_2_id:
idx = self.processed_entity_2_id[key]
idx = torch.LongTensor([idx])
if torch.cuda.is_available():
idx = idx.cuda()
idx = Variable(idx)
embedding = self.net.ent_embeddings(idx).data[0].cpu().numpy()
norm = LA.norm(embedding)
if norm == 0:
return embedding
return embedding / LA.norm(embedding)
return None
def train_TransE(self,entity_total,relation_total,triplets,n_epochs=None):
trans_e_loss = []
net = TransE(entity_total,relation_total,self.args.embedding_size)
if self.net is not None:
embedding_entities = np.random.normal(0, 0.01, (entity_total, self.args.embedding_size))
embedding_entities[:self.entity_total] = self.net.ent_embeddings.weight.data.cpu().numpy()
net.ent_embeddings.weight.data.copy_(torch.from_numpy(embedding_entities))
embedding_relations = np.random.normal(0, 0.01, (relation_total, self.args.embedding_size))
embedding_relations[:self.relation_total] = self.net.rel_embeddings.weight.data.cpu().numpy()
net.rel_embeddings.weight.data.copy_(torch.from_numpy(embedding_relations))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
print("Using CUDA: {}".format(next(net.parameters()).is_cuda))
net.train()
optimizer = optim.Adam(net.parameters(), lr=self.args.trans_e_learning_rate)
#optimizer = optim.SGD(net.parameters(), lr=self.args.trans_e_learning_rate)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.3, patience=5, min_lr=1e-5,
verbose=True)
criterion = CustomTripletMarginLoss(margin=self.args.trans_e_margin)
# 2. Load triples #
triple_total, triple_list, triple_dict, tails_per_head, heads_per_tail = load_triplet_2(triplets)
# 4. Train #
min_loss = None
if n_epochs is None:
n_epochs = self.args.trans_e_n_epochs
for epoch in range(1, n_epochs + 1): # loop over the dataset multiple times
# shuffle train set
random.shuffle(triple_list)
train_loss = 0.0
n_batches = triple_total // self.args.batch_size
if (triple_total - n_batches * self.args.batch_size) != 0:
n_batches += 1
for batch_idx, i in enumerate(range(n_batches), 1):
start = i * self.args.batch_size
end = min([start + self.args.batch_size, triple_total])
triple_batch = triple_list[start:end]
pos_h_batch, pos_t_batch, pos_r_batch, neg_h_batch, neg_t_batch, neg_r_batch = get_batch_filter_all(
triple_batch, entity_total, triple_dict, tails_per_head, heads_per_tail)
pos_h_batch, neg_h_batch = torch.LongTensor(pos_h_batch), torch.LongTensor(neg_h_batch)
pos_t_batch, neg_t_batch = torch.LongTensor(pos_t_batch), torch.LongTensor(neg_t_batch)
pos_r_batch, neg_r_batch = torch.LongTensor(pos_r_batch), torch.LongTensor(neg_r_batch)
pos_h_batch, neg_h_batch = pos_h_batch.to(device), neg_h_batch.to(device)
pos_t_batch, neg_t_batch = pos_t_batch.to(device), neg_t_batch.to(device)
pos_r_batch, neg_r_batch = pos_r_batch.to(device), neg_r_batch.to(device)
pos_h_batch, neg_h_batch = Variable(pos_h_batch), Variable(neg_h_batch)
pos_t_batch, neg_t_batch = Variable(pos_t_batch), Variable(neg_t_batch)
pos_r_batch, neg_r_batch = Variable(pos_r_batch), Variable(neg_r_batch)
# zero the parameter gradients
optimizer.zero_grad()
pos, neg, pos_h_e, pos_t_e, neg_h_e, neg_t_e = net(pos_h_batch, pos_t_batch, pos_r_batch,
neg_h_batch, neg_t_batch, neg_r_batch)
ent_embeddings = net.ent_embeddings(torch.cat([pos_h_batch, pos_t_batch, neg_h_batch, neg_t_batch]))
rel_embeddings = net.rel_embeddings(torch.cat([pos_r_batch, neg_r_batch]))
loss_triplet = criterion(pos, neg)
norm_loss = ent_embeddings.norm(2) + rel_embeddings.norm(2)
norm_loss += pos_h_e.norm(2) + pos_t_e.norm(2) + neg_h_e.norm(2) + neg_t_e.norm(2)
loss = loss_triplet + self.args.trans_e_weight_decay * norm_loss
batch_loss = loss.item()
loss.backward()
optimizer.step()
train_loss += batch_loss
if batch_idx % self.args.log_interval == 0:
offset = int(floor(log10(n_batches)) - floor(log10(batch_idx)))
print('\r\033[K\rTrain Epoch: {} [{}{} / {} ({:.0f}%)] Learning Rate: {} Loss: {:.6f}'
.format(epoch, batch_idx, ' ' * offset, n_batches, 100. * batch_idx / n_batches,_get_learning_rate(optimizer)[0], batch_loss)),
sys.stdout.flush()
train_loss /= n_batches
#Valid loss
# pos_h_batch, pos_t_batch, pos_r_batch, neg_h_batch, neg_t_batch, neg_r_batch = get_batch_filter_random_v2(self.valids,
# self.args.batch_size, entity_total, triple_dict, tails_per_head, heads_per_tail)
#
# pos_h_batch, neg_h_batch = torch.LongTensor(pos_h_batch), torch.LongTensor(neg_h_batch)
# pos_t_batch, neg_t_batch = torch.LongTensor(pos_t_batch), torch.LongTensor(neg_t_batch)
# pos_r_batch, neg_r_batch = torch.LongTensor(pos_r_batch), torch.LongTensor(neg_r_batch)
#
# pos_h_batch, neg_h_batch = pos_h_batch.to(device), neg_h_batch.to(device)
# pos_t_batch, neg_t_batch = pos_t_batch.to(device), neg_t_batch.to(device)
# pos_r_batch, neg_r_batch = pos_r_batch.to(device), neg_r_batch.to(device)
#
# pos_h_batch, neg_h_batch = Variable(pos_h_batch), Variable(neg_h_batch)
# pos_t_batch, neg_t_batch = Variable(pos_t_batch), Variable(neg_t_batch)
# pos_r_batch, neg_r_batch = Variable(pos_r_batch), Variable(neg_r_batch)
#
# pos, neg, pos_h_e, pos_t_e, neg_h_e, neg_t_e = net(pos_h_batch, pos_t_batch, pos_r_batch,
# neg_h_batch, neg_t_batch, neg_r_batch)
#
# ent_embeddings = net.ent_embeddings(torch.cat([pos_h_batch, pos_t_batch, neg_h_batch, neg_t_batch]))
# rel_embeddings = net.rel_embeddings(torch.cat([pos_r_batch, neg_r_batch]))
#
# loss_triplet = criterion(pos, neg)
# norm_loss = ent_embeddings.norm(2) + rel_embeddings.norm(2)
# norm_loss += pos_h_e.norm(2) + pos_t_e.norm(2) + neg_h_e.norm(2) + neg_t_e.norm(2)
#
# loss = loss_triplet + self.args.trans_e_weight_decay * norm_loss
# valid_loss = loss.item()
# trans_e_loss.append(str(train_loss)+" - "+str(valid_loss))
trans_e_loss.append(train_loss)
# print statistics
# if epoch % self.args.display_step == 0 or epoch == 1:
# print('\r\033[K\r[{:3d}] train_loss: {:.5f} - valid_loss: {:.5f} - learning rate: {}'
# .format(epoch, train_loss,valid_loss, _get_learning_rate(optimizer)[0]))
if epoch % self.args.display_step == 0 or epoch == 1:
print('\r\033[K\r[{:3d}] train_loss: {:.5f} - learning rate: {}'
.format(epoch, train_loss, _get_learning_rate(optimizer)[0]))
if min_loss is None or train_loss < min_loss:
min_loss = train_loss
with open(self.args.trans_e_save_path, 'wb') as f:
torch.save(net.state_dict(), f)
scheduler.step(train_loss, epoch)
print('\nFinished Training TransE\n')
with open(self.args.trans_e_loss_path, 'w') as f:
for item in trans_e_loss:
f.write("%s\n" % item)
f.close()
if torch.cuda.is_available():
net.load_state_dict(torch.load(self.args.trans_e_save_path))
else:
net.load_state_dict(torch.load(self.args.trans_e_save_path, map_location=lambda storage, loc: storage))
return net
def train_ConvKB(self, ent_embeddings, rel_embeddings, triplets, n_epochs=None):
conv_kb_loss = []
conv_kb_eval = []
# 1. Initial net, criterion, optimizer and scheduler (if needed) #
entity_total = ent_embeddings.shape[0]
relation_total = rel_embeddings.shape[0]
net = ConvKB(entity_total, relation_total, self.args.embedding_size,self.args.num_filters)
net.set_pretrained_weights(ent_embeddings, rel_embeddings)
# net.ent_embeddings.weight.requires_grad = False
# net.rel_embeddings.weight.requires_grad = False
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
print("Using CUDA: {}".format(next(net.parameters()).is_cuda))
net.train()
params_dict = dict(net.named_parameters())
net_params = []
for key, value in params_dict.items():
if not value.requires_grad:
continue
if key.startswith('fc'):
net_params += [{'params': [value], 'weight_decay': self.args.conv_kb_weight_decay}]
else:
net_params += [{'params': [value]}]
optimizer = optim.Adam(net_params, lr=self.args.conv_kb_learning_rate)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.3, patience=5, min_lr=1e-5,
verbose=True)
criterion = nn.SoftMarginLoss()
# 2. Load triples #
triple_total, triple_list, triple_dict, tails_per_head, heads_per_tail = load_triplet_2(triplets)
# 3. Train #
min_loss = None
if n_epochs is None:
n_epochs = self.args.conv_kb_n_epochs
for epoch in range(1, n_epochs + 1): # loop over the dataset multiple times
# shuffle train set
random.shuffle(triple_list)
train_loss = 0.0
n_batches = triple_total // self.args.batch_size
if (triple_total - n_batches * self.args.batch_size) != 0:
n_batches += 1
for batch_idx, i in enumerate(range(n_batches), 1):
start = i * self.args.batch_size
end = min([start + self.args.batch_size, triple_total])
triple_batch = triple_list[start:end]
pos_h_batch, pos_t_batch, pos_r_batch, neg_h_batch, neg_t_batch, neg_r_batch = get_batch_filter_all(
triple_batch, entity_total, triple_dict, tails_per_head, heads_per_tail)
h_batch, t_batch, r_batch, targets = [], [], [], []
for h, t, r in zip(pos_h_batch, pos_t_batch, pos_r_batch):
h_batch.append(h)
t_batch.append(t)
r_batch.append(r)
targets.append([-1.])
for h, t, r in zip(neg_h_batch, neg_t_batch, neg_r_batch):
h_batch.append(h)
t_batch.append(t)
r_batch.append(r)
targets.append([1.])
h_batch, t_batch = torch.LongTensor(h_batch), torch.LongTensor(t_batch)
r_batch, targets = torch.LongTensor(r_batch), torch.FloatTensor(targets)
h_batch, t_batch = h_batch.to(device), t_batch.to(device)
r_batch, targets = r_batch.to(device), targets.to(device)
h_batch, t_batch = Variable(h_batch), Variable(t_batch)
r_batch, targets = Variable(r_batch), Variable(targets)
# zero the parameter gradients
optimizer.zero_grad()
outputs, h_e, t_e, r_e = net(h_batch, t_batch, r_batch)
# ent_embeddings = net.ent_embeddings(torch.cat([pos_h_batch, pos_t_batch, neg_h_batch, neg_t_batch]))
# rel_embeddings = net.rel_embeddings(torch.cat([pos_r_batch, neg_r_batch]))
loss_triplet = criterion(outputs, targets)
norm_loss = h_e.norm(2) + t_e.norm(2) + r_e.norm(2)
loss = loss_triplet + self.args.conv_kb_weight_decay * norm_loss
batch_loss = loss.item()
loss.backward()
optimizer.step()
train_loss += batch_loss
if batch_idx % self.args.log_interval == 0:
offset = int(floor(log10(n_batches)) - floor(log10(batch_idx)))
print('\r\033[K\rTrain Epoch: {} [{}{} / {} ({:.0f}%)] Learning Rate: {} Loss: {:.6f}'
.format(epoch, batch_idx, ' ' * offset, n_batches, 100. * batch_idx / n_batches,
_get_learning_rate(optimizer)[0], batch_loss)),
sys.stdout.flush()
train_loss /= n_batches
#Valid loss
# pos_h_batch, pos_t_batch, pos_r_batch, neg_h_batch, neg_t_batch, neg_r_batch = get_batch_filter_random_v2(self.valids,
# self.args.batch_size, entity_total, triple_dict, tails_per_head, heads_per_tail)
#
# h_batch, t_batch, r_batch, targets = [], [], [], []
# for h, t, r in zip(pos_h_batch, pos_t_batch, pos_r_batch):
# h_batch.append(h)
# t_batch.append(t)
# r_batch.append(r)
# targets.append([-1.])
#
# for h, t, r in zip(neg_h_batch, neg_t_batch, neg_r_batch):
# h_batch.append(h)
# t_batch.append(t)
# r_batch.append(r)
# targets.append([1.])
#
# h_batch, t_batch = torch.LongTensor(h_batch), torch.LongTensor(t_batch)
# r_batch, targets = torch.LongTensor(r_batch), torch.FloatTensor(targets)
#
# h_batch, t_batch = h_batch.to(device), t_batch.to(device)
# r_batch, targets = r_batch.to(device), targets.to(device)
#
# outputs, h_e, t_e, r_e = net(h_batch, t_batch, r_batch)
#
# # ent_embeddings = net.ent_embeddings(torch.cat([pos_h_batch, pos_t_batch, neg_h_batch, neg_t_batch]))
# # rel_embeddings = net.rel_embeddings(torch.cat([pos_r_batch, neg_r_batch]))
#
# loss_triplet = criterion(outputs, targets)
# norm_loss = h_e.norm(2) + t_e.norm(2) + r_e.norm(2)
#
# loss = loss_triplet + self.args.conv_kb_weight_decay * norm_loss
#
# valid_loss = loss.item()
# conv_kb_loss.append(str(train_loss)+" - "+str(valid_loss))
conv_kb_loss.append(train_loss)
# print statistics
# if epoch % self.args.display_step == 0 or epoch == 1:
# print('\r\033[K\r[{:3d}] train_loss: {:.5f} - valid_loss: {:.5f} - learning rate: {}'
# .format(epoch, train_loss,valid_loss, _get_learning_rate(optimizer)[0]))
if epoch % self.args.display_step == 0 or epoch == 1:
print('\r\033[K\r[{:3d}] train_loss: {:.5f} - learning rate: {}'
.format(epoch, train_loss, _get_learning_rate(optimizer)[0]))
if min_loss is None or train_loss < min_loss:
min_loss = train_loss
with open(self.args.conv_kb_save_path, 'wb') as f:
torch.save(net.state_dict(), f)
scheduler.step(train_loss,epoch)
with open(self.args.conv_kb_loss_path, 'w') as f:
for item in conv_kb_loss:
f.write("%s\n" % item)
f.close()
print('\nFinished Training ConvKB\n')
if torch.cuda.is_available():
net.load_state_dict(torch.load(self.args.conv_kb_save_path))
else:
net.load_state_dict(torch.load(self.args.conv_kb_save_path, map_location=lambda storage, loc: storage))
return net
def get_item_embedding(self, item_id):
key = "_item:" + str(item_id)
if key in self.processed_entity_2_id:
idx = self.processed_entity_2_id[key]
idx = torch.LongTensor([idx])
if torch.cuda.is_available():
idx = idx.cuda()
idx = Variable(idx)
embedding = self.net.ent_embeddings(idx).data[0].cpu().numpy()
norm = LA.norm(embedding)
if norm == 0:
return embedding
return embedding / LA.norm(embedding)
return None
def train(self,trans_e_n_epochs=None, conv_kb_n_epochs=None):
if os.path.exists(self.args.conv_kb_save_path) and os.path.exists(self.args.entity_path) and os.path.exists(
self.args.relation_path):
self.net = ConvKB(self.entity_total, self.relation_total, self.args.embedding_size,num_filters=args.num_filters)
if torch.cuda.is_available():
self.net = self.net.cuda()
self.net.load_state_dict(torch.load(self.args.conv_kb_save_path))
else:
self.net.load_state_dict(torch.load(self.args.conv_kb_save_path, map_location=lambda storage, loc: storage))
else:
net = self.train_TransE(self.entity_total, self.relation_total, self.triplets, n_epochs=self.args.trans_e_n_epochs)
ent_embeddings = net.ent_embeddings.weight.data.cpu().numpy()
rel_embeddings = net.rel_embeddings.weight.data.cpu().numpy()
net = self.train_ConvKB(ent_embeddings, rel_embeddings, self.triplets, n_epochs=self.args.conv_kb_n_epochs)
self.net = net
print('\nEvaluate ConvKB\n')
candidates = []
for att in self.processed_entity_2_id.keys():
if att not in self.id_dict_2018.keys():
candidates.append(self.processed_entity_2_id[att])
# print(len(self.valids),self.triplets,self.triple_dict)
# hit10, best_meanrank,mrr = evaluation_ConvKB(self.valids, net, self.triple_dict,candidates, self.args.batch_size, num_processes=multiprocessing.cpu_count()*2)
# conv_kb_eval = [hit10, best_meanrank,mrr]
mix_ids = np.random.permutation(len(self.valids))
n_batches = int(np.ceil(len(self.valids) / float(args.batch_size)))
hits10 = 0.0
mr = 0.0
mrr = 0.0
for ib in range(n_batches):
rand_index = mix_ids[args.batch_size * ib:min(args.batch_size * (ib + 1), len(self.valids))]
new_candidates = set(random.choices(candidates, k=128))
valid_list = []
for index in rand_index:
triple = self.valids[index]
new_candidates.add(triple.t)
valid_list.append(triple)
for triple in valid_list:
h_batch = []
t_batch = []
r_batch = []
h_batch.append(triple.h)
t_batch.append(triple.t)
r_batch.append(triple.r)
for att in new_candidates:
if (triple.h, att, triple.r) in self.triple_dict:
continue
h_batch.append(triple.h)
t_batch.append(att)
r_batch.append(triple.r)
h_batch, t_batch, r_batch = torch.LongTensor(h_batch), torch.LongTensor(t_batch), torch.LongTensor(
r_batch)
if torch.cuda.is_available():
h_batch, t_batch, r_batch = h_batch.cuda(), t_batch.cuda(), r_batch.cuda()
h_batch, t_batch, r_batch = Variable(h_batch), Variable(t_batch), Variable(r_batch)
outputs, _, _, _ = self.net(h_batch, t_batch, r_batch)
outputs = torch.sigmoid(outputs)
outputs = outputs.data.tolist()
results_with_id = rankdata(outputs, method='ordinal')
_filter = results_with_id[0]
print(_filter)
mr += _filter
mrr += 1.0 / _filter
if _filter <= 10:
hits10 += 1
print("Evalute epoch {}/{}: Hit@10: {} - MR: {} - MRR: {} ".format(ib + 1, n_batches, hits10, mr, mrr))
mrr = mrr / len(self.valids)
hits10 = hits10 / len(self.valids)
conv_kb_eval = [hits10, mr, mrr]
print('Hit@10: %.6f' % hits10)
print('Meanrank: %.6f' % mr)
print('MRR: %.6f' % mrr)
with open(self.args.conv_kb_eval_path, 'w') as f:
for e in conv_kb_eval:
f.write("%s\n" % e)
f.close()
def _get_learning_rate(o):
lr = []
for param_group in o.param_groups:
lr += [param_group['lr']]
return lr
if __name__ == '__main__':
args = Namespace(
entity_path='./data/GENE/entity2id.txt',
relation_path='./data/GENE/relation2id.txt',
triplets_path='./data/GENE/triple2id.txt',
train_path='./data/GENE/train2id.txt',
valid_path='./data/GENE/valid2id.txt',
# trans_e_loss_train_path='/loss_train_transe.txt',
# trans_e_loss_valid_path='/loss_valid_transe.txt',
# conv_kb_loss_train_path='/loss_train_convkb.txt',
# conv_kb_loss_valid_path='/loss_valid_convkb.txt',
trans_e_loss_path='loss_transe.txt',
conv_kb_loss_path='loss_convkb.txt',
conv_kb_eval_path='evaluation.txt',
embedding_size=100,
batch_size=128,
seed=0,
log_interval=15,
display_step=5,
trans_e_margin=1,
trans_e_weight_decay=0.001,
trans_e_learning_rate=5e-4,
trans_e_n_epochs=100,
trans_e_save_path='TransE.pkl',
conv_kb_weight_decay=0.001,
conv_kb_learning_rate=1e-4,
conv_kb_n_epochs=125,
conv_kb_momentum=0.9,
num_filters = 50,
# new_conv_kb_save_path='/TempConvKB.pkl',
conv_kb_save_path='ConvKB.pkl'
)
# embedding_size = [150];
# trans_e_learning_rate = [1e-3];
# trans_e_margin =[3]
# conv_kb_learning_rate = [1e-3];
# num_filters = [150]
embedding_size = [100,150]
trans_e_learning_rate = [1e-3]
trans_e_margin =[1,3]
conv_kb_learning_rate = [1e-4,1e-3]
num_filters = [100,150]
count_param = 1
# result = [['params','embedding_size','trans_e_learning_rate','trans_e_margin','conv_kb_learning_rate','num_filters',
# 'trans_e_train_loss','trans_e_valid_loss','conv_kb_train_loss','conv_kb_valid_loss']]
result = [['params','embedding_size','trans_e_learning_rate','trans_e_margin','conv_kb_learning_rate','num_filters',
'trans_e_train_loss','conv_kb_train_loss','hit_10', 'mean_rank','mean_reciprocal_rank']]
min_total_loss = 10
for embedding in embedding_size:
for learning_rate_1 in trans_e_learning_rate:
for margin in trans_e_margin:
for learning_rate_2 in conv_kb_learning_rate:
for filters in num_filters:
args.embedding_size = embedding
args.trans_e_learning_rate = learning_rate_1
args.trans_trans_e_margin = margin
args.conv_kb_learning_rate = learning_rate_2
args.num_filters = filters
folder = "./data/param"+str(count_param);
try:
os.makedirs(folder)
except OSError as e:
if e.errno != errno.EEXIST:
raise
args.trans_e_loss_path = os.path.join(folder,"loss_transe.txt")
args.conv_kb_loss_path = os.path.join(folder,"loss_convkb.txt")
args.conv_kb_eval_path = os.path.join(folder,"evaluation.txt")
args.trans_e_save_path = os.path.join(folder,"TransE.pkl")
args.conv_kb_save_path = os.path.join(folder,"ConvKB.pkl")
TrainConvKB(args).train()
#append to result file
# trans_e_min_train_loss = 10
# trans_e_min_valid_loss = 10
# with open(args.trans_e_loss_path, 'r') as f:
# for item in f.readlines():
# tmp = item.split("-")
# train_loss = float(tmp[0])
# valid_loss = float(tmp[1][0:len(tmp[1]) - 1])
# if valid_loss < trans_e_min_valid_loss:
# trans_e_min_valid_loss = valid_loss
# trans_e_min_train_loss = train_loss
# f.close()
trans_e_min_train_loss = 10
with open(args.trans_e_loss_path, 'r') as f:
for item in f.readlines():
train_loss = float(item[0:len(item)-1])
if train_loss < trans_e_min_train_loss:
trans_e_min_train_loss = train_loss
f.close()
# conv_kb_min_train_loss = 10
# conv_kb_min_valid_loss = 10
# with open(args.conv_kb_loss_path, 'r') as f:
# for item in f.readlines():
# tmp = item.split("-")
# train_loss = float(tmp[0])
# valid_loss = float(tmp[1][0:len(tmp[1]) - 1])
# if valid_loss < conv_kb_min_valid_loss:
# conv_kb_min_valid_loss = valid_loss
# conv_kb_min_train_loss = train_loss
#f.close()
conv_kb_min_train_loss = 10
with open(args.conv_kb_loss_path, 'r') as f:
for item in f.readlines():
train_loss = float(item[0:len(item)-1])
if train_loss < conv_kb_min_train_loss:
conv_kb_min_train_loss = train_loss
f.close()
with open(args.conv_kb_eval_path, 'r') as f:
eval = []
for item in f.readlines():
eval.append(item[0:len(item)-1])
f.close()
# result.append([count_param,embedding,learning_rate_1,margin,learning_rate_2,filters,
# trans_e_min_train_loss,trans_e_min_valid_loss,conv_kb_min_train_loss,conv_kb_min_valid_loss])
result.append([count_param,embedding,learning_rate_1,margin,learning_rate_2,filters,
trans_e_min_train_loss,conv_kb_min_train_loss,eval[0],eval[1],eval[2]])
if conv_kb_min_train_loss < min_total_loss:
min_total_loss = conv_kb_min_train_loss
# best_param = ["best_param " + str(count_param), embedding, learning_rate_1, margin,
# learning_rate_2, filters,
# trans_e_min_train_loss, trans_e_min_valid_loss, conv_kb_min_train_loss,
# conv_kb_min_valid_loss]
best_param = ["best_param " + str(count_param), embedding, learning_rate_1, margin,
learning_rate_2, filters,
trans_e_min_train_loss, conv_kb_min_train_loss,eval[0],eval[1],eval[2]]
count_param += 1
result.append(best_param)
csv.register_dialect('myDialect',
quoting=csv.QUOTE_ALL,
skipinitialspace=True)
with open('./data/result.csv', 'w') as f:
writer = csv.writer(f, dialect='myDialect')
for row in result:
writer.writerow(row)
f.close()
# if torch.cuda.is_available():
# net = torch.load(args.conv_kb_save_path)
# else:
# net = torch.load(args.conv_kb_save_path, map_location=lambda storage, loc: storage)
# net = list(net.items())
# # 1: entity
# # 2: relation
# data_train = net[0][1].cpu().numpy()
# nbrs = NearestNeighbors(n_neighbors=15, algorithm='ball_tree').fit(data_train)
# distances, indices = nbrs.kneighbors(data_train)
# with open("./data/GENE/kNN.pkl", "wb") as f:
# pickle.dump(nbrs,f)
# f.close()
# with open("./data/GENE/indices.pkl", "wb") as f:
# pickle.dump(indices, f)
# f.close()
# with open("./data/GENE/distance.pkl", "wb") as f:
# pickle.dump(distances, f)
# f.close()