diff --git a/PackageInfo.g b/PackageInfo.g index 08610f5..57ed9c9 100644 --- a/PackageInfo.g +++ b/PackageInfo.g @@ -11,7 +11,7 @@ SetPackageInfo( rec( PackageName := "CatReps", Subtitle := "Representations and cohomology of finite categories", Version := Maximum( [ - "2020.02.19", ## Mohamed's version + "2020.02.20", ## Mohamed's version ## this line prevents merge conflicts "2020.01.01", ## Tibor's version ## this line prevents merge conflicts diff --git a/examples/ConcreteCategoryWithEndomorphismGroups.g b/examples/ConcreteCategoryWithEndomorphismGroups.g index d8be7d5..fa6b0c6 100644 --- a/examples/ConcreteCategoryWithEndomorphismGroups.g +++ b/examples/ConcreteCategoryWithEndomorphismGroups.g @@ -22,6 +22,9 @@ Perform( gmorphisms, Display ); #! [ [ 1, 2, 3 ], [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ], [ 4, 5, 6 ] ] #! A morphism in subcategory given by: #! [ [ 4, 5, 6 ], [ [ 4, 5 ], [ 5, 6 ], [ 6, 4 ] ], [ 4, 5, 6 ] ] +#! @EndExample + +#! @Example qc3c3 := RightQuiver( "q(2)[a:1->1,b:1->2,c:2->2]" ); #! q(2)[a:1->1,b:1->2,c:2->2] HOMALG_MATRICES.PreferDenseMatrices := true; @@ -596,4 +599,72 @@ Display( iso ); #! . . . . . . . . . . . 1 . . . . #! #! An isomorphism in Category of matrices over GF(3) +proj1 := YonedaProjective( CatReps, kq.1 ); +#! 1,b:1->2,c:2->2] +#! -> Category of matrices over GF(3)> +Display( proj1 ); +#! An object in The category of functors: Bialgebroid generated by the +#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices +#! over GF(3) defined by the following data: +#! +#! +#! Image of (1): +#! A vector space object over GF(3) of dimension 3 +#! +#! Image of (2): +#! A vector space object over GF(3) of dimension 3 +#! +#! Image of (1)-[{ Z(3)^0*(a) }]->(1): +#! . 1 . +#! . . 1 +#! 1 . . +#! +#! A morphism in Category of matrices over GF(3) +#! +#! +#! Image of (1)-[{ Z(3)^0*(b) }]->(2): +#! 1 . . +#! . 1 . +#! . . 1 +#! +#! A morphism in Category of matrices over GF(3) +#! +#! +#! Image of (2)-[{ Z(3)^0*(c) }]->(2): +#! . 1 . +#! . . 1 +#! 1 . . +#! +#! A morphism in Category of matrices over GF(3) +proj2 := YonedaProjective( CatReps, kq.2 ); +#! 1,b:1->2,c:2->2] +#! -> Category of matrices over GF(3)> +Display( proj2 ); +#! An object in The category of functors: Bialgebroid generated by the +#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices +#! over GF(3) defined by the following data: +#! +#! +#! Image of (1): +#! A vector space object over GF(3) of dimension 0 +#! +#! Image of (2): +#! A vector space object over GF(3) of dimension 3 +#! +#! Image of (1)-[{ Z(3)^0*(a) }]->(1): +#! (an empty 0 x 0 matrix) +#! +#! +#! Image of (1)-[{ Z(3)^0*(b) }]->(2): +#! (an empty 0 x 3 matrix) +#! +#! +#! Image of (2)-[{ Z(3)^0*(c) }]->(2): +#! . 1 . +#! . . 1 +#! 1 . . +#! +#! A morphism in Category of matrices over GF(3) #! @EndExample diff --git a/gap/CatRepsWithCAP.gd b/gap/CatRepsWithCAP.gd index bc137b0..e85bd63 100644 --- a/gap/CatRepsWithCAP.gd +++ b/gap/CatRepsWithCAP.gd @@ -115,6 +115,15 @@ DeclareOperation( "EmbeddingOfSubRepresentation", DeclareOperation( "WeakDirectSumDecomposition", [ IsCapCategoryObjectInHomCategory ] ); +#! @Description +#! Return Yoneda's projective representation given by the object o, +#! i.e., the submodule of the category algebra consisting of all arrows +#! starting at o. +#! @Arguments H, o +#! @Returns IsCapCategoryObjectInHomCategory +DeclareOperation( "YonedaProjective", + [ IsCapHomCategory, IsCapCategoryObject ] ); + #################################### # #! @Section Tools diff --git a/gap/CatRepsWithCAP.gi b/gap/CatRepsWithCAP.gi index cd26f27..43be698 100644 --- a/gap/CatRepsWithCAP.gi +++ b/gap/CatRepsWithCAP.gi @@ -189,7 +189,80 @@ InstallMethod( WeakDirectSumDecomposition, k := CommutativeRingOfLinearCategory( kq ); d := List( d, eta -> List( [ 1 .. Length( eta ) ], i -> VectorSpaceMorphism( VectorSpaceObject( Length( eta[i] ), k ), eta[i], F( kq.(i) ) ) ) ); - + return List( d, eta -> EmbeddingOfSubRepresentation( eta, F ) ); end ); + +## +InstallMethod( YonedaProjective, + "for a Hom-category and a CAP object", + [ IsCapHomCategory, IsCapCategoryObject ], + + function( CatReps, o ) + local kq, k, basis_list, A, basis, dimensions, a, arrows, matrices, + source, target, dim_source, dim_target, b, b_source, b_target, + matrix, b_a_path, b_a, coeffs, yproj; + + kq := Source( CatReps ); + + o := Position( SetOfObjects( kq ), o ); + + k := CommutativeRingOfLinearCategory( CatReps ); + + ## code from QPA2/lib/special-representations.gi + + A := UnderlyingQuiverAlgebra( kq ); + + basis_list := BasisOfProjectives( A ); + basis := basis_list[ o ]; + + dimensions := List( basis, Length ); + arrows := Arrows( QuiverOfAlgebra( A ) ); + matrices := [ ]; + + for a in arrows do + + source := VertexIndex( Source( a ) ); + target := VertexIndex( Target( a ) ); + + dim_source := dimensions[ source ]; + dim_target := dimensions[ target ]; + + if dim_source = 0 or dim_target = 0 then + + matrix := HomalgZeroMatrix( dim_source, dim_target, k ); + + else + + b_source := List( basis[ source ], b -> Paths(b)[ 1 ] ); + b_target := List( basis[ target ], b -> Paths(b)[ 1 ] ); + + matrix := [ ]; + + for b in b_source do + b_a_path := ComposePaths( b, a ); + b_a := PathAsAlgebraElement( A, b_a_path ); + coeffs := CoefficientsOfPaths( b_target, b_a ); + Add( matrix, coeffs ); + od; + + matrix := HomalgMatrix( matrix, dim_source, dim_target, k ); + + matrix := VectorSpaceMorphism( VectorSpaceObject( dim_source, k ), matrix, VectorSpaceObject( dim_target, k ) ); + + fi; + + Add( matrices, matrix ); + + od; + + dimensions := List( dimensions, dim -> VectorSpaceObject( dim, k ) ); + + yproj := AsObjectInHomCategory( kq, dimensions, matrices ); + + SetIsProjective( yproj, true ); + + return yproj; + +end );